Titan Cells Confer Protection from Phagocytosis in Cryptococcus neoformans Infections
Okagaki, Laura H.
2012-01-01
The human fungal pathogen Cryptococcus neoformans produces an enlarged “titan” cell morphology when exposed to the host pulmonary environment. Titan cells exhibit traits that promote survival in the host. Previous studies showed that titan cells are not phagocytosed and that increased titan cell production in the lungs results in reduced phagocytosis of cryptococcal cells by host immune cells. Here, the effect of titan cell production on host-pathogen interactions during early stages of pulmonary cryptococcosis was explored. The relationship between titan cell production and phagocytosis was found to be nonlinear; moderate increases in titan cell production resulted in profound decreases in phagocytosis, with significant differences occurring within the first 24 h of the infection. Not only were titan cells themselves protected from phagocytosis, but titan cell formation also conferred protection from phagocytosis to normal-size cryptococcal cells. Large particles introduced into the lungs were not phagocytosed, suggesting the large size of titan cells protects against phagocytosis. The presence of large particles was unable to protect smaller particles from phagocytosis, revealing that titan cell size alone is not sufficient to provide the observed cross-protection of normal-size cryptococcal cells. These data suggest that titan cells play a critical role in establishment of the pulmonary infection by promoting the survival of the entire population of cryptococcal cells. PMID:22544904
Titan cells confer protection from phagocytosis in Cryptococcus neoformans infections.
Okagaki, Laura H; Nielsen, Kirsten
2012-06-01
The human fungal pathogen Cryptococcus neoformans produces an enlarged "titan" cell morphology when exposed to the host pulmonary environment. Titan cells exhibit traits that promote survival in the host. Previous studies showed that titan cells are not phagocytosed and that increased titan cell production in the lungs results in reduced phagocytosis of cryptococcal cells by host immune cells. Here, the effect of titan cell production on host-pathogen interactions during early stages of pulmonary cryptococcosis was explored. The relationship between titan cell production and phagocytosis was found to be nonlinear; moderate increases in titan cell production resulted in profound decreases in phagocytosis, with significant differences occurring within the first 24 h of the infection. Not only were titan cells themselves protected from phagocytosis, but titan cell formation also conferred protection from phagocytosis to normal-size cryptococcal cells. Large particles introduced into the lungs were not phagocytosed, suggesting the large size of titan cells protects against phagocytosis. The presence of large particles was unable to protect smaller particles from phagocytosis, revealing that titan cell size alone is not sufficient to provide the observed cross-protection of normal-size cryptococcal cells. These data suggest that titan cells play a critical role in establishment of the pulmonary infection by promoting the survival of the entire population of cryptococcal cells.
Disseminated Cryptococcal Disease in a Patient with Chronic Lymphocytic Leukemia on Ibrutinib.
Okamoto, Koh; Proia, Laurie A; Demarais, Patricia L
2016-01-01
Cryptococcus is a unique environmental fungus that can cause disease most often in immunocompromised individuals with defective cell-mediated immunity. Chronic lymphocytic leukemia (CLL) is not known to be a risk factor for cryptococcal disease although cases have been described mainly in patients treated with agents that suppress cell-mediated immunity. Ibrutinib is a new biologic agent used for treatment of CLL, mantle cell lymphoma, and Waldenstrom's macroglobulinemia. It acts by inhibiting Bruton's tyrosine kinase, a kinase downstream of the B-cell receptor critical for B-cell survival and proliferation. Ibrutinib use has not been associated previously with cryptococcal disease. However, recent evidence suggested that treatments aimed at blocking the function of Bruton's tyrosine kinase could pose a higher risk for cryptococcal infection in a mice model. Here, we report the first case of disseminated cryptococcal disease in a patient with CLL treated with ibrutinib. When evaluating possible infection in CLL patients receiving ibrutinib, cryptococcal disease, which could be life threatening if overlooked, could be considered.
Wang, Jing-Mei; Zhou, Qiang; Cai, Hou-Rong; Zhuang, Yi; Zhang, Yi-Fen; Xin, Xiao-Yan; Meng, Fan-Qing; Wang, Ya-Ping
2014-01-01
In addition to the typical size, Cryptococcus neoformans can enlarge its size to form titan cells during infection, and its diameter can reach up to 100 μm. Clinical reports about cryptococcal titan cells are rare. Most studies focus on aspects of animal models of infection with titan cells. Herein, we report the clinical and imaging characteristics and histopathologic features of 3 patients with titan cells and 27 patients with pathogens of typical size, and describe the morphological characteristics of titan cells in details. Histologically, 3 patients with titan cells show necrosis, fibrosis and macrophage accumulation. The titan cells appear in necrotic tissue and between macrophages, and have thick wall with unstained halo around them and diameters range from 20 to 80 μm with characteristic of narrow-necked single budding. There are also organisms with typical size. All 27 patients with normal pathogens show epithelioid granulomatous lesions. There is no significantly difference in clinical and imaging feature between the two groups. Cryptococcus neoformans exhibits a striking morphological change for the formation of titan cells during pulmonary infection, which will result in misdiagnosis and under diagnosis. The histopathological changes may be new manifestation, which need to be further confirmed by the study with animal models of infection and the observation of more clinical cases. Careful observation of the tissue sections is necessary.
Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis
Rajasingham, Radha; Smith, Rachel M; Park, Benjamin J; Jarvis, Joseph N; Govender, Nelesh P; Chiller, Tom M; Denning, David W; Loyse, Angela; Boulware, David R
2018-01-01
Summary Background Cryptococcus is the most common cause of meningitis in adults living with HIV in sub-Saharan Africa. Global burden estimates are crucial to guide prevention strategies and to determine treatment needs, and we aimed to provide an updated estimate of global incidence of HIV-associated cryptococcal disease. Methods We used 2014 Joint UN Programme on HIV and AIDS estimates of adults (aged >15 years) with HIV and antiretroviral therapy (ART) coverage. Estimates of CD4 less than 100 cells per µL, virological failure incidence, and loss to follow-up were from published multinational cohorts in low-income and middle-income countries. We calculated those at risk for cryptococcal infection, specifically those with CD4 less than 100 cells/µL not on ART, and those with CD4 less than 100 cells per µL on ART but lost to follow-up or with virological failure. Cryptococcal antigenaemia prevalence by country was derived from 46 studies globally. Based on cryptococcal antigenaemia prevalence in each country and region, we estimated the annual numbers of people who are developing and dying from cryptococcal meningitis. Findings We estimated an average global cryptococcal antigenaemia prevalence of 6·0% (95% CI 5·8–6·2) among people with a CD4 cell count of less than 100 cells per µL, with 278 000 (95% CI 195 500–340 600) people positive for cryptococcal antigen globally and 223 100 (95% CI 150 600–282 400) incident cases of cryptococcal meningitis globally in 2014. Sub-Saharan Africa accounted for 73% of the estimated cryptococcal meningitis cases in 2014 (162 500 cases [95% CI 113 600–193 900]). Annual global deaths from cryptococcal meningitis were estimated at 181 100 (95% CI 119 400–234 300), with 135 900 (75%; [95% CI 93 900–163 900]) deaths in sub-Saharan Africa. Globally, cryptococcal meningitis was responsible for 15% of AIDS-related deaths (95% CI 10–19). Interpretation Our analysis highlights the substantial ongoing burden of HIV-associated cryptococcal disease, primarily in sub-Saharan Africa. Cryptococcal meningitis is a metric of HIV treatment programme failure; timely HIV testing and rapid linkage to care remain an urgent priority. Funding None. PMID:28483415
Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis.
Rajasingham, Radha; Smith, Rachel M; Park, Benjamin J; Jarvis, Joseph N; Govender, Nelesh P; Chiller, Tom M; Denning, David W; Loyse, Angela; Boulware, David R
2017-08-01
Cryptococcus is the most common cause of meningitis in adults living with HIV in sub-Saharan Africa. Global burden estimates are crucial to guide prevention strategies and to determine treatment needs, and we aimed to provide an updated estimate of global incidence of HIV-associated cryptococcal disease. We used 2014 Joint UN Programme on HIV and AIDS estimates of adults (aged >15 years) with HIV and antiretroviral therapy (ART) coverage. Estimates of CD4 less than 100 cells per μL, virological failure incidence, and loss to follow-up were from published multinational cohorts in low-income and middle-income countries. We calculated those at risk for cryptococcal infection, specifically those with CD4 less than 100 cells/μL not on ART, and those with CD4 less than 100 cells per μL on ART but lost to follow-up or with virological failure. Cryptococcal antigenaemia prevalence by country was derived from 46 studies globally. Based on cryptococcal antigenaemia prevalence in each country and region, we estimated the annual numbers of people who are developing and dying from cryptococcal meningitis. We estimated an average global cryptococcal antigenaemia prevalence of 6·0% (95% CI 5·8-6·2) among people with a CD4 cell count of less than 100 cells per μL, with 278 000 (95% CI 195 500-340 600) people positive for cryptococcal antigen globally and 223 100 (95% CI 150 600-282 400) incident cases of cryptococcal meningitis globally in 2014. Sub-Saharan Africa accounted for 73% of the estimated cryptococcal meningitis cases in 2014 (162 500 cases [95% CI 113 600-193 900]). Annual global deaths from cryptococcal meningitis were estimated at 181 100 (95% CI 119 400-234 300), with 135 900 (75%; [95% CI 93 900-163 900]) deaths in sub-Saharan Africa. Globally, cryptococcal meningitis was responsible for 15% of AIDS-related deaths (95% CI 10-19). Our analysis highlights the substantial ongoing burden of HIV-associated cryptococcal disease, primarily in sub-Saharan Africa. Cryptococcal meningitis is a metric of HIV treatment programme failure; timely HIV testing and rapid linkage to care remain an urgent priority. None. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mechanisms of Dendritic Cell Lysosomal Killing of Cryptococcus
NASA Astrophysics Data System (ADS)
Hole, Camaron R.; Bui, Hoang; Wormley, Floyd L.; Wozniak, Karen L.
2012-10-01
Cryptococcus neoformans is an opportunistic pulmonary fungal pathogen that disseminates to the CNS causing fatal meningitis in immunocompromised patients. Dendritic cells (DCs) phagocytose C. neoformans following inhalation. Following uptake, cryptococci translocate to the DC lysosomal compartment and are killed by oxidative and non-oxidative mechanisms. DC lysosomal extracts kill cryptococci in vitro; however, the means of antifungal activity remain unknown. Our studies determined non-oxidative antifungal activity by DC lysosomal extract. We examined DC lysosomal killing of cryptococcal strains, anti-fungal activity of purified lysosomal enzymes, and mechanisms of killing against C. neoformans. Results confirmed DC lysosome fungicidal activity against all cryptococcal serotypes. Purified lysosomal enzymes, specifically cathepsin B, inhibited cryptococcal growth. Interestingly, cathepsin B combined with its enzymatic inhibitors led to enhanced cryptococcal killing. Electron microscopy revealed structural changes and ruptured cryptococcal cell walls following treatment. Finally, additional studies demonstrated that osmotic lysis was responsible for cryptococcal death.
Jarvis, Joseph N; Lawn, Stephen D; Vogt, Monica; Bangani, Nonzwakazi; Wood, Robin; Harrison, Thomas S
2009-01-01
Background Cryptococcal meningitis is a leading cause of death in AIDS patients and contributes substantially to the high early mortality in antiretroviral treatment (ART) programs in low-resource settings. Screening for cryptococcal antigen (CRAG) in patients enrolling in ART programs may identify those at risk of cryptococcal meningitis and permit targeted use of pre-emptive therapy. Methods In this retrospective study, CRAG was measured in stored plasma samples obtained from patients as they enrolled in a well characterised ART cohort in South Africa. The predictive value of screening for CRAG prior to ART for development of microbiologically confirmed cryptococcal meningitis or death during the first year of follow-up was determined. Results Of 707 participants with a baseline median CD4 count of 97 (IQR 46-157) cells/μL, 46 (7%) had a positive CRAG. Antigenaemia was 100% sensitive for predicting development of cryptococcal meningitis during the first year of ART and in multivariate analysis was an independent predictor of mortality (AHR 3.2, 95%CI 1.5-6.6). Most (92%) cases of cryptococcal meningitis developed in patients with a CD4 count ≤100 cells/μL. In this sub-set of patients, a CRAG titre ≥1 in 8 was 100% sensitive and 96% specific for predicting incident cryptococcal meningitis during the first year of ART in those with no previous history of the disease. Conclusions CRAG screening prior to commencing ART in patients with a CD4 count ≤100 cells/μL is highly effective at identifying those at risk of cryptococcal meningitis and death and might permit implementation of a targeted pre-emptive treatment strategy. PMID:19222372
Cryptococcal meningoencephalitis in patients with mantle cell lymphoma on ibrutinib.
Sun, Kai; Kasparian, Saro; Iyer, Swaminathan; Pingali, Sai Ravi
2018-01-01
Ibrutinib, a Bruton's tyrosine kinase inhibitor, has been increasingly widely used in relapsed and refractory mantle cell lymphoma (MCL) and chronic lymphocytic leukaemia [1, 2]. With its use becoming more common, there have been emerging case reports of opportunistic infections like cryptococcal infections [3-8]. These infections in patients receiving ibrutinib were mostly reported in patients with chronic lymphocytic leukaemia, who have poor immune reconstitution. Here, we report two cases of cryptococcal meningoencephalitis in patients with MCL on ibrutinib.
Immunology of Cryptococcal Infections: Developing a Rational Approach to Patient Therapy
Elsegeiny, Waleed; Marr, Kieren A.; Williamson, Peter R.
2018-01-01
Cryptococcal meningoencephalitis is responsible for upwards of 15% of HIV-related deaths worldwide and is currently the most common cause of non-viral meningitis in the US, affecting both previously healthy and people with immune suppression caused by cancer chemotherapy, transplantation, and biologic therapies. Despite a continued 30–50% attributable mortality, recommended therapeutic strategies have remained largely unchanged since the 1950s. Recent murine models and human studies examining the role of the immune system in both susceptibility to the infection as well as host damage have begun to influence patient care decisions. The Damage Framework Response, originally proposed in 1999, was recently used to discuss dichotomous etiologies of host damage in cryptococcal disease. These include patients suffering microbiological damage with low host immunity (especially those immunosuppressed with HIV) and those having low (live) microbiological burden but high immune-mediated damage (HIV-related immune reconstitution syndrome and non-HIV-related postinfectious inflammatory response syndrome). Cryptococcal disease in previously healthy hosts, albeit rare, has been known for a long time. Immunophenotyping and dendritic cell-T cell signaling studies on cerebral spinal fluid of these rare patients reveal immune capacity for recognition and T-cell activation pathways including increased levels of HLA-DR and CD56. However, despite effective T-cell signals, brain biopsy and autopsy specimens demonstrated an M2 alternative macrophage polarization and poor phagocytosis of fungal cells. These studies expand the paradigm for cryptococcal disease susceptibility to include a prominent role for immune-mediated damage and suggest a need for careful individual consideration of immune activation during therapy of cryptococcal disease in diverse hosts. PMID:29670625
Immunology of Cryptococcal Infections: Developing a Rational Approach to Patient Therapy.
Elsegeiny, Waleed; Marr, Kieren A; Williamson, Peter R
2018-01-01
Cryptococcal meningoencephalitis is responsible for upwards of 15% of HIV-related deaths worldwide and is currently the most common cause of non-viral meningitis in the US, affecting both previously healthy and people with immune suppression caused by cancer chemotherapy, transplantation, and biologic therapies. Despite a continued 30-50% attributable mortality, recommended therapeutic strategies have remained largely unchanged since the 1950s. Recent murine models and human studies examining the role of the immune system in both susceptibility to the infection as well as host damage have begun to influence patient care decisions. The Damage Framework Response, originally proposed in 1999, was recently used to discuss dichotomous etiologies of host damage in cryptococcal disease. These include patients suffering microbiological damage with low host immunity (especially those immunosuppressed with HIV) and those having low (live) microbiological burden but high immune-mediated damage (HIV-related immune reconstitution syndrome and non-HIV-related postinfectious inflammatory response syndrome). Cryptococcal disease in previously healthy hosts, albeit rare, has been known for a long time. Immunophenotyping and dendritic cell-T cell signaling studies on cerebral spinal fluid of these rare patients reveal immune capacity for recognition and T-cell activation pathways including increased levels of HLA-DR and CD56. However, despite effective T-cell signals, brain biopsy and autopsy specimens demonstrated an M2 alternative macrophage polarization and poor phagocytosis of fungal cells. These studies expand the paradigm for cryptococcal disease susceptibility to include a prominent role for immune-mediated damage and suggest a need for careful individual consideration of immune activation during therapy of cryptococcal disease in diverse hosts.
Immunity to Cryptococcus neoformans and C. gattii during cryptococcosis
Gibson, Josie F.; Johnston, Simon A.
2015-01-01
The vast majority of infection with cryptococcal species occurs with Cryptococcus neoformans in the severely immunocompromised. A significant exception to this is the infections of those with apparently normal immune systems by Cryptococcus gattii. Susceptibility to cryptococcosis can be broadly categorised as a defect in adaptive immune responses, especially in T cell immunity. However, innate immune cells such as macrophages play a key role and are likely the primary effector cell in the killing and ultimate clearance of cryptococcal infection. In this review we discuss the current state of our understanding of how the immune system responds to cryptococcal infection in health and disease, with reference to the work communicated at the 9th International Conference on Cryptococcus and Cryptococcosis (ICCC9). We have focussed on cell mediated responses, particularly early in infection, but with the aim of presenting a broad overview of our understanding of immunity to cryptococcal infection, highlighting some recent advances and offering some perspectives on future directions. PMID:25498576
McKenney, Jennie; Smith, Rachel M; Chiller, Tom M; Detels, Roger; French, Audrey; Margolick, Joseph; Klausner, Jeffrey D
2014-07-11
Cryptococcal meningitis (CM) is one of the leading opportunistic infections associated with human immunodeficiency virus (HIV) infection. The worldwide burden of CM among persons living with HIV/acquired immunodeficiency syndrome (AIDS) was estimated in 2009 to be 957,900 cases, with approximately 624,700 deaths annually. The high burden of CM globally comes despite the fact that cryptococcal antigen (CrAg) is detectable weeks before the onset of symptoms, allowing screening for cryptococcal infection and early treatment to prevent CM and CM-related mortality (2). However, few studies have been conducted in the United States to assess the prevalence of cryptococcal infection. To quantify the prevalence of undiagnosed cryptococcal infection in HIV-infected persons in the United States during 1986-2012, stored sera from 1,872 participants in the Multicenter AIDS Cohort Study and the Women's Interagency HIV Study with CD4 T-cell counts <100 cells/µL were screened for CrAg, using the CrAg Lateral Flow Assay (LFA) (Immy, Inc.). This report describes the results of that analysis, which indicated the overall prevalence of CrAg positivity in this population to be 2.9% (95% confidence interval [CI] = 2.2%-3.7%).
Wake, Rachel M; Britz, Erika; Sriruttan, Charlotte; Rukasha, Ivy; Omar, Tanvier; Spencer, David C; Nel, Jeremy S; Mashamaite, Sello; Adelekan, Adeboye; Chiller, Tom M; Jarvis, Joseph N; Harrison, Thomas S; Govender, Nelesh P
2018-02-10
High mortality rates among asymptomatic cryptococcal antigen (CrAg)-positive patients identified through CrAg screening, despite preemptive fluconazole treatment, may be due to undiagnosed cryptococcal meningitis. Symptoms were reviewed in CrAg-positive patients identified by screening 19233 individuals with human immunodeficiency virus infection and CD4 cell counts <100/µL at 17 clinics and 3 hospitals in Johannesburg from September 2012 until September 2015, and at 2 hospitals until June 2016. Cerebrospinal fluid samples from 90 of 254 asymptomatic patients (35%) and 78 of 173 (45%) with headache only were analyzed for cryptococcal meningitis, considered present if Cryptococcus was identified by means of India ink microscopy, culture, or CrAg test. CrAg titers were determined with stored blood samples from 62 of these patients. The associations between blood CrAg titer, concurrent cryptococcal meningitis, and mortality rate were assessed. Cryptococcal meningitis was confirmed in 34% (95% confidence interval, 25%-43%; 31 of 90) of asymptomatic CrAg-positive patients and 90% (81%-96%; 70 of 78) with headache only. Blood CrAg titer was significantly associated with concurrent cryptococcal meningitis in asymptomatic patients (P < .001) and patients with headache only (P = .003). The optimal titer for predicting cryptococcal meningitis was >160 (sensitivity, 88.2%; specificity, 82.1%); the odds ratio for concurrent cryptococcal meningitis was 34.5 (95% confidence interval, 8.3-143.1; P < .001). About a third of asymptomatic CrAg-positive patients have concurrent cryptococcal meningitis. More effective clinical assessment strategies and antifungal regimens are required for CrAg-positive patients, including investigation for cryptococcal meningitis irrespective of symptoms. Where it is not possible to perform lumbar punctures in all CrAg-positive patients, blood CrAg titers should be used to target those most at risk of cryptococcal meningitis. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Navabi, Nazlee; Montebatsi, Milton; Scott, Michelle; Gluckman, Stephen J; Reid, Michael J A
2015-01-01
A case of false-negative serum latex agglutination cryptococcal antigen (CRAG) test in a 45-year-old HIV-positive male with Cryptococcus-positive culture is described. The patient was presented to a hospital in Botswana, with breathlessness and a diffuse papular rash. His CD4 count was 25 cells/μL. Despite the suspicion for disseminated cryptococcal disease, an initial serum CRAG latex test was negative. Results of subsequent Indian ink staining, culture of cerebrospinal fluid and skin scrapings, and serum lateral flow immunoassay (LFA) were all positive for Cryptococcus neoformans. There are several possible explanations for the false-negative CRAG latex test. Given the positive LFA result, we speculate that disease may have been caused by Cryptococcus gattii, which is estimated to be responsible for between 15% and 30% of all cryptococcal diseases in Botswana. Reduced sensitivity of CRAG latex assays for detecting C gattii may lead to underdiagnosis of cryptococcal infection. © The Author(s) 2014.
Chaiwarith, Romanee; Vongsanim, Surachet; Supparatpinyo, Khuanchai
2014-05-01
Cryptococcal meningitis (CM) is a common central nervous system infection in HIV-infected patients. This study aimed to determine treatment outcomes among HIV-infected patients who had cryptococcal meningitis and to determine predictors of death. We conducted a retrospective cohort study among HIV-infected patients receiving care at Chiang Mai University Hospital from January 1, 2005 to December 31, 2010. We studied 79 patients; 45 (57.0%) were male and the mean age was 35.1 +/- 7.2 years. Eleven patients (13.9%) had previous opportunistic infection. The most common presenting symptoms were headache (63 patients, 79.8%), fever (49 patients, 62.0%), and altered consciousness (21 patients, 26.6%). The median CD4+ cell count was 20 cells/mm3 [Interquartile range (IQR) 10, 53]. The in-hospital, 90-day, and 1-year mortality rates were 24.1%, 32.4%, and 52.2%, respectively. The CM attributable in-hospital, 90-day and 1-year mortality rates were 13.9%, 20.3%, and 23.2%, respectively. Predictors associated with a 1-year mortality were a high cerebrospinal (CSF) cryptococcal antigen titer (> 1:10,000) [Odds Ratio (OR) =7.08, 95% confidence interval (CI): 1.62-31.00, p = 0.009], and altered consciousness at presentation (OR = 5.27; 95% CI: 1.16-24.05; p = 0.032). Cryptococcal meningitis is an important cause of death in HIV-infected patients. HIV-infected patients with a low CD4+ cell count, a headache, fever and altered consciousness should be investigated for CM and those with a high CSF cryptococcal antigen titer are at high risk for mortality.
Isolation of Cryptococcus laurentii from Canada Goose guano in rural upstate New York.
Filion, Tera; Kidd, Sarah; Aguirre, Karen
2006-11-01
Cryptococcus neoformans and Cryptococcus gattii are etiologic agents of cryptococcal pneumonia and meningitis, potentially lethal syndromes associated with AIDS. A related species, Cryptococcus laurentii, has recently been implicated in several cases of human disease. Guano from Canada Goose (Branta canadensis), an organism that lives closely beside man and inhabits recreational space in rural and suburban areas, might be a significant environmental reservoir of Cryptococcus organisms in non-urban areas. Cryptococcal organisms were isolated from Canada Goose guano from a site in rural northern New York, with identification based upon colony and microscopic morphology, ability to metabolize L: -Dopa to melanin, and positive reaction with a commercial anti-cryptococcal capsular polysaccharide latex bead agglutination test. DNA sequences from five positive isolates were identical to each other, and identical to the ITS1-5.8S-ITS2 sequences of C. laurentii strain CBS7140 (Accession AY315665) across a 511 bp sequence. All five isolates of C. laurentii possess three of the known virulence factors common to cryptococcal organisms that cause human disease: capsule, ability to grow at 37 degrees C, and laccase activity.
Effects of murine natural killer cells on Cryptococcus neoformans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabavi Nouri, N.
Previous data generated by Murphy and McDaniel indicate that normal murine nylon wool nonadherent splenic cells, with the characteristics of natural killer (NK) cells, effectively inhibit the in vitro growth of Cryptococcus neoformans, a yeast-like pathogen. Nylon wood nonadherent cells from spleens of 7-8 week old mice were further fractionated on discontinuous Percoll gradients. The enrichment of NK cells in Percoll fractions 1 and 2 was confirmed by morphological examination, immunofluorescent staining, and by assessing the cytolytic activity of each Percoll cell fraction against YAC-1 targets in the 4 h /sup 51/Cr release assay. Cells isolated from each Percoll fractionmore » were tested for growth inhibitory activity against C neoformans, using an in vitro 18 h growth inhibition assay. The results showed that NK cell enrichment was concomitant with the enrichment of anti-cryptococcal activity the Percoll fractions 1 and 2. An immunolabeling method combined with scanning electron microscopy was used to demonstrate that the effector cells attached to C. neoformans were asialo GM/sub 1/ positive and, therefore, had NK cell characteristics. NK cells have Fc receptors on their surfaces , and are capable of antibody-dependent cell-mediated cytotoxicity (ADCC) against IgG-coated target cells. The author examined the effects of the IgG fraction of rabbit anti-cryptococcal antibody on the NK cell-mediated growth inhibition of C. neoformans. The data indicated that the effector cells involved in antibody-dependent growth inhibition of cryptococci are either NK cells or copurify and coexist in the same population with NK cells.« less
Vidal, José E; Toniolo, Carolina; Paulino, Adriana; Colombo, Arnaldo; Dos Anjos Martins, Marilena; da Silva Meira, Cristina; Pereira-Chioccola, Vera Lucia; Figueiredo-Mello, Claudia; Barros, Tiago; Duarte, Jequelie; Fonseca, Fernanda; Alves Cunha, Mirella; Mendes, Clara; Ribero, Taiana; Dos Santos Lazera, Marcia; Rajasingham, Radha; Boulware, David R
2016-12-01
To determine the prevalence of asymptomatic cryptococcal antigen (CRAG) using lateral flow assay (LFA) in hospitalised HIV-infected patients with CD4 counts <200 cells/μl. Hospitalised HIV-infected patients were prospectively recruited at Instituto de Infectologia Emilio Ribas, a tertiary referral hospital to HIV-infected patients serving the São Paulo State, Brazil. All patients were >18 years old without prior cryptococcal meningitis, without clinical suspicion of cryptococcal meningitis, regardless of antiretroviral (ART) status, and with CD4 counts <200 cells/μl. Serum CRAG was tested by LFA in all patients, and whole blood CRAG was tested by LFA in positive cases. We enrolled 163 participants of whom 61% were men. The duration of HIV diagnosis was a median of 8 (range, 1-29) years. 26% were antiretroviral (ART)-naïve, and 74% were ART-experienced. The median CD4 cell count was 25 (range, 1-192) cells/μl. Five patients (3.1%; 95%CI, 1.0-7.0%) were asymptomatic CRAG-positive. Positive results cases were cross-verified by performing LFA in whole blood. 3.1% of HIV-infected inpatients with CD4 <200 cells/μl without symptomatic meningitis had cryptococcal antigenemia in São Paulo, suggesting that routine CRAG screening may be beneficial in similar settings in South America. Our study reveals another targeted population for CRAG screening: hospitalised HIV-infected patients with CD4 <200 cells/μl, regardless of ART status. Whole blood CRAG LFA screening seems to be a simple strategy to prevention of symptomatic meningitis. © 2016 John Wiley & Sons Ltd.
Oykhman, Paul; Timm-McCann, Martina; Xiang, Richard F.; Islam, Anowara; Li, Shu Shun; Stack, Danuta; Huston, Shaunna M.; Ma, Ling Ling
2013-01-01
Natural killer (NK) cells directly recognize and kill fungi, such as the pathogenic fungus Cryptococcus neoformans, via cytolytic mechanisms. However, the precise signaling pathways governing this NK cell microbicidal activity and the implications for fungal recognition are still unknown. Previously, it was reported that NK cell anticryptococcal activity is mediated through a conserved phosphatidylinositol 3-kinase–extracellular signal-regulated kinase 1/2 (PI3K-ERK1/2) pathway. Using YT (a human NK-like cell line) and primary human NK cells, we sought to identify the upstream, receptor-proximal signaling elements that led to fungal cytolysis. We demonstrate that Src family kinases were activated in response to C. neoformans. Furthermore, pharmacologic inhibition with an Src kinase inhibitor blocked C. neoformans-induced downstream activation of PI3K and ERK1/2 and abrogated cryptococcal killing. At the same time, the inhibitor disrupted the polarization of perforin-containing granules toward the NK cell-cryptococcal synapse but had no effect on conjugate formation between the organism and the NK cell. Finally, small interfering RNA (siRNA) double (but not single) knockdown of two Src family kinases, Fyn and Lyn, blocked cryptococcal killing. Together these data demonstrate a mechanism whereby the Src family kinases, Fyn and Lyn, redundantly mediate anticryptococcal activity through the activation of PI3K and ERK1/2, which in turn facilitates killing by inducing the polarization of perforin-containing granules to the NK cell-cryptococcal synapse. PMID:23918783
Xia, Shuang; Li, Xueqin; Shi, Yanbin; Liu, Jinxin; Zhang, Mengjie; Gu, Tenghui; Pan, Shinong; Song, Liucun; Xu, Jinsheng; Sun, Yan; Zhao, Qingxia; Lu, Zhiyan; Lu, Puxuan; Li, Hongjun
2016-02-01
The objective of this paper is to correlate the MRI distribution of cryptococcal meningoencephalitis in HIV-1 infection patients with CD4 T cell count and immune reconstitution effect.A large retrospective cohort study of HIV patients from multi-HIV centers in China was studied to demonstrate the MRI distribution of cryptococcal meningoencephalitis and its correlation with the different immune status.The consecutive clinical and neuroimaging data of 55 HIV-1-infected patients with cryptococcal meningoencephalitis collected at multi-HIV centers in China during the years of 2011 to 2014 was retrospectively analyzed. The enrolled patients were divided into 2 groups based on the distribution of lesions. One group of patients had their lesions at the central brain (group 1, n = 34) and the other group of patients had their lesions at the superficial brain (group 2, n = 21). We explored their MRI characterization of brain. In addition, we also compared their CD4 T cell counts and immune reconstitution effects between the 2 groups based on the imaging findings.No statistical difference was found in terms of age and gender between the 2 groups. The medians of CD4 T cell counts were 11.67 cells/mm (3.00-52.00 cells/mm) in group 1 and 42.00 cells/mm (10.00-252.00 cells/mm) in group 2. Statistical difference of CD4 T cell count was found between the 2 groups (P = 0.023). Thirteen patients in group 1 (13/34) and 12 patients in group 2 (12/21) received highly active antiretroviral treatment (HAART). Patients of group 2 received HAART therapy more frequently than patients of group 1 (P = 0.021).Central and superficial brain lesions detected by MR imaging in HIV-1-infected patients with cryptococcal meningoencephalitis are in correlation with the host immunity and HAART therapy.
HTLV-III: Intra-BBB IgG Synthesis and Hybridization in CSF Cells
1988-02-08
toxoplasmosis , and 3 had cryptococcal meningitis. All patients had known risk factors for HIV infection: 44 were homosexual and 8 were intravenous drug abusers...disease caused by detectable CNS opportunistic pathogens, cryptococcal meningitis, and cerebral toxoplasmosis . In six instances of AIDS-associated dementia
Repurposing of Aspirin and Ibuprofen as Candidate Anti-Cryptococcus Drugs.
Ogundeji, Adepemi O; Pohl, Carolina H; Sebolai, Olihile M
2016-08-01
The usage of fluconazole and amphotericin B in clinical settings is often limited by, among other things, drug resistance development and undesired side effects. Thus, there is a constant need to find new drugs to better manage fungal infections. Toward this end, the study described in this paper considered the repurposing of aspirin (acetylsalicylic acid) and ibuprofen as alternative drugs to control the growth of cryptococcal cells. In vitro susceptibility tests, including a checkerboard assay, were performed to assess the response of Cryptococcus neoformans and Cryptococcus gattii to the above-mentioned anti-inflammatory drugs. Next, the capacity of these two drugs to induce stress as well as their mode of action in the killing of cryptococcal cells was determined. The studied fungal strains revealed a response to both aspirin and ibuprofen that was dose dependent, with ibuprofen exerting greater antimicrobial action. More importantly, the MICs of these drugs did not negatively (i) affect growth or (ii) impair the functioning of macrophages; rather, they enhanced the ability of these immune cells to phagocytose cryptococcal cells. Ibuprofen was also shown to act in synergy with fluconazole and amphotericin B. The treatment of cryptococcal cells with aspirin or ibuprofen led to stress induction via activation of the high-osmolarity glycerol (HOG) pathway, and cell death was eventually achieved through reactive oxygen species (ROS)-mediated membrane damage. The presented data highlight the potential clinical application of aspirin and ibuprofen as candidate anti-Cryptococcus drugs. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Vidal, José E; Gerhardt, Juliana; Peixoto de Miranda, Erique J; Dauar, Rafi F; Oliveira Filho, Gilberto S; Penalva de Oliveira, Augusto C; Boulware, David R
2012-05-01
This retrospective study aimed to evaluate the clinical, laboratory, and quantitative cerebrospinal fluid (CSF) cryptococcal cell counts for associations with in-hospital outcomes of HIV-infected patients with cryptococcal meningitis. Ninety-eight HIV-infected adult patients with CSF culture-proven cryptococcal meningitis were admitted between January 2006 and June 2008 at a referral center in Sao Paulo, Brazil. Cryptococcal meningitis was the first AIDS-defining illness in 69%, of whom 97% (95/98) had known prior HIV infection. The median CD4+ T-cell count was 39 cells/μL (interquartile range 17-87 cells/μL). Prior antiretroviral therapy was reported in 50%. Failure to sterilize the CSF by 7-14 days was associated with baseline fungal burden of ≥ 10 yeasts/μL by quantitative CSF microscopy (odds ratio [OR] = 15.3, 95% confidence interval [CI] 4.1-56.7; P < 0.001) and positive blood cultures (OR = 11.5, 95% CI 1.2-109; P = 0.034). At 7-14 days, ≥ 10 yeasts/μL CSF was associated with positive CSF cultures in 98% versus 36% with <10 yeasts/μL CSF (P < 0.001). In-hospital mortality was 30% and was associated with symptoms duration for >14 days, altered mental status (P < 0.001), CSF white blood cell counts <5 cells/μL (P = 0.027), intracranial hypertension (P = 0.011), viral loads >50,000 copies/mL (P = 0.036), ≥ 10 yeasts/μL CSF at 7-14 days (P = 0.038), and intracranial pressure >50 cmH(2)0 at 7-14 days (P = 0.007). In conclusion, most patients were aware of their HIV status. Fungal burden of ≥ 10 yeasts/μL by quantitative CSF microscopy predicted current CSF culture status and may be useful to customize the induction therapy. High uncontrolled intracranial pressure was associated with mortality. Copyright © 2012 Elsevier Inc. All rights reserved.
Cryptococcal meningitis: epidemiology, immunology, diagnosis and therapy.
Williamson, Peter R; Jarvis, Joseph N; Panackal, Anil A; Fisher, Matthew C; Molloy, Síle F; Loyse, Angela; Harrison, Thomas S
2017-01-01
HIV-associated cryptococcal meningitis is by far the most common cause of adult meningitis in many areas of the world that have high HIV seroprevalence. In most areas in Sub-Saharan Africa, the incidence of cryptococcal meningitis is not decreasing despite availability of antiretroviral therapy, because of issues of adherence and retention in HIV care. In addition, cryptococcal meningitis in HIV-seronegative individuals is a substantial problem: the risk of cryptococcal infection is increased in transplant recipients and other individuals with defects in cell-mediated immunity, and cryptococcosis is also reported in the apparently immunocompetent. Despite therapy, mortality rates in these groups are high. Over the past 5 years, advances have been made in rapid point-of-care diagnosis and early detection of cryptococcal antigen in the blood. These advances have enabled development of screening and pre-emptive treatment strategies aimed at preventing the development of clinical infection in patients with late-stage HIV infection. Progress in optimizing antifungal combinations has been aided by evaluation of the clearance rate of infection by using serial quantitative cultures of cerebrospinal fluid (CSF). Measurement and management of raised CSF pressure, a common complication, is a vital component of care. In addition, we now better understand protective immune responses in HIV-associated cases, immunogenetic predisposition to infection, and the role of immune-mediated pathology in patients with non-HIV associated infection and in the context of HIV-associated immune reconstitution reactions.
Montgomery, Martha P; Nakasujja, Noeline; Morawski, Bozena M; Rajasingham, Radha; Rhein, Joshua; Nalintya, Elizabeth; Williams, Darlisha A; Huppler Hullsiek, Kathy; Kiragga, Agnes; Rolfes, Melissa A; Donahue Carlson, Renee; Bahr, Nathan C; Birkenkamp, Kate E; Manabe, Yukari C; Bohjanen, Paul R; Kaplan, Jonathan E; Kambugu, Andrew; Meya, David B; Boulware, David R
2017-06-12
HIV-infected persons with detectable cryptococcal antigen (CrAg) in blood have increased morbidity and mortality compared with HIV-infected persons who are CrAg-negative. This study examined neurocognitive function among persons with asymptomatic cryptococcal antigenemia. Participants from three prospective HIV cohorts underwent neurocognitive testing at the time of antiretroviral therapy (ART) initiation. Cohorts included persons with cryptococcal meningitis (N = 90), asymptomatic CrAg + (N = 87), and HIV-infected persons without central nervous system infection (N = 125). Z-scores for each neurocognitive test were calculated relative to an HIV-negative Ugandan population with a composite quantitative neurocognitive performance Z-score (QNPZ-8) created from eight tested domains. Neurocognitive function was measured pre-ART for all three cohorts and additionally after 4 weeks of ART (and 6 weeks of pre-emptive fluconazole) treatment among asymptomatic CrAg + participants. Cryptococcal meningitis and asymptomatic CrAg + participants had lower median CD4 counts (17 and 26 cells/μL, respectively) than the HIV-infected control cohort (233 cells/μL) as well as lower Karnofsky performance status (60 and 70 vs. 90, respectively). The composite QNPZ-8 for asymptomatic CrAg + (-1.80 Z-score) fell between the cryptococcal meningitis cohort (-2.22 Z-score, P = 0.02) and HIV-infected controls (-1.36, P = 0.003). After four weeks of ART and six weeks of fluconazole, the asymptomatic CrAg + cohort neurocognitive performance improved (-1.0 Z-score, P < 0.001). Significant deficits in neurocognitive function were identified in asymptomatic CrAg + persons with advanced HIV/AIDS even without signs or sequelae of meningitis. Neurocognitive function in this group improves over time after initiation of pre-emptive fluconazole treatment and ART, but short term adherence support may be necessary.
Meya, David B.; Okurut, Samuel; Zziwa, Godfrey; Cose, Stephen; Bohjanen, Paul R.; Mayanja-Kizza, Harriet; Joloba, Moses; Boulware, David R.; Yukari Manabe, Carol; Wahl, Sharon; Janoff, Edward N.
2017-01-01
A third of adults with AIDS and cryptococcal meningitis (CM) develop immune reconstitution inflammatory syndrome (IRIS) after initiating antiretroviral therapy (ART), which is thought to result from exaggerated inflammatory antigen-specific T cell responses. The contribution of monocytes to the immunopathogenesis of cryptococcal IRIS remains unclear. We compared monocyte subset frequencies and immune responses in HIV-infected Ugandans at time of CM diagnosis (IRIS-Baseline) for those who later developed CM-IRIS, controls who did not develop CM-IRIS (Control-Baseline) at CM-IRIS (IRIS-Event), and for controls at a time point matched for ART duration (Control-Event) to understand the association of monocyte distribution and immune responses with cryptococcal IRIS. At baseline, stimulation with IFN-γ ex vivo induced a higher frequency of TNF-α- and IL-6-producing monocytes among those who later developed IRIS. Among participants who developed IRIS, ex vivo IFN-γ stimulation induced higher frequencies of activated monocytes, IL-6+, TNF-α+ classical, and IL-6+ intermediate monocytes compared with controls. In conclusion, we have demonstrated that monocyte subset phenotype and cytokine responses prior to ART are associated with and may be predictive of CM-IRIS. Larger studies to further delineate innate immunological responses and the efficacy of immunomodulatory therapies during cryptococcal IRIS are warranted. PMID:29371546
Rick, Fernanda; Niyibizi, Aline Aurore; Shroufi, Amir; Onami, Kazumi; Steele, Sarah-Jane; Kuleile, Malehlohonolo; Muleya, Innocent; Chiller, Tom; Walker, Tiffany; Van Cutsem, Gilles
2017-01-01
Cryptococcal meningitis is one of the leading causes of death among people with HIV in Africa, primarily due to delayed presentation, poor availability and high cost of treatment. Routine cryptococcal antigen (CrAg) screening of patients with a CD4 count less than 100 cells/mm3, followed by pre-emptive therapy if positive, might reduce mortality in high prevalence settings. Using the cryptococcal antigen (CrAg) lateral flow assay (LFA), screening is possible at the point of care (POC). However, critical shortages of health staff may limit adoption. This study investigates the feasibility of lay counsellors conducting CrAg LFA screening in rural primary care clinics in Lesotho. From May 2014 to June 2015, individuals who tested positive for HIV were tested for CD4 count and those with CD4 <100 cells/mm3 were screened with CrAg LFA. All tests were performed by lay counsellors. CrAg-positive asymptomatic patients received fluconazole, while symptomatic patients were referred to hospital. Lay counsellors were trained and supervised by a laboratory technician and counsellor activity supervisor. Additionally, nurses and doctors were trained on CrAg screening and appropriate treatment. During the study period, 1,388 people were newly diagnosed with HIV, of whom 129 (9%) presented with a CD4 count <100 cells/mm3. Of these, 128 (99%) were screened with CrAg LFA and 14/128 (11%) tested positive. Twelve of the 14 (86%) were asymptomatic, and received outpatient fluconazole. All commenced ART with a median time to initiation of 15.5 days [IQR: 14-22]. Of the asymptomatic patients, nine (75%) remained asymptomatic after a median time of 5 months [IQR; 3-6] of follow up. One (8%) became co-infected with tuberculosis and died and two were transferred out. The two patients with symptomatic cryptococcal meningitis (CM) were referred to hospital, where they later died. CrAg LFA screening by lay counsellors followed by pre-emptive fluconazole treatment for asymptomatic cases, or referral to hospital for symptomatic cases, proved feasible. However, regular follow-up to ensure proper management of cryptococcal disease was needed. These early results support the wider use of CrAg LFA screening in remote primary care settings where upper cadres of healthcare staff may be in short supply.
Rick, Fernanda; Niyibizi, Aline Aurore; Shroufi, Amir; Onami, Kazumi; Steele, Sarah-Jane; Kuleile, Malehlohonolo; Muleya, Innocent; Chiller, Tom; Walker, Tiffany; Van Cutsem, Gilles
2017-01-01
Introduction Cryptococcal meningitis is one of the leading causes of death among people with HIV in Africa, primarily due to delayed presentation, poor availability and high cost of treatment. Routine cryptococcal antigen (CrAg) screening of patients with a CD4 count less than 100 cells/mm3, followed by pre-emptive therapy if positive, might reduce mortality in high prevalence settings. Using the cryptococcal antigen (CrAg) lateral flow assay (LFA), screening is possible at the point of care (POC). However, critical shortages of health staff may limit adoption. This study investigates the feasibility of lay counsellors conducting CrAg LFA screening in rural primary care clinics in Lesotho. Methods From May 2014 to June 2015, individuals who tested positive for HIV were tested for CD4 count and those with CD4 <100 cells/mm3 were screened with CrAg LFA. All tests were performed by lay counsellors. CrAg-positive asymptomatic patients received fluconazole, while symptomatic patients were referred to hospital. Lay counsellors were trained and supervised by a laboratory technician and counsellor activity supervisor. Additionally, nurses and doctors were trained on CrAg screening and appropriate treatment. Results During the study period, 1,388 people were newly diagnosed with HIV, of whom 129 (9%) presented with a CD4 count <100 cells/mm3. Of these, 128 (99%) were screened with CrAg LFA and 14/128 (11%) tested positive. Twelve of the 14 (86%) were asymptomatic, and received outpatient fluconazole. All commenced ART with a median time to initiation of 15.5 days [IQR: 14–22]. Of the asymptomatic patients, nine (75%) remained asymptomatic after a median time of 5 months [IQR; 3–6] of follow up. One (8%) became co-infected with tuberculosis and died and two were transferred out. The two patients with symptomatic cryptococcal meningitis (CM) were referred to hospital, where they later died. Conclusions CrAg LFA screening by lay counsellors followed by pre-emptive fluconazole treatment for asymptomatic cases, or referral to hospital for symptomatic cases, proved feasible. However, regular follow-up to ensure proper management of cryptococcal disease was needed. These early results support the wider use of CrAg LFA screening in remote primary care settings where upper cadres of healthcare staff may be in short supply. PMID:28877182
Chipungu, Chifundo; Veltman, Jennifer A; Jansen, Perry; Chiliko, Peter; Lossa, Christina; Namarika, Dan; Benner, Blake; Hoffman, Risa M; Bristow, Claire C; Klausner, Jeffrey D
2015-01-01
The World Health Organization (WHO) recommends screening patients living with AIDS to detect and treat early cryptococcal infection. The authors evaluated a cryptococcal antigen (CrAg) screening and treatment program at an HIV/AIDS clinic in Malawi. Eligible patients were of age >18 years, had a CD4 count <100 cells/µL or WHO clinical HIV/AIDS stage III or IV. Of 552 patients who presented for care, 113 were eligible, and all (100%) agreed to CrAg screening. Of them, 2 (1.8%; 95% confidence interval [CI]: 0-4.2%) patients were CrAg positive. Among those with CD4 count <100 cells/µL or WHO stage IV, the CrAg prevalence was 3.5% (95% CI: 0-8.4%) and 5.0% (95% CI: 0-15%), respectively. A CrAg screening program was acceptable to new patients in a Malawian HIV/AIDS clinic. The CrAg prevalence for patients with CD4 count < 100 cells/µL and WHO stage IV was consistent with cost-effectiveness estimates. CrAg screening and treatment programs for patients living with AIDS should be expanded. © The Author(s) 2015.
Fungal cell gigantism during mammalian infection.
Zaragoza, Oscar; García-Rodas, Rocío; Nosanchuk, Joshua D; Cuenca-Estrella, Manuel; Rodríguez-Tudela, Juan Luis; Casadevall, Arturo
2010-06-17
The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 microm in diameter and capsules resistant to stripping with gamma-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20-50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens.
Preventing deaths from cryptococcal meningitis: from bench to bedside.
Roy, Monika; Chiller, Tom
2011-09-01
Cryptococcal meningitis (CM), a fungal disease caused by Cryptococcus spp., is the most common form of meningitis and a leading cause of death among persons with HIV/AIDS in sub-Saharan Africa. Detection of cryptococcal antigen, which is present several weeks before overt signs of meningitis develop, provides an opportunity to detect infection early. Screening persons with HIV for cryptococcal infection when they access healthcare can identify asymptomatic infected patients allowing for prompt treatment and prevention of death. A newly developed point-of-care assay for cryptococcal antigen, as well as growing evidence supporting the utility and cost-effectiveness of screening, are further reasons to consider broad implementation of cryptococcal screening in countries with a high burden of cryptococcal disease.
Molecular mechanisms of cryptococcal meningitis
Liu, Tong-Bao; Perlin, David; Xue, Chaoyang
2012-01-01
Fungal meningitis is a serious disease caused by a fungal infection of the central nervous system (CNS) mostly in individuals with immune system deficiencies. Fungal meningitis is often fatal without proper treatment, and the mortality rate remains unacceptably high even with antifungal drug interventions. Currently, cryptococcal meningitis is the most common fungal meningitis in HIV-1/AIDS, and its disease mechanism has been extensively studied. The key steps for fungi to infect brain and cause meningitis after establishment of local infection are the dissemination of fungal cells to the bloodstream and invasion through the blood brain barrier to reach the CNS. In this review, we use cryptococcal CNS infection as an example to describe the current molecular understanding of fungal meningitis, including the establishment of the infection, dissemination, and brain invasion. Host and microbial factors that contribute to these infection steps are also discussed. PMID:22460646
Stankowicz, Matthew; Banaszynski, Megan; Crawford, Russell
2018-01-01
Cryptococcal infections are responsible for significant morbidity and mortality in immunocompromised patients. Reports of these infections in patients on small molecular kinase inhibitors have not been widely reported in clinical trials. We describe one case of cryptococcal meningoencephalitis and one case of cryptococcal pneumonia in two patients who were receiving ibrutinib for chronic lymphocytic leukemia. Despite different sites of cryptococcal infection, both patients had similar presentations of acute illness. Patient 1 was worked up for health care-associated pneumonia, as well as acute sinusitis prior to the diagnosis of cryptococcal meningoencephalitis. He also had a more complex past medical history than patient 2. Patient 2 developed atrial fibrillation from ibrutinib prior to admission for presumed health care-associated pneumonia. Cryptococcal antigen testing was done sooner in this patient due to patient receiving high-dose steroids for the treatment of underlying hemolytic anemia. We conclude that patients who develop acute illness while receiving ibrutinib should be considered for cryptococcal antigen testing.
Butts, Arielle; Martin, Jennifer A.; DiDone, Louis; Bradley, Erin K.; Mutz, Mitchell; Krysan, Damian J.
2015-01-01
Cryptococcosis is one of the most important invasive fungal infections and is a significant contributor to the mortality associated with HIV/AIDS. As part of our program to repurpose molecules related to the selective estrogen receptor modulator (SERM) tamoxifen as anti-cryptococcal agents, we have explored the structure-activity relationships of a set of structurally diverse SERMs and tamoxifen derivatives. Our data provide the first insights into the structural requirements for the antifungal activity of this scaffold. Three key molecular characteristics affecting anti-cryptococcal activity emerged from our studies: 1) the presence of an alkylamino group tethered to one of the aromatic rings of the triphenylethylene core; 2) an appropriately sized aliphatic substituent at the 2 position of the ethylene moiety; and 3) electronegative substituents on the aromatic rings modestly improved activity. Using a cell-based assay of calmodulin antagonism, we found that the anti-cryptococcal activity of the scaffold correlates with calmodulin inhibition. Finally, we developed a homology model of C. neoformans calmodulin and used it to rationalize the structural basis for the activity of these molecules. Taken together, these data and models provide a basis for the further optimization of this promising anti-cryptococcal scaffold. PMID:26016941
Ford, Nathan; Shubber, Zara; Jarvis, Joseph N; Chiller, Tom; Greene, Greg; Migone, Chantal; Vitoria, Marco; Doherty, Meg; Meintjes, Graeme
2018-03-04
Current guidelines recommend screening all people living with human immunodeficiency virus (PLHIV) who have a CD4 count ≤100 cells/µL for cryptococcal antigen (CrAg) to identify those patients who could benefit from preemptive fluconazole treatment prior to the onset of meningitis. We conducted a systematic review to assess the prevalence of CrAg positivity at different CD4 cell counts. We searched 4 databases and abstracts from 3 conferences up to 1 September 2017 for studies reporting prevalence of CrAg positivity according to CD4 cell count strata. Prevalence estimates were pooled using random effects models. Sixty studies met our inclusion criteria. The pooled prevalence of cryptococcal antigenemia was 6.5% (95% confidence interval [CI], 5.7%-7.3%; 54 studies) among patients with CD4 count ≤100 cells/µL and 2.0% (95% CI, 1.2%-2.7%; 21 studies) among patients with CD4 count 101-200 cells/µL. Twenty-one studies provided sufficient information to compare CrAg prevalence per strata; overall, 18.6% (95% CI, 15.4%-22.2%) of the CrAg-positive cases identified at ≤200 cells/µL (n = 11823) were identified among individuals with a CD4 count 101-200 cells/µL. CrAg prevalence was higher among inpatients (9.8% [95% CI, 4.0%-15.5%]) compared with outpatients (6.3% [95% CI, 5.3%-7.4%]). The findings of this review support current recommendations to screen all PLHIV who have a CD4 count ≤100 cells/µL for CrAg and suggest that screening may be considered at CD4 cell count ≤200 cells/µL.
Lofgren, Sarah M; Abassi, Mahsa; Rhein, Joshua; Boulware, David R
2017-01-01
Introduction Recent advances in the treatment and prevention of cryptococcal meningitis have the potential to decrease AIDS-related deaths. Areas covered Targeted screening for asymptomatic cryptococcal antigenemia in persons with AIDS is a cost effective method for reducing early mortality in patients on antiretroviral therapy. For persons with symptomatic cryptococcal meningitis, optimal initial management with amphotericin and flucytosine improves survival compared to alternative therapies; however, amphotericin is difficult to administer and flucytosine has not been available in middle or low income countries, where cryptococcal meningitis is most prevalent. Expert Commentary Improved care for cryptococcal meningitis patients in resource-limited settings is possible, and new treatment possibilities are emerging. PMID:28111998
O'Halloran, Jane A; Franklin, Alexander; Lainhart, William; Burnham, Carey-Ann; Powderly, William; Dubberke, Erik
2017-01-01
We report the case of a kidney transplantation patient on chronic immunosuppressive therapy presenting with subacute meningitis. The final diagnosis of cryptococcal meningitis was delayed due to 2 false-negative cryptococcal results on a molecular diagnostic panel. Caution with such platforms in suspected cryptococcal meningitis is needed.
Rodrigues, M L; Rozental, S; Couceiro, J N; Angluster, J; Alviano, C S; Travassos, L R
1997-01-01
Sialic acids from sialoglycoconjugates present at the cell surface of Cryptococcus neoformans yeast forms were analyzed by high-performance thin-layer chromatography, binding of influenza A and C virus strains, enzymatic treatment, and flow cytofluorimetry with fluorescein isothiocyanate-labeled lectins. C. neoformans yeast forms grown in a chemically defined medium contain N-acetylneuraminic acid and its 9-O-acetylated derivative. A density of 3 x 10(6) residues of sialic acid per cell was found in C. neoformans. Sialic acids in cryptococcal cells are glycosidically linked to galactopyranosyl units as inferred from the increased reactivity of neuraminidase-treated yeasts with peanut agglutinin. N-Acetylneuraminic acids are alpha-2,6 and alpha-2,3 linked, as indicated by using virus strains M1/5 and M1/5 HS8, respectively, as agglutination probes. The alpha-2,6 linkage markedly predominated. These findings were essentially confirmed by the interaction of cryptococcal cells with the lectins Sambucus nigra agglutinin and Maackia amurensis agglutinin. We also investigated whether the sialyl residues present in C. neoformans are involved in the fungal interaction with a cationic solid-phase substrate and with mouse resident macrophages. Adhesion of yeast cells to poly-L-lysine was mediated, in part, by sialic acid residues, since the number of adherent cells was markedly reduced after treatment with bacterial neuraminidase. The enzymatic removal of sialic acids also made C. neoformans yeast cells more susceptible to endocytosis by macrophages. The results show that sialic acids are components of the cryptococcal cell surface that contribute to its negative charge and protect yeast forms against phagocytosis. PMID:9393779
Greene, Greg; Sriruttan, Charlotte; Le, Thuy; Chiller, Tom; Govender, Nelesh P
2017-03-01
As HIV treatment programmes scale up to meet the UNAIDS 90-90-90 goals, care must be taken to start antiretroviral treatment safely in patients with advanced disease (CD4 counts <200 cells/μl) who are simultaneously at risk for opportunistic infections and immune reconstitution inflammatory syndrome. Invasive fungal diseases pose a great threat at this critical time point, though the development of inexpensive and highly accurate rapid diagnostic tests has changed the approach HIV programmes are taking to reduce the high mortality associated with these opportunistic infections. This article summarizes recent advances and findings in fungal opportunistic infection diagnostics with a focus on screening to prevent cryptococcal meningitis. Cryptococcal antigen (CrAg) screening using a lateral flow assay platform is cost-effective and feasible to implement as either a laboratory reflex or point-of-care test. Recent CrAg screening pilots have elucidated the varying prevalence of cryptococcal antigenemia across geographic regions, which may aid programme planning. Evidence from recently completed clinical trials provides a strong motivation for the use of CrAg titer to refine treatment options for patients with subclinical cryptococcal disease. Although several operational barriers to programme effectiveness still need to be addressed, the utility of CrAg screening using inexpensive and accurate antigen assays has been demonstrated in real-world HIV programmes, paving the way for development and testing of other fungal opportunistic infection screening strategies and for an integrated advanced HIV disease testing package to reduce AIDS mortality and ensure safe antiretroviral treatment initiation.
Okagaki, Laura H; Wang, Yina; Ballou, Elizabeth R; O'Meara, Teresa R; Bahn, Yong-Sun; Alspaugh, J Andrew; Xue, Chaoyang; Nielsen, Kirsten
2011-10-01
The titan cell is a recently described morphological form of the pathogenic fungus Cryptococcus neoformans. Occurring during the earliest stages of lung infection, titan cells are 5 to 10 times larger than the normal yeast-like cells, thereby resisting engulfment by lung phagocytes and favoring the persistence of infection. These enlarged cells exhibit an altered capsule structure, a thickened cell wall, increased ploidy, and resistance to nitrosative and oxidative stresses. We demonstrate that two G-protein-coupled receptors are important for induction of the titan cell phenotype: the Ste3a pheromone receptor (in mating type a cells) and the Gpr5 protein. Both receptors control titan cell formation through elements of the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. This conserved signaling pathway, in turn, mediates its effect on titan cells through the PKA-regulated Rim101 transcription factor. Additional downstream effectors required for titan cell formation include the G(1) cyclin Pcl103, the Rho104 GTPase, and two GTPase-activating proteins, Gap1 and Cnc1560. These observations support developing models in which the PKA signaling pathway coordinately regulates many virulence-associated phenotypes in diverse human pathogens.
Okagaki, Laura H.; Wang, Yina; Ballou, Elizabeth R.; O'Meara, Teresa R.; Bahn, Yong-Sun; Alspaugh, J. Andrew; Xue, Chaoyang; Nielsen, Kirsten
2011-01-01
The titan cell is a recently described morphological form of the pathogenic fungus Cryptococcus neoformans. Occurring during the earliest stages of lung infection, titan cells are 5 to 10 times larger than the normal yeast-like cells, thereby resisting engulfment by lung phagocytes and favoring the persistence of infection. These enlarged cells exhibit an altered capsule structure, a thickened cell wall, increased ploidy, and resistance to nitrosative and oxidative stresses. We demonstrate that two G-protein-coupled receptors are important for induction of the titan cell phenotype: the Ste3a pheromone receptor (in mating type a cells) and the Gpr5 protein. Both receptors control titan cell formation through elements of the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. This conserved signaling pathway, in turn, mediates its effect on titan cells through the PKA-regulated Rim101 transcription factor. Additional downstream effectors required for titan cell formation include the G1 cyclin Pcl103, the Rho104 GTPase, and two GTPase-activating proteins, Gap1 and Cnc1560. These observations support developing models in which the PKA signaling pathway coordinately regulates many virulence-associated phenotypes in diverse human pathogens. PMID:21821718
Cryptococcus and Phagocytes: Complex Interactions that Influence Disease Outcome
Leopold Wager, Chrissy M.; Hole, Camaron R.; Wozniak, Karen L.; Wormley, Floyd L.
2016-01-01
Cryptococcus neoformans and C. gattii are fungal pathogens that cause life-threatening disease. These fungi commonly enter their host via inhalation into the lungs where they encounter resident phagocytes, including macrophages and dendritic cells, whose response has a pronounced impact on the outcome of disease. Cryptococcus has complex interactions with the resident and infiltrating innate immune cells that, ideally, result in destruction of the yeast. These phagocytic cells have pattern recognition receptors that allow recognition of specific cryptococcal cell wall and capsule components. However, Cryptococcus possesses several virulence factors including a polysaccharide capsule, melanin production and secretion of various enzymes that aid in evasion of the immune system or enhance its ability to thrive within the phagocyte. This review focuses on the intricate interactions between the cryptococci and innate phagocytic cells including discussion of manipulation and evasion strategies used by Cryptococcus, anti-cryptococcal responses by the phagocytes and approaches for targeting phagocytes for the development of novel immunotherapeutics. PMID:26903984
Fungal Cell Gigantism during Mammalian Infection
Zaragoza, Oscar; García-Rodas, Rocío; Nosanchuk, Joshua D.; Cuenca-Estrella, Manuel; Rodríguez-Tudela, Juan Luis; Casadevall, Arturo
2010-01-01
The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 µm in diameter and capsules resistant to stripping with γ-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20–50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens. PMID:20585557
Ezeanolue, Echezona E; Nwizu, Chidi; Greene, Gregory S; Amusu, Olatilewa; Chukwuka, Chinwe; Ndembi, Nicaise; Smith, Rachel M; Chiller, Tom; Pharr, Jennifer; Kozel, Thomas R
2016-09-01
Worldwide, HIV-associated cryptococcal meningitis affects approximately 1 million persons and causes 600,000 deaths each year mostly in sub-Saharan Africa. Limited data exist on cryptococcal meningitis and antigenemia in Nigeria, and most studies are geographically restricted. We determined the prevalence of cryptococcal antigenemia (CrAg) among HIV-infected, treatment-naive individuals in Nigeria. This was a retrospective, cross-sectional study across 4 geographic regions in Nigeria. We performed CrAg testing using a lateral flow immunoassay on archived whole-blood samples collected from HIV-infected participants at US President's Emergency Plan for AIDS Relief (PEPFAR)-supported sites selected to represent the major geographical and ethnic diversity in Nigeria. Eligible samples were collected from consenting patients (>15 years) naive to antiretroviral therapy with CD4 count less than 200 cells per cubic millimeter and were stored in an -80°C freezer. A total of 2752 stored blood samples were retrospectively screened for CrAg. Most of the samples were from participants aged 30-44 years (57.6%), and 1570 (57.1%) were from women. The prevalence of CrAg positivity in specimens with CD4 <200 cells per cubic millimeter was 2.3% (95% confidence interval: 1.8% to 3.0%) and varied significantly across the 4 regions (P < 0.001). At 4.4% (3.2% to 5.9%), the South East contained the highest prevalence. The significant regional variation in CrAg prevalence found in Nigeria should be taken into consideration as plans are made to integrate routine screening into clinical care for HIV-infected patients.
Ezeanolue, Echezona E.; Nwizu, Chidi; Greene, Gregory S.; Amusu, Olatilewa; Chukwuka, Chinwe; Ndembi, Nicaise; Smith, Rachel M.; Chiller, Tom; Pharr, Jennifer; Kozel, Thomas R
2016-01-01
Objective Worldwide, HIV-associated cryptococcal meningitis affects approximately 1 million persons and causes 600,000 deaths each year mostly in sub-Sharan Africa. Limited data exist on cryptococcal meningitis and antigenemia in Nigeria, and most studies are geographically restricted. We determined the prevalence of cryptococcal antigenemia (CrAg) among HIV-infected treatment-naïve individuals in Nigeria. Design/Methods This was a retrospective, cross-sectional study across four geographic regions in Nigeria. We performed CrAg testing using a lateral flow immunoassay on archived whole blood samples collected from HIV-infected participants at US PEPFAR-supported sites selected to represent the major geographical and ethnic diversity in Nigeria. Eligible samples were (1) stored in an -80° freezer; (2) collected from consenting patients (>15 years) naïve to antiretroviral therapy with CD4+ count less than 200 cells/mm3. Results A total of 2,752 stored blood samples were retrospectively screened for CrAg. A majority of samples were from participants aged 30 - 44 (57.6%), and 1,570 (57.1%) were from women. The prevalence of CrAg positivity in specimens with CD4 < 200 cells/mm3 was 2.3% (95% CI = 1.8%-3.0%), and varied significantly across the four regions (p < 0.001). At 4.4% (3.2%-5.9%), the South East contained the highest prevalence. Conclusion The significant regional variation in CrAg prevalence found in Nigeria should be taken into consideration as plans are made to integrate routine screening into clinical care for HIV-infected patients. PMID:27144527
Kaplan, Alesia; Berntson, Daniel G; Ferrieri, Patricia
2015-01-01
We report a case of localized pulmonary cryptococcal infection in a 28-year-old Caucasian woman who was 1 month postpartum at the time of her arrival at the hospital. The patient reported right-side chest pain; on further work up, she was found to have an incidental pulmonary lesion of the left lower lung lobe. Surgical pathology examination and microbiology studies revealed localized cryptococcal infection. Cases of cryptococcal pneumonia in pregnant women and in the postpartum period have been described in the literature. However, cryptococcal infections are usually associated with various immunocompromised states, including human immunodeficiency virus (HIV) infection. Because pregnancy is associated with physiological immunosuppression, cryptococcal pneumonia should be considered in pregnant women, or women in the postpartum period, who have respiratory symptoms. Copyright© by the American Society for Clinical Pathology (ASCP).
Ford, Nathan; Shubber, Zara; Jarvis, Joseph N; Chiller, Tom; Greene, Greg; Migone, Chantal; Vitoria, Marco; Doherty, Meg; Meintjes, Graeme
2018-01-01
Abstract Background Current guidelines recommend screening all people living with human immunodeficiency virus (PLHIV) who have a CD4 count ≤100 cells/µL for cryptococcal antigen (CrAg) to identify those patients who could benefit from preemptive fluconazole treatment prior to the onset of meningitis. We conducted a systematic review to assess the prevalence of CrAg positivity at different CD4 cell counts. Methods We searched 4 databases and abstracts from 3 conferences up to 1 September 2017 for studies reporting prevalence of CrAg positivity according to CD4 cell count strata. Prevalence estimates were pooled using random effects models. Results Sixty studies met our inclusion criteria. The pooled prevalence of cryptococcal antigenemia was 6.5% (95% confidence interval [CI], 5.7%–7.3%; 54 studies) among patients with CD4 count ≤100 cells/µL and 2.0% (95% CI, 1.2%–2.7%; 21 studies) among patients with CD4 count 101–200 cells/µL. Twenty-one studies provided sufficient information to compare CrAg prevalence per strata; overall, 18.6% (95% CI, 15.4%–22.2%) of the CrAg-positive cases identified at ≤200 cells/µL (n = 11823) were identified among individuals with a CD4 count 101–200 cells/µL. CrAg prevalence was higher among inpatients (9.8% [95% CI, 4.0%–15.5%]) compared with outpatients (6.3% [95% CI, 5.3%–7.4%]). Conclusions The findings of this review support current recommendations to screen all PLHIV who have a CD4 count ≤100 cells/µL for CrAg and suggest that screening may be considered at CD4 cell count ≤200 cells/µL. PMID:29514236
Specht, Charles A; Lee, Chrono K; Huang, Haibin; Hester, Maureen M; Liu, Jianhua; Luckie, Bridget A; Torres Santana, Melanie A; Mirza, Zeynep; Khoshkenar, Payam; Abraham, Ambily; Shen, Zu T; Lodge, Jennifer K; Akalin, Ali; Homan, Jane; Ostroff, Gary R; Levitz, Stuart M
2017-11-28
Development of a vaccine to protect against cryptococcosis is a priority given the enormous global burden of disease in at-risk individuals. Using glucan particles (GPs) as a delivery system, we previously demonstrated that mice vaccinated with crude Cryptococcus -derived alkaline extracts were protected against lethal challenge with Cryptococcus neoformans and Cryptococcus gattii The goal of the present study was to identify protective protein antigens that could be used in a subunit vaccine. Using biased and unbiased approaches, six candidate antigens (Cda1, Cda2, Cda3, Fpd1, MP88, and Sod1) were selected, recombinantly expressed in Escherichia coli , purified, and loaded into GPs. Three mouse strains (C57BL/6, BALB/c, and DR4) were then vaccinated with the antigen-laden GPs, following which they received a pulmonary challenge with virulent C. neoformans and C. gattii strains. Four candidate vaccines (GP-Cda1, GP-Cda2, GP-Cda3, and GP-Sod1) afforded a significant survival advantage in at least one mouse model; some vaccine combinations provided added protection over that seen with either antigen alone. Vaccine-mediated protection against C. neoformans did not necessarily predict protection against C. gattii Vaccinated mice developed pulmonary inflammatory responses that effectively contained the infection; many surviving mice developed sterilizing immunity. Predicted T helper cell epitopes differed between mouse strains and in the degree to which they matched epitopes predicted in humans. Thus, we have discovered cryptococcal proteins that make promising candidate vaccine antigens. Protection varied depending on the mouse strain and cryptococcal species, suggesting that a successful human subunit vaccine will need to contain multiple antigens, including ones that are species specific. IMPORTANCE The encapsulated fungi Cryptococcus neoformans and Cryptococcus gattii are responsible for nearly 200,000 deaths annually, mostly in immunocompromised individuals. An effective vaccine could substantially reduce the burden of cryptococcosis. However, a major gap in cryptococcal vaccine development has been the discovery of protective antigens to use in vaccines. Here, six cryptococcal proteins with potential as vaccine antigens were expressed recombinantly and purified. Mice were then vaccinated with glucan particle preparations containing each antigen. Of the six candidate vaccines, four protected mice from a lethal cryptococcal challenge. However, the degree of protection varied as a function of mouse strain and cryptococcal species. These preclinical studies identify cryptococcal proteins that could serve as candidate vaccine antigens and provide a proof of principle regarding the feasibility of protein antigen-based vaccines to protect against cryptococcosis. Copyright © 2017 Specht et al.
Cáceres, Diego H; Zuluaga, Alejandra; Tabares, Ángela M; Chiller, Tom; González, Ángel; Gómez, Beatriz L
2017-12-21
A Lateral Flow Assay to detect cryptococcal antigen (CrAg® LFA) in serum and cerebrospinal fluid for the rapid diagnosis of cryptococcosis was evaluated. A retrospective validation was performed. Sensitivity and specificity of the CrAg® LFA was 100%. High concordance (kappa index=1.0) between Cryptococcal Antigen Latex Agglutination System (CALAS®) and CrAg® LFA was observed. CrAg® LFA showed higher analytical sensitivity for detecting low concentrations of cryptococcal antigen.
Cáceres, Diego H.; Zuluaga, Alejandra; Tabares, Ángela M.; Chiller, Tom; González, Ángel; Gómez, Beatriz L.
2017-01-01
ABSTRACT A Lateral Flow Assay to detect cryptococcal antigen (CrAg® LFA) in serum and cerebrospinal fluid for the rapid diagnosis of cryptococcosis was evaluated. A retrospective validation was performed. Sensitivity and specificity of the CrAg® LFA was 100%. High concordance (kappa index=1.0) between Cryptococcal Antigen Latex Agglutination System (CALAS®) and CrAg® LFA was observed. CrAg® LFA showed higher analytical sensitivity for detecting low concentrations of cryptococcal antigen. PMID:29267584
Titan Cell Production Enhances the Virulence of Cryptococcus neoformans
Crabtree, Juliet N.; Okagaki, Laura H.; Wiesner, Darin L.; Strain, Anna K.; Nielsen, Judith N.
2012-01-01
Infection with Cryptococcus neoformans begins when desiccated yeast cells or spores are inhaled and lodge in the alveoli of the lungs. A subset of cryptococcal cells in the lungs differentiate into enlarged cells, referred to as titan cells. Titan cells can be as large as 50 to 100 μm in diameter and exhibit a number of features that may affect interactions with host immune defenses. To characterize the effect of titan cell formation on the host-pathogen interaction, we utilized a previously described C. neoformans mutant, the gpr4Δ gpr5Δ mutant, which has minimal titan cell production in vivo. The gpr4Δ gpr5Δ mutant strain had attenuated virulence, a lower CFU, and reduced dissemination compared to the wild-type strain. Titan cell production by the wild-type strain also resulted in increased eosinophil accumulation and decreased phagocytosis in the lungs compared to those with the gpr4Δ gpr5Δ mutant strain. Phagocytosed cryptococcal cells exhibited less viability than nonphagocytosed cells, which potentially explains the reduced cell survival and overall attenuation of virulence in the absence of titan cells. These data show that titan cell formation is a novel virulence factor in C. neoformans that promotes establishment of the initial pulmonary infection and plays a key role in disease progression. PMID:22890995
Titan cell production enhances the virulence of Cryptococcus neoformans.
Crabtree, Juliet N; Okagaki, Laura H; Wiesner, Darin L; Strain, Anna K; Nielsen, Judith N; Nielsen, Kirsten
2012-11-01
Infection with Cryptococcus neoformans begins when desiccated yeast cells or spores are inhaled and lodge in the alveoli of the lungs. A subset of cryptococcal cells in the lungs differentiate into enlarged cells, referred to as titan cells. Titan cells can be as large as 50 to 100 μm in diameter and exhibit a number of features that may affect interactions with host immune defenses. To characterize the effect of titan cell formation on the host-pathogen interaction, we utilized a previously described C. neoformans mutant, the gpr4Δ gpr5Δ mutant, which has minimal titan cell production in vivo. The gpr4Δ gpr5Δ mutant strain had attenuated virulence, a lower CFU, and reduced dissemination compared to the wild-type strain. Titan cell production by the wild-type strain also resulted in increased eosinophil accumulation and decreased phagocytosis in the lungs compared to those with the gpr4Δ gpr5Δ mutant strain. Phagocytosed cryptococcal cells exhibited less viability than nonphagocytosed cells, which potentially explains the reduced cell survival and overall attenuation of virulence in the absence of titan cells. These data show that titan cell formation is a novel virulence factor in C. neoformans that promotes establishment of the initial pulmonary infection and plays a key role in disease progression.
How Cryptococcus interacts with the blood-brain barrier.
Tseng, Hsiang-Kuang; Huang, Tseng-Yu; Wu, Alice Ying-Jung; Chen, Hsin-Hong; Liu, Chang-Pan; Jong, Ambrose
2015-01-01
Cryptococcus demonstrates predilection for invasion of the brain, but the mechanism by which Cryptococcus crosses the blood-brain barrier (BBB) to cause brain invasion is largely unknown. In order for Cryptococcus to cross the BBB, there must be a way to either cross human brain microvascular endothelial cells, which are the main constitute of the BBB, or go in between tight junctions. Recent evidence of human brain microvascular endothelial cell responses to transcellular brain invasions includes membrane rearrangements, intracellular signaling pathways and cytoskeletal activations. Several Cryptococcal genes related to the traversal of BBB have been identified, including CPS1, ITR1a, ITR3c, PLB1, MPR1, FNX1 and RUB1. In addition, Cryptococcus neoformans-derived microvesicles may contribute to cryptococcal brain invasion. Paracellularly, Cryptococcus may traverse across BBB using either routes utilizing plasmin, ammonia or macrophages in a Trojan horse mechanism.
Cryptococcal necrotizing fasciitis in a patient after renal transplantation--a case report.
Yoneda, T; Itami, Y; Hirayama, A; Saka, T; Yoshida, K; Fujimoto, K
2014-01-01
A 50-year-old man, who had received an ABO-incompatible living related preemptive renal transplantation 1 year before, presented with painful lesions on both lower extremities and fever. At first, bacterial cellulitis was suspected and antibiotic therapy was initiated, but it was not effective. The serum cryptococcal antigen titer was 1:4,098, and pathologic examination of debrided tissue and wound pus culture revealed cryptococcal necrotizing fasciitis. Liposomal amphotericin B and fluconazole were started, and repeated debridement and skin grafting were performed. Because his graft function deteriorated because of antibody-mediated rejection and polyoma viral nephropathy, hemodialysis was induced on day 9 of hospitalization. During the treatment, he suffered repeated urinary tract infections, which were treated with antibiotics, and cytomegalovirus retinopathy, which was treated with ganciclovir. His cryptococcal necrotizing fasciitis was successfully cured by the combination of antimicrobial treatment and surgical procedures. He could walk with a cane and was discharged on day 298 of hospitalization. Cryptococcal necrotizing fasciitis in renal transplant recipients is so rare that only 14 cases have been reported. The mortality is not very high, but the prognosis of the patient is complicated by worsening of the cryptococcal infection of the central nervous system (CNS). Early detection and treatment to prevent spreading to other sites, especially the CNS or disseminated disease, is very important in cases of cryptococcal necrotizing fasciitis. Copyright © 2014 Elsevier Inc. All rights reserved.
Livermore, Joanne; Howard, Susan J.; Sharp, Andrew D.; Goodwin, Joanne; Gregson, Lea; Felton, Timothy; Schwartz, Julie A.; Walker, Catherine; Moser, Bill; Müller, Werner; Harrison, Thomas S.; Perfect, John R.; Hope, William W.
2014-01-01
ABSTRACT Cryptococcal meningoencephalitis is an urgent global health problem. Induction regimens using 14 days of amphotericin B deoxycholate (dAmB) are considered the standard of care but may not be suitable for resource-poor settings. We investigated the efficacy of conventional and abbreviated regimens of dAmB for cryptococcal meningoencephalitis in both murine and rabbit models of cryptococcal meningoencephalitis. We examined the extent to which immunological effectors contribute to the antifungal effect. We bridged the results to humans as a first critical step to define regimens suitable for further study in clinical trials. There were significant differences in the murine plasma-versus-cerebrum dAmB concentration-time profiles. dAmB was detectable in the cerebrum throughout the experimental period, even following the administration of only three doses of 3 mg/kg. dAmB induced a fungistatic effect in the cerebrum with a 2- to 3-log10 CFU/g reduction compared with controls. The effect of 3 days of therapy was the same as that of daily therapy for 14 days. There was no evidence of increased numbers of CD3+ CD4+ or CD3+ CD8+ cells in treated mice to account for the persistent antifungal effect of an abbreviated regimen. The administration of dAmB at 1 mg/kg/day for 3 days was the same as daily therapy in rabbits. The bridging studies suggested that a human regimen of 0.7 mg/kg/day for 3 days resulted in nearly maximal antifungal activity in both the cerebrum and cerebrospinal fluid. An abbreviated regimen (3 days of therapy) of dAmB appears to be just as effective as conventional induction therapy for cryptococcal meningoencephalitis. PMID:24473125
False-Positive Cryptococcal Antigen Test Associated with Use of BBL Port-A-Cul Transport Vials▿
Wilson, Deborah A.; Sholtis, Mary; Parshall, Sharon; Hall, Gerri S.; Procop, Gary W.
2011-01-01
A total of 52 residual CSF and serum specimens, which were originally negative with the Cryptococcal Antigen Latex Agglutination System (CALAS), were shown to become falsely positive after placement in BBL Port-A-Cul anaerobic transport vials. This transport device, although excellent for specimen transportation for subsequent culture, should not be used if cryptococcal antigen testing is needed. PMID:21159939
False-positive cryptococcal antigen test associated with use of BBL Port-a-Cul transport vials.
Wilson, Deborah A; Sholtis, Mary; Parshall, Sharon; Hall, Gerri S; Procop, Gary W
2011-02-01
A total of 52 residual CSF and serum specimens, which were originally negative with the Cryptococcal Antigen Latex Agglutination System (CALAS), were shown to become falsely positive after placement in BBL Port-A-Cul anaerobic transport vials. This transport device, although excellent for specimen transportation for subsequent culture, should not be used if cryptococcal antigen testing is needed.
Scriven, James E.; Rhein, Joshua; Hullsiek, Katherine Huppler; von Hohenberg, Maximilian; Linder, Grace; Rolfes, Melissa A.; Williams, Darlisha A.; Taseera, Kabanda; Meya, David B.; Meintjes, Graeme; Boulware, David R.
2015-01-01
Introduction. Earlier antiretroviral therapy (ART) initiation in cryptococcal meningitis resulted in higher mortality compared with deferred ART initiation (1–2 weeks vs 5 weeks postmeningitis diagnosis). We hypothesized this was due to ART-associated immune pathology, without clinically recognized immune reconstitution inflammatory syndrome. Methods. Three macrophage activation markers and 19 cytokines/chemokines were measured from cryopreserved cerebrospinal fluid (CSF) and serum during the Cryptococcal Optimal ART Timing (COAT) trial. Comparisons were made between trial arms (early vs deferred) at 1, 8, 14, and 21 days following meningitis diagnosis. Results. More participants with early ART initiation had CSF white cell count (WCC) ≥5/µL at day 14 (58% vs 40%; P = .047), after a median of 6-days ART. Differences were mainly driven by participants with CSF WCC <5/µL at meningitis diagnosis: 28% (10/36) of such persons in the early ART group had CSF WCC ≥5/µL by day 14, compared with 0% (0/27) in the deferred arm (P = .002). Furthermore, Kampala participants (the largest site) receiving early ART had higher day-14 CSF levels of interleukin-13 (P = .04), sCD14 (P = .04), sCD163 (P = .02), and CCL3/MIP-1α (P = .02), suggesting increased macrophage/microglial activation. Conclusions. Early ART initiation in cryptococcal meningitis increased CSF cellular infiltrate, macrophage/microglial activation, and T helper 2 responses within the central nervous system. This suggests that increased mortality from early ART in the COAT trial was immunologically mediated. PMID:25651842
Cryptococcal meningitis: epidemiology and therapeutic options
Sloan, Derek J; Parris, Victoria
2014-01-01
Cryptococcal meningitis causes morbidity and mortality worldwide. The burden of disease is greatest in middle- and low-income countries with a high incidence of human immunodeficiency virus (HIV) infection. Patients taking immunosuppressive drugs and some immunocompetent hosts are also at risk. Treatment of cryptococcal meningitis consists of three phases: induction, consolidation, and maintenance. Effective induction therapy requires potent fungicidal drugs (amphotericin B and flucytosine), which are often unavailable in low-resource, high-endemicity settings. As a consequence, mortality is unacceptably high. Wider access to effective treatment is urgently required to improve outcomes. For human immunodeficiency virus-infected patients, judicious management of asymptomatic cryptococcal antigenemia and appropriately timed introduction of antiretroviral therapy are important. PMID:24872723
Chrysos, G; Gerakari, S; Stasini, F; Kokkoris, S; Kourousis, D; Velegraki, A
2008-07-01
A 55-year-old HIV-infected patient on antiretroviral treatment with Ritonavir-boosted Tipranavir as part of HAART developed intracranial haemorrhage during the acute phase of cryptococcal meningitis. CT scan and MRI confirmed the intracranial haemorrhage. Positive cryptococcal antigen and cultures of both blood and CSF confirmed the diagnosis of meningitis caused by Cryptococcus neoformans. There was no evidence of any bleeding disorder, use of aspirin or antiplatelet agents. The patient was treated with Liposomal Amphotericin B for cryptococcal meningitis. No special treatment was needed for the intracranial haemorrhage, but Tipranavir was discontinued and replaced by Kaletra and Saquinavir. Intracranial haemorrhage could be related to Tipranavir and cryptococcal meningitis was a predisposing factor. Headache stopped 3 days after starting antifungal treatment. To the best of our knowledge, this is the first reported case of intracranial haemorrhage related to Tipranavir treatment after the end of the "RESIST" studies and the only one related to meningitis.
