Lerm, Barbra; Kenyon, Chris; Schwartz, Ilan S; Kroukamp, Heinrich; de Witt, Riaan; Govender, Nelesh P; de Hoog, G Sybren; Botha, Alfred
2017-11-01
Cryptococcus neoformans is an opportunistic pathogen responsible for the AIDS-defining illness, cryptococcal meningitis. During the disease process, entry of cryptococcal cells into the brain is facilitated by virulence factors that include urease enzyme activity. A novel species of an Emmonsia-like fungus, recently named Emergomyces africanus, was identified as a cause of disseminated mycosis in HIV-infected persons in South Africa. However, in contrast to C. neoformans, the enzymes produced by this fungus, some of which may be involved in pathogenesis, have not been described. Using a clinical isolate of C. neoformans as a reference, the study aim was to confirm, characterise and quantify urease activity in E. africanus clinical isolates. Urease activity was tested using Christensen's urea agar, after which the presence of a urease gene in the genome of E. africanus was confirmed using gene sequence analysis. Subsequent evaluation of colorimetric enzyme assay data, using Michaelis-Menten enzyme kinetics, revealed similarities between the substrate affinity of the urease enzyme produced by E. africanus (Km ca. 26.0 mM) and that of C. neoformans (Km ca. 20.6 mM). However, the addition of 2.5 g/l urea to the culture medium stimulated urease activity of E. africanus, whereas nutrient limitation notably increased cryptococcal urease activity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Factors Required for Activation of Urease as a Virulence Determinant in Cryptococcus neoformans
Singh, Arpita; Panting, Robert J.; Varma, Ashok; Saijo, Tomomi; Waldron, Kevin J.; Jong, Ambrose; Ngamskulrungroj, Popchai; Chang, Yun C.; Rutherford, Julian C.; Kwon-Chung, Kyung J.
2013-01-01
ABSTRACT Urease in Cryptococcus neoformans plays an important role in fungal dissemination to the brain and causing meningoencephalitis. Although urea is not required for synthesis of apourease encoded by URE1, the available nitrogen source affected the expression of URE1 as well as the level of the enzyme activity. Activation of the apoenzyme requires three accessory proteins, Ure4, Ure6, and Ure7, which are homologs of the bacterial urease accessory proteins UreD, UreF, and UreG, respectively. A yeast two-hybrid assay showed positive interaction of Ure1 with the three accessory proteins encoded by URE4, URE6, and URE7. Metalloproteomic analysis of cryptococcal lysates using inductively coupled plasma mass spectrometry (ICP-MS) and a biochemical assay of urease activity showed that, as in many other organisms, urease is a metallocentric enzyme that requires nickel transported by Nic1 for its catalytic activity. The Ure7 accessory protein (bacterial UreG homolog) binds nickel likely via its conserved histidine-rich domain and appears to be responsible for the incorporation of Ni2+ into the apourease. Although the cryptococcal genome lacks the bacterial UreE homolog, Ure7 appears to combine the functions of bacterial UreE and UreG, thus making this pathogen more similar to that seen with the plant system. Brain invasion by the ure1, ure7, and nic1 mutant strains that lack urease activity was significantly less effective in a mouse model. This indicated that an activated urease and not the Ure1 protein was responsible for enhancement of brain invasion and that the factors required for urease activation in C. neoformans resemble those of plants more than those of bacteria. PMID:23653445
Feder, Vanessa; Kmetzsch, Lívia; Staats, Charley Christian; Vidal-Figueiredo, Natalia; Ligabue-Braun, Rodrigo; Carlini, Célia Regina; Vainstein, Marilene Henning
2015-04-01
Ureases (EC 3.5.1.5) are Ni(2+) -dependent metalloenzymes produced by plants, fungi and bacteria that hydrolyze urea to produce ammonia and CO2 . The insertion of nickel atoms into the apo-urease is better characterized in bacteria, and requires at least three accessory proteins: UreD, UreF, and UreG. Our group has demonstrated that ureases possess ureolytic activity-independent biological properties that could contribute to the pathogenicity of urease-producing microorganisms. The presence of urease in pathogenic bacteria strongly correlates with pathogenesis in some human diseases. Some medically important fungi also produce urease, including Cryptococcus neoformans and Cryptococcus gattii. C. gattii is an etiological agent of cryptococcosis, most often affecting immunocompetent individuals. The cryptococcal urease might play an important role in pathogenesis. It has been proposed that ammonia produced via urease action might damage the host endothelium, which would enable yeast transmigration towards the central nervous system. To analyze the role of urease as a virulence factor in C. gattii, we constructed knockout mutants for the structural urease-coding gene URE1 and for genes that code the accessory proteins Ure4 and Ure6. All knockout mutants showed reduced multiplication within macrophages. In intranasally infected mice, the ure1Δ (lacking urease protein) and ure4Δ (enzymatically inactive apo-urease) mutants caused reduced blood burdens and a delayed time of death, whereas the ure6Δ (enzymatically inactive apo-urease) mutant showed time and dose dependency with regard to fungal burden. Our results suggest that C. gattii urease plays an important role in virulence, in part possibly through enzyme activity-independent mechanism(s). © 2015 FEBS.
Titan Cells Confer Protection from Phagocytosis in Cryptococcus neoformans Infections
Okagaki, Laura H.
2012-01-01
The human fungal pathogen Cryptococcus neoformans produces an enlarged “titan” cell morphology when exposed to the host pulmonary environment. Titan cells exhibit traits that promote survival in the host. Previous studies showed that titan cells are not phagocytosed and that increased titan cell production in the lungs results in reduced phagocytosis of cryptococcal cells by host immune cells. Here, the effect of titan cell production on host-pathogen interactions during early stages of pulmonary cryptococcosis was explored. The relationship between titan cell production and phagocytosis was found to be nonlinear; moderate increases in titan cell production resulted in profound decreases in phagocytosis, with significant differences occurring within the first 24 h of the infection. Not only were titan cells themselves protected from phagocytosis, but titan cell formation also conferred protection from phagocytosis to normal-size cryptococcal cells. Large particles introduced into the lungs were not phagocytosed, suggesting the large size of titan cells protects against phagocytosis. The presence of large particles was unable to protect smaller particles from phagocytosis, revealing that titan cell size alone is not sufficient to provide the observed cross-protection of normal-size cryptococcal cells. These data suggest that titan cells play a critical role in establishment of the pulmonary infection by promoting the survival of the entire population of cryptococcal cells. PMID:22544904
Titan cells confer protection from phagocytosis in Cryptococcus neoformans infections.
Okagaki, Laura H; Nielsen, Kirsten
2012-06-01
The human fungal pathogen Cryptococcus neoformans produces an enlarged "titan" cell morphology when exposed to the host pulmonary environment. Titan cells exhibit traits that promote survival in the host. Previous studies showed that titan cells are not phagocytosed and that increased titan cell production in the lungs results in reduced phagocytosis of cryptococcal cells by host immune cells. Here, the effect of titan cell production on host-pathogen interactions during early stages of pulmonary cryptococcosis was explored. The relationship between titan cell production and phagocytosis was found to be nonlinear; moderate increases in titan cell production resulted in profound decreases in phagocytosis, with significant differences occurring within the first 24 h of the infection. Not only were titan cells themselves protected from phagocytosis, but titan cell formation also conferred protection from phagocytosis to normal-size cryptococcal cells. Large particles introduced into the lungs were not phagocytosed, suggesting the large size of titan cells protects against phagocytosis. The presence of large particles was unable to protect smaller particles from phagocytosis, revealing that titan cell size alone is not sufficient to provide the observed cross-protection of normal-size cryptococcal cells. These data suggest that titan cells play a critical role in establishment of the pulmonary infection by promoting the survival of the entire population of cryptococcal cells.
Kumari, Sunita; Verma, Rajesh Kumar; Singh, Dharmendra Prasad; Yadav, Ramakant
2016-04-01
The cases of cryptococcal meningitis and other forms of cryptococcosis have increased in recent time and the present scenario of the condition with significant morbidity and mortality is actually posing a serious threat to the community, so an early and prompt diagnosis is necessary to prevent serious complications and thus improving the overall disease outcome. Comparison of diagnostic efficacy of nested Polymerase Chain Reaction (PCR) with Latex Agglutination Test (LAT) in the Cerebro Spinal Fluid (CSF) samples of the cases of meningitis in HIV positive and negative cases. We have compared the diagnostic efficacy of Latex Agglutination Test (LAT) with nested Polymerase Chain Reaction (PCR) in 200 Cerebrospinal Fluid (CSF) samples, including 14 HIV positive also, in the cases of suspected cryptococcal meningitis. Nested PCR was done in all cases reporting positive by LAT and results were then compared with that of India ink and culture on Sabouraud Dextrose Agar (SDA), and the isolates were further identified by urease, nitrate and sugar assimilation tests. Of the 200 cases, including 14 HIV positive, LAT was positive in 46 cases while 154 were negative. Out of these 46 LAT positive cases, nested PCR was positive in 40 cases only, while culture and India ink was positive in 38 and 33 cases respectively. Majority of the cases, 30 (65.2%) were between age group 21-50 years, while 2 (4.3%) in 0-20, and 14 (30.4%) in 51-80 years age group. Although negative staining like India ink and nigrosin are most widely used techniques, but these suffer with subjective error. Rapid method like LAT is available but it always has the scope of false positive and negative results. In such cases nested PCR can help in establishing final diagnosis.
Overexpression of host plant urease in transgenic silkworms.
Jiang, Liang; Huang, Chunlin; Sun, Qiang; Guo, Huizhen; Peng, Zhengwen; Dang, Yinghui; Liu, Weiqiang; Xing, Dongxu; Xu, Guowen; Zhao, Ping; Xia, Qingyou
2015-06-01
Bombyx mori and mulberry constitute a model of insect-host plant interactions. Urease hydrolyzes urea to ammonia and is important for the nitrogen metabolism of silkworms because ammonia is assimilated into silk protein. Silkworms do not synthesize urease and acquire it from mulberry leaves. We synthesized the artificial DNA sequence ureas using the codon bias of B. mori to encode the signal peptide and mulberry urease protein. A transgenic vector that overexpresses ure-as under control of the silkworm midgut-specific P2 promoter was constructed. Transgenic silkworms were created via embryo microinjection. RT-PCR results showed that urease was expressed during the larval stage and qPCR revealed the expression only in the midgut of transgenic lines. Urea concentration in the midgut and hemolymph of transgenic silkworms was significantly lower than in a nontransgenic line when silkworms were fed an artificial diet. Analysis of the daily body weight and food conversion efficiency of the fourth and fifth instar larvae and economic characteristics indicated no differences between transgenic silkworms and the nontransgenic line. These results suggested that overexpression of host plant urease promoted nitrogen metabolism in silkworms.
Mua (HP0868) Is a Nickel-Binding Protein That Modulates Urease Activity in Helicobacter pylori
Benoit, Stéphane L.; Maier, Robert J.
2011-01-01
A novel mechanism aimed at controlling urease expression in Helicobacter pylori in the presence of ample nickel is described. Higher urease activities were observed in an hp0868 mutant (than in the wild type) in cells supplemented with nickel, suggesting that the HP0868 protein (herein named Mua for modulator of urease activity) represses urease activity when nickel concentrations are ample. The increase in urease activity in the Δmua mutant was linked to an increase in urease transcription and synthesis, as shown by quantitative real-time PCR, SDS-PAGE, and immunoblotting against UreAB. Increased urease synthesis was also detected in a Δmua ΔnikR double mutant strain. The Δmua mutant was more sensitive to nickel toxicity but more resistant to acid challenge than was the wild-type strain. Pure Mua protein binds 2 moles of Ni2+ per mole of dimer. Electrophoretic mobility shift assays did not reveal any binding of Mua to the ureA promoter or other selected promoters (nikR, arsRS, 5′ ureB-sRNAp). Previous yeast two-hybrid studies indicated that Mua and RpoD may interact; however, only a weak interaction was detected via cross-linking with pure components and this could not be verified by another approach. There was no significant difference in the intracellular nickel level between wild-type and mua mutant cells. Taken together, our results suggest the HP0868 gene product represses urease transcription when nickel levels are high through an as-yet-uncharacterized mechanism, thus counterbalancing the well-described NikR-mediated activation. PMID:21505055
METHOD OF SUPPRESSING GASTROINTESTINAL UREASE ACTIVITY
Visek, W.J.
1963-04-23
This patent shows a method of increasing the growth rate of chicks. Certain diacyl substituted ureas such as alloxan, murexide, and barbituric acid are added to their feed, thereby suppressing gastrointestinal urease activity and thus promoting growth. (AEC)
Clancy, K. Anne; Pearson, Sylvia; Bowen, William H.; Burne, Robert A.
2000-01-01
Dental caries results from prolonged plaque acidification that leads to the establishment of a cariogenic microflora and demineralization of the tooth. Urease enzymes of oral bacteria hydrolyze urea to ammonia, which can neutralize plaque acids. To begin to examine the relationship between plaque ureolytic activity and the incidence of dental caries, recombinant, ureolytic strains of Streptococcus mutans were constructed. Specifically, the ureABCEFGD operon from Streptococcus salivarius 57.I was integrated into the S. mutans chromosome in such a way that the operon was transcribed from a weak, cognate promoter in S. mutans ACUS4 or a stronger promoter in S. mutans ACUS6. Both strains expressed NiCl2-dependent urease activity, but the maximal urease levels in ACUS6 were threefold higher than those in ACUS4. In vitro pH drop experiments demonstrated that the ability of the recombinant S. mutans strains to moderate a decrease in pH during the simultaneous metabolism of glucose and urea increased proportionately with the level of urease activity expressed. Specific-pathogen-free rats that were infected with ACUS6 and fed a cariogenic diet with drinking water containing 25 mM urea and 50 μM NiCl2 had relatively high levels of oral urease activity, as well as dramatic decreases in the prevalence of smooth-surface caries and the severity of sulcal caries, relative to controls. Urease activity appears to influence plaque biochemistry and metabolism in a manner that reduces cariogenicity, suggesting that recombinant, ureolytic bacteria may be useful to promote dental health. PMID:10768953
Mua (HP0868) is a nickel-binding protein that modulates urease activity in Helicobacter pylori.
Benoit, Stéphane L; Maier, Robert J
2011-01-01
A novel mechanism aimed at controlling urease expression in Helicobacter pylori in the presence of ample nickel is described. Higher urease activities were observed in an hp0868 mutant (than in the wild type) in cells supplemented with nickel, suggesting that the HP0868 protein (herein named Mua for modulator of urease activity) represses urease activity when nickel concentrations are ample. The increase in urease activity in the Δmua mutant was linked to an increase in urease transcription and synthesis, as shown by quantitative real-time PCR, SDS-PAGE, and immunoblotting against UreAB. Increased urease synthesis was also detected in a Δmua ΔnikR double mutant strain. The Δmua mutant was more sensitive to nickel toxicity but more resistant to acid challenge than was the wild-type strain. Pure Mua protein binds 2 moles of Ni(2+) per mole of dimer. Electrophoretic mobility shift assays did not reveal any binding of Mua to the ureA promoter or other selected promoters (nikR, arsRS, 5' ureB-sRNAp). Previous yeast two-hybrid studies indicated that Mua and RpoD may interact; however, only a weak interaction was detected via cross-linking with pure components and this could not be verified by another approach. There was no significant difference in the intracellular nickel level between wild-type and mua mutant cells. Taken together, our results suggest the HP0868 gene product represses urease transcription when nickel levels are high through an as-yet-uncharacterized mechanism, thus counterbalancing the well-described NikR-mediated activation. Urease is a nickel-containing enzyme that buffers both the cytoplasm and the periplasm of Helicobacter pylori by converting urea into ammonia and carbon dioxide. The enzyme is the most abundant protein in H. pylori, accounting for an estimated 10% of the total protein content of the cell, and it is essential for early colonization and virulence. Numerous studies have focused on the transcription of the structural ureAB genes and its control by the regulatory proteins NikR and ArsR. Here we propose that urease transcription is under the control of another Ni-binding protein besides NikR, the Mua (HP0868) protein. Our results suggest that the Mua protein represses urease transcription when nickel levels are high. This mechanism would counterbalance the NikR-mediated activation of urease and ensure that, in the presence of a high nickel concentration, urease activation is limited and does not lead to massive production of detrimental ammonia.
New technology and resources for cryptococcal research
Zhang, Nannan; Park, Yoon-Dong; Williamson, Peter R.
2014-01-01
Rapid advances in molecular biology and genome sequencing have enabled the generation of new technology and resources for cryptococcal research. RNAi-mediated specific gene knock down has become routine and more efficient by utilizing modified shRNA plasmids and convergent promoter RNAi constructs. This system was recently applied in a high-throughput screen to identify genes involved in host-pathogen interactions. Gene deletion efficiencies have also been improved by increasing rates of homologous recombination through a number of approaches, including a combination of double-joint PCR with split-marker transformation, the use of dominant selectable markers and the introduction of Cre-Loxp systems into Cryptococcus. Moreover, visualization of cryptococcal proteins has become more facile using fusions with codon-optimized fluorescent tags, such as green or red fluorescent proteins or, mCherry. Using recent genome-wide analytical tools, new transcriptional factors and regulatory proteins have been identified in novel virulence-related signaling pathways by employing microarray analysis, RNA-sequencing and proteomic analysis. PMID:25460849
Armbruster, Chelsie E; Smith, Sara N; Yep, Alejandra; Mobley, Harry L T
2014-05-15
Catheter-associated urinary tract infections (CaUTIs) are the most common hospital-acquired infections worldwide and are frequently polymicrobial. The urease-positive species Proteus mirabilis and Providencia stuartii are two of the leading causes of CaUTIs and commonly co-colonize catheters. These species can also cause urolithiasis and bacteremia. However, the impact of coinfection on these complications has never been addressed experimentally. A mouse model of ascending UTI was utilized to determine the impact of coinfection on colonization, urolithiasis, and bacteremia. Mice were infected with P. mirabilis or a urease mutant, P. stuartii, or a combination of these organisms. In vitro experiments were conducted to assess growth dynamics and impact of co-culture on urease activity. Coinfection resulted in a bacterial load similar to monospecies infection but with increased incidence of urolithiasis and bacteremia. These complications were urease-dependent as they were not observed during coinfection with a P. mirabilis urease mutant. Furthermore, total urease activity was increased during co-culture. We conclude that P. mirabilis and P. stuartii coinfection promotes urolithiasis and bacteremia in a urease-dependent manner, at least in part through synergistic induction of urease activity. These data provide a possible explanation for the high incidence of bacteremia resulting from polymicrobial CaUTI.
Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates
Fahey, Jed W.; Stephenson, Katherine K.; Wade, Kristina L.; Talalay, Paul
2013-01-01
Infections by Helicobacter pylori are very common, causing gastroduodenal inflammation including peptic ulcers, and increasing the risk of gastric neoplasia. The isothiocyanate (ITC) sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)butane] derived from edible crucifers such as broccoli is potently bactericidal against Helicobacter, including antibiotic-resistant strains, suggesting a possible dietary therapy. Gastric H. pylori infections express high urease activity which generates ammonia, neutralizes gastric acidity, and promotes inflammation. The finding that SF inhibits (inactivates) urease (jack bean and Helicobacter) raised the issue of whether these properties might be functionally related. The rates of inactivation of urease activity depend on enzyme and SF concentrations and show first order kinetics. Treatment with SF results in time-dependent increases in the ultraviolet absorption of partially purified Helicobacter urease in the 280–340 nm region. This provides direct spectroscopic evidence for the formation of dithiocarbamates between the ITC group of SF and cysteine thiols of urease. The potencies of inactivation of Helicobacter urease by isothiocyanates structurally related to SF were surprisingly variable. Natural isothiocyanates closely related to SF, previously shown to be bactericidal (berteroin, hirsutin, phenethyl isothiocyanate, alyssin, and erucin), did not inactivate urease activity. Furthermore, SF is bactericidal against both urease positive and negative H. pylori strains. In contrast, some isothiocyanates such as benzoyl-ITC, are very potent urease inactivators, but are not bactericidal. The bactericidal effects of SF and other ITC against Helicobacter are therefore not obligatorily linked to urease inactivation, but may reduce the inflammatory component of Helicobacter infections. PMID:23583386
Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates.
Fahey, Jed W; Stephenson, Katherine K; Wade, Kristina L; Talalay, Paul
2013-05-24
Infections by Helicobacter pylori are very common, causing gastroduodenal inflammation including peptic ulcers, and increasing the risk of gastric neoplasia. The isothiocyanate (ITC) sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)butane] derived from edible crucifers such as broccoli is potently bactericidal against Helicobacter, including antibiotic-resistant strains, suggesting a possible dietary therapy. Gastric H. pylori infections express high urease activity which generates ammonia, neutralizes gastric acidity, and promotes inflammation. The finding that SF inhibits (inactivates) urease (jack bean and Helicobacter) raised the issue of whether these properties might be functionally related. The rates of inactivation of urease activity depend on enzyme and SF concentrations and show first order kinetics. Treatment with SF results in time-dependent increases in the ultraviolet absorption of partially purified Helicobacter urease in the 260-320 nm region. This provides direct spectroscopic evidence for the formation of dithiocarbamates between the ITC group of SF and cysteine thiols of urease. The potencies of inactivation of Helicobacter urease by isothiocyanates structurally related to SF were surprisingly variable. Natural isothiocyanates closely related to SF, previously shown to be bactericidal (berteroin, hirsutin, phenethyl isothiocyanate, alyssin, and erucin), did not inactivate urease activity. Furthermore, SF is bactericidal against both urease positive and negative H. pylori strains. In contrast, some isothiocyanates such as benzoyl-ITC, are very potent urease inactivators, but are not bactericidal. The bactericidal effects of SF and other ITC against Helicobacter are therefore not obligatorily linked to urease inactivation, but may reduce the inflammatory component of Helicobacter infections. Copyright © 2013 Elsevier Inc. All rights reserved.
Armbruster, Chelsie E.; Smith, Sara N.; Yep, Alejandra; Mobley, Harry L. T.
2014-01-01
Background. Catheter-associated urinary tract infections (CaUTIs) are the most common hospital-acquired infections worldwide and are frequently polymicrobial. The urease-positive species Proteus mirabilis and Providencia stuartii are two of the leading causes of CaUTIs and commonly co-colonize catheters. These species can also cause urolithiasis and bacteremia. However, the impact of coinfection on these complications has never been addressed experimentally. Methods. A mouse model of ascending UTI was utilized to determine the impact of coinfection on colonization, urolithiasis, and bacteremia. Mice were infected with P. mirabilis or a urease mutant, P. stuartii, or a combination of these organisms. In vitro experiments were conducted to assess growth dynamics and impact of co-culture on urease activity. Results. Coinfection resulted in a bacterial load similar to monospecies infection but with increased incidence of urolithiasis and bacteremia. These complications were urease-dependent as they were not observed during coinfection with a P. mirabilis urease mutant. Furthermore, total urease activity was increased during co-culture. Conclusions. We conclude that P. mirabilis and P. stuartii coinfection promotes urolithiasis and bacteremia in a urease-dependent manner, at least in part through synergistic induction of urease activity. These data provide a possible explanation for the high incidence of bacteremia resulting from polymicrobial CaUTI. PMID:24280366
Preventing deaths from cryptococcal meningitis: from bench to bedside.
Roy, Monika; Chiller, Tom
2011-09-01
Cryptococcal meningitis (CM), a fungal disease caused by Cryptococcus spp., is the most common form of meningitis and a leading cause of death among persons with HIV/AIDS in sub-Saharan Africa. Detection of cryptococcal antigen, which is present several weeks before overt signs of meningitis develop, provides an opportunity to detect infection early. Screening persons with HIV for cryptococcal infection when they access healthcare can identify asymptomatic infected patients allowing for prompt treatment and prevention of death. A newly developed point-of-care assay for cryptococcal antigen, as well as growing evidence supporting the utility and cost-effectiveness of screening, are further reasons to consider broad implementation of cryptococcal screening in countries with a high burden of cryptococcal disease.
Wake, Rachel M; Britz, Erika; Sriruttan, Charlotte; Rukasha, Ivy; Omar, Tanvier; Spencer, David C; Nel, Jeremy S; Mashamaite, Sello; Adelekan, Adeboye; Chiller, Tom M; Jarvis, Joseph N; Harrison, Thomas S; Govender, Nelesh P
2018-02-10
High mortality rates among asymptomatic cryptococcal antigen (CrAg)-positive patients identified through CrAg screening, despite preemptive fluconazole treatment, may be due to undiagnosed cryptococcal meningitis. Symptoms were reviewed in CrAg-positive patients identified by screening 19233 individuals with human immunodeficiency virus infection and CD4 cell counts <100/µL at 17 clinics and 3 hospitals in Johannesburg from September 2012 until September 2015, and at 2 hospitals until June 2016. Cerebrospinal fluid samples from 90 of 254 asymptomatic patients (35%) and 78 of 173 (45%) with headache only were analyzed for cryptococcal meningitis, considered present if Cryptococcus was identified by means of India ink microscopy, culture, or CrAg test. CrAg titers were determined with stored blood samples from 62 of these patients. The associations between blood CrAg titer, concurrent cryptococcal meningitis, and mortality rate were assessed. Cryptococcal meningitis was confirmed in 34% (95% confidence interval, 25%-43%; 31 of 90) of asymptomatic CrAg-positive patients and 90% (81%-96%; 70 of 78) with headache only. Blood CrAg titer was significantly associated with concurrent cryptococcal meningitis in asymptomatic patients (P < .001) and patients with headache only (P = .003). The optimal titer for predicting cryptococcal meningitis was >160 (sensitivity, 88.2%; specificity, 82.1%); the odds ratio for concurrent cryptococcal meningitis was 34.5 (95% confidence interval, 8.3-143.1; P < .001). About a third of asymptomatic CrAg-positive patients have concurrent cryptococcal meningitis. More effective clinical assessment strategies and antifungal regimens are required for CrAg-positive patients, including investigation for cryptococcal meningitis irrespective of symptoms. Where it is not possible to perform lumbar punctures in all CrAg-positive patients, blood CrAg titers should be used to target those most at risk of cryptococcal meningitis. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Stankowicz, Matthew; Banaszynski, Megan; Crawford, Russell
2018-01-01
Cryptococcal infections are responsible for significant morbidity and mortality in immunocompromised patients. Reports of these infections in patients on small molecular kinase inhibitors have not been widely reported in clinical trials. We describe one case of cryptococcal meningoencephalitis and one case of cryptococcal pneumonia in two patients who were receiving ibrutinib for chronic lymphocytic leukemia. Despite different sites of cryptococcal infection, both patients had similar presentations of acute illness. Patient 1 was worked up for health care-associated pneumonia, as well as acute sinusitis prior to the diagnosis of cryptococcal meningoencephalitis. He also had a more complex past medical history than patient 2. Patient 2 developed atrial fibrillation from ibrutinib prior to admission for presumed health care-associated pneumonia. Cryptococcal antigen testing was done sooner in this patient due to patient receiving high-dose steroids for the treatment of underlying hemolytic anemia. We conclude that patients who develop acute illness while receiving ibrutinib should be considered for cryptococcal antigen testing.
Lofgren, Sarah M; Abassi, Mahsa; Rhein, Joshua; Boulware, David R
2017-01-01
Introduction Recent advances in the treatment and prevention of cryptococcal meningitis have the potential to decrease AIDS-related deaths. Areas covered Targeted screening for asymptomatic cryptococcal antigenemia in persons with AIDS is a cost effective method for reducing early mortality in patients on antiretroviral therapy. For persons with symptomatic cryptococcal meningitis, optimal initial management with amphotericin and flucytosine improves survival compared to alternative therapies; however, amphotericin is difficult to administer and flucytosine has not been available in middle or low income countries, where cryptococcal meningitis is most prevalent. Expert Commentary Improved care for cryptococcal meningitis patients in resource-limited settings is possible, and new treatment possibilities are emerging. PMID:28111998
O'Halloran, Jane A; Franklin, Alexander; Lainhart, William; Burnham, Carey-Ann; Powderly, William; Dubberke, Erik
2017-01-01
We report the case of a kidney transplantation patient on chronic immunosuppressive therapy presenting with subacute meningitis. The final diagnosis of cryptococcal meningitis was delayed due to 2 false-negative cryptococcal results on a molecular diagnostic panel. Caution with such platforms in suspected cryptococcal meningitis is needed.
Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis
Rajasingham, Radha; Smith, Rachel M; Park, Benjamin J; Jarvis, Joseph N; Govender, Nelesh P; Chiller, Tom M; Denning, David W; Loyse, Angela; Boulware, David R
2018-01-01
Summary Background Cryptococcus is the most common cause of meningitis in adults living with HIV in sub-Saharan Africa. Global burden estimates are crucial to guide prevention strategies and to determine treatment needs, and we aimed to provide an updated estimate of global incidence of HIV-associated cryptococcal disease. Methods We used 2014 Joint UN Programme on HIV and AIDS estimates of adults (aged >15 years) with HIV and antiretroviral therapy (ART) coverage. Estimates of CD4 less than 100 cells per µL, virological failure incidence, and loss to follow-up were from published multinational cohorts in low-income and middle-income countries. We calculated those at risk for cryptococcal infection, specifically those with CD4 less than 100 cells/µL not on ART, and those with CD4 less than 100 cells per µL on ART but lost to follow-up or with virological failure. Cryptococcal antigenaemia prevalence by country was derived from 46 studies globally. Based on cryptococcal antigenaemia prevalence in each country and region, we estimated the annual numbers of people who are developing and dying from cryptococcal meningitis. Findings We estimated an average global cryptococcal antigenaemia prevalence of 6·0% (95% CI 5·8–6·2) among people with a CD4 cell count of less than 100 cells per µL, with 278 000 (95% CI 195 500–340 600) people positive for cryptococcal antigen globally and 223 100 (95% CI 150 600–282 400) incident cases of cryptococcal meningitis globally in 2014. Sub-Saharan Africa accounted for 73% of the estimated cryptococcal meningitis cases in 2014 (162 500 cases [95% CI 113 600–193 900]). Annual global deaths from cryptococcal meningitis were estimated at 181 100 (95% CI 119 400–234 300), with 135 900 (75%; [95% CI 93 900–163 900]) deaths in sub-Saharan Africa. Globally, cryptococcal meningitis was responsible for 15% of AIDS-related deaths (95% CI 10–19). Interpretation Our analysis highlights the substantial ongoing burden of HIV-associated cryptococcal disease, primarily in sub-Saharan Africa. Cryptococcal meningitis is a metric of HIV treatment programme failure; timely HIV testing and rapid linkage to care remain an urgent priority. Funding None. PMID:28483415
Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis.
Rajasingham, Radha; Smith, Rachel M; Park, Benjamin J; Jarvis, Joseph N; Govender, Nelesh P; Chiller, Tom M; Denning, David W; Loyse, Angela; Boulware, David R
2017-08-01
Cryptococcus is the most common cause of meningitis in adults living with HIV in sub-Saharan Africa. Global burden estimates are crucial to guide prevention strategies and to determine treatment needs, and we aimed to provide an updated estimate of global incidence of HIV-associated cryptococcal disease. We used 2014 Joint UN Programme on HIV and AIDS estimates of adults (aged >15 years) with HIV and antiretroviral therapy (ART) coverage. Estimates of CD4 less than 100 cells per μL, virological failure incidence, and loss to follow-up were from published multinational cohorts in low-income and middle-income countries. We calculated those at risk for cryptococcal infection, specifically those with CD4 less than 100 cells/μL not on ART, and those with CD4 less than 100 cells per μL on ART but lost to follow-up or with virological failure. Cryptococcal antigenaemia prevalence by country was derived from 46 studies globally. Based on cryptococcal antigenaemia prevalence in each country and region, we estimated the annual numbers of people who are developing and dying from cryptococcal meningitis. We estimated an average global cryptococcal antigenaemia prevalence of 6·0% (95% CI 5·8-6·2) among people with a CD4 cell count of less than 100 cells per μL, with 278 000 (95% CI 195 500-340 600) people positive for cryptococcal antigen globally and 223 100 (95% CI 150 600-282 400) incident cases of cryptococcal meningitis globally in 2014. Sub-Saharan Africa accounted for 73% of the estimated cryptococcal meningitis cases in 2014 (162 500 cases [95% CI 113 600-193 900]). Annual global deaths from cryptococcal meningitis were estimated at 181 100 (95% CI 119 400-234 300), with 135 900 (75%; [95% CI 93 900-163 900]) deaths in sub-Saharan Africa. Globally, cryptococcal meningitis was responsible for 15% of AIDS-related deaths (95% CI 10-19). Our analysis highlights the substantial ongoing burden of HIV-associated cryptococcal disease, primarily in sub-Saharan Africa. Cryptococcal meningitis is a metric of HIV treatment programme failure; timely HIV testing and rapid linkage to care remain an urgent priority. None. Copyright © 2017 Elsevier Ltd. All rights reserved.
Follmer, C; Barcellos, G B; Zingali, R B; Machado, O L; Alves, E W; Barja-Fidalgo, C; Guimarães, J A; Carlini, C R
2001-01-01
Canatoxin is a toxic protein from Canavalia ensiformis seeds, lethal to mice (LD(50)=2 mg/kg) and insects. Further characterization of canatoxin showed that its main native form (184 kDa) is a non-covalently linked dimer of a 95 kDa polypeptide containing zinc and nickel. Partial sequencing of internal peptides indicated homology with urease (EC 3.5.1.5) from the same seed. Canatoxin has approx. 30% of urease's activity for urea, and K(m) of 2-7 mM. The proteins differ in their affinities for metal ions and were separated by affinity chromatography on a Zn(2+) matrix. Similar to canatoxin, urease activates blood platelets and interacts with glycoconjugates. In contrast with canatoxin, no lethality was seen in mice injected with urease (10 mg/kg). Pretreatment with p-hydroxymercuribenzoate irreversibly abolished the ureolytic activity of both proteins. On the other hand, p-hydroxymercuribenzoate-treated canatoxin was still lethal to mice, and both treated proteins were fully active in promoting platelet aggregation and binding to glycoconjugates. Taken together, our data indicate that canatoxin is a variant form of urease. Moreover, we show for the first time that these proteins display several biological effects that are unrelated to their enzymic activity for urea. PMID:11696010
Lee, I. Russel; Yang, Liting; Sebetso, Gaseene; Allen, Rebecca; Doan, Thi H. N.; Blundell, Ross; Lui, Edmund Y. L.; Morrow, Carl A.; Fraser, James A.
2013-01-01
Degradation of purines to uric acid is generally conserved among organisms, however, the end product of uric acid degradation varies from species to species depending on the presence of active catabolic enzymes. In humans, most higher primates and birds, the urate oxidase gene is non-functional and hence uric acid is not further broken down. Uric acid in human blood plasma serves as an antioxidant and an immune enhancer; conversely, excessive amounts cause the common affliction gout. In contrast, uric acid is completely degraded to ammonia in most fungi. Currently, relatively little is known about uric acid catabolism in the fungal pathogen Cryptococcus neoformans even though this yeast is commonly isolated from uric acid-rich pigeon guano. In addition, uric acid utilization enhances the production of the cryptococcal virulence factors capsule and urease, and may potentially modulate the host immune response during infection. Based on these important observations, we employed both Agrobacterium-mediated insertional mutagenesis and bioinformatics to predict all the uric acid catabolic enzyme-encoding genes in the H99 genome. The candidate C. neoformans uric acid catabolic genes identified were named: URO1 (urate oxidase), URO2 (HIU hydrolase), URO3 (OHCU decarboxylase), DAL1 (allantoinase), DAL2,3,3 (allantoicase-ureidoglycolate hydrolase fusion protein), and URE1 (urease). All six ORFs were then deleted via homologous recombination; assaying of the deletion mutants' ability to assimilate uric acid and its pathway intermediates as the sole nitrogen source validated their enzymatic functions. While Uro1, Uro2, Uro3, Dal1 and Dal2,3,3 were demonstrated to be dispensable for virulence, the significance of using a modified animal model system of cryptococcosis for improved mimicking of human pathogenicity is discussed. PMID:23667704
Ecological surveys of the Cryptococcus species complex in China.
Li, An-Sheng; Pan, Wei-Hua; Wu, Shao-Xi; Hideaki, Taguchi; Guo, Ning-Ru; Shen, Yong-Nian; Lu, Gui-Xia; Pan, Ru-Gui; Zhu, Miao-Chang; Chen, Min; Shi, Wei-Ming; Liao, Wan-Qing
2012-02-01
Despite recent reports on the molecular epidemiology of cryptococcal infections in China, clinical isolates have been mostly reported from human immunodeficiency virus (HIV)-negative patients, and environmental isolates from China have rarely been included. The aim of this study was to investigate the ecological profile of Cryptococcus (C.) neoformans and C. gattii in China. A survey was performed in 10 cities from 20°N (North latitude) to 50°N and in a Eucalyptus (E.) camaldulensis forestry farm at the Guixi forestry center, China. Six hundred and twenty samples of pigeon droppings from 10 cities and 819 E. camaldulensis tree samples were collected and inoculated on caffeic acid cornmeal agar (CACA). The brown-colored colonies were recultured to observe their morphology, growth on canavanine-glycine-bromothymol-blue (CGB) medium, phenol oxidase and urease activities, serotype and mating type. There were obvious differences in the positive sample rates of C. neoformans in pigeon droppings collected from the different cities, ranging from 50% in the cities located at latitudes from 30°N - 40°N, 29% at 20°N - 30°N and 13% at 40°N - 50°N. There were no differences in positive bevy rates (approximately 80%) among the three grouped cities. Mycological tests of 101 isolates purified from pigeon droppings revealed that they were C. neoformans var. grubii. We also observed variable capsular size around the C. neoformans cells in colonies with variable melanin production and the bio-adhesion of the natural C. neoformans cells with other microorganisms. One urease-negative C. neoformans isolate was isolated from pigeon droppings in Jinan city. No C. gattii was isolated in this study.
Lee, I Russel; Yang, Liting; Sebetso, Gaseene; Allen, Rebecca; Doan, Thi H N; Blundell, Ross; Lui, Edmund Y L; Morrow, Carl A; Fraser, James A
2013-01-01
Degradation of purines to uric acid is generally conserved among organisms, however, the end product of uric acid degradation varies from species to species depending on the presence of active catabolic enzymes. In humans, most higher primates and birds, the urate oxidase gene is non-functional and hence uric acid is not further broken down. Uric acid in human blood plasma serves as an antioxidant and an immune enhancer; conversely, excessive amounts cause the common affliction gout. In contrast, uric acid is completely degraded to ammonia in most fungi. Currently, relatively little is known about uric acid catabolism in the fungal pathogen Cryptococcus neoformans even though this yeast is commonly isolated from uric acid-rich pigeon guano. In addition, uric acid utilization enhances the production of the cryptococcal virulence factors capsule and urease, and may potentially modulate the host immune response during infection. Based on these important observations, we employed both Agrobacterium-mediated insertional mutagenesis and bioinformatics to predict all the uric acid catabolic enzyme-encoding genes in the H99 genome. The candidate C. neoformans uric acid catabolic genes identified were named: URO1 (urate oxidase), URO2 (HIU hydrolase), URO3 (OHCU decarboxylase), DAL1 (allantoinase), DAL2,3,3 (allantoicase-ureidoglycolate hydrolase fusion protein), and URE1 (urease). All six ORFs were then deleted via homologous recombination; assaying of the deletion mutants' ability to assimilate uric acid and its pathway intermediates as the sole nitrogen source validated their enzymatic functions. While Uro1, Uro2, Uro3, Dal1 and Dal2,3,3 were demonstrated to be dispensable for virulence, the significance of using a modified animal model system of cryptococcosis for improved mimicking of human pathogenicity is discussed.
Kaplan, Alesia; Berntson, Daniel G; Ferrieri, Patricia
2015-01-01
We report a case of localized pulmonary cryptococcal infection in a 28-year-old Caucasian woman who was 1 month postpartum at the time of her arrival at the hospital. The patient reported right-side chest pain; on further work up, she was found to have an incidental pulmonary lesion of the left lower lung lobe. Surgical pathology examination and microbiology studies revealed localized cryptococcal infection. Cases of cryptococcal pneumonia in pregnant women and in the postpartum period have been described in the literature. However, cryptococcal infections are usually associated with various immunocompromised states, including human immunodeficiency virus (HIV) infection. Because pregnancy is associated with physiological immunosuppression, cryptococcal pneumonia should be considered in pregnant women, or women in the postpartum period, who have respiratory symptoms. Copyright© by the American Society for Clinical Pathology (ASCP).
Mechanisms of Dendritic Cell Lysosomal Killing of Cryptococcus
NASA Astrophysics Data System (ADS)
Hole, Camaron R.; Bui, Hoang; Wormley, Floyd L.; Wozniak, Karen L.
2012-10-01
Cryptococcus neoformans is an opportunistic pulmonary fungal pathogen that disseminates to the CNS causing fatal meningitis in immunocompromised patients. Dendritic cells (DCs) phagocytose C. neoformans following inhalation. Following uptake, cryptococci translocate to the DC lysosomal compartment and are killed by oxidative and non-oxidative mechanisms. DC lysosomal extracts kill cryptococci in vitro; however, the means of antifungal activity remain unknown. Our studies determined non-oxidative antifungal activity by DC lysosomal extract. We examined DC lysosomal killing of cryptococcal strains, anti-fungal activity of purified lysosomal enzymes, and mechanisms of killing against C. neoformans. Results confirmed DC lysosome fungicidal activity against all cryptococcal serotypes. Purified lysosomal enzymes, specifically cathepsin B, inhibited cryptococcal growth. Interestingly, cathepsin B combined with its enzymatic inhibitors led to enhanced cryptococcal killing. Electron microscopy revealed structural changes and ruptured cryptococcal cell walls following treatment. Finally, additional studies demonstrated that osmotic lysis was responsible for cryptococcal death.
Helicobacter pylori gene silencing in vivo demonstrates urease is essential for chronic infection
Walton, Senta M.; Liao, Tingting; Stubbs, Keith A.; Marshall, Barry J.; Fulurija, Alma; Benghezal, Mohammed
2017-01-01
Helicobacter pylori infection causes chronic active gastritis that after many years of infection can develop into peptic ulceration or gastric adenocarcinoma. The bacterium is highly adapted to surviving in the gastric environment and a key adaptation is the virulence factor urease. Although widely postulated, the requirement of urease expression for persistent infection has not been elucidated experimentally as conventional urease knockout mutants are incapable of colonization. To overcome this constraint, conditional H. pylori urease mutants were constructed by adapting the tetracycline inducible expression system that enabled changing the urease phenotype of the bacteria during established infection. Through tight regulation we demonstrate that urease expression is not only required for establishing initial colonization but also for maintaining chronic infection. Furthermore, successful isolation of tet-escape mutants from a late infection time point revealed the strong selective pressure on this gastric pathogen to continuously express urease in order to maintain chronic infection. In addition to mutations in the conditional gene expression system, escape mutants were found to harbor changes in other genes including the alternative RNA polymerase sigma factor, fliA, highlighting the genetic plasticity of H. pylori to adapt to a changing niche. The tet-system described here opens up opportunities to studying genes involved in the chronic stage of H. pylori infection to gain insight into bacterial mechanisms promoting immune escape and life-long infection. Furthermore, this genetic tool also allows for a new avenue of inquiry into understanding the importance of various virulence determinants in a changing biological environment when the bacterium is put under duress. PMID:28644872
Helicobacter pylori gene silencing in vivo demonstrates urease is essential for chronic infection.
Debowski, Aleksandra W; Walton, Senta M; Chua, Eng-Guan; Tay, Alfred Chin-Yen; Liao, Tingting; Lamichhane, Binit; Himbeck, Robyn; Stubbs, Keith A; Marshall, Barry J; Fulurija, Alma; Benghezal, Mohammed
2017-06-01
Helicobacter pylori infection causes chronic active gastritis that after many years of infection can develop into peptic ulceration or gastric adenocarcinoma. The bacterium is highly adapted to surviving in the gastric environment and a key adaptation is the virulence factor urease. Although widely postulated, the requirement of urease expression for persistent infection has not been elucidated experimentally as conventional urease knockout mutants are incapable of colonization. To overcome this constraint, conditional H. pylori urease mutants were constructed by adapting the tetracycline inducible expression system that enabled changing the urease phenotype of the bacteria during established infection. Through tight regulation we demonstrate that urease expression is not only required for establishing initial colonization but also for maintaining chronic infection. Furthermore, successful isolation of tet-escape mutants from a late infection time point revealed the strong selective pressure on this gastric pathogen to continuously express urease in order to maintain chronic infection. In addition to mutations in the conditional gene expression system, escape mutants were found to harbor changes in other genes including the alternative RNA polymerase sigma factor, fliA, highlighting the genetic plasticity of H. pylori to adapt to a changing niche. The tet-system described here opens up opportunities to studying genes involved in the chronic stage of H. pylori infection to gain insight into bacterial mechanisms promoting immune escape and life-long infection. Furthermore, this genetic tool also allows for a new avenue of inquiry into understanding the importance of various virulence determinants in a changing biological environment when the bacterium is put under duress.
Jarvis, Joseph N; Lawn, Stephen D; Vogt, Monica; Bangani, Nonzwakazi; Wood, Robin; Harrison, Thomas S
2009-01-01
Background Cryptococcal meningitis is a leading cause of death in AIDS patients and contributes substantially to the high early mortality in antiretroviral treatment (ART) programs in low-resource settings. Screening for cryptococcal antigen (CRAG) in patients enrolling in ART programs may identify those at risk of cryptococcal meningitis and permit targeted use of pre-emptive therapy. Methods In this retrospective study, CRAG was measured in stored plasma samples obtained from patients as they enrolled in a well characterised ART cohort in South Africa. The predictive value of screening for CRAG prior to ART for development of microbiologically confirmed cryptococcal meningitis or death during the first year of follow-up was determined. Results Of 707 participants with a baseline median CD4 count of 97 (IQR 46-157) cells/μL, 46 (7%) had a positive CRAG. Antigenaemia was 100% sensitive for predicting development of cryptococcal meningitis during the first year of ART and in multivariate analysis was an independent predictor of mortality (AHR 3.2, 95%CI 1.5-6.6). Most (92%) cases of cryptococcal meningitis developed in patients with a CD4 count ≤100 cells/μL. In this sub-set of patients, a CRAG titre ≥1 in 8 was 100% sensitive and 96% specific for predicting incident cryptococcal meningitis during the first year of ART in those with no previous history of the disease. Conclusions CRAG screening prior to commencing ART in patients with a CD4 count ≤100 cells/μL is highly effective at identifying those at risk of cryptococcal meningitis and death and might permit implementation of a targeted pre-emptive treatment strategy. PMID:19222372
Navabi, Nazlee; Montebatsi, Milton; Scott, Michelle; Gluckman, Stephen J; Reid, Michael J A
2015-01-01
A case of false-negative serum latex agglutination cryptococcal antigen (CRAG) test in a 45-year-old HIV-positive male with Cryptococcus-positive culture is described. The patient was presented to a hospital in Botswana, with breathlessness and a diffuse papular rash. His CD4 count was 25 cells/μL. Despite the suspicion for disseminated cryptococcal disease, an initial serum CRAG latex test was negative. Results of subsequent Indian ink staining, culture of cerebrospinal fluid and skin scrapings, and serum lateral flow immunoassay (LFA) were all positive for Cryptococcus neoformans. There are several possible explanations for the false-negative CRAG latex test. Given the positive LFA result, we speculate that disease may have been caused by Cryptococcus gattii, which is estimated to be responsible for between 15% and 30% of all cryptococcal diseases in Botswana. Reduced sensitivity of CRAG latex assays for detecting C gattii may lead to underdiagnosis of cryptococcal infection. © The Author(s) 2014.
Disseminated Cryptococcal Disease in a Patient with Chronic Lymphocytic Leukemia on Ibrutinib.
Okamoto, Koh; Proia, Laurie A; Demarais, Patricia L
2016-01-01
Cryptococcus is a unique environmental fungus that can cause disease most often in immunocompromised individuals with defective cell-mediated immunity. Chronic lymphocytic leukemia (CLL) is not known to be a risk factor for cryptococcal disease although cases have been described mainly in patients treated with agents that suppress cell-mediated immunity. Ibrutinib is a new biologic agent used for treatment of CLL, mantle cell lymphoma, and Waldenstrom's macroglobulinemia. It acts by inhibiting Bruton's tyrosine kinase, a kinase downstream of the B-cell receptor critical for B-cell survival and proliferation. Ibrutinib use has not been associated previously with cryptococcal disease. However, recent evidence suggested that treatments aimed at blocking the function of Bruton's tyrosine kinase could pose a higher risk for cryptococcal infection in a mice model. Here, we report the first case of disseminated cryptococcal disease in a patient with CLL treated with ibrutinib. When evaluating possible infection in CLL patients receiving ibrutinib, cryptococcal disease, which could be life threatening if overlooked, could be considered.
Cáceres, Diego H; Zuluaga, Alejandra; Tabares, Ángela M; Chiller, Tom; González, Ángel; Gómez, Beatriz L
2017-12-21
A Lateral Flow Assay to detect cryptococcal antigen (CrAg® LFA) in serum and cerebrospinal fluid for the rapid diagnosis of cryptococcosis was evaluated. A retrospective validation was performed. Sensitivity and specificity of the CrAg® LFA was 100%. High concordance (kappa index=1.0) between Cryptococcal Antigen Latex Agglutination System (CALAS®) and CrAg® LFA was observed. CrAg® LFA showed higher analytical sensitivity for detecting low concentrations of cryptococcal antigen.
Cáceres, Diego H.; Zuluaga, Alejandra; Tabares, Ángela M.; Chiller, Tom; González, Ángel; Gómez, Beatriz L.
2017-01-01
ABSTRACT A Lateral Flow Assay to detect cryptococcal antigen (CrAg® LFA) in serum and cerebrospinal fluid for the rapid diagnosis of cryptococcosis was evaluated. A retrospective validation was performed. Sensitivity and specificity of the CrAg® LFA was 100%. High concordance (kappa index=1.0) between Cryptococcal Antigen Latex Agglutination System (CALAS®) and CrAg® LFA was observed. CrAg® LFA showed higher analytical sensitivity for detecting low concentrations of cryptococcal antigen. PMID:29267584
Engineering the gut microbiota to treat hyperammonemia.
Shen, Ting-Chin David; Albenberg, Lindsey; Bittinger, Kyle; Chehoud, Christel; Chen, Ying-Yu; Judge, Colleen A; Chau, Lillian; Ni, Josephine; Sheng, Michael; Lin, Andrew; Wilkins, Benjamin J; Buza, Elizabeth L; Lewis, James D; Daikhin, Yevgeny; Nissim, Ilana; Yudkoff, Marc; Bushman, Frederic D; Wu, Gary D
2015-07-01
Increasing evidence indicates that the gut microbiota can be altered to ameliorate or prevent disease states, and engineering the gut microbiota to therapeutically modulate host metabolism is an emerging goal of microbiome research. In the intestine, bacterial urease converts host-derived urea to ammonia and carbon dioxide, contributing to hyperammonemia-associated neurotoxicity and encephalopathy in patients with liver disease. Here, we engineered murine gut microbiota to reduce urease activity. Animals were depleted of their preexisting gut microbiota and then inoculated with altered Schaedler flora (ASF), a defined consortium of 8 bacteria with minimal urease gene content. This protocol resulted in establishment of a persistent new community that promoted a long-term reduction in fecal urease activity and ammonia production. Moreover, in a murine model of hepatic injury, ASF transplantation was associated with decreased morbidity and mortality. These results provide proof of concept that inoculation of a prepared host with a defined gut microbiota can lead to durable metabolic changes with therapeutic utility.
Cryptococcal necrotizing fasciitis in a patient after renal transplantation--a case report.
Yoneda, T; Itami, Y; Hirayama, A; Saka, T; Yoshida, K; Fujimoto, K
2014-01-01
A 50-year-old man, who had received an ABO-incompatible living related preemptive renal transplantation 1 year before, presented with painful lesions on both lower extremities and fever. At first, bacterial cellulitis was suspected and antibiotic therapy was initiated, but it was not effective. The serum cryptococcal antigen titer was 1:4,098, and pathologic examination of debrided tissue and wound pus culture revealed cryptococcal necrotizing fasciitis. Liposomal amphotericin B and fluconazole were started, and repeated debridement and skin grafting were performed. Because his graft function deteriorated because of antibody-mediated rejection and polyoma viral nephropathy, hemodialysis was induced on day 9 of hospitalization. During the treatment, he suffered repeated urinary tract infections, which were treated with antibiotics, and cytomegalovirus retinopathy, which was treated with ganciclovir. His cryptococcal necrotizing fasciitis was successfully cured by the combination of antimicrobial treatment and surgical procedures. He could walk with a cane and was discharged on day 298 of hospitalization. Cryptococcal necrotizing fasciitis in renal transplant recipients is so rare that only 14 cases have been reported. The mortality is not very high, but the prognosis of the patient is complicated by worsening of the cryptococcal infection of the central nervous system (CNS). Early detection and treatment to prevent spreading to other sites, especially the CNS or disseminated disease, is very important in cases of cryptococcal necrotizing fasciitis. Copyright © 2014 Elsevier Inc. All rights reserved.
McKenney, Jennie; Smith, Rachel M; Chiller, Tom M; Detels, Roger; French, Audrey; Margolick, Joseph; Klausner, Jeffrey D
2014-07-11
Cryptococcal meningitis (CM) is one of the leading opportunistic infections associated with human immunodeficiency virus (HIV) infection. The worldwide burden of CM among persons living with HIV/acquired immunodeficiency syndrome (AIDS) was estimated in 2009 to be 957,900 cases, with approximately 624,700 deaths annually. The high burden of CM globally comes despite the fact that cryptococcal antigen (CrAg) is detectable weeks before the onset of symptoms, allowing screening for cryptococcal infection and early treatment to prevent CM and CM-related mortality (2). However, few studies have been conducted in the United States to assess the prevalence of cryptococcal infection. To quantify the prevalence of undiagnosed cryptococcal infection in HIV-infected persons in the United States during 1986-2012, stored sera from 1,872 participants in the Multicenter AIDS Cohort Study and the Women's Interagency HIV Study with CD4 T-cell counts <100 cells/µL were screened for CrAg, using the CrAg Lateral Flow Assay (LFA) (Immy, Inc.). This report describes the results of that analysis, which indicated the overall prevalence of CrAg positivity in this population to be 2.9% (95% confidence interval [CI] = 2.2%-3.7%).
Ghalehnoei, Hossein; Ahmadzadeh, Alireza; Farzi, Nastaran; Alebouyeh, Masoud; Aghdaei, Hamid Asadzadeh; Azimzadeh, Pendram; Molaei, Mahsa; Zali, Mohammad Reza
2016-01-01
Association of the severity of Helicobacter pylori induced diseases with virulence entity of the colonized strains was proven in some studies. Urease has been demonstrated as a potent virulence factor for H. pylori. The main aim of this study was investigation of the relationships of ureB sequence diversity, urease activity and virulence genotypes of different H. pylori strains with histopathological changes of gastric tissue in infected patients suffering from different gastric disorders. Analysis of the virulence genotypes in the isolated strains indicated significant associations between the presence of severe active gastritis and cagA+ (P = 0.039) or cagA/iceA1 genotypes (P = 0.026), and intestinal metaplasia and vacA m1 (P = 0.008) or vacA s1/m2 (P = 0.001) genotypes. Our results showed a 2.4-fold increased risk of peptic ulcer (95% CI: 0.483-11.93), compared with gastritis, in the infected patients who had dupA positive strains; however this association was not statistically significant. The results of urease activity showed a significant mean difference between the isolated strains from patients with PUD and NUD (P = 0.034). This activity was relatively higher among patients with intestinal metaplasia. Also a significant association was found between the lack of cagA and increased urease activity among the isolated strains (P = 0.036). While the greatest sequence variation of ureB was detected in a strain from a patient with intestinal metaplasia, the sole determined amino acid change in UreB sequence (Ala201Thr, 30%), showed no influence on urease activity. In conclusion, the supposed role of H. pylori urease to form peptic ulcer and advancing of intestinal metaplasia was postulated in this study. Higher urease activity in the colonizing H. pylori strains that present specific virulence factors was indicated as a risk factor for promotion of histopathological changes of gastric tissue that advance gastric malignancy.
False-Positive Cryptococcal Antigen Test Associated with Use of BBL Port-A-Cul Transport Vials▿
Wilson, Deborah A.; Sholtis, Mary; Parshall, Sharon; Hall, Gerri S.; Procop, Gary W.
2011-01-01
A total of 52 residual CSF and serum specimens, which were originally negative with the Cryptococcal Antigen Latex Agglutination System (CALAS), were shown to become falsely positive after placement in BBL Port-A-Cul anaerobic transport vials. This transport device, although excellent for specimen transportation for subsequent culture, should not be used if cryptococcal antigen testing is needed. PMID:21159939
False-positive cryptococcal antigen test associated with use of BBL Port-a-Cul transport vials.
Wilson, Deborah A; Sholtis, Mary; Parshall, Sharon; Hall, Gerri S; Procop, Gary W
2011-02-01
A total of 52 residual CSF and serum specimens, which were originally negative with the Cryptococcal Antigen Latex Agglutination System (CALAS), were shown to become falsely positive after placement in BBL Port-A-Cul anaerobic transport vials. This transport device, although excellent for specimen transportation for subsequent culture, should not be used if cryptococcal antigen testing is needed.
Cryptococcal meningitis: epidemiology and therapeutic options
Sloan, Derek J; Parris, Victoria
2014-01-01
Cryptococcal meningitis causes morbidity and mortality worldwide. The burden of disease is greatest in middle- and low-income countries with a high incidence of human immunodeficiency virus (HIV) infection. Patients taking immunosuppressive drugs and some immunocompetent hosts are also at risk. Treatment of cryptococcal meningitis consists of three phases: induction, consolidation, and maintenance. Effective induction therapy requires potent fungicidal drugs (amphotericin B and flucytosine), which are often unavailable in low-resource, high-endemicity settings. As a consequence, mortality is unacceptably high. Wider access to effective treatment is urgently required to improve outcomes. For human immunodeficiency virus-infected patients, judicious management of asymptomatic cryptococcal antigenemia and appropriately timed introduction of antiretroviral therapy are important. PMID:24872723
Chrysos, G; Gerakari, S; Stasini, F; Kokkoris, S; Kourousis, D; Velegraki, A
2008-07-01
A 55-year-old HIV-infected patient on antiretroviral treatment with Ritonavir-boosted Tipranavir as part of HAART developed intracranial haemorrhage during the acute phase of cryptococcal meningitis. CT scan and MRI confirmed the intracranial haemorrhage. Positive cryptococcal antigen and cultures of both blood and CSF confirmed the diagnosis of meningitis caused by Cryptococcus neoformans. There was no evidence of any bleeding disorder, use of aspirin or antiplatelet agents. The patient was treated with Liposomal Amphotericin B for cryptococcal meningitis. No special treatment was needed for the intracranial haemorrhage, but Tipranavir was discontinued and replaced by Kaletra and Saquinavir. Intracranial haemorrhage could be related to Tipranavir and cryptococcal meningitis was a predisposing factor. Headache stopped 3 days after starting antifungal treatment. To the best of our knowledge, this is the first reported case of intracranial haemorrhage related to Tipranavir treatment after the end of the "RESIST" studies and the only one related to meningitis.
Oladele, Rita O.; Gago, Sara
2017-01-01
Cryptococcal disease remains a significant source of global morbidity and mortality for people living with HIV, especially in resource-limited settings. The recently updated estimate of cryptococcal disease revealed a global incidence of 223,100 cases annually with 73% of these cases being diagnosed in sub-Saharan Africa. Furthermore, 75% of the estimated 181,100 deaths associated with cryptococcal disease occur in sub-Saharan Africa. Point-of-care diagnostic assays have revolutionised the diagnosis of this deadly opportunistic infection. The theory of asymptomatic cryptococcal antigenaemia as a forerunner to symptomatic meningitis and death has been conclusively proven. Thus, cryptococcal antigenaemia screening coupled with pre-emptive antifungal therapy has been demonstrated as a cost-effective strategy with survival benefits and has been incorporated into HIV national guidelines in several countries. However, this is yet to be implemented in a number of other high HIV burden countries. Flucytosine-based combination therapy during the induction phase is associated with improved survival, faster cerebrospinal fluid sterilisation and fewer relapses. Flucytosine, however, is unavailable in many parts of the world. Studies are ongoing on the efficacy of shorter regimens of amphotericin B. Early diagnosis, proactive antifungal therapy with concurrent management of raised intracranial pressure creates the potential to markedly reduce mortality associated with this disease. PMID:29371581
Park, Benjamin J; Wannemuehler, Kathleen A; Marston, Barbara J; Govender, Nelesh; Pappas, Peter G; Chiller, Tom M
2009-02-20
Cryptococcal meningitis is one of the most important HIV-related opportunistic infections, especially in the developing world. In order to help develop global strategies and priorities for prevention and treatment, it is important to estimate the burden of cryptococcal meningitis. Global burden of disease estimation using published studies. We used the median incidence rate of available studies in a geographic region to estimate the region-specific cryptococcal meningitis incidence; this was multiplied by the 2007 United Nations Programme on HIV/AIDS HIV population estimate for each region to estimate cryptococcal meningitis cases. To estimate deaths, we assumed a 9% 3-month case-fatality rate among high-income regions, a 55% rate among low-income and middle-income regions, and a 70% rate in sub-Saharan Africa, based on studies published in these areas and expert opinion. Published incidence ranged from 0.04 to 12% per year among persons with HIV. Sub-Saharan Africa had the highest yearly burden estimate (median incidence 3.2%, 720 000 cases; range, 144 000-1.3 million). Median incidence was lowest in Western and Central Europe and Oceania (=0.1% each). Globally, approximately 957 900 cases (range, 371 700-1 544 000) of cryptococcal meningitis occur each year, resulting in 624 700 deaths (range, 125 000-1 124 900) by 3 months after infection. This study, the first attempt to estimate the global burden of cryptococcal meningitis, finds the number of cases and deaths to be very high, with most occurring in sub-Saharan Africa. Further work is needed to better define the scope of the problem and track the epidemiology of this infection, in order to prioritize prevention, diagnosis, and treatment strategies.
Cryptococcal meningitis: epidemiology, immunology, diagnosis and therapy.
Williamson, Peter R; Jarvis, Joseph N; Panackal, Anil A; Fisher, Matthew C; Molloy, Síle F; Loyse, Angela; Harrison, Thomas S
2017-01-01
HIV-associated cryptococcal meningitis is by far the most common cause of adult meningitis in many areas of the world that have high HIV seroprevalence. In most areas in Sub-Saharan Africa, the incidence of cryptococcal meningitis is not decreasing despite availability of antiretroviral therapy, because of issues of adherence and retention in HIV care. In addition, cryptococcal meningitis in HIV-seronegative individuals is a substantial problem: the risk of cryptococcal infection is increased in transplant recipients and other individuals with defects in cell-mediated immunity, and cryptococcosis is also reported in the apparently immunocompetent. Despite therapy, mortality rates in these groups are high. Over the past 5 years, advances have been made in rapid point-of-care diagnosis and early detection of cryptococcal antigen in the blood. These advances have enabled development of screening and pre-emptive treatment strategies aimed at preventing the development of clinical infection in patients with late-stage HIV infection. Progress in optimizing antifungal combinations has been aided by evaluation of the clearance rate of infection by using serial quantitative cultures of cerebrospinal fluid (CSF). Measurement and management of raised CSF pressure, a common complication, is a vital component of care. In addition, we now better understand protective immune responses in HIV-associated cases, immunogenetic predisposition to infection, and the role of immune-mediated pathology in patients with non-HIV associated infection and in the context of HIV-associated immune reconstitution reactions.
Katchanov, Juri; Branding, Gordian; Jefferys, Laura; Arastéh, Keikawus; Stocker, Hartmut; Siebert, Eberhard
2016-02-01
To determine the frequency, imaging characteristics, neuroanatomical distribution and dynamics of magnetic resonance imaging findings in HIV-associated cryptococcal meningitis in immunocompromised patients we compared patients without antiretroviral therapy with patients undergoing immune reconstitution. Neuroimaging and clinical data of 21 consecutive patients presenting to a German HIV centre in a 10-year period between 2005 and 2014 were reviewed. We identified eight patients with magnetic resonance imaging findings related to cryptococcal disease: five patients without antiretroviral therapy and three patients receiving effective antiretroviral therapy resulting in immune reconstitution. The pattern of magnetic resonance imaging manifestations was different in the two groups. In patients not on antiretroviral therapy, pseudocysts (n = 3) and lacunar ischaemic lesions (n = 2) were detected. Contrast-enhancing focal leptomeningeal and/or parenchymal lesions were found in all patients under immune reconstitution (n = 3). Magnetic resonance imaging lesions suggestive of leptomeningitis or meningoencephalitis were detected in all patients with a recurrence of cryptococcal meningitis under immune reconstitution, which differs from the classical magnetic resonance imaging findings in patients without antiretroviral therapy. In antiretroviral therapy-treated patients with past medical history of cryptococcal meningitis, detection of contrast-enhancing focal meningeal and/or parenchymal lesions should prompt further investigations for a recurrence of cryptococcal meningitis under immune reconstitution. © The Author(s) 2015.
[Urinary calculi and infection].
Trinchieri, Alberto
2014-01-01
Infection urinary stones resulting from urease-producing bacteria are composed by struvite and/or carbonate apatite. Bacterial urease splits urea and promotes the formation of ammonia and carbon dioxide leading to urine alkalinization and formation of phosphate salts. Proteus species are urease-producers, whereas a limited number of strains of other Gram negative and positive species may produce urease. Ureaplasma urealyticum and Corynebacterium urealyticum are urease-producers that are not isolated by conventional urine cultures, but require specific tests for identification. Primary treatment requires surgical removal of stones as complete as possible. Extracorporeal and endoscopic treatments are usually preferred, while open surgery is actually limited to few selected cases. Residual stones or fragments should be treated by chemolysis via ureteral catheter or nephrostomy or administration of citrate salts in order to achieve a stone-free renal unit. Postoperatively, recurrent urinary tract infection should be treated with appropriate antibiotic treatment although long-term antibiotic prophylaxis can cause resistance. Urinary acidification has been proposed for the prophylaxis of infection stones, but long-term acidification is difficult to achieve in urine infected by urease-producing bacteria. Urease inhibitors lead to prevention and/or dissolution of stones and encrustations in patients with infection by urea-splitting bacteria, but their use is limited by their toxicity. The administration of citrate salts involves an increase of the value of nucleation pH (pHn), that is the pH value at which calcium and magnesium phosphate crystallization occurs, in a greater way than the corresponding increase in the urinary pH due to its alkalinizing effect and resulting in a reduction of the risk of struvite crystallization. In conclusion prevention of the recurrence of infection stones can be achieved by an integrated approach tailored on the single patient. Complete clearance of the stone must be achieved by primary surgical procedure and residual fragments should be extensively treated. In the case of persistent infection, conservative measures, such as acidification and urease inhibitors or citrate administration, should be adopted to minimize its effect on urinary saturation with respect to struvite.
... Other tests that may be done include: Blood culture Chest x-ray Cryptococcal antigen in CSF or ... the head Gram stain, other special stains, and culture of CSF Treatment Antifungal medicines are used to ...
Effects of heavy metal Cd pollution on microbial activities in soil.
Shi, Weilin; Ma, Xiying
2017-12-23
Heavy metal contamination of soil occurs when heavy metals are introduced to soil through human activities, leading to the gradual deterioration of the ecology and environment. Microorganism activity reflects the intensity of various biochemical reactions in soil, and changes in it reflect the level of heavy metal pollution affecting the soil. The effects were studied of heavy metal Cd on the microbial activity of soil at different concentrations by investigating the respiratory intensity, urease activity, and catalase activity in forest soil and garden soil. The results showed that the respiratory intensity, urease and catalase activities in the garden soil were all higher than in the forest soil. Cd has obvious inhibitory effects on microbial activities. The three parameters exhibited a downward trend with increasing concentrations of Cd. Catalase activity increased when the mass concentration of Cd reached 1.0 mg/kg, indicating that low concentrations of Cd can promote the activity of some microorganisms. Respiratory intensity and urease activity also increased when the concentration reached 10.0 mg/kg, showing that respiratory intensity and urease activity have strong response mechanisms to adverse conditions. The effective state of Cd in soil, as well as inhibition of microbial activity, decreased with incubation time.
Cryptococcal meningoencephalitis in patients with mantle cell lymphoma on ibrutinib.
Sun, Kai; Kasparian, Saro; Iyer, Swaminathan; Pingali, Sai Ravi
2018-01-01
Ibrutinib, a Bruton's tyrosine kinase inhibitor, has been increasingly widely used in relapsed and refractory mantle cell lymphoma (MCL) and chronic lymphocytic leukaemia [1, 2]. With its use becoming more common, there have been emerging case reports of opportunistic infections like cryptococcal infections [3-8]. These infections in patients receiving ibrutinib were mostly reported in patients with chronic lymphocytic leukaemia, who have poor immune reconstitution. Here, we report two cases of cryptococcal meningoencephalitis in patients with MCL on ibrutinib.
Martins, Marilena dos Anjos; Brighente, Kate Bastos Santos; Matos, Terezinha Aparecida de; Vidal, Jose Ernesto; Hipólito, Daise Damaris Carnietto de; Pereira-Chioccola, Vera Lucia
2015-01-01
This study evaluated the use of polymerase chain reaction for cryptococcal meningitis diagnosis in clinical samples. The sensitivity and specificity of the methodology were evaluated using eight Cryptococcus neoformans/C. gattii species complex reference strains and 165 cerebrospinal fluid samples from patients with neurological diseases divided into two groups: 96 patients with cryptococcal meningitis and AIDS; and 69 patients with other neurological opportunistic diseases (CRL/AIDS). Two primer sets were tested (CN4-CN5 and the multiplex CNa70S-CNa70A/CNb49S-CNb-49A that amplify a specific product for C. neoformans and another for C. gattii). CN4-CN5 primer set was positive in all Cryptococcus standard strains and in 94.8% in DNA samples from cryptococcal meningitis and AIDS group. With the multiplex, no 448-bp product of C. gattii was observed in the clinical samples of either group. The 695bp products of C. neoformans were observed only in 64.6% of the cryptococcal meningitis and AIDS group. This primer set was negative for two standard strains. The specificity based on the negative samples from the CTL/AIDS group was 98.5% in both primer sets. These data suggest that the CN4/CN5 primer set was highly sensitive for the identification of C. neoformans/C. gattii species complex in cerebrospinal fluid samples from patients with clinical suspicion of cryptococcal meningitis. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.
Immunology of Cryptococcal Infections: Developing a Rational Approach to Patient Therapy
Elsegeiny, Waleed; Marr, Kieren A.; Williamson, Peter R.
2018-01-01
Cryptococcal meningoencephalitis is responsible for upwards of 15% of HIV-related deaths worldwide and is currently the most common cause of non-viral meningitis in the US, affecting both previously healthy and people with immune suppression caused by cancer chemotherapy, transplantation, and biologic therapies. Despite a continued 30–50% attributable mortality, recommended therapeutic strategies have remained largely unchanged since the 1950s. Recent murine models and human studies examining the role of the immune system in both susceptibility to the infection as well as host damage have begun to influence patient care decisions. The Damage Framework Response, originally proposed in 1999, was recently used to discuss dichotomous etiologies of host damage in cryptococcal disease. These include patients suffering microbiological damage with low host immunity (especially those immunosuppressed with HIV) and those having low (live) microbiological burden but high immune-mediated damage (HIV-related immune reconstitution syndrome and non-HIV-related postinfectious inflammatory response syndrome). Cryptococcal disease in previously healthy hosts, albeit rare, has been known for a long time. Immunophenotyping and dendritic cell-T cell signaling studies on cerebral spinal fluid of these rare patients reveal immune capacity for recognition and T-cell activation pathways including increased levels of HLA-DR and CD56. However, despite effective T-cell signals, brain biopsy and autopsy specimens demonstrated an M2 alternative macrophage polarization and poor phagocytosis of fungal cells. These studies expand the paradigm for cryptococcal disease susceptibility to include a prominent role for immune-mediated damage and suggest a need for careful individual consideration of immune activation during therapy of cryptococcal disease in diverse hosts. PMID:29670625
Immunology of Cryptococcal Infections: Developing a Rational Approach to Patient Therapy.
Elsegeiny, Waleed; Marr, Kieren A; Williamson, Peter R
2018-01-01
Cryptococcal meningoencephalitis is responsible for upwards of 15% of HIV-related deaths worldwide and is currently the most common cause of non-viral meningitis in the US, affecting both previously healthy and people with immune suppression caused by cancer chemotherapy, transplantation, and biologic therapies. Despite a continued 30-50% attributable mortality, recommended therapeutic strategies have remained largely unchanged since the 1950s. Recent murine models and human studies examining the role of the immune system in both susceptibility to the infection as well as host damage have begun to influence patient care decisions. The Damage Framework Response, originally proposed in 1999, was recently used to discuss dichotomous etiologies of host damage in cryptococcal disease. These include patients suffering microbiological damage with low host immunity (especially those immunosuppressed with HIV) and those having low (live) microbiological burden but high immune-mediated damage (HIV-related immune reconstitution syndrome and non-HIV-related postinfectious inflammatory response syndrome). Cryptococcal disease in previously healthy hosts, albeit rare, has been known for a long time. Immunophenotyping and dendritic cell-T cell signaling studies on cerebral spinal fluid of these rare patients reveal immune capacity for recognition and T-cell activation pathways including increased levels of HLA-DR and CD56. However, despite effective T-cell signals, brain biopsy and autopsy specimens demonstrated an M2 alternative macrophage polarization and poor phagocytosis of fungal cells. These studies expand the paradigm for cryptococcal disease susceptibility to include a prominent role for immune-mediated damage and suggest a need for careful individual consideration of immune activation during therapy of cryptococcal disease in diverse hosts.
Chaiwarith, Romanee; Vongsanim, Surachet; Supparatpinyo, Khuanchai
2014-05-01
Cryptococcal meningitis (CM) is a common central nervous system infection in HIV-infected patients. This study aimed to determine treatment outcomes among HIV-infected patients who had cryptococcal meningitis and to determine predictors of death. We conducted a retrospective cohort study among HIV-infected patients receiving care at Chiang Mai University Hospital from January 1, 2005 to December 31, 2010. We studied 79 patients; 45 (57.0%) were male and the mean age was 35.1 +/- 7.2 years. Eleven patients (13.9%) had previous opportunistic infection. The most common presenting symptoms were headache (63 patients, 79.8%), fever (49 patients, 62.0%), and altered consciousness (21 patients, 26.6%). The median CD4+ cell count was 20 cells/mm3 [Interquartile range (IQR) 10, 53]. The in-hospital, 90-day, and 1-year mortality rates were 24.1%, 32.4%, and 52.2%, respectively. The CM attributable in-hospital, 90-day and 1-year mortality rates were 13.9%, 20.3%, and 23.2%, respectively. Predictors associated with a 1-year mortality were a high cerebrospinal (CSF) cryptococcal antigen titer (> 1:10,000) [Odds Ratio (OR) =7.08, 95% confidence interval (CI): 1.62-31.00, p = 0.009], and altered consciousness at presentation (OR = 5.27; 95% CI: 1.16-24.05; p = 0.032). Cryptococcal meningitis is an important cause of death in HIV-infected patients. HIV-infected patients with a low CD4+ cell count, a headache, fever and altered consciousness should be investigated for CM and those with a high CSF cryptococcal antigen titer are at high risk for mortality.
Long-lasting, specific immunologic unresponsiveness associated with cryptococcal meningitis.
Henderson, D K; Bennett, J E; Huber, M A
1982-01-01
A sensitive radioimmunoassay and an antibody class-specific enzyme-linked immunosorbent assay were used to determine whether patients cured of cryptococcosis responded normally to immunization with cryptococcal capsular polysaccharide (CPS) and type III pneumococcal polysaccharide. 10 normal volunteers and 8 patients who had been cured of cryptococcal meningitis and who had been cured of cryptococcal meningitis and who had no serious underlying diseases were immunized with both antigens. Geometric mean titers to CPS measured by radioimmunoassay were 1:1 in both groups before vaccination, but were 1:3 in patients and 1:119 in controls following immunization (P less than 0.01, Student's t test). Analysis of the class-specific response to immunization with CPS found little anti-CPS IgG or IgA. Geometric mean postvaccination IgM titers were 1:31 in patients and 1:238 in controls (P less than 0.01). Responses to immunization with type III pneumococcal polysaccharide were similar in patients and controls, with IgA, IgM, and IgG mean titers of 1:1129, 1:369, and 1:158 in patients and 1:1504, 1:1039, and 1:163 in controls (P greater than 0.2 for each antibody class). Cured cryptococcal meningitis is often associated with prolonged specific immunologic unresponsiveness. PMID:7068854
Meya, David B.; Okurut, Samuel; Zziwa, Godfrey; Cose, Stephen; Bohjanen, Paul R.; Mayanja-Kizza, Harriet; Joloba, Moses; Boulware, David R.; Yukari Manabe, Carol; Wahl, Sharon; Janoff, Edward N.
2017-01-01
A third of adults with AIDS and cryptococcal meningitis (CM) develop immune reconstitution inflammatory syndrome (IRIS) after initiating antiretroviral therapy (ART), which is thought to result from exaggerated inflammatory antigen-specific T cell responses. The contribution of monocytes to the immunopathogenesis of cryptococcal IRIS remains unclear. We compared monocyte subset frequencies and immune responses in HIV-infected Ugandans at time of CM diagnosis (IRIS-Baseline) for those who later developed CM-IRIS, controls who did not develop CM-IRIS (Control-Baseline) at CM-IRIS (IRIS-Event), and for controls at a time point matched for ART duration (Control-Event) to understand the association of monocyte distribution and immune responses with cryptococcal IRIS. At baseline, stimulation with IFN-γ ex vivo induced a higher frequency of TNF-α- and IL-6-producing monocytes among those who later developed IRIS. Among participants who developed IRIS, ex vivo IFN-γ stimulation induced higher frequencies of activated monocytes, IL-6+, TNF-α+ classical, and IL-6+ intermediate monocytes compared with controls. In conclusion, we have demonstrated that monocyte subset phenotype and cytokine responses prior to ART are associated with and may be predictive of CM-IRIS. Larger studies to further delineate innate immunological responses and the efficacy of immunomodulatory therapies during cryptococcal IRIS are warranted. PMID:29371546
Nixon, Gemma L.; McEntee, Laura; Johnson, Adam; Farrington, Nicola; Whalley, Sarah; Livermore, Joanne; Natal, Cristien; Washbourn, Gina; Bibby, Jaclyn; Berry, Neil; Lestner, Jodi; Truong, Megan; Owen, Andrew; Lalloo, David; Charles, Ian
2018-01-01
ABSTRACT Current therapeutic options for cryptococcal meningitis are limited by toxicity, global supply, and emergence of resistance. There is an urgent need to develop additional antifungal agents that are fungicidal within the central nervous system and preferably orally bioavailable. The benzimidazoles have broad-spectrum antiparasitic activity but also have in vitro antifungal activity that includes Cryptococcus neoformans. Flubendazole (a benzimidazole) has been reformulated by Janssen Pharmaceutica as an amorphous solid drug nanodispersion to develop an orally bioavailable medicine for the treatment of neglected tropical diseases such as onchocerciasis. We investigated the in vitro activity, the structure-activity-relationships, and both in vitro and in vivo pharmacodynamics of flubendazole for cryptococcal meningitis. Flubendazole has potent in vitro activity against Cryptococcus neoformans, with a modal MIC of 0.125 mg/liter using European Committee on Antimicrobial Susceptibility Testing (EUCAST) methodology. Computer models provided an insight into the residues responsible for the binding of flubendazole to cryptococcal β-tubulin. Rapid fungicidal activity was evident in a hollow-fiber infection model of cryptococcal meningitis. The solid drug nanodispersion was orally bioavailable in mice with higher drug exposure in the cerebrum. The maximal dose of flubendazole (12 mg/kg of body weight/day) orally resulted in an ∼2 log10CFU/g reduction in fungal burden compared with that in vehicle-treated controls. Flubendazole was orally bioavailable in rabbits, but there were no quantifiable drug concentrations in the cerebrospinal fluid (CSF) or cerebrum and no antifungal activity was demonstrated in either CSF or cerebrum. These studies provide evidence for the further study and development of the benzimidazole scaffold for the treatment of cryptococcal meningitis. PMID:29311092
Absorption of mulberry root urease to the hemolymph of the silkworm, Bombyx mori.
