Science.gov

Sample records for crystal biosensor microplates

  1. Enhanced dual-frequency operation of a polymerized liquid crystal microplate by liquid crystal infiltration

    NASA Astrophysics Data System (ADS)

    Kumagai, Takayuki; Yoshida, Hiroyuki; Ozaki, Masanori

    2017-04-01

    The electric-field-induced switching behavior of a polymer microplate is investigated. A microplate fabricated with a photopolymerizable dual-frequency liquid crystal was surrounded by an unpolymerized photopolymerizable dual-frequency liquid crystal in the isotropic phase. As an electric field was applied along the plane of the microplate, the microplate switched to set its interior molecular orientation to be either parallel or perpendicular to the field, depending on the frequency. Analysis of the rotational behavior, as well as numerical calculations, showed that the surrounding unpolymerized photopolymerizable dual-frequency liquid crystal infiltrated into the microplate, which enhanced the dielectric properties of the microplate. To the best of our knowledge, this is the first report of an enhanced dual-frequency dielectric response of a polymer microplate induced by liquid crystal infiltration.

  2. Microplate based optical biosensor for L-Dopa using tyrosinase from Amorphophallus campanulatus.

    PubMed

    Saini, Amardeep Singh; Kumar, Jitendra; Melo, Jose Savio

    2014-11-07

    Developing a biosensor which is capable of simultaneously monitoring l-Dopa levels in multiple samples besides requiring small reaction volume is of great value. The present study describes the detection of l-Dopa using tyrosinase enzyme extracted from Amorphophallus campanulatus and immobilized on the surface of the microplate wells. Among the different approaches used for immobilizing tyrosinase onto the microplate wells, glutaraldehyde treatment was found to be most effective. Besides enzyme activity, ESEM-EDS (environmental scanning electron microscope-energy dispersive system) and Atomic Force Microscopy (AFM) were also carried out to confirm the immobilization of tyrosinase enzyme onto the microplate well surface. This immobilized biocomponent was then integrated with an optical transducer for l-Dopa detection and it showed good reproducibility. The sensing property of the system was studied by measuring the initial rate of dopachrome formation at 475 nm. The calibration plot gave a linear range of detection from 10-1000 μM and the detection limit was calculated to be 3 μM. The immobilized biocomponent was stable for 41 days and was reused up to nine times. Spiked samples (blood plasma) were also analyzed using this biocomponent. This microplate based biosensor thus provides a convenient system for detection of multiple samples in a single run. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Slotted photonic crystal biosensors

    NASA Astrophysics Data System (ADS)

    Scullion, Mark Gerard

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them result in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This thesis presents a new platform for optical biosensors, namely slotted photonic crystals, which engender higher sensitivities due to their ability to confine, spatially and temporally, the peak of optical mode within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. High sensitivities were observed in smaller structures than most competing devices in the literature. Initial tests with cellular material for real applications was also performed, and shown to be of promise. In addition, groundwork to make an integrated device that includes the spectrometer function was also carried out showing that slotted photonic crystals themselves can be used for on-chip wavelength specific filtering and spectroscopy, whilst gas-free microvalves for automation were also developed. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study.

  4. An optical microbial biosensor for detection of methyl parathion using Sphingomonas sp. immobilized on microplate as a reusable biocomponent.

    PubMed

    Kumar, Jitendra; D'Souza, S F

    2010-12-15

    Organophosphorus pesticides such as methyl parathion have been widely used in the field of agriculture for insect pest control. These pesticides and their degradation products cause environmental pollution and ecological problem. With a view to monitor these pesticides biosensors are being developed. A bacterium Sphingomonas sp. from field soil has been isolated and identified in our laboratory that hydrolyzes the methyl parathion upto a chromophoric product, p-nitrophenol (PNP). PNP can be detected by electrochemical and colorimetric methods, which can be exploited to develop a biosensor for detection of the organophosphate pesticide. Whole cells of Sphingomonas bacteria were immobilized directly onto the surface of the wells of polystyrene microplates (96 wells) using glutaraldehyde as the cross-linker. SEM study confirmed the immobilization of Sphingomonas sp. Immobilized bacterial microplate was associated directly with the optical transducer, microplate reader. The microplate-based biosensor is having advantages as it has 96 reaction vessels and therefore it provides a convenient system for detecting multiple numbers of samples in a single platform. Detection range of the biosensor from the linear range was determined to be 4-80 μM methyl parathion. Cells-immobilized microplates were having reusability upto 75 reactions. Present study reports an innovative concept where the microplate can be used as immobilizing support for development of reusable microbial biocomponent.

  5. High-throughput determination of biochemical oxygen demand (BOD) by a microplate-based biosensor.

    PubMed

    Pang, Hei-Leung; Kwok, Nga-Yan; Chan, Pak-Ho; Yeung, Chi-Hung; Lo, Waihung; Wong, Kwok-Yin

    2007-06-01

    The use of the conventional 5-day biochemical oxygen demand (BOD5) method in BOD determination is greatly hampered by its time-consuming sampling procedure and its technical difficulty in the handling of a large pool of wastewater samples. Thus, it is highly desirable to develop a fast and high-throughput biosensor for BOD measurements. This paper describes the construction of a microplate-based biosensor consisting of an organically modified silica (ORMOSIL) oxygen sensing film for high-throughput determination of BOD in wastewater. The ORMOSIL oxygen sensing film was prepared by reacting tetramethoxysilane with dimethyldimethoxysilane in the presence of the oxygen-sensitive dye tris(4,7-diphenyl-1,10-phenanthroline)ruthenium-(II) chloride. The silica composite formed a homogeneous, crack-free oxygen sensing film on polystyrene microtiter plates with high stability, and the embedded ruthenium dye interacted with the dissolved oxygen in wastewater according to the Stern-Volmer relation. The bacterium Stenotrophomonas maltophilia was loaded into the ORMOSIL/ PVA composite (deposited on the top of the oxygen sensing film) and used to metabolize the organic compounds in wastewater. This BOD biosensor was found to be able to determine the BOD values of wastewater samples within 20 min by monitoring the dissolved oxygen concentrations. Moreover, the BOD values determined by the BOD biosensor were in good agreement with those obtained by the conventional BOD5 method.

  6. Work function engineering of SnO single crystal microplates with thermal annealing.

    PubMed

    Doh, Won Hui; Jeong, Wooseok; Lee, Hyunsoo; Park, Jonghyurk; Park, Jeong Young

    2016-08-19

    We synthesized black SnO single-crystal microplates via a sonochemical process and engineered the work function of the SnO microplates using thermal treatments. The as-synthesized SnO microplates have a wide (001) plane, as is clearly evident from TEM images and diffraction patterns. Surface potential measurements on the SnO microplates show that the work function changes as the annealing temperature increases. The TEM and XAS results after thermal treatments imply that the micro-sized SnO(001) single-crystals are stable up to about 400 °C in air, after which the surface starts to become locally oxidized. Consequently, the long-range ordering and lattice parameter of the SnO(001) single crystals started to change to make polycrystalline SnO2 at about 600 °C. These results demonstrate the ability to tune the work function of the microplates and suggest an intriguing way to engineer the electrical properties of nanostructures.

  7. Work function engineering of SnO single crystal microplates with thermal annealing

    NASA Astrophysics Data System (ADS)

    Doh, Won Hui; Jeong, Wooseok; Lee, Hyunsoo; Park, Jonghyurk; Park, Jeong Young

    2016-08-01

    We synthesized black SnO single-crystal microplates via a sonochemical process and engineered the work function of the SnO microplates using thermal treatments. The as-synthesized SnO microplates have a wide (001) plane, as is clearly evident from TEM images and diffraction patterns. Surface potential measurements on the SnO microplates show that the work function changes as the annealing temperature increases. The TEM and XAS results after thermal treatments imply that the micro-sized SnO(001) single-crystals are stable up to about 400 °C in air, after which the surface starts to become locally oxidized. Consequently, the long-range ordering and lattice parameter of the SnO(001) single crystals started to change to make polycrystalline SnO2 at about 600 °C. These results demonstrate the ability to tune the work function of the microplates and suggest an intriguing way to engineer the electrical properties of nanostructures.

  8. Photonic crystal biosensors towards on-chip integration.

    PubMed

    Threm, Daniela; Nazirizadeh, Yousef; Gerken, Martina

    2012-08-01

    Photonic crystal technology has attracted large interest in the last years. The possibility to generate highly sensitive sensor elements with photonic crystal structures is very promising for medical or environmental applications. The low-cost fabrication on the mass scale is as advantageous as the compactness and reliability of photonic crystal biosensors. The possibility to integrate microfluidic channels together with photonic crystal structures allows for highly compact devices. This article reviews different types of photonic crystal sensors including 1D photonic crystal biosensors, biosensors with photonic crystal slabs, photonic crystal waveguide biosensors and biosensors with photonic crystal microcavities. Their applications in biomolecular and pathogen detection are highlighted. The sensitivities and the detection limits of the different biosensors are compared. The focus is on the possibilities to integrate photonic crystal biosensors on-chip. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics

    PubMed Central

    Wang, Gongming; Li, Dehui; Cheng, Hung-Chieh; Li, Yongjia; Chen, Chih-Yen; Yin, Anxiang; Zhao, Zipeng; Lin, Zhaoyang; Wu, Hao; He, Qiyuan; Ding, Mengning; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2015-01-01

    Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays because of their incompatibility with typical lithography processes. We report the first patterned growth of regular arrays of perovskite microplate crystals for functional electronics and optoelectronics. We show that large arrays of lead iodide microplates can be grown from an aqueous solution through a seeded growth process and can be further intercalated with methylammonium iodide to produce perovskite crystals. Structural and optical characterizations demonstrate that the resulting materials display excellent crystalline quality and optical properties. We further show that perovskite crystals can be selectively grown on prepatterned electrode arrays to create independently addressable photodetector arrays and functional field effect transistors. The ability to grow perovskite microplates and to precisely place them at specific locations offers a new material platform for the fundamental investigation of the electronic and optical properties of perovskite materials and opens a pathway for integrated electronic and optoelectronic systems. PMID:26601297

  10. An optical microplate biosensor for the detection of methyl parathion pesticide using a biohybrid of Sphingomonas sp. cells-silica nanoparticles.