Oladele, Rita O.; Gago, Sara
2017-01-01
Cryptococcal disease remains a significant source of global morbidity and mortality for people living with HIV, especially in resource-limited settings. The recently updated estimate of cryptococcal disease revealed a global incidence of 223,100 cases annually with 73% of these cases being diagnosed in sub-Saharan Africa. Furthermore, 75% of the estimated 181,100 deaths associated with cryptococcal disease occur in sub-Saharan Africa. Point-of-care diagnostic assays have revolutionised the diagnosis of this deadly opportunistic infection. The theory of asymptomatic cryptococcal antigenaemia as a forerunner to symptomatic meningitis and death has been conclusively proven. Thus, cryptococcal antigenaemia screening coupled with pre-emptive antifungal therapy has been demonstrated as a cost-effective strategy with survival benefits and has been incorporated into HIV national guidelines in several countries. However, this is yet to be implemented in a number of other high HIV burden countries. Flucytosine-based combination therapy during the induction phase is associated with improved survival, faster cerebrospinal fluid sterilisation and fewer relapses. Flucytosine, however, is unavailable in many parts of the world. Studies are ongoing on the efficacy of shorter regimens of amphotericin B. Early diagnosis, proactive antifungal therapy with concurrent management of raised intracranial pressure creates the potential to markedly reduce mortality associated with this disease. PMID:29371581
Fatal disseminated cryptococcosis and concurrent ehrlichiosis in a dog.
Collett, M G; Doyle, A S; Reyers, F; Kruse, T; Fabian, B
1987-12-01
Laboratory findings in an adult bull terrier presented with a history of anorexia and weight loss included the following: severe anaemia, leukocytosis, neutrophilia, lymphopaenia, thrombocytopaenia, Ehrlichia canis morulae in monocytes, hypergammaglo-bulinaemia, a bleeding tendency, icterus and proteinuria. In addition, a high Haemobartonella canis parasitaemia, non-encapsulated yeasts on urinalysis and a localised Demodex canis infestation were present. Treatment for ehrlichiosis was initiated but the dog died. Lesions found were a severe cryptococcal granulomatous pneumonia and cryptococcal colonies in the lungs, bronchial lymph nodes, kidneys, liver, spleen, heart, meninges, eyes and thoracic cavity. In addition, hyphal forms resembling Filobasidiella neoformans, the teleomorph of Cryptococcus neoformans, were seen in lung fine needle aspiration smears, impression smears and lung sections. C. neoformans was cultured from urine, lung and liver. Lung and kidney also yielded Salmonella typhimureum. Cortical atrophy with T-cell depletion of lymph nodes as well as splenic lymphoid follicular atrophy, typical of chronic ehrlichiosis-induced cell mediated immunosuppression, could have predisposed to the fatal disseminated cryptococcis.
Park, Benjamin J; Wannemuehler, Kathleen A; Marston, Barbara J; Govender, Nelesh; Pappas, Peter G; Chiller, Tom M
2009-02-20
Cryptococcal meningitis is one of the most important HIV-related opportunistic infections, especially in the developing world. In order to help develop global strategies and priorities for prevention and treatment, it is important to estimate the burden of cryptococcal meningitis. Global burden of disease estimation using published studies. We used the median incidence rate of available studies in a geographic region to estimate the region-specific cryptococcal meningitis incidence; this was multiplied by the 2007 United Nations Programme on HIV/AIDS HIV population estimate for each region to estimate cryptococcal meningitis cases. To estimate deaths, we assumed a 9% 3-month case-fatality rate among high-income regions, a 55% rate among low-income and middle-income regions, and a 70% rate in sub-Saharan Africa, based on studies published in these areas and expert opinion. Published incidence ranged from 0.04 to 12% per year among persons with HIV. Sub-Saharan Africa had the highest yearly burden estimate (median incidence 3.2%, 720 000 cases; range, 144 000-1.3 million). Median incidence was lowest in Western and Central Europe and Oceania (=0.1% each). Globally, approximately 957 900 cases (range, 371 700-1 544 000) of cryptococcal meningitis occur each year, resulting in 624 700 deaths (range, 125 000-1 124 900) by 3 months after infection. This study, the first attempt to estimate the global burden of cryptococcal meningitis, finds the number of cases and deaths to be very high, with most occurring in sub-Saharan Africa. Further work is needed to better define the scope of the problem and track the epidemiology of this infection, in order to prioritize prevention, diagnosis, and treatment strategies.
Katchanov, Juri; Branding, Gordian; Jefferys, Laura; Arastéh, Keikawus; Stocker, Hartmut; Siebert, Eberhard
2016-02-01
To determine the frequency, imaging characteristics, neuroanatomical distribution and dynamics of magnetic resonance imaging findings in HIV-associated cryptococcal meningitis in immunocompromised patients we compared patients without antiretroviral therapy with patients undergoing immune reconstitution. Neuroimaging and clinical data of 21 consecutive patients presenting to a German HIV centre in a 10-year period between 2005 and 2014 were reviewed. We identified eight patients with magnetic resonance imaging findings related to cryptococcal disease: five patients without antiretroviral therapy and three patients receiving effective antiretroviral therapy resulting in immune reconstitution. The pattern of magnetic resonance imaging manifestations was different in the two groups. In patients not on antiretroviral therapy, pseudocysts (n = 3) and lacunar ischaemic lesions (n = 2) were detected. Contrast-enhancing focal leptomeningeal and/or parenchymal lesions were found in all patients under immune reconstitution (n = 3). Magnetic resonance imaging lesions suggestive of leptomeningitis or meningoencephalitis were detected in all patients with a recurrence of cryptococcal meningitis under immune reconstitution, which differs from the classical magnetic resonance imaging findings in patients without antiretroviral therapy. In antiretroviral therapy-treated patients with past medical history of cryptococcal meningitis, detection of contrast-enhancing focal meningeal and/or parenchymal lesions should prompt further investigations for a recurrence of cryptococcal meningitis under immune reconstitution. © The Author(s) 2015.
Govender, N P; Roy, M; Mendes, J F; Zulu, T G; Chiller, T M; Karstaedt, A S
2015-09-01
We retrospectively evaluated clinic-based screening to determine the prevalence of cryptococcal antigenaemia and management and outcome of patients with antigenaemia. Cryptococcal antigen (CrAg) screening of HIV-infected adults who attended the HIV clinic at Chris Hani Baragwanath Hospital was conducted over 19 months. Data collected from CrAg-positive patients included CD4 T-lymphocyte count at screening, prior or subsequent cryptococcal meningitis (CM), antifungal and antiretroviral treatment and outcome after at least 8 months. Of 1460 patients with no prior CM, 30 (2.1%) had a positive CrAg test. The prevalence of antigenaemia among patients with a CD4 count < 100 cells/μl and no prior CM was 2.8% (20 of 708). Of 29 evaluable CrAg-positive patients with no prior CM, 14 (48%) did not return for post-screening follow-up. Of these 14, five developed CM and one (7%) was known to be alive at follow-up. Of 15 patients who returned for follow-up, two already had evidence of nonmeningeal cryptococcosis. Overall, 11 received fluconazole, one did not and fluconazole treatment was unknown for three. Among these 15, one developed CM and 10 (67%) were known to be alive at follow-up. Overall, 18 (62%) of 29 CrAg-positive patients died or were lost to follow-up. Seven (0.5%) of 1430 CrAg-negative patients developed CM a median of 83 days post-screening (range 34 to 219 days). Loss to follow-up is the major operational issue relevant to scale-up of screen-and-treat. Patient outcomes may be improved by rapid access to CrAg results and focus on linkage to and retention in HIV care. © 2015 British HIV Association.
... Other tests that may be done include: Blood culture Chest x-ray Cryptococcal antigen in CSF or ... the head Gram stain, other special stains, and culture of CSF Treatment Antifungal medicines are used to ...
Robertson, Emma J.; Wolf, Julie M.
2012-01-01
The fungal pathogen Cryptococcus neoformans can grow as a biofilm on a range of synthetic and prosthetic materials. Cryptococcal biofilm formation can complicate the placement of shunts used to relieve increased intracranial pressure in cryptococcal meningitis and can serve as a nidus for chronic infection. Biofilms are generally advantageous to pathogens in vivo, as they can confer resistance to antimicrobial compounds, including fluconazole and voriconazole in the case of C. neoformans. EDTA can inhibit biofilm formation by several microbes and enhances the susceptibility of biofilms to antifungal drugs. In this study, we evaluated the effect of sublethal concentrations of EDTA on the growth of cryptococcal biofilms. EDTA inhibited biofilm growth by C. neoformans, and the inhibition could be reversed by the addition of magnesium or calcium, implying that the inhibitory effect was by divalent cation starvation. EDTA also reduced the amount of the capsular polysaccharide glucuronoxylomannan shed into the biofilm matrix and decreased vesicular secretion from the cell, thus providing a potential mechanism for the inhibitory effect of this cation-chelating compound. Our data imply that the growth of C. neoformans biofilms requires the presence of divalent metals in the growth medium and suggest that cations are required for the export of materials needed for biofilm formation, possibly including extracellular vesicles. PMID:22941091
Martins, Marilena dos Anjos; Brighente, Kate Bastos Santos; Matos, Terezinha Aparecida de; Vidal, Jose Ernesto; Hipólito, Daise Damaris Carnietto de; Pereira-Chioccola, Vera Lucia
2015-01-01
This study evaluated the use of polymerase chain reaction for cryptococcal meningitis diagnosis in clinical samples. The sensitivity and specificity of the methodology were evaluated using eight Cryptococcus neoformans/C. gattii species complex reference strains and 165 cerebrospinal fluid samples from patients with neurological diseases divided into two groups: 96 patients with cryptococcal meningitis and AIDS; and 69 patients with other neurological opportunistic diseases (CRL/AIDS). Two primer sets were tested (CN4-CN5 and the multiplex CNa70S-CNa70A/CNb49S-CNb-49A that amplify a specific product for C. neoformans and another for C. gattii). CN4-CN5 primer set was positive in all Cryptococcus standard strains and in 94.8% in DNA samples from cryptococcal meningitis and AIDS group. With the multiplex, no 448-bp product of C. gattii was observed in the clinical samples of either group. The 695bp products of C. neoformans were observed only in 64.6% of the cryptococcal meningitis and AIDS group. This primer set was negative for two standard strains. The specificity based on the negative samples from the CTL/AIDS group was 98.5% in both primer sets. These data suggest that the CN4/CN5 primer set was highly sensitive for the identification of C. neoformans/C. gattii species complex in cerebrospinal fluid samples from patients with clinical suspicion of cryptococcal meningitis. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.
Wiesner, Darin L.; Specht, Charles A.; Lee, Chrono K.; Smith, Kyle D.; Mukaremera, Liliane; Lee, S. Thera; Lee, Chun G.; Elias, Jack A.; Nielsen, Judith N.; Boulware, David R.; Bohjanen, Paul R.; Jenkins, Marc K.; Levitz, Stuart M.; Nielsen, Kirsten
2015-01-01
Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection. PMID:25764512
Wiesner, Darin L; Specht, Charles A; Lee, Chrono K; Smith, Kyle D; Mukaremera, Liliane; Lee, S Thera; Lee, Chun G; Elias, Jack A; Nielsen, Judith N; Boulware, David R; Bohjanen, Paul R; Jenkins, Marc K; Levitz, Stuart M; Nielsen, Kirsten
2015-03-01
Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection.
The lncRNA RZE1 Controls Cryptococcal Morphological Transition
Yang, Ence; Wang, Linqi; Cai, James J.; Lin, Xiaorong
2015-01-01
In the fungal pathogen Cryptococcus neoformans, the switch from yeast to hypha is an important morphological process preceding the meiotic events during sexual development. Morphotype is also known to be associated with cryptococcal virulence potential. Previous studies identified the regulator Znf2 as a key decision maker for hypha formation and as an anti-virulence factor. By a forward genetic screen, we discovered that a long non-coding RNA (lncRNA) RZE1 functions upstream of ZNF2 in regulating yeast-to-hypha transition. We demonstrate that RZE1 functions primarily in cis and less effectively in trans. Interestingly, RZE1’s function is restricted to its native nucleus. Accordingly, RZE1 does not appear to directly affect Znf2 translation or the subcellular localization of Znf2 protein. Transcriptome analysis indicates that the loss of RZE1 reduces the transcript level of ZNF2 and Znf2’s prominent downstream targets. In addition, microscopic examination using single molecule fluorescent in situ hybridization (smFISH) indicates that the loss of RZE1 increases the ratio of ZNF2 transcripts in the nucleus versus those in the cytoplasm. Taken together, this lncRNA controls Cryptococcus yeast-to-hypha transition through regulating the key morphogenesis regulator Znf2. This is the first functional characterization of a lncRNA in a human fungal pathogen. Given the potential large number of lncRNAs in the genomes of Cryptococcus and other fungal pathogens, the findings implicate lncRNAs as an additional layer of genetic regulation during fungal development that may well contribute to the complexity in these “simple” eukaryotes. PMID:26588844
Innate Immunity against Cryptococcus, from Recognition to Elimination
Wormley, Floyd L.
2018-01-01
Cryptococcus species, the etiological agents of cryptococcosis, are encapsulated fungal yeasts that predominantly cause disease in immunocompromised individuals, and are responsible for 15% of AIDS-related deaths worldwide. Exposure follows the inhalation of the yeast into the lung alveoli, making it incumbent upon the pattern recognition receptors (PRRs) of pulmonary phagocytes to recognize highly conserved pathogen-associated molecular patterns (PAMPS) of fungi. The main challenges impeding the ability of pulmonary phagocytes to effectively recognize Cryptococcus include the presence of the yeast’s large polysaccharide capsule, as well as other cryptococcal virulence factors that mask fungal PAMPs and help Cryptococcus evade detection and subsequent activation of the immune system. This review will highlight key phagocyte cell populations and the arsenal of PRRs present on these cells, such as the Toll-like receptors (TLRs), C-type lectin receptors, NOD-like receptors (NLRs), and soluble receptors. Additionally, we will highlight critical cryptococcal PAMPs involved in the recognition of Cryptococcus. The question remains as to which PRR–ligand interaction is necessary for the recognition, phagocytosis, and subsequent killing of Cryptococcus. PMID:29518906
Tumor necrosis factor-inducing activities of Cryptococcus neoformans components.
Delfino, D; Cianci, L; Migliardo, M; Mancuso, G; Cusumano, V; Corradini, C; Teti, G
1996-01-01
Cryptococcus neoformans-induced tumor necrosis factor alpha (TNF-alpha) production may lead to increased human immunodeficiency virus replication in patients with AIDS. In order to identify cryptococcal components that are predominantly responsible for stimulating TNF production, various concentrations of glucuronoxylomannan (GXM), galactoxylomannan (GalXM), mannoproteins (MP), and alpha(1-3) [corrected] glucan were added to whole-blood cultures. All of the cryptococcal components tested, as well as whole heat-killed cryptococci, were capable of inducing TNF-alpha release in a dose-dependent manner. MP were significantly more potent than any of the other cryptococcal components tested or heat-killed cryptococci in stimulating TNF-alpha production (P < 0.05). GXM, in contrast, was significantly less potent in this activity than either GalXM or MP (P < 0.05). As little as 0.5 microg of MP per ml was sufficient to produce moderate but significant elevations of TNF-alpha release. Maximal MP-induced TNF-alpha levels were similar to those induced by Salmonella enteritidis lipopolysaccharide, our positive control. Further experiments using isolated leukocytes suggested that monocytes were the cell population mainly responsible for TNF-alpha production, although the participation of other cell types could not be excluded. The presence of complement-sufficient plasma was a necessary requirement for TNF-alpha induction by GXM, GalXM, and low doses of MP. High MP concentrations (100 microg/ml) were also capable of stimulating TNF-alpha production in the absence of plasma. These data indicate that soluble products released by C. neoformans are capable of inducing TNF-alpha secretion in human leukocytes. This may be clinically relevant, since high concentrations of such products are frequently found in the body fluids of AIDS patients infected with C. neoformans. PMID:8945566
In vitro effects of ambroxol on Cryptococcus adherence, planktonic cells, and biofilms.
Kong, Qingtao; Du, Xue; Huang, Suyang; Yang, Rui; Zhang, Chengzhen; Shen, Yongnian; Liu, Weida; Sang, Hong
2017-07-01
The antifungal effects of ambroxol (Amb; the metabolite VIII of bromhexine) against Cryptococcus planktonic cells and mature biofilms were investigated in this study. Amb showed antifungal activity against planktonic cells and mature biofilms. Disk diffusion test similarly showed antifungal profile for planktonic cells. Furthermore, Amb was found to be synergetic with fluconazole against planktonic cells and reduced the adherence of cells to polystyrene. Our results suggest that Amb can inhibit cryptococcal cells and biofilms, indicating its potential role in the prevention and treatment of cryptococcosis. © 2017 APMIS. Published by John Wiley & Sons Ltd.
Lerm, Barbra; Kenyon, Chris; Schwartz, Ilan S; Kroukamp, Heinrich; de Witt, Riaan; Govender, Nelesh P; de Hoog, G Sybren; Botha, Alfred
2017-11-01
Cryptococcus neoformans is an opportunistic pathogen responsible for the AIDS-defining illness, cryptococcal meningitis. During the disease process, entry of cryptococcal cells into the brain is facilitated by virulence factors that include urease enzyme activity. A novel species of an Emmonsia-like fungus, recently named Emergomyces africanus, was identified as a cause of disseminated mycosis in HIV-infected persons in South Africa. However, in contrast to C. neoformans, the enzymes produced by this fungus, some of which may be involved in pathogenesis, have not been described. Using a clinical isolate of C. neoformans as a reference, the study aim was to confirm, characterise and quantify urease activity in E. africanus clinical isolates. Urease activity was tested using Christensen's urea agar, after which the presence of a urease gene in the genome of E. africanus was confirmed using gene sequence analysis. Subsequent evaluation of colorimetric enzyme assay data, using Michaelis-Menten enzyme kinetics, revealed similarities between the substrate affinity of the urease enzyme produced by E. africanus (Km ca. 26.0 mM) and that of C. neoformans (Km ca. 20.6 mM). However, the addition of 2.5 g/l urea to the culture medium stimulated urease activity of E. africanus, whereas nutrient limitation notably increased cryptococcal urease activity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Long-lasting, specific immunologic unresponsiveness associated with cryptococcal meningitis.
Henderson, D K; Bennett, J E; Huber, M A
1982-01-01
A sensitive radioimmunoassay and an antibody class-specific enzyme-linked immunosorbent assay were used to determine whether patients cured of cryptococcosis responded normally to immunization with cryptococcal capsular polysaccharide (CPS) and type III pneumococcal polysaccharide. 10 normal volunteers and 8 patients who had been cured of cryptococcal meningitis and who had been cured of cryptococcal meningitis and who had no serious underlying diseases were immunized with both antigens. Geometric mean titers to CPS measured by radioimmunoassay were 1:1 in both groups before vaccination, but were 1:3 in patients and 1:119 in controls following immunization (P less than 0.01, Student's t test). Analysis of the class-specific response to immunization with CPS found little anti-CPS IgG or IgA. Geometric mean postvaccination IgM titers were 1:31 in patients and 1:238 in controls (P less than 0.01). Responses to immunization with type III pneumococcal polysaccharide were similar in patients and controls, with IgA, IgM, and IgG mean titers of 1:1129, 1:369, and 1:158 in patients and 1:1504, 1:1039, and 1:163 in controls (P greater than 0.2 for each antibody class). Cured cryptococcal meningitis is often associated with prolonged specific immunologic unresponsiveness. PMID:7068854
Uicker, William C; McCracken, James P; Buchanan, Kent L
2006-02-01
Cryptococcosis is a life-threatening disease caused by the encapsulated yeast, Cryptococcus neoformans. Although infection with C. neoformans is initiated in the lungs, morbidity and mortality is mostly associated with infections of the central nervous system (CNS). Individuals with deficiencies in cell-mediated immunity, such as patients with AIDS, are more susceptible to disseminated cryptococcosis, highlighting the importance of cell-mediated immunity and CD4+ T cells in host resistance against C. neoformans. Using a mouse model of cryptococcal meningoencephalitis, we have shown that immunization of mice with a cryptococcal antigen induced a protective immune response that crossed the blood-brain barrier and initiated an immune response directly in the CNS if C. neoformans was present. The regional protective response was characteristic of a Type-1 (Th1) response in the types of cells present at the site of infection and in the cytokines and chemokines expressed. Here, we extend those findings and report that CD4+ T cells are required for survival of immune mice infected directly in the brain with C. neoformans and sensitized CD4 + T cells can transfer partial protection to naive mice infected intracerebrally with C. neoformans. Furthermore, CD4 + T cells were also important for optimal infiltration of inflammatory cells at the site of infection and in the expression of cytokines and chemokines associated with protection in the brain. Lastly, CD4+ T cells were required for optimal regional production and secretion of IFNgamma and in the significantly increased expression of iNOS in C. neoformans-infected brains of immune mice.
Nixon, Gemma L.; McEntee, Laura; Johnson, Adam; Farrington, Nicola; Whalley, Sarah; Livermore, Joanne; Natal, Cristien; Washbourn, Gina; Bibby, Jaclyn; Berry, Neil; Lestner, Jodi; Truong, Megan; Owen, Andrew; Lalloo, David; Charles, Ian
2018-01-01
ABSTRACT Current therapeutic options for cryptococcal meningitis are limited by toxicity, global supply, and emergence of resistance. There is an urgent need to develop additional antifungal agents that are fungicidal within the central nervous system and preferably orally bioavailable. The benzimidazoles have broad-spectrum antiparasitic activity but also have in vitro antifungal activity that includes Cryptococcus neoformans. Flubendazole (a benzimidazole) has been reformulated by Janssen Pharmaceutica as an amorphous solid drug nanodispersion to develop an orally bioavailable medicine for the treatment of neglected tropical diseases such as onchocerciasis. We investigated the in vitro activity, the structure-activity-relationships, and both in vitro and in vivo pharmacodynamics of flubendazole for cryptococcal meningitis. Flubendazole has potent in vitro activity against Cryptococcus neoformans, with a modal MIC of 0.125 mg/liter using European Committee on Antimicrobial Susceptibility Testing (EUCAST) methodology. Computer models provided an insight into the residues responsible for the binding of flubendazole to cryptococcal β-tubulin. Rapid fungicidal activity was evident in a hollow-fiber infection model of cryptococcal meningitis. The solid drug nanodispersion was orally bioavailable in mice with higher drug exposure in the cerebrum. The maximal dose of flubendazole (12 mg/kg of body weight/day) orally resulted in an ∼2 log10CFU/g reduction in fungal burden compared with that in vehicle-treated controls. Flubendazole was orally bioavailable in rabbits, but there were no quantifiable drug concentrations in the cerebrospinal fluid (CSF) or cerebrum and no antifungal activity was demonstrated in either CSF or cerebrum. These studies provide evidence for the further study and development of the benzimidazole scaffold for the treatment of cryptococcal meningitis. PMID:29311092
Heath, Jessica L.; Yin, Dwight E.; Wechsler, Daniel S.; Turner, David A.
2015-01-01
Disseminated cryptococcal infection is rarely reported in the setting of pediatric acute leukemia, despite the immunocompromised state of these patients. However, when present, disseminated cryptococcal infection poses treatment challenges and is associated with significant morbidity and mortality. Treatment of invasive fungal disease in a child with acute leukemia requires a delicate balance between anti-fungal and anti-neoplastic therapy. This balance is particularly important early in the course of leukemia, since both the underlying disease and overwhelming infection can be life threatening. We describe the successful management of life-threatening disseminated cryptococcosis in a child with acute lymphoblastic leukemia during induction therapy. PMID:22258349
Schmertmann, Laura J; Stalder, Kathryn; Hudson, Donald; Martin, Patricia; Makara, Mariano; Meyer, Wieland; Malik, Richard; Krockenberger, Mark B
2018-02-24
Disseminated cryptococcosis caused by Cryptococcus gattii (molecular type VGI) was diagnosed in an adult free-ranging female koala (Phascolarctos cinereus). Subclinical cryptococcosis was later diagnosed in this koala's joey. In the adult koala, a pathological fracture of the tibia was associated with the bone lysis of marked focal cryptococcal osteomyelitis. Limb-sparing orthopedic intervention, in the setting of disseminated cryptococcosis, was judged to have a poor prognosis, and the adult koala was euthanized. The joey was removed and hand-reared. Serological testing revealed persistent and increasing cryptococcal capsular antigenemia in the absence of clinical signs of disease and it was subsequently treated with oral fluconazole for approximately 16 months, rehabilitated and released into the wild. It was sighted 3 months post-release in a good state of health and again at 18 months post-release but was not recaptured on either occasion. This is the first published report of cryptococcal appendicular osteomyelitis in a koala. It is also the first report of concurrent disease in a dependent juvenile and the successful treatment of subclinical cryptococcosis to full resolution of the cryptococcal antigenemia in a free-ranging koala. This paper provides a discussion of cryptococcal osteomyelitis in animals, host-pathogen-environment interactions and treatment and monitoring protocols for cryptococcosis in koalas. Published reports describing the treatment of cryptococcosis in koalas are also collated and summarised.
Baronetti, José L; Chiapello, Laura S; Garro, Ana P; Masih, Diana T
2009-08-01
Previous studies in our laboratory have shown that the subcutaneous pretreatment of rats with heat-killed cells (HKC) of Cryptococcus neoformans emulsified in complete Freund adjuvant (CFA) promotes protective immunity against an intraperitoneal challenge with C. neoformans. In contrast, subcutaneous treatment with the capsular polysaccharide (PSC) emulsified in CFA exacerbates the cryptococcal infection. The purpose of this study was to analyze the mechanisms involved in these phenomena. Adherent peritoneal cells from rats treated with HKC-CFA showed upregulated ED2, CD80, and CD86 expression; an increase in the level of production of anticryptococcal metabolites; and the enhanced production of interleukin-12 (IL-12) in comparison with the findings for cells from rats treated with CFA-phosphate-buffered saline (PBS). Adherent peritoneal cells from rats treated with PSC-CFA, however, also presented upregulated ED2, CD80, and CD86 expression compared to the level of expression for peritoneal cells from controls, but these cells showed an increase in arginase activity and decreased levels of production of IL-12 and tumor necrosis factor (TNF) compared with the activity and levels of production by peritoneal cells from CFA-PBS-treated rats. In addition, treatment with HKC-CFA resulted in a rise in the phagocytic and anticryptococcal activities of adherent peritoneal cells compared to those for control rats. However, adherent peritoneal cells from rats treated with PSC-CFA presented a reduction in anticryptococcal activity in comparison with that for cells from animals treated with CFA-PBS. These results show the differential activation between adherent peritoneal cells from HKC-CFA- and PSC-CFA-treated rats, with this differential activation at the primary site of infection possibly being responsible, at least in part, for the phenomena of protection and exacerbation observed in our model.
Natural cellular resistance of beige mice against Cryptococcus neoformans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hidore, M.R.; Murphy, J.W.
Previous reports have demonstrated that natural killer (NK) cells are capable of inhibiting the growth of Cryptococcus neoformans in vitro, and recent studies indicate that adoptively transferred NK cell-enriched spleen cell populations enhance clearance of cryptococci from the tissues of cyclophosphamide-pretreated recipients. The primary objective of these studies was to confirm that NK cells participate in early clearance of C. neoformans in vivo. Secondarily, the anti-cryptococcal activities of polymorphonuclear leukocytes and macrophages were examined. Seven-week-old C57BL/6 bg/+ mice, which have normal levels of NK cell activity, were compared with their bg/bg littermates, which have impaired NK cell function. One andmore » 3 days after injecting both groups of mice i.v. with 2 x 10/sup 4/ cryptococci, the authors assessed the NK cell activities in spleens, lungs, and livers and clearance of the organism from corresponding tissues as determined by the mean log/sub 1//sup 0/ numbers of cryptococcal colony-forming units (CFU) per organ. Although the data indicated a correlation between early clearance of cryptococci from tissues and levels of NK cell activities in the corresponding tissues, it was also possible that differences in phagocytic cell function between the bg/+ and bg/bg animals could account for the observed differences in clearance of cryptococci from the tissues. These data indicate that NK cells were the effector cells responsible for enhanced early clearance of cryptococci from the tissues of bg/+ animals when compared with clearance from the tissues of the bg/bg littermates. Furthermore, they confirm the hypothesis that NK cells can affect C. neoformans under in vivo conditions.« less
AIDS: Secretions and Implications for Nursing Care-Givers.
1992-05-06
addition, infected cells may be found in many different organs, often at the same time: the brain, lymph nodes , thymus gland, bone marrow, lungs, skin...symptomatic disease with diffuse non-malignant lymph node hypertrophy. Aside from these symptoms of lymphadenopathy, patients are typically healthy...a person physically and mentally crippled. AIDS dementia complex (ADC) or subacute HIV encephalopathy, primary lymphomas, toxoplasmosis , cryptococcal
Holikatti, Prabhakar C.; Kar, Nilamadhab
2012-01-01
We report here a case that presented as mania followed by depression and mild cognitive impairment, which was misinterpreted and treated as a depressive episode of bipolar disorder and planned for electroconvulsive therapy, but was ultimately found to have cryptococcal meningitis and HIV-associated neurocognitive symptoms. PMID:23723549
Liquid-Based Cytology of the Cerebrospinal Fluid in a Case of Cryptococcal Meningitis.
Choi, Jiwoon; Kim, Se Hoon
2018-01-01
Cryptococcus neoformans is the most common microorganism found in cerebrospinal fluid (CSF) cytology and causes life-threatening infections in immunocompromised hosts. Although its cytomorphologic features in conventional smear cytology have been well described, those in liquid-based cytology have rarely been. A 73-year-old woman with diffuse large B-cell lymphoma presented with mental confusion and a spiking fever. To rule out infectious conditions, CSF examination was performed. A cytology slide that was prepared using the ThinPrep method showed numerous spherical yeast-form organisms with diameters of 4-11 μm and thick capsules. Occasional asymmetrical, narrow-based budding but no true hyphae or pseudohyphae were observed. Gomori methenamine silver staining was positive. Cryptococcosis was confirmed in blood and CSF through the cryptococcal antigen test and culture. Liquid-based cytology allows for a clean background and additional slides for ancillary testing, facilitating the detection of microorganisms in CSF specimens, particularly when the number of organisms is small.
Liquid-Based Cytology of the Cerebrospinal Fluid in a Case of Cryptococcal Meningitis
Choi, Jiwoon; Kim, Se Hoon
2018-01-01
Cryptococcus neoformans is the most common microorganism found in cerebrospinal fluid (CSF) cytology and causes life-threatening infections in immunocompromised hosts. Although its cytomorphologic features in conventional smear cytology have been well described, those in liquid-based cytology have rarely been. A 73-year-old woman with diffuse large B-cell lymphoma presented with mental confusion and a spiking fever. To rule out infectious conditions, CSF examination was performed. A cytology slide that was prepared using the ThinPrep method showed numerous spherical yeast-form organisms with diameters of 4–11 μm and thick capsules. Occasional asymmetrical, narrow-based budding but no true hyphae or pseudohyphae were observed. Gomori methenamine silver staining was positive. Cryptococcosis was confirmed in blood and CSF through the cryptococcal antigen test and culture. Liquid-based cytology allows for a clean background and additional slides for ancillary testing, facilitating the detection of microorganisms in CSF specimens, particularly when the number of organisms is small. PMID:29069886
Vijayan, Tara; Klausner, Jeffrey D.
2014-01-01
The success of antiretroviral therapy (ART) programs in the developing world is limited by the lack of adequate diagnostic tests to screen for life-threatening opportunistic infections such as tuberculosis (TB) and cryptococcal disease. Furthermore, there is an increasing need for implementation research in measuring the effectiveness of currently available rapid diagnostic tests. The recently developed lateral flow assays for both cryptococcal disease and TB have the potential to improve care and greatly reduce the time to initiation of ART among individuals who need it the most. However, we caution that the data on feasibility and effectiveness of these assays are limited and such research agendas must be prioritized. PMID:24065780
Chrisman, Cara J.; Albuquerque, Patricia; Guimaraes, Allan J.; Nieves, Edward; Casadevall, Arturo
2011-01-01
A remarkable aspect of the interaction of Cryptococcus neoformans with mammalian hosts is a consistent increase in capsule volume. Given that many aspects of the interaction of C. neoformans with macrophages are also observed with amoebae, we hypothesized that the capsule enlargement phenomenon also had a protozoan parallel. Incubation of C. neoformans with Acanthamoeba castellanii resulted in C. neoformans capsular enlargement. The phenomenon required contact between fungal and protozoan cells but did not require amoeba viability. Analysis of amoebae extracts showed that the likely stimuli for capsule enlargement were protozoan polar lipids. Extracts from macrophages and mammalian serum also triggered cryptococcal capsular enlargement. C. neoformans capsule enlargement required expression of fungal phospholipase B, but not phospholipase C. Purified phospholipids, in particular, phosphatidylcholine, and derived molecules triggered capsular enlargement with the subsequent formation of giant cells. These results implicate phospholipids as a trigger for both C. neoformans capsule enlargement in vivo and exopolysaccharide production. The observation that the incubation of C. neoformans with phospholipids led to the formation of giant cells provides the means to generate these enigmatic cells in vitro. Protozoan- or mammalian-derived polar lipids could represent a danger signal for C. neoformans that triggers capsular enlargement as a non-specific defense mechanism against potential predatory cells. Hence, phospholipids are the first host-derived molecules identified to trigger capsular enlargement. The parallels apparent in the capsular response of C. neoformans to both amoebae and macrophages provide additional support for the notion that certain aspects of cryptococcal virulence emerged as a consequence of environmental interactions with other microorganisms such as protists. PMID:21637814
Rohatgi, Soma; Nakouzi, Antonio; Carreño, Leandro J; Slosar-Cheah, Magdalena; Kuniholm, Mark H; Wang, Tao; Pappas, Peter G
2018-01-01
Abstract The importance of antibody immunity in protection against Cryptococcus neoformans remains unresolved. We measured serum C neoformans-specific and total antibody levels and peripheral blood B cell subsets of 12 previously healthy patients with cryptococcosis (cases) and 21 controls. Before and after adjustment for age, sex, and race, cryptococcal capsular polysaccharide immunoglobulin G was higher in cases than controls, whereas total B and memory B cell levels were lower. These associations parallel previous findings in patients with human immunodeficiency virus-associated cryptococcosis and suggest that B cell subset perturbations may also associate with disease in previously normal individuals with cryptococcosis. PMID:29354657
Rohatgi, Soma; Nakouzi, Antonio; Carreño, Leandro J; Slosar-Cheah, Magdalena; Kuniholm, Mark H; Wang, Tao; Pappas, Peter G; Pirofski, Liise-Anne
2018-01-01
The importance of antibody immunity in protection against Cryptococcus neoformans remains unresolved. We measured serum C neoformans -specific and total antibody levels and peripheral blood B cell subsets of 12 previously healthy patients with cryptococcosis (cases) and 21 controls. Before and after adjustment for age, sex, and race, cryptococcal capsular polysaccharide immunoglobulin G was higher in cases than controls, whereas total B and memory B cell levels were lower. These associations parallel previous findings in patients with human immunodeficiency virus-associated cryptococcosis and suggest that B cell subset perturbations may also associate with disease in previously normal individuals with cryptococcosis.
Biofilm Formation by Cryptococcus neoformans.
Martinez, Luis R; Casadevall, Arturo
2015-06-01
The fungus Cryptococcus neoformans possesses a polysaccharide capsule and can form biofilms on medical devices. The increasing use of ventriculoperitoneal shunts to manage intracranial hypertension associated with cryptococcal meningoencephalitis highlights the importance of investigating the biofilm-forming properties of this organism. Like other microbe-forming biofilms, C. neoformans biofilms are resistant to antimicrobial agents and host defense mechanisms, causing significant morbidity and mortality. This chapter discusses the recent advances in the understanding of cryptococcal biofilms, including the role of its polysaccharide capsule in adherence, gene expression, and quorum sensing in biofilm formation. We describe novel strategies for the prevention or eradication of cryptococcal colonization of medical prosthetic devices. Finally, we provide fresh thoughts on the diverse but interesting directions of research in this field that may result in new insights into C. neoformans biology.
Baker, Lorina G; Specht, Charles A; Lodge, Jennifer K
2009-11-01
Cryptococcus neoformans is an opportunistic pathogen that mainly infects immunocompromised individuals. The fungal cell wall of C. neoformans is an excellent target for antifungal therapies since it is an essential organelle that provides cell structure and integrity. Importantly, it is needed for localization or attachment of known virulence factors, including melanin, phospholipase, and the polysaccharide capsule. The polysaccharide fraction of the cryptococcal cell wall is a complex structure composed of chitin, chitosan, and glucans. Chitin is an indispensable component of many fungal cell walls that contributes significantly to cell wall strength and integrity. Fungal cell walls are very dynamic, constantly changing during cell division and morphogenesis. Hydrolytic enzymes, such as chitinases, have been implicated in the maintenance of cell wall plasticity and separation of the mother and daughter cells at the bud neck during vegetative growth in yeast. In C. neoformans we identified four predicted endochitinases, CHI2, CHI21, CHI22, and CHI4, and a predicted exochitinase, hexosaminidase, HEX1. Enzymatic analysis indicated that Chi2, Chi22, and Hex1 actively degraded chitinoligomeric substrates. Chi2 and Hex1 activity was associated mostly with the cellular fraction, and Chi22 activity was more prominent in the supernatant. The enzymatic activity of Hex1 increased when grown in media containing only N-acetylglucosamine as a carbon source, suggesting that its activity may be inducible by chitin degradation products. Using a quadruple endochitinase deletion strain, we determined that the endochitinases do not affect the growth or morphology of C. neoformans during asexual reproduction. However, mating assays indicated that Chi2, Chi21, and Chi4 are each involved in sexual reproduction. In summary, the endochitinases were found to be dispensable for routine vegetative growth but not sexual reproduction.
Isolation and purification of antigenic components of Cryptococcus.
Wozniak, Karen L; Levitz, Stuart M
2009-01-01
The encapsulated fungal pathogens Cryptococcus neoformans and Cryptococcus gattii are significant agents of life-threatening infections, particularly in persons with suppressed cell-mediated immunity. This chapter provides detailed methodology for the purification of two of the major antigen fractions of C. neoformans: glucuronoxylomannan (GXM) and mannoprotein (MP). GXM is the primary component of the polysaccharide capsule, which is the major cryptococcal virulence factor. In contrast, MPs have been identified as key antigens that stimulate T-cell responses. Purification of GXM and MP should assist investigators studying the antigenic, biochemical, and virulence properties of Cryptococcus species.
Temstet, A; Roux, P; Poirot, J L; Ronin, O; Dromer, F
1992-01-01
Cryptococcal antigen detection has become a routine biological test performed for patients with AIDS. The poor prognosis of cryptococcosis explains the need for reliable tests. We evaluated the performances of a newly commercialized agglutination test that uses a monoclonal antibody specific for cryptococcal capsular polysaccharide (Pastorex Cryptococcus; Sanofi-Diagnostics Pasteur, Marnes-la-Coquette, France) and compared them with those of tests that use polyclonal immune sera (Cryptococcal Antigen Latex Agglutination System, Meridian Diagnostics, Inc., Cincinnati, Ohio; and Crypto-LA, International Biological Labs Inc., Cranbury, N.J.). The sensitivities and specificities of the tests were compared by using purified polysaccharides and yeast suspensions. Clinical specimens (131 serum samples, 41 cerebrospinal fluid samples, 34 urine samples, and 19 bronchoalveolar lavage samples) from 87 human immunodeficiency virus-positive subjects with (40 patients) and without (47 patients) culture-proven cryptococcosis were retrospectively tested during a blinded study. The effect of pronase treatment of samples was assessed for Pastorex Cryptococcus and the Cryptococcal Antigen Latex Agglutination System, and the antigen titers were compared. Our results show that (i) during the screening, concordance among the three tests was 97%; (ii) the use of pronase enhanced both the sensitivities and specificities of the Pastorex Cryptococcus test; (iii) titers agreed for 67% of the cerebrospinal fluid samples and 60% of the serum samples; and (iv) cryptococcosis was detected equally well with Pastorex Cryptococcus and with the other tests, whatever the infecting serotype (A, B, or D). The meaning of in vitro sensitivity and the relationship between titers and sensitivity are discussed. The results show that Pastorex Cryptococcus is a rapid and reliable test for the detection of cryptococcal antigen in body fluids and suggest that kits cannot be used interchangeably to monitor antigen titers in patients. PMID:1400951
Lourens, Adré; Jarvis, Joseph N; Meintjes, Graeme; Samuel, Catherine M
2014-12-01
Cryptococcal meningitis is the most frequent cause of meningitis and a major cause of mortality in HIV-infected adults in Africa. This study evaluated the performance of the lateral flow assay (LFA) on cerebrospinal fluid (CSF) samples for the diagnosis of cryptococcal meningitis against that of existing diagnostic tests. LFA performed on 465 undiluted CSF samples had a sensitivity of 91%. When the LFA was paired with Gram staining, a sensitivity of 100% was achieved after implementation of a dilution step for samples with negative LFA results and the presence of yeasts on microscopy. Microscopy is essential for preventing the reporting of false-negative results due to the high-dose "hook" effect. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Managing cryptococcosis in the immunocompromised host.
Jarvis, Joseph N; Dromer, Francoise; Harrison, Thomas S; Lortholary, Olivier
2008-12-01
Expanding access to antiretroviral treatment has dramatically improved the long-term prognosis of patients with HIV-associated cryptococcal disease who survive the acute infection. However, the incidence and acute mortality of HIV-associated cryptococcal meningitis remain high. In this context, this review summarizes urgently needed recent work aimed at improving the acute management of cryptococcal infection in immunocompromised hosts. Studies have started to optimize antifungal regimens and address the complications of raised cerebrospinal fluid pressure and cryptococcal immune reconstitution syndrome. Amphotericin B at 1 mg/kg per day has been shown to be more rapidly fungicidal than the standard dose of 0.7 mg/kg per day, and new data support the importance of combination therapy with flucytosine. Amphotericin B and fluconazole at 800 mg is an alternative combination that appears superior to amphotericin B alone. At a dosage of 400 mg per day, fluconazole alone is much less rapidly fungicidal than amphotericin B and is associated with the development of secondary resistance. Recent findings support the use of rapidly fungicidal initial antifungal therapy with amphotericin B-based combination treatment. Where amphotericin B treatment is not yet feasible, studies are needed to optimize oral regimens. Based on accumulating data on rate of clearance of infection, the most promising new regimens in terms of fungicidal activity and safety could be selected for clinical endpoint trials.
Disseminated Cryptococcosis presenting as cellulitis in a renal transplant recipient.
Chaya, Ramachandraiah; Padmanabhan, Srinivasan; Anandaswamy, Venugopal; Moin, Aumir
2013-01-15
Cellulitis is an unusual presentation of cryptococcal infection in renal allograft recipients. In such patients, disseminated cryptococcal infection can result in significant morbidity and mortality. Patients are often treated with antibiotics before a definitive diagnosis is made, delaying appropriate therapy. We describe the case of a 43-year-old post renal transplant recipient presenting with fever and swelling in the right thigh. On physical examination, the patient was found to have features suggestive of cellulitis with minimal slurring of speech. Material obtained from incision and drainage of the wound showed yeast cells resembling Cryptococcus spp. Blood culture and cerebrospinal fluid culture were also found to have growth of Cryptococcus neoformans. He received treatment with amphotericin B 6 mg/kg daily intravenously for two weeks, then continued with fluconazole 400 mg daily for three months. The patient showed a remarkable improvement. There was no recurrence of cryptococcosis after four months of follow-up. The diagnosis of disseminated cryptococcosis should be considered in differential diagnosis of cellulitis among non HIV immunocompromised hosts. A high clinical suspicion and early initiation of therapy is needed to recognize and treat patients effectively.
Cryptococcosis outbreak in psittacine birds in Brazil.
Raso, T F; Werther, K; Miranda, E T; Mendes-Giannini, M J S
2004-08-01
An outbreak of cryptococcosis occurred in a breeding aviary in São Paulo, Brazil. Seven psittacine birds (of species Charmosyna papou, Lorius lory, Trichoglossus goldiei, Psittacula krameri and Psittacus erithacus) died of disseminated cryptococcosis. Incoordination, progressive paralysis and difficulty in flying were seen in five birds, whereas superficial lesions coincident with respiratory alterations were seen in two birds. Encapsulated yeasts suggestive of Cryptococcus sp. were seen in faecal smears stained with India ink in two cases. Histological examination of the birds showed cryptococcal cells in various tissues, including the beak, choana, sinus, lungs, air sacs, heart, liver, spleen, kidneys, intestines and central nervous system. High titres of cryptococcal antigen were observed in the serum of an affected bird. In this case, titres increased during treatment and the bird eventually died. Yeasts were isolated from the nasal mass, faeces and liver of one bird. Cryptococcus neoformans var. gattii serovar B was identified based on biochemical, physiological and serological tests. These strains were resistant (minimum inhibitory concentration 64 microg/ml) to fluconazole. This is the first report of C. neoformans var. gattii occurring in psittacine birds in Brazil.
Lee, Chrono K.; Huang, Haibin; Hester, Maureen M.; Liu, Jianhua; Luckie, Bridget A.; Torres Santana, Melanie A.; Mirza, Zeynep; Khoshkenar, Payam; Abraham, Ambily; Shen, Zu T.; Lodge, Jennifer K.; Akalin, Ali; Homan, Jane; Ostroff, Gary R.
2017-01-01
ABSTRACT Development of a vaccine to protect against cryptococcosis is a priority given the enormous global burden of disease in at-risk individuals. Using glucan particles (GPs) as a delivery system, we previously demonstrated that mice vaccinated with crude Cryptococcus-derived alkaline extracts were protected against lethal challenge with Cryptococcus neoformans and Cryptococcus gattii. The goal of the present study was to identify protective protein antigens that could be used in a subunit vaccine. Using biased and unbiased approaches, six candidate antigens (Cda1, Cda2, Cda3, Fpd1, MP88, and Sod1) were selected, recombinantly expressed in Escherichia coli, purified, and loaded into GPs. Three mouse strains (C57BL/6, BALB/c, and DR4) were then vaccinated with the antigen-laden GPs, following which they received a pulmonary challenge with virulent C. neoformans and C. gattii strains. Four candidate vaccines (GP-Cda1, GP-Cda2, GP-Cda3, and GP-Sod1) afforded a significant survival advantage in at least one mouse model; some vaccine combinations provided added protection over that seen with either antigen alone. Vaccine-mediated protection against C. neoformans did not necessarily predict protection against C. gattii. Vaccinated mice developed pulmonary inflammatory responses that effectively contained the infection; many surviving mice developed sterilizing immunity. Predicted T helper cell epitopes differed between mouse strains and in the degree to which they matched epitopes predicted in humans. Thus, we have discovered cryptococcal proteins that make promising candidate vaccine antigens. Protection varied depending on the mouse strain and cryptococcal species, suggesting that a successful human subunit vaccine will need to contain multiple antigens, including ones that are species specific. PMID:29184017
Musubire, A K; Meya, B D; Mayanja-Kizza, H; Lukande, R; Wiesner, L D; Bohjanen, P; R Boulware, R D
2012-06-01
In many resource-limited settings, cryptococcal meningitis (CM) contributes up to 20% of all deaths with further complications due to Immune Reconstitution Inflammatory Syndrome (IRIS). We present a case report on a patient who developed CM-IRIS and then subsequent CM-relapse with a fluconazole-resistant organism and then later CM-IRIS once again, manifesting as cystic cryptococcomas, hydrocephalus, and sterile CSF. In this case we, demonstrate that CM-IRIS and persistent low level cryptococcal infection are not mutually exclusive phenomena. The management of IRIS with corticosteroids may increase the risk of culture positive CM-relapse which may further increase the risk of recurrent IRIS and resulting complications including death. We also highlight the role of imaging and fluconazole resistance testing in patients with recurrent meningitis and the importance of CSF cultures in guiding treatment decisions.
Isolation and Purification of Antigenic Components of Cryptococcus
Wozniak, Karen L.; Levitz, Stuart M.
2012-01-01
The encapsulated fungal pathogens Cryptococcus neoformans and Cryptococcus gattii are significant agents of life-threatening infections, particularly in persons with suppressed cell-mediated immunity. This chapter provides detailed methodology for the purification of two of the major antigen fractions of C. neoformans: glucuronoxylomannan (GXM) and mannoprotein (MP). GXM is the primary component of the polysaccharide capsule, which is the major cryptococcal virulence factor. In contrast, MPs have been identified as key antigens that stimulate T-cell responses. Purification of GXM and MP should assist investigators studying the antigenic, biochemical, and virulence properties of Cryptococcus species. PMID:19089377
Che, Yuan-Mei; Zhang, Yi; Li, Ming; Li, Xiao-Peng; Zhang, Lun-Li
2018-04-01
This study aimed to investigate the PD-1/ PD-L1 signaling pathway and its effects the activation of microglia/macrophage and balancing T cell subsets in cryptococcal meningitis (CM). A total of 126 CM patients and 126 healthy individuals were recruited for the study. The CM patients were treated with amphotericin B (AmB). Seventy five C57BL/6 mice were grouped into the normal control, CM model, CM + AmB, sham, and CM + PD-1 antibodies (Ab) groups. CD4 + and CD8 + T cells as well as microglia/macrophages were analyzed by means of flow cytometry. Ionized calcium-binding adaptor molecule 1 (Ibal) expression was detected using western blotting and immunohistochemistry techniques. And the expression of Rab5 and Rab11 were detected using an immunofluorescence assay. Both PD-1 and PD-L1 mRNA and protein expression among the mice in the study were evaluated by qRT-PCR and western blotting methods. Compared to the CM model group, the CM + AmB and CM + PD-1 Ab groups exhibited increased levels of Th1 cytokines and chemokines expression, and reduced levels of Th2 cytokines expressions. Elevated cell purity and viability of CD4 + T cell were recorded as well as increases in microglia, however, there were reductions in the number of CD8 + T cells. Depleted expressions of Ibal, Rab5, and Rab11 as well as reduced mRNA expressions of PD-1 and PD-L1 in CD4 + , microglia, and macrophage cells. The findings suggested that suppression of the PD-1/PD-L1 signaling pathway restricts the proliferation of CM by down-regulating the expressions of Th2 cells and suppressing microglia and macrophage activation. © 2017 Wiley Periodicals, Inc.
Anzai, Fumio; Yamamoto, Akito; Tannai, Noriyuki; Abe, Hideki; Tsuchiya, Kayoko; Kusajima, Kenji; Shimoide, Hisao; Nunomura, Maki
2009-07-01
A 62-year-old man had felt cold-like symptoms for 2 months. He visited a clinic for a health check in late July 1998 and chest X-ray film showed an infiltrative shadow in the left middle and lower lung fields. Next day he had a fever of 38.3 degrees C and felt breathless. Six days thereafter he had a cough, thick head and felt fatigue. Chest X-ray films showed other infiltrative shadows in the bilateral upper lung fields. He worked in a race track and was exposed to pigeons and seabirds at that time. Culture of sputum grew Cryptococcus neoformans. He was admitted and was treated with intravenous antifungal drugs. Cerebrospinal fluid examination revealed positive Indian ink stain for C. neoformans. The CD4 + T-lymphocyte count and CD8 + T-lymphocyte count were 143.4 cells/mm3 and 1288.8 cells/mm3 respectively, but without HIV infection. Cryptococcal pneumonia and meningitis with Idiopathic CD4 + T-lymphocytopenia was diagnosed. After induction therapy, the symptoms improved but abnormal shadows remained on chest X-ray films. Maintenance therapy has been continued at doses of 200 mg/day of fluconazole for 10 years. He has had no symptoms, but the abnormal X-ray shadow has persisted and the CD4 count has remained low during the same period.
Lee, Chrono K.; Huang, Haibin; Shen, Zu T.; Lodge, Jennifer K.; Leszyk, John; Ostroff, Gary R.
2015-01-01
ABSTRACT A vaccine capable of protecting at-risk persons against infections due to Cryptococcus neoformans and Cryptococcus gattii could reduce the substantial global burden of human cryptococcosis. Vaccine development has been hampered though, by lack of knowledge as to which antigens are immunoprotective and the need for an effective vaccine delivery system. We made alkaline extracts from mutant cryptococcal strains that lacked capsule or chitosan. The extracts were then packaged into glucan particles (GPs), which are purified Saccharomyces cerevisiae cell walls composed primarily of β-1,3-glucans. Subcutaneous vaccination with the GP-based vaccines provided significant protection against subsequent pulmonary infection with highly virulent strains of C. neoformans and C. gattii. The alkaline extract derived from the acapsular strain was analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS), and the most abundant proteins were identified. Separation of the alkaline extract by size exclusion chromatography revealed fractions that conferred protection when loaded in GP-based vaccines. Robust Th1- and Th17-biased CD4+ T cell recall responses were observed in the lungs of vaccinated and infected mice. Thus, our preclinical studies have indicated promising cryptococcal vaccine candidates in alkaline extracts delivered in GPs. Ongoing studies are directed at identifying the individual components of the extracts that confer protection and thus would be promising candidates for a human vaccine. PMID:26695631
Gassiep, Ian; Douglas, Joel; Emeto, Theophilus I; Crawley, Katherine; Playford, Elliott G
2018-04-17
Cryptococcosis is an invasive fungal infection caused primarily by Cryptococcus neoformans and Cryptococcus gattii species, presenting predominantly as meningoencephalitis. The aim of this study is to assess all cryptococcal infections managed at our facility from 2001-2015 to determine incidence, risk factors, and comparison of outcomes prior to and following introduction of the 2010 Infectious Disease Society of America (IDSA) guidelines. Retrospective analysis of all patients diagnosed and treated for cryptococcal infection occurring between January 2001 and December 2015. Of 102 patients diagnosed with cryptococcal infection, 97 were eligible for study inclusion. There appears to be an overall increased incidence of cryptococcosis in both transplant and non-transplant cohorts with a peak in 2015 of 6 transplant and 13 non-transplant cases. In the meningitis cohort, 38/52 (73%) of identified isolates were C. neoformans, and 14/52 (27%) were C. gattii. Notably, 14/14 (100%) of C. gattii isolates were associated with meningitis, as compared to only 38/64 (59%) C. neoformans associated with meningitis (p: 0.003). It appears that patients presenting with cough are less likely to have meningitis, 17/27 (63%), (p: 0.005). When stratifying for culture positive meningitis lumbar puncture opening pressure, the median in the culture positive cohort was 31.5 cmH2O compared with 15.5 cmH2O (p: 0.036).Multiple admissions were required prior to diagnosis in the majority of cases with only 18/72 (25%) diagnosed on 1st presentation. Post-guideline mortality has improved from 15% to 6.1% (p: 0.046). Cryptococcal infection remains relatively uncommon, but there appears to be an increasing trend in incidence. Overall mortality is relatively low and has improved since introduction of the 2010 IDSA guidelines. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
2010-01-01
Background Most cases of cryptococcal meningitis occur in patients with HIV infection: the course and outcome of disease in the apparently immunocompetent is much more poorly understood. We describe a cohort of HIV uninfected Vietnamese patients with cryptococcal meningitis in whom underlying disease is uncommon, and relate presenting features of patients and the characteristics of the infecting species to outcome. Methods A prospective descriptive study of HIV negative patients with cryptococcal meningitis based at the Hospital for Tropical Diseases, Ho Chi Minh City. All patients had comprehensive clinical assessment at baseline, were cared for by a dedicated study team, and were followed up for 2 years. Clinical presentation was compared by infecting isolate and outcome. Results 57 patients were studied. Cryptococcus neoformans var grubii molecular type VN1 caused 70% of infections; C. gattii accounted for the rest. Most patients did not have underlying disease (81%), and the rate of underlying disease did not differ by infecting species. 11 patients died while in-patients (19.3%). Independent predictors of death were age ≥ 60 years and a history of convulsions (odds ratios and 95% confidence intervals 8.7 (1 - 76), and 16.1 (1.6 - 161) respectively). Residual visual impairment was common, affecting 25 of 46 survivors (54.3%). Infecting species did not influence clinical phenotype or outcome. The minimum inhibitory concentrations of flucytosine and amphotericin B were significantly higher for C. neoformans var grubii compared with C. gattii (p < 0.001 and p = 0.01 respectively). Conclusion In HIV uninfected individuals in Vietnam, cryptococcal meningitis occurs predominantly in people with no clear predisposing factor and is most commonly due to C. neoformans var grubii. The rates of mortality and visual loss are high and independent of infecting species. There are detectable differences in susceptibility to commonly used antifungal drugs between species, but the clinical significance of this is not clear. PMID:20618932
NARANBHAI, Vivek; CHANG, Christina C.; DURGIAH, Raveshni; OMARJEE, Saleha; LIM, Andrew; MOOSA, Mahomed-Yunus S.; ELLIOT, Julian H.; NDUNG’U, Thumbi; LEWIN, Sharon R.; FRENCH, Martyn A.; CARR, William H.
2014-01-01
Objective The role of innate immunity in pathogenesis of cryptococcal meningitis (CM) is unclear. We hypothesised that NK cell and monocyte responses are central nervous system (CNS) compartmentalised, and altered by anti-fungal therapy and combination antiretroviral therapy (cART) during CM/HIV co-infection. Design Sub-study of a prospective cohort study of adults with CM/HIV co-infection in Durban, South Africa. Methods We used multi-parametric flow cytometry to study compartmentalisation of subsets, activation (CD69pos), CXCR3 and CX3CR1 expression and cytokine secretion of NK cells and monocytes in freshly collected blood and cerebrospinal fluid (CSF) at diagnosis (n=23), completion of anti-fungal therapy induction (n=19) and after a further 4 weeks of cART (n=9). Results Relative to blood, CSF was enriched with CD56bright (immunoregulatory) NK cells (p=0.0004). At enrolment, CXCR3 expression was more frequent amongst blood CD56bright than either blood CD56dim (p<0.0001) or CSF CD56bright (p=0.0002) NK cells. Anti-fungal therapy diminished blood (p<0.05) but not CSF CXCR3pos NK cell proportions nor CX3CR1pos NK cell proportions. CD56bright and CD56dim NK cells were more activated in CSF than blood (p<0.0001). Anti-fungal therapy induction reduced CD56dim NK cell activation in CSF (p=0.02). Activation of blood CD56bright and CD56dim NK cells was diminished following cART commencement (p<0.0001, p=0.03). Immunoregulatory NK cells in CSF tended to secrete higher levels of CXCL10 (p=0.06) and lower levels of TNF-α (p=0.06) than blood immunoregulatory NK cells. CSF was enriched with non-classical monocytes (p=0.001), but anti-fungal therapy restored proportions of classical monocytes (p=0.007). Conclusions These results highlight CNS activation, trafficking and function of NK cells and monocytes in CM/HIV and implicate immunoregulatory NK cells and pro-inflammatory monocytes as potential modulators of CM pathogenesis during HIV co-infection. PMID:24451162
The Cryptococcus neoformans Transcriptome at the Site of Human Meningitis
Chen, Yuan; Toffaletti, Dena L.; Tenor, Jennifer L.; Litvintseva, Anastasia P.; Fang, Charles; Mitchell, Thomas G.; McDonald, Tami R.; Nielsen, Kirsten; Boulware, David R.; Bicanic, Tihana; Perfect, John R.
2014-01-01
ABSTRACT Cryptococcus neoformans is the leading cause of fungal meningitis worldwide. Previous studies have characterized the cryptococcal transcriptome under various stress conditions, but a comprehensive profile of the C. neoformans transcriptome in the human host has not been attempted. Here, we extracted RNA from yeast cells taken directly from the cerebrospinal fluid (CSF) of two AIDS patients with cryptococcal meningitis prior to antifungal therapy. The patients were infected with strains of C. neoformans var. grubii of molecular type VNI and VNII. Using RNA-seq, we compared the transcriptional profiles of these strains under three environmental conditions (in vivo CSF, ex vivo CSF, and yeast extract-peptone-dextrose [YPD]). Although we identified a number of differentially expressed genes, single nucleotide variants, and novel genes that were unique to each strain, the overall expression patterns of the two strains were similar under the same environmental conditions. Specifically, yeast cells obtained directly from each patient’s CSF were more metabolically active than cells that were incubated ex vivo in CSF. Compared with growth in YPD, some genes were identified as significantly upregulated in both in vivo and ex vivo CSF, and they were associated with genes previously recognized for contributing to pathogenicity. For example, genes with known stress response functions, such as RIM101, ENA1, and CFO1, were regulated similarly in the two clinical strains. Conversely, many genes that were differentially regulated between the two strains appeared to be transporters. These findings establish a platform for further studies of how this yeast survives and produces disease. PMID:24496797
Cassim, Naseem; Schnippel, Kathryn; Coetzee, Lindi Marie; Glencross, Deborah Kim
2017-01-01
Cryptococcal meningitis is a major cause of mortality and morbidity in countries with high HIV prevalence, primarily affecting patients whose CD4 are < = 100 cells/μl. Routine Cryptococcal Antigen (CrAg) screening is thus recommended in the South African HIV treatment guidelines for all patients with CD4 counts < = 100 cells/μl, followed by pre-emptive anti-fungal therapy where CrAg results are positive. A laboratory-based reflexed CrAg screening approach, using a Lateral Flow Assay (LFA) on remnant EDTA CD4 blood samples, was piloted at three CD4 laboratories. This study aimed to assess the cost-per-result of laboratory-based reflexed CrAg screening at one pilot CD4 referral laboratory. CD4 test volumes from 2014 were extracted to estimate percentage of CD4 < = 100 cells/μl. Daily average volumes were derived, assuming 12 months per/year and 21.73 working days per/month. Costing analyses were undertaken using Microsoft Excel and Stata with a provider prospective. The cost-per-result was estimated using a bottom-up method, inclusive of test kits and consumables (reagents), laboratory equipment and technical effort costs. The ZAR/$ exchange of 14.696/$1 was used, where applicable. One-way sensitivity analyses on the cost-per-result were conducted for possible error rates (3%- 8%, reductions or increases in reagent costs as well as test volumes (ranging from -60% to +60%). The pilot CD4 laboratory performed 267000 CD4 tests in 2014; ~ 9.3% (27500) reported CD4< = 100 cells/μl, equivalent to 106 CrAg tests performed daily. A batch of 30-tests could be performed in 1.6 hours, including preparation and analysis time. A cost-per-result of $4.28 was reported, with reagents contributing $3.11 (72.8%), while technical effort and laboratory equipment overheads contributed $1.17 (27.2%) and $0.03 (<1%) respectively. One-way sensitivity analyses including increasing or decreasing test volumes by 60% revealed a cost-per-result range of $3.84 to $6.03. A cost-per-result of $4.28 was established in a typical CD4 service laboratory to enable local budgetary cost projections and programmatic cost-effectiveness modelling. Varying reagent costs linked to currency exchange and varying test volumes in different levels of service can lead to varying cost-per-test and technical effort to manage workload, with an inverse relationship of higher costs expected at lower volumes of tests.
Cryptococcal cerebellitis in no-VIH patient.
Lasso, Fabricio Andres; Zamora Bastidas, Tomas Omar; Potosí García, Jorge Andrés; Díaz Idrobo, Bairon
2017-06-30
Cryptococcosis is an opportunistic fungal infection whose etiology is Cryptococcus neofromans / C. gattii, complex which affects immunocompromised patients mainly. Meningeal infection is one of the most common presentations, but cerebellar affection is rare. Male patient with 65 old years, from an area of subtropical climate with chronic exposure to poultry, without pathological antecedents, who presented clinical picture consistent with headache, fever, seizures and altered mental status. Initially without menigeal signs or intracranial hypertension and normal neurological examination. Later, the patient developed ataxia, dysdiadochokinesia and limb loss. By lumbar punction and image of nuclear magnetic resonance (NMR) cerebellitis cryptococcal was diagnosticated. Antifungal therapy with amphotericin B and fluconazole was performed, however the patient died. The cryptococcosis has different presentations, it´s a disease whose incidence has been increasing since the advent of the HIV / AIDS pandemy, however the commitment of the encephalic parenchyma and in particular the cerebellum is considered rare. In this way we are facing the first case of cryptococcal cerebellitis in our midst.
Gish, Stacey R.; Maier, Ezekiel J.; Haynes, Brian C.; Santiago-Tirado, Felipe H.; Srikanta, Deepa L.; Ma, Cynthia Z.; Li, Lucy X.; Williams, Matthew; Crouch, Erika C.; Khader, Shabaana A.
2016-01-01
ABSTRACT Cryptococcus neoformans is a ubiquitous, opportunistic fungal pathogen that kills over 600,000 people annually. Here, we report integrated computational and experimental investigations of the role and mechanisms of transcriptional regulation in cryptococcal infection. Major cryptococcal virulence traits include melanin production and the development of a large polysaccharide capsule upon host entry; shed capsule polysaccharides also impair host defenses. We found that both transcription and translation are required for capsule growth and that Usv101 is a master regulator of pathogenesis, regulating melanin production, capsule growth, and capsule shedding. It does this by directly regulating genes encoding glycoactive enzymes and genes encoding three other transcription factors that are essential for capsule growth: GAT201, RIM101, and SP1. Murine infection with cryptococci lacking Usv101 significantly alters the kinetics and pathogenesis of disease, with extended survival and, unexpectedly, death by pneumonia rather than meningitis. Our approaches and findings will inform studies of other pathogenic microbes. PMID:27094327
New technology and resources for cryptococcal research
Zhang, Nannan; Park, Yoon-Dong; Williamson, Peter R.
2014-01-01
Rapid advances in molecular biology and genome sequencing have enabled the generation of new technology and resources for cryptococcal research. RNAi-mediated specific gene knock down has become routine and more efficient by utilizing modified shRNA plasmids and convergent promoter RNAi constructs. This system was recently applied in a high-throughput screen to identify genes involved in host-pathogen interactions. Gene deletion efficiencies have also been improved by increasing rates of homologous recombination through a number of approaches, including a combination of double-joint PCR with split-marker transformation, the use of dominant selectable markers and the introduction of Cre-Loxp systems into Cryptococcus. Moreover, visualization of cryptococcal proteins has become more facile using fusions with codon-optimized fluorescent tags, such as green or red fluorescent proteins or, mCherry. Using recent genome-wide analytical tools, new transcriptional factors and regulatory proteins have been identified in novel virulence-related signaling pathways by employing microarray analysis, RNA-sequencing and proteomic analysis. PMID:25460849
A Predicted Mannoprotein Participates in Cryptococcus gattii Capsular Structure
Reuwsaat, Julia Catarina Vieira; Motta, Heryk; Garcia, Ane Wichine Acosta; Vasconcelos, Carolina Bettker; Marques, Bárbara Machado; Oliveira, Natália Kronbauer; Rodrigues, Jéssica; Ferrareze, Patrícia Aline Gröhns; Frases, Susana; Barcellos, Vanessa Abreu; Squizani, Eamim Daidrê; Horta, Jorge André; Schrank, Augusto; Staats, Charley Christian; Vainstein, Marilene Henning
2018-01-01
ABSTRACT The yeast-like pathogen Cryptococcus gattii is an etiological agent of cryptococcosis. The major cryptococcal virulence factor is the polysaccharide capsule, which is composed of glucuronoxylomannan (GXM), galactoxylomannan (GalXM), and mannoproteins (MPs). The GXM and GalXM polysaccharides have been extensively characterized; however, there is little information about the role of mannoproteins in capsule assembly and their participation in yeast pathogenicity. The present study characterized the function of a predicted mannoprotein from C. gattii, designated Krp1. Loss-of-function and gain-of-function mutants were generated, and phenotypes associated with the capsular architecture were evaluated. The null mutant cells were more sensitive to a cell wall stressor that disrupts beta-glucan synthesis. Also, these cells displayed increased GXM release to the culture supernatant than the wild-type strain did. The loss of Krp1 influenced cell-associated cryptococcal polysaccharide thickness and phagocytosis by J774.A1 macrophages in the early hours of interaction, but no difference in virulence in a murine model of cryptococcosis was observed. In addition, recombinant Krp1 was antigenic and differentially recognized by serum from an individual with cryptococcosis, but not with serum from an individual with candidiasis. Taken together, these results indicate that C. gattii Krp1 is important for the cell wall structure, thereby influencing capsule assembly, but is not essential for virulence in vivo. IMPORTANCE Cryptococcus gattii has the ability to escape from the host’s immune system through poorly understood mechanisms and can lead to the death of healthy individuals. The role of mannoproteins in C. gattii pathogenicity is not completely understood. The present work characterized a protein, Kpr1, that is essential for the maintenance of C. gattii main virulence factor, the polysaccharide capsule. Our data contribute to the understanding of the role of Kpr1 in capsule structuring, mainly by modulating the distribution of glucans in C. gattii cell wall. PMID:29897877
Katchanov, Juri; Blechschmidt, Cristiane; Nielsen, Kirsten; Branding, Gordian; Arastéh, Keikawus; Tintelnot, Kathrin; Meintjes, Graeme; Boulware, David R.; Stocker, Hartmut
2016-01-01
We report a case of a symptomatic relapse of HIV-related cryptococcal meningoencephalitis 8 years after the first diagnosis on the background of immune reconstitution. The findings as well as the clinical course suggests a combination of smouldering localized infection and enhanced inflammatory reaction related to immune restoration due to antiretroviral therapy. A combination of antifungal and anti-inflammatory therapy resulted in clinical and radiological improvement. Our case challenges the concept that immune reconstitution inflammatory syndrome and microbiological relapse are dichotomous entities. PMID:25505049
Fc Gamma Receptor 3A Polymorphism and Risk for HIV-Associated Cryptococcal Disease
Rohatgi, Soma; Gohil, Shruti; Kuniholm, Mark H.; Schultz, Hannah; Dufaud, Chad; Armour, Kathryn L.; Badri, Sheila; Mailliard, Robbie B.; Pirofski, Liise-anne
2013-01-01
ABSTRACT Cryptococcus neoformans is one of the most common causes of fungal disease in HIV-infected persons, but not all of those who are infected develop cryptococcal disease (CD). Although CD4+ T cell deficiency is a risk factor for HIV-associated CD, polymorphisms of phagocytic Fc gamma receptors (FCGRs) have been linked to CD risk in HIV-uninfected persons. To investigate associations between FCGR2A 131 H/R and FCGR3A 158 F/V polymorphisms and CD risk in HIV-infected persons, we performed PCR-based genotyping on banked samples from 164 men enrolled in the Multicenter AIDS Cohort Study (MACS): 55 who were HIV infected and developed CD and a matched control group of 54 who were HIV infected and 55 who were HIV uninfected. Using additive and allelic statistical models for analysis, the high-affinity FCGR3A 158V allele was significantly associated with CD status after adjusting for race/ethnicity (odds ratio [OR], 2.1; P = 0.005), as was the FCGR3A 158 VV homozygous genotype after adjusting for race/ethnicity, rate of CD4+ T cell decline, and nadir CD4+ T cell count (OR, 21; P = 0.005). No associations between CD and FCGR2A 131 H/R polymorphism were identified. In binding studies, human IgG (hIgG)-C. neoformans complexes exhibited more binding to CHO-K1 cells expressing FCGR3A 158V than to those expressing FCGR3A 158F, and in cytotoxicity assays, natural killer (NK) cells expressing FCGR3A 158V induced more C. neoformans-infected monocyte cytotoxicity than those expressing FCGR3A 158F. Together, these results show an association between the FCGR3A 158V allele and risk for HIV-associated CD and suggest that this polymorphism could promote C. neoformans pathogenesis via increased binding of C. neoformans immune complexes, resulting in increased phagocyte cargo and/or immune activation. PMID:23982074
Kiska, D L; Orkiszewski, D R; Howell, D; Gilligan, P H
1994-01-01
We evaluated the performance of CRYPTO-LEX (Trinity Laboratories, Inc., Raleigh, N. C.), a new mouse immunoglobulin M monoclonal antibody latex agglutination reagent which reacts with the capsular polysaccharide of the four serogroups of Cryptococcus neoformans. This test was compared with CALAS (Meridian Diagnostics, Cincinnati, Ohio) for the ability to detect cryptococcal antigen in serum and cerebrospinal fluid (CSF). A total of 580 clinical specimens (327 serum and 253 CSF samples), primarily from human immunodeficiency virus-infected patients, were tested in this study. Sixty-seven specimens (44 serum and 23 CSF samples) were positive for cryptococcal antigen with both tests, and 511 (282 serum and 229 CSF samples) were negative. The two latex reagents agreed for 326 of 327 serum specimens (44 positives and 282 negatives). One serum specimen with a titer of 1:2 was CALAS positive but CRYPTO-LEX negative. The titer correlation coefficient for the two tests was 0.884 when two highly discordant serum specimens were eliminated from analysis of the data. The two latex tests agreed for 252 of 253 CSF specimens (23 positives and 229 negatives). One specimen with a titer of 1:2 was positive with CALAS and negative by CRYPTO-LEX. The correlation coefficient of the two tests for CSF titers was 0.886. The sensitivity and specificity of CRYPTO-LEX were 97 and 100%, respectively, with a 99.6% correlation with CALAS. These data show that the performance of CRYPTO-LEX is comparable to that of CALAS for detection of cryptococcal antigen in serum and CSF. PMID:7814566
Cryptococcal cerebellitis in no-VIH patient
Zamora Bastidas, Tomas Omar; Potosí García, Jorge Andrés; Díaz Idrobo, Bairon
2017-01-01
Abstract Introduction: Cryptococcosis is an opportunistic fungal infection whose etiology is Cryptococcus neofromans / C. gattii, complex which affects immunocompromised patients mainly. Meningeal infection is one of the most common presentations, but cerebellar affection is rare. Case Description: Male patient with 65 old years, from an area of subtropical climate with chronic exposure to poultry, without pathological antecedents, who presented clinical picture consistent with headache, fever, seizures and altered mental status. Clinical findings and diagnostic methods: Initially without menigeal signs or intracranial hypertension and normal neurological examination. Later, the patient developed ataxia, dysdiadochokinesia and limb loss. By lumbar punction and image of nuclear magnetic resonance (NMR) cerebellitis cryptococcal was diagnosticated. Treatment: Antifungal therapy with amphotericin B and fluconazole was performed, however the patient died. Clinical Relevance: The cryptococcosis has different presentations, it´s a disease whose incidence has been increasing since the advent of the HIV / AIDS pandemy, however the commitment of the encephalic parenchyma and in particular the cerebellum is considered rare. In this way we are facing the first case of cryptococcal cerebellitis in our midst. PMID:29021643
Rhein, Joshua; Bahr, Nathan C; Hemmert, Andrew C; Cloud, Joann L; Bellamkonda, Satya; Oswald, Cody; Lo, Eric; Nabeta, Henry; Kiggundu, Reuben; Akampurira, Andrew; Musubire, Abdu; Williams, Darlisha; Meya, David B; Boulware, David R
2015-01-01
Meningitis remains a worldwide problem, and rapid diagnosis is essential to optimize survival. We evaluated the utility of a multiplex PCR test in differentiating possible etiologies of meningitis. Cerebrospinal fluid (CSF) from 69 HIV-infected Ugandan adults with meningitis was collected at diagnosis (n=51) and among persons with cryptococcal meningitis during therapeutic lumbar punctures (n=68). Cryopreserved CSF specimens were analyzed with BioFire FilmArray® Meningitis/Encephalitis panel, which targets 17 pathogens. The panel detected Cryptococcus in the CSF of patients diagnosed with a first-episode of cryptococcal meningitis by fungal culture with 100% sensitivity and specificity, and differentiated between fungal relapse and paradoxical immune reconstitution inflammatory syndrome in recurrent episodes. A negative FilmArray result was predictive of CSF sterility on follow-up lumbar punctures for cryptococcal meningitis. EBV was frequently detected in this immunosuppressed population (n=45). Other pathogens detected included: CMV (n=2), VZV (n=2), HHV-6 (n=1), and Streptococcus pneumoniae (n=1). The FilmArray Meningitis/Encephalitis panel offers a promising platform for rapid meningitis diagnosis. PMID:26711635
Sabiiti, Wilber; May, Robin C
2012-01-01
Cryptococcosis is a life-threatening fungal disease with a high rate of mortality among HIV/AIDS patients across the world. The ability to penetrate the blood-brain barrier (BBB) is central to the pathogenesis of cryptococcosis, but the way in which this occurs remains unclear. Here we use both mouse and human brain derived endothelial cells (bEnd3 and hCMEC/D3) to accurately quantify fungal uptake and survival within brain endothelial cells. Our data indicate that the adherence and internalisation of cryptococci by brain microvascular endothelial cells is an infrequent event involving small numbers of cryptococcal yeast cells. Interestingly, this process requires neither active signalling from the fungus nor the presence of the fungal capsule. Thus entry into brain microvascular endothelial cells is most likely a passive event that occurs following 'trapping' within capillary beds of the BBB.
Sabiiti, Wilber; May, Robin C.
2012-01-01
Cryptococcosis is a life-threatening fungal disease with a high rate of mortality among HIV/AIDS patients across the world. The ability to penetrate the blood-brain barrier (BBB) is central to the pathogenesis of cryptococcosis, but the way in which this occurs remains unclear. Here we use both mouse and human brain derived endothelial cells (bEnd3 and hCMEC/D3) to accurately quantify fungal uptake and survival within brain endothelial cells. Our data indicate that the adherence and internalisation of cryptococci by brain microvascular endothelial cells is an infrequent event involving small numbers of cryptococcal yeast cells. Interestingly, this process requires neither active signalling from the fungus nor the presence of the fungal capsule. Thus entry into brain microvascular endothelial cells is most likely a passive event that occurs following ‘trapping’ within capillary beds of the BBB. PMID:22530025
Xiang, Richard F.; Stack, Danuta; Huston, Shaunna M.; Li, Shu Shun; Ogbomo, Henry; Kyei, Stephen K.; Mody, Christopher H.
2016-01-01
The activity of Rac in leukocytes is essential for immunity. However, its role in NK cell-mediated anti-microbial signaling remains unclear. In this study, we investigated the role of Rac in NK cell mediated anti-cryptococcal killing. We found that Cryptococcus neoformans independently activates both Rac and SFK pathways in NK cells, and unlike in tumor killing, Cryptococcus initiated a novel Rac → PI3K → Erk cytotoxicity cascade. Remarkably, Rac was not required for conjugate formation, despite its essential role in NK cytotoxicity against C. neoformans. Taken together, our data show that, unlike observations with tumor cells, NK cells use a novel Rac cytotoxicity pathway in conjunction with SFK, to kill C. neoformans. PMID:26867574
Haddow, Lewis J; Sahid, Faieza; Moosa, Mahomed-Yunus S
2008-07-01
Atypical manifestations of Cryptococcus neoformans disease have been reported in patients with HIV-1 infection as part of the spectrum of the immune reconstitution inflammatory syndrome (IRIS). We describe a cryptococcal breast abscess in a patient presenting after 11 months of highly active antiretroviral therapy (HAART). The arguments for and against the case being a novel manifestation of IRIS are discussed. The potential hazards of using CD4 count as a surrogate marker of IRIS and the danger of misdiagnosing IRIS as failure of HAART are highlighted.
Cryptococcal osteomyelitis: a report of 5 cases and a review of the recent literature.
Medaris, Leigh Ann; Ponce, Brent; Hyde, Zane; Delgado, Dennis; Ennis, David; Lapidus, William; Larrison, Matthew; Pappas, Peter G
2016-06-01
Cryptococcus neoformans is a fungal pathogen associated with advanced HIV disease and other disorders associated with immune dysfunction. The pulmonary and the central nervous system are the most common manifestations of the disease. Localised osteomyelitis as the sole manifestation of extrapulmonary disease is rare. Herein, we present five cases of Cryptococcus osteomyelitis as the only manifestation of extrapulmonary disease. We also identified 84 additional cases of isolated cryptococcal osteomyelitis in the literature. Using these data, we have made some general recommendations regarding an approach to treatment of this uncommon clinical entity. © 2016 Blackwell Verlag GmbH.
Managing Advanced HIV Disease in a Public Health Approach
Ford, Nathan; Meintjes, Graeme; Calmy, Alexandra; Bygrave, Helen; Migone, Chantal; Vitoria, Marco; Penazzato, Martina; Vojnov, Lara; Doherty, Meg; Asero, Patricia; Bologna, Rosa; Chakroun, Mohamed; Chambal, Lucia; Chiller, Tom; Conradie, Francesca; Eholie, Serge; Frigati, Lisa; Gibb, Diana; Goemaere, Eric; Govender, Nelesh; Grant, Alison; Kumarasamy, Nagalingeswaran; Lalloo, David; Le, Thuy; Letang, Emilio; Mbori-Ngacha, Dorothy; Mfinanga, Sayoki; Nacher, Mathieu; Ribakare, Muhayimpundu; Siegfried, Nandi; Sikwese, Kenly; Tun, Nini; Vidal, Jose E
2018-01-01
Abstract In 2017, the World Health Organization (WHO) published guidelines for the management of advanced human immunodeficiency virus (HIV) disease within a public health approach. Recent data suggest that more than a third of people starting antiretroviral therapy (ART) do so with advanced HIV disease, and an increasing number of patients re-present to care at an advanced stage of HIV disease following a period of disengagement from care. These guidelines recommend a standardized package of care for adults, adolescents, and children, based on the leading causes of morbidity and mortality: tuberculosis, severe bacterial infections, cryptococcal meningitis, toxoplasmosis, and Pneumocystis jirovecii pneumonia. A package of targeted interventions to reduce mortality and morbidity was recommended, based on results of 2 recent randomized trials that both showed a mortality reduction associated with delivery of a simplified intervention package. Taking these results and existing recommendations into consideration, WHO recommends that a package of care be offered to those presenting with advanced HIV disease; depending on age and CD4 cell count, the package may include opportunistic infection screening and prophylaxis, including fluconazole preemptive therapy for those who are cryptococcal antigen positive and without evidence of meningitis. Rapid ART initiation and intensified adherence interventions should also be proposed to everyone presenting with advanced HIV disease. PMID:29514232
Managing Advanced HIV Disease in a Public Health Approach.