Kurahashi, Hitoshi; Atiwetin, Panida; Nagaoka, Sumiharu; Miyata, Seiji; Kitajima, Sakihito; Sugimura, Yukio
2005-09-01
Mulberry leaves are the sole diet of the silkworm, Bombyx mori. The host urease is incorporated into the larval hemolymph and involved in nitrogen metabolism in the insect. To investigate the selective absorption of the host urease to the larvae, crude urease was prepared from mulberry leaves and roots. Root urease was identical to leaf urease on the basis of electrophoretic analyses: (1) the urease activity appeared in the same migration position in a native gel; (2) There was no difference in molecular mass of the subunit. The root urease was orally injected to the fifth instar larvae of the silkworm. Just before spinning, the larvae absorbed intact urease from the midgut lumen to the hemolymph without the loss of activity. The capacity to absorb urease occurred only at the specific stage. Localization of host urease in midgut tissue was observed using confocal laser scanning microscopy and transmission electron microscopy. Based on spatial distribution of immunofluorescent signals and immunogold particles, host urease specifically attached to the surfaces of microvilli existing in the apical side of columnar cells and appeared in the cytoplasm of the cells for transport to the hemolymph. The incorporation efficiency of root urease into the hemolymph was significantly higher than for ureases from jack bean seeds and Bacillus pasteurii. The urease that was transported to the hemolymph was electrophoretically altered, compared with the host urease extracted.
Immunity to Cryptococcus neoformans and C. gattii during cryptococcosis
Gibson, Josie F.; Johnston, Simon A.
2015-01-01
The vast majority of infection with cryptococcal species occurs with Cryptococcus neoformans in the severely immunocompromised. A significant exception to this is the infections of those with apparently normal immune systems by Cryptococcus gattii. Susceptibility to cryptococcosis can be broadly categorised as a defect in adaptive immune responses, especially in T cell immunity. However, innate immune cells such as macrophages play a key role and are likely the primary effector cell in the killing and ultimate clearance of cryptococcal infection. In this review we discuss the current state of our understanding of how the immune system responds to cryptococcal infection in health and disease, with reference to the work communicated at the 9th International Conference on Cryptococcus and Cryptococcosis (ICCC9). We have focussed on cell mediated responses, particularly early in infection, but with the aim of presenting a broad overview of our understanding of immunity to cryptococcal infection, highlighting some recent advances and offering some perspectives on future directions. PMID:25498576
Heath, Jessica L.; Yin, Dwight E.; Wechsler, Daniel S.; Turner, David A.
2015-01-01
Disseminated cryptococcal infection is rarely reported in the setting of pediatric acute leukemia, despite the immunocompromised state of these patients. However, when present, disseminated cryptococcal infection poses treatment challenges and is associated with significant morbidity and mortality. Treatment of invasive fungal disease in a child with acute leukemia requires a delicate balance between anti-fungal and anti-neoplastic therapy. This balance is particularly important early in the course of leukemia, since both the underlying disease and overwhelming infection can be life threatening. We describe the successful management of life-threatening disseminated cryptococcosis in a child with acute lymphoblastic leukemia during induction therapy. PMID:22258349
HTLV-III: Intra-BBB IgG Synthesis and Hybridization in CSF Cells
1988-02-08
toxoplasmosis , and 3 had cryptococcal meningitis. All patients had known risk factors for HIV infection: 44 were homosexual and 8 were intravenous drug abusers...disease caused by detectable CNS opportunistic pathogens, cryptococcal meningitis, and cerebral toxoplasmosis . In six instances of AIDS-associated dementia
Schmertmann, Laura J; Stalder, Kathryn; Hudson, Donald; Martin, Patricia; Makara, Mariano; Meyer, Wieland; Malik, Richard; Krockenberger, Mark B
2018-02-24
Disseminated cryptococcosis caused by Cryptococcus gattii (molecular type VGI) was diagnosed in an adult free-ranging female koala (Phascolarctos cinereus). Subclinical cryptococcosis was later diagnosed in this koala's joey. In the adult koala, a pathological fracture of the tibia was associated with the bone lysis of marked focal cryptococcal osteomyelitis. Limb-sparing orthopedic intervention, in the setting of disseminated cryptococcosis, was judged to have a poor prognosis, and the adult koala was euthanized. The joey was removed and hand-reared. Serological testing revealed persistent and increasing cryptococcal capsular antigenemia in the absence of clinical signs of disease and it was subsequently treated with oral fluconazole for approximately 16 months, rehabilitated and released into the wild. It was sighted 3 months post-release in a good state of health and again at 18 months post-release but was not recaptured on either occasion. This is the first published report of cryptococcal appendicular osteomyelitis in a koala. It is also the first report of concurrent disease in a dependent juvenile and the successful treatment of subclinical cryptococcosis to full resolution of the cryptococcal antigenemia in a free-ranging koala. This paper provides a discussion of cryptococcal osteomyelitis in animals, host-pathogen-environment interactions and treatment and monitoring protocols for cryptococcosis in koalas. Published reports describing the treatment of cryptococcosis in koalas are also collated and summarised.
2011-01-01
Background Nontypeable Haemophilus influenzae is a common cause of otitis media in children and lower respiratory tract infection in adults with chronic obstructive pulmonary disease (COPD). Prior studies have shown that H. influenzae expresses abundant urease during growth in the middle ear of the chinchilla and in pooled human sputum, suggesting that expression of urease is important for colonization and infection in the hostile environments of the middle ear and in the airways in adults. Virtually nothing else is known about the urease of H. influenzae, which was characterized in the present study. Results Analysis by reverse transcriptase PCR revealed that the ure gene cluster is expressed as a single transcript. Knockout mutants of a urease structural gene (ureC) and of the entire ure operon demonstrated no detectable urease activity indicating that this operon is the only one encoding an active urease. The ure operon is present in all strains tested, including clinical isolates from otitis media and COPD. Urease activity decreased as nitrogen availability increased. To test the hypothesis that urease is expressed during human infection, purified recombinant urease C was used in ELISA with pre acquisition and post infection serum from adults with COPD who experienced infections caused by H. influenzae. A total of 28% of patients developed new antibodies following infection indicating that H. influenzae expresses urease during airway infection. Bacterial viability assays performed at varying pH indicate that urease mediates survival of H. influenzae in an acid environment. Conclusions The H. influenzae genome contains a single urease operon that mediates urease expression and that is present in all clinical isolates tested. Nitrogen availability is a determinant of urease expression. H. influenzae expresses urease during human respiratory tract infection and urease is a target of the human antibody response. Expression of urease enhances viability in an acid environment. Taken together, these observations suggest that urease is important for survival and replication of H. influenzae in the human respiratory tract. PMID:21843372
A urolith of biogenic dolomite - another clue in the dolomite mystery
NASA Astrophysics Data System (ADS)
Mansfield, Charles F.
1980-06-01
A male Dalmatian, Canis familiaris, produced uroliths of almost pure dolomite, 3-8 mm across, in his urinary bladder in less than 8 months at 38°C and about 1 atm. The X-ray diffractogram identified the predominant mineral as dolomite, and the sharp (01.5) peak showed it is ordered dolomite, not the disordered form, protodolomite. Geochemically and biologically plausible causes include (1) renal, respiratory, or metabolic alkalosis, (2) infection by urease-producing (urea-splitting) fungi or bacteria and (3) infection by uric acid-fermenting bacteria. Hematological, bacteriological, urological and geochemical considerations most strongly implicate infection by either anaerobic, urease-producing bacteria or anaerobic, uric acid-fermenting bacteria. The physical and chemical conditions of this urinary system more closely approximate modern and inferred ancient carbonate depositional settings than most previous laboratory experiments, especially in terms of temperature, pressure, total salinity and, possibly, biota. The presence of urease-producing and/or uric acid-fermenting bacteria in urea- and/or acid-containing sediment, such as fecal pellets and algal mats, could promote formation of authigenic dolomite or other carbonates.
Lin, Chi-Chang; Yang, Ming-Chien
2003-05-01
The surface of polyacrylonitrile hollow fibers was hydrolyzed and covalently bonded with urease via glutaraldehyde. Immobilized urease retained higher relative activity than native urease when storing at various pHs. The stabilities of immobilized urease to pH were higher than those of native enzyme. Immobilized urease retained 86% of initial activity after reusing 15 times at pH 7. After storing for 42d at 4 degrees C and pH 7, the immobilized urease can hydrolyze 15% of initial concentration of urea at pH 7 and 37 degrees C after 4h, while native urease lost almost its catalytic ability. The removal of urea using urease-immobilized dialyzer was demonstrated with in vitro dialysis and showed faster removing rate of urea than a regular dialyzer by 2 times. Furthermore, the improvement in the urea clearance by the urease immobilization to a dialyzer increased with the dialysate velocity.
Holikatti, Prabhakar C.; Kar, Nilamadhab
2012-01-01
We report here a case that presented as mania followed by depression and mild cognitive impairment, which was misinterpreted and treated as a depressive episode of bipolar disorder and planned for electroconvulsive therapy, but was ultimately found to have cryptococcal meningitis and HIV-associated neurocognitive symptoms. PMID:23723549
Isolation of Cryptococcus laurentii from Canada Goose guano in rural upstate New York.
Filion, Tera; Kidd, Sarah; Aguirre, Karen
2006-11-01
Cryptococcus neoformans and Cryptococcus gattii are etiologic agents of cryptococcal pneumonia and meningitis, potentially lethal syndromes associated with AIDS. A related species, Cryptococcus laurentii, has recently been implicated in several cases of human disease. Guano from Canada Goose (Branta canadensis), an organism that lives closely beside man and inhabits recreational space in rural and suburban areas, might be a significant environmental reservoir of Cryptococcus organisms in non-urban areas. Cryptococcal organisms were isolated from Canada Goose guano from a site in rural northern New York, with identification based upon colony and microscopic morphology, ability to metabolize L: -Dopa to melanin, and positive reaction with a commercial anti-cryptococcal capsular polysaccharide latex bead agglutination test. DNA sequences from five positive isolates were identical to each other, and identical to the ITS1-5.8S-ITS2 sequences of C. laurentii strain CBS7140 (Accession AY315665) across a 511 bp sequence. All five isolates of C. laurentii possess three of the known virulence factors common to cryptococcal organisms that cause human disease: capsule, ability to grow at 37 degrees C, and laccase activity.
Montgomery, Martha P; Nakasujja, Noeline; Morawski, Bozena M; Rajasingham, Radha; Rhein, Joshua; Nalintya, Elizabeth; Williams, Darlisha A; Huppler Hullsiek, Kathy; Kiragga, Agnes; Rolfes, Melissa A; Donahue Carlson, Renee; Bahr, Nathan C; Birkenkamp, Kate E; Manabe, Yukari C; Bohjanen, Paul R; Kaplan, Jonathan E; Kambugu, Andrew; Meya, David B; Boulware, David R
2017-06-12
HIV-infected persons with detectable cryptococcal antigen (CrAg) in blood have increased morbidity and mortality compared with HIV-infected persons who are CrAg-negative. This study examined neurocognitive function among persons with asymptomatic cryptococcal antigenemia. Participants from three prospective HIV cohorts underwent neurocognitive testing at the time of antiretroviral therapy (ART) initiation. Cohorts included persons with cryptococcal meningitis (N = 90), asymptomatic CrAg + (N = 87), and HIV-infected persons without central nervous system infection (N = 125). Z-scores for each neurocognitive test were calculated relative to an HIV-negative Ugandan population with a composite quantitative neurocognitive performance Z-score (QNPZ-8) created from eight tested domains. Neurocognitive function was measured pre-ART for all three cohorts and additionally after 4 weeks of ART (and 6 weeks of pre-emptive fluconazole) treatment among asymptomatic CrAg + participants. Cryptococcal meningitis and asymptomatic CrAg + participants had lower median CD4 counts (17 and 26 cells/μL, respectively) than the HIV-infected control cohort (233 cells/μL) as well as lower Karnofsky performance status (60 and 70 vs. 90, respectively). The composite QNPZ-8 for asymptomatic CrAg + (-1.80 Z-score) fell between the cryptococcal meningitis cohort (-2.22 Z-score, P = 0.02) and HIV-infected controls (-1.36, P = 0.003). After four weeks of ART and six weeks of fluconazole, the asymptomatic CrAg + cohort neurocognitive performance improved (-1.0 Z-score, P < 0.001). Significant deficits in neurocognitive function were identified in asymptomatic CrAg + persons with advanced HIV/AIDS even without signs or sequelae of meningitis. Neurocognitive function in this group improves over time after initiation of pre-emptive fluconazole treatment and ART, but short term adherence support may be necessary.
Rückriemen, Jana; Klemm, Oliver; Henle, Thomas
2017-09-01
Manuka honey (Leptospermum scoparium) exerts a strong antibacterial effect. Bacterial enzymes are an important target for antibacterial compounds. The enzyme urease produces ammonia and enables bacteria to adapt to an acidic environment. A new enzymatic assay, based on photometric detection of ammonia with ninhydrin, was developed to study urease activity. Methylglyoxal (MGO) and its precursor dihydroxyacetone (DHA), which are naturally present in manuka honey, were identified as jack bean urease inhibitors with IC 50 values of 2.8 and 5.0mM, respectively. Urease inhibition of manuka honey correlates with its MGO and DHA content. Non-manuka honeys, which lack MGO and DHA, showed significantly less urease inhibition. MGO depletion from manuka honey with glyoxalase reduced urease inhibition. Therefore, urease inhibition by manuka honey is mainly due to MGO and DHA. The results obtained with jack bean urease as a model urease, may contribute to the understanding of bacterial inhibition by manuka honey. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zusfahair; Ningsih, D. R.; Fatoni, A.; Pertiwi, D. S.
2018-04-01
Urease is enzyme that plays a role in nitrogen metabolism during plant germination. Plants that produce a lot of urease are grains. This study used asparagus bean as source of urease. The purpose of this research is to learn the effect of germination time on the activity of urease enzyme from asparagus bean and its biochemical properties. The research was started by germination of asparagus bean on day 2, 4, 6, 8, 10 and 12. Asparagus bean sprouts were extracted using acetone and separated by centrifugation to obtain the crude extract of urease. The biochemical properties of the crude extract of urease was further determined including: the effect of temperature, pH, substrate concentration, and metal addition to urease activity. The urease activity is determined by the Nessler method. The germination time of asparagus bean in yielding urease enzyme reached the optimum activity on the 8th day with activity value of 593.7 U/mL. The biochemical properties of urease from asparagus bean have optimum activity at 35 °C, pH 7.0 and substrate concentration 0.125% with activity value of 600 U/mL. Addition of CaCl2, SnCl2 and ZnCl2 metals decrease the activity of urease.
Specht, Charles A; Lee, Chrono K; Huang, Haibin; Hester, Maureen M; Liu, Jianhua; Luckie, Bridget A; Torres Santana, Melanie A; Mirza, Zeynep; Khoshkenar, Payam; Abraham, Ambily; Shen, Zu T; Lodge, Jennifer K; Akalin, Ali; Homan, Jane; Ostroff, Gary R; Levitz, Stuart M
2017-11-28
Development of a vaccine to protect against cryptococcosis is a priority given the enormous global burden of disease in at-risk individuals. Using glucan particles (GPs) as a delivery system, we previously demonstrated that mice vaccinated with crude Cryptococcus -derived alkaline extracts were protected against lethal challenge with Cryptococcus neoformans and Cryptococcus gattii The goal of the present study was to identify protective protein antigens that could be used in a subunit vaccine. Using biased and unbiased approaches, six candidate antigens (Cda1, Cda2, Cda3, Fpd1, MP88, and Sod1) were selected, recombinantly expressed in Escherichia coli , purified, and loaded into GPs. Three mouse strains (C57BL/6, BALB/c, and DR4) were then vaccinated with the antigen-laden GPs, following which they received a pulmonary challenge with virulent C. neoformans and C. gattii strains. Four candidate vaccines (GP-Cda1, GP-Cda2, GP-Cda3, and GP-Sod1) afforded a significant survival advantage in at least one mouse model; some vaccine combinations provided added protection over that seen with either antigen alone. Vaccine-mediated protection against C. neoformans did not necessarily predict protection against C. gattii Vaccinated mice developed pulmonary inflammatory responses that effectively contained the infection; many surviving mice developed sterilizing immunity. Predicted T helper cell epitopes differed between mouse strains and in the degree to which they matched epitopes predicted in humans. Thus, we have discovered cryptococcal proteins that make promising candidate vaccine antigens. Protection varied depending on the mouse strain and cryptococcal species, suggesting that a successful human subunit vaccine will need to contain multiple antigens, including ones that are species specific. IMPORTANCE The encapsulated fungi Cryptococcus neoformans and Cryptococcus gattii are responsible for nearly 200,000 deaths annually, mostly in immunocompromised individuals. An effective vaccine could substantially reduce the burden of cryptococcosis. However, a major gap in cryptococcal vaccine development has been the discovery of protective antigens to use in vaccines. Here, six cryptococcal proteins with potential as vaccine antigens were expressed recombinantly and purified. Mice were then vaccinated with glucan particle preparations containing each antigen. Of the six candidate vaccines, four protected mice from a lethal cryptococcal challenge. However, the degree of protection varied as a function of mouse strain and cryptococcal species. These preclinical studies identify cryptococcal proteins that could serve as candidate vaccine antigens and provide a proof of principle regarding the feasibility of protein antigen-based vaccines to protect against cryptococcosis. Copyright © 2017 Specht et al.
A Bacillus paralicheniformis Iron-Containing Urease Reduces Urea Concentrations in Rice Wine.
Liu, Qingtao; Chen, Yuqi; Yuan, Minglai; Du, Guocheng; Chen, Jian; Kang, Zhen
2017-09-01
Urease, a nickel-containing metalloenzyme, was the first enzyme to be crystallized and has a prominent position in the history of biochemistry. In the present study, we identified a nickel urease gene cluster, ureABCEFGDH , in Bacillus paralicheniformis ATCC 9945a and characterized it in Escherichia coli Enzymatic assays demonstrate that this oxygen-stable urease is also an iron-containing acid urease. Heterologous expression assays of UreH suggest that this accessory protein is involved in the transmembrane transportation of nickel and iron ions. Moreover, this iron-containing acid urease has a potential application in the degradation of urea in rice wine. The present study not only enhances our understanding of the mechanism of activation of urease but also provides insight into the evolution of metalloenzymes. IMPORTANCE An iron-containing, oxygen-stable acid urease from B. paralicheniformis ATCC 9945a with good enzymatic properties was characterized. This acid urease shows activities toward both urea and ethyl carbamate. After digestion with 6 U/ml urease, approximately 92% of the urea in rice wine was removed, suggesting that this urease has great potential in the food industry. Copyright © 2017 American Society for Microbiology.
A Bacillus paralicheniformis Iron-Containing Urease Reduces Urea Concentrations in Rice Wine
Liu, Qingtao; Chen, Yuqi; Yuan, Minglai; Chen, Jian
2017-01-01
ABSTRACT Urease, a nickel-containing metalloenzyme, was the first enzyme to be crystallized and has a prominent position in the history of biochemistry. In the present study, we identified a nickel urease gene cluster, ureABCEFGDH, in Bacillus paralicheniformis ATCC 9945a and characterized it in Escherichia coli. Enzymatic assays demonstrate that this oxygen-stable urease is also an iron-containing acid urease. Heterologous expression assays of UreH suggest that this accessory protein is involved in the transmembrane transportation of nickel and iron ions. Moreover, this iron-containing acid urease has a potential application in the degradation of urea in rice wine. The present study not only enhances our understanding of the mechanism of activation of urease but also provides insight into the evolution of metalloenzymes. IMPORTANCE An iron-containing, oxygen-stable acid urease from B. paralicheniformis ATCC 9945a with good enzymatic properties was characterized. This acid urease shows activities toward both urea and ethyl carbamate. After digestion with 6 U/ml urease, approximately 92% of the urea in rice wine was removed, suggesting that this urease has great potential in the food industry. PMID:28646111
Vijayan, Tara; Klausner, Jeffrey D.
2014-01-01
The success of antiretroviral therapy (ART) programs in the developing world is limited by the lack of adequate diagnostic tests to screen for life-threatening opportunistic infections such as tuberculosis (TB) and cryptococcal disease. Furthermore, there is an increasing need for implementation research in measuring the effectiveness of currently available rapid diagnostic tests. The recently developed lateral flow assays for both cryptococcal disease and TB have the potential to improve care and greatly reduce the time to initiation of ART among individuals who need it the most. However, we caution that the data on feasibility and effectiveness of these assays are limited and such research agendas must be prioritized. PMID:24065780
Li, Cailan; Xie, Jianhui; Chen, Xiaoying; Mo, Zhizhun; Wu, Wen; Liang, Yeer; Su, Zuqing; Li, Qian; Li, Yucui; Su, Ziren; Yang, Xiaobo
2016-03-01
Rhizoma Coptidis, Cortex Phellodendri, and berberine were reported to inhibit Helicobacter pylori. However, the underlying mechanism remained elusive. Urease plays a vital role in H. pylori colonization and virulence. In this work, aqueous extracts of Rhizoma Coptidis, Cortex Phellodendri of different origins, and purified berberine were investigated against H. pylori urease and jack bean urease to elucidate the inhibitory capacity, kinetics, and mechanism. Results showed that berberine was the major chemical component in Rhizoma Coptidis and Cortex Phellodendri, and the content of berberine in Rhizoma Coptidis was higher than in Cortex Phellodendri. The IC50 values of Rhizoma Coptidis were significantly lower than those Cortex Phellodendri and purified berberine, of which Coptis chinensis was shown to be the most active concentration- and time-dependent urease inhibitor. The Lineweaver-Burk plot analysis indicated that the inhibition pattern of C. chinensis against urease was noncompetitive for both H. pylori urease and jack bean urease. Thiol protectors (L-cysteine, glutathione, and dithiothreithol) significantly protected urease from the loss of enzymatic activity, while fluoride and boric acid showed weaker protection, indicating the active-site sulfhydryl group was possibly responsible for its inhibition. Furthermore, the urease inhibition proved to be reversible since C. chinensis-blocked urease could be reactivated by glutathione. The results suggested that the anti-urease activity of Rhizoma Coptidis was superior to that of Cortex Phellodendri and berberine, which was believed to be more likely to correlate to the content of total alkaloids rather than berberine monomer. The concentration- and time-dependent, reversible, and noncompetitive inhibition against urease by C. chinensis might be attributed to its interaction with the sulfhydryl group of the active site of urease. Georg Thieme Verlag KG Stuttgart · New York.
Response surface analysis of nano-ureases from Canavalia ensiformis and Cajanus cajan.
Dwevedi, Alka; Routh, Satya Brata; Yadav, Amit Singh; Singh, Ashwani Kumar; Srivastava, Onkar Nath; Kayastha, Arvind M
2011-11-01
Ureases isolated from leguminous sources, Canavalia ensiformis and Cajanus cajan were immobilized onto gold nanoparticles (nano-ureases). Optimization of the urease immobilization was carried using response surface methodology based on Central Composite Design. Immobilization efficiency of nano-urease from C. ensiformis and C. cajan were found to be 215.10% and 255.92%, respectively. The methodology adopted has deviation of 2.56% and 3.01% with respect to experimental values in case of C. ensiformis and C. cajan, respectively. Nano-urease from C. cajan has broad physico-chemical parameters with pH optimum from 7.1 to 7.3 and temperature optimum from 50 to 70°C. Nano-urease from C. ensiformis has sharp pH and temperature optima at 7.3 and 70°C, respectively. Fourier transform infra-red spectroscopy has revealed involvement of groups viz. amino, glycosyl moiety, etc. in urease immobilization onto gold nano-particles. Transmission and scanning electron micrographs revealed that arrangement of urease onto gold nano-particles from C. ensiformis was uniform while it was localized in case of C. cajan. Nano-urease from C. ensiformis has higher specificity and catalysis toward urea as compared to nano-urease from C. cajan. Nano-ureases from both sources are equally stable for 6 months under dried conditions and can be used for 10 washes. Copyright © 2011 Elsevier B.V. All rights reserved.
Biochemical characterisation of urease from urease-positive thermophilic campylobacter (UPTC).
Tazumi, A; Nakajima, T; Sekizuka, A; Arikawa, K; Nakanishi, S; Hayashi, K; Tasaki, E; Moore, J E; Millar, B C; Matsuda, M
2012-01-01
This study aims to characterise biochemically urease from an atypical Campylobacter lari, namely urease-positive thermophilic Campylobacter (UPTC). Urease was purified from cells of a Japanese UPTC isolate (CF89-12) using phenyl-Sepharose chromatography. Two protein components (estimates molecular masses 24 kDa and 61 kDa) were obtained that appeared to be structural proteins of urease (subunits A and B), and these were fractionated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (PAGE). The native molecular weight for the final purified UPTC urease was estimated to be approximately 186,000 Da which is close to the calculated molecular weight (182,738 Da) based on all six open reading frames of UPTC CF89-12 urease genes (ureA, B, E, F, G and H), as described previously. Moreover, an active band was observed on phenol red staining after a nondenaturing native PAGE of the crude extract from the UPTC cells. In addition, the purified urease of UPTC CF8912 showed enzyme activity over a broad pH range (pH 6-10), with maximal activity at pH 8.0. The urease was also stable against heat treatment, with almost no loss of enzyme activity seen following 60-min incubation at temperatures of 20-60 degrees C. Urease subunits A and B were identified immunologically by Western blot analysis with rabbit anti-urease alpha (A) and beta (B) raised against Helicobacter pylori.
1992-04-01
foetus antibody (approx. 43.8 mg/ mL) (Nakane). After conjugation, unconjugated antibody and urease were separated from the IgG-Urease conjugate by...using fixed T. foetus organisms were incubated in 10 mM citrate buffer, pH 7, as a control or IgG-Urease in the same citrate buffer for 15 min. Organisms...Table 15. T. foetus - Anti T. foetus Model Immunoassay Relative Urease Activity Reaction (Absofbances @590 nm) T. foetus + Buffer Control 0.501 IgG-Urease
Amtul, Zareen; Kausar, Naheed; Follmer, Cristian; Rozmahel, Richard F; Atta-Ur-Rahman; Kazmi, Syed Arif; Shekhani, Mohammed Saleh; Eriksen, Jason L; Khan, Khalid M; Choudhary, Mohammad Iqbal
2006-10-01
Based on the catalysis mechanism of urease, a homologous series of 10 cysteine derivatives (CysDs) was designed and synthesized, and their inhibitory activities were evaluated for microbial ureases (Bacillus pasteurii, BPU, and Proteus mirabilis, PMU) and for a plant urease [jack bean (Cavavalia ensiformis), JBU]. As already described, thiol-compounds might inhibit urease activity by chelating the nickel atoms involved in the catalysis process. In contrast to cysteine, which has been reported to be a very weak urease inhibitor, we verified a potential inhibitory activity of these CysDs. The kinetic data demonstrate that thiol derivatives are more effective than the respective thioether derivatives. Besides, thiol-CysDs had a reduced activity in acidic pH (5.0). Lineweaver-Burk plots indicated that the nature of inhibition was of noncompetitive type for all 10 compounds, with the minimum Ki value of 2 microM for N,N-dimethyl L-cysteine. It is proposed that these classes of compounds are more potent inhibitors of the bacterial ureases, compared with the plant-originated urease. Since microbial urease is directly involved in the infection process of many pathological organisms, this work demonstrates that thiol-CysDs represent a class of new potential urease inhibitors.
Sougioultzis, Stavros; Lee, Cynthia K; Alsahli, Mazen; Banerjee, Subhas; Cadoz, Michel; Schrader, Robert; Guy, Bruno; Bedford, Philip; Monath, Thomas P; Kelly, Ciaran P; Michetti, Pierre
2002-12-13
Low dose E. coli heat-labile enterotoxin (LT), delivered orally or enterically, has been used as an adjuvant for Helicobacter pylori (H. pylori) urease in healthy adults. In this study we aim to test the safety and adjuvant efficacy of LT delivered rectally together with recombinant H. pylori urease. Eighteen healthy adults without present or past H. pylori infection were enrolled in a double blind, randomized, ascending dose study to receive either urease (60 mg), or urease (60 mg) + LT (5 or 25 microg). The immunization preparation was administered per rectum on days 0, 14 and 28. Serum, stool and saliva anti-urease and anti-LT IgG and IgA antibodies (Abs) were measured and urease-specific and LT-specific antigen secreting cells (ASCs) were counted in peripheral blood at baseline and 7 (ASC counts) or 14 days (antibody levels) after each dosing. Peripheral blood lymphoproliferation assays were also performed at baseline and at the end of the study. Rectally delivered urease and LT were well tolerated. Among the 12 subjects assigned to urease+LT, 2 (16.7%) developed anti-urease IgG Abs, 1 (8.3%) developed anti-urease IgA Abs, and 3 (25%) showed urease-specific IgA(+) ASCs. Immune responses to LT were more vigorous, especially in subjects exposed to 5 microg LT. In the urease+ 5 microg LT group, anti-LT IgG and IgA Abs developed in 60 and 80% of the subjects, respectively, while LT-specific IgG(+) and IgA(+) ASCs were detected in all subjects. The magnitude of the anti-LT response was much higher than the response to urease. No IgA anti-urease or anti-LT Abs were detected in stool or saliva and lymphocyte proliferative responses to urease were unsatisfactory. In conclusion, rectal delivery of 5 microg LT is safe and induces vigorous systemic anti-LT immune responses. Further studies are needed to determine if LT can be an effective adjuvant for rectally delivered antigens.
Filiz, Ertugrul; Vatansever, Recep; Ozyigit, Ibrahim Ilker
2016-03-01
Urease (EC 3.5.1.5) is a nickel-dependent metalloenzyme catalyzing the hydrolysis of urea into ammonia and carbon dioxide. It is present in many bacteria, fungi, yeasts and plants. Most species, with few exceptions, use nickel metalloenzyme urease to hydrolyze urea, which is one of the commonly used nitrogen fertilizer in plant growth thus its enzymatic hydrolysis possesses vital importance in agricultural practices. Considering the essentiality and importance of urea and urease activity in most plants, this study aimed to comparatively investigate the ureases of two important legume species such as Glycine max (soybean) and Medicago truncatula (barrel medic) from Fabaceae family. With additional plant species, primary and secondary structures of 37 plant ureases were comparatively analyzed using various bioinformatics tools. A structure based phylogeny was constructed using predicted 3D models of G. max and M. truncatula, whose crystallographic structures are not available, along with three additional solved urease structures from Canavalia ensiformis (PDB: 4GY7), Bacillus pasteurii (PDB: 4UBP) and Klebsiella aerogenes (PDB: 1FWJ). In addition, urease structures of these species were docked with urea to analyze the binding affinities, interacting amino acids and atom distances in urease-urea complexes. Furthermore, mutable amino acids which could potentially affect the protein active site, stability and flexibility as well as overall protein stability were analyzed in urease structures of G. max and M. truncatula. Plant ureases demonstrated similar physico-chemical properties with 833-878 amino acid residues and 89.39-90.91 kDa molecular weight with mainly acidic (5.15-6.10 pI) nature. Four protein domain structures such as urease gamma, urease beta, urease alpha and amidohydro 1 characterized the plant ureases. Secondary structure of plant ureases also demonstrated conserved protein architecture, with predominantly α-helix and random coil structures. In structure-based phylogeny, plant ureases from G. max, M. truncatula and C. ensiformis were clearly diverged from bacterial ureases of B. pasteurii and K. aerogenes. Glu, Thr, His and Gly were commonly found as interacting residues in most urease-urea docking complexes while Glu was available in all docked structures. Besides, Ala and Arg residues, which are reported in active-site architecture of plant and bacterial ureases were present in G. max urea-urease complex but not present in others. Moreover, Arg435 and Arg437 in M. truncatula and G. max, respectively were identified as highly mutable hotspot residues residing in amidohydro 1 domain of enzyme. In addition, a number of stabilizing residues were predicted upon mutation of these hotspot residues however Cys and Thr made strong implications since they were also found in codon-aligned sequences as substitutions of hotspot residues. Comparative analyses of primary sequence and secondary structure in 37 different plants demonstrated quite conserved natures of ureases in plant kingdom. Structure-based phylogeny indicated the presence of a possible prokaryote-eukaryote split and implicated the subjection of bacterial ureases to heavy selection in prokaryotic evolution compared to plants. Urea-urease docking complexes suggested that different species could share common interacting residues as well as may have some other uncommon residues at species-dependent way. In silico mutation analyses identified mutable amino acids, which were predicted to reside in catalytic site of enzyme therefore mutagenesis at these sites seemed to have adverse effects on enzyme efficiency or function. This study findings will become valuable preliminary resource for future studies to further understand the primary, secondary and tertiary structures of urease sequences in plants as well as it will provide insights about various binding features of urea-urease complexes.
Greene, Greg; Sriruttan, Charlotte; Le, Thuy; Chiller, Tom; Govender, Nelesh P
2017-03-01
As HIV treatment programmes scale up to meet the UNAIDS 90-90-90 goals, care must be taken to start antiretroviral treatment safely in patients with advanced disease (CD4 counts <200 cells/μl) who are simultaneously at risk for opportunistic infections and immune reconstitution inflammatory syndrome. Invasive fungal diseases pose a great threat at this critical time point, though the development of inexpensive and highly accurate rapid diagnostic tests has changed the approach HIV programmes are taking to reduce the high mortality associated with these opportunistic infections. This article summarizes recent advances and findings in fungal opportunistic infection diagnostics with a focus on screening to prevent cryptococcal meningitis. Cryptococcal antigen (CrAg) screening using a lateral flow assay platform is cost-effective and feasible to implement as either a laboratory reflex or point-of-care test. Recent CrAg screening pilots have elucidated the varying prevalence of cryptococcal antigenemia across geographic regions, which may aid programme planning. Evidence from recently completed clinical trials provides a strong motivation for the use of CrAg titer to refine treatment options for patients with subclinical cryptococcal disease. Although several operational barriers to programme effectiveness still need to be addressed, the utility of CrAg screening using inexpensive and accurate antigen assays has been demonstrated in real-world HIV programmes, paving the way for development and testing of other fungal opportunistic infection screening strategies and for an integrated advanced HIV disease testing package to reduce AIDS mortality and ensure safe antiretroviral treatment initiation.
Nagata, K; Takagi, E; Tsuda, M; Nakazawa, T; Satoh, H; Nakao, M; Okamura, H; Tamura, T
1995-01-01
The proton pump inhibitors omeprazole and lansoprazole and its acid-activated derivative AG-2000, which are potent and specific inhibitors of urease of Helicobacter pylori (K. Nagata, H. Satoh, T. Iwahi, T. Shimoyama, and T. Tamura, Antimicrob. Agents Chemother. 37:769-774, 1993), inhibited the growth of H. pylori. The growth was inhibited not only in urease-positive clinical isolates but also in their urease-negative derivatives which had no urease polypeptides. AG-1789, a derivative of lansoprazole with no inhibitory activity against H. pylori urease, also inhibited the growth of both strains even more strongly than the urease inhibitors lansoprazole and AG-2000. Furthermore, the antibacterial activity of omeprazole and lansoprazole was not affected by glutathione or dithiothreitol, which completely abolished the inhibitory activity of lansoprazole against H. pylori urease. These results indicated that the inhibitory action of these compounds against the growth of H. pylori was independent from the inhibitory action against urease. PMID:7726537
Helicobacter pylori Containing Only Cytoplasmic Urease Is Susceptible to Acid
Krishnamurthy, Partha; Parlow, Mary; Zitzer, Jason B.; Vakil, Nimish B.; Mobley, Harry L. T.; Levy, Marilyn; Phadnis, Suhas H.; Dunn, Bruce E.
1998-01-01
Helicobacter pylori, an important etiologic agent in a variety of gastroduodenal diseases, produces large amounts of urease as an essential colonization factor. We have demonstrated previously that urease is located within the cytoplasm and on the surface of H. pylori both in vivo and in stationary-phase culture. The purpose of the present study was to assess the relative contributions of cytoplasmic and surface-localized urease to the ability of H. pylori to survive exposure to acid in the presence of urea. Toward this end, we compared the acid resistance in vitro of H. pylori cells which possessed only cytoplasmic urease to that of bacteria which possessed both cytoplasmic and surface-localized or extracellular urease. Bacteria with only cytoplasmic urease activity were generated by using freshly subcultured bacteria or by treating repeatedly subcultured H. pylori with flurofamide (1 μM), a potent, but poorly diffusible urease inhibitor. H. pylori with cytoplasmic and surface-located urease activity survived in an acid environment when 5 mM urea was present. In contrast, H. pylori with only cytoplasmic urease shows significantly reduced survival when exposed to acid in the presence of 5 mM urea. Similarly, Escherichia coli SE5000 expressing H. pylori urease and the Ni2+ transport protein NixA, which expresses cytoplasmic urease activity at levels similar to those in wild-type H. pylori, survived minimally when exposed to acid in the presence of 5 to 50 mM urea. We conclude that cytoplasmic urease activity alone is not sufficient (although cytoplasmic urease activity is likely to be necessary) to allow survival of H. pylori in acid; the activity of surface-localized urease is essential for resistance of H. pylori to acid under the assay conditions used. Therefore, the mechanism whereby urease becomes associated with the surface of H. pylori, which involves release of the enzyme from bacteria due to autolysis followed by adsorption of the enzyme to the surface of intact bacteria (“altruistic autolysis”), is essential for survival of H. pylori in an acid environment. The ability of H. pylori to survive exposure to low pH is likely to depend on a combination of both cytoplasmic and surface-associated urease activities. PMID:9784504
Butts, Arielle; Martin, Jennifer A.; DiDone, Louis; Bradley, Erin K.; Mutz, Mitchell; Krysan, Damian J.
2015-01-01
Cryptococcosis is one of the most important invasive fungal infections and is a significant contributor to the mortality associated with HIV/AIDS. As part of our program to repurpose molecules related to the selective estrogen receptor modulator (SERM) tamoxifen as anti-cryptococcal agents, we have explored the structure-activity relationships of a set of structurally diverse SERMs and tamoxifen derivatives. Our data provide the first insights into the structural requirements for the antifungal activity of this scaffold. Three key molecular characteristics affecting anti-cryptococcal activity emerged from our studies: 1) the presence of an alkylamino group tethered to one of the aromatic rings of the triphenylethylene core; 2) an appropriately sized aliphatic substituent at the 2 position of the ethylene moiety; and 3) electronegative substituents on the aromatic rings modestly improved activity. Using a cell-based assay of calmodulin antagonism, we found that the anti-cryptococcal activity of the scaffold correlates with calmodulin inhibition. Finally, we developed a homology model of C. neoformans calmodulin and used it to rationalize the structural basis for the activity of these molecules. Taken together, these data and models provide a basis for the further optimization of this promising anti-cryptococcal scaffold. PMID:26016941
Morou-Bermudez, E; Elias-Boneta, A; Billings, RJ; Burne, RA; Garcia-Rivas, V; Brignoni-Nazario, V; Suárez-Pérez, E
2011-01-01
Recent cross-sectional studies suggest that reduced ability to generate alkali via the urease pathway in dental plaque may be an important caries risk factor, but it has not been assessed prospectively. OBJECTIVE To evaluate the effect of plaque and saliva urease activity on the risk for developing new caries over a three-year period in children. METHODS A panel of 80 children, three to six years of age at recruitment, was followed prospectively for three years. Plaque urease activity, saliva urease activity and dental caries were measured every six months. Survival analysis methodology was used to evaluate the effect of urease on caries development during the study period adjusted for gender, age, baseline caries levels, sugar consumption, amount of plaque, and mutans streptococci levels. RESULTS The risk for developing new caries increased in a dose-responsive manner with increasing levels of urease activity in saliva (adjusted HRQ4 vs. Q1: 4.98; 95%CI: 1.33, 18.69) and with decreasing urease activity in plaque (adjusted HRQ4 vs. Q1: 0.29; 95%CI: 0.11, 0.76). Multiple measurements of urease activity were conducted to overcome the variability of urease activity in this study. Baseline caries and mutans streptococci in saliva were also important predictors of caries risk. CONCLUSIONS Increased urease activity in saliva can be an indicator of increased caries risk in children, while increased urease activity in plaque may be associated with reduced caries risk. The reproducibility of urease measurements must be improved before these findings can be further tested and clinically applied. PMID:21784411
Biofilm Formation by Cryptococcus neoformans.
Martinez, Luis R; Casadevall, Arturo
2015-06-01
The fungus Cryptococcus neoformans possesses a polysaccharide capsule and can form biofilms on medical devices. The increasing use of ventriculoperitoneal shunts to manage intracranial hypertension associated with cryptococcal meningoencephalitis highlights the importance of investigating the biofilm-forming properties of this organism. Like other microbe-forming biofilms, C. neoformans biofilms are resistant to antimicrobial agents and host defense mechanisms, causing significant morbidity and mortality. This chapter discusses the recent advances in the understanding of cryptococcal biofilms, including the role of its polysaccharide capsule in adherence, gene expression, and quorum sensing in biofilm formation. We describe novel strategies for the prevention or eradication of cryptococcal colonization of medical prosthetic devices. Finally, we provide fresh thoughts on the diverse but interesting directions of research in this field that may result in new insights into C. neoformans biology.
Ito, Hiroya; Takahashi, Sayaka; Asai, Tetsuo; Tamura, Yutaka; Yamamoto, Koshi
2018-01-01
An atypical urease-negative mutant of Actinobacillus pleuropneumoniae serovar 2 was isolated in Japan. Nucleotide sequence analysis of the urease gene cluster revealed that the insertion of a short DNA sequence into the cbiM gene was responsible for the urease-negative activity of the mutant. Veterinary diagnostic laboratories should be watchful for the presence of aberrant urease-negative A. pleuropneumoniae isolates.
Nagata, K; Mizuta, T; Tonokatu, Y; Fukuda, Y; Okamura, H; Hayashi, T; Shimoyama, T; Tamura, T
1992-01-01
Monoclonal antibodies (MAbs) against the native urease of Helicobacter pylori NCTC 11637 were found to clearly inhibit the urease activity. Interestingly, synergistic inhibition by two MAbs recognizing different subunits was also observed. Ten MAbs were produced and classified as two isotypes of the immunoglobulin G (IgG) subclass, IgG1, and IgG2a. Western blot (immunoblot) analysis using sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that five MAbs recognized the large subunit and the other five recognized the small subunit of the urease. Among the MAbs, L2 and S2, which recognized the large and the small subunits, respectively, were also able to inhibit the urease activity of clinical isolates from H. pylori-infected patients. The combination of L2 and S2 led to augmented synergistic inhibition. L2, but not S2, could also inhibit the urease activity from Helicobacter mustelae; enzyme-linked immunosorbent assay and Western blot analysis showed that L2 cross-reacted with this urease. These results suggested that the epitope recognized by L2 had a structure common to both Helicobacter species and may be involved in the active site of the urease. In contrast to the MAbs, a polyclonal antibody in sera from mice immunized with H. pylori urease did not have the ability to inhibit H. pylori urease activity. However, the polyclonal antibody retained the ability to abolish the inhibitory action of these MAbs. Moreover, other MAbs which could not inhibit H. pylori urease activity also abolished the inhibitory action. Images PMID:1383158
Structure of Rv1848 (UreA), the Mycobacterium tuberculosis urease γ subunit
Habel, Jeff E.; Bursey, Evan H.; Rho, Beom-Seop; Kim, Chang-Yub; Segelke, Brent W.; Rupp, Bernhard; Park, Min S.; Terwilliger, Thomas C.; Hung, Li-Wei
2010-01-01
The crystal structure of the urease γ subunit (UreA) from Mycobacterium tuberculosis, Rv1848, has been determined at 1.8 Å resolution. The asymmetric unit contains three copies of Rv1848 arranged into a homotrimer that is similar to the UreA trimer in the structure of urease from Klebsiella aerogenes. Small-angle X-ray scattering experiments indicate that the Rv1848 protein also forms trimers in solution. The observed homotrimer and the organization of urease genes within the M. tuberculosis genome suggest that M. tuberculosis urease has the (αβγ)3 composition observed for other bacterial ureases. The γ subunit may be of primary importance for the formation of the urease quaternary structure. PMID:20606272
Temstet, A; Roux, P; Poirot, J L; Ronin, O; Dromer, F
1992-01-01
Cryptococcal antigen detection has become a routine biological test performed for patients with AIDS. The poor prognosis of cryptococcosis explains the need for reliable tests. We evaluated the performances of a newly commercialized agglutination test that uses a monoclonal antibody specific for cryptococcal capsular polysaccharide (Pastorex Cryptococcus; Sanofi-Diagnostics Pasteur, Marnes-la-Coquette, France) and compared them with those of tests that use polyclonal immune sera (Cryptococcal Antigen Latex Agglutination System, Meridian Diagnostics, Inc., Cincinnati, Ohio; and Crypto-LA, International Biological Labs Inc., Cranbury, N.J.). The sensitivities and specificities of the tests were compared by using purified polysaccharides and yeast suspensions. Clinical specimens (131 serum samples, 41 cerebrospinal fluid samples, 34 urine samples, and 19 bronchoalveolar lavage samples) from 87 human immunodeficiency virus-positive subjects with (40 patients) and without (47 patients) culture-proven cryptococcosis were retrospectively tested during a blinded study. The effect of pronase treatment of samples was assessed for Pastorex Cryptococcus and the Cryptococcal Antigen Latex Agglutination System, and the antigen titers were compared. Our results show that (i) during the screening, concordance among the three tests was 97%; (ii) the use of pronase enhanced both the sensitivities and specificities of the Pastorex Cryptococcus test; (iii) titers agreed for 67% of the cerebrospinal fluid samples and 60% of the serum samples; and (iv) cryptococcosis was detected equally well with Pastorex Cryptococcus and with the other tests, whatever the infecting serotype (A, B, or D). The meaning of in vitro sensitivity and the relationship between titers and sensitivity are discussed. The results show that Pastorex Cryptococcus is a rapid and reliable test for the detection of cryptococcal antigen in body fluids and suggest that kits cannot be used interchangeably to monitor antigen titers in patients. PMID:1400951
Vidal, José E; Toniolo, Carolina; Paulino, Adriana; Colombo, Arnaldo; Dos Anjos Martins, Marilena; da Silva Meira, Cristina; Pereira-Chioccola, Vera Lucia; Figueiredo-Mello, Claudia; Barros, Tiago; Duarte, Jequelie; Fonseca, Fernanda; Alves Cunha, Mirella; Mendes, Clara; Ribero, Taiana; Dos Santos Lazera, Marcia; Rajasingham, Radha; Boulware, David R
2016-12-01
To determine the prevalence of asymptomatic cryptococcal antigen (CRAG) using lateral flow assay (LFA) in hospitalised HIV-infected patients with CD4 counts <200 cells/μl. Hospitalised HIV-infected patients were prospectively recruited at Instituto de Infectologia Emilio Ribas, a tertiary referral hospital to HIV-infected patients serving the São Paulo State, Brazil. All patients were >18 years old without prior cryptococcal meningitis, without clinical suspicion of cryptococcal meningitis, regardless of antiretroviral (ART) status, and with CD4 counts <200 cells/μl. Serum CRAG was tested by LFA in all patients, and whole blood CRAG was tested by LFA in positive cases. We enrolled 163 participants of whom 61% were men. The duration of HIV diagnosis was a median of 8 (range, 1-29) years. 26% were antiretroviral (ART)-naïve, and 74% were ART-experienced. The median CD4 cell count was 25 (range, 1-192) cells/μl. Five patients (3.1%; 95%CI, 1.0-7.0%) were asymptomatic CRAG-positive. Positive results cases were cross-verified by performing LFA in whole blood. 3.1% of HIV-infected inpatients with CD4 <200 cells/μl without symptomatic meningitis had cryptococcal antigenemia in São Paulo, suggesting that routine CRAG screening may be beneficial in similar settings in South America. Our study reveals another targeted population for CRAG screening: hospitalised HIV-infected patients with CD4 <200 cells/μl, regardless of ART status. Whole blood CRAG LFA screening seems to be a simple strategy to prevention of symptomatic meningitis. © 2016 John Wiley & Sons Ltd.
Yang, Xinming; Koohi-Moghadam, Mohamad; Wang, Runming; Chang, Yuen-Yan; Woo, Patrick C Y; Wang, Junwen; Li, Hongyan; Sun, Hongzhe
2018-01-01
Urease as a potential target of antimicrobial drugs has received considerable attention given its versatile roles in microbial infection. Development of effective urease inhibitors, however, is a significant challenge due to the deeply buried active site and highly specific substrate of a bacterial urease. Conventionally, urease inhibitors are designed by either targeting the active site or mimicking substrate of urease, which is not efficient. Up to now, only one effective inhibitor-acetohydroxamic acid (AHA)-is clinically available, but it has adverse side effects. Herein, we demonstrate that a clinically used drug, colloidal bismuth subcitrate, utilizes an unusual way to inhibit urease activity, i.e., disruption of urease maturation process via functional perturbation of a metallochaperone, UreG. Similar phenomena were also observed in various pathogenic bacteria, suggesting that UreG may serve as a general target for design of new types of urease inhibitors. Using Helicobacter pylori UreG as a showcase, by virtual screening combined with experimental validation, we show that two compounds targeting UreG also efficiently inhibited urease activity with inhibitory concentration (IC)50 values of micromolar level, resulting in attenuated virulence of the pathogen. We further demonstrate the efficacy of the compounds in a mammalian cell infection model. This study opens up a new opportunity for the design of more effective urease inhibitors and clearly indicates that metallochaperones involved in the maturation of important microbial metalloenzymes serve as new targets for devising a new type of antimicrobial drugs.
Molecular mechanisms of cryptococcal meningitis
Liu, Tong-Bao; Perlin, David; Xue, Chaoyang
2012-01-01
Fungal meningitis is a serious disease caused by a fungal infection of the central nervous system (CNS) mostly in individuals with immune system deficiencies. Fungal meningitis is often fatal without proper treatment, and the mortality rate remains unacceptably high even with antifungal drug interventions. Currently, cryptococcal meningitis is the most common fungal meningitis in HIV-1/AIDS, and its disease mechanism has been extensively studied. The key steps for fungi to infect brain and cause meningitis after establishment of local infection are the dissemination of fungal cells to the bloodstream and invasion through the blood brain barrier to reach the CNS. In this review, we use cryptococcal CNS infection as an example to describe the current molecular understanding of fungal meningitis, including the establishment of the infection, dissemination, and brain invasion. Host and microbial factors that contribute to these infection steps are also discussed. PMID:22460646
Lourens, Adré; Jarvis, Joseph N; Meintjes, Graeme; Samuel, Catherine M
2014-12-01
Cryptococcal meningitis is the most frequent cause of meningitis and a major cause of mortality in HIV-infected adults in Africa. This study evaluated the performance of the lateral flow assay (LFA) on cerebrospinal fluid (CSF) samples for the diagnosis of cryptococcal meningitis against that of existing diagnostic tests. LFA performed on 465 undiluted CSF samples had a sensitivity of 91%. When the LFA was paired with Gram staining, a sensitivity of 100% was achieved after implementation of a dilution step for samples with negative LFA results and the presence of yeasts on microscopy. Microscopy is essential for preventing the reporting of false-negative results due to the high-dose "hook" effect. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Lee, S G; Calhoun, D H
1997-01-01
Strain SL100 is a gram-positive coccoid isolate prototype with an adhesin specific for gastric mucin and is representative of potentially pathogenic organisms obtained at biopsy from patients with gastric disorders. The urease of this isolate constitutes a significant fraction of the total cell protein, and the outcome of the purification strategy described herein suggests that it is associated with a cell wall fraction. The urease was purified 138-fold to apparent homogeneity, as indicated by gel electrophoresis, to a specific activity of 1,120 U/mg. The urease was unstable during purification in the absence of nickel, which is present in a metallocenter in other microbial ureases. When nickel sulfate was present during growth (5 microM) and in buffers during sonication and purification (100 microM), the urease was completely stable at room temperature during the purification procedure. The native urease was approximately 260 kDa and was composed of three subunits of 65 kDa and three subunits of 21 kDa. The purified urease was relatively stable in acid and retained most of its activity after incubation for 30 min at pH 1.3. The K(m)s for urease measured from whole cells and for the purified enzyme were 0.56 and 1.7 mM, respectively, indicating that some cell wall component(s) affects the affinity of the enzyme for urea. The V(max)s for urea hydrolysis measured from whole cells and for the purified enzyme were 8.1 and 1,120 mol/min/mg of protein, respectively. The kinetic parameters, relative abundance, and subunit composition are more similar to those of the ureases of Helicobacter than to those of the ureases of other microbial species. These similarities are consistent with an adaptation of this organism to colonization of the stomach and indicate that the urease may be a virulence factor during colonization. PMID:9316997
Titan Cell Production Enhances the Virulence of Cryptococcus neoformans
Crabtree, Juliet N.; Okagaki, Laura H.; Wiesner, Darin L.; Strain, Anna K.; Nielsen, Judith N.
2012-01-01
Infection with Cryptococcus neoformans begins when desiccated yeast cells or spores are inhaled and lodge in the alveoli of the lungs. A subset of cryptococcal cells in the lungs differentiate into enlarged cells, referred to as titan cells. Titan cells can be as large as 50 to 100 μm in diameter and exhibit a number of features that may affect interactions with host immune defenses. To characterize the effect of titan cell formation on the host-pathogen interaction, we utilized a previously described C. neoformans mutant, the gpr4Δ gpr5Δ mutant, which has minimal titan cell production in vivo. The gpr4Δ gpr5Δ mutant strain had attenuated virulence, a lower CFU, and reduced dissemination compared to the wild-type strain. Titan cell production by the wild-type strain also resulted in increased eosinophil accumulation and decreased phagocytosis in the lungs compared to those with the gpr4Δ gpr5Δ mutant strain. Phagocytosed cryptococcal cells exhibited less viability than nonphagocytosed cells, which potentially explains the reduced cell survival and overall attenuation of virulence in the absence of titan cells. These data show that titan cell formation is a novel virulence factor in C. neoformans that promotes establishment of the initial pulmonary infection and plays a key role in disease progression. PMID:22890995
Titan cell production enhances the virulence of Cryptococcus neoformans.
Crabtree, Juliet N; Okagaki, Laura H; Wiesner, Darin L; Strain, Anna K; Nielsen, Judith N; Nielsen, Kirsten
2012-11-01
Infection with Cryptococcus neoformans begins when desiccated yeast cells or spores are inhaled and lodge in the alveoli of the lungs. A subset of cryptococcal cells in the lungs differentiate into enlarged cells, referred to as titan cells. Titan cells can be as large as 50 to 100 μm in diameter and exhibit a number of features that may affect interactions with host immune defenses. To characterize the effect of titan cell formation on the host-pathogen interaction, we utilized a previously described C. neoformans mutant, the gpr4Δ gpr5Δ mutant, which has minimal titan cell production in vivo. The gpr4Δ gpr5Δ mutant strain had attenuated virulence, a lower CFU, and reduced dissemination compared to the wild-type strain. Titan cell production by the wild-type strain also resulted in increased eosinophil accumulation and decreased phagocytosis in the lungs compared to those with the gpr4Δ gpr5Δ mutant strain. Phagocytosed cryptococcal cells exhibited less viability than nonphagocytosed cells, which potentially explains the reduced cell survival and overall attenuation of virulence in the absence of titan cells. These data show that titan cell formation is a novel virulence factor in C. neoformans that promotes establishment of the initial pulmonary infection and plays a key role in disease progression.
Innate Immune Responses to Cryptococcus.
Heung, Lena J
2017-09-01
Cryptococcus species are encapsulated fungi found in the environment that predominantly cause disease in immunocompromised hosts after inhalation into the lungs. Even with contemporary antifungal regimens, patients with cryptococcosis continue to have high morbidity and mortality rates. The development of more effective therapies may depend on our understanding of the cellular and molecular mechanisms by which the host promotes sterilizing immunity against the fungus. This review will highlight our current knowledge of how Cryptococcus , primarily the species C. neoformans , is sensed by the mammalian host and how subsequent signaling pathways direct the anti-cryptococcal response by effector cells of the innate immune system.
Innate Immune Responses to Cryptococcus
Heung, Lena J.
2017-01-01
Cryptococcus species are encapsulated fungi found in the environment that predominantly cause disease in immunocompromised hosts after inhalation into the lungs. Even with contemporary antifungal regimens, patients with cryptococcosis continue to have high morbidity and mortality rates. The development of more effective therapies may depend on our understanding of the cellular and molecular mechanisms by which the host promotes sterilizing immunity against the fungus. This review will highlight our current knowledge of how Cryptococcus, primarily the species C. neoformans, is sensed by the mammalian host and how subsequent signaling pathways direct the anti-cryptococcal response by effector cells of the innate immune system. PMID:28936464
Structural and functional studies on urease from pigeon pea (Cajanus cajan).
Balasubramanian, Anuradha; Durairajpandian, Vishnuprabu; Elumalai, Sagadevan; Mathivanan, Narayanasamy; Munirajan, Arasambattu Kannan; Ponnuraj, Karthe
2013-07-01
Urease is an enzyme that catalyzes the hydrolysis of urea, forming ammonia and carbon dioxide, and is found in plants, microorganisms and invertebrates. Although plant and bacterial ureases are closely related at amino acid and at the structural level, the insecticidal activity is seen only in the plant ureases. In contrast, both plant and bacterial ureases exhibit antifungal activity. These two biological properties are independent of its ureolytic activity. However, till date the mechanism(s) behind the insecticidal and fungicidal activity of ureases are not clearly understood. Here we report the crystal structure of pigeon pea urease (PPU, Cajanus cajan) which is the second structure from the plant source. We have deduced the amino acid sequence of PPU and also report here studies on its stability, insecticidal and antifungal activity. PPU exhibits cellulase activity. Based on the structural analysis of PPU and docking studies with cellopentoase we propose a possible mechanism of antifungal activity of urease. Copyright © 2013 Elsevier B.V. All rights reserved.
Ureases as a target for the treatment of gastric and urinary infections.
Follmer, C
2010-05-01
Urease is known to be a major contributor to pathologies induced by Helicobacter pylori and Proteus species. In H pylori, urease allows the bacteria to survive in an acidic gastric environment during colonisation, playing an important role in the pathogenesis of gastric and peptic ulcers. Ureolytic activity also results in the production of ammonia in close proximity to the gastric epithelium, causing cell damage and inflammation. In the case of Proteus species (notably Proteus mirabilis) infection, stones are formed due to the presence of ammonia and carbon dioxide released by urease action. In addition, the ammonia released is able to damage the glycosaminoglycan layer, which protects the urothelial surface against bacterial infection. In this context, the administration of urease inhibitors may be an effective therapy for urease-dependent pathogenic bacteria. This is a review of the role of ureases in H pylori and Proteus species infections, focussing on the biochemical and clinical aspects of the most promising and/or potent urease inhibitors for the treatment of gastric and urinary tract infections.
Managing cryptococcosis in the immunocompromised host.
Jarvis, Joseph N; Dromer, Francoise; Harrison, Thomas S; Lortholary, Olivier
2008-12-01
Expanding access to antiretroviral treatment has dramatically improved the long-term prognosis of patients with HIV-associated cryptococcal disease who survive the acute infection. However, the incidence and acute mortality of HIV-associated cryptococcal meningitis remain high. In this context, this review summarizes urgently needed recent work aimed at improving the acute management of cryptococcal infection in immunocompromised hosts. Studies have started to optimize antifungal regimens and address the complications of raised cerebrospinal fluid pressure and cryptococcal immune reconstitution syndrome. Amphotericin B at 1 mg/kg per day has been shown to be more rapidly fungicidal than the standard dose of 0.7 mg/kg per day, and new data support the importance of combination therapy with flucytosine. Amphotericin B and fluconazole at 800 mg is an alternative combination that appears superior to amphotericin B alone. At a dosage of 400 mg per day, fluconazole alone is much less rapidly fungicidal than amphotericin B and is associated with the development of secondary resistance. Recent findings support the use of rapidly fungicidal initial antifungal therapy with amphotericin B-based combination treatment. Where amphotericin B treatment is not yet feasible, studies are needed to optimize oral regimens. Based on accumulating data on rate of clearance of infection, the most promising new regimens in terms of fungicidal activity and safety could be selected for clinical endpoint trials.
Mizote, T; Yoshiyama, H; Nakazawa, T
1997-01-01
Helicobacter pylori CPY3401 and an isogenic urease-negative mutant, HPT73, showed chemotactic responses to urea, flurofamide (a potent urease inhibitor), and sodium bicarbonate. Since urea and sodium bicarbonate are secreted through the gastric epithelial surface and hydrolysis of urea by urease on the bacterial surface is essential for colonization, the chemotactic response of H. pylori may be crucial for its colonization and persistence in the stomach. PMID:9119496
Bacterial Urease and its Role in Long-Lasting Human Diseases
Konieczna, Iwona; Żarnowiec, Paulina; Kwinkowski, Marek; Kolesińska, Beata; Frączyk, Justyna; Kamiński, Zbigniew; Kaca, Wiesław
2012-01-01
Urease is a virulence factor found in various pathogenic bacteria. It is essential in colonization of a host organism and in maintenance of bacterial cells in tissues. Due to its enzymatic activity, urease has a toxic effect on human cells. The presence of ureolytic activity is an important marker of a number of bacterial infections. Urease is also an immunogenic protein and is recognized by antibodies present in human sera. The presence of such antibodies is connected with progress of several long-lasting diseases, like rheumatoid arthritis, atherosclerosis or urinary tract infections. In bacterial ureases, motives with a sequence and/or structure similar to human proteins may occur. This phenomenon, known as molecular mimicry, leads to the appearance of autoantibodies, which take part in host molecules destruction. Detection of antibodies-binding motives (epitopes) in bacterial proteins is a complex process. However, organic chemistry tools, such as synthetic peptide libraries, are helpful in both, epitope mapping as well as in serologic investigations. In this review, we present a synthetic report on a molecular organization of bacterial ureases - genetic as well as structural. We characterize methods used in detecting urease and ureolytic activity, including techniques applied in disease diagnostic processes and in chemical synthesis of urease epitopes. The review also provides a summary of knowledge about a toxic effect of bacterial ureases on human body and about occurrence of anti-urease antibodies in long-lasting diseases. PMID:23305365
Kaufman-Francis, Keren; Desmarini, Desmarini; Juillard, Pierre G.; Li, Cecilia; Stifter, Sebastian A.; Feng, Carl G.; Sorrell, Tania C.; Grau, Georges E. R.; Bahn, Yong-Sun
2017-01-01
ABSTRACT Phosphate acquisition by fungi is regulated by the phosphate-sensing and acquisition (PHO) signaling pathway. Cryptococcus neoformans disseminates from the lung to the brain and is the commonest cause of fungal meningitis worldwide. To investigate the contribution of PHO signaling to cryptococcal dissemination, we characterized a transcription factor knockout strain (hlh3Δ/pho4Δ) defective in phosphate acquisition. Despite little similarity with other fungal Pho4 proteins, Hlh3/Pho4 functioned like a typical phosphate-responsive transcription factor in phosphate-deprived cryptococci, accumulating in nuclei and triggering expression of genes involved in phosphate acquisition. The pho4Δ mutant strain was susceptible to a number of stresses, the effect of which, except for alkaline pH, was alleviated by phosphate supplementation. Even in the presence of phosphate, the PHO pathway was activated in wild-type cryptococci at or above physiological pH, and under these conditions, the pho4Δ mutant had a growth defect and compromised phosphate uptake. The pho4Δ mutant was hypovirulent in a mouse inhalation model, where dissemination to the brain was reduced dramatically, and markedly hypovirulent in an intravenous dissemination model. The pho4Δ mutant was not detected in blood, nor did it proliferate significantly when cultured with peripheral blood monocytes. In conclusion, dissemination of infection and the pathogenesis of meningitis are dependent on cryptococcal phosphate uptake and stress tolerance at alkaline pH, both of which are Pho4 dependent. IMPORTANCE Cryptococcal meningitis is fatal without treatment and responsible for more than 500,000 deaths annually. To be a successful pathogen, C. neoformans must obtain an adequate supply of essential nutrients, including phosphate, from various host niches. Phosphate acquisition in fungi is regulated by the PHO signaling cascade, which is activated when intracellular phosphate decreases below a critical level. Induction of phosphate acquisition genes leads to the uptake of free phosphate via transporters. By blocking the PHO pathway using a Pho4 transcription factor mutant (pho4Δ mutant), we demonstrate the importance of the pathway for cryptococcal dissemination and the establishment of brain infection in murine models. Specifically, we show that reduced dissemination of the pho4Δ mutant to the brain is due to an alkaline pH tolerance defect, as alkaline pH mimics the conditions of phosphate deprivation. The end result is inhibited proliferation in host tissues, particularly in blood. Podcast: A podcast concerning this article is available. PMID:28144629
Urease Activity Represents an Alternative Pathway for Mycobacterium tuberculosis Nitrogen Metabolism
Lin, Wenwei; Mathys, Vanessa; Ang, Emily Lei Yin; Koh, Vanessa Hui Qi; Martínez Gómez, Julia María; Ang, Michelle Lay Teng; Zainul Rahim, Siti Zarina; Tan, Mai Ping; Pethe, Kevin
2012-01-01
Urease represents a critical virulence factor for some bacterial species through its alkalizing effect, which helps neutralize the acidic microenvironment of the pathogen. In addition, urease serves as a nitrogen source provider for bacterial growth. Pathogenic mycobacteria express a functional urease, but its role during infection has yet to be characterized. In this study, we constructed a urease-deficient Mycobacterium tuberculosis strain and confirmed the alkalizing effect of the urease activity within the mycobacterium-containing vacuole in resting macrophages but not in the more acidic phagolysosomal compartment of activated macrophages. However, the urease-mediated alkalizing effect did not confer any growth advantage on M. tuberculosis in macrophages, as evidenced by comparable growth profiles for the mutant, wild-type (WT), and complemented strains. In contrast, the urease-deficient mutant exhibited impaired in vitro growth compared to the WT and complemented strains when urea was the sole source of nitrogen. Substantial amounts of ammonia were produced by the WT and complemented strains, but not with the urease-deficient mutant, which represents the actual nitrogen source for mycobacterial growth. However, the urease-deficient mutant displayed parental colonization profiles in the lungs, spleen, and liver in mice. Together, our data demonstrate a role for the urease activity in M. tuberculosis nitrogen metabolism that could be crucial for the pathogen's survival in nutrient-limited microenvironments where urea is the sole nitrogen source. Our work supports the notion that M. tuberculosis virulence correlates with its unique metabolic versatility and ability to utilize virtually any carbon and nitrogen sources available in its environment. PMID:22645285
21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Urease enzyme preparation from Lactobacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme..., nontoxicogenic bacterium Lactobacillus fermentum. It contains the enzyme urease (CAS Reg. No. 9002-13-5), which...
The role of nickel in urea assimilation by algae.
Rees, T A; Bekheet, I A
1982-12-01
Nickel is required for urease synthesis by Phaeodactylum tricornutum and Tetraselmis subcordiformis and for growth on urea by Phaeodactylum. There is no requirement for nickel for urea amidolyase synthesis by Chlorella fusca var. vacuolata. Neither copper nor palladium can substitute for nickel but cobalt partially restored urease activity in Phaeodactylum. The addition of nickel to nickel-deficient cultures of Phaeodactylum or Tetraselmis resulted in a rapid increase of urease activity to 7-30 times the normal level; this increase was not inhibited by cycloheximide. It is concluded that nickel-deficient cells over-produce a non-functional urease protein and that either nickel or the functional urease enzyme participates in the regulation of the production of urease protein.
Adverse effect of urease on salt stress during seed germination in Arabidopsis thaliana.
Bu, Yuanyuan; Kou, Jing; Sun, Bo; Takano, Testuo; Liu, Shenkui
2015-05-22
Seed germination is a critical stage in the development of crops that grow in saline soils. We noticed that seeds of an Arabidopsis urease mutant have significantly increased salt stress tolerance. To understand why, we treated the wild type (WT) with a urease inhibitor and found that its salt stress tolerance was also improved. We hypothesized that urease acting on urea generates NH₄⁺, which probably exacerbates salt stress. As expected, the urease inhibitor significantly decreased the NH₄⁺ level in WT seeds. These findings suggest that blocking urease activity improves salt tolerance during seed germination by lowering the concentration of NH₄⁺. Copyright © 2015. Published by Elsevier B.V.
Effect of additives on the purification of urease
NASA Astrophysics Data System (ADS)
Yu, X.; Wang, J.; Ulrich, J.
2015-12-01
The effect of additives on the purification of proteins was investigated. The target protein studied here is the enzyme urease. Studies on the purification of urease from jack bean meal were carried out. 32% (v/v) acetone was utilized to extract urease from the jack bean meal. Further purification by crystallization with the addition of 2-mercaptoethanol and EDTA disodium salt dehydrate was carried out. It was found out that the presence of additives can affect the selectivity of the crystallization. Increases in both purity and yield of the urease after crystallization were observed in the presence of additives, which were proven using both SDS-PAGE and activity. Urease crystals with a yield of 69.9% and a purity of 85.1% were obtained in one crystallization step in the presence of additives. Furthermore, the effect of additives on the thermodynamics and kinetics of urease crystallization was studied.
Purification and characterization of Helicobacter mustelae urease.
Dunn, B E; Sung, C C; Taylor, N S; Fox, J G
1991-01-01
Helicobacter mustelae is a urease-rich bacterium associated with gastritis in ferrets. The ureases of H. mustelae and Helicobacter pylori, a bacterium implicated in human gastritis, share many characteristics. Helicobacter sp. ureases appear to be unique among bacterial enzymes in exhibiting submillimolar Km values and in being composed of two subunits. Images PMID:1879950
Musubire, A K; Meya, B D; Mayanja-Kizza, H; Lukande, R; Wiesner, L D; Bohjanen, P; R Boulware, R D
2012-06-01
In many resource-limited settings, cryptococcal meningitis (CM) contributes up to 20% of all deaths with further complications due to Immune Reconstitution Inflammatory Syndrome (IRIS). We present a case report on a patient who developed CM-IRIS and then subsequent CM-relapse with a fluconazole-resistant organism and then later CM-IRIS once again, manifesting as cystic cryptococcomas, hydrocephalus, and sterile CSF. In this case we, demonstrate that CM-IRIS and persistent low level cryptococcal infection are not mutually exclusive phenomena. The management of IRIS with corticosteroids may increase the risk of culture positive CM-relapse which may further increase the risk of recurrent IRIS and resulting complications including death. We also highlight the role of imaging and fluconazole resistance testing in patients with recurrent meningitis and the importance of CSF cultures in guiding treatment decisions.
Mazzei, Luca; Cianci, Michele; Benini, Stefano; Bertini, Leonardo; Musiani, Francesco; Ciurli, Stefano
2016-01-01
Urease is the most efficient enzyme known to date, and catalyzes the hydrolysis of urea using two Ni(II) ions in the active site. Urease is a virulence factor in several human pathogens, while causing severe environmental and agronomic problems. Sporosarcina pasteurii urease has been used extensively in the structural characterization of the enzyme. Sodium sulfite has been widely used as a preservative in urease solutions to prevent oxygen-induced oxidation, but its role as an inhibitor has also been suggested. In the present study, isothermal titration microcalorimetry was used to establish sulfite as a competitive inhibitor for S. pasteurii urease, with an inhibition constant of 0.19mM at pH7. The structure of the urease-sulfite complex, determined at 1.65Å resolution, shows the inhibitor bound to the dinuclear Ni(II) center of urease in a tridentate mode involving bonds between the two Ni(II) ions in the active site and all three oxygen atoms of the inhibitor, supporting the observed competitive inhibition kinetics. This coordination mode of sulfite has never been observed, either in proteins or in small molecule complexes, and could inspire synthetic coordination chemists as well as biochemists to develop urease inhibitors based on this chemical moiety. Copyright © 2015 Elsevier Inc. All rights reserved.
Nakamura, Hiroki; Yoshiyama, Hironori; Takeuchi, Hiroaki; Mizote, Tomoko; Okita, Kiwamu; Nakazawa, Teruko
1998-01-01
Helicobacter pylori exhibits chemotactic responses to urea, flurofamide, acetohydroxamic acid, and sodium bicarbonate. In buffer, the chemotactic activities of a urease-positive strain were higher than those of the isogenic urease-negative strain. Moreover, the chemotactic activities of the urease-positive strain were increased in a viscous solution containing 3% polyvinylpyrrolidone, whereas those of the urease-negative mutant were not. These results are in accordance with the fact that the mutant strain did not show swarming in motility agar regardless of having flagella. Incubation of the wild-type strain with flurofamide resulted in partial inhibition of the chemotactic activities in the viscous solution. In addition, incubation with acetohydroxamic acid, a low-molecular-weight, diffusible urease inhibitor, resulted in complete loss of chemotactic activity in the viscous solution. The inhibition of the chemotactic activity by urease inhibitors paralleled the inhibition of urease. The chemotactic activity of H. pylori was also inhibited by the proton carrier carbonyl cyanide m-chlorophenylhydrazone, showing that H. pylori utilizes proton motive force for motility. These results indicate that cytoplasmic urease plays an important role in the chemotactic motility of H. pylori under a condition that mimics the ecological niche of the bacterium, the gastric mucous layer. PMID:9746586
Nakamura, H; Yoshiyama, H; Takeuchi, H; Mizote, T; Okita, K; Nakazawa, T
1998-10-01
Helicobacter pylori exhibits chemotactic responses to urea, flurofamide, acetohydroxamic acid, and sodium bicarbonate. In buffer, the chemotactic activities of a urease-positive strain were higher than those of the isogenic urease-negative strain. Moreover, the chemotactic activities of the urease-positive strain were increased in a viscous solution containing 3% polyvinylpyrrolidone, whereas those of the urease-negative mutant were not. These results are in accordance with the fact that the mutant strain did not show swarming in motility agar regardless of having flagella. Incubation of the wild-type strain with flurofamide resulted in partial inhibition of the chemotactic activities in the viscous solution. In addition, incubation with acetohydroxamic acid, a low-molecular-weight, diffusible urease inhibitor, resulted in complete loss of chemotactic activity in the viscous solution. The inhibition of the chemotactic activity by urease inhibitors paralleled the inhibition of urease. The chemotactic activity of H. pylori was also inhibited by the proton carrier carbonyl cyanide m-chlorophenylhydrazone, showing that H. pylori utilizes proton motive force for motility. These results indicate that cytoplasmic urease plays an important role in the chemotactic motility of H. pylori under a condition that mimics the ecological niche of the bacterium, the gastric mucous layer.
Inhibition of urease by extracts derived from 15 Chinese medicinal herbs.
Shi, Da-Hua; Liu, Yu-Wei; Liu, Wei-Wei; Gu, Zhi-Feng
2011-07-01
Helicobacter pylori is a major causative factor in gastritis-like disorders, and urease plays a key role in Helicobacter pylori colonizing and persisting in the mucous layer of the human stomach. In China, a variety of Chinese medicinal herbs have been prescribed to attenuate or eradicate gastritis-like disorders. However, little is known about the urease inhibition of Chinese medicinal herbs. The present study was conducted to investigate the urease inhibition activities of the ethanol and water extracts of 15 Chinese medicinal herbs. The ethanol and water extracts derived from 15 medicinal herbs, traditionally used for the treatment of gastritis-like disorders in China, were tested for urease-inhibition activity using the phenol red method. Screened at 10 µg/mL, 14 ethanol extracts and 10 water extracts showed urease inhibition. The ethanol extracts of Magnolia officinalis Rehd. et Wils. (Magnoliaceae) and Cassia obtusifolia L. (Leguminosae) possessed inhibition rates higher than 50% with IC₅₀ values of 6.5 and 12.3 µg/mL, respectively. After fractionating successively, the petroleum ether fraction of the ethanol extracts of Magnolia officinalis showed the best activity with 90.8% urease inhibition at a concentration of 10 µg/mL. The bioautography of the petroleum ether fraction indicated the existence of the urease inhibitors in the herb. The present results indicated that some Chinese medicinal herbs might treat gastritis-like disorders via the inhibition of Helicobacter pylori urease and the further possibility for discovering useful novel urease inhibitors from the Chinese medicinal herbs.
Structural and transcriptional characterization of a novel member of the soybean urease gene family.
Wiebke-Strohm, Beatriz; Ligabue-Braun, Rodrigo; Rechenmacher, Ciliana; De Oliveira-Busatto, Luisa Abruzzi; Carlini, Célia Regina; Bodanese-Zanettini, Maria Helena
2016-04-01
In plants, ureases have been related to urea degradation, to defense against pathogenic fungi and phytophagous insects, and to the soybean-Bradyrhizobium japonicum symbiosis. Two urease isoforms have been described for soybean: the embryo-specific, encoded by Eu1 gene, and the ubiquitous urease, encoded by Eu4. A third urease-encoding locus exists in the completed soybean genome. The gene was designated Eu5 and the putative product of its ORF as SBU-III. Phylogenetic analysis shows that 41 plant, moss and algal ureases have diverged from a common ancestor protein, but ureases from monocots, eudicots and ancient species have evolved independently. Genomes of ancient organisms present a single urease-encoding gene and urease-encoding gene duplication has occurred independently along the evolution of some eudicot species. SBU-III has a shorter amino acid sequence, since many gaps are found when compared to other sequences. A mutation in a highly conserved amino acid residue suggests absence of ureolytic activity, but the overall protein architecture remains very similar to the other ureases. The expression profile of urease-encoding genes in different organs and developmental stages was determined by RT-qPCR. Eu5 transcripts were detected in seeds one day after dormancy break, roots of young plants and embryos of developing seeds. Eu1 and Eu4 transcripts were found in all analyzed organs, but Eu4 expression was more prominent in seeds one day after dormancy break whereas Eu1 predominated in developing seeds. The evidence suggests that SBU-III may not be involved in nitrogen availability to plants, but it could be involved in other biological role(s). Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Siqueira, José R; Molinnus, Denise; Beging, Stefan; Schöning, Michael J
2014-06-03
The ideal combination among biomolecules and nanomaterials is the key for reaching biosensing units with high sensitivity. The challenge, however, is to find out a stable and sensitive film architecture that can be incorporated on the sensor's surface. In this paper, we report on the benefits of incorporating a layer-by-layer (LbL) nanofilm of polyamidoamine (PAMAM) dendrimer and carbon nanotubes (CNTs) on capacitive electrolyte-insulator-semiconductor (EIS) field-effect sensors for detecting urea. Three sensor arrangements were studied in order to investigate the adequate film architecture, involving the LbL film with the enzyme urease: (i) urease immobilized directly onto a bare EIS [EIS-urease] sensor; (ii) urease atop the LbL film over the EIS [EIS-(PAMAM/CNT)-urease] sensor; and (iii) urease sandwiched between the LbL film and another CNT layer [EIS-(PAMAM/CNT)-urease-CNT]. The surface morphology of all three urea-based EIS biosensors was investigated by atomic force microscopy (AFM), while the biosensing abilities were studied by means of capacitance-voltage (C/V) and dynamic constant-capacitance (ConCap) measureaments at urea concentrations ranging from 0.1 mM to 100 mM. The EIS-urease and EIS-(PAMAM/CNT)-urease sensors showed similar sensitivity (~18 mV/decade) and a nonregular signal behavior as the urea concentration increased. On the other hand, the EIS-(PAMAM/CNT)-urease-CNT sensor exhibited a superior output signal performance and higher sensitivity of about 33 mV/decade. The presence of the additional CNT layer was decisive to achieve a urea based EIS sensor with enhanced properties. Such sensitive architecture demonstrates that the incorporation of an adequate hybrid enzyme-nanofilm as sensing unit opens new prospects for biosensing applications using the field-effect sensor platform.
Expression of an Acid Urease with Urethanase Activity in E. coli and Analysis of Urease Gene.