    PubMed

    Mishra, Archana; Kumar, Jitendra; Melo, Jose Savio

    2017-01-15

    The previously developed Sphingomonas sp. based optical microplate biosensor for methyl parathion (MP) was good as it detected multiple samples but had poor stability and low sensitivity. The present study aims to overcome these limitations. Silica nanoparticles (Si NP) were thus functionalized with polyethyleneimine (PEI) and the functionalized silica nanoparticles ((f)Si NP) were then integrated with Sphingomonas sp. cells. The process was optimized for hydrolysis of MP into p-nitrophenol (PNP). Integration of (f)Si NP with cells was confirmed by FT-IR analysis. Biohybrid of Sphingomonas sp.-(f)Si NP was immobilized on the wells of microplate and associated directly with the optical transducer of microplate reader. Immobilized biohybrid of Sphingomonas sp.-(f)Si NP was characterized using SEM. A detection range of 0.1-1ppm MP was achieved from the linear range of calibration plot. After integration with (f)Si NP the storage stability of biohybrid was enhanced ten times from 18 to 180 days. This study proves that after interaction of cells with (f)Si NP, improved the sensitivity and stability of the biosensor. Spiked samples were also analyzed and correlated using this biohybrid based biosensor. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Liquid crystal interfaces: Experiments, simulations and biosensors

    NASA Astrophysics Data System (ADS)

    Popov, Piotr

    Interfacial phenomena are ubiquitous and extremely important in various aspects of biological and industrial processes. For example, many liquid crystal applications start by alignment with a surface. The underlying mechanisms of the molecular organization of liquid crystals at an interface are still under intensive study and continue to be important to the display industry in order to develop better and/or new display technology. My dissertation research has been devoted to studying how complex liquid crystals can be guided to organize at an interface, and to using my findings to develop practical applications. Specifically, I have been working on developing biosensors using liquid-crystal/surfactant/lipid/protein interactions as well as the alignment of low-symmetry liquid crystals for potential new display and optomechanical applications. The biotechnology industry needs better ways of sensing biomaterials and identifying various nanoscale events at biological interfaces and in aqueous solutions. Sensors in which the recognition material is a liquid crystal naturally connects the existing knowledge and experience of the display and biotechnology industries together with surface and soft matter sciences. This dissertation thus mainly focuses on the delicate phenomena that happen at liquid interfaces. In the introduction, I start by defining the interface and discuss its structure and the relevant interfacial forces. I then introduce the general characteristics of biosensors and, in particular, describe the design of biosensors that employ liquid crystal/aqueous solution interfaces. I further describe the basic properties of liquid crystal materials that are relevant for liquid crystal-based biosensing applications. In CHAPTER 2, I describe the simulation methods and experimental techniques used in this dissertation. In CHAPTER 3 and CHAPTER 4, I present my computer simulation work. CHAPTER 3 presents insight of how liquid crystal molecules are aligned by

  12. Porous photonic crystal external cavity laser biosensor

    SciTech Connect

    Huang, Qinglan; Peh, Jessie; Hergenrother, Paul J.; Cunningham, Brian T.

    2016-08-15

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO{sub 2} dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions with much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.

  13. Porous photonic crystal external cavity laser biosensor

    NASA Astrophysics Data System (ADS)

    Huang, Qinglan; Peh, Jessie; Hergenrother, Paul J.; Cunningham, Brian T.

    2016-08-01

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO2 dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions with much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.

  14. Porous photonic crystal external cavity laser biosensor.

    PubMed

    Huang, Qinglan; Peh, Jessie; Hergenrother, Paul J; Cunningham, Brian T

    2016-08-15

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO2 dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions with much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.

  15. Photonic crystal surface waves for optical biosensors.

    PubMed

    Konopsky, Valery N; Alieva, Elena V

    2007-06-15

    We present a new optical biosensor technique based on registration of dual optical s-polarized modes on a photonic crystal surface. The simultaneous registration of two optical surface waves with different evanescent depths from the same surface spot permits the segregation of the volume and the surface contributions from an analyte, while the absence of metal damping permits an increase in the propagation length of the optical surface waves and the sensitivity of the biosensor. Our technique was tested with the binding of biotin molecules to a streptavidin monolayer that has been detected with signal/noise ratio of approximately 15 at 1-s signal accumulation time. The detection limit is approximately 20 fg of the analyte on the probed spot of the surface.

  16. Photonic crystal biosensor based on angular spectrum analysis.

    PubMed

    Hallynck, Elewout; Bienstman, Peter

    2010-08-16

    The need for cost effective and reliable biosensors in e.g. medical applications is an ever growing and everlasting one. Not only do we strive to increase sensitivity and detection limit of such sensors; ease of fabrication or implementation are equally important. In this work, we propose a novel, photonic crystal based biosensor that is able to operate at a single frequency, contrary to resonance based sensors. In a certain frequency range, guided photonic crystal modes can couple to free space modes resulting in a Lorentzian shape in the angular spectrum. This Lorentzian can shift due to refractive index changes and simulations have shown sensitivities of 65 degrees per refractive index unit and more.

  17. Optical biosensors based on photonic crystal surface waves.

    PubMed

    Konopsky, Valery N; Alieva, Elena V

    2009-01-01

    Optical biosensors have played a key role in the selective recognition of target biomolecules and in biomolecular interaction analysis, providing kinetic data about biological binding events in real time without labeling. The advantages of the label-free concept are the elimination of detrimental effects from labels that may interfere with fundamental interaction and the absence of a time-consuming pretreatment. The disadvantages of all label-free techniques--including the most mature one, surface plasmon resonance (SPR) technique, are a deficient sensitivity to a specific signal and undesirable susceptibilities to non-specific signals, e.g., to the volume effect of refraction index variations. These variations arise from temperature fluctuations and drifts and they are the limiting factor for many state-of-the-art optical biosensors. Here we describe a new optical biosensor technique based on the registration of dual optical s-polarized waves on a photonic crystal surface. The simultaneous registration of two different optical modes from the same surface spot permits the segregation of the volume and the surface signals, while the absence of metal damping permits an increase in the propagation length of the optical surface waves and the sensitivity of the biosensor. The technique was tested with the binding of biotin molecules to a streptavidin monolayer that has been detected with a signal/noise ratio of about 15 at 1 s signal accumulation time. The detection limit is about 20 fg of the analyte on the probed spot of the surface.

  18. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals

    SciTech Connect

    Li, Dehui; Wang, Gongming; Cheng, Hung -Chieh; Chen, Chih -Yen; Wu, Hao; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2016-04-21

    Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirm that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Lastly, our findings offer significant fundamental insight on the temperature-and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials.

  19. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals

    NASA Astrophysics Data System (ADS)

    Li, Dehui; Wang, Gongming; Cheng, Hung-Chieh; Chen, Chih-Yen; Wu, Hao; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2016-04-01

    Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirm that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Our findings offer significant fundamental insight on the temperature- and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials.

  20. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals

    PubMed Central

    Li, Dehui; Wang, Gongming; Cheng, Hung-Chieh; Chen, Chih-Yen; Wu, Hao; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2016-01-01

    Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirm that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Our findings offer significant fundamental insight on the temperature- and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials. PMID:27098114

  1. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals

    DOE PAGES

    Li, Dehui; Wang, Gongming; Cheng, Hung -Chieh; ...

    2016-04-21

    Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirmmore » that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Lastly, our findings offer significant fundamental insight on the temperature-and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials.« less

  2. A Nanofluidic Biosensor Based on Nanoreplica Molding Photonic Crystal.

    PubMed

    Peng, Wang; Chen, Youping; Ai, Wu; Zhang, Dailin

    2016-12-01

    A nanofluidic biosensor based on nanoreplica molding photonic crystal (PC) was proposed. UV epoxy PC was fabricated by nanoreplica molding on a master PC wafer. The nanochannels were sealed between the gratings on the PC surface and a taped layer. The resonance wavelength of PC-based nanofluidic biosensor was used for testing the sealing effect. According to the peak wavelength value of the sensor, an initial label-free experiment was realized with R6g as the analyte. When the PC-based biosensor was illuminated by a monochromatic light source with a specific angle, the resonance wavelength of the sensor will match with the light source and amplified the electromagnetic field. The amplified electromagnetic field was used to enhance the fluorescence excitation result. The enhancement effect was used for enhancing fluorescence excitation and emission when matched with the resonance condition. Alexa Fluor 635 was used as the target dye excited by 637-nm laser source on a configured photonic crystal enhanced fluorescence (PCEF) setup, and an initial PCEF enhancement factor was obtained.

  3. A Nanofluidic Biosensor Based on Nanoreplica Molding Photonic Crystal

    NASA Astrophysics Data System (ADS)

    Peng, Wang; Chen, Youping; Ai, Wu; Zhang, Dailin

    2016-09-01

    A nanofluidic biosensor based on nanoreplica molding photonic crystal (PC) was proposed. UV epoxy PC was fabricated by nanoreplica molding on a master PC wafer. The nanochannels were sealed between the gratings on the PC surface and a taped layer. The resonance wavelength of PC-based nanofluidic biosensor was used for testing the sealing effect. According to the peak wavelength value of the sensor, an initial label-free experiment was realized with R6g as the analyte. When the PC-based biosensor was illuminated by a monochromatic light source with a specific angle, the resonance wavelength of the sensor will match with the light source and amplified the electromagnetic field. The amplified electromagnetic field was used to enhance the fluorescence excitation result. The enhancement effect was used for enhancing fluorescence excitation and emission when matched with the resonance condition. Alexa Fluor 635 was used as the target dye excited by 637-nm laser source on a configured photonic crystal enhanced fluorescence (PCEF) setup, and an initial PCEF enhancement factor was obtained.