Ford, Nathan; Meintjes, Graeme; Calmy, Alexandra; Bygrave, Helen; Migone, Chantal; Vitoria, Marco; Penazzato, Martina; Vojnov, Lara; Doherty, Meg
2018-03-04
In 2017, the World Health Organization (WHO) published guidelines for the management of advanced human immunodeficiency virus (HIV) disease within a public health approach. Recent data suggest that more than a third of people starting antiretroviral therapy (ART) do so with advanced HIV disease, and an increasing number of patients re-present to care at an advanced stage of HIV disease following a period of disengagement from care. These guidelines recommend a standardized package of care for adults, adolescents, and children, based on the leading causes of morbidity and mortality: tuberculosis, severe bacterial infections, cryptococcal meningitis, toxoplasmosis, and Pneumocystis jirovecii pneumonia. A package of targeted interventions to reduce mortality and morbidity was recommended, based on results of 2 recent randomized trials that both showed a mortality reduction associated with delivery of a simplified intervention package. Taking these results and existing recommendations into consideration, WHO recommends that a package of care be offered to those presenting with advanced HIV disease; depending on age and CD4 cell count, the package may include opportunistic infection screening and prophylaxis, including fluconazole preemptive therapy for those who are cryptococcal antigen positive and without evidence of meningitis. Rapid ART initiation and intensified adherence interventions should also be proposed to everyone presenting with advanced HIV disease.
Merry, Matthew; Boulware, David R
2016-06-15
In the United States, cryptococcal meningitis causes approximately 3400 hospitalizations and approximately 330 deaths annually. The US guidelines recommend treatment with amphotericin B plus flucytosine for at least 2 weeks, followed by fluconazole for a minimum of 8 weeks. Due to generic drug manufacturer monopolization, flucytosine currently costs approximately $2000 per day in the United States, with a 2-week flucytosine treatment course costing approximately $28 000. The daily flucytosine treatment cost in the United Kingdom is approximately $22. Cost-effectiveness analysis was performed to determine the value of flucytosine relative to alternative regimens. We estimated the incremental cost-effectiveness ratio (ICER) of 3 cryptococcal induction regimens: (1) amphotericin B deoxycholate for 4 weeks; (2) amphotericin and flucytosine (100 mg/kg/day) for 2 weeks; and (3) amphotericin and fluconazole (800 mg/day) for 2 weeks. Costs of care were calculated using 2015 US prices and the medication costs. Survival estimates were derived from a randomized trial and scaled relative to published US survival data. Cost estimates were $83 227 for amphotericin monotherapy, $75 121 for amphotericin plus flucytosine, and $44 605 for amphotericin plus fluconazole. The ICER of amphotericin plus flucytosine was $23 842 per quality-adjusted life-year. Flucytosine is currently cost-effective in the United States despite a dramatic increase in price in recent years. Combination therapy with amphotericin and flucytosine is the most attractive treatment strategy for cryptococcal meningitis, though the rising price may be creating access issues that will exacerbate if the trend of profiteering continues. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Sudan, Ajay; Livermore, Joanne; Howard, Susan J.; Al-Nakeeb, Zaid; Sharp, Andrew; Goodwin, Joanne; Gregson, Lea; Warn, Peter A.; Felton, Tim W.; Perfect, John R.; Harrison, Thomas S.
2013-01-01
Fluconazole is frequently the only antifungal agent that is available for induction therapy for cryptococcal meningitis. There is relatively little understanding of the pharmacokinetics and pharmacodynamics (PK-PD) of fluconazole in this setting. PK-PD relationships were estimated with 4 clinical isolates of Cryptococcus neoformans. MICs were determined using Clinical and Laboratory Standards Institute (CLSI) methodology. A nonimmunosuppressed murine model of cryptococcal meningitis was used. Mice received two different doses of fluconazole (125 mg/kg of body weight/day and 250 mg/kg of body weight/day) orally for 9 days; a control group of mice was not given fluconazole. Fluconazole concentrations in plasma and in the cerebrum were determined using high-performance liquid chromatography (HPLC). The cryptococcal density in the brain was estimated using quantitative cultures. A mathematical model was fitted to the PK-PD data. The experimental results were extrapolated to humans (bridging study). The PK were linear. A dose-dependent decline in fungal burden was observed, with near-maximal activity evident with dosages of 250 mg/kg/day. The MIC was important for understanding the exposure-response relationships. The mean AUC/MIC ratio associated with stasis was 389. The results of the bridging study suggested that only 66.7% of patients receiving 1,200 mg/kg would achieve or exceed an AUC/MIC ratio of 389. The potential breakpoints for fluconazole against Cryptococcus neoformans follow: susceptible, ≤2 mg/liter; resistant, >2 mg/liter. Fluconazole may be an inferior agent for induction therapy because many patients cannot achieve the pharmacodynamic target. Clinical breakpoints are likely to be significantly lower than epidemiological cutoff values. The MIC may guide the appropriate use of fluconazole. If fluconazole is the only option for induction therapy, then the highest possible dose should be used. PMID:23571544
N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture.
Camacho, Emma; Chrissian, Christine; Cordero, Radames J B; Liporagi-Lopes, Livia; Stark, Ruth E; Casadevall, Arturo
2017-11-01
Cryptococcus neoformans is an environmental fungus that belongs to the phylum Basidiomycetes and is a major pathogen in immunocompromised patients. The ability of C. neoformans to produce melanin pigments represents its second most important virulence factor, after the presence of a polysaccharide capsule. Both the capsule and melanin are closely associated with the fungal cell wall, a complex structure that is essential for maintaining cell morphology and viability under conditions of stress. The amino sugar N-acetylglucosamine (GlcNAc) is a key constituent of the cell-wall chitin and is used for both N-linked glycosylation and GPI anchor synthesis. Recent studies have suggested additional roles for GlcNAc as an activator and mediator of cellular signalling in fungal and plant cells. Furthermore, chitin and chitosan polysaccharides interact with melanin pigments in the cell wall and have been found to be essential for melanization. Despite the importance of melanin, its molecular structure remains unresolved; however, we previously obtained critical insights using advanced nuclear magnetic resonance (NMR) and imaging techniques. In this study, we investigated the effect of GlcNAc supplementation on cryptococcal cell-wall composition and melanization. C. neoformans was able to metabolize GlcNAc as a sole source of carbon and nitrogen, indicating a capacity to use a component of a highly abundant polymer in the biospherenutritionally. C. neoformans cells grown with GlcNAc manifested changes in the chitosan cell-wall content, cell-wall thickness and capsule size. Supplementing cultures with isotopically 15 N-labelled GlcNAc demonstrated that the exogenous monomer serves as a building block for chitin/chitosan and is incorporated into the cell wall. The altered chitin-to-chitosan ratio had no negative effects on the mother-daughter cell separation; growth with GlcNAc affected the fungal cell-wall scaffold, resulting in increased melanin deposition and assembly. In summary, GlcNAc supplementation had pleiotropic effects on cell-wall and melanin architectures, and thus established its capacity to perturb these structures, a property that could prove useful for metabolic tracking studies.
N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture
Camacho, Emma; Chrissian, Christine; Cordero, Radames J. B.; Liporagi-Lopes, Livia; Stark, Ruth E.; Casadevall, Arturo
2017-01-01
Cryptococcus neoformans is an environmental fungus that belongs to the phylum Basidiomycetes and is a major pathogen in immunocompromised patients. The ability of C. neoformans to produce melanin pigments represents its second most important virulence factor, after the presence of a polysaccharide capsule. Both the capsule and melanin are closely associated with the fungal cell wall, a complex structure that is essential for maintaining cell morphology and viability under conditions of stress. The amino sugar N-acetylglucosamine (GlcNAc) is a key constituent of the cell-wall chitin and is used for both N-linked glycosylation and GPI anchor synthesis. Recent studies have suggested additional roles for GlcNAc as an activator and mediator of cellular signalling in fungal and plant cells. Furthermore, chitin and chitosan polysaccharides interact with melanin pigments in the cell wall and have been found to be essential for melanization. Despite the importance of melanin, its molecular structure remains unresolved; however, we previously obtained critical insights using advanced nuclear magnetic resonance (NMR) and imaging techniques. In this study, we investigated the effect of GlcNAc supplementation on cryptococcal cell-wall composition and melanization. C. neoformans was able to metabolize GlcNAc as a sole source of carbon and nitrogen, indicating a capacity to use a component of a highly abundant polymer in the biospherenutritionally. C. neoformans cells grown with GlcNAc manifested changes in the chitosan cell-wall content, cell-wall thickness and capsule size. Supplementing cultures with isotopically 15N-labelled GlcNAc demonstrated that the exogenous monomer serves as a building block for chitin/chitosan and is incorporated into the cell wall. The altered chitin-to-chitosan ratio had no negative effects on the mother–daughter cell separation; growth with GlcNAc affected the fungal cell-wall scaffold, resulting in increased melanin deposition and assembly. In summary, GlcNAc supplementation had pleiotropic effects on cell-wall and melanin architectures, and thus established its capacity to perturb these structures, a property that could prove useful for metabolic tracking studies. PMID:29043954
Epidemiology of Meningitis in an HIV-Infected Ugandan Cohort
Rajasingham, Radha; Rhein, Joshua; Klammer, Kate; Musubire, Abdu; Nabeta, Henry; Akampurira, Andrew; Mossel, Eric C.; Williams, Darlisha A.; Boxrud, Dave J.; Crabtree, Mary B.; Miller, Barry R.; Rolfes, Melissa A.; Tengsupakul, Supatida; Andama, Alfred O.; Meya, David B.; Boulware, David R.
2015-01-01
There is limited understanding of the epidemiology of meningitis among human immunodeficiency virus (HIV)-infected populations in sub-Saharan Africa. We conducted a prospective cohort study of HIV-infected adults with suspected meningitis in Uganda, to comprehensively evaluate the etiologies of meningitis. Intensive cerebrospiral fluid (CSF) testing was performed to evaluate for bacterial, viral, fungal, and mycobacterial etiologies, including neurosyphilis,16s ribosomal DNA (rDNA) polymerase chain reaction (PCR) for bacteria, Plex-ID broad viral assay, quantitative-PCR for HSV-1/2, cytomegalovirus (CMV), Epstein–Barr virus (EBV), and Toxoplasma gondii; reverse transcription-PCR (RT-PCR) for Enteroviruses and arboviruses, and Xpert MTB/RIF assay. Cryptococcal meningitis accounted for 60% (188 of 314) of all causes of meningitis. Of 117 samples sent for viral PCR, 36% were EBV positive. Among cryptococcal antigen negative patients, the yield of Xpert MTB/RIF assay was 22% (8 of 36). After exclusion of cryptococcosis and bacterial meningitis, 61% (43 of 71) with an abnormal CSF profile had no definitive diagnosis. Exploration of new TB diagnostics and diagnostic algorithms for evaluation of meningitis in resource-limited settings remains needed, and implementation of cryptococcal diagnostics is critical. PMID:25385864
Epidemiology of meningitis in an HIV-infected Ugandan cohort.
Rajasingham, Radha; Rhein, Joshua; Klammer, Kate; Musubire, Abdu; Nabeta, Henry; Akampurira, Andrew; Mossel, Eric C; Williams, Darlisha A; Boxrud, Dave J; Crabtree, Mary B; Miller, Barry R; Rolfes, Melissa A; Tengsupakul, Supatida; Andama, Alfred O; Meya, David B; Boulware, David R
2015-02-01
There is limited understanding of the epidemiology of meningitis among human immunodeficiency virus (HIV)-infected populations in sub-Saharan Africa. We conducted a prospective cohort study of HIV-infected adults with suspected meningitis in Uganda, to comprehensively evaluate the etiologies of meningitis. Intensive cerebrospiral fluid (CSF) testing was performed to evaluate for bacterial, viral, fungal, and mycobacterial etiologies, including neurosyphilis,16s ribosomal DNA (rDNA) polymerase chain reaction (PCR) for bacteria, Plex-ID broad viral assay, quantitative-PCR for HSV-1/2, cytomegalovirus (CMV), Epstein-Barr virus (EBV), and Toxoplasma gondii; reverse transcription-PCR (RT-PCR) for Enteroviruses and arboviruses, and Xpert MTB/RIF assay. Cryptococcal meningitis accounted for 60% (188 of 314) of all causes of meningitis. Of 117 samples sent for viral PCR, 36% were EBV positive. Among cryptococcal antigen negative patients, the yield of Xpert MTB/RIF assay was 22% (8 of 36). After exclusion of cryptococcosis and bacterial meningitis, 61% (43 of 71) with an abnormal CSF profile had no definitive diagnosis. Exploration of new TB diagnostics and diagnostic algorithms for evaluation of meningitis in resource-limited settings remains needed, and implementation of cryptococcal diagnostics is critical. © The American Society of Tropical Medicine and Hygiene.
Kwizera, Richard; Akampurira, Andrew; Kandole, Tadeo K; Nielsen, Kirsten; Kambugu, Andrew; Meya, David B; Boulware, David R; Rhein, Joshua
2017-08-22
Quantitative culture is the most common method to determine the fungal burden and sterility of cerebrospinal fluid (CSF) among persons with cryptococcal meningitis. A major drawback of cultures is a long turnaround-time. Recent evidence demonstrates that live and dead Cryptococcus yeasts can be distinguished using trypan blue staining. We hypothesized that trypan blue staining combined with haemocytometer counting may provide a rapid estimation of quantitative culture count and detection of CSF sterility. To test this, we evaluated 194 CSF specimens from 96 HIV-infected participants with cryptococcal meningitis in Kampala, Uganda. Cryptococcal meningitis was diagnosed by CSF cryptococcal antigen (CRAG). We stained CSF with trypan blue and quantified yeasts using a haemocytometer. We compared the haemocytometer readings versus quantitative Cryptococcus CSF cultures. Haemocytometer counting with trypan blue staining had a sensitivity of 98% (64/65), while CSF cultures had a sensitivity of 95% (62/65) with reference to CSF CRAG for diagnostic CSF specimens. For samples that were positive in both tests, the haemocytometer had higher readings compared to culture. For diagnostic specimens, the median of log 10 transformed counts were 5.59 (n = 64, IQR = 5.09 to 6.05) for haemocytometer and 4.98 (n = 62, IQR = 3.75 to 5.79) for culture; while the overall median counts were 5.35 (n = 189, IQR = 4.78-5.84) for haemocytometer and 3.99 (n = 151, IQR = 2.59-5.14) for cultures. The percentage agreement with culture sterility was 2.4% (1/42). Counts among non-sterile follow-up specimens had a median of 5.38 (n = 86, IQR = 4.74 to 6.03) for haemocytometer and 2.89 (n = 89, IQR = 2.11 to 4.38) for culture. At diagnosis, CSF quantitative cultures correlated with haemocytometer counts (R 2 = 0.59, P < 0.001). At 7-14 days, quantitative cultures did not correlate with haemocytometer counts (R 2 = 0.43, P = 0.4). Despite a positive correlation, the haemocytometer counts with trypan blue staining did not predict the outcome of quantitative cultures in patients receiving antifungal therapy.
Innate Immune Responses to Cryptococcus.
Heung, Lena J
2017-09-01
Cryptococcus species are encapsulated fungi found in the environment that predominantly cause disease in immunocompromised hosts after inhalation into the lungs. Even with contemporary antifungal regimens, patients with cryptococcosis continue to have high morbidity and mortality rates. The development of more effective therapies may depend on our understanding of the cellular and molecular mechanisms by which the host promotes sterilizing immunity against the fungus. This review will highlight our current knowledge of how Cryptococcus , primarily the species C. neoformans , is sensed by the mammalian host and how subsequent signaling pathways direct the anti-cryptococcal response by effector cells of the innate immune system.
Innate Immune Responses to Cryptococcus
Heung, Lena J.
2017-01-01
Cryptococcus species are encapsulated fungi found in the environment that predominantly cause disease in immunocompromised hosts after inhalation into the lungs. Even with contemporary antifungal regimens, patients with cryptococcosis continue to have high morbidity and mortality rates. The development of more effective therapies may depend on our understanding of the cellular and molecular mechanisms by which the host promotes sterilizing immunity against the fungus. This review will highlight our current knowledge of how Cryptococcus, primarily the species C. neoformans, is sensed by the mammalian host and how subsequent signaling pathways direct the anti-cryptococcal response by effector cells of the innate immune system. PMID:28936464
Sawadogo, Souleymane; Makumbi, Boniface; Purfield, Anne; Ndjavera, Christophine; Mutandi, Gram; Maher, Andrew; Kaindjee-Tjituka, Francina; Kaplan, Jonathan E; Park, Benjamin J; Lowrance, David W
2016-01-01
Cryptococcal meningitis is common and associated with high mortality among HIV infected persons. The World Health Organization recommends that routine Cryptococcal antigen (CrAg) screening in ART-naïve adults with a CD4+ count <100 cells/μL followed by pre-emptive antifungal therapy for CrAg-positive patients be considered where CrAg prevalence is ≥3%. The prevalence of CrAg among HIV adults in Namibia is unknown. We estimated CrAg prevalence among HIV-infected adults receiving care in Namibia for the purpose of informing routine screening strategies. The study design was cross-sectional. De-identified plasma specimens collected for routine CD4+ testing from HIV-infected adults enrolled in HIV care at 181 public health facilities from November 2013 to January 2014 were identified at the national reference laboratory. Remnant plasma from specimens with CD4+ counts <200 cells/μL were sampled and tested for CrAg using the IMMY® Lateral Flow Assay. CrAg prevalence was estimated and assessed for associations with age, sex, and CD4+ count. A total of 825 specimens were tested for CrAg. The median (IQR) age of patients from whom specimens were collected was 38 (32-46) years, 45.9% were female and 62.9% of the specimens had CD4 <100 cells/μL. CrAg prevalence was 3.3% overall and 3.9% and 2.3% among samples with CD4+ counts of CD4+<100 cells/μL and 100-200 cells/μL, respectively. CrAg positivity was significantly higher among patients with CD4+ cells/μL < 50 (7.2%, P = 0.001) relative to those with CD4 cells/μL 50-200 (2.2%). This is the first study to estimate CrAg prevalence among HIV-infected patients in Namibia. CrAg prevalence of ≥3.0% among patients with CD4+<100 cells/μL justifies routine CrAg screening and preemptive treatment among HIV-infected in Namibia in line with WHO recommendations. Patients with CD4+<100 cells/μL have a significantly greater risk for CrAg positivity. Revised guidelines for ART in Namibia now recommend routine screening for CrAg.
Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen
Santiago-Tirado, Felipe H.; Onken, Michael D.; Cooper, John A.; Klein, Robyn S.
2017-01-01
ABSTRACT The blood-brain barrier (BBB) protects the central nervous system (CNS) by restricting the passage of molecules and microorganisms. Despite this barrier, however, the fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that is estimated to kill over 600,000 people annually. Cryptococcal infection begins in the lung, and experimental evidence suggests that host phagocytes play a role in subsequent dissemination, although this role remains ill defined. Additionally, the disparate experimental approaches that have been used to probe various potential routes of BBB transit make it impossible to assess their relative contributions, confounding any integrated understanding of cryptococcal brain entry. Here we used an in vitro model BBB to show that a “Trojan horse” mechanism contributes significantly to fungal barrier crossing and that host factors regulate this process independently of free fungal transit. We also, for the first time, directly imaged C. neoformans-containing phagocytes crossing the BBB, showing that they do so via transendothelial pores. Finally, we found that Trojan horse crossing enables CNS entry of fungal mutants that cannot otherwise traverse the BBB, and we demonstrate additional intercellular interactions that may contribute to brain entry. Our work elucidates the mechanism of cryptococcal brain invasion and offers approaches to study other neuropathogens. PMID:28143979
Nyazika, Tinashe K; Hagen, Ferry; Meis, Jacques F; Robertson, Valerie J
2016-06-01
HIV-associated cryptococcal meningitis is commonly caused by Cryptococcus neoformans, whilst infections with Cryptococcus gattii sensu lato are historically rare. Despite available studies, little is known about the occurrence of C. gattii sensu lato infections among HIV-infected individuals in Zimbabwe. In a prospective cohort, we investigated the prevalence of C. gattii sensu lato meningitis among HIV-infected patients (n = 74) in Harare, Zimbabwe. Of the 66/74 isolates confirmed by molecular characterization, 16.7% (11/66) were found to be C. gattii sensu lato and 83.3% (55/66) C. neoformans sensu stricto. From one patient two phenotypically different C. gattii sensu lato colonies were cultured. The majority (n = 9/12; 75%) of the C. gattii sensu lato isolates were Cryptococcus tetragattii (AFLP7/VGIV), which has been an infrequently reported pathogen. In-hospital mortality associated with C. gattii sensu lato was 36.4%. Our data suggests that C. tetragattii (AFLP7/VGIV) is a more common cause of disease than C. gattii sensu stricto (genotype AFLP4/VGI) among patients with HIV-associated cryptococcal meningitis in Harare, Zimbabwe and possibly underreported in sub-Saharan Africa. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Dai, Yi-Ning; Huang, Hai-Jun; Song, Wen-Yuan; Tong, Yong-Xi; Yang, Dan-Hong; Wang, Ming-Shan; Huang, Yi-Cheng; Chen, Mei-Juan; Zhang, Jia-Jie; Ren, Ze-Ze; Zheng, Wei; Pan, Hong-Ying
2017-01-01
Tuberculous meningitis (TBM) is caused by tuberculosis infection of of the meninges, which are the membrane systems that encircle the brain, with a high morbidity and mortality rate. It is challenging to diagnose TBM among other types of meningitis, such as viral meningitis, bacterial meningitis and cryptococcal meningitis. We aimed to identify metabolites that are differentially expressed between TBM and the other types of meningitis by a global metabolomics analysis. The cerebrospinal fluids (CSF) from 50 patients with TBM, 17 with viral meningitis, 17 with bacterial meningitis, and 16 with cryptococcal meningitis were analyzed using ultra high performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS). A total of 1161 and 512 features were determined in positive and negative electrospray ionization mode, respectively. A clear separation between TBM and viral, bacterial or cryptococcal meningitis was achieved by orthogonal projections to latent structures-discriminate analysis (OPLS-DA) analysis. Potential metabolic markers and related pathways were identified, which were mainly involved in the metabolism of amino acid, lipids and nucleosides. In summary, differential metabolic profiles of the CSF exist between TBM and other types of meningitis, and potential metabolic biomarkers were identified to differentiate TBM from other types of meningitis. PMID:29245963
Cryptococcal meningitis with secondary cutaneous involvement in an immunocompetent host.
Tabassum, Saadia; Rahman, Atiya; Herekar, Fivzia; Masood, Sadia
2013-09-16
Cryptococcosis is a potentially fatal fungal disease caused by variants of Cryptococcus neoformans species. The respiratory tract is the usual portal of entry, with a peculiar predilection to invade the central nervous system. The skin can be secondarily involved in disseminated infection or be exceptionally involved as primary cutaneous infection by inoculation. The disease is mostly seen in immunodeficiency states. The diagnosis is frequently unsuspected in immunocompetent patients. We report a case of disseminated cryptococcal meningitis in an immunocompetent young adult. The cutaneous eruption prompted the accurate diagnosis. The patient, a 20-year-old female, had fever, cough, headache and intractable vomiting for the past two months and was being managed as a case of tuberculous meningitis. Two weeks after starting antituberculous treatment she developed umbilicated papules on the head and neck region. Necessary laboratory workup identified C. neoformans in cerebrospinal fluid (CSF) and skin specimens. The titers of cryptococcal antigen were measured in CSF and serum for diagnostic and prognostic purposes. Anti-fungal treatment resulted in regression of the cutaneous lesions and resolution of systemic complaints. The case highlights the need for high degree of suspicion, especially in healthy young adults, in the diagnosis of cryptococcosis. The cutaneous eruptions can be the first manifestation or a diagnostic clue of enormous significance.
Integrated therapy for HIV and cryptococcosis.
Srichatrapimuk, Sirawat; Sungkanuparph, Somnuek
2016-11-29
Cryptococcosis has been one of the most common opportunistic infections and causes of mortality among HIV-infected patients, especially in resource-limited countries. Cryptococcal meningitis is the most common form of cryptococcosis. Laboratory diagnosis of cryptococcosis includes direct microscopic examination, isolation of Cryptococcus from a clinical specimen, and detection of cryptococcal antigen. Without appropriate treatment, cryptococcosis is fatal. Early diagnosis and treatment is the key to treatment success. Treatment of cryptococcosis consists of three main aspects: antifungal therapy, intracranial pressure management for cryptococcal meningitis, and restoration of immune function with antiretroviral therapy (ART). Optimal integration of these three aspects is crucial to achieving successful treatment and reducing the mortality. Antifungal therapy consists of three phases: induction, consolidation, and maintenance. A combination of two drugs, i.e. amphotericin B plus flucytosine or fluconazole, is preferred in the induction phase. Fluconazole monotherapy is recommended during consolidation and maintenance phases. In cryptococcal meningitis, intracranial pressure rises along with CSF fungal burden and is associated with morbidity and mortality. Aggressive control of intracranial pressure should be done. Management options include therapeutic lumbar puncture, lumbar drain insertion, ventriculostomy, or ventriculoperitoneal shunt. Medical treatment such as corticosteroids, mannitol, and acetazolamide are ineffective and should not be used. ART has proven to have a great impact on survival rates among HIV-infected patients with cryptococcosis. The time to start ART in HIV-infected patients with cryptococcosis has to be deferred until 5 weeks after the start of antifungal therapy. In general, any effective ART regimen is acceptable. Potential drug interactions between antiretroviral agents and amphotericin B, flucytosine, and fluconazole are minimal. Of most potential clinical relevance is the concomitant use of fluconazole and nevirapine. Concomitant use of these two drugs should be cautious, and patients should be monitored closely for nevirapine-associated adverse events, including hepatotoxicity. Overlapping toxicities of antifungal and antiretroviral drugs and immune reconstitution inflammatory syndrome are not uncommon. Early recognition and appropriate management of these consequences can reinforce the successful integrated therapy in HIV-infected patients with cryptococcosis.
Dubbels, Marie; Granger, Dane; Theel, Elitza S
2017-08-01
Detection of Cryptococcus antigen (CrAg) is invaluable for establishing cryptococcal disease. Multiple different methods for CrAg detection are available, including a lateral flow assay (LFA). Despite excellent performance of the CrAg LFA, we have observed multiple cases of low-titer (≤1:5) positive CrAg LFA results in patients for whom cryptococcosis was ultimately excluded. To investigate the accuracy of low-titer positive CrAg LFA results, we performed chart reviews for all patients with positive CrAg LFA results between June 2014 and December 2016. During this period, serum and/or cerebrospinal fluid (CSF) samples from 3,969 patients were tested with the CrAg LFA, and 55 patients (1.5%) tested positive. Thirty-eight of those patients lacked a history of cryptococcal disease and were the focus of this study. Fungal culture or histopathology confirmed Cryptococcus infection for 20 patients (52.6%), and CrAg LFA titers in serum and CSF samples ranged from 1:5 to ≥1:2,560. For the 18 patients (47.4%) without culture or histopathological confirmation, the CrAg LFA results were considered true-positive results for 5 patients (titer range, 1:10 to ≥1:2,560), due to clinical improvement with targeted therapy and decreasing CrAg LFA titers. The remaining 13 patients had CrAg LFA titers of 1:2 ( n = 11) or 1:5 ( n = 2) and were ultimately diagnosed with an alternative condition ( n = 11) or began therapy for possible cryptococcosis without improvement ( n = 2), leading to an overall CrAg LFA false-positive rate of 34%. We recommend careful clinical correlation prior to establishing a diagnosis of cryptococcal infection for patients with first-time positive CrAg LFA titers of 1:2. Copyright © 2017 American Society for Microbiology.
Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen.
Santiago-Tirado, Felipe H; Onken, Michael D; Cooper, John A; Klein, Robyn S; Doering, Tamara L
2017-01-31
The blood-brain barrier (BBB) protects the central nervous system (CNS) by restricting the passage of molecules and microorganisms. Despite this barrier, however, the fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that is estimated to kill over 600,000 people annually. Cryptococcal infection begins in the lung, and experimental evidence suggests that host phagocytes play a role in subsequent dissemination, although this role remains ill defined. Additionally, the disparate experimental approaches that have been used to probe various potential routes of BBB transit make it impossible to assess their relative contributions, confounding any integrated understanding of cryptococcal brain entry. Here we used an in vitro model BBB to show that a "Trojan horse" mechanism contributes significantly to fungal barrier crossing and that host factors regulate this process independently of free fungal transit. We also, for the first time, directly imaged C. neoformans-containing phagocytes crossing the BBB, showing that they do so via transendothelial pores. Finally, we found that Trojan horse crossing enables CNS entry of fungal mutants that cannot otherwise traverse the BBB, and we demonstrate additional intercellular interactions that may contribute to brain entry. Our work elucidates the mechanism of cryptococcal brain invasion and offers approaches to study other neuropathogens. The fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that kills hundreds of thousands of people each year. One route that has been proposed for this brain entry is a Trojan horse mechanism, whereby the fungus crosses the blood-brain barrier (BBB) as a passenger inside host phagocytes. Although indirect experimental evidence supports this intriguing mechanism, it has never been directly visualized. Here we directly image Trojan horse transit and show that it is regulated independently of free fungal entry, contributes to cryptococcal BBB crossing, and allows mutant fungi that cannot enter alone to invade the brain. Copyright © 2017 Santiago-Tirado et al.
The Intracellular Life of Cryptococcus neoformans
Coelho, Carolina; Bocca, Anamelia L.; Casadevall, Arturo
2016-01-01
Cryptococcus neoformans is a fungal pathogen with worldwide distribution. Serological studies of human populations show a high prevalence of human infection, which rarely progresses to disease in immunocompetent hosts. However, decreased host immunity places individuals at high risk for cryptococcal disease. The disease can result from acute infection or reactivation of latent infection, in which yeasts within granulomas and host macrophages emerge to cause disease. In this review, we summarize what is known about the cellular recognition, ingestion, and killing of C. neoformans and discuss the unique and remarkable features of its intracellular life, including the proposed mechanisms for fungal persistence and killing in phagocytic cells. PMID:24050625
Early onset primary pulmonary cryptococcosis in a renal transplant patient.
Tarai, B; Kher, V; Kotru, P; Sabhikhi, A; Barman, P; Rattan, A
2010-01-01
We report a case of primary pulmonary cryptococcosis in a post-renal transplant patient. A 65-year-old male renal transplant patient was admitted to the hospital with a low grade fever of 1 month, radiologically mimicking tuberculosis (TB). Broncho-alveolar fluid (BAL) shows capsulated yeast, and Cryptococcus neoformans was grown on culture supported by cytology and histopathological examination. Cryptococcal antigen was positive (32-fold) in serum and was negative in cerebrospinal fluid (CSF). The patient was given amphotericin B and 5-flucytosine and clinical improvement was seen on a weekly follow up. The serum cryptococcal antigen test might contribute to the early detection and treatment of pulmonary cryptococcosis. The results of antifungal susceptibility were aid in selecting the drug of choice for treatment.
Specht, Charles A; Lee, Chrono K; Huang, Haibin; Tipper, Donald J; Shen, Zu T; Lodge, Jennifer K; Leszyk, John; Ostroff, Gary R; Levitz, Stuart M
2015-12-22
A vaccine capable of protecting at-risk persons against infections due to Cryptococcus neoformans and Cryptococcus gattii could reduce the substantial global burden of human cryptococcosis. Vaccine development has been hampered though, by lack of knowledge as to which antigens are immunoprotective and the need for an effective vaccine delivery system. We made alkaline extracts from mutant cryptococcal strains that lacked capsule or chitosan. The extracts were then packaged into glucan particles (GPs), which are purified Saccharomyces cerevisiae cell walls composed primarily of β-1,3-glucans. Subcutaneous vaccination with the GP-based vaccines provided significant protection against subsequent pulmonary infection with highly virulent strains of C. neoformans and C. gattii. The alkaline extract derived from the acapsular strain was analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS), and the most abundant proteins were identified. Separation of the alkaline extract by size exclusion chromatography revealed fractions that conferred protection when loaded in GP-based vaccines. Robust Th1- and Th17-biased CD4(+) T cell recall responses were observed in the lungs of vaccinated and infected mice. Thus, our preclinical studies have indicated promising cryptococcal vaccine candidates in alkaline extracts delivered in GPs. Ongoing studies are directed at identifying the individual components of the extracts that confer protection and thus would be promising candidates for a human vaccine. The encapsulated yeast Cryptococcus neoformans and its closely related sister species, Cryptococcus gattii, are major causes of morbidity and mortality, particularly in immunocompromised persons. This study reports on the preclinical development of vaccines to protect at-risk populations from cryptococcosis. Antigens were extracted from Cryptococcus by treatment with an alkaline solution. The extracted antigens were then packaged into glucan particles, which are hollow yeast cell walls composed mainly of β-glucans. The glucan particle-based vaccines elicited robust T cell immune responses and protected mice from otherwise-lethal challenge with virulent strains of C. neoformans and C. gattii. The technology used for antigen extraction and subsequent loading into the glucan particle delivery system is relatively simple and can be applied to vaccine development against other pathogens. Copyright © 2015 Specht et al.
Ecological surveys of the Cryptococcus species complex in China.
Li, An-Sheng; Pan, Wei-Hua; Wu, Shao-Xi; Hideaki, Taguchi; Guo, Ning-Ru; Shen, Yong-Nian; Lu, Gui-Xia; Pan, Ru-Gui; Zhu, Miao-Chang; Chen, Min; Shi, Wei-Ming; Liao, Wan-Qing
2012-02-01
Despite recent reports on the molecular epidemiology of cryptococcal infections in China, clinical isolates have been mostly reported from human immunodeficiency virus (HIV)-negative patients, and environmental isolates from China have rarely been included. The aim of this study was to investigate the ecological profile of Cryptococcus (C.) neoformans and C. gattii in China. A survey was performed in 10 cities from 20°N (North latitude) to 50°N and in a Eucalyptus (E.) camaldulensis forestry farm at the Guixi forestry center, China. Six hundred and twenty samples of pigeon droppings from 10 cities and 819 E. camaldulensis tree samples were collected and inoculated on caffeic acid cornmeal agar (CACA). The brown-colored colonies were recultured to observe their morphology, growth on canavanine-glycine-bromothymol-blue (CGB) medium, phenol oxidase and urease activities, serotype and mating type. There were obvious differences in the positive sample rates of C. neoformans in pigeon droppings collected from the different cities, ranging from 50% in the cities located at latitudes from 30°N - 40°N, 29% at 20°N - 30°N and 13% at 40°N - 50°N. There were no differences in positive bevy rates (approximately 80%) among the three grouped cities. Mycological tests of 101 isolates purified from pigeon droppings revealed that they were C. neoformans var. grubii. We also observed variable capsular size around the C. neoformans cells in colonies with variable melanin production and the bio-adhesion of the natural C. neoformans cells with other microorganisms. One urease-negative C. neoformans isolate was isolated from pigeon droppings in Jinan city. No C. gattii was isolated in this study.
Ranjan, R; Jain, D; Singh, L; Iyer, V K; Sharma, M C; Mathur, S R
2015-08-01
The correct identification of fungal organisms is important for the appropriate clinical management of patients. It becomes difficult in necrotic smears when the tissue response is not clearly discernible. It is difficult to distinguish between histoplasma and cryptococcus in severely necrotic cases, where both appear as variably sized clear refractile haloes. Four cases of adrenal necrotic histoplasma infection were studied and the morphology was compared with that of non-necrotic histoplasmosis and cases of cryptococcal infection. Eleven cases were analysed in fine needle aspiration cytology (FNAC) smears. Ziehl-Neelsen (ZN) stain was performed to exclude tuberculosis in necrotic smears. A clinical and serology correlation was performed where available. Necrotic cases of histoplasma infection revealed negative refractile clear haloes similar to those of cryptococcus. Histoplasma showed methylene blue-stained organisms in ZN stains, whereas the cryptococcus cases were negative. Similar methylene blue-stained organisms were seen in non-necrotic histoplasma infection. As a result of morphological overlap between cryptococcus and histoplasma, the distinction between the two fungi can be difficult in many cases. ZN staining appears to have a role in the differentiation of these fungi in severely necrotic cases. This observation needs to be validated on a larger number of cases with complete correlation with clinical, serology and treatment records. © 2014 John Wiley & Sons Ltd.
Pneumocystis Jiroveci Pneumonia
2008-10-01
patients with AIDS include CMV pneumonia, lymphocytic interstitial pneumonia, MAI infection, cryptococcal infection, Legionella , Mycoplasma...negative for Legionella , Streptococcus pneumoniae, and Cryptococcus neoformans. Pneumocystis direct fluorescent antibody (DFA) of the fluid was also
Larson, Bruce A; Rockers, Peter C; Bonawitz, Rachael; Sriruttan, Charlotte; Glencross, Deborah K; Cassim, Naseem; Coetzee, Lindi M; Greene, Gregory S; Chiller, Tom M; Vallabhaneni, Snigdha; Long, Lawrence; van Rensburg, Craig; Govender, Nelesh P
2016-01-01
In 2015 South Africa established a national cryptococcal antigenemia (CrAg) screening policy targeted at HIV-infected patients with CD4+ T-lymphocyte (CD4) counts <100 cells/ μl who are not yet on antiretroviral treatment (ART). Two screening strategies are included in national guidelines: reflex screening, where a CrAg test is performed on remnant blood samples from CD4 testing; and provider-initiated screening, where providers order a CrAg test after a patient returns for CD4 test results. The objective of this study was to compare costs and effectiveness of these two screening strategies. We developed a decision analytic model to compare reflex and provider-initiated screening in terms of programmatic and health outcomes (number screened, number identified for preemptive treatment, lives saved, and discounted years of life saved) and screening and treatment costs (2015 USD). We estimated a base case with prevalence and other parameters based on data collected during CrAg screening pilot projects integrated into routine HIV care in Gauteng, Free State, and Western Cape Provinces. We conducted sensitivity analyses to explore how results change with underlying parameter assumptions. In the base case, for each 100,000 CD4 tests, the reflex strategy compared to the provider-initiated strategy has higher screening costs ($37,536 higher) but lower treatment costs ($55,165 lower), so overall costs of screening and treatment are $17,629 less with the reflex strategy. The reflex strategy saves more lives (30 lives, 647 additional years of life saved). Sensitivity analyses suggest that reflex screening dominates provider-initiated screening (lower total costs and more lives saved) or saves additional lives for small additional costs (< $125 per life year) across a wide range of conditions (CrAg prevalence, patient and provider behavior, patient survival without treatment, and effectiveness of preemptive fluconazole treatment). In countries with substantial numbers of people with untreated, advanced HIV disease such as South Africa, CrAg screening before initiation of ART has the potential to reduce cryptococcal meningitis and save lives. Reflex screening compared to provider-initiated screening saves more lives and is likely to be cost saving or have low additional costs per additional year of life saved.
Rockers, Peter C.; Bonawitz, Rachael; Sriruttan, Charlotte; Glencross, Deborah K.; Cassim, Naseem; Coetzee, Lindi M.; Greene, Gregory S.; Chiller, Tom M.; Vallabhaneni, Snigdha; Long, Lawrence; van Rensburg, Craig; Govender, Nelesh P.
2016-01-01
Background In 2015 South Africa established a national cryptococcal antigenemia (CrAg) screening policy targeted at HIV-infected patients with CD4+ T-lymphocyte (CD4) counts <100 cells/ μl who are not yet on antiretroviral treatment (ART). Two screening strategies are included in national guidelines: reflex screening, where a CrAg test is performed on remnant blood samples from CD4 testing; and provider-initiated screening, where providers order a CrAg test after a patient returns for CD4 test results. The objective of this study was to compare costs and effectiveness of these two screening strategies. Methods We developed a decision analytic model to compare reflex and provider-initiated screening in terms of programmatic and health outcomes (number screened, number identified for preemptive treatment, lives saved, and discounted years of life saved) and screening and treatment costs (2015 USD). We estimated a base case with prevalence and other parameters based on data collected during CrAg screening pilot projects integrated into routine HIV care in Gauteng, Free State, and Western Cape Provinces. We conducted sensitivity analyses to explore how results change with underlying parameter assumptions. Results In the base case, for each 100,000 CD4 tests, the reflex strategy compared to the provider-initiated strategy has higher screening costs ($37,536 higher) but lower treatment costs ($55,165 lower), so overall costs of screening and treatment are $17,629 less with the reflex strategy. The reflex strategy saves more lives (30 lives, 647 additional years of life saved). Sensitivity analyses suggest that reflex screening dominates provider-initiated screening (lower total costs and more lives saved) or saves additional lives for small additional costs (< $125 per life year) across a wide range of conditions (CrAg prevalence, patient and provider behavior, patient survival without treatment, and effectiveness of preemptive fluconazole treatment). Conclusions In countries with substantial numbers of people with untreated, advanced HIV disease such as South Africa, CrAg screening before initiation of ART has the potential to reduce cryptococcal meningitis and save lives. Reflex screening compared to provider-initiated screening saves more lives and is likely to be cost saving or have low additional costs per additional year of life saved. PMID:27390864
Britz, Erika; Perovic, Olga; von Mollendorf, Claire; von Gottberg, Anne; Iyaloo, Samantha; Quan, Vanessa; Chetty, Verushka; Sriruttan, Charlotte; Ismail, Nazir A.; Nanoo, Ananta; Musekiwa, Alfred; Reddy, Carl; Viljoen, Karien; Cohen, Cheryl; Govender, Nelesh P.
2016-01-01
Introduction Meningitis is a major cause of mortality in southern Africa. We aimed to describe the aetiologies and frequencies of laboratory-confirmed fungal and bacterial meningitis among adults in a South African province with an 11% HIV prevalence, over 4 years. Methods We conducted a retrospective, observational study of secondary laboratory data, extracted on all cerebrospinal fluid (CSF) specimens submitted to public-sector laboratories in Gauteng province from 2009 through 2012. We calculated cause-specific incidence rates in the general and HIV-infected populations and used Poisson regression to determine if trends were significant. Results We identified 11,891 (10.7%) incident cases of meningitis from 110,885 CSF specimens. Cryptococcal meningitis, tuberculous meningitis and pneumococcal meningitis accounted for 62.3% (n = 7,406), 24.6% (n = 2,928) and 10.1% (n = 1,197) of cases over the four-year period. The overall incidence (cases per 100,000 persons) of cryptococcal meningitis declined by 23% from 24.4 in 2009 to 18.7 in 2012 (p <0.001) and decreased by 19% among HIV-infected persons from 178.2 to 144.7 (p <0.001). Tuberculous meningitis decreased by 40% from 11.3 in 2009 to 6.8 in 2012 (p <0.001) and decreased by 36% among HIV-infected persons from 54.4 to 34.9 (p <0.001). Pneumococcal meningitis decreased by 41% from 4.2 in 2009 to 2.5 in 2012 (p <0.001) and decreased by 38% among HIV-infected persons from 28.0 to 17.5 (p <0.001). Among cases of other bacterial meningitis (248/11,891, 2.1%), Neisseria meningitidis (n = 93), Escherichia coli (n = 72) and Haemophilus influenzae (n = 20) were the most common organisms identified. Conclusions In this high HIV-prevalence province, cryptococcal meningitis was the leading cause of laboratory-confirmed meningitis among adults. Over a 4-year period, there was a significant decrease in incidence of cryptococcal, tuberculous and pneumococcal meningitis. This coincided with expansion of the national antiretroviral treatment programme, enhanced tuberculosis control programme and routine childhood immunisation with pneumococcal conjugate vaccines. PMID:27669564
Britz, Erika; Perovic, Olga; von Mollendorf, Claire; von Gottberg, Anne; Iyaloo, Samantha; Quan, Vanessa; Chetty, Verushka; Sriruttan, Charlotte; Ismail, Nazir A; Nanoo, Ananta; Musekiwa, Alfred; Reddy, Carl; Viljoen, Karien; Cohen, Cheryl; Govender, Nelesh P
Meningitis is a major cause of mortality in southern Africa. We aimed to describe the aetiologies and frequencies of laboratory-confirmed fungal and bacterial meningitis among adults in a South African province with an 11% HIV prevalence, over 4 years. We conducted a retrospective, observational study of secondary laboratory data, extracted on all cerebrospinal fluid (CSF) specimens submitted to public-sector laboratories in Gauteng province from 2009 through 2012. We calculated cause-specific incidence rates in the general and HIV-infected populations and used Poisson regression to determine if trends were significant. We identified 11,891 (10.7%) incident cases of meningitis from 110,885 CSF specimens. Cryptococcal meningitis, tuberculous meningitis and pneumococcal meningitis accounted for 62.3% (n = 7,406), 24.6% (n = 2,928) and 10.1% (n = 1,197) of cases over the four-year period. The overall incidence (cases per 100,000 persons) of cryptococcal meningitis declined by 23% from 24.4 in 2009 to 18.7 in 2012 (p <0.001) and decreased by 19% among HIV-infected persons from 178.2 to 144.7 (p <0.001). Tuberculous meningitis decreased by 40% from 11.3 in 2009 to 6.8 in 2012 (p <0.001) and decreased by 36% among HIV-infected persons from 54.4 to 34.9 (p <0.001). Pneumococcal meningitis decreased by 41% from 4.2 in 2009 to 2.5 in 2012 (p <0.001) and decreased by 38% among HIV-infected persons from 28.0 to 17.5 (p <0.001). Among cases of other bacterial meningitis (248/11,891, 2.1%), Neisseria meningitidis (n = 93), Escherichia coli (n = 72) and Haemophilus influenzae (n = 20) were the most common organisms identified. In this high HIV-prevalence province, cryptococcal meningitis was the leading cause of laboratory-confirmed meningitis among adults. Over a 4-year period, there was a significant decrease in incidence of cryptococcal, tuberculous and pneumococcal meningitis. This coincided with expansion of the national antiretroviral treatment programme, enhanced tuberculosis control programme and routine childhood immunisation with pneumococcal conjugate vaccines.
Paiva, Aline Lariessy Campos; Aguiar, Guilherme Brasileiro de; Lovato, Renan Maximilian; Zanetti, Arthus Vilar Deolindo; Panagopoulos, Alexandros Theodoros; Veiga, José Carlos Esteves
2017-11-06
Central nervous system (CNS) infectious diseases have high prevalence in developing countries and their proper diagnosis and treatment are very important for public health planning. Cryptococcus neoformans is a fungus that may cause several CNS manifestations, especially in immunocompromised patients. Cryptococcal meningitis is the most common type of involvement. Mass-effect lesions are uncommon: they are described as cryptococcomas and their prevalence is even lower among immunocompetent patients. The aim here was to report an extremely rare case of cryptococcoma causing a mass effect and mimicking a brain tumor in an immunocompetent patient. The literature on CNS cryptococcal infections was reviewed with emphasis on cryptococcomas. Clinical, surgical and radiological data on a female patient with this rare presentation of cryptococcoma mimicking a brain tumor are described. A 54-year-old female patient presented to the emergency department with a rapid-onset progressive history of confusion and completely dependency for basic activities. Neuroimaging showed a left occipital lesion and neurosurgical treatment was proposed. From histopathological evaluation, a diagnosis of cryptococcoma was established. She received clinical support with antifungals, but despite optimal clinical treatment, her condition evolved to death. Cryptococcal infections have several forms of presentation and, in immunocompetent patients, their manifestation may be even more different. Cryptococcoma is an extremely rare presentation in which proper surgical and clinical treatment should be instituted as quickly as possible, but even so, there is a high mortality rate.
Immunotherapy of Cryptococcus infections.
Antachopoulos, C; Walsh, T J
2012-02-01
Despite appropriate antifungal treatment, the management of cryptococcal disease remains challenging, especially in immunocompromised patients, such as human immunodeficiency virus-infected individuals and solid organ transplant recipients. During the past two decades, our knowledge of host immune responses against Cryptococcus spp. has been greatly advanced, and the role of immunomodulation in augmenting the response to infection has been investigated. In particular, the role of 'protective' Th1 (tumour necrosis factor-α, interferon (IFN)-γ, interleukin (IL)-12, and IL-18) and Th17 (IL-23 and IL-17) and 'non-protective' Th2 (IL-4, IL-10, and IL-13) cytokines has been extensively studied in vitro and in animal models of cryptococcal infection. Immunomodulation with monoclonal antibodies against the capsular polysaccharide glucuronoxylomannan, glucosylceramides, melanin and β-glucan and, lately, with radioimmunotherapy has also yielded promising results in animal models. As a balance between sufficiently protective Th1 responses and excessive inflammation is important for optimal outcome, the effect of immunotherapy may range from beneficial to deleterious, depending on factors related to the host, the infecting organism, and the immunomodulatory regimen. Clinical evidence supporting immunomodulation in patients with cryptococcal infection remains too limited to allow firm recommendations. Limited human data suggest a role for IFN-γ. Identification of surrogate markers characterizing patients' immunological status could possibly suggest candidate patients for immunotherapy and the type of immunomodulation to be administered. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.
Parkes-Ratanshi, R; Achan, B; Kwizera, R; Kambugu, A; Meya, D; Denning, D W
2015-10-01
The HIV epidemic in Uganda has highlighted Cryptococcus and Candida infections as important opportunistic fungal infections. However, the burden of other fungal diseases is not well described. We aimed to estimate the burden of fungal infections in Uganda. All epidemiological papers of fungal diseases in Uganda were reviewed. Where there is no Ugandan data, global or East African data were used. Recurrent vaginal candidiasis is estimated to occur in 375 540 Uganda women per year; Candida in pregnant women affects up to 651,600 women per year. There are around 45,000 HIV-related oral and oesophageal candidosis cases per year. There are up to 3000 cases per year of post-TB chronic pulmonary aspergillosis. There are an estimated 40,392 people with asthma-related fungal conditions. An estimated 1,300,000 cases of tinea capitis occur in school children yearly in Uganda. There are approximately 800 HIV-positive adults with Pneumocystis jirovecii pneumonia (PJP) annually and up to 42 000 children with PJP per year. There are an estimated 4000 cryptococcal cases annually. There are an estimated 2.5 million fungal infections per year in Uganda. Cryptococcus and PJP cause around 28,000 deaths in adults and children per year. We propose replicating the model of research around cryptococcal disease to investigate and development management strategies for other fungal diseases in Uganda. © 2015 Blackwell Verlag GmbH.
Perfect, John R.; Dismukes, William E.; Dromer, Francoise; Goldman, David L.; Graybill, John R.; Hamill, Richard J.; Harrison, Thomas S.; Larsen, Robert A.; Lortholary, Olivier; Nguyen, Minh-Hong; Pappas, Peter G.; Powderly, William G.; Singh, Nina; Sobel, Jack D.; Sorrell, Tania C.
2018-01-01
Cryptococcosis is a global invasive mycosis associated with significant morbidity and mortality. These guidelines for its management have been built on the previous Infectious Diseases Society of America guidelines from 2000 and include new sections. There is a discussion of the management of cryptococcal meningoencephalitis in 3 risk groups: (1) human immunodeficiency virus (HIV)–infected individuals, (2) organ transplant recipients, and (3) non–HIV-infected and nontransplant hosts. There are specific recommendations for other unique risk populations, such as children, pregnant women, persons in resource-limited environments, and those with Cryptococcus gattii infection. Recommendations for management also include other sites of infection, including strategies for pulmonary crypto-coccosis. Emphasis has been placed on potential complications in management of cryptococcal infection, including increased intracranial pressure, immune reconstitution inflammatory syndrome (IRIS), drug resistance, and crypto-coccomas. Three key management principles have been articulated: (1) induction therapy for meningoencephalitis using fungicidal regimens, such as a polyene and flucytosine, followed by suppressive regimens using fluconazole; (2) importance of early recognition and treatment of increased intracranial pressure and/or IRIS; and (3) the use of lipid formulations of amphotericin B regimens in patients with renal impairment. Cryptococcosis remains a challenging management issue, with little new drug development or recent definitive studies. However, if the diagnosis is made early, if clinicians adhere to the basic principles of these guidelines, and if the underlying disease is controlled, then cryptococcosis can be managed successfully in the vast majority of patients. PMID:20047480
Johnston, Simon A; May, Robin C
2013-03-01
Cryptococcus is a potentially fatal fungal pathogen and a leading cause of death in immunocompromised patients. As an opportunistic and facultative intracellular pathogen of humans, Cryptococcus exhibits a complex set of interactions with the host immune system in general, and macrophages in particular. Cryptococcus is resistant to phagocytosis but is also able to survive and proliferate within the mature phagolysosome. It can cause the lysis of host cells, can be transferred between macrophages or exit non-lytically via vomocytosis. Efficient phagocytosis is reliant on opsonization and Cryptococcus has a number of anti-phagocytic strategies including formation of titan cells and a thick polysaccharide capsule. Following uptake, phagosome maturation appears to occur normally, but the internalized pathogen is able to survive and replicate. Here we review the interactions and host manipulation processes that occur within cryptococcal-infected macrophages and highlight areas for future research. © 2012 Blackwell Publishing Ltd.
Cryptococcal nasopharyngeal polypoid mass in a cat
Javard, Romain; Alexander, Kate; Girard, Christiane; Dunn, Marilyn
2015-01-01
Case summary An indoor 9-year-old castrated male domestic cat was referred with a 4 month history of increased upper airway noise. Computed tomography revealed a nasopharyngeal polypoid mass, which was removed endoscopically with basket forceps. Histopathology was compatible with a polypoid granulomatous pharyngitis with Cryptococcus-like organisms. This was supported by a positive serum latex cryptococcal antigen agglutination test (LCAT). Minimal inflammation of the nasal tissue was noted on histopathology, with no evidence of fungus. Following endoscopic removal of the mass, the patient was treated with systemic antifungal medication (itraconazole). One year after diagnosis, the LCAT titer was negative and the cat remained free of clinical signs. Relevance and novel information This case report emphasizes the importance of considering Cryptococcus species as a potential etiology in cats presented with signs of nasopharyngeal obstruction with an isolated nasopharyngeal polypoid mass, even if kept indoors. PMID:28491377
A Rare Presentation of Cryptococcal Meningoencephalitis in an Immunocompetent Individual
Malhotra, Ashwin; Rao, Qin; Kelly, Sean; Schwartz, Danielle; Chow, Robert
2017-01-01
Cryptococcal meningoencephalitis is a leading of morbidity and mortality in immunocompromised individuals worldwide. However, there are few documented cases in immunocompetent patients. We present a rare case of disseminated Cryptococcus with progression to meningoencephalitis in an immunocompetent patient, with a possible atypical presentation. Magnetic resonance imaging of the brain and electroencephalogram to rule out brain metastasis were negative. Lumbar puncture resulted positive for Cryptococcus neoformans antigen at titers of 1:2048 and a detailed history later revealed occupational exposure to bird dander by cleaning floors and cages. Diagnosis is challenging, with delays often resulting in increased morbidity and mortality. Cerebrospinal fluid and serum Cryptococcus antigen play a key role in both diagnosis and determining treatment efficacy. Furthermore, current treatment guidelines are used for immunocompromised individuals. Due to the significant side effects of these medications, further research is needed to determine the optimal treatment duration for immunocompetent patients to minimize the need for unnecessary therapy. PMID:28959388
Ellabib, M S; Krema, Z A; Allafi, A A; Cogliati, M
2017-09-01
Cryptococcosis is a potentially fatal fungal disease caused by the basidiomycetes yeasts Cryptococcus neoformans and C. gattii with high predilection to invade the central nervous system mainly in immunocompromised hosts. Skin can be secondarily involved in disseminated infection or be exceptionally involved as primary cutaneous infection by inoculation with contaminated materials. We report the first two Libyan cases of cryptococcal meningitis in HIV patients, in which one of them presented a secondary cutaneous involvement due to systemic dissemination. The first patient was a 17-year-old female, had fever, cough, headache and intractable vomiting as well as itchy water bumps on her skin and upper limbs. The cutaneous eruption prompted the accurate diagnosis. Cultures were positive for C. neoformans in both cerebrospinal fluid and skin specimens, as well as cryptococcal antigen was detected in serum. The isolate was identified, by molecular analysis, as C. neoformans AD-hybrid belonging to molecular type VNIII and mating type αAAα, the same genotype found for some environmental isolates recovered from olive trees in Tripoli. The second patient was a 36-years-old male with a long history of HIV on irregular treatment. Cryptococcal antigen in serum was positive and cultures yielded the growth of C. neoformans var. grubii, molecular type VNI and mating type αA. Both patients did not respond adequately to treatment and died of impaired central nervous system function and respiratory failure, respectively. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Effect of fluconazole on fungicidal activity of flucytosine in murine cryptococcal meningitis.
Larsen, R A; Bauer, M; Weiner, J M; Diamond, D M; Leal, M E; Ding, J C; Rinaldi, M G; Graybill, J R
1996-01-01
Both animal and in vitro studies have demonstrated that combinations of flucytosine with amphotericin B and with fluconazole have significantly improved activity against cryptococcal meningitis compared with the activity of each drug used alone. However, very few dose levels of these agents have been tested in combination. This study evaluated the efficacy of fluconazole plus flucytosine in a murine model of cryptococcal meningitis over a broad range of dose combinations (fluconazole, 0 to 40 micrograms/g of body weight per day; flucytosine, 0 to 200 micrograms/g/day). Both drugs were dissolved in drinking water, with treatment on days 2 to 11. In this highly reproducible model, fluconazole had a dramatic effect on the fungicidal activity of flucytosine. Flucytosine at dose levels of as much as 200 micrograms/g/day alone or in combination with low doses of fluconazole had minimal fungicidal activity, whereas in combination with fluconazole at 24 to 40 micrograms/g/day, flucytosine showed fungicidal activity in the range of 45 to 65% of the animals treated at doses of 40 to 100 micrograms/g/day. This striking effect of fluconazole is consistent with the results of both in vitro and clinical studies. In the clinic, the use of flucytosine is often limited by severe toxicity, while toxicity is rarely observed with fluconazole. These results suggest that when flucytosine is given with higher doses of fluconazole, the maximum therapeutic effect of the former in the clinic may be observed at dose levels that are far less than the doses commonly employed (150 micrograms/g daily). PMID:8878602
Evaluation of a Commercial Latex Agglutination Test Kit for Cryptococcal Antigen
Kaufman, Leo; Cowart, Glenda; Blumer, Sharon; Stine, Amy; Wood, Ross
1974-01-01
Two dozen Crypto-LA kits for detecting Cryptococcus neoformans capsular polysaccharide antigens were evaluated. Ten kits proved reliable for detecting and titering antigen in clinical materials. Fourteen kits were found to be inadequate. PMID:4596394
Differential Antifungal Activity of Human and Cryptococcal Melanins with Structural Discrepancies
Correa, Néstor; Covarrubias, Cristian; Rodas, Paula I.; Hermosilla, Germán; Olate, Verónica R.; Valdés, Cristián; Meyer, Wieland; Magne, Fabien; Tapia, Cecilia V.
2017-01-01
Melanin is a pigment found in all biological kingdoms, and plays a key role in protection against ultraviolet radiation, oxidizing agents, and ionizing radiation damage. Melanin exerts an antimicrobial activity against bacteria, fungi, and parasites. We demonstrated an antifungal activity of synthetic and human melanin against Candida sp. The members of the Cryptococcus neoformans and C. gattii species complexes are capsulated yeasts, which cause cryptococcosis. For both species melanin is an important virulence factor. To evaluate if cryptococcal and human melanins have antifungal activity against Cryptococcus species they both were assayed for their antifungal properties and physico-chemical characters. Melanin extracts from human hair and different strains of C. neoformans (n = 4) and C. gattii (n = 4) were investigated. The following minimum inhibitory concentrations were found for different melanins against C. neoformans and C. gattii were (average/range): 13.7/(7.8–15.6) and 19.5/(15.6–31.2) μg/mL, respectively, for human melanin; 273.4/(125–>500) and 367.2/(125.5–>500) μg/mL for C. neoformans melanin and 125/(62.5–250) and 156.2/(62–250) μg/mL for C. gattii melanin. Using Scanning Electron Microscopy we observed that human melanin showed a compact conformation and cryptococcal melanins exposed an amorphous conformation. Infrared spectroscopy (FTIR) showed some differences in the signals related to C-C bonds of the aromatic ring of the melanin monomers. High Performance Liquid Chromatography established differences in the chromatograms of fungal melanins extracts in comparison with human and synthetic melanin, particularly in the retention time of the main compound of fungal melanin extracts and also in the presence of minor unknown compounds. On the other hand, MALDI-TOF-MS analysis showed slight differences in the spectra, specifically the presence of a minor intensity ion in synthetic and human melanin, as well as in some fungal melanin extracts. We conclude that human melanin is more active than the two fungal melanins against Cryptococcus. Although some physico-chemical differences were found, they do not explain the differences in the antifungal activity against Cryptococcus of human and cryptococcal melanins. More detailed studies on the structure should be considered to associate structure and antifungal activity. PMID:28744276
Differential Antifungal Activity of Human and Cryptococcal Melanins with Structural Discrepancies.
Correa, Néstor; Covarrubias, Cristian; Rodas, Paula I; Hermosilla, Germán; Olate, Verónica R; Valdés, Cristián; Meyer, Wieland; Magne, Fabien; Tapia, Cecilia V
2017-01-01
Melanin is a pigment found in all biological kingdoms, and plays a key role in protection against ultraviolet radiation, oxidizing agents, and ionizing radiation damage. Melanin exerts an antimicrobial activity against bacteria, fungi, and parasites. We demonstrated an antifungal activity of synthetic and human melanin against Candida sp. The members of the Cryptococcus neoformans and C. gattii species complexes are capsulated yeasts, which cause cryptococcosis. For both species melanin is an important virulence factor. To evaluate if cryptococcal and human melanins have antifungal activity against Cryptococcus species they both were assayed for their antifungal properties and physico-chemical characters. Melanin extracts from human hair and different strains of C. neoformans ( n = 4) and C. gattii ( n = 4) were investigated. The following minimum inhibitory concentrations were found for different melanins against C. neoformans and C. gattii were (average/range): 13.7/(7.8-15.6) and 19.5/(15.6-31.2) μg/mL, respectively, for human melanin; 273.4/(125->500) and 367.2/(125.5->500) μg/mL for C. neoformans melanin and 125/(62.5-250) and 156.2/(62-250) μg/mL for C. gattii melanin. Using Scanning Electron Microscopy we observed that human melanin showed a compact conformation and cryptococcal melanins exposed an amorphous conformation. Infrared spectroscopy (FTIR) showed some differences in the signals related to C-C bonds of the aromatic ring of the melanin monomers. High Performance Liquid Chromatography established differences in the chromatograms of fungal melanins extracts in comparison with human and synthetic melanin, particularly in the retention time of the main compound of fungal melanin extracts and also in the presence of minor unknown compounds. On the other hand, MALDI-TOF-MS analysis showed slight differences in the spectra, specifically the presence of a minor intensity ion in synthetic and human melanin, as well as in some fungal melanin extracts. We conclude that human melanin is more active than the two fungal melanins against Cryptococcus. Although some physico-chemical differences were found, they do not explain the differences in the antifungal activity against Cryptococcus of human and cryptococcal melanins. More detailed studies on the structure should be considered to associate structure and antifungal activity.
Cassim, Naseem; Coetzee, Lindi Marie; Schnippel, Kathryn; Glencross, Deborah Kim
2017-01-01
During 2016, the National Health Laboratory Service (NHLS) introduced laboratory-based reflexed Cryptococcal antigen (CrAg) screening to detect early Cryptococcal disease in immunosuppressed HIV+ patients with a confirmed CD4 count of 100 cells/μl or less. The aim of this study was to assess cost-per-result of a national screening program across different tiers of laboratory service, with variable daily CrAg test volumes. The impact of potential ART treatment guideline and treatment target changes on CrAg volumes, platform choice and laboratory workflow are considered. CD4 data (with counts < = 100 cells/μl) from the fiscal year 2015/16 were extracted from the NHLS Corporate Date Warehouse and used to project anticipated daily CrAg testing volumes with appropriately-matched CrAg testing platforms allocated at each of 52 NHLS CD4 laboratories. A cost-per-result was calculated for four scenarios, including the existing service status quo (Scenario-I), and three other settings (as Scenarios II-IV) which were based on information from recent antiretroviral (ART) guidelines, District Health Information System (DHIS) data and UNAIDS 90/90/90 HIV/AIDS treatment targets. Scenario-II forecast CD4 testing offered only to new ART initiates recorded at DHIS. Scenario-III projected all patients notified as HIV+, but not yet on ART (recorded at DHIS) and Scenario-IV forecast CrAg screening in 90% of estimated HIV+ patients across South Africa (also DHIS). Stata was used to assess daily CrAg volumes at the 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles across 52 CD4-laboratories. Daily volumes were used to determine technical effort/ operator staff costs (% full time equivalent) and cost-per-result for all scenarios. Daily volumes ranged between 3 and 64 samples for Scenario-I at the 5th and 95th percentile. Similarly, daily volumes ranges of 1-12, 2-45 and 5-100 CrAg-directed samples were noted for Scenario's II, III and IV respectively. A cut-off of 30 CrAg tests per day defined use of either LFA or EIA platform. LFA cost-per-result ranged from $8.24 to $5.44 and EIA cost-per-result between $5.58 and $4.88 across the range of test volumes. The technical effort across scenarios ranged from 3.2-27.6% depending on test volumes and platform used. The study reported the impact of programmatic testing requirements on varying CrAg test volumes that subsequently influenced choice of testing platform, laboratory workflow and cost-per-result. A novel percentiles approach is described that enables an overview of the cost-per-result across a national program. This approach facilitates cross-subsidisation of more expensive lower volume sites with cost-efficient, more centralized higher volume laboratories, mitigating against the risk of costing tests at a single site.
Goldman, David L; Vicencio, Alfin G
2012-01-01
Chitin, a polymer of N-acetylglucosamine, is an essential component of the fungal cell wall. Chitosan, a deacetylated form of chitin, is also important in maintaining cell wall integrity and is essential for Cryptococcus neoformans virulence. In their article, Gilbert et al. [N. M. Gilbert, L. G. Baker, C. A. Specht, and J. K. Lodge, mBio 3(1):e00007-12, 2012] demonstrate that the enzyme responsible for chitosan synthesis, chitin deacetylase (CDA), is differentially attached to the cell membrane and wall. Bioactivity is localized to the cell membrane, where it is covalently linked via a glycosylphosphatidylinositol (GPI) anchor. Findings from this study significantly enhance our understanding of cryptococcal cell wall biology. Besides the role of chitin in supporting structural stability, chitin and host enzymes with chitinase activity have an important role in host defense and modifying the inflammatory response. Thus, chitin appears to provide a link between the fungus and host that involves both innate and adaptive immune responses. Recently, there has been increased attention to the role of chitinases in the pathogenesis of allergic inflammation, especially asthma. We review these findings and explore the possible connection between fungal infections, the induction of chitinases, and asthma.
Davis, Michael J.; Eastman, Alison J.; Qiu, Yafeng; Gregorka, Brian; Kozel, Thomas R.; Osterholzer, John J.; Curtis, Jeffrey L.; Swanson, Joel A.; Olszewski, Michal A.
2015-01-01
Upon ingestion by macrophages, Cryptococcus neoformans (Cn) can survive and replicate intracellularly unless the macrophages become classically activated. The mechanism enabling intracellular replication is not fully understood; neither are the mechanisms which allow classical activation to counteract replication. Cn-induced lysosome damage was observed in infected murine bone marrow-derived macrophages, increased with time and required yeast viability. To demonstrate lysosome damage in the infected host, we developed a novel flow-cytometric method for measuring lysosome damage. Increased lysosome damage was found in Cn-containing lung cells compared to Cn–free cells. Among Cn-containing myeloid cells, recently recruited cells displayed lower damage than resident cells, consistent with the protective role of recruited macrophages. The magnitude of lysosome damage correlated with increased Cn replication. Experimental induction of lysosome damage increased Cn replication. Activation of macrophages with IFN-γ abolished macrophage lysosome damage and enabled increased killing of Cn. We conclude that induction of lysosome damage is an important Cn survival strategy and that classical activation of host macrophages counters replication by preventing damage. Thus, therapeutic strategies which decrease lysosomal damage, or increase resistance to such damage, could be valuable in treating cryptococcal infections. PMID:25637026
Profiling a killer, the development of Cryptococcus neoformans
Kozubowski, Lukasz; Heitman, Joseph
2012-01-01
The ability of fungi to transition between unicellular and multicellular growth has a profound impact on our health and the economy. Many important fungal pathogens of humans, animals, and plants are dimorphic, and the ability to switch between morphological states has been associated with their virulence. Cryptococcus neoformans is a human fungal pathogen that causes life-threatening meningoencephalitis in immunocompromised and, in some cases, immunocompetent hosts. Cryptococcus neoformans grows vegetatively as a budding yeast and switches to hyphal growth during the sexual cycle, which is important in the study of cryptococcal pathogenicity because spores resulting from sexual development are infectious propagules and can colonize the lungs of a host. In addition, sexual reproduction contributes to the genotypic variability of Cryptococcus species, which may lead to increased fitness and virulence. Despite significant advances in our understanding of the mechanisms behind the development of C. neoformans, our knowledge is still incomplete. Recent studies have led to the emergence of many intriguing questions and hypotheses. In this review, we describe and discuss the most interesting aspects of C. neoformans development and address their impact on pathogenicity. PMID:21658085
Montezuma-Rusca, Jairo M; Powers, John H; Follmann, Dean; Wang, Jing; Sullivan, Brigit; Williamson, Peter R
2016-01-01
Cryptococcal meningitis (CM) is a leading cause of HIV-associated mortality. In clinical trials evaluating treatments for CM, biomarkers of early fungicidal activity (EFA) in cerebrospinal fluid (CSF) have been proposed as candidate surrogate endpoints for all- cause mortality (ACM). However, there has been no systematic evaluation of the group-level or trial-level evidence for EFA as a candidate surrogate endpoint for ACM. We conducted a systematic review of randomized trials in treatment of CM to evaluate available evidence for EFA measured as culture negativity at 2 weeks/10 weeks and slope of EFA as candidate surrogate endpoints for ACM. We performed sensitivity analysis on superiority trials and high quality trials as determined by Cochrane measures of trial bias. Twenty-seven trials including 2854 patients met inclusion criteria. Mean ACM was 15.8% at 2 weeks and 27.0% at 10 weeks with no overall significant difference between test and control groups. There was a statistically significant group-level correlation between average EFA and ACM at 10 weeks but not at 2 weeks. There was also no statistically significant group-level correlation between CFU culture negativity at 2weeks/10weeks or average EFA slope at 10 weeks. A statistically significant trial-level correlation was identified between EFA slope and ACM at 2 weeks, but is likely misleading, as there was no treatment effect on ACM. Mortality remains high in short time periods in CM clinical trials. Using published data and Institute of Medicine criteria, evidence for use of EFA as a surrogate endpoint for ACM is insufficient and could provide misleading results from clinical trials. ACM should be used as a primary endpoint evaluating treatments for cryptococcal meningitis.
Wirth, Fernanda; de Azevedo, Maria Isabel; Pilla, Carmen; Aquino, Valério Rodrigues; Neto, Gustavo Wissmann; Goldani, Luciano Zubaran
2018-04-01
The purpose of this study was to evaluate the influence of intracranial hypertension in the cerebrospinal fluid (CSF) levels of amphotericin B and fluconazole levels of patients with cryptococcal meningitis. CSF samples and intracranial pressure were obtained by means of routine punctures performed at days 1, 7, and 14 of therapy, respectively. Amphotericin B and fluconazole CSF levels were measured by HPLC method as previously described. The minimum inhibitory concentration for amphotericin B, fluconazole, 5΄flucytosine, and voriconazole of each Cryptococcus isolate was performed according to CLSI. The predominant Cryptococcus species found was C. neoformans, and the major underlying condition was AIDS. Only one CSF sample had a detectable level for amphotericin B during the 14 days of therapy. Fluconazole CSF levels progressively increased from day 1 to day 14 of therapy for most cases. Fluconazole levels in the CSF were above the minimum inhibitory concentrations (MICs) for Cryptococcus during the initial 14 days of antifungal therapy. Variations of intracranial pressure did not affect amphotericin B and fluconazole levels in the CSF. The generalized estimating correlation (GEE) and Spearman correlation test (SCT) showed no significant correlation between the amphotericin B or fluconazole concentrations in the CSF and intracranial pressure (P = .953 and P = .093, respectively for GEE test and P = .477 and P = .847, respectively, for SCT). Combination therapy of amphotericin B with fluconazole was effective in 60% of the patients considering CSF cultures were negative in 9 of 15 patients after 14 days of therapy. Further studies are necessary to evaluate the role of intracranial hypertension on the therapeutic efficacy of different antifungal agents in patients with cryptococcal meningitis.
Smith, Mariette; Smith, Rachel; Osler, Meg; Kelly, Nicola; Cross, Anna; Boulle, Andrew; Meintjes, Graeme; Govender, Nelesh P.
2016-01-01
Background Screening for serum cryptococcal antigen (CrAg) may identify those at risk for disseminated cryptococcal disease (DCD), and pre-emptive fluconazole treatment may prevent progression to DCD. In August 2012, the Western Cape Province (WC), South Africa, adopted provider-initiated CrAg screening. We evaluated the implementation and effectiveness of this large-scale public-sector program during its first year, September 1, 2012—August 31, 2013. Methods We used data from the South African National Health Laboratory Service, WC provincial HIV program, and nationwide surveillance data for DCD. We assessed the proportion of eligible patients screened for CrAg (CrAg test done within 30 days of CD4 date) and the prevalence of CrAg positivity. Incidence of DCD among those screened was compared with those not screened. Results Of 4,395 eligible patients, 26.6% (n=1170) were screened. The proportion of patients screened increased from 15.9% in September 2012 to 36.6% in August 2013. The prevalence of positive serum CrAg was 2.1%. Treatment data were available for 13 of 24 CrAg-positive patients; nine of 13 were treated with fluconazole. Nine (0.8%) incident cases of DCD occurred among the 1170 patients who were screened for CrAg vs. 49 (1.5%) incident cases among the 3225 patients not screened (p=0.07). Conclusions Relatively few eligible patients were screened under the WC provider-initiated CrAg screening program. Unscreened patients were nearly twice as likely to develop DCD. CrAg screening can reduce the burden of DCD, but needs to be implemented well. To improve screening rates, countries should consider laboratory-based reflexive screening when possible. PMID:26926942
Kangogo, Mourine; Bader, Oliver; Boga, Hamadi; Wanyoike, Wanjiru; Folba, Claudia; Worasilchai, Navaporn; Weig, Michael; Groß, Uwe; Bii, Christine C
2015-11-01
Cryptococcal meningitis infections cause high mortality rates among HIV-infected patients in Sub-Saharan Africa. The high incidences of cryptococcal infections may be attributed to common environmental sources which, if identified, could lead to institution of appropriate control strategies. To determine the genotypes of Cryptococcus gattii/C. neoformans- species complex from Nairobi, Kenya, 123 clinical and environmental isolates were characterised. Typing was done using orotidine monophosphate pyrophosphorylase (URA5) gene restriction fragment length polymorphism (URA5-RFLP). The majority of the isolates [105/123; 85.4%] were C. neoformans genotype (AFLPI/VNI) and 1.6% AFLP1A/VNB/VNII, whereas (13%) were C. gattii (AFLP4/VGI). This is the first report on the genotypes of C. gattii/C. neoformans species complex from clinical and environmental sources in Nairobi, Kenya and the isolation of C. gattii genotype AFLP4/VGI from the environment in Kenya. © 2015 Blackwell Verlag GmbH.
Ding, J C; Bauer, M; Diamond, D M; Leal, M A; Johnson, D; Williams, B K; Thomas, A M; Najvar, L; Graybill, J R; Larsen, R A
1997-01-01
We studied the effect of the severity of meningitis on the response to therapy with fluconazole and flucytosine in a murine model of cryptococcal meningitis. Meningitis was established by intracerebral injection of Cryptococcus neoformans. The severity of meningitis was varied by delaying the onset of treatment from 3 to 7 days. Animals were sacrificed after 14 days of treatment, and the numbers of C. neoformans per gram of brain tissue were quantified. The range of effective dose combinations of fluconazole and flucytosine became progressively reduced as the severity of meningitis increased. The magnitude of treatment effect, as measured by the numbers of CFU/gram of brain tissue, was also reduced with increasing severity of meningitis. In this model, as the severity of meningitis increases, higher doses of fluconazole are required to achieve equivalent levels of activity. The combination of fluconazole and flucytosine appears to have the most-potent antifungal effects. This is most readily observed in animals with more-severe meningitis. PMID:9210691
Combination Antifungal Therapy for Cryptococcal Meningitis
Day, Jeremy N.; Chau, Tran T.H.; Wolbers, Marcel; Mai, Pham P.; Dung, Nguyen T.; Mai, Nguyen H.; Phu, Nguyen H.; Nghia, Ho D.; Phong, Nguyen D.; Thai, Cao Q.; Thai, Le H.; Chuong, Ly V.; Sinh, Dinh X.; Duong, Van A.; Hoang, Thu N.; Diep, Pham T.; Campbell, James I.; Sieu, Tran P.M.; Baker, Stephen G.; Chau, Nguyen V.V.; Hien, Tran T.
2014-01-01
BACKGROUND Combination antifungal therapy (amphotericin B deoxycholate and flucytosine) is the recommended treatment for cryptococcal meningitis but has not been shown to reduce mortality, as compared with amphotericin B alone. We performed a randomized, controlled trial to determine whether combining flucytosine or high-dose fluconazole with high-dose amphotericin B improved survival at 14 and 70 days. METHODS We conducted a randomized, three-group, open-label trial of induction therapy for cryptococcal meningitis in patients with human immunodeficiency virus infection. All patients received amphotericin B at a dose of 1 mg per kilogram of body weight per day; patients in group 1 were treated for 4 weeks, and those in groups 2 and 3 for 2 weeks. Patients in group 2 concurrently received flucytosine at a dose of 100 mg per kilogram per day for 2 weeks, and those in group 3 concurrently received fluconazole at a dose of 400 mg twice daily for 2 weeks. RESULTS A total of 299 patients were enrolled. Fewer deaths occurred by days 14 and 70 among patients receiving amphotericin B and flucytosine than among those receiving amphotericin B alone (15 vs. 25 deaths by day 14; hazard ratio, 0.57; 95% confidence interval [CI], 0.30 to 1.08; unadjusted P = 0.08; and 30 vs. 44 deaths by day 70; hazard ratio, 0.61; 95% CI, 0.39 to 0.97; unadjusted P = 0.04). Combination therapy with fluconazole had no significant effect on survival, as compared with monotherapy (hazard ratio for death by 14 days, 0.78; 95% CI, 0.44 to 1.41; P = 0.42; hazard ratio for death by 70 days, 0.71; 95% CI, 0.45 to 1.11; P = 0.13). amphotericin B plus flucytosine was associated with significantly increased rates of yeast clearance from cerebrospinal fluid (−0.42 log10 colony-forming units [CFU] per milliliter per day vs. −0.31 and −0.32 log10 CFU per milliliter per day in groups 1 and 3, respectively; P<0.001 for both comparisons). Rates of adverse events were similar in all groups, although neutropenia was more frequent in patients receiving a combination therapy. CONCLUSIONS Amphotericin B plus flucytosine, as compared with amphotericin B alone, is associated with improved survival among patients with cryptococcal meningitis. A survival benefit of amphotericin B plus fluconazole was not found. (Funded by the Wellcome Trust and the British Infection Society; Controlled-Trials.com number, ISRCTN95123928.) PMID:23550668
Kaufman-Francis, Keren; Desmarini, Desmarini; Juillard, Pierre G.; Li, Cecilia; Stifter, Sebastian A.; Feng, Carl G.; Sorrell, Tania C.; Grau, Georges E. R.; Bahn, Yong-Sun
2017-01-01
ABSTRACT Phosphate acquisition by fungi is regulated by the phosphate-sensing and acquisition (PHO) signaling pathway. Cryptococcus neoformans disseminates from the lung to the brain and is the commonest cause of fungal meningitis worldwide. To investigate the contribution of PHO signaling to cryptococcal dissemination, we characterized a transcription factor knockout strain (hlh3Δ/pho4Δ) defective in phosphate acquisition. Despite little similarity with other fungal Pho4 proteins, Hlh3/Pho4 functioned like a typical phosphate-responsive transcription factor in phosphate-deprived cryptococci, accumulating in nuclei and triggering expression of genes involved in phosphate acquisition. The pho4Δ mutant strain was susceptible to a number of stresses, the effect of which, except for alkaline pH, was alleviated by phosphate supplementation. Even in the presence of phosphate, the PHO pathway was activated in wild-type cryptococci at or above physiological pH, and under these conditions, the pho4Δ mutant had a growth defect and compromised phosphate uptake. The pho4Δ mutant was hypovirulent in a mouse inhalation model, where dissemination to the brain was reduced dramatically, and markedly hypovirulent in an intravenous dissemination model. The pho4Δ mutant was not detected in blood, nor did it proliferate significantly when cultured with peripheral blood monocytes. In conclusion, dissemination of infection and the pathogenesis of meningitis are dependent on cryptococcal phosphate uptake and stress tolerance at alkaline pH, both of which are Pho4 dependent. IMPORTANCE Cryptococcal meningitis is fatal without treatment and responsible for more than 500,000 deaths annually. To be a successful pathogen, C. neoformans must obtain an adequate supply of essential nutrients, including phosphate, from various host niches. Phosphate acquisition in fungi is regulated by the PHO signaling cascade, which is activated when intracellular phosphate decreases below a critical level. Induction of phosphate acquisition genes leads to the uptake of free phosphate via transporters. By blocking the PHO pathway using a Pho4 transcription factor mutant (pho4Δ mutant), we demonstrate the importance of the pathway for cryptococcal dissemination and the establishment of brain infection in murine models. Specifically, we show that reduced dissemination of the pho4Δ mutant to the brain is due to an alkaline pH tolerance defect, as alkaline pH mimics the conditions of phosphate deprivation. The end result is inhibited proliferation in host tissues, particularly in blood. Podcast: A podcast concerning this article is available. PMID:28144629
Cryptococcal meningitis in an immunocompetent child: a case report and literature review.