Liu, Xiaofeng; Zhang, Qian; Zhou, Nandi; Tian, Yaping
2017-03-01
Urea in alcoholic beverage is a precursor of ethyl carbamate (EC), which is carcinogenic. Enzymatic elimination of urea has attracted much research interest. Acid urease with good tolerance toward ethanol and acid is ideal enzyme for such applications. In the present work, the structural genes of urease from Providencia rettgeri JN-B815, ureABC were efficiently expressed in E. coli BL21(DE3) in an active form (apourease) exhibiting both urease and urethanase (hydrolyze EC) activities. The specific activities of the purified apourease were comparatively low, which were 2.1 U/mg for urease and 0.6 U/mg for urethanase, respectively. However, apourease exhibited good resistance toward ethanol and acidic conditions. The relative activities of urease and urethanase remained over 80% in the buffers within pH 4-7. And the recoveries of both urease and urethanase activities were more than 50% in 5-25% ethanol solution. Apourease was utilized to eliminate urea in wine, and the residual urea in model wine was less than 50% after treatment with apourease for 30 h. Then 3D structure of UreC was predicted, and it was docked with urea and EC, respectively. The docking result revealed that three hydrogen bonds were formed between urea and amino acid residues in the active site of urease, whereas only one hydrogen bond can be formed between EC and the active center. Moreover, EC exhibited greater steric hindrance than urea when combined with the active site. Due to the low specific activities of apourease, both structural genes and accessory genes of urease were co-expressed in E. coli BL21(DE3). The holoenzyme was expressed as inclusion body. After renaturation and purification, the specific activities of urease and urethanase reached 10.7 and 3.8 U/mg, which were 5.62-fold and 6.33-fold of those of apourease, respectively. Therefore, accessory subunits of urease play an important role in enhancing urease and urethanase activities.
Zhou, Jiang-Tao; Li, Cai-Lan; Tan, Li-Hua; Xu, Yi-Fei; Liu, Yu-Hong; Mo, Zhi-Zhun; Dou, Yao-Xing; Su, Rui; Su, Zi-Ren; Huang, Ping; Xie, Jian-Hui
2017-01-01
In this paper, we evaluated the anti-Helicobacter pylori activity and the possible inhibitory effect on its associated urease by Palmatine (Pal) from Coptis chinensis, and explored the potential underlying mechanism. Results indicated that Pal exerted inhibitory effect on four tested H. pylori strains (ATCC 43504, NCTC 26695, SS1 and ICDC 111001) by the agar dilution test with minimum inhibitory concentration (MIC) values ranging from 100 to 200 μg/mL under neutral environment (pH 7.4), and from 75 to 100 μg/mL under acidic conditions (pH 5.3), respectively. Pal was observed to significantly inhibit both H. pylori urease (HPU) and jack bean urease (JBU) in a dose-dependent manner, with IC50 values of 0.53 ± 0.01 mM and 0.03 ± 0.00 mM, respectively, as compared with acetohydroxamic acid, a well-known urease inhibitor (0.07 ± 0.01 mM for HPU and 0.02 ± 0.00 mM for JBU, respectively). Kinetic analyses showed that the type of urease inhibition by Pal was noncompetitive for both HPU and JBU. Higher effectiveness of thiol protectors against urease inhibition than the competitive Ni2+ binding inhibitors was observed, indicating the essential role of the active-site sulfhydryl group in the urease inhibition by Pal. DTT reactivation assay indicated that the inhibition on the two ureases was reversible, further supporting that sulfhydryl group should be obligatory for urease inhibition by Pal. Furthermore, molecular docking study indicated that Pal interacted with the important sulfhydryl groups and inhibited the active enzymatic conformation through N-H ∙ π interaction, but did not interact with the active site Ni2+. Taken together, Pal was an effective inhibitor of H. pylori and its urease targeting the sulfhydryl groups, representing a promising candidate as novel urease inhibitor. This investigation also gave additional scientific support to the use of C. chinensis to treat H. pylori-related gastrointestinal diseases in traditional Chinese medicine. Pal might be a potentially beneficial therapy for gastritis and peptic ulcers induced by H. pylori infection and other urease-related diseases.
Tan, Li-Hua; Xu, Yi-Fei; Liu, Yu-Hong; Mo, Zhi-Zhun; Dou, Yao-Xing; Su, Rui; Su, Zi-Ren; Huang, Ping; Xie, Jian-Hui
2017-01-01
In this paper, we evaluated the anti-Helicobacter pylori activity and the possible inhibitory effect on its associated urease by Palmatine (Pal) from Coptis chinensis, and explored the potential underlying mechanism. Results indicated that Pal exerted inhibitory effect on four tested H. pylori strains (ATCC 43504, NCTC 26695, SS1 and ICDC 111001) by the agar dilution test with minimum inhibitory concentration (MIC) values ranging from 100 to 200 μg/mL under neutral environment (pH 7.4), and from 75 to 100 μg/mL under acidic conditions (pH 5.3), respectively. Pal was observed to significantly inhibit both H. pylori urease (HPU) and jack bean urease (JBU) in a dose-dependent manner, with IC50 values of 0.53 ± 0.01 mM and 0.03 ± 0.00 mM, respectively, as compared with acetohydroxamic acid, a well-known urease inhibitor (0.07 ± 0.01 mM for HPU and 0.02 ± 0.00 mM for JBU, respectively). Kinetic analyses showed that the type of urease inhibition by Pal was noncompetitive for both HPU and JBU. Higher effectiveness of thiol protectors against urease inhibition than the competitive Ni2+ binding inhibitors was observed, indicating the essential role of the active-site sulfhydryl group in the urease inhibition by Pal. DTT reactivation assay indicated that the inhibition on the two ureases was reversible, further supporting that sulfhydryl group should be obligatory for urease inhibition by Pal. Furthermore, molecular docking study indicated that Pal interacted with the important sulfhydryl groups and inhibited the active enzymatic conformation through N-H ∙ π interaction, but did not interact with the active site Ni2+. Taken together, Pal was an effective inhibitor of H. pylori and its urease targeting the sulfhydryl groups, representing a promising candidate as novel urease inhibitor. This investigation also gave additional scientific support to the use of C. chinensis to treat H. pylori-related gastrointestinal diseases in traditional Chinese medicine. Pal might be a potentially beneficial therapy for gastritis and peptic ulcers induced by H. pylori infection and other urease-related diseases. PMID:28045966
Rick, Fernanda; Niyibizi, Aline Aurore; Shroufi, Amir; Onami, Kazumi; Steele, Sarah-Jane; Kuleile, Malehlohonolo; Muleya, Innocent; Chiller, Tom; Walker, Tiffany; Van Cutsem, Gilles
2017-01-01
Cryptococcal meningitis is one of the leading causes of death among people with HIV in Africa, primarily due to delayed presentation, poor availability and high cost of treatment. Routine cryptococcal antigen (CrAg) screening of patients with a CD4 count less than 100 cells/mm3, followed by pre-emptive therapy if positive, might reduce mortality in high prevalence settings. Using the cryptococcal antigen (CrAg) lateral flow assay (LFA), screening is possible at the point of care (POC). However, critical shortages of health staff may limit adoption. This study investigates the feasibility of lay counsellors conducting CrAg LFA screening in rural primary care clinics in Lesotho. From May 2014 to June 2015, individuals who tested positive for HIV were tested for CD4 count and those with CD4 <100 cells/mm3 were screened with CrAg LFA. All tests were performed by lay counsellors. CrAg-positive asymptomatic patients received fluconazole, while symptomatic patients were referred to hospital. Lay counsellors were trained and supervised by a laboratory technician and counsellor activity supervisor. Additionally, nurses and doctors were trained on CrAg screening and appropriate treatment. During the study period, 1,388 people were newly diagnosed with HIV, of whom 129 (9%) presented with a CD4 count <100 cells/mm3. Of these, 128 (99%) were screened with CrAg LFA and 14/128 (11%) tested positive. Twelve of the 14 (86%) were asymptomatic, and received outpatient fluconazole. All commenced ART with a median time to initiation of 15.5 days [IQR: 14-22]. Of the asymptomatic patients, nine (75%) remained asymptomatic after a median time of 5 months [IQR; 3-6] of follow up. One (8%) became co-infected with tuberculosis and died and two were transferred out. The two patients with symptomatic cryptococcal meningitis (CM) were referred to hospital, where they later died. CrAg LFA screening by lay counsellors followed by pre-emptive fluconazole treatment for asymptomatic cases, or referral to hospital for symptomatic cases, proved feasible. However, regular follow-up to ensure proper management of cryptococcal disease was needed. These early results support the wider use of CrAg LFA screening in remote primary care settings where upper cadres of healthcare staff may be in short supply.
Rick, Fernanda; Niyibizi, Aline Aurore; Shroufi, Amir; Onami, Kazumi; Steele, Sarah-Jane; Kuleile, Malehlohonolo; Muleya, Innocent; Chiller, Tom; Walker, Tiffany; Van Cutsem, Gilles
2017-01-01
Introduction Cryptococcal meningitis is one of the leading causes of death among people with HIV in Africa, primarily due to delayed presentation, poor availability and high cost of treatment. Routine cryptococcal antigen (CrAg) screening of patients with a CD4 count less than 100 cells/mm3, followed by pre-emptive therapy if positive, might reduce mortality in high prevalence settings. Using the cryptococcal antigen (CrAg) lateral flow assay (LFA), screening is possible at the point of care (POC). However, critical shortages of health staff may limit adoption. This study investigates the feasibility of lay counsellors conducting CrAg LFA screening in rural primary care clinics in Lesotho. Methods From May 2014 to June 2015, individuals who tested positive for HIV were tested for CD4 count and those with CD4 <100 cells/mm3 were screened with CrAg LFA. All tests were performed by lay counsellors. CrAg-positive asymptomatic patients received fluconazole, while symptomatic patients were referred to hospital. Lay counsellors were trained and supervised by a laboratory technician and counsellor activity supervisor. Additionally, nurses and doctors were trained on CrAg screening and appropriate treatment. Results During the study period, 1,388 people were newly diagnosed with HIV, of whom 129 (9%) presented with a CD4 count <100 cells/mm3. Of these, 128 (99%) were screened with CrAg LFA and 14/128 (11%) tested positive. Twelve of the 14 (86%) were asymptomatic, and received outpatient fluconazole. All commenced ART with a median time to initiation of 15.5 days [IQR: 14–22]. Of the asymptomatic patients, nine (75%) remained asymptomatic after a median time of 5 months [IQR; 3–6] of follow up. One (8%) became co-infected with tuberculosis and died and two were transferred out. The two patients with symptomatic cryptococcal meningitis (CM) were referred to hospital, where they later died. Conclusions CrAg LFA screening by lay counsellors followed by pre-emptive fluconazole treatment for asymptomatic cases, or referral to hospital for symptomatic cases, proved feasible. However, regular follow-up to ensure proper management of cryptococcal disease was needed. These early results support the wider use of CrAg LFA screening in remote primary care settings where upper cadres of healthcare staff may be in short supply. PMID:28877182
Armbruster, Chelsie E; Smith, Sara N; Johnson, Alexandra O; DeOrnellas, Valerie; Eaton, Kathryn A; Yep, Alejandra; Mody, Lona; Wu, Weisheng; Mobley, Harry L T
2017-02-01
Urinary catheter use is prevalent in health care settings, and polymicrobial colonization by urease-positive organisms, such as Proteus mirabilis and Providencia stuartii, commonly occurs with long-term catheterization. We previously demonstrated that coinfection with P. mirabilis and P. stuartii increased overall urease activity in vitro and disease severity in a model of urinary tract infection (UTI). In this study, we expanded these findings to a murine model of catheter-associated UTI (CAUTI), delineated the contribution of enhanced urease activity to coinfection pathogenesis, and screened for enhanced urease activity with other common CAUTI pathogens. In the UTI model, mice coinfected with the two species exhibited higher urine pH values, urolithiasis, bacteremia, and more pronounced tissue damage and inflammation compared to the findings for mice infected with a single species, despite having a similar bacterial burden within the urinary tract. The presence of P. stuartii, regardless of urease production by this organism, was sufficient to enhance P. mirabilis urease activity and increase disease severity, and enhanced urease activity was the predominant factor driving tissue damage and the dissemination of both organisms to the bloodstream during coinfection. These findings were largely recapitulated in the CAUTI model. Other uropathogens also enhanced P. mirabilis urease activity in vitro, including recent clinical isolates of Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, and Pseudomonas aeruginosa We therefore conclude that the underlying mechanism of enhanced urease activity may represent a widespread target for limiting the detrimental consequences of polymicrobial catheter colonization, particularly by P. mirabilis and other urease-positive bacteria. Copyright © 2017 American Society for Microbiology.
Smith, Sara N.; Johnson, Alexandra O.; DeOrnellas, Valerie; Eaton, Kathryn A.; Yep, Alejandra; Mody, Lona; Wu, Weisheng
2016-01-01
ABSTRACT Urinary catheter use is prevalent in health care settings, and polymicrobial colonization by urease-positive organisms, such as Proteus mirabilis and Providencia stuartii, commonly occurs with long-term catheterization. We previously demonstrated that coinfection with P. mirabilis and P. stuartii increased overall urease activity in vitro and disease severity in a model of urinary tract infection (UTI). In this study, we expanded these findings to a murine model of catheter-associated UTI (CAUTI), delineated the contribution of enhanced urease activity to coinfection pathogenesis, and screened for enhanced urease activity with other common CAUTI pathogens. In the UTI model, mice coinfected with the two species exhibited higher urine pH values, urolithiasis, bacteremia, and more pronounced tissue damage and inflammation compared to the findings for mice infected with a single species, despite having a similar bacterial burden within the urinary tract. The presence of P. stuartii, regardless of urease production by this organism, was sufficient to enhance P. mirabilis urease activity and increase disease severity, and enhanced urease activity was the predominant factor driving tissue damage and the dissemination of both organisms to the bloodstream during coinfection. These findings were largely recapitulated in the CAUTI model. Other uropathogens also enhanced P. mirabilis urease activity in vitro, including recent clinical isolates of Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, and Pseudomonas aeruginosa. We therefore conclude that the underlying mechanism of enhanced urease activity may represent a widespread target for limiting the detrimental consequences of polymicrobial catheter colonization, particularly by P. mirabilis and other urease-positive bacteria. PMID:27895127
Urease and Dental Plaque Microbial Profiles in Children.
Morou-Bermudez, Evangelia; Rodriguez, Selena; Bello, Angel S; Dominguez-Bello, Maria G
2015-01-01
Urease enzymes produced by oral bacteria generate ammonia, which can have a significant impact on the oral ecology and, consequently, on oral health. To evaluate the relationship of urease with dental plaque microbial profiles in children as it relates to dental caries, and to identify the main contributors to this activity. 82 supragingival plaque samples were collected from 44 children at baseline and one year later, as part of a longitudinal study on urease and caries in children. DNA was extracted; the V3-V5 region of the 16S rRNA gene was amplified and sequenced using 454 pyrosequencing. Urease activity was measured using a spectrophotometric assay. Data were analyzed with Qiime. Plaque urease activity was significantly associated with the composition of the microbial communities of the dental plaque (Baseline P = 0.027, One Year P = 0.012). The bacterial taxa whose proportion in dental plaque exhibited significant variation by plaque urease levels in both visits were the family Pasteurellaceae (Baseline P<0.001; One Year P = 0.0148), especially Haemophilus parainfluenzae. No association was observed between these bacteria and dental caries. Bacteria in the genus Leptotrichia were negatively associated with urease and positively associated with dental caries (Bonferroni P<0.001). Alkali production by urease enzymes primarily from species in the family Pasteurellaceae can be an important ecological determinant in children's dental plaque. Further studies are needed to establish the role of urease-associated bacteria in the acid/base homeostasis of the dental plaque, and in the development and prediction of dental caries in children.
Yata, Vinod Kumar; Thapa, Arun; Mattaparthi, Venkata Satish Kumar
2015-01-01
Urease (EC 3.5.1.5., urea amidohydrolase) catalyzes the hydrolysis of urea to ammonia and carbon dioxide. Urease is present to a greater abundance in plants and plays significant role related to nitrogen recycling from urea. But little is known about the structure and function of the urease derived from the Arabidopsis thaliana, the model system of choice for research in plant biology. In this study, a three-dimensional structural model of A. thaliana urease was constructed using computer-aided molecular modeling technique. The characteristic structural features of the modeled structure were then studied using atomistic molecular dynamics simulation. It was observed that the modeled structure was stable and regions between residues index (50-80, 500-700) to be significantly flexible. From the docking studies, we detected the possible binding interactions of modeled urease with urea. Ala399, Ile675, Thr398, and Thr679 residues of A. thaliana urease were observed to be significantly involved in binding with the substrate urea. We also compared the docking studies of ureases from other sources such as Canavalia ensiformis, Helicobacter pylori, and Bacillus pasteurii. In addition, we carried out mutation analysis to find the highly mutable amino acid residues of modeled A. thaliana urease. In this particular study, we observed Met485, Tyr510, Ser786, Val426, and Lys765 to be highly mutable amino acids. These results are significant for the mutagenesis analysis. As a whole, this study expounds the salient structural features as well the binding interactions of the modeled structure of A. thaliana urease.
Urease and Dental Plaque Microbial Profiles in Children
Morou-Bermudez, Evangelia; Rodriguez, Selena; Bello, Angel S.; Dominguez-Bello, Maria G.
2015-01-01
Objective Urease enzymes produced by oral bacteria generate ammonia, which can have a significant impact on the oral ecology and, consequently, on oral health. To evaluate the relationship of urease with dental plaque microbial profiles in children as it relates to dental caries, and to identify the main contributors to this activity. Methods 82 supragingival plaque samples were collected from 44 children at baseline and one year later, as part of a longitudinal study on urease and caries in children. DNA was extracted; the V3–V5 region of the 16S rRNA gene was amplified and sequenced using 454 pyrosequencing. Urease activity was measured using a spectrophotometric assay. Data were analyzed with Qiime. Results Plaque urease activity was significantly associated with the composition of the microbial communities of the dental plaque (Baseline P = 0.027, One Year P = 0.012). The bacterial taxa whose proportion in dental plaque exhibited significant variation by plaque urease levels in both visits were the family Pasteurellaceae (Baseline P<0.001; One Year P = 0.0148), especially Haemophilus parainfluenzae. No association was observed between these bacteria and dental caries. Bacteria in the genus Leptotrichia were negatively associated with urease and positively associated with dental caries (Bonferroni P<0.001). Conclusions Alkali production by urease enzymes primarily from species in the family Pasteurellaceae can be an important ecological determinant in children’s dental plaque. Further studies are needed to establish the role of urease-associated bacteria in the acid/base homeostasis of the dental plaque, and in the development and prediction of dental caries in children. PMID:26418220
Booth, Natha J.; Beekman, Judith B.; Thune, Ronald L.
2009-01-01
Genomic analysis indicated that Edwardsiella ictaluri encodes a putative urease pathogenicity island containing the products of nine open reading frames, including urea and ammonium transporters. In vitro studies with wild-type E. ictaluri and a ureG::kan urease mutant strain indicated that E. ictaluri is significantly tolerant of acid conditions (pH 3.0) but that urease activity is not required for acid tolerance. Growth studies demonstrated that E. ictaluri is unable to grow at pH 5 in the absence of urea but is able to elevate the environmental pH from pH 5 to pH 7 and grow when exogenous urea is available. Substantial production of ammonia was observed for wild-type E. ictaluri in vitro in the presence of urea at low pH, and optimal activity occurred at pH 2 to 3. No ammonia production was detected for the urease mutant. Proteomic analysis with two-dimensional gel electrophoresis indicated that urease proteins are expressed at both pH 5 and pH 7, although urease activity is detectable only at pH 5. Urease was not required for initial invasion of catfish but was required for subsequent proliferation and virulence. Urease was not required for initial uptake or survival in head kidney-derived macrophages but was required for intracellular replication. Intracellular replication of wild-type E. ictaluri was significantly enhanced when urea was present, indicating that urease plays an important role in intracellular survival and replication, possibly through neutralization of the acidic environment of the phagosome. PMID:19749068
Synthesis and activity of Helicobacter pylori urease and catalase at low pH.
Bauerfeind, P; Garner, R; Dunn, B E; Mobley, H L
1997-01-01
BACKGROUND: Helicobacter pylori produces large amounts of urease presumably to be prepared for the rare event of a sudden acid exposure. The hypothesis that H pylori is acid sensitive and protein production is inhibited by low pH was examined. METHODS: H pylori or its soluble enzymes were incubated buffered or unbuffered at a pH ranging from 2-7 in the presence of 5 mM urea for 30 minutes. After exposure, urease and catalase activities of whole cells, supernatants, and soluble enzyme preparations were measured at pH 6.8. Newly synthesised enzyme was quantified by immunoprecipitation of [35S]-methionine labelled protein. RESULTS: Exposure to buffer below pH 4 resulted in loss of intracellular urease activity. In soluble enzyme preparations and supernatant, no urease activity was measurable after incubation at pH < 5. In contrast, catalase in whole cells, supernatant, and soluble enzyme preparations remained active after exposure to pH > or = 3. Exposure below pH 5 inhibited synthesis of total protein including nascent urease and catalase. At pH 6 or 7, urease represented 10% of total protein, catalase 1.5%. Exposure of H pylori to unbuffered HCl (pH > 2) resulted in an immediate neutralisation; urease and catalase activities and synthesis were unchanged. CONCLUSION: Low surrounding pH reduces activity of urease and synthesis of nascent urease, catalase, and presumably of most other proteins. This suggests that H pylori is not acidophilic although it tolerates short-term exposure to low pH. PMID:9155571
Effect of ohmic heating of soymilk on urease inactivation and kinetic analysis in holding time.
Li, Fa-De; Chen, Chen; Ren, Jie; Wang, Ranran; Wu, Peng
2015-02-01
To verify the effect of the ohmic heating on the urease activity in the soymilk, the ohmic heating methods with the different electrical field conditions (the frequency and the voltage ranging from 50 to 10 kHz and from 160 to 220 V, respectively) were employed. The results showed that if the value of the urease activity measured with the quantitative spectrophotometry method was lower than 16.8 IU, the urease activity measured with the qualitative method was negative. The urease activity of the sample ohmically heated was significantly lower than that of the sample conventionally heated (P < 0.01) at the same target temperature. It was concluded that the electrical field enhanced the urease inactivation. In addition, the inactivation kinetics of the urease in the soymilk could be described with a biphasic model during holding time at a target temperature. Thus, it was concluded that the urease in the soymilk would contain 2 isoenzymes, one is the thermolabile fraction, the other the thermostable fraction, and that the thermostable isoenzyme could not be completely inactivated when the holding time increased, whether the soymilk was cooked with the conventional method or with the ohmic heating method. Therefore, the electric field had no effect on the inactivation of the thermostable isoenzyme of the urease. © 2015 Institute of Food Technologists®
Uddin, Ghias; Ismail; Rauf, Abdur; Raza, Muslim; Khan, Haroon; Nasruddin; Khan, Majid; Farooq, Umar; Khan, Ajmal; Arifullah
2016-06-01
The current study was designed to evaluate the urease inhibitory profile of extract and fractions of Pistacia atlantica ssp. cabulica Stocks followed by bioactivity-guided isolated compounds. The crude extract was found significantly active with urease inhibitor (95.40% at 0.2 mg/mL) with IC50 values of 32.0 ± 0.28 μg/mL. Upon fractionation, ethyl acetate fraction displayed 100% urease inhibition with IC50 values of 19.9 ± 0.51 μg/mL at 0.2 mg/mL. However, n-hexane and chloroform fractions exhibited insignificant urease inhibition. Similarly, the isolated compound, transilitin (1) and dihydro luteolin (2) demonstrated marked urease attenuation with 95 and 98% respectively, at 0.15 mg/mL. Both the isolated compounds showed marked potency with IC50 values of 8.54 ± 0.54 and 9.58 ± 2.22 μg/mL, respectively. In short, both the extract and fractions and isolated compounds showed marked urease inhibition and thus a useful natural source of urease inhibition.
An overview on the potential of natural products as ureases inhibitors: A review☆
Modolo, Luzia V.; de Souza, Aline X.; Horta, Lívia P.; Araujo, Débora P.; de Fátima, Ângelo
2014-01-01
Ureases, enzymes that catalyze urea hydrolysis, have received considerable attention for their impact on living organisms’ health and life quality. On the one hand, the persistence of urease activity in human and animal cells can be the cause of some diseases and pathogen infections. On the other hand, food production can be negatively affected by ureases of soil microbiota that, in turn, lead to losses of nitrogenous nutrients in fields supplemented with urea as fertilizer. In this context, nature has proven to be a rich resource of natural products bearing a variety of scaffolds that decrease the ureolytic activity of ureases from different organisms. Therefore, this work compiles the state-of-the-art researches focused on the potential of plant natural products (present in extracts or as pure compounds) as urease inhibitors of clinical and/or agricultural interests. Emphasis is given to ureases of Helicobacter pylori, Canavalia ensiformis and soil microbiota although the active site of this class of hydrolases is conserved among living organisms. PMID:25685542
Kaminski, Zbigniew Jerzy; Relich, Inga; Konieczna, Iwona; Kaca, Wieslaw; Kolesinska, Beata
2018-01-01
Overlapping decapeptide fragments of H. pylori urease subunit A (UreA) were synthesized and tested with polyclonal antibodies against Canavalia ensiformis (Jack bean) urease. The linear epitopes of UreA identified using the dot blot method were then examined using epitope mapping. For this purpose, series of overlapping fragments of UreA, frameshifted ± four amino acid residues were synthesized. Most of the UreA epitopes which reacted with the Jack bean urease polyclonal antibodies had been recognized in previous studies by monoclonal antibodies against H. pylori urease. Fragments 11 - 24, 21 - 33, and 31 - 42 were able to interact with the Jack bean urease antibodies, giving stable immunological complexes. However, the lack of recognition by these antibodies of all the components in the peptide map strongly suggests that a non-continuous (nonlinear) epitope is located on the N-terminal domain of UreA. © 2018 Wiley-VHCA AG, Zurich, Switzerland.
Utilization of immobilized urease for waste water treatment
NASA Technical Reports Server (NTRS)
Husted, R. R.
1974-01-01
The feasibility of using immobilized urease for urea removal from waste water for space system applications is considered, specifically the elimination of the urea toxicity problem in a 30-day Orbiting Frog Otolith (OFO) flight experiment. Because urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, control of their concentrations within nontoxic limits was also determined. The results of this study led to the use of free urease in lieu of the immobilized urease for controlling urea concentrations. An ion exchange resin was used which reduced the NH3 level by 94% while reducing the sodium ion concentration only 10%.
Gassiep, Ian; Douglas, Joel; Emeto, Theophilus I; Crawley, Katherine; Playford, Elliott G
2018-04-17
Cryptococcosis is an invasive fungal infection caused primarily by Cryptococcus neoformans and Cryptococcus gattii species, presenting predominantly as meningoencephalitis. The aim of this study is to assess all cryptococcal infections managed at our facility from 2001-2015 to determine incidence, risk factors, and comparison of outcomes prior to and following introduction of the 2010 Infectious Disease Society of America (IDSA) guidelines. Retrospective analysis of all patients diagnosed and treated for cryptococcal infection occurring between January 2001 and December 2015. Of 102 patients diagnosed with cryptococcal infection, 97 were eligible for study inclusion. There appears to be an overall increased incidence of cryptococcosis in both transplant and non-transplant cohorts with a peak in 2015 of 6 transplant and 13 non-transplant cases. In the meningitis cohort, 38/52 (73%) of identified isolates were C. neoformans, and 14/52 (27%) were C. gattii. Notably, 14/14 (100%) of C. gattii isolates were associated with meningitis, as compared to only 38/64 (59%) C. neoformans associated with meningitis (p: 0.003). It appears that patients presenting with cough are less likely to have meningitis, 17/27 (63%), (p: 0.005). When stratifying for culture positive meningitis lumbar puncture opening pressure, the median in the culture positive cohort was 31.5 cmH2O compared with 15.5 cmH2O (p: 0.036).Multiple admissions were required prior to diagnosis in the majority of cases with only 18/72 (25%) diagnosed on 1st presentation. Post-guideline mortality has improved from 15% to 6.1% (p: 0.046). Cryptococcal infection remains relatively uncommon, but there appears to be an increasing trend in incidence. Overall mortality is relatively low and has improved since introduction of the 2010 IDSA guidelines. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Livermore, Joanne; Howard, Susan J.; Sharp, Andrew D.; Goodwin, Joanne; Gregson, Lea; Felton, Timothy; Schwartz, Julie A.; Walker, Catherine; Moser, Bill; Müller, Werner; Harrison, Thomas S.; Perfect, John R.; Hope, William W.
2014-01-01
ABSTRACT Cryptococcal meningoencephalitis is an urgent global health problem. Induction regimens using 14 days of amphotericin B deoxycholate (dAmB) are considered the standard of care but may not be suitable for resource-poor settings. We investigated the efficacy of conventional and abbreviated regimens of dAmB for cryptococcal meningoencephalitis in both murine and rabbit models of cryptococcal meningoencephalitis. We examined the extent to which immunological effectors contribute to the antifungal effect. We bridged the results to humans as a first critical step to define regimens suitable for further study in clinical trials. There were significant differences in the murine plasma-versus-cerebrum dAmB concentration-time profiles. dAmB was detectable in the cerebrum throughout the experimental period, even following the administration of only three doses of 3 mg/kg. dAmB induced a fungistatic effect in the cerebrum with a 2- to 3-log10 CFU/g reduction compared with controls. The effect of 3 days of therapy was the same as that of daily therapy for 14 days. There was no evidence of increased numbers of CD3+ CD4+ or CD3+ CD8+ cells in treated mice to account for the persistent antifungal effect of an abbreviated regimen. The administration of dAmB at 1 mg/kg/day for 3 days was the same as daily therapy in rabbits. The bridging studies suggested that a human regimen of 0.7 mg/kg/day for 3 days resulted in nearly maximal antifungal activity in both the cerebrum and cerebrospinal fluid. An abbreviated regimen (3 days of therapy) of dAmB appears to be just as effective as conventional induction therapy for cryptococcal meningoencephalitis. PMID:24473125
2010-01-01
Background Most cases of cryptococcal meningitis occur in patients with HIV infection: the course and outcome of disease in the apparently immunocompetent is much more poorly understood. We describe a cohort of HIV uninfected Vietnamese patients with cryptococcal meningitis in whom underlying disease is uncommon, and relate presenting features of patients and the characteristics of the infecting species to outcome. Methods A prospective descriptive study of HIV negative patients with cryptococcal meningitis based at the Hospital for Tropical Diseases, Ho Chi Minh City. All patients had comprehensive clinical assessment at baseline, were cared for by a dedicated study team, and were followed up for 2 years. Clinical presentation was compared by infecting isolate and outcome. Results 57 patients were studied. Cryptococcus neoformans var grubii molecular type VN1 caused 70% of infections; C. gattii accounted for the rest. Most patients did not have underlying disease (81%), and the rate of underlying disease did not differ by infecting species. 11 patients died while in-patients (19.3%). Independent predictors of death were age ≥ 60 years and a history of convulsions (odds ratios and 95% confidence intervals 8.7 (1 - 76), and 16.1 (1.6 - 161) respectively). Residual visual impairment was common, affecting 25 of 46 survivors (54.3%). Infecting species did not influence clinical phenotype or outcome. The minimum inhibitory concentrations of flucytosine and amphotericin B were significantly higher for C. neoformans var grubii compared with C. gattii (p < 0.001 and p = 0.01 respectively). Conclusion In HIV uninfected individuals in Vietnam, cryptococcal meningitis occurs predominantly in people with no clear predisposing factor and is most commonly due to C. neoformans var grubii. The rates of mortality and visual loss are high and independent of infecting species. There are detectable differences in susceptibility to commonly used antifungal drugs between species, but the clinical significance of this is not clear. PMID:20618932
Vidal, José E; Gerhardt, Juliana; Peixoto de Miranda, Erique J; Dauar, Rafi F; Oliveira Filho, Gilberto S; Penalva de Oliveira, Augusto C; Boulware, David R
2012-05-01
This retrospective study aimed to evaluate the clinical, laboratory, and quantitative cerebrospinal fluid (CSF) cryptococcal cell counts for associations with in-hospital outcomes of HIV-infected patients with cryptococcal meningitis. Ninety-eight HIV-infected adult patients with CSF culture-proven cryptococcal meningitis were admitted between January 2006 and June 2008 at a referral center in Sao Paulo, Brazil. Cryptococcal meningitis was the first AIDS-defining illness in 69%, of whom 97% (95/98) had known prior HIV infection. The median CD4+ T-cell count was 39 cells/μL (interquartile range 17-87 cells/μL). Prior antiretroviral therapy was reported in 50%. Failure to sterilize the CSF by 7-14 days was associated with baseline fungal burden of ≥ 10 yeasts/μL by quantitative CSF microscopy (odds ratio [OR] = 15.3, 95% confidence interval [CI] 4.1-56.7; P < 0.001) and positive blood cultures (OR = 11.5, 95% CI 1.2-109; P = 0.034). At 7-14 days, ≥ 10 yeasts/μL CSF was associated with positive CSF cultures in 98% versus 36% with <10 yeasts/μL CSF (P < 0.001). In-hospital mortality was 30% and was associated with symptoms duration for >14 days, altered mental status (P < 0.001), CSF white blood cell counts <5 cells/μL (P = 0.027), intracranial hypertension (P = 0.011), viral loads >50,000 copies/mL (P = 0.036), ≥ 10 yeasts/μL CSF at 7-14 days (P = 0.038), and intracranial pressure >50 cmH(2)0 at 7-14 days (P = 0.007). In conclusion, most patients were aware of their HIV status. Fungal burden of ≥ 10 yeasts/μL by quantitative CSF microscopy predicted current CSF culture status and may be useful to customize the induction therapy. High uncontrolled intracranial pressure was associated with mortality. Copyright © 2012 Elsevier Inc. All rights reserved.
Xia, Shuang; Li, Xueqin; Shi, Yanbin; Liu, Jinxin; Zhang, Mengjie; Gu, Tenghui; Pan, Shinong; Song, Liucun; Xu, Jinsheng; Sun, Yan; Zhao, Qingxia; Lu, Zhiyan; Lu, Puxuan; Li, Hongjun
2016-02-01
The objective of this paper is to correlate the MRI distribution of cryptococcal meningoencephalitis in HIV-1 infection patients with CD4 T cell count and immune reconstitution effect.A large retrospective cohort study of HIV patients from multi-HIV centers in China was studied to demonstrate the MRI distribution of cryptococcal meningoencephalitis and its correlation with the different immune status.The consecutive clinical and neuroimaging data of 55 HIV-1-infected patients with cryptococcal meningoencephalitis collected at multi-HIV centers in China during the years of 2011 to 2014 was retrospectively analyzed. The enrolled patients were divided into 2 groups based on the distribution of lesions. One group of patients had their lesions at the central brain (group 1, n = 34) and the other group of patients had their lesions at the superficial brain (group 2, n = 21). We explored their MRI characterization of brain. In addition, we also compared their CD4 T cell counts and immune reconstitution effects between the 2 groups based on the imaging findings.No statistical difference was found in terms of age and gender between the 2 groups. The medians of CD4 T cell counts were 11.67 cells/mm (3.00-52.00 cells/mm) in group 1 and 42.00 cells/mm (10.00-252.00 cells/mm) in group 2. Statistical difference of CD4 T cell count was found between the 2 groups (P = 0.023). Thirteen patients in group 1 (13/34) and 12 patients in group 2 (12/21) received highly active antiretroviral treatment (HAART). Patients of group 2 received HAART therapy more frequently than patients of group 1 (P = 0.021).Central and superficial brain lesions detected by MR imaging in HIV-1-infected patients with cryptococcal meningoencephalitis are in correlation with the host immunity and HAART therapy.
Zhou, Xuan; Wu, Liang Huan; Dai, Feng
2016-12-01
Addition of urease inhibitors is one of the important measures to increase nitrogen (N) use efficiency of crop, due to retardant of urea hydrolysis and reduction of ammonia volatilization loss. An incubation experiment was conducted to investigate the urease inhibition effect of a new phosphoramide urease inhibitor, NPPT (N-(n-propyl) thiophosphoric triamide) in different texture soils under dark condition at 25 ℃, and NBPT (N-(n-butyl) thiophosphoric triamide) was obtained to compare the inhibition effect on urease in different soil textures by different dosages of urea adding. Results showed that the effective reaction time of urea was less than 9 d in the loamy and clay soil. Addition of inhibitors for retardation of urea hydrolysis was more than 3 d. In sandy soil, urea decomposition was relatively slow, and adding inhibitor significantly inhibited soil urease acti-vity, and reduced NH 4 + -N content. During the incubation time, the inhibition effect of high dosage urea in the soil was better than that of low dosage. At day 6, the urease inhibition rate of NBPT and NPPT (N 250 mg·kg -1 ) were 56.3% and 53.0% in sandy soil, 0.04% and 0.3% in loamy soil, 4.1% and 6.2% in clay soil; the urease inhibition rate of NBPT and NPPT (N 500 mg·kg -1 ) were 59.4% and 65.8% in sandy soil, 14.5% and 15.1% in loamy soil, 49.1% and 48.1% in clay soil. The urease inhibition effects in different texture soil were in order of sandy soil > clay soil> loamy soil. The soil NH 4 + -N content by different inhibitors during incubation time increased at first and then decreased, while soil NO 3 - -N content and apparent nitrification rate both showed rising trends. Compared with urea treatment, addition of urease inhibitors (NBPT and NPPT) significantly increased urea-N left in the soil and reduced NH 4 + -N content. In short, new urease inhibitor NPPT in different texture is an effective urease inhibitor.
Kobayashi, Fumiko; Watanabe, Eri; Nakagawa, Yohko; Yamanishi, Shingo; Norose, Yoshihiko; Fukunaga, Yoshitaka; Takahashi, Hidemi
2011-01-01
Helicobacter pylori infection is associated with several autoimmune diseases, in which autoantibody-producing B cells must be activated. Among these B cells, CD5-positive B-1a cells from BALB/c mice were confirmed to secrete autoantibodies when cocultured with purified H. pylori urease in the absence of T cells. To determine the mechanisms for autoantibody production, CD5-positive B-1a cells were sorted from murine spleen cells and stimulated with either purified H. pylori urease or H. pylori coated onto plates (referred to hereafter as plate-coated H. pylori), and autoantibody production was measured by enzyme-linked immunosorbent assay (ELISA). Complete urease was not secreted from H. pylori but was visually expressed over the bacterium-like endotoxin. Urease-positive plated-coated H. pylori stimulated B-1a cells to produce autoantibodies, although urease-deficient isotype-matched H. pylori did not. Autoantibody secretion by B-1a cells was inhibited when bacteria were pretreated with anti-H. pylori urease-specific antibody having neutralizing ability against urease enzymatic activity but not with anti-H. pylori urease-specific antibody without neutralizing capacity. The B-1a cells externally express various Toll-like receptors (TLRs): TLR1, TLR2, TLR4, and TLR6. Among the TLRs, blocking of TLR2 on B-1a cells with a specific monoclonal antibody (MAb), T2.5, inhibited autoantibody secretion when B-1a cells were stimulated with plate-coated H. pylori or H. pylori urease. Moreover, B-1a cells from TLR2-knockout mice did not produce those autoantibodies. The present study provides evidence that functional urease expressed on the surface of H. pylori will directly stimulate B-1a cells via innate TLR2 to produce various autoantibodies and may induce autoimmune disorders. PMID:21947775
Myrach, Till; Zhu, Anting; Witte, Claus-Peter
2017-09-01
Urease is a ubiquitous nickel metalloenzyme. In plants, its activation requires three urease accessory proteins (UAPs), UreD, UreF, and UreG. In bacteria, the UAPs interact with urease and facilitate activation, which involves the channeling of two nickel ions into the active site. So far this process has not been investigated in eukaryotes. Using affinity pulldowns of Strep-tagged UAPs from Arabidopsis and rice transiently expressed in planta , we demonstrate that a urease-UreD-UreF-UreG complex exists in plants and show its stepwise assembly. UreG is crucial for nickel delivery because UreG-dependent urease activation in vitro was observed only with UreG obtained from nickel-sufficient plants. This activation competence could not be generated in vitro by incubation of UreG with nickel, bicarbonate, and GTP. Compared with their bacterial orthologs, plant UreGs possess an N-terminal extension containing a His- and Asp/Glu-rich hypervariable region followed by a highly conserved sequence comprising two potential H X H metal-binding sites. Complementing the ureG-1 mutant of Arabidopsis with N-terminal deletion variants of UreG demonstrated that the hypervariable region has a minor impact on activation efficiency, whereas the conserved region up to the first H X H motif is highly beneficial and up to the second H X H motif strictly required for activation. We also show that urease reaches its full activity several days after nickel becomes available in the leaves, indicating that urease activation is limited by nickel accessibility in vivo Our data uncover the crucial role of UreG for nickel delivery during eukaryotic urease activation, inciting further investigations of the details of this process. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Fong, Yu Hang; Wong, Ho Chun; Yuen, Man Hon; Lau, Pak Ho; Chen, Yu Wai; Wong, Kam-Bo
2013-01-01
Urease is a metalloenzyme essential for the survival of Helicobacter pylori in acidic gastric environment. Maturation of urease involves carbamylation of Lys219 and insertion of two nickel ions at its active site. This process requires GTP hydrolysis and the formation of a preactivation complex consisting of apo-urease and urease accessory proteins UreF, UreH, and UreG. UreF and UreH form a complex to recruit UreG, which is a SIMIBI class GTPase, to the preactivation complex. We report here the crystal structure of the UreG/UreF/UreH complex, which illustrates how UreF and UreH facilitate dimerization of UreG, and assembles its metal binding site by juxtaposing two invariant Cys66-Pro67-His68 metal binding motif at the interface to form the (UreG/UreF/UreH)2 complex. Interaction studies revealed that addition of nickel and GTP to the UreG/UreF/UreH complex releases a UreG dimer that binds a nickel ion at the dimeric interface. Substitution of Cys66 and His68 with alanine abolishes the formation of the nickel-charged UreG dimer. This nickel-charged UreG dimer can activate urease in vitro in the presence of the UreF/UreH complex. Static light scattering and atomic absorption spectroscopy measurements demonstrated that the nickel-charged UreG dimer, upon GTP hydrolysis, reverts to its monomeric form and releases nickel to urease. Based on our results, we propose a mechanism on how urease accessory proteins facilitate maturation of urease. PMID:24115911
Kinetics and Mechanism Study of Competitive Inhibition of Jack-Bean Urease by Baicalin
Tan, Lirong; Su, Jiyan; Wu, Dianwei; Yu, Xiaodan; Su, Zuqing; Wu, Xiaoli; Kong, Songzhi; Lai, Xiaoping; Lin, Ji; Su, Ziren
2013-01-01
Baicalin (BA) is the principal component of Radix Scutellariae responsible for its pharmacological activity. In this study, kinetics and mechanism of inhibition by BA against jack-bean urease were investigated for its therapeutic potential. It was revealed that the IC50 of BA against jack-bean urease was 2.74 ± 0.51 mM, which was proved to be a competitive and concentration-dependent inhibition with slow-binding progress curves. The rapid formation of initial BA-urease complex with an inhibition constant of K i = 3.89 × 10−3 mM was followed by a slow isomerization into the final complex with an overall inhibition constant of K i* = 1.47 × 10−4 mM. High effectiveness of thiol protectors against BA inhibition indicated that the strategic role of the active-site sulfhydryl group of the urease was involved in the blocking process. Moreover, the inhibition of BA was proved to be reversible due to the fact that urease could be reactivated by dithiothreitol but not reactant dilution. Molecular docking assay suggested that BA made contacts with the important activating sulfhydryl group Cys-592 residues and restricted the mobility of the active-site flap. Taken together, it could be deduced that BA was a competitive inhibitor targeting thiol groups of urease in a slow-binding manner both reversibly and concentration-dependently, serving as a promising urease inhibitor for treatments on urease-related diseases. PMID:24198731
Nonspecific Interaction of Streptavidin with Urease-Conjugated Antibodies
1991-11-01
11l1llilll li ii________ l__ :’SUFFIELD MEMORANDUM= NO. 1358 NONSPECIFIC INTERACTION OF STREPTAVIDIN WITH UREASE -CONJUGATED ANTIBODIES E LECT- by 92-01626...ESTABLISHMENT SUFFIELD RALSTON ALBERTA Suffield Memorandum No. 1358 Nonspecific Interaction of Streptavidin with Urease -Conjugated Antibodies by H. Gail...mixture, a urease -conjugated antibody. The variations could be diminished by allowing the reagents to stand at room temperature for two to three hours
[Mechanism of anti-Helicobacter pylori urease activity of patchouli alcohol].
Lian, Da-Wei; Xu, Yi-Fei; Ren, Wen-Kang; Fu, Li-Jun; Fan, Ping-Long; Cao, Hong-Ying; Huang, Ping
2017-02-01
To investigate the effect of patchouli alcohol on inhibiting Helicobater pylori urease activity, and its effect on expression levels of related genes, and lay the foundation for further research on the effect of patchouli alcohol on H. pylori colonization and infection. H. pyloriwas cultured and identified by gram staining, rapid urease test (RUT) and PCR method. Then agar dilution method was used to detect the bacterial survival after 1 h intervention by different concentrations of patchouli alcoholin the acidic (pH 5.3) and neutral (pH 7.0) conditions; berthelot method was used to detect urease activity and RT-qPCR method was used to detect the expression changes of ureA, ureB, ureE, ureH, ureI, and nixA related urease genes. The results showed that the survival rate of H. pyloriwas not significantly changed but the urease activity was obviously decreased after intervention by different concentrations of patchouli alcohol; meanwhile, the expression levels of ureA, ureB, ureE, ureH, ureI, and nixA were decreased to different degrees. Therefore, patchouli alcohol could inhibit H. pylori urease activity in both acidic and neutral conditions, and the mechanism may be related to down-regulation of urease gene expression. Copyright© by the Chinese Pharmaceutical Association.
Role of Helicobacter pylori methionine sulfoxide reductase in urease maturation
Kuhns, Lisa G.; Mahawar, Manish; Sharp, Joshua S.; Benoit, Stéphane; Maier, Robert J.
2014-01-01
The persistence of the gastric pathogen Helicobacter pylori is due in part to urease and Msr (methionine sulfoxide reductase). Upon exposure to relatively mild (21% partial pressure of O2) oxidative stress, a Δmsr mutant showed both decreased urease specific activity in cell-free extracts and decreased nickel associated with the partially purified urease fraction as compared with the parent strain, yet urease apoprotein levels were the same for the Δmsr and wild-type extracts. Urease activity of the Δmsr mutant was not significantly different from the wild-type upon non-stress microaerobic incubation of strains. Urease maturation occurs through nickel mobilization via a suite of known accessory proteins, one being the GTPase UreG. Treatment of UreG with H2O2 resulted in oxidation of MS-identified methionine residues and loss of up to 70% of its GTPase activity. Incubation of pure H2O2-treated UreG with Msr led to reductive repair of nine methionine residues and recovery of up to full enzyme activity. Binding of Msr to both oxidized and non-oxidized UreG was observed by cross-linking. Therefore we conclude Msr aids the survival of H. pylori in part by ensuring continual UreG-mediated urease maturation under stress conditions. PMID:23181726
Mvila, Beaufray G; Pilar-Izquierdo, María C; Busto, María D; Perez-Mateos, Manuel; Ortega, Natividad
2016-07-01
Most N fertilizers added to soil are not efficiently used by plants and are lost to the atmosphere or leached from the soil, causing environmental pollution and increasing cost. Barley seed encapsulation in calcium alginate gels containing free or immobilized urease to enhance plant utilization of soil N was investigated. Urease was immobilized with soil humic acids (HA). A central composite face-centered design was applied to optimize the immobilization process, reaching an immobilization yield of 127%. Soil stability of urease was enhanced after the immobilization. Seed encapsulation with free urease (FU) and humic-urease complex (HUC) resulted in a urease activity retention in the coating layer of 46% and 24%, and in germination rates of 87% and 92%, respectively. Under pot culture conditions, the pots planted with seeds encapsulated with FU and HUC showed higher ammonium N (NH4 (+) -N) (26% and 64%, respectively) than the control soil at 28 days after planting (DAP). Moreover, the seed encapsulation with FU and HUC increased the N uptake 83% and 97%, respectively, at 35 DAP. Seed encapsulation with urease could substantially contribute to enhancing plant N nutrition in the early stages of seedling establishment. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Yu, Xiao-Dan; Xie, Jian-Hui; Wang, Yong-Hong; Li, Yu-Cui; Mo, Zhi-Zhun; Zheng, Yi-Feng; Su, Ji-Yan; Liang, Ye-er; Liang, Jin-Zhi; Su, Zi-Ren; Huang, Ping
2015-01-01
The aim of this study is to evaluate the antibacterial activity and urease inhibitory effects of patchouli alcohol (PA), the bioactive ingredient isolated from Pogostemonis Herba, which has been widely used for the treatment of gastrointestinal disorders. The activities of PA against selected bacteria and fungi were determined by agar dilution method. It was demonstrated that PA exhibited selective antibacterial activity against Helicobacter pylori, without influencing the major normal gastrointestinal bacteria. Noticeably, the antibacterial activity of PA was superior to that of amoxicillin, with minimal inhibition concentration value of 78 µg/mL. On the other hand, PA inhibited ureases from H.pylori and jack bean in concentration-dependent fashion with IC50 values of 2.67 ± 0.79 mM and 2.99 ± 0.41 mM, respectively. Lineweaver-Burk plots indicated that the type of inhibition was non-competitive against H.pylori urease whereas uncompetitive against jack bean urease. Reactivation of PA-inactivated urease assay showed DL-dithiothreitol, the thiol reagent, synergistically inactivated urease with PA instead of enzymatic activity recovery. In conclusion, the selective H.pylori antibacterial activity along with urease inhibitory potential of PA could make it a possible drug candidate for the treatment of H.pylori infection. Copyright © 2014 John Wiley & Sons, Ltd.
Urease immobilized polymer hydrogel: Long-term stability and enhancement of enzymatic activity.
Kutcherlapati, S N Raju; Yeole, Niranjan; Jana, Tushar
2016-02-01
A method has been developed in which an enzyme namely urease was immobilized inside hydrogel matrix to study the stability and enzymatic activity in room temperature (∼27-30°C). This urease coupled hydrogel (UCG) was obtained by amine-acid coupling reaction and this procedure is such that it ensured the wider opening of mobile flap of enzyme active site. A systematic comparison of urea-urease assay and the detailed kinetic data clearly revealed that the urease shows activity for more than a month when stored at ∼27-30°C in case of UCG whereas it becomes inactive in case of free urease (enzyme in buffer solution). The aqueous microenvironment inside the hydrogel, unusual morphological features and thermal behaviour were believed to be the reasons for unexpected behaviour. UCG displayed enzyme activity at basic pH and up to 60°C. UCG showed significant enhancement in activity against thermal degradation compared to free urease. In summary, this method is a suitable process to stabilize the biomacromolecules in standard room temperature for many practical uses. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhang, Qin; Tang, Xiuwen; Hou, Fenghua; Yang, Jianping; Xie, Zhiyong; Cheng, Zhiyi
2013-10-01
We fabricated a three-layer polydimethylsiloxane (PDMS)-based microfluidic chip for realizing urease inhibition assay with sensitive fluorescence detection. Procedures such as sample prehandling, enzyme reaction, reagent mixing, fluorescence derivatization, and detection can be readily carried out. Urease reactors were prepared by adsorption of rabbit immunoglobulin G (IgG) and immunoreaction with urease-conjugated goat anti-rabbit IgG. Acetohydroxamic acid (AHA) as a competitive inhibitor of urease was tested on the chip. Microfluidically generated gradient concentrations of AHA with substrate (urea) were loaded into urease reactors. After incubation, the produced ammonia was transported out of reactors and then reacted with o-phthalaldehyde (OPA) to generate fluorescent products. Urease inhibition was indicated by a decrease in fluorescence signal detected by microplate reader. The IC50 value of AHA was determined and showed good agreement with that obtained in microplate. The presented device combines several steps of the analytical process with advantages of low reagent consumption, reduced analysis time, and ease of manipulation. This microfluidic approach can be extended to the screening of inhibitory compounds in drug discovery. Copyright © 2013 Elsevier Inc. All rights reserved.
Cryptococcal cerebellitis in no-VIH patient.
Lasso, Fabricio Andres; Zamora Bastidas, Tomas Omar; Potosí García, Jorge Andrés; Díaz Idrobo, Bairon
2017-06-30
Cryptococcosis is an opportunistic fungal infection whose etiology is Cryptococcus neofromans / C. gattii, complex which affects immunocompromised patients mainly. Meningeal infection is one of the most common presentations, but cerebellar affection is rare. Male patient with 65 old years, from an area of subtropical climate with chronic exposure to poultry, without pathological antecedents, who presented clinical picture consistent with headache, fever, seizures and altered mental status. Initially without menigeal signs or intracranial hypertension and normal neurological examination. Later, the patient developed ataxia, dysdiadochokinesia and limb loss. By lumbar punction and image of nuclear magnetic resonance (NMR) cerebellitis cryptococcal was diagnosticated. Antifungal therapy with amphotericin B and fluconazole was performed, however the patient died. The cryptococcosis has different presentations, it´s a disease whose incidence has been increasing since the advent of the HIV / AIDS pandemy, however the commitment of the encephalic parenchyma and in particular the cerebellum is considered rare. In this way we are facing the first case of cryptococcal cerebellitis in our midst.
Gish, Stacey R.; Maier, Ezekiel J.; Haynes, Brian C.; Santiago-Tirado, Felipe H.; Srikanta, Deepa L.; Ma, Cynthia Z.; Li, Lucy X.; Williams, Matthew; Crouch, Erika C.; Khader, Shabaana A.
2016-01-01
ABSTRACT Cryptococcus neoformans is a ubiquitous, opportunistic fungal pathogen that kills over 600,000 people annually. Here, we report integrated computational and experimental investigations of the role and mechanisms of transcriptional regulation in cryptococcal infection. Major cryptococcal virulence traits include melanin production and the development of a large polysaccharide capsule upon host entry; shed capsule polysaccharides also impair host defenses. We found that both transcription and translation are required for capsule growth and that Usv101 is a master regulator of pathogenesis, regulating melanin production, capsule growth, and capsule shedding. It does this by directly regulating genes encoding glycoactive enzymes and genes encoding three other transcription factors that are essential for capsule growth: GAT201, RIM101, and SP1. Murine infection with cryptococci lacking Usv101 significantly alters the kinetics and pathogenesis of disease, with extended survival and, unexpectedly, death by pneumonia rather than meningitis. Our approaches and findings will inform studies of other pathogenic microbes. PMID:27094327
Deng, Hao-Hua; Hong, Guo-Lin; Lin, Feng-Lin; Liu, Ai-Lin; Xia, Xing-Hua; Chen, Wei
2016-04-07
Herein, we reported for the first time that gold nanoparticles-catalyzed 3,3',5,5'-tetramethylbenzidine-H2O2 system can serve as an ultrasensitive colorimetric pH indicator. Gold nanoparticles acted as a catalyst and imitated the function of horseradish peroxidase. The absorbance at 450 nm of the yellow-color product in the catalytic reaction exhibited a linear fashion over the pH range of 6.40-6.60. On the basis of this property, we constructed a novel sensing platform for the determination of urea, urease, and urease inhibitor. The limit of detection for urea and urease was 5 μM and 1.8 U/L, respectively. The half-maximal inhibition value IC50 of acetohydroxamic acid was found to be 0.05 mM. Urea in human urine and urease in soil were detected with satisfied results. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balasubramanian, Anuradha; Ponnuraj, Karthe, E-mail: pkarthe@hotmail.com
Urease from pigeon pea was purified and crystallized and X-ray diffraction data were collected at 2.5 Å resolution. Urease is a seed protein that is common to most Leguminosae. It also occurs in many bacteria, fungi and several species of yeast. Urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, thus allowing organisms to use exogenous and internally generated urea as a nitrogen source. Urease from pigeon pea seeds has been purified to electrophoretic homogeneity using a series of steps involving ammonium sulfate fractionation, acid precipitation, ion-exchange and size-exclusion chromatography techniques. The pigeon pea urease was crystallized andmore » the resulting crystals diffracted to 2.5 Å resolution. The crystals belong to the rhombohedral space group R32, with unit-cell parameters a = b = 176.29, c = 346.44 Å.« less
Oykhman, Paul; Timm-McCann, Martina; Xiang, Richard F.; Islam, Anowara; Li, Shu Shun; Stack, Danuta; Huston, Shaunna M.; Ma, Ling Ling
2013-01-01
Natural killer (NK) cells directly recognize and kill fungi, such as the pathogenic fungus Cryptococcus neoformans, via cytolytic mechanisms. However, the precise signaling pathways governing this NK cell microbicidal activity and the implications for fungal recognition are still unknown. Previously, it was reported that NK cell anticryptococcal activity is mediated through a conserved phosphatidylinositol 3-kinase–extracellular signal-regulated kinase 1/2 (PI3K-ERK1/2) pathway. Using YT (a human NK-like cell line) and primary human NK cells, we sought to identify the upstream, receptor-proximal signaling elements that led to fungal cytolysis. We demonstrate that Src family kinases were activated in response to C. neoformans. Furthermore, pharmacologic inhibition with an Src kinase inhibitor blocked C. neoformans-induced downstream activation of PI3K and ERK1/2 and abrogated cryptococcal killing. At the same time, the inhibitor disrupted the polarization of perforin-containing granules toward the NK cell-cryptococcal synapse but had no effect on conjugate formation between the organism and the NK cell. Finally, small interfering RNA (siRNA) double (but not single) knockdown of two Src family kinases, Fyn and Lyn, blocked cryptococcal killing. Together these data demonstrate a mechanism whereby the Src family kinases, Fyn and Lyn, redundantly mediate anticryptococcal activity through the activation of PI3K and ERK1/2, which in turn facilitates killing by inducing the polarization of perforin-containing granules to the NK cell-cryptococcal synapse. PMID:23918783
Repurposing of Aspirin and Ibuprofen as Candidate Anti-Cryptococcus Drugs.
Ogundeji, Adepemi O; Pohl, Carolina H; Sebolai, Olihile M
2016-08-01
The usage of fluconazole and amphotericin B in clinical settings is often limited by, among other things, drug resistance development and undesired side effects. Thus, there is a constant need to find new drugs to better manage fungal infections. Toward this end, the study described in this paper considered the repurposing of aspirin (acetylsalicylic acid) and ibuprofen as alternative drugs to control the growth of cryptococcal cells. In vitro susceptibility tests, including a checkerboard assay, were performed to assess the response of Cryptococcus neoformans and Cryptococcus gattii to the above-mentioned anti-inflammatory drugs. Next, the capacity of these two drugs to induce stress as well as their mode of action in the killing of cryptococcal cells was determined. The studied fungal strains revealed a response to both aspirin and ibuprofen that was dose dependent, with ibuprofen exerting greater antimicrobial action. More importantly, the MICs of these drugs did not negatively (i) affect growth or (ii) impair the functioning of macrophages; rather, they enhanced the ability of these immune cells to phagocytose cryptococcal cells. Ibuprofen was also shown to act in synergy with fluconazole and amphotericin B. The treatment of cryptococcal cells with aspirin or ibuprofen led to stress induction via activation of the high-osmolarity glycerol (HOG) pathway, and cell death was eventually achieved through reactive oxygen species (ROS)-mediated membrane damage. The presented data highlight the potential clinical application of aspirin and ibuprofen as candidate anti-Cryptococcus drugs. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Contribution of Urease to Colonization by Shiga Toxin-Producing Escherichia coli
Steyert, Susan R.
2012-01-01
Shiga toxin-producing Escherichia coli (STEC) is a food-borne pathogen with a low infectious dose that colonizes the colon in humans and can cause severe clinical manifestations such as hemolytic-uremic syndrome. The urease enzyme, encoded in the STEC chromosome, has been demonstrated to act as a virulence factor in other bacterial pathogens. The NH3 produced as urease hydrolyzes urea can aid in buffering bacteria in acidic environments as well as provide an easily assimilated source of nitrogen that bacteria can use to gain a metabolic advantage over intact microflora. Here, we explore the role of urease in STEC pathogenicity. The STEC urease enzyme exhibited maximum activity near neutral pH and during the stationary-growth phase. Experiments altering growth conditions performed with three phylogenetically distinct urease-positive strains demonstrated that the STEC ure gene cluster is inducible by neither urea nor pH but does respond to nitrogen availability. Quantitative reverse transcription-PCR (qRT-PCR) data indicate that nitrogen inhibits the transcriptional response. The deletion of the ure gene locus was constructed in STEC strain 88-0643, and the ure mutant was used with the wild-type strain in competition experiments in mouse models to examine the contribution of urease. The wild-type strain was twice as likely to survive passage through the acidic stomach and demonstrated an enhanced ability to colonize the intestinal tract compared to the ure mutant strain. These in vivo experiments reveal that, although the benefit STEC gains from urease expression is modest and not absolutely required for colonization, urease can contribute to the pathogenicity of STEC. PMID:22665380
Morou-Bermudez, E; Elias-Boneta, A; Billings, RJ; Burne, RA; Garcia-Rivas, V; Brignoni-Nazario, V; Suarez-Perez, E
2011-01-01
Bacterial urease activity in dental plaque and in saliva generates ammonia, which can increase the plaque pH and can protect acid-sensitive oral bacteria. Recent cross-sectional studies suggest that reduced ability to generate ammonia from urea in dental plaque can be an important caries risk factor. In spite of this proposed important clinical role, there is currently no information available regarding important clinical aspects of oral ureolysis in children. OBJECTIVE The objective of this study was to evaluate the distribution and pattern of urease activity in the dental plaque and in the saliva of children during a three-year period, and to examine the relationship of urease with some important caries risk factors. METHODS A longitudinal study was conducted with repeated measures over a three-year period on a panel of 80 children, ages three to six years at recruitment. The dynamics of change in urease activity were described and associated with clinical, biological, and behavioral caries risk factors. RESULTS Urease activity in plaque showed a trend to remain stable during the study period and was negatively associated with sugar consumption (P<0.05). Urease activity in unstimulated saliva increased with age, and it was positively associated with the levels of mutans streptococci in saliva and with the educational level of the parents (P<0.05). CONCLUSIONS The results of this study reveal interesting and complex interactions between oral urease activity and some important caries risk factors. Urease activity in saliva could be an indicator of mutans infection in children. PMID:21616477
Morou-Bermudez, E; Elias-Boneta, A; Billings, R J; Burne, R A; Garcia-Rivas, V; Brignoni-Nazario, V; Suarez-Perez, E
2011-11-01
Bacterial urease activity in dental plaque and in saliva generates ammonia, which can increase the plaque pH and can protect acid-sensitive oral bacteria. Recent cross-sectional studies suggest that reduced ability to generate ammonia from urea in dental plaque can be an important caries risk factor. In spite of this proposed important clinical role, there is currently no information available regarding important clinical aspects of oral ureolysis in children. The objective of this study was to evaluate the distribution and pattern of urease activity in the dental plaque and in the saliva of children during a three-year period, and to examine the relationship of urease with some important caries risk factors. A longitudinal study was conducted with repeated measures over a three-year period on a panel of 80 children, aged 3-6 years at recruitment. The dynamics of change in urease activity were described and associated with clinical, biological, and behavioural caries risk factors. Urease activity in plaque showed a trend to remain stable during the study period and was negatively associated with sugar consumption (P<0.05). Urease activity in unstimulated saliva increased with age, and it was positively associated with the levels of mutans streptococci in saliva and with the educational level of the parents (P<0.05). The results of this study reveal interesting and complex interactions between oral urease activity and some important caries risk factors. Urease activity in saliva could be an indicator of mutans infection in children. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wei, Xiu-Li; Lei, Ping; Shi, Wei-Yong
2010-08-01
By the method of thermostatic culture, this paper studied the effects of different application rates (0.5, 1.5, and 2.5 ml x kg(-1)) of organic fish protein liquid fertilizer on the enzyme activities and microbial biomass C and N in a silt soil, and the relationships between these parameters and soil nutrient contents. Under the application of the liquid fertilizer, soil pH varied in the range of 7.07-7.31, but had no significant difference from the control. With the increasing application rate of the liquid fertilizer, the activities of soil phosphatase, urease, and protease, as well as the soil biomass C and N, all increased significantly, and the increment was 127, 190 and 196%, 39.81, 78.06 and 173.24%, 56.37, 108.29 and 199.98%, 167, 395 and 474%, and 121, 243 and 406%, respectively, compared with the control. The peak time of the soil urease and protease activities and microbial biomass C and N differed with the fertilization treatments. Soil phosphase, urease, and protease activities and microbial biomass C and N were significantly positively correlated with soil nutrient contents, suggesting that applying organic fish protein liquid fertilizer to silt soil could improve soil microbial growth and enzyme activities, and accordingly, promote the decomposition and transformation of soil organic matter and the release of soil available nutrient elements.
Prochlorococcus Genetic Transformation and the Genomics of Nitrogen Metabolism
2005-09-01
MIT9313 and MED4 have ABC-type urea transporters and urease genes. Prochlorococcus PCC 9511 urease activity is independent of the nitrogen source in the...medium (Palinska et al., 2000), suggesting that the urease genes lack genetic regulation. MIT9313 has genes for nitrite transport and utilization...cyanobacterium, synthesizes the smallest urease ." Microbiology 146 Pt 12: 3099-107. Palinska, K. A., W. Laloui, et al. (2002). "The signal transducer P-Il and
Webb-Robertson, Bobbie-Jo; Kim, Young -Mo; Zink, Erika M.; ...
2014-02-27
Urease pre-treatment of urine has been utilized since the early 1960s to remove high levels of urea from samples prior to further processing and analysis by gas chromatography-mass spectrometry (GC-MS). Aside from the obvious depletion or elimination of urea, the effect, if any, of urease pre-treatment on the urinary metabolome has not been studied in detail. Here, we report the results of three separate but related experiments that were designed to assess possible indirect effects of urease pre-treatment on the urinary metabolome as measured by GC-MS. In total, 235 GC-MS analyses were performed and over 106 identified and 200 unidentifiedmore » metabolites were quantified across the three experiments. The results showed that data from urease pre-treated samples 1) had the same or lower coefficients of variance among reproducibly detected metabolites, 2) more accurately reflected quantitative differences and the expected ratios among different urine volumes, and 3) increased the number of metabolite identifications. Altogether, we observed no negative consequences of urease pre-treatment. In contrast, urease pretreatment enhanced the ability to distinguish between volume-based and biological sample types compared to no treatment. Taken together, these results show that urease pretreatment of urine offers multiple beneficial effects that outweigh any artifacts that may be introduced to the data in urinary metabolomics analyses.« less
Krajewska, Barbara; Zaborska, Wiesława
2007-10-01
In view of the complexity of the role of the active site flap cysteine in the urease catalysis, in this work we studied how the presence of typical active-site binding inhibitors of urease, phenylphosphorodiamidate (PPD), acetohydroxamic acid (AHA), boric acid and fluoride, affects the reactivity of enzyme thiol groups, the active site flap thiol in particular. For that the inhibitor-urease complexes were prepared with excess inhibitors and had their thiol groups titrated with DTNB. The effects observed were analyzed in terms of the structures of the inhibitor-urease complexes reported in the literature. We found that the effectiveness in preventing the active site cysteine from the modification by disulfides, varied among the inhibitors studied, even though they all bind to the active site. The variations were accounted for by different extents of geometrical distortion in the active site that the inhibitors introduced upon binding, leaving the flap either open in AHA-, boric acid- and fluoride-inhibited urease, like in the native enzyme or closed in PPD-inhibited urease. Among the inhibitors, only PPD was found to be able to thoroughly protect the flap cysteines from the further reaction with disulfides, this apparently resulting from the closed conformation of the flap. Accordingly, in practical terms PPD may be regarded as the most suitable inhibitor for active-site protection experiments in inhibition studies of urease.
Vaghela, Chetana; Kulkarni, Mohan; Haram, Santosh; Aiyer, Rohini; Karve, Meena
2018-03-01
A potentiometric biosensor based on agarose-guar gum (A-G) entrapped bio-nanoconjugate of urease with gold nanoparticles (AUNps), has been reported for the first time for glyphosate detection. The biosensor is based on inhibition of urease activity by glyphosate, which was measured by direct potentiometry using ammonium ion selective electrode covered with A-G-urease nanoconjugate membrane. TEM and FTIR analysis revealed nanoconjugate formation and its immobilization in A-G matrix respectively. The composite biopolymer employed for immobilization yields thin, transparent, flexible membrane having superior mechanical strength and stability. It retains the maximum activity (92%) of urease with negligible leaching. The conjugation of urease with AUNps allows improvement in response characteristics for potentiometric measurement. The biosensor shows a linear response in the glyphosate concentration range from 0.5ppm-50ppm, with limit of detection at 0.5ppm, which covers maximum residual limit set by WHO for drinking water. The inhibition of catalytic activity of urease nanoconjugate by gyphosate was confirmed by FTIR analysis. The response of fabricated biosensor is selective towards glyphosate as against various other pesticides. The biosensor exhibits good performance in terms of reproducibility and prolonged storage stability of 180days. Thus, the present biosensor provides an alternative method for simple, selective and cost effective detection of glyphosate based on urease inhibition. Copyright © 2017 Elsevier B.V. All rights reserved.
Webb-Robertson, Bobbie-Jo; Kim, Young-Mo; Zink, Erika M.; Hallaian, Katherine A.; Zhang, Qibin; Madupu, Ramana; Waters, Katrina M.; Metz, Thomas O.
2014-01-01
Urease pre-treatment of urine has been utilized since the early 1960s to remove high levels of urea from samples prior to further processing and analysis by gas chromatography-mass spectrometry (GC-MS). Aside from the obvious depletion or elimination of urea, the effect, if any, of urease pre-treatment on the urinary metabolome has not been studied in detail. Here, we report the results of three separate but related experiments that were designed to assess possible indirect effects of urease pre-treatment on the urinary metabolome as measured by GC-MS. In total, 235 GC-MS analyses were performed and over 106 identified and 200 unidentified metabolites were quantified across the three experiments. The results showed that data from urease pre-treated samples 1) had the same or lower coefficients of variance among reproducibly detected metabolites, 2) more accurately reflected quantitative differences and the expected ratios among different urine volumes, and 3) increased the number of metabolite identifications. Overall, we observed no negative consequences of urease pre-treatment. In contrast, urease pretreatment enhanced the ability to distinguish between volume-based and biological sample types compared to no treatment. Taken together, these results show that urease pretreatment of urine offers multiple beneficial effects that outweigh any artifacts that may be introduced to the data in urinary metabolomics analyses. PMID:25254001
Potentiometric Urea Biosensor Based on an Immobilised Fullerene-Urease Bio-Conjugate
Saeedfar, Kasra; Heng, Lee Yook; Ling, Tan Ling; Rezayi, Majid
2013-01-01
A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10−3 M to 8.28 × 10−5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days. PMID:24322561
Potentiometric urea biosensor based on an immobilised fullerene-urease bio-conjugate.
Saeedfar, Kasra; Heng, Lee Yook; Ling, Tan Ling; Rezayi, Majid
2013-12-06
A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10-3 M to 8.28 × 10-5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.
Weyman, Philip D.; Beeri, Karen; Lefebvre, Stephane C.; ...
2014-10-10
Diatoms are unicellular photosynthetic algae with promise for green production of fuels and other chemicals. Recent genome-editing techniques have greatly improved the potential of many eukaryotic genetic systems, including diatoms, to enable knowledge-based studies and bioengineering. Using a new technique, transcription activator-like effector nucleases (TALENs), the gene encoding the urease enzyme in the model diatom, Phaeodactylum tricornutum, was targeted for interruption. The knockout cassette was identified within the urease gene by PCR and Southern blot analyses of genomic DNA. The lack of urease protein was confirmed by Western blot analyses in mutant cell lines that were unable to grow onmore » urea as the sole nitrogen source. Untargeted metabolomic analysis revealed a build-up of urea, arginine and ornithine in the urease knockout lines. All three intermediate metabolites are upstream of the urease reaction within the urea cycle, suggesting a disruption of the cycle despite urea production. Numerous high carbon metabolites were enriched in the mutant, implying a breakdown of cellular C and N repartitioning. The presented method improves the molecular toolkit for diatoms and clarifies the role of urease in the urea cycle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandy, J.H.; Pruden, E.L.; Cox, F.R.
1983-12-01
Simple and rapid Bactec methodologies for the determination of neat (unaltered) and heat stable urease activity of mycobacteria are presented. Clinical isolates (63) and stock cultures (32)--consisting of: M. tuberculosis (19), M. bovis (5), M. kansasii (15), M. marinum (4), M. simiae (3), M. scrofulaceum (16), M. gordonae (6), M. szulgai (6), M. flavescens (1), M. gastri (1), M. intracellulare (6), M. fortuitum-chelonei complex (12), and M. smegmatis (1)--were tested for neat urease activity by Bactec radiometry. Mycobacterial isolates (50-100 mg wet weight) were incubated at 35 degrees C for 30 minutes with microCi14C-urea. Urease-positive mycobacteria gave Bactec growth indexmore » (GI) values greater than 100 units, whereas urease-negative species gave values less than 10 GI units. Eighty-three isolates possessing neat urease activity were heated at 80 degrees C for 30 minutes followed by incubation at 35 degrees C for 30 minutes with 1 microCi14C-urea. Mycobacterium tuberculosis-bovis complex demonstrated heat-stable urease activity (GI more than 130 units) and could be distinguished from mycobacteria other than tuberculosis (MOTT), which gave GI values equal to or less than 40 units.« less
Large scale screening of commonly used Iranian traditional medicinal plants against urease activity
2012-01-01
Background and purpose of the study H. pylori infection is an important etiologic impetus usually leading to gastric disease and urease enzyme is the most crucial role is to protect the bacteria in the acidic environment of the stomach. Then urease inhibitors would increase sensitivity of the bacteria in acidic medium. Methods 137 Iranian traditional medicinal plants were examined against Jack bean urease activity by Berthelot reaction. Each herb was extracted using 50% aqueous methanol. The more effective extracts were further tested and their IC50 values were determined. Results 37 plants out of the 137 crude extracts revealed strong urease inhibitory activity (more than 70% inhibition against urease activity at 10 mg/ml concentration). Nine of the whole studied plants crude extracts were found as the most effective with IC50 values less than 500 μg/ml including; Rheum ribes, Sambucus ebulus, Pistachia lentiscus, Myrtus communis, Areca catechu, Citrus aurantifolia, Myristica fragrans, Cinnamomum zeylanicum and Nicotiana tabacum. Conclusions The most potent urease inhibitory was observed for Sambucus ebulus and Rheum ribes extracts with IC50 values of 57 and 92 μg/ml, respectively. PMID:23351780
Katchanov, Juri; Blechschmidt, Cristiane; Nielsen, Kirsten; Branding, Gordian; Arastéh, Keikawus; Tintelnot, Kathrin; Meintjes, Graeme; Boulware, David R.; Stocker, Hartmut
2016-01-01
We report a case of a symptomatic relapse of HIV-related cryptococcal meningoencephalitis 8 years after the first diagnosis on the background of immune reconstitution. The findings as well as the clinical course suggests a combination of smouldering localized infection and enhanced inflammatory reaction related to immune restoration due to antiretroviral therapy. A combination of antifungal and anti-inflammatory therapy resulted in clinical and radiological improvement. Our case challenges the concept that immune reconstitution inflammatory syndrome and microbiological relapse are dichotomous entities. PMID:25505049
Identification and characterization of proteins involved in rice urea and arginine catabolism.
Cao, Feng-Qiu; Werner, Andrea K; Dahncke, Kathleen; Romeis, Tina; Liu, Lai-Hua; Witte, Claus-Peter
2010-09-01
Rice (Oryza sativa) production relies strongly on nitrogen (N) fertilization with urea, but the proteins involved in rice urea metabolism have not yet been characterized. Coding sequences for rice arginase, urease, and the urease accessory proteins D (UreD), F (UreF), and G (UreG) involved in urease activation were identified and cloned. The functionality of urease and the urease accessory proteins was demonstrated by complementing corresponding Arabidopsis (Arabidopsis thaliana) mutants and by multiple transient coexpression of the rice proteins in Nicotiana benthamiana. Secondary structure models of rice (plant) UreD and UreF proteins revealed a possible functional conservation to bacterial orthologs, especially for UreF. Using amino-terminally StrepII-tagged urease accessory proteins, an interaction between rice UreD and urease could be shown. Prokaryotic and eukaryotic urease activation complexes seem conserved despite limited protein sequence conservation for UreF and UreD. In plant metabolism, urea is generated by the arginase reaction. Rice arginase was transiently expressed as a carboxyl-terminally StrepII-tagged fusion protein in N. benthamiana, purified, and biochemically characterized (K(m) = 67 mm, k(cat) = 490 s(-1)). The activity depended on the presence of manganese (K(d) = 1.3 microm). In physiological experiments, urease and arginase activities were not influenced by the external N source, but sole urea nutrition imbalanced the plant amino acid profile, leading to the accumulation of asparagine and glutamine in the roots. Our data indicate that reduced plant performance with urea as N source is not a direct result of insufficient urea metabolism but may in part be caused by an imbalance of N distribution.
Mazzei, Luca; Cianci, Michele; Contaldo, Umberto; Musiani, Francesco; Ciurli, Stefano
2017-10-10
The nickel-dependent enzyme urease is a virulence factor for a large number of pathogenic and antibiotic-resistant bacteria, as well as a negative factor for the efficiency of soil nitrogen fertilization for crop production. The use of urease inhibitors to offset these effects requires knowledge, at a molecular level, of their mode of action. The 1.28 Å resolution structure of the enzyme-inhibitor complex obtained upon incubation of Sporosarcina pasteurii urease with N-(n-butyl)thiophosphoric triamide (NBPT), a molecule largely utilized in agriculture, reveals the presence of the monoamidothiophosphoric acid (MATP) moiety, obtained upon enzymatic hydrolysis of the diamide derivative of NBPT (NBPD) to yield n-butyl amine. MATP is bound to the two Ni(II) ions in the active site of urease using a μ 2 -bridging O atom and terminally bound O and NH 2 groups, with the S atom of the thiophosphoric amide pointing away from the metal center. The mobile flap modulating the size of the active site cavity is found in the closed conformation. Docking calculations suggest that the interaction between urease in the open flap conformation and NBPD involves a role for the conserved αArg339 in capturing and orienting the inhibitor prior to flap closure. Calorimetric and spectrophotometric determinations of the kinetic parameters of this inhibition indicate the occurrence of a reversible slow inhibition mode of action, characterized, for both bacterial and plant ureases, by a very small value of the dissociation constant of the urease-MATP complex. No need to convert NBPT to its oxo derivative NBPTO, as previously proposed, is necessary for urease inhibition.
Chen, Yi-Ywan M; Burne, Robert A
2003-12-01
Ureases are multisubunit enzymes requiring Ni(2+) for activity. The low pH-inducible urease gene cluster in Streptococcus salivarius 57.I is organized as an operon, beginning with ureI, followed by ureABC (structural genes), and ureEFGD (accessory genes). Urease biogenesis also requires a high-affinity Ni(2+) uptake system. By searching the partial genome sequence of a closely related organism, Streptococcus thermophilus LMG18311, three open reading frame (ORFs) homologous to those encoding proteins involved in cobalamin biosynthesis and cobalt transport (cbiMQO) were identified immediately 3' to the ure operon. To determine whether these genes were involved in urease biogenesis by catalyzing Ni(2+) uptake in S. salivarius, regions 3' to ureD were amplified by PCRs from S. salivarius by using primers identical to the S. thermophilus sequences. Sequence analysis of the products revealed three ORFs. Reverse transcriptase PCR was used to demonstrate that the ORFs are transcribed as part of the ure operon. Insertional inactivation of ORF1 with a polar kanamycin marker completely abolished urease activity and the ability to accumulate (63)Ni(2+) during growth. Supplementation of the growth medium with NiCl(2) at concentrations as low as 2.5 micro M partially restored urease activity in the mutant. Both wild-type and mutant strains showed enhanced urease activity when exogenous Ni(2+) was provided at neutral pH. Enhancement of urease activity by adding nickel was regulated at the posttranslational level. Thus, ORF1, ORF2, and ORF3 are part of the ure operon, and these genes, designated ureM, ureQ, and ureO, respectively, likely encode a Ni(2+)-specific ATP-binding cassette transporter.