  4. Optical detection of sepsis markers using liquid crystal based biosensors

    NASA Astrophysics Data System (ADS)

    McCamley, Maureen K.; Artenstein, Andrew W.; Opal, Steven M.; Crawford, Gregory P.

    2007-02-01

    A liquid crystal based biosensor for the detection and diagnosis of sepsis is currently in development. Sepsis, a major clinical syndrome with a significant public health burden in the US due to a large elderly population, is the systemic response of the body to a localized infection and is defined as the combination of pathologic infection and physiological changes. Bacterial infections are responsible for 90% of cases of sepsis in the US. Currently there is no bedside diagnostic available to positively identify sepsis. The basic detection scheme employed in a liquid crystal biosensor contains attributes that would find value in a clinical setting, especially for the early detection of sepsis. Utilizing the unique properties of liquid crystals, such as birefringence, a bedside diagnostic is in development which will optically report the presence of biomolecules. In a septic patient, an endotoxin known as lipopolysaccharide (LPS) is released from the outer membrane of Gram-negative bacteria and can be found in the blood stream. It is hypothesized that this long chained molecule will cause local disruptions to the open surface of a sensor containing aligned liquid crystal. The bulk liquid crystal ampli.es these local changes at the surface due to the presence of the sepsis marker, providing an optical readout through polarizing microscopy images. Liquid crystal sensors consisting of both square and circular grids, 100-200 μm in size, have been fabricated and filled with a common liquid crystal material, 5CB. Homeotropic alignment was confirmed using polarizing microscopy. The grids were then contacted with either saline only (control), or saline with varying concentrations of LPS. Changes in the con.guration of the nematic director of the liquid crystal were observed through the range of concentrations tested (5mg/mL - 1pg/mL) which have been confirmed by a consulting physician as clinically relevant levels.

  5. Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor

    NASA Astrophysics Data System (ADS)

    Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, Abdelhamid A.; El Deeb, Walid S.; Obayya, Salah S. A.

    2016-10-01

    A design of a highly sensitive multichannel biosensor based on photonic crystal fiber is proposed and analyzed. The suggested design has a silver layer as a plasmonic material coated by a gold layer to protect silver oxidation. The reported sensor is based on detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes, which offers the possibility of multichannel/multianalyte sensing. The numerical results are obtained using a finite element method with perfect matched layer boundary conditions. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High-refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained according to the quasi TM and quasi TE modes of the proposed sensor, respectively. Further, the reported design can be used as a self-calibration biosensor within an unknown analyte refractive index ranging from 1.33 to 1.35 with high linearity and high accuracy. Moreover, the suggested biosensor has advantages in terms of compactness and better integration of microfluidics setup, waveguide, and metallic layers into a single structure.

  6. A liquid-crystal-based DNA biosensor for pathogen detection

    PubMed Central

    Khan, Mashooq; Khan, Abdur Rahim; Shin, Jae-Ho; Park, Soo-Young

    2016-01-01

    A liquid-crystal (LC)-filled transmission electron microscopy (TEM) grid cell coated with the cationic surfactant dodecyltrimethylammonium bromide (DTAB), to which a single-stranded deoxyribonucleic acid probe (ssDNAprobe) was adsorbed at the LC/aqueous interface (TEMDTAB/DNA), was applied for the highly specific detection of target DNA molecules. The DTAB-coated E7 (used LC mixture) in the TEM grid (TEMDTAB) exhibited a homeotropic orientation, and changed to a planar orientation upon adsorption of the ssDNAprobe. The TEMDTAB/DNA was then exposed to complementary (target) ssDNA, which resulted in a planar-to-homeotropic configurational change of E7 that could be observed through a polarized optical microscope under crossed polarizers. The optimum adsorption density (2 μM) of ssDNAprobe enabled the detection of ≥0.05 nM complementary ssDNA. This TEMDTAB/DNA biosensor could differentiate complementary ssDNA from mismatched ssDNA as well as double-stranded DNA. It also successfully detected the genomic DNAs of the bacterium Erwinia carotovora and the fungi Rhazictonia solani. Owe to the high specificity, sensitivity, and label-free detection, this biosensor may broaden the applications of LC-based biosensors to pathogen detection. PMID:26940532

  7. A liquid-crystal-based DNA biosensor for pathogen detection

    NASA Astrophysics Data System (ADS)

    Khan, Mashooq; Khan, Abdur Rahim; Shin, Jae-Ho; Park, Soo-Young

    2016-03-01

    A liquid-crystal (LC)-filled transmission electron microscopy (TEM) grid cell coated with the cationic surfactant dodecyltrimethylammonium bromide (DTAB), to which a single-stranded deoxyribonucleic acid probe (ssDNAprobe) was adsorbed at the LC/aqueous interface (TEMDTAB/DNA), was applied for the highly specific detection of target DNA molecules. The DTAB-coated E7 (used LC mixture) in the TEM grid (TEMDTAB) exhibited a homeotropic orientation, and changed to a planar orientation upon adsorption of the ssDNAprobe. The TEMDTAB/DNA was then exposed to complementary (target) ssDNA, which resulted in a planar-to-homeotropic configurational change of E7 that could be observed through a polarized optical microscope under crossed polarizers. The optimum adsorption density (2 μM) of ssDNAprobe enabled the detection of ≥0.05 nM complementary ssDNA. This TEMDTAB/DNA biosensor could differentiate complementary ssDNA from mismatched ssDNA as well as double-stranded DNA. It also successfully detected the genomic DNAs of the bacterium Erwinia carotovora and the fungi Rhazictonia solani. Owe to the high specificity, sensitivity, and label-free detection, this biosensor may broaden the applications of LC-based biosensors to pathogen detection.

  8. Photonic Crystal Biosensor Based on Optical Surface Waves

    PubMed Central

    Konopsky, Valery N.; Karakouz, Tanya; Alieva, Elena V.; Vicario, Chiara; Sekatskii, Sergey K.; Dietler, Giovanni

    2013-01-01

    A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS/PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately. PMID:23429517

  9. Photonic crystal biosensor based on optical surface waves.

    PubMed

    Konopsky, Valery N; Karakouz, Tanya; Alieva, Elena V; Vicario, Chiara; Sekatskii, Sergey K; Dietler, Giovanni

    2013-02-19

    A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately.

  10. Biosensors.

    ERIC Educational Resources Information Center

    Rechnitz, Garry A.

    1988-01-01

    Describes theory and principles behind biosensors that incorporate biological components as part of a sensor or probe. Projects major applications in medicine and veterinary medicine, biotechnology, food and agriculture, environmental studies, and the military. Surveys current use of biosensors. (ML)

  11. Biosensors.

    ERIC Educational Resources Information Center

    Rechnitz, Garry A.

    1988-01-01

    Describes theory and principles behind biosensors that incorporate biological components as part of a sensor or probe. Projects major applications in medicine and veterinary medicine, biotechnology, food and agriculture, environmental studies, and the military. Surveys current use of biosensors. (ML)

  12. Photonic crystal waveguide-based biosensor for detection of diseases

    NASA Astrophysics Data System (ADS)

    Chopra, Harshita; Kaler, Rajinder S.; Painam, Balveer

    2016-07-01

    A biosensor is a device that is used to detect the analytes or molecules of a sample by means of a binding mechanism. A two-dimensional photonic crystal waveguide-based biosensor is designed with a diamond-shaped ring resonator and two waveguides: a bus waveguide and a drop waveguide. The sensing mechanism is based on change in refractive index of the analytes, leading to a shift in the peak resonant wavelength. This mechanism can be used in the field of biomedical treatment where different body fluids such as blood, tears, saliva, or urine can be used as the analyte in which different components of the fluid can be detected. It can also be used to differentiate between the cell lines of a normal and an unhealthy human being. Average value of quality factor for this device comes out to be 1082.2063. For different analytes used, the device exhibits enhanced sensitivity and, hence, it is useful for the detection of diseases.

  13. Novel multichannel surface plasmon resonance photonic crystal fiber biosensor

    NASA Astrophysics Data System (ADS)

    Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, A. A.; El Deeb, Walid S.; Obayya, S. S. A.

    2016-04-01

    In this paper, a novel design of highly sensitive biosensor based on photonic crystal fiber is presented and analyzed using full vectorial finite element method. The suggested design depends on using silver layer as a plasmonic active material coated by a gold layer to protect silver oxidation. The reported sensor is based on the detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes which offers the possibility of multi-channel/multi-analyte sensing. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained for the quasi TM and quasi TE modes, respectively.

  14. Photonic Crystal Biosensor with In-Situ Synthesized DNA Probes for Enhanced Sensitivity

    SciTech Connect

    Hu, Shuren; Zhao, Y.; Retterer, Scott T; Kravchenko, Ivan I; Weiss, Sharon

    2013-01-01

    We report on a nearly 8-fold increase in multi-hole defect photonic crystal biosensor response by incorporating in-situ synthesis of DNA probes, as compared to the conventional functionalization method employing pre-synthesized DNA probe immobilization.

  15. Low-cost and highly efficient DNA biosensor for heavy metal ion using specific DNAzyme-modified microplate and portable glucometer-based detection mode.