Othman, Norlijah; Abdullah, Nor Atiqah Ng; Wahab, Zubaidah Abdul
2004-12-01
An immunocompetent 5 year-old girl presented with pyrexia of unknown origin associated with headache. Initial investigations showed leukocytosis and an increased erythrocyte sedimentation rate. A Widal-Weil Felix test, blood film for malarial parasites, mycoplasma IgM antibody, cultures from blood and urine, full blood picture, Mantoux test, and chest x-ray were all negative. A lumbar puncture was done as part of a work-up for pyrexia of unknown origin. Cryptococcus neoformans was seen on India ink examination and confirmed on culture. She was treated with 10 weeks of intravenous amphotericin B and 8 weeks of fluconazole. Further immunological tests did not reveal any defect in the cell-mediated immune system. C. neoformans meningitis may present with non-specific symptoms and should be considered in a work-up for pyrexia of unknown origin.
2017-01-01
ABSTRACT Bacteria interact with each other in nature and often compete for limited nutrient and space resources. However, it is largely unknown whether and how bacteria also interact with human fungal pathogens naturally found in the environment. Here, we identified a soil bacterium, Bacillus safensis, which potently blocked several key Cryptococcus neoformans virulence factors, including formation of the antioxidant pigment melanin and production of the antiphagocytic polysaccharide capsule. The bacterium also inhibited de novo cryptococcal biofilm formation but had only modest inhibitory effects on already formed biofilms or planktonic cell growth. The inhibition of fungal melanization was dependent on direct cell contact and live bacteria. B. safensis also had anti-virulence factor activity against another major human-associated fungal pathogen, Candida albicans. Specifically, dual-species interaction studies revealed that the bacterium strongly inhibited C. albicans filamentation and biofilm formation. In particular, B. safensis physically attached to and degraded candidal filaments. Through genetic and phenotypic analyses, we demonstrated that bacterial chitinase activity against fungal cell wall chitin is a factor contributing to the antipathogen effect of B. safensis. PMID:28974618
Kumari, Sunita; Verma, Rajesh Kumar; Singh, Dharmendra Prasad; Yadav, Ramakant
2016-04-01
The cases of cryptococcal meningitis and other forms of cryptococcosis have increased in recent time and the present scenario of the condition with significant morbidity and mortality is actually posing a serious threat to the community, so an early and prompt diagnosis is necessary to prevent serious complications and thus improving the overall disease outcome. Comparison of diagnostic efficacy of nested Polymerase Chain Reaction (PCR) with Latex Agglutination Test (LAT) in the Cerebro Spinal Fluid (CSF) samples of the cases of meningitis in HIV positive and negative cases. We have compared the diagnostic efficacy of Latex Agglutination Test (LAT) with nested Polymerase Chain Reaction (PCR) in 200 Cerebrospinal Fluid (CSF) samples, including 14 HIV positive also, in the cases of suspected cryptococcal meningitis. Nested PCR was done in all cases reporting positive by LAT and results were then compared with that of India ink and culture on Sabouraud Dextrose Agar (SDA), and the isolates were further identified by urease, nitrate and sugar assimilation tests. Of the 200 cases, including 14 HIV positive, LAT was positive in 46 cases while 154 were negative. Out of these 46 LAT positive cases, nested PCR was positive in 40 cases only, while culture and India ink was positive in 38 and 33 cases respectively. Majority of the cases, 30 (65.2%) were between age group 21-50 years, while 2 (4.3%) in 0-20, and 14 (30.4%) in 51-80 years age group. Although negative staining like India ink and nigrosin are most widely used techniques, but these suffer with subjective error. Rapid method like LAT is available but it always has the scope of false positive and negative results. In such cases nested PCR can help in establishing final diagnosis.
Levitz, S M; Nong , S; Mansour, M K; Huang, C; Specht, C A
2001-08-28
The fungus Cryptococcus neoformans is a major cause of morbidity and mortality in patients with impaired CD4(+) T cell function, particularly those with AIDS. To identify cryptococcal antigens that could serve as vaccine candidates by stimulating T cell responses, C. neoformans-reactive CD4(+) T cell hybridomas were generated by immunization of C57BL/6 mice and fusion of splenocytes with thymoma cells. The antigen that stimulated one of the hybridomas, designated P1D6, to produce IL-2 was purified to homogeneity by sequential anion exchange chromatography, hydrophobic interaction chromatography, and SDS/PAGE. Based on its apparent molecular mass of 98 kDa and mannosylation, the antigen of interest was named MP98. MP98 was N terminal-sequenced, and the gene encoding the protein was cloned and sequenced. Recombinant MP98, expressed in Saccharomyces cerevisiae, stimulated P1D6 to produce IL-2. Analysis of the derived 458-aa sequence of MP98 reveals an N-terminal cleavable signal sequence, a polysaccharide deacetylase domain found in fungal chitin deacetylases, and a serine/threonine-rich C-terminal region. Overall, there were 103 serine/threonine residues serving as potential O-linked glycosylation sites as well as 12 possible N-linked glycosylation sites. Thus, a C. neoformans mannoprotein has been characterized that stimulates T cell responses and has molecular properties of a chitin deacetylase.
Ngamskulrungroj, Popchai; Himmelreich, Uwe; Breger, Julia A.; Wilson, Christabel; Chayakulkeeree, Methee; Krockenberger, Mark B.; Malik, Richard; Daniel, Heide-Marie; Toffaletti, Dena; Djordjevic, Julianne T.; Mylonakis, Eleftherios; Meyer, Wieland; Perfect, John R.
2009-01-01
The trehalose pathway is essential for stress tolerance and virulence in fungi. We investigated the importance of this pathway for virulence of the pathogenic yeast Cryptococcus gattii using the highly virulent Vancouver Island, Canada, outbreak strain R265. Three genes putatively involved in trehalose biosynthesis, TPS1 (trehalose-6-phosphate [T6P] synthase) and TPS2 (T6P phosphatase), and degradation, NTH1 (neutral trehalose), were deleted in this strain, creating the R265tps1Δ, R265tps2Δ, and R265nth1Δ mutants. As in Cryptococcus neoformans, cellular trehalose was reduced in the R265tps1Δ and R265tps2Δ mutants, which could not grow and died, respectively, at 37°C on yeast extract-peptone-dextrose agar, suggesting that T6P accumulation in R265tps2Δ is directly toxic. Characterizations of the cryptococcal hexokinases and trehalose mutants support their linkage to the control of glycolysis in this species. However, unlike C. neoformans, the C. gattii R265tps1Δ mutant demonstrated, in addition, defects in melanin and capsule production, supporting an influence of T6P on these virulence pathways. Attenuated virulence of the R265tps1Δ mutant was not due solely to its 37°C growth defect, as shown in worm studies and confirmed by suppressor mutants. Furthermore, an intact trehalose pathway controls protein secretion, mating, and cell wall integrity in C. gattii. Thus, the trehalose synthesis pathway plays a central role in the virulence composites of C. gattii through multiple mechanisms. Deletion of NTH1 had no effect on virulence, but inactivation of the synthesis genes, TPS1 and TPS2, has profound effects on survival of C. gattii in the invertebrate and mammalian hosts. These results highlight the central importance of this pathway in the virulence composites of both pathogenic cryptococcal species. PMID:19651856
Doyle, H A; Murphy, J W
1997-02-01
Leukocyte infiltration into infected tissues is essential for the clearance of microorganisms. In animals with a cell-mediated immune (CMI) response to the infectious agent, as opposed to naive animals, leukocyte migration is greatly enhanced into sites of the organism or antigen. The role of the,chemotactic cytokine or chemokine, macrophage inflammatory protein-1 alpha (MIP-1 alpha), in the expression phase of the CMI response and in protection against Cryptococcus neoformans was assessed. With the use of a gelatin sponge model in mice as a means of detecting an anti-cryptococcal delayed-type hypersensitivity (DTH) reaction, we found that MIP-1 alpha levels in fluids from cryptococcal antigen (CneF)-injected sponges in immunized mice (DTH-reactive sponges) were significantly increased over levels of MIP-1 alpha in fluids from saline-injected control sponges at 12 and 24-30 h after injection. MIP-1 alpha levels peaked before increases in neutrophils and lymphocytes in the DTH-reactive sponges, suggesting that MIP-1 alpha was responsible, at least in part, for attracting these leukocyte types. Immunized mice treated with neutralizing antibody to MIP-1 alpha before sponge injection with CneF had reduced numbers of neutrophils and lymphocytes in the DTH-reactive sponges and showed reduced clearance of C. neoformans from the lungs, spleens, livers, and brains when compared with controls. Furthermore, injection of rmMIP-1 alpha into sponges in naive mice resulted in an increase in the influx of neutrophils and lymphocytes into the sponges compared with saline-injected sponges. Together our findings provide solid evidence that MIP-1 alpha is a component of the anticryptococcal DTH reaction. In addition, MIP-1 alpha influences neutrophil influx and attracts lymphocytes into the DTH reaction site. Finally, we showed that MIP-1 alpha plays a role in protection against C. neoformans.
Polyploid titan cells produce haploid and aneuploid progeny to promote stress adaptation.
Gerstein, Aleeza C; Fu, Man Shun; Mukaremera, Liliane; Li, Zhongming; Ormerod, Kate L; Fraser, James A; Berman, Judith; Nielsen, Kirsten
2015-10-13
Cryptococcus neoformans is a major life-threatening fungal pathogen. In response to the stress of the host environment, C. neoformans produces large polyploid titan cells. Titan cell production enhances the virulence of C. neoformans, yet whether the polyploid aspect of titan cells is specifically influential remains unknown. We show that titan cells were more likely to survive and produce offspring under multiple stress conditions than typical cells and that even their normally sized daughters maintained an advantage over typical cells in continued exposure to stress. Although polyploid titan cells generated haploid daughter cell progeny upon in vitro replication under nutrient-replete conditions, titan cells treated with the antifungal drug fluconazole produced fluconazole-resistant diploid and aneuploid daughter cells. Interestingly, a single titan mother cell was capable of generating multiple types of aneuploid daughter cells. The increased survival and genomic diversity of titan cell progeny promote rapid adaptation to new or high-stress conditions. The ability to adapt to stress is a key element for survival of pathogenic microbes in the host and thus plays an important role in pathogenesis. Here we investigated the predominantly haploid human fungal pathogen Cryptococcus neoformans, which is capable of ploidy and cell size increases during infection through production of titan cells. The enlarged polyploid titan cells are then able to rapidly undergo ploidy reduction to generate progeny with reduced ploidy and/or aneuploidy. Under stressful conditions, titan cell progeny have a growth and survival advantage over typical cell progeny. Understanding how titan cells enhance the rate of cryptococcal adaptation under stress conditions may assist in the development of novel drugs aimed at blocking ploidy transitions. Copyright © 2015 Gerstein et al.
Poor long-term outcomes for cryptococcal meningitis in rural South Africa.
Lessells, Richard J; Mutevedzi, Portia C; Heller, Tom; Newell, Marie-Louise
2011-04-01
To explore linkage to and retention in HIV care after an episode of cryptococcal meningitis (CM) in rural South Africa. Design. A retrospective case series of adult individuals (> or = 16 years old) with laboratory-confirmed CM from January - December 2007 at Hlabisa Hospital--a district hospital in northern KwaZulu-Natal. Inpatient mortality and associated risk factors were analysed. The proportion alive and on antiretroviral therapy (ART) at 2 years was determined by linkage to the HIV treatment programme. One hundred and four individuals were identified with laboratory diagnosis of CM; 74/104 (71.2%) with complete records were included in the analysis. Inpatient mortality was high (40.5%) and was significantly associated with reduced conscious level (aHR 3.09, 95% CI 1.30 - 7.33) and absence of headache (aHR 0.33 for headache, 95% CI 0.13 - 0.87). Only 8 individuals (10.8% of all study subjects) were alive and receiving ART 2 years after the CM episode. Long-term outcomes of CM are poor in routine practice. Interventions to strengthen linkage to HIV treatment and care and continuation of secondary fluconazole prophylaxis are critical.
Cryptococcal pathogenic mechanisms: a dangerous trip from the environment to the brain.
Esher, Shannon K; Zaragoza, Oscar; Alspaugh, James Andrew
2018-01-01
Cryptococcus neoformans is an opportunistic pathogenic yeast that causes serious infections, most commonly of the central nervous system (CNS). C. neoformans is mainly found in the environment and acquired by inhalation. It could be metaphorically imagined that cryptococcal disease is a "journey" for the microorganism that starts in the environment, where this yeast loads its suitcase with virulence traits. C. neoformans first encounters the infected mammalian host in the lungs, a site in which it must choose the right elements from its "virulence suitcase" to survive the pulmonary immune response. However, the lung is often only the first stop in this journey, and in some individuals the fungal trip continues to the brain. To enter the brain, C. neoformans must "open" the main barrier that protects this organ, the blood brain barrier (BBB). Once in the brain, C. neoformans expresses a distinct set of protective attributes that confers a strong neurotropism and the ability to cause brain colonisation. In summary, C. neoformans is a unique fungal pathogen as shown in its ability to survive in the face of multiple stress factors and to express virulence factors that contribute to the development of disease.
Tseng, Hsiang-Kuang; Liu, Chang-Pan; Price, Michael S.; Jong, Ambrose Y.; Chang, Jui-Chih; Toffaletti, Dena L.; Betancourt-Quiroz, Marisol; Frazzitta, Aubrey E.; Cho, Wen-Long; Perfect, John R.
2012-01-01
Background A mouse brain transmigration assessment (MBTA) was created to investigate the central nervous system (CNS) pathogenesis of cryptococcal meningoencephalitis. Methodology/Principal Findings Two cryptococcal mutants were identified from a pool of 109 pre-selected mutants that were signature-tagged with the nourseothricin acetyltransferase (NAT) resistance cassette. These two mutants displayed abnormal transmigration into the central nervous system. One mutant displaying decreased transmigration contains a null mutation in the putative FNX1 gene, whereas the other mutant possessing a null mutation in the putative RUB1 gene exhibited increased transmigration into the brain. Two macrophage adhesion-defective mutants in the pool, 12F1 and 3C9, showed reduced phagocytosis by macrophages, but displayed no defects in CNS entry suggesting that transit within macrophages (the “Trojan horse” model of CNS entry) is not the primary mechanism for C. neoformans migration into the CNS in this MBTA. Conclusions/Significance This research design provides a new strategy for genetic impact studies on how Cryptococcus passes through the blood-brain barrier (BBB), and the specific isolated mutants in this assay support a transcellular mechanism of CNS entry. PMID:23028773
Cryptococcal pathogenic mechanisms: a dangerous trip from the environment to the brain
Esher, Shannon K; Zaragoza, Oscar; Alspaugh, James Andrew
2018-01-01
Cryptococcus neoformans is an opportunistic pathogenic yeast that causes serious infections, most commonly of the central nervous system (CNS). C. neoformans is mainly found in the environment and acquired by inhalation. It could be metaphorically imagined that cryptococcal disease is a “journey” for the microorganism that starts in the environment, where this yeast loads its suitcase with virulence traits. C. neoformans first encounters the infected mammalian host in the lungs, a site in which it must choose the right elements from its “virulence suitcase” to survive the pulmonary immune response. However, the lung is often only the first stop in this journey, and in some individuals the fungal trip continues to the brain. To enter the brain, C. neoformans must “open” the main barrier that protects this organ, the blood brain barrier (BBB). Once in the brain, C. neoformans expresses a distinct set of protective attributes that confers a strong neurotropism and the ability to cause brain colonisation. In summary, C. neoformans is a unique fungal pathogen as shown in its ability to survive in the face of multiple stress factors and to express virulence factors that contribute to the development of disease. PMID:29668825
Cryptococcus neoformans can form titan-like cells in vitro in response to multiple signals.
Trevijano-Contador, Nuria; de Oliveira, Haroldo Cesar; García-Rodas, Rocío; Rossi, Suélen Andreia; Llorente, Irene; Zaballos, Ángel; Janbon, Guilhem; Ariño, Joaquín; Zaragoza, Óscar
2018-05-01
Cryptococcus neoformans is an encapsulated pathogenic yeast that can change the size of the cells during infection. In particular, this process can occur by enlarging the size of the capsule without modifying the size of the cell body, or by increasing the diameter of the cell body, which is normally accompanied by an increase of the capsule too. This last process leads to the formation of cells of an abnormal enlarged size denominated titan cells. Previous works characterized titan cell formation during pulmonary infection but research on this topic has been hampered due to the difficulty to obtain them in vitro. In this work, we describe in vitro conditions (low nutrient, serum supplemented medium at neutral pH) that promote the transition from regular to titan-like cells. Moreover, addition of azide and static incubation of the cultures in a CO2 enriched atmosphere favored cellular enlargement. This transition occurred at low cell densities, suggesting that the process was regulated by quorum sensing molecules and it was independent of the cryptococcal serotype/species. Transition to titan-like cell was impaired by pharmacological inhibition of PKC signaling pathway. Analysis of the gene expression profile during the transition to titan-like cells showed overexpression of enzymes involved in carbohydrate metabolism, as well as proteins from the coatomer complex, and related to iron metabolism. Indeed, we observed that iron limitation also induced the formation of titan cells. Our gene expression analysis also revealed other elements involved in titan cell formation, such as calnexin, whose absence resulted in appearance of abnormal large cells even in regular rich media. In summary, our work provides a new alternative method to investigate titan cell formation devoid the bioethical problems that involve animal experimentation.
Serologic evidence for Cryptococcus neoformans infection in early childhood.
Goldman, D L; Khine, H; Abadi, J; Lindenberg, D J; Pirofski La; Niang, R; Casadevall, A
2001-05-01
Cryptococcus neoformans is an important cause of central nervous system infection in adults with acquired immunodeficiency syndrome (AIDS) but an unusual cause of disease in children with AIDS. The basis for this age-related difference in incidence is not known but may be caused by differences in exposure or immune response. The objective of this study was to determine whether the low prevalence of cryptococcal disease among children is related to a lack of exposure to C neoformans. Sera were obtained from 185 immunocompetent individuals ranging in age from 1 week to 21 years who were being evaluated in an urban emergency department. Sera were analyzed for antibodies to C neoformans and Candida albicans proteins by immunoblotting. Immunoblot patterns were compared with those obtained from sera of patients with cryptococcosis (n = 10) and workers in a laboratory devoted to the study of C neoformans. The specificity of our results was confirmed by several approaches, including antibody absorption and blocking studies. Sera were also analyzed for the presence of cryptococcal polysaccharide by both enzyme-linked immunosorbent assay and latex agglutination assays. Sera from children 1.1 to 2 years old demonstrated minimal reactivity to C neoformans proteins. In contrast, the majority of sera from children >2 years old recognized many (>/=6) C neoformans proteins. For children between 2.1 and 5 years old, 56% of sera (n = 25) reacted with many proteins, whereas for children >5 years old (n = 120), 70% of samples reacted with many proteins. Reactivity was decreased by absorbing sera with C neoformans extracts or by preincubating blots with sera from experimentally infected but not from control rats. Reactivity to C neoformans proteins did not correlate with reactivity to C albicans proteins, which was common in sera from children between the ages of 1.1 and 2 years. Cryptococcal polysaccharide was detected at a titer of 1:16 (~10 ng/mL) in the sera of 1 child, a 5.6-year-old boy who presented to the emergency department with vomiting. Our findings provide both indirect and direct evidence of C neoformans infection in immunocompetent children. Our results indicate that C neoformans infects a majority of children living in the Bronx after 2 years old. These results are consistent with several observations: the ubiquitous nature of C neoformans in the environment, including its association with pigeon excreta; the large number of pigeons in urban areas; and the increased likelihood of environmental exposure for children once they have learned to walk. The signs and symptoms associated with C neoformans infection in immunocompetent children remained to be determined. Primary pulmonary cryptococcosis may be asymptomatic or produce symptoms confused with viral infections and, therefore, not recognized as a fungal infection. Our results suggest that the low incidence of symptomatic cryptococcal disease in children with AIDS is not a result of lack of exposure to C neoformans. These findings have important implications for C neoformans pathogenesis and the development of vaccine strategies.
False-positive cryptococcal antigen latex agglutination caused by disinfectants and soaps.
Blevins, L B; Fenn, J; Segal, H; Newcomb-Gayman, P; Carroll, K C
1995-01-01
Five disinfectants or soaps were tested to determine if any could be responsible for false-positive results obtained with the Latex-Crypto Antigen Detection System kit (Immuno-Mycologics, Inc., Norman, Okla.). Three disinfectants or soaps (Derma soap, 7X, and Bacdown) produced false-positive agglutination after repeated washing of ring slides during testing of a known negative cerebrospinal fluid specimen. PMID:7650214
Tugume, L; Morawski, B M; Abassi, M; Bahr, N C; Kiggundu, R; Nabeta, H W; Hullsiek, K H; Taseera, K; Musubire, A K; Schutz, C; Muzoora, C; Williams, D A; Rolfes, M A; Meintjes, G; Rhein, J; Meya, D B; Boulware, D R
2017-01-01
Anaemia represents a common toxicity with amphotericin B-based induction therapy in HIV-infected persons with cryptococcal meningitis. We sought to examine the impact of amphotericin-related anaemia on survival. We used data from Ugandan and South African trial participants to characterize the variation of haemoglobin concentrations from diagnosis to 12 weeks post-diagnosis. Anaemia severity was classified based on the haemoglobin concentration at cryptococcal meningitis diagnosis, and nadir haemoglobin values during amphotericin induction. Cox proportional hazard models were used to estimate 2- and 10-week mortality risk. We also estimated 10-week mortality risk among participants with nadir haemoglobin < 8.5 g/dL during amphotericin induction and who survived ≥ 2 weeks post-enrolment. The median haemoglobin concentration at meningitis diagnosis was 11.5 g/dL [interquartile range (IQR) 9.7-13 g/dL; n = 311] with a mean decline of 4.2 g/dL [95% confidence interval (CI) -4.6 to -3.8; P < 0.001; n = 148] from diagnosis to nadir value among participants with baseline haemoglobin ≥ 8.5 g/dL. The median haemoglobin concentration was 8.1 g/dL (IQR 6.5-9.5 g/dL) at 2 weeks, increasing to 9.4 g/dL (IQR 8.2-10.9 g/dL) by 4 weeks and continuing to increase to 12 weeks. Among participants with haemoglobin < 8.5 g/dL at diagnosis, mortality risk was elevated at 2 weeks [hazard ratio (HR) 2.7; 95% CI 1.5-4.9; P < 0.01] and 10 weeks (HR 1.8; 95% CI 1.1-2.2; P = 0.03), relative to those with haemoglobin ≥ 8.5 g/dL. New-onset anaemia occurring with amphotericin therapy did not have a statistically significant association with 10-week mortality (HR 2.0; 95% CI 0.5-9.1; P = 0.4). Amphotericin induced significant haemoglobin declines, which were mostly transient and did not impact 10-week mortality. Individuals with moderate to life-threatening anaemia at baseline had a higher mortality risk at 2 and 10 weeks post-enrolment. © 2016 British HIV Association.
Banks, Isaac R.; Specht, Charles A.; Donlin, Maureen J.; Gerik, Kimberly J.; Levitz, Stuart M.; Lodge, Jennifer K.
2005-01-01
Chitin is an essential component of the cell wall of many fungi. Chitin also can be enzymatically deacetylated to chitosan, a more flexible and soluble polymer. Cryptococcus neoformans is a fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. In this work, we show that both chitin and chitosan are present in the cell wall of vegetatively growing C. neoformans yeast cells and that the levels of both rise dramatically as cells grow to higher density in liquid culture. C. neoformans has eight putative chitin synthases, and strains with any one chitin synthase deleted are viable at 30°C. In addition, C. neoformans genes encode three putative regulator proteins, which are homologs of Saccharomyces cerevisiae Skt5p. None of these three is essential for viability. However, one of the chitin synthases (Chs3) and one of the regulators (Csr2) are important for growth. Cells with deletions in either CHS3 or CSR2 have several shared phenotypes, including sensitivity to growth at 37°C. The similarity of their phenotypes also suggests that Csr2 specifically regulates chitin synthesis by Chs3. Lastly, both chs3Δ and the csr2Δ mutants are defective in chitosan production, predicting that Chs3-Csr2 complex with chitin deacetylases for conversion of chitin to chitosan. These data suggest that chitin synthesis could be an excellent antifungal target. PMID:16278457
Baker, Lorina G; Specht, Charles A; Donlin, Maureen J; Lodge, Jennifer K
2007-05-01
Cryptococcus neoformans is an opportunistic fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. The fungal cell wall is an excellent target for antifungal therapies as it is an essential organelle that provides cell structure and integrity, it is needed for the localization or attachment of known virulence factors, including the polysaccharide capsule, melanin, and phospholipase, and it is critical for host-pathogen interactions. In C. neoformans, chitosan produced by the enzymatic removal of acetyl groups from nascent chitin polymers has been implicated as an important component of the vegetative cell wall. In this study, we identify four putative chitin/polysaccharide deacetylases in C. neoformans. We have demonstrated that three of these deacetylases, Cda1, Cda2, and Cda3, can account for all of the chitosan produced during vegetative growth in culture, but the function for one, Fpd1, remains undetermined. The data suggest a model for chitosan production in vegetatively growing C. neoformans where the three chitin deacetylases convert chitin generated by the chitin synthase Chs3 into chitosan. Utilizing a collection of chitin/polysaccharide deacetylase deletion strains, we determined that during vegetative growth, chitosan helps to maintain cell integrity and aids in bud separation. Additionally, chitosan is necessary for maintaining normal capsule width and the lack of chitosan results in a "leaky melanin" phenotype. Our analysis indicates that chitin deacetylases and the chitosan made by them may prove to be excellent antifungal targets.
Banks, Isaac R; Specht, Charles A; Donlin, Maureen J; Gerik, Kimberly J; Levitz, Stuart M; Lodge, Jennifer K
2005-11-01
Chitin is an essential component of the cell wall of many fungi. Chitin also can be enzymatically deacetylated to chitosan, a more flexible and soluble polymer. Cryptococcus neoformans is a fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. In this work, we show that both chitin and chitosan are present in the cell wall of vegetatively growing C. neoformans yeast cells and that the levels of both rise dramatically as cells grow to higher density in liquid culture. C. neoformans has eight putative chitin synthases, and strains with any one chitin synthase deleted are viable at 30 degrees C. In addition, C. neoformans genes encode three putative regulator proteins, which are homologs of Saccharomyces cerevisiae Skt5p. None of these three is essential for viability. However, one of the chitin synthases (Chs3) and one of the regulators (Csr2) are important for growth. Cells with deletions in either CHS3 or CSR2 have several shared phenotypes, including sensitivity to growth at 37 degrees C. The similarity of their phenotypes also suggests that Csr2 specifically regulates chitin synthesis by Chs3. Lastly, both chs3Delta and the csr2Delta mutants are defective in chitosan production, predicting that Chs3-Csr2 complex with chitin deacetylases for conversion of chitin to chitosan. These data suggest that chitin synthesis could be an excellent antifungal target.
Sorrell, Tania C; Juillard, Pierre-Georges; Djordjevic, Julianne T; Kaufman-Francis, Keren; Dietmann, Anelia; Milonig, Alban; Combes, Valery; Grau, Georges E R
2016-01-01
Cryptococcus neoformans (Cn) and Cryptococcus gattii (Cg) cause neurological disease and cross the BBB as free cells or in mononuclear phagocytes via the Trojan horse mechanism, although evidence for the latter is indirect. There is emerging evidence that Cn and the North American outbreak Cg strain (R265) more commonly cause neurological and lung disease, respectively. We have employed a widely validated in vitro model of the BBB, which utilizes the hCMEC/D3 cell line derived from human brain endothelial cells (HBEC) and the human macrophage-like cell line, THP-1, to investigate whether transport of dual fluorescence-labelled Cn and Cg across the BBB occurs within macrophages. We showed that phagocytosis of Cn by non-interferon (IFN)-γ stimulated THP-1 cells was higher than that of Cg. Although Cn and Cg-loaded THP-1 bound similarly to TNF-activated HBECs under shear stress, more Cn-loaded macrophages were transported across an intact HBEC monolayer, consistent with the predilection of Cn for CNS infection. Furthermore, Cn exhibited a higher rate of expulsion from transmigrated THP-1 compared with Cg. Our results therefore provide further evidence for transmigration of both Cn and Cg via the Trojan horse mechanism and a potential explanation for the predilection of Cn to cause CNS infection. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Nyazika, Tinashe K.; Robertson, Valerie J.; Nherera, Brenda; Mapondera, Prichard T.; Meis, Jacques F.; Hagen, Ferry
2015-01-01
Summary Cryptococcal meningitis is the leading fungal infection and AIDS defining opportunistic illness in patients with late stage HIV infection, particularly in South-East Asia and sub-Saharan Africa. Given the high mortality, clinical differences and the extensive ecological niche of Cryptococcus neoformans and Cryptococcus gattii species complexes, there is need for laboratories in sub-Sahara African countries to adopt new and alternative reliable diagnostic algorithms that rapidly identify and distinguish these species. We biotyped 74 and then amplified fragment length polymorphism (AFLP) genotyped 66 Cryptococcus isolates from a cohort of patients with HIV-associated cryptococcal meningitis. Cryptococcus gattii sensu lato was isolated at a prevalence of 16.7% (n = 11/66) and C. neoformans sensu stricto was responsible for 83.3% (n = 55/66) of the infections. l-Canavanine glycine bromothymol blue, yeast-carbon-base-d-proline-d-tryptophan and creatinine dextrose bromothymol blue thymine were able to distinguish pathogenic C. gattii sensu lato from C. neoformans sensu stricto species when compared with amplified fragment length polymorphism genotyping. This study demonstrates high C. gattii sensu lato prevalence in Zimbabwe. In addition, biotyping methods can be used as alternative diagnostic tools to molecular typing in resource-limited areas for differentiating pathogenic Cryptococcus species. PMID:26661484
Nyazika, Tinashe K; Robertson, Valerie J; Nherera, Brenda; Mapondera, Prichard T; Meis, Jacques F; Hagen, Ferry
2016-03-01
Cryptococcal meningitis is the leading fungal infection and AIDS defining opportunistic illness in patients with late stage HIV infection, particularly in South-East Asia and sub-Saharan Africa. Given the high mortality, clinical differences and the extensive ecological niche of Cryptococcus neoformans and Cryptococcus gattii species complexes, there is need for laboratories in sub-Sahara African countries to adopt new and alternative reliable diagnostic algorithms that rapidly identify and distinguish these species. We biotyped 74 and then amplified fragment length polymorphism (AFLP) genotyped 66 Cryptococcus isolates from a cohort of patients with HIV-associated cryptococcal meningitis. C. gattii sensu lato was isolated at a prevalence of 16.7% (n = 11/66) and C. neoformans sensu stricto was responsible for 83.3% (n = 55/66) of the infections. l-Canavanine glycine bromothymol blue, yeast-carbon-base-d-proline-d-tryptophan and creatinine dextrose bromothymol blue thymine were able to distinguish pathogenic C. gattii sensu lato from C. neoformans sensu stricto species when compared with AFLP genotyping. This study demonstrates high C. gattii sensu lato prevalence in Zimbabwe. In addition, biotyping methods can be used as alternative diagnostic tools to molecular typing in resource-limited areas for differentiating pathogenic Cryptococcus species. © 2015 Blackwell Verlag GmbH.
[CD4 lymphocytopenia in systemic lupus erythematosus].
Ferreira, Sofia; Vasconcelos, Júlia; Marinho, António; Farinha, Fátima; Almeida, Isabel; Correia, João; Barbosa, Paulo; Mendonça, Teresa; Vasconcelos, Carlos
2009-01-01
Systemic Lupus Erythematosus (SLE) is an inflammatory chronic disease characterized by the presence of autoantibodies, immunocomplex production and organ injury. Several alterations of the immune system have been described, namely of CD4 T cells, with particular focus on regulatory subgroup. Quantify peripheral CD4 T cells in a population of patients with SLE and correlate it with lupus activity, affected organs, therapeutics and infections. Retrospective study involving all SLE patients seen in the clinical immunology outpatient clinic of the Hospital Geral Santo António, Porto that has done some peripheral blood flow cytometry study. Twenty-nine patients have been evaluated, 16 were taking glucocorticoids and six immunossupressors. The mean SLEDAI at the study time was nine and the ECLAM was three. Thirty-one percent of the patients had leukopenia, 76% lymphocytopenia and the same number CD4 depletion. Fifty-five percent of the patients had CD4 levels lower than 500/mm3, 31% lower than 200/mm3. All patients with SLEDAI > or = 20 and ECLAM > or = 4 had CD4 counts inferior to 500/mm3 and all patients with inactive disease had CD4 superior to 500/mm3. There have been three opportunistic infections: cryptococcal meningitis, pulmonary aspergilosis, Pneumocystis jirovecii pneumonia, all in patients with CD4 counts lower than 500/mm3. Decreased CD4 T cells counts have been very common in this study population. There is an inverse relation between CD4 cells counts and disease activity. Opportunistic infections occurred in patients with severe CD4 depletion.
Chen, Mayun; Wang, Xiaomi; Yu, Xianjuan; Dai, Caijun; Chen, Dunshun; Yu, Chang; Xu, Xiaomei; Yao, Dan; Yang, Li; Li, Yuping; Wang, Liangxing; Huang, Xiaoying
2015-09-22
Cryptococcus neoformans infection usually presents as chronic meningitis and is increasingly being recognized in immunocompromised patients. Presentation with pleural effusion is rare in cryptococcal disease; in fact, only 4 cases of pleural effusion as the initial clinical presentation in cryptococcosis have been reported in English-language literature to date. We report the first case of pleural effusion as the initial clinical presentation in a renal transplant recipient who was initially misdiagnosed with tuberculous pleuritis but who then developed fungaemia and disseminated cryptococcosis. The examination of this rare manifestation and the accompanying literature review will contribute to increased recognition of the disease and a reduction in misdiagnoses. We describe a 63-year-old male renal transplant recipient on an immunosuppressive regimen who was admitted for left pleural effusion and fever. Cytological examinations and pleural fluid culture were nonspecific and negative. Thoracoscopy only found chronic, nonspecific inflammation with fibrosis in the pleura. After empirical anti-tuberculous therapy, the patient developed an elevated temperature, a severe headache and vomiting and fainted in the ward. Cryptococci were specifically found in the cerebrospinal fluid following lumbar puncture. Blood cultures were twice positive for C. neoformans one week later. He was transferred to the respiratory intensive care unit (RICU) immediately and was placed on non-invasive ventilation for respiratory failure for 2 days. He developed meningoencephalitis and fungaemia with C. neoformans during hospitalization. He was given amphotericin B liposome combined with 5-flucytosine and voriconazole for first 11 days, then amphotericin B liposome combined with 5-flucytosine sustained to 8 weeks, after that changed to fluconazole for maintenance. His condition improved after antifungal treatment, non-invasive ventilation and other support. Further pathological consultation and periodic acid-Schiff staining revealed Cryptococcus organisms in pleural sections, providing reliable evidence for cryptococcal pleuritis. Pleural effusion is an unusual manifestation of cryptococcosis. Cryptococcal infection must be considered in the case of patients on immunosuppressives, especially solid-organ transplant recipients, who present with pleural effusion, even if pleural fluid culture is negative. Close communication between the pathologist and the clinician, multiple special biopsy section stains and careful review are important and may contribute to decreasing misdiagnosis.
Microevolution of Serial Clinical Isolates of Cryptococcus neoformans var. grubii and C. gattii.
Chen, Yuan; Farrer, Rhys A; Giamberardino, Charles; Sakthikumar, Sharadha; Jones, Alexander; Yang, Timothy; Tenor, Jennifer L; Wagih, Omar; Van Wyk, Marelize; Govender, Nelesh P; Mitchell, Thomas G; Litvintseva, Anastasia P; Cuomo, Christina A; Perfect, John R
2017-03-07
The pathogenic species of Cryptococcus are a major cause of mortality owing to severe infections in immunocompromised as well as immunocompetent individuals. Although antifungal treatment is usually effective, many patients relapse after treatment, and in such cases, comparative analyses of the genomes of incident and relapse isolates may reveal evidence of determinative, microevolutionary changes within the host. Here, we analyzed serial isolates cultured from cerebrospinal fluid specimens of 18 South African patients with recurrent cryptococcal meningitis. The time between collection of the incident isolates and collection of the relapse isolates ranged from 124 days to 290 days, and the analyses revealed that, during this period within the patients, the isolates underwent several genetic and phenotypic changes. Considering the vast genetic diversity of cryptococcal isolates in sub-Saharan Africa, it was not surprising to find that the relapse isolates had acquired different genetic and correlative phenotypic changes. They exhibited various mechanisms for enhancing virulence, such as growth at 39°C, adaptation to stress, and capsule production; a remarkable amplification of ERG11 at the native and unlinked locus may provide stable resistance to fluconazole. Our data provide a deeper understanding of the microevolution of Cryptococcus species under pressure from antifungal chemotherapy and host immune responses. This investigation clearly suggests a promising strategy to identify novel targets for improved diagnosis, therapy, and prognosis. IMPORTANCE Opportunistic infections caused by species of the pathogenic yeast Cryptococcus lead to chronic meningoencephalitis and continue to ravage thousands of patients with HIV/AIDS. Despite receiving antifungal treatment, over 10% of patients develop recurrent disease. In this study, we collected isolates of Cryptococcus from cerebrospinal fluid specimens of 18 patients at the time of their diagnosis and when they relapsed several months later. We then sequenced and compared the genomic DNAs of each pair of initial and relapse isolates. We also tested the isolates for several key properties related to cryptococcal virulence as well as for their susceptibility to the antifungal drug fluconazole. These analyses revealed that the relapsing isolates manifested multiple genetic and chromosomal changes that affected a variety of genes implicated in the pathogenicity of Cryptococcus or resistance to fluconazole. This application of comparative genomics to serial clinical isolates provides a blueprint for identifying the mechanisms whereby pathogenic microbes adapt within patients to prolong disease. Copyright © 2017 Chen et al.
Disseminated cryptococcosis in an immunocompetent patient.
Mada, Pradeep; Nowack, Brad; Cady, Beth; Joel Chandranesan, Andrew Stevenson
2017-07-18
Cryptococcosis is a fungal infection which is commonly associated with immune-compromised state. Disseminated infection in immunocompetent individuals is extremely rare. We present a case of a 56-year-old African American patient who presented with unilateral knee pain and swelling and was subsequently diagnosed with cryptococcal bone mass with dissemination of infection. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Microevolution of Serial Clinical Isolates of Cryptococcus neoformans var. grubii and C. gattii
Farrer, Rhys A.; Giamberardino, Charles; Sakthikumar, Sharadha; Jones, Alexander; Yang, Timothy; Tenor, Jennifer L.; Wagih, Omar; Van Wyk, Marelize; Govender, Nelesh P.; Mitchell, Thomas G.; Litvintseva, Anastasia P.
2017-01-01
ABSTRACT The pathogenic species of Cryptococcus are a major cause of mortality owing to severe infections in immunocompromised as well as immunocompetent individuals. Although antifungal treatment is usually effective, many patients relapse after treatment, and in such cases, comparative analyses of the genomes of incident and relapse isolates may reveal evidence of determinative, microevolutionary changes within the host. Here, we analyzed serial isolates cultured from cerebrospinal fluid specimens of 18 South African patients with recurrent cryptococcal meningitis. The time between collection of the incident isolates and collection of the relapse isolates ranged from 124 days to 290 days, and the analyses revealed that, during this period within the patients, the isolates underwent several genetic and phenotypic changes. Considering the vast genetic diversity of cryptococcal isolates in sub-Saharan Africa, it was not surprising to find that the relapse isolates had acquired different genetic and correlative phenotypic changes. They exhibited various mechanisms for enhancing virulence, such as growth at 39°C, adaptation to stress, and capsule production; a remarkable amplification of ERG11 at the native and unlinked locus may provide stable resistance to fluconazole. Our data provide a deeper understanding of the microevolution of Cryptococcus species under pressure from antifungal chemotherapy and host immune responses. This investigation clearly suggests a promising strategy to identify novel targets for improved diagnosis, therapy, and prognosis. PMID:28270580
Diversity and Antifungal Drug Susceptibility of Cryptococcus Isolates in Thailand.
Worasilchai, Navaporn; Tangwattanachuleeporn, Marut; Meesilpavikkai, Kornvalee; Folba, Claudia; Kangogo, Mourine; Groß, Uwe; Weig, Michael; Bader, Oliver; Chindamporn, Ariya
2017-08-01
Yeasts of the Cryptococcus species complex are the causative agent of cryptococcosis, especially in human immunodeficiency virus (HIV) positive individuals. Cerebral or disseminated cryptococcosis has a very high mortality rate worldwide, including in Thailand. Additionally, an increasing rate of antifungal drug resistant cryptococcal isolates has been reported in several neighboring countries, complicating therapeutic approaches. To understand the situation of this infection in Thailand, we retrospectively investigated the molecular epidemiology and antifungal drug resistance in a collection of 74 clinical, 52 environmental and two veterinary isolates using the URA5-RFLP for typing and the EUCAST guideline for susceptibility testing. Where no EUCAST breakpoints (AMB and 5FC) were available, CLSI epidemiologic cutoff values were used for interpretation. Cryptococcal molecular type diversity showed most isolates were C. grubii, molecular type VNI. One clinical isolate was C. deuterogattii (mol. type VGII) and another C. grubii (mol. type VNII). One strain from environment was classified as C. grubii (mol. type VNII). No resistant strains were detected in this retrospective study for either of the antimycotics tested; however, monitoring of the epidemiology of Cryptococcus species in infected patients in Thailand needs to be continued to detect emergence of resistance. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
[Grape seed extract induces morphological changes of prostate cancer PC-3 cells].
Shang, Xue-Jun; Yin, Hong-Lin; Ge, Jing-Ping; Sun, Yi; Teng, Wen-Hui; Huang, Yu-Feng
2008-12-01
To observe the morphological changes of prostate cancer PC-3 cells induced by grape seed extract (GSE). PC-3 cells were incubated with different concentrations of GSE (100, 200 and 300 microg/ml) for 24, 48 and 72 hours, and then observed for morphological changes by invert microscopy, HE staining and transmission electron microscopy. The incubated PC-3 cells appeared round, small, wrinkled and broken under the invert microscope and exhibited the classical morphological characteristics of cell death under the electron microscope, including cell atrophy, increased vacuoles, crumpled nuclear membrane, and chromosome aggregation. GSE can cause morphological changes and induce necrosis and apoptosis of PC-3 cells.
Li, Mi; Liu, LianQing; Xi, Ning; Wang, YueChao; Xiao, XiuBin; Zhang, WeiJing
2015-09-01
Cell mechanics plays an important role in cellular physiological activities. Recent studies have shown that cellular mechanical properties are novel biomarkers for indicating the cell states. In this article, temperature-controllable atomic force microscopy (AFM) was applied to quantitatively investigate the effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells. First, AFM indenting experiments were performed on six types of human cells to investigate the changes of cellular Young's modulus at different temperatures and the results showed that the mechanical responses to the changes of temperature were variable for different types of cancer cells. Second, AFM imaging experiments were performed to observe the morphological changes in living cells at different temperatures and the results showed the significant changes of cell morphology caused by the alterations of temperature. Finally, by co-culturing human cancer cells with human immune cells, the mechanical and morphological changes in cancer cells were investigated. The results showed that the co-culture of cancer cells and immune cells could cause the distinct mechanical changes in cancer cells, but no significant morphological differences were observed. The experimental results improved our understanding of the effects of temperature and cellular interactions on the mechanics and morphology of cancer cells.
First case of disseminated cryptococcosis in a Gorilla gorilla.
Mischnik, Alexander; Stockklausner, Julia; Hohneder, Nicole; Jensen, Henrik E; Zimmermann, Stefan; Reuss, David E; Rickerts, Volker; Tintelnot, Kathrin; Stockklausner, Clemens
2014-11-01
In humans, Cryptococcus mainly infects individuals with HIV infection or other types of immunosuppression. Here, we report the first case of disseminated cryptococcosis in a simian immunodeficiency virus-negative 27-year-old female Gorilla gorilla presenting with lethargy, progressive weight loss and productive cough. The diagnosis was confirmed by positive lung biopsy culture, serum cryptococcal antigen, and cerebral histopathology demonstrating encapsulated yeasts. Molecular characterisation of lung culture isolate yielded Cryptococcus neoformans var. grubii. An immune-deficiency could not be demonstrated. © 2014 Blackwell Verlag GmbH.
Liao, Ting T; Wang, Lei; Jia, Ru W; Fu, Xiao H; Chua, Hong
2014-01-01
Membrane damage related to morphological change in Vero cells is a sensitive index of the composite biotoxicity of trace lipophilic chemicals. However, judging whether the morphological change in Vero cells happens and its ratio are difficult because it is not a quantitative characteristic. To find biomarkers of cell morphological change for quantitatively representing the ratio of morphological changed cell, the mechanism of cell membrane damage driven by typical lipophilic chemicals, such as trichlorophenol (TCP) and perfluorooctanesulphonate (PFOS), was explored. The ratio of morphologically changed cells generally increased with increased TCP or PFOS concentrations, and the level of four major components of phospholipids varied with concentrations of TCP or PFOS, but only the ratio of phosphatidylcholine (PC)/phosphatidylethanolamine (PE) decreased regularly as TCP or PFOS concentrations increased. Analysis of membrane proteins showed that the level of vimentin in normal cell membranes is high, while it decreases or vanishes after TCP exposure. These variations in phospholipid and membrane protein components may result in membrane leakage and variation in rigid structure, which leads to changes in cell morphology. Therefore, the ratio of PC/PE and amount of vimentin may be potential biomarkers for representing the ratio of morphological changed Vero cell introduced by trace lipophilic compounds, thus their composite bio-toxicity.
[cAMP mediates the morphological change of cultured olfactory ensheathing cells induced by serum].
Wang, Ying; Huang, Zhi-Hui
2011-02-25
Olfactory ensheathing cells (OECs) are a unique type of glia with common properties of astrocyte and Schwann cells. Cultured OECs have two morphological phenotypes, astrocyte-like OECs and Schwann cell-like OECs. Reversible changes have been found between these two morphological phenotypes. However, the molecular mechanism underlying the regulation of these reversible changes is still unknown. The aim of this paper is to establish a method for the morphology plasticity of cultured OECs, and investigate the underlying mechanism. Using the primary culture of OECs and immunocytochemistry, the morphology of OECs was observed under serum, serum free media or dB-cAMP drug treatment. Statistical analysis was performed to test differences among the percentages of OEC subtypes under these conditions. The results showed that under serum free media, (95.2±3.7)% of OECs showed Schwann cell-like morphology, and (4.8±3.7)% of OECs showed astrocyte-like morphology; however, under 10% serum media, (42.5±10.4)% of OECs exhibited Schwann cell-like morphology, and (57.5±10.4)% of OECs exhibited astrocyte-like morphology. When media was changed back to serum free media for 24 h, (94.8±5.0)% of OECs showed Schwann cell-like morphology, and (5.2±5.0)% of OECs showed astrocyte-like morphology. Furthermore, culture condition with or without serum did not affect the expression of OEC cell marker, p-75 and S-100. Finally, dB-cAMP, an analog of cAMP, through inhibiting the formation of F-actin stress fibers and focal adhesion, induced the morphology switch from astrocyte-like to Schwann cell-like morphology under serum condition, promoted the branches and the growth of processes. These results suggest that serum induces the morphology plasticity of cultured OECs, which is mediated by cytoplasmic cAMP level through regulating the formation of F-actin stress fibers and focal adhesion.
Morphology and Performance of Polymer Solar Cell Characterized by DPD Simulation and Graph Theory.
Du, Chunmiao; Ji, Yujin; Xue, Junwei; Hou, Tingjun; Tang, Jianxin; Lee, Shuit-Tong; Li, Youyong
2015-11-19
The morphology of active layers in the bulk heterojunction (BHJ) solar cells is critical to the performance of organic photovoltaics (OPV). Currently, there is limited information for the morphology from transmission electron microscopy (TEM) techniques. Meanwhile, there are limited approaches to predict the morphology /efficiency of OPV. Here we use Dissipative Particle Dynamics (DPD) to determine 3D morphology of BHJ solar cells and show DPD to be an efficient approach to predict the 3D morphology. Based on the 3D morphology, we estimate the performance indicator of BHJ solar cells by using graph theory. Specifically, we study poly (3-hexylthiophene)/[6, 6]-phenyl-C61butyric acid methyl ester (P3HT/PCBM) BHJ solar cells. We find that, when the volume fraction of PCBM is in the region 0.4 ∼ 0.5, P3HT/PCBM will show bi-continuous morphology and optimum performance, consistent with experimental results. Further, the optimum temperature (413 K) for the morphology and performance of P3HT/PCBM is in accord with annealing results. We find that solvent additive plays a critical role in the desolvation process of P3HT/PCBM BHJ solar cell. Our approach provides a direct method to predict dynamic 3D morphology and performance indicator for BHJ solar cells.
Shibuta, Mayu; Tamura, Masato; Kanie, Kei; Yanagisawa, Masumi; Matsui, Hirofumi; Satoh, Taku; Takagi, Toshiyuki; Kanamori, Toshiyuki; Sugiura, Shinji; Kato, Ryuji
2018-06-09
Cellular morphology on and in a scaffold composed of extracellular matrix generally represents the cellular phenotype. Therefore, morphology-based cell separation should be interesting method that is applicable to cell separation without staining surface markers in contrast to conventional cell separation methods (e.g., fluorescence activated cell sorting and magnetic activated cell sorting). In our previous study, we have proposed a cloning technology using a photodegradable gelatin hydrogel to separate the individual cells on and in hydrogels. To further expand the applicability of this photodegradable hydrogel culture platform, we here report an image-based cell separation system imaging cell picker for the morphology-based cell separation on a photodegradable hydrogel. We have developed the platform which enables the automated workflow of image acquisition, image processing and morphology analysis, and collection of a target cells. We have shown the performance of the morphology-based cell separation through the optimization of the critical parameters that determine the system's performance, such as (i) culture conditions, (ii) imaging conditions, and (iii) the image analysis scheme, to actually clone the cells of interest. Furthermore, we demonstrated the morphology-based cloning performance of cancer cells in the mixture of cells by automated hydrogel degradation by light irradiation and pipetting. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Differential diagnosis of CNS angiostrongyliasis: a short review.
Senthong, Vichai; Chindaprasirt, Jarin; Sawanyawisuth, Kittisak
2013-06-01
The diagnostic criterion for eosinophilic meningitis (EOM) is the identification of an absolute count of 10 eosinophils per ml or more than 10% of the total white blood cells in the cerebrospinal fluid (CSF) in the proper clinical context. The most common cause of EOM is Angiostrongylus cantonensis infection, termed meningitic angiostrongyliasis (MA). Neurognathostomiasis (NG) is the main parasitic disease in the differential diagnosis of meningitic angiostrongyliasis. This short review is based on articles published on Medline between 2000 and 2012 related to EOM. There are three main approaches that can be used to differentiate between MA and NG, involving clinical factors, history of larval exposure, and serological tests. MA patients presented with acute severe headache but without neurological deficit, combined with a history of eating uncooked snails or slugs. NG patients always presented with motor weakness, migratory swelling, radicular pain and had history of eating uncooked poultry or fish. Specific antigenic bands in immunoblot tests are helpful tools to differentiate the two diseases. Other causes of eosinophilic meningitis are neurocysticercosis, cerebral paragonimiasis, Toxoplasma canis, Baylisascaris, tuberculous meningitis, and cryptococcal meningitis.
Uemura, Makoto; Ishiguro, Hiroshi
2015-04-01
Freezing of nerve cells forming a neuronal network has largely been neglected, despite the fact that the cryopreservation of nerve cells benefits the study of cells in the areas of medicine and poison screening. Freezing of nerve cells is also attractive for studying cell morphology because of the characteristic long, thread-like neurites extending from the cell body. In the present study, freezing of neuron-like cells adhering to the substrate (differentiated PC12 cells), in physiological saline, was investigated in order to understand the fundamental freezing and thawing characteristics of nerve cells with neurites. The microscopic freezing behavior of cells under different cooling rates was observed. Next, the post-thaw morphological changes in the cells, including the cytoskeleton, were investigated and post-thaw cell viability was evaluated by dye exclusion using propidium iodide. Two categories of morphological changes, beading and shortening of the neurites, were found and quantified. Also, the morphological changes of neurites due to osmotic stress from sodium chloride were studied to gain a better understanding of causation. The results showed that morphological changes and cell death were promoted with a decrease in end temperature during freezing. Copyright © 2015 Elsevier Inc. All rights reserved.
Domínguez, Fernando; Cejudo, Francisco J.
2006-01-01
PCD (programmed cell death) in plants presents important morphological and biochemical differences compared with apoptosis in animal cells. This raises the question of whether PCD arose independently or from a common ancestor in plants and animals. In the present study we describe a cell-free system, using wheat grain nucellar cells undergoing PCD, to analyse nucleus dismantling, the final stage of PCD. We have identified a Ca2+/Mg2+ nuclease and a serine protease localized to the nucleus of dying nucellar cells. Nuclear extracts from nucellar cells undergoing PCD triggered DNA fragmentation and other apoptotic morphology in nuclei from different plant tissues. Inhibition of the serine protease did not affect DNA laddering. Furthermore, we show that the nuclear extracts from plant cells triggered DNA fragmentation and apoptotic morphology in nuclei from human cells. The inhibition of the nucleolytic activity with Zn2+ or EDTA blocked the morphological changes of the nucleus. Moreover, nuclear extracts from apoptotic human cells triggered DNA fragmentation and apoptotic morphology in nuclei from plant cells. These results show that degradation of the nucleus is morphologically and biochemically similar in plant and animal cells. The implication of this finding on the origin of PCD in plants and animals is discussed. PMID:16613587
Dynamic morphology applied to human and animal leukemia cells.
Haemmerli, G; Felix, H; Sträuli, P
1979-08-01
Dynamic morphology, which describes the shape and surface architecture of fixed cells in terms related to their behavior in the living state, is based on the concurrent use of two methods: scanning electron microscopy and microcinematography. This combination has both advantages and disadvantages. In this study on leukemic cells, we were able to draw the following conclusions about the usefulness of dynamic morphology. It confirms that white blood cells do not flatten on a glass substrate; they stay spherical and are either round or polarized. Round cells of similar size, whatever their origin, cannot be classified by dynamic morphology. Polarized cells can be classified as blasts, promyelocytes, myelocytes, granulocytes and lymphocytes, although polarized blast cells of different origins cannot be differentiated. Dynamic morphology cannot classify the same cell type as benign or malignant.
Morphological changes in human melanoma cells following irradiation with thermal neutrons.
Barkla, D H; Allen, B J; Brown, J K; Mountford, M; Mishima, Y; Ichihashi, M
1989-01-01
Morphological changes in two human melanoma cell lines, MM96 and MM418, following irradiation with thermal neutrons, were studied using light and electron microscopy. The results show that the response of human malignant melanoma cells to neutron irradiation is both cell line dependent and dose dependent, and that in any given cell line, some cells are more resistant to irradiation than others, thus demonstrating heterogeneity in respect to radiosensitivity. Cells repopulating MM96 flasks after irradiation were morphologically similar to the cells of origin whereas in MM418 flasks cells differentiated into five morphologically distinct subgroups and showed increased melanization. The results also show that radiation causes distinctive morphological patterns of damage although ultrastructural changes unique to the high LET particles released from boron 10 neutron capture are yet to be identified.
Miakisheva, S N; Kostenko, M A; Driniaev, V A; Mosin, V A
2001-01-01
The effect of natural avermectin complex (Aversectin C) and Abamectin on the processes of proliferation and morphological differentiation of the neural cells was studied using N1E-115 murine neuroblastoma cells (clone C-1300) as a model. Aversectin C in concentrations 10(-7)-10(-8) was shown to induce morphological differentiation of cultured nervous cells. Treatment with Abamectin resulted in the changes of proliferation pattern of the cells. Morphological differentiation of the cultured nervous cells treated with Aversectin C was associated with electrophysiological one.
Katwere, Michael; Kambugu, Andrew; Piloya, Theresa; Wong, Matthew; Hendel-Paterson, Brett; Sande, Merle A; Ronald, Allan; Katabira, Elly; Were, Edward M; Menten, Joris; Colebunders, Robert
2009-09-19
We set out to define the relative prevalence and common presentations of the various aetiologies of headache within an ambulant HIV-seropositive adult population in Kampala, Uganda. We conducted a prospective study of adult HIV-1-seropositive ambulatory patients consecutively presenting with new onset headaches. Patients were classified as focal-febrile, focal-afebrile, non-focal-febrile or non-focal-afebrile, depending on presence or absence of fever and localizing neurological signs. Further management followed along a pre-defined diagnostic algorithm to an endpoint of a diagnosis. We assessed outcomes during four months of follow up. One hundred and eighty patients were enrolled (72% women). Most subjects presented at WHO clinical stages III and IV of HIV disease, with a median Karnofsky performance rating of 70% (IQR 60-80).The most common diagnoses were cryptococcal meningitis (28%, n = 50) and bacterial sinusitis (31%, n = 56). Less frequent diagnoses included cerebral toxoplasmosis (4%, n = 7), and tuberculous meningitis (4%, n = 7). Thirty-two (18%) had other diagnoses (malaria, bacteraemia, etc.). No aetiology could be elucidated in 28 persons (15%). Overall mortality was 13.3% (24 of 180) after four months of follow up. Those without an established headache aetiology had good clinical outcomes, with only one death (4% mortality), and 86% were ambulatory at four months. In an African HIV-infected ambulatory population presenting with new onset headache, aetiology was found in at least 70%. Cryptococcal meningitis and sinusitis accounted for more than half of the cases.
Van Wyk, Marelize; Govender, Nelesh P.; Litvintseva, Anastasia P.
2014-01-01
Patients with cryptococcal meningitis in sub-Saharan Africa frequently relapse following treatment. The natural history and etiology of these recurrent episodes warrant investigation. Here, we used multilocus sequence typing (MLST) to compare the molecular genotypes of strains of Cryptococcus neoformans and Cryptococcus gattii isolated from serial episodes of cryptococcal meningitis that were separated by at least 110 days. The most common MLST genotypes among the isolates were the dominant global clinical genotypes (M5 and M4) of molecular type VNI, as well as the VNI genotypes apparently restricted to southern Africa. In addition, there was considerable genetic diversity among these South African isolates, as 15% of the patients had unique genotypes. Eleven percent of the patients were reinfected with a genetically different strain following their initial diagnosis and treatment. However, the majority of serial episodes (89%) were caused by strains with the same genotype as the original strain. These results indicate that serial episodes of cryptococcosis in South Africa are frequently associated with persistence or relapse of the original infection. Using a reference broth microdilution method, we found that the serial isolates of 11% of the patients infected with strains of C. neoformans var. grubii with identical genotypes exhibited ≥4-fold increases in the MICs to fluconazole. Therefore, these recurrent episodes may have been precipitated by inadequate induction or consolidation of antifungal treatment and occasionally may have been due to increased resistance to fluconazole, which may have developed during the chronic infection. PMID:24648562
Kassi, Fulgence K; Drakulovski, Pascal; Bellet, Virginie; Krasteva, Donika; Gatchitch, François; Doumbia, Adama; Kouakou, Gisèle A; Delaporte, Eric; Reynes, Jacques; Mallié, Michèle; Menan, Hervé I E; Bertout, Sebastien
2016-12-01
Cryptococcal meningitis is a severe opportunistic infection in HIV-infected patients. In Ivory Coast, despite the availability of antiretroviral treatment (ART), this infection is still prevalent. The study investigates the genetic diversity of 363 clinical isolates of Cryptococcus from 61 Ivorian HIV-positive patients, the occurrence of mixed infections and the in vitro antifungal susceptibility of the isolates. Serotyping was performed via LAC1 and CAP64 gene amplification. Genotyping was performed using the phage M13 core (GACA) 4 and (GTG) 5 primers and restriction fragment length polymorphism analysis of the URA5 gene. By PCR fingerprinting, the presence of the three serotypes were demonstrated among the 363 isolates in the population studied: A (n=318; 87.6%), AD (n=40; 11%) and B (n=4; 1.1%). Using PCR fingerprinting with primers M13 (GACA) 4 and (GTG) 5 , we grouped the isolates into 56 molecular subtypes. We observed a high frequency (39.3%) of mixed infections, with up to two different genotypes per sample. None of the isolates were resistant to amphotericin B. Only 0.3% and 1.1% of the isolates were resistant to fluconazole and flucytosine respectively. This study revealed the high genetic diversity among Cryptococcus isolates, the occurrence of mixed infections and a high antifungal susceptibility for the majority of Ivorian cryptococcal isolates. © 2016 Blackwell Verlag GmbH.
Pitfalls in Serological Diagnosis of Cryptococcus gattii Infections.
Tintelnot, Kathrin; Hagen, Ferry; Han, Chang Ok; Seibold, Michael; Rickerts, Volker; Boekhout, Teun
2015-11-01
The detection of cryptococcal antigen by latex agglutination tests (LATs), enzyme-linked immunoassays (ELISA), or lateral flow assay (LFA) is an important tool for diagnosis of a Cryptococcus infection. Cerebrospinal fluid and/or serum samples of 10 patients with cryptococcosis due to Cryptococcus gattii or a hybrid of Cryptococcus neoformans and C. gattii were examined by three LATs (the IMMY Latex-Crypto(®) test, the Pastorex(TM) Crypto Plus, and the Remel Cryptococcus Antigen Test Kit) and the LFA made by Immuno-Mycologics. LATs based on monoclonal antibodies (mAbs) like the Pastorex(TM) Crypto Plus or the Remel Cryptococcus Antigen Test Kit turned out to have an insufficient sensitivity to detect four out of 10 C. gattii infections, including one infection by a hybrid between C. gattii and C. neoformans. Reflecting the ongoing expansion of C. gattii in geographical zones outside of tropical and subtropical areas like Mediterranean countries, Vancouver Island (British Columbia, Canada) and the Pacific Northwest region (USA), these findings are alarming because of the risk of delayed diagnosis of infections caused by C. gattii. Therefore, the preliminary serological screening for cryptococcal antigen in the case of a suspected Cryptococcus infection should be performed by using an assay with a broad range specificity and sensitivity for C. neoformans and C. gattii, including their hybrids. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Efficient phagocytosis and laccase activity affect the outcome of HIV-associated cryptococcosis
Sabiiti, Wilber; Robertson, Emma; Beale, Mathew A.; Johnston, Simon A.; Brouwer, Annemarie E.; Loyse, Angela; Jarvis, Joseph N.; Gilbert, Andrew S.; Fisher, Matthew C.; Harrison, Thomas S.; May, Robin C.; Bicanic, Tihana
2014-01-01
Background. Cryptococcal meningitis (CM) is a leading cause of HIV-associated mortality globally. High fungal burden in cerebrospinal fluid (CSF) at diagnosis and poor fungal clearance during treatment are recognized adverse prognostic markers; however, the underlying pathogenic factors that drive these clinical manifestations are incompletely understood. We profiled a large set of clinical isolates for established cryptococcal virulence traits to evaluate the contribution of C. neoformans phenotypic diversity to clinical presentation and outcome in human cryptococcosis. Methods. Sixty-five C. neoformans isolates from clinical trial patients with matched clinical data were assayed in vitro to determine murine macrophage uptake, intracellular proliferation rate (IPR), capsule induction, and laccase activity. Analysis of the correlation between prognostic clinical and host immune parameters and fungal phenotypes was performed using Spearman’s r, while the fungal-dependent impact on long-term survival was determined by Cox regression analysis. Results. High levels of fungal uptake by macrophages in vitro, but not the IPR, were associated with CSF fungal burden (r = 0.38, P = 0.002) and long-term patient survival (hazard ratio [HR] 2.6, 95% CI 1.2–5.5, P = 0.012). High-uptake strains were hypocapsular (r = –0.28, P = 0.05) and exhibited enhanced laccase activity (r = 0.36, P = 0.003). Fungal isolates with greater laccase activity exhibited heightened survival ex vivo in purified CSF (r = 0.49, P < 0.0001) and resistance to clearance following patient antifungal treatment (r = 0.39, P = 0.003). Conclusion. These findings underscore the contribution of cryptococcal-phagocyte interactions and laccase-dependent melanin pathways to human clinical presentation and outcome. Furthermore, characterization of fungal-specific pathways that drive clinical manifestation provide potential targets for the development of therapeutics and the management of CM. Funding. This work was made possible by funding from the Wellcome Trust (WT088148MF), the Medical Research Council (MR/J008176/1), the NIHR Surgical Reconstruction and Microbiology Research Centre and the Lister Institute for Preventive Medicine (to R.C. May), and a Wellcome Trust Intermediate fellowship (089966, to T. Bicanic). The C. neoformans isolates were collected within clinical trials funded by the British Infection Society (fellowship to T. Bicanic), the Wellcome Trust (research training fellowships WT069991, to A.E. Brouwer and WT081794, to J.N. Jarvis), and the Medical Research Council, United Kingdom (76201). The funding sources had no role in the design or conduct of this study, nor in preparation of the manuscript. PMID:24743149
Watanabe, Takashi; Ito, Tomoharu; Goda, Hatsumi M; Ishibashi, Yohei; Miyamoto, Tomofumi; Ikeda, Kazutaka; Taguchi, Ryo; Okino, Nozomu; Ito, Makoto
2015-01-09
Cryptococcosis is an infectious disease caused by pathogenic fungi, such as Cryptococcus neoformans and Cryptococcus gattii. The ceramide structure (methyl-d18:2/h18:0) of C. neoformans glucosylceramide (GlcCer) is characteristic and strongly related to its pathogenicity. We recently identified endoglycoceramidase-related protein 1 (EGCrP1) as a glucocerebrosidase in C. neoformans and showed that it was involved in the quality control of GlcCer by eliminating immature GlcCer during the synthesis of GlcCer (Ishibashi, Y., Ikeda, K., Sakaguchi, K., Okino, N., Taguchi, R., and Ito, M. (2012) Quality control of fungus-specific glucosylceramide in Cryptococcus neoformans by endoglycoceramidase-related protein 1 (EGCrP1). J. Biol. Chem. 287, 368-381). We herein identified and characterized EGCrP2, a homologue of EGCrP1, as the enzyme responsible for sterylglucoside catabolism in C. neoformans. In contrast to EGCrP1, which is specific to GlcCer, EGCrP2 hydrolyzed various β-glucosides, including GlcCer, cholesteryl-β-glucoside, ergosteryl-β-glucoside, sitosteryl-β-glucoside, and para-nitrophenyl-β-glucoside, but not α-glucosides or β-galactosides, under acidic conditions. Disruption of the EGCrP2 gene (egcrp2) resulted in the accumulation of a glycolipid, the structure of which was determined following purification to ergosteryl-3β-glucoside, a major sterylglucoside in fungi, by mass spectrometric and two-dimensional nuclear magnetic resonance analyses. This glycolipid accumulated in vacuoles and EGCrP2 was detected in vacuole-enriched fraction. These results indicated that EGCrP2 was involved in the catabolism of ergosteryl-β-glucoside in the vacuoles of C. neoformans. Distinct growth arrest, a dysfunction in cell budding, and an abnormal vacuole morphology were detected in the egcrp2-disrupted mutants, suggesting that EGCrP2 may be a promising target for anti-cryptococcal drugs. EGCrP2, classified into glycohydrolase family 5, is the first steryl-β-glucosidase identified as well as a missing link in sterylglucoside metabolism in fungi. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Morphological plasticity of bacteria—Open questions
Shen, Jie-Pan
2016-01-01
Morphological plasticity of bacteria is a cryptic phenomenon, by which bacteria acquire adaptive benefits for coping with changing environments. Some environmental cues were identified to induce morphological plasticity, but the underlying molecular mechanisms remain largely unknown. Physical and chemical factors causing morphological changes in bacteria have been investigated and mostly associated with potential pathways linked to the cell wall synthetic machinery. These include starvation, oxidative stresses, predation effectors, antimicrobial agents, temperature stresses, osmotic shock, and mechanical constraints. In an extreme scenario of morphological plasticity, bacteria can be induced to be shapeshifters when the cell walls are defective or deficient. They follow distinct developmental pathways and transform into assorted morphological variants, and most of them would eventually revert to typical cell morphology. It is suggested that phenotypic heterogeneity might play a functional role in the development of morphological diversity and/or plasticity within an isogenic population. Accordingly, phenotypic heterogeneity and inherited morphological plasticity are found to be survival strategies adopted by bacteria in response to environmental stresses. Here, microfluidic and nanofabrication technology is considered to provide versatile solutions to induce morphological plasticity, sort and isolate morphological variants, and perform single-cell analysis including transcriptional and epigenetic profiling. Questions such as how morphogenesis network is modulated or rewired (if epigenetic controls of cell morphogenesis apply) to induce bacterial morphological plasticity could be resolved with the aid of micro-nanofluidic platforms and optimization algorithms, such as feedback system control. PMID:27375812
Cell markers in the recognition of acute myeloblastic leukaemia subtypes.
Andoljsek, Dusan; Preloznik Zupan, Irena; Zontar, Darja; Cernelc, Peter; Mlakar, Uros; Modic, Mojca; Pretnar, Joze; Zver, Samo
2002-01-01
The diagnosis of acute myeloblastic leukaemia (AML) is based on cell morphology, cytogenetic and molecular changes, cell markers and clinical data. Our aim was to establish whether morphology and cell markers are comparable in the evaluation of AML. Bone marrow smears were analysed, and flow cytometry and monoclonal antibodies were used to determine cell type and maturity. Morphology and cell markers correlated differently in different AML subtypes.
Janbon, Guilhem
2018-01-01
In Cryptococcus neoformans, nearly all genes are interrupted by small introns. In recent years, genome annotation and genetic analysis have illuminated the major roles these introns play in the biology of this pathogenic yeast. Introns are necessary for gene expression and alternative splicing can regulate gene expression in response to environmental cues. In addition, recent studies have revealed that C. neoformans introns help to prevent transposon dissemination and protect genome integrity. These characteristics of cryptococcal introns are probably not unique to Cryptococcus, and this yeast likely can be considered as a model for intron-related studies in fungi.
Boghaert, Eline; Radisky, Derek C; Nelson, Celeste M
2014-12-01
Ductal carcinoma in situ (DCIS) is a heterogeneous group of non-invasive lesions of the breast that result from abnormal proliferation of mammary epithelial cells. Pathologists characterize DCIS by four tissue morphologies (micropapillary, cribriform, solid, and comedo), but the underlying mechanisms that distinguish the development and progression of these morphologies are not well understood. Here we explored the conditions leading to the emergence of the different morphologies of DCIS using a two-dimensional multi-cell lattice-based model that incorporates cell proliferation, apoptosis, necrosis, adhesion, and contractility. We found that the relative rates of cell proliferation and apoptosis governed which of the four morphologies emerged. High proliferation and low apoptosis favored the emergence of solid and comedo morphologies. In contrast, low proliferation and high apoptosis led to the micropapillary morphology, whereas high proliferation and high apoptosis led to the cribriform morphology. The natural progression between morphologies cannot be investigated in vivo since lesions are usually surgically removed upon detection; however, our model suggests probable transitions between these morphologies during breast cancer progression. Importantly, cribriform and comedo appear to be the ultimate morphologies of DCIS. Motivated by previous experimental studies demonstrating that tumor cells behave differently depending on where they are located within the mammary duct in vivo or in engineered tissues, we examined the effects of tissue geometry on the progression of DCIS. In agreement with our previous experimental work, we found that cells are more likely to invade from the end of ducts and that this preferential invasion is regulated by cell adhesion and contractility. This model provides additional insight into tumor cell behavior and allows the exploration of phenotypic transitions not easily monitored in vivo.
NASA Astrophysics Data System (ADS)
Li, Bo; Guo, Bo; Fan, Hongsong; Zhang, Xingdong
2008-11-01
To investigate the effects of nano-hydroxyapatite (HA) particles with different morphology on highly malignant melanoma cells, three kinds of HA particles with different morphology were synthesized and co-cultured with highly malignant melanoma cells using phosphate-buffered saline (PBS) as control. A precipitation method with or without citric acid addition as surfactant was used to produce rod-like hydroxyapatite (HA) particles with nano- and micron size, respectively, and a novel oil-in-water emulsion method was employed to prepare ellipse-like nano-HA particles. Particle morphology and size distribution of the as prepared HA powders were characterized by transmission electron microscope (TEM) and dynamic light scattering technique. The nano- and micron HA particles with different morphology were co-cultured with highly malignant melanoma cells. Immunofluorescence analysis and MTT assay were employed to evaluate morphological change of nucleolus and proliferation of tumour cells, respectively. To compare the effects of HA particles on cell response, the PBS without HA particles was used as control. The experiment results indicated that particle nanoscale effect rather than particle morphology of HA was more effective for the inhibition on highly malignant melanoma cells proliferation.
Silencing of ATP11B by RNAi-Induced Changes in Neural Stem Cell Morphology.
Wang, Jiao; Wang, Qian; Zhou, Fangfang; Wang, Dong; Wen, Tieqiao
2017-01-01
RNA interference (RNAi) technology is one of the main research tools in many studies of neural stem cells. This study describes effects of ATP11B on the morphology change of neural stem cells by using RNAi. ATP11B belongs to P4-ATPases family, which is preferential translocate phosphatidylserine of cell membrane. Although it exists in neural stem cells, its physiological function is poorly understood. By using RNAi technology to downregulate expression of ATP11B, we found distinct morphological changes in neural stem cells. More important, psiRNA-ATP11B-transfected cells displayed short neurite outgrowth compared to the control cells. These data strongly suggest that ATP11B plays a key role in the morphological change of neural stem cells.
Alonso, Jose L.; Mascellaro, Salvatore; Moreno, Yolanda; Ferrús, María A.; Hernández, Javier
2002-01-01
We developed a double-staining procedure involving NanoOrange dye (Molecular Probes, Eugene, Oreg.) and membrane integrity stains (LIVE/DEAD BacLight kit; Molecular Probes) to show the morphological and membrane integrity changes of Campylobacter coli cells during growth. The conversion from a spiral to a coccoid morphology via intermediary forms and the membrane integrity changes of the C. coli cells can be detected with the double-staining procedure. Our data indicate that young or actively growing cells are mainly spiral shaped (green-stained cells), but older cells undergo a degenerative change to coccoid forms (red-stained cells). Club-shaped transition cell forms were observed with NanoOrange stain. Chlorinated drinking water affected the viability but not the morphology of C. coli cells. PMID:12324366
Tamura, Masato; Sugiura, Shinji; Takagi, Toshiyuki; Satoh, Taku; Sumaru, Kimio; Kanamori, Toshiyuki; Okada, Tomoko; Matsui, Hirofumi
2017-01-01
Understanding tumor heterogeneity is an urgent and unmet need in cancer research. In this study, we used a morphology-based optical cell separation process to classify a heterogeneous cancer cell population into characteristic subpopulations. To classify the cell subpopulations, we assessed their morphology in hydrogel, a three-dimensional culture environment that induces morphological changes according to the characteristics of the cells (i.e., growth, migration, and invasion). We encapsulated the murine breast cancer cell line 4T1E, as a heterogeneous population that includes highly metastatic cells, in click-crosslinkable and photodegradable gelatin hydrogels, which we developed previously. We observed morphological changes within 3 days of encapsulating the cells in the hydrogel. We separated the 4T1E cell population into colony- and granular-type cells by optical separation, in which local UV-induced degradation of the photodegradable hydrogel around the target cells enabled us to collect those cells. The obtained colony- and granular-type cells were evaluated in vitro by using a spheroid assay and in vivo by means of a tumor growth and metastasis assay. The spheroid assay showed that the colony-type cells formed compact spheroids in 2 days, whereas the granular-type cells did not form spheroids. The tumor growth assay in mice revealed that the granular-type cells exhibited lower tumor growth and a different metastasis behavior compared with the colony-type cells. These results suggest that morphology-based optical cell separation is a useful technique to classify a heterogeneous cancer cell population according to its cellular characteristics.
Garcia-Calero, Elena; Botella-Lopez, Arancha; Bahamonde, Olga; Perez-Balaguer, Ariadna; Martinez, Salvador
2016-07-01
In the mammalian telencephalon, part of the progenitor cells transition from multipolar to bipolar morphology as they invade the mantle zone. This associates with changing patterns of radial migration. However, the molecules implicated in these morphology transitions are not well known. In the present work, we analyzed the function of FoxP2 protein in this process during telencephalic development in vertebrates. We analyzed the expression of FoxP2 protein and its relation with cell morphology and migratory patterns in mouse and chicken developing striatum. We observed FoxP2 protein expressed in a gradient from the subventricular zone to the mantle layer in mice embryos. In the FoxP2 low domain cells showed multipolar migration. In the striatal mantle layer where FoxP2 protein expression is higher, cells showed locomoting migration and bipolar morphology. In contrast, FoxP2 showed a high and homogenous expression pattern in chicken striatum, thus bipolar morphology predominated. Elevation of FoxP2 in the striatal subventricular zone by in utero electroporation promoted bipolar morphology and impaired multipolar radial migration. In mouse cerebral cortex we obtained similar results. FoxP2 promotes transition from multipolar to bipolar morphology by means of gradiental expression in mouse striatum and cortex. Together these results indicate a role of FoxP2 differential expression in cell morphology control of the vertebrate telencephalon.
EVALUATION OF BENZO[c]CHRYSENE DIHYDRODIOLS IN THE MORPHOLOGICAL CELL TRANSFORMATION OF MOUSE EMBRYO FIBROBLAST C3H10T?CL8 CELLS
Abstract The morphological cell transforming activities of three dihydrodiols of benzo[c]chrysene (B[c]C), trans-B[c]C-7,8-diol, trans-B[c]C-9...
Ataollahi, Forough; Pramanik, Sumit; Moradi, Ali; Dalilottojari, Adel; Pingguan-Murphy, Belinda; Wan Abas, Wan Abu Bakar; Abu Osman, Noor Azuan
2015-07-01
Extracellular environments can regulate cell behavior because cells can actively sense their mechanical environments. This study evaluated the adhesion, proliferation and morphology of endothelial cells on polydimethylsiloxane (PDMS)/alumina (Al2 O3 ) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 2.5, 5, 7.5, and 10 wt % Al2 O3 at a curing temperature of 50°C for 4 h. The substrates were then characterized by mechanical, structural, and morphological analyses. The cell adhesion, proliferation, and morphology of cultured bovine aortic endothelial (BAEC) cells on substrate materials were evaluated by using resazurin assay and 1,1'-dioctadecyl-1,3,3,3',3'-tetramethylindocarbocyanine perchlorate-acetylated LDL (Dil-Ac-LDL) cell staining, respectively. The composites (PDMS/2.5, 5, 7.5, and 10 wt % Al2 O3 ) exhibited higher stiffness than the pure PDMS substrate. The results also revealed that stiffer substrates promoted endothelial cell adhesion and proliferation and also induced spread morphology in the endothelial cells compared with lesser stiff substrates. Statistical analysis showed that the effect of time on cell proliferation depended on stiffness. Therefore, this study concludes that the addition of different Al2 O3 percentages to PDMS elevated substrate stiffness which in turn increased endothelial cell adhesion and proliferation significantly and induced spindle shape morphology in endothelial cells. © 2014 Wiley Periodicals, Inc.
Nichols, Kasie L; Bauman, Sean K; Schafer, Fredda B; Murphy, Juneann W
2002-02-01
Cell-mediated immunity is the major protective mechanism against Cryptococcus neoformans. Delayed swelling reactions, i.e., delayed-type hypersensitivity (DTH), in response to an intradermal injection of specific antigen are used as a means of detecting a cell-mediated immune (CMI) response to the antigen. We have found previously that the presence of an anticryptococcal DTH response in mice is not always indicative of protection against a cryptococcal infection. Using one immunogen that induces a protective anticryptococcal CMI response and one that induces a nonprotective response, we have shown that mice immunized with the protective immunogen undergo a classical DTH response characterized by mononuclear cell and neutrophil infiltrates and the presence of gamma interferon and NO. In contrast, immunization with the nonprotective immunogen results in an influx of primarily neutrophils and production of tumor necrosis factor alpha (TNF-alpha) at the DTH reaction site. Even when the anticryptococcal DTH response was augmented by blocking the down-regulator, CTLA-4 (CD152), on T cells in the mice given the nonprotective immunogen, the main leukocyte population infiltrating the DTH reaction site is the neutrophil. Although TNF-alpha is increased at the DTH reaction site in mice immunized with the nonprotective immunogen, it is unlikely that TNF-alpha activates the neutrophils, because the density of TNF receptors on the neutrophils is reduced below control levels. Uncoupling of DTH reactivity and protection has been demonstrated in other infectious-disease models; however, the mechanisms differ from our model. These findings stress the importance of defining the cascade of events occurring in response to various immunogens and establishing the relationships between protection and DTH reactions.
Lam, Johnny; Marklein, Ross A; Jimenez-Torres, Jose A; Beebe, David J; Bauer, Steven R; Sung, Kyung E
2017-12-01
Multipotent stromal cells (MSCs, often called mesenchymal stem cells) have garnered significant attention within the field of regenerative medicine because of their purported ability to differentiate down musculoskeletal lineages. Given the inherent heterogeneity of MSC populations, recent studies have suggested that cell morphology may be indicative of MSC differentiation potential. Toward improving current methods and developing simple yet effective approaches for the morphological evaluation of MSCs, we combined passive pumping microfluidic technology with high-dimensional morphological characterization to produce robust tools for standardized high-throughput analysis. Using ultraviolet (UV) light as a modality for reproducible polystyrene substrate modification, we show that MSCs seeded on microfluidic straight channel devices incorporating UV-exposed substrates exhibited morphological changes that responded accordingly to the degree of substrate modification. Substrate modification also effected greater morphological changes in MSCs seeded at a lower rather than higher density within microfluidic channels. Despite largely comparable trends in morphology, MSCs seeded in microscale as opposed to traditional macroscale platforms displayed much higher sensitivity to changes in substrate properties. In summary, we adapted and qualified microfluidic cell culture platforms comprising simple straight channel arrays as a viable and robust tool for high-throughput quantitative morphological analysis to study cell-material interactions.