Balasubramanian, Anuradha; Ponnuraj, Karthe
2008-07-01
Urease is a seed protein that is common to most Leguminosae. It also occurs in many bacteria, fungi and several species of yeast. Urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, thus allowing organisms to use exogenous and internally generated urea as a nitrogen source. Urease from pigeon pea seeds has been purified to electrophoretic homogeneity using a series of steps involving ammonium sulfate fractionation, acid precipitation, ion-exchange and size-exclusion chromatography techniques. The pigeon pea urease was crystallized and the resulting crystals diffracted to 2.5 A resolution. The crystals belong to the rhombohedral space group R32, with unit-cell parameters a = b = 176.29, c = 346.44 A.
21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Urease enzyme preparation from Lactobacillus... Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme preparation from Lactobacillus fermentum. (a) This enzyme preparation is derived from the nonpathogenic, nontoxicogenic bacterium Lactobacillus...
Hameed, Abdul; Khan, Khalid Mohammed; Zehra, Syeda Tazeen; Ahmed, Ramasa; Shafiq, Zahid; Bakht, Syeda Mahwish; Yaqub, Muhammad; Hussain, Mazhar; de la Vega de León, Antonio; Furtmann, Norbert; Bajorath, Jürgen; Shad, Hazoor Ahmad; Tahir, Muhammad Nawaz; Iqbal, Jamshed
2015-08-01
Urease is an important enzyme which breaks urea into ammonia and carbon dioxide during metabolic processes. However, an elevated activity of urease causes various complications of clinical importance. The inhibition of urease activity with small molecules as inhibitors is an effective strategy for therapeutic intervention. Herein, we have synthesized a series of 19 benzofurane linked N-phenyl semithiocarbazones (3a-3s). All the compounds were screened for enzyme inhibitor activity against Jack bean urease. The synthesized N-phenyl thiosemicarbazones had varying activity levels with IC50 values between 0.077 ± 0.001 and 24.04 ± 0.14 μM compared to standard inhibitor, thiourea (IC50 = 21 ± 0.11 μM). The activities of these compounds may be due to their close resemblance of thiourea. A docking study with Jack bean urease (PDB ID: 4H9M) revealed possible binding modes of N-phenyl thiosemicarbazones. Copyright © 2015 Elsevier Inc. All rights reserved.
[Degradation of urea and ethyl carbamate in Chinese Rice wine by recombinant acid urease].
Zhou, Jianli; Kang, Zhen; Liu, Qingtao; Du, Guocheng; Chen, Jian
2016-01-01
Ethyl carbamate (EC) as a potential carcinogen commonly exists in traditional fermented foods. It is important eliminate urea that is the precursors of EC in many fermented foods, including Chinese Rice wine. On the basis of achieving high-level overexpression of food-grade ethanol-resistant acid urease, we studied the hydrolysis of urea and EC with the recombinant acid urease. Recombinant acid urease showed degraded urea in both the simulated system with ethanol and Chinese Rice wine (60 mg/L of urea was completely degraded within 25 h), indicating that the recombinant enzyme is suitable for the elimination of urea in Chinese Rice wine. Although recombinant acid urease also has degradation catalytic activity on EC, no obvious degradation of EC was observed. Further investigation results showed that the Km value for urea and EC of the recombinant acid urease was 0.7147 mmol/L and 41.32 mmol/L, respectively. The results provided theoretical foundation for realizing simultaneous degradation of urea and EC.
1,2-Benzisoselenazol-3(2H)-one Derivatives As a New Class of Bacterial Urease Inhibitors.
Macegoniuk, Katarzyna; Grela, Ewa; Palus, Jerzy; Rudzińska-Szostak, Ewa; Grabowiecka, Agnieszka; Biernat, Monika; Berlicki, Łukasz
2016-09-08
Urease inhibitors are considered promising compounds for the treatment of ureolytic bacterial infections, particularly infections resulting from Helicobacter pylori in the gastric tract. Herein, we present the synthesis and the inhibitory activity of novel and highly effective organoselenium compounds as inhibitors of Sporosarcina pasteurii and Helicobacter pylori ureases. These studied compounds represent a class of competitive reversible urease inhibitors. The most active compound, 2-phenyl-1,2-benzisoselenazol-3(2H)-one (ebselen), displayed Ki values equal to 2.11 and 226 nM against S. pasteurii and H. pylori enzymes, respectively, indicating ebselen as one of the most potent low-molecular-weight inhibitors of bacterial ureases reported to date. Most of these molecules penetrated through the cell membrane of the Gram-negative bacteria Escherichia coli (pGEM::ureOP) in vitro. Furthermore, whole-cell studies on the H. pylori J99 reference strain confirmed the high efficiency of the examined organoselenium compounds as urease inhibitors against pathogenic bacteria.
Nickel trafficking system responsible for urease maturation in Helicobacter pylori
Ge, Rui-Guang; Wang, Dong-Xian; Hao, Ming-Cong; Sun, Xue-Song
2013-01-01
Helicobacter pylori (H. pylori) is a common human pathogen responsible for various gastric diseases. This bacterium relies on the production of urease and hydrogenase to inhabit the acidic environment of the stomach. Nickel is an essential cofactor for urease and hydrogenase. H. pylori has to uptake sufficient nickel ions for the maturation of urease, and on the other way, to prevent the toxic effects of excessive nickel ions. Therefore, H. pylori has to strike a delicate balance between the import of nickel ions, its efficient intracellular storage, and delivery to nickel-dependent metalloenzymes when required. The assembly and maturation of the urease enzyme is a complex and timely ordered process, requiring various regulatory, uptake, chaperone and accessory proteins. In this review, we focus on several nickel trafficking proteins involved in urease maturation: NikR, NixA, HypAB, UreEFGH, HspA, Hpn and Hpnl. The work will deepen our understanding of how this pathogenic bacterium adapts to severe habitant environments in the host. PMID:24363511
Kiska, D L; Orkiszewski, D R; Howell, D; Gilligan, P H
1994-01-01
We evaluated the performance of CRYPTO-LEX (Trinity Laboratories, Inc., Raleigh, N. C.), a new mouse immunoglobulin M monoclonal antibody latex agglutination reagent which reacts with the capsular polysaccharide of the four serogroups of Cryptococcus neoformans. This test was compared with CALAS (Meridian Diagnostics, Cincinnati, Ohio) for the ability to detect cryptococcal antigen in serum and cerebrospinal fluid (CSF). A total of 580 clinical specimens (327 serum and 253 CSF samples), primarily from human immunodeficiency virus-infected patients, were tested in this study. Sixty-seven specimens (44 serum and 23 CSF samples) were positive for cryptococcal antigen with both tests, and 511 (282 serum and 229 CSF samples) were negative. The two latex reagents agreed for 326 of 327 serum specimens (44 positives and 282 negatives). One serum specimen with a titer of 1:2 was CALAS positive but CRYPTO-LEX negative. The titer correlation coefficient for the two tests was 0.884 when two highly discordant serum specimens were eliminated from analysis of the data. The two latex tests agreed for 252 of 253 CSF specimens (23 positives and 229 negatives). One specimen with a titer of 1:2 was positive with CALAS and negative by CRYPTO-LEX. The correlation coefficient of the two tests for CSF titers was 0.886. The sensitivity and specificity of CRYPTO-LEX were 97 and 100%, respectively, with a 99.6% correlation with CALAS. These data show that the performance of CRYPTO-LEX is comparable to that of CALAS for detection of cryptococcal antigen in serum and CSF. PMID:7814566
Scriven, James E.; Rhein, Joshua; Hullsiek, Katherine Huppler; von Hohenberg, Maximilian; Linder, Grace; Rolfes, Melissa A.; Williams, Darlisha A.; Taseera, Kabanda; Meya, David B.; Meintjes, Graeme; Boulware, David R.
2015-01-01
Introduction. Earlier antiretroviral therapy (ART) initiation in cryptococcal meningitis resulted in higher mortality compared with deferred ART initiation (1–2 weeks vs 5 weeks postmeningitis diagnosis). We hypothesized this was due to ART-associated immune pathology, without clinically recognized immune reconstitution inflammatory syndrome. Methods. Three macrophage activation markers and 19 cytokines/chemokines were measured from cryopreserved cerebrospinal fluid (CSF) and serum during the Cryptococcal Optimal ART Timing (COAT) trial. Comparisons were made between trial arms (early vs deferred) at 1, 8, 14, and 21 days following meningitis diagnosis. Results. More participants with early ART initiation had CSF white cell count (WCC) ≥5/µL at day 14 (58% vs 40%; P = .047), after a median of 6-days ART. Differences were mainly driven by participants with CSF WCC <5/µL at meningitis diagnosis: 28% (10/36) of such persons in the early ART group had CSF WCC ≥5/µL by day 14, compared with 0% (0/27) in the deferred arm (P = .002). Furthermore, Kampala participants (the largest site) receiving early ART had higher day-14 CSF levels of interleukin-13 (P = .04), sCD14 (P = .04), sCD163 (P = .02), and CCL3/MIP-1α (P = .02), suggesting increased macrophage/microglial activation. Conclusions. Early ART initiation in cryptococcal meningitis increased CSF cellular infiltrate, macrophage/microglial activation, and T helper 2 responses within the central nervous system. This suggests that increased mortality from early ART in the COAT trial was immunologically mediated. PMID:25651842
21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Urease enzyme preparation from Lactobacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme preparation from Lactobacillus fermentum. (a) This enzyme preparation is derived from the nonpathogenic...
21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Urease enzyme preparation from Lactobacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme preparation from Lactobacillus fermentum. (a) This enzyme preparation is derived from the nonpathogenic...
21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Urease enzyme preparation from Lactobacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme preparation from Lactobacillus fermentum. (a) This enzyme preparation is derived from the nonpathogenic...
Extraction of an urease-active organo-complex from soil.
NASA Technical Reports Server (NTRS)
Burns, R. G.; El-Sayed, M. H.; Mclaren, A. D.
1972-01-01
Description of an extraction from a Dublin clay loam soil of a colloidal organic matter complex that is urease active and, by X-ray analysis, free of clays. Urease activity in the clay-free precipitates, as in the soil, was not destroyed by the activity of an added proteolytic enzyme, pronase. This is attributed to the circumstance that native soil urease resides in organic colloidal particles with pores large enough for water, urea, ammonia, and carbon dioxide to pass freely, but nevertheless small enough to exclude pronase.
1990-05-15
was also linked to urease and toxin-enzyme conjugates were evaluated. 4. Toxin Enzyme Conjugates. Brevetoxins linked to either Jack Bean urease or...described in materials and methods. For urease conjugates, 1:2, 1:4 and 1:6 molar ratios were investigated. The following protocol yielded the most...fold excess urease in 1 volume equivalent of water, in three equal aliquots. Total volume after addition is 2-fold the volume in step [2], final
Balasubramanian, Anuradha; Ponnuraj, Karthe
2008-01-01
Urease is a seed protein that is common to most Leguminosae. It also occurs in many bacteria, fungi and several species of yeast. Urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, thus allowing organisms to use exogenous and internally generated urea as a nitrogen source. Urease from pigeon pea seeds has been purified to electrophoretic homogeneity using a series of steps involving ammonium sulfate fractionation, acid precipitation, ion-exchange and size-exclusion chromatography techniques. The pigeon pea urease was crystallized and the resulting crystals diffracted to 2.5 Å resolution. The crystals belong to the rhombohedral space group R32, with unit-cell parameters a = b = 176.29, c = 346.44 Å. PMID:18607103
Inactivation of urease by catechol: Kinetics and structure.
Mazzei, Luca; Cianci, Michele; Musiani, Francesco; Lente, Gábor; Palombo, Marta; Ciurli, Stefano
2017-01-01
Urease is a Ni(II)-containing enzyme that catalyzes the hydrolysis of urea to yield ammonia and carbamate at a rate 10 15 times higher than the uncatalyzed reaction. Urease is a virulence factor of several human pathogens, in addition to decreasing the efficiency of soil organic nitrogen fertilization. Therefore, efficient urease inhibitors are actively sought. In this study, we describe a molecular characterization of the interaction between urease from Sporosarcina pasteurii (SPU) and Canavalia ensiformis (jack bean, JBU) with catechol, a model polyphenol. In particular, catechol irreversibly inactivates both SPU and JBU with a complex radical-based autocatalytic multistep mechanism. The crystal structure of the SPU-catechol complex, determined at 1.50Å resolution, reveals the structural details of the enzyme inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb-Robertson, Bobbie-Jo; Kim, Young -Mo; Zink, Erika M.
Urease pre-treatment of urine has been utilized since the early 1960s to remove high levels of urea from samples prior to further processing and analysis by gas chromatography-mass spectrometry (GC-MS). Aside from the obvious depletion or elimination of urea, the effect, if any, of urease pre-treatment on the urinary metabolome has not been studied in detail. Here, we report the results of three separate but related experiments that were designed to assess possible indirect effects of urease pre-treatment on the urinary metabolome as measured by GC-MS. In total, 235 GC-MS analyses were performed and over 106 identified and 200 unidentifiedmore » metabolites were quantified across the three experiments. The results showed that data from urease pre-treated samples 1) had the same or lower coefficients of variance among reproducibly detected metabolites, 2) more accurately reflected quantitative differences and the expected ratios among different urine volumes, and 3) increased the number of metabolite identifications. Altogether, we observed no negative consequences of urease pre-treatment. In contrast, urease pretreatment enhanced the ability to distinguish between volume-based and biological sample types compared to no treatment. Taken together, these results show that urease pretreatment of urine offers multiple beneficial effects that outweigh any artifacts that may be introduced to the data in urinary metabolomics analyses.« less
Macegoniuk, Katarzyna; Grela, Ewa; Biernat, Monika; Psurski, Mateusz; Gościniak, Grażyna; Dziełak, Anna; Mucha, Artur; Wietrzyk, Joanna; Berlicki, Łukasz
2017-01-01
Urease is an important virulence factor from Helicobacter pylori that enables bacterial colonization of human gastric mucosa. Specific inhibition of urease activity can be regarded as a promising adjuvant strategy for eradication of this pathogen. A group of organophosphorus inhibitors of urease, namely, aminophosphinic acid and aminophosphonic acid derivatives, were evaluated in vitro against H. pylori urease. The kinetic characteristics of recombinant enzyme activity demonstrated a competitive reversible mode of inhibition with Ki values ranging from 0.294 to 878 μM. N-n-Hexylaminomethyl-P-aminomethylphosphinic acid and N-methylaminomethyl-P-hydroxymethylphosphinic acid were the most effective inhibitors (Ki = 0.294 μM and 1.032 μM, respectively, compared to Ki = 23 μM for the established urease inhibitor acetohydroxamic acid). The biological relevance of the inhibitors was verified in vitro against a ureolytically active Escherichia coli Rosetta host that expressed H. pylori urease and against a reference strain, H. pylori J99 (CagA+/VacA+). The majority of the studied compounds exhibited urease-inhibiting activity in these whole-cell systems. Bis(N-methylaminomethyl)phosphinic acid was found to be the most effective inhibitor in the susceptibility profile studies of H. pylori J99. The cytotoxicity of nine structurally varied inhibitors was evaluated against four normal human cell lines and was found to be negligible. PMID:28792967
Weyman, Philip D; Beeri, Karen; Lefebvre, Stephane C; Rivera, Josefa; McCarthy, James K; Heuberger, Adam L; Peers, Graham; Allen, Andrew E; Dupont, Christopher L
2015-05-01
Diatoms are unicellular photosynthetic algae with promise for green production of fuels and other chemicals. Recent genome-editing techniques have greatly improved the potential of many eukaryotic genetic systems, including diatoms, to enable knowledge-based studies and bioengineering. Using a new technique, transcription activator-like effector nucleases (TALENs), the gene encoding the urease enzyme in the model diatom, Phaeodactylum tricornutum, was targeted for interruption. The knockout cassette was identified within the urease gene by PCR and Southern blot analyses of genomic DNA. The lack of urease protein was confirmed by Western blot analyses in mutant cell lines that were unable to grow on urea as the sole nitrogen source. Untargeted metabolomic analysis revealed a build-up of urea, arginine and ornithine in the urease knockout lines. All three intermediate metabolites are upstream of the urease reaction within the urea cycle, suggesting a disruption of the cycle despite urea production. Numerous high carbon metabolites were enriched in the mutant, implying a breakdown of cellular C and N repartitioning. The presented method improves the molecular toolkit for diatoms and clarifies the role of urease in the urea cycle. © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Protein Tunnels: The Case of Urease Accessory Proteins.
Musiani, Francesco; Gioia, Dario; Masetti, Matteo; Falchi, Federico; Cavalli, Andrea; Recanatini, Maurizio; Ciurli, Stefano
2017-05-09
Transition metals are both essential micronutrients and limited in environmental availability. The Ni(II)-dependent urease protein, the most efficient enzyme known to date, is a paradigm for studying the strategies that cells use to handle an essential, yet toxic, metal ion. Urease is a virulence factor of several human pathogens, in addition to decreasing the efficiency of soil organic nitrogen fertilization. Ni(II) insertion in the urease active site is performed through the action of three essential accessory proteins: UreD, UreF, and UreG. The crystal structure of the UreD-UreF-UreG complex from the human pathogen Helicobacter pylori (HpUreDFG) revealed the presence of tunnels that cross the entire length of both UreF and UreD, potentially able to deliver Ni(II) ions from UreG to apo-urease. Atomistic molecular dynamics simulations performed on the HpUreDFG complex in explicit solvent and at physiological ionic conditions demonstrate the stability of these protein tunnels in solution and provide insights on the trafficking of water molecules inside the tunnels. The presence of different alternative routes across the identified tunnels for Ni(II) ions, water molecules, and carbonate ions, all involved in urease activation, is highlighted here, and their potential role in the urease activation mechanism is discussed.
Reduction of Urease Activity by Interaction with the Flap Covering the Active Site
Macomber, Lee; Minkara, Mona S.; Hausinger, Robert P.; Merz, Kenneth M.
2015-01-01
With the increasing appreciation for the human microbiome coupled with the global rise of antibiotic resistant organisms, it is imperative that new methods be developed to specifically target pathogens. To that end, a novel computational approach was devised to identify compounds that reduce the activity of urease, a medically important enzyme of Helicobacter pylori, Proteus mirabilis, and many other microorganisms. Urease contains a flexible loop that covers its active site; Glide was used to identify small molecules predicted to lock this loop in an open conformation. These compounds were screened against the model urease from Klebsiella aerogenes and the natural products epigallocatechin and quercetin were shown to inhibit at low and high micromolar concentrations, respectively. These molecules exhibit a strong time-dependent inactivation of urease that was not due to their oxygen sensitivity. Rather, these compounds appear to inactivate urease by reacting with a specific Cys residue located on the flexible loop. Substitution of this cysteine by alanine in the C319A variant increased the urease resistance to both epigallocatechin and quercetin, as predicted by the computational studies. Protein dynamics are integral to the function of many enzymes; thus, identification of compounds that lock an enzyme into a single conformation presents a useful approach to define potential inhibitors. PMID:25594724
Hassan, Sherif T S; Švajdlenka, Emil
2017-10-11
Studies on enzyme inhibition remain a crucial area in drug discovery since these studies have led to the discoveries of new lead compounds useful in the treatment of several diseases. In this study, protocatechuic acid (PCA), an active compound from Hibiscus sabdariffa L. has been evaluated for its inhibitory properties against jack bean urease (JBU) as well as its possible toxic effect on human gastric epithelial cells (GES-1). Anti-urease activity was evaluated by an Electrospray Ionization-Mass Spectrometry (ESI-MS) based method, while cytotoxicity was assayed by the MTT method. PCA exerted notable anti-JBU activity compared with that of acetohydroxamic acid (AHA), with IC 50 values of 1.7 and 3.2 µM, respectively. PCA did not show any significant cytotoxic effect on (GES-1) cells at concentrations ranging from 1.12 to 3.12 µM. Molecular docking study revealed high spontaneous binding ability of PCA to the active site of urease. Additionally, the anti-urease activity was found to be related to the presence of hydroxyl moieties of PCA. This study presents PCA as a natural urease inhibitor, which could be used safely in the treatment of diseases caused by urease-producing bacteria.
Effects of cations on Helicobacter pylori urease activity, release, and stability.
Pérez-Pérez, G I; Gower, C B; Blaser, M J
1994-01-01
The urease of Helicobacter pylori is an important antigen and appears critical for colonization and virulence. Several studies have indicated a superficial localization for the H. pylori urease, and the purpose of this study was to determine the effects of cations on the release and stability of urease activity from H. pylori cells. Incubation of partially purified H. pylori urease in water containing 1, 5, or 10 mM Ca2+, Mg2+, K+, Na+, EDTA, or EGTA [ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] had little effect on activity. In contrast, 1 mM Fe3+, Cu2+, Co2+, or Zn2+ substantially (> 80%) inhibited activity, and 10 mM Fe2+, Mn2+, and Ni2+ inhibited about 30% of the activity. Addition of Ca2+ or Mg2+ markedly decreased extraction of urease from intact H. pylori cells by water, but 1 mM Na+, K+, EGTA, or EDTA each had minimal effects on release, suggesting that divalent cations have a role in attachment of urease to H. pylori cells. The stability of enzymatic activity at 4 degrees C was enhanced by addition of glycerol or 2-mercaptoethanol; however, even after loss of activity, full antigenicity for human serum was retained. PMID:8262643
Helicobacter pylori Urease Activity is Influenced by Ferric Uptake Regulator
Lee, Jong Seung; Lee, Ji Hyuk; Lee, Hye Jin; Lee, Jee Hyun; Choi, Young Ok
2010-01-01
Purpose The role of the Ferric Uptake Regulator (FUR) in the acid resistance of Helicobacter pylori (H. pylori) has been thought to be independent of urease. However, we demonstrated in this study that Fur influences urease activity. Materials and Methods A fur knockout mutant of H. pylori was constructed by replacing the Fur gene with a kanamycin resistant marker gene. The wild-type H. pylori and fur mutant were compared for survival. The integrity of the inner membrane of the bacteria was evaluated by confocal microscopy using membrane-permeant and -impermeant fluorescent DNA probes. Urease activity of intact H. pylori was measured between pH 3 and 8. Real time PCR of both strains was performed for urease genes including ureI, ureE, ureF, ureG, and ureH. Results The fur deletion affected the survival of H. pylori at pH 4. The urease activity curve of the intact fur mutant showed the same shape as the wild-type but was 3-fold lower than the wild-type at a pH of less than 5. Real time PCR revealed that the expression of all genes was consistently down-regulated in the fur mutant. Conclusion The results of this study showed that fur appears to be involved in acid resistant H. pylori urease activity. PMID:20046512
Dahlén, Gunnar; Hassan, Haidar; Blomqvist, Susanne; Carlén, Anette
2018-05-18
Urease is an enzyme produced by plaque bacteria hydrolysing urea from saliva and gingival exudate into ammonia in order to regulate the pH in the dental biofilm. The aim of this study was to assess the urease activity among oral bacterial species by using the rapid urease test (RUT) in a micro-plate format and to examine whether this test could be used for measuring the urease activity in site-specific supragingival dental plaque samples ex vivo. The RUT test is based on 2% urea in peptone broth solution and with phenol red at pH 6.0. Oral bacterial species were tested for their urease activity using 100 μl of RUT test solution in the well of a micro-plate to which a 1 μl amount of cells collected after growth on blood agar plates or in broth, were added. The color change was determined after 15, 30 min, and 1 and 2 h. The reaction was graded in a 4-graded scale (none, weak, medium, strong). Ex vivo evaluation of dental plaque urease activity was tested in supragingival 1 μl plaque samples collected from 4 interproximal sites of front teeth and molars in 18 adult volunteers. The color reaction was read after 1 h in room temperature and scored as in the in vitro test. The strongest activity was registered for Staphylococcus epidermidis, Helicobacter pylori, Campylobacter ureolyticus and some strains of Haemophilus parainfluenzae, while known ureolytic species such as Streptococcus salivarius and Actinomyces naeslundii showed a weaker, variable and strain-dependent activity. Temperature had minor influence on the RUT reaction. The interproximal supragingival dental plaque between the lower central incisors (site 31/41) showed significantly higher scores compared to between the upper central incisors (site 11/21), between the upper left first molar and second premolar (site 26/25) and between the lower right second premolar and molar (site 45/46). The rapid urease test (RUT) in a micro-plate format can be used as a simple and rapid method to test urease activity in bacterial strains in vitro and as a chair-side method for testing urease activity in site-specific supragingival plaque samples ex vivo.
Cryptococcal cerebellitis in no-VIH patient
Zamora Bastidas, Tomas Omar; Potosí García, Jorge Andrés; Díaz Idrobo, Bairon
2017-01-01
Abstract Introduction: Cryptococcosis is an opportunistic fungal infection whose etiology is Cryptococcus neofromans / C. gattii, complex which affects immunocompromised patients mainly. Meningeal infection is one of the most common presentations, but cerebellar affection is rare. Case Description: Male patient with 65 old years, from an area of subtropical climate with chronic exposure to poultry, without pathological antecedents, who presented clinical picture consistent with headache, fever, seizures and altered mental status. Clinical findings and diagnostic methods: Initially without menigeal signs or intracranial hypertension and normal neurological examination. Later, the patient developed ataxia, dysdiadochokinesia and limb loss. By lumbar punction and image of nuclear magnetic resonance (NMR) cerebellitis cryptococcal was diagnosticated. Treatment: Antifungal therapy with amphotericin B and fluconazole was performed, however the patient died. Clinical Relevance: The cryptococcosis has different presentations, it´s a disease whose incidence has been increasing since the advent of the HIV / AIDS pandemy, however the commitment of the encephalic parenchyma and in particular the cerebellum is considered rare. In this way we are facing the first case of cryptococcal cerebellitis in our midst. PMID:29021643
Rhein, Joshua; Bahr, Nathan C; Hemmert, Andrew C; Cloud, Joann L; Bellamkonda, Satya; Oswald, Cody; Lo, Eric; Nabeta, Henry; Kiggundu, Reuben; Akampurira, Andrew; Musubire, Abdu; Williams, Darlisha; Meya, David B; Boulware, David R
2015-01-01
Meningitis remains a worldwide problem, and rapid diagnosis is essential to optimize survival. We evaluated the utility of a multiplex PCR test in differentiating possible etiologies of meningitis. Cerebrospinal fluid (CSF) from 69 HIV-infected Ugandan adults with meningitis was collected at diagnosis (n=51) and among persons with cryptococcal meningitis during therapeutic lumbar punctures (n=68). Cryopreserved CSF specimens were analyzed with BioFire FilmArray® Meningitis/Encephalitis panel, which targets 17 pathogens. The panel detected Cryptococcus in the CSF of patients diagnosed with a first-episode of cryptococcal meningitis by fungal culture with 100% sensitivity and specificity, and differentiated between fungal relapse and paradoxical immune reconstitution inflammatory syndrome in recurrent episodes. A negative FilmArray result was predictive of CSF sterility on follow-up lumbar punctures for cryptococcal meningitis. EBV was frequently detected in this immunosuppressed population (n=45). Other pathogens detected included: CMV (n=2), VZV (n=2), HHV-6 (n=1), and Streptococcus pneumoniae (n=1). The FilmArray Meningitis/Encephalitis panel offers a promising platform for rapid meningitis diagnosis. PMID:26711635
Tan, Lihua; Li, Cailan; Chen, Hanbin; Mo, Zhizhun; Zhou, Jiangtao; Liu, Yuhong; Ma, Zhilin; Xu, Yuyao; Yang, Xiaobo; Xie, Jianhui; Su, Ziren
2017-12-15
In our previous study, Rhizoma Coptidis extract was found to exert more potent inhibitory effect than its major component berberine towards urease from Helicobacter pylori (HPU) and jack bean (JBU). In continuation of our work, the present study was designed to further comparatively investigate the urease inhibitory activities of five major protoberberine alkaloids in Rhizoma Coptidis, namely berberine, palmatine, coptisine, epiberberine, jateorhizine to identify the bioactive constituent, and illuminate the potential mechanism of action. Results indicated that the five protoberberine alkaloids acted as concentration-dependent inactivators of urease with IC 50 values ranging between 3.0 and 5087μM for HPU and 2.3->10,000μM for JBU, respectively. Notably, epiberberine (EB) was found to be the most potent inhibitor against both ureases with IC 50 values of 3.0±0.01μM for HPU and 2.3±0.01μM for JBU, which was more effective than the standard urease inhibitor, acetohydroxamic acid (83±0.01μM for HPU and 22±0.01μM for JBU, respectively). Further kinetic analysis revealed that the type of EB inhibition against HPU was slow-binding and uncompetitive, with K i of 10.6±0.01μM, while slow-binding and competitive against JBU with K i of 4.6±0.01μM. Addition of thiol reagents, such as l-cysteine, glutathione and dithiothreitol, significantly abolished the inhibition, while Ni 2+ competitive inhibitors, boric acid and sodium fluoride, synergetically inhibited urease with EB, indicating the obligatory role of the active site sulfhydryl group for the inhibition. In addition, binding of EB with the urease proved to be reversible, as about 65% and 90% enzymatic activity of HPU and JBU, respectively, could be restored by dithiothreitol application. These findings highlighted the potential role of Rhizoma Coptidis protoberberine alkaloids, especially EB, as a lead urease inhibitor in the treatment of diseases associated with ureolytic bacteria. Thus, EB had good potential for further development into a promising therapeutic approach for the treatment of urease-related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Barboza-Silva, E; Castro, A C D; Marquis, R E
2005-12-01
Fluoride is known to be a potent inhibitor of bacterial ureases and can also act in the form of hydrofluoric acid as a transmembrane proton conductor to acidify the cytoplasm of intact cells with possible indirect, acid inhibition of urease. Our research objectives were to assess the inhibitory potencies of fluoride for three urease-positive bacteria commonly found in the mouth and to determine the relative importance of direct and indirect inhibition of ureases for overall inhibition of intact cells or biofilms. The experimental design involved intact bacteria in suspensions, mono-organism biofilms, cell extracts, and dental plaque. Standard enzymatic assays for ammonia production from urea were used. We found that ureolysis by cells in suspensions or mono-organism biofilms of Staphylococcus epidermidis, Streptococcus salivarius or Actinomyces naeslundii was inhibited by fluoride at plaque levels of 0.1-0.5 mm in a pH-dependent manner. The results of experiments with the organic weak acids indomethacin and capric acid, which do not directly inhibit urease enzyme, indicated that weak-acid effects leading to cytoplasmic acidification are also involved in fluoride inhibition. However, direct fluoride inhibition of urease appeared to be the major mechanism for reduction in ureolytic activity in acid environments. Results of experiments with freshly harvested supragingival dental plaque indicated responses to fluoride similar to those of S. salivarius with pH-dependent fluoride inhibition and both direct and indirect inhibition of urease. Fluoride can act to diminish alkali production from urea by oral bacteria through direct and indirect mechanisms.
Farrugia, Mark A; Wang, Beibei; Feig, Michael; Hausinger, Robert P
2015-10-20
Nickel-containing urease from Klebsiella aerogenes requires four accessory proteins for proper active site metalation. The metallochaperone UreE delivers nickel to UreG, a GTPase that forms a UreD/UreF/UreG complex, which binds to urease apoprotein via UreD. Prior in silico analysis of the homologous, structurally characterized UreH/UreF/UreG complex from Helicobacter pylori identified a water tunnel originating at a likely nickel-binding motif in UreG, passing through UreF, and exiting UreH, suggestive of a role for the channel in providing the metal to urease apoprotein for its activation; however, no experimental support was reported for the significance of this tunnel. Here, specific variants were designed to disrupt a comparable 34.6 Å predicted internal tunnel, alternative channels, and surface sites for UreD. Cells producing a set of tunnel-disrupting variants of UreD exhibited greatly reduced urease specific activities, whereas other mutants had no appreciable effect on activity. Affinity pull-down studies of cell-free extracts from tunnel-disrupting mutant cultures showed no loss of UreD interactions with urease or UreF/UreG. The nickel contents of urease samples enriched from activity-deficient cultures were decreased, while zinc and iron incorporation increased. Molecular dynamics simulations revealed size restrictions in the internal channels of the UreD variants. These findings support the role of a molecular tunnel in UreD as a direct facilitator of nickel transfer into urease, illustrating a new paradigm in active site metallocenter assembly.
2014-01-01
Background Urease, one of the highly efficient known enzymes, catalyzes the hydrolysis of urea into ammonia and carbon dioxide. The present study aimed to extract urease from pea seeds (Pisum Sativum L). The enzyme was then purified in three consequence steps: acetone precipitation, DEAE-cellulose ion-exchange chromatography, and gel filtration chromatography (Sephacryl S-200 column). Results The purification fold was 12.85 with a yield of 40%. The molecular weight of the isolated urease was estimated by chromatography to be 269,000 Daltons. Maximum urease activity (190 U/g) was achieved at the optimum conditions of 40°C and pH of 7.5 after 5 min of incubation. The kinetic parameters, K m and V max , were estimated by Lineweaver-Burk fits and found to be 500 mM and 333.3 U/g, respectively. The thermodynamic constants of activation, ΔH, E a , and ΔS, were determined using Arrhenius plot and found to be 21.20 kJ/mol, 23.7 kJ/mol, and 1.18 kJ/mol/K, respectively. Conclusions Urease was purified from germinating Pisum Sativum L. seeds. The purification fold, yield, and molecular weight were determined. The effects of pH, concentration of enzyme, temperature, concentration of substrate, and storage period on urease activity were examined. This may provide an insight on the various aspects of the property of the enzyme. The significance of extracting urease from different sources could play a good role in understanding the metabolism of urea in plants. PMID:25065975
Haddow, Lewis J; Sahid, Faieza; Moosa, Mahomed-Yunus S
2008-07-01
Atypical manifestations of Cryptococcus neoformans disease have been reported in patients with HIV-1 infection as part of the spectrum of the immune reconstitution inflammatory syndrome (IRIS). We describe a cryptococcal breast abscess in a patient presenting after 11 months of highly active antiretroviral therapy (HAART). The arguments for and against the case being a novel manifestation of IRIS are discussed. The potential hazards of using CD4 count as a surrogate marker of IRIS and the danger of misdiagnosing IRIS as failure of HAART are highlighted.
Cryptococcal osteomyelitis: a report of 5 cases and a review of the recent literature.
Medaris, Leigh Ann; Ponce, Brent; Hyde, Zane; Delgado, Dennis; Ennis, David; Lapidus, William; Larrison, Matthew; Pappas, Peter G
2016-06-01
Cryptococcus neoformans is a fungal pathogen associated with advanced HIV disease and other disorders associated with immune dysfunction. The pulmonary and the central nervous system are the most common manifestations of the disease. Localised osteomyelitis as the sole manifestation of extrapulmonary disease is rare. Herein, we present five cases of Cryptococcus osteomyelitis as the only manifestation of extrapulmonary disease. We also identified 84 additional cases of isolated cryptococcal osteomyelitis in the literature. Using these data, we have made some general recommendations regarding an approach to treatment of this uncommon clinical entity. © 2016 Blackwell Verlag GmbH.
Effect of 2 Bedding Materials on Ammonia Levels in Individually Ventilated Cages
2016-01-01
primarily from urease -positive bacteria, which metabolize urea from the urine and feces of the animals.8 Therefore, am- monia levels are...proportional to the amounts of wet urine and urease -positive bacteria present in the cage. IVC systems help to reduce the levels of both urine and urease
Nickel trafficking system responsible for urease maturation in Helicobacter pylori.
Ge, Rui-Guang; Wang, Dong-Xian; Hao, Ming-Cong; Sun, Xue-Song
2013-12-07
Helicobacter pylori (H. pylori) is a common human pathogen responsible for various gastric diseases. This bacterium relies on the production of urease and hydrogenase to inhabit the acidic environment of the stomach. Nickel is an essential cofactor for urease and hydrogenase. H. pylori has to uptake sufficient nickel ions for the maturation of urease, and on the other way, to prevent the toxic effects of excessive nickel ions. Therefore, H. pylori has to strike a delicate balance between the import of nickel ions, its efficient intracellular storage, and delivery to nickel-dependent metalloenzymes when required. The assembly and maturation of the urease enzyme is a complex and timely ordered process, requiring various regulatory, uptake, chaperone and accessory proteins. In this review, we focus on several nickel trafficking proteins involved in urease maturation: NikR, NixA, HypAB, UreEFGH, HspA, Hpn and Hpnl. The work will deepen our understanding of how this pathogenic bacterium adapts to severe habitant environments in the host. © 2013 Baishideng Publishing Group Co., Limited. All rights reserved.
NASA Astrophysics Data System (ADS)
Farrugia, Mark A.; Han, Linjie; Zhong, Yueyang; Boer, Jodi L.; Ruotolo, Brandon T.; Hausinger, Robert P.
2013-09-01
Maturation of the nickel-containing urease of Klebsiella aerogenes is facilitated by the UreD, UreF, and UreG accessory proteins along with the UreE metallo-chaperone. A fusion of the maltose binding protein and UreD (MBP-UreD) was co-isolated with UreF and UreG in a soluble complex possessing a (MBP-UreD:UreF:UreG)2 quaternary structure. Within this complex a UreF:UreF interaction was identified by chemical cross-linking of the amino termini of its two UreF protomers, as shown by mass spectrometry of tryptic peptides. A pre-activation complex was formed by the interaction of (MBP-UreD:UreF:UreG)2 and urease. Mass spectrometry of intact protein species revealed a pathway for synthesis of the urease pre-activation complex in which individual hetero-trimer units of the (MBP-UreD:UreF:UreG)2 complex bind to urease. Together, these data provide important new insights into the structures of protein complexes associated with urease activation.
Ntatsopoulos, Vassilis; Vassiliou, Stamatia; Macegoniuk, Katarzyna; Berlicki, Łukasz; Mucha, Artur
2017-06-16
The reactivity of Morita-Baylis-Hillman allyl acetates was employed to introduce phosphorus-containing functionalities to the side chain of the cinnamic acid conjugated system by nucleophilic displacement. The proximity of two acidic groups, the carboxylate and phosphonate/phosphinate groups, was necessary to form interactions in the active site of urease by recently described inhibitor frameworks. Several organophosphorus scaffolds were obtained and screened for inhibition of the bacterial urease, an enzyme that is essential for survival of urinary and gastrointestinal tract pathogens. α-Substituted phosphonomethyl- and 2-phosphonoethyl-cinnamate appeared to be the most potent and were further optimized. As a result, one of the most potent organophosphorus inhibitors of urease, α-phosphonomethyl-p-methylcinnamic acid, was identified, with K i = 0.6 μM for Sporosarcina pasteurii urease. High complementarity to the enzyme active site was achieved with this structure, as any further modifications significantly decreased its affinity. Finally, this work describes the challenges faced in developing ligands for urease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Fujita, Y.; Taylor, J. L.; Tyler, T. L.; Banta, A. B.; Reysenbach, A. L.; Delwiche, M. E.; McLing, T. L.; Colwell, F. S.; Smith, R. W.
2003-12-01
Groundwater contamination by radionuclides and metals from past weapons processing activities is a significant problem for the United States Department of Energy. Removal of these pollutants from the subsurface can be prohibitively expensive and result in worker exposure, and therefore in situ containment and stabilization is an attractive remediation alternative. One potential approach for the immobilization of certain radionuclides and metals (e.g., 90Sr, 60Co, Pb, Cd) is to induce geochemical conditions that promote co-precipitation in calcite. Many aquifers in the arid western US are calcite-saturated, and calcite precipitated under an engineered remediation scheme in such aquifers should remain stable even after return to ambient conditions. We have proposed that an effective way to promote calcite precipitation is to utilize native microorganisms that hydrolyze urea. Urea hydrolysis results in carbonate and ammonium production, and an increase in pH. The increased carbonate alkalinity favors calcite precipitation, and the ammonium serves the additional role of promoting desorption of sorbed metal ions from the aquifer matrix by ion exchange. The desorbed metals are then accessible to co-precipitation in calcite, which can be a longer-term immobilization mechanism than sorption. The ability to hydrolyze urea is common among environmental microorganisms, and we have shown in the laboratory that microbial urea hydrolysis can be linked to calcite precipitation and co-precipitation of the trace metal strontium. As a next step in the development of our remediation approach, we aimed to demonstrate that we can stimulate the native microbial community to express urease in the field. In 2002 we conducted a preliminary field trial of our approach, using a well in the Eastern Snake River Plain Aquifer in Idaho Falls, Idaho, USA. A dilute molasses solution (0.00075%) was injected to promote overall biological growth, and then urea (50 mM) was added to the aquifer. Results from the field experiment indicated that following the molasses addition, total cell counts and ureolytic cell numbers increased by one to two orders of magnitude. Ureolysis rates increased from <100 pmol L-1hr-1 to >25,000 pmol L-1hr-1. DNA extracted from groundwater was analyzed for 16S rRNA and urease gene diversity, and indicated that distinct changes in the microbial community resulted from our substrate additions. Following urea injection, calcite precipitation in the formation occurred. These results are promising with respect to the potential of this approach for remediation of radionuclides and metals in groundwater.
2-(Hetero(aryl)methylene)hydrazine-1-carbothioamides as potent urease inhibitors.
Saeed, Aamer; Imran, Aqeel; Channar, Pervaiz A; Shahid, Mohammad; Mahmood, Wajahat; Iqbal, Jamshed
2015-02-01
A small series of 2-(hetero(aryl)methylene) hydrazine-1-carbothioamides including two aryl derivatives was synthesized and tested for their inhibitory activity against urease. Compound (E)-2-(Furan-2-ylmethylene) hydrazine-1-carbothioamide (3f), having a furan ring, was the most potent inhibitor of urease with an IC50 value of 0.58 μM. Molecular modeling was carried out through docking the designed compounds into the urease binding site to predict whether these derivatives have analogous binding mode to the urease inhibitors. The study revealed that all of the tested compounds bind with both metal atoms at the active site of the enzyme. The aromatic ring of the compounds forms ionic interactions with the residues, Ala(440), Asp(494), Ala(636), and Met(637). © 2014 John Wiley & Sons A/S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaya, T.; Filner, P.
1981-06-01
Urease activity of tobacco XD cells (1U cells) had undergone a 4-fold increase (4U cells) during a year of growth on urea. A clone of 4U cells gave rise to 12U cells during another year of growth on urea. The doubling time of 12U cells on urea is 2.2 days, compared to about 4 days for 1U cells, while 1U and 12U cells double in 2 days on nitrate. Acetohydroxamic acid (AHA), a specific inhibitor/reversible inactivator of jack bean urease, affects tobacco cells urease similarly. Fifty per cent inhibition of growth by AHA occurred at 20 micromolar in 1U cellsmore » growing on urea and at 165 micromolar in 12U cells growing on urea, but at 600 micromolar for either 1U or 12U cells growing on nitrate. When 12U cells were grown on urea with 100 micromolar AHA, extractable urease activity decreased 80% within 2.5 hours and remained at this level for 2 weeks; the doubling time increased to 3.7 days, and intracellular urea rose 2-fold, compared to 12U cells grown on urea without AHA. Urease of 12U cells inactivated by AHA in vivo could be reactivated to its pre-AHA level by incubation at 30 C after extraction and separation from free AHA. AHA inhibited incorporation of /sup 15/N from (/sup 15/N) urea into Kjeldahl nitrogen in the cells, in spite of the increased intracellular urea. These results indicate that AHA acts primarily by inhibiting urease action, rather than by inhibition of formation of urease protein or of uptake of urea. Because 12U cells are 8 times more tolerant of AHA than 1U cells, it is likely that growth on urea in the presence of AHA should select strongly for cells with high urease.« less
TiO₂ beads and TiO₂-chitosan beads for urease immobilization.
Ispirli Doğaç, Yasemin; Deveci, Ilyas; Teke, Mustafa; Mercimek, Bedrettin
2014-09-01
The aim of the present study is to synthesize TiO2 beads for urease immobilization. Two different strategies were used to immobilize the urease on TiO2 beads. In the first method (A), urease enzyme was immobilized onto TiO2 beads by adsorption and then crosslinking. In the second method (B), TiO2 beads were coated with chitosan-urease mixture. To determine optimum conditions of immobilization, different parameters were investigated. The parameters of optimization were initial enzyme concentration (0.5; 1; 1.5; 2mg/ml), alginate concentration (1; 2; 3%), glutaraldehyde concentration (1; 2; 3% v/v) and chitosan concentration (2; 3; 4 mg/ml). The optimum enzyme concentrations were determined as 1.5mg/ml for A and 1.0mg/ml for B. The other optimum conditions were found 2.0% (w/v) for alginate concentration (both A and B); 3.0mg/ml for chitosan concentration (B) and 2.0% (v/v) for glutaraldehyde concentration (A). The optimum temperature (20-60°C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4-70°C), pH stability (4.0-9.0), operational stability (0-230 min) and reusability (20 times) were investigated for characterization. The optimum temperatures were 30°C (A), 40°C (B) and 35°C (soluble). The temperature profiles of the immobilized ureases were spread over a large area. The optimum pH values for the soluble urease and immobilized urease prepared by using methods (A) and (B) were found to be 7.5, 7.0, 7.0, respectively. The thermal stabilities of immobilized enzyme sets were studied and they maintained 50% activity at 65°C. However, at this temperature free urease protected only 15% activity. Copyright © 2014 Elsevier B.V. All rights reserved.
Boer, Jodi L.; Hausinger, Robert P.
2012-01-01
The Ni-containing active site of Klebsiella aerogenes urease is assembled through the concerted action of the UreD, UreE, UreF, and UreG accessory proteins. UreE functions as a metallochaperone that delivers Ni to a complex of UreD—UreF—UreG bound to urease apoprotein, with UreG serving as a GTPase during enzyme activation. The present study focuses on the role of UreF, previously proposed to act as a GTPase activating protein (GAP) of UreG. Sixteen conserved UreF surface residues that may play roles in protein:protein interactions were independently changed to Ala. When produced in the context of the entire urease gene cluster, cell-free extracts of nine site-directed mutants had less than 10% of the wild-type urease activity. Enrichment of the variant forms of UreF, as the UreE-F fusion proteins, uniformly resulted in co-purification of UreD and urease apoprotein; whereas UreG bound to only a subset of the species. Notably, reduced interaction with UreG correlated with the low activity mutants. The affected residues in UreF map to a distinct surface on the crystal structure, defining the UreG binding site. In contrast to the hypothesis that UreF is a GAP, the UreD—UreF—UreG—urease apoprotein complex containing K165A UreF exhibited significantly greater levels of GTPase activity than that containing the wild-type protein. Additional studies demonstrated the UreG GTPase activity was largely uncoupled from urease activation for the complex containing this UreF variant. Further experiments with these complexes provided evidence that UreF gates the GTPase activity of UreG to enhance the fidelity of urease metallocenter assembly, especially in the presence of the non-cognate metal Zn. PMID:22369361
NASA Astrophysics Data System (ADS)
Robarge, W. P.
2015-12-01
Ammonia loss from fertilizers can impact formation of atmospheric aerosols, as well as contribute to nitrogen (N) deposition in terrestrial and aquatic ecosystems. Urea is the predominant form of N fertilizer used worldwide due to its high N content (46.6% N) and low cost. Once in contact with soil or vegetation, urea is hydrolyzed to ammonium via naturally occurring urease enzymes. Losses of N from surface applied urea as ammonia can exceed 30%. To address this issue, various physical and chemical mechanisms have been incorporated into granular urea. The most common approach is incorporation of urease inhibitors such as N-(n-butyl) thiophosphoric triamide (NBPT). We have been investigating ammonia volatilization from urea granules (+/- urease inhibitors) in various field and laboratory controlled experiments for the past several years. Laboratory experiments are conducted with a customized growth chamber system designed to continuously measure ammonia volatilization. Field measurements are conducted using a passive sampler technology with an acid-coated trap in PVC cylinders, or annular denuder technology using flow-through PVC chambers. Daily exchanges of acid-coated denuder tubes enhance the sensitivity of ammonia volatilization measurements for the urease-inhibitor treated product. Loss of N from commercial urea granules has ranged from 6 - ~ 35%, depending on ambient temperature. This loss typically occurs within the first 5-10 days under field conditions. Some urease-inhibitors can minimize loss of N via volatilization (< 5%) for up to 20+ days in the absence of a rainfall event. Visual observations have confirmed that on bare soil, treated or untreated urea granules quickly "dissolve" and move into the soil. The accompanying urease-inhibitor formulation moves with the urea continuing to provide protection against reaction with naturally occurring urease enzymes. Use of urease-inhibitors does not guarantee increased crop yields or NUE, but the consistency of inhibitors incorporating NBPT suggest that these formulations represent a reasonable available control technology for use in agriculture to reduce ammonia emissions.
Biosynthesis of the Urease Metallocenter*
Farrugia, Mark A.; Macomber, Lee; Hausinger, Robert P.
2013-01-01
Metalloenzymes often require elaborate metallocenter assembly systems to create functional active sites. The medically important dinuclear nickel enzyme urease provides an excellent model for studying metallocenter assembly. Nickel is inserted into the urease active site in a GTP-dependent process with the assistance of UreD/UreH, UreE, UreF, and UreG. These accessory proteins orchestrate apoprotein activation by delivering the appropriate metal, facilitating protein conformational changes, and possibly providing a requisite post-translational modification. The activation mechanism and roles of each accessory protein in urease maturation are the subject of ongoing studies, with the latest findings presented in this minireview. PMID:23539618
Use of CdSe/ZnS luminescent quantum dots incorporated within sol-gel matrix for urea detection.
Duong, Hong Dinh; Rhee, Jong Il
2008-09-19
In this work, urea detection techniques based on the pH sensitivity of CdSe/ZnS QDs were developed using three types of sol-gel membranes: a QD-entrapped membrane, urease-immobilized membrane and double layer consisting of a QD-entrapped membrane and urease-immobilized membrane. The surface morphology of the sol-gel membranes deposited on the wells in a 24-well microtiter plate was investigated. The linear detection range of urea was in the range of 0-10mM with the three types of sol-gel membranes. The urea detection technique based on the double layer consisting of the QD-entrapped membrane and urease-immobilized membrane resulted in the highest sensitivity to urea due to the Michaelis-Menten kinetic parameters. That is, the Michaelis-Menten constant (K(m)=2.0745mM) of the free urease in the QD-entrapped membrane was about 4-fold higher than that (K(m)=0.549mM) of the immobilized urease in the urease-immobilized membrane and about 12-fold higher than that (K(m)=0.1698mM) of the immobilized urease in the double layer. The good stability of the three sol-gel membranes for urea sensing over 2 months showed that the use of sol-gel membranes immobilized with QDs or an enzyme is suitable for biomedical and environmental applications.
Role of urease in megasome formation and Helicobacter pylori survival in macrophages
Schwartz, Justin T.; Allen, Lee-Ann H.
2007-01-01
Previous studies have demonstrated that Helicobacter pylori (Hp) delays its entry into macrophages and persists inside megasomes, which are poorly acidified and accumulate early endosome autoantigen 1. Herein, we explored the role of Hp urease in bacterial survival in murine peritoneal macrophages and J774 cells. Plasmid-free mutagenesis was used to replace ureA and ureB with cat in Hp Strains 11637 and 11916. ureAB null Hp lacked detectable urease activity and did not express UreA or UreB as judged by immunoblotting. Deletion of ureAB had no effect on Hp binding to macrophages or the rate or extent of phagocytosis. However, intracellular survival of mutant organisms was impaired significantly. Immunofluorescence microscopy demonstrated that (in contrast to parental organisms) mutant Hp resided in single phagosomes, which were acidic and accumulated the lysosome marker lysosome-associated membrane protein-1 but not early endosome autoantigen 1. A similar phenotype was observed for spontaneous urease mutants derived from Hp Strain 60190. Treatment of macrophages with bafilomycin A1, NH4Cl, or chloroquine prevented acidification of phagosomes containing mutant Hp. However, only ammonium chloride enhanced bacterial viability significantly. Rescue of ureAB null organisms was also achieved by surface adsorption of active urease. Altogether, our data indicate a role for urease and urease-derived ammonia in megasome formation and Hp survival. PMID:16543403
Mutational analysis of the major soybean UreF paralogue involved in urease activation
USDA-ARS?s Scientific Manuscript database
In soybean, mutation at Eu2 or Eu3 eliminates the urease activities of both the embryo-specific and the tissue-ubiquitous (assimilatory) isozymes, encoded by Eu1 and Eu4, respectively. Eu3 encodes UreG, a GTP’ase necessary for proper emplacement of Ni and carbon dioxide in the urease active site. ...
Detection of Biological Warfare Agents in Municipal Tap Water via Standardized Culture Methods
2010-06-01
biochemical tests were performed: Gram stain, motility, catalase, oxidase, indole, antibiotic susceptibility, and urease . Gram staining was performed...resistance to polymyxin B or colistin, while presence of a clear zone indicated susceptibility to the antimicrobial agents. Urease test was performed per...Micro- Gram Motility Catalase Oxidase Indole Antibiotic Urease Organism Reactivity Susceptibility Bacillus
USDA-ARS?s Scientific Manuscript database
A field study was conducted to evaluate the effects of the addition of two different urease inhibitors on the volatilization of ammonia from top dressed ammonia sources on winter wheat and dent corn. Two commercial urease inhibitors (NY and AG) were tested. Treatments included compost, compost+NY, u...
Merry, Matthew; Boulware, David R
2016-06-15
In the United States, cryptococcal meningitis causes approximately 3400 hospitalizations and approximately 330 deaths annually. The US guidelines recommend treatment with amphotericin B plus flucytosine for at least 2 weeks, followed by fluconazole for a minimum of 8 weeks. Due to generic drug manufacturer monopolization, flucytosine currently costs approximately $2000 per day in the United States, with a 2-week flucytosine treatment course costing approximately $28 000. The daily flucytosine treatment cost in the United Kingdom is approximately $22. Cost-effectiveness analysis was performed to determine the value of flucytosine relative to alternative regimens. We estimated the incremental cost-effectiveness ratio (ICER) of 3 cryptococcal induction regimens: (1) amphotericin B deoxycholate for 4 weeks; (2) amphotericin and flucytosine (100 mg/kg/day) for 2 weeks; and (3) amphotericin and fluconazole (800 mg/day) for 2 weeks. Costs of care were calculated using 2015 US prices and the medication costs. Survival estimates were derived from a randomized trial and scaled relative to published US survival data. Cost estimates were $83 227 for amphotericin monotherapy, $75 121 for amphotericin plus flucytosine, and $44 605 for amphotericin plus fluconazole. The ICER of amphotericin plus flucytosine was $23 842 per quality-adjusted life-year. Flucytosine is currently cost-effective in the United States despite a dramatic increase in price in recent years. Combination therapy with amphotericin and flucytosine is the most attractive treatment strategy for cryptococcal meningitis, though the rising price may be creating access issues that will exacerbate if the trend of profiteering continues. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Govender, N P; Roy, M; Mendes, J F; Zulu, T G; Chiller, T M; Karstaedt, A S
2015-09-01
We retrospectively evaluated clinic-based screening to determine the prevalence of cryptococcal antigenaemia and management and outcome of patients with antigenaemia. Cryptococcal antigen (CrAg) screening of HIV-infected adults who attended the HIV clinic at Chris Hani Baragwanath Hospital was conducted over 19 months. Data collected from CrAg-positive patients included CD4 T-lymphocyte count at screening, prior or subsequent cryptococcal meningitis (CM), antifungal and antiretroviral treatment and outcome after at least 8 months. Of 1460 patients with no prior CM, 30 (2.1%) had a positive CrAg test. The prevalence of antigenaemia among patients with a CD4 count < 100 cells/μl and no prior CM was 2.8% (20 of 708). Of 29 evaluable CrAg-positive patients with no prior CM, 14 (48%) did not return for post-screening follow-up. Of these 14, five developed CM and one (7%) was known to be alive at follow-up. Of 15 patients who returned for follow-up, two already had evidence of nonmeningeal cryptococcosis. Overall, 11 received fluconazole, one did not and fluconazole treatment was unknown for three. Among these 15, one developed CM and 10 (67%) were known to be alive at follow-up. Overall, 18 (62%) of 29 CrAg-positive patients died or were lost to follow-up. Seven (0.5%) of 1430 CrAg-negative patients developed CM a median of 83 days post-screening (range 34 to 219 days). Loss to follow-up is the major operational issue relevant to scale-up of screen-and-treat. Patient outcomes may be improved by rapid access to CrAg results and focus on linkage to and retention in HIV care. © 2015 British HIV Association.
Sudan, Ajay; Livermore, Joanne; Howard, Susan J.; Al-Nakeeb, Zaid; Sharp, Andrew; Goodwin, Joanne; Gregson, Lea; Warn, Peter A.; Felton, Tim W.; Perfect, John R.; Harrison, Thomas S.
2013-01-01
Fluconazole is frequently the only antifungal agent that is available for induction therapy for cryptococcal meningitis. There is relatively little understanding of the pharmacokinetics and pharmacodynamics (PK-PD) of fluconazole in this setting. PK-PD relationships were estimated with 4 clinical isolates of Cryptococcus neoformans. MICs were determined using Clinical and Laboratory Standards Institute (CLSI) methodology. A nonimmunosuppressed murine model of cryptococcal meningitis was used. Mice received two different doses of fluconazole (125 mg/kg of body weight/day and 250 mg/kg of body weight/day) orally for 9 days; a control group of mice was not given fluconazole. Fluconazole concentrations in plasma and in the cerebrum were determined using high-performance liquid chromatography (HPLC). The cryptococcal density in the brain was estimated using quantitative cultures. A mathematical model was fitted to the PK-PD data. The experimental results were extrapolated to humans (bridging study). The PK were linear. A dose-dependent decline in fungal burden was observed, with near-maximal activity evident with dosages of 250 mg/kg/day. The MIC was important for understanding the exposure-response relationships. The mean AUC/MIC ratio associated with stasis was 389. The results of the bridging study suggested that only 66.7% of patients receiving 1,200 mg/kg would achieve or exceed an AUC/MIC ratio of 389. The potential breakpoints for fluconazole against Cryptococcus neoformans follow: susceptible, ≤2 mg/liter; resistant, >2 mg/liter. Fluconazole may be an inferior agent for induction therapy because many patients cannot achieve the pharmacodynamic target. Clinical breakpoints are likely to be significantly lower than epidemiological cutoff values. The MIC may guide the appropriate use of fluconazole. If fluconazole is the only option for induction therapy, then the highest possible dose should be used. PMID:23571544
Ezeanolue, Echezona E; Nwizu, Chidi; Greene, Gregory S; Amusu, Olatilewa; Chukwuka, Chinwe; Ndembi, Nicaise; Smith, Rachel M; Chiller, Tom; Pharr, Jennifer; Kozel, Thomas R
2016-09-01
Worldwide, HIV-associated cryptococcal meningitis affects approximately 1 million persons and causes 600,000 deaths each year mostly in sub-Saharan Africa. Limited data exist on cryptococcal meningitis and antigenemia in Nigeria, and most studies are geographically restricted. We determined the prevalence of cryptococcal antigenemia (CrAg) among HIV-infected, treatment-naive individuals in Nigeria. This was a retrospective, cross-sectional study across 4 geographic regions in Nigeria. We performed CrAg testing using a lateral flow immunoassay on archived whole-blood samples collected from HIV-infected participants at US President's Emergency Plan for AIDS Relief (PEPFAR)-supported sites selected to represent the major geographical and ethnic diversity in Nigeria. Eligible samples were collected from consenting patients (>15 years) naive to antiretroviral therapy with CD4 count less than 200 cells per cubic millimeter and were stored in an -80°C freezer. A total of 2752 stored blood samples were retrospectively screened for CrAg. Most of the samples were from participants aged 30-44 years (57.6%), and 1570 (57.1%) were from women. The prevalence of CrAg positivity in specimens with CD4 <200 cells per cubic millimeter was 2.3% (95% confidence interval: 1.8% to 3.0%) and varied significantly across the 4 regions (P < 0.001). At 4.4% (3.2% to 5.9%), the South East contained the highest prevalence. The significant regional variation in CrAg prevalence found in Nigeria should be taken into consideration as plans are made to integrate routine screening into clinical care for HIV-infected patients.
Ezeanolue, Echezona E.; Nwizu, Chidi; Greene, Gregory S.; Amusu, Olatilewa; Chukwuka, Chinwe; Ndembi, Nicaise; Smith, Rachel M.; Chiller, Tom; Pharr, Jennifer; Kozel, Thomas R
2016-01-01
Objective Worldwide, HIV-associated cryptococcal meningitis affects approximately 1 million persons and causes 600,000 deaths each year mostly in sub-Sharan Africa. Limited data exist on cryptococcal meningitis and antigenemia in Nigeria, and most studies are geographically restricted. We determined the prevalence of cryptococcal antigenemia (CrAg) among HIV-infected treatment-naïve individuals in Nigeria. Design/Methods This was a retrospective, cross-sectional study across four geographic regions in Nigeria. We performed CrAg testing using a lateral flow immunoassay on archived whole blood samples collected from HIV-infected participants at US PEPFAR-supported sites selected to represent the major geographical and ethnic diversity in Nigeria. Eligible samples were (1) stored in an -80° freezer; (2) collected from consenting patients (>15 years) naïve to antiretroviral therapy with CD4+ count less than 200 cells/mm3. Results A total of 2,752 stored blood samples were retrospectively screened for CrAg. A majority of samples were from participants aged 30 - 44 (57.6%), and 1,570 (57.1%) were from women. The prevalence of CrAg positivity in specimens with CD4 < 200 cells/mm3 was 2.3% (95% CI = 1.8%-3.0%), and varied significantly across the four regions (p < 0.001). At 4.4% (3.2%-5.9%), the South East contained the highest prevalence. Conclusion The significant regional variation in CrAg prevalence found in Nigeria should be taken into consideration as plans are made to integrate routine screening into clinical care for HIV-infected patients. PMID:27144527
Díaz, Eva-María; Sacristán, Mara; Legaz, María-Estrella
2009-01-01
Peltigera canina, a cyanolichen containing Nostoc as cyanobiont, produces and secretes arginase to a medium containing arginine. Secreted arginase acts as a lectin by binding to the surface of Nostoc cells through a specific receptor which develops urease activity. The enzyme urease has been located in the cell wall of recently isolated cyanobionts. Cytochemical detection of urease is achieved by producing a black, electron-dense precipitate of cobalt sulfide proceeding from CO2 evolved from urea hydrolysis in the presence of cobalt chloride. This urease has been pre-purified by affinity chromatography on a bead of active agarose to which arginase was attached. Urease was eluted from the beads by 50 mM α-D-galactose. The experimentally probed fact that a fungal lectin developing subsidiary arginase activity acts as a recognition factor of compatible algal cells in chlorolichens can now been expanded to cyanolichens. PMID:19820309
[Concordance among invasive diagnostic procedures for Helicobacter pylori infection in adults].
Sánchez-Cuén, Jaime Alberto; Canizalez-Román, Vicente Adrián; León-Sicairos, Nidia Maribel; Irineo-Cabrales, Ana Bertha; Bernal-Magaña, Gregorio
2015-01-01
Compare the strength of concordance between culture, histology, rapid urease test for diagnosis of Helicobacter pylori infection and histopathological findings relationship and frequency of positivity among such diagnostic procedures. Diagnostic test study. The study population were subjects with endoscopy and take samples of gastric antral. Rapid urease test (one sample), histology (two samples) and culture (two samples), and histopathological findings of gastric mucosa were performed. Statistical design with Student's t, Fisher exact test, Kappa coefficient. We reviewed 108 subjects, 28 (25.9%) men, 80 (74.1%) women, mean age was 49.1 years (SD 15.1). The Kappa coefficient was 0.729 and 0.377 between culture with histology and rapid urease test, respectively; likewise the Kappa coefficient was 0.565 between histology and rapid urease test. The strength of concordance was higher between histology with culture and rapid urease test; the most recommended being histology in clinical practice for the detection of Helicobacter pylori infection.
Shi, Wei-Kang; Deng, Rui-Cheng; Wang, Peng-Fei; Yue, Qin-Qin; Liu, Qi; Ding, Kun-Ling; Yang, Mei-Hui; Zhang, Hong-Yu; Gong, Si-Hua; Deng, Min; Liu, Wen-Run; Feng, Qiu-Ju; Xiao, Zhu-Ping; Zhu, Hai-Liang
2016-10-01
Helicobacter pylori urease is involved in several physiologic responses such as stomach and duodenal ulcers, adenocarcinomas and stomach lymphomas. Thus, inhibition of urease is taken for a good chance to treat H. pylori-caused infections, we have therefore focused our efforts on seeking novel urease inhibitors. Here, a series of arylpropionylhydroxamic acids were synthesized and evaluated for urease inhibition. Out of these compounds, 3-(2-benzyloxy-5-chlorophenyl)-3-hydroxypropionylhydroxamic acid (d24) was the most active inhibitor with IC50 of 0.15±0.05μM, showing a mixed inhibition with both competitive and uncompetitive aspects. Non-linear fitting of kinetic data gives kinetics parameters of 0.13 and 0.12μg·mL(-1) for Ki and Ki', respectively. The plasma protein binding assays suggested that d24 exhibited moderate binding to human and rabbit plasma proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shaikh, Rafik U; Dawane, Ashwini A; Pawar, Rajendra P; Gond, Dhananjay S; Meshram, Rohan J; Gacche, Rajesh N
2016-03-01
The present study was carried out to evaluate anti-Helicobacter pylori and its associated urease activity of labdane diterpenoids isolated from Andrographis paniculata. A molecular docking analysis was performed by using ArgusLab 4.0.1 software. The results obtained indicate that compound A possesses strong inhibition to H. pylori, 28 ± 2.98 (minimum inhibitory concentration, 9 µg/mL), and its urease, 85.54 ± 2.62% (IC50 , 20.2 µg/mL). Compounds B, C, and D also showed moderate inhibition to H. pylori and its urease. The obtained results were in agreement with the molecular docking analysis of compounds. The phytochemicals under investigation were found to be promising antibacterial agents. Moreover, the isolated compounds can be considered as a resource for searching novel anti-H. pylori agents possessing urease inhibition. Copyright © 2015 John Wiley & Sons, Ltd.
Biocolloids with ordered urease multilayer shells as enzymatic reactors.
Lvov, Y; Caruso, F
2001-09-01
The preparation of biocolloids with organized enzyme-containing multilayer shells for exploitation as colloidal enzymatic nanoreactors is described. Urease multilayers were assembled onto submicrometer-sized polystyrene spheres by the sequential adsorption of urease and polyelectrolyte, in a predetermined order, utilizing electrostatic interactions for layer growth. The catalytic activity of the biocolloids increased proportionally with the number of urease layers deposited on the particles, demonstrating that biocolloid particles with tailored enzymatic activities can be produced. It was further found that precoating the latex spheres with nanoparticles (40-nm silica or 12-nm magnetite) enhanced both the stability (with respect to adsorption) and enzymatic activity of the urease multilayers. The presence of the magnetite nanoparticle coating also provided a magnetic function that allowed the biocolloids to be easily and rapidly separated with a permanent magnet. The fabrication of such colloids opens new avenues for the application of bioparticles and represents a promising route for the creation of complex catalytic particles.
Bohner, Anne; Kojima, Soichi; Hajirezaei, Mohammad; Melzer, Michael; von Wirén, Nicolaus
2015-01-01
In plants, urea derives either from root uptake or protein degradation. Although large quantities of urea are released during senescence, urea is mainly seen as a short-lived nitrogen (N) catabolite serving urease-mediated hydrolysis to ammonium. Here, we investigated the roles of DUR3 and of urea in N remobilization. During natural leaf senescence urea concentrations and DUR3 transcript levels showed a parallel increase with senescence markers like ORE1 in a plant age- and leaf age-dependent manner. Deletion of DUR3 decreased urea accumulation in leaves, whereas the fraction of urea lost to the leaf apoplast was enhanced. Under natural and N deficiency-induced senescence DUR3 promoter activity was highest in the vasculature, but was also found in surrounding bundle sheath and mesophyll cells. An analysis of petiole exudates from wild-type leaves revealed that N from urea accounted for >13% of amino acid N. Urea export from senescent leaves further increased in ureG-2 deletion mutants lacking urease activity. In the dur3 ureG double insertion line the absence of DUR3 reduced urea export from leaf petioles. These results indicate that urea can serve as an early metabolic marker for leaf senescence, and that DUR3-mediated urea retrieval contributes to the retranslocation of N from urea during leaf senescence. PMID:25440717
Nerve Agent Sensing Biopolymer Wipe
2003-04-01
3. Urease and BChE (at two concentrations) activity as function of pH. ..... 10 Figure 4. Reaction scheme Agentase nerve agent sensor...11 Figure 5. Signal development in Agentase’s Traffic Light Sensor Construct.......... 11 Figure 6. Effect of BChE/ urease ...between two competing enzyme reactions. BChE catalyzed butyrylcholine hydrolysis results in the production of acid (decreasing pH) while urease - catalyzed
Structural basis of binding and rationale for the potent urease inhibitory activity of biscoumarins.
Lodhi, Muhammad Arif; Shams, Sulaiman; Choudhary, Muhammad Iqbal; Lodhi, Atif; Ul-Haq, Zaheer; Jalil, Saima; Nawaz, Sarfraz Ahmad; Khan, Khalid Mohammed; Iqbal, Sajid; Rahman, Atta-ur
2014-01-01
Urease belongs to a family of highly conserved urea-hydrolyzing enzymes. A common feature of these enzymes is the presence of two Lewis acid nickel ions and reactive cysteine residue in the active sites. In the current study we examined a series of biscoumarins 1-10 for their mechanisms of inhibition with the nickel containing active sites of Jack bean and Bacillus pasteurii ureases. All these compounds competitively inhibited Jack bean urease through interaction with the nickel metallocentre, as deduced from Michaelis-Menten kinetics, UV-visible absorbance spectroscopic, and molecular docking simulation studies. Some of the compounds behaved differently in case of Bacillus pasteurii urease. We conducted the enzyme kinetics, UV-visible spectroscopy, and molecular docking results in terms of the known protein structure of the enzyme. We also evaluated possible molecular interpretations for the site of biscoumarins binding and found that phenyl ring is the major active pharmacophore. The excellent in vitro potency and selectivity profile of the several compounds described combined with their nontoxicity against the human cells and plants suggest that these compounds may represent a viable lead series for the treatment of urease associated problems.
Structural Basis of Binding and Rationale for the Potent Urease Inhibitory Activity of Biscoumarins
Lodhi, Muhammad Arif; Choudhary, Muhammad Iqbal; Lodhi, Atif; Ul-Haq, Zaheer; Jalil, Saima; Nawaz, Sarfraz Ahmad; Khan, Khalid Mohammed; Iqbal, Sajid; Rahman, Atta-ur
2014-01-01
Urease belongs to a family of highly conserved urea-hydrolyzing enzymes. A common feature of these enzymes is the presence of two Lewis acid nickel ions and reactive cysteine residue in the active sites. In the current study we examined a series of biscoumarins 1–10 for their mechanisms of inhibition with the nickel containing active sites of Jack bean and Bacillus pasteurii ureases. All these compounds competitively inhibited Jack bean urease through interaction with the nickel metallocentre, as deduced from Michaelis-Menten kinetics, UV-visible absorbance spectroscopic, and molecular docking simulation studies. Some of the compounds behaved differently in case of Bacillus pasteurii urease. We conducted the enzyme kinetics, UV-visible spectroscopy, and molecular docking results in terms of the known protein structure of the enzyme. We also evaluated possible molecular interpretations for the site of biscoumarins binding and found that phenyl ring is the major active pharmacophore. The excellent in vitro potency and selectivity profile of the several compounds described combined with their nontoxicity against the human cells and plants suggest that these compounds may represent a viable lead series for the treatment of urease associated problems. PMID:25295281
Farrugia, Mark A.; Han, Linjie; Zhong, Yueyang; Boer, Jodi L.; Ruotolo, Brandon T.; Hausinger, Robert P.
2013-01-01
Maturation of the nickel-containing urease of Klebsiella aerogenes is facilitated by the UreD, UreF, and UreG accessory proteins along with the UreE metallo-chaperone. A fusion of the maltose binding protein and UreD (MBP-UreD) was co-isolated with UreF and UreG in a soluble complex possessing a (MBP-UreD:UreF:UreG)2 quaternary structure. Within this complex a UreF:UreF interaction was identified by chemical cross-linking of the amino termini of its two UreF protomers, as shown by mass spectrometry of tryptic peptides. A pre-activation complex was formed by the interaction of (MBP-UreD:UreF:UreG)2 and urease. Mass spectrometry of intact protein species revealed a pathway for synthesis of the urease pre-activation complex in which individual hetero-trimer units of the (MBP-UreD:UreF:UreG)2 complex bind to urease. Together, these data provide important new insights into the structures of protein complexes associated with urease activation. PMID:23797863
Doğaç, Yasemin Ispirli; Teke, Mustafa
2016-04-01
We reported natural polymer-conjugated magnetic featured urease systems for removal of urea effectively. The optimum temperature (20-60 °C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4-70 °C), pH stability (4.0-9.0), operational stability (0-250 min), reusability (18 times) and storage stability (24 weeks) were studied for characterisation of the urease-encapsulated biocompatible polymer-conjugated magnetic beads. Also, the surface groups and chemical structure of the magnetic beads were determined by using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The all urease-encapsulated magnetic beads protected their stability of 30-45 % relative activity at 70 °C. A significant increase was observed at their pH stability compared with the free urease for both acidic and alkaline medium. Besides this, their repeatability activity were approximately 100 % during 4(th) run. They showed residual activity of 50 % after 16 weeks. The importance of this work is enhancement stability of immobilised urease by biocompatible polymer-conjugated magnetic beads for the industrial application based on removal of urea.
Quiroz-Valenzuela, Soledad; Sukuru, Sai Chetan K.; Hausinger, Robert P.; Kuhn, Leslie A.; Heller, William T.
2008-01-01
Conformational changes of Klebsiella aerogenes urease apoprotein (UreABC)3 induced upon binding of the UreD and UreF accessory proteins were examined by a combination of flexibility analysis, mutagenesis, and small-angle x-ray scattering (SAXS). ProFlex analysis of urease provided evidence that the major domain of UreB can move in a hinge-like motion to account for prior chemical cross-linking results. Rigidification of the UreB hinge region, accomplished through a G11P mutation, reduced the extent of urease activation, in part by decreasing the nickel content of the mutant enzyme, and by sequestering a portion of the urease apoprotein in a novel activation complex that includes all of the accessory proteins. SAXS analyses of urease, (UreABC-UreD)3, and (UreABC-UreDF)3 confirm that UreD and UreF bind near UreB at the periphery of the (UreAC)3 structure. This study supports an activation model in which a domain-shifted UreB conformation in (UreABC-UreDF)3 allows CO2 and nickel ions to gain access to the nascent active site. PMID:18823937
NASA Technical Reports Server (NTRS)
Pedrozo, H. A.; Schwartz, Z.; Dean, D. D.; Harrison, J. L.; Campbell, J. W.; Wiederhold, M. L.; Boyan, B. D.
1997-01-01
To better understand the mechanisms that could modulate the formation of otoconia, calcium carbonate granules in the inner ear of vertebrate species, we examined statoconia formation in the gravity-sensing organ, the statocyst, of the gastropod mollusk Aplysia californica using an in vitro organ culture model. We determined the type of calcium carbonate present in the statoconia and investigated the role of carbonic anhydrase (CA) and urease in regulating statocyst pH as well as the role of protein synthesis and urease in statoconia production and homeostasis in vitro. The type of mineral present in statoconia was found to be aragonitic calcium carbonate. When the CA inhibitor, acetazolamide (AZ), was added to cultures of statocysts, the pH initially (30 min) increased and then decreased. The urease inhibitor, acetohydroxamic acid (AHA), decreased statocyst pH. Simultaneous addition of AZ and AHA caused a decrease in pH. Inhibition of urease activity also reduced total statoconia number, but had no effect on statoconia volume. Inhibition of protein synthesis reduced statoconia production and increased statoconia volume. In a previous study, inhibition of CA was shown to decrease statoconia production. Taken together, these data show that urease and CA play a role in regulating statocyst pH and the formation and maintenance of statoconia. CA produces carbonate ion for calcium carbonate formation and urease neutralizes the acid formed due to CA action, by production of ammonia.
Tanahashi, Toshihito; Kita, Masakazu; Kodama, Tadashi; Yamaoka, Yoshio; Sawai, Naoki; Ohno, Tomoyuki; Mitsufuji, Shoji; Wei, Ya-Ping; Kashima, Kei; Imanishi, Jiro
2000-01-01
Cytokines have been proposed to play an important role in Helicobacter pylori-associated gastroduodenal diseases, but the exact mechanism of the cytokine induction remains unclear. H. pylori urease, a major component of the soluble proteins extracted from bacterial cells, is considered to be one of the virulence factors for the inflammation in the gastric mucosa that is produced in H. pylori infection. However, the response of human gastric epithelial cells to the stimulation of urease has not been investigated. In the present study, we used human gastric epithelial cells in a primary culture system and examined whether H. pylori urease stimulates the gastric epithelial cells to induce proinflammatory cytokines by reverse transcription-PCR and enzyme-linked immunosorbent assay. First, by using peripheral blood mononuclear cells (PBMC) and a gastric cancer cell line (MKN-45 cells), we confirmed the ability of purified H. pylori urease to induce the production of proinflammatory cytokines. Furthermore, we demonstrated that the human gastric epithelial cells produced interleukin-6 (IL-6) and tumor necrosis factor alpha, but not IL-8, following stimulation with purified urease. The patterns of cytokine induction differed among human PBMC, MKN-45 cells, and human gastric epithelial cells. These results suggest that the human gastric epithelial cells contribute to the induction of proinflammatory cytokines by the stimulation of H. pylori urease, indicating that the epithelial cells were involved in the mucosal inflammation that accompanied H. pylori infection. PMID:10639431
Chipungu, Chifundo; Veltman, Jennifer A; Jansen, Perry; Chiliko, Peter; Lossa, Christina; Namarika, Dan; Benner, Blake; Hoffman, Risa M; Bristow, Claire C; Klausner, Jeffrey D
2015-01-01
The World Health Organization (WHO) recommends screening patients living with AIDS to detect and treat early cryptococcal infection. The authors evaluated a cryptococcal antigen (CrAg) screening and treatment program at an HIV/AIDS clinic in Malawi. Eligible patients were of age >18 years, had a CD4 count <100 cells/µL or WHO clinical HIV/AIDS stage III or IV. Of 552 patients who presented for care, 113 were eligible, and all (100%) agreed to CrAg screening. Of them, 2 (1.8%; 95% confidence interval [CI]: 0-4.2%) patients were CrAg positive. Among those with CD4 count <100 cells/µL or WHO stage IV, the CrAg prevalence was 3.5% (95% CI: 0-8.4%) and 5.0% (95% CI: 0-15%), respectively. A CrAg screening program was acceptable to new patients in a Malawian HIV/AIDS clinic. The CrAg prevalence for patients with CD4 count < 100 cells/µL and WHO stage IV was consistent with cost-effectiveness estimates. CrAg screening and treatment programs for patients living with AIDS should be expanded. © The Author(s) 2015.
Epidemiology of Meningitis in an HIV-Infected Ugandan Cohort
Rajasingham, Radha; Rhein, Joshua; Klammer, Kate; Musubire, Abdu; Nabeta, Henry; Akampurira, Andrew; Mossel, Eric C.; Williams, Darlisha A.; Boxrud, Dave J.; Crabtree, Mary B.; Miller, Barry R.; Rolfes, Melissa A.; Tengsupakul, Supatida; Andama, Alfred O.; Meya, David B.; Boulware, David R.
2015-01-01
There is limited understanding of the epidemiology of meningitis among human immunodeficiency virus (HIV)-infected populations in sub-Saharan Africa. We conducted a prospective cohort study of HIV-infected adults with suspected meningitis in Uganda, to comprehensively evaluate the etiologies of meningitis. Intensive cerebrospiral fluid (CSF) testing was performed to evaluate for bacterial, viral, fungal, and mycobacterial etiologies, including neurosyphilis,16s ribosomal DNA (rDNA) polymerase chain reaction (PCR) for bacteria, Plex-ID broad viral assay, quantitative-PCR for HSV-1/2, cytomegalovirus (CMV), Epstein–Barr virus (EBV), and Toxoplasma gondii; reverse transcription-PCR (RT-PCR) for Enteroviruses and arboviruses, and Xpert MTB/RIF assay. Cryptococcal meningitis accounted for 60% (188 of 314) of all causes of meningitis. Of 117 samples sent for viral PCR, 36% were EBV positive. Among cryptococcal antigen negative patients, the yield of Xpert MTB/RIF assay was 22% (8 of 36). After exclusion of cryptococcosis and bacterial meningitis, 61% (43 of 71) with an abnormal CSF profile had no definitive diagnosis. Exploration of new TB diagnostics and diagnostic algorithms for evaluation of meningitis in resource-limited settings remains needed, and implementation of cryptococcal diagnostics is critical. PMID:25385864
Epidemiology of meningitis in an HIV-infected Ugandan cohort.