    PubMed

    Zhang, Jin; Tang, Ying; Teng, Liumei; Lu, Minghua; Tang, Dianping

    2015-06-15

    A simple and low-cost DNA sensing platform based on Pb(2+)-specific DNAzyme-modified microplate was successfully developed for highly sensitive monitoring of lead ion (Pb(2+), one kind of toxic heavy metal ion) in the environmental samples coupling with a portable personal glucometer (PGM)-based detection mode. The detection cell was first prepared simply by means of immobilizing the DNAzyme on the streptavidin-modified microplate. Gold nanoparticle labeled with single-stranded DNA and invertase (Enz-AuNP-DNA) was utilized as the signal-transduction tag to produce PGM substrate (glucose). Upon addition of lead ion into the microplate, the substrate strand of the immobilized DNAzyme was catalytically cleaved by target Pb(2+), and the newly generated single-strand DNA in the microplate could hybridize again with the single-stranded DNA on the Enz-AuNP-DNA. Accompanying with the Enz-AuNP-DNA, the carried invertase could convert sucrose into glucose. The as-produced glucose could be monitored by using a widely accessible PGM for in situ amplified digital readout. Based on Enz-AuNP-DNA amplification strategy, as low as 1.0 pM Pb(2+) could be detected under the optimal conditions. Moreover, the methodology also showed good reproducibility and high selectivity toward target Pb(2+) against other metal ions because of highly specific Pb(2+)-dependent DNAzyme, and was applicable for monitoring Pb(2+) in the naturally contaminated sewage and spiked drinking water samples.

  16. Liquid crystal based biosensors for bile acid detection

    NASA Astrophysics Data System (ADS)

    He, Sihui; Liang, Wenlang; Tanner, Colleen; Fang, Jiyu; Wu, Shin-Tson

    2013-03-01

    The concentration level of bile acids is a useful indicator for early diagnosis of liver diseases. The prevalent measurement method in detecting bile acids is the chromatography coupled with mass spectrometry, which is precise yet expensive. Here we present a biosensor platform based on liquid crystal (LC) films for the detection of cholic acid (CA). This platform has the advantage of low cost, label-free, solution phase detection and simple analysis. In this platform, LC film of 4-Cyano-4'-pentylbiphenyl (5CB) was hosted by a copper grid supported with a polyimide-coated glass substrate. By immersing into sodium dodecyl sulfate (SDS) solution, the LC film was coated with SDS which induced a homeotropic anchoring of 5CB. Addition of CA introduced competitive adsorption between CA and SDS at the interface, triggering a transition from homeotropic to homogeneous anchoring. The detection limit can be tuned by changing the pH value of the solution from 12uM to 170uM.

  17. Thiol- and Biotin-Labeled Probes for Oligonucleotide Quartz Crystal Microbalance Biosensors of Microalga Alexandrium Minutum

    PubMed Central

    Lazerges, Mathieu; Perrot, Hubert; Rabehagasoa, Niriniony; Compère, Chantal

    2012-01-01

    Two quartz crystal microbalance oligonucleotide biosensors of a toxic microalga gene sequence (Alexandrium Minutum) have been designed. Grafting on a gold surface of 20-base thiol- or biotin-labeled probe, and selective hybridization with the complementary 20-base target, have been monitored in situ with a 27 MHz quartz crystal microbalance under controlled hydrodynamic conditions. The frequency of the set up is stable to within a few hertz, corresponding to the nanogram scale, for three hour experiments. DNA recognition by the two biosensors is efficient and selective. Hybridization kinetic curves indicate that the biosensor designed with the thiol-labeled probe is more sensitive, and that the biosensor designed with the biotin-labeled probe has a shorter time response and a higher hybridization efficiency. PMID:25585927

  18. Thiol- and biotin-labeled probes for oligonucleotide quartz crystal microbalance biosensors of microalga alexandrium minutum.

    PubMed

    Lazerges, Mathieu; Perrot, Hubert; Rabehagasoa, Niriniony; Compère, Chantal

    2012-07-04

    Two quartz crystal microbalance oligonucleotide biosensors of a toxic microalga gene sequence (Alexandrium Minutum) have been designed. Grafting on a gold surface of 20-base thiol- or biotin-labeled probe, and selective hybridization with the complementary 20-base target, have been monitored in situ with a 27 MHz quartz crystal microbalance under controlled hydrodynamic conditions. The frequency of the set up is stable to within a few hertz, corresponding to the nanogram scale, for three hour experiments. DNA recognition by the two biosensors is efficient and selective. Hybridization kinetic curves indicate that the biosensor designed with the thiol-labeled probe is more sensitive, and that the biosensor designed with the biotin-labeled probe has a shorter time response and a higher hybridization efficiency.

  19. Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers.

    PubMed

    Nazirizadeh, Yousef; Bog, Uwe; Sekula, Sylwia; Mappes, Timo; Lemmer, Uli; Gerken, Martina

    2010-08-30

    There is a strong need for low-cost biosensors to enable rapid, on-site analysis of biological, biomedical, or chemical substances. We propose a platform for label-free optical biosensors based on applying the analyte onto a surface-functionalized photonic crystal slab and performing a transmission measurement with two crossed polarization filters. This dark-field approach allows for efficient background suppression as only the photonic crystal guided-mode resonances interacting with the functionalized surface experience significant polarization rotation. We present a compact biosensor demonstrator using a low-cost light emitting diode and a simple photodiode capable of detecting the binding kinetics of a 2.5 nM solution of the protein streptavidin on a biotin-functionalized photonic crystal surface.

  20. Electrochemical Quartz Crystal Nanobalance (EQCN) Based Biosensor for Sensitive Detection of Antibiotic Residues in Milk.

    PubMed

    Bhand, Sunil; Mishra, Geetesh K

    2017-01-01

    An electrochemical quartz crystal nanobalance (EQCN), which provides real-time analysis of dynamic surface events, is a valuable tool for analyzing biomolecular interactions. EQCN biosensors are based on mass-sensitive measurements that can detect small mass changes caused by chemical binding to small piezoelectric crystals. Among the various biosensors, the piezoelectric biosensor is considered one of the most sensitive analytical techniques, capable of detecting antigens at picogram levels. EQCN is an effective monitoring technique for regulation of the antibiotics below the maximum residual limit (MRL). The analysis of antibiotic residues requires high sensitivity, rapidity, reliability and cost effectiveness. For analytical purposes the general approach is to take advantage of the piezoelectric effect by immobilizing a biosensing layer on top of the piezoelectric crystal. The sensing layer usually comprises a biological material such as an antibody, enzymes, or aptamers having high specificity and selectivity for the target molecule to be detected. The biosensing layer is usually functionalized using surface chemistry modifications. When these bio-functionalized quartz crystals are exposed to a particular substance of interest (e.g., a substrate, inhibitor, antigen or protein), binding interaction occurs. This causes a frequency or mass change that can be used to determine the amount of material interacted or bound. EQCN biosensors can easily be automated by using a flow injection analysis (FIA) setup coupled through automated pumps and injection valves. Such FIA-EQCN biosensors have great potential for the detection of different analytes such as antibiotic residues in various matrices such as water, waste water, and milk.

  1. A photonic crystal biosensor assay for ferritin utilizing iron-oxide nanoparticles.

    PubMed

    Peterson, Ross D; Cunningham, Brian T; Andrade, Juan E

    2014-06-15

    Iron deficiency anemia afflicts 1 in 3 individuals, mostly women and children worldwide. A novel application using iron-oxide nanoparticles (IONPs) and a photonic crystal (PC) optical biosensor as an immunodiagnostic platform for detection of serum ferritin, a biomarker for iron deficiency, is presented. Human liver ferritin (450 kDa), clinical serum controls, and three commercially available ferritin ELISA tests were used to evaluate the PC biosensor assay in terms of inter- and intra-assay variability, spike-recovery (%), limit of detection (LOD), and matrix effects on binding. For the PC biosensor, signal response from label-free, sandwich with secondary antibody (pAb), and pAb functionalized with iron-oxide nanoparticles (FpAb) assays were detected using the Biomolecular Interaction Detection (BIND) system. Bland-Altman analysis was used to evaluate agreement between expected values for ferritin in control sera and each of the detection platforms. Inter- and intra-assay variability of the PC biosensor were both <10%. Percent mean recovery (±%RSD) of ferritin from two control sera samples were 94.3% (13.1%) and 96.9% (7.6%). Use of FpAb in PC biosensor resulted in two orders of magnitude increase in sensitivity compared to label-free assay; capable of measuring serum ferritin as low as 26 ng/mL. In comparison to ELISA tests, the PC biosensor assay had the lowest bias (-1.26; 95% CI [-3.0-5.5]) and narrower limit of agreement (-11.6-9.1 ng/mL) when determining ferritin concentrations from control sera. These proof-of-concept studies support the use of IONPs to enhance detection sensitivity of PC biosensors for determination of biomarkers of nutritional status.

  2. Planar Photonic Crystal Biosensor for Quantitative Label-Free Cell Attachment Microscopy

    PubMed Central

    Chen, Weili; Long, Kenneth D.; Kurniawan, Jonas; Hung, Margaret; Yu, Hojeong; Harley, Brendan A.