Czeisler, Catherine; Short, Aaron; Nelson, Tyler; Gygli, Patrick; Ortiz, Cristina; Catacutan, Fay Patsy; Stocker, Ben; Cronin, James; Lannutti, John; Winter, Jessica; Otero, José Javier
2016-12-01
We sought to determine the contribution of scaffold topography to the migration and morphology of neural stem cells by mimicking anatomical features of scaffolds found in vivo. We mimicked two types of central nervous system scaffolds encountered by neural stem cells during development in vitro by constructing different diameter electrospun polycaprolactone (PCL) fiber mats, a substrate that we have shown to be topographically similar to brain scaffolds. We compared the effects of large fibers (made to mimic blood vessel topography) with those of small-diameter fibers (made to mimic radial glial process topography) on the migration and differentiation of neural stem cells. Neural stem cells showed differential migratory and morphological reactions with laminin in different topographical contexts. We demonstrate, for the first time, that neural stem cell biological responses to laminin are dependent on topographical context. Large-fiber topography without laminin prevented cell migration, which was partially reversed by treatment with rock inhibitor. Cell morphology complexity assayed by fractal dimension was inhibited in nocodazole- and cytochalasin-D-treated neural precursor cells in large-fiber topography, but was not changed in small-fiber topography with these inhibitors. These data indicate that cell morphology has different requirements on cytoskeletal proteins dependent on the topographical environment encountered by the cell. We propose that the physical structure of distinct scaffolds induces unique signaling cascades that regulate migration and morphology in embryonic neural precursor cells. J. Comp. Neurol. 524:3485-3502, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Yang, Rongrong; Zhang, Hong; Xiong, Yong; Gui, Xien; Zhang, Yongxi; Deng, Liping; Gao, Shicheng; Luo, Mingqi; Hou, Wei; Guo, Deyin
2017-01-01
CSF PCR is the standard diagnostic technique used in resource-rich settings to detect pathogens of the CNS infection. However, it is not currently used for routine CSF testing in China. Knowledge of CNS opportunistic infections among people living with HIV in China is limited. Intensive cerebrospiral fluid (CSF) testing was performed to evaluate for bacterial, viral and fungal etiologies. Pathogen-specific primers were used to detect DNA from cytomegalovirus (CMV), herpes simplex virus (HSV), varicella-zoster virus (VZV), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6) and John Cunningham virus (JCV) via real-time polymerase chain reaction (PCR). Cryptococcal meningitis accounted for 63.0% (34 of 54) of all causes of meningitis, 13.0% (7/54) for TB, 9.3% (5/54) for Toxoplasma gondii. Of 54 samples sent for viral PCR, 31.5% (17/54) were positive, 12 (22.2%) for CMV, 2 (3.7%) for VZV, 1 (1.9%) for EBV, 1 (1.9%) for HHV-6 and 1 (1.9%) for JCV. No patient was positive for HSV. Pathogen-based treatment and high GCS score tended to have a lower mortality rate, whereas patients with multiple pathogens infection, seizures or intracranial hypertension showed higher odds of death. CNS OIs are frequent and multiple pathogens often coexist in CSF. Cryptococcal meningitis is the most prevalent CNS disorders among AIDS. The utility of molecular diagnostics for pathogen identification combined with the knowledge provided by the investigation may improve the diagnosis of AIDS related OIs in resource-limited developing countries, but the cost-efficacy remains to be further evaluated.
Garcia Torres, Rafael; Etchebehere, Renata Margarida; Adad, Sheila Jorge; Micheletti, Adilha Rua; Ribeiro, Barbara de Melo; Silva, Leonardo Eurípedes Andrade; Mora, Delio Jose; Paim, Kennio Ferreira; Silva-Vergara, Mario León
2016-01-01
Cryptococcosis occurs in acquired immunodeficiency syndrome (AIDS) patients with poor compliance to antiretroviral therapy or unaware of their human immunodeficiency virus status who present severe immunosuppression at admission. Consequently, high mortality rates are observed due to disseminated fungal infection. This report presents clinical and postmortem data of AIDS patients with cryptococcosis in a teaching hospital in Brazil. Retrospectively, medical and necropsy records of AIDS patients with cryptococcosis clinically confirmed and/or postmortem verified were reviewed. Clinical data were compared with those of patients presenting a good outcome to evaluate disseminated fungal infection and the agreement between clinical and postmortem diagnosis. At admission, most of the 45 patients with cryptococcal meningitis who died, presented more altered consciousness (P = 0.0047), intracranial increased pressure (P = 0.047), and severe malnutrition (P = 0.0006) than the survivors. Of 29 (64.4%) patients with cryptococcal meningitis, 23 died before week 2 on antifungal therapy, and the other six during the next 3 months. The remaining 16 (35.6%) cases had other diagnoses and died soon after. At necropsy, 31 (68.9%) presented disseminated infection involving two or more organs, whereas 14 (31.1%) cases had meningeal or pulmonary localized infection. The agreement of 64.4% between clinical and postmortem diagnosis was similar to some studies. However, other reports have shown figures ranging from 34% to 95%. Currently, a progressive worldwide decrease of autopsies is worrying because the role of postmortem examination is pivotal to verify or identify the death causes, which contributes to improve the quality of clinical diagnosis and medical training. PMID:27458037
Danesi, Patrizia; Drigo, Ilenia; Iatta, Roberta; Firacative, Carolina; Capelli, Gioia; Cafarchia, Claudia; Meyer, Wieland
2014-08-01
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) offers an effective alternative to phenotypic and molecular methods for the rapid identification of microorganisms. Our aim in this study was to create an in-house library for a set of strains of nine uncommonly reported human and animal cryptococcal species, including Cryptococcus adeliensis, C. albidosimilis, C. albidus, C. aureus, C. carnescens, C. laurentii, C. magnus, C. victoriae and C. uniguttulatus, and to use this library to make timely and correct identifications using MALDI-TOF MS for use in routine laboratory diagnostics. Protein extracts obtained via the formic acid extraction method of 62 veterinary non-C. neoformans-C. gattii cryptococcal isolates were studied. The obtained mass spectra correctly grouped all 62 studied isolates according to species identification previously obtained by internal transcribe spacer sequence analysis. The in-house database was than exported and successfully uploaded to the Microflex LT (Maldi Biotyper; Bruker Daltonics) instrument at a different diagnostic laboratory in Italy. Scores >2.7 obtained from isolates reanalyzed in the latter laboratory supported the high reproducibility of the method. The possibility of creating and transferring an in-house library adds to the usefulness MALDI-TOF MS an important tool for the rapid and inexpensive identification of pathogenic and saprophytic fungi as required for differential diagnosis of human and animal mycoses. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Zimmer, LO; Nolen, TL; Pramanpol, S; Wallace, D; Walker, ME; Pappas, P; Chetchotisakd, P
2010-01-01
Background International clinical trials can provide scientific and logistic benefits in spite of the many challenges. Determining whether a country, especially a developing country, is an appropriate location for the research should include in-country consultation and partnering to assess its social value for the population; that treatments are relevant for the population under study; and that the research infrastructure and ethical oversight are adequate. Collaboration increases the likelihood of study success and helps ensure that benefits accrue to recruited populations and their community. Purpose This paper describes our experiences on a bi-national study and may provide guidance for those planning to engage in future collaborations. Methods A Thai and United States team collaborated to develop and implement a Phase II clinical trial for HIV-associated cryptococcal meningitis to assess safety and tolerability of combination therapy versus standard treatment. Clinical and cultural differences, regulatory hurdles and operational issues were addressed before and during the study to ensure a successful collaboration between the 2 groups. Results The international multicenter study allowed for more rapid enrollment, reduced costs to complete the study, sharing of the benefits of research, greater generalizability of results and capacity building in Thailand; quality metrics in Thailand were equivalent to or better than those in the U.S. Conclusions Conducting successful clinical trials internationally requires early and ongoing collaboration to ensure the study meets sites’ requirements and expectations, conforms to varying national regulations, adheres to data quality standards and is responsive to the health needs of studied populations. PMID:19897055
Gascoyne, Peter R. C.; Shim, Sangjo; Noshari, Jamileh; Becker, Frederick F.; Stemke-Hale, Katherine
2013-01-01
Although dielectrophoresis (DEP) has great potential for addressing clinical cell isolation problems based on cell dielectric differences, a biological basis for predicting the DEP behavior of cells has been lacking. Here, the dielectric properties of the NCI-60 panel of tumor cell types have been measured by dielectrophoretic (DEP) field-flow fractionation, correlated with the exterior morphologies of the cells during growth, and compared with the dielectric and morphological characteristics of the subpopulations of peripheral blood. In agreement with earlier findings, cell total capacitance varied with both cell size and plasma membrane folding and the dielectric properties of the NCI-60 cell types in suspension reflected the plasma membrane area and volume of the cells at their growth sites. Therefore, the behavior of cells in DEP-based manipulations is largely determined by their exterior morphological characteristics prior to release into suspension. As a consequence, DEP is able to discriminate between cells of similar size having different morphological origins, offering a significant advantage over size-based filtering for isolating circulating tumor cells, for example. The findings provide a framework for anticipating cell dielectric behavior on the basis of structure-function relationships and suggest that DEP should be widely applicable as a surface marker-independent method for sorting cells. PMID:23172680
Liu, Tao; Sims, David; Baum, Buzz
2009-01-01
In recent years RNAi screening has proven a powerful tool for dissecting gene functions in animal cells in culture. However, to date, most RNAi screens have been performed in a single cell line, and results then extrapolated across cell types and systems. Here, to dissect generic and cell type-specific mechanisms underlying cell morphology, we have performed identical kinome RNAi screens in six different Drosophila cell lines, derived from two distinct tissues of origin. This analysis identified a core set of kinases required for normal cell morphology in all lines tested, together with a number of kinases with cell type-specific functions. Most significantly, the screen identified a role for minibrain (mnb/DYRK1A), a kinase associated with Down's syndrome, in the regulation of actin-based protrusions in CNS-derived cell lines. This cell type-specific requirement was not due to the peculiarities in the morphology of CNS-derived cells and could not be attributed to differences in mnb expression. Instead, it likely reflects differences in gene expression that constitute the cell type-specific functional context in which mnb/DYRK1A acts. Using parallel RNAi screens and gene expression analyses across cell types we have identified generic and cell type-specific regulators of cell morphology, which include mnb/DYRK1A in the regulation of protrusion morphology in CNS-derived cell lines. This analysis reveals the importance of using different cell types to gain a thorough understanding of gene function across the genome and, in the case of kinases, the difficulties of using the differential gene expression to predict function.
Cooley-Andrade, O; Connor, D E; Ma, D D F; Weisel, J W; Parsi, K
2016-04-01
To investigate morphological changes in vascular and circulating blood cells following exposure to detergent sclerosants sodium tetradecyl sulfate and polidocanol. Samples of whole blood, isolated leukocytes, platelets, endothelial cells, and fibroblasts were incubated with varying concentrations of sclerosants. Whole blood smears were stained with Giemsa and examined by light and bright field microscopy. Phalloidin and Hoechst stains were used to analyze cytoplasmic and nuclear morphology by fluorescence microscopy. Endothelial cell and fibroblasts were analyzed by live cell imaging. Higher concentrations of sclerosants induced cell lysis. Morphological changes in intact cells were observed at sublytic concentrations of detergents. Low concentration sodium tetradecyl sulfate induced erythrocyte acanthocytosis and macrocytosis, while polidocanol induced Rouleaux formation and increased the population of target cells and stomatocytes. Leukocytes showed swelling, blebbing, vacuolation, and nuclear degradation following exposure to sodium tetradecyl sulfate, while polidocanol induced pseudopodia formation, chromatin condensation, and fragmentation. Platelets exhibited pseudopodia with sodium tetradecyl sulfate and a "fried egg" appearance with polidocanol. Exposure to sodium tetradecyl sulfate resulted in size shrinkage in both endothelial cell and fibroblasts, while endothelial cell developed distinct spindle morphology. Polidocanol induced cytoplasmic microfilament bundles in both endothelial cell and fibroblasts. Patchy chromatin condensation was observed following exposure of fibroblasts to either agent. Detergent sclerosants are biologically active at sublytic concentrations. The observed morphological changes are consistent with cell activation, apoptosis, and oncosis. The cellular response is concentration dependent, cell-specific, and sclerosant specific. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Ariffin, Shahrul Hisham Zainal; Manogaran, Thanaletchumi; Abidin, Intan Zarina Zainol; Senafi, Sahidan; Wahab, Rohaya Megat Abdul
2016-11-01
Dental pulp is a tissue obtained from pulp chamber of deciduous and permanent tooth which contain stem cells. Stem cell isolation procedure is performed to obtain cells from tissue using enzymatic digestion. The aim of this study is to isolate and observe the morphology of stem cells during passage 0 and passage 3. Dental pulp from deciduous and permanent tooth was enzymatically digested using collagenase Type I and cells obtained were cultured in DMEM-KO that contains 10% fetal bovine serum, 1% antibiotic-antimycotic solution and 0.001× GlutaMax®. During culture, cell morphology was observed under the microscope on day 3, 16 and 33 and captured using cellB software. Giemsa staining was conducted on cells at passage 3. Cells attached at the bottom of the flask on day 3 and started forming small colonies. Cells became confluent after approximately 4 weeks. Both Stem Cells from Deciduous Tooth (SHED) and Human Dental Pulp Stem Cells (hDPSC) exhibited fibroblast-like morphology during passage 0 and passage 3. Meanwhile, Giemsa staining at passage 3 revealed single intact nucleus surrounded by fibroblastic cytoplasm structure. It can be concluded that SHED and hDPSC showed consistent fibroblast-like morphology throughout culture period.
Magniez, Aurélie; Oudrhiri, Noufissa; Féraud, Olivier; Bacci, Josette; Gobbo, Emilie; Proust, Stéphanie; Turhan, Ali G.
2014-01-01
Abstract The fine analysis of cell components during the generation of pluripotent cells and their comparison to bone fide human embryonic stem cells (hESCs) are valuable tools to understand their biological behavior. In this report, human mesenchymal cells (hMSCs) generated from the human ES cell line H9, were reprogrammed back to induced pluripotent state using Oct-4, Sox2, Nanog, and Lin28 transgenes. Human induced pluripotent stem cells (hIPSCs) were analyzed using electron microscopy and compared with regard to the original hESCs and the hMSCs from which they were derived. This analysis shows that hIPSCs and the original hESCs are morphologically undistinguishable but differ from the hMSCs with respect to the presence of several morphological features of undifferentiated cells at both the cytoplasmic (ribosomes, lipid droplets, glycogen, scarce reticulum) and nuclear levels (features of nuclear plasticity, presence of euchromatin, reticulated nucleoli). We show that hIPSC colonies generated this way presented epithelial aspects with specialized junctions highlighting morphological criteria of the mesenchymal–epithelial transition in cells engaged in a successful reprogramming process. Electron microscopic analysis revealed also specific morphological aspects of partially reprogrammed cells. These results highlight the valuable use of electron microscopy for a better knowledge of the morphological aspects of IPSC and cellular reprogramming. PMID:25371857
Murphy, J W; Gregory, J A; Larsh, H W
1974-02-01
This study was undertaken to evaluate the potential of a cryptococcal culture filtrate antigen, cryptococcin C184, for detecting delayed hypersensitivity in Cryptococcus neoformans-injected animals. The antigen was tested on guinea pigs which had received saline or C. neoformans and on animals sensitized to Histoplasma capsulatum, Blastomyces dermatitidis, Candida albicans, or Sporothrix schenckii. A delayed-type hypersensitivity response was elicited by cryptococcin C184 in C. neoformans-injected guinea pigs, whereas no indurations or erythemas were seen at 48 h after skin testing of saline controls or heterologously sensitized guinea pigs. Besides being specific for Cryptococcus, the antigen showed a high degree of sensitivity and was reproducible. Footpad tests were conducted with the antigen on mice which had previously received either 10(5) viable C. neoformans cells or saline. Delayed hypersensitivity was indicated in the C. neoformans-injected mice by the increase in thickness of antigen-injected footpads when compared with the saline-injected footpads. In control mice, antigen- and saline-injected footpads were comparable in thickness 24 h after injection. Mice sensitized to B. dermatitidis were footpad tested with C184, and no cross-reactivity was demonstrated.
Cell dynamic morphology classification using deep convolutional neural networks.
Li, Heng; Pang, Fengqian; Shi, Yonggang; Liu, Zhiwen
2018-05-15
Cell morphology is often used as a proxy measurement of cell status to understand cell physiology. Hence, interpretation of cell dynamic morphology is a meaningful task in biomedical research. Inspired by the recent success of deep learning, we here explore the application of convolutional neural networks (CNNs) to cell dynamic morphology classification. An innovative strategy for the implementation of CNNs is introduced in this study. Mouse lymphocytes were collected to observe the dynamic morphology, and two datasets were thus set up to investigate the performances of CNNs. Considering the installation of deep learning, the classification problem was simplified from video data to image data, and was then solved by CNNs in a self-taught manner with the generated image data. CNNs were separately performed in three installation scenarios and compared with existing methods. Experimental results demonstrated the potential of CNNs in cell dynamic morphology classification, and validated the effectiveness of the proposed strategy. CNNs were successfully applied to the classification problem, and outperformed the existing methods in the classification accuracy. For the installation of CNNs, transfer learning was proved to be a promising scheme. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.
Variations in cell morphology in the canine cruciate ligament complex.
Smith, K D; Vaughan-Thomas, A; Spiller, D G; Clegg, P D; Innes, J F; Comerford, E J
2012-08-01
Cell morphology may reflect the mechanical environment of tissues and influence tissue physiology and response to injury. Normal cruciate ligaments (CLs) from disease-free stifle joints were harvested from dog breeds with a high (Labrador retriever) and low (Greyhound) risk of cranial cruciate ligament (CCL) rupture. Antibodies against the cytoskeletal components vimentin and alpha tubulin were used to analyse cell morphology; nuclei were stained with 4',6-diamidino-2-phenylindole, and images were collected using conventional and confocal microscopy. Both cranial and caudal CLs contained cells of heterogenous morphologies. Cells were arranged between collagen bundles and frequently had cytoplasmic processes. Some of these processes were long (type A cells), others were shorter, thicker and more branched (type B cells), and some had no processes (type C cells). Processes were frequently shown to contact other cells, extending longitudinally and transversely through the CLs. Cells with longer processes had fusiform nuclei, and those with no processes had rounded nuclei and were more frequent in the mid-substance of both CLs. Cells with long processes were more commonly noted in the CLs of the Greyhound. As contact between cells may facilitate direct communication, variances in cell morphology between breeds at a differing risk of CCL rupture may reflect differences in CL physiology. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rogers, Danny A; Schor, Nina F
2013-03-10
Peripheral neuroblastic tumors exist as a heterogeneous mixture of neuroblastic (N-type) cells and Schwannian stromal (S-type) cells. These stromal cells not only represent a differentiated and less aggressive fraction of the tumor, but also have properties that can influence the further differentiation of nearby malignant cells. In vitro neuroblastoma cultures exhibit similar heterogeneity with N-type and S-type cells representing the neuroblastic and stromal portions of the tumor, respectively, in behavior, morphology, and molecular expression patterns. In this study, we deplete kinase D-interacting substrate of 220kD (Kidins220) with an shRNA construct and thereby cause morphologic transition of the human SH-SY5Y neuroblastoma cell line from N-type to S-type. The resulting cells have similar morphology and expression profile to SH-EP1 cells, a native S-type cell line from the same parent cell line, and to SH-SY5Y cells treated with BrdU, a treatment that induces S-type morphology. Specifically, both Kidins220-deficient SH-SY5Y cells and native SH-EP1 cells demonstrate down-regulation of the genes DCX and STMN2, markers for the neuronal lineage. We further show that Kidins220, DCX and STMN2 are co-down-regulated in cells of S-type morphology generated by methods other than Kidins220 depletion. Finally, we report that the association of low Kidins220 expression with S-type morphology and low DCX and STMN2 expression is demonstrated in spontaneously occurring human peripheral neuroblastic tumors. We propose that Kidins220 is critical in N- to S-type transition of neural crest tumor cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Modeling the Soft Geometry of Biological Membranes
NASA Astrophysics Data System (ADS)
Daly, K.
This dissertation presents work done applying the techniques of physics to biological systems. The difference in length scales of the thickness of the phospolipid bilayer and overall size of a biological cell allows bilayer to be modeled elastically as a thin sheet. The Helfrich free energy is extended applied to models representing various biological systems, in order to find quasi-equilibrium states as well as transitions between states. Morphologies are approximated as axially sym-metric. Stable morphologies are de-termined analytically and through the use of computer simulation. The simple morphologies examined analytically give a model for the pearling transition seen in growing biological cells. An analytic model of celluar bulging in gram-negative bacteria predicts a critical pore radius for bulging of 20 nanometers. This model is extended to the membrane dynamics of human red blood cells, predicting three morphologic phases which are seen in vivo. A computer simulation was developed to study more complex morphologies with models representing different bilayer compositions. Single and multi-component bilayer models reproduce morphologies previously predicted by Seifert. A mean field model representing the intrinsic curvature of proteins coupling to membrane curvature is used to explore the stability of the particular morphology of rod outer segment cells. The process of pore formation and expansion in cell-cell fusion is not well understood. Simulation of the pore created in cell-cell fusion led to the finding of a minimal pore radius required for pore expansion, suggesting pores formed in nature are formed with a minimum size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenny, Paraic A.; Lee, Genee Y.; Myers, Connie A.
2007-01-31
3D cell cultures are rapidly becoming the method of choice for the physiologically relevant modeling of many aspects of non-malignant and malignant cell behavior ex vivo. Nevertheless, only a limited number of distinct cell types have been evaluated in this assay to date. Here we report the first large scale comparison of the transcriptional profiles and 3D cell culture phenotypes of a substantial panel of human breast cancer cell lines. Each cell line adopts a colony morphology of one of four main classes in 3D culture. These morphologies reflect, at least in part, the underlying gene expression profile and proteinmore » expression patterns of the cell lines, and distinct morphologies were also associated with tumor cell invasiveness and with cell lines originating from metastases. We further demonstrate that consistent differences in genes encoding signal transduction proteins emerge when even tumor cells are cultured in 3D microenvironments.« less
NASA Astrophysics Data System (ADS)
Zhen Tan, Rui; Lai, Tanny; Chiam, K.-H.
2017-08-01
A multilayered epithelium is made up of individual cells that are stratified in an orderly fashion, layer by layer. In such tissues, individual cells can adopt a wide range of shapes ranging from columnar to squamous. From histological images, we observe that, in flat epithelia such as the skin, the cells in the top layer are squamous while those in the middle and bottom layers are columnar, whereas in tubular epithelia, the cells in all layers are columnar. We develop a computational model to understand how individual cell shape is governed by the mechanical forces within multilayered flat and curved epithelia. We derive the energy function for an epithelial sheet of cells considering intercellular adhesive and intracellular contractile forces. We determine computationally the cell morphologies that minimize the energy function for a wide range of cellular parameters. Depending on the dominant adhesive and contractile forces, we find four dominant cell morphologies for the multilayered-layered flat sheet and three dominant cell morphologies for the two-layered curved sheet. We study the transitions between the dominant cell morphologies for the two-layered flat sheet and find both continuous and discontinuous transitions and also the presence of multistable states. Matching our computational results with histological images, we conclude that apical contractile forces from the actomyosin belt in the epithelial cells is the dominant force determining cell shape in multilayered epithelia. Our computational model can guide tissue engineers in designing artificial multilayered epithelia, in terms of figuring out the cellular parameters needed to achieve realistic epithelial morphologies.
Okada, Hiroki; Ohnuki, Shinsuke; Roncero, Cesar; Konopka, James B.; Ohya, Yoshikazu
2014-01-01
The cell wall of budding yeast is a rigid structure composed of multiple components. To thoroughly understand its involvement in morphogenesis, we used the image analysis software CalMorph to quantitatively analyze cell morphology after treatment with drugs that inhibit different processes during cell wall synthesis. Cells treated with cell wall–affecting drugs exhibited broader necks and increased morphological variation. Tunicamycin, which inhibits the initial step of N-glycosylation of cell wall mannoproteins, induced morphologies similar to those of strains defective in α-mannosylation. The chitin synthase inhibitor nikkomycin Z induced morphological changes similar to those of mutants defective in chitin transglycosylase, possibly due to the critical role of chitin in anchoring the β-glucan network. To define the mode of action of echinocandin B, a 1,3-β-glucan synthase inhibitor, we compared the morphology it induced with mutants of Fks1 that contains the catalytic domain for 1,3-β-glucan synthesis. Echinocandin B exerted morphological effects similar to those observed in some fks1 mutants, with defects in cell polarity and reduced glucan synthesis activity, suggesting that echinocandin B affects not only 1,3-β-glucan synthesis, but also another functional domain. Thus our multivariate analyses reveal discrete functions of cell wall components and increase our understanding of the pharmacology of antifungal drugs. PMID:24258022
Comparison of DNA fragmentation and color thresholding for objective quantitation of apoptotic cells
NASA Technical Reports Server (NTRS)
Plymale, D. R.; Ng Tang, D. S.; Fermin, C. D.; Lewis, D. E.; Martin, D. S.; Garry, R. F.
1995-01-01
Apoptosis is a process of cell death characterized by distinctive morphological changes and fragmentation of cellular DNA. Using video imaging and color thresholding techniques, we objectively quantitated the number of cultured CD4+ T-lymphoblastoid cells (HUT78 cells, RH9 subclone) displaying morphological signs of apoptosis before and after exposure to gamma-irradiation. The numbers of apoptotic cells measured by objective video imaging techniques were compared to numbers of apoptotic cells measured in the same samples by sensitive apoptotic assays that quantitate DNA fragmentation. DNA fragmentation assays gave consistently higher values compared with the video imaging assays that measured morphological changes associated with apoptosis. These results suggest that substantial DNA fragmentation can precede or occur in the absence of the morphological changes which are associated with apoptosis in gamma-irradiated RH9 cells.
Morphological Analysis of Live Undifferentiated Cells Derived from Induced Pluripotent Stem Cells.
Osawa, Yukihiko; Miyamoto, Tomoyuki; Ohno, Setsuyo; Ohno, Eiji
2018-01-01
Induced pluripotent stem (iPS) cells possess pluripotency and self-renewal ability. Therefore, iPS cells are expected to be useful in regenerative medicine. However, iPS cells form malignant immature teratomas after transplantation into animals, even after differentiation induction. It has been suggested that undifferentiated cells expressing Nanog that remain after differentiation induction are responsible for teratoma formation. Various methods of removing these undifferentiated cells have therefore been investigated, but few methods involve morphological approaches, which may induce less cell damage. In addition, for cells derived from iPS cells to be applied in regenerative medicine, they must be alive. However, detailed morphological analysis of live undifferentiated cells has not been performed. For the above reasons, we assessed the morphological features of live undifferentiated cells remaining after differentiation induction as a basic investigation into the clinical application of iPS cells. As a result, live undifferentiated cells remaining after differentiation induction exhibited a round or oval cytoplasm about 12 μm in diameter and a nucleus. They exhibited nucleo-cytoplasmic (N/C) ratio of about 60% and eccentric nuclei, and they possessed partially granule-like structures in the cytoplasm and prominent nucleoli. Although they were similar to iPS cells, they were smaller than live iPS cells. Furthermore, very small cells were present among undifferentiated cells after differentiation induction. These results suggest that the removal of undifferentiated cells may be possible using the morphological features of live iPS cells and undifferentiated cells after differentiation induction. In addition, this study supports safe regenerative medicine using iPS cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavakolinejad, Alireza; Rabbani, Mohsen, E-mail: m.rabbani@eng.ui.ac.ir; Janmaleki, Mohsen
2015-08-21
Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation wasmore » assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells. - Highlights: • Hypergravity (10 g, 20 g, 40 g and 60 g) affects on adipose derived stem cells (ADSCs). • ADSCs after exposure to the hypergravity are more slender. • The height of ADSCs increases in all test groups comparing their control group. • Hypergravity decreases ADSCs modulus of elasticity and cell actin fiber content. • Hypergravity enhances proliferation rate of ADSCs.« less
Nesnow, Stephen; Davis, Christine; Nelson, Garret B; Lambert, Guy; Padgett, William; Pimentel, Maria; Tennant, Alan H; Kligerman, Andrew D; Ross, Jeffrey A
2002-11-26
Benzo[a]pyrene (B[a]P) is the most thoroughly studied polycyclic aromatic hydrocarbon (PAH). Many mechanisms have been suggested to explain its carcinogenic activity, yet many questions still remain. K-region dihydrodiols of PAHs are metabolic intermediates depending on the specific cytochrome P450 and had been thought to be detoxification products. However, K-region dihydrodiols of several PAHs have recently been shown to morphologically transform mouse embryo C3H10T1/2CL8 cells (C3H10T1/2 cells). Because K-region dihydrodiols are not metabolically formed from PAHs by C3H10T1/2 cells, these cells provide a useful tool to independently study the mechanisms of action of PAHs and their K-region dihydrodiols. Here, we compare the morphological cell transforming, DNA damaging, and DNA adducting activities of the K-region dihydrodiol of B[a]P, trans-B[a]P-4,5-diol with B[a]P. Both trans-B[a]P-4,5-diol and B[a]P morphologically transformed C3H10T1/2 cells by producing both Types II and III transformed foci. The morphological cell transforming and cytotoxicity dose response curves for trans-B[a]P-4,5-diol and B[a]P were indistinguishable. Since morphological cell transformation is strongly associated with mutation and/or larger scale DNA damage in C3H10T1/2 cells, the identification of DNA damage induced in these cells by trans-B[a]P-4,5-diol was sought. Both trans-B[a]P-4,5-diol and B[a]P exhibited significant DNA damaging activity without significant concurrent cytotoxicity using the comet assay, but with different dose responses and comet tail distributions. DNA adduct patterns from C3H10T1/2 cells were examined after trans-B[a]P-4,5-diol or B[a]P treatment using 32P-postlabeling techniques and improved TLC elution systems designed to separate polar DNA adducts. While B[a]P treatment produced one major DNA adduct identified as anti-trans-B[a]P-7,8-diol-9,10-epoxide-deoxyguanosine, no stable covalent DNA adducts were detected in the DNA of trans-B[a]P-4,5-diol-treated cells. In summary, this study provides evidence for the DNA damaging and morphological cell transforming activities of the K-region dihydrodiol of B[a]P, in the absence of covalent stable DNA adducts. While trans-B[a]P-4,5-diol and B[a]P both induce morphological cell transformation, their activities as DNA damaging agents differ, both qualitatively and quantitatively. In concert with the morphological cell transformation activities of other K-region dihydrodiols of PAHs, these data suggest a new mechanism/pathway for the morphological cell transforming activities of B[a]P and its metabolites.
Morphological study of the TK cholangiocarcinoma cell line with three-dimensional cell culture.
Akiyoshi, Kohei; Kamada, Minori; Akiyama, Nobutake; Suzuki, Masafumi; Watanabe, Michiko; Fujioka, Kouki; Ikeda, Keiichi; Mizuno, Shuichi; Manome, Yoshinobu
2014-04-01
Cholangiocarcinoma is an intractable carcinoma originating from the bile duct epithelium. To gain an understanding of the cell biology of cholangiocarcinoma, in vitro cell culture is valuable. However, well‑characterized cell lines are limited. In the present study, the morphology of the TK cholangiocarcinoma cell line was analyzed by three‑dimensional culture. Dispersed TK cells were injected into a gelatin mesh scaffold and cultivated for 3‑20 days. The morphology of the TK cells was investigated by phase‑contrast microscopy, optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TK cells were observed to proliferate three-dimensionally in the scaffold. The cells exhibited a globoid structure and attached to the scaffold. The SEM observation demonstrated typical microvilli and plicae on the surface of the structure. Light microscopy and TEM confirmed intercellular and cell‑to‑scaffold attachment in the three‑dimensional mesh. The culture also exhibited the formation of a duct-like structure covered by structured microvilli. In conclusion, three‑dimensional culture of TK cells demonstrated the morphological characteristics of cholangiocarcinoma in vitro. Production of high levels of carbohydrate antigen (CA)19‑9, CA50 and carcinoembryonic antigen was previously confirmed in the TK cell line. As a characteristic morphology was demonstrated in the present study, the TK cholangiocarcinoma cell line may be useful as an experimental model for further study of cholangiocarcinoma.
Gelatinous Marrow Transformation: A Series of 11 Cases from a Tertiary Care Centre in South India
Das, Sreeya; Mishra, Pritinanda; Kar, Rakhee; Basu, Debdatta
2014-01-01
Gelatinous marrow transformation (GMT) or serous atrophy of bone marrow (BM) is a rare disease characterised by focal marrow hypoplasia, fat atrophy, and accumulation of extracellular mucopolysaccharides abundant in hyaluronic acid. This study reviews 11 cases of GMT from South India. Clinical and haematological parameters, BM aspirate, and biopsies of all patients diagnosed with GMT over a period of 7 years were studied. GMT was diagnosed in BM biopsy based on characteristic morphological appearance and was confirmed by alcian blue positive staining pattern at pH levels of 2.5 and 0.5. Eleven patients were diagnosed with GMT. All were males within the age range of 15 to 50 years. The underlying clinical diagnosis was human immunodeficiency virus positivity in 5 cases, 2 with coexistent disseminated tuberculosis, 1 with cryptococcal meningitis, and 1 with oral candidiasis; disseminated tuberculosis in 1 case; pyrexia of unknown origin in 2 cases; Hodgkin’s lymphoma in 1 case; acute lymphoblastic lymphoma with maintenance chemotherapy in 1 case; and alcoholic pancreatitis in 1 case. BM aspirates showed gelatinous metachromatic seromucinous material in 3 cases. BM biopsies were hypocellular in 7 and normocellular in 4 cases and showed focal GMT in 5 and diffuse GMT in 6 cases. Reactive changes were seen in 4 cases and haemophagocytosis in addition to GMT in 1 case. GMT is a relatively uncommon condition and an indicator of severe illness. It should be differentiated from myelonecrosis, amyloidosis, and marrow oedema. A high index of suspicion is required to diagnose this condition. PMID:25035676
Gelatinous marrow transformation: a series of 11 cases from a tertiary care centre in South India.
Das, Sreeya; Mishra, Pritinanda; Kar, Rakhee; Basu, Debdatta
2014-06-01
Gelatinous marrow transformation (GMT) or serous atrophy of bone marrow (BM) is a rare disease characterised by focal marrow hypoplasia, fat atrophy, and accumulation of extracellular mucopolysaccharides abundant in hyaluronic acid. This study reviews 11 cases of GMT from South India. Clinical and haematological parameters, BM aspirate, and biopsies of all patients diagnosed with GMT over a period of 7 years were studied. GMT was diagnosed in BM biopsy based on characteristic morphological appearance and was confirmed by alcian blue positive staining pattern at pH levels of 2.5 and 0.5. Eleven patients were diagnosed with GMT. All were males within the age range of 15 to 50 years. The underlying clinical diagnosis was human immunodeficiency virus positivity in 5 cases, 2 with coexistent disseminated tuberculosis, 1 with cryptococcal meningitis, and 1 with oral candidiasis; disseminated tuberculosis in 1 case; pyrexia of unknown origin in 2 cases; Hodgkin's lymphoma in 1 case; acute lymphoblastic lymphoma with maintenance chemotherapy in 1 case; and alcoholic pancreatitis in 1 case. BM aspirates showed gelatinous metachromatic seromucinous material in 3 cases. BM biopsies were hypocellular in 7 and normocellular in 4 cases and showed focal GMT in 5 and diffuse GMT in 6 cases. Reactive changes were seen in 4 cases and haemophagocytosis in addition to GMT in 1 case. GMT is a relatively uncommon condition and an indicator of severe illness. It should be differentiated from myelonecrosis, amyloidosis, and marrow oedema. A high index of suspicion is required to diagnose this condition.
NASA Astrophysics Data System (ADS)
Kviatkovsky, Inna; Zeidan, Adel; Yeheskely-Hayon, Daniella; Dann, Eldad J.; Yelin, Dvir
2017-02-01
During a sickle cell crisis in sickle cell anemia patients, deoxygenated red blood cells may change their mechanical properties and block small blood vessels, causing pain, local tissue damage and even organ failure. Measuring these cellular structural and morphological changes is important for understanding the factors contributing to vessel blockage and developing an effective treatment. In this work, we use spectrally encoded flow cytometry for confocal, high-resolution imaging of flowing blood cells from sickle cell anemia patients. A wide variety of cell morphologies were observed by analyzing the interference patterns resulting from reflections from the front and back faces of the cells' membrane. Using numerical simulation for calculating the two-dimensional reflection pattern from the cells, we propose an analytical expression for the three-dimensional shape of a characteristic sickle cell and compare it to a previous from the literature. In vitro spectrally encoded flow cytometry offers new means for analyzing the morphology of sickle cells in stress-free environment, and could provide an effective tool for studying the unique physiological properties of these cells.
NASA Astrophysics Data System (ADS)
Zeidan, Adel; Yeheskely-Hayon, Daniella; Minai, Limor; Yelin, Dvir
2016-03-01
The properties of red blood cells are a remarkable indicator of the body's physiological condition; their density could indicate anemia or polycythemia, their absorption spectrum correlates with blood oxygenation, and their morphology is highly sensitive to various pathologic states including iron deficiency, ovalocytosis, and sickle cell disease. Therefore, measuring the morphology of red blood cells is important for clinical diagnosis, providing valuable indications on a patient's health. In this work, we simulated the appearance of normal red blood cells under a reflectance confocal microscope and discovered unique relations between the cells' morphological parameters and the resulting characteristic interference patterns. The simulation results showed good agreement with in vitro reflectance confocal images of red blood cells, acquired using spectrally encoded flow cytometry (SEFC) that imaged the cells during linear flow and without artificial staining. By matching the simulated patterns to the SEFC images of the cells, the cells' three-dimensional shapes were evaluated and their volumes were calculated. Potential applications include measurement of the mean corpuscular volume, cell morphological abnormalities, cell stiffness under mechanical stimuli, and the detection of various hematological diseases.
NASA Astrophysics Data System (ADS)
Fatimah; Sarsito, A. S.; Wimardhani, Y. S.
2017-08-01
Low-molecular-weight chitosan (LMWC) has the same selective cytotoxic effects on oral cancer cells as cisplatin. The cell deaths caused by the anticancer characteristics of chitosan show that apoptosis is not the death pathway of the primary cells involved. The interactions between LMWC and the cells need to be explored. The objective of this study was to compare the ultrastructural morphology of oral Squamous Cell Carcinoma (SCC Ca)-922 and noncancer keratinocyte HaCaT cell lines after exposure to LMWC and cisplatin. The cells were treated with LMWC and cisplatin, and their ultrastructural morphology was analyzed using scanning electron micrographs. Features of early apoptosis, seen as the loss of microvilli, were detected in the LMWC-exposed Ca9-22 cells, and there was a material surrounding the cells. In contrast, the LMWC-exposed HaCaT cells showed no changes related to apoptosis. The results were the opposite when cisplatin was used. This study confirms that there are differences in the ultrastructural surface morphology of LMWC-exposed and cisplatin-exposed oral cancer cells and keratinocytes that could be correlated with their biological activity.
Chan, Leo Li-Ying; Kuksin, Dmitry; Laverty, Daniel J; Saldi, Stephanie; Qiu, Jean
2015-05-01
The ability to accurately determine cell viability is essential to performing a well-controlled biological experiment. Typical experiments range from standard cell culturing to advanced cell-based assays that may require cell viability measurement for downstream experiments. The traditional cell viability measurement method has been the trypan blue (TB) exclusion assay. However, since the introduction of fluorescence-based dyes for cell viability measurement using flow or image-based cytometry systems, there have been numerous publications comparing the two detection methods. Although previous studies have shown discrepancies between TB exclusion and fluorescence-based viability measurements, image-based morphological analysis was not performed in order to examine the viability discrepancies. In this work, we compared TB exclusion and fluorescence-based viability detection methods using image cytometry to observe morphological changes due to the effect of TB on dead cells. Imaging results showed that as the viability of a naturally-dying Jurkat cell sample decreased below 70 %, many TB-stained cells began to exhibit non-uniform morphological characteristics. Dead cells with these characteristics may be difficult to count under light microscopy, thus generating an artificially higher viability measurement compared to fluorescence-based method. These morphological observations can potentially explain the differences in viability measurement between the two methods.
Frada, Miguel José; Rosenwasser, Shilo; Ben-Dor, Shifra; Shemi, Adva; Sabanay, Helena; Vardi, Assaf
2017-12-01
Recognizing the life cycle of an organism is key to understanding its biology and ecological impact. Emiliania huxleyi is a cosmopolitan marine microalga, which displays a poorly understood biphasic sexual life cycle comprised of a calcified diploid phase and a morphologically distinct biflagellate haploid phase. Diploid cells (2N) form large-scale blooms in the oceans, which are routinely terminated by specific lytic viruses (EhV). In contrast, haploid cells (1N) are resistant to EhV. Further evidence indicates that 1N cells may be produced during viral infection. A shift in morphology, driven by meiosis, could therefore constitute a mechanism for E. huxleyi cells to escape from EhV during blooms. This process has been metaphorically coined the 'Cheshire Cat' (CC) strategy. We tested this model in two E. huxleyi strains using a detailed assessment of morphological and ploidy-level variations as well as expression of gene markers for meiosis and the flagellate phenotype. We showed that following the CC model, production of resistant cells was triggered during infection. This led to the rise of a new subpopulation of cells in the two strains that morphologically resembled haploid cells and were resistant to EhV. However, ploidy-level analyses indicated that the new resistant cells were diploid or aneuploid. Thus, the CC strategy in E. huxleyi appears to be a life-phase switch mechanism involving morphological remodeling that is decoupled from meiosis. Our results highlight the adaptive significance of morphological plasticity mediating complex host-virus interactions in marine phytoplankton.
Rosenwasser, Shilo; Shemi, Adva; Sabanay, Helena; Vardi, Assaf
2017-01-01
Recognizing the life cycle of an organism is key to understanding its biology and ecological impact. Emiliania huxleyi is a cosmopolitan marine microalga, which displays a poorly understood biphasic sexual life cycle comprised of a calcified diploid phase and a morphologically distinct biflagellate haploid phase. Diploid cells (2N) form large-scale blooms in the oceans, which are routinely terminated by specific lytic viruses (EhV). In contrast, haploid cells (1N) are resistant to EhV. Further evidence indicates that 1N cells may be produced during viral infection. A shift in morphology, driven by meiosis, could therefore constitute a mechanism for E. huxleyi cells to escape from EhV during blooms. This process has been metaphorically coined the ‘Cheshire Cat’ (CC) strategy. We tested this model in two E. huxleyi strains using a detailed assessment of morphological and ploidy-level variations as well as expression of gene markers for meiosis and the flagellate phenotype. We showed that following the CC model, production of resistant cells was triggered during infection. This led to the rise of a new subpopulation of cells in the two strains that morphologically resembled haploid cells and were resistant to EhV. However, ploidy-level analyses indicated that the new resistant cells were diploid or aneuploid. Thus, the CC strategy in E. huxleyi appears to be a life-phase switch mechanism involving morphological remodeling that is decoupled from meiosis. Our results highlight the adaptive significance of morphological plasticity mediating complex host–virus interactions in marine phytoplankton. PMID:29244854
Shrikanth, Vandana; Salazar, Lucrecia; Khoury, Nabil; Wootton, Susan; Hasbun, Rodrigo
2015-10-01
Hypoglycorrhachia (cerebrospinal fluid (CSF) glucose <45 mg/dl) has been identified as a prognostic factor in patients with meningitis. The differential diagnosis of hypoglycorrhachia and its clinical significance was analyzed in the present study. This was a retrospective study of 620 adult patients with community-acquired meningitis (CSF white blood cell count >5 × 10(6) cells/l and absence of a CSF shunt or recent neurosurgical procedure (<1 month)) at eight Memorial Hermann hospitals in Houston, Texas, from January 2005 to December 2010. An adverse clinical outcome was defined as a Glasgow outcome scale score of ≤ 4. Out of 620 patients with meningitis, 116 (19%) had hypoglycorrhachia. Etiologies of hypoglycorrhachia were idiopathic (n=40), bacterial (n=27), cryptococcal (n=26), viral (n=15), and tuberculous (n=4). Patients with hypoglycorrhachia were more likely to be immunosuppressed, have a history of intravenous drug use, and present with a vesicular or petechial rash, nausea or vomiting, nuchal rigidity, sinusitis/otitis, abnormal mental status, and focal neurological deficits compared to those patients without hypoglycorrhachia (p<0.05). Additionally, patients in the hypoglycorrhachia group had significantly higher rates of positive CSF and blood cultures, urgent treatable conditions, and abnormal cranial imaging (p<0.05). Furthermore, patients with hypoglycorrhachia had more adverse clinical outcomes (26/116 (22.4%) vs. 45/504 (8.9%); p<0.001). Hypoglycorrhachia has significant clinical and prognostic value in the evaluation of adult patients with community-acquired meningitis. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Minaidou, Anna; Nicolaou, Paschalis; Christodoulou, Kyproula
2018-10-01
Deleterious variants in LRSAM1, a RING finger ubiquitin ligase which is also known as TSG101-associated ligase (TAL), have recently been associated with Charcot-Marie-Tooth disease type 2P (CMT2P). The mechanism by which mutant LRSAM1 contributes to the development of neuropathy is currently unclear. The aim of this study was to induce LRSAM1 deficiency in a neuronal cell model, observe its effect on cell growth and morphology and attempt to rescue the phenotype with ancestral and mutant LRSAM1 transfections. In this experimental study, we investigated the effect of LRSAM1 downregulation on neuroblastoma SH-SY5Y cells by siRNA technology where cells were transfected with siRNA against LRSAM1. The effects on the expression levels of TSG101, the only currently known LRSAM1 interacting molecule, were also examined. An equal dosage of ancestral or mutant LRSAM1 construct was transfected in LRSAM1-downregulated cells to investigate its effect on the phenotype of the cells and whether cell proliferation and morphology could be rescued. A significant reduction in TSG101 levels was observed with the downregulation of LRSAM1. In addition, LRSAM1 knockdown significantly decreased the growth rate of SH-SY5Y cells which is caused by a decrease in cell proliferation. An effect on cell morphology was also observed. Furthermore, we overexpressed the ancestral and the c.2047-1G>A mutant LRSAM1 in knocked down cells. Ancestral LRSAM1 recovered cell proliferation and partly the morphology, however, the c.2047-1G>A mutant did not recover cell proliferation and further aggravated the observed changes in cell morphology. Our findings suggest that depletion of LRSAM1 affects neuroblastoma cells growth and morphology and that overexpression of the c.2047-1G>A mutant form, unlike the ancestral LRSAM1, fails to rescue the phenotype. Copyright© by Royan Institute. All rights reserved.
The Limits on Trypanosomatid Morphological Diversity
Wheeler, Richard John; Gluenz, Eva; Gull, Keith
2013-01-01
Cell shape is one, often overlooked, way in which protozoan parasites have adapted to a variety of host and vector environments and directional transmissions between these environments. Consequently, different parasite life cycle stages have characteristic morphologies. Trypanosomatid parasites are an excellent example of this in which large morphological variations between species and life cycle stage occur, despite sharing well-conserved cytoskeletal and membranous structures. Here, using previously published reports in the literature of the morphology of 248 isolates of trypanosomatid species from different hosts, we perform a meta-analysis of the occurrence and limits on morphological diversity of different classes of trypanosomatid morphology (trypomastigote, promastigote, etc.) in the vertebrate bloodstream and invertebrate gut environments. We identified several limits on cell body length, cell body width and flagellum length diversity which can be interpreted as biomechanical limits on the capacity of the cell to attain particular dimensions. These limits differed for morphologies with and without a laterally attached flagellum which we suggest represent two morphological superclasses, the ‘juxtaform’ and ‘liberform’ superclasses. Further limits were identified consistent with a selective pressure from the mechanical properties of the vertebrate bloodstream environment; trypanosomatid size showed limits relative to host erythrocyte dimensions. This is the first comprehensive analysis of the limits of morphological diversity in any protozoan parasite, revealing the morphogenetic constraints and extrinsic selection pressures associated with the full diversity of trypanosomatid morphology. PMID:24260255
Evaluation of imaging biomarkers for identification of single cancer cells in blood
NASA Astrophysics Data System (ADS)
Odaka, Masao; Kim, Hyonchol; Girault, Mathias; Hattori, Akihiro; Terazono, Hideyuki; Matsuura, Kenji; Yasuda, Kenji
2015-06-01
A method of discriminating single cancer cells from whole blood cells based on their morphological visual characteristics (i.e., “imaging biomarker”) was examined. Cells in healthy rat blood, a cancer cell line (MAT-LyLu), and cells in cancer-cell-implanted rat blood were chosen as models, and their bright-field (BF, whole-cell morphology) and fluorescence (FL, nucleus morphology) images were taken by an on-chip multi-imaging flow cytometry system and compared. Eight imaging biomarker indices, i.e., cellular area in a BF image, nucleus area in an FL image, area ratio of a whole cell and its nucleus, distance of the mass center between a whole cell and nucleus, cellular and nucleus perimeter, and perimeter ratios were calculated and analyzed using the BF and FL images taken. Results show that cancer cells can be clearly distinguished from healthy blood cells using correlation diagrams for cellular and nucleus areas as two different categories. Moreover, a portion of cancer cells showed a low nucleus perimeter ratio less than 0.9 because of the irregular nucleus morphologies of cancer cells. These results indicate that the measurements of imaging biomarkers are practically applicable to identifying cancer cells in blood.
Heinrich, Franziska; Contioso, Vanessa Bono; Stein, Veronika M; Carlson, Regina; Tipold, Andrea; Ulrich, Reiner; Puff, Christina; Baumgärtner, Wolfgang; Spitzbarth, Ingo
2015-01-15
DH82 cells represent a permanent macrophage cell line isolated from a dog with histiocytic sarcoma (HS) and are commonly used in various fields of research upon infection and cancer, respectively. Despite its frequent use, data on cell surface antigen expression of this cell line are fragmentary and in part inconsistent. We therefore aimed at a detailed morphological and antigenic characterization of DH82 cells with respect to passage-dependent differences. Cellular morphology of early (≤ 13) and late (≥ 66) passages of DH82 cells was evaluated via scanning electron microscopy. Moreover, cells were labelled with 10 monoclonal antibodies directed against CD11c, CD14, CD18, CD44, CD45, CD80, CD86, MHC-I, MHC-II, and ICAM-1 for flow cytometric analysis. Early passage cells were characterized by round cell bodies with abundant small cytoplasmic projections whereas later passages exhibited a spindle-shaped morphology with large processes. The percentage of CD11c-, CD14-, CD18-, CD45-, and CD80 positive cells significantly decreased in late passages whereas the expression of CD44, CD86, MHC-I, MHC-II and ICAM-1 remained unchanged. DH82 cells represent a remarkably heterogeneous cell line with divergent antigenic and morphologic properties. The present findings have important implications for future studies, which should consider distinct characteristics with regard to the used passage. Copyright © 2014 Elsevier B.V. All rights reserved.
Morphology based scoring of chromosomal instability and its correlation with cell viability.
Yadav, Shubhlata; Bhatia, Alka
2017-09-01
The aim of this study was to devise the quantitative scoring system for Chromosomal instability (CIN) based on morphological indicators like MPM, NB, NPB, CS, La and MN in cancer cell line and to correlate it with cell viability and death. Human hepatocellular carcinoma (HepG2) cells were treated with drugs like Diethylstilbestrol 0-100μM, Griseofulvin 0-40μg/ml, Vincristine sulphate 0-25μg/ml, Mitomycin C 0-600ng/ml, Bleomycin 0-10μg/ml, Doxorubicin 0-30μg/ml for 24h. Following this, the CIN was assessed by counting the morphological indicators like Micronuclei (MN), Nuclear Buds (NB), Nucleoplasmic bridges, Laggards, Multipolar mitosis and chromatin strings/1000 cells in Giemsa stained smears by light microscopy and by determining the percentage of aneuploid cells by flow cytometry. The cell viability was assessed by MTT assay and percentage of apoptotic cells was determined by flow cytometry. The MN and NB were most frequently seen indicators and main determinants of morphological CIN. However, the morphological CIN score did not show any correlation with cell viability and apoptosis. Aneuploidy however was found to correlate positively with cell viability and NB score in our study (P-value <0.05). The study for the 1st time attempted to develop a scoring system for CIN based on morphological parameters. However, a no correlation was observed between the later and cell viability or apoptosis. More robust techniques to quantify CIN may perhaps be more helpful in exploring the true link between CIN and cell viability in future. Copyright © 2017 Elsevier GmbH. All rights reserved.
Whole-Cell Chloride Currents in Rat Astrocytes Accompany Changes in Cell Morphology
Lascola, Christopher D.; Kraig, Richard P.
2009-01-01
Astrocytes can change shape dramatically in response to increased physiological and pathological demands, yet the functional consequences of morphological change are unknown. We report the expression of Cl− currents after manipulations that alter astrocyte morphology. Whole-cell Cl− currents were elicited after (1) rounding up cells by brief exposure to trypsin; (2) converting cells from a flat polygonal to a process-bearing (stellate) morphology by exposure to serum-free Ringer’s solution; and (3) swelling cells by exposure to hypo-osmotic solution. Zero-current potentials approximated the Nernst for Cl−, and rectification usually followed that predicted by the constant-field equation. We observed heterogeneity in the activation and inactivation kinetics, as well as in the relative degree of outward versus inward rectification. Cl− conductances were inhibited by 4,4-diisothiocyanostilbene-2,2′-disulfonic acid (200 μM) and by Zn2+ (1 mM). Whole-cell Cl− currents were not expressed in cells without structural change. We investigated whether changes in cytoskeletal actin accompanying changes in astrocytic morphology play a role in the induction of shape-dependent Cl− currents. Cytochalasins, which disrupt actin polymers by enhancing actin-ATP hydrolysis, elicited whole-cell Cl− conductances in flat, polygonal astrocytes. In stellate cells, elevated intracellular Ca2+ (2 μM), which can depolymerize actin, enhanced Cl− currents, and high intracellular ATP (5 mM), required for repolymerization, reduced Cl− currents. Modulation of Cl− current by Ca2+ and ATP was blocked by concurrent whole-cell dialysis with phalloidin and DNase, respectively. Phalloidin stabilizes actin polymers and DNase inhibits actin polymerization. Dialysis with phalloidin also prevented hypo-osmotically activated Cl− currents. These results demonstrate how the expression of astrocyte Cl− currents can be dependent on cell morphology, the structure of actin, Ca2+ homeostasis, and metabolism. PMID:8786429
Zhang, Jicheng; Xie, SuFei; Lu, Zhen; Wu, Yang; Xiao, Hongmei; Zhang, Xuejuan; Li, Guangwu; Li, Cuihong; Chen, Xuebo; Ma, Wei; Bo, Zhishan
2017-10-01
This data contains additional data related to the article "Influence of Substrate Temperature on the Film Morphology and Photovoltaic Performance of Non-fullerene Organic Solar Cells" (Jicheng Zhang et al., In press) [1]. Data include measurement and characterization instruments and condition, detail condition to fabricate norfullerene solar cell devices, hole-only and electron-only devices. Detail condition about how to control the film morphology of devices via tuning the temperature of substrates was also displayed. More information and more convincing data about the change of film morphology for active layers fabricated from different temperature, which is attached to the research article of "Influence of Substrate Temperature on the Film Morphology and Photovoltaic Performance of Non-fullerene Organic Solar Cells" was given.
Vanhove, Mathieu; Beale, Mathew A; Rhodes, Johanna; Chanda, Duncan; Lakhi, Shabir; Kwenda, Geoffrey; Molloy, Sile; Karunaharan, Natasha; Stone, Neil; Harrison, Thomas S; Bicanic, Tihana; Fisher, Matthew C
2017-04-01
Emerging infections caused by fungi have become a widely recognized global phenomenon and are causing an increasing burden of disease. Genomic techniques are providing new insights into the structure of fungal populations, revealing hitherto undescribed fine-scale adaptations to environments and hosts that govern their emergence as infections. Cryptococcal meningitis is a neglected tropical disease that is responsible for a large proportion of AIDS-related deaths across Africa; however, the ecological determinants that underlie a patient's risk of infection remain largely unexplored. Here, we use genome sequencing and ecological genomics to decipher the evolutionary ecology of the aetiological agents of cryptococcal meningitis, Cryptococcus neoformans and Cryptococcus gattii, across the central African country of Zambia. We show that the occurrence of these two pathogens is differentially associated with biotic (macroecological) and abiotic (physical) factors across two key African ecoregions, Central Miombo woodlands and Zambezi Mopane woodlands. We show that speciation of Cryptococcus has resulted in adaptation to occupy different ecological niches, with C. neoformans found to occupy Zambezi Mopane woodlands and C. gattii primarily recovered from Central Miombo woodlands. Genome sequencing shows that C. neoformans causes 95% of human infections in this region, of which over three-quarters belonged to the globalized lineage VNI. We show that VNI infections are largely associated with urbanized populations in Zambia. Conversely, the majority of C. neoformans isolates recovered in the environment belong to the genetically diverse African-endemic lineage VNB, and we show hitherto unmapped levels of genomic diversity within this lineage. Our results reveal the complex evolutionary ecology that underpins the reservoirs of infection for this, and likely other, deadly pathogenic fungi. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
2012-01-01
Background Even though the prevalence of HIV infection among the adult population in Ethiopia was estimated to be 2.2% in 2008, the studies on the pattern of neurological manifestations are rare. The aim of this retrospective study was to assess the pattern and predictors of mortality of HIV/AIDS patients with neurologic manifestations. Methods Medical records of 347 patients (age ≥13 years) admitted to Tikur Anbesa Hospital from September 2002 to August 2009 were reviewed and demographic and clinical data were collected. Results Data from 347 patients were analysed. The mean age was 34.6 years. The diagnosis of HIV was made before current admission in 33.7% and 15.6% were on antiretroviral therapy (ART). Causes of neurological manifestation were: cerebral toxoplasmosis (36.6%), tuberculous meningitis (22.5%), cryptococcal meningitis (22.2%) and bacterial meningitis (6.9%). HIV-encephalopathy, primary central nervous system (CNS) lymphoma and progressive multifocal leukoencephalopathy were rare in our patients. CD4 count was done in 64.6% and 89.7% had count below 200/mm3[mean = 95.8, median = 57] and 95.7% were stage IV. Neuroimaging was done in 38% and 56.8% had mass lesion. The overall mortality was 45% and the case-fatality rates were: tuberculous meningitis (53.8%), cryptococcal meningitis (48.1%), cerebral toxoplasmosiss (44.1%) and bacterial meningitis (33.3%). Change in sensorium and seizure were predictors of mortality. Conclusions CNS opportunistic infections were the major causes of neurological manifestations of HIV/AIDS and were associated with high mortality and morbidity. Almost all patients had advanced HIV disease at presentation. Early diagnosis of HIV, prophylaxis and treatment of opportunistic infections, timely ART, and improving laboratory services are recommended. Mortality was related to change in sensorium and seizure. PMID:22490062
Hansen, Jessica; Slechta, E. Susan; Gates-Hollingsworth, Marcellene A.; Neary, Brandon; Barker, Adam P.; Bauman, Sean; Kozel, Thomas R.
2013-01-01
Cryptococcosis is a systemic infection caused by the pathogenic yeasts Cryptococcus neoformans and C. gattii. Detection of cryptococcal capsular antigen (CrAg) in serum and cerebrospinal fluid (CSF) plays an important diagnostic role. We prospectively compared the new Immuno-Mycologics Inc. (IMMY) lateral flow assay (LFA) and enzyme immunoassay (EIA) to our current CrAg test (Premier EIA; Meridian Bioscience Inc.). Discordant samples were retested with the latex-Cryptococcus antigen test (IMMY) and using serotype-specific monoclonal antibodies (MAbs). A total of 589 serum and 411 CSF specimens were tested in parallel. Qualitative agreement across assays was 97.7%. In all, 56 (41 serum and 15 CSF) samples were positive and 921 (527 serum and 394 CSF) samples were negative by all three assays. The 23 discrepant specimens were all Meridian EIA negative. Of 23 discordant specimens, 20 (87.0%) were positive by both the IMMY LFA and EIA, 2 were LFA positive only, and 1 was EIA positive only. Eleven discrepant specimens had adequate volume for latex agglutination (LA) testing; 8 were LA positive, and 3 were LA negative. LA-negative samples (2 CSF samples and 1 serum) had low IMMY LFA/EIA titers (≤1:10). Serotype-specific MAb analysis of the LA-positive samples suggested that these specimens contained CrAg epitopes similar to those of serotype C strains. In conclusion, the IMMY assays showed excellent overall concordance with the Meridian EIA. Assay performance differences were related to issues of analytic sensitivity and possible serotype bias. Incomplete access to patient-level data combined with low specimen volumes limited our ability to fully resolve discrepant results. PMID:23114703
Hansen, Jessica; Slechta, E Susan; Gates-Hollingsworth, Marcellene A; Neary, Brandon; Barker, Adam P; Bauman, Sean; Kozel, Thomas R; Hanson, Kimberly E
2013-01-01
Cryptococcosis is a systemic infection caused by the pathogenic yeasts Cryptococcus neoformans and C. gattii. Detection of cryptococcal capsular antigen (CrAg) in serum and cerebrospinal fluid (CSF) plays an important diagnostic role. We prospectively compared the new Immuno-Mycologics Inc. (IMMY) lateral flow assay (LFA) and enzyme immunoassay (EIA) to our current CrAg test (Premier EIA; Meridian Bioscience Inc.). Discordant samples were retested with the latex-Cryptococcus antigen test (IMMY) and using serotype-specific monoclonal antibodies (MAbs). A total of 589 serum and 411 CSF specimens were tested in parallel. Qualitative agreement across assays was 97.7%. In all, 56 (41 serum and 15 CSF) samples were positive and 921 (527 serum and 394 CSF) samples were negative by all three assays. The 23 discrepant specimens were all Meridian EIA negative. Of 23 discordant specimens, 20 (87.0%) were positive by both the IMMY LFA and EIA, 2 were LFA positive only, and 1 was EIA positive only. Eleven discrepant specimens had adequate volume for latex agglutination (LA) testing; 8 were LA positive, and 3 were LA negative. LA-negative samples (2 CSF samples and 1 serum) had low IMMY LFA/EIA titers (≤1:10). Serotype-specific MAb analysis of the LA-positive samples suggested that these specimens contained CrAg epitopes similar to those of serotype C strains. In conclusion, the IMMY assays showed excellent overall concordance with the Meridian EIA. Assay performance differences were related to issues of analytic sensitivity and possible serotype bias. Incomplete access to patient-level data combined with low specimen volumes limited our ability to fully resolve discrepant results.
Factors Required for Activation of Urease as a Virulence Determinant in Cryptococcus neoformans
Singh, Arpita; Panting, Robert J.; Varma, Ashok; Saijo, Tomomi; Waldron, Kevin J.; Jong, Ambrose; Ngamskulrungroj, Popchai; Chang, Yun C.; Rutherford, Julian C.; Kwon-Chung, Kyung J.
2013-01-01
ABSTRACT Urease in Cryptococcus neoformans plays an important role in fungal dissemination to the brain and causing meningoencephalitis. Although urea is not required for synthesis of apourease encoded by URE1, the available nitrogen source affected the expression of URE1 as well as the level of the enzyme activity. Activation of the apoenzyme requires three accessory proteins, Ure4, Ure6, and Ure7, which are homologs of the bacterial urease accessory proteins UreD, UreF, and UreG, respectively. A yeast two-hybrid assay showed positive interaction of Ure1 with the three accessory proteins encoded by URE4, URE6, and URE7. Metalloproteomic analysis of cryptococcal lysates using inductively coupled plasma mass spectrometry (ICP-MS) and a biochemical assay of urease activity showed that, as in many other organisms, urease is a metallocentric enzyme that requires nickel transported by Nic1 for its catalytic activity. The Ure7 accessory protein (bacterial UreG homolog) binds nickel likely via its conserved histidine-rich domain and appears to be responsible for the incorporation of Ni2+ into the apourease. Although the cryptococcal genome lacks the bacterial UreE homolog, Ure7 appears to combine the functions of bacterial UreE and UreG, thus making this pathogen more similar to that seen with the plant system. Brain invasion by the ure1, ure7, and nic1 mutant strains that lack urease activity was significantly less effective in a mouse model. This indicated that an activated urease and not the Ure1 protein was responsible for enhancement of brain invasion and that the factors required for urease activation in C. neoformans resemble those of plants more than those of bacteria. PMID:23653445
Torres, Rafael Garcia; Etchebehere, Renata Margarida; Adad, Sheila Jorge; Micheletti, Adilha Rua; Ribeiro, Barbara de Melo; Silva, Leonardo Eurípedes Andrade; Mora, Delio Jose; Paim, Kennio Ferreira; Silva-Vergara, Mario León
2016-10-05
Cryptococcosis occurs in acquired immunodeficiency syndrome (AIDS) patients with poor compliance to antiretroviral therapy or unaware of their human immunodeficiency virus status who present severe immunosuppression at admission. Consequently, high mortality rates are observed due to disseminated fungal infection. This report presents clinical and postmortem data of AIDS patients with cryptococcosis in a teaching hospital in Brazil. Retrospectively, medical and necropsy records of AIDS patients with cryptococcosis clinically confirmed and/or postmortem verified were reviewed. Clinical data were compared with those of patients presenting a good outcome to evaluate disseminated fungal infection and the agreement between clinical and postmortem diagnosis. At admission, most of the 45 patients with cryptococcal meningitis who died, presented more altered consciousness (P = 0.0047), intracranial increased pressure (P = 0.047), and severe malnutrition (P = 0.0006) than the survivors. Of 29 (64.4%) patients with cryptococcal meningitis, 23 died before week 2 on antifungal therapy, and the other six during the next 3 months. The remaining 16 (35.6%) cases had other diagnoses and died soon after. At necropsy, 31 (68.9%) presented disseminated infection involving two or more organs, whereas 14 (31.1%) cases had meningeal or pulmonary localized infection. The agreement of 64.4% between clinical and postmortem diagnosis was similar to some studies. However, other reports have shown figures ranging from 34% to 95%. Currently, a progressive worldwide decrease of autopsies is worrying because the role of postmortem examination is pivotal to verify or identify the death causes, which contributes to improve the quality of clinical diagnosis and medical training. © The American Society of Tropical Medicine and Hygiene.
Vidal, J E; Peixoto de Miranda, E J F; Gerhardt, J; Croda, M; Boulware, D R
2017-01-30
Tuberculous and cryptococcal meningitis (TBM and CM) are the most common causes of opportunistic meningitis in HIVinfected patients from resource-limited settings, and the differential diagnosis is challenging. To compare clinical and basic cerebrospinal fluid (CSF) characteristics between TBM and CM in HIV-infected patients. A retrospective analysis was conducted of clinical, radiological and laboratory records of 108 and 98 HIV-infected patients with culture-proven diagnosis of TBM and CM, respectively. The patients were admitted at a tertiary centre in São Paulo, Brazil. A logistic regression model was used to distinguish TBM from CM and derive a diagnostic index based on the adjusted odds ratio (OR) to differentiate these two diseases. In multivariate analysis, TBM was independently associated with: CSF with neutrophil predominance (odds ratio (OR) 35.81, 95% confidence interval (CI) 3.80 - 341.30, p=0.002), CSF pleocytosis (OR 9.43, 95% CI 1.30 - 68.70, p=0.027), CSF protein >1.0 g/L (OR 5.13, 95% CI 1.38 - 19.04, p=0.032) and Glasgow Coma Scale <15 (OR 3.10, 95% CI 1.03 - 9.34, p=0.044). Nausea and vomiting (OR 0.27, 95% CI 0.08 - 0.90, p=0.033) were associated with CM. Algorithm-related area under the receiver operating characteristics curve was 0.815 (95% CI 0.758 - 0.873, p<0.0001), but an accurate cut-off was not derived. Although some clinical and basic CSF characteristics appear useful in the differential diagnosis of TBM and CM in HIVinfected patients, an accurate algorithm was not identified. Optimised access to rapid, sensitive and specific laboratory tests is essential.
Evaluation of a Newly Developed Lateral Flow Immunoassay for the Diagnosis of Cryptococcosis
Lindsley, Mark D.; Mekha, Nanthawan; Baggett, Henry C.; Surinthong, Yupha; Autthateinchai, Rinrapas; Sawatwong, Pongpun; Harris, Julie R.; Park, Benjamin J.; Chiller, Tom; Poonwan, Natteewan
2011-01-01
Background. Cryptococcosis is a common opportunistic infection of human immunodeficiency virus (HIV)–infected individuals mostly occurring in resource-limited countries. This study compares the performance of a recently developed lateral flow immunoassay (LFA) to blood culture and enzyme immunoassay (EIA) for the diagnosis of cryptococcosis. Methods. Archived sera from 704 HIV-infected patients hospitalized for acute respiratory illness in Thailand were tested for cryptococcal antigenemia using EIA. All EIA-positive and a subset of EIA-negative sera were tested by LFA, with results recorded after 5 and 15 minutes incubation. Urine from patients with LFA- and EIA-positive sera was tested by LFA. Antigen results from patients with positive cryptococcal blood cultures were compared. Results. Of 704 sera, 92 (13%) were positive by EIA; among the 91 EIA-positive sera tested by LFA, 82 (90%) and 87 (96%) were LFA positive when read after 5 and 15 minutes, respectively. Kappa agreement of EIA and LFA for sera was 0.923 after 5 minutes and 0.959 after 15 minutes, respectively. Two of 373 EIA-negative sera were LFA positive at both time points. Of 74 urine specimens from EIA-positive patients, 52 (70.3%) were LFA positive. EIA was positive in 16 of 17 sera from blood culture–positive patients (94% sensitivity), and all sera were positive by LFA (100% sensitivity). Conclusions. A high level of agreement was shown between LFA and EIA testing of serum. The LFA is a rapid, easy-to-perform assay that does not require refrigeration, demonstrating its potential usefulness as a point-of-care assay for diagnosis of cryptococcosis in resource-limited countries. PMID:21810743
Outcomes of HIV-positive patients with cryptococcal meningitis in the Americas.
Crabtree Ramírez, B; Caro Vega, Y; Shepherd, B E; Le, C; Turner, M; Frola, C; Grinsztejn, B; Cortes, C; Padgett, D; Sterling, T R; McGowan, C C; Person, A
2017-10-01
Cryptococcal meningitis (CM) is associated with substantial mortality in HIV-infected patients. Optimal timing of antiretroviral therapy (ART) in persons with CM represents a clinical challenge, and the burden of CM in Latin America has not been well described. Studies suggest that early ART initiation is associated with higher mortality, but data from the Americas are scarce. HIV-infected adults in care between 1985-2014 at participating sites in the Latin America (the Caribbean, Central and South America network (CCASAnet)) and the Vanderbilt Comprehensive Care Clinic (VCCC) and who had CM were included. Survival probabilities were estimated. Risk of death when initiating ART within the first 2 weeks after CM diagnosis versus initiating between 2-8 weeks was assessed using dynamic marginal structural models adjusting for site, age, sex, year of CM, CD4 count, and route of HIV transmission. 340 patients were included (Argentina 58, Brazil 138, Chile 28, Honduras 27, Mexico 34, VCCC 55) and 142 (42%) died during the observation period. Among 151 patients with CM prior to ART 56 (37%) patients died compared to 86 (45%) of 189 with CM after ART initiation (p=0.14). Patients diagnosed with CM after ART had a higher risk of death (p=0.03, log-rank test). The probability of survival was not statistically different between patients who started ART within 2 weeks of CM (7/24, 29%) vs. those initiating between 2-8 weeks (14/53, 26%) (p=0.96), potentially due to lack of power. In this large Latin-American cohort, patients with CM had very high mortality rates, especially those diagnosed after ART initiation. This study reflects the overwhelming burden of CM in HIV-infected patients in Latin America. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Diamond, DeAnn M.; Bauer, Madeline; Daniel, Barbra E.; Leal, Mary Ann E.; Johnson, Debra; Williams, Byron K.; Thomas, Ann M.; Ding, James C.; Najvar, Laura; Graybill, J. Richard; Larsen, Robert A.
1998-01-01
Studies with animals and in vitro studies have demonstrated that flucytosine plus amphotericin B or fluconazole has significantly improved mycologic activity against meningitis caused by Cryptococcus neoformans compared to the activity of amphotericin B or fluconazole used alone. However, few doses have been tested in combination. This study evaluated the antifungal efficacy of amphotericin B colloidal dispersion (ABCD) combined with flucytosine with and without fluconazole in a murine model of cryptococcal meningitis. The following dosages were tested: ABCD at 0 to 12.5 mg/kg of body weight given intravenously 3 days/week, flucytosine at 0 to 110 mg/kg/day, and fluconazole at 0 to 50 mg/kg/day. Meningitis was established in male BALB/c mice by intracerebral injection of C. neoformans. Treatment with flucytosine with or without fluconazole dissolved in the sole source of drinking water was started on day 2; animals were sacrificed at 16 days, and the numbers of fungal colonies in the brain were quantified. A survival rate of 100% was achieved with ABCD plus flucytosine without fluconazole; however, the addition of fluconazole was required to prevent weight loss (P < 0.00001) and to achieve the maximum antifungal effect (P < 0.00001). The only region of dose combinations for which the 99% confidence intervals were less than 100 CFU/g of brain was defined by ABCD at 5.0 to 7.5 mg/kg combined with flucytosine at 20 to 60 mg/kg/day and fluconazole at 30 to 40 mg/kg/day. The triple combination of ABCD plus flucytosine and fluconazole was necessary to achieve the greatest antifungal activity. PMID:9517927
Meda, John; Kalluvya, Samuel; Downs, Jennifer A; Chofle, Awilly A; Seni, Jeremiah; Kidenya, Benson; Fitzgerald, Daniel W; Peck, Robert N
2014-06-01
Cryptococcal meningitis (CM) has a mortality rate of ∼70% among HIV-infected adults in low-income countries. Controlling intracranial pressure (ICP) is essential in CM, but it is difficult in low-income countries because manometers and practical ICP management protocols are lacking. As part of a continuous quality improvement project, our Tanzanian hospital initiated a new protocol for ICP management for CM. All adult inpatients with CM are included in a prospective patient registry. At the time of analysis, this registry included data from 2 years before the initiation of this new ICP management protocol and for a 9-month period after. ICP was measured at baseline and at days 3, 7, and 14 by both manometer and intravenous (IV) tubing set. All patients were given IV fluconazole according to Tanzanian treatment guidelines and were followed until 30 days after admission. Among adult inpatients with CM, 32 of 35 patients (91%) had elevated ICP on admission. Cerebrospinal fluid pressure measurements using the improvised IV tubing set demonstrated excellent agreement (r = 0.96) with manometer measurements. Compared with historical controls, the new ICP management protocol was associated with a significant reduction in 30-day mortality (16/35 [46%] vs. 48/64 [75%] in historical controls; hazard ratio = 2.1 [95% CI: 1.1 to 3.8]; P = 0.018]. Increased ICP is almost universal among HIV-infected adults admitted with CM in Tanzania. Intensive ICP management with a strict schedule of serial lumbar punctures reduced in-hospital mortality compared with historical controls. ICP measurement with IV tubing sets may be a good alternative in resource-limited health facilities where manometers are not available.
2013-11-27
lar to the slow axis appear yellow [19]. To observe the morphology of aligned collagen fibril, fibers were dehydrated via graded series of ethanols (70...Invitrogen) displayed prolifer- ating cell numbers. 2.5. Effect of aligned collagen–NP fibers on cell morphology and proliferation (7 days’ culture) A...loaded with PDGF than in the well with fibers that contained only empty NPs (control). 3.5. ADSCs cell proliferation and morphology on aligned collagen–NP
[The morphology of ciliated cells in nasal mucosa during a viral infection].
Grabowska-Joachimiak, A
1998-01-01
Presentation of the morphological changes in virus-infected nasal ciliated cells was the aim of this report. The most typical abnormalities observed in nasal smears were: intracytoplasmic inclusions, multinucleated cells, absence of cilia, ciliocytophthoria, cytoplasm vacuolization, "naked nuclei" and changes in the cellular shape. Cytological pictures of the alterations connected with viral infection were demonstrated. Presented results were consistent with the observations of other authors. Morphological analysis of the epithelial cells is a very important element of cytological examination of the nasal mucosa.
Takagi, Mutsumi; Kitabayashi, Takayuki; Ito, Syunsuke; Fujiwara, Masashi; Tokuda, Akio
2007-01-01
Noninvasive measurement of 3-D morphology of adhered animal cells employing a phase-shifting laser microscope (PLM) is investigated, in which the phase shift for each pixel in the view field caused by cell height and the difference in refractive indices between the cells and the medium is determined. By employing saline with different refractive indices instead of a culture medium, the refractive index of the cells, which is necessary for the determination of cell height, is determined under PLM. The observed height of Chinese hamster ovary (CHO) cells cultivated under higher osmolarity is lower than that of the cells cultivated under physiological osmolarity, which is in agreement with previous data observed under an atomic force microscope (AFM). Maximum heights of human bone marrow mesenchymal stem cells and human umbilical cord vein endothelial cells measured under PLM and AFM agree well with each other. The maximum height of nonadherent spherical CHO cells observed under PLM is comparable to the cell diameter measured under a phase contrast inverted microscope. Laser irradiation, which is necessary for the observation under PLM, did not affect 3-D cell morphology. In conclusion, 3-D morphology of adhered animal cells can be noninvasively measured under PLM.
Bodewei, R; Hering, S; Schubert, B; Wollenberger, A
1985-04-01
Sodium and calcium inward currents (INa and ICa) were measured in neuroblastoma X glioma hybrid cells of clones 108CC5 and 108CC15 by a single suction pipette method for internal perfusion and voltage clamp. Morphologically undifferentiated, exponentially growing cells were compared with cells differentiated by cultivation with 1 mmol/l dibutyryl cyclic AMP. Outward currents were eliminated by perfusing the cells with a K+-free solution. Voltage dependence and ion selectivity as well as steady state inactivation characteristics of INa and ICa resembled those of differentiated mouse neuroblastoma cells, clone N1E-115 (Moolenaar and Spector 1978, 1979). These parameters were identical in undifferentiated and differentiated cells of both clones. After differentiation the average density of the peak sodium and calcium currents was increased two and four-fold, respectively, in both cell lines. Our data indicate that exponentially growing, morphologically undifferentiated 108CC5 and 108CC15 neuroblastoma X glioma hybrid cells possess functional Na+ and Ca2+ channels undistinguishable from those of non-proliferating cells of these clones differentiated morphologically by treatment with dibutyryl cyclic AMP. That Na+ and Ca2+ spikes were not detected by other authors in these cells prior to morphological differentiation by dibutyryl cyclic AMP may be attributed to the fact that at the low resting membrane potential measured the Na+ and Ca2+ channels are inactivated.
Izawa, Shingo; Ikeda, Kayo; Miki, Takeo; Wakai, Yoshinori; Inoue, Yoshiharu
2010-09-01
Although ethanol and osmotic stress affect the vacuolar morphology of Saccharomyces cerevisiae, little information is available about changes in vacuolar morphology during the processes of wine making and Japanese sake (rice wine) brewing. Here, we elucidated changes in the morphology of yeast vacuoles using Zrc1p-GFP, a vacuolar membrane protein, so as to better understand yeast physiology during the brewing process. Wine yeast cells (OC-2 and EC1118) contained highly fragmented vacuoles in the sake mash (moromi) as well as in the grape must. Although sake yeast cells (Kyokai no. 9 and no. 10) also contained highly fragmented vacuoles during the wine-making process, they showed quite a distinct vacuolar morphology during sake brewing. Since the environment surrounding sake yeast cells in the sake mash did not differ much from that surrounding wine yeast cells, the difference in vacuolar morphology during sake brewing between wine yeast and sake yeast was likely caused by innate characters.
Kim, Young-In; Murphy, Ryan; Majumdar, Sirshendu; Harrison, Lisa G; Aitken, Jody; DeVincenzo, John P
2015-10-01
Viral culture plaque morphology in human cell lines are markers for growth capability and cytopathic effect, and have been used to assess viral fitness and select preattenuation candidates for live viral vaccines. We classified respiratory syncytial virus (RSV) plaque morphology and analyzed the relationship between plaque morphology as compared to subgroup, viral load and clinical severity of infection in infants and children. We obtained respiratory secretions from 149 RSV-infected children. Plaque morphology and viral load was assessed within the first culture passage in HEp-2 cells. Viral load was measured by polymerase chain reaction (PCR), as was RSV subgroup. Disease severity was determined by hospitalization, length of stay, intensive care requirement, and respiratory failure. Plaque morphology varied between individual subjects; however, similar results were observed among viruses collected from upper and lower respiratory tracts of the same subject. Significant differences in plaque morphology were observed between RSV subgroups. No correlations were found among plaque morphology and viral load. Plaque morphology did not correlate with disease severity. Plaque morphology measures parameters that are viral-specific and independent of the human host. Morphologies vary between patients and are related to RSV subgroup. In HEp-2 cells, RSV plaque morphology appears unrelated to disease severity in RSV-infected children.
Kopanja, Lazar; Kovacevic, Zorana; Tadic, Marin; Žužek, Monika Cecilija; Vrecl, Milka; Frangež, Robert
2018-04-23
Detailed shape analysis of cells is important to better understand the physiological mechanisms of toxins and determine their effects on cell morphology. This study aimed to develop a procedure for accurate morphological analysis of cell shape and use it as a tool to estimate toxin activity. With the aim of optimizing the method of cell morphology analysis, we determined the influence of ostreolysin A and pleurotolysin B complex (OlyA/PlyB) on the morphology of murine neuronal NG108-15 cells. A computational method was introduced and successfully applied to quantify morphological attributes of the NG108-15 cell line before and after 30 and 60 min exposure to OlyA/PlyB using confocal microscopy. The modified circularity measure [Formula: see text] for shape analysis was applied, which defines the degree to which the shape of the neuron differs from a perfect circle. It enables better detection of small changes in the shape of cells, making the outcome easily detectable numerically. Additionally, we analyzed the influence of OlyA/PlyB on the cell area, allowing us to detect the cells with blebs. This is important because the formation of plasma membrane protrusions such as blebs often reflects cell injury that leads to necrotic cell death. In summary, we offer a novel analytical method of neuronal cell shape analysis and its correlation with the toxic effects of the pore-forming OlyA/PlyB toxin in situ.
Lam, Van K; Nguyen, Thanh C; Chung, Byung M; Nehmetallah, George; Raub, Christopher B
2018-03-01
The noninvasive, fast acquisition of quantitative phase maps using digital holographic microscopy (DHM) allows tracking of rapid cellular motility on transparent substrates. On two-dimensional surfaces in vitro, MDA-MB-231 cancer cells assume several morphologies related to the mode of migration and substrate stiffness, relevant to mechanisms of cancer invasiveness in vivo. The quantitative phase information from DHM may accurately classify adhesive cancer cell subpopulations with clinical relevance. To test this, cells from the invasive breast cancer MDA-MB-231 cell line were cultured on glass, tissue-culture treated polystyrene, and collagen hydrogels, and imaged with DHM followed by epifluorescence microscopy after staining F-actin and nuclei. Trends in cell phase parameters were tracked on the different substrates, during cell division, and during matrix adhesion, relating them to F-actin features. Support vector machine learning algorithms were trained and tested using parameters from holographic phase reconstructions and cell geometric features from conventional phase images, and used to distinguish between elongated and rounded cell morphologies. DHM was able to distinguish between elongated and rounded morphologies of MDA-MB-231 cells with 94% accuracy, compared to 83% accuracy using cell geometric features from conventional brightfield microscopy. This finding indicates the potential of DHM to detect and monitor cancer cell morphologies relevant to cell cycle phase status, substrate adhesion, and motility. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
Kamitakahara, Masanobu; Uno, Yuika; Ioku, Koji
2014-01-01
In designing the biomaterials, it is important to control their surface morphologies, because they affect the interactions between the materials and cells. We previously reported that porous calcium-deficient hydroxyapatite (HA) ceramics composed of rod-like particles had advantages over sintered porous HA ceramics; however, the effects of the surface morphology of calcium-deficient HA ceramics on cell behavior have remained unclear. Using a hydrothermal process, we successfully prepared porous calcium-deficient HA ceramics with different surface morphologies, composed of plate-like particles of 200-300, 500-800 nm, or 2-3 μm in width and rod-like particles of 1 or 3-5 μm in width, respectively. The effects of these surface morphologies on the behavior of osteoblast-like cells were examined. Although the numbers of cells adhered to the ceramic specimens did not differ significantly among the specimens, the proliferation rates of cells on the ceramics decreased with decreasing particle size. Our results reveal that controlling the surface morphology that is governed by particle shape and size is important for designing porous calcium-deficient HA ceramics.