Rajasingham, Radha; Rhein, Joshua; Klammer, Kate; Musubire, Abdu; Nabeta, Henry; Akampurira, Andrew; Mossel, Eric C; Williams, Darlisha A; Boxrud, Dave J; Crabtree, Mary B; Miller, Barry R; Rolfes, Melissa A; Tengsupakul, Supatida; Andama, Alfred O; Meya, David B; Boulware, David R
2015-02-01
There is limited understanding of the epidemiology of meningitis among human immunodeficiency virus (HIV)-infected populations in sub-Saharan Africa. We conducted a prospective cohort study of HIV-infected adults with suspected meningitis in Uganda, to comprehensively evaluate the etiologies of meningitis. Intensive cerebrospiral fluid (CSF) testing was performed to evaluate for bacterial, viral, fungal, and mycobacterial etiologies, including neurosyphilis,16s ribosomal DNA (rDNA) polymerase chain reaction (PCR) for bacteria, Plex-ID broad viral assay, quantitative-PCR for HSV-1/2, cytomegalovirus (CMV), Epstein-Barr virus (EBV), and Toxoplasma gondii; reverse transcription-PCR (RT-PCR) for Enteroviruses and arboviruses, and Xpert MTB/RIF assay. Cryptococcal meningitis accounted for 60% (188 of 314) of all causes of meningitis. Of 117 samples sent for viral PCR, 36% were EBV positive. Among cryptococcal antigen negative patients, the yield of Xpert MTB/RIF assay was 22% (8 of 36). After exclusion of cryptococcosis and bacterial meningitis, 61% (43 of 71) with an abnormal CSF profile had no definitive diagnosis. Exploration of new TB diagnostics and diagnostic algorithms for evaluation of meningitis in resource-limited settings remains needed, and implementation of cryptococcal diagnostics is critical. © The American Society of Tropical Medicine and Hygiene.
Kwizera, Richard; Akampurira, Andrew; Kandole, Tadeo K; Nielsen, Kirsten; Kambugu, Andrew; Meya, David B; Boulware, David R; Rhein, Joshua
2017-08-22
Quantitative culture is the most common method to determine the fungal burden and sterility of cerebrospinal fluid (CSF) among persons with cryptococcal meningitis. A major drawback of cultures is a long turnaround-time. Recent evidence demonstrates that live and dead Cryptococcus yeasts can be distinguished using trypan blue staining. We hypothesized that trypan blue staining combined with haemocytometer counting may provide a rapid estimation of quantitative culture count and detection of CSF sterility. To test this, we evaluated 194 CSF specimens from 96 HIV-infected participants with cryptococcal meningitis in Kampala, Uganda. Cryptococcal meningitis was diagnosed by CSF cryptococcal antigen (CRAG). We stained CSF with trypan blue and quantified yeasts using a haemocytometer. We compared the haemocytometer readings versus quantitative Cryptococcus CSF cultures. Haemocytometer counting with trypan blue staining had a sensitivity of 98% (64/65), while CSF cultures had a sensitivity of 95% (62/65) with reference to CSF CRAG for diagnostic CSF specimens. For samples that were positive in both tests, the haemocytometer had higher readings compared to culture. For diagnostic specimens, the median of log 10 transformed counts were 5.59 (n = 64, IQR = 5.09 to 6.05) for haemocytometer and 4.98 (n = 62, IQR = 3.75 to 5.79) for culture; while the overall median counts were 5.35 (n = 189, IQR = 4.78-5.84) for haemocytometer and 3.99 (n = 151, IQR = 2.59-5.14) for cultures. The percentage agreement with culture sterility was 2.4% (1/42). Counts among non-sterile follow-up specimens had a median of 5.38 (n = 86, IQR = 4.74 to 6.03) for haemocytometer and 2.89 (n = 89, IQR = 2.11 to 4.38) for culture. At diagnosis, CSF quantitative cultures correlated with haemocytometer counts (R 2 = 0.59, P < 0.001). At 7-14 days, quantitative cultures did not correlate with haemocytometer counts (R 2 = 0.43, P = 0.4). Despite a positive correlation, the haemocytometer counts with trypan blue staining did not predict the outcome of quantitative cultures in patients receiving antifungal therapy.
Synthesis and Testing of Polymers Susceptible to Degradation by Proteolytic Enzymes
1975-05-01
diisocyanatohexane, was biodegraded by the enzymes urease and rennin and also by two fungi. The tensile strength was greater than 10,000 psi, with high...Copolymer Degradation by Urease Enzyme Copolymer Degradation by Rennin Enzyme Degradation of Modified Gelatins: Undrawn Bulk Material Degradation of...bacteria. Results with urease enzyme did indicate significant degradation, as shown by the following tables: Table 1. Copolymer Degradation by
Integrated Optic Chemical-Biological Sensors
1999-02-26
response. In this process, an enzyme ( urease ) acts as a catalyst, converting a specific substrate (urea) to a specific product (ammonia). Implementing...a sandwich assay, a urease labeled antibody is introduced to a surface bound antigen. This complex is exposed to urea, generating ammonia. Using a...containing suspected agents. After agent binding to the antibody-coated beads, an appropriate enzyme labeled antibody (an antibody with a urease label
NASA Astrophysics Data System (ADS)
Sangeeta, S.; Ahmad, K.; Noorussabah, N.; Bharti, S.; Mishra, M. K.; Sharma, S. R.; Choudhary, M.
2018-03-01
[Ni(L)2] 1 and [Cu(L)2] 2 [HL = 2-((E)-(2-methoxyphenylimino)methyl)-4,6-dichlorophenol] Schiff base complexes have been successfully synthesized and were characterized by FT-IR, UV-Vis, fluorescence spectroscopy and thermogravimetric analysis. The crystal structures of the two complexes were determined through X-ray crystallography. Its inhibitory activity against Helicobacter pylori urease was evaluated in vitro and showed strong inhibitory activity against H. pylori urease compared with acetohydroxamic acid (IC50 = 42.12 μmolL-1), which is a positive reference. A docking analysis using the AutoDock 4.0 program could explain the inhibitory activity of the complex against urease.
Gull, Yasmeen; Rasool, Nasir; Noreen, Mnaza; Altaf, Ataf Ali; Musharraf, Syed Ghulam; Zubair, Muhammad; Nasim, Faiz-Ul-Hassan; Yaqoob, Asma; DeFeo, Vincenzo; Zia-Ul-Haq, Muhammad
2016-02-25
A new series of N-(6-arylbenzo[d]thiazol-2-yl)acetamides were synthesized by C-C coupling methodology in the presence of Pd(0) using various aryl boronic pinacol ester/acids. The newly synthesized compounds were evaluated for various biological activities like antioxidant, haemolytic, antibacterial and urease inhibition. In bioassays these compounds were found to have moderate to good activities. Among the tested biological activities screened these compounds displayed the most significant activity for urease inhibition. In urease inhibition, all compounds were found more active than the standard used. The compound N-(6-(p-tolyl)benzo[d]thiazol-2-yl)acetamide was found to be the most active. To understand this urease inhibition, molecular docking studies were performed. The in silico studies showed that these acetamide derivatives bind to the non-metallic active site of the urease enzyme. Structure-activity studies revealed that H-bonding of compounds with the enzyme is important for its inhibition.
Chouikha, Iman; Hinnebusch, B Joseph
2014-12-30
The arthropod-borne transmission route of Yersinia pestis, the bacterial agent of plague, is a recent evolutionary adaptation. Yersinia pseudotuberculosis, the closely related food-and water-borne enteric species from which Y. pestis diverged less than 6,400 y ago, exhibits significant oral toxicity to the flea vectors of plague, whereas Y. pestis does not. In this study, we identify the Yersinia urease enzyme as the responsible oral toxin. All Y. pestis strains, including those phylogenetically closest to the Y. pseudotuberculosis progenitor, contain a mutated ureD allele that eliminated urease activity. Restoration of a functional ureD was sufficient to make Y. pestis orally toxic to fleas. Conversely, deletion of the urease operon in Y. pseudotuberculosis rendered it nontoxic. Enzymatic activity was required for toxicity. Because urease-related mortality eliminates 30-40% of infective flea vectors, ureD mutation early in the evolution of Y. pestis was likely subject to strong positive selection because it significantly increased transmission potential.
Synthesis of 4-thiazolidinone analogs as potent in vitro anti-urease agents.
Rahim, Fazal; Zaman, Khalid; Ullah, Hayat; Taha, Muhammad; Wadood, Abdul; Javed, Muhammad Tariq; Rehman, Wajid; Ashraf, Muhammad; Uddin, Reaz; Uddin, Imad; Asghar, Humna; Khan, Aftab Ahmad; Khan, Khalid M
2015-12-01
4-Thiazolidinone analogs 1-20 were synthesized, characterized by (1)H NMR and EI-MS and investigated for urease inhibitory activity. All twenty (20) analogs exhibited varied degree of urease inhibitory potential with IC50 values 1.73-69.65μM, if compared with standard thiourea having IC50 value of 21.25±0.15μM. Among the series, eight derivatives 3, 6, 8, 10, 15, 17, 19, and 20 showed outstanding urease inhibitory potential with IC50 values of 9.34±0.02, 14.62±0.03, 8.43±0.01, 7.3±0.04, 2.31±0.002, 5.75±0.003, 8.81±0.005, and 1.73±0.001μM, respectively, which is better than the standard thiourea. The remaining analogs showed good to excellent urease inhibition. The binding interactions of these compounds were confirmed through molecular docking studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Chouikha, Iman; Hinnebusch, B. Joseph
2014-01-01
The arthropod-borne transmission route of Yersinia pestis, the bacterial agent of plague, is a recent evolutionary adaptation. Yersinia pseudotuberculosis, the closely related food-and water-borne enteric species from which Y. pestis diverged less than 6,400 y ago, exhibits significant oral toxicity to the flea vectors of plague, whereas Y. pestis does not. In this study, we identify the Yersinia urease enzyme as the responsible oral toxin. All Y. pestis strains, including those phylogenetically closest to the Y. pseudotuberculosis progenitor, contain a mutated ureD allele that eliminated urease activity. Restoration of a functional ureD was sufficient to make Y. pestis orally toxic to fleas. Conversely, deletion of the urease operon in Y. pseudotuberculosis rendered it nontoxic. Enzymatic activity was required for toxicity. Because urease-related mortality eliminates 30–40% of infective flea vectors, ureD mutation early in the evolution of Y. pestis was likely subject to strong positive selection because it significantly increased transmission potential. PMID:25453069
Identification Of Protein Vaccine Candidates Using Comprehensive Proteomic Analysis Strategies
2007-12-01
urease (URE) gene codes for a urea amidohydrolase protein that catalyzes urea hydrolysis. The protein was first isolated from C. immitis and...the Cu, Zn, Superoxide Dismutase (SOD), the Spherule Outer Wall glycoprotein (SOWgp), the T-Cell Reactive Protein (TCRP), and Urease (URE). It is...et al. 1997. Isolation and characterization of the urease gene (URE) from the pathogenic fungus Coccidioides immitis. Gene 198: 387-391. 54. Li, K
An antibody precipitating urease and its possible relation to gastric ulcer 1
Freisinger, F. S.
1963-01-01
An antibody precipitating urease was found in 171 out of 180 human sera. Data obtained on limited material (50 cases) suggest that the anti-urease titre is appreciably higher in the serum of patients suffering from gastric ulcer. This is a pointer towards a possible antigen-antibody mechanism in the genesis of chronic gastric ulceration. ImagesFIG. 1FIG. 2FIG. 3 PMID:14086040
Alkalizing Reactions Streamline Cellular Metabolism in Acidogenic Microorganisms
Arioli, Stefania; Ragg, Enzio; Scaglioni, Leonardo; Fessas, Dimitrios; Signorelli, Marco; Karp, Matti; Daffonchio, Daniele; De Noni, Ivano; Mulas, Laura; Oggioni, Marco; Guglielmetti, Simone; Mora, Diego
2010-01-01
An understanding of the integrated relationships among the principal cellular functions that govern the bioenergetic reactions of an organism is necessary to determine how cells remain viable and optimise their fitness in the environment. Urease is a complex enzyme that catalyzes the hydrolysis of urea to ammonia and carbonic acid. While the induction of urease activity by several microorganisms has been predominantly considered a stress-response that is initiated to generate a nitrogen source in response to a low environmental pH, here we demonstrate a new role of urease in the optimisation of cellular bioenergetics. We show that urea hydrolysis increases the catabolic efficiency of Streptococcus thermophilus, a lactic acid bacterium that is widely used in the industrial manufacture of dairy products. By modulating the intracellular pH and thereby increasing the activity of β-galactosidase, glycolytic enzymes and lactate dehydrogenase, urease increases the overall change in enthalpy generated by the bioenergetic reactions. A cooperative altruistic behaviour of urease-positive microorganisms on the urease-negative microorganisms within the same environment was also observed. The physiological role of a single enzymatic activity demonstrates a novel and unexpected view of the non-transcriptional regulatory mechanisms that govern the bioenergetics of a bacterial cell, highlighting a new role for cytosol-alkalizing biochemical pathways in acidogenic microorganisms. PMID:21152088
Huma, Tayyaba; Maryam, Arooma; qamar, Tahir ul
2014-01-01
In agriculture high urease activity during urea fertilization causes substantial environmental and economical problems by releasing abnormally large amount of ammonia into the atmosphere which leads to plant damage as well as ammonia toxicity. All over the world, urea is the most widely applied nitrogen fertilizer. Due to the action of enzyme urease; urea nitrogen is lost as volatile ammonia. For efficient use of nitrogen fertilizer, urease inhibitor along with the urea fertilizer is one of the best promising strategies. Urease inhibitors also provide an insight in understanding the mechanism of enzyme catalyzed reaction, the role of various amino acids in catalytic activity present at the active site of enzyme and the importance of nickel to this metallo enzyme. By keeping it in view, the present study was designed to dock three urease inhibitors namely Hydroquinone (HQ), Phenyl Phosphorodiamate (PPD) and N-(n-butyl) Phosphorothiocic triamide (NBPT) against Hydroquinone glucosyltransferase using molecular docking approach. The 3D structure of Hydroquinone glucosyltransferase was predicted using homology modeling approach and quality of the structure was assured using Ramachandran plot. This study revealed important interactions among the urease inhibitors and Hydroquinone glucosyltransferase. Thus, it can be inferred that these inhibitors may serve as future anti toxic constituent against plant toxins. PMID:24748751
Plant-Derived Urease Inhibitors as Alternative Chemotherapeutic Agents.
Hassan, Sherif T S; Žemlička, Milan
2016-07-01
Inhibition of the metalloenzyme urease has important pharmacologic applications in the field of antiulcer and antigastric cancer agents. Urease is involved in many serious infections caused by Helicobacter pylori in the gastric tract as well as by Proteus and related species in the urinary tract. Although numerous studies have described several novel urease inhibitors (UIs) used for the treatment of gastric and urinary infections, all these compounds have exhibited severe side effects, toxicity, and instability. Therefore, to overcome such problems, it is necessary to search for new sources of UIs, such as natural products, that provide reduced side effects, low toxicity, greater stability, and bioavailability. As limited studies have been conducted on plant-derived UIs, this paper aims to highlight and summarize the most promising compounds isolated and identified from plants, such as terpenoids, phenolic compounds, alkaloids, and other substances with inhibitory activities against plant and bacterial ureases; these are in vitro and in vivo studies with an emphasis on structure-activity relationship studies and types of inhibition that show high and promising levels of anti-urease activity. This will aid medicinal chemists in the design and synthesis of novel and pharmacologically potent UIs useful for the development of antiulcer drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties.
Somturk, Burcu; Yilmaz, Ismail; Altinkaynak, Cevahir; Karatepe, Aslıhan; Özdemir, Nalan; Ocsoy, Ismail
2016-05-01
Increasing numbers of materials have been extensively used as platforms for enzyme immobilization to enhance catalytic activity and stability. Although stability of enzyme was accomplished with immobilization approaches, activity of the most of the enzymes was declined after immobilization. Herein, we synthesize the flower shaped-hybrid nanomaterials called hybrid nanoflower (HNF) consisting of urease enzyme and copper ions (Cu(2+)) and report a mechanistic elucidation of enhancement in both activity and stability of the HNF. We demonstrated how experimental factors influence morphology of the HNF. We proved that the HNF (synthesized from 0.02mgmL(-1) urease in 10mM PBS (pH 7.4) at +4°C) exhibited the highest catalytic activity of ∼2000% and ∼4000% when stored at +4°C and RT, respectively compared to free urease. The highest stability was also achieved by this HNF by maintaining 96.3% and 90.28% of its initial activity within storage of 30 days at +4°C and RT, respectively. This dramatically enhanced activity is attributed to high surface area, nanoscale-entrapped urease and favorable urease conformation of the HNF. The exceptional catalytic activity and stability properties of HNF can be taken advantage of to use it in fields of biomedicine and chemistry. Copyright © 2015 Elsevier Inc. All rights reserved.
Plant growth regulators induced urease activity in Cucurbita pepo L. cotyledons.
El Shora, Hamed M; Ali, Awatif S
2016-03-01
This study is aimed to investigate the activity of urease (EC 3.5.1.5, urea amidohydrolase) that catalyzes the hydrolysis of urea in 5-day-old Cucurbita pepo cotyledons subjected to various concentrations of different growth regulators. The treatment of C. pepo cotyledons with different concentrations (100-600 μmol) of different auxins [indole-3-acetic acid (IAA), indole butyric acid (IBA), indole propionic acid (IPA) and naphthalene acetic acid (NAA)]; or with different concentrations (100-300 μmol) of different cytokinins [kinetin, zeatin and benzyladenine (6-BA)] resulted in a significant increase of urease activity, compared to control. The optimal effects were recorded for each of 500 μmol of IAA and 300 μmol of zeatin treatments. A gradual increase in urease activity was detected in cotyledons treated with various concentrations (0.2-1.0 mM) of 28-homobrassinolide (HBL), in relative to control. A substantial increase in urease activity was observed in cotyledons subjected to different concentrations of triazole (10-60 mg L(-1)), containing either triadimefon (TDM) or hexaconazole (HEX), compared to control. The combination of 300 μmol zeatin with any of protein inhibitors, namely 5-fluorouridine (FUrd), cordycepin and α-amanitin, resulted in the alleviation of their inhibitory effect on the urease activity.
Hassan, Sherif T S; Švajdlenka, Emil; Berchová-Bímová, Kateřina
2017-04-30
For decades, Hibiscus sabdariffa L. and its phytochemicals have been shown to possess a wide range of pharmacologic properties. In this study, aqueous extract of Hibiscus sabdariffa (AEHS) and its bioactive constituent protocatechuic acid (PCA), have been evaluated in vitro for their antiviral activity against HSV-2 clinical isolates and anti-enzymatic activity against urease. Antiherpetic activity was evaluated by the titer reduction assay in infected Vero cells, and cytotoxicity was evaluated by the neutral red dye-uptake method. Anti-urease activity was determined by a developed Electrospray Ionization-Mass Spectrometry (ESI-MS)-based assay. PCA showed potent anti-HSV-2 activity compared with that of acyclovir, with EC 50 values of 0.92 and 1.43 µg∙mL -1 , respectively, and selectivity indices > 217 and > 140, respectively. For the first time, AEHS was shown to exert anti-urease inhibition activity, with an IC 50 value of 82.4 µg∙mL -1 . This, combined with its safety, could facilitate its use in practical applications as a natural urease inhibitor. Our results present Hibiscus sabdariffa L. and its bioactive compound PCA as potential therapeutic agents in the treatment of HSV-2 infection and the treatment of diseases caused by urease-producing bacteria.
Syu, Mei-Jywan; Chang, Yu-Sung
2009-04-15
Potentio-dynamic polymerization of buffered urease and pyrrole monomer onto carbon papers was conducted to fabricate an immobilized urease electrode for measuring the urea concentration. To use carbon paper as the substrate for the electro-growth of polypyrrole matrix not only created sufficient adhesion of the conducting polymer layer but also provided superior entrapment of urease enzymes. The potentiometric response corresponding to ammonia, the product formed from the urease catalyzed urea reaction, was employed for the urea concentration measurement. Scanning electron microscopic photographs showed that the polypyrrole matrix deposited on the carbon papers appeared to be of a cylindrical nanotube shape. The charge density applied in the polymerization was found to affect the potentiometric response while the potential-scanning rate showed minor influence. The composite electrodes had high sensitivity in urea detection, showing a response linear to the logarithm of the urea concentration in the range of 10(-3) to 10 mM. The detection of urea solution prepared in water and buffer was also compared. Ionic effect on the sensing of urea solution was investigated. By comparing the data reported in literature, the urease/polypyrrole/carbon paper electrode developed in this work showed superior long-term stability and reusability. The detection of urea in serum was also well performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quiroz, Soledad; Sukuru, Sai Chetan K.; Hausinger, Robert P.
2008-01-01
Conformational changes of Klebsiella aerogenes urease apoprotein (UreABC){sub 3} induced upon binding of the UreD and UreF accessory proteins were examined by a combination of flexibility analysis, mutagenesis, and small-angle X-ray scattering (SAXS). ProFlex analysis of urease provided evidence that the major domain of UreB can move in a hinge-like motion to account for prior chemical cross-linking results. Rigidification of the UreB hinge region, accomplished through a G11P mutation, reduced the extent of urease activation, in part by decreasing the nickel content of the mutant enzyme, and by sequestering a portion of the urease apoprotein in a novel activation complexmore » that includes all of the accessory proteins. SAXS analyses of urease, (UreABC-UreD){sub 3}, and (UreABC-UreDF){sub 3} confirm that UreD and UreF bind near UreB at the periphery of the (UreAC){sub 3} structure. This study supports an activation model in which a domain-shifted UreB conformation in (UreABC-UreDF){sub 3} allows CO{sub 2} and nickel ions to gain access to the nascent active site.« less
Huma, Tayyaba; Maryam, Arooma; Qamar, Tahir Ul
2014-01-01
In agriculture high urease activity during urea fertilization causes substantial environmental and economical problems by releasing abnormally large amount of ammonia into the atmosphere which leads to plant damage as well as ammonia toxicity. All over the world, urea is the most widely applied nitrogen fertilizer. Due to the action of enzyme urease; urea nitrogen is lost as volatile ammonia. For efficient use of nitrogen fertilizer, urease inhibitor along with the urea fertilizer is one of the best promising strategies. Urease inhibitors also provide an insight in understanding the mechanism of enzyme catalyzed reaction, the role of various amino acids in catalytic activity present at the active site of enzyme and the importance of nickel to this metallo enzyme. By keeping it in view, the present study was designed to dock three urease inhibitors namely Hydroquinone (HQ), Phenyl Phosphorodiamate (PPD) and N-(n-butyl) Phosphorothiocic triamide (NBPT) against Hydroquinone glucosyltransferase using molecular docking approach. The 3D structure of Hydroquinone glucosyltransferase was predicted using homology modeling approach and quality of the structure was assured using Ramachandran plot. This study revealed important interactions among the urease inhibitors and Hydroquinone glucosyltransferase. Thus, it can be inferred that these inhibitors may serve as future anti toxic constituent against plant toxins.
Wiesner, Darin L.; Specht, Charles A.; Lee, Chrono K.; Smith, Kyle D.; Mukaremera, Liliane; Lee, S. Thera; Lee, Chun G.; Elias, Jack A.; Nielsen, Judith N.; Boulware, David R.; Bohjanen, Paul R.; Jenkins, Marc K.; Levitz, Stuart M.; Nielsen, Kirsten
2015-01-01
Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection. PMID:25764512
Wiesner, Darin L; Specht, Charles A; Lee, Chrono K; Smith, Kyle D; Mukaremera, Liliane; Lee, S Thera; Lee, Chun G; Elias, Jack A; Nielsen, Judith N; Boulware, David R; Bohjanen, Paul R; Jenkins, Marc K; Levitz, Stuart M; Nielsen, Kirsten
2015-03-01
Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection.
Short Communication - Urease inhibitory activity of Hippophae rhamnoids and Cassia fistula.
Khan, Barkat Ali; Akhtar, Naveed; Khan, Haroon; Mustafa, Ghulam; Niazi, Zahid Rasul; Menaa, Farid
2017-09-01
The rational use of plants as medicine is traced back over five epochs to ancient documents of early civilizations and is certainly as old as mankind. These medicines originally developed from crude drugs like tinctures and tinctures. Minimum 119 chemical substances are derived from 90 plant species and used all over the world as medicines, several of them containing compounds derived from or modelled after naturally occurring lead molecules and 74% of these derived from orthodox medicinal plants. 252 drugs (11%) are believed to be basic and essential by the WHO and are exclusively of plant origin. We have examined anti-urease activity of ethyl alcohol (Et-OH) and methyl alcohol (Me-OH) extracts of H. rhamnoides and Cassia fistula. Berthelot assay was used for the determination of anti-urease activity. The enzyme activity and inhibition was measured through catalytic effects of urease on urea by measuring change in absorbance in the absence and in the presence of inhibitor at 625nm using UV spectrophotometer. In the study, both Et-OH and Me-OH extracts of H. rhamnoides (91.69%±1.21) and C. fisstula (79.44%±0.55) showed stronger action against urease activity. An overview on the medicinal uses of H. rhamnoides and C. fisstula showing anti-urease activity may predict their possible alternative use for stomach problems. This study may help to explain the beneficial effects of these plants against stomach infection associated with pathogenic strains of H. pylori as Urease is the most prominent protein component of H. pylori.
Amar, Natalie; Peretz, Avi; Gerchman, Yoram
2017-02-01
Helicobacter pylori is the most frequent and persistent bacterial infection worldwide, and a risk factor for active gastritis, peptic ulcers, mucosa-associated lymphoid tissue lymphoma, and gastric cancer. Although combined antibiotics treatment is effective cases of antibiotic resistance are reported at an alarming rate. The H. pylori urease enzyme is essential for the bacteria establishment in the gastric mucosa, resulting urease inhibitors being sought after as effective and specific anti- H. pylori treatment. To-date, screening assays are based mostly on the analog plant urease enzyme but difference in properties of the plant and bacterial enzymes hamper these efforts. We have developed a screening assay based on recombinant Escherichia coli expressing native H. pylori urease, and validated this assay using thiourea and a methanolic extract of Pistacia atlantica. The assay demonstrated the thiourea and the extract to be potent urease inhibitors, with the extract having strong bacteriostatic activity against clinical isolates of H. pylori, including such with antibiotic resistance. The extract was also found to be neutral toward common probiotic bacteria, supporting its specificity and compatibility with digestive system desired microflora and suggesting it could be a good source for anti-H. pylori compounds. The assay has proven to be cheap, simple and native alternative to the plant enzyme based assay and could allow for high throughput screening for new urease inhibitors and could expedite screening and development of novel, better H. pylori remedies helping us to combat this infection. Copyright © 2016 Elsevier B.V. All rights reserved.
Urease Produced by Coccidioides posadasii Contributes to the Virulence of This Respiratory Pathogen
Mirbod-Donovan, Fariba; Schaller, Ruth; Hung, Chiung-Yu; Xue, Jianmin; Reichard, Utz; Cole, Garry T.
2006-01-01
Urease activity during in vitro growth in the saprobic and parasitic phases of Coccidioides spp. is partly responsible for production of intracellular ammonia released into the culture media and contributes to alkalinity of the external microenvironment. Although the amino acid sequence of the urease of Coccidioides posadasii lacks a predicted signal peptide, the protein is transported from the cytosol into vesicles and the central vacuole of parasitic cells (spherules). Enzymatically active urease is released from the contents of mature spherules during the parasitic cycle endosporulation stage. The endospores, together with the urease and additional material which escape from the ruptured parasitic cells, elicit an intense host inflammatory response. Ammonia production by the spherules of C. posadasii is markedly increased by the availability of exogenous urea found in relatively high concentrations at sites of coccidioidal infection in the lungs of mice. Direct measurement of the pH at these infection sites revealed an alkaline microenvironment. Disruption of the urease gene of C. posadasii resulted in a marked reduction in the amount of ammonia secreted in vitro by the fungal cells. BALB/c mice challenged intranasally with the mutant strain showed increased survival, a well-organized granulomatous response to infection, and better clearance of the pathogen than animals challenged with either the parental or the reconstituted (revertant) strain. We conclude that ammonia and enzymatically active urease released from spherules during the parasitic cycle of C. posadasii contribute to host tissue damage, which exacerbates the severity of coccidioidal infection and enhances the virulence of this human respiratory pathogen. PMID:16369007
Deutch, C E
2017-05-01
Urease is a key virulence factor for the Gram-positive urinary tract pathogen Staphylococcus saprophyticus and a potential target for antimicrobial therapy. The enzyme from S. saprophyticus is unusual in that it does not contain cysteine at the active site. The aims of this study were to test 14 over-the-counter plant preparations as inhibitors of this urease and to determine whether they can prevent the increase in pH that normally occurs in bacterial cultures containing urea. Urease activity was measured colorimetrically by the formation of ammonium ions. The green tea and Uva-Ursi preparations reduced urease activity in a soluble extract of S. saprophyticus by more than 75%. Two herbal mixtures were weakly inhibitory and reduced activity by about 25%, but the other products had little or no effect. The green tea and Uva-Ursi extracts also inhibited urease activity in whole cells by more than 75%. One of the herbal products (WishGarden UTI) showed some inhibition of urease activity but the other (UTI Clear) did not. The green tea and Uva-Ursi preparations prevented the increase in pH that normally occurs when S. saprophyticus is grown in an artificial urine medium, but this was due primarily to bacterial death. The WishGarden UTI preparation could partially delay the pH increase while allowing some cells to remain viable. These results indicate that only a few of the commercially available over-the-counter plant preparations commonly used for the treatment of urinary tract infections (UTIs) can inhibit the urease activity from S. saprophyticus. While over-the-counter plant preparations may be considered an alternative to traditional antibiotics for the treatment of UTIs, they should be used with caution and a product should be matched to the properties of the virulence factors of the bacterial pathogen involved. © 2017 The Society for Applied Microbiology.
Inhibition of urease activity in the urinary tract pathogen Staphylococcus saprophyticus.
Loes, A N; Ruyle, L; Arvizu, M; Gresko, K E; Wilson, A L; Deutch, C E
2014-01-01
Urease is a virulence factor for the Gram-positive urinary tract pathogen Staphylococcus saprophyticus. The susceptibility of this enzyme to chemical inhibition was determined using soluble extracts of Staph. saprophyticus strain ATCC 15305. Acetohydroxamic acid (Ki = 8.2 μg ml(-1) = 0.106 mmol l(-1) ) and DL-phenylalanine hydroxamic acid (Ki = 21 μg ml(-1) = 0.116 mmol l(-1) ) inhibited urease activity competitively. The phosphorodiamidate fluorofamide also caused competitive inhibition (Ki = 0.12 μg ml(-1) = 0.553 μmol l(-1) = 0.000553 mmol l(-1) ), but the imidazole omeprazole had no effect. Two flavonoids found in green tea extract [(+)-catechin hydrate (Ki = 357 μg ml(-1) = 1.23 mmol l(-1) ) and (-)-epigallocatechin gallate (Ki = 210 μg ml(-1) = 0.460 mmol l(-1) )] gave mixed inhibition. Acetohydroxamic acid, DL-phenylalanine hydroxamic acid, fluorofamide, (+)-catechin hydrate and (-)-epigallocatechin gallate also inhibited urease activity in whole cells of strains ATCC 15305, ATCC 35552 and ATCC 49907 grown in a rich medium or an artificial urine medium. Addition of acetohydroxamic acid or fluorofamide to cultures of Staph. saprophyticus in an artificial urine medium delayed the increase in pH that normally occurs during growth. These results suggest that urease inhibitors may be useful for treating urinary tract infections caused by Staph. saprophyticus. The enzyme urease is a virulence factor for the Gram-positive urinary tract pathogen Staphylococcus saprophyticus. We have shown that urease activity in cell-free extracts and whole bacterial cells is susceptible to inhibition by hydroxamates, phosphorodiamidates and flavonoids, but not by imidazoles. Acetohydroxamic acid and fluorofamide in particular can temporarily delay the increase in pH that occurs when Staph. saprophyticus is grown in an artificial urine medium. These results suggest that urease inhibitors may be useful as chemotherapeutic agents for the treatment of urinary tract infections caused by this micro-organism. © 2013 The Society for Applied Microbiology.
JPRS Report, Science & Technology, USSR: Life Sciences.
1987-06-23
Chestukhina, S.A. Tyurin, et al.; BIOKHIMIYA, No 6, Jun 86) 21 Some Properties of Urease Encapsulated in Liposomes CV.I. Zakrevskiy, N.G. Plekhanova...PROPERTIES OF UREASE ENCAPSULATED IN LIPOSOMES Kiev UKRAINSKIY BIOKHIMICHESKIY ZHURNAL in Russian Vol 58, No 4, Jul-Aug 86 (manuscript received 20 Jan 86) pp...plant urease incapsulated in liposomes—on the sub- strate hydrolysis kinetics—was investigated. The enzyme was selected by the ability of its urea
AFRRI Reports, Second Quarter 1994
1994-08-01
the antrum wete immediately placed in sterile 0.9% NaCl, kept on ice, coded, and then prepared for culture, smears, and urease assay by homogeniza...high urease specific activity (>1 |J.mol- min-1 ■ mg protein-1) plus high-affinity substrate binding (Mi- chaelis constant [K^\\ < 1 mmol/L),27 in at...031, respectively), and the characteristic bacterial growth with high-activity product.on of a urease with tight substrate binding " was found in
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, P.A.; Wilcox, D.E.; Scott, R.A.
The enzyme Jack bean urease has been identified as the first nickel-containing metalloenzyme to catalyze the hydrolysis of urea to carbon dioxide and ammonia. Competitive inhibitors such as 2-mercaptoethanol (2-ME) have been shown to dramatically affect the ground-state electronic properties of the urease Ni(II) ions. Results of preliminary structural investigations using x-ray absorption spectroscopy of the nickel salts of urease in its native and 2-ME bound forms are presented. The binding of 2-ME to Ni(II) through the thiolate sulfur is confirmed by the results of this study. 17 refs., 2 figs., 2 tabs.
Abdullah, Mohammed A A; Abuo-Rahma, Gamal El-Din A A; Abdelhafez, El-Shimaa M N; Hassan, Heba A; Abd El-Baky, Rehab M
2017-02-01
New hydroxamic acid, hydrazide and amide derivatives of ciprofloxacin in addition to their analogues of levofloxacin were prepared and identified by different spectroscopic techniques. Some of the prepared compounds revealed good activity against the urease splitting bacteria, Proteus mirabilis. The urease inhibitory activity was investigated using indophenol method. Most of the tested compounds showed better activity than the reference acetohydroxamic acid (AHA). The ciprofloxacin hydrazide derivative 3a and levofloxacin hydroxamic acid 7 experienced the highest activity (IC 50 =1.22μM and 2.20μM, respectively). Molecular docking study revealed high spontaneous binding ability of the tested compounds to the active site of urease. Copyright © 2016 Elsevier Inc. All rights reserved.
Adherence of urease-induced crystals to rat bladder epithelium.
Grenabo, L; Hedelin, H; Pettersson, S
1988-01-01
Apart from urine supersaturation with respect to struvite and calcium phosphate caused by urease-producing microorganisms, retention of formed crystals in the urinary tract is necessary for the formation of infection stones. This study was performed to investigate the role of the mucous coat lining the urothelium in the adhesion of urease-induced crystals. Removal of this glycosaminoglycan-containing layer from rat bladders increased the adherence of struvite and calcium phosphate crystals 5-6 times compared to that in intact rat bladders. Heparin completely restored the antiadherence capacity while chondroitin sulphate had a very weak restorative effect and human urine had no restorative effect. These findings support the view that the mucous coat is of importance in preventing retention of urease-induced crystals.
Yu, Xiao-Dan; Zheng, Rong-Bo; Xie, Jian-Hui; Su, Ji-Yan; Huang, Xiao-Qi; Wang, Yong-Hong; Zheng, Yi-Feng; Mo, Zhi-Zhun; Wu, Xiao-Li; Wu, Dian-Wei; Liang, Ye-er; Zeng, Hui-Fang; Su, Zi-Ren; Huang, Ping
2015-03-13
Baicalin and scutellarin are the principal bioactive components of Scutellaria baicalensis Georgi which has extensively been incorporated into heat-clearing and detoxification formulas for the treatment of Helicobacter pylori-related gastrointestinal disorders in traditional Chinese medicine. However, the mechanism of action remained to be defined. To explore the inhibitory effect, kinetics and mechanism of Helicobacter pylori urease (the vital pathogenetic factor for Helicobacter pylori infection) inhibition by baicalin and scutellarin, for their therapeutic potential. The ammonia formations, indicator of urease activity, were examined using modified spectrophotometric Berthelot (phenol-hypochlorite) method. The inhibitory effect of baicalin and scutellarin was characterized with IC50 values, compared to acetohydroxamic acid (AHA), a well known Helicobacter pylori urease inhibitor. Lineweaver-Burk and Dixon plots for the Helicobacter pylori urease inhibition of baicalin and scutellarin was constructed from the kinetic data. SH-blocking reagents and competitive active site Ni(2+) binding inhibitors were employed for mechanism study. Molecular docking technique was used to provide some information on binding conformations as well as confirm the inhibition mode. Moreover, cytotoxicity experiment using Gastric Epithelial Cells (GES-1) was evaluated. Baicalin and scutellarin effectively suppressed Helicobacter pylori urease in dose-dependent and time-independent manner with IC50 of 0.82±0.07 mM and 0.47±0.04 mM, respectively, compared to AHA (IC50=0.14±0.05 mM). Structure-activity relationship disclosed 4'-hydroxyl gave flavones an advantage to binding with Helicobacter pylori urease. Kinetic analysis revealed that the types of inhibition were non-competitive and reversible with inhibition constant Ki of 0.14±0.01 mM and 0.18±0.02 mM for baicalin and scutellarin, respectively. The mechanism of urease inhibition was considered to be blockage of the SH groups of Helicobacter pylori urease, since thiol reagents (L,D-dithiothreitol, L-cysteine and glutathione) abolished the inhibitory action and competitive active site Ni(2+) binding inhibitors (boric acid and sodium fluoride) carried invalid effect. Molecular docking study further supported the structure-activity analysis and indicated that baicalin and scutellarin interacted with the key residues Cys321 located on the mobile flap through S-H·π interaction, but did not interact with active site Ni(2+). Moreover, Baicalin (at 0.59-1.05 mM concentrations) and scutellarin (at 0.23-0.71 mM concentrations) did not exhibit significant cytotoxicity to GES-1. Baicalin and scutellarin were non-competitive inhibitors targeting sulfhydryl groups especially Cys321 around the active site of Helicobacter pylori urease, representing potential to be good candidate for future research as urease inhibitor for treatment of Helicobacter pylori infection. Furthermore, our work gave additional scientific support to the use of Scutellaria baicalensis in traditional Chinese medicine (TCM) to treat gastrointestinal disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Carter, Eric L.; Proshlyakov, Denis A.; Hausinger, Robert P.
2011-01-01
The micro-aerophilic pathogen Helicobacter mustelae synthesizes an oxygen-labile, iron-containing urease (UreA2B2) in addition to its standard nickel-containing enzyme (UreAB). An apoprotein form of the iron urease was prepared from ureA2B2-expressing recombinant Escherichia coli cells that were grown in minimal medium. Temperature-dependent circular dichroism measurements of holoprotein and apoprotein demonstrate an enhancement of thermal stability associated with the UreA2B2 metallocenter. In parallel to the situation reported for nickel activation of the standard urease apoprotein, incubation of UreA2B2 apoprotein with ferrous ions and bicarbonate generated urease activity in a portion of the nascent active sites. In addition, ferrous ions were shown to be capable of reductively activating the oxidized metallocenter. Resonance Raman spectra of the inactive, aerobically-purified UreA2B2 holoprotein exhibit vibrations at 495 cm−1 and 784 cm−1, consistent with νs and νas modes of an Fe(III)-O-Fe(III) center; these modes undergo downshifts upon binding of urea and were unaffected by changes in pH. The low-frequency mode also exhibits an isotopic shift from 497 to 476 cm−1 upon 16O/18O bulk water isotope substitution. Expression of subunits of the conventional nickel-containing Klebsiella aerogenes urease in cells grown in rich medium without nickel resulted in iron incorporation into a portion of the protein. The inactive iron-loaded species exhibited a UV-visible spectrum similar to oxidized UreA2B2 and was capable of being reductively activated under anoxic conditions. Results from these studies more clearly define the formation and unique properties of the iron urease metallocenter. PMID:22196017
Robertson, Emma J.; Wolf, Julie M.
2012-01-01
The fungal pathogen Cryptococcus neoformans can grow as a biofilm on a range of synthetic and prosthetic materials. Cryptococcal biofilm formation can complicate the placement of shunts used to relieve increased intracranial pressure in cryptococcal meningitis and can serve as a nidus for chronic infection. Biofilms are generally advantageous to pathogens in vivo, as they can confer resistance to antimicrobial compounds, including fluconazole and voriconazole in the case of C. neoformans. EDTA can inhibit biofilm formation by several microbes and enhances the susceptibility of biofilms to antifungal drugs. In this study, we evaluated the effect of sublethal concentrations of EDTA on the growth of cryptococcal biofilms. EDTA inhibited biofilm growth by C. neoformans, and the inhibition could be reversed by the addition of magnesium or calcium, implying that the inhibitory effect was by divalent cation starvation. EDTA also reduced the amount of the capsular polysaccharide glucuronoxylomannan shed into the biofilm matrix and decreased vesicular secretion from the cell, thus providing a potential mechanism for the inhibitory effect of this cation-chelating compound. Our data imply that the growth of C. neoformans biofilms requires the presence of divalent metals in the growth medium and suggest that cations are required for the export of materials needed for biofilm formation, possibly including extracellular vesicles. PMID:22941091
Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen
Santiago-Tirado, Felipe H.; Onken, Michael D.; Cooper, John A.; Klein, Robyn S.
2017-01-01
ABSTRACT The blood-brain barrier (BBB) protects the central nervous system (CNS) by restricting the passage of molecules and microorganisms. Despite this barrier, however, the fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that is estimated to kill over 600,000 people annually. Cryptococcal infection begins in the lung, and experimental evidence suggests that host phagocytes play a role in subsequent dissemination, although this role remains ill defined. Additionally, the disparate experimental approaches that have been used to probe various potential routes of BBB transit make it impossible to assess their relative contributions, confounding any integrated understanding of cryptococcal brain entry. Here we used an in vitro model BBB to show that a “Trojan horse” mechanism contributes significantly to fungal barrier crossing and that host factors regulate this process independently of free fungal transit. We also, for the first time, directly imaged C. neoformans-containing phagocytes crossing the BBB, showing that they do so via transendothelial pores. Finally, we found that Trojan horse crossing enables CNS entry of fungal mutants that cannot otherwise traverse the BBB, and we demonstrate additional intercellular interactions that may contribute to brain entry. Our work elucidates the mechanism of cryptococcal brain invasion and offers approaches to study other neuropathogens. PMID:28143979
Nyazika, Tinashe K; Hagen, Ferry; Meis, Jacques F; Robertson, Valerie J
2016-06-01
HIV-associated cryptococcal meningitis is commonly caused by Cryptococcus neoformans, whilst infections with Cryptococcus gattii sensu lato are historically rare. Despite available studies, little is known about the occurrence of C. gattii sensu lato infections among HIV-infected individuals in Zimbabwe. In a prospective cohort, we investigated the prevalence of C. gattii sensu lato meningitis among HIV-infected patients (n = 74) in Harare, Zimbabwe. Of the 66/74 isolates confirmed by molecular characterization, 16.7% (11/66) were found to be C. gattii sensu lato and 83.3% (55/66) C. neoformans sensu stricto. From one patient two phenotypically different C. gattii sensu lato colonies were cultured. The majority (n = 9/12; 75%) of the C. gattii sensu lato isolates were Cryptococcus tetragattii (AFLP7/VGIV), which has been an infrequently reported pathogen. In-hospital mortality associated with C. gattii sensu lato was 36.4%. Our data suggests that C. tetragattii (AFLP7/VGIV) is a more common cause of disease than C. gattii sensu stricto (genotype AFLP4/VGI) among patients with HIV-associated cryptococcal meningitis in Harare, Zimbabwe and possibly underreported in sub-Saharan Africa. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Dai, Yi-Ning; Huang, Hai-Jun; Song, Wen-Yuan; Tong, Yong-Xi; Yang, Dan-Hong; Wang, Ming-Shan; Huang, Yi-Cheng; Chen, Mei-Juan; Zhang, Jia-Jie; Ren, Ze-Ze; Zheng, Wei; Pan, Hong-Ying
2017-01-01
Tuberculous meningitis (TBM) is caused by tuberculosis infection of of the meninges, which are the membrane systems that encircle the brain, with a high morbidity and mortality rate. It is challenging to diagnose TBM among other types of meningitis, such as viral meningitis, bacterial meningitis and cryptococcal meningitis. We aimed to identify metabolites that are differentially expressed between TBM and the other types of meningitis by a global metabolomics analysis. The cerebrospinal fluids (CSF) from 50 patients with TBM, 17 with viral meningitis, 17 with bacterial meningitis, and 16 with cryptococcal meningitis were analyzed using ultra high performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS). A total of 1161 and 512 features were determined in positive and negative electrospray ionization mode, respectively. A clear separation between TBM and viral, bacterial or cryptococcal meningitis was achieved by orthogonal projections to latent structures-discriminate analysis (OPLS-DA) analysis. Potential metabolic markers and related pathways were identified, which were mainly involved in the metabolism of amino acid, lipids and nucleosides. In summary, differential metabolic profiles of the CSF exist between TBM and other types of meningitis, and potential metabolic biomarkers were identified to differentiate TBM from other types of meningitis. PMID:29245963
Cryptococcal meningitis with secondary cutaneous involvement in an immunocompetent host.
Tabassum, Saadia; Rahman, Atiya; Herekar, Fivzia; Masood, Sadia
2013-09-16
Cryptococcosis is a potentially fatal fungal disease caused by variants of Cryptococcus neoformans species. The respiratory tract is the usual portal of entry, with a peculiar predilection to invade the central nervous system. The skin can be secondarily involved in disseminated infection or be exceptionally involved as primary cutaneous infection by inoculation. The disease is mostly seen in immunodeficiency states. The diagnosis is frequently unsuspected in immunocompetent patients. We report a case of disseminated cryptococcal meningitis in an immunocompetent young adult. The cutaneous eruption prompted the accurate diagnosis. The patient, a 20-year-old female, had fever, cough, headache and intractable vomiting for the past two months and was being managed as a case of tuberculous meningitis. Two weeks after starting antituberculous treatment she developed umbilicated papules on the head and neck region. Necessary laboratory workup identified C. neoformans in cerebrospinal fluid (CSF) and skin specimens. The titers of cryptococcal antigen were measured in CSF and serum for diagnostic and prognostic purposes. Anti-fungal treatment resulted in regression of the cutaneous lesions and resolution of systemic complaints. The case highlights the need for high degree of suspicion, especially in healthy young adults, in the diagnosis of cryptococcosis. The cutaneous eruptions can be the first manifestation or a diagnostic clue of enormous significance.
PROCESS FOR CONTROLLING ANIMAL GROWTH RATE
Visek, W.J.
1962-04-10
A method of injecting growing animals with the enzyme urease subcutaneously in increasing dosages is described; this generates within the blood anti-urease which enters the intestinal tract and inhibits the enzymatic decomposition of urea by urease in that location. Ammonia, one of the decomposition products, is thereby kept from diffusing through the intestinal walls into the blood, and this greatly reduces the energy requirements of the liver for removing the ammonia, thereby increasing the feeding efficiency of the animals. (AEC)
Prevalence of Helicobacter Pylori in Gastric Fluid in the Surgical Patient
1998-05-01
potential in low pH (Tomb et al. 1997). Helicobacter pylori produces significant amounts of urease which cleaves urea into ammonia and carbon dioxide...The presence of urease is one of the biochemical markers used to help identify the presence of H. pylori. (Blaser, 1996). Helicobacter is a genus...gastric lumen it is immersed in acidic gastric juice where small amounts of urea are present. Helicobacter pylori produces urease which breaks down the
Prevalence of Helicobacter Pylori in Gastric Fluid in the Surgical Patient
1998-01-01
of five percent. This percentage closely matches the oxygen level found in the stomach’s mucous layer . It has an electropositive internal milieu which...amounts of urease which cleaves urea into ammonia and carbon dioxide. The presence of urease is one of the biochemical markers used to help identify...in acidic gastric juice where small amounts of urea are present. Helicobacter pylorl produces urease which breaks down the urea and produces ammonia
Liu, Wei; Tan, Zhoulin; Liu, Hai; Zeng, Zhiqin; Luo, Shuanghui; Yang, Huimin; Zheng, Lufeng; Xi, Tao; Xing, Yingying
2017-10-01
Gram-positive enhancer matrix particles (GEM) produced by Lactococcus lactis can enhance vaccine-induced immune response. However, the mechanism under which this adjuvant mounts the efficacy of orally administered vaccines remains unexplored. We used a prophylactic mice model to investigate the mechanism of GEM-adjuvanted vaccination. Helicobacter pylori urease-specific antibody response was monitored and detected in murine serum by ELISA. Urease-specific splenic cytokine profile was examined. Gastric inflammatory responses were measured on day 43 or 71 by quantitative real-time PCR, flow cytometry and histology. We found that GEM enhanced the efficiency of oral H. pylori vaccine by promoting innate immunity. The vaccine CUE-GEM composed of GEM particles and recombinant antigen CTB-UE provided protection of immunized mice against H. pylori insult. The protective response was associated with induction of postimmunization gastritis and local Th1/Th17 cell-medicated immune response. We showed that innate inflammatory responses including neutrophil chemokines CXCL1-2, neutrophils, and antimicrobial proteins S100A8 and MUC1 were significantly elevated. Within all infected mice, S100A8 and MUC1 levels were negatively correlated with H. pylori burden. Strikingly, mice receiving GEM also show reduction of colonization, possibly through natural host response pathways to recruit CD4 + T cells and promote S100A8 expression. These findings suggest that GEM-based vaccine may impact Th1/Th17 immunity to orchestrate innate immune response against H. pylori infection. © 2017 John Wiley & Sons Ltd.
Ponnuvel, Shobana; Subramanian, Balakumar; Ponnuraj, Karthe
2015-10-01
Urease is an enzyme produced by microbes such as bacteria, yeast and fungi. Plants also produce this enzyme. Urease action splits urea into ammonia and carbamate. This action is having important implications in agro-chemical, medicinal and environment. Therefore there is always a constant search for new and novel compounds which could inhibit this enzyme. Here we have studied the interaction of jack bean urease (JBU) with silver nanoparticle to analyze the influence of the resultant protein corona formation on the catalytic property of JBU. Several techniques like UV-Vis, gel shift assay and CD spectroscopy have been used to characterize this interaction. Urease activity assay suggests that the protein corona formation inhibits the enzymatic action of JBU. The loss of enzymatic action could be either due to the nanoparticle blocking the active site of JBU or a conformational change in the protein. The CD spectra of JBU-AgNP complexes clearly revealed significant changes in the secondary structural composition of the JBU and this could be the reason for the loss of enzymatic activity of JBU. This study revealed an interesting observation, where the interaction of AgNP with JBU resulted destabilization of hexameric nature of JBU which is otherwise highly stable. The results of the present study could be useful in the development of nanoparticle based material for inhibiting the ureolytic activity of ureases in different fields.
Moon, Bo Mi; Choi, Myung-Jin; Sultan, Md Tipu; Yang, Jae Won; Ju, Hyung Woo; Lee, Jung Min; Park, Hyun Jung; Park, Ye Ri; Kim, Soo Hyeon; Kim, Dong Wook; Lee, Min Chae; Jeong, Ju Yeon; Lee, Ok Joo; Sung, Gun Yong; Park, Chan Hum
2017-10-01
During the last decade, there has been a great advance in the kidney dialysis system by wearable artificial kidney (WAK) system for end-stage renal disease patients. Uremic solute removal and water regeneration system are the most prerequisite for WAK to work properly. In this study, we designed a filtering membrane system by using immobilized urease silk fibroin filter and evaluated its comparative effectiveness with a PVDF filtering system in peritoneal dialysate regeneration system by urea removal efficacy. We evaluated this membrane's characteristic and performances by conducting SEM-EDX analyze, water-binding abilities and porosity test, removal abilities of urea, cytotoxicity assay and enzyme activity assay. Under the condition for optimization of urease, the percentage removal of urea was about 40% and 60% in 50 mg/dL urea solution by urease immobilized PVDF and silk fibroin scaffolds, respectively. The batch experimental result showed that immobilized filter removed more than 50% of urea in 50 mg/dL urea solution. In addition silk fibroin with urease filter removed 90 percent of urea in the peritoneal dialysate after 24 h filtration. We suggest that silk fibroin with urease fixation filter can be used more effectively for peritoneal dialysate regeneration system, which have hydrophilic property and prolonged enzyme activity. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2136-2144, 2017. © 2016 Wiley Periodicals, Inc.
Adsorption of bovine serum albumin and urease by biochar
NASA Astrophysics Data System (ADS)
Wang, Wenjing; Chen, Lei; Zhang, Yipeng; Liu, Guocheng
2017-04-01
The application of biochar to soil improvement inevitably affects free soil enzymes. However, there is little information on the interaction of soil enzymes with biochar to our knowledge. We thus investigated the adsorption of bovine serum albumin (BSA) and urease onto two biochars from giant reed pyrolyzed at 300 and 600 °C (BCF300 and BCF600). The adsorption amount of BSA and urease on BCF300 and BCF600 was up to 45.6-209 mg/g and 75.3-808 mg/g, respectively, suggesting that the test proteins could be adsorbed onto the biochars effectively. The sorption rate of BSA and urease significantly decreased as the protein concentration increased, suggesting that their adsorption was nonlinear. For the same initial concentration (50 or 200 mg/L), the adsorption amount of BSA on the biochars was lower, only 25.9-60.5% of that of urease. The high specific surface area and hydrophobicity of the biochars may play important roles on the immobilization of the proteins by biochars. These findings will be helpful for better understanding the effects of biochar adding on the soil enzymes.
A role for bacterial urease in gut dysbiosis and Crohn’s disease
Ni, Josephine; Shen, Ting-Chin David; Chen, Eric Z.; Bittinger, Kyle; Bailey, Aubrey; Roggiani, Manuela; Sirota-Madi, Alexandra; Friedman, Elliot S.; Chau, Lillian; Lin, Andrew; Nissim, Ilana; Scott, Justin; Lauder, Abigail; Hoffmann, Christian; Rivas, Gloriany; Albenberg, Lindsey; Baldassano, Robert N.; Braun, Jonathan; Xavier, Ramnik J.; Clish, Clary B.; Yudkoff, Marc; Li, Hongzhe; Goulian, Mark; Bushman, Frederic D.; Lewis, James D.; Wu, Gary D.
2018-01-01
Gut dysbiosis during inflammatory bowel disease involves alterations in the gut microbiota associated with inflammation of the host gut. We used a combination of shotgun metagenomic sequencing and metabolomics to analyze fecal samples from pediatric patients with Crohn’s disease and found an association between disease severity, gut dysbiosis, and bacterial production of free amino acids. Nitrogen flux studies using 15N in mice showed that activity of bacterial urease, an enzyme that releases ammonia by hydrolysis of host urea, led to the transfer of murine host-derived nitrogen to the gutmicrobiota where it was used for amino acid synthesis. Inoculation of a conventional murine host (pretreated with antibiotics and polyethylene glycol) with commensal Escherichia coli engineered to express urease led to dysbiosis of the gut microbiota, resulting in a predominance of Proteobacteria species. This was associated with a worsening of immune-mediated colitis in these animals. A potential role for altered urease expression and nitrogen flux in the development of gut dysbiosis suggests that bacterial urease may be a potential therapeutic target for inflammatory bowel diseases. PMID:29141885
Iftikhar, Fatima; Ali, Yousaf; Ahmad Kiani, Farooq; Fahad Hassan, Syed; Fatima, Tabeer; Khan, Ajmal; Niaz, Basit; Hassan, Abbas; Latif Ansari, Farzana; Rashid, Umer
2017-10-01
In our previous report, we have identified 3,4-dihydropyrimidine scaffold as promising class of urease inhibitor in a structure based virtual screen (SBVS) experiment. In present study, we attempted to optimize the scaffold by varying C-5 substituent. The elongation of the C-5 chain was achieved by the reaction of C-5 ester with hydrazine leading to C-5 carbohydrazides which were further used as building blocks for the synthesis of fifteen new compounds having diverse moieties. A significantly higher in vitro urease inhibitory activity with IC 50 values in submicromolar range was observed for semithiocarbazide derivatives (4a-c, 0.58-0.79µM) and isatin Schiff base derivative 5a (0.23µM). Docking analysis suggests that the synthesized compounds were anchored well in the catalytic site and extending to the entrance of binding pocket and thus restrict the mobility of the flap by interacting with its key amino acid residues. The overall results of urease inhibition have shown that these compounds can be further optimized and developed as lead urease inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.
Saeed, Aamer; Larik, Fayaz Ali; Channar, Pervaiz Ali; Mehfooz, Haroon; Ashraf, Mohammad Haseeb; Abbas, Qamar; Hassan, Mubashir; Seo, Sung-Yum
2017-11-01
In this study, some new azomethine-triazole hybrids 5a-5l derived from N-benzoyl-L-phenylalanine were synthesized and characterized. The synthesized compounds showed first-rate, urease inhibition, and compounds 5c and 5e were found to be most effective inhibitors with 0.0137 ± 0.00082 μm and 0.0183 ± 0.00068 μm, respectively (thiourea 15.151 ± 1.27 μm). The kinetic mechanism of urease inhibition revealed the compounds 5c and 5e to be non-competitive inhibitors, whereas compounds 5d and 5j were found to be of mixed-type inhibitors. Docking studies also indicated better interaction patterns with urease enzyme. The results of enzyme inhibition, kinetic mechanism and molecular docking suggest that these compounds can serve as lead compounds in the design of more effective urease inhibitors. © 2017 John Wiley & Sons A/S.
Integrated therapy for HIV and cryptococcosis.
Srichatrapimuk, Sirawat; Sungkanuparph, Somnuek
2016-11-29
Cryptococcosis has been one of the most common opportunistic infections and causes of mortality among HIV-infected patients, especially in resource-limited countries. Cryptococcal meningitis is the most common form of cryptococcosis. Laboratory diagnosis of cryptococcosis includes direct microscopic examination, isolation of Cryptococcus from a clinical specimen, and detection of cryptococcal antigen. Without appropriate treatment, cryptococcosis is fatal. Early diagnosis and treatment is the key to treatment success. Treatment of cryptococcosis consists of three main aspects: antifungal therapy, intracranial pressure management for cryptococcal meningitis, and restoration of immune function with antiretroviral therapy (ART). Optimal integration of these three aspects is crucial to achieving successful treatment and reducing the mortality. Antifungal therapy consists of three phases: induction, consolidation, and maintenance. A combination of two drugs, i.e. amphotericin B plus flucytosine or fluconazole, is preferred in the induction phase. Fluconazole monotherapy is recommended during consolidation and maintenance phases. In cryptococcal meningitis, intracranial pressure rises along with CSF fungal burden and is associated with morbidity and mortality. Aggressive control of intracranial pressure should be done. Management options include therapeutic lumbar puncture, lumbar drain insertion, ventriculostomy, or ventriculoperitoneal shunt. Medical treatment such as corticosteroids, mannitol, and acetazolamide are ineffective and should not be used. ART has proven to have a great impact on survival rates among HIV-infected patients with cryptococcosis. The time to start ART in HIV-infected patients with cryptococcosis has to be deferred until 5 weeks after the start of antifungal therapy. In general, any effective ART regimen is acceptable. Potential drug interactions between antiretroviral agents and amphotericin B, flucytosine, and fluconazole are minimal. Of most potential clinical relevance is the concomitant use of fluconazole and nevirapine. Concomitant use of these two drugs should be cautious, and patients should be monitored closely for nevirapine-associated adverse events, including hepatotoxicity. Overlapping toxicities of antifungal and antiretroviral drugs and immune reconstitution inflammatory syndrome are not uncommon. Early recognition and appropriate management of these consequences can reinforce the successful integrated therapy in HIV-infected patients with cryptococcosis.
Dubbels, Marie; Granger, Dane; Theel, Elitza S
2017-08-01
Detection of Cryptococcus antigen (CrAg) is invaluable for establishing cryptococcal disease. Multiple different methods for CrAg detection are available, including a lateral flow assay (LFA). Despite excellent performance of the CrAg LFA, we have observed multiple cases of low-titer (≤1:5) positive CrAg LFA results in patients for whom cryptococcosis was ultimately excluded. To investigate the accuracy of low-titer positive CrAg LFA results, we performed chart reviews for all patients with positive CrAg LFA results between June 2014 and December 2016. During this period, serum and/or cerebrospinal fluid (CSF) samples from 3,969 patients were tested with the CrAg LFA, and 55 patients (1.5%) tested positive. Thirty-eight of those patients lacked a history of cryptococcal disease and were the focus of this study. Fungal culture or histopathology confirmed Cryptococcus infection for 20 patients (52.6%), and CrAg LFA titers in serum and CSF samples ranged from 1:5 to ≥1:2,560. For the 18 patients (47.4%) without culture or histopathological confirmation, the CrAg LFA results were considered true-positive results for 5 patients (titer range, 1:10 to ≥1:2,560), due to clinical improvement with targeted therapy and decreasing CrAg LFA titers. The remaining 13 patients had CrAg LFA titers of 1:2 ( n = 11) or 1:5 ( n = 2) and were ultimately diagnosed with an alternative condition ( n = 11) or began therapy for possible cryptococcosis without improvement ( n = 2), leading to an overall CrAg LFA false-positive rate of 34%. We recommend careful clinical correlation prior to establishing a diagnosis of cryptococcal infection for patients with first-time positive CrAg LFA titers of 1:2. Copyright © 2017 American Society for Microbiology.
Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen.
Santiago-Tirado, Felipe H; Onken, Michael D; Cooper, John A; Klein, Robyn S; Doering, Tamara L
2017-01-31
The blood-brain barrier (BBB) protects the central nervous system (CNS) by restricting the passage of molecules and microorganisms. Despite this barrier, however, the fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that is estimated to kill over 600,000 people annually. Cryptococcal infection begins in the lung, and experimental evidence suggests that host phagocytes play a role in subsequent dissemination, although this role remains ill defined. Additionally, the disparate experimental approaches that have been used to probe various potential routes of BBB transit make it impossible to assess their relative contributions, confounding any integrated understanding of cryptococcal brain entry. Here we used an in vitro model BBB to show that a "Trojan horse" mechanism contributes significantly to fungal barrier crossing and that host factors regulate this process independently of free fungal transit. We also, for the first time, directly imaged C. neoformans-containing phagocytes crossing the BBB, showing that they do so via transendothelial pores. Finally, we found that Trojan horse crossing enables CNS entry of fungal mutants that cannot otherwise traverse the BBB, and we demonstrate additional intercellular interactions that may contribute to brain entry. Our work elucidates the mechanism of cryptococcal brain invasion and offers approaches to study other neuropathogens. The fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that kills hundreds of thousands of people each year. One route that has been proposed for this brain entry is a Trojan horse mechanism, whereby the fungus crosses the blood-brain barrier (BBB) as a passenger inside host phagocytes. Although indirect experimental evidence supports this intriguing mechanism, it has never been directly visualized. Here we directly image Trojan horse transit and show that it is regulated independently of free fungal entry, contributes to cryptococcal BBB crossing, and allows mutant fungi that cannot enter alone to invade the brain. Copyright © 2017 Santiago-Tirado et al.
Enzyme activity in terrestrial soil in relation to exploration of the Martian surface
NASA Technical Reports Server (NTRS)
Ardakani, M. S.; Burns, R. G.; Mclaren, A. D.; Pukite, A. H.
1972-01-01
Urease activity in soil is persistent for long periods under low water, low temperature, and sterile regimes, and it was suggested that some form of enzyme-protective mechanism exists in soil. Dublin soil was extracted by sonication in water followed by adding a mixture of salts. Urease activity is associated with the organo-mineral complex thus obtained and is resistant to the activities of proteolytic enzymes. Clay free soil organic matter prepared subsequently by filtration also exhibits urease activity which is resistant to proteolysis. Models consisting of enzymes with bentonite and lignin were found to mimic this resistance to proteolysis. A model system is presented which suggests both the origin and location of soil ureases and a reason for their persistence in nature.
1995-06-01
putative virulence factors of H. pylori have been identified to date. These factors include a urease , flagella, a mucinase, a cytotoxin, and two adhesins...The urease is believed to aid in bacterial survival of the harsh gastric environment by generating ammonia from urea to neutralize the low pH (Segal...A Laboratory Manual. Cold Spring Harbor, New York. Cold Spring Harbor Laboratory Press. Hazell, S., A. Lee. 1986. Campylobacter pyloridis urease
Development of an On-Demand, Generic, Drug-Delivery System
1985-08-06
systems Two systems were evaluated for CO2 evolution. The first of these was an enzymatic system based on urea and urease . The second system was based...PHM 84 Research pH Meter was used te monitor pH. Solutions of various buffer concen- trations and pHs were prepared for each buffer system. One urease ...Measurement of carbon dio~ide production was accomplished using the apparatus shown in Figure 2. Carbon dioxide was generated by putting a urease tablet in the
NASA Astrophysics Data System (ADS)
Laghari, Abdul Hafeez; Memon, Shahabuddin; Nelofar, Aisha; Khan, Khalid M.; Yasmin, Arfa; Syed, Muhammad Noman; Aman, Afsheen
2010-02-01
A new flavanenol ( 1) was isolated from ethyl acetate fraction of roots of Alhagi maurorum (Fabaceae). Its structure was elucidated on the basis of spectroscopic evidence using elemental analysis, IR, MS, and NMR techniques. It was determined to be 5,6,7,8,2',3',5',6'-octamethoxyflavan-3-en-4'-ol. Experiments were carried out to evaluate its urease-inhibition activity. From the observations it has been noticed that flavanenol possesses remarkable urease-inhibitory effect.
A kinetic study of jack-bean urease denaturation by a new dithiocarbamate bismuth compound
NASA Astrophysics Data System (ADS)
Menezes, D. C.; Borges, E.; Torres, M. F.; Braga, J. P.
2012-10-01
A kinetic study concerning enzymatic inhibitory effect of a new bismuth dithiocarbamate complex on jack-bean urease is reported. A neural network approach is used to solve the ill-posed inverse problem arising from numerical treatment of the subject. A reaction mechanism for the urease denaturation process is proposed and the rate constants, relaxation time constants, equilibrium constants, activation Gibbs free energies for each reaction step and Gibbs free energies for the transition species are determined.
Recycling of urea associated with the host plant urease in the silkworm larvae, Bombyx mori.
Hirayama, C; Sugimura, M; Shinbo, H
1999-01-01
Urea concentration and urease activity in the midgut content were compared between larvae of the silkworm, Bombyx mori fed an artificial diet and those fed fresh mulberry leaves. A considerable amount of urea was found in the midgut content of the both larvae, however it was significantly lower in the larvae fed fresh mulberry leaves than in the larvae fed the artificial diet; average urea concentrations in the midgut content of the larvae fed fresh mulberry leaves and the artificial diet were 2.9 and 4.6 &mgr;mol/g, respectively. Urea in the midgut content seems to be secreted from the insect itself since the amount of urea in both diets were negligibly small. Urease activity was detected only in the midgut content of the larvae fed fresh mulberry leaves but not in other tissues of the larvae. On the other hand, no urease activity was detected in the midgut content of the larvae fed the artificial diet. Subsequently, to elucidate the role of mulberry leaf urease in the midgut lumen, larvae that had been reared on the artificial diet were switched to fresh mulberry leaves. The diet switch caused a rapid decrease in urea concentration in the midgut content and an increase in ammonia concentration in the midgut content, suggesting that secreted urea could be hydrolyzed to ammonia by mulberry leaf urease in the midgut lumen. Furthermore, to investigate the physiological significance of mulberry leaf urease on urea metabolism of the silkworm, (15)N-urea was injected into the hemocoel, and after 12 h the larvae were dissected for (15)N analysis. A considerable amount of (15)N was found to be incorporated into the silk-protein of the larvae fed fresh mulberry leaves, but there was little incorporation of (15)N into the silk-protein of the larvae fed the artificial diet. These data indicate that urea is converted into ammonia by the action of mulberry leaf urease in the midgut lumen and used as a nitrogen source in larvae fed mulberry leaves.
Mo, Zhi-Zhun; Wang, Xiu-Fen; Zhang, Xie; Su, Ji-Yan; Chen, Hai-Ming; Liu, Yu-Hong; Zhang, Zhen-Biao; Xie, Jian-Hui; Su, Zi-Ren
2015-07-16
The inhibitory effect of andrographolide sodium bisulphite (ASB) on jack bean urease (JBU) and Helicobacter pylori urease (HPU) was performed to elucidate the inhibitory potency, kinetics and mechanism of inhibition in 20 mM phosphate buffer, pH 7.0, 2 mM EDTA, 25 °C. The ammonia formations, indicator of urease activity, were examined using modified spectrophotometric Berthelot (phenol-hypochlorite) method. The inhibitory effect of ASB was characterized with IC50 values. Lineweaver-Burk and Dixon plots for JBU inhibition of ASB was constructed from the kinetic data. SH-blocking reagents and competitive active site Ni2+ binding inhibitors were employed for mechanism study. Molecular docking technique was used to provide some information on binding conformations as well as confirm the inhibition mode. The IC50 of ASB against JBU and HPU was 3.28±0.13 mM and 3.17±0.34 mM, respectively. The inhibition proved to be competitive and concentration- dependent in a slow-binding progress. The rapid formation of initial ASB-JBU complex with an inhibition constant of Ki=2.86×10(-3) mM was followed by a slow isomerization into the final complex with an overall inhibition constant of Ki*=1.33×10(-4) mM. The protective experiment proved that the urease active site is involved in the binding of ASB. Thiol reagents (L-cysteine and dithiothreithol) strongly protect the enzyme from the loss of enzymatic activity, while boric acid and fluoride show weaker protection, indicating that the active-site sulfhydryl group of JBU was potentially involved in the blocking process. Moreover, inhibition of ASB proved to be reversible since ASB-inactivated JBU could be reactivated by dithiothreitol application. Molecular docking assay suggested that ASB made contacts with the important sulfhydryl group Cys-592 residue and restricted the mobility of the active-site flap. ASB was a competitive inhibitor targeting thiol groups of urease in a slow-binding manner both reversibly and concentration-dependently, serving as a promising urease inhibitor for the treatment of urease-related diseases.
Saniee, Parastoo; Shahreza, Somayeh; Siavoshi, Farideh
2016-04-01
Proton-pump inhibitor (PPI) consumption does lead to false-negative results of Helicobacter pylori diagnostic tests such as biopsy culture and rapid urease test (RUT). Helicobacter pylori isolates from 112 dyspeptic patients with (56.5%) or without (43.5%) PPI consumption were recruited for examining the negative effects of omeprazole (OMP), lansoprazole (LPZ), and pantoprazole (PAN) on H. pylori viability, morphology, and urease, in vitro. The effect of a sublethal concentration of OMP on bacterial features and their recovery after removal of OMP was also assessed. Of 112 culture-positive gastric biopsies, 87.5% were RUT positive and 12.5% RUT negative. There was a significant correlation between negative RUT results and PPI consumption (p < .05). OMP (minimum inhibitory concentration, MIC 32 μg/mL) and LPZ (MIC 8 μg/mL) inhibited the growth of 78.6% of H. pylori isolates. OMP and LPZ inhibited urease of 90.3% of isolates between 0 and 40 minutes and 54.4% between 20 and 40 minutes, respectively. PAN did not inhibit H. pylori growth and urease. Three 3-day (9 days) consecutive subcultures of H. pylori on brucella blood agar (BBA) supplemented with OMP resulted in reduced bacterial viability (1+), compared with control (4+), change of spiral morphology to coccoid, and reduction in pink color intensity in urea agar. Bacterial growth (1+), morphology, and urease test did not improve after the first 3-day and second 3-day (6 days) subcultures on BBA. However, relative recovery occurred after the third 3-day (9 days) subculture and complete recovery was observed after the fourth 3-day (12 days) subculture, as confluent growth (4+), 100% spiral cells, and strong urease test. Proton-pump Inhibitors exert transient negative effects on H. pylori viability, morphology, and urease test. Accordingly, cessation of PPI consumption at least 12 days before endoscopy could help avoiding false-negative results of H. pylori diagnostic tests. © 2015 John Wiley & Sons Ltd.
Early onset primary pulmonary cryptococcosis in a renal transplant patient.
Tarai, B; Kher, V; Kotru, P; Sabhikhi, A; Barman, P; Rattan, A
2010-01-01
We report a case of primary pulmonary cryptococcosis in a post-renal transplant patient. A 65-year-old male renal transplant patient was admitted to the hospital with a low grade fever of 1 month, radiologically mimicking tuberculosis (TB). Broncho-alveolar fluid (BAL) shows capsulated yeast, and Cryptococcus neoformans was grown on culture supported by cytology and histopathological examination. Cryptococcal antigen was positive (32-fold) in serum and was negative in cerebrospinal fluid (CSF). The patient was given amphotericin B and 5-flucytosine and clinical improvement was seen on a weekly follow up. The serum cryptococcal antigen test might contribute to the early detection and treatment of pulmonary cryptococcosis. The results of antifungal susceptibility were aid in selecting the drug of choice for treatment.
Taha, Muhammad; Ullah, Hayat; Al Muqarrabun, Laode Muhammad Ramadhan; Khan, Muhammad Naseem; Rahim, Fazal; Ahmat, Norizan; Javid, Muhammad Tariq; Ali, Muhammad; Khan, Khalid Mohammed
2018-01-01
Bisindolylmethane thiosemicarbazides 1-18 were synthesized, characterized by 1 H NMR and ESI MS and evaluated for urease inhibitory potential. All analogs showed outstanding urease inhibitory potentials with IC 50 values ranging between 0.14 ± 0.01 to 18.50 ± 0.90 μM when compared with the standard inhibitor thiourea having IC 50 value 21.25 ± 0.90 μM. Among the series, analog 9 (0.14 ± 0.01 μM) with di-chloro substitution on phenyl ring was identified as the most potent inhibitor of urease. The structure activity relationship has been also established on the basis of binding interactions of the active analogs. These binding interactions were identified by molecular docking studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hanif, Muhammad; Shoaib, Khurram; Saleem, Muhammad; Hasan Rama, Nasim; Zaib, Sumera; Iqbal, Jamshed
2012-01-01
A series of eighteen 1,3,4-oxadiazole derivatives have been synthesized by treating aromatic acid hydrazides with carbon disulfide in ethanolic potassium hydroxide yielding potassium salts of 1,3,4-oxadiazoles. Upon neutralization with 1 N hydrochloric acid yielded crude crystals of 1,3,4-oxadiazoles, which were purified by recrystallization in boiling methanol. The synthesized 1,3,4-oxadiazoles derivatives were evaluated in vitro for their urease inhibitory activities, most of the investigated compounds were potent inhibitors of Jack bean urease. The molecular docking studies were performed by docking them into the crystal structure of Jack bean urease to observe the mode of interaction of synthesized compounds. The synthesized compounds were also tested for antibacterial and antioxidant activities and some derivatives exhibited very promising results. PMID:22934191
Sekizuka, Tsuyoshi; Yokoi, Taeko; Murayama, Ohoshi; Millar, B Cherie; Moore, Johne; Matsuda, Motoo
2005-08-01
A newly constructed primer pair (lari-Af/lari-Ar) designed to generate a product of the flagellin (flaA) gene for urease-negative Campylobacter lari produced a PCR amplicon of about 1700 bp for 16 isolates from 7 seagulls, 5 humans, 3 food animals and one mussel in Japan and Northern Ireland. Nucleotide sequencing and alignments of the flaA amplicons from these isolates demonstrated that the deduced amino acid sequences of the possible open reading frame were 564-572 amino acid residues in length with calculated molecular weights of 58,804 to 59,463. The deduced amino acid sequence similarity analysis strongly suggested that the ORF of the flaA from the 16 isolates showed 70-75% sequence similarities to those of Campylobacter jejuni isolates. The approximate Mr of the flagellin purified from some of the isolates of urease-negative C. lari was estimated to range from 59.6 to 61.8 kDa. Thus, flagellin from the isolates of urease-negative C. lari was shown for the first time to have a molecular size similar to those of C. jejuni and Campylobacter coli isolates, but to be different from the shorter flaA and smaller flagellin of urease-positive thermophilic Campylobacter (UPTC) isolates. Flagellins from C. lari spp., consisting of the two representative taxa of urease-negative C. lari and UPTC, thus show genotypic and phenotypic diversity.
Tian, Baomin; Wong, Wah Yau; Hegmann, Elda; Gaspar, Kim; Kumar, Praveen; Chao, Heman
2015-06-17
A novel immunoconjugate (L-DOS47) was developed and characterized as a therapeutic agent for tumors expressing CEACAM6. The single domain antibody AFAIKL2, which targets CEACAM6, was expressed in the Escherichia coli BL21 (DE3) pT7-7 system. High purity urease (HPU) was extracted and purified from Jack bean meal. AFAIKL2 was activated using N-succinimidyl [4-iodoacetyl] aminobenzoate (SIAB) as the cross-linker and then conjugated to urease. The activation and conjugation reactions were controlled by altering pH. Under these conditions, the material ratio achieved conjugation ratios of 8-11 antibodies per urease molecule, the residual free urease content was practically negligible (<2%), and high purity (>95%) L-DOS47 conjugate was produced using only ultradiafiltration to remove unreacted antibody and hydrolyzed cross-linker. L-DOS47 was characterized by a panel of analytical techniques including SEC, IEC, Western blot, ELISA, and LC-MS(E) peptide mapping. As the antibody-urease conjugate ratio increased, a higher binding signal was observed. The specificity and cytotoxicity of L-DOS47 was confirmed by screening in four cell lines (BxPC-3, A549, MCF7, and CEACAM6-transfected H23). BxPC-3, a CEACAM6-expressing cell line was found to be most susceptible to L-DOS47. L-DOS47 is being investigated as a potential therapeutic agent in human phase I clinical studies for nonsmall cell lung cancer.
Sun, Hui; Zhang, Jian Feng; Xu, Hua Sen; Chen, Guang Cai; Wang, Li Ping
2016-10-01
In October 2015, soil samples with different salinity were collected in a coast area in Yuyao, Zhejiang, and soil microbial community composition, soil catalase, urease activities, as well as soil physical and chemical properties were studied. The results showed that Nitrospira took absolute advantage in the bacterial community, and showed good correlations to total potassium. Cladosporium and Fusarium were predominant in the fungal community. Meanwhile, Cladosporium was related to soil urease and total nitrogen, and same correlation was found between Fusarium and soil urease. Catalase activity ranged from 3.52 to 4.56 mL·g -1 , 3.08 to 4.61 mL·g -1 and 5.81 to 6.91 mL·g -1 for soils with heavy, medium and weak salinity, respectively. Catalase activity increased with the soil layer deepening, which was directly related to soil total potassium, and indirectly related to pH, organic matter, total nitrogen and total phosphorus through total potassium. Soil urease activity ranged among 0.04 to 0.52 mg·g -1 , 0.08 to 1.07 mg·g -1 and 0.27 to 8.21 mg·g -1 for each saline soil, respectively. Urease activity decreased with soil layer deepening which was directly related to soil total nitrogen, and was indirectly related to pH, organic matter and total potassium through total nitrogen. The total phosphorus was the largest effect factor on the bacterial community CCA ordination, and the urease was on fungal community.