    2016-01-01

    In this study, a planar-surface photonic crystal (PC) biosensor for quantitative, kinetic, label-free imaging of cell–surface interactions is demonstrated. The planar biosensor surface eliminates external stimuli to the cells caused by substrate topography to more accurately reflect smooth surface environment encountered by many cell types in vitro. Here, a fabrication approach that combines nanoreplica molding and a horizontal dipping process is used to planarize the surface of the PC biosensor. The planar PC biosensor maintains a high detection sensitivity that enables the monitoring of live cell–substrate interactions with spatial resolution sufficient for observing intracellular attachment strength gradients and the extensions of filopodia from the cell body. The evolution of cell morphology during the attachment and spreading process of 3T3 fibroblast cells is compared between planar and grating-structured PC biosensors. The planar surface effectively eliminates the directionally biased cellular attachment behaviors that are observed on the grating-structured surface. This work represents an important step forward in the development of label-free techniques for observing cellular processes without unintended external environmental modulation. PMID:26877910

  3. Active layer identification of photonic crystal waveguide biosensor chip for the detection of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Painam, Balveer; Kaler, Rajinder S.; Kumar, Mukesh

    2016-07-01

    This work represents experimental and simulation analysis of photonic crystal waveguide (PCW)-based biosensor structures, which is used for detection of the Escherichia coli (E. coli) cell. A method is adopted for E. coli culture to measure length, diameter, and refractive index to finalize the structural design and to verify the suitability of PCW as a biosensor. This method is tested using DH5α strains of E. coli. The typical precisions of measurements are varied in ranges from 1.132 to 1.825 μm and from 0.447 to 0.66 μm for pathogen's length and diameter, respectively. The measured distribution of samples over length and diameter are in correlation with the measurements performed by scanning electron microscope. After obtaining average length and diameter of cylindrical shaped E. coli cell, we consider these values for simulation analysis of designed PCW biosensor. E. coli cell is trapped in the middle of the PCW biosensor having three different types of waveguides, i.e., gallium arsenide/silicon dioxide (GaAs/SiO2), silicon/silicon dioxide (Si/SiO2), or silicon nitride/silicon dioxide (Si3N4/SiO2) to observe the maximum resonance shift and sensitivity. It is observed from the simulation data analysis that GaAs/SiO2 is the preferred PCW biosensor for the identification of E. coli.

  4. An immuno-biosensor system based on quartz crystal microbalance for avian influenza virus detection

    NASA Astrophysics Data System (ADS)

    Liu, Shengping; Chen, Guoming; Zhou, Qi; Wei, Yunlong

    2007-12-01

    For the quick detection of Avian Influenza Virus (AIV), a biosensor based on Quartz Crystal Microbalance (QCM) was fabricated according to the specific bonding principle between antibody and antigen. Staphylococcal Protein A (SPA) was extracted from Staphylococcus and purified. Then SPA was coated on the surface of QCM for immobilizing AIV monoclonal antibodies. The use of AIV monoclonal antibody could enhance the specificity of the immuno-biosensor. A multi-channel piezoelectricity detection system for the immuno-biosensor was developed. The system can work for the quick detection of AIV antigen in the case of the entirely aqueous status owe to one special oscillating circuit designed in this work. The optimum conditions of SPA coating and AIV monoclonal antibody immobilization were investigated utilizing the multi-channel detection system. The preliminary application of the immuno-biosensor system for detection of AIV was evaluated. Results indicate that the immuno-biosensor system can detect the AIV antigens with a linear range of 3-200ng/ml. The system can accomplish the detection of AIV antigens around 40 minutes.

  5. Optical biosensor based on liquid crystal droplets for detection of cholic acid

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofang; Luo, Dan; Chen, Rui; Wang, Fei; Sun, Xiaowei; Dai, Haitao

    2016-12-01

    A highly sensitive cholic acid biosensor based on 4-cyano-4‧-penthlbiphenyl (5CB) Liquid crystal droplets in phosphate buffer saline solution was reported. A radial-to-bipolar transition of 5CB droplet would be triggered during competitive reaction of CA at the sodium dodecyl sulfate surfactant-laden 5CB droplet surface. Our liquid crystal droplet sensor is a low-cost, simple and fast method for CA detection. The detection limit (5 μM) of our method is 2.4 times lower than previously report by using liquid crystal film to detection of CA.

  6. Quartz crystal microbalance (QCM) as biosensor for the detecting of Escherichia coli O157:H7

    NASA Astrophysics Data System (ADS)

    Thanh Ngo, Vo Ke; Giang Nguyen, Dang; Phuong Uyen Nguyen, Hoang; Tran, Van Man; Nguyen, Thi Khoa My; Phat Huynh, Trong; Lam, Quang Vinh; Dat Huynh, Thanh; Truong, Thi Ngoc Lien

    2014-12-01

    Although Escherichia coli (E. coli) is a commensalism organism in the intestine of humans and warm-blooded animals, it can be toxic at higher density and causes diseases, especially the highly toxic E. coli O157:H7. In this paper a quartz crystal microbalance (QCM) biosensor was developed for the detection of E. coli O157:H7 bacteria. The anti-E. coli O157:H7 antibodies were immobilized on a self-assembly monolayer (SAM) modified 5 MHz AT-cut quartz crystal resonator. The SAMs were activated with 16-mercaptopropanoic acid, in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and ester N-hydroxysuccinimide (NHS). The result of changing frequency due to the adsorption of E. coli O157:H7 was measured by the QCM biosensor system designed and fabricated by ICDREC-VNUHCM. This system gave good results in the range of 102-107 CFU mL-1 E. coli O157:H7. The time of bacteria E. coli O157:H7 detection in the sample was about 50 m. Besides, QCM biosensor from SAM method was comparable to protein A method-based piezoelectric immunosensor in terms of the amount of immobilized antibodies and detection sensitivity.

  7. Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors.

    PubMed

    Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco

    2012-10-01

    We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit.

  8. Ultrasensitive detection of streptomycin using flow injection analysis-electrochemical quartz crystal nanobalance (FIA-EQCN) biosensor.

    PubMed

    Mishra, Geetesh K; Sharma, Atul; Bhand, Sunil

    2015-05-15

    This work presents the development of an ultrasensitive biosensor for detection of streptomycin residues in milk samples using flow injection analysis-electrochemical quartz crystal nanobalance (FIA-EQCN) technique. Monoclonal antibody specific to streptomycin was immobilized on to the thiol modified gold quartz crystal surface. A broad dynamic range (0.3-300 ng/mL) was obtained for streptomycin with a good linearity in the range 0.3-10 ng/mL for PBS and 0.3-50 ng/mL for milk. The correlation coefficient (R(2)) of the biosensor was found to be 0.994 and 0.997 for PBS and milk respectively. Excellent recoveries were obtained from the streptomycin spiked milk samples in the range 98-99.33%, which shows the applicability of the developed biosensor in milk. The reproducibility of the developed biosensor was found satisfactory with % RSD (n=5) 0.351. A good co-relation was observed between the streptomycin recoveries measured through the developed biosensor and the commercial ELISA kit. The analytical figures of merit of the developed biosensor confirm that the developed FIA-EQCN biosensor could be very effective for low-level detection of streptomycin in milk samples.

  9. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    SciTech Connect

    Yan, Hai Zou, Yi; Yang, Chun-Ju; Chakravarty, Swapnajit; Wang, Zheng; Tang, Naimei; Chen, Ray T.; Fan, Donglei

    2015-03-23

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.

  10. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    NASA Astrophysics Data System (ADS)

    Yan, Hai; Zou, Yi; Chakravarty, Swapnajit; Yang, Chun-Ju; Wang, Zheng; Tang, Naimei; Fan, Donglei; Chen, Ray T.

    2015-03-01

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.

  11. Label-Free Biosensor Imaging on Photonic Crystal Surfaces

    PubMed Central

    Zhuo, Yue; Cunningham, Brian T.

    2015-01-01

    We review the development and application of nanostructured photonic crystal surfaces and a hyperspectral reflectance imaging detection instrument which, when used together, represent a new form of optical microscopy that enables label-free, quantitative, and kinetic monitoring of biomaterial interaction with substrate surfaces. Photonic Crystal Enhanced Microscopy (PCEM) has been used to detect broad classes of materials which include dielectric nanoparticles, metal plasmonic nanoparticles, biomolecular layers, and live cells. Because PCEM does not require cytotoxic stains or photobleachable fluorescent dyes, it is especially useful for monitoring the long-term interactions of cells with extracellular matrix surfaces. PCEM is only sensitive to the attachment of cell components within ~200 nm of the photonic crystal surface, which may correspond to the region of most interest for adhesion processes that involve stem cell differentiation, chemotaxis, and metastasis. PCEM has also demonstrated sufficient sensitivity for sensing nanoparticle contrast agents that are roughly the same size as protein molecules, which may enable applications in “digital” diagnostics with single molecule sensing resolution. We will review PCEM’s development history, operating principles, nanostructure design, and imaging modalities that enable tracking of optical scatterers, emitters, absorbers, and centers of dielectric permittivity. PMID:26343684

  12. Label-Free Biosensor Imaging on Photonic Crystal Surfaces.

    PubMed

    Zhuo, Yue; Cunningham, Brian T

    2015-08-28

    We review the development and application of nanostructured photonic crystal surfaces and a hyperspectral reflectance imaging detection instrument which, when used together, represent a new form of optical microscopy that enables label-free, quantitative, and kinetic monitoring of biomaterial interaction with substrate surfaces. Photonic Crystal Enhanced Microscopy (PCEM) has been used to detect broad classes of materials which include dielectric nanoparticles, metal plasmonic nanoparticles, biomolecular layers, and live cells. Because PCEM does not require cytotoxic stains or photobleachable fluorescent dyes, it is especially useful for monitoring the long-term interactions of cells with extracellular matrix surfaces. PCEM is only sensitive to the attachment of cell components within ~200 nm of the photonic crystal surface, which may correspond to the region of most interest for adhesion processes that involve stem cell differentiation, chemotaxis, and metastasis. PCEM has also demonstrated sufficient sensitivity for sensing nanoparticle contrast agents that are roughly the same size as protein molecules, which may enable applications in "digital" diagnostics with single molecule sensing resolution. We will review PCEM's development history, operating principles, nanostructure design, and imaging modalities that enable tracking of optical scatterers, emitters, absorbers, and centers of dielectric permittivity.