Ge, Wanzhong; Chew, Ting Gang; Wachtler, Volker; Naqvi, Suniti N.; Balasubramanian, Mohan K.
2005-01-01
The establishment and maintenance of characteristic cellular morphologies is a fundamental property of all cells. Here we describe Schizosaccharomyces pombe Pal1p, a protein important for maintenance of cylindrical cellular morphology. Pal1p is a novel membrane-associated protein that localizes to the growing tips of interphase cells and to the division site in cells undergoing cytokinesis in an F-actin- and microtubule-independent manner. Cells deleted for pal1 display morphological defects, characterized by the occurrence of spherical and pear-shaped cells with an abnormal cell wall. Pal1p physically interacts and displays overlapping localization with the Huntingtin-interacting-protein (Hip1)-related protein Sla2p/End4p, which is also required for establishment of cylindrical cellular morphology. Sla2p is important for efficient localization of Pal1p to the sites of polarized growth and appears to function upstream of Pal1p. Interestingly, spherical pal1Δ mutants polarize to establish a pearlike morphology before mitosis in a manner dependent on the kelch-repeat protein Tea1p and the cell cycle inhibitory kinase Wee1p. Thus, overlapping mechanisms involving Pal1p, Tea1p, and Sla2p contribute to the establishment of cylindrical cellular morphology, which is important for proper spatial regulation of cytokinesis. PMID:15975911
Ge, Wanzhong; Chew, Ting Gang; Wachtler, Volker; Naqvi, Suniti N; Balasubramanian, Mohan K
2005-09-01
The establishment and maintenance of characteristic cellular morphologies is a fundamental property of all cells. Here we describe Schizosaccharomyces pombe Pal1p, a protein important for maintenance of cylindrical cellular morphology. Pal1p is a novel membrane-associated protein that localizes to the growing tips of interphase cells and to the division site in cells undergoing cytokinesis in an F-actin- and microtubule-independent manner. Cells deleted for pal1 display morphological defects, characterized by the occurrence of spherical and pear-shaped cells with an abnormal cell wall. Pal1p physically interacts and displays overlapping localization with the Huntingtin-interacting-protein (Hip1)-related protein Sla2p/End4p, which is also required for establishment of cylindrical cellular morphology. Sla2p is important for efficient localization of Pal1p to the sites of polarized growth and appears to function upstream of Pal1p. Interestingly, spherical pal1Delta mutants polarize to establish a pearlike morphology before mitosis in a manner dependent on the kelch-repeat protein Tea1p and the cell cycle inhibitory kinase Wee1p. Thus, overlapping mechanisms involving Pal1p, Tea1p, and Sla2p contribute to the establishment of cylindrical cellular morphology, which is important for proper spatial regulation of cytokinesis.
Spectrum of clinical disease in a series of 135 hospitalised HIV-infected patients from north India
Sharma, SK; Kadhiravan, Tamilarasu; Banga, Amit; Goyal, Tarun; Bhatia, Indrish; Saha, PK
2004-01-01
Background Literature on the spectrum of opportunistic disease in human immunodeficiency virus (HIV)-infected patients from developing countries is sparse. The objective of this study was to document the spectrum and determine the frequency of various opportunistic infections (OIs) and non-infectious opportunistic diseases, in hospitalised HIV-infected patients from north India. Methods One hundred and thirty five consecutive, HIV-infected patients (age 34 ± 10 years, females 17%) admitted to a tertiary care hospital in north India, for the evaluation and management of an OI or HIV-related disorder between January 2000 and July 2003, were studied. Results Fever (71%) and weight loss (65%) were the commonest presenting symptoms. Heterosexual transmission was the commonest mode of HIV-acquisition. Tuberculosis (TB) was the commonest OI (71%) followed by candidiasis (39.3%), Pneumocystis jiroveci pneumonia (PCP) (7.4%), cryptococcal meningitis and cerebral toxoplasmosis (3.7% each). Most of the cases of TB were disseminated (64%). Apart from other well-recognised OIs, two patients had visceral leishmaniasis. Two cases of HIV-associated lymphoma were encountered. CD4+ cell counts were done in 109 patients. Majority of the patients (82.6%) had CD4+ counts <200 cells/μL. Fifty patients (46%) had CD4+ counts <50 cells/μL. Only 50 patients (37%) received antiretroviral therapy. Twenty one patients (16%) died during hospital stay. All but one deaths were due to TB (16 patients; 76%) and PCP (4 patients; 19%). Conclusions A wide spectrum of disease, including both OIs and non-infectious opportunistic diseases, is seen in hospitalised HIV-infected patients from north India. Tuberculosis remains the most common OI and is the commonest cause of death in these patients. PMID:15555069
Uicker, William C; Doyle, Hester A; McCracken, James P; Langlois, Mary; Buchanan, Kent L
2005-02-01
Cryptococcus neoformans is a yeast that causes cryptococcosis, a life-threatening disease that develops following inhalation and dissemination of the organisms. C. neoformans has a predilection for the central nervous system (CNS) and mortality is most frequently associated with meningoencephalitis. Susceptibility to cryptococcosis is increased in patients with deficiencies in cell-mediated immunity (CMI). Because cryptococcal CNS infections are associated with mortality and diagnosis of cryptococcosis is often not made until after dissemination to the CNS, a better understanding of host defense mechanisms against C. neoformans in the CNS is needed to design improved therapies for immunocompromised individuals suffering from cryptococcosis. Using a mouse model, we previously described a protective cell-mediated immune response induced in the periphery that limited the growth of C. neoformans in the CNS. In the current investigation, we examined cytokine and chemokine expression in the CNS to identify factors important in achieving protective immunity. We observed increased expression of IL-1beta, TNF-alpha, IFN-gamma, MCP-1, RANTES, and IP-10 in C. neoformans-infected brains of immune mice compared to control mice suggesting that these cytokines and chemokines are associated with the protective immune response. Furthermore, the Th1-type cytokines TNF-alpha and IFN-gamma, but not the Th2 cytokines IL-4 and IL-5, were secreted at significantly higher levels in C. neoformans-infected brains of immune mice compared to control mice. Our results demonstrate that cytokines and chemokines associated with CMI are produced following infection in the CNS of immunized mice, and the expression of these factors correlates with protection against C. neoformans in the CNS.
Martínez-Álvarez, José A.; Pérez-García, Luis A.; Mellado-Mojica, Erika; López, Mercedes G.; Martínez-Duncker, Iván; Lópes-Bezerra, Leila M.; Mora-Montes, Héctor M.
2017-01-01
Sporothrix schenckii sensu stricto and S. brasiliensis are usually associated to sporotrichosis, a subcutaneous mycosis worldwide distributed. Comparative analyses between these two species indicate they contain genetic and physiological differences that are likely to impact the interaction with host cells. Here, we study the composition of the cell wall from conidia, yeast-like cells and germlings of both species and found they contained the same sugar composition. The carbohydrate proportion in the S. schenckii sensu stricto wall was similar across the three cell morphologies, with exception in the chitin content, which was significantly different in the three morphologies. The cell wall from germlings showed lower rhamnose content and higher glucose levels than other cell morphologies. In S. brasiliensis, the wall sugars were constant in the three morphologies, but glucose was lower in yeast-like cells. In S. schenckii sensu stricto cells most of chitin and β1,3-glucan were underneath wall components, but in S. brasiliensis germlings, chitin was exposed at the cell surface, and β1,3-glucan was found in the outer part of the conidia wall. We also compared the ability of these cells to stimulate cytokine production by human peripheral blood mononuclear cells. The three S. schenckii sensu stricto morphologies stimulated increased levels of pro-inflammatory cytokines, when compared to S. brasiliensis cells; while the latter, with exception of conidia, stimulated higher IL-10 levels. Dectin-1 was a key receptor for cytokine production during stimulation with the three morphologies of S. schenckii sensu stricto, but dispensable for cytokine production stimulated by S. brasiliensis germlings. TLR2 and TLR4 were also involved in the sensing of Sporothrix cells, with a major role for the former during cytokine stimulation. Mannose receptor had a minor contribution during cytokine stimulation by S. schenckii sensu stricto yeast-like cells and germlings, but S. schenckii sensu stricto conidia and S. brasiliensis yeast-like cells stimulated pro-inflammatory cytokines via this receptor. In conclusion, S. brasiliensis and S. schenckii sensu stricto, have similar wall composition, which undergoes changes depending on the cell morphology. These differences in the cell wall composition, are likely to influence the contribution of immune receptors during cytokine stimulation by human monocytes. PMID:28539922
Image processing and machine learning in the morphological analysis of blood cells.
Rodellar, J; Alférez, S; Acevedo, A; Molina, A; Merino, A
2018-05-01
This review focuses on how image processing and machine learning can be useful for the morphological characterization and automatic recognition of cell images captured from peripheral blood smears. The basics of the 3 core elements (segmentation, quantitative features, and classification) are outlined, and recent literature is discussed. Although red blood cells are a significant part of this context, this study focuses on malignant lymphoid cells and blast cells. There is no doubt that these technologies may help the cytologist to perform efficient, objective, and fast morphological analysis of blood cells. They may also help in the interpretation of some morphological features and may serve as learning and survey tools. Although research is still needed, it is important to define screening strategies to exploit the potential of image-based automatic recognition systems integrated in the daily routine of laboratories along with other analysis methodologies. © 2018 John Wiley & Sons Ltd.
Clinical utility of bone marrow flow cytometry in B-cell non-Hodgkin lymphomas (B-NHL).
Perea, G; Altés, A; Bellido, M; Aventín, A; Bordes, R; Ayats, R; Remacha, A F; Espinosa, I; Briones, J; Sierra, J; Nomdedéu, J F
2004-09-01
To determine the efficacy of flow cytometry (FC) in the assessment of bone marrow (BM) in B-cell non-Hodgkin lymphoma (B-NHL). FC is a common practice, but is far from being validated. Morphological analysis and FC immunophenotyping were performed on 421 samples. T-cell lymphomas, Hodgkin's disease, chronic lymphocytic leukaemia and hairy cell leukaemia were not included in the study. Clonality was assessed by the standard kappa/lambda/CD19 test. Aberrant immunophenotypes present in the B-cell subpopulation were also investigated. A double-step procedure was employed in all cases to increase the sensitivity of the FC procedure. Of 380 evaluable samples, 188 corresponded to follicular lymphoma (FL), 58 to diffuse large B-cell lymphoma (DLBCL), 57 to mantle cell lymphoma (MCL), seven to Burkitt's lymphoma and the remaining 70 samples to other low-grade lymphomas. Morphological marrow infiltration was found in 148 cases, and flow immunophenotyping identified 138 cases with BM involvement. A concordance between the two methods was detected in 298 cases (79%). There was a discordance in 82 cases (21%): morphology positive/FC negative in 46 cases and morphology negative/FC positive in 36 (61% of all cases with discordance were from FL). There was no difference in outcome when patients with discordances were compared with patients without discordances. Most samples showed concordance between morphological and FC results. FC identified BM involvement in the absence of morphological infiltration. Morphology/FC discordance seems to have no influence on the outcome of FL patients. Copyright 2004 Blackwell Publishing Limited
Carbon nanowall scaffold to control culturing of cervical cancer cells
NASA Astrophysics Data System (ADS)
Watanabe, Hitoshi; Kondo, Hiroki; Okamoto, Yukihiro; Hiramatsu, Mineo; Sekine, Makoto; Baba, Yoshinobu; Hori, Masaru
2014-12-01
The effect of carbon nanowalls (CNWs) on the culturing rate and morphological control of cervical cancer cells (HeLa cells) was investigated. CNWs with different densities were grown using plasma-enhanced chemical vapor deposition and subjected to post-growth plasma treatment for modification of the surface terminations. Although the surface wettability of the CNWs was not significantly dependent on the CNW densities, the cell culturing rates were significantly dependent. Morphological changes of the cells were not significantly dependent on the density of CNWs. These results indicate that plasma-induced surface morphology and chemical terminations enable nanobio applications using carbon nanomaterials.
Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas
2015-01-01
Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.
Comparison Through Image Analysis Between Al Foams Produced Using Two Different Methods
NASA Astrophysics Data System (ADS)
Boschetto, A.; Campana, F.; Pilone, D.
2014-02-01
Several methods are available for making metal foams. They allow to tailor their mechanical, thermal, acoustic, and electrical properties for specific applications by varying the relative density as well as the cell size and morphology. Foams have a very heterogeneous structure so that their properties may show a large scatter. In this paper, an aluminum foam produced by means of foaming of powder compacts and another one prepared via the infiltration process were analyzed and compared. Image analysis has been used as a useful tool to determine size, morphology, and distribution of cells in both foams and to correlate cell morphology with the considered manufacturing process. The results highlighted that cell size and morphology are strictly dependent upon the manufacturing method. This paper shows how some standard 2D morphological indicators may be usefully adopted to characterize foams whose structure derives from the specific manufacturing process.
Evaluation of anemia diagnosis based on elastic light scattering (Conference Presentation)
NASA Astrophysics Data System (ADS)
Tong, Lieshu; Wang, Xinrui; Xie, Dengling; Chen, Xiaoya; Chu, Kaiqin; Dou, Hu; Smith, Zachary J.
2017-03-01
Currently, one-third of humanity is still suffering from anemia. In China the most common forms of anemia are iron deficiency and Thalassemia minor. Differentiating these two is the key to effective treatment. Iron deficiency is caused by malnutrition and can be cured by iron supplementation. Thalassemia is a hereditary disease in which the hemoglobin β chain is lowered or absent. Iron therapy is not effective, and there is evidence that iron therapy may be harmful to patients with Thalassemia. Both anemias can be diagnosed using red blood cell morphology: Iron deficiency presents a smaller mean cell volume compared to normal cells, but with a wide distribution; Thalassemia, meanwhile, presents a very small cell size and tight particle size distribution. Several researchers have proposed diagnostic indices based on red cell morphology to differentiate these two diseases. However, these indices lack sensitivity and specificity and are constructed without statistical rigor. Using multivariate methods we demonstrate a new classification method based on red cell morphology that diagnoses anemia in a Chinese population with enough accuracy for its use as a screening method. We further demonstrate a low cost instrument that precisely measures red cell morphology using elastic light scattering. This instrument is combined with an automated analysis program that processes scattering data to report red cell morphology without the need for user intervention. Despite using consumer-grade components, when comparing our experimental results with gold-standard measurements, the device can still achieve the high precision required for sensing clinically significant changes in red cell morphology.
Racowsky, Catherine; Stern, Judy E; Gibbons, William E; Behr, Barry; Pomeroy, Kimball O; Biggers, John D
2011-05-01
To evaluate the validity of collecting day 3 embryo morphology variables into the Society for Assisted Reproductive Technology Clinic Outcomes Reporting System (SART CORS). Retrospective. National database-SART CORS. Fresh autologous assisted reproductive technology (ART) cycles from 2006-2007 in which embryos were transferred singly (n=1,020) or in pairs (n=6,508) and embryo morphology was collected. None. Relationship between live birth, maternal age, and morphology of transferred day 3 embryos as defined by cell number, fragmentation, and blastomere symmetry. Logistic multiple regressions and receiver operating characteristic curve analyses were applied to determine specificity and sensitivity for correctly classifying embryos as either failures or successes. Live birth rate was positively associated with increasing cell number up to eight cells (<6 cells: 2.9%; 6 cells: 9.6%; 7 cells: 15.5%; 8 cells: 24.3%; and >8 cells: 16.2%), but was negatively associated with maternal age, increasing fragmentation, and asymmetry scores. An area under the receiver operating curve of 0.753 (95% confidence interval 0.740-0.766) was derived, with a sensitivity of 45.0%, a specificity of 83.2%, and 76.4% of embryos being correctly classified with a cutoff probability of 0.3. This analysis provides support for the validity of collecting morphology fields for day 3 embryos into SART CORS. Standardization of morphology collections will assist in controlling for embryo quality in future database analyses. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Morphological and immunohistochemical diversity of endometrial stromal sarcoma in rats.
Kumabe, Shino; Sato, Junko; Tomonari, Yuki; Takahashi, Miwa; Inoue, Kaoru; Yoshida, Midori; Doi, Takuya; Wako, Yumi; Tsuchitani, Minoru
2018-04-01
To clarify the histopathological characteristics of rat endometrial stromal sarcoma (ESS), we morphologically reviewed 12 malignant uterine tumors protruding into the lumen in previous rat carcinogenicity studies. The 12 cases were classified into the following 6 types based on their morphological features: spindle cell and collagen rich type, pleomorphic/spindle cell and compact type, decidual alteration type, histiocytic and multinucleated giant cell mixture type, Antoni A-type schwannoma type, and Antoni B-type schwannoma type. Immunohistochemically, tumor cells in all cases exhibited focal or diffuse positive reactions for vimentin, and 11 of the 12 cases were positive for S-100. Interestingly, 9 cases were positive for desmin or αSMA, indicating tumor cells expressing smooth muscle properties. Both Antoni A- and B-type schwannoma types showed low reactions for both muscle markers. Positive results for estrogen receptor α in the 11 cases suggested that they were derived from endometrial stromal cells. On the basis of their immunohistochemical profiles, they were considered to be derived from endometrial stromal cells while they showed morphological variation. The detection of a basement membrane surrounding tumor cells might not be a definitive indicator for differential diagnosis of ESS from malignant schwannoma. In conclusion, ESS could exhibit wide morphological and immunohistochemical variation including features of schwannoma or smooth muscle tumor.
3D/4D multiscale imaging in acute lymphoblastic leukemia cells: visualizing dynamics of cell death
NASA Astrophysics Data System (ADS)
Sarangapani, Sreelatha; Mohan, Rosmin Elsa; Patil, Ajeetkumar; Lang, Matthew J.; Asundi, Anand
2017-06-01
Quantitative phase detection is a new methodology that provides quantitative information on cellular morphology to monitor the cell status, drug response and toxicity. In this paper the morphological changes in acute leukemia cells treated with chitosan were detected using d'Bioimager a robust imaging system. Quantitative phase image of the cells was obtained with numerical analysis. Results show that the average area and optical volume of the chitosan treated cells is significantly reduced when compared with the control cells, which reveals the effect of chitosan on the cancer cells. From the results it can be attributed that d'Bioimager can be used as a non-invasive imaging alternative to measure the morphological changes of the living cells in real time.
On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change.
Memmolo, Pasquale; Iannone, Maria; Ventre, Maurizio; Netti, Paolo Antonio; Finizio, Andrea; Paturzo, Melania; Ferraro, Pietro
2012-12-17
Digital Holography (DH) in microscopic configuration is a powerful tool for the imaging of micro-objects contained into a three dimensional (3D) volume, by a single-shot image acquisition. Many studies report on the ability of DH to track particle, microorganism and cells in 3D. However, very few investigations are performed with objects that change severely their morphology during the observation period. Here we study DH as a tool for 3D tracking an osteosarcoma cell line for which extensive changes in cell morphology are associated to cell motion. Due to the great unpredictable morphological change, retrieving cell's position in 3D can become a complicated issue. We investigate and discuss in this paper how the tridimensional position can be affected by the continuous change of the cells. Moreover we propose and test some strategies to afford the problems and compare it with others approaches. Finally, results on the 3D tracking and comments are reported and illustrated.
Temporal morphologic changes in human colorectal carcinomas following xenografting.
Barkla, D H; Tutton, P J
1983-03-01
The temporal morphologic changes of human colorectal carcinomas following xenografting into immunosuppressed mice were investigated by the use of light and transmission electron microscopy. The results show that colorectal carcinomas undergo a series of morphologic changes during the initial 30-day period following transplantation. During the initial 1-5-day period the majority of tumor cells die, and during the following 5-10-day period the necrotic debris created during the 1-5-day period is removed by host-supplied inflammatory cells. Only small groups of peripherally placed tumor cells survived at the end of the first 10 days. During the 10-20-day period the tumor cell populations of xenografts were reestablished by a morphologically heterogeneous population of tumor cells, and during the 20-30 day period consolidation of this process continued and some xenografts showed macroscopic evidence of growth. The authors hypothesize that human colorectal carcinomas, like the antecedent epithelium, contain subpopulations of undifferentiated cells that give rise to populations of more-differentiated cells.
2014-09-01
these small cell number spheroids show 3-D morphology (Figure 3). We also observed differences in the expression of mesenchymal markers when...Scale bar =100 µm. Figure 3: Small cell number spheroids demonstrate 3-D morphology . 3-D reconstructions of confocal z-stacks are shown for...formation was observed with the addition of MSCs, and subsequent co-culture in hanging drop plates preserved spheroid morphology indicated in the phase
The fungicide mancozeb induces toxic effects on mammalian granulosa cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paro, Rita; Tiboni, Gian Mario; Buccione, Roberto
2012-04-15
The ethylene-bis-dithiocarbamate mancozeb is a widely used fungicide with low reported toxicity in mammals. In mice, mancozeb induces embryo apoptosis, affects oocyte meiotic spindle morphology and impairs fertilization rate even when used at very low concentrations. We evaluated the toxic effects of mancozeb on the mouse and human ovarian somatic granulosa cells. We examined parameters such as cell morphology, induction of apoptosis, and p53 expression levels. Mouse granulosa cells exposed to mancozeb underwent a time- and dose-dependent modification of their morphology, and acquired the ability to migrate but not to proliferate. The expression level of p53, in terms of mRNAmore » and protein content, decreased significantly in comparison with unexposed cells, but no change in apoptosis was recorded. Toxic effects could be attributed, at least in part, to the presence of ethylenthiourea (ETU), the main mancozeb catabolite, which was found in culture medium. Human granulosa cells also showed dose-dependent morphological changes and reduced p53 expression levels after exposure to mancozeb. Altogether, these results indicate that mancozeb affects the somatic cells of the mammalian ovarian follicles by inducing a premalignant-like status, and that such damage occurs to the same extent in both mouse and human GC. These results further substantiate the concept that mancozeb should be regarded as a reproductive toxicant. Highlights: ► The fungicide mancozeb affects oocyte spindle morphology and fertilization rate. ► We investigated the toxic effects of mancozeb on mouse and human granulosa cells. ► Granulosa cells modify their morphology and expression level of p53. ► Mancozeb induces a premalignant-like status in exposed cells.« less
Okumura, Naoki; Suganami, Hideki; Kinoshita, Shigeru
2015-01-01
Purpose To investigate the effect and safety of a selective Rho kinase inhibitor, ripasudil 0.4% eye drops, on corneal endothelial cells of healthy subjects. Design Prospective, interventional case series. Methods In this study, 6 healthy subjects were administered ripasudil 0.4% in the right eye twice daily for 1 week. Morphological changes and corneal endothelial cell density were examined by noncontact and contact specular microscopy. Central corneal thickness and corneal volume of 5 mm-diameter area of center cornea were analyzed by Pentacam Scheimpflug topography. All the above measurements were conducted in both eyes before administration, 1.5 and 6 hours after the initial administration on day 0; and in the same manner after the final administration on day 7. Results By noncontact specular microscopy, indistinct cell borders with pseudo guttae were observed, but by contact specular microscopy, morphological changes of corneal endothelial cells were mild and pseudo guttae was not observed after single and repeated administration of ripasudil in all subjects. These changes resolved prior to the next administration, and corneal endothelial cell density, central corneal thickness and corneal volume were not changed throughout the study period. Conclusion Transient morphological changes of corneal endothelial cells such as indistinct cell borders with pseudo guttae were observed by noncontact specular microscopy in healthy subjects after ripasudil administration. Corneal edema was not observed and corneal endothelial cell density did not decrease after 1 week repetitive administration. These morphological changes were reversible and corneal endothelial cell morphology returned to normal prior to the next administration. Trial Registration JAPIC Clinical Trials Information 142705 PMID:26367375
Phenotype-Based Screening of Small Molecules to Modify Plant Cell Walls Using BY-2 Cells.
Okubo-Kurihara, Emiko; Matsui, Minami
2018-01-01
The plant cell wall is an important and abundant biomass with great potential for use as a modern recyclable resource. For effective utilization of this cellulosic biomass, its ability to degrade efficiently is key point. With the aim of modifying the cell wall to allow easy decomposition, we used chemical biological technology to alter its structure. As a first step toward evaluating the chemicals in the cell wall we employed a phenotype-based approach using high-throughput screening. As the plant cell wall is essential in determining cell morphology, phenotype-based screening is particularly effective in identifying compounds that bring about alterations in the cell wall. For rapid and reproducible screening, tobacco BY-2 cell is an excellent system in which to observe cell morphology. In this chapter, we provide a detailed chemical biological methodology for studying cell morphology using tobacco BY-2 cells.
Liberio, Michelle S.; Sadowski, Martin C.; Soekmadji, Carolina; Davis, Rohan A.; Nelson, Colleen C.
2014-01-01
Weak cell-surface adhesion of cell lines to tissue culture surfaces is a common problem and presents technical limitations to the design of experiments. To overcome this problem, various surface coating protocols have been developed. However, a comparative and precise real-time measurement of their impact on cell behavior has not been conducted. The prostate cancer cell line LNCaP, derived from a patient lymph node metastasis, is a commonly used model system in prostate cancer research. However, the cells’ characteristically weak attachment to the surface of tissue culture vessels and cover slips has impeded their manipulation and analysis and use in high throughput screening. To improve the adherence of LNCaP cells to the culture surface, we compared different coating reagents (poly-l-lysine, poly-l-ornithine, collagen type IV, fibronectin, and laminin) and culturing conditions and analyzed their impact on cell proliferation, adhesion, morphology, mobility and gene expression using real-time technologies. The results showed that fibronectin, poly-l-lysine and poly-l-ornithine improved LNCaP cells adherence and provoked cell morphology alterations, such as increase of nuclear and cellular area. These coating reagents also induced a higher expression of F-actin and reduced cell mobility. In contrast, laminin and collagen type IV did not improve adherence but promoted cell aggregation and affected cell morphology. Cells cultured in the presence of laminin displayed higher mobility than control cells. All the coating conditions significantly affected cell viability; however, they did not affect the expression of androgen receptor-regulated genes. Our comparative findings provide important insight for the selection of the ideal coating reagent and culture conditions for the cancer cell lines with respect to their effect on proliferation rate, attachment, morphology, migration, transcriptional response and cellular cytoskeleton arrangement. PMID:25375165
Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K
2006-07-06
Atomic Force Microscopy (AFM) has emerged as a powerful biophysical tool in biotechnology and medicine to investigate the morphological, physical, and mechanical properties of yeasts and other biological systems. However, properties such as, yeasts' response to environmental stresses, metabolic activities of pathogenic yeasts, cell-cell/cell-substrate adhesion, and cell-flocculation have rarely been investigated so far by using biophysical tools. Our recent results obtained by AFM on one strain each of Saccharomyces cerevisiae and Schizosaccharomyces pombe show a clear correlation between the physiology of environmentally stressed yeasts and the changes in their surface morphology. The future directions of the AFM related techniques in relation to yeasts are also discussed.
Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology.
Canetta, Elisabetta; Adya, Ashok K; Walker, Graeme M
2006-02-01
The detrimental effects of ethanol toxicity on the cell surface morphology of Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354) were investigated using an atomic force microscope (AFM). In combination with culture viability and mean cell volume measurements AFM studies allowed us to relate the cell surface morphological changes, observed on nanometer lateral resolution, with the cellular stress physiology. Exposing yeasts to increasing stressful concentrations of ethanol led to decreased cell viabilities and mean cell volumes. Together with the roughness and bearing volume analyses of the AFM images, the results provided novel insight into the relative ethanol tolerance of S. cerevisiae and Sc. pombe.
Changes in cell morphology due to plasma membrane wounding by acoustic cavitation
Schlicher, Robyn K.; Hutcheson, Joshua D.; Radhakrishna, Harish; Apkarian, Robert P.; Prausnitz, Mark R.
2010-01-01
Acoustic cavitation-mediated wounding (i.e., sonoporation) has great potential to improve medical and laboratory applications requiring intracellular uptake of exogenous molecules; however, the field lacks detailed understanding of cavitation-induced morphological changes in cells and their relative importance. Here, we present an in-depth study of the effects of acoustic cavitation on cells using electron and confocal microscopy coupled with quantitative flow cytometry. High resolution images of treated cells show that morphologically different types of blebs can occur after wounding conditions caused by ultrasound exposure as well as by mechanical shear and strong laser ablation. In addition, these treatments caused wound-induced non-lytic necrotic death resulting in cell bodies we call wound-derived perikarya (WD-P). However, only cells exposed to acoustic cavitation experienced ejection of intact nuclei and nearly instant lytic necrosis. Quantitative analysis by flow cytometry indicates that wound-derived perikarya are the dominant morphology of nonviable cells, except at the strongest wounding conditions, where nuclear ejection accounts for a significant portion of cell death after ultrasound exposure. PMID:20350691
Denisov, Evgeny V.; Skryabin, Nikolay A.; Gerashchenko, Tatiana S.; Tashireva, Lubov A.; Wilhelm, Jochen; Buldakov, Mikhail A.; Sleptcov, Aleksei A.; Lebedev, Igor N.; Vtorushin, Sergey V.; Zavyalova, Marina V.; Cherdyntseva, Nadezhda V.; Perelmuter, Vladimir M.
2017-01-01
Intratumor morphological heterogeneity in breast cancer is represented by different morphological structures (tubular, alveolar, solid, trabecular, and discrete) and contributes to poor prognosis; however, the mechanisms involved remain unclear. In this study, we performed 3D imaging, laser microdissection-assisted array comparative genomic hybridization and gene expression microarray analysis of different morphological structures and examined their association with the standard immunohistochemistry scorings and CD44+CD24- cancer stem cells. We found that the intratumor morphological heterogeneity is not associated with chromosomal aberrations. By contrast, morphological structures were characterized by specific gene expression profiles and signaling pathways and significantly differed in progesterone receptor and Ki-67 expression. Most importantly, we observed significant differences between structures in the number of expressed genes of the epithelial and mesenchymal phenotypes and the association with cancer invasion pathways. Tubular (tube-shaped) and alveolar (spheroid-shaped) structures were transcriptionally similar and demonstrated co-expression of epithelial and mesenchymal markers. Solid (large shapeless) structures retained epithelial features but demonstrated an increase in mesenchymal traits and collective cell migration hallmarks. Mesenchymal genes and cancer invasion pathways, as well as Ki-67 expression, were enriched in trabecular (one/two rows of tumor cells) and discrete groups (single cells and/or arrangements of 2-5 cells). Surprisingly, the number of CD44+CD24- cells was found to be the lowest in discrete groups and the highest in alveolar and solid structures. Overall, our findings indicate the association of intratumor morphological heterogeneity in breast cancer with the epithelial-mesenchymal transition and CD44+CD24- stemness and the appeal of this heterogeneity as a model for the study of cancer invasion. PMID:28977854
Damasceno, Eduardo Medeiros; Monteiro, Juliana Castro; Duboc, Luiz Fernando; Dolder, Heidi; Mancini, Karina
2012-01-01
The epidermis of Ostariophysi fish is composed of 4 main cell types: epidermal cells (or filament containing cells), mucous cells, granular cells and club cells. The morphological analysis of the epidermis of the catfish Pimelodella lateristriga revealed the presence of only two types of cells: epidermal and club cells. The latter were evident in the middle layer of the epidermis, being the largest cells within the epithelium. Few organelles were located in the perinuclear region, while the rest of the cytoplasm was filled with a non-vesicular fibrillar substance. Club cells contained two irregular nuclei with evident nucleoli and high compacted peripheral chromatin. Histochemical analysis detected prevalence of protein within the cytoplasm other than carbohydrates, which were absent. These characteristics are similar to those described to most Ostariophysi studied so far. On the other hand, the epidermal cells differ from what is found in the literature. The present study described three distinct types, as follows: superficial, abundant and dense cells. Differences among them were restricted to their cytoplasm and nucleus morphology. Mucous cells were found in all Ostariophysi studied so far, although they were absent in P. lateristriga, along with granular cells, also typical of other catfish epidermis. The preset study corroborates the observations on club cells' morphology in Siluriformes specimens, and shows important differences in epidermis composition and cell structure of P. lateristriga regarding the literature data. PMID:23226253
Wang, Xiao-Ping; Chen, Tong-Sheng; Sun, Lei; Cai, Ji-Ye; Wu, Ming-Qian; Mok, Martin
2008-12-01
Taxol (paclitaxel), one of the most active cancer chemotherapeutic agents, can cause programmed cell death (PCD) and cytoplasmic vacuolization. The objective of this study was to analyze the morphological characteristics induced by taxol. Human lung adenocarcinoma (ASTC-a-1) cells were exposed to various concentration of taxol. CCK-8 was used to assay the cell viability. Atomic force microscopy (AFM), plasmid transfection and confocal fluorescence microscopy were performed to image the cells morphological change induced by taxol. Fluorescence resonance energy transfer (FRET) was used to monitor the caspase-3 activation in living cells during taxol-induced cell death. Cells treated with taxol exhibited significant swelling and cytoplasmic vacuolization which may be due to endoplasmic reticulum (ER) vacuolization. Caspase-3 was not activated during taxol-induced cytoplasmic vacuolization and cell death. These findings suggest that taxol induces caspase-3-independent cytoplasmic vacuolization, cell swelling and cell death through ER vacuolization.
Tonazzini, I.; Bystrenova, E.; Chelli, B.; Greco, P.; Stoliar, P.; Calò, A.; Lazar, A.; Borgatti, F.; D'Angelo, P.; Martini, C.; Biscarini, F.
2010-01-01
Abstract We investigate how multiscale morphology of functional thin films affects the in vitro behavior of human neural astrocytoma 1321N1 cells. Pentacene thin film morphology is precisely controlled by means of the film thickness, Θ (here expressed in monolayers (ML)). Fluorescence and atomic force microscopy allow us to correlate the shape, adhesion, and proliferation of cells to the morphological properties of pentacene films controlled by saturated roughness, σ, correlation length, ξ, and fractal dimension, df. At early incubation times, cell adhesion exhibits a transition from higher to lower values at Θ ≈ 10 ML. This is explained using a model of conformal adhesion of the cell membrane onto the growing pentacene islands. From the model fitting of the data, we show that the cell explores the surface with a deformation of the membrane whose minimum curvature radius is 90 (± 45) nm. The transition in the adhesion at ∼10 ML arises from the saturation of ξ accompanied by the monotonic increase of σ, which leads to a progressive decrease of the pentacene local radius of curvature and hence to the surface area accessible to the cell. Cell proliferation is also enhanced for Θ < 10 ML, and the optimum morphology parameter ranges for cell deployment and growth are σ ≤ 6 nm, ξ > 500 nm, and df > 2.45. The characteristic time of cell proliferation is τ ≈ 10 ± 2 h. PMID:20550892
Optimizing morphology through blood cell image analysis.
Merino, A; Puigví, L; Boldú, L; Alférez, S; Rodellar, J
2018-05-01
Morphological review of the peripheral blood smear is still a crucial diagnostic aid as it provides relevant information related to the diagnosis and is important for selection of additional techniques. Nevertheless, the distinctive cytological characteristics of the blood cells are subjective and influenced by the reviewer's interpretation and, because of that, translating subjective morphological examination into objective parameters is a challenge. The use of digital microscopy systems has been extended in the clinical laboratories. As automatic analyzers have some limitations for abnormal or neoplastic cell detection, it is interesting to identify quantitative features through digital image analysis for morphological characteristics of different cells. Three main classes of features are used as follows: geometric, color, and texture. Geometric parameters (nucleus/cytoplasmic ratio, cellular area, nucleus perimeter, cytoplasmic profile, RBC proximity, and others) are familiar to pathologists, as they are related to the visual cell patterns. Different color spaces can be used to investigate the rich amount of information that color may offer to describe abnormal lymphoid or blast cells. Texture is related to spatial patterns of color or intensities, which can be visually detected and quantitatively represented using statistical tools. This study reviews current and new quantitative features, which can contribute to optimize morphology through blood cell digital image processing techniques. © 2018 John Wiley & Sons Ltd.
Contour Detection of Leukocyte Cell Nucleus Using Morphological Image
NASA Astrophysics Data System (ADS)
Supriyanti, R.; Satrio, G. P.; Ramadhani, Y.; Siswandari, W.
2017-04-01
Leukocytes are blood cells that do not contain color pigments. Leukocyte function to the tool body’s defenses. Abnormal forms of leukocytes can be a sign of serious diseases such example is leukemia. Most laboratories still use cell morphology examination to assist the diagnosis of illness associated with white blood cells such example is leukemia because of limited resources, both infrastructure, and human resources as happens in developing nations, such as Indonesia. This examination is less expensive and quicker process. However, morphological review requires the expertise of a specialist clinical pathology were limited. This process is sometimes less valid cause in some cases trying to differentiate morphology blast cells into the type of myoblasts, lymphoblast, monoblast, or erythroblast thus potentially misdiagnosis. The goal of this research is to develop a detection device types of blood cells automatically as lower-priced, easy to use and accurate so that the tool can be distributed across all units in existing health services throughout Indonesia and in particular for remote areas. However, because the variables used in the identification of abnormal leukocytes are very complex, in this paper, we emphasize on the contour detection of leukocyte cell nucleus using the morphological image. The results show that this method is promising for further development.
Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Ju; Chang, Hang; Giricz, Orsi
Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associationsmore » with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPAR? has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPAR? has been validated through two supporting biological assays.« less
Haring, Andrew; Morris, Amanda; Hu, Michael
2012-01-01
Anodized TiO2 nanotubes have received much attention for their use in solar energy applications including water oxidation cells and hybrid solar cells [dye-sensitized solar cells (DSSCs) and bulk heterojuntion solar cells (BHJs)]. High surface area allows for increased dye-adsorption and photon absorption. Titania nanotubes grown by anodization of titanium in fluoride-containing electrolytes are aligned perpendicular to the substrate surface, reducing the electron diffusion path to the external circuit in solar cells. The nanotube morphology can be optimized for the various applications by adjusting the anodization parameters but the optimum crystallinity of the nanotube arrays remains to be realized. In addition to morphology and crystallinity, the method of device fabrication significantly affects photon and electron dynamics and its energy conversion efficiency. This paper provides the state-of-the-art knowledge to achieve experimental tailoring of morphological parameters including nanotube diameter, length, wall thickness, array surface smoothness, and annealing of nanotube arrays.
Murk, Kai; Blanco Suarez, Elena M; Cockbill, Louisa M R; Banks, Paul; Hanley, Jonathan G
2013-09-01
Astrocytes exhibit a complex, branched morphology, allowing them to functionally interact with numerous blood vessels, neighboring glial processes and neuronal elements, including synapses. They also respond to central nervous system (CNS) injury by a process known as astrogliosis, which involves morphological changes, including cell body hypertrophy and thickening of major processes. Following severe injury, astrocytes exhibit drastically reduced morphological complexity and collectively form a glial scar. The mechanistic details behind these morphological changes are unknown. Here, we investigate the regulation of the actin-nucleating Arp2/3 complex in controlling dynamic changes in astrocyte morphology. In contrast to other cell types, Arp2/3 inhibition drives the rapid expansion of astrocyte cell bodies and major processes. This intervention results in a reduced morphological complexity of astrocytes in both dissociated culture and in brain slices. We show that this expansion requires functional myosin II downstream of ROCK and RhoA. Knockdown of the Arp2/3 subunit Arp3 or the Arp2/3 activator N-WASP by siRNA also results in cell body expansion and reduced morphological complexity, whereas depleting WAVE2 specifically reduces the branching complexity of astrocyte processes. By contrast, knockdown of the Arp2/3 inhibitor PICK1 increases astrocyte branching complexity. Furthermore, astrocyte expansion induced by ischemic conditions is delayed by PICK1 knockdown or N-WASP overexpression. Our findings identify a new morphological outcome for Arp2/3 activation in restricting rather than promoting outwards movement of the plasma membrane in astrocytes. The Arp2/3 regulators PICK1, and N-WASP and WAVE2 function antagonistically to control the complexity of astrocyte branched morphology, and this mechanism underlies the morphological changes seen in astrocytes during their response to pathological insult.
Wang, Yina; Toffaletti, Dena L.; Eugenin, Eliseo; Perfect, John R.; Kim, Kee Jun; Xue, Chaoyang
2013-01-01
Cryptococcus neoformans is the most common cause of fungal meningitis, with high mortality and morbidity. The reason for the frequent occurrence of Cryptococcus infection in the central nervous system (CNS) is poorly understood. The facts that human and animal brains contain abundant inositol and that Cryptococcus has a sophisticated system for the acquisition of inositol from the environment suggests that host inositol utilization may contribute to the development of cryptococcal meningitis. In this study, we found that inositol plays an important role in Cryptococcus traversal across the blood-brain barrier (BBB) both in an in vitro human BBB model and in in vivo animal models. The capacity of inositol to stimulate BBB crossing was dependent upon fungal inositol transporters, indicated by a 70% reduction in transmigration efficiency in mutant strains lacking two major inositol transporters, Itr1a and Itr3c. Upregulation of genes involved in the inositol catabolic pathway was evident in a microarray analysis following inositol treatment. In addition, inositol increased the production of hyaluronic acid in Cryptococcus cells, which is a ligand known to binding host CD44 receptor for their invasion. These studies suggest an inositol-dependent Cryptococcus traversal of the BBB, and support our hypothesis that utilization of host-derived inositol by Cryptococcus contributes to CNS infection. PMID:23592982
Chandrasekaran, Siddarth; Giang, Ut-Binh; King, Michael R.; DeLouise, Lisa A
2011-01-01
The in vivo cellular microenvironment is regulated by a complex interplay of soluble factors and signaling molecules secreted by cells and it plays a critical role in the growth and development of normal and diseased tissues. In vitro systems that can recapitulate the microenvironment at the cellular level are needed to investigate the influence of autocrine signaling and extracellular matrix effects on tissue homeostasis, regeneration, and disease development and progression. In this study we report the use of microbubble technology as a means to culture cells in a controlled microenvironment in which cells can influence their function through autocrine signaling. Microbubbles (MB) are small spherical cavities about 100–300 µm in diameter formed in hydrophobic polymer polydimethylsiloxane (PDMS) with ~60–100 µm circular openings and aspect ratio ~3.5. We demonstrate that the unique architecture of the microbubble compartment is advantaged for cell culture using HaCaT cells, an immortalized keratinocyte cell line. We observe that HaCaT cells, seeded in microbubbles (15–20 cells / MB) and cultured under standard conditions, adopt a compact 3-D spheroidal morphology. Within 2–3 days, the cells transition to a sheeting morphology. Through experimentation and simulation we show that this transition in morphology is due to the unique architecture of the microbubble compartment which enables cells to condition their local microenvironment. The small media volume per cell and the development of shallow concentration gradients allow factors secreted by the cells to rise to bioactive levels. The kinetics of the morphology transition depends on the number of cells seeded per microbubble; higher cell seeding induces a more rapid transition. HaCaT cells seeded onto PDMS cured in 96-well plates also form compact spheroids but they do not transition to a sheeting morphology even after several weeks of culture. The importance of soluble factor accumulation in driving this morphology transition in microbubbles is supported by the observation that spheroids do not form when cells - seeded into microbubbles or onto PDMS cured in 96 well plates - are cultured in media conditioned by HaCaT cells grown in standard tissue culture plate. We observed that the addition of TGF-β1 to the growth media induced cells to proliferate in a sheeting morphology from the onset both on PDMS cured in 96-well plates and in microbubbles. TGF-β1 is a morphogen known to regulate epithelial-to-mesenchymal transition (EMT). Studies of the role of Ca2+ concentration and changes in Ecadherin expression additionally support an EMT-like HaCaT morphology transition. These findings taken together validate the microbubble compartment as a unique cell culture platform that can potentially transform investigative studies in cell biology and in particular the tumor microenvironment. Targeting the tumor microenvironment is an emerging area of anti-cancer therapy. PMID:21724250
Monitoring cell morphology during necrosis and apoptosis by quantitative phase imaging
NASA Astrophysics Data System (ADS)
Mugnano, Martina; Calabuig, Alejandro; Grilli, Simonetta; Miccio, Lisa; Ferraro, Pietro
2015-05-01
Cellular morphology changes and volume alterations play significant roles in many biological processes and they are mirrors of cell functions. In this paper, we propose the Digital Holographic microscope (DH) as a non-invasive imaging technique for a rapid and accurate extraction of morphological information related to cell death. In particular, we investigate the morphological variations that occur during necrosis and apoptosis. The study of necrosis is extremely important because it is often associated with unwarranted loss of cells in human pathologies such as ischemia, trauma, and some forms of neurodegeneration; therefore, a better elucidation in terms of cell morphological changes could pave the way for new treatments. Also, apoptosis is extremely important because it's involved in cancer, both in its formation and in medical treatments. Because the inability to initiate apoptosis enhances tumour formation, current cancer treatments target this pathway. Within this framework, we have developed a transmission off-axis DH apparatus integrated with a micro incubator for investigation of living cells in a temperature and CO2 controlled environment. We employ DH to analyse the necrosis cell death induced by laser light (wavelength 473 nm, light power 4 mW). We have chosen as cellular model NIH 3T3 mouse embryonic fibroblasts because their adhesive features such as morphological changes, and the time needed to adhere and spread have been well characterized in the literature. We have monitored cell volume changes and morphological alterations in real time in order to study the necrosis process accurately and quantitatively. Cell volume changes were evaluated from the measured phase changes of light transmitted through cells. Our digital holographic experiments showed that after exposure of cells to laser light for 90-120 min., they swell and then take on a balloon-like shape until the plasma membrane ruptures and finally the cell volume decreases. Furthermore, we present a preliminary study on the variation of morphological parameters in case of cell apoptosis induced by exposure to 10 μM cadmium chloride. We employ the same cell line, monitoring the process for 18 hours. In the vast group of environmental pollutants, the toxic heavy metal cadmium is considered a likely candidate as a causative agent of several types of cancers. Widely distributed and used in industry, and with a broad range of target organs and a long half-life (10-30 years) in the human body, this element has been long known for its multiple adverse effects on human health, through occupational or environmental exposure. In apoptosis, we measure cell volume decrease and cell shrinking. Both data of apoptosis and necrosis were analysed by means of a Sigmoidal Statistical Distribution function, which allows several quantitative data to be established, such as swelling and cell death time, flux of intracellular material from inside to outside the cell, initial and final volume versus time. In addition, we can quantitatively study the cytoplasmatic granularity that occurs during necrosis. As a future application, DH could be employed as a non-invasive and label-free method to distinguish between apoptosis and necrosis in terms of morphological parameters.
Morphology of human embryonic kidney cells in culture after space flight
NASA Technical Reports Server (NTRS)
Todd, P.; Kunze, M. E.; Williams, K.; Morrison, D. R.; Lewis, M. L.; Barlow, G. H.
1985-01-01
The ability of human embyronic kidney cells to differentiate into small epithelioid, large epithelioid, domed, and fenestrated morphological cell types following space flight is examined. Kidney cells exposed to 1 day at 1 g, then 1 day in orbit, and a 12 minute passage through the electrophoretic separator are compared with control cultures. The data reveal that 70 percent of small epithelioid, 16 percent of large epithelioid, 9 percent of dome-forming, and 5 percent of fenestrated cells formed in the space exposed cells; the distributions correlate well with control data. The formation of domed cells from cells cultured from low electrophoretic mobility fractions and small epithelioid cells from high mobility fractions is unaffected by space flight conditions. It is concluded that storage under microgravity conditions does not influence the morphological differentiation of human embryonic kidney cells in low-passage culture.
Intrinsic physiological properties of rat retinal ganglion cells with a comparative analysis.
Wong, Raymond C S; Cloherty, Shaun L; Ibbotson, Michael R; O'Brien, Brendan J
2012-10-01
Mammalian retina contains 15-20 different retinal ganglion cell (RGC) types, each of which is responsible for encoding different aspects of the visual scene. The encoding is defined by a combination of RGC synaptic inputs, the neurotransmitter systems used, and their intrinsic physiological properties. Each cell's intrinsic properties are defined by its morphology and membrane characteristics, including the complement and localization of the ion channels expressed. In this study, we examined the hypothesis that the intrinsic properties of individual RGC types are conserved among mammalian species. To do so, we measured the intrinsic properties of 16 morphologically defined rat RGC types and compared these data with cat RGC types. Our data demonstrate that in the rat different morphologically defined RGC types have distinct patterns of intrinsic properties. Variation in these properties across cell types was comparable to that found for cat RGC types. When presumed morphological homologs in rat and cat retina were compared directly, some RGC types had very similar properties. The rat A2 cell exhibited patterns of intrinsic properties nearly identical to the cat alpha cell. In contrast, rat D2 cells (ON-OFF directionally selective) had a very different pattern of intrinsic properties than the cat iota cell. Our data suggest that the intrinsic properties of RGCs with similar morphology and suspected visual function may be subject to variation due to the behavioral needs of the species.
Environmental enrichment alters dentate granule cell morphology in oldest-old rat.
Darmopil, Sanja; Petanjek, Zdravko; Mohammed, Abdul H; Bogdanović, Nenad
2009-08-01
The hippocampus of aged rats shows marked age-related morphological changes that could cause memory deficits. Experimental evidence has established that environmental enrichment attenuates memory deficits in aged rats. We therefore studied whether environmental enrichment produces morphological changes on the dentate granule cells of aged rats. Fifteen male Sprague-Dawley rats, 24 months of age, were randomly distributed in two groups that were housed under standard (n = 7) or enriched (n = 8) environmental conditions for 26 days. Quantitative data of dendritic morphology from dentate gyrus granule cells were obtained on Golgi-Cox stained sections. Environmental enrichment significantly increased the complexity and size of dendritic tree (total number of segments increased by 61% and length by 116%), and spine density (88% increase). There were large interindividual differences within the enriched group, indicating differential individual responses to environmental stimulation. Previous studies in young animals have shown changes produced by environmental enrichment in the morphology of dentate gyrus granule cells. The results of the present study show that environmental enrichment can also produce changes in dentate granule cell morphology in the senescent brain. In conclusion, the hippocampus retains its neuroplastic capacity during aging, and enriched environmental housing conditions can attenuate age-related dendritic regression and synaptic loss, thus preserving memory functions.
Cell–material interactions on biphasic polyurethane matrix
Dicesare, Patrick; Fox, Wade M.; Hill, Michael J.; Krishnan, G. Rajesh; Yang, Shuying; Sarkar, Debanjan
2013-01-01
Cell–matrix interaction is a key regulator for controlling stem cell fate in regenerative tissue engineering. These interactions are induced and controlled by the nanoscale features of extracellular matrix and are mimicked on synthetic matrices to control cell structure and functions. Recent studies have shown that nanostructured matrices can modulate stem cell behavior and exert specific role in tissue regeneration. In this study, we have demonstrated that nanostructured phase morphology of synthetic matrix can control adhesion, proliferation, organization and migration of human mesenchymal stem cells (MSCs). Nanostructured biodegradable polyurethanes (PU) with segmental composition exhibit biphasic morphology at nanoscale dimensions and can control cellular features of MSCs. Biodegradable PU with polyester soft segment and hard segment composed of aliphatic diisocyanates and dipeptide chain extender were designed to examine the effect polyurethane phase morphology. By altering the polyurethane composition, morphological architecture of PU was modulated and its effect was examined on MSC. Results show that MSCs can sense the nanoscale morphology of biphasic polyurethane matrix to exhibit distinct cellular features and, thus, signifies the relevance of matrix phase morphology. The role of nanostructured phases of a synthetic matrix in controlling cell–matrix interaction provides important insights for regulation of cell behavior on synthetic matrix and, therefore, is an important tool for engineering tissue regeneration. PMID:23255285
Morphological and functional characteristics of human gingival junctional epithelium.
Jiang, Qian; Yu, Youcheng; Ruan, Hong; Luo, Yin; Guo, Xuehua
2014-04-03
This study aims to observe the morphological characteristics and identify the function characteristics of junctional epithelium (JE) tissues and cultured JE cells. Paraffin sections of human molar or premolar on the gingival buccolingual side were prepared from 6 subjects. HE staining and image analysis were performed to measure and compare the morphological difference among JE, oral gingival epithelium (OGE) and sulcular epithelium (SE). Immunohistochemistry was applied to detect the expression pattern of cytokeratin 5/6, 7, 8/18, 10/13, 16, 17, 19, and 20 in JE, OGE and SE. On the other hand, primary human JE and OGE cells were cultured in vitro. Cell identify was confirmed by histology and immunohistochemistry. In a co-culture model, TEM was used to observe the attachment formation between JE cells and tooth surface. Human JE was a unique tissue which was different from SE and OGE in morphology. Similarly, morphology of JE cells was also particular compared with OGE cells cultured in vitro. In addition, JE cells had a longer incubation period than OGE cells. Different expression of several CKs illustrated JE was in a characteristic of low differentiation and high regeneration. After being co-cultured for 14 d, multiple cell layers, basement membrane-like and hemidesmosome-like structures were appeared at the junction of JE cell membrane and tooth surface. JE is a specially stratified epithelium with low differentiation and high regeneration ability in gingival tissue both in vivo and in vitro. In co-culture model, human JE cells can form basement membrane-like and hemidesmosome-like structures in about 2 weeks.
Elastocapillary Instability in Mitochondrial Fission
NASA Astrophysics Data System (ADS)
Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien
2015-08-01
Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.
Morphology characterization of organic solar cell materials and blends
NASA Astrophysics Data System (ADS)
Roehling, John Daniel
The organization of polymers and fullerenes, both in their pure states and mixed together, have a large impact on their macroscopic properties. For mixtures used in organic solar cells, the morphology of the mixture has a very large impact upon the mixture's ability to efficiently convert sunlight into useful electrical energy. Understanding how the morphology can change under certain processing conditions and in turn, affect the characteristics of the solar cell is therefore important to improving the function of organic solar cells. Conventional poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells have served as a staple system to study organic solar cell function for nearly a decade. Much of the understanding of how to make these "poorly"conductive organic materials efficiently convert sunlight into electricity has come from the study of P3HT:PCBM. It has long been understood that in order for a polymer:fullerene (electron donor and acceptor, respectively) mixture to function well as a solar cell, two major criteria for the morphology must be met; first, the interface between the two materials must be large to efficiently create charges, and secondly, there must be continous pathways through the "pure" materials for charges to be efficiently collected at the electrodes. This makes it advantageous for OPV materials to phase-separate into interconnected domains with very small domain sizes, a structure that P3HT:PCBM seems to naturally self-assemble. Despite P3HT:PCBM's ability to reach an optimal morphology, a complete understanding of exactly how the morphology affects device performance has not been realized. Completely different morphological models can end up predicting the same device performance characteristics. Much of the problem comes from the assumed morphology within a particular model, which can often be incorrect. The problem lies in the fact that obtaining real, accurate morphological information is difficult. An often neglected morphological feature is the existence of a third mixed phase, which is often unaccounted for because much about its composition and location are poorly understood. Obtaining this information and measuring the full morphology of OPV layers would therefore enable further understanding of device function. It is the aim of this thesis to demonstrate a technique which can measure the morphology of OPV layers accurately, accounting for the third phase and its composition. By using a scanning transmission electron microscope (STEM) in conjunction with electron tomography (ET) and an easily resolved fullerene component, the morphology of P3HT:fullerene layers are herein investigated. The combination of materials and techniques are demonstrated to accurately measure the morphology, illustrated by results which corroborate previous studies in the literature. It will be shown that not only can the position of each of the three phases present be measured, but their compositions can also be determined. Through this technique, morphologies formed under different processing conditions are quantitatively compared. The technique reveals differences between conventional processing methods that are not obvious through other measurements. Differences in the materials distribution throughout the thickness of the layer are also demonstrated and shown to give implications toward device function. Additionally, the precise changes in morphology which occur from different processing conditions are determined and shown to have a significant impact upon the properties of an OPV layer as a solar energy harvester. Not only does the morphology of the mixed materials affect the solar cell properties, but the local structure of the component materials themselves can strongly influence the macroscopic properties. By removing the fullerene component and forming pure domains of P3HT, the effects of internal structure on the properties of P3HT and how the structure is formed is also herein investigated. Through these techniques, the morphology and structure of different organic solar cell mixtures can now be thoroughly investigated. Through this work and future studies, the exact effects of morphology can be more fully understood. With the availability of accurate morphological data, it may now be possible to decouple morphology from other factors which govern device function.
ANALYSES OF THE INTERACTIONS WITHIN BINARY MIXTURES OF CARCINOGENIC PAHS USING MORPHOLOGICAL CELL TRANSFORMATION OF C3HIOT1/2 CL8 CELLS.
Studies of defined mixtures of carcinogenic polycyclic aromatic hydrocarbons (PAH) have identified three major categories of interacti...
Bio-inspired Cryo-ink Preserves Red Blood Cell Phenotype and Function during Nanoliter Vitrification
Assal, Rami El; Guven, Sinan; Gurkan, Umut Atakan; Gozen, Irep; Shafiee, Hadi; Dalbeyber, Sedef; Abdalla, Noor; Thomas, Gawain; Fuld, Wendy; Illigens, Ben M.W.; Estanislau, Jessica; Khoory, Joseph; Kaufman, Richard; Zylberberg, Claudia; Lindeman, Neal; Wen, Qi; Ghiran, Ionita; Demirci, Utkan
2014-01-01
Current red blood cell cryopreservation methods utilize bulk volumes, causing cryo-injury of cells, which results in irreversible disruption of cell morphology, mechanics, and function. An innovative approach to preserve human red blood cell morphology, mechanics, and function following vitrification in nanoliter volumes is developed using a novel cryo-ink integrated with a bio-printing approach. PMID:25047246
Understanding cellular architecture in cancer cells
NASA Astrophysics Data System (ADS)
Bianco, Simone; Tang, Chao
2011-03-01
Understanding the development of cancer is an important goal for today's science. The morphology of cellular organelles, such as the nucleus, the nucleoli and the mitochondria, which is referred to as cellular architecture or cytoarchitecture, is an important indicator of the state of the cell. In particular, there are striking difference between the cellular architecture of a healthy cell versus a cancer cell. In this work we present a dynamical model for the evolution of organelles morphology in cancer cells. Using a dynamical systems approach, we describe the evolution of a cell on its way to cancer as a trajectory in a multidimensional morphology state. The results provided by this work may increase our insight on the mechanism of tumorigenesis and help build new therapeutic strategies.
González-Giraldo, Yeimy; Garcia-Segura, Luis Miguel; Echeverria, Valentina; Barreto, George E
2018-05-01
Obesity has been associated with increased chronic neuroinflammation and augmented risk of neurodegeneration. This is worsened during the normal aging process when the levels of endogenous gonadal hormones are reduced. In this study, we have assessed the protective actions of tibolone, a synthetic steroid with estrogenic actions, on T98G human astrocytic cells exposed to palmitic acid, a saturated fatty acid used to mimic obesity in vitro. Tibolone improved cell survival, and preserved mitochondrial membrane potential in palmitic acid-treated astrocytic cells. Although we did not find significant actions of tibolone on free radical production, it modulated astrocytic morphology after treatment with palmitic acid. These data suggest that tibolone protects astrocytic cells by preserving both mitochondrial functionality and morphological complexity.
Klinker, Matthew W.; Marklein, Ross A.; Lo Surdo, Jessica L.; Wei, Cheng-Hong
2017-01-01
Human mesenchymal stromal cell (MSC) lines can vary significantly in their functional characteristics, and the effectiveness of MSC-based therapeutics may be realized by finding predictive features associated with MSC function. To identify features associated with immunosuppressive capacity in MSCs, we developed a robust in vitro assay that uses principal-component analysis to integrate multidimensional flow cytometry data into a single measurement of MSC-mediated inhibition of T-cell activation. We used this assay to correlate single-cell morphological data with overall immunosuppressive capacity in a cohort of MSC lines derived from different donors and manufacturing conditions. MSC morphology after IFN-γ stimulation significantly correlated with immunosuppressive capacity and accurately predicted the immunosuppressive capacity of MSC lines in a validation cohort. IFN-γ enhanced the immunosuppressive capacity of all MSC lines, and morphology predicted the magnitude of IFN-γ–enhanced immunosuppressive activity. Together, these data identify MSC morphology as a predictive feature of MSC immunosuppressive function. PMID:28283659
Biocompatibility of orthodontic bands following exposure to dental plaque.
Hornikel, Sandra; Erbe, Christina; Schmidtmann, Irene; Wehrbein, Heiner
2011-03-01
The aim of this study was to assess the biocompatibility of orthodontic bands following exposure to the human oral environment. Cell adherence and cell morphology of gingival fibroblasts grown on 32 orthodontic bands were tested. The bands were in place intraorally for 6 to 37 months. We observed cell adherence in 76% of the previously plaque-free surfaces. Cell morphology was 50% spherical and 50% elongated. The surfaces that had had plaque attached demonstrated cell adherence in 84% of the given areas; those cells were spherical in 42% and elongated in 58%. We conclude that individual oral hygiene habits during orthodontic treatment seem to have no effect on the biocompatibility of orthodontic bands, as we failed to discern a difference in either cell adherence or cell morphology in areas with and without prior plaque attachment.
2013-01-01
Background Microglia cells continuously survey the healthy brain in a ramified morphology and, in response to injury, undergo progressive morphological and functional changes that encompass microglia activation. Although ideally positioned for immediate response to ischemic stroke (IS) and reperfusion, their progressive morphological transformation into activated cells has not been quantified. In addition, it is not well understood if diverse microglia morphologies correlate to diverse microglia functions. As such, the dichotomous nature of these cells continues to confound our understanding of microglia-mediated injury after IS and reperfusion. The purpose of this study was to quantitatively characterize the spatiotemporal pattern of microglia morphology during the evolution of cerebral injury after IS and reperfusion. Methods Male C57Bl/6 mice were subjected to focal cerebral ischemia and periods of reperfusion (0, 8 and 24 h). The microglia process length/cell and number of endpoints/cell was quantified from immunofluorescent confocal images of brain regions using a skeleton analysis method developed for this study. Live cell morphology and process activity were measured from movies acquired in acute brain slices from GFP-CX3CR1 transgenic mice after IS and 24-h reperfusion. Regional CD11b and iNOS expressions were measured from confocal images and Western blot, respectively, to assess microglia proinflammatory function. Results Quantitative analysis reveals a significant spatiotemporal relationship between microglia morphology and evolving cerebral injury in the ipsilateral hemisphere after IS and reperfusion. Microglia were both hyper- and de-ramified in striatal and cortical brain regions (respectively) after 60 min of focal cerebral ischemia. However, a de-ramified morphology was prominent when ischemia was coupled to reperfusion. Live microglia were de-ramified, and, in addition, process activity was severely blunted proximal to the necrotic core after IS and 24 h of reperfusion. CD11b expression, but not iNOS expression, was increased in regions of hyper- and de-ramified microglia during the course of ischemic stroke and 24 h of reperfusion. Conclusions Our findings illustrate that microglia activation after stroke includes both increased and decreased cell ramification. Importantly, quantitative analyses of microglial morphology and activity are feasible and, in future studies, would assist in the comprehensive identification and stratification of their dichotomous contribution toward cerebral injury and recovery during IS and reperfusion. PMID:23311642
Improvement of mitochondrial function and dynamics by the metabolic enhancer piracetam.
Stockburger, Carola; Kurz, Christopher; Koch, Konrad A; Eckert, Schamim H; Leuner, Kristina; Müller, Walter E
2013-10-01
The metabolic enhancer piracetam is used in many countries to treat cognitive impairment in aging, brain injuries, as well as dementia such as AD (Alzheimer's disease). As a specific feature of piracetam, beneficial effects are usually associated with mitochondrial dysfunction. In previous studies we were able to show that piracetam enhanced ATP production, mitochondrial membrane potential as well as neurite outgrowth in cell and animal models for aging and AD. To investigate further the effects of piracetam on mitochondrial function, especially mitochondrial fission and fusion events, we decided to assess mitochondrial morphology. Human neuroblastoma cells were treated with the drug under normal conditions and under conditions imitating aging and the occurrence of ROS (reactive oxygen species) as well as in stably transfected cells with the human wild-type APP (amyloid precursor protein) gene. This AD model is characterized by expressing only 2-fold more human Aβ (amyloid β-peptide) compared with control cells and therefore representing very early stages of AD when Aβ levels gradually increase over decades. Interestingly, these cells exhibit an impaired mitochondrial function and morphology under baseline conditions. Piracetam is able to restore this impairment and shifts mitochondrial morphology back to elongated forms, whereas there is no effect in control cells. After addition of a complex I inhibitor, mitochondrial morphology is distinctly shifted to punctate forms in both cell lines. Under these conditions piracetam is able to ameliorate morphology in cells suffering from the mild Aβ load, as well as mitochondrial dynamics in control cells.
Nikolaisen, Julie; Nilsson, Linn I. H.; Pettersen, Ina K. N.; Willems, Peter H. G. M.; Lorens, James B.; Koopman, Werner J. H.; Tronstad, Karl J.
2014-01-01
Mitochondrial morphology and function are coupled in healthy cells, during pathological conditions and (adaptation to) endogenous and exogenous stress. In this sense mitochondrial shape can range from small globular compartments to complex filamentous networks, even within the same cell. Understanding how mitochondrial morphological changes (i.e. “mitochondrial dynamics”) are linked to cellular (patho) physiology is currently the subject of intense study and requires detailed quantitative information. During the last decade, various computational approaches have been developed for automated 2-dimensional (2D) analysis of mitochondrial morphology and number in microscopy images. Although these strategies are well suited for analysis of adhering cells with a flat morphology they are not applicable for thicker cells, which require a three-dimensional (3D) image acquisition and analysis procedure. Here we developed and validated an automated image analysis algorithm allowing simultaneous 3D quantification of mitochondrial morphology and network properties in human endothelial cells (HUVECs). Cells expressing a mitochondria-targeted green fluorescence protein (mitoGFP) were visualized by 3D confocal microscopy and mitochondrial morphology was quantified using both the established 2D method and the new 3D strategy. We demonstrate that both analyses can be used to characterize and discriminate between various mitochondrial morphologies and network properties. However, the results from 2D and 3D analysis were not equivalent when filamentous mitochondria in normal HUVECs were compared with circular/spherical mitochondria in metabolically stressed HUVECs treated with rotenone (ROT). 2D quantification suggested that metabolic stress induced mitochondrial fragmentation and loss of biomass. In contrast, 3D analysis revealed that the mitochondrial network structure was dissolved without affecting the amount and size of the organelles. Thus, our results demonstrate that 3D imaging and quantification are crucial for proper understanding of mitochondrial shape and topology in non-flat cells. In summary, we here present an integrative method for unbiased 3D quantification of mitochondrial shape and network properties in mammalian cells. PMID:24988307
Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells
2014-01-01
A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells. PMID:25386107
Bray, Mark-Anthony; Singh, Shantanu; Han, Han; Davis, Chadwick T.; Borgeson, Blake; Hartland, Cathy; Kost-Alimova, Maria; Gustafsdottir, Sigrun M.; Gibson, Christopher C.; Carpenter, Anne E.
2016-01-01
In morphological profiling, quantitative data are extracted from microscopy images of cells to identify biologically relevant similarities and differences among samples based on these profiles. This protocol describes the design and execution of experiments using Cell Painting, a morphological profiling assay multiplexing six fluorescent dyes imaged in five channels, to reveal eight broadly relevant cellular components or organelles. Cells are plated in multi-well plates, perturbed with the treatments to be tested, stained, fixed, and imaged on a high-throughput microscope. Then, automated image analysis software identifies individual cells and measures ~1,500 morphological features (various measures of size, shape, texture, intensity, etc.) to produce a rich profile suitable for detecting subtle phenotypes. Profiles of cell populations treated with different experimental perturbations can be compared to suit many goals, such as identifying the phenotypic impact of chemical or genetic perturbations, grouping compounds and/or genes into functional pathways, and identifying signatures of disease. Cell culture and image acquisition takes two weeks; feature extraction and data analysis take an additional 1-2 weeks. PMID:27560178
Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells.
Tan, Furui; Qu, Shengchun; Zhang, Weifeng; Wang, Zhanguo
2014-01-01
A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells.
Menstruum induces changes in mesothelial cell morphology.
Koks, C A; Demir Weusten, A Y; Groothuis, P G; Dunselman, G A; de Goeij, A F; Evers, J L
2000-01-01
In previous studies, we have shown that menstrual endometrium preferentially adheres to the subepithelial lining of the peritoneum. It remains to be elucidated, however, whether this damage is preexisting or inflicted by the menstrual tissue itself. We hypothesized that the menstrual tissue itself damages the peritoneum. To investigate this, the viability of menstrual endometrial tissue in peritoneal fluid (PF) was evaluated and the morphologic changes in the mesothelial cells were studied by in vitro cocultures of menstruum with mesothelial cell monolayers. Menstruum was collected with a menstrual cup. Endometrial tissue was isolated from the menstruum, resuspended in culture medium or in the cell-free fraction of PF and cultured for 24, 48 or 72 h. A 3(4, 5-dimethylthiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed to obtain a relative measure of viable adhered endometrial cells. Mesothelial cells isolated from human omental tissue were cultured on Matrigel or uncoated plastic. At confluence, overnight cocultures were performed and scanning electron microscopy was used to evaluate the morphologic changes. The viability of endometrial fragments was 84% (n = 36, p < 0.05), 82% (n = 27, not significant) and 104% (n = 14, not significant) when cultured in the cell-free fraction of PF for 24, 48 and 72 h, respectively, when compared to medium with 10% fetal calf serum. Menstrual endometrial fragments or menstrual serum added to and cocultured with mesothelial cells induced severe morphologic alterations of the latter, including retraction, shrinking and gap formation. Similar morphologic changes were observed when mesothelial cells were cocultured with menstrual endometrial fragments in PF or in culture inserts. Incubation with conditioned medium from cultured menstrual endometrium induced similar but less pronounced changes in morphology. In conclusion, menstrual endometrial fragments remain viable in PF in vitro for at least 72 h. Antegradely shed menstruum induces changes in mesothelial cell morphology, including retraction and shrinking with exposure of the underlying surface. These findings suggest that menstruum is harmful to the peritoneal lining. Therefore, by local destruction of the mesothelial layer, menstrual endometrium is able to create sites for adhesion. Copyright 2000 S. Karger AG, Basel
NASA Astrophysics Data System (ADS)
Van De Water, P. K.
2016-12-01
The size, frequency, and morphology of leaf surface stomata is used to reconstruct past levels of atmospheric carbon dioxide over geologic time. This technique relies on measuring cell and cell-clusters to correlate with changes of known carbon dioxide levels in the atmosphere. Unfortunately, not all plants are suitable because the occurrence and placement of stomatal cell-complexes differ significantly between plant families. Monocot and dicot angiosperms exhibit different types of stomata and stomatal complexes that lack order and thus are unsuitable. But, in gymnosperms, the number and distribution of stomata and pavement cells is formalized and can be used to reconstruct past atmospheric carbon dioxide levels. However, characteristic of each plant species must still be considered. For example, conifers are useful but are divided into two-needle to five-needle pines, or have irregular surface morphology (Pseudotsuga sp. and Tsuga sp. needles). This study uses Pinus monophylla an undivided needle morphology, that being a cylinder has no interior surface cells. Pinus monophylla (single needle pinyon) needles were collected along Geiger Grade (Nevada State Highway 341, Reno) in 2005 and 2013 from 1500m to 2195m. Herbarium samples were also collected from 13 historic collections made between 1911 and 1994. The study determined changes with elevation and/or over time using in these populations. Using Pinus monophylla, insured needles represented a single surface with stomata, stomatal complex cells, and co-occurring pavement cell types. Results show decreased stomatal densities (stomata/area), stomatal index (stomata/stomata + epidermal cells) and stable stomata per row (stomata/row) . Epidermal cell density (Epidermal Cells /Area), and Pavement cell density (Pavement cell/area) track stomatal density similarly. Data comparison, using elevation in the 2005 and 2013 collections showed no-significant trends. Individual stomatal complexes show no differences in the size and shape over time or with elevation. Stomata morphology and the stomatal pores appear conservative. However some complex cells show a morphology suggesting they are not fully formed and functional. These characteristics appear often in the modern material suggesting some stomata never fully develop.
Morphology control of zinc regeneration for zinc-air fuel cell and battery
NASA Astrophysics Data System (ADS)
Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong
2014-12-01
Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.
Surfactant Protein D Facilitates Cryptococcus neoformans Infection
Geunes-Boyer, Scarlett; Beers, Michael F.; Heitman, Joseph; Wright, Jo Rae
2012-01-01
Concurrent with the global escalation of the AIDS pandemic, cryptococcal infections are increasing and are of significant medical importance. Furthermore, Cryptococcus neoformans has become a primary human pathogen, causing infection in seemingly healthy individuals. Although numerous studies have elucidated the virulence properties of C. neoformans, less is understood regarding lung host immune factors during early stages of fungal infection. Based on our previous studies documenting that pulmonary surfactant protein D (SP-D) protects C. neoformans cells against macrophage-mediated defense mechanisms in vitro (S. Geunes-Boyer et al., Infect. Immun. 77:2783–2794, 2009), we postulated that SP-D would facilitate fungal infection in vivo. To test this hypothesis, we examined the role of SP-D in response to C. neoformans using SP-D−/− mice. Here, we demonstrate that mice lacking SP-D were partially protected during C. neoformans infection; they displayed a longer mean time to death and decreased fungal burden at several time points postinfection than wild-type mice. This effect was reversed by the administration of exogenous SP-D. Furthermore, we show that SP-D bound to the surface of the yeast cells and protected the pathogenic microbes against macrophage-mediated defense mechanisms and hydrogen peroxide (H2O2)-induced oxidative stress in vitro and in vivo. These findings indicate that C. neoformans is capable of coopting host SP-D to increase host susceptibility to the yeast. This study establishes a new paradigm for the role played by SP-D during host responses to C. neoformans and consequently imparts insight into potential future preventive and/or treatment strategies for cryptococcosis. PMID:22547543
Cell-Cell Contact Area Affects Notch Signaling and Notch-Dependent Patterning.
Shaya, Oren; Binshtok, Udi; Hersch, Micha; Rivkin, Dmitri; Weinreb, Sheila; Amir-Zilberstein, Liat; Khamaisi, Bassma; Oppenheim, Olya; Desai, Ravi A; Goodyear, Richard J; Richardson, Guy P; Chen, Christopher S; Sprinzak, David
2017-03-13
During development, cells undergo dramatic changes in their morphology. By affecting contact geometry, these morphological changes could influence cellular communication. However, it has remained unclear whether and how signaling depends on contact geometry. This question is particularly relevant for Notch signaling, which coordinates neighboring cell fates through direct cell-cell signaling. Using micropatterning with a receptor trans-endocytosis assay, we show that signaling between pairs of cells correlates with their contact area. This relationship extends across contact diameters ranging from micrometers to tens of micrometers. Mathematical modeling predicts that dependence of signaling on contact area can bias cellular differentiation in Notch-mediated lateral inhibition processes, such that smaller cells are more likely to differentiate into signal-producing cells. Consistent with this prediction, analysis of developing chick inner ear revealed that ligand-producing hair cell precursors have smaller apical footprints than non-hair cells. Together, these results highlight the influence of cell morphology on fate determination processes. Copyright © 2017 Elsevier Inc. All rights reserved.
Liu, Jinyun; Qu, Yingmin; Wang, Guoliang; Wang, Xinyue; Zhang, Wenxiao; Li, Jingmei; Wang, Zuobin; Li, Dayou; Jiang, Jinlan
2018-01-01
This article studies the morphological and mechanical features of multinuclear and mononuclear SW480 colon cancer cells by atomic force microscopy to understand their drug-resistance. The SW480 cells were incubated with the fullerenol concentrations of 1 mg/ml and 2 mg/ml. Morphological and mechanical features including the height, length, width, roughness, adhesion force and Young's modulus of three multinuclear cell groups and three mononuclear cell groups were imaged and analyzed. It was observed that the features of multinuclear cancer cells and mononuclear cancer cells were significantly different after the treatment with fullerenol. The experiment results indicated that the mononuclear SW480 cells were more sensitive to fullerenol than the multinuclear SW480 cells, and the multinuclear SW480 cells exhibited a stronger drug-resistance than the mononuclear SW480 cells. This work provides a guideline for the treatments of multinuclear and mononuclear cancer cells with drugs. © 2017 Wiley Periodicals, Inc.
Cell-cell contact area affects Notch signaling and Notch-dependent patterning
Shaya, Oren; Binshtok, Udi; Hersch, Micha; Rivkin, Dmitri; Weinreb, Sheila; Amir-Zilberstein, Liat; Khamaisi, Bassma; Oppenheim, Olya; Desai, Ravi A.; Goodyear, Richard J.; Richardson, Guy P.; Chen, Christopher S.; Sprinzak, David
2017-01-01
Summary During development, cells undergo dramatic changes in their morphology. By affecting contact geometry, these morphological changes could influence cellular communication. However, it has remained unclear whether and how signaling depends on contact geometry. This question is particularly relevant for Notch signaling, which coordinates neighboring cell fates through direct cell-cell signaling. Using micropatterning with a receptor trans-endocytosis assay, we show that signaling between pairs of cells correlates with their contact area. This relationship extends across contact diameters ranging from microns to tens of microns. Mathematical modeling predicts that dependence of signaling on contact area can bias cellular differentiation in Notch-mediated lateral inhibition processes, such that smaller cells are more likely to differentiate into signal-producing cells. Consistent with this prediction, analysis of developing chick inner ear revealed that ligand-producing hair cell precursors have smaller apical footprints than non-hair cells. Together, these results highlight the influence of cell morphology on fate determination processes. PMID:28292428
Dynamics of morphological evolution in experimental Escherichia coli populations.
Cui, F; Yuan, B
2016-08-30
Here, we applied a two-stage clonal expansion model of morphological (cell-size) evolution to a long-term evolution experiment with Escherichia coli. Using this model, we derived the incidence function of the appearance of cell-size stability, the waiting time until this morphological stability, and the conditional and unconditional probabilities of morphological stability. After assessing the parameter values, we verified that the calculated waiting time was consistent with the experimental results, demonstrating the effectiveness of the two-stage model. According to the relative contributions of parameters to the incidence function and the waiting time, cell-size evolution is largely determined by the promotion rate, i.e., the clonal expansion rate of selectively advantageous organisms. This rate plays a prominent role in the evolution of cell size in experimental populations, whereas all other evolutionary forces were found to be less influential.
Engineering Cyanobacterial Cell Morphology for Enhanced Recovery and Processing of Biomass.
Jordan, Adam; Chandler, Jenna; MacCready, Joshua S; Huang, Jingcheng; Osteryoung, Katherine W; Ducat, Daniel C
2017-05-01
Cyanobacteria are emerging as alternative crop species for the production of fuels, chemicals, and biomass. Yet, the success of these microbes depends on the development of cost-effective technologies that permit scaled cultivation and cell harvesting. Here, we investigate the feasibility of engineering cell morphology to improve biomass recovery and decrease energetic costs associated with lysing cyanobacterial cells. Specifically, we modify the levels of Min system proteins in Synechococcus elongatus PCC 7942. The Min system has established functions in controlling cell division by regulating the assembly of FtsZ, a tubulin-like protein required for defining the bacterial division plane. We show that altering the expression of two FtsZ-regulatory proteins, MinC and Cdv3, enables control over cell morphology by disrupting FtsZ localization and cell division without preventing continued cell growth. By varying the expression of these proteins, we can tune the lengths of cyanobacterial cells across a broad dynamic range, anywhere from an ∼20% increased length (relative to the wild type) to near-millimeter lengths. Highly elongated cells exhibit increased rates of sedimentation under low centrifugal forces or by gravity-assisted settling. Furthermore, hyperelongated cells are also more susceptible to lysis through the application of mild physical stress. Collectively, these results demonstrate a novel approach toward decreasing harvesting and processing costs associated with mass cyanobacterial cultivation by altering morphology at the cellular level. IMPORTANCE We show that the cell length of a model cyanobacterial species can be programmed by rationally manipulating the expression of protein factors that suppress cell division. In some instances, we can increase the size of these cells to near-millimeter lengths with this approach. The resulting elongated cells have favorable properties with regard to cell harvesting and lysis. Furthermore, cells treated in this manner continue to grow rapidly at time scales similar to those of uninduced controls. To our knowledge, this is the first reported example of engineering the cell morphology of cyanobacteria or algae to make them more compatible with downstream processing steps that present economic barriers to their use as alternative crop species. Therefore, our results are a promising proof-of-principle for the use of morphology engineering to increase the cost-effectiveness of the mass cultivation of cyanobacteria for various sustainability initiatives. Copyright © 2017 American Society for Microbiology.
Zeng, Wenjin; Liu, Xingming; Guo, Xiangru; Niu, Qiaoli; Yi, Jianpeng; Xia, Ruidong; Min, Yong
2017-03-24
This review presents an overall discussion on the morphology analysis and optimization for perovskite (PVSK) solar cells. Surface morphology and energy alignment have been proven to play a dominant role in determining the device performance. The effect of the key parameters such as solution condition and preparation atmosphere on the crystallization of PVSK, the characterization of surface morphology and interface distribution in the perovskite layer is discussed in detail. Furthermore, the analysis of interface energy level alignment by using X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy is presented to reveals the correlation between morphology and charge generation and collection within the perovskite layer, and its influence on the device performance. The techniques including architecture modification, solvent annealing, etc. were reviewed as an efficient approach to improve the morphology of PVSK. It is expected that further progress will be achieved with more efforts devoted to the insight of the mechanism of surface engineering in the field of PVSK solar cells.
Pérez-Pérez, José Manuel; Rubio-Díaz, Silvia; Dhondt, Stijn; Hernández-Romero, Diana; Sánchez-Soriano, Joaquín; Beemster, Gerrit T S; Ponce, María Rosa; Micol, José Luis
2011-12-01
Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes. © 2011 Blackwell Publishing Ltd.