Baronetti, José L; Chiapello, Laura S; Garro, Ana P; Masih, Diana T
2009-08-01
Previous studies in our laboratory have shown that the subcutaneous pretreatment of rats with heat-killed cells (HKC) of Cryptococcus neoformans emulsified in complete Freund adjuvant (CFA) promotes protective immunity against an intraperitoneal challenge with C. neoformans. In contrast, subcutaneous treatment with the capsular polysaccharide (PSC) emulsified in CFA exacerbates the cryptococcal infection. The purpose of this study was to analyze the mechanisms involved in these phenomena. Adherent peritoneal cells from rats treated with HKC-CFA showed upregulated ED2, CD80, and CD86 expression; an increase in the level of production of anticryptococcal metabolites; and the enhanced production of interleukin-12 (IL-12) in comparison with the findings for cells from rats treated with CFA-phosphate-buffered saline (PBS). Adherent peritoneal cells from rats treated with PSC-CFA, however, also presented upregulated ED2, CD80, and CD86 expression compared to the level of expression for peritoneal cells from controls, but these cells showed an increase in arginase activity and decreased levels of production of IL-12 and tumor necrosis factor (TNF) compared with the activity and levels of production by peritoneal cells from CFA-PBS-treated rats. In addition, treatment with HKC-CFA resulted in a rise in the phagocytic and anticryptococcal activities of adherent peritoneal cells compared to those for control rats. However, adherent peritoneal cells from rats treated with PSC-CFA presented a reduction in anticryptococcal activity in comparison with that for cells from animals treated with CFA-PBS. These results show the differential activation between adherent peritoneal cells from HKC-CFA- and PSC-CFA-treated rats, with this differential activation at the primary site of infection possibly being responsible, at least in part, for the phenomena of protection and exacerbation observed in our model.
Blum, Faith C; Hu, Heidi Q; Servetas, Stephanie L; Benoit, Stéphane L; Maier, Robert J; Maroney, Michael J; Merrell, D Scott
2017-01-01
The nickel-containing enzymes of Helicobacter pylori, urease and hydrogenase, are essential for efficient colonization in the human stomach. The insertion of nickel into urease and hydrogenase is mediated by the accessory protein HypA. HypA contains an N-terminal nickel-binding site and a dynamic structural zinc-binding site. The coordination of nickel and zinc within HypA is known to be critical for urease maturation and activity. Herein, we test the hydrogenase activity of a panel of H. pylori mutant strains containing point mutations within the nickel- and zinc-binding sites. We found that the residues that are important for hydrogenase activity are those that were similarly vital for urease activity. Thus, the zinc and metal coordination sites of HypA play similar roles in urease and hydrogenase maturation. In other pathogenic bacteria, deletion of hydrogenase leads to a loss in acid resistance. Thus, the acid resistance of two strains of H. pylori containing a hydrogenase deletion was also tested. These mutant strains demonstrated wild-type levels of acid resistance, suggesting that in H. pylori, hydrogenase does not play a role in acid resistance.
Servetas, Stephanie L.; Benoit, Stéphane L.; Maier, Robert J.; Maroney, Michael J.
2017-01-01
The nickel-containing enzymes of Helicobacter pylori, urease and hydrogenase, are essential for efficient colonization in the human stomach. The insertion of nickel into urease and hydrogenase is mediated by the accessory protein HypA. HypA contains an N-terminal nickel-binding site and a dynamic structural zinc-binding site. The coordination of nickel and zinc within HypA is known to be critical for urease maturation and activity. Herein, we test the hydrogenase activity of a panel of H. pylori mutant strains containing point mutations within the nickel- and zinc-binding sites. We found that the residues that are important for hydrogenase activity are those that were similarly vital for urease activity. Thus, the zinc and metal coordination sites of HypA play similar roles in urease and hydrogenase maturation. In other pathogenic bacteria, deletion of hydrogenase leads to a loss in acid resistance. Thus, the acid resistance of two strains of H. pylori containing a hydrogenase deletion was also tested. These mutant strains demonstrated wild-type levels of acid resistance, suggesting that in H. pylori, hydrogenase does not play a role in acid resistance. PMID:28809946
Synthesis, structures and urease inhibitory activity of cobalt(III) complexes with Schiff bases.
Jing, Changling; Wang, Cunfang; Yan, Kai; Zhao, Kedong; Sheng, Guihua; Qu, Dan; Niu, Fang; Zhu, Hailiang; You, Zhonglu
2016-01-15
A series of new cobalt(III) complexes were prepared. They are [CoL(1)(py)3]·NO3 (1), [CoL(2)(bipy)(N3)]·CH3OH (2), [CoL(3)(HL(3))(N3)]·NO3 (3), and [CoL(4)(MeOH)(N3)] (4), where L(1), L(2), L(3) and L(4) are the deprotonated form of N'-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide, N'-(2-hydroxybenzylidene)-3-hydroxylbenzohydrazide, 2-[(2-dimethylaminoethylimino)methyl]-4-methylphenol, and N,N'-bis(5-methylsalicylidene)-o-phenylenediamine, respectively, py is pyridine, and bipy is 2,2'-bipyridine. The complexes were characterized by infrared and UV-Vis spectra, and single crystal X-ray diffraction. The Co atoms in the complexes are in octahedral coordination. Complexes 1 and 4 show effective urease inhibitory activities, with IC50 values of 4.27 and 0.35 μmol L(-1), respectively. Complex 2 has medium activity against urease, with IC50 value of 68.7 μmol L(-1). While complex 3 has no activity against urease. Molecular docking study of the complexes with Helicobacter pylori urease was performed. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Dynamics of aquic brown soil enzyme activities under no-tillage].
Liu, Xiumei; Li, Qi; Liang, Wenju; Jiang, Yong; Wen, Dazhong
2006-12-01
This paper studied the effects of no-tillage on the dynamics of invertase, urease and acid phosphatase activities in an aquic brown soil during maize growing season. The results showed that in 0 - 10 cm soil layer, the invertase activity at jointing, trumpet-shaped and ripening stages, urease activity at jointing and booting stages, and acid phosphatase activity at booting and ripening stages were significantly higher under no-tillage (NT) than under conventional tillage (CT). In 10 - 20 cm soil layer, the invertase activity at seedling, jointing and trumpet-shaped stages was significantly different between NT and CT, and the urease activity during whole growing season except at booting stage was significantly higher under NT than under CT. In 20 - 30 cm soil layer, the invertase activity during maize growing season was significantly lower under NT than under CT, and urease activity at seedling stage and acid phosphate activity at ripening stage were significantly different between these two treatments. Under NT, there was a decreasing trend of soil enzyme activities with increasing soil depth; while under CT, soil invertase and acid phosphatase activities increased, but urease activity decreased with increasing soil depth.
Arioli, Stefania; Della Scala, Giulia; Remagni, Maria Chiara; Stuknyte, Milda; Colombo, Stefano; Guglielmetti, Simone; De Noni, Ivano; Ragg, Enzio; Mora, Diego
2017-04-17
The proto-cooperation between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in the yogurt consortium enhances the growth rate and size of each population. In contrast, the independent growth of the two species in milk leads to a slower growth rate and a smaller population size. In this study, we report the first evidence that the urease activity of S. thermophilus increases the intracellular pH of L. delbrueckii in the absence of carbon source. However, in milk, in the presence of lactose the alkalizing effect of urea-derived ammonia was not detectable. Nevertheless, based on glucose consumption and lactic acid production at different pH in , L. delbrueckii showed an optimum of glycolysis and homolactic fermentation at alkaline pH values. In milk, we observed that ammonia provided by urea hydrolysis boosted lactic acid production in S. thermophilus and in L. delbrueckii when the species were grown alone or in combination. Therefore, we propose that urease activity acts as an altruistic cooperative trait, which is costly for urease-positive individuals but provides a local benefit because other individuals can take advantage of urease-dependent ammonia release. Copyright © 2016 Elsevier B.V. All rights reserved.
1992-09-01
dioxide, as shown by the following chemical reaction: 10 0 2NCOH2 N + H20 --- >( Urease )---> CO2 + 2NH3 (31:3). This hydrolysis reaction is accelerated in...soil environments and principally depends on the presence of a soil enzyme called urease (50:6). once the urea is hydrolyzed to ammonia, the ammonia is...temperature-dependent. Consequently, it might be expected that urease activity will be minimal during the winter when the ground is frozen (5016). This
Boric acid and boronic acids inhibition of pigeonpea urease.
Reddy, K Ravi Charan; Kayastha, Arvind M
2006-08-01
Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.
Zhang, Xuan; Ding, Jun-Shan; Liu, Yan-Ling; Gu, Yan; Han, Ke-Feng; Wu, Liang-Huan
2014-03-01
Abstract: A 2-year field experiment with a yellow-clay paddy soil in Zhejiang Province was conducted to study the effects of different planting measures combined with different fertilization practices on rice yield, soil nutrients, microbial biomass C and N and activities of urease, phosphatase, sucrase and hydrogen peroxidase at the maturity stage. Results showed that mechanical transplanting of rice with controlled release bulk blending (BB) fertilizer (BBMT) could achieve a significantly higher mean yield than traditional manual transplanting with traditional fertilizer (TFTM) and direct seeding with controlled release BB fertilizer (BBDS) by 16.3% and 27.0%, respectively. The yield by BBMT was similar to that by traditional manual transplanting with controlled release BB fertilizer (BBTM). Compared with TFTM, BBMT increased the contents of soil total-N, available N, available P and microbial biomass C, and the activities of urease, sucrase and hydrogen peroxidase by 21.5%, 13.6%, 41.2%, 27.1%, 50.0%, 22.5% and 46.2%, respectively. Therefore, BBMT, a simple high-efficiency rice cultivation method with use of a light-weighted mechanical transplanter, should be widely promoted and adopted.
A Semester-Long Project-Oriented Biochemistry Laboratory Based on Helicobacter pylori Urease
Farnham, Kate R.; Dube, Danielle H.
2015-01-01
Here we present the development of a thirteen-week project-oriented biochemistry laboratory designed to introduce students to foundational biochemical techniques and then enable students to perform original research projects once they have mastered these techniques. In particular, we describe a semester-long laboratory that focuses on a biomedically relevant enzyme – Helicobacter pylori (Hp) urease – the activity of which is absolutely required for the gastric pathogen Hp to colonize the human stomach. Over the course of the semester, students undertake a biochemical purification of Hp urease, assess the success of their purification, and investigate the activity of their purified enzyme. In the final weeks of the semester, students design and implement their own experiments to study Hp urease. This laboratory provides students with an understanding of the importance of biochemistry in human health while empowering them to engage in an active area of research. PMID:26173574
A semester-long project-oriented biochemistry laboratory based on Helicobacter pylori urease.
Farnham, Kate R; Dube, Danielle H
2015-01-01
Here we present the development of a 13 week project-oriented biochemistry laboratory designed to introduce students to foundational biochemical techniques and then enable students to perform original research projects once they have mastered these techniques. In particular, we describe a semester-long laboratory that focuses on a biomedically relevant enzyme--Helicobacter pylori (Hp) urease--the activity of which is absolutely required for the gastric pathogen Hp to colonize the human stomach. Over the course of the semester, students undertake a biochemical purification of Hp urease, assess the success of their purification, and investigate the activity of their purified enzyme. In the final weeks of the semester, students design and implement their own experiments to study Hp urease. This laboratory provides students with an understanding of the importance of biochemistry in human health while empowering them to engage in an active area of research. © 2015 The International Union of Biochemistry and Molecular Biology.
de Brito, Audrey Kalinouski; Nordi, Cristina S F; Caseli, Luciano
2015-11-01
Currently, many biological substances extracted from algae have received special attention because of their intrinsic characteristics, which can be applied to different areas of biotechnology. Therefore, in the current study, exopolysaccharides (EPS) from the microalgae Cryptomonas tetrapirenoidosa were employed as an aqueous subphase of a monolayer formed by the lipid dioctadecyldimethylammonium bromide (DODAB). The primary objective of this approach was to evaluate whether EPS could serve as a matrix for the immobilization of the enzyme urease to produce biosensors for urea. After DODAB was spread on the EPS solutions, urease was injected into the aqueous subphase, and the surface was submitted to compression using lateral barriers. The monolayers were subsequently characterized by surface pressure-area isotherms and polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). The results indicated that EPS enhanced the adsorption of the enzyme on the lipid monolayer. The mixed films were later transferred to solid supports using the Langmuir-Blodgett (LB) technique and were characterized by transfer ratio, PM-IRRAS, quartz crystal microbalance, and atomic force microscopy. The immobilization of the enzyme on solid supports was fundamental for providing an ideal geometrical accommodation of urease because the interaction of EPS with urease in solution causes a decrease of the relative activity of urease. Therefore, these LB films are promising for the fabrication of future urea biosensors, the architecture of which can be manipulated and enhanced at the molecular level. Copyright © 2015 Elsevier B.V. All rights reserved.
Pneumocystis Jiroveci Pneumonia
2008-10-01
patients with AIDS include CMV pneumonia, lymphocytic interstitial pneumonia, MAI infection, cryptococcal infection, Legionella , Mycoplasma...negative for Legionella , Streptococcus pneumoniae, and Cryptococcus neoformans. Pneumocystis direct fluorescent antibody (DFA) of the fluid was also
Siqueira Freitas, Douglas; Wurr Rodak, Bruna; Rodrigues Dos Reis, André; de Barros Reis, Fabio; Soares de Carvalho, Teotonio; Schulze, Joachim; Carbone Carneiro, Marco A; Guimarães Guilherme, Luiz R
2018-01-01
Nickel (Ni)-a component of urease and hydrogenase-was the latest nutrient to be recognized as an essential element for plants. However, to date there are no records of Ni deficiency for annual species cultivated under field conditions, possibly because of the non-appearance of obvious and distinctive symptoms, i.e., a hidden (or latent) deficiency. Soybean, a crop cultivated on soils poor in extractable Ni, has a high dependence on biological nitrogen fixation (BNF), in which Ni plays a key role. Thus, we hypothesized that Ni fertilization in soybean genotypes results in a better nitrogen physiological function and in higher grain production due to the hidden deficiency of this micronutrient. To verify this hypothesis, two simultaneous experiments were carried out, under greenhouse and field conditions, with Ni supply of 0.0 or 0.5 mg of Ni kg -1 of soil. For this, we used 15 soybean genotypes and two soybean isogenic lines (urease positive, Eu3 ; urease activity-null, eu3-a , formerly eu3-e1 ). Plants were evaluated for yield, Ni and N concentration, photosynthesis, and N metabolism. Nickel fertilization resulted in greater grain yield in some genotypes, indicating the hidden deficiency of Ni in both conditions. Yield gains of up to 2.9 g per plant in greenhouse and up to 1,502 kg ha -1 in field conditions were associated with a promoted N metabolism, namely, leaf N concentration, ammonia, ureides, urea, and urease activity, which separated the genotypes into groups of Ni responsiveness. Nickel supply also positively affected photosynthesis in the genotypes, never causing detrimental effects, except for the eu3-a mutant, which due to the absence of ureolytic activity accumulated excess urea in leaves and had reduced yield. In summary, the effect of Ni on the plants was positive and the extent of this effect was controlled by genotype-environment interaction. The application of 0.5 mg kg -1 of Ni resulted in safe levels of this element in grains for human health consumption. Including Ni applications in fertilization programs may provide significant yield benefits in soybean production on low Ni soil. This might also be the case for other annual crops, especially legumes.
Fluorescence Immunofiltration Assay of Brucella Melitensis.
1995-01-01
second urease -labelled antibody directed against fluorescein. The assay system is useful for measuring protein, virus and bacteria in aqueous...binding site for the signal-generating urease -labelled antibody, it is a highly fluorescent molecule and has signal-generating capacity of its own
Urease and serine protease inhibitory alkaloids from Isatis tinctoria.
Ahmad, Ijaz; Fatima, Itrat; Afza, Nighat; Malik, Abdul; Lodhi, Muhammad Arif; Choudhary, Muhammad Iqbal
2008-12-01
Phytochemical investigations on the alkaloidal fraction of the whole plant of the Isatis tinctoria led to the isolation of the alkaloids 1-6., 3'-Hydroxyepiglucoisatisin (3), Epiglucoisatisin (2) were found to be potent urease inhibitors in a concentration-dependent manner with IC(50) values 25.63 +/- 0.74, 37.01 +/- 0.41 and 31.72 +/- 0.93, 47.33 +/- 0.31 microM against Bacillus pasteurii & Jack bean urease, respectively. Compounds 3 and 2 also showed potent inhibitory potential against alpha-chymotrypsin with IC(50) values of 23.40 +/- 0.21 and 27.45 +/- 0.23 microM, respectively.
Unique mechanism of Helicobacter pylori for colonizing the gastric mucus.
Yoshiyama, H; Nakazawa, T
2000-01-01
Helicobacter pylori is a human gastric pathogen causing chronic infection. Urease and motility using flagella are essential factors for its colonization. Urease of H. pylori exists both on the surface and in the cytoplasm, and is involved in neutralizing gastric acid and in chemotactic motility. H. pylori senses the concentration gradients of urea in the gastric mucus layer, then moves toward the epithelial surface by chemotactic movement. The energy source for the flagella movement is the proton motive force. The hydrolysis of urea by the cytoplasmic urease possibly generates additional energy for the flagellar rotation in the mucus gel layer.
Johnson, Ryan C; Hu, Heidi Q; Merrell, D Scott; Maroney, Michael J
2015-04-01
Helicobacter pylori requires urease activity in order to survive in the acid environment of the human stomach. Urease is regulated in part by nickelation, a process that requires the HypA protein, which is a putative nickel metallochaperone that is generally associated with hydrogenase maturation. However, in H. pylori, HypA plays a dual role. In addition to an N-terminal nickel binding site, HypA proteins also contain a structural zinc site that is coordinated by two rigorously conserved CXXC sequences, which in H. pylori are flanked by His residues. These structural Zn sites are known to be dynamic, converting from Zn(Cys)4 centers at pH 7.2 to Zn(Cys)2(His)2 centers at pH 6.3 in the presence of Ni(ii) ions. In this study, mutant strains of H. pylori that express zinc site variants of the HypA protein are used to show that the structural changes in the zinc site are important for the acid viability of the bacterium, and that a reduction in acid viability in these variants can be traced in large measure to deficient urease activity. This in turn leads to a model that connects the Zn(Cys)4 coordination to urease maturation.
Solnick, Jay V.; Canfield, Don R.; Hansen, Lori M.; Torabian, Sima Z.
2000-01-01
Immunization with urease can protect mice from challenge with Helicobacter pylori, though results vary depending on the particular vaccine, challenge strain, and method of evaluation. Unlike mice, rhesus monkeys are naturally colonized with H. pylori and so may provide a better estimate of vaccine efficacy in humans. The purpose of this study was to examine the effectiveness of H. pylori urease as a vaccine in specific-pathogen (H. pylori)-free rhesus monkeys. Monkeys raised from birth and documented to be free of H. pylori were vaccinated with orogastric (n = 4) or intramuscular (n = 5) urease. Two control monkeys were sham vaccinated. All monkeys were challenged with a rhesus monkey-derived strain of H. pylori, and the effects of vaccination were evaluated by use of quantitative cultures of gastric tissue, histology, and measurement of serum immunoglobulin G (IgG) and salivary IgA. Despite a humoral immune response, all monkeys were infected after H. pylori challenge, and there were no differences in the density of colonization. Immunization with urease therefore does not fully protect against challenge with H. pylori. An effective vaccine to prevent H. pylori infection will require different or more likely additional antigens, as well as improvements in the stimulation of the host immune response. PMID:10768944
Inhibition of Urease by Disulfiram, an FDA-Approved Thiol Reagent Used in Humans.
Díaz-Sánchez, Ángel Gabriel; Alvarez-Parrilla, Emilio; Martínez-Martínez, Alejandro; Aguirre-Reyes, Luis; Orozpe-Olvera, Jesica Aline; Ramos-Soto, Miguel Armando; Núñez-Gastélum, José Alberto; Alvarado-Tenorio, Bonifacio; de la Rosa, Laura Alejandra
2016-11-26
Urease is a nickel-dependent amidohydrolase that catalyses the decomposition of urea into carbamate and ammonia, a reaction that constitutes an important source of nitrogen for bacteria, fungi and plants. It is recognized as a potential antimicrobial target with an impact on medicine, agriculture, and the environment. The list of possible urease inhibitors is continuously increasing, with a special interest in those that interact with and block the flexible active site flap. We show that disulfiram inhibits urease in Citrullus vulgaris (CVU), following a non-competitive mechanism, and may be one of this kind of inhibitors. Disulfiram is a well-known thiol reagent that has been approved by the FDA for treatment of chronic alcoholism. We also found that other thiol reactive compounds (l-captopril and Bithionol) and quercetin inhibits CVU. These inhibitors protect the enzyme against its full inactivation by the thiol-specific reagent Aldrithiol (2,2'-dipyridyl disulphide, DPS), suggesting that the three drugs bind to the same subsite. Enzyme kinetics, competing inhibition experiments, auto-fluorescence binding experiments, and docking suggest that the disulfiram reactive site is Cys592, which has been proposed as a "hinge" located in the flexible active site flap. This study presents the basis for the use of disulfiram as one potential inhibitor to control urease activity.
New monoclonal antibody-based test for Helicobacter pylori urease in gastric tissue.
Kim, Do Hyun; Kim, Ho Dong; Park, Hyeuk; Choi, Seung; Beom, Jae Won; Kim, Woo Jong; Park, Chang Kook; Lee, Young Jik; Park, Ju Young; Kim, Hyung Rag; Park, Chul; Joo, Young Eun; Jung, Young Do
2016-01-01
To evaluate a new monoclonal antibody for Helicobacter pylori urease in gastric tissue. A total of 107 volunteers were enrolled. All subjects underwent a (13)C-urea breath test and esophagogastroduodenoscopy. Gastric aspirates were analyzed for pH and ammonia. Six biopsy specimens in the gastric antrum and body were obtained for a rapid urease test and histology. The new monoclonal antibody-based H. pylori urease test (HPU) was performed to rapidly and qualitatively detect urease in two biopsy specimens. H. pylori infection was diagnosed in 73 subjects. The sensitivity and specificity of the HPU was 89% and 74%, respectively. The subjects were divided into two groups: one with true-positive and true-negative HPU results (n = 90) and the other with false-positive and false-negative HPU results (n = 17). Across all subjects, ammonia levels were 900.5 ± 646.7 and 604.3 ± 594.3 μmol/L (p > 0.05), and pH was 3.37 ± 1.64 and 2.82 ± 1.51 (p > 0.05). Sensitivity was higher in the presence of atrophic gastritis or intestinal metaplasia. HPU detected H. pylori in approximately 10 min. Gastric aspirate ammonia and pH levels did not affect the test results. Sensitivity was good in the presence of atrophic gastritis or intestinal metaplasia.
Poly(acrylonitrile)chitosan composite membranes for urease immobilization.
Gabrovska, Katya; Georgieva, Aneliya; Godjevargova, Tzonka; Stoilova, Olya; Manolova, Nevena
2007-05-10
(Poly)acrylonitrile/chitosan (PANCHI) composite membranes were prepared. The chitosan layer was deposited on the surface as well as on the pore walls of the base membrane. This resulted in the reduction of the pore size of the membrane and in an increase of their hydrophilicity. The pore structure of PAN and PANCHI membranes were determined by TEM and SEM analyses. It was found that the average size of the pore under a selective layer base PAN membrane is 7 microm, while the membrane coated with 0.25% chitosan shows a reduced pore size--small or equal to 5 microm and with 0.35% chitosan--about 4 microm. The amounts of the functional groups, the degree of hydrophilicity and transport characteristics of PAN/Chitosan composite membranes were determined. Urease was covalently immobilized onto all kinds of PAN/chitosan composite membranes using glutaraldehyde. Both the amount of bound protein and relative activity of immobilized urease were measured. The highest activity (94%) was measured for urease bound to PANCHI2 membranes (0.25% chitosan). The basic characteristics (pH(opt), pH(stability), T(opt), T(stability), heat inactivation and storage stability) of immobilized urease were determined. The obtained results show that the poly(acrylonitrile)chitosan composite membranes are suitable for enzyme immobilization.
Britz, Erika; Perovic, Olga; von Mollendorf, Claire; von Gottberg, Anne; Iyaloo, Samantha; Quan, Vanessa; Chetty, Verushka; Sriruttan, Charlotte; Ismail, Nazir A.; Nanoo, Ananta; Musekiwa, Alfred; Reddy, Carl; Viljoen, Karien; Cohen, Cheryl; Govender, Nelesh P.
2016-01-01
Introduction Meningitis is a major cause of mortality in southern Africa. We aimed to describe the aetiologies and frequencies of laboratory-confirmed fungal and bacterial meningitis among adults in a South African province with an 11% HIV prevalence, over 4 years. Methods We conducted a retrospective, observational study of secondary laboratory data, extracted on all cerebrospinal fluid (CSF) specimens submitted to public-sector laboratories in Gauteng province from 2009 through 2012. We calculated cause-specific incidence rates in the general and HIV-infected populations and used Poisson regression to determine if trends were significant. Results We identified 11,891 (10.7%) incident cases of meningitis from 110,885 CSF specimens. Cryptococcal meningitis, tuberculous meningitis and pneumococcal meningitis accounted for 62.3% (n = 7,406), 24.6% (n = 2,928) and 10.1% (n = 1,197) of cases over the four-year period. The overall incidence (cases per 100,000 persons) of cryptococcal meningitis declined by 23% from 24.4 in 2009 to 18.7 in 2012 (p <0.001) and decreased by 19% among HIV-infected persons from 178.2 to 144.7 (p <0.001). Tuberculous meningitis decreased by 40% from 11.3 in 2009 to 6.8 in 2012 (p <0.001) and decreased by 36% among HIV-infected persons from 54.4 to 34.9 (p <0.001). Pneumococcal meningitis decreased by 41% from 4.2 in 2009 to 2.5 in 2012 (p <0.001) and decreased by 38% among HIV-infected persons from 28.0 to 17.5 (p <0.001). Among cases of other bacterial meningitis (248/11,891, 2.1%), Neisseria meningitidis (n = 93), Escherichia coli (n = 72) and Haemophilus influenzae (n = 20) were the most common organisms identified. Conclusions In this high HIV-prevalence province, cryptococcal meningitis was the leading cause of laboratory-confirmed meningitis among adults. Over a 4-year period, there was a significant decrease in incidence of cryptococcal, tuberculous and pneumococcal meningitis. This coincided with expansion of the national antiretroviral treatment programme, enhanced tuberculosis control programme and routine childhood immunisation with pneumococcal conjugate vaccines. PMID:27669564
Britz, Erika; Perovic, Olga; von Mollendorf, Claire; von Gottberg, Anne; Iyaloo, Samantha; Quan, Vanessa; Chetty, Verushka; Sriruttan, Charlotte; Ismail, Nazir A; Nanoo, Ananta; Musekiwa, Alfred; Reddy, Carl; Viljoen, Karien; Cohen, Cheryl; Govender, Nelesh P
Meningitis is a major cause of mortality in southern Africa. We aimed to describe the aetiologies and frequencies of laboratory-confirmed fungal and bacterial meningitis among adults in a South African province with an 11% HIV prevalence, over 4 years. We conducted a retrospective, observational study of secondary laboratory data, extracted on all cerebrospinal fluid (CSF) specimens submitted to public-sector laboratories in Gauteng province from 2009 through 2012. We calculated cause-specific incidence rates in the general and HIV-infected populations and used Poisson regression to determine if trends were significant. We identified 11,891 (10.7%) incident cases of meningitis from 110,885 CSF specimens. Cryptococcal meningitis, tuberculous meningitis and pneumococcal meningitis accounted for 62.3% (n = 7,406), 24.6% (n = 2,928) and 10.1% (n = 1,197) of cases over the four-year period. The overall incidence (cases per 100,000 persons) of cryptococcal meningitis declined by 23% from 24.4 in 2009 to 18.7 in 2012 (p <0.001) and decreased by 19% among HIV-infected persons from 178.2 to 144.7 (p <0.001). Tuberculous meningitis decreased by 40% from 11.3 in 2009 to 6.8 in 2012 (p <0.001) and decreased by 36% among HIV-infected persons from 54.4 to 34.9 (p <0.001). Pneumococcal meningitis decreased by 41% from 4.2 in 2009 to 2.5 in 2012 (p <0.001) and decreased by 38% among HIV-infected persons from 28.0 to 17.5 (p <0.001). Among cases of other bacterial meningitis (248/11,891, 2.1%), Neisseria meningitidis (n = 93), Escherichia coli (n = 72) and Haemophilus influenzae (n = 20) were the most common organisms identified. In this high HIV-prevalence province, cryptococcal meningitis was the leading cause of laboratory-confirmed meningitis among adults. Over a 4-year period, there was a significant decrease in incidence of cryptococcal, tuberculous and pneumococcal meningitis. This coincided with expansion of the national antiretroviral treatment programme, enhanced tuberculosis control programme and routine childhood immunisation with pneumococcal conjugate vaccines.
Genome sequence of a urease-positive Campylobacter lari strain
USDA-ARS?s Scientific Manuscript database
Campylobacter lari is frequently isolated from shore birds and can cause illness in humans. Here we report the draft whole genome sequence of an urease-positive strain of C. lari that was isolated in estuarial water on the coast of Delaware, USA....
Hojjatie, Michael M; Abrams, Dean
2015-01-01
Currently there are three AOAC Official Methods for the determination of urea in fertilizers. AOAC Official Method 959.03, Urea in Fertilizers, Urease Method, First Action 1959, Final Action 1960, is based on the use of fresh commercial 1% urease solution, or preparation of such solution from urease powder in water, or from jack bean meal in water. AOAC Official Method 983.01, Urea and Methyleneureas (Water-Soluble) in Fertilizers, First Action 1983, Final Action 1984, is based on LC with a refractive index detector using water as the mobile phase and a C18 column. AOAC Official Method 2003.14, Determination of Urea in Water- Soluble Urea-Formaldehyde Fertilizer Products and in Aqueous Urea Solutions, First Action 2003, Final Action 2008, is based on LC with a UV detector using acetonitrile-water (85+15, v/v) mobile phase and a propylamine column. The urea method, AOAC Official Method 959.03, is very much dependent on the nature of the urease enzyme. The method was developed in 1960 and used for simple urea fertilizer solutions. With the advent of complex fertilizer compositions, especially with the class of liquid triazone fertilizers and water-soluble urea forms, the analyses of free urea in these fertilizers by the urease method is often inaccurate and inconsistent. AOAC Official Method 983.01 is not always reliable due to the interference of some of the components of these fertilizers, and due to the fact that the use of water as the mobile phase does not always separate the free urea from other components. AOAC Official Method 2003.14 was subjected to ring test studies that showed it could be used for the determination of "free urea" in these classes of fertilizers with good accuracy and precision.
Isolation and screening of L-asparaginase free of glutaminase and urease from fungal sp.
Doriya, Kruthi; Kumar, Devarai Santhosh
2016-12-01
L-Asparaginase is a chemotherapeutic drug used in the treatment of acute lymphoblastic leukaemia (ALL), a malignant disorder in children. L-Asparaginase helps in removing acrylamide found in fried and baked foods that is carcinogenic in nature. L-Asparaginase is present in plants, animals and microbes. Various microorganisms such as bacteria, yeast and fungi are generally used for the production of L-asparaginase as it is difficult to obtain the same from plants and animals. L-Asparaginase from bacteria causes anaphylaxis and other abnormal sensitive reactions due to low specificity to asparagine. Toxicity and repression caused by bacterial L-asparaginase shifted focus to eukaryotic microorganisms such as fungi to improve the efficacy of L-asparaginase. Clinically available L-asparaginase has glutaminase and urease that may lead to side effects during treatment of ALL. Current work tested 45 fungal strains isolated from soil and agricultural residues. Isolated fungi were tested using conventional plate assay method with two indicator dyes, phenol red and bromothymol blue (BTB), and results were compared. L-Asparaginase activity was measured by cultivating in modified Czapek-Dox medium. Four strains have shown positive result for L-asparaginase production with no urease or glutaminase activity, among these C 7 has high enzyme index of 1.57 and L-asparaginase activity of 33.59 U/mL. L-Asparaginase production by C 7 was higher with glucose as carbon source and asparagine as nitrogen source. This is the first report focussing on fungi that can synthesize L-asparaginase of the desired specificity. Since the clinical toxicity of L-asparaginase is attributed to glutaminase and urease activity, available evidence indicates variants negative for glutaminase and urease would provide higher therapeutic index than variants positive for glutaminase and urease.
Gumpu, Manju Bhargavi; Krishnan, Uma Maheswari; Rayappan, John Bosco Balaguru
2017-07-01
Intake of water contaminated with lead (Pb 2+ ) and mercury (Hg 2+ ) ions leads to various toxic effects and health issues. In this context, an amperometric urease inhibition-based biosensor was developed to detect Pb 2+ and Hg 2+ ions in water matrix. The modified Pt/CeO 2 /urease electrode was fabricated by immobilizing CeO 2 nanoparticles and urease using a semi-permeable adsorption layer of nafion. With urea as a substrate, urease catalytic activity was examined through cyclic voltammetry. Further, maximum amperometric inhibitive response of the modified Pt/CeO 2 /urease electrode was observed in the presence of Pb 2+ and Hg 2+ ions due to the urease inhibition at specific potentials of -0.03 and 0 V, respectively. The developed sensor exhibited a detection limit of 0.019 ± 0.001 μM with a sensitivity of 89.2 × 10 -3 μA μM -1 for Pb 2+ ions. A detection limit of 0.018 ± 0.003 with a sensitivity of 94.1 × 10 -3 μA μM -1 was achieved in detecting Hg 2+ ions. The developed biosensor showed a fast response time (<1 s) with a linear range of 0.5-2.2 and 0.02-0.8 μM for Pb 2+ and Hg 2+ ions, respectively. The modified electrode offered a good stability for 20 days with a good repeatability and reproducibility. The developed sensor was used to detect Pb 2+ and Hg 2+ ions contaminating Cauvery river water and the observed results were in good co-ordination with atomic absorption spectroscopic data.
[A Case of Hyperammonemia Caused by Urinary Tract Infection Due to Urease-Producing Bacteria].
Emura, Masahiro; Tsuchihashi, Kazunari; Shimizu, Yosuke; Kanamaru, Sojun; Matoba, Shun; Ito, Noriyuki
2016-08-01
We present here a rare case of hyperammonemia without liver dysfunction or portal-systemic shunting. The patient was an 80-year-old woman with a history of neurogenic bladder. She was admitted to a nearby hospital for vomiting, diarrhea and consciousness disturbance. Two days after admission, she was transferred to our hospital because of persistant consciousness disturbance. Laboratory data revealed hyperammonemia, but there was no indication of liver dysfunction. Moreover abdominal computed tomography did not reveal any clear finding of liver disease or portal-systemic shunting, but we noted multiple large bladder diverticula. Antibiotic therapy, tracheal intubation, ventilator management and bladder catheterization were performed. The patient's level of consciousness improved rapidly. Urinary culture revealed Bacteroides ureolyticus (urease-producing bacteria). The patient was diagnosed with hyperammonemia and a urinary tract infection due to urease-producing bacteria. Thus, physicians should be aware that obstructive urinary tract infections due to urease-producing bacteria can also be the cause of hyperammonemia.
Kumar, Sandeep; Kayastha, Arvind M
2010-10-01
Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.
Regulation of statoconia mineralization in Aplysia californica in vitro
NASA Technical Reports Server (NTRS)
Pedrozo, H. A.; Schwartz, Z.; Dean, D. D.; Wiederhold, M. L.; Boyan, B. D.
1996-01-01
Statoconia are calcium carbonate inclusions in the lumen of the gravity-sensing organ, the statocyst, of Aplysia californica. The aim of the present study was to examine the role of carbonic anhydrase and urease in statoconia mineralization in vitro. The experiments were performed using a previously described culture system (Pedrozo et al., J. Comp. Physiol. (A) 177:415-425). Inhibition of carbonic anhydrase by acetazolamide decreased statoconia production and volume, while inhibition of urease by acetohydroxamic acid reduced total statoconia number, but had no affect on statoconia volume. Inhibition of carbonic anhydrase initially increased and then decreased the statocyst pH, whereas inhibition of urease decreased statocyst pH at all times examined; simultaneous addition of both inhibitors also decreased pH. These effects were dose and time dependent. The results show that carbonic anhydrase and urease are required for statoconia formation and homeostasis, and for regulation of statocyst pH. This suggests that these two enzymes regulate mineralization at least partially through regulation of statocyst pH.
Sharma, Bhagwati; Mandani, Sonam; Sarma, Tridib K.
2013-01-01
Biomineralization is an extremely efficient biologically guided process towards the advancement of nano-bio integrated materials. As a prime module of the natural world, enzymes are expected to play a major role in biogenic growth of inorganic nanostructures. Although there have been developments in designing enzyme-responsive nanoparticle systems or generation of inorganic nanostructures in an enzyme-stimulated environment, reports regarding action of enzymes as reducing agents themselves for the growth of inorganic nanoparticles still remains elusive. Here we present a mechanistic investigation towards the synthesis of metal and metallic alloy nanoparticles using a commonly investigated enzyme, Jack bean urease (JBU), as a reducing as well as stabilizing agent under physiological conditions. The catalytic functionality of urease was taken advantage of towards the development of metal-ZnO core-shell nanocomposites, making urease an ideal bionanoreactor for synthesizing higher order nanostructures such as alloys and core- shell under ambient conditions. PMID:24018831
Paiva, Aline Lariessy Campos; Aguiar, Guilherme Brasileiro de; Lovato, Renan Maximilian; Zanetti, Arthus Vilar Deolindo; Panagopoulos, Alexandros Theodoros; Veiga, José Carlos Esteves
2017-11-06
Central nervous system (CNS) infectious diseases have high prevalence in developing countries and their proper diagnosis and treatment are very important for public health planning. Cryptococcus neoformans is a fungus that may cause several CNS manifestations, especially in immunocompromised patients. Cryptococcal meningitis is the most common type of involvement. Mass-effect lesions are uncommon: they are described as cryptococcomas and their prevalence is even lower among immunocompetent patients. The aim here was to report an extremely rare case of cryptococcoma causing a mass effect and mimicking a brain tumor in an immunocompetent patient. The literature on CNS cryptococcal infections was reviewed with emphasis on cryptococcomas. Clinical, surgical and radiological data on a female patient with this rare presentation of cryptococcoma mimicking a brain tumor are described. A 54-year-old female patient presented to the emergency department with a rapid-onset progressive history of confusion and completely dependency for basic activities. Neuroimaging showed a left occipital lesion and neurosurgical treatment was proposed. From histopathological evaluation, a diagnosis of cryptococcoma was established. She received clinical support with antifungals, but despite optimal clinical treatment, her condition evolved to death. Cryptococcal infections have several forms of presentation and, in immunocompetent patients, their manifestation may be even more different. Cryptococcoma is an extremely rare presentation in which proper surgical and clinical treatment should be instituted as quickly as possible, but even so, there is a high mortality rate.
Immunotherapy of Cryptococcus infections.
Antachopoulos, C; Walsh, T J
2012-02-01
Despite appropriate antifungal treatment, the management of cryptococcal disease remains challenging, especially in immunocompromised patients, such as human immunodeficiency virus-infected individuals and solid organ transplant recipients. During the past two decades, our knowledge of host immune responses against Cryptococcus spp. has been greatly advanced, and the role of immunomodulation in augmenting the response to infection has been investigated. In particular, the role of 'protective' Th1 (tumour necrosis factor-α, interferon (IFN)-γ, interleukin (IL)-12, and IL-18) and Th17 (IL-23 and IL-17) and 'non-protective' Th2 (IL-4, IL-10, and IL-13) cytokines has been extensively studied in vitro and in animal models of cryptococcal infection. Immunomodulation with monoclonal antibodies against the capsular polysaccharide glucuronoxylomannan, glucosylceramides, melanin and β-glucan and, lately, with radioimmunotherapy has also yielded promising results in animal models. As a balance between sufficiently protective Th1 responses and excessive inflammation is important for optimal outcome, the effect of immunotherapy may range from beneficial to deleterious, depending on factors related to the host, the infecting organism, and the immunomodulatory regimen. Clinical evidence supporting immunomodulation in patients with cryptococcal infection remains too limited to allow firm recommendations. Limited human data suggest a role for IFN-γ. Identification of surrogate markers characterizing patients' immunological status could possibly suggest candidate patients for immunotherapy and the type of immunomodulation to be administered. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.
Parkes-Ratanshi, R; Achan, B; Kwizera, R; Kambugu, A; Meya, D; Denning, D W
2015-10-01
The HIV epidemic in Uganda has highlighted Cryptococcus and Candida infections as important opportunistic fungal infections. However, the burden of other fungal diseases is not well described. We aimed to estimate the burden of fungal infections in Uganda. All epidemiological papers of fungal diseases in Uganda were reviewed. Where there is no Ugandan data, global or East African data were used. Recurrent vaginal candidiasis is estimated to occur in 375 540 Uganda women per year; Candida in pregnant women affects up to 651,600 women per year. There are around 45,000 HIV-related oral and oesophageal candidosis cases per year. There are up to 3000 cases per year of post-TB chronic pulmonary aspergillosis. There are an estimated 40,392 people with asthma-related fungal conditions. An estimated 1,300,000 cases of tinea capitis occur in school children yearly in Uganda. There are approximately 800 HIV-positive adults with Pneumocystis jirovecii pneumonia (PJP) annually and up to 42 000 children with PJP per year. There are an estimated 4000 cryptococcal cases annually. There are an estimated 2.5 million fungal infections per year in Uganda. Cryptococcus and PJP cause around 28,000 deaths in adults and children per year. We propose replicating the model of research around cryptococcal disease to investigate and development management strategies for other fungal diseases in Uganda. © 2015 Blackwell Verlag GmbH.
Perfect, John R.; Dismukes, William E.; Dromer, Francoise; Goldman, David L.; Graybill, John R.; Hamill, Richard J.; Harrison, Thomas S.; Larsen, Robert A.; Lortholary, Olivier; Nguyen, Minh-Hong; Pappas, Peter G.; Powderly, William G.; Singh, Nina; Sobel, Jack D.; Sorrell, Tania C.
2018-01-01
Cryptococcosis is a global invasive mycosis associated with significant morbidity and mortality. These guidelines for its management have been built on the previous Infectious Diseases Society of America guidelines from 2000 and include new sections. There is a discussion of the management of cryptococcal meningoencephalitis in 3 risk groups: (1) human immunodeficiency virus (HIV)–infected individuals, (2) organ transplant recipients, and (3) non–HIV-infected and nontransplant hosts. There are specific recommendations for other unique risk populations, such as children, pregnant women, persons in resource-limited environments, and those with Cryptococcus gattii infection. Recommendations for management also include other sites of infection, including strategies for pulmonary crypto-coccosis. Emphasis has been placed on potential complications in management of cryptococcal infection, including increased intracranial pressure, immune reconstitution inflammatory syndrome (IRIS), drug resistance, and crypto-coccomas. Three key management principles have been articulated: (1) induction therapy for meningoencephalitis using fungicidal regimens, such as a polyene and flucytosine, followed by suppressive regimens using fluconazole; (2) importance of early recognition and treatment of increased intracranial pressure and/or IRIS; and (3) the use of lipid formulations of amphotericin B regimens in patients with renal impairment. Cryptococcosis remains a challenging management issue, with little new drug development or recent definitive studies. However, if the diagnosis is made early, if clinicians adhere to the basic principles of these guidelines, and if the underlying disease is controlled, then cryptococcosis can be managed successfully in the vast majority of patients. PMID:20047480
Rashid, Umer; Rahim, Fazal; Taha, Muhammad; Arshad, Muhammad; Ullah, Hayat; Mahmood, Tariq; Ali, Muhammad
2016-06-01
Sixteen 4-hydroxycoumarin derivatives were synthesized, characterized through EI-MS and (1)H NMR and screened for urease inhibitory potential. Three compounds exhibited better urease inhibition than the standard inhibitor thiourea (IC50=21±0.11μM) while other four compounds exhibited good to moderate inhibition with IC50 values between 29.45±1.1μM and 69.53±0.9μM. Structure activity relationship was established on the basis of molecular docking studies, which helped to predict the binding interactions of the most active compounds. Copyright © 2016 Elsevier Inc. All rights reserved.
[Effect of elevated atmospheric CO2 on soil urease and phosphatase activities].
Chen, Lijun; Wu, Zhijie; Huang, Guohong; Zhou, Likai
2002-10-01
The response of soil urease and phosphatase activities at different rice growth stages to free air CO2 enrichment (FACE) was studied. The results showed that comparing with the ambient atmospheric CO2 concentration (370 mumol.mol-1), FACE (570 mumol.mol-1) significantly increased the urease activity of 0-5 cm soil layer at the vigorous growth stage of rice, whole that of 5-10 cm layer had no significant change during the whole growing season. Phosphatase activity of 0-5 cm and 5-10 cm soil layers significantly increased, and the peak increment was at the vigorous growth stage of rice.
Khan, Rasool; Saif, Abdullah Qasem; Quradha, Mohammad Mansour; Ali, Jawad; Rauf, Abdur
2015-01-01
In this paper we report the antimicrobial, antiradical and urease inhibitory potential along with photochemical investigation of the crude extracts of Cyphostemma digitatum Lam. Phytochemical screening of both the crude (hot/cold) alcoholic and aqueous extracts of C. digitatum showed the presence of alkaloids, flavonoids, saponins, coumarins, steroids, terpenoids and tannins. The crude methanolic extract (hot/cold) exhibited good antioxidant activity, while the aqueous extract was a weak antioxidant. The crude methanolic extract was found to be more active against Bacillus subtilis, while both the extracts showed moderate antifungal potential, the methanolic crude extract showed good urease inhibitory activity compared with the aqueous crude extract.
NASA Astrophysics Data System (ADS)
Carlsohn, Elisabet; Ångström, Jonas; Emmett, Mark R.; Marshall, Alan G.; Nilsson, Carol L.
2004-05-01
Chemical cross-linking of proteins is a well-established method for structural mapping of small protein complexes. When combined with mass spectrometry, cross-linking can reveal protein topology and identify contact sites between the peptide surfaces. When applied to surface-exposed proteins from pathogenic organisms, the method can reveal structural details that are useful in vaccine design. In order to investigate the possibilities of applying cross-linking on larger protein complexes, we selected the urease enzyme from Helicobacter pylori as a model. This membrane-associated protein complex consists of two subunits: [alpha] (26.5 kDa) and [beta] (61.7 kDa). Three ([alpha][beta]) heterodimers form a trimeric ([alpha][beta])3 assembly which further associates into a unique dodecameric 1.1 MDa complex composed of four ([alpha][beta])3 units. Cross-linked peptides from trypsin-digested urease complex were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and molecular modeling. Two potential cross-linked peptides (present in the cross-linked sample but undetectable in [alpha], [beta], and native complex) were assigned. Molecular modeling of urease [alpha][beta] complex and trimeric urease units ([alpha][beta])3 revealed a linkage site between the [alpha]-subunit and the [beta]-subunit, and an internal cross-linkage in the [beta]-subunit.
Liu, Xiaoxia; Yang, Jiqing; Sun, Shucheng; Guo, Liping; Yang, Li
2016-10-01
We present here an easy-to-operate and efficient method for enzyme and inhibition assays of urease, which is a widely distributed and important enzyme that catalyzes the hydrolysis of urea to ammonia and CO 2 . The assay was achieved by integrating CE technique and rapid on-line derivatization method, allowing us to continuously drive the sample to the capillary, thus to measure the amount of the product ammonia from the beginning to the end of the reaction. The method exhibits excellent repeatability with RSD as low as 2.5% for the initial reaction rate (n = 5), with the LOD of ammonia of 20 μM (S/N = 5). The enzyme activity as well as the inhibition of urease by Cu 2+ were investigated using the present method. The results show that Cu 2+ is a noncompetitive inhibitor on urease, in accordance with the result published in the literature. The enzyme activity and inhibition kinetic constants were obtained and were found to be consistent with the results of traditional off-line enzyme assays. Our study indicates that the present approach is a reliable and convenient method for analysis of the urease activity and inhibition kinetics by continuous on-line monitoring of the ammonium formation based on CE. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dihydropyrimidine based hydrazine dihydrochloride derivatives as potent urease inhibitors.
Khan, Ajmal; Hashim, Jamshed; Arshad, Nuzhat; Khan, Ijaz; Siddiqui, Naureen; Wadood, Abdul; Ali, Muzaffar; Arshad, Fiza; Khan, Khalid Mohammed; Choudhary, M Iqbal
2016-02-01
Four series of heterocyclic compounds 4-dihydropyrimidine-2-thiones 7-12 (series A), N,S-dimethyl-dihydropyrimidines 13-18 (series B), hydrazine derivatives of dihydropyrimidine 19-24 (series C), and tetrazolo dihydropyrimidine derivatives 25-30 (series D), were synthesized and evaluated for in vitro urease inhibitory activity. The series B-D were first time examined for urease inhibition. Series A and C were found to be significantly active with IC50 values between 34.7-42.9 and 15.0-26.0 μM, respectively. The structure-activity relationship showed that the free S atom and hydrazine moiety are the key pharmacophores against urease enzyme. The kinetic studies of the active series A (7-12) and C (19-24) were carried out to determine their modes of inhibition and dissociation constants Ki. Compounds of series A (7-12) and series C (19-24) showed a mixed-type of inhibition with Ki values ranging between 15.76-25.66 and 14.63-29.42 μM, respectively. The molecular docking results showed that all the active compounds of both series have significant binding interactions with the active sites specially Ni-ion of the urease enzyme. Cytotoxicity of all series A-D was also evaluated against mammalian mouse fibroblast 3T3 cell lines, and no toxicity was observed in cellular model. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ni, Kang; Kage, Henning; Pacholski, Andreas
2018-02-01
A 41-day incubation trial was conducted to test the single and combined effects of the novel urease (N-(2-Nitrophenyl) phosphoric triamide, 2-NPT) and nitrification inhibitors (mixture of dicyandiamide and 1H-1,2,4-triazole, DCD/TZ) on N2O emissions and underlying soil processes from a North German sandy loam soil. The effects of treatment on N2O emission were determined using static closed chamber incubation and detected using a photo-acoustic gas monitor. The emission processes were strongly related to soil mineral N and pH dynamics, obtained from destructive sampling of replicate incubation chambers. The combined use of urease and nitrification inhibitors slightly increased the reduction of N2O compared with single use of the nitrification inhibitor (69% vs. 61%). The small amount of soil used in the incubation and the depletion of labile carbon by air drying and pre-incubation caused very low initial N2O emissions, and glucose addition significantly stimulated N2O emission by supplying labile carbon. The urease inhibitor significantly reduced simultaneously determined qualitative NH3 emissions in either urea alone (90%) or urea plus nitrification inhibitor treatment (82%). These results highlighted the potential of the combined use of urease and nitrification inhibitors with urea application to mitigate soil NH3 and N2O emissions.
Effect of urease inhibitor application rate and rainfall on ammonia emissions from beef manure
USDA-ARS?s Scientific Manuscript database
Social, economic, and environmental factors have prompted the desire to reduce global atmospheric ammonia emissions. A research project was conducted to assess the efficacy of the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) for reducing ammonia emissions from simulated open-lot beef...
2010-05-01
protein 1b (lb;c) thiol peroxidase attachment invasion locus protein trigger factor 50S ribosomal protein L9 urease (urea amidohydrolase) beta...subunit attachment invasion locus protein urease (urea amidohydrolase) beta subunit attachment invasion locus protein hypothetical protein y2159
Soil phosphatase and urease activities impacted by cropping systems and water management
USDA-ARS?s Scientific Manuscript database
Soil enzymes can play an important role in nutrient availability to plants. Consequently, soil enzyme measurements can provide useful information on soil fertility for crop production. We examined the impact of cropping system and water management on phosphatase, urease, and microbial biomass C in s...
The Recombinant Bacille Calmette-Guérin Vaccine VPM1002: Ready for Clinical Efficacy Testing.
Nieuwenhuizen, Natalie E; Kulkarni, Prasad S; Shaligram, Umesh; Cotton, Mark F; Rentsch, Cyrill A; Eisele, Bernd; Grode, Leander; Kaufmann, Stefan H E
2017-01-01
The only licensed vaccine against tuberculosis (TB), bacille Calmette-Guérin (BCG), protects against severe extrapulmonary forms of TB but is virtually ineffective against the most prevalent form of the disease, pulmonary TB. BCG was genetically modified at the Max Planck Institute for Infection Biology to improve its immunogenicity by replacing the urease C encoding gene with the listeriolysin encoding gene from Listeria monocytogenes . Listeriolysin perturbates the phagosomal membrane at acidic pH. Urease C is involved in neutralization of the phagosome harboring BCG. Its depletion allows for rapid phagosome acidification and promotes phagolysosome fusion. As a result, BCGΔ ureC :: hly (VPM1002) promotes apoptosis and autophagy and facilitates release of mycobacterial antigens into the cytosol. In preclinical studies, VPM1002 has been far more efficacious and safer than BCG. The vaccine was licensed to Vakzine Projekt Management and later sublicensed to the Serum Institute of India Pvt. Ltd., the largest vaccine producer in the world. The vaccine has passed phase I clinical trials in Germany and South Africa, demonstrating its safety and immunogenicity in young adults. It was also successfully tested in a phase IIa randomized clinical trial in healthy South African newborns and is currently undergoing a phase IIb study in HIV exposed and unexposed newborns. A phase II/III clinical trial will commence in India in 2017 to assess efficacy against recurrence of TB. The target indications for VPM1002 are newborn immunization to prevent TB as well as post-exposure immunization in adults to prevent TB recurrence. In addition, a Phase I trial in non-muscle invasive bladder cancer patients has been completed, and phase II trials are ongoing. This review describes the development of VPM1002 from the drawing board to its clinical assessment.
Douglas, Timothy E L; Łapa, Agata; Samal, Sangram Keshari; Declercq, Heidi A; Schaubroeck, David; Mendes, Ana C; der Voort, Pascal Van; Dokupil, Agnieszka; Plis, Agnieszka; De Schamphelaere, Karel; Chronakis, Ioannis S; Pamuła, Elżbieta; Skirtach, Andre G
2017-12-01
Mineralization of hydrogel biomaterials is considered desirable to improve their suitability as materials for bone regeneration. Calcium carbonate (CaCO 3 ) has been successfully applied as a bone regeneration material, but hydrogel-CaCO 3 composites have received less attention. Magnesium (Mg) has been used as a component of calcium phosphate biomaterials to stimulate bone-forming cell adhesion and proliferation and bone regeneration in vivo, but its effect as a component of carbonate-based biomaterials remains uninvestigated. In the present study, gellan gum (GG) hydrogels were mineralized enzymatically with CaCO 3 , Mg-enriched CaCO 3 and magnesium carbonate to generate composite biomaterials for bone regeneration. Hydrogels loaded with the enzyme urease were mineralized by incubation in mineralization media containing urea and different ratios of calcium and magnesium ions. Increasing the magnesium concentration decreased mineral crystallinity. At low magnesium concentrations calcite was formed, while at higher concentrations magnesian calcite was formed. Hydromagnesite (Mg 5 (CO 3 ) 4 (OH) 2 .4H 2 O) formed at high magnesium concentration in the absence of calcium. The amount of mineral formed and compressive strength decreased with increasing magnesium concentration in the mineralization medium. The calcium:magnesium elemental ratio in the mineral formed was higher than in the respective mineralization media. Mineralization of hydrogels with calcite or magnesian calcite promoted adhesion and growth of osteoblast-like cells. Hydrogels mineralized with hydromagnesite displayed higher cytotoxicity. In conclusion, enzymatic mineralization of GG hydrogels with CaCO 3 in the form of calcite successfully reinforced hydrogels and promoted osteoblast-like cell adhesion and growth, but magnesium enrichment had no definitive positive effect. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Mojzych, Mariusz; Tarasiuk, Paweł; Kotwica-Mojzych, Katarzyna; Rafiq, Muhammad; Seo, Sung-Yum; Nicewicz, Michał; Fornal, Emilia
2017-12-01
A new series of sulfonamide derivatives of pyrazolo[4,3-e][1,2,4]triazine with chiral amino group has been synthesized and characterized. The compounds were tested for their tyrosinase and urease inhibitory activity. Evaluation of prepared derivatives demonstrated that compounds (8b) and (8j) are most potent mushroom tyrosinase inhibitors whereas all of the obtained compounds showed higher urease inhibitory activity than the standard thiourea. The compounds (8a), (8f) and (8i) exhibited excellent enzyme inhibitory activity with IC 50 0.037, 0.044 and 0.042 μM, respectively, while IC 50 of thiourea is 20.9 μM.
Urease inhibition potential of Di-naphthodiospyrol from Diospyros lotus roots.
Rauf, Abdur; Uddin, Ghias; Raza, Muslam; Patel, Seema; Bawazeer, Saud; Ben Hadda, Taibi; Jehan, Noor; Mabkhot, Yahia Nasser; Khan, Ajmal; Mubarak, Mohammad S
2017-05-01
The dimeric napthoquione 5,8,4'-trihydroxy-1'-methoxy-6, 6'-dimethyl-7,3'-binaphtyl-1,4,5',8'-tetraone (1) was isolated from the chloroform fraction of Diospyros lotus extract. Compound 1 was screened for its inhibitory effects against four enzymes: urease, phosphodiesterase-I, carbonic anhydrase-II and α-chymotrypsin, and showed selective activity against urease enzyme with an IC 50 value of 254.1 ± 3.82 μM as compared to the standard thiourea (IC 50 = 21 ± 0.11 μM). Furthermore, in silico docking study was carried out to explain the molecular mechanism of compound 1 against the target receptor.
Habala, Ladislav; Varényi, Samuel; Bilková, Andrea; Herich, Peter; Valentová, Jindra; Kožíšek, Jozef; Devínsky, Ferdinand
2016-12-17
In order to evaluate the influence of substitution on biological properties of Schiff bases and their metal complexes, a series of differently substituted fluorine-containing Schiff bases starting from the drug isoniazid (isonicotinylhydrazide) were prepared and their structures were established by single-crystal X-ray diffraction. Also, four copper(II) complexes of these Schiff bases were synthesized. The prepared compounds were evaluated for their antimicrobial activity and urease inhibition. Two of the Schiff bases exerted activity against C. albicans . All copper(II) complexes showed excellent inhibitory properties against jack bean urease, considerably better than that of the standard inhibitor acetohydroxamic acid.
Cryptococcal nasopharyngeal polypoid mass in a cat
Javard, Romain; Alexander, Kate; Girard, Christiane; Dunn, Marilyn
2015-01-01
Case summary An indoor 9-year-old castrated male domestic cat was referred with a 4 month history of increased upper airway noise. Computed tomography revealed a nasopharyngeal polypoid mass, which was removed endoscopically with basket forceps. Histopathology was compatible with a polypoid granulomatous pharyngitis with Cryptococcus-like organisms. This was supported by a positive serum latex cryptococcal antigen agglutination test (LCAT). Minimal inflammation of the nasal tissue was noted on histopathology, with no evidence of fungus. Following endoscopic removal of the mass, the patient was treated with systemic antifungal medication (itraconazole). One year after diagnosis, the LCAT titer was negative and the cat remained free of clinical signs. Relevance and novel information This case report emphasizes the importance of considering Cryptococcus species as a potential etiology in cats presented with signs of nasopharyngeal obstruction with an isolated nasopharyngeal polypoid mass, even if kept indoors. PMID:28491377
A Rare Presentation of Cryptococcal Meningoencephalitis in an Immunocompetent Individual
Malhotra, Ashwin; Rao, Qin; Kelly, Sean; Schwartz, Danielle; Chow, Robert
2017-01-01
Cryptococcal meningoencephalitis is a leading of morbidity and mortality in immunocompromised individuals worldwide. However, there are few documented cases in immunocompetent patients. We present a rare case of disseminated Cryptococcus with progression to meningoencephalitis in an immunocompetent patient, with a possible atypical presentation. Magnetic resonance imaging of the brain and electroencephalogram to rule out brain metastasis were negative. Lumbar puncture resulted positive for Cryptococcus neoformans antigen at titers of 1:2048 and a detailed history later revealed occupational exposure to bird dander by cleaning floors and cages. Diagnosis is challenging, with delays often resulting in increased morbidity and mortality. Cerebrospinal fluid and serum Cryptococcus antigen play a key role in both diagnosis and determining treatment efficacy. Furthermore, current treatment guidelines are used for immunocompromised individuals. Due to the significant side effects of these medications, further research is needed to determine the optimal treatment duration for immunocompetent patients to minimize the need for unnecessary therapy. PMID:28959388
How Cryptococcus interacts with the blood-brain barrier.
Tseng, Hsiang-Kuang; Huang, Tseng-Yu; Wu, Alice Ying-Jung; Chen, Hsin-Hong; Liu, Chang-Pan; Jong, Ambrose
2015-01-01
Cryptococcus demonstrates predilection for invasion of the brain, but the mechanism by which Cryptococcus crosses the blood-brain barrier (BBB) to cause brain invasion is largely unknown. In order for Cryptococcus to cross the BBB, there must be a way to either cross human brain microvascular endothelial cells, which are the main constitute of the BBB, or go in between tight junctions. Recent evidence of human brain microvascular endothelial cell responses to transcellular brain invasions includes membrane rearrangements, intracellular signaling pathways and cytoskeletal activations. Several Cryptococcal genes related to the traversal of BBB have been identified, including CPS1, ITR1a, ITR3c, PLB1, MPR1, FNX1 and RUB1. In addition, Cryptococcus neoformans-derived microvesicles may contribute to cryptococcal brain invasion. Paracellularly, Cryptococcus may traverse across BBB using either routes utilizing plasmin, ammonia or macrophages in a Trojan horse mechanism.
1980-10-01
reported using the method of Gentzkow (1942), which involves conversion of urea to ammonia with urease and measurement of the ammonia by...Nesslerization. Methods employing urease are not well suited for automated analysis since an incubation time of about 20 minutes is required for the conversion of
USDA-ARS?s Scientific Manuscript database
Genomic analysis indicated that Edwardsiella ictaluri encodes a putative ureasepathogenicity island containing 9 open reading frames, including urea and ammonium transporters. In vitro studies with the wild-type E. ictaluri and a ureG::kan urease mutant strain indicated that E. ictaluri is significa...
Investigation of Seminal Plasma Hypersensitivity Reactions (AIBS GWI 0046)
1999-10-01
Kit (Cat. No. 29304). The sequences for the 20-mer PCR primers for the urease gene off/, urealyticum (termed UU1 and UU2) and PCR methods were adapted...Ureaplasma urealyticum urease primer was unsuccessful. We therefore sent DNA samples of GW and control civilian couples to an outside laboratory to
Borase, Hemant P; Salunkhe, Rahul B; Patil, Chandrashekhar D; Suryawanshi, Rahul K; Salunke, Bipinchandra K; Wagh, Nilesh D; Patil, Satish V
2015-01-01
In the present study, a rapid, low-cost, and ecofriendly method of stable silver nanoparticles (AgNPs) synthesis using leaves extract of Ficus carica (F. carica), a plant with diverse metabolic consortium, is reported for the first time. An absorption peak at 422 nm in UV-Vis spectroscopy, a spherical shape with an average size of 21 nm in transmission electron microscopy, and crystalline nature in X-ray powder diffraction studies were observed for the synthesized AgNPs. Fourier transform infrared analysis indicated that proteins of F. carica might have a vital role in AgNP synthesis and stabilization. AgNPs were found to inhibit urease, a key enzyme responsible for the survival and pathogenesis of the bacterium, Helicobacter pylori. Inhibition of urease by AgNPs was monitored spectrophotometrically by the evaluation of ammonia release. The urease inhibition potential of AgNPs can be explored in the treatment of H. pylori by preparing novel combinations of standard drugs with AgNPs- or AgNPs-encapsulated drug molecules. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Forrest, Scott R; Elmore, Bill B; Palmer, James D
2005-01-01
Urease has been immobilized and layered onto the walls of manufactured silicon microchannels. Enzyme immobilization was performed using layer-by-layer nano self-assembly. Alternating layers of oppositely charged polyelectrolytes, with enzyme layers "encased" between them, were deposited onto the walls of the silicon microchannels. The polycations used were polyethylenimine (PEI), polydiallyldimethylammonium (PDDA), and polyallylamine (PAH). The polyanions used were polystyrenesulfonate (PSS) and polyvinylsulfate (PVS). The activity of the immobilized enzyme was tested by pumping a 1 g/L urea solution through the microchannels at various flow rates. Effluent concentration was measured using an ultraviolet/visible spectrometer by monitoring the absorbance of a pH sensitive dye. The architecture of PEI/PSS/PEI/urease/PEI with single and multiple layers of enzyme demonstrated superior performance over the PDDA and PAH architectures. The precursor layer of PEI/PSS demonstrably improved the performance of the reactor. Conversion rates of 70% were achieved at a residence time of 26 s, on d 1 of operation, and >50% at 51 s, on d 15 with a six-layer PEI/urease architecture.
Desai, M A; Vadgama, P M
1993-10-01
The in vitro effect of urea and hydrolysis of urea by urease on mucus H+ permeability is reported here. The effective DHCl values indicate a strong pH dependence for H+ diffusion in both water and mucus layers, with no apparent trend at concentrations between 1 and 50 mM urea. However, the estimated DHCl at near-neutral and alkaline pH are 4- to 10-fold lower through mucus than through aqueous films. Moreover, the pKa values of HCO3- and NH3 (generated by urease action on urea) had a profound effect on measured DHCl. These in vitro studies suggest that a high local concentration of NH3 and HCO3- within the mucus layer, generated by the action of Helicobacter pylori urease on endogenous intragastric urea, could greatly accelerate proton flux to the surface epithelium by operation of a buffer shuttle. This results in enhanced H+ permeability, particularly at pKa values of HCO3- and NH3, and in extreme circumstances it may result in gastric ulcer formation.
Could Alkali Production Be Considered an Approach for Caries Control?
Gordan, V.V.; Garvan, C.W.; Ottenga, M.E.; Schulte, R.; Harris, P.A.; McEdward, D.; Magnusson, I.
2011-01-01
This study investigated the relationship of arginine deiminase (ADS) and urease activities with dental caries through a case-control study. ADS and urease activities were measured in dental smooth-surface supragingival plaque and whole saliva samples from 93 subjects, who were in three different groups: caries-free (n = 31), caries-active (n = 30), and caries-experienced (n = 32). ADS activity was measured by quantification of the ammonia generated from the incubation of plaque and saliva samples in a mixture containing 50 mM arginine-HCl and 50 mM Tris-maleate buffer, pH 6.0. ADS-specific activity was defined as nanomoles of ammonia generated per minute per milligram of protein. Urease activity was determined by quantification of ammonia produced from 50 mM urea. For bacterial identification and enumeration real-time qPCR analysis was used. Groups were compared using Kruskal-Wallis tests. Spearman correlations were used to analyze plaque metabolic activity and bacterial relationships. The results revealed significantly higher ammonia production from arginine in saliva (1.06 vs. 0.18; p < 0.0001) and plaque samples (1.74 vs. 0.58; p < 0.0001) from caries-free subjects compared to caries-active subjects. Urease levels were about 3-fold higher in the plaque of caries-free subjects (p < 0.0001). Although higher urease activity in saliva of caries-experienced and caries-free subjects was evident, no significant difference was found between the groups. PMID:21071940
Guo, Le; Yin, Runting; Xu, Guangxian; Gong, Xiaojuan; Chang, Zisong; Hong, Dantong; Liu, Hongpeng; Ding, Shuqin; Han, Xuebo; Li, Yuan; Tang, Feng; Liu, Kunmei
2017-12-01
Therapeutic vaccination is a desirable alternative for controlling Helicobacter pylori (H. pylori) infection. Attachment to the gastric mucosa is the first step in establishing bacterial colonization, and adhesins, which are on the surface of H. pylori, play a pivotal role in binding to human gastric mucosa. In the present study, we constructed a multivalent epitope-based vaccine named CFAdE with seven carefully selected antigenic fragments from four H. pylori adhesins (urease, Lpp20, HpaA and CagL). The specificity, immunogenicity and ability to produce neutralizing antibodies of CFAdE were evaluated in BALB/c mice. After that, its therapeutic efficacy and protective immune mechanisms were explored in H. pylori-infected Mongolian gerbils. The results indicated that CFAdE could induce comparatively high levels of specific antibodies against urease, Lpp20, HpaA and CagL. Additionally, oral therapeutic immunization with CFAdE plus polysaccharide adjuvant (PA) significantly decreased H. pylori colonization compared with oral immunization with urease plus PA, and the protection was correlated with IgG and sIgA antibody and antigen-specific CD4 + T cells. This study indicated that the multivalent epitope-based vaccine, which targeted multiple adhesins in adherence of H. pylori to the gastric mucosa, is more effective than the univalent vaccine targeting urease only. This multivalent epitope-based vaccine may be a promising therapeutic candidate vaccine against H. pylori infection. © 2017 John Wiley & Sons Ltd.
Rodrigues, Raul T; Morais, Paulo V; Nordi, Cristina S F; Schöning, Michael J; Siqueira, José R; Caseli, Luciano
2018-03-06
Algal polysaccharides (extracellular polysaccharides) and carbon nanotubes (CNTs) were adsorbed on dioctadecyldimethylammonium bromide Langmuir monolayers to serve as a matrix for the incorporation of urease. The physicochemical properties of the supramolecular system as a monolayer at the air-water interface were investigated by surface pressure-area isotherms, surface potential-area isotherms, interfacial shear rheology, vibrational spectroscopy, and Brewster angle microscopy. The floating monolayers were transferred to hydrophilic solid supports, quartz, mica, or capacitive electrolyte-insulator-semiconductor (EIS) devices, through the Langmuir-Blodgett (LB) technique, forming mixed films, which were investigated by quartz crystal microbalance, fluorescence spectroscopy, and field emission gun scanning electron microscopy. The enzyme activity was studied with UV-vis spectroscopy, and the feasibility of the thin film as a urea sensor was essayed in an EIS sensor device. The presence of CNT in the enzyme-lipid LB film not only tuned the catalytic activity of urease but also helped to conserve its enzyme activity. Viability as a urease sensor was demonstrated with capacitance-voltage and constant capacitance measurements, exhibiting regular and distinctive output signals over all concentrations used in this work. These results are related to the synergism between the compounds on the active layer, leading to a surface morphology that allowed fast analyte diffusion owing to an adequate molecular accommodation, which also preserved the urease activity. This work demonstrates the feasibility of employing LB films composed of lipids, CNT, algal polysaccharides, and enzymes as EIS devices for biosensing applications.
Cruchaga, Saioa; Artola, Ekhiñe; Lasa, Berta; Ariz, Idoia; Irigoyen, Ignacio; Moran, Jose Fernando; Aparicio-Tejo, Pedro M
2011-03-01
The application of urease inhibitors in conjunction with urea fertilizers as a means of reducing N loss due to ammonia volatilization requires an in-depth study of the physiological effects of these inhibitors on plants. The aim of this study was to determine how the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) affects N metabolism in pea and spinach. Plants were cultivated in pure hydroponic culture with urea as the sole N source. After 2 weeks of growth for pea, and 3 weeks for spinach, half of the plants received NBPT in their nutrient solution. Urease activity, urea and ammonium content, free amino acid composition and soluble protein were determined in leaves and roots at days 0, 1, 2, 4, 7 and 9, and the NBPT content in these tissues was determined 48h after inhibitor application. The results suggest that the effects of NBPT on spinach and pea urease activity differ, with pea being most affected by this treatment, and that the NBPT absorbed by the plant caused a clear inhibition of the urease activity in pea leaf and roots. The high urea concentration observed in leaves was associated with the development of necrotic leaf margins, and was further evidence of NBPT inhibition in these plants. A decrease in the ammonium content in roots, where N assimilation mainly takes place, was also observed. Consequently, total amino acid contents were drastically reduced upon NBPT treatment, indicating a strong alteration of the N metabolism. Furthermore, the amino acid profile showed that amidic amino acids were major components of the reduced pool of amino acids. In contrast, NBPT was absorbed to a much lesser degree by spinach plants than pea plants (35% less) and did not produce a clear inhibition of urease activity in this species. Copyright © 2010 Elsevier GmbH. All rights reserved.
Pan, Lin; Wang, Cunfang; Yan, Kai; Zhao, Kedong; Sheng, Guihua; Zhu, Hailiang; Zhao, Xinlu; Qu, Dan; Niu, Fang; You, Zhonglu
2016-06-01
A series of new copper(II) complexes were prepared. They are [CuL(1)(NCS)] (1), [CuClL(1)]·CH3OH (2), [CuClL(2)]·CH3OH (3), [CuL(3)(NCS)]·CH3OH (4), [CuL(4)(NCS)]·0.4H2O (5), and [CuL(5)(bipy)] (6), where L(1), L(2), L(3) and L(4) are the deprotonated form of N'-(2-hydroxybenzylidene)-3-methylbenzohydrazide, 4-bromo-N'-(2-hydroxy-5-methoxybenzylidene)benzohydrazide, N'-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide and 2-chloro-N'-(2-hydroxy-5-methoxybenzylidene)benzohydrazide, respectively, L(5) is the dianionic form of N'-(2-hydroxybenzylidene)-3-methylbenzohydrazide, and bipy is 2,2'-bipyridine. The complexes were characterized by infrared and UV-Vis spectra and single crystal X-ray diffraction. The Cu atoms in complexes 1, 2, 3, 4 and 5 are coordinated by the NOO donor set of the aroylhydrazone ligands, and one Cl or thiocyanate N atom, forming square planar coordination. The Cu atom in complex 6 is in a square pyramidal coordination, with the NOO donor set of L(1), and one N atom of bipy defining the basal plane, and with the other N atom of bipy occupying the apical position. Complexes 1, 2, 3, 4 and 5 show effective urease inhibitory activities, with IC50 values of 5.14, 0.20, 4.06, 5.52 and 0.26μM, respectively. Complex 6 has very weak activity against urease, with IC50 value over 100μM. Molecular docking study of the complexes with the Helicobacter pylori urease was performed. The relationship between structures and urease inhibitory activities indicated that copper complexes with square planar coordination are better models for urease inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.
Sidebotham, Ramon L; Worku, Mulugeta L; Karim, Q Najma; Dhir, Nirmal K; Baron, J Hugh
2003-04-01
Survival of Helicobacter pylori is dependent upon urease in the cytoplasm and at the bacterial surface. We have sought to clarify how alkaline ammonium salts, released from urea by this enzyme, might alter mucus pH and so affect growth and motility of the bacterium in the gastric mucus environment. Experiments were conducted in vitro to determine how the growth and motility of H. pylori are affected by changes in external pH, and how the bacterium, by hydrolysing urea, alters the pH of the bicarbonate buffer that occurs at the gastric mucosal surface. These data were fitted into experimental models that describe how pH varies within the mucus layer in the acid-secreting stomach. H. pylori was motile between pH 5 and 8, with optimal motility at pH 5. It grew between pH 6 and 8, with optimal growth at pH 6. The bacterium had urease activity between pH 2.7 and 7.4, as evidenced by pH rises in bicarbonate-buffered solutions of urea. Changes in buffer pH were dependent upon initial pH and urea concentration, with the greatest rate of pH change occurring at pH 3. Modelling experiments utilizing these data indicated that (1) in the absence of urease, H. pylori growth and motility in the mucus layer would be restricted severely by low mucus pH in the acid-secreting stomach, and (2) urease will sometimes inhibit H. pylori growth and motility in the mucus layer by elevating the pH of the mucus environment above pH 8. Urease is essential to the growth and motility of H. pylori in the mucus layer in the acid-secreting stomach, but, paradoxically, sometimes it might suppress colonization by raising the mucus pH above 8. This latter effect may protect the bacteria from the adverse consequences of overpopulation.
Guo, Le; Yang, Hua; Tang, Feng; Yin, Runting; Liu, Hongpeng; Gong, Xiaojuan; Wei, Jun; Zhang, Ying; Xu, Guangxian; Liu, Kunmei
2017-01-01
Epitope-based vaccine is a promising strategy for therapeutic vaccination against Helicobacter pylori ( H. pylori ) infection. A multivalent subunit vaccine containing various antigens from H. pylori is superior to a univalent subunit vaccine. However, whether a multivalent epitope-based vaccine is superior to a univalent epitope-based vaccine in therapeutic vaccination against H. pylori , remains unclear. In this study, a multivalent epitope-based vaccine named CWAE against H. pylori urease, neutrophil-activating protein (NAP), heat shock protein 60 (HSP60) and H. pylori adhesin A (HpaA) was constructed based on mucosal adjuvant cholera toxin B subunit (CTB), Th1-type adjuvant NAP, multiple copies of selected B and Th cell epitopes (UreA 27-53 , UreA 183-203 , HpaA 132-141 , and HSP60 189-203 ), and also the epitope-rich regions of urease B subunit (UreB 158-251 and UreB 321-385 ) predicted by bioinformatics. Immunological properties of CWAE vaccine were characterized in BALB/c mice model. Its therapeutic effect was evaluated in H. pylori -infected Mongolian gerbil model by comparing with a univalent epitope-based vaccine CTB-UE against H. pylori urease that was constructed in our previous studies. Both CWAE and CTB-UE could induce similar levels of specific antibodies against H. pylori urease, and had similar inhibition effect of H. pylori urease activity. However, only CWAE could induce high levels of specific antibodies to NAP, HSP60, HpaA, and also the synthetic peptides epitopes (UreB 158-172 , UreB 181-195 , UreB 211-225 , UreB 349-363 , HpaA 132-141 , and HSP60 189-203 ). In addition, oral therapeutic immunization with CWAE significantly reduced the number of H. pylori colonies in the stomach of Mongolian gerbils, compared with oral immunization using CTB-UE or H. pylori urease. The protection of CWAE was associated with higher levels of mixed CD4 + T cell (Th cell) response, IgG, and secretory IgA (sIgA) antibodies to H. pylori . These results indic ate that a multivalent epitope-based vaccine including Th and B cell epitopes from various H. pylori antigens could be a promising candidate against H. pylori infection.
Guo, Le; Yang, Hua; Tang, Feng; Yin, Runting; Liu, Hongpeng; Gong, Xiaojuan; Wei, Jun; Zhang, Ying; Xu, Guangxian; Liu, Kunmei
2017-01-01
Epitope-based vaccine is a promising strategy for therapeutic vaccination against Helicobacter pylori (H. pylori) infection. A multivalent subunit vaccine containing various antigens from H. pylori is superior to a univalent subunit vaccine. However, whether a multivalent epitope-based vaccine is superior to a univalent epitope-based vaccine in therapeutic vaccination against H. pylori, remains unclear. In this study, a multivalent epitope-based vaccine named CWAE against H. pylori urease, neutrophil-activating protein (NAP), heat shock protein 60 (HSP60) and H. pylori adhesin A (HpaA) was constructed based on mucosal adjuvant cholera toxin B subunit (CTB), Th1-type adjuvant NAP, multiple copies of selected B and Th cell epitopes (UreA27–53, UreA183–203, HpaA132–141, and HSP60189–203), and also the epitope-rich regions of urease B subunit (UreB158–251 and UreB321–385) predicted by bioinformatics. Immunological properties of CWAE vaccine were characterized in BALB/c mice model. Its therapeutic effect was evaluated in H. pylori-infected Mongolian gerbil model by comparing with a univalent epitope-based vaccine CTB-UE against H. pylori urease that was constructed in our previous studies. Both CWAE and CTB-UE could induce similar levels of specific antibodies against H. pylori urease, and had similar inhibition effect of H. pylori urease activity. However, only CWAE could induce high levels of specific antibodies to NAP, HSP60, HpaA, and also the synthetic peptides epitopes (UreB158–172, UreB181–195, UreB211–225, UreB349–363, HpaA132–141, and HSP60189–203). In addition, oral therapeutic immunization with CWAE significantly reduced the number of H. pylori colonies in the stomach of Mongolian gerbils, compared with oral immunization using CTB-UE or H. pylori urease. The protection of CWAE was associated with higher levels of mixed CD4+ T cell (Th cell) response, IgG, and secretory IgA (sIgA) antibodies to H. pylori. These results indic ate that a multivalent epitope-based vaccine including Th and B cell epitopes from various H. pylori antigens could be a promising candidate against H. pylori infection. PMID:28824883
Ellabib, M S; Krema, Z A; Allafi, A A; Cogliati, M
2017-09-01
Cryptococcosis is a potentially fatal fungal disease caused by the basidiomycetes yeasts Cryptococcus neoformans and C. gattii with high predilection to invade the central nervous system mainly in immunocompromised hosts. Skin can be secondarily involved in disseminated infection or be exceptionally involved as primary cutaneous infection by inoculation with contaminated materials. We report the first two Libyan cases of cryptococcal meningitis in HIV patients, in which one of them presented a secondary cutaneous involvement due to systemic dissemination. The first patient was a 17-year-old female, had fever, cough, headache and intractable vomiting as well as itchy water bumps on her skin and upper limbs. The cutaneous eruption prompted the accurate diagnosis. Cultures were positive for C. neoformans in both cerebrospinal fluid and skin specimens, as well as cryptococcal antigen was detected in serum. The isolate was identified, by molecular analysis, as C. neoformans AD-hybrid belonging to molecular type VNIII and mating type αAAα, the same genotype found for some environmental isolates recovered from olive trees in Tripoli. The second patient was a 36-years-old male with a long history of HIV on irregular treatment. Cryptococcal antigen in serum was positive and cultures yielded the growth of C. neoformans var. grubii, molecular type VNI and mating type αA. Both patients did not respond adequately to treatment and died of impaired central nervous system function and respiratory failure, respectively. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Effect of fluconazole on fungicidal activity of flucytosine in murine cryptococcal meningitis.