  13. A quartz crystal biosensor for measurement in liquids.

    PubMed

    Kösslinger, C; Drost, S; Aberl, F; Wolf, H; Koch, S; Woias, P

    1992-01-01

    The detection of anti-human immunodeficiency virus (HIV) antibodies by means of synthetic HIV peptide immobilized on a piezoelectric quartz sensor is demonstrated. The measurement set-up consists of an oscillator circuit, a suitably modified AT-cut thickness-shear-mode quartz crystal with gold electrodes, which is housed in a special reaction vessel, and a computer-controlled frequency counter for the registration of the measured frequency values. The quartz crystal is adapted for a steady operation in liquids at a frequency of 20 MHz. In phosphate-buffered saline solution the oscillator reaches a stability of about 0.5 Hz within a few seconds, of about 2 Hz within 10 min and about 30 Hz within 1 h. The frequency shift due to the adsorption of various proteins to the uncoated sensor surface has been investigated. It can be shown that a stable adsorptive binding of proteins to an oscillating gold surface is feasible and can be used for the immobilization of a receptor layer (e.g. HIV peptide). Specific binding of the anti-HIV monoclonal antibody to the HIV peptide immobilized on the quartz sensor is demonstrated. Control experiments show, however, additional unspecific binding. According to the experiments, the Sauerbrey formula gives a sufficiently accurate value for the decrease of the resonant frequency due to adsorption or binding of macromolecular proteins on the quartz crystal surface.

  14. Silicon-based mesoporous photonic crystals: towards single cell optical biosensors

    NASA Astrophysics Data System (ADS)

    Kilian, Kristopher A.; Magenau, Astrid; Böcking, Till; Gaus, Katharina; Gal, Michael; Gooding, J. Justin

    2009-08-01

    Mesoporous silicon (PSi) photonic crystals have attracted interest as biosensing transducers owing to their high quality optics and sensitivity in optical characteristics to changes in refractive index. We describe progress our group has made derivatizing PSi towards devices for biology and medicine. PSi rugate filters display a high reflectivity resonant line in the reflectance spectrum. As an example for biosensing, immobilization of peptides and biopolymers within the PSi is demonstrated for detecting protease enzymes. Secretion of matrix metalloproteases from live cells was detected as a blue shift in the photonic resonance within hours, demonstrating the promise of this biosensor.

  15. Microplates with adaptive surfaces.

    PubMed

    Akbulut, Meshude; Lakshmi, Dhana; Whitcombe, Michael J; Piletska, Elena V; Chianella, Iva; Güven, Olgun; Piletsky, Sergey A

    2011-11-14

    Here we present a new and versatile method for the modification of the well surfaces of polystyrene microtiter plates (microplates) with poly(N-phenylethylene diamine methacrylamide), (poly-NPEDMA). The chemical grafting of poly-NPEDMA to the surface of microplates resulted in the formation of thin layers of a polyaniline derivative bearing pendant methacrylamide double bonds. These were used as the attachment point for various functional polymers through photochemical grafting of various, for example, acrylate and methacrylate, polymers with different functionalities. In a model experiment, we have modified poly-NPEDMA-coated microplates with a small library of polymers containing different functional groups using a two-step approach. In the first step, double bonds were activated by UV irradiation in the presence of N,N-diethyldithiocarbamic acid benzyl ester (iniferter). This enabled grafting of the polymer library in the second step by UV irradiation of solutions of the corresponding monomers in the microplate wells. The uniformity of coatings was confirmed spectrophotometrically, by microscopic imaging and by contact angle measurements (CA). The feasibility of the current technology has been shown by the generation of a small library of polymers grafted to the microplate well surfaces and screening of their affinity to small molecules, such as atrazine, a trio of organic dyes, and a model protein, bovine serum albumin (BSA). The stability of the polymers, reproducibility of measurement, ease of preparation, and cost-effectiveness make this approach suitable for applications in high-throughput screening in the area of materials research.

  16. Design optimization of structural parameters for highly sensitive photonic crystal label-free biosensors.

    PubMed

    Ju, Jonghyun; Han, Yun-ah; Kim, Seok-min

    2013-03-07

    The effects of structural design parameters on the performance of nano-replicated photonic crystal (PC) label-free biosensors were examined by the analysis of simulated reflection spectra of PC structures. The grating pitch, duty, scaled grating height and scaled TiO2 layer thickness were selected as the design factors to optimize the PC structure. The peak wavelength value (PWV), full width at half maximum of the peak, figure of merit for the bulk and surface sensitivities, and surface/bulk sensitivity ratio were also selected as the responses to optimize the PC label-free biosensor performance. A parametric study showed that the grating pitch was the dominant factor for PWV, and that it had low interaction effects with other scaled design factors. Therefore, we can isolate the effect of grating pitch using scaled design factors. For the design of PC-label free biosensor, one should consider that: (1) the PWV can be measured by the reflection peak measurement instruments, (2) the grating pitch and duty can be manufactured using conventional lithography systems, and (3) the optimum design is less sensitive to the grating height and TiO2 layer thickness variations in the fabrication process. In this paper, we suggested a design guide for highly sensitive PC biosensor in which one select the grating pitch and duty based on the limitations of the lithography and measurement system, and conduct a multi objective optimization of the grating height and TiO2 layer thickness for maximizing performance and minimizing the influence of parameter variation. Through multi-objective optimization of a PC structure with a fixed grating height of 550 nm and a duty of 50%, we obtained a surface FOM of 66.18 RIU-1 and an S/B ratio of 34.8%, with a grating height of 117 nm and TiO2 height of 210 nm.

  17. Label-free detection of glycated haemoglobin in human blood using silicon-based photonic crystal nanocavity biosensor

    NASA Astrophysics Data System (ADS)

    Olyaee, Saeed; Seifouri, Mahmood; Mohsenirad, Hamideh

    2016-07-01

    In this paper, we describe a two-dimensional photonic crystal-based biosensor that consists of a waveguide and a nanocavity with high sensitivity. A new method is employed for increasing sensitivity of the biosensor. The simulation results show that biosensor is highly sensitive to the refractive index (RI) variations due to injected biomaterials, like glycated haemoglobin, into the sensing surface. The proposed biosensor is designed for the wavelength range of 1514.4-1896.3 nm. The sensitivity and the quality factor are calculated to be 3000 and 272.43 nm/RIU, respectively. The designed structure can detect a 0.002 change in the RI via resonant wavelength shift of 0.9 nm. The band diagram and transmission spectra are computed using plane wave expansion and finite difference time domain methods.

  18. Quartz crystal microbalance biosensor for rapid detection of aerosolized microorganisms

    NASA Astrophysics Data System (ADS)

    Farka, Zdenĕk.; Kovár, David; Skládal, Petr

    2015-05-01

    Biological warfare agents (BWAs) represent the current menace of the asymmetric war. The early detection of BWAs, especially in the form of bioaerosol, is a challenging task for governments all around the world. Label-free quartz crystal microbalance (QCM) immunosensor and electrochemical immunosensor were developed and tested for rapid detection of BWA surrogate (E. coli) in the form of bioaerosol. Two immobilization strategies for the attachment of antibody were tested; the gold sensor surface was activated by cysteamine and then antibody was covalently linked either using glutaraldehyde, or the reduced antibodies were attached via Sulfo-SMCC. A portable bioaerosol chamber was constructed and used for safe manipulation with aerosolized microorganisms. The dissemination was done using a piezoelectric humidifier, distribution of bioaerosol inside the chamber was ensured using three 12-cm fans. The whole system was controlled remotely using LAN network. The disseminated microbial cells were collected and preconcentrated using the wetted-wall cyclone SASS 2300, the analysis was done using the on-line linked immunosensors. The QCM immunosensor had limit of detection 1×104 CFU·L-1 of air with analysis time 16 min, the whole experiment including dissemination and sensor surface regeneration took 40 min. In case of blank (disseminated sterile buffer), no signal change was observed. The electrochemical immunosensor was able to detect 150 CFU·L-1 of air in 20 min; also in this case, no interferences were observed. Reference measurements were done using particle counter Met One 3400 and by cultivation method on agar plates. The sensors have proved to be applicable for rapid screening of microorganisms in air.

  19. Detection of Myoglobin with an Open-Cavity-Based Label-Free Photonic Crystal Biosensor.

    PubMed

    Zhang, Bailin; Tamez-Vela, Juan Manuel; Solis, Steven; Bustamante, Gilbert; Peterson, Ralph; Rahman, Shafiqur; Morales, Andres; Tang, Liang; Ye, Jing Yong

    2013-01-01

    The label-free detection of one of the cardiac biomarkers, myoglobin, using a photonic-crystal-based biosensor in a total-internal-reflection configuration (PC-TIR) is presented in this paper. The PC-TIR sensor possesses a unique open optical microcavity that allows for several key advantages in biomolecular assays. In contrast to a conventional closed microcavity, the open configuration allows easy functionalization of the sensing surface for rapid biomolecular binding assays. Moreover, the properties of PC structures make it easy to be designed and engineered for operating at any optical wavelength. Through fine design of the photonic crystal structure, biochemical modification of the sensor surface, and integration with a microfluidic system, we have demonstrated that the detection sensitivity of the sensor for myoglobin has reached the clinically significant concentration range, enabling potential usage of this biosensor for diagnosis of acute myocardial infarction. The real-time response of the sensor to the myoglobin binding may potentially provide point-of-care monitoring of patients and treatment effects.