Waaijer, Mariëtte E. C.; Gunn, David A.; Adams, Peter D.; Pawlikowski, Jeff S.; Griffiths, Christopher E. M.; van Heemst, Diana; Slagboom, P. Eline; Westendorp, Rudi G. J.; Maier, Andrea B.
2016-01-01
Senescent cells are more prevalent in aged human skin compared to young, but evidence that senescent cells are linked to other biomarkers of aging is scarce. We counted cells positive for the tumor suppressor and senescence associated protein p16INK4a in sun-protected upper-inner arm skin biopsies from 178 participants (aged 45–81 years) of the Leiden Longevity Study. Local elastic fiber morphology, facial wrinkles, and perceived facial age were compared to tertiles of p16INK4a counts, while adjusting for chronological age and other potential confounders. The numbers of epidermal and dermal p16INK4a positive cells were significantly associated with age-associated elastic fiber morphologic characteristics, such as longer and a greater number of elastic fibers. The p16INK4a positive epidermal cells (identified as primarily melanocytes) were also significantly associated with more facial wrinkles and a higher perceived age. Participants in the lowest tertile of epidermal p16INK4a counts looked 3 years younger than those in the highest tertile, independently of chronological age and elastic fiber morphology. In conclusion, p16INK4a positive cell numbers in sun-protected human arm skin are indicative of both local elastic fiber morphology and the extent of aging visible in the face. PMID:26286607
Linking macroscopic with microscopic neuroanatomy using synthetic neuronal populations.
Schneider, Calvin J; Cuntz, Hermann; Soltesz, Ivan
2014-10-01
Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models.
Linking Macroscopic with Microscopic Neuroanatomy Using Synthetic Neuronal Populations
Schneider, Calvin J.; Cuntz, Hermann; Soltesz, Ivan
2014-01-01
Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models. PMID:25340814
Revealing 3D Ultrastructure and Morphology of Stem Cell Spheroids by Electron Microscopy.
Jaros, Josef; Petrov, Michal; Tesarova, Marketa; Hampl, Ales
2017-01-01
Cell culture methods have been developed in efforts to produce biologically relevant systems for developmental and disease modeling, and appropriate analytical tools are essential. Knowledge of ultrastructural characteristics represents the basis to reveal in situ the cellular morphology, cell-cell interactions, organelle distribution, niches in which cells reside, and many more. The traditional method for 3D visualization of ultrastructural components, serial sectioning using transmission electron microscopy (TEM), is very labor-intensive due to contentious TEM slice preparation and subsequent image processing of the whole collection. In this chapter, we present serial block-face scanning electron microscopy, together with complex methodology for spheroid formation, contrasting of cellular compartments, image processing, and 3D visualization. The described technique is effective for detailed morphological analysis of stem cell spheroids, organoids, as well as organotypic cell cultures.
Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K
2009-06-01
Nanoscopic changes in the cell surface morphology of the yeasts Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354), due to their exposure to varying concentrations of hydrogen peroxide (oxidative stress), were investigated using an atomic force microscope (AFM). Increasing hydrogen peroxide concentration led to a decrease in cell viabilities and mean cell volumes, and an increase in the surface roughness of the yeasts. In addition, AFM studies revealed that oxidative stress caused cell compression in both S. cerevisiae and Schiz. pombe cells and an increase in the number of aged yeasts. These results confirmed the importance and usefulness of AFM in investigating the morphology of stressed microbial cells at the nanoscale. The results also provided novel information on the relative oxidative stress tolerance of S. cerevisiae and Schiz. pombe.
Amsler, K
1990-07-01
The role of cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA) in modulating functions of differentiated renal cells is well established. Its importance in controlling their growth and differentiation is less clear. We have used somatic cell genetic techniques to probe the role of PKA in controlling morphology and behavior of a renal epithelial cell line, LLC-PK1, which acquires many properties characteristic of the renal proximal tubular cell. Mutants of this line altered in PKA activity have been isolated and their behavior compared to that of the parent line. The results indicate that PKA is involved, either directly or indirectly, in maintenance of cell morphology, cell-cell and cell-substratum interactions, density-dependent growth regulation, and expression of one function characteristic of the renal proximal tubular cell, Na-hexose symport. The relevance of these results to the role of PKA in controlling growth and differentiation of renal epithelial cells in vivo is discussed.
NASA Technical Reports Server (NTRS)
Baird, Richard A.
1994-01-01
Hair cells in the bullfrog sacculus are specifically adapted to sense small-amplitude, high-frequency linear accelerations. These hair cells display many properties that are undesirable or inappropriate for hair cells that must provide static gravity sensitivity. This study resulted in part due to an interest in seeing how the transduction mechanisms of hair cells in a gravity-sensing otolith endorgan would differ from those in the bullfrog sacculus. The bullfrog utriculus is an appropriate model for these studies, because its structure is representative of higher vertebrates in general and its function as a sensor of static gravity and dynamic linear acceleration is well known. Hair cells in the bullfrog utriculus, classifiable as Type 2 by cell body and synapse morphology, differ markedly in hair bundle morphology from those in the bullfrog sacculus. Moreover, the hair bundle morphologies of utricular hair cells, unlike those in the sacculus, differ in different membrane regions.
How cells explore shape space: a quantitative statistical perspective of cellular morphogenesis.
Yin, Zheng; Sailem, Heba; Sero, Julia; Ardy, Rico; Wong, Stephen T C; Bakal, Chris
2014-12-01
Through statistical analysis of datasets describing single cell shape following systematic gene depletion, we have found that the morphological landscapes explored by cells are composed of a small number of attractor states. We propose that the topology of these landscapes is in large part determined by cell-intrinsic factors, such as biophysical constraints on cytoskeletal organization, and reflects different stable signaling and/or transcriptional states. Cell-extrinsic factors act to determine how cells explore these landscapes, and the topology of the landscapes themselves. Informational stimuli primarily drive transitions between stable states by engaging signaling networks, while mechanical stimuli tune, or even radically alter, the topology of these landscapes. As environments fluctuate, the topology of morphological landscapes explored by cells dynamically adapts to these fluctuations. Finally we hypothesize how complex cellular and tissue morphologies can be generated from a limited number of simple cell shapes. © 2014 WILEY Periodicals, Inc.
Fafin-Lefevre, Mélanie; Morlais, Fabrice; Guittet, Lydia; Clin, Bénédicte; Launoy, Guy; Galateau-Sallé, Françoise; Plancoulaine, Benoît; Herlin, Paulette; Letourneux, Marc
2011-08-01
To identify which morphologic or densitometric parameters are modified in cell nuclei from bronchopulmonary cancer based on 18 parameters involving shape, intensity, chromatin, texture, and DNA content and develop a bronchopulmonary cancer screening method relying on analysis of sputum sample cell nuclei. A total of 25 sputum samples from controls and 22 bronchial aspiration samples from patients presenting with bronchopulmonary cancer who were professionally exposed to cancer were used. After Feulgen staining, 18 morphologic and DNA content parameters were measured on cell nuclei, via image cytom- etry. A method was developed for analyzing distribution quantiles, compared with simply interpreting mean values, to characterize morphologic modifications in cell nuclei. Distribution analysis of parameters enabled us to distinguish 13 of 18 parameters that demonstrated significant differences between controls and cancer cases. These parameters, used alone, enabled us to distinguish two population types, with both sensitivity and specificity > 70%. Three parameters offered 100% sensitivity and specificity. When mean values offered high sensitivity and specificity, comparable or higher sensitivity and specificity values were observed for at least one of the corresponding quantiles. Analysis of modification in morphologic parameters via distribution analysis proved promising for screening bronchopulmonary cancer from sputum.
Reis, Yara; Wolf, Thomas; Brors, Benedikt; Hamacher-Brady, Anne; Eils, Roland; Brady, Nathan R.
2012-01-01
Mitochondria exist as a network of interconnected organelles undergoing constant fission and fusion. Current approaches to study mitochondrial morphology are limited by low data sampling coupled with manual identification and classification of complex morphological phenotypes. Here we propose an integrated mechanistic and data-driven modeling approach to analyze heterogeneous, quantified datasets and infer relations between mitochondrial morphology and apoptotic events. We initially performed high-content, multi-parametric measurements of mitochondrial morphological, apoptotic, and energetic states by high-resolution imaging of human breast carcinoma MCF-7 cells. Subsequently, decision tree-based analysis was used to automatically classify networked, fragmented, and swollen mitochondrial subpopulations, at the single-cell level and within cell populations. Our results revealed subtle but significant differences in morphology class distributions in response to various apoptotic stimuli. Furthermore, key mitochondrial functional parameters including mitochondrial membrane potential and Bax activation, were measured under matched conditions. Data-driven fuzzy logic modeling was used to explore the non-linear relationships between mitochondrial morphology and apoptotic signaling, combining morphological and functional data as a single model. Modeling results are in accordance with previous studies, where Bax regulates mitochondrial fragmentation, and mitochondrial morphology influences mitochondrial membrane potential. In summary, we established and validated a platform for mitochondrial morphological and functional analysis that can be readily extended with additional datasets. We further discuss the benefits of a flexible systematic approach for elucidating specific and general relationships between mitochondrial morphology and apoptosis. PMID:22272225
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka
2013-03-01
We succeeded in utilizing our low-coherent quantitative phase microscopy (LC-QPM) to achieve label-free and three-dimensional imaging of string-like structures bridging the free-space between live cells. In past studies, three dimensional morphology of the string-like structures between cells had been investigated by electron microscopies and fluorescence microscopies and these structures were called "membrane nanotubes" or "tunneling nanotubes." However, use of electron microscopy inevitably kills these cells and fluorescence microscopy is itself a potentially invasive method. To achieve noninvasive imaging of live cells, we applied our LC-QPM which is a reflection-type, phase resolved and full-field interference microscope employing a low-coherent light source. LC-QPM is able to visualize the three-dimensional morphology of live cells without labeling by means of low-coherence interferometry. The lateral (diffraction limit) and longitudinal (coherence-length) spatial resolution of LC-QPM were respectively 0.49 and 0.93 micrometers and the repeatability of the phase measurement was 0.02 radians (1.0 nm). We successfully obtained three-dimensional morphology of live cultured epithelial cells (cell type: HeLa, derived from cervix cancer) and were able to clearly observe the individual string-like structures interconnecting the cells. When we performed volumetric imaging, a 80 micrometer by 60 micrometer by 6.5 micrometer volume was scanned every 5.67 seconds and 70 frames of a three-dimensional movie were recorded for a duration of 397 seconds. Moreover, the optical phase images gave us detailed information about the three-dimensional morphology of the string-like structure at sub-wavelength resolution. We believe that our LC-QPM will be a useful tool for the study of three-dimensional morphology of live cells.
Moussy, Alice; Cosette, Jérémie; Parmentier, Romuald; da Silva, Cindy; Corre, Guillaume; Richard, Angélique; Gandrillon, Olivier; Stockholm, Daniel
2017-01-01
Individual cells take lineage commitment decisions in a way that is not necessarily uniform. We address this issue by characterising transcriptional changes in cord blood-derived CD34+ cells at the single-cell level and integrating data with cell division history and morphological changes determined by time-lapse microscopy. We show that major transcriptional changes leading to a multilineage-primed gene expression state occur very rapidly during the first cell cycle. One of the 2 stable lineage-primed patterns emerges gradually in each cell with variable timing. Some cells reach a stable morphology and molecular phenotype by the end of the first cell cycle and transmit it clonally. Others fluctuate between the 2 phenotypes over several cell cycles. Our analysis highlights the dynamic nature and variable timing of cell fate commitment in hematopoietic cells, links the gene expression pattern to cell morphology, and identifies a new category of cells with fluctuating phenotypic characteristics, demonstrating the complexity of the fate decision process (which is different from a simple binary switch between 2 options, as it is usually envisioned). PMID:28749943
Morphologic observation and classification criteria of atretic follicles in guinea pigs.
Wang, Wei; Liu, Hong-Lin; Tian, Wei; Zhang, Fen-Fen; Gong, Yan; Chen, Jin-Wei; Mao, Da-Gan; Shi, Fang-Xiong
2010-05-01
There is a lack of appropriate classification criteria for the determination of atretic follicles in guinea pigs. In the present study, new criteria were established based on the latest morphologic criteria for cell death proposed by the Nomenclature Committee on Cell Death (NCCD) in 2009. Ovaries of guinea pigs were sampled on different stages of estrous cycle, and the morphologic observations of atretic follicles were investigated in serial sections. The results showed that the process of follicular atresia could be classified into four continuous stages: (1) the granulosa layer became loose, and some apoptotic bodies began to appear; (2) the granulosa cells were massively eliminated; (3) the theca interna cells differentiated; and (4) the residual follicular cells degenerated. In addition, the examination revealed that these morphologic criteria were accurate and feasible. In conclusion, this study provides new criteria for the classification of atretic follicles in guinea pigs, and this knowledge can inform future research in the area.
Volume regulation and shape bifurcation in the cell nucleus
Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M.; Wirtz, Denis; Sun, Sean X.
2015-01-01
ABSTRACT Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation. PMID:26243474
Volume regulation and shape bifurcation in the cell nucleus.
Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M; Wirtz, Denis; Sun, Sean X
2015-09-15
Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation. © 2015. Published by The Company of Biologists Ltd.
The ROCK isoforms differentially regulate the morphological characteristics of carcinoma cells.
Jerrell, Rachel J; Leih, Mitchell J; Parekh, Aron
2017-06-26
Rho-associated kinase (ROCK) activity drives cell migration via actomyosin contractility. During invasion, individual cancer cells can transition between 2 modes of migration, mesenchymal and amoeboid. Changes in ROCK activity can cause a switch between these migration phenotypes which are defined by distinct morphologies. However, recent studies have shown that the ROCK isoforms are not functionally redundant as previously thought. Therefore, it is unclear whether the ROCK isoforms play different roles in regulating migration phenotypes. Here, we found that ROCK1 and ROCK2 differentially regulate carcinoma cell morphology resulting in intermediate phenotypes that share some mesenchymal and amoeboid characteristics. These findings suggest that the ROCK isoforms play unique roles in the phenotypic plasticity of mesenchymal carcinoma cells which may have therapeutic implications.
[Clinically documented fungal infections].
Kakeya, Hiroshi; Kohno, Shigeru
2008-12-01
Proven fungal infections are diagnosed by histological/microbiological evidence of fungi at the site of infection and positive blood culture (fungemia). However, invasive diagnosing examinations are not always applied for all of immunocompromised patients. Clinically documented invasive fungal infections are diagnosed by typical radiological findings such as halo sign on chest CT plus positive serological/molecular evidence of fungi. Serological tests of Aspergillus galactomannan antigen and beta-glucan for aspergillosis and cryptococcal glucuronoxylomannan antigen for cryptococcosis are useful. Hence, none of reliable serological tests for zygomycosis are available so far. In this article, risk factors, sign and symptoms, and diagnostic methods for clinically documented cases of invasive aspergillosis, pulmonary cryptococcosis, and zygomycosis with diabates, are reviewed.
Biagetti, Carlo; Nicola, Monica; Borderi, Marco; Pavoni, Michele; Tampellini, Livia; Verucchi, Gabriella; Chiodo, Francesco
2009-04-01
Immune reconstitution inflammatory syndrome (IRIS) in HIV-1-infected patients is associated with an exaggerated inflammatory response against an opportunistic infection during highly active antiretroviral therapy. The only review on IRIS associated with Criptococcus neoformans reported 21 episodes including lymphadenitis, necrotizing pneumonitis, breast and cutaneous abscess, and cryptococcomas. To our knowledge this is the first report of IRIS associated with previous meningeal criptococcal infection which required neurosurgical intervention with placement of a ventriculo-peritoneal shunt to drain a CSF cyst formed by exclusion of the temporal horn of the right lateral ventricle. We demonstrate that this procedure is possible without complications such as cryptococcal dissemination into the peritoneum.
The burden of serious fungal diseases in Russia.
Klimko, N; Kozlova, Y; Khostelidi, S; Shadrivova, O; Borzova, Y; Burygina, E; Vasilieva, N; Denning, D W
2015-10-01
The incidence and prevalence of fungal infections in Russia is unknown. We estimated the burden of fungal infections in Russia according to the methodology of the LIFE program (www.LIFE-worldwide.org). The total number of patients with serious and chronic mycoses in Russia in 2011 was three million. Most of these patients (2,607,494) had superficial fungal infections (recurrent vulvovaginal candidiasis, oral and oesophageal candidiasis with HIV infection and tinea capitis). Invasive and chronic fungal infections (invasive candidiasis, invasive and chronic aspergillosis, cryptococcal meningitis, mucormycosis and Pneumocystis pneumonia) affected 69,331 patients. The total number of adults with allergic bronchopulmonary aspergillosis and severe asthma with fungal sensitisation was 406,082. © 2015 Blackwell Verlag GmbH.
NanoTopoChip: High-throughput nanotopographical cell instruction.
Hulshof, Frits F B; Zhao, Yiping; Vasilevich, Aliaksei; Beijer, Nick R M; de Boer, Meint; Papenburg, Bernke J; van Blitterswijk, Clemens; Stamatialis, Dimitrios; de Boer, Jan
2017-10-15
Surface topography is able to influence cell phenotype in numerous ways and offers opportunities to manipulate cells and tissues. In this work, we develop the Nano-TopoChip and study the cell instructive effects of nanoscale topographies. A combination of deep UV projection lithography and conventional lithography was used to fabricate a library of more than 1200 different defined nanotopographies. To illustrate the cell instructive effects of nanotopography, actin-RFP labeled U2OS osteosarcoma cells were cultured and imaged on the Nano-TopoChip. Automated image analysis shows that of many cell morphological parameters, cell spreading, cell orientation and actin morphology are mostly affected by the nanotopographies. Additionally, by using modeling, the changes of cell morphological parameters could by predicted by several feature shape parameters such as lateral size and spacing. This work overcomes the technological challenges of fabricating high quality defined nanoscale features on unprecedented large surface areas of a material relevant for tissue culture such as PS and the screening system is able to infer nanotopography - cell morphological parameter relationships. Our screening platform provides opportunities to identify and study the effect of nanotopography with beneficial properties for the culture of various cell types. The nanotopography of biomaterial surfaces can be modified to influence adhering cells with the aim to improve the performance of medical implants and tissue culture substrates. However, the necessary knowledge of the underlying mechanisms remains incomplete. One reason for this is the limited availability of high-resolution nanotopographies on relevant biomaterials, suitable to conduct systematic biological studies. The present study shows the fabrication of a library of nano-sized surface topographies with high fidelity. The potential of this library, called the 'NanoTopoChip' is shown in a proof of principle HTS study which demonstrates how cells are affected by nanotopographies. The large dataset, acquired by quantitative high-content imaging, allowed us to use predictive modeling to describe how feature dimensions affect cell morphology. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Cell type dependent morphological adaptation in polyelectrolyte hydrogels governs chondrogenic fate.
Raghothaman, Deepak; Leong, Meng Fatt; Lim, Tze Chiun; Wan, Andrew C A; Ser, Zheng; Lee, Eng Hin; Yang, Zheng
2016-04-04
Repair of critical-size articular cartilage defects typically involves delivery of cells in biodegradable, 3D matrices. Differences in the developmental status of mesenchymal stem cells (MSCs) and terminally differentiated mature chondrocytes might be a critical factor in engineering appropriate 3D matrices for articular cartilage tissue engineering. This study examined the relationship between material-driven early cell morphological adaptations and chondrogenic outcomes, by studying the influence of aligned collagen type I (Col I) presentation on chondrocytes and MSC in interfacial polyelectrolyte complexation (IPC)-based hydrogels. In the absence of Col I, both chondrocytes and MSCs adopted rounded cell morphology and formed clusters, with chondrocyte clusters favoring the maintenance of hyaline phenotype, while MSC clusters differentiated to fibro-superficial zone-like chondrocytes. Encapsulated chondrocytes in IPC-Col I hydrogel adopted a fibroblastic morphology forming fibro-superficial zone-like phenotype, which could be reversed by inhibiting actin polymerization using cytochalasin D (CytD). In contrast, adoption of fibroblastic morphology by encapsulated MSCs in IPC-Col I facilitated superior chondrogenesis, generating a mature, hyaline neocartilage tissue. CytD treatment abrogated the elongation of MSCs and brought about a single cell-like state, resulting in insignificant chondrogenic differentiation, underscoring the essential requirement of providing matrix environments that are amenable to cell-cell interactions for robust MSC chondrogenic differentiation. Our study demonstrates that MSCs and culture-expanded chondrocytes favour differential microenvironmental niches and emphasizes the importance of designing biomaterials that meet cell type-specific requirements, in adopting chondrocyte or MSC-based approaches for regenerating hyaline, articular cartilage.
Fe-tannic acid complex dye as photo sensitizer for different morphological ZnO based DSSCs
NASA Astrophysics Data System (ADS)
Çakar, Soner; Özacar, Mahmut
2016-06-01
In this paper we have synthesized different morphological ZnO nanostructures via microwave hydrothermal methods at low temperature within a short time. We described different morphologies of ZnO at different Zn(NO3)2/KOH mole ratio. The ZnO nanostructures were characterized via X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and UV-vis spectrophotometry. All ZnO structures have hexagonal wurtzite type structures. The FESEM images showed various morphologies of ZnO such as plate, rod and nanoparticles. Dye sensitized solar cells have been assembled by these different morphological structures photo electrode and tannic acid or Fe-tannic acid complex dye as sensitizer. We have achieved at maximum efficiencies of photovoltaic cells prepared with ZnO plate in all dye systems. The conversion efficiencies of dye sensitized solar cells are 0.37% and 1.00% with tannic acid and Fe-tannic acid complex dye, respectively.
El Assal, Rami; Guven, Sinan; Gurkan, Umut Atakan; Gozen, Irep; Shafiee, Hadi; Dalbeyler, Sedef; Abdalla, Noor; Thomas, Gawain; Fuld, Wendy; Illigens, Ben M W; Estanislau, Jessica; Khoory, Joseph; Kaufman, Richard; Zylberberg, Claudia; Lindeman, Neal; Wen, Qi; Ghiran, Ionita; Demirci, Utkan
2014-09-03
Current red-blood-cell cryopreservation methods utilize bulk volumes, causing cryo-injury of cells, which results in irreversible disruption of cell morphology, mechanics, and function. An innovative approach to preserve human red-blood-cell morphology, mechanics, and function following vitrification in nanoliter volumes is developed using a novel cryo-ink integrated with a bioprinting approach. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xinping Li; Xiaolin Luo; Kecheng Li; J.Y. Zhu; J. Dennis Fougere; Kimberley Clarke
2012-01-01
The effects of pretreatment by dilute acid and sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) on substrate morphology, cell wall physical and chemical structures, along with the subsequent enzymatic hydrolysis of lodgepole pine substrate were investigated. FE-SEM and TEM images of substrate structural morphological changes showed that SPORL...
Rhyu, Kee Hyung; Cho, Chang Hoon; Yoon, Kyung Sik; Chun, Young Soo
2016-12-01
To evaluate cellular activity in milled versus unmilled surface of the femoral head in 21 patients who underwent robot-assisted total hip arthroplasty(THA). The femoral head of 21 consecutive patients who underwent robot-assisted THA for osteonecrosis was used. 10 cc of trabecular bone from the entire milled surface was obtained using a curette. The same amount of trabecular bone was obtained at least 1 cm away from the milled surface and served as a matched control. Cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity in milled versus unmilled surface were assessed. Cell morphology of the milled or unmilled surface was comparable; cells were smaller in the milled surface. Cell viability was a mean of 40% higher in the milled surface (107.4% vs. 67.2%, p<0.001); cell viability at 5 time points was comparable in each group. Osteocalcin activity of cells was slightly higher in the milled surface (1.43 vs. 1.24 ng/ml, p=0.69). Alkaline phosphatase activity of cells was slightly higher in the unmilled surface (150 105 vs. 141 789 U/L, p=0.078). The milled and unmilled surfaces of the femoral head were comparable in terms of cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity.
Chang, Il-Chi; Wei, Yuan-Yaw; Chou, Fong-In; Hwang, Pung-Pung
2003-01-01
The purpose of the present article is to examine the relationships between ion uptakes and morphologies of gill mitochondria-rich (MR) cells in freshwater tilapia. Tilapia were acclimated to three different artificial freshwaters (high Na [10 mM], high Cl [7.5 mM]; high Na, low Cl [0.02-0.07 mM], and low Na [0.5 mM], low Cl) for 1 wk, and then morphological measurements of gill MR cells were made and ion influxes were determined. The number and the apical size of wavy-convex MR cells positively associated with the level of Cl(-) influx. Conversely, Na(+) influx showed no positive correlation with the morphologies of MR cells. The dominant MR cell type in tilapia gills changed from deep-hole to wavy-convex within 6 h after acute transfer from a high-Cl(-) to a low-Cl(-) environment. Deep-hole MR cells became dominant 24-96 h after acute transfer from a low-Cl(-) to a high-Cl(-) environment. We conclude that wavy-convex MR cells associate with Cl(-) uptake but not Na(+) uptake, and the rapid formation of wavy-convex MR cells reflects the timely stimulation of Cl(-) uptake to recover the homeostasis of internal Cl(-) levels on acute challenge with low environmental Cl(-).
NASA Technical Reports Server (NTRS)
Tewari, S. N.; Raj, S. V.; Locci, I. E.
2003-01-01
Directionally solidified (DS) intermetallic and ceramic-based eutectic alloys with an in-situ composite microstructure containing finely distributed, long aspect ratio, fiber, or plate reinforcements are being seriously examined for several advanced aero-propulsion applications. In designing these alloys, additional solutes need to be added to the base eutectic composition in order to improve heir high-temperature strength, and provide for adequate toughness and resistance to environmental degradation. Solute addition, however, promotes instability at the planar liquid-solid interface resulting in the formation of two-phase eutectic "colonies." Because morphology of eutectic colonies is very similar to the single-phase cells and dendrites, the stability analysis of Mullins and Sekerka has been extended to describe their formation. Onset of their formation shows a good agreement with this approach; however, unlike the single-phase cells and dendrites, there is limited examination of their growth speed dependence of spacing, morphology, and spatial distribution. The purpose of this study is to compare the growth speed dependence of the morphology, spacing, and spatial distribution of eutectic cells and dendrites with that for the single-phase cells and dendrites.
Morphological and ultrastructural changes in tobacco BY-2 cells exposed to microcystin-RR.
Huang, Wenmin; Xing, Wei; Li, Dunhai; Liu, Yongding
2009-08-01
Tobacco BY-2 cells were exposed to microcystin-RR (MC-RR) at two concentrations, 60 microg mL(-1) and 120 microg mL(-1), to study the changes in morphology and ultrastructure of cells as a result of the exposure. Exposure to the lower concentration for 5 d led to typical apoptotic morphological changes including condensation of nuclear chromatin, creation of a characteristic 'half moon' structure, and cytoplasm shrinkage and decreased cell volume, as revealed through light microscopy, fluorescence microscopy, and transmission electron microscopy, respectively. Exposure to the higher concentration, on the other hand, led to morphological and ultrastructural changes typical of necrosis, such as rupture of the plasma membrane and the nuclear membrane and a marked swelling of cells. The presence of many vacuoles containing unusual deposits points to the involvement of vacuoles in detoxifying MC-RR. Results of the present study indicate that exposure of tobacco BY-2 cells to MC-RR at a lower concentration (60 microg mL(-1)) results in apoptosis and that to a higher concentration (120 microg mL(-1)), in necrosis.
Gutsch, Romina; Kandemir, Judith D; Pietsch, Daniel; Cappello, Christian; Meyer, Johann; Simanowski, Kathrin; Huber, René; Brand, Korbinian
2011-07-01
Monocytic differentiation is orchestrated by complex networks that are not fully understood. This study further elucidates the involvement of transcription factor CCAAT/enhancer-binding protein β (C/EBPβ). Initially, we demonstrated a marked increase in nuclear C/EBPβ-liver-enriched activating protein* (LAP*)/liver-enriched activating protein (LAP) levels and LAP/liver-enriched inhibiting protein (LIP) ratios in phorbol 12-myristate 13-acetate (PMA)-treated differentiating THP-1 premonocytic cells accompanied by reduced proliferation. To directly study C/EBPβ effects on monocytic cells, we generated novel THP-1-derived (low endogenous C/EBPβ) cell lines stably overexpressing C/EBPβ isoforms. Most importantly, cells predominantly overexpressing LAP* (C/EBPβ-long), but not those overexpressing LIP (C/EBPβ-short), exhibited a reduced proliferation, with no effect on morphology. PMA-induced inhibition of proliferation was attenuated in C/EBPβ-short cells. In C/EBPβ(WT) macrophage-like cells (high endogenous C/EBPβ), we measured a reduced proliferation/cycling index compared with C/EBPβ(KO). The typical macrophage morphology was only observed in C/EBPβ(WT), whereas C/EBPβ(KO) stayed round. C/EBPα did not compensate for C/EBPβ effects on proliferation/morphology. Serum reduction, an independent approach known to inhibit proliferation, induced macrophage morphology in C/EBPβ(KO) macrophage-like cells but not THP-1. In PMA-treated THP-1 and C/EBPβ-long cells, a reduced phosphorylation of cell cycle repressor retinoblastoma was found. In addition, C/EBPβ-long cells showed reduced c-Myc expression accompanied by increased CDK inhibitor p27 and reduced cyclin D1 levels. Finally, C/EBPβ-long and C/EBPβ(WT) cells exhibited low E2F1 and cyclin E levels, and C/EBPβ overexpression was found to inhibit cyclin E1 promoter-dependent transcription. Our results suggest that C/EBPβ reduces monocytic proliferation by affecting the retinoblastoma/E2F/cyclin E pathway and that it may contribute to, but is not directly required for, macrophage morphology. Inhibition of proliferation by C/EBPβ may be important for coordinated monocytic differentiation.
Label-Free Imaging and Biochemical Characterization of Bovine Sperm Cells
Ferrara, Maria Antonietta; Di Caprio, Giuseppe; Managò, Stefano; De Angelis, Annalisa; Sirleto, Luigi; Coppola, Giuseppe; De Luca, Anna Chiara
2015-01-01
A full label-free morphological and biochemical characterization is desirable to select spermatozoa during preparation for artificial insemination. In order to study these fundamental parameters, we take advantage of two attractive techniques: digital holography (DH) and Raman spectroscopy (RS). DH presents new opportunities for studying morphological aspect of cells and tissues non-invasively, quantitatively and without the need for staining or tagging, while RS is a very specific technique allowing the biochemical analysis of cellular components with a spatial resolution in the sub-micrometer range. In this paper, morphological and biochemical bovine sperm cell alterations were studied using these techniques. In addition, a complementary DH and RS study was performed to identify X- and Y-chromosome-bearing sperm cells. We demonstrate that the two techniques together are a powerful and highly efficient tool elucidating some important criterions for sperm morphological selection and sex-identification, overcoming many of the limitations associated with existing protocols. PMID:25836358
Curry, P T; Ziemer, T; Van der Horst, G; Burgess, W; Straley, M; Atherton, R W; Kitchin, R M
1989-01-01
Ejaculated sperm from the domestic ferret (Mustela putorius furo) and the black-footed ferret (Mustela nigripes) were compared for differences in morphological abnormalities and argentophilic protein distribution. Thawed domestic ferret sperm was also compared to fresh sperm to determine whether there were any effects on cell morphology due to cryopreservation. There were statistically significant differences between the two species of ferret in two of the categories scored. The domestic ferret had a higher frequency of cells that were bent in the midpiece and in the principal piece, and a higher frequency of headless and tailless cells when compared to the black-footed ferret. There were no statistically significant differences in cell morphology between the fresh and cryopreserved ejaculates of the domestic ferret employing a standard egg yolk cryoextender. Silver nitrate staining distribution was different between the two species in both the head and tail region.
NASA Astrophysics Data System (ADS)
Vongsaysy, Uyxing; Bassani, Dario M.; Servant, Laurent; Pavageau, Bertrand; Wantz, Guillaume; Aziz, Hany
2014-01-01
Polymeric bulk heterojunction (BHJ) organic solar cells represent one of the most promising technologies for renewable energy with a low fabrication cost. Control over BHJ morphology is one of the key factors in obtaining high-efficiency devices. This review focuses on formulation strategies for optimizing the BHJ morphology. We address how solvent choice and the introduction of processing additives affect the morphology. We also review a number of recent studies concerning prediction methods that utilize the Hansen solubility parameters to develop efficient solvent systems.
Reichenbach, A; Dettmer, D; Brückner, G; Neumann, M; Birkenmeyer, G
1985-03-22
Rabbit retinal Müller cells were isolated by means of papaine and mechanical dissociation. These cells were shown to have a well preserved morphology and to preserve viability for many hours. Intense wheat germ agglutinin binding occurs on the photoreceptor side of Müller cells, especially in the microvillous region. Rabbit retinal Müller cells have a Na+,K+-activated adenosine triphosphatase activity in the same order of magnitude as brain astroglial cells.
Bor, Batbileg; Poweleit, Nicole; Bois, Justin S; Cen, Lujia; Bedree, Joseph K; Zhou, Z Hong; Gunsalus, Robert P; Lux, Renate; McLean, Jeffrey S; He, Xuesong; Shi, Wenyuan
2016-01-01
Despite many examples of obligate epibiotic symbiosis (one organism living on the surface of another) in nature, such an interaction has rarely been observed between two bacteria. Here, we further characterize a newly reported interaction between a human oral obligate parasitic bacterium TM7x (cultivated member of Candidatus Saccharimonas formerly Candidate Phylum TM7), and its basibiont Actinomyces odontolyticus species (XH001), providing a model system to study epiparasitic symbiosis in the domain Bacteria. Detailed microscopic studies indicate that both partners display extensive morphological changes during symbiotic growth. XH001 cells manifested as short rods in monoculture, but displayed elongated and hyphal morphology when physically associated with TM7x. Interestingly, these dramatic morphological changes in XH001 were also induced in oxygen-depleted conditions, even in the absence of TM7x. Targeted quantitative real-time PCR (qRT-PCR) analyses revealed that both the physical association with TM7x as well as oxygen depletion triggered up-regulation of key stress response genes in XH001, and in combination, these conditions act in an additive manner. TM7x and XH001 co-exist with relatively uniform cell morphologies under nutrient-replete conditions. However, upon nutrient depletion, TM7x-associated XH001 displayed a variety of cell morphologies, including swollen cell body, clubbed-ends, and even cell lysis, and a large portion of TM7x cells transformed from ultrasmall cocci into elongated cells. Our study demonstrates a highly dynamic interaction between epibiont TM7x and its basibiont XH001 in response to physical association or environmental cues such as oxygen level and nutritional status, as reflected by their morphological and physiological changes during symbiotic growth.
NASA Astrophysics Data System (ADS)
Shi, Wenzhong; Deng, Susu; Xu, Wenbing
2018-02-01
For automatic landslide detection, landslide morphological features should be quantitatively expressed and extracted. High-resolution Digital Elevation Models (DEMs) derived from airborne Light Detection and Ranging (LiDAR) data allow fine-scale morphological features to be extracted, but noise in DEMs influences morphological feature extraction, and the multi-scale nature of landslide features should be considered. This paper proposes a method to extract landslide morphological features characterized by homogeneous spatial patterns. Both profile and tangential curvature are utilized to quantify land surface morphology, and a local Gi* statistic is calculated for each cell to identify significant patterns of clustering of similar morphometric values. The method was tested on both synthetic surfaces simulating natural terrain and airborne LiDAR data acquired over an area dominated by shallow debris slides and flows. The test results of the synthetic data indicate that the concave and convex morphologies of the simulated terrain features at different scales and distinctness could be recognized using the proposed method, even when random noise was added to the synthetic data. In the test area, cells with large local Gi* values were extracted at a specified significance level from the profile and the tangential curvature image generated from the LiDAR-derived 1-m DEM. The morphologies of landslide main scarps, source areas and trails were clearly indicated, and the morphological features were represented by clusters of extracted cells. A comparison with the morphological feature extraction method based on curvature thresholds proved the proposed method's robustness to DEM noise. When verified against a landslide inventory, the morphological features of almost all recent (< 5 years) landslides and approximately 35% of historical (> 10 years) landslides were extracted. This finding indicates that the proposed method can facilitate landslide detection, although the cell clusters extracted from curvature images should be filtered using a filtering strategy based on supplementary information provided by expert knowledge or other data sources.
Murk, Kai; Blanco Suarez, Elena M.; Cockbill, Louisa M. R.; Banks, Paul; Hanley, Jonathan G.
2013-01-01
Summary Astrocytes exhibit a complex, branched morphology, allowing them to functionally interact with numerous blood vessels, neighboring glial processes and neuronal elements, including synapses. They also respond to central nervous system (CNS) injury by a process known as astrogliosis, which involves morphological changes, including cell body hypertrophy and thickening of major processes. Following severe injury, astrocytes exhibit drastically reduced morphological complexity and collectively form a glial scar. The mechanistic details behind these morphological changes are unknown. Here, we investigate the regulation of the actin-nucleating Arp2/3 complex in controlling dynamic changes in astrocyte morphology. In contrast to other cell types, Arp2/3 inhibition drives the rapid expansion of astrocyte cell bodies and major processes. This intervention results in a reduced morphological complexity of astrocytes in both dissociated culture and in brain slices. We show that this expansion requires functional myosin II downstream of ROCK and RhoA. Knockdown of the Arp2/3 subunit Arp3 or the Arp2/3 activator N-WASP by siRNA also results in cell body expansion and reduced morphological complexity, whereas depleting WAVE2 specifically reduces the branching complexity of astrocyte processes. By contrast, knockdown of the Arp2/3 inhibitor PICK1 increases astrocyte branching complexity. Furthermore, astrocyte expansion induced by ischemic conditions is delayed by PICK1 knockdown or N-WASP overexpression. Our findings identify a new morphological outcome for Arp2/3 activation in restricting rather than promoting outwards movement of the plasma membrane in astrocytes. The Arp2/3 regulators PICK1, and N-WASP and WAVE2 function antagonistically to control the complexity of astrocyte branched morphology, and this mechanism underlies the morphological changes seen in astrocytes during their response to pathological insult. PMID:23843614
Bashur, Chris A; Dahlgren, Linda A; Goldstein, Aaron S
2006-11-01
Engineered ligament tissues are promising materials for the repair of tears and ruptures, but require the development of biomaterial scaffolds that not only support physiologically relevant loads, but also possess architectures capable of orienting cell adhesion and extracellular matrix deposition. Based on evidence that micron-scale topographic features induce cell orientation through a contact guidance phenomenon, we postulate that oriented micron-scale fiber meshes-formed by the electrospinning process-can regulate cell morphology. To test this, fused fiber meshes of poly(d,l-lactic-co-glycolic acid) (PLGA) were electrospun onto rigid supports under conditions that produced mean fiber diameters of 0.14-3.6 microm, and angular standard deviations of 31-60 degrees . Analysis of the morphology of adherent NIH 3T3 fibroblasts indicated that projected cell area and aspect ratio increased systematically with both increasing fiber diameter and degree of fiber orientation. Importantly, cell morphology on 3.6 microm fibers was similar to that on spincoated PLGA films. Finally, cell densities on electrospun meshes were not significantly different from spincoated PLGA, indicating that cell proliferation is not sensitive to fiber diameter or orientation.
Temporal morphologic changes in human colorectal carcinomas following xenografting.
Barkla, D. H.; Tutton, P. J.
1983-01-01
The temporal morphologic changes of human colorectal carcinomas following xenografting into immunosuppressed mice were investigated by the use of light and transmission electron microscopy. The results show that colorectal carcinomas undergo a series of morphologic changes during the initial 30-day period following transplantation. During the initial 1-5-day period the majority of tumor cells die, and during the following 5-10-day period the necrotic debris created during the 1-5-day period is removed by host-supplied inflammatory cells. Only small groups of peripherally placed tumor cells survived at the end of the first 10 days. During the 10-20-day period the tumor cell populations of xenografts were reestablished by a morphologically heterogeneous population of tumor cells, and during the 20-30 day period consolidation of this process continued and some xenografts showed macroscopic evidence of growth. The authors hypothesize that human colorectal carcinomas, like the antecedent epithelium, contain subpopulations of undifferentiated cells that give rise to populations of more-differentiated cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 PMID:6829710
Koyama, Shin; Narita, Eijiro; Shimizu, Yoko; Shiina, Takeo; Taki, Masao; Shinohara, Naoki; Miyakoshi, Junji
2016-08-05
To investigate the cellular effects of terahertz (THz) exposure, human corneal epithelial (HCE-T) cells derived from human eye were exposed to 0.12 THz radiation at 5 mW/cm² for 24 h, then the genotoxicity, morphological changes, and heat shock protein (Hsp) expression of the cells were examined. There was no statistically significant increase in the micronucleus (MN) frequency of cells exposed to 0.12 THz radiation compared with sham-exposed controls and incubator controls, whereas the MN frequency of cells treated with bleomycin for 1 h (positive control) did increase significantly. Similarly, there were no significant morphological changes in cells exposed to 0.12 THz radiation compared to sham-exposed controls and incubator controls, and Hsp expression (Hsp27, Hsp70, and Hsp90α) was also not significantly different between the three treatments. These results indicate that exposure to 0.12 THz radiation using the present conditions appears to have no or very little effect on MN formation, morphological changes, and Hsp expression in cells derived from human eye.
The relationship of fibroblast translocations to cell morphology and stress fibre density.
Lewis, L; Verna, J M; Levinstone, D; Sher, S; Marek, L; Bell, E
1982-02-01
Translocation of human fibroblasts in culture was studied using techniques of time-lapse cinemicrography, indirect immunofluorescence, and computer analysis. An inverse relationship between the velocity of cells during the last hour of life and the density of stress fibers seen by immune staining was demonstrated. Translocating cells generally assumed one of two interconvertible morphologies: a triangular tailed shape or tailed fibroblast (TF), and a tailless form that resembled a half-moon, which we call a half-moon fibroblast (HMF). The tail of TFs formed only on regions of substrate that had been previously traversed by cells. The half-moon morphology developed either on previously used or on virgin substrate. Cells adopted the HMF rather than the TF morphology with a four-fold greater frequency. HMFs translocated slightly faster than TFs. The foregoing observation suggest that the fibroblast tail is not an organelle essential for translocation. Since our technique allowed us to distinguish between cells which were cycling and those which had left cycle, we compared their velocities and found them to be similar. Also the average velocities of cells of different population-doubling levels (10th, 30th, 40th) were approximately equal.
Effects of cholera toxin on human colon carcinoma cell lines.
Barkla, D H; Whitehead, R H; Hayward, I P
1992-10-01
This study reports on changes in morphology and membrane transport in 5 human colon carcinoma cell lines treated with cholera toxin (CT). Three of the cell lines that grew as monolayers (LIM 1215, LIM 1899, LIM 2099) and 1 that grew as floating clumps (LIM 2408) did not show morphological changes after CT treatment. However, cell line LIM 1863 that grows as floating "crypt-like" organoids showed rapid and distinctive changes in morphology and membrane transport after CT treatment. At 1 and 6 hrs after CT treatment, light and transmission electron microscopy revealed rapid dilatation of the central lumen of organoids and the appearance of 2 populations of apical vesicular inclusions. The first population was unusual in being non-membrane bound and limited by fuzzy filamentous material. The second population was membrane bound. Scanning electron microscopy at 1-6 hr after CT treatment showed swelling and loss of surface microvilli on some, but not all, cells. At 24 hr after CT treatment the majority of organoids showed evidence of fluid accumulation and small apical vesicles coalesced to form large single vacuoles that obliterated normal cell morphology. By 48 hr, continued swelling produced extreme attenuation of the plasma membrane with cells taking on an "endothelial cell-like" appearance. The response to CT was dose-dependent. Uptake studies using 86Rubidium and blocking studies using ouabain and amiloride indicated that CT is acting on the Na+/K+ ATPase membrane pump to cause the increased fluid uptake by LIM 1863 cells. This study is the first to report specific morphological changes in intestine-derived cells in response to CT.(ABSTRACT TRUNCATED AT 250 WORDS)
Bray, Mark-Anthony; Gustafsdottir, Sigrun M; Rohban, Mohammad H; Singh, Shantanu; Ljosa, Vebjorn; Sokolnicki, Katherine L; Bittker, Joshua A; Bodycombe, Nicole E; Dančík, Vlado; Hasaka, Thomas P; Hon, Cindy S; Kemp, Melissa M; Li, Kejie; Walpita, Deepika; Wawer, Mathias J; Golub, Todd R; Schreiber, Stuart L; Clemons, Paul A; Shamji, Alykhan F
2017-01-01
Abstract Background Large-scale image sets acquired by automated microscopy of perturbed samples enable a detailed comparison of cell states induced by each perturbation, such as a small molecule from a diverse library. Highly multiplexed measurements of cellular morphology can be extracted from each image and subsequently mined for a number of applications. Findings This microscopy dataset includes 919 265 five-channel fields of view, representing 30 616 tested compounds, available at “The Cell Image Library” (CIL) repository. It also includes data files containing morphological features derived from each cell in each image, both at the single-cell level and population-averaged (i.e., per-well) level; the image analysis workflows that generated the morphological features are also provided. Quality-control metrics are provided as metadata, indicating fields of view that are out-of-focus or containing highly fluorescent material or debris. Lastly, chemical annotations are supplied for the compound treatments applied. Conclusions Because computational algorithms and methods for handling single-cell morphological measurements are not yet routine, the dataset serves as a useful resource for the wider scientific community applying morphological (image-based) profiling. The dataset can be mined for many purposes, including small-molecule library enrichment and chemical mechanism-of-action studies, such as target identification. Integration with genetically perturbed datasets could enable identification of small-molecule mimetics of particular disease- or gene-related phenotypes that could be useful as probes or potential starting points for development of future therapeutics. PMID:28327978
Femtosecond laser patterning of biological materials
NASA Astrophysics Data System (ADS)
Grigoropoulos, Costas P.; Jeon, Hojeong; Hidai, Hirofumi; Hwang, David J.
2011-03-01
This paper aims at presenting a review of work at the Laser Thermal Laboratory on the microscopic laser modification of biological materials using ultrafast laser pulses. We have devised a new method for fabricating high aspect ratio patterns of varying height by using two-photon polymerization process in order to study contact guidance and directed growth of biological cells. Studies using NIH-3T3 and MDCK cells indicate that cell morphology on fiber scaffolds is influenced by the pattern of actin microfilament bundles. Cells experienced different strength of contact guidance depending on the ridge height. Cell morphology and motility was investigated on micronscale anisotropic cross patterns and parallel line patterns having different aspect ratios. A significant effect on cell alignment and directionality of migration was observed. Cell morphology and motility were influenced by the aspect ratio of the cross pattern, the grid size, and the ridge height. Cell contractility was examined microscopically in order to measure contractile forces generated by individual cells on self-standing fiber scaffolds.
Dul, Michael J.; McDonald, William C.
1971-01-01
The morphology and thermal resistance of vegetative cells of Bacillus subtilis W168 were examined after growth at 37 and 53 C. Vegetative cells grown at 37 C exhibited a typical trilaminar morphology, whereas cells grown at 53 C exhibited a cell wall which was apparently thicker and more loosely organized and had a poorly defined periphery. A concurrent increase in thermal resistance to a heat shock of 60 C occurs with the change in cell wall morphology. The change to the aberrant cell wall form, or its reversal to the normal form, is always accompanied by the gain or the loss of thermal resistance, respectively. The inhibition of protein synthesis by chloramphenicol has little effect upon the acquisition of thermal resistance at 53 C. Addition of the disaccharide pentapeptide subunit to the cell wall peptidoglycan is apparently essential to growth at 53 C and the acquisition of thermal resistance, since both growth and thermal resistance are inhibited by bacitracin. Two antibiotics, penicillin and cycloserine, which inhibit the final cross-linking of the cell wall peptidoglycan at two separate points, do not affect the acquisition of thermal resistance at 53 C. These same antibiotics induce a high degree of thermal resistance at 37 C. It is proposed that a change in the cell wall structure is related to an increased thermal resistance. Images PMID:4995654
Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli
2015-01-01
The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry. PMID:26295574
Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli
2015-01-01
The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.
Tanigawa, Tohru; Tanaka, Hirokazu; Hayashi, Ken; Nakayama, Meiho; Iwasaki, Satoshi; Banno, Shinya; Takumida, Masaya; Brodie, Hirally; Inafuku, Shigeru
2008-11-01
Our findings indicate that oxidative stress induces morphological changes in vestibular hair cells and subsequently leads to cell death after 2.5 h. The aim of this study was to confirm the direct effects of oxidative stress on vestibular hair cells. Vestibular hair cells isolated from guinea pigs were loaded with 1 or 10 mM H2O2, and morphological changes were observed. In addition, in a viability/cytotoxicity assay system, the numbers of dead cells in isolated cristae ampullares were counted 1, 3, and 5 h after loading with H2O2 or artificial perilymph (control). Reactive oxygen, in the form of H2O2, directly affects the cell membrane of isolated vestibular hair cells and causes swelling of the cell body, bleb formation, and shortening of the neck region. Morphological changes occur within 30 min after loading with H2O2, but a significant increase in the number of dead cells is noted only after 3 h.
Surface-soil and subsurface microfloras at the site of a shallow aquifer in Oklahoma were examined and compared with respect to (1) total and viable cell numbers, (2) colony and cell types that grew on various plating media, (3) cell morphologies seen in flotation films stripped ...
NASA Astrophysics Data System (ADS)
Dong, Lifeng; Witkowski, Colette M.; Craig, Michael M.; Greenwade, Molly M.; Joseph, Katherine L.
2009-12-01
Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT) conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL) for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC) and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood-brain barrier to the brain and the central nervous system.
Wagner, David G; Russell, Donna K; Benson, Jenna M; Schneider, Ashley E; Hoda, Rana S; Bonfiglio, Thomas A
2011-10-01
Traditional cell block (TCB) sections serve as an important diagnostic adjunct to cytologic smears but are also used today as a reliable preparation for immunohistochemical (IHC) studies. There are many ways to prepare a cell block and the methods continue to be revised. In this study, we compare the TCB with the Cellient™ automated cell block system. Thirty-five cell blocks were obtained from 16 benign and 19 malignant nongynecologic cytology specimens at a large university teaching hospital and prepared according to TCB and Cellient protocols. Cell block sections from both methods were compared for possible differences in various morphologic features and immunohistochemical staining patterns. In the 16 benign cases, no significant morphologic differences were found between the TCB and Cellient cell block sections. For the 19 malignant cases, some noticeable differences in the nuclear chromatin and cellularity were identified, although statistical significance was not attained. Immunohistochemical or special stains were performed on 89% of the malignant cases (17/19). Inadequate cellularity precluded full evaluation in 23% of Cellient cell block IHC preparations (4/17). Of the malignant cases with adequate cellularity (13/17), the immunohistochemical staining patterns from the different methods were identical in 53% of cases. The traditional and Cellient cell block sections showed similar morphologic and immunohistochemical staining patterns. The only significant difference between the two methods concerned the lower overall cell block cellularity identified during immunohistochemical staining in the Cellient cell block sections. Copyright © 2010 Wiley-Liss, Inc.
Hagiwara-Chatani, Natsumi; Shirai, Kota; Kido, Takumi; Horigome, Tomoatsu; Yasue, Akihiro; Adachi, Naoki; Hirai, Yohei
2017-01-01
Embryonic stem (ES) and induced pluripotent stem (iPS) cells are attractive tools for regenerative medicine therapies. However, aberrant cell populations that display flattened morphology and lose ground-state pluripotency often appear spontaneously, unless glycogen synthase kinase 3β (GSK3β) and mitogen-activated protein kinase kinase (MEK1/2) are inactivated. Here, we show that membrane translocation of the t-SNARE protein syntaxin-4 possibly is involved in this phenomenon. We found that mouse ES cells cultured without GSK3β/MEK1/2 inhibitors (2i) spontaneously extrude syntaxin-4 at the cell surface and that artificial expression of cell surface syntaxin-4 induces appreciable morphological changes and mesodermal differentiation through dephosphorylation of Akt. Transcriptome analyses revealed several candidate elements responsible for this, specifically, an E-to P-cadherin switch and a marked downregulation of Zscan4 proteins, which are DNA-binding proteins essential for ES cell pluripotency. Embryonic carcinoma cell lines F9 and P19CL6, which maintain undifferentiated states independently of Zscan4 proteins, exhibited similar cellular behaviors upon stimulation with cell surface syntaxin-4. The functional ablation of E-cadherin and overexpression of P-cadherin reproduced syntaxin-4-induced cell morphology, demonstrating that the E- to P-cadherin switch executes morphological signals from cell surface syntaxin-4. Thus, spontaneous membrane translocation of syntaxin-4 emerged as a critical element for maintenance of the stem-cell niche. PMID:28057922
NASA Astrophysics Data System (ADS)
Yu, Man; Wang, Yi; Wang, Hao-Yi; Han, Jun; Qin, Yujun; Zhang, Jian-Ping; Ai, Xi-Cheng
2016-10-01
The photovoltaic performance of planar perovskite solar cell is significantly influenced by the morphology of perovskite film. In this work, five kinds of devices with different perovskite film morphologies were prepared by varying the concentration of CH3NH3Cl in precursor solutions. We found that best morphology of perovskite film results in the excellent photovoltaic performance with an average efficiency of 15.52% and a champion efficiency of 16.38%. Transient photovoltage and photocurrent measurements are performed to elucidate the mechanism of photoelectric conversion processes, which shows that the charge recombination is effectively suppressed and the charge transport is obviously promoted by optimized morphology.
Pushchin, Igor I; Karetin, Yuriy A
2009-10-20
The topography and morphology of retinal ganglion cells (RGCs) in the eastern newt were studied. Cells were retrogradely labeled with tetramethylrhodamine-conjugated dextran amines or horseradish peroxidase and examined in retinal wholemounts. Their total number was 18,025 +/- 3,602 (mean +/- SEM). The spatial density of RGCs varied from 2,100 cells/mm(2) in the retinal periphery to 4,500 cells/mm(2) in the dorsotemporal retina. No prominent retinal specializations were found. The spatial resolution estimated from the spatial density of RGCs varied from 1.4 cycles per degree in the periphery to 1.95 cycles per degree in the region of the peak RGC density. A sample of 68 cells was camera lucida drawn and subjected to quantitative analysis. A total of 21 parameters related to RGC morphology and stratification in the retina were estimated. Partitionings obtained by using different clustering algorithms combined with automatic variable weighting and dimensionality reduction techniques were compared, and an effective solution was found by using silhouette analysis. A total of seven clusters were identified and associated with potential cell types. Kruskal-Wallis ANOVA-on-Ranks with post hoc Mann-Whitney U tests showed significant pairwise between-cluster differences in one or more of the clustering variables. The average silhouette values of the clusters were reasonably high, ranging from 0.52 to 0.79. Cells assigned to the same cluster displayed similar morphology and stratification in the retina. The advantages and limitations of the methodology adopted are discussed. The present classification is compared with known morphological and physiological RGC classifications in other salamanders.
Changes in neocortical and hippocampal microglial cells during hibernation.
León-Espinosa, Gonzalo; Regalado-Reyes, Mamen; DeFelipe, Javier; Muñoz, Alberto
2018-05-01
Mammalian hibernation proceeds alongside a wide range of complex brain adaptive changes that appear to protect the brain from extreme hypoxia and hypothermia. Using immunofluorescence, confocal microscopy, quantitative analysis methods and intracellular injections, we have characterized microglia morphological changes that occur in the neocortex and hippocampus of the Syrian hamster during hibernation. In euthermic hamsters, microglial cells showed the typical ramified/resting morphology with multiple long, thin and highly-branched processes homogeneously immunostained for Iba-1. However, during torpor, microglial cell process numbers increase significantly accompanied by a shortening of the Iba-1 immunoreactive processes, which show a fragmented appearance. Adaptative changes of microglial cells during torpor coursed with no expression of microglial cell activation markers. We discuss the possibility that these morphological changes may contribute to neuronal damage prevention during hibernation.
Understanding Solvent Manipulation of Morphology in Bulk-Heterojunction Organic Solar Cells.
Chen, Yuxia; Zhan, Chuanlang; Yao, Jiannian
2016-10-06
Film morphology greatly influences the performance of bulk-heterojunction (BHJ)-structure-based solar cells. It is known that an interpenetrating bicontinuous network with nanoscale-separated donor and acceptor phases for charge transfer, an ordered molecular packing for exciton diffusion and charge transport, and a vertical compositionally graded structure for charge collection are prerequisites for achieving highly efficient BHJ organic solar cells (OSCs). Therefore, control of the morphology to obtain an ideal structure is a key problem. For this solution-processing BHJ system, the solvent participates fully in film processing. Its involvement is critical in modifying the nanostructure of BHJ films. In this review, we discuss the effects of solvent-related methods on the morphology of BHJ films, including selection of the casting solvent, solvent mixture, solvent vapor annealing, and solvent soaking. On the basis of a discussion on interaction strength and time between solvent and active materials, we believe that the solvent-morphology-performance relationship will be clearer and that solvent selection as a means to manipulate the morphology of BHJ films will be more rational. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deng, Yuru; Almsherqi, Zakaria A; Shui, Guanghou; Wenk, Markus R; Kohlwein, Sepp D
2009-09-01
Very long-chain polyunsaturated fatty acids (VLC-PUFAs), such as docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA), have recently made it to the realm of "magical molecules" based on their multiple presumably beneficial effects in biological systems, making these PUFAs particularly interesting in biomedicine. Their specific biological functions, however, remain enigmatic. Here we provide evidence derived from studies in the amoeba Chaos that indicates a structural role for omega-6 DPA in cell membrane organization, which may help to explain the multiple diverse effects of VLC-PUFA in healthy and diseased states. Amoeba Chaos mitochondria undergo a remarkable and reversible morphological transition into cubic morphology on starvation. This morphological transition is reflected in major changes in fatty acid and lipid composition, as determined by gas liquid chromatography and mass spectrometry, in particular by a drastic increase in C22:5 modified phosphatidylcholine plasmalogen, phosphatidylethanolamine plasmalogen, and phosphatidylinositol species. Liposomes produced in vitro from lipids of starved amoeba cells show a high propensity to form hexagonal tubular and cubic morphologies. Addition of omega-6 DPA, but not of omega-3 DPA, to the cell culture also induced mitochondrial membrane transformation into cubic morphology in fed cells, demonstrating for the first time an important structural role of omega-6 DPA-containing lipids in cell membrane organization.
NASA Astrophysics Data System (ADS)
Zhu, Yizheng; Li, Chengshuai
2016-03-01
Morphological assessment of spermatozoa is of critical importance for in vitro fertilization (IVF), especially intracytoplasmic sperm injection (ICSI)-based IVF. In ICSI, a single sperm cell is selected and injected into an egg to achieve fertilization. The quality of the sperm cell is found to be highly correlated to IVF success. Sperm morphology, such as shape, head birefringence and motility, among others, are typically evaluated under a microscope. Current observation relies on conventional techniques such as differential interference contrast microscopy and polarized light microscopy. Their qualitative nature, however, limits the ability to provide accurate quantitative analysis. Here, we demonstrate quantitative morphological measurement of sperm cells using two types of spectral interferometric techniques, namely spectral modulation interferometry and spectral multiplexing interferometry. Both are based on spectral-domain low coherence interferometry, which is known for its exquisite phase determination ability. While spectral modulation interferometry encodes sample phase in a single spectrum, spectral multiplexing interferometry does so for sample birefringence. Therefore they are capable of highly sensitive phase and birefringence imaging. These features suit well in the imaging of live sperm cells, which are small, dynamic objects with only low to moderate levels of phase and birefringence contrast. We will introduce the operation of both techniques and demonstrate their application to measuring the phase and birefringence morphology of sperm cells.
Ishida, Kentaro; Murofushi, Mayumi; Nakao, Kazuhisa; Morita, Ritsuko; Ogawa, Miho; Tsuji, Takashi
2011-02-18
Ectodermal organs, such as the tooth, salivary gland, hair, and mammary gland, develop through reciprocal epithelial-mesenchymal interactions. Tooth morphologies are defined by the crown width and tooth length (macro-morphologies), and by the number and locations of the cusp and roots (micro-morphologies). In our current study, we report that the crown width of a bioengineered molar tooth, which was reconstructed using dissociated epithelial and mesenchymal cells via an organ germ method, can be regulated by the contact area between epithelial and mesenchymal cell layers. We further show that this is associated with cell proliferation and Sonic hedgehog (Shh) expression in the inner enamel epithelium after the germ stage has formed a secondary enamel knot. We also demonstrate that the cusp number is significantly correlated with the crown width of the bioengineered tooth. These findings suggest that the tooth micro-morphology, i.e. the cusp formation, is regulated after the tooth width, or macro-morphology, is determined. These findings also suggest that the spatiotemporal patterning of cell proliferation and the Shh expression areas in the epithelium regulate the crown width and cusp formation of the developing tooth. Copyright © 2011 Elsevier Inc. All rights reserved.
Feng, Lishu; Zhang, Yimei; Kou, Xiaoxing; Yang, Ruili; Liu, Dawei; Wang, Xuedong; Song, Yang; Cao, Haifeng; He, Danqing; Gan, Yehua; Zhou, Yanheng
2017-03-01
To examine the role of cadherin-11, an integral membrane adhesion molecule, in periodontal ligament cells (PDLCs) under mechanical stimulation. Human PDLCs were cultured and subjected to mechanical stress. Cadherin-11 expression and cell morphology of PDLCs were investigated via immunofluorescence staining. The mRNA and protein expressions of cadherin-11 and type I collagen (Col-I) of PDLCs were evaluated by quantitative real-time polymerase chain reaction and Western blot, respectively. Small interfering RNA was used to knock down cadherin-11 expression in PDLCs. The collagen matrix of PDLCs was examined using toluidine blue staining. Cadherin-11 was expressed in PDLCs. Mechanical stress suppressed cadherin-11 expression in PDLCs with prolonged force treatment time and increased force intensity, accompanied by suppressed β-catenin expression. Simultaneously, mechanical stress altered cell morphology and repressed Col-I expression in a time- and dose-dependent manner in PDLCs. Moreover, knockdown of cadherin-11 with suppressed β-catenin expression resulted in altered PDLC morphology and repressed collagen expression, which were consistent with the changes observed under mechanical stress. Results of this study suggest that cadherin-11 is expressed in PDLCs and modulates PDLC morphology and collagen synthesis in response to mechanical stress, which may play an important role in the homeostasis and remodeling of the PDL under mechanical stimulation.
Human aortic endothelial cell morphology influenced by topography of porous silicon substrates.
Formentín, Pilar; Catalán, Úrsula; Fernández-Castillejo, Sara; Alba, Maria; Baranowska, Malgorzata; Solà, Rosa; Pallarès, Josep; Marsal, Lluís F
2015-10-01
Porous silicon has received much attention because of its optical properties and for its usefulness in cell-based biosensing, drug delivery, and tissue engineering applications. Surface properties of the biomaterial are associated with cell adhesion and with proliferation, migration, and differentiation. The present article analyzes the behavior of human aortic endothelial cells in macro- and nanoporous collagen-modified porous silicon samples. On both substrates, cells are well adhered and numerous. Confocal microscopy and scanning electron microscopy were employed to study the effects of porosity on the morphology of the cells. On macroporous silicon, filopodia is not observed but the cell spreads on the surface, increasing the lamellipodia surface which penetrates the macropore. On nanoporous silicon, multiple filopodia were found to branch out from the cell body. These results demonstrate that the pore size plays a key role in controlling the morphology and growth rate of human aortic endothelial cells, and that these forms of silicon can be used to control cell development in tissue engineering as well as in basic cell biology research. © The Author(s) 2015.
Schallek, Jesse; Geng, Ying; Nguyen, HoanVu; Williams, David R.
2013-01-01
Purpose. To noninvasively image retinal pericytes in the living eye and characterize NG2-positive cell topography and morphology in the adult mouse retina. Methods. Transgenic mice expressing fluorescent pericytes (NG2, DsRed) were imaged using a two-channel, adaptive optics scanning laser ophthalmoscope (AOSLO). One channel imaged vascular perfusion with near infrared light. A second channel simultaneously imaged fluorescent retinal pericytes. Mice were also imaged using wide-field ophthalmoscopy. To confirm in vivo imaging, five eyes were enucleated and imaged in flat mount with conventional fluorescent microscopy. Cell topography was quantified relative to the optic disc. Results. We observed strong DsRed fluorescence from NG2-positive cells. AOSLO revealed fluorescent vascular mural cells enveloping all vessels in the living retina. Cells were stellate on larger venules, and showed banded morphology on arterioles. NG2-positive cells indicative of pericytes were found on the smallest capillaries of the retinal circulation. Wide-field SLO enabled quick assessment of NG2-positive distribution, but provided insufficient resolution for cell counts. Ex vivo microscopy showed relatively even topography of NG2-positive capillary pericytes at eccentricities more than 0.3 mm from the optic disc (515 ± 94 cells/mm2 of retinal area). Conclusions. We provide the first high-resolution images of retinal pericytes in the living animal. Subcellular resolution enabled morphological identification of NG2-positive cells on capillaries showing classic features and topography of retinal pericytes. This report provides foundational basis for future studies that will track and quantify pericyte topography, morphology, and function in the living retina over time, especially in the progression of microvascular disease. PMID:24150762
Li, Ling; Lu, Xia; Meng, Yizhi; Weyant, Christopher M
2012-10-01
In this study, strontium-doped calcium phosphate coatings were deposited by electrochemical deposition and plasma spray under different process parameters to achieve various coating morphologies. The coating composition was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy while the cytocompatibility and bioactivity of the strontium-doped calcium phosphate coatings were evaluated using bone cell culture using MC3T3-E1 osteoblast-like cells. The addition of strontium leads to enhanced proliferation suggesting the possible benefits of strontium incorporation in calcium phosphate coatings. The morphology and composition of deposited coatings showed a strong influence on the growth of cells.
Simwami, Sitali P.; Khayhan, Kantarawee; Henk, Daniel A.; Aanensen, David M.; Boekhout, Teun; Hagen, Ferry; Brouwer, Annemarie E.; Harrison, Thomas S.; Donnelly, Christl A.; Fisher, Matthew C.
2011-01-01
The global burden of HIV-associated cryptococcal meningitis is estimated at nearly one million cases per year, causing up to a third of all AIDS-related deaths. Molecular epidemiology constitutes the main methodology for understanding the factors underpinning the emergence of this understudied, yet increasingly important, group of pathogenic fungi. Cryptococcus species are notable in the degree that virulence differs amongst lineages, and highly-virulent emerging lineages are changing patterns of human disease both temporally and spatially. Cryptococcus neoformans variety grubii (Cng, serotype A) constitutes the most ubiquitous cause of cryptococcal meningitis worldwide, however patterns of molecular diversity are understudied across some regions experiencing significant burdens of disease. We compared 183 clinical and environmental isolates of Cng from one such region, Thailand, Southeast Asia, against a global MLST database of 77 Cng isolates. Population genetic analyses showed that Thailand isolates from 11 provinces were highly homogenous, consisting of the same genetic background (globally known as VNI) and exhibiting only ten nearly identical sequence types (STs), with three (STs 44, 45 and 46) dominating our sample. This population contains significantly less diversity when compared against the global population of Cng, specifically Africa. Genetic diversity in Cng was significantly subdivided at the continental level with nearly half (47%) of the global STs unique to a genetically diverse and recombining population in Botswana. These patterns of diversity, when combined with evidence from haplotypic networks and coalescent analyses of global populations, are highly suggestive of an expansion of the Cng VNI clade out of Africa, leading to a limited number of genotypes founding the Asian populations. Divergence time testing estimates the time to the most common ancestor between the African and Asian populations to be 6,920 years ago (95% HPD 122.96 - 27,177.76). Further high-density sampling of global Cng STs is now necessary to resolve the temporal sequence underlying the global emergence of this human pathogen. PMID:21573144
Dyal, Jonathan; Akampurira, Andrew; Rhein, Joshua; Morawski, Bozena M; Kiggundu, Reuben; Nabeta, Henry W; Musubire, Abdu K; Bahr, Nathan C; Williams, Darlisha A; Bicanic, Tihana; Larsen, Robert A; Meya, David B; Boulware, David R
2016-05-01
Quantitative cerebrospinal fluid (CSF) cultures provide a measure of disease severity in cryptococcal meningitis. The fungal clearance rate by quantitative cultures has become a primary endpoint for phase II clinical trials. This study determined the inter-assay accuracy of three different quantitative culture methodologies. Among 91 participants with meningitis symptoms in Kampala, Uganda, during August-November 2013, 305 CSF samples were prospectively collected from patients at multiple time points during treatment. Samples were simultaneously cultured by three methods: (1) St. George's 100 mcl input volume of CSF with five 1:10 serial dilutions, (2) AIDS Clinical Trials Group (ACTG) method using 1000, 100, 10 mcl input volumes, and two 1:100 dilutions with 100 and 10 mcl input volume per dilution on seven agar plates; and (3) 10 mcl calibrated loop of undiluted and 1:100 diluted CSF (loop). Quantitative culture values did not statistically differ between St. George-ACTG methods (P= .09) but did for St. George-10 mcl loop (P< .001). Repeated measures pairwise correlation between any of the methods was high (r≥0.88). For detecting sterility, the ACTG-method had the highest negative predictive value of 97% (91% St. George, 60% loop), but the ACTG-method had occasional (∼10%) difficulties in quantification due to colony clumping. For CSF clearance rate, St. George-ACTG methods did not differ overall (mean -0.05 ± 0.07 log10CFU/ml/day;P= .14) on a group level; however, individual-level clearance varied. The St. George and ACTG quantitative CSF culture methods produced comparable but not identical results. Quantitative cultures can inform treatment management strategies. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Simwami, Sitali P; Khayhan, Kantarawee; Henk, Daniel A; Aanensen, David M; Boekhout, Teun; Hagen, Ferry; Brouwer, Annemarie E; Harrison, Thomas S; Donnelly, Christl A; Fisher, Matthew C
2011-04-01
The global burden of HIV-associated cryptococcal meningitis is estimated at nearly one million cases per year, causing up to a third of all AIDS-related deaths. Molecular epidemiology constitutes the main methodology for understanding the factors underpinning the emergence of this understudied, yet increasingly important, group of pathogenic fungi. Cryptococcus species are notable in the degree that virulence differs amongst lineages, and highly-virulent emerging lineages are changing patterns of human disease both temporally and spatially. Cryptococcus neoformans variety grubii (Cng, serotype A) constitutes the most ubiquitous cause of cryptococcal meningitis worldwide, however patterns of molecular diversity are understudied across some regions experiencing significant burdens of disease. We compared 183 clinical and environmental isolates of Cng from one such region, Thailand, Southeast Asia, against a global MLST database of 77 Cng isolates. Population genetic analyses showed that Thailand isolates from 11 provinces were highly homogenous, consisting of the same genetic background (globally known as VNI) and exhibiting only ten nearly identical sequence types (STs), with three (STs 44, 45 and 46) dominating our sample. This population contains significantly less diversity when compared against the global population of Cng, specifically Africa. Genetic diversity in Cng was significantly subdivided at the continental level with nearly half (47%) of the global STs unique to a genetically diverse and recombining population in Botswana. These patterns of diversity, when combined with evidence from haplotypic networks and coalescent analyses of global populations, are highly suggestive of an expansion of the Cng VNI clade out of Africa, leading to a limited number of genotypes founding the Asian populations. Divergence time testing estimates the time to the most common ancestor between the African and Asian populations to be 6,920 years ago (95% HPD 122.96 - 27,177.76). Further high-density sampling of global Cng STs is now necessary to resolve the temporal sequence underlying the global emergence of this human pathogen.
Kaocharoen, Sirada; Ngamskulrungroj, Popchai; Firacative, Carolina; Trilles, Luciana; Piyabongkarn, Dumrongdej; Banlunara, Wijit; Poonwan, Natteewan; Chaiprasert, Angkana; Meyer, Wieland; Chindamporn, Ariya
2013-01-01
To gain a more detailed picture of cryptococcosis in Thailand, a retrospective study of 498 C. neoformans and C. gattii isolates has been conducted. Among these, 386, 83 and 29 strains were from clinical, environmental and veterinary sources, respectively. A total of 485 C. neoformans and 13 C. gattii strains were studied. The majority of the strains (68.9%) were isolated from males (mean age of 37.97 years), 88.5% of C. neoformans and only 37.5% of C. gattii strains were from HIV patients. URA5-RFLP and/or M13 PCR-fingerprinting analysis revealed that the majority of the isolates were C. neoformans molecular type VNI regardless of their sources (94.8%; 94.6% of the clinical, 98.8% of the environmental and 86.2% of the veterinary isolates). In addition, the molecular types VNII (2.4%; 66.7% of the clinical and 33.3% of the veterinary isolates), VNIV (0.2%; 100% environmental isolate), VGI (0.2%; 100% clinical isolate) and VGII (2.4%; 100% clinical isolates) were found less frequently. Multilocus Sequence Type (MLST) analysis using the ISHAM consensus MLST scheme for the C. neoformans/C. gattii species complex identified a total of 20 sequence types (ST) in Thailand combining current and previous data. The Thai isolates are an integrated part of the global cryptococcal population genetic structure, with ST30 for C. gattii and ST82, ST83, ST137, ST141, ST172 and ST173 for C. neoformans being unique to Thailand. Most of the C. gattii isolates were ST7 = VGIIb, which is identical to the less virulent minor Vancouver island outbreak genotype, indicating Thailand as a stepping stone in the global spread of this outbreak strain. The current study revealed a greater genetic diversity and a wider range of major molecular types being present amongst Thai cryptococcal isolates than previously reported. PMID:23861989
El-Schich, Zahra; Mölder, Anna; Tassidis, Helena; Härkönen, Pirkko; Falck Miniotis, Maria; Gjörloff Wingren, Anette
2015-03-01
We are using the label-free technique of holographic microscopy to analyze cellular parameters including cell number, confluence, cellular volume and area directly in the cell culture environment. We show that death-induced cells can be distinguished from untreated counterparts by the use of holographic microscopy, and we demonstrate its capability for cell death assessment. Morphological analysis of two representative cell lines (L929 and DU145) was performed in the culture flasks without any prior cell detachment. The two cell lines were treated with the anti-tumour agent etoposide for 1-3days. Measurements by holographic microscopy showed significant differences in average cell number, confluence, volume and area when comparing etoposide-treated with untreated cells. The cell volume of the treated cell lines was initially increased at early time-points. By time, cells decreased in volume, especially when treated with high doses of etoposide. In conclusion, we have shown that holographic microscopy allows label-free and completely non-invasive morphological measurements of cell growth, viability and death. Future applications could include real-time monitoring of these holographic microscopy parameters in cells in response to clinically relevant compounds. Copyright © 2015 Elsevier Inc. All rights reserved.
ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee
2013-08-01
Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalizedmore » to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.« less
Identification of cytolytic vaginosis versus vulvovaginal candidiasis.
Hu, Zhengqiang; Zhou, Wei; Mu, Liyuan; Kuang, Linghan; Su, Min; Jiang, Yongmei
2015-04-01
This study aimed to observe the morphological characteristic of vaginal discharge in patients with cytolytic vaginosis (CV) under the microscope and to identify it in patients with CV and in patients with vulvovaginal candidiasis (VVC). A total of 108 subjects including 21 healthy women, 33 patients with CV, and 54 patients with VVC were enrolled in the present morphological study. Vaginal discharge was collected and made into smear. The morphological characteristics of these vaginal smears with Gram staining were observed under the microscope. The smears were assessed for the quantity of lactobacilli, epithelial cell morphology, and the absence or presence of Candida species, Trichomonas vaginalis, and clue sells. First, the age, the level of education, and especially the status of pregnancy of patients with CV were significantly different from those of the patients with VVC. Second, the morphological characteristics of patients with CV consisted of overgrowth of lactobacilli, the presence of naked nuclei and fragments of the epithelial cells, a paucity of leukocytes, and the absence of Candida species and other pathogens. However, the morphological characteristic of patients with VVC consisted of the presence or absence of lactobacilli and the presence of normal epithelial cells, candidal spores, blastospores, hyphae, or other pathogens such as T. vaginalis and Gardnerella vaginalis. Both CV and VVC can be identified based on the quantity of lactobacilli, the morphology of the epithelial cells, and the absence or presence of Candida species and other pathogens, and the misdiagnosis of CV as VVC can be avoided.
Cosgrove, C; Cobbett, P
1991-07-01
Clonal cells derived from neural tumors have been widely used to study the processes of neuronal differentiation in vitro. The murine neuroblastoma clone N1E-115 has recently been shown to differentiate morphologically in response to removal of serum from the culture medium. In the present study, the nature and time course of electrophysiological differentiation of N1E-115 cells maintained in serum-free medium was examined. Differentiated cells had a higher resting potential and lower input conductance than nondifferentiated cells. Differentiated but not nondifferentiated cells generated current evoked action potentials, and differentiated cells fired spontaneous, repetitive action potentials after 13 days in serum-free medium. The rate of potential change during the depolarizing and repolarizing phases of the action potential became faster as the duration of maintenance of cells in serum-free medium increased. Remarkably, morphological differentiation appeared to be complete after exposure to serum-free medium for 5 days but electrophysiological differentiation was not complete until 13 days in this medium.
Comparison of the Cellient(™) automated cell block system and agar cell block method.
Kruger, A M; Stevens, M W; Kerley, K J; Carter, C D
2014-12-01
To compare the Cellient(TM) automated cell block system with the agar cell block method in terms of quantity and quality of diagnostic material and morphological, histochemical and immunocytochemical features. Cell blocks were prepared from 100 effusion samples using the agar method and Cellient system, and routinely sectioned and stained for haematoxylin and eosin and periodic acid-Schiff with diastase (PASD). A preliminary immunocytochemical study was performed on selected cases (27/100 cases). Sections were evaluated using a three-point grading system to compare a set of morphological parameters. Statistical analysis was performed using Fisher's exact test. Parameters assessing cellularity, presence of single cells and definition of nuclear membrane, nucleoli, chromatin and cytoplasm showed a statistically significant improvement on Cellient cell blocks compared with agar cell blocks (P < 0.05). No significant difference was seen for definition of cell groups, PASD staining or the intensity or clarity of immunocytochemical staining. A discrepant immunocytochemistry (ICC) result was seen in 21% (13/63) of immunostains. The Cellient technique is comparable with the agar method, with statistically significant results achieved for important morphological features. It demonstrates potential as an alternative cell block preparation method which is relevant for the rapid processing of fine needle aspiration samples, malignant effusions and low-cellularity specimens, where optimal cell morphology and architecture are essential. Further investigation is required to optimize immunocytochemical staining using the Cellient method. © 2014 John Wiley & Sons Ltd.
Ratio of inner cell mass and trophoblastic cells in demi- and intact pig embryos.
Tao, T; Reichelt, B; Niemann, H
1995-07-01
Pig morulae, early blastocysts and blastocysts were microsurgically bisected to produce zona-free demi-embryos or remained nonbisected with or without zona pellucida, and the presence of inner cell mass cells was determined using a differential fluorochrome staining technique. After 24 h of in vitro culture, all demi-embryos were classified into three categories, based on morphological criteria: 1, excellent; 2, fair; and 3, degenerated. The average number of total cells and inner cell mass cells in intact embryos cultured without zona pellucida for 24 h was higher (P < 0.05) than that for those with zona pellucida in morulae and early blastocysts. The percentage of demi-embryos without inner cell mass cells in these different morphological categories was 18.7%, 22.2% and 29.8% for morulae, respectively; 3.8%, 16.7% and 30.8% for early blastocysts, respectively; and 3.7%, 32.0% and 36.4% for blastocysts, respectively. The percentage of demi-embryos without inner cell mass cells was lower (P < 0.01) in demi-embryos classified in category 1 compared with category 3 in early blastocysts and in category 1 compared with categories 2 and 3 in blastocysts. Significant differences in the total number of cells and the number of inner cell mass cells were apparent among the three morphological categories of demi-embryos derived from morulae, early blastocysts and blastocysts. The ratio of total cells to inner cell mass cells was similar among intact pig embryos and the different morphological categories of demi-embryos derived from morulae, early blastocysts and blastocysts, with the exception of that between demi-blastocysts of category 1 and the other groups.(ABSTRACT TRUNCATED AT 250 WORDS)
Milsmann, C; Füzesi, L; Heinmöller, E; Krause, P; Werner, C; Becker, H; Horstmann, O
2008-01-01
Isolated tumor cells (ITCs) in cancer patients are retrieved mostly using immunohistochemistry with antibodies directed against antiepithelial antigens (for example Ber-EP4), which are supposed not to be present in metastatic-free tissue. To date, there has been ongoing controversy whether those cells have biologic significance and are linked with tumor progression and impaired patient's prognosis. Therefore, the aim of this study was to further characterize Ber-EP4-positive cells in various tissues, with special emphasis on their tumorigenic origin. The frequency and prognostic impact of ITCs in lymph nodes displayed by means of monoclonal antibody Ber-EP4 were evaluated in retrospective (n = 292) and prospective (n = 100) collectives of various gastrointestinal carcinomas free of metastatic disease in conventional histopathology (pN0). Furthermore, the frequency of ITCs in the peritoneal cavity and bone marrow was analyzed in case of absence of overt distant metastasis (pM0) in the prospective collective. Ber-EP4-immunoreactive cells were further characterized for tumorigenic origin using morphological criteria and immunohistochemical double staining for Ber-EP4 and p53. Ber-EP4-positive cells could be revealed in lymph nodes in 44.3% of pN0-gastrointestinal carcinomas, in the peritoneal cavity in 19%, and in the bone marrow in 10%. In lymph nodes, BerEP4-immunoreactive cells exhibited a metastatic-atypical morphology in 59%; however, it was always typical for true tumor cells in the peritoneal cavity or bone marrow. The cumulative 5-year survival rate was adversely affected by Ber-EP4-immunoreactive cells in uni- and multivariate analysis, irrespective of the underlying cell morphology (68% for Ber-EP4 negative, 41% for Ber-EP4 positive with atypical and typical morphology each). In the case of a p53-positive primary tumor, 70% of the corresponding ITCs also overexpressed p53, while the remainder was deemed p53 negative (p = 0.002). ITCs detected by the antiepithelial antibody Ber-EP4 are present in a substantial proportion of apparently tumor-free lymph nodes. These cells impair patients' prognoses, irrespective of the underlying cell morphology. As approximately one third of Ber-EP4-positive cells in p53-positive primary tumors do not overexpress p53; their true tumorigenic origin needs to be further investigated.