Larsen, R A; Bauer, M; Weiner, J M; Diamond, D M; Leal, M E; Ding, J C; Rinaldi, M G; Graybill, J R
1996-01-01
Both animal and in vitro studies have demonstrated that combinations of flucytosine with amphotericin B and with fluconazole have significantly improved activity against cryptococcal meningitis compared with the activity of each drug used alone. However, very few dose levels of these agents have been tested in combination. This study evaluated the efficacy of fluconazole plus flucytosine in a murine model of cryptococcal meningitis over a broad range of dose combinations (fluconazole, 0 to 40 micrograms/g of body weight per day; flucytosine, 0 to 200 micrograms/g/day). Both drugs were dissolved in drinking water, with treatment on days 2 to 11. In this highly reproducible model, fluconazole had a dramatic effect on the fungicidal activity of flucytosine. Flucytosine at dose levels of as much as 200 micrograms/g/day alone or in combination with low doses of fluconazole had minimal fungicidal activity, whereas in combination with fluconazole at 24 to 40 micrograms/g/day, flucytosine showed fungicidal activity in the range of 45 to 65% of the animals treated at doses of 40 to 100 micrograms/g/day. This striking effect of fluconazole is consistent with the results of both in vitro and clinical studies. In the clinic, the use of flucytosine is often limited by severe toxicity, while toxicity is rarely observed with fluconazole. These results suggest that when flucytosine is given with higher doses of fluconazole, the maximum therapeutic effect of the former in the clinic may be observed at dose levels that are far less than the doses commonly employed (150 micrograms/g daily). PMID:8878602
Evaluation of a Commercial Latex Agglutination Test Kit for Cryptococcal Antigen
Kaufman, Leo; Cowart, Glenda; Blumer, Sharon; Stine, Amy; Wood, Ross
1974-01-01
Two dozen Crypto-LA kits for detecting Cryptococcus neoformans capsular polysaccharide antigens were evaluated. Ten kits proved reliable for detecting and titering antigen in clinical materials. Fourteen kits were found to be inadequate. PMID:4596394
Differential Antifungal Activity of Human and Cryptococcal Melanins with Structural Discrepancies
Correa, Néstor; Covarrubias, Cristian; Rodas, Paula I.; Hermosilla, Germán; Olate, Verónica R.; Valdés, Cristián; Meyer, Wieland; Magne, Fabien; Tapia, Cecilia V.
2017-01-01
Melanin is a pigment found in all biological kingdoms, and plays a key role in protection against ultraviolet radiation, oxidizing agents, and ionizing radiation damage. Melanin exerts an antimicrobial activity against bacteria, fungi, and parasites. We demonstrated an antifungal activity of synthetic and human melanin against Candida sp. The members of the Cryptococcus neoformans and C. gattii species complexes are capsulated yeasts, which cause cryptococcosis. For both species melanin is an important virulence factor. To evaluate if cryptococcal and human melanins have antifungal activity against Cryptococcus species they both were assayed for their antifungal properties and physico-chemical characters. Melanin extracts from human hair and different strains of C. neoformans (n = 4) and C. gattii (n = 4) were investigated. The following minimum inhibitory concentrations were found for different melanins against C. neoformans and C. gattii were (average/range): 13.7/(7.8–15.6) and 19.5/(15.6–31.2) μg/mL, respectively, for human melanin; 273.4/(125–>500) and 367.2/(125.5–>500) μg/mL for C. neoformans melanin and 125/(62.5–250) and 156.2/(62–250) μg/mL for C. gattii melanin. Using Scanning Electron Microscopy we observed that human melanin showed a compact conformation and cryptococcal melanins exposed an amorphous conformation. Infrared spectroscopy (FTIR) showed some differences in the signals related to C-C bonds of the aromatic ring of the melanin monomers. High Performance Liquid Chromatography established differences in the chromatograms of fungal melanins extracts in comparison with human and synthetic melanin, particularly in the retention time of the main compound of fungal melanin extracts and also in the presence of minor unknown compounds. On the other hand, MALDI-TOF-MS analysis showed slight differences in the spectra, specifically the presence of a minor intensity ion in synthetic and human melanin, as well as in some fungal melanin extracts. We conclude that human melanin is more active than the two fungal melanins against Cryptococcus. Although some physico-chemical differences were found, they do not explain the differences in the antifungal activity against Cryptococcus of human and cryptococcal melanins. More detailed studies on the structure should be considered to associate structure and antifungal activity. PMID:28744276
Differential Antifungal Activity of Human and Cryptococcal Melanins with Structural Discrepancies.
Correa, Néstor; Covarrubias, Cristian; Rodas, Paula I; Hermosilla, Germán; Olate, Verónica R; Valdés, Cristián; Meyer, Wieland; Magne, Fabien; Tapia, Cecilia V
2017-01-01
Melanin is a pigment found in all biological kingdoms, and plays a key role in protection against ultraviolet radiation, oxidizing agents, and ionizing radiation damage. Melanin exerts an antimicrobial activity against bacteria, fungi, and parasites. We demonstrated an antifungal activity of synthetic and human melanin against Candida sp. The members of the Cryptococcus neoformans and C. gattii species complexes are capsulated yeasts, which cause cryptococcosis. For both species melanin is an important virulence factor. To evaluate if cryptococcal and human melanins have antifungal activity against Cryptococcus species they both were assayed for their antifungal properties and physico-chemical characters. Melanin extracts from human hair and different strains of C. neoformans ( n = 4) and C. gattii ( n = 4) were investigated. The following minimum inhibitory concentrations were found for different melanins against C. neoformans and C. gattii were (average/range): 13.7/(7.8-15.6) and 19.5/(15.6-31.2) μg/mL, respectively, for human melanin; 273.4/(125->500) and 367.2/(125.5->500) μg/mL for C. neoformans melanin and 125/(62.5-250) and 156.2/(62-250) μg/mL for C. gattii melanin. Using Scanning Electron Microscopy we observed that human melanin showed a compact conformation and cryptococcal melanins exposed an amorphous conformation. Infrared spectroscopy (FTIR) showed some differences in the signals related to C-C bonds of the aromatic ring of the melanin monomers. High Performance Liquid Chromatography established differences in the chromatograms of fungal melanins extracts in comparison with human and synthetic melanin, particularly in the retention time of the main compound of fungal melanin extracts and also in the presence of minor unknown compounds. On the other hand, MALDI-TOF-MS analysis showed slight differences in the spectra, specifically the presence of a minor intensity ion in synthetic and human melanin, as well as in some fungal melanin extracts. We conclude that human melanin is more active than the two fungal melanins against Cryptococcus. Although some physico-chemical differences were found, they do not explain the differences in the antifungal activity against Cryptococcus of human and cryptococcal melanins. More detailed studies on the structure should be considered to associate structure and antifungal activity.
USDA-ARS?s Scientific Manuscript database
Reduction of ammonia (NH3) emissions from animal feeding operations is important from the perspective of environmental policy and its impact on agriculture. In laboratory studies, urease inhibitors have been effective in reducing NH3 emissions from beef cattle manure, however there has been little t...
A case of hyperammonemia with obstructive urinary tract infection by urease-producing bacteria.
Goda, Toshiaki; Watanabe, Kotaro; Kobayashi, Junya; Nagai, Yasuharu; Ohara, Nobuyuki; Takahashi, Daisuke
2017-03-28
A 79-year-old woman was admitted emergently for disturbance of consciousness. Her consciousness level was Japan coma scale 20, and she presented with hypermyotonia. Brain magnetic resonance imaging and cerebrospinal fluid examination showed normal findings. Her blood tests showed an increased ammonia level of 291 μg/dl with normal liver function. We catheterized the bladder for urinary retention. Eight hours after admission, the blood level of ammonia decreased to 57 μg/dl and the patient's consciousness level improved. Corynebacterium pseudodiphtheriticum, which is a bacteria producing urease, was detected from a urine culture. It is important to recognize that obstructive urinary tract infection caused by urease-producing bacteria can cause hyperammonemia.
Cellulose fiber-enzyme composites fabricated through layer-by-layer nanoassembly.
Xing, Qi; Eadula, Sandeep R; Lvov, Yuri M
2007-06-01
Cellulose microfibers were coated with enzymes, laccase and urease, through layer-by-layer assembly by alternate adsorption with oppositely charged polycations. The formation of organized polyelectrolyte and enzyme multilayer films of 15-20 nm thickness was demonstrated by quartz crystal microbalance, zeta-potential analysis, and confocal laser scanning microscopy. These biocomposites retained enzymatic catalytic activity, which was proportional to the number of coated enzyme layers. For laccase-fiber composites, around 50% of its initial activity was retained after 2 weeks of storage at 4 degrees C. The synthesis of calcium carbonate microparticles on urease-fiber composites confirmed urease functionality and demonstrated its possible applications. This strategy could be employed to fabricate fiber-based composites with novel biological functions.
Kazakova, Lyubov I; Shabarchina, Lyudmila I; Sukhorukov, Gleb B
2011-06-21
Enzyme based micron sized sensing system with optical readout was fabricated by co-encapsulation of urease and dextran couple with pH sensitive dye SNARF-1 into polyelectrolyte multilayer capsules. Co-precipitation of calcium carbonate, urease and dextran followed up by multilayer film coating and Ca-extracting by EDTA resulted in the formation of 3.5-4 micron capsules, what enable the calibrated fluorescence response to urea in concentration range from 10(-6) to 10(-1) M. The presence of urea can be monitored on a single capsule level as illustrated by confocal fluorescent microscopy. Variations in urease:dye ratio in capsules, applicability and limits of use of that type multi-component microencapsulated sensors are discussed.
Fc Gamma Receptor 3A Polymorphism and Risk for HIV-Associated Cryptococcal Disease
Rohatgi, Soma; Gohil, Shruti; Kuniholm, Mark H.; Schultz, Hannah; Dufaud, Chad; Armour, Kathryn L.; Badri, Sheila; Mailliard, Robbie B.; Pirofski, Liise-anne
2013-01-01
ABSTRACT Cryptococcus neoformans is one of the most common causes of fungal disease in HIV-infected persons, but not all of those who are infected develop cryptococcal disease (CD). Although CD4+ T cell deficiency is a risk factor for HIV-associated CD, polymorphisms of phagocytic Fc gamma receptors (FCGRs) have been linked to CD risk in HIV-uninfected persons. To investigate associations between FCGR2A 131 H/R and FCGR3A 158 F/V polymorphisms and CD risk in HIV-infected persons, we performed PCR-based genotyping on banked samples from 164 men enrolled in the Multicenter AIDS Cohort Study (MACS): 55 who were HIV infected and developed CD and a matched control group of 54 who were HIV infected and 55 who were HIV uninfected. Using additive and allelic statistical models for analysis, the high-affinity FCGR3A 158V allele was significantly associated with CD status after adjusting for race/ethnicity (odds ratio [OR], 2.1; P = 0.005), as was the FCGR3A 158 VV homozygous genotype after adjusting for race/ethnicity, rate of CD4+ T cell decline, and nadir CD4+ T cell count (OR, 21; P = 0.005). No associations between CD and FCGR2A 131 H/R polymorphism were identified. In binding studies, human IgG (hIgG)-C. neoformans complexes exhibited more binding to CHO-K1 cells expressing FCGR3A 158V than to those expressing FCGR3A 158F, and in cytotoxicity assays, natural killer (NK) cells expressing FCGR3A 158V induced more C. neoformans-infected monocyte cytotoxicity than those expressing FCGR3A 158F. Together, these results show an association between the FCGR3A 158V allele and risk for HIV-associated CD and suggest that this polymorphism could promote C. neoformans pathogenesis via increased binding of C. neoformans immune complexes, resulting in increased phagocyte cargo and/or immune activation. PMID:23982074
NASA Technical Reports Server (NTRS)
Akse, J. R.; Thompson, J. O.; Sauer, R. L.; Atwater, J. E.
1998-01-01
Flow injection analysis instrumentation and methodology for the determination of ammonia and ammonium ions in an aqueous solution are described. Using in-line solid phase basification beds containing crystalline media. the speciation of ammoniacal nitrogen is shifted toward the un-ionized form. which diffuses in the gas phase across a hydrophobic microporous hollow fiber membrane into a pure-water-containing analytical stream. The two streams flow in a countercurrent configuration on opposite sides of the membrane. The neutral pH of the analytical stream promotes the formation of ammonium cations, which are detected using specific conductance. The methodology provides a lower limit of detection of 10 microgram/L and a dynamic concentration range spanning three orders of magnitude using a 315-microliters sample injection volume. Using immobilized urease to enzymatically promote the hydrolysis of urea to produce ammonia and carbon dioxide, the technique has been extended to the determination of urea.
Ahmed, Mahmood; Qadir, Muhammad Abdul; Hameed, Abdul; Arshad, Muhammad Nadeem; Asiri, Abdullah M; Muddassar, Muhammad
2017-08-19
Curcumin has shown large number of pharmacological properties against different phenotypes of various disease models. Different synthetic routes have been employed to develop its various derivatives for diverse biological functions. In this study, curcumin derived azomethine, isoxazole, pyrimidines and N-substituted pyrazoles were synthesized to investigate their urease enzyme inhibition. The structures of newly synthesized compounds were described by IR, MS, 1 H NMR and 13 C NMR spectral data. Urease enzyme inhibition was evaluated through in vitro assays in which compound 8b was found to be the most potent (IC 50 = 2.44 ± 0.07 μM) among the tested compounds. The compounds with diazine ring system except the 4d showed better urease inhibition (IC 50 = 11.43 ± 0.21-19.63 ± 0.28 μM) than the standard urease inhibitor thiourea (IC 50 = 22.61 ± 0.23 μM). Similarly enzyme kinetics data revealed that compounds 3c-3e and 8b were competitive inhibitors with Ki values of 20.0, 19.87, 20.23 and 19.11 μM respectively while the compounds 4b, 4c and 4e were mixed type of inhibitors with Ki values 6.72, 19.69 and 6.72 μM respectively. Molecular docking studies were also performed to identify the plausible binding modes of the most active compounds. Copyright © 2017 Elsevier Inc. All rights reserved.
Armored Urease: Enzyme-Bioconjugated Poly(acrylamide) Hydrogel as a Storage and Sensing Platform.
Kunduru, Konda R; Kutcherlapati, S N Raju; Arunbabu, Dhamodaran; Jana, Tushar
2017-01-01
Jack bean urease is an important enzyme not only because of its numerous uses in medical and other fields but also because of its historical significance-the first enzyme to be crystallized and also the first nickel metalloenzyme. This enzyme hydrolyzes urea into ammonia and carbon dioxide; however, the stability of this enzyme at ambient temperature is a bottleneck for its applicability. To improve urease stability, it was immobilized on different substrates, particularly on polymeric hydrogels. In this study, the enzyme was coupled covalently with poly(acrylamide) hydrogel with an yield of 18μmol/cm 3 . The hydrogel served as the nanoarmor and protected the enzyme against denaturation. The enzyme immobilized on the polymer hydrogel showed no loss in activity for more than 30 days at ambient temperature, whereas free enzyme lost its activity within a couple of hours. The Michaelis-Menten constant (K m ) for free and immobilized urease were 0.0256 and 0.2589mM, respectively, on the first day of the study. The K m of the immobilized enzyme was approximately 10 times higher than that of the free enzyme. The hydrogel technique was also used to prepare light diffracting polymerized colloidal crystal array in which urease enzyme was covalently immobilized. This system was applied for the detection of mercury (Hg 2+ ) with the lower limit as 1ppb, which is below the maximum contaminant limit (2ppb) for mercury ions in water. The experimental details of these studies are presented in this chapter. © 2017 Elsevier Inc. All rights reserved.
2008-08-01
degradation. Urea was expected to be a good nitrogen source because the genome of JS666 contains genes for all 3 subunits of urease with 60 to 83...identity to known ureases . However, growth with urea was indistinguishable from no nitrogen or nitrite supplementation. Cation effects 0 1 2 3 4 5 6 7
Saeed, Aamer; Mahesar, Parvez Ali; Channar, Pervaiz Ali; Larik, Fayaz Ali; Abbas, Qamar; Hassan, Mubashir; Raza, Hussain; Seo, Sung-Yum
2017-08-01
The current research article reports the synthesis of coumarinyl pyrazolinyl thioamide derivatives and their biological activity as inhibitors of jack bean urease. The coumarinyl pyrazolinyl thioamides were synthesized by reacting thiosemicarbazide with newly synthesized chalcones to afford the products in good yields and the synthesized compounds were purified by recrystallization. Coumarinyl pyrazolinyl thioamide derivatives 5a - 5q showed significant activity against Urease enzyme and also exhibited good antioxidant potential. The compound 3-(2-oxo-2H-chromen-3-yl)-5-phenyl-4,5-dihydro-1H-pyrazole-1-carbothioamide (5n) was found to be superior agent in the series with an IC 50 = 0.358 ± 0.017 μm compared to standard thiourea with an IC 50 = 4720 ± 174 μm. To undermine the binding mode of inhibition kinetic studies were performed for most potent derivative and it was found that compound 5n inhibits urease enzyme by non-competitive mode of inhibition. Molecular docking studies were carried out to delineate the binding affinity of the synthesized derivatives. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Hirayama, Junichi; Tazumi, Akihiro; Hayashi, Kyohei; Tasaki, Erina; Kuribayashi, Takashi; Moore, John E; Millar, Beverley C; Matsuda, Motoo
2011-06-01
In the present study, the reliability of full-length gene sequence information for several genes including 16S rRNA was examined, for the discrimination of the two representative Campylobacter lari taxa, namely urease-negative (UN) C. lari and urease-positive thermophilic Campylobacter (UPTC). As previously described, 16S rRNA gene sequence are not reliable for the molecular discrimination of UN C. lari from UPTC organisms employing both the unweighted pair group method using arithmetic means analysis (UPGMA) and neighbor joining (NJ) methods. In addition, three composite full-length gene sequences (ciaB, flaC and vacJ) out of seven gene loci examined were reliable for discrimination employing dendrograms constructed by the UPGMA method. In addition, all the dendrograms of the NJ phylogenetic trees constructed based on the nine gene information were not reliable for the discrimination. Three composite full-length gene sequences (ciaB, flaC and vacJ) were reliable for the molecular discrimination between UN C. lari and UPTC organisms employing the UPGMA method, as well as among four thermophilic Campylobacter species. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Growth cycle of Helicobacter pylori in gastric mucous layer.
Nakazawa, Teruko
2002-12-01
Helicobacter pylori bacterium is characterized by its strong urease activity. Our studies on the role of H. pylori urease revealed; (i) it is essential for colonization, (ii) exogenous urea is required for acid resistance, (iii) the bacteria have the ability to move toward urea and sodium bicarbonate, (iv) urea hydrolysis accelerates chemotactic locomotion, and (v) decay of urease mRNA to accomplish the active center is pH-regulated; i.e., the mRNA is stabilized and destabilized under acidic and neutral conditions, respectively. Based on the above results, I propose the growth cycle of H. pylori in gastric mucous layer. H. pylori bacteria proliferate on the epithelial cell surface by utilizing nutrients derived from degraded cells. Proliferated bacteria leave the cell surface to pH-variable region where they encounter strong acid. Urease is activated with simultaneous opening of UreI channel so that urea is hydrolyzed to neutralize acid. Chemotaxis of H. pylori toward urea and sodium bicarbonate that are abundant on the cell surface is accelerated by urea hydrolysis so that the bacteria go back to the cell surface for the next round of proliferation. This growth cycle may allow the bacteria to infect persistently in the stomach.
Griffith, D P; Osborne, C A
1987-01-01
Infection-induced stones in man probably form solely as a consequence of urealysis which is catalyzed by the bacterial protein urease. Urease stones composed of struvite and carbonate-apatite may form primarily, or as secondary stones or pre-existent metabolic stones. Struvite stones form and grow rapidly owing to (a) supersaturation of urine with stone forming salts, (b) 'salting out' of poorly soluble organic substances normally dissolved in urine and (c) ammonia-induced destruction of the normally protective urothelial glycosaminoglycan layer. Immature (predominantly organic) matrix stones mature into densely mineralized stones. Curative treatment is possible only by eliminating all of the stone and by eradicating all urinary and parenchymal infection. A variety of operative and pharmaceutical approaches are available. Patient treatment must be individualized inasmuch as some patients are better candidates for one type of treatment than another.
pH Wave-Front Propagation in the Urea-Urease Reaction
Wrobel, Magdalena M.; Bánsági, Tamás; Scott, Stephen K.; Taylor, Annette F.; Bounds, Chris O.; Carranza, Arturo; Pojman, John A.
2012-01-01
The urease-catalyzed hydrolysis of urea displays feedback that results in a switch from acid (pH ∼3) to base (pH ∼9) after a controllable period of time (from 10 to >5000 s). Here we show that the spatially distributed reaction can support pH wave fronts propagating with a speed of the order of 0.1−1 mm min−1. The experimental results were reproduced qualitatively in reaction-diffusion simulations including a Michaelis-Menten expression for the urease reaction with a bell-shaped rate-pH dependence. However, this model fails to predict that at lower enzyme concentrations, the unstirred reaction does not always support fronts when the well-stirred reaction still rapidly switches to high pH. PMID:22947878
Tasaki, E; Hirayama, J; Tazumi, A; Hayashi, K; Hara, Y; Ueno, H; Moore, J E; Millar, B C; Matsuda, M
2012-02-01
Novel clustered regularly-interspaced short palindromic repeats (CRISPRs) locus [7,500 base pairs (bp) in length] occurred in the urease-positive thermophilic Campylobacter (UPTC) Japanese isolate, CF89-12. The 7,500 bp gene loci consisted of the 5'-methylaminomethyl-2-thiouridylate methyltransferase gene, putative (P) CRISPR associated (p-Cas), putative open reading frames, Cas1 and Cas2, leader sequence region (146 bp), 12 CRISPRs consensus sequence repeats (each 36 bp) separated by a non-repetitive unique spacer region of similar length (26-31 bp) and the phosphatidyl glycerophosphatase A gene. When the CRISPRs loci in the UPTC CF89-12 and five C. jejuni isolates were compared with one another, these six isolates contained p-Cas, Cas1 and Cas2 within the loci. Four to 12 CRISPRs consensus sequence repeats separated by a non-repetitive unique spacer region occurred in six isolates and the nucleotide sequences of those repeats gave approximately 92-100% similarity with each other. However, no sequence similarity occurred in the unique spacer regions among these isolates. The putative σ(70) transcriptional promoter and the hypothetical ρ-independent terminator structures for the CRISPRs and Cas were detected. No in vivo transcription of p-Cas, Cas1 and Cas2 was confirmed in the UPTC cells.
Tumor necrosis factor-inducing activities of Cryptococcus neoformans components.
Delfino, D; Cianci, L; Migliardo, M; Mancuso, G; Cusumano, V; Corradini, C; Teti, G
1996-01-01
Cryptococcus neoformans-induced tumor necrosis factor alpha (TNF-alpha) production may lead to increased human immunodeficiency virus replication in patients with AIDS. In order to identify cryptococcal components that are predominantly responsible for stimulating TNF production, various concentrations of glucuronoxylomannan (GXM), galactoxylomannan (GalXM), mannoproteins (MP), and alpha(1-3) [corrected] glucan were added to whole-blood cultures. All of the cryptococcal components tested, as well as whole heat-killed cryptococci, were capable of inducing TNF-alpha release in a dose-dependent manner. MP were significantly more potent than any of the other cryptococcal components tested or heat-killed cryptococci in stimulating TNF-alpha production (P < 0.05). GXM, in contrast, was significantly less potent in this activity than either GalXM or MP (P < 0.05). As little as 0.5 microg of MP per ml was sufficient to produce moderate but significant elevations of TNF-alpha release. Maximal MP-induced TNF-alpha levels were similar to those induced by Salmonella enteritidis lipopolysaccharide, our positive control. Further experiments using isolated leukocytes suggested that monocytes were the cell population mainly responsible for TNF-alpha production, although the participation of other cell types could not be excluded. The presence of complement-sufficient plasma was a necessary requirement for TNF-alpha induction by GXM, GalXM, and low doses of MP. High MP concentrations (100 microg/ml) were also capable of stimulating TNF-alpha production in the absence of plasma. These data indicate that soluble products released by C. neoformans are capable of inducing TNF-alpha secretion in human leukocytes. This may be clinically relevant, since high concentrations of such products are frequently found in the body fluids of AIDS patients infected with C. neoformans. PMID:8945566
Montezuma-Rusca, Jairo M; Powers, John H; Follmann, Dean; Wang, Jing; Sullivan, Brigit; Williamson, Peter R
2016-01-01
Cryptococcal meningitis (CM) is a leading cause of HIV-associated mortality. In clinical trials evaluating treatments for CM, biomarkers of early fungicidal activity (EFA) in cerebrospinal fluid (CSF) have been proposed as candidate surrogate endpoints for all- cause mortality (ACM). However, there has been no systematic evaluation of the group-level or trial-level evidence for EFA as a candidate surrogate endpoint for ACM. We conducted a systematic review of randomized trials in treatment of CM to evaluate available evidence for EFA measured as culture negativity at 2 weeks/10 weeks and slope of EFA as candidate surrogate endpoints for ACM. We performed sensitivity analysis on superiority trials and high quality trials as determined by Cochrane measures of trial bias. Twenty-seven trials including 2854 patients met inclusion criteria. Mean ACM was 15.8% at 2 weeks and 27.0% at 10 weeks with no overall significant difference between test and control groups. There was a statistically significant group-level correlation between average EFA and ACM at 10 weeks but not at 2 weeks. There was also no statistically significant group-level correlation between CFU culture negativity at 2weeks/10weeks or average EFA slope at 10 weeks. A statistically significant trial-level correlation was identified between EFA slope and ACM at 2 weeks, but is likely misleading, as there was no treatment effect on ACM. Mortality remains high in short time periods in CM clinical trials. Using published data and Institute of Medicine criteria, evidence for use of EFA as a surrogate endpoint for ACM is insufficient and could provide misleading results from clinical trials. ACM should be used as a primary endpoint evaluating treatments for cryptococcal meningitis.
Wirth, Fernanda; de Azevedo, Maria Isabel; Pilla, Carmen; Aquino, Valério Rodrigues; Neto, Gustavo Wissmann; Goldani, Luciano Zubaran
2018-04-01
The purpose of this study was to evaluate the influence of intracranial hypertension in the cerebrospinal fluid (CSF) levels of amphotericin B and fluconazole levels of patients with cryptococcal meningitis. CSF samples and intracranial pressure were obtained by means of routine punctures performed at days 1, 7, and 14 of therapy, respectively. Amphotericin B and fluconazole CSF levels were measured by HPLC method as previously described. The minimum inhibitory concentration for amphotericin B, fluconazole, 5΄flucytosine, and voriconazole of each Cryptococcus isolate was performed according to CLSI. The predominant Cryptococcus species found was C. neoformans, and the major underlying condition was AIDS. Only one CSF sample had a detectable level for amphotericin B during the 14 days of therapy. Fluconazole CSF levels progressively increased from day 1 to day 14 of therapy for most cases. Fluconazole levels in the CSF were above the minimum inhibitory concentrations (MICs) for Cryptococcus during the initial 14 days of antifungal therapy. Variations of intracranial pressure did not affect amphotericin B and fluconazole levels in the CSF. The generalized estimating correlation (GEE) and Spearman correlation test (SCT) showed no significant correlation between the amphotericin B or fluconazole concentrations in the CSF and intracranial pressure (P = .953 and P = .093, respectively for GEE test and P = .477 and P = .847, respectively, for SCT). Combination therapy of amphotericin B with fluconazole was effective in 60% of the patients considering CSF cultures were negative in 9 of 15 patients after 14 days of therapy. Further studies are necessary to evaluate the role of intracranial hypertension on the therapeutic efficacy of different antifungal agents in patients with cryptococcal meningitis.
Ford, Nathan; Shubber, Zara; Jarvis, Joseph N; Chiller, Tom; Greene, Greg; Migone, Chantal; Vitoria, Marco; Doherty, Meg; Meintjes, Graeme
2018-03-04
Current guidelines recommend screening all people living with human immunodeficiency virus (PLHIV) who have a CD4 count ≤100 cells/µL for cryptococcal antigen (CrAg) to identify those patients who could benefit from preemptive fluconazole treatment prior to the onset of meningitis. We conducted a systematic review to assess the prevalence of CrAg positivity at different CD4 cell counts. We searched 4 databases and abstracts from 3 conferences up to 1 September 2017 for studies reporting prevalence of CrAg positivity according to CD4 cell count strata. Prevalence estimates were pooled using random effects models. Sixty studies met our inclusion criteria. The pooled prevalence of cryptococcal antigenemia was 6.5% (95% confidence interval [CI], 5.7%-7.3%; 54 studies) among patients with CD4 count ≤100 cells/µL and 2.0% (95% CI, 1.2%-2.7%; 21 studies) among patients with CD4 count 101-200 cells/µL. Twenty-one studies provided sufficient information to compare CrAg prevalence per strata; overall, 18.6% (95% CI, 15.4%-22.2%) of the CrAg-positive cases identified at ≤200 cells/µL (n = 11823) were identified among individuals with a CD4 count 101-200 cells/µL. CrAg prevalence was higher among inpatients (9.8% [95% CI, 4.0%-15.5%]) compared with outpatients (6.3% [95% CI, 5.3%-7.4%]). The findings of this review support current recommendations to screen all PLHIV who have a CD4 count ≤100 cells/µL for CrAg and suggest that screening may be considered at CD4 cell count ≤200 cells/µL.
Lee, Chrono K.; Huang, Haibin; Hester, Maureen M.; Liu, Jianhua; Luckie, Bridget A.; Torres Santana, Melanie A.; Mirza, Zeynep; Khoshkenar, Payam; Abraham, Ambily; Shen, Zu T.; Lodge, Jennifer K.; Akalin, Ali; Homan, Jane; Ostroff, Gary R.
2017-01-01
ABSTRACT Development of a vaccine to protect against cryptococcosis is a priority given the enormous global burden of disease in at-risk individuals. Using glucan particles (GPs) as a delivery system, we previously demonstrated that mice vaccinated with crude Cryptococcus-derived alkaline extracts were protected against lethal challenge with Cryptococcus neoformans and Cryptococcus gattii. The goal of the present study was to identify protective protein antigens that could be used in a subunit vaccine. Using biased and unbiased approaches, six candidate antigens (Cda1, Cda2, Cda3, Fpd1, MP88, and Sod1) were selected, recombinantly expressed in Escherichia coli, purified, and loaded into GPs. Three mouse strains (C57BL/6, BALB/c, and DR4) were then vaccinated with the antigen-laden GPs, following which they received a pulmonary challenge with virulent C. neoformans and C. gattii strains. Four candidate vaccines (GP-Cda1, GP-Cda2, GP-Cda3, and GP-Sod1) afforded a significant survival advantage in at least one mouse model; some vaccine combinations provided added protection over that seen with either antigen alone. Vaccine-mediated protection against C. neoformans did not necessarily predict protection against C. gattii. Vaccinated mice developed pulmonary inflammatory responses that effectively contained the infection; many surviving mice developed sterilizing immunity. Predicted T helper cell epitopes differed between mouse strains and in the degree to which they matched epitopes predicted in humans. Thus, we have discovered cryptococcal proteins that make promising candidate vaccine antigens. Protection varied depending on the mouse strain and cryptococcal species, suggesting that a successful human subunit vaccine will need to contain multiple antigens, including ones that are species specific. PMID:29184017
Smith, Mariette; Smith, Rachel; Osler, Meg; Kelly, Nicola; Cross, Anna; Boulle, Andrew; Meintjes, Graeme; Govender, Nelesh P.
2016-01-01
Background Screening for serum cryptococcal antigen (CrAg) may identify those at risk for disseminated cryptococcal disease (DCD), and pre-emptive fluconazole treatment may prevent progression to DCD. In August 2012, the Western Cape Province (WC), South Africa, adopted provider-initiated CrAg screening. We evaluated the implementation and effectiveness of this large-scale public-sector program during its first year, September 1, 2012—August 31, 2013. Methods We used data from the South African National Health Laboratory Service, WC provincial HIV program, and nationwide surveillance data for DCD. We assessed the proportion of eligible patients screened for CrAg (CrAg test done within 30 days of CD4 date) and the prevalence of CrAg positivity. Incidence of DCD among those screened was compared with those not screened. Results Of 4,395 eligible patients, 26.6% (n=1170) were screened. The proportion of patients screened increased from 15.9% in September 2012 to 36.6% in August 2013. The prevalence of positive serum CrAg was 2.1%. Treatment data were available for 13 of 24 CrAg-positive patients; nine of 13 were treated with fluconazole. Nine (0.8%) incident cases of DCD occurred among the 1170 patients who were screened for CrAg vs. 49 (1.5%) incident cases among the 3225 patients not screened (p=0.07). Conclusions Relatively few eligible patients were screened under the WC provider-initiated CrAg screening program. Unscreened patients were nearly twice as likely to develop DCD. CrAg screening can reduce the burden of DCD, but needs to be implemented well. To improve screening rates, countries should consider laboratory-based reflexive screening when possible. PMID:26926942
Rodrigues, M L; Rozental, S; Couceiro, J N; Angluster, J; Alviano, C S; Travassos, L R
1997-01-01
Sialic acids from sialoglycoconjugates present at the cell surface of Cryptococcus neoformans yeast forms were analyzed by high-performance thin-layer chromatography, binding of influenza A and C virus strains, enzymatic treatment, and flow cytofluorimetry with fluorescein isothiocyanate-labeled lectins. C. neoformans yeast forms grown in a chemically defined medium contain N-acetylneuraminic acid and its 9-O-acetylated derivative. A density of 3 x 10(6) residues of sialic acid per cell was found in C. neoformans. Sialic acids in cryptococcal cells are glycosidically linked to galactopyranosyl units as inferred from the increased reactivity of neuraminidase-treated yeasts with peanut agglutinin. N-Acetylneuraminic acids are alpha-2,6 and alpha-2,3 linked, as indicated by using virus strains M1/5 and M1/5 HS8, respectively, as agglutination probes. The alpha-2,6 linkage markedly predominated. These findings were essentially confirmed by the interaction of cryptococcal cells with the lectins Sambucus nigra agglutinin and Maackia amurensis agglutinin. We also investigated whether the sialyl residues present in C. neoformans are involved in the fungal interaction with a cationic solid-phase substrate and with mouse resident macrophages. Adhesion of yeast cells to poly-L-lysine was mediated, in part, by sialic acid residues, since the number of adherent cells was markedly reduced after treatment with bacterial neuraminidase. The enzymatic removal of sialic acids also made C. neoformans yeast cells more susceptible to endocytosis by macrophages. The results show that sialic acids are components of the cryptococcal cell surface that contribute to its negative charge and protect yeast forms against phagocytosis. PMID:9393779
1993-05-01
urease which contains two nickel ions in the active site. Catalytic hydrolysis studies are in progress. 20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21...for hydrolytic metalloenzymes. In contrast, the enzyme urease has becti show’n tU coftifl two nickel(II) ions in the active site," but as yet the
Mutational analysis of the major soybean UreF paralogue involved in urease activation.
Polacco, Joe C; Hyten, David L; Medeiros-Silva, Mônica; Sleper, David A; Bilyeu, Kristin D
2011-06-01
The soybean genome duplicated ∼14 and 45 million years ago and has many paralogous genes, including those in urease activation (emplacement of Ni and CO(2) in the active site). Activation requires the UreD and UreF proteins, each encoded by two paralogues. UreG, a third essential activation protein, is encoded by the single-copy Eu3, and eu3 mutants lack activity of both urease isozymes. eu2 has the same urease-negative phenotype, consistent with Eu2 being a single-copy gene, possibly encoding a Ni carrier. Unexpectedly, two eu2 alleles co-segregated with missense mutations in the chromosome 2 UreF paralogue (Ch02UreF), suggesting lack of expression/function of Ch14UreF. However, Ch02UreF and Ch14UreF transcripts accumulate at the same level. Further, it had been shown that expression of the Ch14UreF ORF complemented a fungal ureF mutant. A third, nonsense (Q2*) allelic mutant, eu2-c, exhibited 5- to 10-fold more residual urease activity than missense eu2-a or eu2-b, though eu2-c should lack all Ch02UreF protein. It is hypothesized that low-level activation by Ch14UreF is 'spoiled' by the altered missense Ch02UreF proteins ('epistatic dominant-negative'). In agreement with active 'spoiling' by eu2-b-encoded Ch02UreF (G31D), eu2-b/eu2-c heterozygotes had less than half the urease activity of eu2-c/eu2-c siblings. Ch02UreF (G31D) could spoil activation by Chr14UreF because of higher affinity for the activation complex, or because Ch02UreF (G31D) is more abundant than Ch14UreF. Here, the latter is favoured, consistent with a reported in-frame AUG in the 5' leader of Chr14UreF transcript. Translational inhibition could represent a form of 'functional divergence' of duplicated genes.
Mutational analysis of the major soybean UreF paralogue involved in urease activation
Polacco, Joe C.; Hyten, David L.; Medeiros-Silva, Mônica; Sleper, David A.; Bilyeu, Kristin D.
2011-01-01
The soybean genome duplicated ∼14 and 45 million years ago and has many paralogous genes, including those in urease activation (emplacement of Ni and CO2 in the active site). Activation requires the UreD and UreF proteins, each encoded by two paralogues. UreG, a third essential activation protein, is encoded by the single-copy Eu3, and eu3 mutants lack activity of both urease isozymes. eu2 has the same urease-negative phenotype, consistent with Eu2 being a single-copy gene, possibly encoding a Ni carrier. Unexpectedly, two eu2 alleles co-segregated with missense mutations in the chromosome 2 UreF paralogue (Ch02UreF), suggesting lack of expression/function of Ch14UreF. However, Ch02UreF and Ch14UreF transcripts accumulate at the same level. Further, it had been shown that expression of the Ch14UreF ORF complemented a fungal ureF mutant. A third, nonsense (Q2*) allelic mutant, eu2-c, exhibited 5- to 10-fold more residual urease activity than missense eu2-a or eu2-b, though eu2-c should lack all Ch02UreF protein. It is hypothesized that low-level activation by Ch14UreF is ‘spoiled’ by the altered missense Ch02UreF proteins (‘epistatic dominant-negative’). In agreement with active ‘spoiling’ by eu2-b-encoded Ch02UreF (G31D), eu2-b/eu2-c heterozygotes had less than half the urease activity of eu2-c/eu2-c siblings. Ch02UreF (G31D) could spoil activation by Chr14UreF because of higher affinity for the activation complex, or because Ch02UreF (G31D) is more abundant than Ch14UreF. Here, the latter is favoured, consistent with a reported in-frame AUG in the 5' leader of Chr14UreF transcript. Translational inhibition could represent a form of ‘functional divergence’ of duplicated genes. PMID:21430294
Vorontsov, Egor; Gallaud, Julien; Malosse, Christian; Michel, Valérie; Cavazza, Christine; Robbe-Saule, Marie; Richaud, Pierre; Chamot-Rooke, Julia; Brochier-Armanet, Céline; De Reuse, Hilde
2015-01-01
Metal acquisition and intracellular trafficking are crucial for all cells and metal ions have been recognized as virulence determinants in bacterial pathogens. Virulence of the human gastric pathogen Helicobacter pylori is dependent on nickel, cofactor of two enzymes essential for in vivo colonization, urease and [NiFe] hydrogenase. We found that two small paralogous nickel-binding proteins with high content in Histidine (Hpn and Hpn-2) play a central role in maintaining non-toxic intracellular nickel content and in controlling its intracellular trafficking. Measurements of metal resistance, intracellular nickel contents, urease activities and interactomic analysis were performed. We observed that Hpn acts as a nickel-sequestration protein, while Hpn-2 is not. In vivo, Hpn and Hpn-2 form homo-multimers, interact with each other, Hpn interacts with the UreA urease subunit while Hpn and Hpn-2 interact with the HypAB hydrogenase maturation proteins. In addition, Hpn-2 is directly or indirectly restricting urease activity while Hpn is required for full urease activation. Based on these data, we present a model where Hpn and Hpn-2 participate in a common pathway of controlled nickel transfer to urease. Using bioinformatics and top-down proteomics to identify the predicted proteins, we established that Hpn-2 is only expressed by H. pylori and its closely related species Helicobacter acinonychis. Hpn was detected in every gastric Helicobacter species tested and is absent from the enterohepatic Helicobacter species. Our phylogenomic analysis revealed that Hpn acquisition was concomitant with the specialization of Helicobacter to colonization of the gastric environment and the duplication at the origin of hpn-2 occurred in the common ancestor of H. pylori and H. acinonychis. Finally, Hpn and Hpn-2 were found to be required for colonization of the mouse model by H. pylori. Our data show that during evolution of the Helicobacter genus, acquisition of Hpn and Hpn-2 by gastric Helicobacter species constituted a decisive evolutionary event to allow Helicobacter to colonize the hostile gastric environment, in which no other bacteria persistently thrives. This acquisition was key for the emergence of one of the most successful bacterial pathogens, H. pylori. PMID:26641249
Liquid-Based Cytology of the Cerebrospinal Fluid in a Case of Cryptococcal Meningitis.
Choi, Jiwoon; Kim, Se Hoon
2018-01-01
Cryptococcus neoformans is the most common microorganism found in cerebrospinal fluid (CSF) cytology and causes life-threatening infections in immunocompromised hosts. Although its cytomorphologic features in conventional smear cytology have been well described, those in liquid-based cytology have rarely been. A 73-year-old woman with diffuse large B-cell lymphoma presented with mental confusion and a spiking fever. To rule out infectious conditions, CSF examination was performed. A cytology slide that was prepared using the ThinPrep method showed numerous spherical yeast-form organisms with diameters of 4-11 μm and thick capsules. Occasional asymmetrical, narrow-based budding but no true hyphae or pseudohyphae were observed. Gomori methenamine silver staining was positive. Cryptococcosis was confirmed in blood and CSF through the cryptococcal antigen test and culture. Liquid-based cytology allows for a clean background and additional slides for ancillary testing, facilitating the detection of microorganisms in CSF specimens, particularly when the number of organisms is small.
Liquid-Based Cytology of the Cerebrospinal Fluid in a Case of Cryptococcal Meningitis
Choi, Jiwoon; Kim, Se Hoon
2018-01-01
Cryptococcus neoformans is the most common microorganism found in cerebrospinal fluid (CSF) cytology and causes life-threatening infections in immunocompromised hosts. Although its cytomorphologic features in conventional smear cytology have been well described, those in liquid-based cytology have rarely been. A 73-year-old woman with diffuse large B-cell lymphoma presented with mental confusion and a spiking fever. To rule out infectious conditions, CSF examination was performed. A cytology slide that was prepared using the ThinPrep method showed numerous spherical yeast-form organisms with diameters of 4–11 μm and thick capsules. Occasional asymmetrical, narrow-based budding but no true hyphae or pseudohyphae were observed. Gomori methenamine silver staining was positive. Cryptococcosis was confirmed in blood and CSF through the cryptococcal antigen test and culture. Liquid-based cytology allows for a clean background and additional slides for ancillary testing, facilitating the detection of microorganisms in CSF specimens, particularly when the number of organisms is small. PMID:29069886
Fatal disseminated cryptococcosis and concurrent ehrlichiosis in a dog.
Collett, M G; Doyle, A S; Reyers, F; Kruse, T; Fabian, B
1987-12-01
Laboratory findings in an adult bull terrier presented with a history of anorexia and weight loss included the following: severe anaemia, leukocytosis, neutrophilia, lymphopaenia, thrombocytopaenia, Ehrlichia canis morulae in monocytes, hypergammaglo-bulinaemia, a bleeding tendency, icterus and proteinuria. In addition, a high Haemobartonella canis parasitaemia, non-encapsulated yeasts on urinalysis and a localised Demodex canis infestation were present. Treatment for ehrlichiosis was initiated but the dog died. Lesions found were a severe cryptococcal granulomatous pneumonia and cryptococcal colonies in the lungs, bronchial lymph nodes, kidneys, liver, spleen, heart, meninges, eyes and thoracic cavity. In addition, hyphal forms resembling Filobasidiella neoformans, the teleomorph of Cryptococcus neoformans, were seen in lung fine needle aspiration smears, impression smears and lung sections. C. neoformans was cultured from urine, lung and liver. Lung and kidney also yielded Salmonella typhimureum. Cortical atrophy with T-cell depletion of lymph nodes as well as splenic lymphoid follicular atrophy, typical of chronic ehrlichiosis-induced cell mediated immunosuppression, could have predisposed to the fatal disseminated cryptococcis.
Kangogo, Mourine; Bader, Oliver; Boga, Hamadi; Wanyoike, Wanjiru; Folba, Claudia; Worasilchai, Navaporn; Weig, Michael; Groß, Uwe; Bii, Christine C
2015-11-01
Cryptococcal meningitis infections cause high mortality rates among HIV-infected patients in Sub-Saharan Africa. The high incidences of cryptococcal infections may be attributed to common environmental sources which, if identified, could lead to institution of appropriate control strategies. To determine the genotypes of Cryptococcus gattii/C. neoformans- species complex from Nairobi, Kenya, 123 clinical and environmental isolates were characterised. Typing was done using orotidine monophosphate pyrophosphorylase (URA5) gene restriction fragment length polymorphism (URA5-RFLP). The majority of the isolates [105/123; 85.4%] were C. neoformans genotype (AFLPI/VNI) and 1.6% AFLP1A/VNB/VNII, whereas (13%) were C. gattii (AFLP4/VGI). This is the first report on the genotypes of C. gattii/C. neoformans species complex from clinical and environmental sources in Nairobi, Kenya and the isolation of C. gattii genotype AFLP4/VGI from the environment in Kenya. © 2015 Blackwell Verlag GmbH.
Cryptococcus and Phagocytes: Complex Interactions that Influence Disease Outcome
Leopold Wager, Chrissy M.; Hole, Camaron R.; Wozniak, Karen L.; Wormley, Floyd L.
2016-01-01
Cryptococcus neoformans and C. gattii are fungal pathogens that cause life-threatening disease. These fungi commonly enter their host via inhalation into the lungs where they encounter resident phagocytes, including macrophages and dendritic cells, whose response has a pronounced impact on the outcome of disease. Cryptococcus has complex interactions with the resident and infiltrating innate immune cells that, ideally, result in destruction of the yeast. These phagocytic cells have pattern recognition receptors that allow recognition of specific cryptococcal cell wall and capsule components. However, Cryptococcus possesses several virulence factors including a polysaccharide capsule, melanin production and secretion of various enzymes that aid in evasion of the immune system or enhance its ability to thrive within the phagocyte. This review focuses on the intricate interactions between the cryptococci and innate phagocytic cells including discussion of manipulation and evasion strategies used by Cryptococcus, anti-cryptococcal responses by the phagocytes and approaches for targeting phagocytes for the development of novel immunotherapeutics. PMID:26903984
Ding, J C; Bauer, M; Diamond, D M; Leal, M A; Johnson, D; Williams, B K; Thomas, A M; Najvar, L; Graybill, J R; Larsen, R A
1997-01-01
We studied the effect of the severity of meningitis on the response to therapy with fluconazole and flucytosine in a murine model of cryptococcal meningitis. Meningitis was established by intracerebral injection of Cryptococcus neoformans. The severity of meningitis was varied by delaying the onset of treatment from 3 to 7 days. Animals were sacrificed after 14 days of treatment, and the numbers of C. neoformans per gram of brain tissue were quantified. The range of effective dose combinations of fluconazole and flucytosine became progressively reduced as the severity of meningitis increased. The magnitude of treatment effect, as measured by the numbers of CFU/gram of brain tissue, was also reduced with increasing severity of meningitis. In this model, as the severity of meningitis increases, higher doses of fluconazole are required to achieve equivalent levels of activity. The combination of fluconazole and flucytosine appears to have the most-potent antifungal effects. This is most readily observed in animals with more-severe meningitis. PMID:9210691
Defferrari, M S; da Silva, R; Orchard, I; Carlini, C R
2014-05-01
Ureases are multifunctional proteins that display biological activities independently of their enzymatic function, such as induction of exocytosis and insecticidal effects. Rhodnius prolixus, a major vector of Chagas' disease, is a model for studies on the entomotoxicity of jack bean urease (JBU). We have previously shown that JBU induces the production of eicosanoids in isolated tissues of R. prolixus. In insects, the immune response comprises cellular and humoral reactions, and is centrally modulated by eicosanoids. Cyclooxygenase products signal immunity in insects, mainly cellular reactions, such as hemocyte aggregation. In searching for a link between JBU's toxic effects and immune reactions in insects, we have studied the effects of this toxin on R. prolixus hemocytes. JBU triggers aggregation of hemocytes after injection into the hemocoel and when applied to isolated cells. On in vitro assays, the eicosanoid synthesis inhibitors dexamethasone (phospholipase A2 indirect inhibitor) and indomethacin (cyclooxygenase inhibitor) counteracted JBU's effect, indicating that eicosanoids, more specifically cyclooxygenase products, are likely to mediate the aggregation response. Contrarily, the inhibitors esculetin and baicalein were inactive, suggesting that lipoxygenase products are not involved in JBU's effect. Extracellular calcium was also necessary for JBU's effect, in agreement to other cell models responsive to ureases. A progressive darkening of the medium of JBU-treated hemocytes was observed, suggestive of a humoral response. JBU was immunolocalized in the cultured cells upon treatment along with cytoskeleton damage. The highest concentration of JBU tested on cultured cells also led to nuclei aggregation of adherent hemocytes. This is the first time urease has been shown to affect insect hemocytes, contributing to our understanding of the entomotoxic mechanisms of action of this protein. Copyright © 2014 Elsevier Ltd. All rights reserved.
The effect of plum juice on the prevention of struvite calculus formation in vitro.
Zhu, Huaijun; Sun, Xizhao; Lu, Jianlin; Wang, Meihua; Fang, Yun; Ge, Weihong
2012-10-01
To evaluate the effect of plum juice on struvite calculus formation in vitro and to explore the effect of plum juice on urease-producing bacteria and urease activity. The compliance of available drugs is low for struvite calculus after surgical treatment and functional food may represent a good choice as an alternative therapy. Antibacterial activity was assessed using a microdilution antimicrobial susceptibility test. Urease activity was determined by measuring ammonia production. Struvite crystals were induced by Proteus mirabilis in artificial urine with natural and pH-adjusted plum juice. The optical density (OD)(600) and pH of artificial urine were examined, as well the shape and weights of crystals. Natural plum juice showed an antibacterial effect on urease-producing bacteria, whereas the pH-adjusted juice did not. A concentration-dependent inhibition on urease activity was found for both natural and pH-adjusted juice. Natural plum juice at a high concentration of 0.5% showed an obvious inhibition on the increase of OD(600) and pH of the artificial urine, and crystal formation was prevented by up to or more than 8 h, depending on the concentration of juice. Crystal weight in the natural plum juice groups was decreased in a concentration-dependent manner. The pH-adjusted plum juice did not show any effect on OD(600) and pH, although the presence of juice changed the crystal habit, indicating that the juice slowed the growth rate of crystals. Natural plum juice at high and moderate concentrations prevented the formation of P. mirabilis-induced crystals for up to 8 h in artificial urine. Although pH-adjusted and low-concentration natural juice did not prevent the occurrence of crystals, both types of juice slowed their growth rate.
Baroni, María R; Bucci, Pamela; Giani, Rita N; Giusti, Antonela; Tedeschi, Fabian A; Salvatierra, Emiliano; Barbaglia, Yanina; Jimenez, Félix; Zalazar, Fabian E
2018-03-27
Helicobacter pylori is a gastric pathogen that is widely recognized as a causative agent of gastric disease. Its eradication is variable, mainly due to increased resistance to clarithromycin. Our objective was: to evaluate (i) if the biopsy specimen used for the rapid urease test is a useful sample to detect resistance to clarithromycin by PCR-RFLP and (ii) the distribution of A2142G and A2143G point mutations in the 23S rRNA gene, in relation to virulence factors in our region. Gastric specimens were collected from adult dyspeptic patients (n=141) and H. pylori was investigated by the rapid urease test, histopathological analysis and PCR for the hsp60 gene. Clarithromycin resistance was detected by PCR-RFLP in 62 H. pylori (+) paired biopsy specimens submitted to molecular analysis and the rapid urease test. H. pylori virulence factors were analyzed by multiplex PCR using specific primers for the cagA, vacA and babA2 genes. Thirteen out of 62 strains (20.9%) were resistant to clarithromycin: 6/13 (46.2%) harbored the A2143G mutation whereas 7/13 (53.8%) carried the A2142G point mutation. vacA m1s1 was the most frequent genotype among the resistant strains. In conclusion, the biopsy specimens used for the rapid urease test were suitable samples for clarithromycin resistance detection in patients infected with H. pylori, which became especially useful in cases where the number or size of the biopsies is limited. In addition, this is the first report of a molecular analysis for clarithromycin resistance performed directly from gastric biopsies in our region. Copyright © 2018 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Yanyu; Song, Changchun; Yang, Guisheng; Miao, Yuqing; Wang, Jiaoyue; Guo, Yuedong
2012-09-01
The extensive reclamation of marshland into cropland has tremendously impacted the ecological environment of the Sanjiang Plain in northeast China. To understand the impacts of marshland reclamation and restoration on soil properties, we investigated the labile organic carbon fractions and the soil enzyme activities in an undisturbed marshland, a cultivated marshland and three marshlands that had been restored for 3, 6 and 12 years. Soil samples collected from the different management systems at a depth of 0-20 cm in July 2009 were analyzed for soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC) and easily degradable organic carbon. In addition, the activities of the invertase, β-glucosidase, urease and acid phosphatase were determined. These enzymes are involved in C, N and P cycling, respectively. Long-term cultivation resulted in decreased SOC, DOC, MBC, microbial quotient and C (invertase, β-glucosidase) and N-transforming (urease) enzyme activities compared with undisturbed marshland. After marshland restoration, the MBC and DOC concentrations and the soil invertase, β-glucosidase and urease activities increased. Soil DOC and MBC concentrations are probably the main factors responsible for the different invertase, β-glucosidase and urease activities. In addition, marshland restoration caused a significant increase in the microbial quotient, which reflects enhanced efficiency of organic substrate use by microbial biomass. Our observations demonstrated that soil quality recovered following marshland restoration. DOC, MBC and invertase, β-glucosidase and urease activities were sensitive for discriminating soil ecosystems under the different types of land use. Thus, these parameters should be considered to be indicators for detecting changes in soil quality and environmental impacts in marshlands.
Noreen, Mnaza; Rasool, Nasir; Gull, Yasmeen; Zubair, Muhammad; Mahmood, Tariq; Ayub, Khurshid; Nasim, Faiz-Ul-Hassan; Yaqoob, Asma; Zia-Ul-Haq, Muhammad; de Feo, Vincenzo
2015-11-05
A variety of novel 5-aryl thiophenes 4a-g containing sulphonylacetamide (sulfacetamide) groups were synthesized in appreciable yields via Pd[0] Suzuki cross coupling reactions. The structures of these newly synthesized compounds were determined using spectral data and elemental analysis. Density functional theory (DFT) studies were performed using the B3LYP/6-31G (d, p) basis set to gain insight into their structural properties. Frontier molecular orbital (FMOs) analysis of all compounds 4a-g was computed at the same level of theory to get an idea about their kinetic stability. The molecular electrostatic potential (MEP) mapping over the entire stabilized geometries of the molecules indicated the reactive sites. First hyperpolarizability analysis (nonlinear optical response) were simulated at the B3LYP/6-31G (d, p) level of theory as well. The compounds were further evaluated for their promising antibacterial and anti-urease activities. In this case, the antibacterial activities were estimated by the agar well diffusion method, whereas the anti-urease activities of these compounds were determined using the indophenol method by quantifying the evolved ammonia produced. The results revealed that all the sulfacetamide derivatives displayed antibacterial activity against Bacillus subtiles, Escherichia coli, Staphylococcus aureus, Shigella dysenteriae, Salmonella typhae, Pseudomonas aeruginosa at various concentrations. Furthermore, the compound 4g N-((5-(4-chlorophenyl)thiophen-2-yl)sulfonyl) acetamide showed excellent urease inhibition with percentage inhibition activity ~46.23 ± 0.11 at 15 µg/mL with IC50 17.1 µg/mL. Moreover, some other compounds 4a-f also exhibited very good inhibition against urease enzyme.
Chen, Qi; Wang, Dan; Cai, Gaozhe; Xiong, Yonghua; Li, Yuntao; Wang, Maohua; Huo, Huiling; Lin, Jianhan
2016-12-15
Early screening of pathogenic bacteria is a key to prevent and control of foodborne diseases. In this study, we developed a fast and sensitive bacteria detection method integrating electrochemical impedance analysis, urease catalysis with microfluidics and using Listeria as model. The Listeria cells, the anti-Listeria monoclonal antibodies modified magnetic nanoparticles (MNPs), and the anti-Listeria polyclonal antibodies and urease modified gold nanoparticles (AuNPs) were incubated in a fluidic separation chip with active mixing to form the MNP-Listeria-AuNP-urease sandwich complexes. The complexes were captured in the separation chip by applying a high gradient magnetic field, and the urea was injected to resuspend the complexes and hydrolyzed under the catalysis of the urease on the complexes into ammonium ions and carbonate ions, which were transported into a microfluidic detection chip with an interdigitated microelectrode for impedance measurement to determine the amount of the Listeria cells. The capture efficiency of the Listeria cells in the separation chip was ∼93% with a shorter time of 30min due to the faster immuno-reaction using the active magnetic mixing. The changes on both impedance magnitude and phase angle were demonstrated to be able to detect the Listeria cells as low as 1.6×10(2)CFU/mL. The detection time was reduced from original ∼2h to current ∼1h. The recoveries of the spiked lettuce samples ranged from 82.1% to 89.6%, indicating the applicability of this proposed biosensor. This microfluidic impedance biosensor has shown the potential for online, automatic and sensitive bacteria separation and detection. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Qi; Lin, Jianhan; Gan, Chengqi; Wang, Yuhe; Wang, Dan; Xiong, Yonghua; Lai, Weihua; Li, Yuntao; Wang, Maohua
2015-12-15
In this study, we described a novel impedance biosensor combining immunomagnetic separation with urease catalysis for sensitive detection of foodborne bacteria using Listeria monocytogenes as model and an immobilization-free microelectrode as detector. The monoclonal antibodies (MAbs) were immobilized on the surface of the magnetic nanoparticles (MNPs) with the diameter of 180 nm by biotin-streptavidin system for specifically and efficiently separating Listeria cells from sample background. The polyclonal antibodies (PAbs) and the urease were modified onto the surface of the gold nanoparticles (AuNPs) with the diameter of 20 nm and the modified AuNPs were used to react with Listera to form the MNP-MAb-Listeria-PAb-AuNP-urease sandwich complexes. The urease in the complexes could catalyze the hydrolysis of the urea into ammonium carbonate and this led to an increase in the ionic strength of the media, which could be detected by the microelectrode. The magnetic separation efficiencies for L. monocytogenes at the concentrations ranging from 3.0×10(1) to 3.0×10(4) CFU/mL were over 95% for the pure cultures and over 85% for the spiked lettuce samples. The lower detection limit of this biosensor for L. monocytogenes was found to be 300 CFU/mL in both the pure cultures and the spiked lettuce samples. The microelectrode was demonstrated to be reusable for over 50 times with thorough cleaning by deionized water. This biosensor showed its potential to provide a simple, low-cost and sensitive method for rapid screening of foodborne pathogens and could be extended for detection of other biological or chemical targets. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Qian; Zha, Xiaohong; Zhou, Nandi; Tian, Yaping
2016-04-01
An acid urease from Providencia rettgeri JN-B815 was purified via ultrasonication, ethanol precipitation, and DEAE ion-exchange column chromatography. It was found that the enzyme exhibits not only urease activity, but also urethanase activity, which made it possible to reduce EC already existed or would produce and its precursor urea at the same time. Then, crosslinked enzyme aggregates of P. rettgeri urease (PRU-CLEAs) were prepared using genipin as crosslinking agent. The purification process of acid urease, the effects of genipin concentration, and crosslinking time on PRU-CLEAs activity were investigated. The crosslinking was performed at pH 4.5 for 2.5 h, using 0.3% genipin as crosslinking agent, and 0.3 g · L(-1) bovine serum albumin as protein feeder. Using the obtained PRU-CLEAs, the removal rate of urea was up to 9.31 mg · L(-1) · h(-1). The removal rate of urea was still up to 7.56 mg · L(-1) · h(-1) after PRU-CLEAs was re-used for 6 times. When PRU-CLEAs were applied in a batch stirred and membrane reactor, the removal rate of urea in rice wine reached 5.16 mg · L(-1) · h(-1) and the removal rate of EC was 9.21 μg · L(-1) · h(-1). Furthermore, the treatment with PRU-CLEAs revealed no significant change of volatile flavor substances in Chinese rice wine. Thus PRU-CLEAs have great potential in the elimination of EC in Chinese rice wine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A mechanism of adaptation to hypergravity in the statocyst of Aplysia californica
NASA Technical Reports Server (NTRS)
Pedrozo, H. A.; Schwartz, Z.; Luther, M.; Dean, D. D.; Boyan, B. D.; Wiederhold, M. L.
1996-01-01
The gravity-sensing organ of Aplysia californica consists of bilaterally paired statocysts containing statoconia, which are granules composed of calcium carbonate crystals in an organic matrix. In early embryonic development, Aplysia contain a single granule called a statolith, and as the animal matures, statoconia production takes place. The objective of this study was to determine the effect of hypergravity on statoconia production and homeostasis and explore a possible physiologic mechanism for regulating this process. Embryonic Aplysia were exposed to normogravity or 3 x g or 5.7 x g and each day samples were analyzed for changes in statocyst, statolith, and body dimensions until they hatched. In addition, early metamorphosed Aplysia (developmental stages 7-10) were exposed to hypergravity (2 x g) for 3 weeks, and statoconia number and statocyst and statoconia volumes were determined. We also determined the effects of hypergravity on statoconia production and homeostasis in statocysts isolated from developmental stage 10 Aplysia. Since prior studies demonstrated that urease was important in the regulation of statocyst pH and statoconia formation, we also evaluated the effect of hypergravity on urease activity. The results show that hypergravity decreased statolith and body diameter in embryonic Aplysia in a magnitude-dependent fashion. In early metamorphosed Aplysia, hypergravity decreased statoconia number and volume. Similarly, there was an inhibition of statoconia production and a decrease in statoconia volume in isolated statocysts exposed to hypergravity in culture. Urease activity in statocysts decreased after exposure to hypergravity and was correlated with the decrease in statoconia production observed. In short, there was a decrease in statoconia production with exposure to hypergravity both in vivo and in vitro and a decrease in urease activity. It is concluded that exposure to hypergravity downregulates urease activity, resulting in a significant decrease in the formation of statoconia.
The role of ExbD in periplasmic pH homeostasis in Helicobacter pylori
Marcus, Elizabeth A.; Sachs, George; Scott, David R.
2013-01-01
Background Helicobacter pylori, a neutralophile, colonizes the acidic environment of the human stomach by employing acid acclimation mechanisms that regulate periplasmic and cytoplasmic pH. The regulation of urease activity is central to acid acclimation. Inactive urease apoenzyme, UreA/B, requires nickel for activation. Accessory proteins UreE, F, G and H are required for nickel insertion into apoenzyme. The ExbB/ExbD/TonB complex transfers energy from the inner to outer membrane, providing the driving force for nickel uptake. Therefore, the aim of this study was to determine the contribution of ExbD to pH homeostasis. Materials and Methods A nonpolar exbD knockout was constructed and survival, growth, urease activity, and membrane potential were determined in comparison to wildtype. Results Survival of the ΔexbD strain was significantly reduced at pH 3.0. Urease activity as a function of pH and UreI activation were similar to the wildtype strain, showing normal function of the proton-gated urea channel, UreI. The increase in total urease activity over time in acid seen in the wildtype strain was abolished in the ΔexbD strain, but recovered in the presence of supra-physiologic nickel concentrations, demonstrating that the effect of the ΔexbD mutant is due to loss of a necessary constant supply of nickel. In acid, ΔexbD also decreased its ability to maintain membrane potential and periplasmic buffering in the presence of urea. Conclusions ExbD is essential for maintenance of periplasmic buffering and membrane potential by transferring energy required for nickel uptake, making it a potential non-antibiotic target for H. pylori eradication. PMID:23600974
Mumtaz, Amara; Zahoor, Fareeha; Zaib, Sumera; Nawaz, Muhammad Azhar H; Saeed, Aamer; Waseem, Amir; Khan, Afsar; Hussain, Izhar; Iqbal, Jamshed
2017-01-30
In spite of substantial progress in scientific cognizance and medical technology, still infectious diseases are among the leading cause of morbidity and mortality. Creatinine and Schiff bases are well known for their diverse range of biological activities and thought to be emerging and useful therapeutic target for the treatment of several diseases. The present work was aimed to illustrate the influence of substitution of amides and Schiff bases on creatinine and their antimicrobial, antioxidant and anti-urease effectiveness was determined. Creatinine substituted amides (1-2) and creatinine Schiff bases (3-7) were synthesized and characterized by NMR and IR spectral data in combination with elemental analysis. All the compounds (1-7) were investigated on Jack bean urease for their urease inhibitory potential. Investigation of antimicrobial activity of the compounds was made by the agar dilution method. Moreover, 1,1-diphenyl-2- picrylhydrazyl (DPPH) method was used to determine their antioxidant potential. Molecular docking studies were also carried out to elucidate their relationship with the binding pockets of the enzyme. The compounds were found to be potent inhibitors of urease. The synthesized derivatives exhibited significant inhibition against Gram-positive and Gram-negative bacterial strains, as compared to standard, ciprofloxacin. Creatinine based derivatives exhibited potential antifungal activity when tested on infectious and pathogenic fungal strains. Similarly, most of the compounds exhibited good antioxidant activity. These derivatives may serve as a source of potential antioxidants and also help to retard microbial growth in food industry. Similarly, the studies provide a basis for further research to develop more potent urease inhibitory compounds of medicinal /agricultural interest. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
He, Liuying; Lu, Yuexiang; Wang, Feiyang; Gao, Xinxin; Chen, Ying; Liu, Yueying
2018-02-13
The authors describe a colorimetric method for the determination of Hg 2+ ions based on the inhibition of the activity of the enzyme urease. The pH value of solution increases when urease hydrolyzes urea, which can be visualized by adding a pH indicator such as Phenol Red (PhR). Mercaptoethanol as a typical thiol is added to the system to improve selectivity because it binds metal ions and then - unlike the Hg 2+ mercaptoethanol complex - does not inhibit urease. Hence, the color of the pH indicator PhR turns from yellow to pink as the solution becomes alkaline. The Hg 2+ mercaptoethanol complex, in contrast, strongly inhibits urease and the color of the solution remains yellow. The findings were used to design a photometric assay based on the measurement of the ratio of absorptions of PhR at 558 nm and 430 nm. It has a linear response over the 25 to 40 nM Hg 2+ concentration range and a 5 nM detection limit. This is well below the guideline values of Hg 2+ specified by the US Environmental Protection Agency and the World Health Organization for drinking water (10 nM and 30 nM, respectively). The method was employed to the determination of Hg 2+ in water samples spiked with 10 nM levels of Hg 2+ where color changes still can be observed visually. Graphical Abstract Schematic presentation of a colorimetric method for the ultrasensitive detection of Hg 2+ based on the inhibition of urease activity. Mercaptoethanol is used to improve the selectivity. Even at Hg 2+ concentrations as low as 5 nM, the color change still can be easily observed by bare eyes.
Yasunishi, Masahiro; Koumura, Akihiro; Hayashi, Yuichi; Nishida, Shohei; Inuzuka, Takashi
2017-01-01
A 71-year-old woman with a 9-year history of Parkinson's disease was admitted to our hospital emergently because of consciousness disturbance. Her consciousness level was 200 on the Japan coma scale (JCS), and she presented with tenderness and distension of the lower abdomen. Brain computed tomography showed normal findings. Blood tests showed an increased ammonia level (209 μg/dl) with normal AST and ALT levels. We catheterized the bladder for urinary retention. Five hours after admission, the blood ammonia level decreased to 38 μg/dl, and her consciousness level improved dramatically. Corynebacterium urearyticum, a bacterial species that produces urease, was detected by urine culture. Therefore, she was diagnosed with hyperammonemic encephalopathy resulting from urinary tract infection caused by urease-producing bacteria. In this case, urologic active agents had been administered to treat neurogenic bladder. We suspect that these drugs caused urinary obstruction and urinary tract infection. It is important to recognize that obstructive urinary tract infection caused by urease-producing bacteria can cause hyperammonemia. Neurological disorders, such as Parkinson's disease, tend to complicate neurogenic bladder. This disease should be considered in elderly patients with Parkinson's disease who are receiving urologic active drugs.
Bio-grout based on microbially induced sand solidification by means of asparaginase activity
Li, Mengmeng; Fu, Qing-Long; Zhang, Qiuzhuo; Achal, Varenyam; Kawasaki, Satoru
2015-01-01
Bio-grout, a new ground improvement method, has been recently developed to improve the mechanical properties, decrease the permeability of porous materials, reinforce or repair cementitious materials and modify the properties of soil or sand. Bio-grout production depends on microbially induced calcite precipitation (MICP), which is driven mainly by an enzyme, urease. However, urease-based MICP process produces excessive ammonia, in addition to secondary pollution generated by urea that is used as substrate in it. In the present study, we reported asparaginase-based MICP process for sand bio-grout development using Bacillus megaterium, and results were also compared with urease-based bio-grouts. The asparaginase activity led to significantly less ammonia production compared to urease without compromising with desired properties of a novel grout. The UCS of bio-grout was obtained at 980 kPa, while the permeability was decreased substantially. The mineralogical composition of precipitated substance was identified as calcite using XRD and the crystal morphology was observed under SEM. The mass percentage of calcite in bio-grout was calculated by thermogravimetric analysis and XCT verified calcite precipitation in it. The results confirmed that biocalcification by means of bacterial asparaginase is a potential solution for geotechnical problems. The asparaginase-based MICP process could be of wider acceptance in future. PMID:26525435
Molecular Dynamics Study of Helicobacter pylori Urease
2015-01-01
Helicobacter pylori have been implicated in an array of gastrointestinal disorders including, but not limited to, gastric and duodenal ulcers and adenocarcinoma. This bacterium utilizes an enzyme, urease, to produce copious amounts of ammonia through urea hydrolysis in order to survive the harsh acidic conditions of the stomach. Molecular dynamics (MD) studies on the H. pylori urease enzyme have been employed in order to study structural features of this enzyme that may shed light on the hydrolysis mechanism. A total of 400 ns of MD simulation time were collected and analyzed in this study. A wide-open flap state previously observed in MD simulations on Klebsiella aerogenes [Roberts et al. J. Am. Chem. Soc.2012, 134, 9934] urease has been identified in the H. pylori enzyme that has yet to be experimentally observed. Critical distances between residues on the flap, contact points in the closed state, and the separation between the active site Ni2+ ions and the critical histidine α322 residue were used to characterize flap motion. An additional flap in the active site was elaborated upon that we postulate may serve as an exit conduit for hydrolysis products. Finally we discuss the internal hollow cavity and present analysis of the distribution of sodium ions over the course of the simulation. PMID:24839409
NASA Astrophysics Data System (ADS)
Hata, T.; Yoneda, J.; Yamamoto, K.
2017-12-01
A methane hydrate-bearing layer located near the Japan Sea has been investigated as a new potential energy resource. In this study examined the feasibility of the seabed surface sediment strength located in the Japan Sea improvement technologies for enhancing microbial induced carbonate precipitation (MICP) process. First, the authors cultivated the specific urease production bacterium culture medium from this surface methane hydrate-bearing layer in the seabed (-600m depth) of Japan Sea. After that, two types of the laboratory test (consolidated-drained triaxial tests) were conducted using this specific culture medium from the seabed in the Japan Sea near the Toyama Prefecture and high urease activities bacterium named Bacillus pasteurii. The main outcomes of this research are as follows. 1) Specific culture medium focused on the urease production bacterium can enhancement of the urease activities from the methane hydrate-bearing layer near the Japan Sea side, 2) This specific culture medium can be enhancement of the surface layer strength, 3) The microbial induced carbonate precipitation process can increase the particle size compared to that of the original particles coating the calcite layer surface, 4) The mechanism for increasing the soil strength is based on the addition of cohesion like a cement stabilized soil.
[Effects of long-term fertilization on enzyme activities in black soil of Northeast China].
Wang, Shu-Qi; Han, Xiao-Zeng; Qiao, Yun-Fa; Wang, Shou-Yu
2008-03-01
In this paper, black soil samples at the depths of 0-20 cm and 20-40 cm were collected from the Hailun Agricultural Ecology Station of Chinese Academy of Sciences to study the effects of long-term fertilization on their urease, invertase, phosphatase and catalase activities and total C and N contents. The results showed that long-term application of chemical fertilizers and organic manure increased the activities of urease, invertase and phosphatase in 0-20 cm and 20-40 cm soil layers in different degree, and the combined application of them increased the activities of the three enzymes significantly, with an increment of 43.6%-113.2%, 25.9%-79.5% and 14.7%-134.4% in 0-20 cm soil layer and 56.1%-127.2%, 14.5%-113.8% and 16.2%-207.2% in 20-40 cm soil layer, respectively. However, long-term application of chemical fertilizers without organic manure had little effects on catalase activity. The activities of urease, invertase and phosphatase decreased with increasing soil depth. Long-term application of N fertilizer increased urease activity, and P fertilization had obvious positive effect on phosphatase activity. Long-term fertilization also had obvious effects on the soil total C and N contents and C/N ratio.
Gou, Wei; Zheng, Pufan; Tian, Li; Gao, Mei; Zhang, Lixin; Akram, Nudrat Aisha; Ashraf, Muhammad
2017-05-01
Drought is believed to cause many metabolic changes which affect plant growth and development. However, it might be mitigated by various inorganic substances, such as nitrogen. Thus, the study was carried out to investigate the effect of foliar-applied urea with or without urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) on a maize cultivar under drought stress simulated by 15% (w/v) polyethylene glycol 6000. Foliar-applied urea resulted in a significant increase in plant dry weight, relative water content, and photosynthetic pigments under water stress condition. Furthermore, the activities of superoxide dismutase (SOD), peroxidase (POD), and hydrogen peroxidase (CAT), were enhanced with all spraying treatments under drought stress, which led to decreases in accumulation of hydrogen peroxide (H 2 O 2 ), superoxide anion ([Formula: see text]) and malondialdehyde (MDA). The contents of soluble protein and soluble sugar accumulated remarkably with urea-applied under drought stress condition. Moreover, a further enhancement in above metabolites was observed by spraying a mixture of urea and urease inhibitor as compared to urea sprayed only. Taken together, our findings show that foliar application of urea and a urease inhibitor could significantly enhance drought tolerance of maize through protecting photosynthetic apparatus, activating antioxidant defense system and improving osmoregulation.
Combination Antifungal Therapy for Cryptococcal Meningitis
Day, Jeremy N.; Chau, Tran T.H.; Wolbers, Marcel; Mai, Pham P.; Dung, Nguyen T.; Mai, Nguyen H.; Phu, Nguyen H.; Nghia, Ho D.; Phong, Nguyen D.; Thai, Cao Q.; Thai, Le H.; Chuong, Ly V.; Sinh, Dinh X.; Duong, Van A.; Hoang, Thu N.; Diep, Pham T.; Campbell, James I.; Sieu, Tran P.M.; Baker, Stephen G.; Chau, Nguyen V.V.; Hien, Tran T.
2014-01-01
BACKGROUND Combination antifungal therapy (amphotericin B deoxycholate and flucytosine) is the recommended treatment for cryptococcal meningitis but has not been shown to reduce mortality, as compared with amphotericin B alone. We performed a randomized, controlled trial to determine whether combining flucytosine or high-dose fluconazole with high-dose amphotericin B improved survival at 14 and 70 days. METHODS We conducted a randomized, three-group, open-label trial of induction therapy for cryptococcal meningitis in patients with human immunodeficiency virus infection. All patients received amphotericin B at a dose of 1 mg per kilogram of body weight per day; patients in group 1 were treated for 4 weeks, and those in groups 2 and 3 for 2 weeks. Patients in group 2 concurrently received flucytosine at a dose of 100 mg per kilogram per day for 2 weeks, and those in group 3 concurrently received fluconazole at a dose of 400 mg twice daily for 2 weeks. RESULTS A total of 299 patients were enrolled. Fewer deaths occurred by days 14 and 70 among patients receiving amphotericin B and flucytosine than among those receiving amphotericin B alone (15 vs. 25 deaths by day 14; hazard ratio, 0.57; 95% confidence interval [CI], 0.30 to 1.08; unadjusted P = 0.08; and 30 vs. 44 deaths by day 70; hazard ratio, 0.61; 95% CI, 0.39 to 0.97; unadjusted P = 0.04). Combination therapy with fluconazole had no significant effect on survival, as compared with monotherapy (hazard ratio for death by 14 days, 0.78; 95% CI, 0.44 to 1.41; P = 0.42; hazard ratio for death by 70 days, 0.71; 95% CI, 0.45 to 1.11; P = 0.13). amphotericin B plus flucytosine was associated with significantly increased rates of yeast clearance from cerebrospinal fluid (−0.42 log10 colony-forming units [CFU] per milliliter per day vs. −0.31 and −0.32 log10 CFU per milliliter per day in groups 1 and 3, respectively; P<0.001 for both comparisons). Rates of adverse events were similar in all groups, although neutropenia was more frequent in patients receiving a combination therapy. CONCLUSIONS Amphotericin B plus flucytosine, as compared with amphotericin B alone, is associated with improved survival among patients with cryptococcal meningitis. A survival benefit of amphotericin B plus fluconazole was not found. (Funded by the Wellcome Trust and the British Infection Society; Controlled-Trials.com number, ISRCTN95123928.) PMID:23550668
Zhang, Jing Sheng; Wang, Chang Quan; Li, Bing; Liang, Jing Yue; He, Jie; Xiang, Hao; Yin, Bin; Luo, Jing
2017-06-18
A field experiment was conducted to investigate the effect of controlled-release fertilizer (CRF) combined with urea (UR) on the soil fertility and environment in wheat-rice rotation system. Changes in four forms of nitrogen (total nitrogen, ammonium nitrogen, nitrate nitrogen, and microbial biomass nitrogen) and in activities of three soil enzymes participating in nitrogen transformation (urease, protease, and nitrate reductase) were measured in seven fertilization treatments (no fertilization, routine fertilization, 10%CRF+90%UR, 20%CRF+80%UR, 40%CRF+60%UR, 80%CRF+20%UR, and 100%CRF). The results showed that soil total nitrogen was stable in the whole growth period of wheat and rice. There was no significant difference among the treatments of over 20% CRF in soil total nitrogen content of wheat and rice. The soil inorganic nitrogen content was increased dramatically in treatments of 40% or above CRF during the mid-late growing stages of wheat and rice. With the advance of the growth period, conventional fertilization significantly decreased soil microbial biomass nitrogen, but the treatments of 40% and above CRF increased the soil microbial biomass nitrogen significantly. The soil enzyme activities were increased with over 40% of CRF in the mid-late growing stage of wheat and rice. By increasing the CRF ratio, the soil protease activity and nitrate reductase activity were improved gradually, and peaked in 100% CRF. The treatments of above 20% CRF could decrease the urease activity in tillering stage of rice and delay the peak of ammonium nitrogen, which would benefit nitrogen loss reduction. The treatments of 40% and above CRF were beneficial to improving soil nitrogen supply and enhancing soil urease and protease activities, which could promote the effectiveness of nitrogen during the later growth stages of wheat and rice. The 100% CRF treatment improved the nitrate reductase activity significantly during the later stage of wheat and rice. Compared with the treatments of 40%-80% CRF, 100% CRF reduced the soil nitrate content of 20-40 cm soil layer in wheat significantly suggesting it could reduce the loss of nitrogen.