  20. Investigation of prothrombin time in human whole-blood samples with a quartz crystal biosensor.

    PubMed

    Müller, Lothar; Sinn, Stefan; Drechsel, Hartmut; Ziegler, Christiane; Wendel, Hans-Peter; Northoff, Hinnak; Gehring, Frank K

    2010-01-15

    Monitoring of blood coagulation and fibrinolysis is an important issue in treatment of patients with cardiovascular problems and in surgery when blood gets into contact with artificial surfaces. In this work a new method for measuring the coagulation time (prothrombin time, PT) of human whole-blood samples based on a quartz crystal microbalance (QCM) biosensor is presented. The 10 MHz sensors used in this work respond with a frequency shift to changes in viscosity during blood clot formation. For driving and for readout of the quartz, both a network analyzer and an oscillator circuit were utilized. The sensor surfaces were specifically coated with a thin polyethylene layer. We found that both frequency analysis methods are suitable to measure exact prothrombin times in a very good conformity with a mechanical coagulometer as a reference. The anticoagulant effect of heparin on the prothrombin time was exemplarily shown as well as the reverse effect of the heparin antagonist polybrene. The change of the viscoelastic properties during blood coagulation, reflected by the ratio of frequency and dissipation shifts, is discussed for different dilutions of the whole-blood samples. In conclusion, QCM is a distinguished biosensor technique to determine prothrombin time and to monitor heparin therapy in whole-blood samples. Due to the excellent potential of miniaturization and the availability of direct digital signals, the method is predestinated for incorporation and integration into other devices and is thus opening the field of application for inline coagulation diagnostic in extracorporeal blood circuits.

  1. A theophylline quartz crystal microbalance biosensor based on recognition of RNA aptamer and amplification of signal.

    PubMed

    Dong, Zong-Mu; Zhao, Guang-Chao

    2013-04-21

    A quartz crystal microbalance (QCM) biosensor for theophylline was developed by recognition of RNA aptamer and gold nanoparticle amplification technique. Firstly, a designed small single-stranded RNA, RNA1, was immobilized onto the QCM electrode through a thiol linker. Then, the complementary stranded RNA2, which can combine with RNA1 to form a double-stranded RNA with a recognition unit of theophylline, could be self-assembled on the QCM electrode surface through a hybrid reaction in the presence of theophylline. The recognition process could cause a frequency change of QCM to give the signal related to theophylline. When RNA2 was tethered to gold nanoparticles, the signal could be amplified to further enhance the sensitivity of the designed sensor. Under the optimal conditions, the QCM-based biosensor showed excellent sensitivity (limit of detection, 8.2 nM) and specificity with a dissociation constant of Kd = 5.26 × 10(-7) M. The sensor can be used to quantitatively detect theophylline in serum, suggesting that it can be applied in complex biological samples.

  2. Low-concentration mechanical biosensor based on a photonic crystal nanowire array.

    PubMed

    Lu, Yuerui; Peng, Songming; Luo, Dan; Lal, Amit

    2011-12-06

    The challenge for new biosensors is to achieve detection of biomolecules at low concentrations, which is useful for early-stage disease detection. Nanomechanical biosensors are promising in medical diagnostic applications. For nanomechanical biosensing at low concentrations, a sufficient resonator device surface area is necessary for molecules to bind to. Here we present a low-concentration (500 aM sensitivity) DNA sensor, which uses a novel nanomechanical resonator with ordered vertical nanowire arrays on top of a Si/SiO(2) bilayer thin membrane. The high sensitivity is achieved by the strongly enhanced total surface area-to-volume ratio of the resonator (10(8) m(-1)) and the state-of-the-art mass-per-area resolution (1.8×10(-12) kg m(-2)). Moreover, the nanowire array forms a photonic crystal that shows strong light trapping and absorption over broad-band optical wavelengths, enabling high-efficiency broad-band opto-thermo-mechanical remote device actuation and biosensing on a chip. This method represents a mass-based platform technology that can sense molecules at low concentrations.

  3. Tectonic microplates: laying it down on wax

    NASA Astrophysics Data System (ADS)

    Katz, R. R.; Bodenschatz, E.

    2008-12-01

    We present a wax analogue model of sea-floor spreading that produces rotating, growing microplates. Wax microplates are kinematically similar to sea-floor tectonic microplates in terms of spreading rate and growth rate. Furthermore, their spiral pseudofault geometry is quantitatively consistent with Schouten's oceanic microplate model. These results suggest that Schouten's edge-driven microplate model captures the kinematics of tectonic microplate evolution on Earth. We propose a theory for the formation of microplates.

  4. Surface plasmon resonance biosensor based on large size square-lattice photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Bing, Pibin; Li, Zhongyang; Yuan, Sheng; Yao, Jianquan; Lu, Ying

    2016-04-01

    A surface plasmon resonance biosensor based on large size square-lattice photonic crystal fiber has been designed and simulated by finite element method. The square-lattice airholes are first coated with a calcium fluoride layer to provide mode confinement, then a nanoscale gold layer is deposited to excite the plasmon mode, and finally, the sample is infiltrated into the holes. The numerical results reveal that the resonance properties are easily affected by many parameters. The refractive index resolution of corresponding sensor can reach 4.3 × 10-6 RIU when the optimum parameters are set as the radius of curvature of the airhole r = 2 μm, the thickness of the core struts c = 200 nm, the auxiliary dielectric layer s = 1 μm, and the gold film d = 40 nm. In addition, the effective area and nonlinear coefficient are calculated.

  5. Self assembled monolayer based liquid crystal biosensor for free cholesterol detection

    NASA Astrophysics Data System (ADS)

    Tyagi, Mukta; Chandran, Achu; Joshi, Tilak; Prakash, Jai; Agrawal, V. V.; Biradar, A. M.

    2014-04-01

    A unique cholesterol oxidase (ChOx) liquid crystal (LC) biosensor, based on the disruption of orientation in LCs, is developed for cholesterol detection. A self-assembled monolayer (SAM) of Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP) and (3-Aminopropyl)trimethoxy-silane (APTMS) is prepared on a glass plate by adsorption. The enzyme (ChOx) is immobilized on SAM surface for 12 h before utilizing the film for biosensing purpose. LC based biosensing study is conducted on SAM/ChOx/LC (5CB) cells for cholesterol concentrations ranging from 10 mg/dl to 250 mg/dl. The sensing mechanism has been verified through polarizing optical microscopy, scanning electron microscopy, and spectrometric techniques.

  6. Self assembled monolayer based liquid crystal biosensor for free cholesterol detection

    SciTech Connect

    Tyagi, Mukta; Agrawal, V. V.; Chandran, Achu; Joshi, Tilak; Prakash, Jai; Biradar, A. M.

    2014-04-14

    A unique cholesterol oxidase (ChOx) liquid crystal (LC) biosensor, based on the disruption of orientation in LCs, is developed for cholesterol detection. A self-assembled monolayer (SAM) of Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP) and (3-Aminopropyl)trimethoxy-silane (APTMS) is prepared on a glass plate by adsorption. The enzyme (ChOx) is immobilized on SAM surface for 12 h before utilizing the film for biosensing purpose. LC based biosensing study is conducted on SAM/ChOx/LC (5CB) cells for cholesterol concentrations ranging from 10 mg/dl to 250 mg/dl. The sensing mechanism has been verified through polarizing optical microscopy, scanning electron microscopy, and spectrometric techniques.

  7. Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection

    PubMed Central

    Jahns, Sabrina; Bräu, Marion; Meyer, Björn-Ole; Karrock, Torben; Gutekunst, Sören B.; Blohm, Lars; Selhuber-Unkel, Christine; Buhmann, Raymund; Nazirizadeh, Yousef; Gerken, Martina

    2015-01-01

    We present a handheld biosensor system for the label-free and specific multiplexed detection of several biomarkers employing a spectrometer-free imaging measurement system. A photonic crystal surface functionalized with multiple specific ligands forms the optical transducer. The photonic crystal slab is fabricated on a glass substrate by replicating a periodic grating master stamp with a period of 370 nm into a photoresist via nanoimprint lithography and deposition of a 70-nm titanium dioxide layer. Capture molecules are coupled covalently and drop-wise to the photonic crystal surface. With a simple camera and imaging optics the surface-normal transmission is detected. In the transmission spectrum guided-mode resonances are observed that shift due to protein binding. This shift is observed as an intensity change in the green color channel of the camera. Non-functionalized image sections are used for continuous elimination of background drift. In a first experiment we demonstrate the specific and time-resolved detection of 90.0 nm CD40 ligand antibody, 90.0 nM EGF antibody, and 500 nM streptavidin in parallel on one sensor chip. In a second experiment, aptamers with two different spacer lengths are used as receptor. The binding kinetics with association and dissociation of 250 nM thrombin and regeneration of the sensor surface with acidic tris-HCl-buffer (pH 5.0) is presented for two measurement cycles. PMID:26504624

  8. Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection.

    PubMed

    Jahns, Sabrina; Bräu, Marion; Meyer, Björn-Ole; Karrock, Torben; Gutekunst, Sören B; Blohm, Lars; Selhuber-Unkel, Christine; Buhmann, Raymund; Nazirizadeh, Yousef; Gerken, Martina

    2015-10-01

    We present a handheld biosensor system for the label-free and specific multiplexed detection of several biomarkers employing a spectrometer-free imaging measurement system. A photonic crystal surface functionalized with multiple specific ligands forms the optical transducer. The photonic crystal slab is fabricated on a glass substrate by replicating a periodic grating master stamp with a period of 370 nm into a photoresist via nanoimprint lithography and deposition of a 70-nm titanium dioxide layer. Capture molecules are coupled covalently and drop-wise to the photonic crystal surface. With a simple camera and imaging optics the surface-normal transmission is detected. In the transmission spectrum guided-mode resonances are observed that shift due to protein binding. This shift is observed as an intensity change in the green color channel of the camera. Non-functionalized image sections are used for continuous elimination of background drift. In a first experiment we demonstrate the specific and time-resolved detection of 90.0 nm CD40 ligand antibody, 90.0 nM EGF antibody, and 500 nM streptavidin in parallel on one sensor chip. In a second experiment, aptamers with two different spacer lengths are used as receptor. The binding kinetics with association and dissociation of 250 nM thrombin and regeneration of the sensor surface with acidic tris-HCl-buffer (pH 5.0) is presented for two measurement cycles.