Herrera, L A; Ostrosky-Wegman, P; Schiffmann, D; Chen, Q Y; Ziegler-Skylakakis, K; Andrae, U
1993-11-01
The insecticide buprofezin was examined for its genotoxicity in cultured Syrian hamster embryo cells in order to better understand the mechanisms underlying the genotoxicity of the compound in mammalian cells. Exposure to buprofezin concentrations of 12.5-100 microM did not significantly affect the colony-forming ability of the cells, but did result in increased frequencies of morphologically transformed colonies. Treatment with buprofezin did not cause a detectable induction of DNA repair synthesis, an indicator of DNA damage, but significantly increased the frequency of micronuclei. Immunostaining of the cells with antikinetochore antibody (CREST antibody) showed that essentially all of the buprofezin-induced micronuclei were kinetochore-positive. The results suggest that morphological transformation of Syrian hamster embryo cells by buprofezin results from an interaction of the compound or a metabolite of it with the mitotic apparatus rather than from DNA damage.
[Disperse endocrine system and APUD concept].
Mil'to, I V; Sukhodolo, I V; Gereng, E A; Shamardina, L A
2011-01-01
This review describes the problems of disperse endocrine system and APUD-system morphology, summarizes some debatable issues of single endocrine cell biology. The data presented refer to the history of both systems discovery, morphological methods of their study, developmental sources, their structural organization and physiological roles of their cells. The significance of single endocrine cells in the regulation of the organism functions is discussed.
Changes in intrinsic excitability of ganglion cells in degenerated retinas of RCS rats.
Ren, Yi-Ming; Weng, Chuan-Huang; Zhao, Cong-Jian; Yin, Zheng-Qin
2018-01-01
To evaluate the intrinsic excitability of retinal ganglion cells (RGCs) in degenerated retinas. The intrinsic excitability of various morphologically defined RGC types using a combination of patch-clamp recording and the Lucifer yellow tracer in retinal whole-mount preparations harvested from Royal College of Surgeons (RCS) rats, a common retinitis pigmentosa (RP) model, in a relatively late stage of retinal degeneration (P90) were investigated. Several parameters of RGC morphologies and action potentials (APs) were measured and compared to those of non-dystrophic control rats, including dendritic stratification, dendritic field diameter, peak amplitude, half width, resting membrane potential, AP threshold, depolarization to threshold, and firing rates. Compared with non-dystrophic control RGCs, more depolarizations were required to reach the AP threshold in RCS RGCs with low spontaneous spike rates and in RCS OFF cells (especially A2o cells), and RCS RGCs maintained their dendritic morphologies, resting membrane potentials and capabilities to generate APs. RGCs are relatively well preserved morphologically and functionally, and some cells are more susceptible to decreased excitability during retinal degeneration. These findings provide valuable considerations for optimizing RP therapeutic strategies.
Optical coherence tomography spectral analysis for detecting apoptosis in vitro and in vivo
NASA Astrophysics Data System (ADS)
Farhat, Golnaz; Giles, Anoja; Kolios, Michael C.; Czarnota, Gregory J.
2015-12-01
Apoptosis is a form of programmed cell death characterized by a series of predictable morphological changes at the subcellular level, which modify the light-scattering properties of cells. We present a spectroscopic optical coherence tomography (OCT) technique to detect changes in subcellular morphology related to apoptosis in vitro and in vivo. OCT data were acquired from acute myeloid leukemia (AML) cells treated with cisplatin over a 48-h period. The backscatter spectrum of the OCT signal acquired from the cell samples was characterized by calculating its in vitro integrated backscatter (IB) and spectral slope (SS). The IB increased with treatment duration, while the SS decreased, with the most significant changes occurring after 24 to 48 h of treatment. These changes coincided with striking morphological transformations in the cells and their nuclei. Similar trends in the spectral parameter values were observed in vivo in solid tumors grown from AML cells in mice, which were treated with chemotherapy and radiation. Our results provide a strong foundation from which future experiments may be designed to further understand the effect of cellular morphology and kinetics of apoptosis on the OCT signal and demonstrate the feasibility of using this technique in vivo.
Baker, Michael W; Macagno, Eduardo R
2014-04-17
Recent evidence indicates that gap junction (GJ) proteins can play a critical role in controlling neuronal connectivity as well as cell morphology in the developing nervous system. GJ proteins may function analogously to cell adhesion molecules, mediating cellular recognition and selective neurite adhesion. Moreover, during synaptogenesis electrical synapses often herald the later establishment of chemical synapses, and thus may help facilitate activity-dependent sculpting of synaptic terminals. Recent findings suggest that the morphology and connectivity of embryonic leech neurons are fundamentally organized by the type and perhaps location of the GJ proteins they express. For example, ectopic expression in embryonic leech neurons of certain innexins that define small GJ-linked networks of cells leads to the novel coupling of the expressing cell into that network. Moreover, gap junctions appear to mediate interactions among homologous neurons that modulate process outgrowth and stability. We propose that the selective formation of GJs between developing neurons and perhaps glial cells in the CNS helps orchestrate not only cellular synaptic connectivity but also can have a pronounced effect on the arborization and morphology of those cells involved. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Stefanenko, E V; Miadelets, O D; Kukhnovets, O A; Miadelets, V O
2009-01-01
The objective of this work was to study morphological changes in the Langerhans cells of epidermis and epithelium of hair follicles from subjects who died as a result of general hypothermia. A total of 105 cadaveric skin samples from subjects of either gender aged from 19 to 83 years were available for analysis. Postmortem examination 1-2 days after death was performed at the Department of Forensic Medical Examination for the Vitebsk region. Skin samples were frozen in liquid nitrogen and studied as cryostat sections. Langerhans cells were detected using the ATPase assay as described by Wachstein and Meisel and modified by Robins and Brendon. The Langerhans cells of subjects who died from general hypothermia were shown to undergo marked morphological changes. Moreover, their number significantly decreased as a result of disintegration and transformation into fine-grain material. Surviving cells lost many of their outgrowths and exhibited enhanced ATPase activity in pericarion. The Langerhans cells from dorsal and ventral skin as well as from interfollicular epidermis and the outer sheath of hair follicles underwent virtually identical changes. A unique morphological feature of the skin in those who died from general hypothermia was formation of intraepidermal, subepidermal, and dermal blisters.
Fernández-Arjona, María Del Mar; Grondona, Jesús M; Granados-Durán, Pablo; Fernández-Llebrez, Pedro; López-Ávalos, María D
2017-01-01
It is known that microglia morphology and function are closely related, but only few studies have objectively described different morphological subtypes. To address this issue, morphological parameters of microglial cells were analyzed in a rat model of aseptic neuroinflammation. After the injection of a single dose of the enzyme neuraminidase (NA) within the lateral ventricle (LV) an acute inflammatory process occurs. Sections from NA-injected animals and sham controls were immunolabeled with the microglial marker IBA1, which highlights ramifications and features of the cell shape. Using images obtained by section scanning, individual microglial cells were sampled from various regions (septofimbrial nucleus, hippocampus and hypothalamus) at different times post-injection (2, 4 and 12 h). Each cell yielded a set of 15 morphological parameters by means of image analysis software. Five initial parameters (including fractal measures) were statistically different in cells from NA-injected rats (most of them IL-1β positive, i.e., M1-state) compared to those from control animals (none of them IL-1β positive, i.e., surveillant state). However, additional multimodal parameters were revealed more suitable for hierarchical cluster analysis (HCA). This method pointed out the classification of microglia population in four clusters. Furthermore, a linear discriminant analysis (LDA) suggested three specific parameters to objectively classify any microglia by a decision tree. In addition, a principal components analysis (PCA) revealed two extra valuable variables that allowed to further classifying microglia in a total of eight sub-clusters or types. The spatio-temporal distribution of these different morphotypes in our rat inflammation model allowed to relate specific morphotypes with microglial activation status and brain location. An objective method for microglia classification based on morphological parameters is proposed. Main points Microglia undergo a quantifiable morphological change upon neuraminidase induced inflammation.Hierarchical cluster and principal components analysis allow morphological classification of microglia.Brain location of microglia is a relevant factor.
Fernández-Arjona, María del Mar; Grondona, Jesús M.; Granados-Durán, Pablo; Fernández-Llebrez, Pedro; López-Ávalos, María D.
2017-01-01
It is known that microglia morphology and function are closely related, but only few studies have objectively described different morphological subtypes. To address this issue, morphological parameters of microglial cells were analyzed in a rat model of aseptic neuroinflammation. After the injection of a single dose of the enzyme neuraminidase (NA) within the lateral ventricle (LV) an acute inflammatory process occurs. Sections from NA-injected animals and sham controls were immunolabeled with the microglial marker IBA1, which highlights ramifications and features of the cell shape. Using images obtained by section scanning, individual microglial cells were sampled from various regions (septofimbrial nucleus, hippocampus and hypothalamus) at different times post-injection (2, 4 and 12 h). Each cell yielded a set of 15 morphological parameters by means of image analysis software. Five initial parameters (including fractal measures) were statistically different in cells from NA-injected rats (most of them IL-1β positive, i.e., M1-state) compared to those from control animals (none of them IL-1β positive, i.e., surveillant state). However, additional multimodal parameters were revealed more suitable for hierarchical cluster analysis (HCA). This method pointed out the classification of microglia population in four clusters. Furthermore, a linear discriminant analysis (LDA) suggested three specific parameters to objectively classify any microglia by a decision tree. In addition, a principal components analysis (PCA) revealed two extra valuable variables that allowed to further classifying microglia in a total of eight sub-clusters or types. The spatio-temporal distribution of these different morphotypes in our rat inflammation model allowed to relate specific morphotypes with microglial activation status and brain location. An objective method for microglia classification based on morphological parameters is proposed. Main points Microglia undergo a quantifiable morphological change upon neuraminidase induced inflammation.Hierarchical cluster and principal components analysis allow morphological classification of microglia.Brain location of microglia is a relevant factor. PMID:28848398
Fontainhas, Aurora M.; Wang, Minhua; Liang, Katharine J.; Chen, Shan; Mettu, Pradeep; Damani, Mausam; Fariss, Robert N.; Li, Wei; Wong, Wai T.
2011-01-01
Purpose Microglia represent the primary resident immune cells in the CNS, and have been implicated in the pathology of neurodegenerative diseases. Under basal or “resting” conditions, microglia possess ramified morphologies and exhibit dynamic surveying movements in their processes. Despite the prominence of this phenomenon, the function and regulation of microglial morphology and dynamic behavior are incompletely understood. We investigate here whether and how neurotransmission regulates “resting” microglial morphology and behavior. Methods We employed an ex vivo mouse retinal explant system in which endogenous neurotransmission and dynamic microglial behavior are present. We utilized live-cell time-lapse confocal imaging to study the morphology and behavior of GFP-labeled retinal microglia in response to neurotransmitter agonists and antagonists. Patch clamp electrophysiology and immunohistochemical localization of glutamate receptors were also used to investigate direct-versus-indirect effects of neurotransmission by microglia. Results Retinal microglial morphology and dynamic behavior were not cell-autonomously regulated but are instead modulated by endogenous neurotransmission. Morphological parameters and process motility were differentially regulated by different modes of neurotransmission and were increased by ionotropic glutamatergic neurotransmission and decreased by ionotropic GABAergic neurotransmission. These neurotransmitter influences on retinal microglia were however unlikely to be directly mediated; local applications of neurotransmitters were unable to elicit electrical responses on microglia patch-clamp recordings and ionotropic glutamatergic receptors were not located on microglial cell bodies or processes by immunofluorescent labeling. Instead, these influences were mediated indirectly via extracellular ATP, released in response to glutamatergic neurotransmission through probenecid-sensitive pannexin hemichannels. Conclusions Our results demonstrate that neurotransmission plays an endogenous role in regulating the morphology and behavior of “resting” microglia in the retina. These findings illustrate a mode of constitutive signaling between the neural and immune compartments of the CNS through which immune cells may be regulated in concert with levels of neural activity. PMID:21283568
Human brain microvascular endothelial cells resist elongation due to shear stress.
Reinitz, Adam; DeStefano, Jackson; Ye, Mao; Wong, Andrew D; Searson, Peter C
2015-05-01
Endothelial cells in straight sections of vessels are known to elongate and align in the direction of flow. This phenotype has been replicated in confluent monolayers of bovine aortic endothelial cells and human umbilical vein endothelial cells (HUVECs) in cell culture under physiological shear stress. Here we report on the morphological response of human brain microvascular endothelial cells (HBMECs) in confluent monolayers in response to shear stress. Using a microfluidic platform we image confluent monolayers of HBMECs and HUVECs under shear stresses up to 16 dyne cm(-2). From live-cell imaging we quantitatively analyze the cell morphology and cell speed as a function of time. We show that HBMECs do not undergo a classical transition from cobblestone to spindle-like morphology in response to shear stress. We further show that under shear stress, actin fibers are randomly oriented in the cells indicating that there is no cytoskeletal remodeling. These results suggest that HBMECs are programmed to resist elongation and alignment under shear stress, a phenotype that may be associated with the unique properties of the blood-brain barrier. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugita, Kazuya; Yamamura, Chiaki; Tabata, Ken-ichi
2013-01-04
Highlights: Black-Right-Pointing-Pointer Expression of GPR174 in CHO cells induces morphological changes and proliferation delay. Black-Right-Pointing-Pointer These are due to increase in intracellular cAMP concentration. Black-Right-Pointing-Pointer Lysophosphatidylserine was identified to stimulate GPR174 leading to activate ACase. Black-Right-Pointing-Pointer The potencies of fatty acid moiety on LysoPS were oleoyl Greater-Than-Or-Slanted-Equal-To stearoyl > palmitoyl. Black-Right-Pointing-Pointer We propose that GPR174 is a lysophosphatidylserine receptor. -- Abstract: We established cell lines that stably express orphan GPCR GPR174 using CHO cells, and studied physiological and pharmacological features of the receptor. GPR174-expressing cells showed cell-cell adhesion with localization of actin filaments to cell membrane, and revealed significant delaymore » of cell proliferation. Since the morphological changes of GPR174-cells were very similar to mock CHO cells treated with cholera toxin, we measured the concentration of intracellular cAMP. The results showed the concentration was significantly elevated in GPR174-cells. By measuring intracellular cAMP concentration in GPR174-cells, we screened lipids and nucleotides to identify ligands for GPR174. We found that lysophosphatidylserine (LysoPS) stimulated increase in intracellular cAMP in a dose-dependent manner. Moreover, phosphorylation of Erk was elevated by LysoPS in GPR174 cells. These LysoPS responses were inhibited by NF449, an inhibitor of G{alpha}{sub s} protein. These results suggested that GPR174 was a putative LysoPS receptor conjugating with G{alpha}{sub s}, and its expression induced morphological changes in CHO cells by constitutively activating adenylyl cycles accompanied with cell conjunctions and delay of proliferation.« less
NASA Astrophysics Data System (ADS)
Keating-Bitonti, C.; Payne, J.
2016-02-01
Patterns in the sizes and shapes of marine organisms often occur across latitude and water depth gradients as a function of metabolic constraints dictated by the physical environment. However, the environmental factors that maintain these gradients in morphology remain incompletely understood because several oceanographic variables of biological importance are intimately correlated, such as temperature, dissolved oxygen concentration, particulate organic carbon (POC) flux, and carbonate saturation. Benthic foraminifera, a diverse group of single-celled protists that occur in nearly all marine environments, provide an ideal opportunity to test statistically among the various hypothesized environmental controls on cell morphology. Here, we use over 7,000 occurrences of 541 species of recent benthic foraminifera that span more than 60 degrees of latitude and 1,600 meters of water depth around the North American continental margin to assess the relative contributions of temperature, oxygen availability, carbonate saturation, and POC flux on their size and volume-to-surface area ratio in the modern ocean. Seawater temperature and dissolved oxygen concentrations best predict both measures of benthic foraminiferal cell morphology from the North American continental margin. These same variables also explain morphological variations from the Pacific continental margin in isolation, but dissolved oxygen is absent from the best model for the Atlantic. Because our results concur with predictions from first principles of cell physiology, we interpret these findings to reflect the physiological selective pressures on cell morphology as determined by the physical environment. Moreover, these findings suggest that warming waters and the expansion of hypoxic zones associated with anthropogenic-induced climate change are more likely to impact benthic foraminiferal communities than changes in primary productivity or ocean acidification.
Yarrowia lipolytica morphological mutant enables lasting in situ immobilization in bioreactor.
Vandermies, Marie; Kar, Tambi; Carly, Frédéric; Nicaud, Jean-Marc; Delvigne, Frank; Fickers, Patrick
2018-04-26
In the present study, we have isolated and characterized a Yarrowia lipolytica morphological mutant growing exclusively in the pseudohyphal morphology. The gene responsible for this phenotype, YALI0E06519g, was identified as homologous to the mitosis regulation gene HSL1 from Saccharomyces cerevisiae. Taking advantage of its morphology, we achieved the immobilization of the Δhsl1 mutant on the metallic structured packing of immobilized-cell bioreactors. We obtained significant cell retention and growth on the support during shake flask and bioreactor experiments without an attachment step prior to the culture. The system of medium aspersion on the packing ensured oxygen availability in the absence of agitation and minimized the potential release of cells in the culture medium. Additionally, the metallic packing proved its facility of cleaning and sterilization after fermentation. This combined use of morphological mutation and bioreactor design is a promising strategy to develop continuous processes for the production of recombinant protein and metabolites using Y. lipolytica. Graphical Abstract.
Li, Guangkun; Chi, Mengshan; Chen, Huizhen; Sui, Yuan; Li, Yan; Liu, Yongsheng; Zhang, Xiaojing; Sun, Zhiqiang; Liu, Guoqing; Wang, Qi; Liu, Jia
2016-02-01
As an eco-friendly management method, biological control of postharvest diseases, utilizing antagonistic yeasts, is a research topic receiving considerable attention. Detailed knowledge on the biology of yeast antagonists is crucial when considering their potential application and development as biocontrol products. Changes in the growth form, such as single-cell to pseudohyphae, have been associated with the mode of action in postharvest biocontrol yeasts. In this study, the antagonistic yeast, Candida diversa, reversibly shifted from a single-cell morphology on yeast peptone dextrose (YPD) medium with 2 % agar to a pseudohyphal morphology on YPD with 0.3 % agar. The tolerance of the pseudohyphal form to heat and oxidative stresses, as well as the biocontrol efficacy against Botrytis cinerea on apple and kiwifruit stored at 25 and 4 °C, was significantly higher as compared to the single-cell form. This study provides new information on the ability of C. diversa to change its morphology and the impact of the morphology shift on stress tolerance and biocontrol performance.
Morphology and force probing of primary murine liver sinusoidal endothelial cells.
Zapotoczny, B; Owczarczyk, K; Szafranska, K; Kus, E; Chlopicki, S; Szymonski, M
2017-07-01
Liver sinusoidal endothelial cells (LSECs) represent unique type of endothelial cells featured by their characteristic morphology, ie, lack of a basement membrane and presence of fenestrations-transmembrane pores acting as a dynamic filter between the vascular space and the liver parenchyma. Delicate structure of LSECs membrane combined with a submicron size of fenestrations hinders their visualization in live cells. In this work, we apply atomic force microscopy contact mode to characterize fenestrations in LSECs. We reveal the structure of fenestrations in live LSECs. Moreover, we show that the high-resolution imaging of fenestrations is possible for the glutaraldehyde-fixed LSECs. Finally, thorough information about the morphology of LSECs including great contrast in visualization of sieve plates and fenestrations is provided using Force Modulation mode. We show also the ability to precisely localize the cell nuclei in fixed LSECs. It can be helpful for more precise description of nanomechanical properties of cell nuclei using atomic force microscopy. Presented methodology combining high-quality imaging of fixed cells with an additional nanomechanical information of both live and fixed LSECs provides a unique approach to study LSECs morphology and nanomechanics that could foster understanding of the role of LSECs in maintaining liver homeostasis. Copyright © 2017 John Wiley & Sons, Ltd.
Maldonado, Maricela; Wong, Lauren Y; Echeverria, Cristina; Ico, Gerardo; Low, Karen; Fujimoto, Taylor; Johnson, Jed K; Nam, Jin
2015-05-01
The development of xeno-free, chemically defined stem cell culture systems has been a primary focus in the field of regenerative medicine to enhance the clinical application of pluripotent stem cells (PSCs). In this regard, various electrospun substrates with diverse physiochemical properties were synthesized utilizing various polymer precursors and surface treatments. Human induced pluripotent stem cells (IPSCs) cultured on these substrates were characterized by their gene and protein expression to determine the effects of the substrate physiochemical properties on the cells' self-renewal, i.e., proliferation and the maintenance of pluripotency. The results showed that surface chemistry significantly affected cell colony formation via governing the colony edge propagation. More importantly, when surface chemistry of the substrates was uniformly controlled by collagen conjugation, the stiffness of substrate was inversely related to the sphericity, a degree of three dimensionality in colony morphology. The differences in sphericity subsequently affected spontaneous differentiation of IPSCs during a long-term culture, implicating that the colony morphology is a deciding factor in the lineage commitment of PSCs. Overall, we show that the capability of controlling IPSC colony morphology by electrospun substrates provides a means to modulate IPSC self-renewal. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Zhe; Ho Chiu, Kar; Shahid Ashraf, Raja; Fearn, Sarah; Dattani, Rajeev; Cheng Wong, Him; Tan, Ching-Hong; Wu, Jiaying; Cabral, João T; Durrant, James R
2015-10-15
Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (<2%) loss of power conversion efficiency over 160 h under 85 °C thermal stress and minimal thermally induced "burn-in" effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions.
Non-gynecologic cytology on liquid-based preparations: A morphologic review of facts and artifacts.
Hoda, Rana S
2007-10-01
Liquid-based preparations (LBP) are increasingly being used both for gynecologic (gyn) and non-gynecologic (non-gyn) cytology including fine needle aspirations (FNA). The two FDA-approved LBP currently in use include ThinPrep (TP), (Cytyc Corp, Marlborough, MA) and SurePath (SP), (TriPath Imaging Inc., Burlington, NC). TP was approved for cervico-vaginal (Pap test) cytology in 1996 and SP in 1999 and both have since also been used for non-gyn cytology. In the LBP, instead of being smeared, cells are rinsed into a liquid preservative collection medium and processed on automated devices. Even after a decade of use, the morphological interpretation of LBP remains a diagnostic challenge because of somewhat altered morphology and artifacts or facts resulting from the fixation and processing techniques. These changes include cleaner background with altered or reduced background and extracellular elements; architectural changes such as smaller cell clusters and sheets, breakage of papillae; altered cell distribution with more dyscohesion and changes in cellular morphology with enhanced nuclear features, smaller cell size and slightly more three-dimensional (3-D) clusters. Herein, we review the published literature on morphological aspects of LBP for non-gyn cytology. (c) 2007 Wiley-Liss, Inc.
Sequential evolution of bacterial morphology by co-option of a developmental regulator.
Jiang, Chao; Brown, Pamela J B; Ducret, Adrien; Brun, Yves V
2014-02-27
What mechanisms underlie the transitions responsible for the diverse shapes observed in the living world? Although bacteria exhibit a myriad of morphologies, the mechanisms responsible for the evolution of bacterial cell shape are not understood. We investigated morphological diversity in a group of bacteria that synthesize an appendage-like extension of the cell envelope called the stalk. The location and number of stalks varies among species, as exemplified by three distinct subcellular positions of stalks within a rod-shaped cell body: polar in the genus Caulobacter and subpolar or bilateral in the genus Asticcacaulis. Here we show that a developmental regulator of Caulobacter crescentus, SpmX, is co-opted in the genus Asticcacaulis to specify stalk synthesis either at the subpolar or bilateral positions. We also show that stepwise evolution of a specific region of SpmX led to the gain of a new function and localization of this protein, which drove the sequential transition in stalk positioning. Our results indicate that changes in protein function, co-option and modularity are key elements in the evolution of bacterial morphology. Therefore, similar evolutionary principles of morphological transitions apply to both single-celled prokaryotes and multicellular eukaryotes.
Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins
Stephens, Andrew D.; Liu, Patrick Z.; Banigan, Edward J.; Almassalha, Luay M.; Backman, Vadim; Adam, Stephen A.; Goldman, Robert D.; Marko, John F.
2018-01-01
Nuclear shape and architecture influence gene localization, mechanotransduction, transcription, and cell function. Abnormal nuclear morphology and protrusions termed “blebs” are diagnostic markers for many human afflictions including heart disease, aging, progeria, and cancer. Nuclear blebs are associated with both lamin and chromatin alterations. A number of prior studies suggest that lamins dictate nuclear morphology, but the contributions of altered chromatin compaction remain unclear. We show that chromatin histone modification state dictates nuclear rigidity, and modulating it is sufficient to both induce and suppress nuclear blebs. Treatment of mammalian cells with histone deacetylase inhibitors to increase euchromatin or histone methyltransferase inhibitors to decrease heterochromatin results in a softer nucleus and nuclear blebbing, without perturbing lamins. Conversely, treatment with histone demethylase inhibitors increases heterochromatin and chromatin nuclear rigidity, which results in reduced nuclear blebbing in lamin B1 null nuclei. Notably, increased heterochromatin also rescues nuclear morphology in a model cell line for the accelerated aging disease Hutchinson–Gilford progeria syndrome caused by mutant lamin A, as well as cells from patients with the disease. Thus, chromatin histone modification state is a major determinant of nuclear blebbing and morphology via its contribution to nuclear rigidity. PMID:29142071
Tuft (caveolated) cells in two human colon carcinoma cell lines.
Barkla, D H; Whitehead, R H; Foster, H; Tutton, P J
1988-09-01
The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting from the apical surface. The microvilli are attached by a core of long microfilaments passing deep into the apical cytoplasm. Between the microvilli are parallel arrays of vesicles (caveoli) containing flocculent material. Two different but not mutually exclusive explanations for the presence of tuft cells are proposed. The first explanation is that tuft cells came from the resected tumour and have survived by mitotic division during subsequent passages. The second explanation suggests that tuft cells are the progeny of undifferentiated tumour cells. Descriptions of tuft cells in colon carcinomas are uncommon and possible reasons for this are presented. The morphology of tuft cells is consistent with that of a highly differentiated cell specialised for absorption, and these new models provide an opportunity to further investigate the structure and function of tuft cells.
Baskan, Oznur; Mese, Gulistan; Ozcivici, Engin
2017-02-01
Bone marrow mesenchymal stem cells that are committed to adipogenesis were exposed daily to high-frequency low-intensity mechanical vibrations to understand molecular, morphological and ultrastructural adaptations to mechanical signals during adipogenesis. D1-ORL-UVA mouse bone marrow mesenchymal stem cells were cultured with either growth or adipogenic medium for 1 week. Low-intensity vibration signals (15 min/day, 90 Hz, 0.1 g) were applied to one group of adipogenic cells, while the other adipogenic group served as a sham control. Cellular viability, lipid accumulation, ultrastructure and morphology were determined with MTT, Oil-Red-O staining, phalloidin staining and atomic force microscopy. Semiquantitative reverse transcription polymerase chain reaction showed expression profile of the genes responsible for adipogenesis and ultrastructure of cells. Low-intensity vibration signals increased viability of the cells in adipogenic culture that was reduced significantly compared to quiescent controls. Low-intensity vibration signals also normalized the effects of adipogenic condition on cell morphology, including area, perimeter, circularization and actin cytoskeleton. Furthermore, low-intensity vibration signals reduced the expression of some adipogenic markers significantly. Mesenchymal stem cells are sensitive and responsive to mechanical loads, but debilitating conditions such as aging or obesity may steer mesenchymal stem cells toward adipogenesis. Here, daily application of low-intensity vibration signals partially neutralized the effects of adipogenic induction on mesenchymal stem cells, suggesting that these signals may provide an alternative and/or complementary option to reduce fat deposition.
Postchemotherapy changes in testicular germ cell tumours: biology and morphology.
Berney, Daniel M; Lu, Yong-Jie; Shamash, Jonathan; Idrees, Muhammad
2017-01-01
Advances in modern chemotherapy and targeted treatments have resulted in lengthened survival in a variety of tumour types in the last decade. Increasingly in the 21st century, postchemotherapy resections are considered as a possible mode of treatment. Due to their exquisite chemosensitivity, resection of postchemotherapy masses has long been part of the armamentarium of treatment in testicular germ cell neoplasia, which has resulted in a variety of new morphological variants being described after treatment. Here we discuss the possible reasons for germ cell tumour chemosensitivity and hypotheses on the biological pathways leading to resistance to treatment, as well as an outline of the diverse morphology of those tumours which prove recalcitrant to standard treatment methods. The large range of morphologies and their diagnostic challenges may throw light upon the future problems to be encountered in non-germ cell solid tumour pathology, as the resection of postchemotherapy masses becomes increasingly important in patient management. © 2016 John Wiley & Sons Ltd.
2013-01-01
Background Severe shortage of liver donors and hepatocytes highlights urgent requirement of extra-liver and stem cell source of hepatocytes for treating liver-related diseases. Here we hypothesized that spermatogonial stem cells (SSCs) can directly transdifferentiate to hepatic stem-like cells capable of differentiating into mature hepatocyte-like cells in vitro without an intervening pluripotent state. Results SSCs first changed into hepatic stem-like cells since they resembled hepatic oval cells in morphology and expressed Ck8, Ck18, Ck7, Ck19, OV6, and albumin. Importantly, they co-expressed CK8 and CK19 but not ES cell markers. Hepatic stem-like cells derived from SSCs could differentiate into small hepatocytes based upon their morphological features and expression of numerous hepatic cell markers but lacking of bile epithelial cell hallmarks. Small hepatocytes were further coaxed to differentiate into mature hepatocyte-like cells, as identified by their morphological traits and strong expression of Ck8, Ck18, Cyp7a1, Hnf3b, Alb, Tat, Ttr, albumin, and CYP1A2 but not Ck7 or CK19. Notably, these differentiated cells acquired functional attributes of hepatocyte-like cells because they secreted albumin, synthesized urea, and uptake and released indocyanine green. Moreover, phosphorylation of ERK1/2 and Smad2/3 rather than Akt was activated in hepatic stem cells and mature hepatocytes. Additionally, cyclin A, cyclin B and cyclin E transcripts and proteins but not cyclin D1 or CDK1 and CDK2 transcripts or proteins were reduced in mature hepatocyte-like cells or hepatic stem-like cells derived from SSCs compared to SSCs. Conclusions SSCs can transdifferentiate to hepatic stem-like cells capable of differentiating into cells with morphological, phenotypic and functional characteristics of mature hepatocytes via the activation of ERK1/2 and Smad2/3 signaling pathways and the inactivation of cyclin A, cyclin B and cyclin E. This study thus provides an invaluable source of mature hepatocytes for treating liver-related diseases and drug toxicity screening and offers novel insights into mechanisms of liver development and cell reprogramming. PMID:24047406
The role of drebrin in glioma migration and invasion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terakawa, Yuzo; Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka; Agnihotri, Sameer
Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite current advances in therapy consisting of surgery followed by chemotherapy and radiation, the overall survival rate still remains poor. Therapeutic failures are partly attributable to the highly infiltrative nature of tumor adjacent to normal brain parenchyma. Recently, evidence is mounting to suggest that actin cytoskeleton dynamics are critical components of the cell invasion process. Drebrin is an actin-binding protein involved in the regulation of actin filament organization, and plays a significant role in cell motility; however, the role of drebrin in glioma cell invasiveness has not yet beenmore » fully elucidated. Therefore, this study was aimed to clarify the role of drebrin in glioma cell morphology and cell motility. Here we show that drebrin is expressed in glioma cell lines and in operative specimens of GBM. We demonstrate that stable overexpression of drebrin in U87 cells leads to alterations in cell morphology, and induces increased invasiveness in vitro while knockdown of drebrin in U87 cells by small interfering RNA (siRNA) decreases invasion and migration. In addition, we show that depletion of drebrin by siRNA alters glioma cell morphology in A172 GBM cell line. Our results suggest that drebrin contributes to the maintenance of cell shape, and may play an important role in glioma cell motility. - Highlights: ► Drebrin is an actin-binding protein aberrantly expressed in several cancers. ► Role of drebrin in glioma cell morphology and motility is previously unknown. ► We demonstrate that drebrin is expressed in 40% of glioblastoma specimens. ► Drebrin plays a significant role in modulating glioma cell migration and invasion.« less
Apoptosis-Like Death in Bacteria Induced by HAMLET, a Human Milk Lipid-Protein Complex
Hakansson, Anders P.; Roche-Hakansson, Hazeline; Mossberg, Ann-Kristin; Svanborg, Catharina
2011-01-01
Background Apoptosis is the primary means for eliminating unwanted cells in multicellular organisms in order to preserve tissue homeostasis and function. It is characterized by distinct changes in the morphology of the dying cell that are orchestrated by a series of discrete biochemical events. Although there is evidence of primitive forms of programmed cell death also in prokaryotes, no information is available to suggest that prokaryotic death displays mechanistic similarities to the highly regulated programmed death of eukaryotic cells. In this study we compared the characteristics of tumor and bacterial cell death induced by HAMLET, a human milk complex of alpha-lactalbumin and oleic acid. Methodology/Principal Findings We show that HAMLET-treated bacteria undergo cell death with mechanistic and morphologic similarities to apoptotic death of tumor cells. In Jurkat cells and Streptococcus pneumoniae death was accompanied by apoptosis-like morphology such as cell shrinkage, DNA condensation, and DNA degradation into high molecular weight fragments of similar sizes, detected by field inverse gel electrophoresis. HAMLET was internalized into tumor cells and associated with mitochondria, causing a rapid depolarization of the mitochondrial membrane and bound to and induced depolarization of the pneumococcal membrane with similar kinetic and magnitude as in mitochondria. Membrane depolarization in both systems required calcium transport, and both tumor cells and bacteria were found to require serine protease activity (but not caspase activity) to execute cell death. Conclusions/Significance Our results suggest that many of the morphological changes and biochemical responses associated with apoptosis are present in prokaryotes. Identifying the mechanisms of bacterial cell death has the potential to reveal novel targets for future antimicrobial therapy and to further our understanding of core activation mechanisms of cell death in eukaryote cells. PMID:21423701
Apoptosis-like death in bacteria induced by HAMLET, a human milk lipid-protein complex.
Hakansson, Anders P; Roche-Hakansson, Hazeline; Mossberg, Ann-Kristin; Svanborg, Catharina
2011-03-10
Apoptosis is the primary means for eliminating unwanted cells in multicellular organisms in order to preserve tissue homeostasis and function. It is characterized by distinct changes in the morphology of the dying cell that are orchestrated by a series of discrete biochemical events. Although there is evidence of primitive forms of programmed cell death also in prokaryotes, no information is available to suggest that prokaryotic death displays mechanistic similarities to the highly regulated programmed death of eukaryotic cells. In this study we compared the characteristics of tumor and bacterial cell death induced by HAMLET, a human milk complex of alpha-lactalbumin and oleic acid. We show that HAMLET-treated bacteria undergo cell death with mechanistic and morphologic similarities to apoptotic death of tumor cells. In Jurkat cells and Streptococcus pneumoniae death was accompanied by apoptosis-like morphology such as cell shrinkage, DNA condensation, and DNA degradation into high molecular weight fragments of similar sizes, detected by field inverse gel electrophoresis. HAMLET was internalized into tumor cells and associated with mitochondria, causing a rapid depolarization of the mitochondrial membrane and bound to and induced depolarization of the pneumococcal membrane with similar kinetic and magnitude as in mitochondria. Membrane depolarization in both systems required calcium transport, and both tumor cells and bacteria were found to require serine protease activity (but not caspase activity) to execute cell death. Our results suggest that many of the morphological changes and biochemical responses associated with apoptosis are present in prokaryotes. Identifying the mechanisms of bacterial cell death has the potential to reveal novel targets for future antimicrobial therapy and to further our understanding of core activation mechanisms of cell death in eukaryote cells.
Yoder, Elizabeth J
2002-04-15
Astrocytes extend specialized endfoot processes to perisynaptic and perivascular regions, and thus are positioned to mediate the bidirectional flow of metabolic, ionic, and other transmissive substances between neurons and the blood stream. While mutual structural and functional interactions between neurons and astrocytes have been documented, less is known about the interactions between astrocytes and cerebrovascular cells. For example, although the ability of astrocytes to induce structural and functional changes in endothelial cells is established, the reciprocity of brain endothelial cells to induce changes in astrocytes is undetermined. This issue is addressed in the present study. Changes in primary cultures of neonatal mouse cortical astrocytes were investigated following their coculture with mouse brain capillary endothelial (bEnd3) cells. The presence of bEnd3 cells altered the morphology of astrocytes by transforming them from confluent monolayers into networks of elongated multicellular columns. These columns did not occur when either bEnd3 cells or astrocytes were cocultured with other cell types, suggesting that astrocytes undergo specific morphological consequences when placed in close proximity to brain endothelial cells. In addition to these structural changes, the pharmacological profile of astrocytes was modified by coculture with bEnd3 cells. Astrocytes in the cocultures showed an increased Ca2+ responsiveness to bradykinin and glutamate, but no change in responsiveness to ATP, as compared to controls. Coculturing the astrocytes with a neuronal cell line resulted in increased responsiveness of the glial responses to glutamate but not to bradykinin. These studies indicate that brain endothelial cells induce changes in astrocyte morphology and pharmacology. Copyright 2002 Wiley-Liss, Inc.
The cytoskeletal arrangements necessary to neurogenesis
Compagnucci, Claudia; Piemonte, Fiorella; Sferra, Antonella; Piermarini, Emanuela; Bertini, Enrico
2016-01-01
During the process of neurogenesis, the stem cell committed to the neuronal cell fate starts a series of molecular and morphological changes. The understanding of the physio-pathology of mechanisms controlling the molecular and morphological changes occurring during neuronal differentiation is fundamental to the development of effective therapies for many neurologic diseases. Unfortunately, our knowledge of the biological events occurring in the cell during neuronal differentiation is still poor. In this study, we focus preliminarily on the relevance of the cytoskeletal rearrangements, which earlier drive the morphology of the neuronal precursors, and later the migrating/mature neurons. In fact, neuritogenesis, neurite branching, outgrowth and retraction are seminal to the development of a fully functional nervous system. With this in mind, we highlight the importance of iPSC technology to study the processes of cytoskeletal-driven morphological changes during neuronal differentiation. PMID:26760504
Shrikanth, Vandana; Salazar, Lucrecia; Khoury, Nabil; Wootton, Susan; Hasbun, Rodrigo
2015-01-01
Study objectives Hypoglycorrhachia (CSF glucose < 45mg/dL) has been identified as a prognostic factor in patients with meningitis. We analyzed the differential diagnosis of hypoglycorrhachia and its clinical significance. Methods Retrospective study of 620 adult patients with community acquired meningitis [CSF WBC >5 cells/mm3, absence of a CSF shunt or recent neurosurgical procedure (< 1 month)] at 8 Memorial Hermann Hospitals in Houston, TX from January, 2005 to December, 2010. An adverse clinical outcome was defined as a Glasgow outcome scale of 4 or less. Results Out of 620 patients with meningitis, 116 (19%) had hypoglycorrachia. Etiologies of hypoglycorrhachia were idiopathic (40), bacterial (27), cryptococcal (26), viral (15), and tuberculous (4). Patients with hypoglycorrachia were more likely to be immunosuppressed, have a history of intravenous drug use, and present with a vesicular or petechial rash, nausea or vomiting, nuchal rigidity, sinusitis/otitis, abnormal mental status and focal neurological deficits compared to those patients without hypoglycorrachia (p<0.05). Additionally, patients in the hypoglycorrhachia group had significantly higher rates of positive CSF and blood cultures, urgent treatable conditions and abnormal cranial imaging (p<005). Furthermore, patients with hypoglycorrachia had more adverse clinical outcomes [26 out of 116 (22.4%) vs. 45 out of 504 (8.9%)] (p< 0.001). Conclusion Hypoglycorrhachia has significant clinical and prognostic value in the evaluation of adult patients with community-acquired meningitis. PMID:26299186
Santos, Julliana Ribeiro Alves; Holanda, Rodrigo Assunção; Frases, Susana; Bravim, Mayara; Araujo, Glauber de S.; Santos, Patrícia Campi; Costa, Marliete Carvalho; Ribeiro, Maira Juliana Andrade; Ferreira, Gabriella Freitas; Baltazar, Ludmila Matos; Miranda, Aline Silva; Oliveira, Danilo Bretas; Santos, Carolina Maria Araújo; Fontes, Alide Caroline Lima; Gouveia, Ludmila Ferreira; Resende-Stoianoff, Maria Aparecida; Abrahão, Jonatas Santos; Teixeira, Antônio Lúcio; Paixão, Tatiane Alves; Souza, Danielle G.; Santos, Daniel Assis
2014-01-01
Cryptococcus gattii is an emergent human pathogen. Fluconazole is commonly used for treatment of cryptococcosis, but the emergence of less susceptible strains to this azole is a global problem and also the data regarding fluconazole-resistant cryptococcosis are scarce. We evaluate the influence of fluconazole on murine cryptococcosis and whether this azole alters the polysaccharide (PS) from cryptococcal cells. L27/01 strain of C. gattii was cultivated in high fluconazole concentrations and developed decreased drug susceptibility. This phenotype was named L27/01F, that was less virulent than L27/01 in mice. The physical, structural and electrophoretic properties of the PS capsule of L27/01F were altered by fluconazole. L27/01F presented lower antiphagocytic properties and reduced survival inside macrophages. The L27/01F did not affect the central nervous system, while the effect in brain caused by L27/01 strain began after only 12 hours. Mice infected with L27/01F presented lower production of the pro-inflammatory cytokines, with increased cellular recruitment in the lungs and severe pulmonary disease. The behavioral alterations were affected by L27/01, but no effects were detected after infection with L27/01F. Our results suggest that stress to fluconazole alters the capsule of C. gattii and influences the clinical manifestations of cryptococcosis. PMID:25392951
Ramos, Caroline L.; Fonseca, Fernanda L.; Rodrigues, Jessica; Guimarães, Allan J.; Cinelli, Leonardo P.; Miranda, Kildare; Nimrichter, Leonardo; Casadevall, Arturo; Travassos, Luiz R.
2012-01-01
In prior studies, we demonstrated that glucuronoxylomannan (GXM), the major capsular polysaccharide of the fungal pathogen Cryptococcus neoformans, interacts with chitin oligomers at the cell wall-capsule interface. The structural determinants regulating these carbohydrate-carbohydrate interactions, as well as the functions of these structures, have remained unknown. In this study, we demonstrate that glycan complexes composed of chitooligomers and GXM are formed during fungal growth and macrophage infection by C. neoformans. To investigate the required determinants for the assembly of chitin-GXM complexes, we developed a quantitative scanning electron microscopy-based method using different polysaccharide samples as inhibitors of the interaction of chitin with GXM. This assay revealed that chitin-GXM association involves noncovalent bonds and large GXM fibers and depends on the N-acetyl amino group of chitin. Carboxyl and O-acetyl groups of GXM are not required for polysaccharide-polysaccharide interactions. Glycan complex structures composed of cryptococcal GXM and chitin-derived oligomers were tested for their ability to induce pulmonary cytokines in mice. They were significantly more efficient than either GXM or chitin oligomers alone in inducing the production of lung interleukin 10 (IL-10), IL-17, and tumor necrosis factor alpha (TNF-α). These results indicate that association of chitin-derived structures with GXM through their N-acetyl amino groups generates glycan complexes with previously unknown properties. PMID:22562469
Ganiem, A. Rizal; Dian, Sofiati; Indriati, Agnes; Chaidir, Lidya; Wisaksana, Rudi; Sturm, Patrick; Melchers, Willem; van der Ven, Andre; Parwati, Ida; van Crevel, Reinout
2013-01-01
Background HIV-associated subacute meningitis is mostly caused by tuberculosis or cryptococcosis, but often no etiology can be established. In the absence of CT or MRI of the brain, toxoplasmosis is generally not considered as part of the differential diagnosis. Methodology/Principal Findings We performed cerebrospinal fluid real time PCR and serological testing for Toxoplasma gondii in archived samples from a well-characterized cohort of 64 HIV-infected patients presenting with subacute meningitis in a referral hospital in Indonesia. Neuroradiology was only available for 6 patients. At time of presentation, patients mostly had newly diagnosed and advanced HIV infection (median CD4 count 22 cells/mL), with only 17.2% taking ART, and 9.4% PJP-prophylaxis. CSF PCR for T. Gondii was positive in 21 patients (32.8%). Circulating toxoplasma IgG was present in 77.2% of patients tested, including all in whom the PCR of CSF was positive for T. Gondii. Clinically, in the absence of neuroradiology, toxoplasmosis was difficult to distinguish from tuberculosis or cryptococcal meningitis, although CSF abnormalities were less pronounced. Mortality among patients with a positive CSF T. Gondii PCR was 81%, 2.16-fold higher (95% CI 1.04–4.47) compared to those with a negative PCR. Conclusions/Significance Toxoplasmosis should be considered in HIV-infected patients with clinically suspected subacute meningitis in settings where neuroradiology is not available. PMID:23326616
Induction of Broad-Spectrum Protective Immunity against Disparate Cryptococcus Serotypes
Van Dyke, Marley C. Caballero; Chaturvedi, Ashok K.; Hardison, Sarah E.; Leopold Wager, Chrissy M.; Castro-Lopez, Natalia; Hole, Camaron R.; Wozniak, Karen L.; Wormley, Floyd L.
2017-01-01
Cryptococcosis is a fungal disease caused by multiple Cryptococcus serotypes; particularly C. neoformans (serotypes A and D) and C. gattii (serotypes B and C). To date, there is no clinically available vaccine to prevent cryptococcosis. Mice given an experimental pulmonary vaccination with a C. neoformans serotype A strain engineered to produce interferon-γ, denoted H99γ, are protected against a subsequent otherwise lethal experimental infection with C. neoformans serotype A. Thus, we determined the efficacy of immunization with C. neoformans strain H99γ to elicit broad-spectrum protection in BALB/c mice against multiple disparate Cryptococcus serotypes. We observed significantly increased survival rates and significantly decreased pulmonary fungal burden in H99γ immunized mice challenged with Cryptococcus serotypes A, B, or D compared to heat-killed H99γ (HKH99γ) immunized mice. Results indicated that prolonged protection against Cryptococcus serotypes B or D in H99γ immunized mice was CD4+ T cell dependent and associated with the induction of predominantly Th1-type cytokine responses. Interestingly, immunization with H99γ did not elicit greater protection against challenge with the Cryptococcus serotype C tested either due to low overall virulence of this strain or enhanced capacity of this strain to evade host immunity. Altogether, these studies provide “proof-of-concept” for the development of a cryptococcal vaccine that provides cross-protection against multiple disparate serotypes of Cryptococcus. PMID:29163469
The K -region dihydrodiol ofbenzo[ a ]pyrene induces DNA damage and morphological cell transformation in C3HlOTY2CL8 mouse embryo cells without the formation of detectable stable covalent DNA adducts
Benzo[ a ]pyrene (B[ a ]P) is the most thoroughly studied polycyclic aro...
Torshabi, Maryam; Esfahrood, Zeinab Rezaei; Gholamin, Parisan; Karami, Elahe
2016-11-01
Evidence shows that oxidative stress induced by nicotine plays an important role in bone loss. Vitamin E with its antioxidative properties may be able to reverse the effects of nicotine on bone. This study aimed to assess the effects of nicotine in the presence and absence of vitamin E on morphology, viability and osteogenic gene expression in MG-63 (osteosarcoma) human osteoblast-like cells. We treated the cells with 5 mM nicotine. The viability and morphology of cells were evaluated respectively using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) and crystal violet assays. The effect of nicotine on osteogenic gene expression in MG-63 cells was assessed by real-time reverse-transcription polymerase chain reaction of osteoblast markers, namely, alkaline phosphatase, osteocalcin and bone sialoprotein. The results revealed that survival and proliferation of MG-63 cells were suppressed following exposure to nicotine, and cytoplasm vacuolization occurred in the cells. Nicotine significantly down-regulated the expression of osteogenic marker genes. Such adverse effects on morphology, viability and osteogenic gene expression of MG-63 cells were reversed by vitamin E therapy. In conclusion, vitamin E supplementation may play a role in proliferation and differentiation of osteoblasts, and vitamin E can be considered as an anabolic agent to treat nicotine-induced bone loss.
Chvátal, Alexandr; Anděrová, Miroslava; Kirchhoff, Frank
2007-01-01
Pathological states in the central nervous system lead to dramatic changes in the activity of neuroactive substances in the extracellular space, to changes in ionic homeostasis and often to cell swelling. To quantify changes in cell morphology over a certain period of time, we employed a new technique, three-dimensional confocal morphometry. In our experiments, performed on enhanced green fluorescent protein/glial fibrillary acidic protein astrocytes in brain slices in situ and thus preserving the extracellular microenvironment, confocal morphometry revealed that the application of hypotonic solution evoked two types of volume change. In one population of astrocytes, hypotonic stress evoked small cell volume changes followed by a regulatory volume decrease, while in the second population volume changes were significantly larger without subsequent volume regulation. Three-dimensional cell reconstruction revealed that even though the total astrocyte volume increased during hypotonic stress, the morphological changes in various cell compartments and processes were more complex than have been previously shown, including swelling, shrinking and structural rearrangement. Our data show that astrocytes in brain slices in situ during hypotonic stress display complex behaviour. One population of astrocytes is highly capable of cell volume regulation, while the second population is characterized by prominent cell swelling, accompanied by plastic changes in morphology. It is possible to speculate that these two astrocyte populations play different roles during physiological and pathological states. PMID:17488344
Martín-Subero, José I; Kreuz, Markus; Bibikova, Marina; Bentink, Stefan; Ammerpohl, Ole; Wickham-Garcia, Eliza; Rosolowski, Maciej; Richter, Julia; Lopez-Serra, Lidia; Ballestar, Esteban; Berger, Hilmar; Agirre, Xabier; Bernd, Heinz-Wolfram; Calvanese, Vincenzo; Cogliatti, Sergio B; Drexler, Hans G; Fan, Jian-Bing; Fraga, Mario F; Hansmann, Martin L; Hummel, Michael; Klapper, Wolfram; Korn, Bernhard; Küppers, Ralf; Macleod, Roderick A F; Möller, Peter; Ott, German; Pott, Christiane; Prosper, Felipe; Rosenwald, Andreas; Schwaenen, Carsten; Schübeler, Dirk; Seifert, Marc; Stürzenhofecker, Benjamin; Weber, Michael; Wessendorf, Swen; Loeffler, Markus; Trümper, Lorenz; Stein, Harald; Spang, Rainer; Esteller, Manel; Barker, David; Hasenclever, Dirk; Siebert, Reiner
2009-03-12
Lymphomas are assumed to originate at different stages of lymphocyte development through chromosomal aberrations. Thus, different lymphomas resemble lymphocytes at distinct differentiation stages and show characteristic morphologic, genetic, and transcriptional features. Here, we have performed a microarray-based DNA methylation profiling of 83 mature aggressive B-cell non-Hodgkin lymphomas (maB-NHLs) characterized for their morphologic, genetic, and transcriptional features, including molecular Burkitt lymphomas and diffuse large B-cell lymphomas. Hierarchic clustering indicated that methylation patterns in maB-NHLs were not strictly associated with morphologic, genetic, or transcriptional features. By supervised analyses, we identified 56 genes de novo methylated in all lymphoma subtypes studied and 22 methylated in a lymphoma subtype-specific manner. Remarkably, the group of genes de novo methylated in all lymphoma subtypes was significantly enriched for polycomb targets in embryonic stem cells. De novo methylated genes in all maB-NHLs studied were expressed at low levels in lymphomas and normal hematopoietic tissues but not in nonhematopoietic tissues. These findings, especially the enrichment for polycomb targets in stem cells, indicate that maB-NHLs with different morphologic, genetic, and transcriptional background share a similar stem cell-like epigenetic pattern. This suggests that maB-NHLs originate from cells with stem cell features or that stemness was acquired during lymphomagenesis by epigenetic remodeling.
Electrospinning Nanofiber Based Organic Solar Cell
NASA Astrophysics Data System (ADS)
Yang, Zhenhua; Liu, Ying; Moffa, Maria; Nam, Chang-Yong; Pisignano, Dario; Rafailovich, Miriam
Bulk heterojunction (BHJ) polymer solar cells are an area of intense interest due to their potential to result in printable, inexpensive solar cells which can be processed onto flexible substrates. The active layer is typically spin coated from the solution of polythiophene derivatives (donor) and fullerenes (acceptor) and interconnected domains are formed because of phase separation. However, the power conversion efficiency (PCE) of BHJ solar cell is restricted by the presence of unfavorable morphological features, including dead ends or isolated domains. Here we MEH-PPV:PVP:PCBM electrospun nanofiber into BHJ solar cell for the active layer morphology optimization. Larger interfacial area between donor and acceptor is abtained with electrospinning method and the high aspect ratio of the MEH-PPV:PVP:PCBM nanofibers allow them to easily form a continuous pathway. The surface morphology is investigated with atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrospun nanofibers are discussed as a favorable structure for application in bulk-heterojunction organic solar cells. Electrospinning Nanofiber Based Bulk Heterojunction Organic Solar Cell.
Osanai, Takashi; Kuwahara, Ayuko; Iijima, Hiroko; Toyooka, Kiminori; Sato, Mayuko; Tanaka, Kan; Ikeuchi, Masahiko; Saito, Kazuki; Hirai, Masami Yokota
2013-11-01
Over-expression of sigE, a gene encoding an RNA polymerase sigma factor in the unicellular cyanobacterium Synechocystis sp. PCC 6803, is known to activate sugar catabolism and bioplastic production. In this study, we investigated the effects of sigE over-expression on cell morphology, photosynthesis and hydrogen production in this cyanobacterium. Transmission electron and scanning probe microscopic analyses revealed that sigE over-expression increased the cell size, possibly as a result of aberrant cell division. Over-expression of sigE reduced respiration and photosynthesis activities via changes in gene expression and chlorophyll fluorescence. Hydrogen production under micro-oxic conditions is enhanced in sigE over-expressing cells. Despite these pleiotropic phenotypes, the sigE over-expressing strain showed normal cell viability under both nitrogen-replete and nitrogen-depleted conditions. These results provide insights into the inter-relationship among metabolism, cell morphology, photosynthesis and hydrogen production in this unicellular cyanobacterium. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Bassoy, Esen Yonca; Kasahara, Atsuko; Chiusolo, Valentina; Jacquemin, Guillaume; Boydell, Emma; Zamorano, Sebastian; Riccadonna, Cristina; Pellegatta, Serena; Hulo, Nicolas; Dutoit, Valérie; Derouazi, Madiha; Dietrich, Pierre Yves; Walker, Paul R; Martinvalet, Denis
2017-06-01
Glioblastoma is a highly heterogeneous aggressive primary brain tumor, with the glioma stem-like cells (GSC) being more sensitive to cytotoxic lymphocyte-mediated killing than glioma differentiated cells (GDC). However, the mechanism behind this higher sensitivity is unclear. Here, we found that the mitochondrial morphology of GSCs modulates the ER-mitochondria contacts that regulate the surface expression of sialylated glycans and their recognition by cytotoxic T lymphocytes and natural killer cells. GSCs displayed diminished ER-mitochondria contacts compared to GDCs. Forced ER-mitochondria contacts in GSCs increased their cell surface expression of sialylated glycans and reduced their susceptibility to cytotoxic lymphocytes. Therefore, mitochondrial morphology and dynamism dictate the ER-mitochondria contacts in order to regulate the surface expression of certain glycans and thus play a role in GSC recognition and elimination by immune effector cells. Targeting the mitochondrial morphology, dynamism, and contacts with the ER could be an innovative strategy to deplete the cancer stem cell compartment to successfully treat glioblastoma. © 2017 The Authors.
NASA Astrophysics Data System (ADS)
Kim, Dong-Joo; Kim, Gil-Sung; Hyung, Jung-Hwan; Lee, Won-Yong; Hong, Chang-Hee; Lee, Sang-Kwon
2013-07-01
Direct observations of the primary mouse CD4 T cell morphologies, e.g., cell adhesion and cell spreading by culturing CD4 T cells in a short period of incubation (e.g., 20 min) on streptavidin-functionalized quartz nanopillar arrays (QNPA) using a high-content scanning electron microscopy method were reported. Furthermore, we first demonstrated cross-sectional cell traction force distribution of surface-bound CD4 T cells on QNPA substrates by culturing the cells on top of the QNPA and further analysis in deflection of underlying QNPA via focused ion beam-assisted technique.
Reconstitution of the NF1 GAP-related domain in NF1-deficient human Schwann cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Stacey L.; Neuroscience Program, Loyola University Medical Center, Maywood, IL; Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL
Schwann cells derived from peripheral nerve sheath tumors from individuals with Neurofibromatosis Type 1 (NF1) are deficient for the protein neurofibromin, which contains a GAP-related domain (NF1-GRD). Neurofibromin-deficient Schwann cells have increased Ras activation, increased proliferation in response to certain growth stimuli, increased angiogenic potential, and altered cell morphology. This study examined whether expression of functional NF1-GRD can reverse the transformed phenotype of neurofibromin-deficient Schwann cells from both benign and malignant peripheral nerve sheath tumors. We reconstituted the NF1-GRD using retroviral transduction and examined the effects on cell morphology, growth potential, and angiogenic potential. NF1-GRD reconstitution resulted in morphologic changes,more » a 16-33% reduction in Ras activation, and a 53% decrease in proliferation in neurofibromin-deficient Schwann cells. However, NF1-GRD reconstitution was not sufficient to decrease the in vitro angiogenic potential of the cells. This study demonstrates that reconstitution of the NF1-GRD can at least partially reverse the transformation of human NF1 tumor-derived Schwann cells.« less
Low-level lasers affect Escherichia coli cultures in hyperosmotic stress
NASA Astrophysics Data System (ADS)
Pinheiro, C. C.; Barboza, L. L.; Paoli, F.; Fonseca, A. S.
2015-08-01
Physical characteristics and practical properties have made lasers of interest for biomedical applications. Effects of low-level lasers on biological tissues could occur or be measurable depending on cell type, presence of a pathologic process or whether the cells are in an adverse environment. The objective of this work was to evaluate the survival, morphology and filamentation of E. coli cells proficient and deficient in the repair of oxidative DNA lesions exposed low-level red and infrared lasers submitted to hyperosmotic stress. Wild type and endonuclease VIII deficient E. coli cells in exponential and stationary growth phase were exposed to red and infrared lasers and submitted to hyperosmotic stress. Cell viability, filamentation phenotype and cell morphology were evaluated. Cell viability was not significantly altered but previous laser exposure induced filamentation and an altered area of stressed cells depending on physiologic condition and presence of the DNA repair. Results suggest that previous exposure to low-level red and infrared lasers could not affect viability but induced morphologic changes in cells submitted to hyperosmotic stress depending on physiologic conditions and repair of oxidative DNA lesions.
Cell morphology and flagellation of nitrogen-fixing spirilla.
Hegazi, N A; Vlassak, K
1979-01-01
Twenty isolates of N2-fixing spirilla were isolated from the rhizosphere of maize and sugar cane grown in Egyptian and Belgian soils. Electron microscopy distinguished two morphological groups. The first includes short and thick curved rods with an unipolar flagellum while cells of the second group are much longer with the typical appearance of spiral cells and most probably possess a bipolar tuft of flagella.
Quantification of mammalian tumor cell state plasticity with digital holographic cytometry
NASA Astrophysics Data System (ADS)
Hejna, Miroslav; Jorapur, Aparna; Zhang, Yuntian; Song, Jun S.; Judson, Robert L.
2018-02-01
Individual cells within isogenic tumor populations can exhibit distinct cellular morphologies, behaviors, and molecular profiles. Cell state plasticity refers to the propensity of a cell to transition between these different morphologies and behaviors. Elevation of cell state plasticity is thought to contribute to critical stages in tumor evolution, including metastatic dissemination and acquisition of therapeutic resistance. However, methods for quantifying general plasticity in mammalian cells remain limited. Working with a HoloMonitor M4 digital holographic cytometry platform, we have established a machine learning-based pipeline for high accuracy and label-free classification of adherent cells. We use twenty-six morphological and optical density-derived features for label-free identification of cell state in heterogeneous cultures. The system is housed completely within a mammalian cell incubator, permitting the monitoring of changes in cell state over time. Here we present an application of our approach for studying cell state plasticity. Human melanoma cell lines of known metastatic potential were monitored in standard growth conditions. The rate of feature change was quantified for each individual cell in the populations. We observed that cells of higher metastatic potential exhibited more rapid fluctuation of cell state in homeostatic conditions. The approach we demonstrate will be advantageous for further investigations into the factors that influence cell state plasticity.
Three-dimensional epithelial tissues generated from human embryonic stem cells.
Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A
2009-11-01
The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.
Neurological complication in HIV patients
NASA Astrophysics Data System (ADS)
Ritarwan, K.
2018-03-01
Human Immunodeficiency Virus (HIV) is neurotropic and immunotropic, making themassive destruction of both systems. Although their amount has been reduced, there is still neurological presentations and complications of HIV remain common in the era of combination antiretroviral therapy (cART). Neurological opportunistic infections (OI) occur in advanced HIV diseases such as primary cerebral lymphoma, cryptococcal meningitis, cerebral toxoplasmosis, and progressive multifocal encephalopathy. Neurological problem directly related to HIV appear at any stage in the progress of HIV disease, from AIDS-associated dementia to the aseptic meningitis of primary HIV infection observed in subjects with an immune deficiency. The replication of peripheral HIV viral is able to be controlled in the era of effective antiretroviral therapy. Non-HIV-related neurological disease such as stroke increased important as the HIV population ages.
Methods of rapid diagnosis for the etiology of meningitis in adults
Bahr, Nathan C; Boulware, David R
2014-01-01
Infectious meningitis may be due to bacterial, mycobacterial, fungal or viral agents. Diagnosis of meningitis must take into account numerous items of patient history and symptomatology along with regional epidemiology and basic cerebrospinal fluid testing (protein, etc.) to allow the clinician to stratify the likelihood of etiology possibilities and rationally select additional diagnostic tests. Culture is the mainstay for diagnosis in many cases, but technology is evolving to provide more rapid, reliable diagnosis. The cryptococcal antigen lateral flow assay (Immuno-Mycologics) has revolutionized diagnosis of cryptococcosis and automated nucleic acid amplification assays hold promise for improving diagnosis of bacterial and mycobacterial meningitis. This review will focus on a holistic approach to diagnosis of meningitis as well as recent technological advances. PMID:25402579
Blum, Walter; Pecze, László; Felley-Bosco, Emanuela; Schwaller, Beat
2015-12-22
The Ca(2+)-binding protein calretinin is currently used as a positive marker for identifying epithelioid malignant mesothelioma (MM) and reactive mesothelium, but calretinin's likely role in mesotheliomagenesis remains unclear. Calretinin protects immortalized mesothelial cells in vitro from asbestos-induced cytotoxicity and thus might be implicated in mesothelioma formation. To further investigate calretinin's putative role in the early steps of MM generation, primary mesothelial cells from calretinin knockout (CR-/-) and wildtype (WT) mice were compared. Primary mouse mesothelial cells from WT and CR-/- mice were investigated with respect to morphology, marker proteins, proliferation, cell cycle parameters and mobility in vitro. Overexpression of calretinin or a nuclear-targeted variant was achieved by a lentiviral expression system. CR-/- mice have a normal mesothelium and no striking morphological abnormalities compared to WT animals were noted. Primary mouse mesothelial cells from both genotypes show a typical "cobblestone-like" morphology and express mesothelial markers including mesothelin. In cells from CR-/- mice in vitro, we observed more giant cells and a significantly decreased proliferation rate. Up-regulation of calretinin in mesothelial cells of both genotypes increases the proliferation rate and induces a cobblestone-like epithelial morphology. The length of the S/G2/M phase is unchanged, however the G1 phase is clearly prolonged in CR-/- cells. They are also much slower to close a scratch in a confluent cell layer (2D-wound assay). In addition to a change in cell morphology, an increase in proliferation and mobility is observed, if calretinin overexpression is targeted to the nucleus. Thus, both calretinin and nuclear-targeted calretinin increase mesothelial cell proliferation and consequently, speed up the scratch-closure time. The increased rate of scratch closure in WT cells is the result of two processes: an increased proliferation rate and augmented cell mobility of the border cells migrating towards the empty space. We hypothesize that the differences in proliferation and mobility between WT and CR-/- mesothelial cells are the likely result from differences in their developmental trajectories. The mechanistic understanding of the function of calretinin and its putative implication in signaling pathways in normal mesothelial cells may help understanding its role during the processes that lead to mesothelioma formation and could possibly open new avenues for mesothelioma therapy, either by directly targeting calretinin expression or indirectly by targeting calretinin-mediated downstream signaling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atay, Safinur; Gercel-Taylor, Cicek; Kesimer, Mehmet
Exosomes represent an important intercellular communication vehicle, mediating events essential for the decidual microenvironment. While we have demonstrated exosome induction of pro-inflammatory cytokines, to date, no extensive characterization of trophoblast-derived exosomes has been provided. Our objective was to provide a morphologic and proteomic characterization of these exosomes. Exosomes were isolated from the conditioned media of Swan71 human trophoblast cells by ultrafiltration and ultracentrifugation. These were analyzed for density (sucrose density gradient centrifugation), morphology (electron microscopy), size (dynamic light scattering) and protein composition (Ion Trap mass spectrometry and western immunoblotting). Based on density gradient centrifugation, microvesicles from Sw71 cells exhibit amore » density between 1.134 and 1.173 g/ml. Electron microscopy demonstrated that microvesicles from Sw71 cells exhibit the characteristic cup-shaped morphology of exosomes. Dynamic light scattering showed a bell-shaped curve, indicating a homogeneous population with a mean size of 165 nm {+-} 0.5 nm. Ion Trap mass spectrometry demonstrated the presence of exosome marker proteins (including CD81, Alix, cytoskeleton related proteins, and Rab family). The MS results were confirmed by western immunoblotting. Based on morphology, density, size and protein composition, we defined the release of exosomes from extravillous trophoblast cells and provide their first extensive characterization. This characterization is essential in furthering our understanding of 'normal' early pregnancy.« less
Shivali, B.; S., Kataria; Chandramouleeswari, K.; Anita, S.
2013-01-01
Myofibroblastoma (MFB) is a rare mesenchymal tumour, derived from mammary stromal fibro-myofibroblasts, with diverse biological and morphological behaviour. Large and cellular myofibroblastomas, especially those with epitheliod like cells, can mimic various spindle cell lesions and metaplastic carcinomas, thus posing diagnostic challenge. A 50–year woman presented with slow growing, painless lump in the left breast. Fine Needle Aspiration (FNA) smears showed predominant atypical spindle cell population, pleomorphic epithelial like cells and giant cells. Cytodiagnosis of atypical spindle cell lesion with the possibility of metaplastic carcinoma was suggested. Histopathological examination showed fascicles of spindle cell population admixed with epithelial like cells, atypical cells and tumour giant cells, thus raising differential diagnosis of metaplastic carcinoma, low grade spindle cell sarcoma and myofibroblastic tumour. Lymph nodes were negative for metastatic deposits. Immunohistochemistry revealed variable coexpression of markers for vimentin, fibronectin, CD34, SMA (smooth muscle actin), but negative expression for , S-100, CD99, CK7 (cytokeratin 7), HMWK (high molecular weight keratin), ER (oestrogen receptor) and PR(progesterone receptors). Diagnosis of cellular myofibroblastoma with mixed unusual morphological features was defined, based on both histological and immunohistochemical features. MFB may cause a potential diagnostic pitfall while interpreting FNA and histopathological sections due to its wide differential diagnosis. The distinction of MFB from its cytohistological mimics of malignancy is crucial to avoid unnecessary extensive procedures. The case report emphasizes the role of immunohistochemistry as gold standard in diagnosis of MFB. The case is also being presented because of its large size and rare mixed unusual morphological features. PMID:24298520
SEM Imaging for Observation of Morphological Changes in Anaemic Human Blood Cell
NASA Astrophysics Data System (ADS)
Datta, Triparna; Roychoudhury, Uttam
Scanning Electron Microscopy (SEM) is utilized to elucidate the morphological changes in anaemic human red blood cells. Haemoglobin concentration in human blood is in the range of 11.5-13.5 g/dl in healthy adults. Haemoglobin concentration in anaemic red blood is below the lower limit of normal range. Sometimes, the nature of the abnormal shape of the blood cell determines the cause of anaemia. Normally, there occurs a variation in the diameter of the red blood cell (RBC) for different types of anaemia. Increased variation of size in blood cell is termed anisocytosis (a type of anaemia) (Mohan H, Text book of pathology, New Delhi). In case of anisocytosis, diameter of cells larger than normal cell is observed. The classification of anaemia by the size of blood cell is logical, i.e. common morphological abnormality of human blood cell (Davidson's principle and practice of medicine, Publisher Churchill Livingstone, London). Cells are studied under ZEISS SEM with different magnification and applied potential of kV range. Thus the diameters of RBCs in SEM have been compared with RBCs photographed with light microscope. Anaemic cells are observed overlapped with each other with increasing diameter.
Light responses and morphology of bNOS-immunoreactive neurons in the mouse retina
Pang, Ji-Jie; Gao, Fan; Wu, Samuel M.
2010-01-01
Nitric oxide (NO), produced by NO synthase (NOS), modulates the function of all retinal neurons and ocular blood vessels and participates in the pathogenesis of ocular diseases. To further understand the regulation of ocular NO release, we systematically studied the morphology, topography and light responses of NOS-containing amacrine cells (NOACs) in dark-adapted mouse retina. Immunohistological staining for neuronal NOS (bNOS), combined with retrograde labeling of ganglion cells (GCs) with Neurobiotin (NB, a gap junction permeable dye) and Lucifer yellow (LY, a less permeable dye), was used to identify NOACs. The light responses of ACs were recorded under whole-cell voltage clamp conditions and cell morphology was examined with a confocal microscope. We found that in dark-adapted conditions bNOS-immunoreactivity (IR) was present primarily in the inner nuclear layer and the ganglion cell layer. bNOS-IR somas were negative for LY, thus they were identified as ACs; nearly 6 % of the cells were labeled by NB but not by LY, indicating that they were dye-coupled with GCs. Three morphological subtypes of NOACs (NI, NII and displaced) were identified. The cell density, inter-cellular distance and the distribution of NOACs were studied in whole retinas. Light evoked depolarizing highly sensitive ON-OFF responses in NI cells and less sensitive OFF responses in NII cells. Frequent (1 to 2 Hz) or abrupt change of light-intensity evoked larger peak responses. The possibility for light to modify NO release from NOACs is discussed. PMID:20503422
Shu, Benshui; Wang, Wenxiang; Hu, Qingbo; Huang, Jingfei; Hu, Meiying; Zhong, Guohua
2015-07-01
The induction of apoptosis by azadirachtin, a well-known botanical tetranortriterpenoid isolated from the neem tree (Azadirachta indica A. Juss) and other members of the Meliaceae, was investigated in Spodoptera frugiperda cultured cell line (Sf9). Morphological changes in Sf9 cells treated by various concentrations of azadirachtin were observed at different times under light microscopy. Morphological and biochemical analysis indicated that Sf9 cells treated by 1.5 μg/mL azadirachtin showed typical morphological changes, which were indicative of apoptosis and a clear DNA ladder. The flow cytometry analysis showed the apoptosis rate reached a maximum value of 32.66% at 24 h with 1.5 μg/mL azadirachtin in Sf9 cells. The inhibition of Sf9 cell proliferation suggested that the effect of azadirachtin was dose dependent and the EC50 at 48 and 72 h was 2.727 × 10(-6) and 6.348 × 10(-9) μg/mL, respectively. The treatment of azadirachtin in Sf9 cells could significantly increase the activity of Sf caspase-1, but showed no effect on the activity of Topo I, suggesting that the apoptosis induced by azadirachtinin Sf9 cells is through caspase-dependent pathway. These results provided not only a series of morphological, biochemical, and toxicological comprehensive evidences for induction of apoptosis by azadirachtin, but also a reference model for screening insect cell apoptosis inducers from natural compounds. © 2015 Wiley Periodicals, Inc.
Grimes, Carolyn N; Fry, Michael M
2014-12-01
This study sought to develop customized morphology flagging thresholds for canine erythrocyte volume and hemoglobin concentration [Hgb] on the ADVIA 120 hematology analyzer; compare automated morphology flagging with results of microscopic blood smear evaluation; and examine effects of customized thresholds on morphology flagging results. Customized thresholds were determined using data from 52 clinically healthy dogs. Blood smear evaluation and automated morphology flagging results were correlated with mean cell volume (MCV) and cellular hemoglobin concentration mean (CHCM) in 26 dogs. Customized thresholds were applied retroactively to complete blood (cell) count (CBC) data from 5 groups of dogs, including a reference sample group, clinical cases, and animals with experimentally induced iron deficiency anemia. Automated morphology flagging correlated more highly with MCV or CHCM than did blood smear evaluation; correlation with MCV was highest using customized thresholds. Customized morphology flagging thresholds resulted in more sensitive detection of microcytosis, macrocytosis, and hypochromasia than default thresholds.
Dynamics of β-adrenergic/cAMP signaling and morphological changes in cultured astrocytes.
Vardjan, Nina; Kreft, Marko; Zorec, Robert
2014-04-01
The morphology of astrocytes, likely regulated by cAMP, determines the structural association between astrocytes and the synapse, consequently modulating synaptic function. β-Adrenergic receptors (β-AR), which increase cytosolic cAMP concentration ([cAMP]i ), may affect cell morphology. However, the real-time dynamics of β-AR-mediated cAMP signaling in single live astrocytes and its effect on cell morphology have not been studied. We used the fluorescence resonance energy transfer (FRET)-based cAMP biosensor Epac1-camps to study time-dependent changes in [cAMP]i ; morphological changes in primary rat astrocytes were monitored by real-time confocal microscopy. Stimulation of β-AR by adrenaline, noradrenaline, and isoprenaline, a specific agonist of β-AR, rapidly increased [cAMP]i (∼15 s). The FRET signal response, mediated via β-AR, was faster than in the presence of forskolin (twofold) and dibutyryl-cAMP (>35-fold), which directly activate adenylyl cyclase and Epac1-camps, respectively, likely due to slow entry of these agents into the cytosol. Oscillations in [cAMP]i have not been recorded, indicating that cAMP-dependent processes operate in a slow time domain. Most Epac1-camps expressing astrocytes revealed a morphological change upon β-AR activation and attained a stellate morphology within 1 h. The morphological changes exhibited a bell-shaped dependency on [cAMP]i . The 5-10% decrease in cell cross-sectional area and the 30-50% increase in cell perimeter are likely due to withdrawal of the cytoplasm to the perinuclear region and the appearance of protrusions on the surface of astrocytes. Because astrocyte processes ensheath neurons, β-AR/cAMP-mediated morphological changes can modify the geometry of the extracellular space, affecting synaptic, neuronal, and astrocyte functions in health and disease. Copyright © 2014 Wiley Periodicals, Inc.
2013-01-01
Background Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. Results We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. Conclusion Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity. PMID:23597229
Andres, Devon; Keyser, Brian M; Petrali, John; Benton, Betty; Hubbard, Kyle S; McNutt, Patrick M; Ray, Radharaman
2013-04-18
Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity.
Trubiani, O; Cataldi, A; De Angelis, F; D'Arcangelo, C; Caputi, S
2012-01-01
To evaluate morphological features, cell growth and interleukin-6 (IL-6) and interleukin-8 (IL-8) secretion in expanded ex vivo human dental pulp mesenchymal stem cells (DP-MSCs) after exposure to 2-hydroxyethyl methacrylate (HEMA). Dental pulp mesenchymal stem cells were derived from the dental pulps of 10 young donors. After in vitro isolation, DP-MSCs were treated with 3 and 5 mmol L(-1) HEMA, and after 24, 48 and 72 h of incubation, their morphological features, cell growth, IL-6 and IL-8 secretion were analysed. Differences in the cell growth and in the interleukin secretion were analysed for statistical significance with two-way anova tests and the Holm-Sidak method for multiple comparisons. Dental pulp mesenchymal stem cells revealed a decrease in cell growth with both treatments (P < 0.05), more evident at 5 mmol L(-1) . Microscopic analysis displayed extensive cytotoxic effects in treated cells, which lost their fibroblastoid features and became retracted, even roundish, with a large number of granules. An up-regulation of IL-6 and IL-8 in treated cells cytokines was evident (P < 0.05). 2-Hydroxyethyl methacrylate exhibited cytotoxicity, inhibited cell growth and induced morphological changes in cultured DP-MSCs. Moreover, in treated samples, an up-regulation of soluble mediators of inflammation such as IL-6 and IL-8 cytokines was found. The direct application of HEMA potentially induces an inflammation process that could be the starting point for toxic response and cell damage in DP-MSCs. © 2011 International Endodontic Journal.
NASA Astrophysics Data System (ADS)
Gramaccioni, Chiara; Yang, Yang; Procopio, Alessandra; Pacureanu, Alexandra; Bohic, Sylvain; Malucelli, Emil; Iotti, Stefano; Farruggia, Giovanna; Bukreeva, Inna; Notargiacomo, Andrea; Fratini, Michela; Valenti, Piera; Rosa, Luigi; Berlutti, Francesca; Cloetens, Peter; Lagomarsino, Stefano
2018-01-01
We present here a correlative X-ray microscopy approach for quantitative single cell imaging of molar concentrations. By combining the elemental content provided by X-ray fluorescence microscopy and the morphology information extracted from X-ray phase nanotomography, we determine the intracellular molarity distributions. This correlative method was demonstrated on a freeze-dried human phagocytic cell to obtain the absolute elemental concentration maps of K, P, and Fe. The cell morphology results showed a very good agreement with atomic-force microscopy measurements. This work opens the way for non-destructive single cell chemical analysis down to the sub-cellular level using exclusively synchrotron radiation techniques. It will be of high interest in the case where it is difficult to access the morphology using atomic-force microscopy, for example, on frozen-hydrated cells or tissues.
Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea
Fukushima, Kenji; Fujita, Hironori; Yamaguchi, Takahiro; Kawaguchi, Masayoshi; Tsukaya, Hirokazu; Hasebe, Mitsuyasu
2015-01-01
Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. However, how leaf development was altered during evolution remains unknown. Here we show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. Differences in the orientation of cell divisions in the adaxial domain cause bifacial growth in the distal region and adaxial ridge protrusion in the middle region. These different growth patterns establish pitcher morphology. A computer simulation suggests that the cell division plane is critical for the pitcher morphogenesis. Our results imply that tissue-specific changes in the orientation of cell division underlie the development of a morphologically complex leaf. PMID:25774486
Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea.
Fukushima, Kenji; Fujita, Hironori; Yamaguchi, Takahiro; Kawaguchi, Masayoshi; Tsukaya, Hirokazu; Hasebe, Mitsuyasu
2015-03-16
Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. However, how leaf development was altered during evolution remains unknown. Here we show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. Differences in the orientation of cell divisions in the adaxial domain cause bifacial growth in the distal region and adaxial ridge protrusion in the middle region. These different growth patterns establish pitcher morphology. A computer simulation suggests that the cell division plane is critical for the pitcher morphogenesis. Our results imply that tissue-specific changes in the orientation of cell division underlie the development of a morphologically complex leaf.
The Gem GTP-binding protein promotes morphological differentiation in neuroblastoma.
Leone, A; Mitsiades, N; Ward, Y; Spinelli, B; Poulaki, V; Tsokos, M; Kelly, K
2001-05-31
Gem is a small GTP-binding protein within the Ras superfamily whose function has not been determined. We report here that ectopic Gem expression is sufficient to stimulate cell flattening and neurite extension in N1E-115 and SH-SY5Y neuroblastoma cells, suggesting a role for Gem in cytoskeletal rearrangement and/or morphological differentiation of neurons. Consistent with this potential function, in clinical samples of neuroblastoma, Gem protein was most highly expressed within cells which had differentiated to express ganglionic morphology. Gem was also observed in developing trigeminal nerve ganglia in 12.5 day mouse embryos, demonstrating that Gem expression is a property of normal ganglionic development. Although Gem expression is rare in epithelial and hematopoietic cancer cell lines, constitutive Gem levels were detected in several neuroblastoma cell lines and could be further induced as much as 10-fold following treatment with PMA or the acetylcholine muscarinic agonist, carbachol.
Boubakar, Leila; Falk, Julien; Ducuing, Hugo; Thoinet, Karine; Reynaud, Florie; Derrington, Edmund; Castellani, Valérie
2017-08-16
Transmission of polarity established early during cell lineage history is emerging as a key process guiding cell differentiation. Highly polarized neurons provide a fascinating model to study inheritance of polarity over cell generations and across morphological transitions. Neural crest cells (NCCs) migrate to the dorsal root ganglia to generate neurons directly or after cell divisions in situ. Using live imaging of vertebrate embryo slices, we found that bipolar NCC progenitors lose their polarity, retracting their processes to round for division, but generate neurons with bipolar morphology by emitting processes from the same locations as the progenitor. Monitoring the dynamics of Septins, which play key roles in yeast polarity, indicates that Septin 7 tags process sites for re-initiation of process growth following mitosis. Interfering with Septins blocks this mechanism. Thus, Septins store polarity features during mitotic rounding so that daughters can reconstitute the initial progenitor polarity. Copyright © 2017 Elsevier Inc. All rights reserved.
BolA inhibits cell elongation and regulates MreB expression levels.
Freire, Patrick; Moreira, Ricardo Neves; Arraiano, Cecília Maria
2009-02-06
The morphogene bolA is a general stress response gene in Escherichia coli that induces a round morphology when overexpressed. Results presented in this report show that increased BolA levels can inhibit cell elongation mechanisms. MreB polymerization is crucial for the bacterial cell cytoskeleton, and this protein is essential for the maintenance of a cellular rod shape. In this report, we demonstrate that bolA overexpression affects the architecture of MreB filaments. An increase in BolA leads to a significant reduction in MreB protein levels and mreB transcripts. BolA affects the mreBCD operon in vivo at the level of transcription. Furthermore, our results show that BolA is a new transcriptional repressor of MreB. The alterations in cell morphology induced by bolA seem to be mediated by a complex pathway that integrates PBP5, PBP6, MreB, and probably other regulators of cell morphology/elongation.
Multi-classification of cell deformation based on object alignment and run length statistic.
Li, Heng; Liu, Zhiwen; An, Xing; Shi, Yonggang
2014-01-01
Cellular morphology is widely applied in digital pathology and is essential for improving our understanding of the basic physiological processes of organisms. One of the main issues of application is to develop efficient methods for cell deformation measurement. We propose an innovative indirect approach to analyze dynamic cell morphology in image sequences. The proposed approach considers both the cellular shape change and cytoplasm variation, and takes each frame in the image sequence into account. The cell deformation is measured by the minimum energy function of object alignment, which is invariant to object pose. Then an indirect analysis strategy is employed to overcome the limitation of gradual deformation by run length statistic. We demonstrate the power of the proposed approach with one application: multi-classification of cell deformation. Experimental results show that the proposed method is sensitive to the morphology variation and performs better than standard shape representation methods.