Huang, Zhong-Ming; Qi, Yi-Ying; Du, Shao-Hua; Feng, Gang; Unuma, Hidero; Yan, Wei-Qi
2013-10-01
Because of its excellent biocompatibility and low allergenicity, titanium has been widely used for bone replacement and tissue engineering. To produce a desirable composite with enhanced bone response and mechanical strength, in this study bioactive calcium phosphate (CaP) and gelatin composites were coated onto titanium (Ti) via a novel urease technique. The cellular responses to the CaP/gelatin/Ti (CaP/gel/Ti) and bone bonding ability were evaluated with proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) on CaP/gel/Ti and CaP/Ti in vitro . The results showed that the optical density values, alkaline phosphatase expression and genes expression of MSCs on CaP/gel/Ti were similar to those on CaP/Ti, yet significantly higher than those on pure Ti ( p < 0.05). CaP/gel/Ti and CaP/Ti rods (2 mm in diameter, 10 mm in length) were also implanted into femoral shaft of rabbits and pure Ti rods served as control ( n = 10). Histological examination, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were performed at 4 and 8 weeks after the operation. The histological and SEM observations demonstrated clearly that more new bone formed on the surface of CaP/gel/Ti than in the other two groups at each time point. The CaP/gel/Ti bonded to the surrounding bone directly with no intervening soft tissue layer. An interfacial layer, containing Ti, Ca and P, was found to form at the interface between bone and the implant on all three groups by EDS analysis. However, the content of Ca, P in the surface of CaP/gel/Ti implants was more than in the other two groups at each time point. The CaP/gel/Ti modified by the urease method was not only beneficial for MSCs proliferation and osteogenic differentiation, but also favorable for bone bonding ability on Ti implants in vivo , suggesting that Ti functionalized with CaP and gelatin might have a great potential in clinical joint replacement or dental implants.
NASA Astrophysics Data System (ADS)
Huang, Zhong-Ming; Qi, Yi-Ying; Du, Shao-Hua; Feng, Gang; Unuma, Hidero; Yan, Wei-Qi
2013-10-01
Because of its excellent biocompatibility and low allergenicity, titanium has been widely used for bone replacement and tissue engineering. To produce a desirable composite with enhanced bone response and mechanical strength, in this study bioactive calcium phosphate (CaP) and gelatin composites were coated onto titanium (Ti) via a novel urease technique. The cellular responses to the CaP/gelatin/Ti (CaP/gel/Ti) and bone bonding ability were evaluated with proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) on CaP/gel/Ti and CaP/Ti in vitro. The results showed that the optical density values, alkaline phosphatase expression and genes expression of MSCs on CaP/gel/Ti were similar to those on CaP/Ti, yet significantly higher than those on pure Ti (p < 0.05). CaP/gel/Ti and CaP/Ti rods (2 mm in diameter, 10 mm in length) were also implanted into femoral shaft of rabbits and pure Ti rods served as control (n = 10). Histological examination, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were performed at 4 and 8 weeks after the operation. The histological and SEM observations demonstrated clearly that more new bone formed on the surface of CaP/gel/Ti than in the other two groups at each time point. The CaP/gel/Ti bonded to the surrounding bone directly with no intervening soft tissue layer. An interfacial layer, containing Ti, Ca and P, was found to form at the interface between bone and the implant on all three groups by EDS analysis. However, the content of Ca, P in the surface of CaP/gel/Ti implants was more than in the other two groups at each time point. The CaP/gel/Ti modified by the urease method was not only beneficial for MSCs proliferation and osteogenic differentiation, but also favorable for bone bonding ability on Ti implants in vivo, suggesting that Ti functionalized with CaP and gelatin might have a great potential in clinical joint replacement or dental implants.
some enzymes to trichomonas. The following enzymes were used for experiment: pepsin, trypsin, distaste, urease and lysozyme. Tests were performed...obtained in the experiments with urease . Trichomonas growth under addition of lysozyme was within the range of the control cultures. (Modified author abstract)
Honey as an apitherapic product: its inhibitory effect on urease and xanthine oxidase.
Sahin, Huseyin
2016-01-01
The aim of this study was to evaluate new natural inhibitor sources for the enzymes urease and xanthine oxidase (XO). Chestnut, oak and polyfloral honey extracts were used to determine inhibition effects of both enzymes. In addition to investigate inhibition, the antioxidant capacities of these honeys were determined using total phenolic content (TPC), ferric reducing antioxidant power (FRAP), and DPPH radical scavenging activity assays. Due to their high phenolic content, chestnut and oak honeys are found to be a powerful source for inhibition of both enzymes. Especially, oak honeys were efficient for urease inhibition with 0.012-0.021 g/mL IC50 values, and also chestnut honeys were powerful for XO inhibition with 0.028-0.039 g/mL IC50 values. Regular daily consumption of these honeys can prevent gastric ulcers deriving from Helicobacter pylori and pathological disorders mediated by reactive oxygen species.
Urease activity in different soils of Egypt.
el-Shinnawi, M M
1978-01-01
Samples from two depths (0--15 and 15--30 cm) of five Egyptian soils: sandy, calcareous, fertile alluvial, saline alluvial, and alkali alluvial were tested for urease activity. Samples were treated with farmyard manure at rates of 0 and 0.5% C, and moisture at levels of 50, 65, and 80% of the water holding capacity. The studied Egyptian soils showed different activities of urease. Decreases in the values were shown by depth of sampling and varied in their intensities according to soil type, except for saline soil which revealed an opposite trend by the higher activity of its sub-surface layer. Order of activity was the following: fertile, saline, alkali, calcareous, and sandy soil. Farmyard manure slightly increased the activity of the enzyme. Incubation of moistened samples revealed that the optimum moisture content was 50% of W.H.C. for the tested soils, except for saline which showed best results at 65% of W.H.C.
NASA Astrophysics Data System (ADS)
Velychko, T. P.; Soldatkin, O. O.; Melnyk, V. G.; Marchenko, S. V.; Kirdeciler, S. K.; Akata, B.; Soldatkin, A. P.; El'skaya, A. V.; Dzyadevych, S. V.
2016-02-01
Development of a conductometric biosensor for the urea detection has been reported. It was created using a non-typical method of the recombinant urease immobilization via adsorption on nanoporous particles of silicalite. It should be noted that this biosensor has a number of advantages, such as simple and fast performance, the absence of toxic compounds during biosensor preparation, and high reproducibility (RSD = 5.1 %). The linear range of urea determination by using the biosensor was 0.05-15 mM, and a lower limit of urea detection was 20 μM. The bioselective element was found to be stable for 19 days. The characteristics of recombinant urease-based biomembranes, such as dependence of responses on the protein and ion concentrations, were investigated. It is shown that the developed biosensor can be successfully used for the urea analysis during renal dialysis.
Tian, Baomin; Wong, Wah Yau; Uger, Marni D.; Wisniewski, Pawel; Chao, Heman
2017-01-01
Angiogenesis is the process of new blood vessel formation and is essential for a tumor to grow beyond a certain size. Tumors secrete the pro-angiogenic factor vascular endothelial growth factor, which acts upon local endothelial cells by binding to vascular endothelial growth factor receptors (VEGFRs). In this study, we describe the development and characterization of V21-DOS47, an immunoconjugate that targets VEGFR2. V21-DOS47 is composed of a camelid single domain anti-VEGFR2 antibody (V21) and the enzyme urease. The conjugate specifically binds to VEGFR2 and urease converts endogenous urea into ammonia, which is toxic to tumor cells. Previously, we developed a similar antibody–urease conjugate, L-DOS47, which is currently in clinical trials for non-small cell lung cancer. Although V21-DOS47 was designed from parameters learned from the generation of L-DOS47, additional optimization was required to produce V21-DOS47. In this study, we describe the expression and purification of two versions of the V21 antibody: V21H1 and V21H4. Each was conjugated to urease using a different chemical cross-linker. The conjugates were characterized by a panel of analytical techniques, including SDS-PAGE, size exclusion chromatography, Western blotting, and LC-MSE peptide mapping. Binding characteristics were determined by ELISA and flow cytometry assays. To improve the stability of the conjugates at physiologic pH, the pIs of the V21 antibodies were adjusted by adding several amino acid residues to the C-terminus. For V21H4, a terminal cysteine was also added for use in the conjugation chemistry. The modified V21 antibodies were expressed in the E. coli BL21 (DE3) pT7 system. V21H1 was conjugated to urease using the heterobifunctional cross-linker succinimidyl-[(N-maleimidopropionamido)-diethyleneglycol] ester (SM(PEG)2), which targets lysine resides in the antibody. V21H4 was conjugated to urease using the homobifunctional cross-linker, 1,8-bis(maleimido)diethylene glycol (BM(PEG)2), which targets the cysteine added to the antibody C-terminus. V21H4-DOS47 was determined to be the superior conjugate as the antibody is easily produced and purified at high levels, and the conjugate can be efficiently generated and purified using methods easily transferrable for cGMP production. In addition, V21H4-DOS47 retains higher binding activity than V21H1-DOS47, as the native lysine residues are unmodified. PMID:28871252
Govarthanan, M; Mythili, R; Selvankumar, T; Kamala-Kannan, S; Kim, H
2018-04-30
In the present study, Helianthus annuus grown in arsenic- (As) and lead- (Pb) contaminated soil were treated with plant-growth promoting fungi Trichoderma sp. MG isolated from decayed wood and assessed for their phytoremediation efficiency. The isolate MG exhibited a high tolerance to As (650mg/L) and Pb (500mg/L), and could remove > 70% of metals in aqueous solution with an initial concentration of 100mg/L each. In addition, the isolate MG was screened for plant-growth-promoting factors such as siderophores, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indole acetic acid (IAA) synthesis, and phosphate solubilisation. Phytoremediation studies indicated that treatment of H. annuus with the isolate MG had the maximum metal-accumulation in shoots (As; 67%, Pb; 59%). Furthermore, a significant increase in the soil extracellular enzyme-activities was observed in myco-phytoremediated soils. The activities of phosphatase (35 U/g dry soil), dehydrogenase (41mg TPF/g soil), cellulase (37.2mg glucose/g/2h), urease (55.4mgN/g soil/2h), amylase (49.3mg glucose/g/2h) and invertase (45.3mg glucose/g/2h) significantly increased by 12%, 14%, 12%, 22%, 19% and 14% in As contaminated soil, respectively. Similarly, the activities of phosphatase (31.4U/g dry soil), dehydrogenase (39.3mg TPF/g soil), cellulase (37.1mg glucose/g/2h), urease (49.8mgN/g soil/2h), amylase (46.3mg glucose/g/2h), and invertase (42.1mg glucose/g/2h) significantly increased by 11%, 15%, 11%, 18%, 20% and 14% in Pb contaminated soil, respectively. Obtained results indicate that the isolate MG could be a potential strain for myco-phytoremediation of As and Pb contaminated soil. Copyright © 2018 Elsevier Inc. All rights reserved.
Lessard, Isabelle; Sauvé, Sébastien; Deschênes, Louise
2014-06-15
Functional stability (FS) is an ecosystem attribute that is increasingly promoted in soil health assessment. However, FS is currently assessed comparatively, and it is therefore impossible to generate toxicity parameters. Additionally, the FS scores in the literature do not consider site and contamination history within the score. To address these issues, three new FS scores adapted to an ecotoxicological context and based on the Relative Soil Stability Index (RSSI) method were developed. The aim of the study was then to determine the FS score(s) that best describe the toxicity of metal-contaminated field-collected soils. Twenty pairs of Zn-contaminated soils (contaminated and reference soils) were collected on the field, and their enzymatic FS (arylsulfatase, protease, phosphatase and urease) and metal fractions (total and bioavailable) were analyzed. New RSSI-based and existing FS scores were calculated for each enzyme and correlated to the Zn fractions. One of the new RSSI-based scores was well correlated with the bioavailable labile Zn concentration for the arylsulfatase, phosphatase and urease (coefficients of regression higher than 0.50). Furthermore, this FS score was not affected by the soil organic matter and depended little on other soil properties. Other FS scores were correlated to labile Zn for only one enzyme, which varied according to the score. The new RSSI-based score thus better attributed Zn toxicity to field-collected soils than other FS scores. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
CYTOTOXIC, α-CHYMOTRYPSIN AND UREASE INHIBITION ACTIVITIES OF THE PLANT Heliotropium dasycarpum L.
Ghaffari, Muhammad Abuzar; Chaudhary, Bashir Ahmed; Uzair, Muhammad; Ashfaq, Khuram
2016-01-01
The aim of this study was to investigate Cytotoxic, α-Chymotrypsin and Urease inhibition activities of the plant Heliotropium dasycarpum . Dichloromethane and methanol extracts of the plant were evaluated for cytotoxic, α-Chymotrypsin and Urease inhibition by using in vivo Brine Shrimp lethality bioassay and in vitro enzymatic inhibition assays respectively. The methanol extract of the plant exhibited significant cytotoxic activity. Out of 30 brine shrimp larvae, 2 (6%), 26 (86%) and 28 (93%) larvae were survived at concentration of 1000μg/ml, 100μg/ml and 10μg/ml respectively with LD50; 215.837. Similarly 21 (70%), 25 (83%), 29 (96%) larvae were survived of dichloromethane plant extract with LD50; 6170.64. The methanol and dichloromethane extract exhibited 10.50±0.18% and 41.51±0.15% α-chymotrypsin enzyme inhibition respectively with IC 50 values of greater than 500 μmol. The methanol extract showed 24.39±0.21% Urease enzyme inhibition with IC 50 values of greater than 400 μmol While dichloromethane extract has 11.46±0.09% enzyme inhibition with IC 50 values of greater than 500 μmol. The results clearly indicated that Heliotropium dasycarpum has cytotoxic potential and enzyme inhibition properties. Further study is needed to screen out antitumor and anti-ulcerative agents.
CYTOTOXIC, α-CHYMOTRYPSIN AND UREASE INHIBITION ACTIVITIES OF THE PLANT Heliotropium dasycarpum L.
Ghaffari, Muhammad Abuzar; Chaudhary, Bashir Ahmed; Uzair, Muhammad; Ashfaq, Khuram
2016-01-01
Background: The aim of this study was to investigate Cytotoxic, α-Chymotrypsin and Urease inhibition activities of the plant Heliotropium dasycarpum. Materials & Methods: Dichloromethane and methanol extracts of the plant were evaluated for cytotoxic, α-Chymotrypsin and Urease inhibition by using in vivo Brine Shrimp lethality bioassay and in vitro enzymatic inhibition assays respectively. Results: The methanol extract of the plant exhibited significant cytotoxic activity. Out of 30 brine shrimp larvae, 2 (6%), 26 (86%) and 28 (93%) larvae were survived at concentration of 1000μg/ml, 100μg/ml and 10μg/ml respectively with LD50; 215.837. Similarly 21 (70%), 25 (83%), 29 (96%) larvae were survived of dichloromethane plant extract with LD50; 6170.64. The methanol and dichloromethane extract exhibited 10.50±0.18% and 41.51±0.15% α-chymotrypsin enzyme inhibition respectively with IC50 values of greater than 500 μmol. The methanol extract showed 24.39±0.21% Urease enzyme inhibition with IC50 values of greater than 400 μmol While dichloromethane extract has 11.46±0.09% enzyme inhibition with IC50 values of greater than 500 μmol Conclusion: The results clearly indicated that Heliotropium dasycarpum has cytotoxic potential and enzyme inhibition properties. Further study is needed to screen out antitumor and anti-ulcerative agents. PMID:28480379
Hu, Bin; Liang, Dongli; Liu, Juanjuan; Xie, Junyu
2013-04-01
The present study explored the joint effects of Cu and Se pollution mechanisms on soil enzymes to provide references for the phytoremediation of contaminated areas and agricultural environmental protection. Pot experiments and laboratory analyses were carried out to study the individual and combined influences of Cu and Se on soil enzyme activities. The activities of four soil enzymes (urease, catalase, alkaline phosphatase, and nitrate reductase) were chosen. All soil enzyme activities tested were inhibited by Cu and Se pollution, either individually or combined, in varying degrees, following the order nitrate reductase>urease>catalase>alkaline phosphatase. Growing plants stimulated soil enzyme activity in a similar trend compared with treatments without plants. The joint effects of Cu and Se on catalase activity showed synergism at low concentrations and antagonism at high concentrations, whereas the opposite was observed for urease activity. However, nitrate reductase activity showed synergism both with and without plant treatments. The half maximal effective concentration (EC50) of exchangeable fractions had a similar trend with the EC50 of total content and was lower than that of total content. The EC50 values of nitrate reductase and urease activities were significantly lower for both Se and Cu (p<0.05), which indicated that they were more sensitive than the other two enzymes. Copyright © 2013 SETAC.
Berninger, Teresa; Bliem, Christina; Piccinini, Esteban; Azzaroni, Omar; Knoll, Wolfgang
2018-09-15
Herein, a biosensor based on a reduced graphene oxide field effect transistor (rGO-FET) functionalized with the cascading enzymes arginase and urease was developed for the detection of L-arginine. Arginase and urease were immobilized on the rGO-FET sensing surface via electrostatic layer-by-layer assembly using polyethylenimine (PEI) as cationic building block. The signal transduction mechanism is based on the ability of the cascading enzymes to selectively perform chemical transformations and prompt local pH changes, that are sensitively detected by the rGO-FET. In the presence of L-arginine, the transistors modified with (PEI/urease(arginase)) multilayers showed a shift in the Dirac point due to the change in the local pH close to the graphene surface, produced by the catalyzed urea hydrolysis. The transistors were able to monitor L-arginine in the 10-1000 μM linear range with a LOD of 10 μM, displaying a fast response and a good long-term stability. The sensor showed stereospecificity and high selectivity in the presence of non-target amino acids. Taking into account the label-free, real-time measurement capabilities and the easily quantifiable, electronic output signal, this biosensor offers advantages over state-of-the-art L-arginine detection methods. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Zanin, Laura; Venuti, Silvia; Tomasi, Nicola; Zamboni, Anita; De Brito Francisco, Rita M.; Varanini, Zeno; Pinton, Roberto
2016-01-01
To limit nitrogen (N) losses from the soil, it has been suggested to provide urea to crops in conjunction with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT). However, recent studies reported that NBPT affects urea uptake and urease activity in plants. To shed light on these latter aspects, the effects of NBPT were studied analysing transcriptomic and metabolic changes occurring in urea-fed maize seedlings after a short-term exposure to the inhibitor. We provide evidence that NBPT treatment led to a wide reprogramming of plant metabolism. NBPT inhibited the activity of endogenous urease limiting the release and assimilation of ureic-ammonium, with a simultaneous accumulation of urea in plant tissues. Furthermore, NBPT determined changes in the glutamine, glutamate, and asparagine contents. Microarray data indicate that NBPT affects ureic-N assimilation and primary metabolism, such as glycolysis, TCA cycle, and electron transport chain, while activates the phenylalanine/tyrosine-derivative pathway. Moreover, the expression of genes relating to the transport and complexation of divalent metals was strongly modulated by NBPT. Data here presented suggest that when NBPT is provided in conjunction with urea an imbalance between C and N compounds might occur in plant cells. Under this condition, root cells also seem to activate a response to maintain the homeostasis of some micronutrients. PMID:27446099
Molecular landscape of the interaction between the urease accessory proteins UreE and UreG.
Merloni, Anna; Dobrovolska, Olena; Zambelli, Barbara; Agostini, Federico; Bazzani, Micaela; Musiani, Francesco; Ciurli, Stefano
2014-09-01
Urease, the most efficient enzyme so far discovered, depends on the presence of nickel ions in the catalytic site for its activity. The transformation of inactive apo-urease into active holo-urease requires the insertion of two Ni(II) ions in the substrate binding site, a process that involves the interaction of four accessory proteins named UreD, UreF, UreG and UreE. This study, carried out using calorimetric and NMR-based structural analysis, is focused on the interaction between UreE and UreG from Sporosarcina pasteurii, a highly ureolytic bacterium. Isothermal calorimetric protein-protein titrations revealed the occurrence of a binding event between SpUreE and SpUreG, entailing two independent steps with positive cooperativity (Kd1=42±9μM; Kd2=1.7±0.3μM). This was interpreted as indicating the formation of the (UreE)2(UreG)2 hetero-oligomer upon binding of two UreG monomers onto the pre-formed UreE dimer. The molecular details of this interaction were elucidated using high-resolution NMR spectroscopy. The occurrence of SpUreE chemical shift perturbations upon addition of SpUreG was investigated and analyzed to establish the protein-protein interaction site. The latter appears to involve the Ni(II) binding site as well as mobile portions on the C-terminal and the N-terminal domains. Docking calculations based on the information obtained from NMR provided a structural basis for the protein-protein contact site. The high sequence and structural similarity within these protein classes suggests a generality of the interaction mode among homologous proteins. The implications of these results on the molecular details of the urease activation process are considered and analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.
Jiang, Yu-mei; Chen, Cheng-long; Xu, Zhi-hong; Liu, Yuan-qiu; Ouyang, Jing; Wang, Fang
2010-09-01
Taking the adjacent 18-year-old pure Pinus massoniana pure forest (I), P. massoniana, Liquidamber fomosana, and Schima superba mixed forest (II), S. superba pure forest (III), L. fomosana (IV) pure forest, and natural restoration fallow land (CK) in Taihe County of Jiangxi Province as test sites, a comparative study was made on their soil soluble organic carbon (SOC) and nitrogen (SON), soil microbial biomass C (MBC) and N (MBN), and soil urease and asparaginase activities. In 0-10 cm soil layer, the pool sizes of SOC, SON, MBC, and MBN at test sites ranged in 354-1007 mg x kg(-1), 24-73 mg x kg(-1), 203-488 mg x kg(-1), and 24-65 mg x kg(-1), and the soil urease and asparaginase activities were 95-133 mg x kg(-1) x d(-1) and 58-113 mg x kg(-1) x d(-1), respectively. There were significant differences in the pool sizes of SOC, SON, MBC, and MBN and the asparaginase activity among the test sites, but no significant difference was observed in the urease activity. The pool sizes of SOC and SON were in the order of IV > CK > III > I > II, those of MBC and MBN were in the order of CK > IV > III > I > II, and asparaginase activity followed the order of IV > CK > III > II > I. With the increase of soil depth, the pool sizes of SOC, SON, MBC, and MBN and the activities of soil asparaginase and urease decreased. In 0-20 cm soil layer, the SOC, SON, MBC, MBN, total C, and total N were highly correlated with each other, soil asparaginase activity was highly correlated with SOC, SON, TSN, total C, total N, MBC, and MBN, and soil urease activity was highly correlated with SON, TSN, total C, MBC and MBN.
Disseminated Cryptococcosis presenting as cellulitis in a renal transplant recipient.
Chaya, Ramachandraiah; Padmanabhan, Srinivasan; Anandaswamy, Venugopal; Moin, Aumir
2013-01-15
Cellulitis is an unusual presentation of cryptococcal infection in renal allograft recipients. In such patients, disseminated cryptococcal infection can result in significant morbidity and mortality. Patients are often treated with antibiotics before a definitive diagnosis is made, delaying appropriate therapy. We describe the case of a 43-year-old post renal transplant recipient presenting with fever and swelling in the right thigh. On physical examination, the patient was found to have features suggestive of cellulitis with minimal slurring of speech. Material obtained from incision and drainage of the wound showed yeast cells resembling Cryptococcus spp. Blood culture and cerebrospinal fluid culture were also found to have growth of Cryptococcus neoformans. He received treatment with amphotericin B 6 mg/kg daily intravenously for two weeks, then continued with fluconazole 400 mg daily for three months. The patient showed a remarkable improvement. There was no recurrence of cryptococcosis after four months of follow-up. The diagnosis of disseminated cryptococcosis should be considered in differential diagnosis of cellulitis among non HIV immunocompromised hosts. A high clinical suspicion and early initiation of therapy is needed to recognize and treat patients effectively.
Innate Immunity against Cryptococcus, from Recognition to Elimination
Wormley, Floyd L.
2018-01-01
Cryptococcus species, the etiological agents of cryptococcosis, are encapsulated fungal yeasts that predominantly cause disease in immunocompromised individuals, and are responsible for 15% of AIDS-related deaths worldwide. Exposure follows the inhalation of the yeast into the lung alveoli, making it incumbent upon the pattern recognition receptors (PRRs) of pulmonary phagocytes to recognize highly conserved pathogen-associated molecular patterns (PAMPS) of fungi. The main challenges impeding the ability of pulmonary phagocytes to effectively recognize Cryptococcus include the presence of the yeast’s large polysaccharide capsule, as well as other cryptococcal virulence factors that mask fungal PAMPs and help Cryptococcus evade detection and subsequent activation of the immune system. This review will highlight key phagocyte cell populations and the arsenal of PRRs present on these cells, such as the Toll-like receptors (TLRs), C-type lectin receptors, NOD-like receptors (NLRs), and soluble receptors. Additionally, we will highlight critical cryptococcal PAMPs involved in the recognition of Cryptococcus. The question remains as to which PRR–ligand interaction is necessary for the recognition, phagocytosis, and subsequent killing of Cryptococcus. PMID:29518906
Cryptococcosis outbreak in psittacine birds in Brazil.
Raso, T F; Werther, K; Miranda, E T; Mendes-Giannini, M J S
2004-08-01
An outbreak of cryptococcosis occurred in a breeding aviary in São Paulo, Brazil. Seven psittacine birds (of species Charmosyna papou, Lorius lory, Trichoglossus goldiei, Psittacula krameri and Psittacus erithacus) died of disseminated cryptococcosis. Incoordination, progressive paralysis and difficulty in flying were seen in five birds, whereas superficial lesions coincident with respiratory alterations were seen in two birds. Encapsulated yeasts suggestive of Cryptococcus sp. were seen in faecal smears stained with India ink in two cases. Histological examination of the birds showed cryptococcal cells in various tissues, including the beak, choana, sinus, lungs, air sacs, heart, liver, spleen, kidneys, intestines and central nervous system. High titres of cryptococcal antigen were observed in the serum of an affected bird. In this case, titres increased during treatment and the bird eventually died. Yeasts were isolated from the nasal mass, faeces and liver of one bird. Cryptococcus neoformans var. gattii serovar B was identified based on biochemical, physiological and serological tests. These strains were resistant (minimum inhibitory concentration 64 microg/ml) to fluconazole. This is the first report of C. neoformans var. gattii occurring in psittacine birds in Brazil.
Ophiamides A-B, new potent urease inhibitory sphingolipids from Heliotropium ophioglossum.
Firdous, Sadiqa; Ansari, Nida Hassan; Fatima, Itrat; Malik, Abdul; Afza, Nighat; Iqbal, Lubna; Lateef, Mehreen
2012-07-01
Ophiamides A (1) and B (2), two new sphingolipids have been isolated from the n-hexane subfraction of the MeOH extract of the whole plant of Heliotropium ophioglossum along with glycerol monopalmitate (3) and β-sitosterol 3-O-β-D: -glucoside (4) reported for the first time from this species. Their structures were elucidated by spectroscopic techniques including MS and 2D-NMR spectroscopy. Both the compounds 1 and 2 showed potent inhibitory activity against the enzyme urease.
1987-12-01
editions are obsolete. -I Block 19 continued structure. Preliminary experiments involving conversion of the radio- immunoassay to a urease enzyme linked...the radioimmunoassay to a urease I enzyme linked form have been successful. DTIC GTAB Di tributioul AV~i~b~±~YCoded Avsi abi11i ntY___ tat Special...necessary prior to thin- layer chromatography. A preparative thin- layer chromatography step using silica gel plates (1000 u thickness) utilizes acetone
Ford, Nathan; Shubber, Zara; Jarvis, Joseph N; Chiller, Tom; Greene, Greg; Migone, Chantal; Vitoria, Marco; Doherty, Meg; Meintjes, Graeme
2018-01-01
Abstract Background Current guidelines recommend screening all people living with human immunodeficiency virus (PLHIV) who have a CD4 count ≤100 cells/µL for cryptococcal antigen (CrAg) to identify those patients who could benefit from preemptive fluconazole treatment prior to the onset of meningitis. We conducted a systematic review to assess the prevalence of CrAg positivity at different CD4 cell counts. Methods We searched 4 databases and abstracts from 3 conferences up to 1 September 2017 for studies reporting prevalence of CrAg positivity according to CD4 cell count strata. Prevalence estimates were pooled using random effects models. Results Sixty studies met our inclusion criteria. The pooled prevalence of cryptococcal antigenemia was 6.5% (95% confidence interval [CI], 5.7%–7.3%; 54 studies) among patients with CD4 count ≤100 cells/µL and 2.0% (95% CI, 1.2%–2.7%; 21 studies) among patients with CD4 count 101–200 cells/µL. Twenty-one studies provided sufficient information to compare CrAg prevalence per strata; overall, 18.6% (95% CI, 15.4%–22.2%) of the CrAg-positive cases identified at ≤200 cells/µL (n = 11823) were identified among individuals with a CD4 count 101–200 cells/µL. CrAg prevalence was higher among inpatients (9.8% [95% CI, 4.0%–15.5%]) compared with outpatients (6.3% [95% CI, 5.3%–7.4%]). Conclusions The findings of this review support current recommendations to screen all PLHIV who have a CD4 count ≤100 cells/µL for CrAg and suggest that screening may be considered at CD4 cell count ≤200 cells/µL. PMID:29514236
Lin, Y. T.; Kwon, Y. I.; Labbe, R. G.; Shetty, K.
2005-01-01
Ulcer-associated dyspepsia is caused by infection with Helicobacter pylori. H. pylori is linked to a majority of peptic ulcers. Antibiotic treatment does not always inhibit or kill H. pylori with potential for antibiotic resistance. The objective of this study was to determine the potential for using phenolic phytochemical extracts to inhibit H. pylori in a laboratory medium. Our approach involved the development of a specific phenolic profile with optimization of different ratios of extract mixtures from oregano and cranberry. Subsequently, antimicrobial activity and antimicrobial-linked urease inhibition ability were evaluated. The results indicated that the antimicrobial activity was greater in extract mixtures than in individual extracts of each species. The results also indicate that the synergistic contribution of oregano and cranberry phenolics may be more important for inhibition than any species-specific phenolic concentration. Further, based on plate assay, the likely mode of action may be through urease inhibition and disruption of energy production by inhibition of proline dehydrogenase at the plasma membrane. PMID:16332847
Milo, Scarlet; Acosta, Florianne B; Hathaway, Hollie J; Wallace, Laura A; Thet, Naing T; Jenkins, A Toby A
2018-03-23
Formation of crystalline biofilms following infection by Proteus mirabilis can lead to encrustation and blockage of long-term indwelling catheters, with serious clinical consequences. We describe a simple sensor, placed within the catheter drainage bag, to alert of impending blockage via a urinary color change. The pH-responsive sensor is a dual-layered polymeric "lozenge", able to release the self-quenching dye 5(6)-carboxyfluorescein in response to the alkaline urine generated by the expression of bacterial urease. Sensor performance was evaluated within a laboratory model of the catheterized urinary tract, infected with both urease positive and negative bacterial strains under conditions of established infection, achieving an average "early warning" of catheter blockage of 14.5 h. Signaling only occurred following infection with urease positive bacteria. Translation of these sensors into a clinical environment would allow appropriate intervention before the occurrence of catheter blockage, a problem for which there is currently no effective control method.
NASA Astrophysics Data System (ADS)
Chen, Zhi-Jian; Chen, Ya-Na; Xu, Chun-Na; Zhao, Shan-Shan; Cao, Qi-Yue; Qian, Shao-Song; Qin, Jie; Zhu, Hai-Liang
2016-08-01
Three novel mononuclear complexes, [MⅡ(L)2·2H2O], (M = Cu, Ni or Cd; HL = 4-(3,4-dichlorophenyl)piperazine-1-carboxylic acid)were synthesized and structurally determined by single-crystal X-ray diffraction. Molecular docking study preliminarily revealed that complex 1 had potential urease inhibitory activity. In accordance with the result of calculation, in vitro tests of the inhibitory activities of complexes 1-3 against jack bean urease showed complex 1 (IC50 = 8.17 ± 0.91 μM) had better inhibitory activities than the positive reference acetohydroxamic acid (AHA) (IC50 = 26.99 ± 1.43 μM), while complexes 2 and 3 showed no inhibitory activities., kinetics study was carried out to explore the mechanism of the inhibiting of the enzyme, and the result indicated that complex 1 was a competitive inhibitor of urease. Albumin binding experiment and in vitro toxicity evaluation of complex 1 were implemented to explore its Pharmacological properties.
Sudkolai, Saber Tayebi; Nourbakhsh, Farshid
2017-06-01
The establishment of a reliable index is an essential need to assess the degree of stability and maturity of solid wastes vermicomposts. The objective of this study was to investigate the effects of vermicomposting process on some chemical (pH, EC, OC, TN, lignin and C:N ratio) and biochemical properties of the cow manure (CM) and wheat residue (WR). Results demonstrated that during vermicomposting process of CM and WR urease activity was highly correlated with the time of vermicomposting (r=-0.97 ∗∗ for CM and r=-0.99 ∗∗ for WR), and well able to show the stability of organic waste. The urease activity showed significant correlations with the C:N ratio during the vermicomposting of CM and WR (r=0.89 ∗ and r=0.93 ∗∗ respectively) therefore it can be considered as a reliable indicator for determining the maturity and stability of organic wastes during vermicomposting process. Copyright © 2017. Published by Elsevier Ltd.
Alqasaimeh, Muawia Salameh; Heng, Lee Yook; Ahmad, Musa
2007-10-11
An optical urea biosensor was fabricated by stacking several layers of sol-gelfilms. The stacking of the sol-gel films allowed the immobilization of a Nile Bluechromoionophore (ETH 5294) and urease enzyme separately without the need of anychemical attachment procedure. The absorbance response of the biosensor was monitoredat 550 nm, i.e. the deprotonation of the chromoionophore. This multi-layer sol-gel filmformat enabled higher enzyme loading in the biosensor to be achieved. The urea opticalbiosensor constructed from three layers of sol-gel films that contained urease demonstrateda much wider linear response range of up to 100 mM urea when compared with biosensorsthat constructed from 1-2 layers of films. Analysis of urea in urine samples with thisoptical urea biosensor yielded results similar to that determined by a spectrophotometricmethod using the reagent p-dimethylaminobenzaldehyde (R² = 0.982, n = 6). The averagerecovery of urea from urine samples using this urea biosensor is approximately 103%.
Talat, Mahe; Prakash, Om; Hasan, S H
2009-10-01
Urease immobilized on alginate was utilized to detect and quantify As(3+) in aqueous solution. Urease from the seeds of pumpkin (vegetable waste) was purified to apparent homogeneity by heat treatment and gel filtration (Sephadex G-200). Further enzyme was entrapped in 3.5% alginate beads. Urea hydrolysis by enzyme revealed a clear dependence on the concentration and interaction time of As(3+). The process variables effecting the quantitation of As(3+) was investigated using central composite design with Minitab 15 software. The predicted results were found in good agreement (R(2)=96.71%) with experimental results indicating the applicability of proposed model. The multiple regression analysis and ANOVA showed that enzyme activity decreased with increase of As(3+) concentration and interaction time. 3D plot and contour plot between As(3+) concentration and interaction time was helpful to predict residual activity of enzyme for a particular As(3+) at a particular time.
Khan, Rasool; Saif, Abdullah Qasem; Quradha, Mohammed Mansour; Ali, Jawad; Rauf, Abdur; Khan, Ajmal
2016-01-01
Cyphostemma digitatum stem and roots extracts were investigated for antioxidant, antimicrobial, urease inhibition potential and phytochemical analysis. Phytochemical screening of the roots and stem extract revealed the presence of secondary metabolites including flavonoids, alkaloids, coumarins, saponins, terpenoids, tannins, carbohydrates/reducing sugars and phenolic compounds. The methanolic extracts of the roots displayed highest antioxidant activity (93.518%) against DPPH while the crude methanolic extract of the stem showed highest antioxidant activity (66.163%) at 100 μg/mL concentration. The methanolic extracts of both stem and roots were moderately active or even found to be less active against the selected bacterial and fungal strains (Tables S2 and S3). The roots extract (methanol) showed significant urease enzyme inhibition activity (IC50 = 41.2 ± 0.66; 0.2 mg/mL) while the stem extract was found moderately active (IC50 = 401.1 ± 0.58; 0.2 mg/mL) against thiourea (IC50 = 21.011; 0.2 mg/mL).
Alqasaimeh, Muawia Salameh; Heng, Lee Yook; Ahmad, Musa
2007-01-01
An optical urea biosensor was fabricated by stacking several layers of sol-gel films. The stacking of the sol-gel films allowed the immobilization of a Nile Blue chromoionophore (ETH 5294) and urease enzyme separately without the need of any chemical attachment procedure. The absorbance response of the biosensor was monitored at 550 nm, i.e. the deprotonation of the chromoionophore. This multi-layer sol-gel film format enabled higher enzyme loading in the biosensor to be achieved. The urea optical biosensor constructed from three layers of sol-gel films that contained urease demonstrated a much wider linear response range of up to 100 mM urea when compared with biosensors that constructed from 1-2 layers of films. Analysis of urea in urine samples with this optical urea biosensor yielded results similar to that determined by a spectrophotometric method using the reagent p-dimethylaminobenzaldehyde (R2 = 0.982, n = 6). The average recovery of urea from urine samples using this urea biosensor is approximately 103%.
Lee, Tzong-Hsi; Lin, Chien-Chu; Chung, Chen-Shuan; Lin, Cheng-Kuan; Liang, Cheng-Chao; Tsai, Kuang-Chau
2015-02-01
Previous studies demonstrated that the sensitivity of rapid urease test (RUT) for diagnosis of Helicobacter pylori infection decreased during peptic ulcer bleeding. We designed this study and tried to find a better method to improve the detection rate of H. pylori infection at the same session of endoscopic diagnosis of peptic ulcer bleeding. We prospectively enrolled 116 patients with peptic ulcer bleeding. These patients received intravenous proton pump inhibitor and then received upper gastrointestinal endoscopy within 24 h after arrival. We took one piece of biopsy from gastric antrum (Group 1), four pieces from gastric antrum (Group 2), and one piece from the gastric body (Group 3) for three separate RUTs, respectively. (13)C-urease breath test was used as gold standard for diagnosis of H. pylori infection. There were 74 patients (64 %) with positive (13)C-urease breath test. Among these 74 patients, 45 patients had positive RUT (sensitivity: 61 %) in Group 1; 55 patients had positive RUT (sensitivity: 74 %) in Group 2; 54 patients had positive RUT (sensitivity: 73 %) in Group 3. There were significant differences between Group 1 and Group 2 (p = 0.02) and between Group 1 and Group 3 (p = 0.022). The sensitivity of RUT was 61 % during peptic ulcer bleeding. The sensitivity of RUT can be increased significantly by increased biopsy number from gastric antrum or biopsy from gastric body.
pH-dependent immobilization of urease on glutathione-capped gold nanoparticles.
Garg, Seema; De, Arnab; Mozumdar, Subho
2015-05-01
Urease is a nickel-dependent metalloenzyme that catalyzes the hydrolysis of urea to form ammonia and carbon dioxide. Although the enzyme serves a significant role in several detoxification and analytical processes, its usability is restricted due to high cost, availability in small amounts, instability, and a limited possibility of economic recovery from a reaction mixture. Hence, there is a need to develop an efficient, simple, and reliable immobilization strategy for the enzyme. In this study, the carboxyl terminated surface of glutathione-capped gold nanoparticles have been utilized as a solid support for the covalent attachment of urease. The immobilization has been carried out at different pH conditions so as to elucidate its effect on the immobilization efficiency and enzyme bioactivity. The binding of the enzyme has been quantitatively and qualitatively analyzed through techniques like ultraviolet-visible spectroscopy, intrinsic steady state fluorescence, and circular dichorism. The bioactivity of the immobilized enzyme was investigated with respect to the native enzyme under different thermal conditions. Recyclability and shelf life studies of the immobilized enzyme have also been carried out. Results reveal that the immobilization is most effective at pH of 7.4 followed by that in an acidic medium and is least in alkaline environment. The immobilized enzyme also exhibits enhance activity in comparison to the native form at physiological temperature. The immobilized urease (on gold glutathione nanoconjugates surface) can be effectively employed for biosensor fabrication, immunoassays and as an in vivo diagnostic tool in the future. © 2014 Wiley Periodicals, Inc.
Renewable urea sensor based on a self-assembled polyelectrolyte layer.
Wu, Zhaoyang; Guan, Lirui; Shen, Guoli; Yu, Ruqin
2002-03-01
A renewable urea sensor based on a carboxylic poly(vinyl chloride) (PVC-COOH) matrix pH-sensitive membrane has been proposed, in which a positively charged polyelectrolyte layer is first constructed by using a self-assembly technique on the surface of a PVC-COOH membrane, and urease, with negative charges, is then immobilized through electrostatic adsorption onto the PVC-COOH membrane, by controlling the pH of the urease solution below its isoelectric point. The response characteristics of the PVC-COOH pH-sensitive membrane and the effects of experimental conditions have been investigated in detail. Compared with conventional covalent immobilization, the urea sensor made with this self-assembly immobilization shows significant advantage in terms of sensitivity and ease of regeneration. The potential responses of the urea sensor with self-assembly immobilization increase with the urea concentration over the concentration range 10(-5) - 10(-1) mol l(-1), and the detection limit is 0.028 mmol(-1). Moreover, this type of urea sensor can be repeatedly regenerated by using a simple washing treatment with 0.01 mol l(-1) NaOH (containing 0.5 mol l(-1) NaCl) and 0.01 mol l(-1) HCl. The urease layers and the polyelectrolyte layers on the PVC-COOH membrane are removed, the potential response of the sensor to urea solutions of different concentrations returns nearly to zero, and another assembly cycle of urease and polyelectrolyte can then be carried out.
NASA Astrophysics Data System (ADS)
Kucherenko, Ivan S.; Soldatkin, Oleksandr O.; Kasap, Berna Ozansoy; Kurç, Burcu Akata; Melnyk, Volodymir G.; Semenycheva, Lyudmila M.; Dzyadevych, Sergei V.; Soldatkin, Alexei P.
This work describes urease-based conductometric biosensors that were created using nontypical method of urease immobilization via adsorption on micro- and nanoporous particles: silicalite and nanocrystalline zeolites Beta (BEA) and L. Conductometric transducers with nickel, gold, and platinum interdigitated electrodes were used. Active regions of the nickel transducers were modified with microparticles using two procedures—spin coating and drop coating. Gold and platinum transducers were modified with silicalite using drop coating since it was more effective. Scanning electron microscopy was used to evaluate effectiveness of these procedures. The procedure of spin coating produced more uniform layers of particles (and biosensors had good reproducibility of preparation), but it was more complicated, drop coating was easier and led to formation of a bulk of particles; thus, biosensors had bigger sensitivity but worse reproducibility of preparation. Urease was immobilized onto transducers modified with particles by physical adsorption. Analytical characteristics of the obtained biosensors for determination of urea (calibration curves, sensitivity, limit of detection, linear concentration range, noise of responses, reproducibility of signal during a day, and operational stability during 3 days) were compared. Biosensors with all three particles deposited by spin coating showed similar characteristics; however, silicalite was a bit more effective. Biosensors based on nickel transducers modified by drop coating had better characteristics in comparison with modification by spin coating (except reproducibility of preparation). Transducers with gold electrodes showed best characteristics while creating biosensors, platinum electrodes were slightly inferior to them, and nickel electrodes were the worst.
Shi, Meiqing; Li, Shu Shun; Zheng, Chunfu; Jones, Gareth J.; Kim, Kwang Sik; Zhou, Hong; Kubes, Paul; Mody, Christopher H.
2010-01-01
Infectious meningitis and encephalitis is caused by invasion of circulating pathogens into the brain. It is unknown how the circulating pathogens dynamically interact with brain endothelium under shear stress, leading to invasion into the brain. Here, using intravital microscopy, we have shown that Cryptococcus neoformans, a yeast pathogen that causes meningoencephalitis, stops suddenly in mouse brain capillaries of a similar or smaller diameter than the organism, in the same manner and with the same kinetics as polystyrene microspheres, without rolling and tethering to the endothelial surface. Trapping of the yeast pathogen in the mouse brain was not affected by viability or known virulence factors. After stopping in the brain, C. neoformans was seen to cross the capillary wall in real time. In contrast to trapping, viability, but not replication, was essential for the organism to cross the brain microvasculature. Using a knockout strain of C. neoformans, we demonstrated that transmigration into the mouse brain is urease dependent. To determine whether this could be amenable to therapy, we used the urease inhibitor flurofamide. Flurofamide ameliorated infection of the mouse brain by reducing transmigration into the brain. Together, these results suggest that C. neoformans is mechanically trapped in the brain capillary, which may not be amenable to pharmacotherapy, but actively transmigrates to the brain parenchyma with contributions from urease, suggesting that a therapeutic strategy aimed at inhibiting this enzyme could help prevent meningitis and encephalitis caused by C. neoformans infection. PMID:20424328
Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira.
Koch, Hanna; Lücker, Sebastian; Albertsen, Mads; Kitzinger, Katharina; Herbold, Craig; Spieck, Eva; Nielsen, Per Halkjaer; Wagner, Michael; Daims, Holger
2015-09-08
Nitrospira are a diverse group of nitrite-oxidizing bacteria and among the environmentally most widespread nitrifiers. However, they remain scarcely studied and mostly uncultured. Based on genomic and experimental data from Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II, we identified ecophysiological traits that contribute to the ecological success of Nitrospira. Unexpectedly, N. moscoviensis possesses genes coding for a urease and cleaves urea to ammonia and CO2. Ureolysis was not observed yet in nitrite oxidizers and enables N. moscoviensis to supply ammonia oxidizers lacking urease with ammonia from urea, which is fully nitrified by this consortium through reciprocal feeding. The presence of highly similar urease genes in Nitrospira lenta from activated sludge, in metagenomes from soils and freshwater habitats, and of other ureases in marine nitrite oxidizers, suggests a wide distribution of this extended interaction between ammonia and nitrite oxidizers, which enables nitrite-oxidizing bacteria to indirectly use urea as a source of energy. A soluble formate dehydrogenase lends additional ecophysiological flexibility and allows N. moscoviensis to use formate, with or without concomitant nitrite oxidation, using oxygen, nitrate, or both compounds as terminal electron acceptors. Compared with Nitrospira defluvii from lineage I, N. moscoviensis shares the Nitrospira core metabolism but shows substantial genomic dissimilarity including genes for adaptations to elevated oxygen concentrations. Reciprocal feeding and metabolic versatility, including the participation in different nitrogen cycling processes, likely are key factors for the niche partitioning, the ubiquity, and the high diversity of Nitrospira in natural and engineered ecosystems.
Immobilized enzyme studies in a microscale bioreactor.
Jones, Francis; Forrest, Scott; Palmer, Jim; Lu, Zonghuan; Elmore, John; Elmore, Bill B
2004-01-01
Novel microreactors with immobilized enzymes were fabricated using both silicon and polymer-based microfabrication techniques. The effectiveness of these reactors was examined along with their behavior over time. Urease enzyme was successfully incorporated into microchannels of a polymeric matrix of polydimethylsiloxane and through layer-bylayer self-assembly techniques onto silicon. The fabricated microchannels had cross-sectional dimensions ranging from tens to hundreds of micrometers in width and height. The experimental results for continuous-flow microreactors are reported for the conversion of urea to ammonia by urease enzyme. Urea conversions of >90% were observed.
Microbial biomass carbon and enzyme activities of urban soils in Beijing.
Wang, Meie; Markert, Bernd; Shen, Wenming; Chen, Weiping; Peng, Chi; Ouyang, Zhiyun
2011-07-01
To promote rational and sustainable use of soil resources and to maintain the urban soil quality, it is essential to assess urban ecosystem health. In this study, the microbiological properties of urban soils in Beijing and their spatial distribution patterns across the city were evaluated based on measurements of microbial biomass carbon and urease and invertase activities of the soils for the purpose of assessing the urban ecosystem health of Beijing. Grid sampling design, normal Kriging technique, and the multiple comparisons among different land use types were used in soil sampling and data treatment. The inherent chemical characteristics of urban soils in Beijing, e.g., soil pH, electronic conductivity, heavy metal contents, total N, P and K contents, and soil organic matter contents were detected. The size and diversity of microbial community and the extent of microbial activity in Beijing urban soils were measured as the microbial biomass carbon content and the ratio of microbial biomass carbon content to total soil organic carbon. The microbial community health measured in terms of microbial biomass carbon, urease, and invertase activities varied with the organic substrate and nutrient contents of the soils and were not adversely affected by the presence of heavy metals at p < 0.01. It was shown that the older and the biologically more stable part of city exhibited higher microbial activity levels than the more recently developed part of the city and the road areas of heavy traffic. It was concluded that the land use patterns in Beijing urban soils influenced the nature and activities of the microbial communities.
Han, Liliang; Su, Derong; Lv, Shihai; Luo, Yan; Li, Xingfu; Jiao, Jian; Diao, Zhaoyan; Bu, He
2017-08-27
Climate warming generates a tremendous threat to the stability of geographically-isolated wetland (GIW) ecosystems and changes the type of evaporation and atmospheric precipitation in a region. The intrinsic balance of biogeochemical processes and enzyme activity in GIWs may be altered as well. In this paper, we sampled three types of GIWs exhibiting different kinds of flooding periods. With the participation of real-time temperature regulation measures, we assembled a computer-mediated wetland warming micro-system in June 2016 to simulate climate situation of ambient temperature (control group) and two experimental temperature differences (+2.5 °C and +5.0 °C) following a scientific climate change circumstance based on daily and monthly temperature monitoring at a two-minutes scale. Our results demonstrate that the contents of the total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) in the warmed showed, roughly, a balance or a slight decrease than the control treatment. Warming obstructed the natural subsidence of sediment, but reinforced the character of the ecological source, and reduced the activity of urease (URE), but promoted the activity of alkaline phosphatase (AKP) and sucrase (SUC). Redundancy analysis showed that sucrase, urease, available phosphorus (AP), and pH were the major correlating factors under warming conditions in our research scope. Total organic carbon, total nitrogen, sucrase, catalase (CAT), and alkaline phosphatase were the principal reference factors to reflect the ambient temperature variations. Nutrient compositions and enzyme activities in GIW ecosystems could be reconstructed under the warming influence.
Liu, Jiu-Jun; Fang, Sheng-Zuo; Xie, Bao-Dong; Hao, Juan-Juan
2008-06-01
Coriaria nepalensis, Pteridium aquilinum var. latiuscukum, Imperata cylindrical var. major, and Quercus fabric were used as mulching materials to study their effects on the rhizosphere soil microbial population and enzyme activity and the tree growth in poplar plantation. The results showed that after mulching with test materials, the populations of both bacteria and fungi in rhizosphere soil were more than those of the control. Of the mulching materials, I. cylindrical and Q. fabric had the best effect, with the numbers of bacteria and fungi being 23.56 and 1.43 times higher than the control, respectively. The bacterial and fungal populations in rhizosphere soil increased with increasing mulching amount. When the mulching amount was 7.5 kg m(-2), the numbers of bacteria and fungi in rhizosphere soil were 0.5 and 5.14 times higher than the control, respectively. Under bio-mulching, the bacterial and fungal populations in rhizosphere soil had a similar annual variation trend, which was accorded with the annual fluctuation of soil temperature and got to the maximum in July and the minimum in December. The urease and phosphatase activities in rhizosphere soil also increased with increasing mulching amount. As for the effects of different mulching materials on the enzyme activities, they were in the order of C. nepalensis > P. aquilinum > I. cylindrical > Q. fabric. The annual variation of urease and phosphatase activities in rhizosphere soil was similar to that of bacterial and fungal populations, being the highest in July and the lowest in December. Bio-mulching promoted the tree height, DBH, and biomass of poplar trees significantly.
Dai, Xiaorong; Karring, Henrik
2014-01-01
Ammonia emission from animal production is a major environmental problem and has impacts on the animal health and working environment inside production houses. Ammonia is formed in manure by the enzymatic degradation of urinary urea and catalyzed by urease that is present in feces. We have determined and compared the urease activity in feces and manure (a urine and feces mixture) from pigs and cattle at 25°C by using Michaelis-Menten kinetics. To obtain accurate estimates of kinetic parameters Vmax and K'm, we used a 5 min reaction time to determine the initial reaction velocities based on total ammoniacal nitrogen (TAN) concentrations. The resulting Vmax value (mmol urea hydrolyzed per kg wet feces per min) was 2.06±0.08 mmol urea/kg/min and 0.80±0.04 mmol urea/kg/min for pig feces and cattle feces, respectively. The K'm values were 32.59±5.65 mmol urea/l and 15.43±2.94 mmol urea/l for pig feces and cattle feces, respectively. Thus, our results reveal that both the Vmax and K'm values of the urease activity for pig feces are more than 2-fold higher than those for cattle feces. The difference in urea hydrolysis rates between animal species is even more significant in fresh manure. The initial velocities of TAN formation are 1.53 mM/min and 0.33 mM/min for pig and cattle manure, respectively. Furthermore, our investigation shows that the maximum urease activity for pig feces occurs at approximately pH 7, and in cattle feces it is closer to pH 8, indicating that the predominant fecal ureolytic bacteria species differ between animal species. We believe that our study contributes to a better understanding of the urea hydrolysis process in manure and provides a basis for more accurate and animal-specific prediction models for urea hydrolysis rates and ammonia concentration in manures and thus can be used to predict ammonia volatilization rates from animal production.
Nickel Availability in Soil as Influenced by Liming and Its Role in Soybean Nitrogen Metabolism
de Macedo, Fernando G.; Bresolin, Joana D.; Santos, Elcio F.; Furlan, Felipe; Lopes da Silva, Wilson T.; Polacco, Joe C.; Lavres, José
2016-01-01
Nickel (Ni) availability in soil varies as a function of pH. Plants require Ni in small quantities for normal development, especially in legumes due its role in nitrogen (N) metabolism. This study investigated the effect of soil base saturation, and Ni amendments on Ni uptake, N accumulation in the leaves and grains, as well as to evaluate organic acids changes in soybean. In addition, two N assimilation enzymes were assayed: nitrate reductase (NR) and Ni-dependent urease. Soybean plants inoculated with Bradyrhizobium japonicum were cultivated in soil-filled pots under two base-cation saturation (BCS) ratios (50 and 70%) and five Ni rates – 0.0; 0.1; 0.5; 1.0; and 10.0 mg dm-3 Ni. At flowering (R1 developmental stage), plants for each condition were evaluated for organic acids (oxalic, malonic, succinic, malic, tartaric, fumaric, oxaloacetic, citric and lactic) levels as well as the activities of urease and NR. At the end of the growth period (R7 developmental stage – grain maturity), grain N and Ni accumulations were determined. The available soil-Ni in rhizosphere extracted by DTPA increased with Ni rates, notably in BCS50. The highest concentrations of organic acid and N occurred in BCS70 and 0.5 mg dm-3 of Ni. There were no significant differences for urease activity taken on plants grown at BSC50 for Ni rates, except for the control treatment, while plants cultivated at soil BCS70 increased the urease activity up to 0.5 mg dm-3 of Ni. In addition, the highest values for urease activities were reached from the 0.5 mg dm-3 of Ni rate for both BCS treatments. The NR activity was not affected by any treatment indicating good biological nitrogen fixation (BNF) for all plants. The reddish color of the nodules increased with Ni rates in both BCS50 and 70, also confirms the good BNF due to Ni availability. The optimal development of soybean occurs in BCS70, but requires an extra Ni supply for the production of organic acids and for increased N-shoot and grain accumulation. PMID:27660633
Hu, Heidi Q; Johnson, Ryan C; Merrell, D Scott; Maroney, Michael J
2017-02-28
The human pathogen Helicobacter pylori requires nickel for colonization of the acidic environment of the stomach. HypA, a Ni metallochaperone that is typically associated with hydrogenase maturation, is also required for urease maturation and acid survival of H. pylori. There are two proposed Ni site structures for HypA; one is a paramagnetic six-coordinate site characterized by X-ray absorption spectroscopy (XAS) in unmodified HypA, while another is a diamagnetic four-coordinate planar site characterized by solution nuclear magnetic resonance in an N-terminally modified HypA construct. To determine the role of the N-terminal amine in Ni binding of HypA, an N-terminal extension variant, L2*-HypA, in which a leucine residue was inserted into the second position of the amino acid sequence in the proposed Ni-binding motif, was characterized in vitro and in vivo. Structural characterization of the Ni site using XAS showed a coordination change from six-coordinate in wild-type HypA (WT-HypA) to five-coordinate pyramidal in L2*-HypA, which was accompanied by the loss of two N/O donor protein ligands and the addition of an exogenous bromide ligand from the buffer. The magnetic properties of the Ni sites in WT-HypA compared to those of the Ni sites in L2*-HypA confirmed that a spin-state change from high to low spin accompanied this change in structure. The L2*-HypA H. pylori strain was shown to be acid sensitive and deficient in urease activity in vivo. In vitro characterization showed that L2*-HypA did not disrupt the HypA-UreE interaction that is essential for urease maturation but was at least 20-fold weaker in Ni binding than WT-HypA. Characterization of the L2*-HypA variant clearly demonstrates that the N-terminal amine of HypA is involved in proper Ni coordination and is necessary for urease activity and acid survival.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Heidi Q.; Johnson, Ryan C.; Merrell, D. Scott
The human pathogen Helicobacter pylori requires nickel for colonization of the acidic environment of the stomach. HypA, a Ni metallochaperone that is typically associated with hydrogenase maturation, is also required for urease maturation and acid survival of H. pylori. There are two proposed Ni site structures for HypA; one is a paramagnetic six-coordinate site characterized by X-ray absorption spectroscopy (XAS) in unmodified HypA, while another is a diamagnetic four-coordinate planar site characterized by solution nuclear magnetic resonance in an N-terminally modified HypA construct. To determine the role of the N-terminal amine in Ni binding of HypA, an N-terminal extension variant,more » L2*-HypA, in which a leucine residue was inserted into the second position of the amino acid sequence in the proposed Ni-binding motif, was characterized in vitro and in vivo. Structural characterization of the Ni site using XAS showed a coordination change from six-coordinate in wild-type HypA (WT-HypA) to five-coordinate pyramidal in L2*-HypA, which was accompanied by the loss of two N/O donor protein ligands and the addition of an exogenous bromide ligand from the buffer. The magnetic properties of the Ni sites in WT-HypA compared to those of the Ni sites in L2*-HypA confirmed that a spin-state change from high to low spin accompanied this change in structure. The L2*-HypA H. pylori strain was shown to be acid sensitive and deficient in urease activity in vivo. In vitro characterization showed that L2*-HypA did not disrupt the HypA–UreE interaction that is essential for urease maturation but was at least 20-fold weaker in Ni binding than WT-HypA. Characterization of the L2*-HypA variant clearly demonstrates that the N-terminal amine of HypA is involved in proper Ni coordination and is necessary for urease activity and acid survival.« less
Dai, Xiaorong; Karring, Henrik
2014-01-01
Ammonia emission from animal production is a major environmental problem and has impacts on the animal health and working environment inside production houses. Ammonia is formed in manure by the enzymatic degradation of urinary urea and catalyzed by urease that is present in feces. We have determined and compared the urease activity in feces and manure (a urine and feces mixture) from pigs and cattle at 25°C by using Michaelis-Menten kinetics. To obtain accurate estimates of kinetic parameters Vmax and K'm, we used a 5 min reaction time to determine the initial reaction velocities based on total ammoniacal nitrogen (TAN) concentrations. The resulting Vmax value (mmol urea hydrolyzed per kg wet feces per min) was 2.06±0.08 mmol urea/kg/min and 0.80±0.04 mmol urea/kg/min for pig feces and cattle feces, respectively. The K'm values were 32.59±5.65 mmol urea/l and 15.43±2.94 mmol urea/l for pig feces and cattle feces, respectively. Thus, our results reveal that both the Vmax and K'm values of the urease activity for pig feces are more than 2-fold higher than those for cattle feces. The difference in urea hydrolysis rates between animal species is even more significant in fresh manure. The initial velocities of TAN formation are 1.53 mM/min and 0.33 mM/min for pig and cattle manure, respectively. Furthermore, our investigation shows that the maximum urease activity for pig feces occurs at approximately pH 7, and in cattle feces it is closer to pH 8, indicating that the predominant fecal ureolytic bacteria species differ between animal species. We believe that our study contributes to a better understanding of the urea hydrolysis process in manure and provides a basis for more accurate and animal-specific prediction models for urea hydrolysis rates and ammonia concentration in manures and thus can be used to predict ammonia volatilization rates from animal production. PMID:25397404
Abalos, Diego; Sanz-Cobena, Alberto; Misselbrook, Thomas; Vallejo, Antonio
2012-09-01
Urea is considered the cheapest and most commonly used form of inorganic N fertilizer worldwide. However, its use is associated with emissions of ammonia (NH(3)), nitrous oxide (N(2)O) and nitric oxide (NO), which have both economic and environmental impact. Urease activity inhibitors have been proposed as a means to reduce NH(3) emissions, although limited information exists about their effect on N(2)O and NO emissions. In this context, a field experiment was carried out with a barley crop (Hordeum vulgare L.) under Mediterranean conditions to test the effectiveness of the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) on reducing these gaseous N losses from surface applied urea. Crop yield, soil mineral N concentrations, dissolved organic carbon (DOC), denitrification potential, NH(3), N(2)O and NO fluxes were measured during the growing season. The inclusion of the inhibitor reduced NH(3) emissions in the 30 d following urea application by 58% and net N(2)O and NO emissions in the 95 d following urea application by 86% and 88%, respectively. NBPT addition also increased grain yield by 5% and N uptake by 6%, although neither increase was statistically significant. Under the experimental conditions presented here, these results demonstrate the potential of the urease inhibitor NBPT in abating NH(3), N(2)O and NO emissions from arable soils fertilized with urea, slowing urea hydrolysis and releasing lower concentrations of NH(4)(+) to the upper soil layer. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ramesh, Rajendran; Aarthy, Mayilvahanan; Gowthaman, Marichetti Kuppuswami; Gabrovska, Katya; Godjevargova, Tzonka; Kamini, Numbi Ramudu
2014-04-01
This paper describes the isolation of a potent extracellular urease producing microorganism, identified by 16S rRNA as Arthrobacter creatinolyticus MTCC 5604 and its medium optimization by classical one-factor-at-a-time method and central composite rotatable design (CCRD), a tool of response surface methodology (RSM). An optimal activity of 9.0 U ml(-1) was obtained by classical method and statistical optimization of the medium resulted in an activity of 17.35 U ml(-1) at 48 h and 30 °C. This activity was 4.91 times greater than the initial activity (3.53 U ml(-1) ) from the basal medium and the enzyme showed maximum activity at pH 8.0 and 60 °C and was stable at pH 7.0-9.0 and temperatures up to 50 °C. Furthermore, the enzyme was assessed for its activity reduction by determining the inhibitory concentration (IC50 ) of heavy metal ions and the inhibition of urease was in the order of Cu(II) > Cd(II) > Zn(II) > Ni(II). Urease was highly sensitive to Cu(II) and its inhibition was 94% and 100% in model solutions containing a mixture of Cu(II) with heavy metal ions Cd(II) and Zn(II), respectively. The results of these studies suggested that the enzyme could be utilized as sensors to determine the levels of Cu(II) ions in industrial effluents, contaminated soil and ground water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ullah, Atta; Iftikhar, Fatima; Arfan, Muhammad; Batool Kazmi, Syeda Tayyaba; Anjum, Muhammad Naveed; Haq, Ihsan-Ul; Ayaz, Muhammad; Farooq, Sadia; Rashid, Umer
2018-02-10
Present work describes the in vitro antibacterial evaluation of some new amino acid conjugated antimicrobial drugs. Structural modification was attempted on the three existing antimicrobial pharmaceuticals namely trimethoprim, metronidazole, isoniazid. Twenty one compounds from seven series of conjugates of these drugs were synthesized by coupling with some selected Boc-protected amino acids. The effect of structural features and lipophilicity on the antibacterial activity was investigated. The synthesized compounds were evaluated against five standard American type culture collection (ATCC) i.e. Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi strains of bacteria. Our results identified a close relationship between the lipophilicity and the activity. Triazine skeleton proved beneficial for the increase in hydrophobicity and potency. Compounds with greater hydrophobicity have shown excellent activities against Gram-negative strains of bacteria than Gram-positive. 4-amino unsubstituted trimethoprim-triazine derivative 7b have shown superior activity with MIC = 3.4 μM (2 μg/mL) for S. aureus and 1.1 μM (0.66 μg/mL) for E. coli. The synthesized compounds were also evaluated for their urease inhibition study. Microbial urease from Bacillus pasteurii was chosen for this study. Triazine derivative 7a showed excellent inhibition with IC 50 = 6.23 ± 0.09 μM. Docking studies on the crystal structure of B. pasteurii urease (PDB ID 4UBP) were carried out. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
AIDS: Secretions and Implications for Nursing Care-Givers.
1992-05-06
addition, infected cells may be found in many different organs, often at the same time: the brain, lymph nodes , thymus gland, bone marrow, lungs, skin...symptomatic disease with diffuse non-malignant lymph node hypertrophy. Aside from these symptoms of lymphadenopathy, patients are typically healthy...a person physically and mentally crippled. AIDS dementia complex (ADC) or subacute HIV encephalopathy, primary lymphomas, toxoplasmosis , cryptococcal
Poor long-term outcomes for cryptococcal meningitis in rural South Africa.
Lessells, Richard J; Mutevedzi, Portia C; Heller, Tom; Newell, Marie-Louise
2011-04-01
To explore linkage to and retention in HIV care after an episode of cryptococcal meningitis (CM) in rural South Africa. Design. A retrospective case series of adult individuals (> or = 16 years old) with laboratory-confirmed CM from January - December 2007 at Hlabisa Hospital--a district hospital in northern KwaZulu-Natal. Inpatient mortality and associated risk factors were analysed. The proportion alive and on antiretroviral therapy (ART) at 2 years was determined by linkage to the HIV treatment programme. One hundred and four individuals were identified with laboratory diagnosis of CM; 74/104 (71.2%) with complete records were included in the analysis. Inpatient mortality was high (40.5%) and was significantly associated with reduced conscious level (aHR 3.09, 95% CI 1.30 - 7.33) and absence of headache (aHR 0.33 for headache, 95% CI 0.13 - 0.87). Only 8 individuals (10.8% of all study subjects) were alive and receiving ART 2 years after the CM episode. Long-term outcomes of CM are poor in routine practice. Interventions to strengthen linkage to HIV treatment and care and continuation of secondary fluconazole prophylaxis are critical.
Cryptococcal pathogenic mechanisms: a dangerous trip from the environment to the brain.
Esher, Shannon K; Zaragoza, Oscar; Alspaugh, James Andrew
2018-01-01
Cryptococcus neoformans is an opportunistic pathogenic yeast that causes serious infections, most commonly of the central nervous system (CNS). C. neoformans is mainly found in the environment and acquired by inhalation. It could be metaphorically imagined that cryptococcal disease is a "journey" for the microorganism that starts in the environment, where this yeast loads its suitcase with virulence traits. C. neoformans first encounters the infected mammalian host in the lungs, a site in which it must choose the right elements from its "virulence suitcase" to survive the pulmonary immune response. However, the lung is often only the first stop in this journey, and in some individuals the fungal trip continues to the brain. To enter the brain, C. neoformans must "open" the main barrier that protects this organ, the blood brain barrier (BBB). Once in the brain, C. neoformans expresses a distinct set of protective attributes that confers a strong neurotropism and the ability to cause brain colonisation. In summary, C. neoformans is a unique fungal pathogen as shown in its ability to survive in the face of multiple stress factors and to express virulence factors that contribute to the development of disease.
Tseng, Hsiang-Kuang; Liu, Chang-Pan; Price, Michael S.; Jong, Ambrose Y.; Chang, Jui-Chih; Toffaletti, Dena L.; Betancourt-Quiroz, Marisol; Frazzitta, Aubrey E.; Cho, Wen-Long; Perfect, John R.
2012-01-01
Background A mouse brain transmigration assessment (MBTA) was created to investigate the central nervous system (CNS) pathogenesis of cryptococcal meningoencephalitis. Methodology/Principal Findings Two cryptococcal mutants were identified from a pool of 109 pre-selected mutants that were signature-tagged with the nourseothricin acetyltransferase (NAT) resistance cassette. These two mutants displayed abnormal transmigration into the central nervous system. One mutant displaying decreased transmigration contains a null mutation in the putative FNX1 gene, whereas the other mutant possessing a null mutation in the putative RUB1 gene exhibited increased transmigration into the brain. Two macrophage adhesion-defective mutants in the pool, 12F1 and 3C9, showed reduced phagocytosis by macrophages, but displayed no defects in CNS entry suggesting that transit within macrophages (the “Trojan horse” model of CNS entry) is not the primary mechanism for C. neoformans migration into the CNS in this MBTA. Conclusions/Significance This research design provides a new strategy for genetic impact studies on how Cryptococcus passes through the blood-brain barrier (BBB), and the specific isolated mutants in this assay support a transcellular mechanism of CNS entry. PMID:23028773
Cryptococcal pathogenic mechanisms: a dangerous trip from the environment to the brain
Esher, Shannon K; Zaragoza, Oscar; Alspaugh, James Andrew
2018-01-01
Cryptococcus neoformans is an opportunistic pathogenic yeast that causes serious infections, most commonly of the central nervous system (CNS). C. neoformans is mainly found in the environment and acquired by inhalation. It could be metaphorically imagined that cryptococcal disease is a “journey” for the microorganism that starts in the environment, where this yeast loads its suitcase with virulence traits. C. neoformans first encounters the infected mammalian host in the lungs, a site in which it must choose the right elements from its “virulence suitcase” to survive the pulmonary immune response. However, the lung is often only the first stop in this journey, and in some individuals the fungal trip continues to the brain. To enter the brain, C. neoformans must “open” the main barrier that protects this organ, the blood brain barrier (BBB). Once in the brain, C. neoformans expresses a distinct set of protective attributes that confers a strong neurotropism and the ability to cause brain colonisation. In summary, C. neoformans is a unique fungal pathogen as shown in its ability to survive in the face of multiple stress factors and to express virulence factors that contribute to the development of disease. PMID:29668825
NASA Astrophysics Data System (ADS)
Thorne, Robert; Keedy, Daniel; Warkentin, Matthew; Fraser, James; Moreau, David; Atakisi, Hakan; Rau, Peter
Proteins populate complex, temperature-dependent ensembles of conformations that enable their function. Yet in X-ray crystallographic studies, roughly 98% of structures have been determined at 100 K, and most refined to only a single conformation. A combination of experimental methods enabled by studies of ice formation and computational methods for mining low-density features in electron density maps have been applied to determine the evolution of the conformational landscapes of the enzymes cyclophilin A and urease between 300 K and 100 K. Minority conformations of most side chains depopulate on cooling from 300 to ~200 K, below which subsequent conformational evolution is quenched. The characteristic temperatures for this depopulation are highly heterogeneous throughout each enzyme. The temperature-dependent ensemble of the active site flap in urease has also been mapped. These all-atom, site-resolved measurements and analyses rule out one interpretation of the protein-solvent glass transition, and give an alternative interpretation of a dynamical transition identified in site-averaged experiments. They demonstrate a powerful approach to structural characterization of the dynamic underpinnings of protein function. Supported by NSF MCB-1330685.
In vitro evaluation of cross-strain inhibitory effects of IgY polyclonal antibody against H. pylori.
Solhi, Roya; Alebouyeh, Masoud; Khafri, Abolfazl; Rezaeifard, Morteza; Aminian, Mahdi
2017-09-01
The present study aimed to evaluate in vitro cross-strain inhibitory effects of IgY polyclonal antibody on both growth and urease enzyme of four local strains of H. pylori. Leghorn chickens were immunized with whole cells of four different strains of H. pylori, separately. Rising of specific IgY was detected by ELISA. The IgY purified using polyethylene glycol method and the purity was evaluated by SDS-PAGE and Western blotting. Each strain was treated with its own-specific and also other strain-specific IgYs. The strain-specific IgY could inhibit the growth of specific strains by 49-72% and also other different strains of H. pylori by 29-86%. Our findings revealed that strain-specific IgY could inhibit urease activity of its own by 64-72% and other different strains by 49-79%. These findings confirmed strain-specific and also cross-strain inhibitory effects of the IgY polyclonal antibody on both growth and urease activity of H. pylori. Copyright © 2017 Elsevier Ltd. All rights reserved.
The origin of mouth-exhaled ammonia.
Chen, W; Metsälä, M; Vaittinen, O; Halonen, L
2014-09-01
It is known that the oral cavity is a production site for mouth-exhaled NH3. However, the mechanism of NH3 production in the oral cavity has been unclear. Since bacterial urease in the oral cavity has been found to produce ammonia from oral fluid urea, we hypothesize that oral fluid urea is the origin of mouth-exhaled NH3. Our results show that under certain conditions a strong correlation exists between oral fluid urea and oral fluid ammonia (NH4(+)+NH3) (rs = 0.77, p < 0.001). We also observe a strong correlation between oral fluid NH3 and mouth-exhaled NH3 (rs = 0.81, p < 0.001). We conclude that three main factors affect the mouth-exhaled NH3 concentration: urea concentration, urease activity and oral fluid pH. Bacterial urease catalyses the hydrolysis of oral fluid urea to ammonia (NH4(+)+NH3). Oral fluid ammonia (NH4(+)+NH3) and pH determine the concentration of oral fluid NH3, which evaporates from oral fluid into gas phase and turns to mouth-exhaled NH3.
Barbosa, Camila Gouveia; Caseli, Luciano; Péres, Laura Oliveira
2016-08-15
The search for new molecular architectures to improve the efficiency of enzymes entrapped in ultrathin films is useful to enhance the effectiveness of biosensors. In this present work, conjugated polymers, based on thiophene and fluorine, were investigated to verify their suitability as matrices for the immobilization of urease. The copolymer poly[(9,9-dioctylfluorene)-co-thiophene], PDOF-co-Th was spread on the air-water interface forming stable Langmuir monolayers as determined by surface pressure-area isotherms, polarization-modulation reflection-absorption infrared spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). Urease was incorporated in the floating monolayers being further transferred to solid supports as mixed Langmuir-Blodgett (LB) films. These films were then characterized with transfer ratio, fluorescence spectroscopy, PM-IRRAS and atomic force microscopy, confirming the co-transfer of the enzyme as well as its structuring in β-sheets. The catalytic activity was detected for urease, with a lower reaction rate than that encountered for the homogeneous environment. This was attributed to conformational constraints imposed to the biomacromolecule entrapped in the polymeric matrix. Copyright © 2016 Elsevier Inc. All rights reserved.
Shamim, Shahbaz; Khan, Khalid Mohammed; Salar, Uzma; Ali, Farman; Lodhi, Muhammad Arif; Taha, Muhammad; Khan, Farman Ali; Ashraf, Sajda; Ul-Haq, Zaheer; Ali, Muhammad; Perveen, Shahnaz
2018-02-01
5-Acetyl-6-methyl-4-aryl-3,4-dihydropyrimidin-2(1H)-ones 1-43 were synthesized in a "one-pot" three component reaction and structurally characterized by various spectroscopic techniques such as 1 H, 13 C NMR, EI-MS, HREI-MS, and IR. All compounds were evaluated for their in vitro urease inhibitory activity. It is worth mentioning that except derivatives 1, 11, 12, and 14, all were found to be more potent than the standard thiourea (IC 50 = 21.25 ± 0.15 µM) and showed their urease inhibitory potential in the range of IC 50 = 3.70 ± 0.5-20.14 ± 0.1 µM. Structure-activity relationship (SAR) was rationalized by looking at the varying structural features of the molecules. However, molecular modeling study was performed to confirm the binding interactions of the molecules (ligand) with the active site of enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.
Ricci, Annalisa; Coppo, Erika; Barbieri, Ramona; Debbia, Eugenio A; Marchese, Anna
2017-04-01
Rifaximin, a topical derivative of rifampin, inhibited urease production and other virulence factors at sub-MIC concentrations in strains involved in hepatic encephalopathy and the expression of methicillin resistance in Staphylococcus aureus. In particular, urease production was affected in all Proteus mirabilis and Klebsiella pneumoniae strains as well as in all tested Pseudomonas aeruginosa isolates. Other exotoxins, synthesized by P. aeruginosa, such as protease, gelatinase, lipase, lecithinase and DNAse were also not metabolized in the presence of rifaximin. This antibiotic inhibited pigment production in both P. aeruginosa and Chromobacterium violaceum, a biosensor control strain. Lastly, rifaximin affected haemolysin production in S. aureus and was able to restore cefoxitin susceptibility when the strain was cultured in the presence of sub-MICs of the drug. The present findings confirm and extend previous observations about the beneficial effects of rifaximin for the treatment of gastrointestinal diseases, since in this anatomic site, it reaches a large array of concentrations which prevents enterobacteria from thriving and/or producing their major virulence factors.
Lakard, Boris; Magnin, Delphine; Deschaume, Olivier; Vanlancker, Guilhem; Glinel, Karine; Demoustier-Champagne, Sophie; Nysten, Bernard; Jonas, Alain M; Bertrand, Patrick; Yunus, Sami
2011-06-15
A potentiometric biosensor based on urease was developed for the quantitative determination of urea concentration in aqueous solutions for biomedical applications. The urease was either physisorbed onto an electrodeposited polyaniline film (PANI), or immobilized on a layer-by-layer film (LbL) assembled over the PANI film, that was obtained by the alternate deposition of charged polysaccharides (carboxymethylpullulan (CMP) and chitosan (CHI)). In the latter case, the urease (Urs) enzyme was either physically adsorbed or covalently grafted to the LbL film using carbodiimide coupling reaction. Potentiometric responses of the enzymatic biosensors were measured as a function of the urea concentration in aqueous solutions (from 10(-6) to 10(-1) mol L(-1) urea). Very high sensitivity and short response time were observed for the present biosensor. Moreover, a stability study showed a higher stability over time for the potentiometric response of the sensor with the enzyme-grafted LbL film, testifying for the protective nature of the polysaccharide coating and the interest of covalent grafting. Copyright © 2011 Elsevier B.V. All rights reserved.
Huang, Danlian; Xu, Juanjuan; Zeng, Guangming; Lai, Cui; Yuan, Xingzhong; Luo, Xiangying; Wang, Cong; Xu, Piao; Huang, Chao
2015-08-01
As lead is one of the most hazardous heavy metals in river ecosystem, the influence of exogenous lead pollution on enzyme activities and organic matter degradation in the surface of river sediment with high moisture content were studied at laboratory scale. The dynamic changes of urease, catalase, protease activities, organic matter content, and exchangeable or ethylenediaminetetraacetic acid (EDTA)-extractable Pb concentration in sediment were monitored during different levels of exogenous lead infiltrating into sediment. At the early stage of incubation, the activities of catalase and protease were inhibited, whereas the urease activities were enhanced with different levels of exogenous lead. Organic matter content in polluted sediment with exogenous lead was lower than control and correlated with enzyme activities. In addition, the effects of lead on the three enzyme activities were strongly time-dependent and catalase activities showed lower significant difference (P < 0.05) than urease and protease. Correlations between catalase activities and EDTA-extractable Pb in the experiment were significantly negative. The present findings will improve the understandings about the ecotoxicological mechanisms in sediment.