  9. Kinetics of Antibody Binding to Membranes of Living Bacteria Measured by a Photonic Crystal-Based Biosensor.

    PubMed

    Rostova, Ekaterina; Ben Adiba, Carine; Dietler, Giovanni; Sekatskii, Sergey K

    2016-10-11

    Optical biosensors based on photonic crystal surface waves (PC SWs) offer a possibility to study binding interactions with living cells, overcoming the limitation of rather small evanescent field penetration depth into a sample medium that is characteristic for typical optical biosensors. Besides this, simultaneous excitation of s- and p-polarized surface waves with different penetration depths is realized here, permitting unambiguous separation of surface and volume contributions to the measured signal. PC-based biosensors do not require a bulk signal correction, compared to widely used surface plasmon resonance-based devices. We developed a chitosan-based protocol of PC chip functionalization for bacterial attachment and performed experiments on antibody binding to living bacteria measured in real time by the PCSW-based biosensor. Data analysis reveals specific binding and gives the value of the dissociation constant for monoclonal antibodies (IgG2b) against bacterial lipopolysaccharides equal to KD = 6.2 ± 3.4 nM. To our knowledge, this is a first demonstration of antibody-binding kinetics to living bacteria by a label-free optical biosensor.

  10. Kinetics of Antibody Binding to Membranes of Living Bacteria Measured by a Photonic Crystal-Based Biosensor

    PubMed Central

    Rostova, Ekaterina; Ben Adiba, Carine; Dietler, Giovanni; Sekatskii, Sergey K.

    2016-01-01

    Optical biosensors based on photonic crystal surface waves (PC SWs) offer a possibility to study binding interactions with living cells, overcoming the limitation of rather small evanescent field penetration depth into a sample medium that is characteristic for typical optical biosensors. Besides this, simultaneous excitation of s- and p-polarized surface waves with different penetration depths is realized here, permitting unambiguous separation of surface and volume contributions to the measured signal. PC-based biosensors do not require a bulk signal correction, compared to widely used surface plasmon resonance-based devices. We developed a chitosan-based protocol of PC chip functionalization for bacterial attachment and performed experiments on antibody binding to living bacteria measured in real time by the PCSW-based biosensor. Data analysis reveals specific binding and gives the value of the dissociation constant for monoclonal antibodies (IgG2b) against bacterial lipopolysaccharides equal to KD = 6.2 ± 3.4 nM. To our knowledge, this is a first demonstration of antibody-binding kinetics to living bacteria by a label-free optical biosensor. PMID:27727183

  11. Detection of Staphylococcus epidermidis by a Quartz Crystal Microbalance Nucleic Acid Biosensor Array Using Au Nanoparticle Signal Amplification

    PubMed Central

    Xia, Han; Wang, Feng; Huang, Qing; Huang, Junfu; Chen, Ming; Wang, Jue; Yao, Chunyan; Chen, Qinghai; Cai, Guoru; Fu, Weiling

    2008-01-01

    Staphylococcus epidermidis is a critical pathogen of nosocomial blood infections, resulting in significant morbidity and mortality. A piezoelectric quartz crystal microbalance (QCM) nucleic acid biosensor array using Au nanoparticle signal amplification was developed to rapidly detect S. epidermidis in clinical samples. The synthesized thiolated probes specific targeting S. epidermidis 16S rRNA gene were immobilized on the surface of QCM nucleic acid biosensor arrays. Hybridization was induced by exposing the immobilized probes to the PCR amplified fragments of S. epidermidis, resulting in a mass change and a consequent frequency shift of the QCM biosensor. To further enhance frequency shift results from above described hybridizations, streptavidin coated Au nanoparticles were conjugated to the PCR amplified fragments. The results showed that the lowest detection limit of current QCM system was 1.3×103 CFU/mL. A linear correlation was found when the concentration of S. epidermidis varied from 1.3×103 to 1.3×107 CFU/mL. In addition, 55 clinical samples were detected with both current QCM biosensor system and conventional clinical microbiological method, and the sensitivity and specificity of current QCM biosensor system were 97.14% and 100%, respectively. In conclusion, the current QCM system is a rapid, low-cost and sensitive method that can be used to identify infection of S. epidermidis in clinical samples. PMID:27873880

  12. Acetylcholinesterase liquid crystal biosensor based on modulated growth of gold nanoparticles for amplified detection of acetylcholine and inhibitor.

    PubMed

    Liao, Shuzhen; Qiao, Yanan; Han, Wenting; Xie, Zhaoxia; Wu, Zhaoyang; Shen, Guoli; Yu, Ruqin

    2012-01-03

    A novel acetylcholinesterase (AChE) liquid crystal (LC) biosensor based on enzymatic growth of gold nanoparticles (Au NPs) has been developed for amplified detection of acetylcholine (ACh) and AChE inhibitor. In this method, AChE mediates the hydrolysis of acetylthiocholine (ATCl) to form thiocholine, and the latter further reduces AuCl(4)(-) to Au NPs without Au nanoseeds. This process, termed biometallization, leads to a great enhancement in the optical signal of the LC biosensor due to the large size of Au NPs, which can greatly disrupt the orientational arrangement of LCs. On the other hand, the hydrolysis of ATCl is inhibited in the presence of ACh or organophosphate pesticides (OPs, a AChE inhibitor), which will decrease the catalytic growth of Au NPs and, as a result, reduce the orientational response of LCs. On the basis of such an inhibition mechanism, the AChE LC biosensor can be used as an effective way to realize the detection of ACh and AChE inhibitors. The results showed that the AChE LC biosensor was highly sensitive to ACh with a detection limit of 15 μmol/L and OPs with a detection limit of 0.3 nmol/L. This study provides a simple and sensitive AChE LC biosensing approach and offers effective signal enhanced strategies for the development of enzyme LC biosensors. © 2011 American Chemical Society

  13. Electroacoustic polymer microchip as an alternative to quartz crystal microbalance for biosensor development.

    PubMed

    Gamby, Jean; Lazerges, Mathieu; Girault, Hubert H; Deslouis, Claude; Gabrielli, Claude; Perrot, Hubert; Tribollet, Bernard

    2008-12-01

    Laser photoablation of poly(ethylene terephthalate) (PET), a flexible dielectric organic polymer, was used to design an acoustic miniaturized DNA biosensor. The microchip device includes a 100-microm-thick PET layer, with two microband electrodes patterned in photoablated microchannels on one side and a depressed photoablated disk decorated by gold sputtered layer on the other side. Upon application of an electric signal between the two electrodes, an electroacoustic resonance phenomenon at approximately 30 MHz was established through the microelectrodes/PET/ gold layer interface. The electroacoustic resonance response was fitted with a series RLC motional arm in parallel with a static Co arm of a Buttlerworth-Van Dyke equivalent circuit: admittance spectra recorded after successive cycles of DNA hybridization on the gold surface showed reproducible changes on R, L, and C parameters. The same hybridizations runs were performed concomitantly on a 27-MHz (9 MHz, third overtone) quartz crystal microbalance in order to validate the PET device developed for bioanalysis applications. The electroacoustic PET device, approximately 100 times smaller than a microbalance quartz crystal, is interesting for the large-scale integration of acoustic sensors in biochips.

  14. Magnetochromatic thin-film microplates.

    PubMed

    He, Le; Janner, Michael; Lu, Qipeng; Wang, Mingsheng; Ma, Hua; Yin, Yadong

    2015-01-07

    A new type of magnetochromatic material is developed based on thin-film interference of microplates self-assembled from super-paramagnetic nanocrystals. Dynamic optical tuning can be achieved through orientational manipulation of free-standing super-paramagnetic thin-film microplates using external magnetic fields.

  15. Evaluation of a novel label-free photonic-crystal biosensor imaging system for the detection of prostate cancer cells

    NASA Astrophysics Data System (ADS)

    DeLuna, Frank; Ding, XiaoFie; Sun, Lu-Zhe; Ye, Jing Yong

    2017-02-01

    Biomarker screening for prostate-specific antigen (PSA) is the current clinical standard for detection of prostate cancer. However this method has shown many limitations, mainly in its specificity, which can lead to a high false positive rate. Thus, there is a growing need in developing a more specific detection system for prostate cancer. Using a Photonic- Crystal-based biosensor in a Total-Internal-Reflection (PC-TIR) configuration, we demonstrate the use of refractive index (RI) to accomplish label-free detection of prostate cancer cells against non-cancerous prostate epithelial cells. The PC-TIR biosensor possesses an open microcavity, which in contrast to traditional closed microcavities, allows for easier access of analyte molecules or cells to interact with its sensing surface. In this study, an imaging system was designed using the PC-TIR biosensor to quantify cell RI as the contrast parameter for prostate cancer detection. Non-cancerous BPH-1 prostate epithelial cells and prostate cancer PC-3 cells were placed on a single biosensor and measured concurrently. Recorded image data was then analyzed through a home-built MatLab program. Results demonstrate that RI is a suitable variable for differentiation between prostate cancer cells and non-cancerous prostate epithelial cells. Our study shows clinical potential in utilizing RI test for the detection of prostate cancer.

  16. Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal

    PubMed Central

    Hsiao, Yu-Cheng; Sung, Yu-Chien; Lee, Mon-Juan; Lee, Wei

    2015-01-01

    Liquid crystal (LC)-based biosensors employ highly sensitive interfaces between the alignment layers and LCs to detect biomolecules and their interactions. Present techniques based on optical texture observation of the homeotropic-to-planar response of nematic LCs are limited by their quantitative reproducibility of results, indicating that both the accuracy and reliability of LC-based detection require further improvements. Here we show that cholesteric LC (CLC) can be used as a novel sensing element in the design of an alternative LC-based biosensing device. The chirality of the vertically anchored (VA) CLC was exploited in the detection of bovine serum albumin (BSA), a protein standard commonly used in protein quantitation. The color appearance and the corresponding transmission spectrum of the cholesteric phase changed with the concentration of BSA, by which a detection limit of 1 fg/ml was observed. The optical response of the VA CLC interface offers a simple and inexpensive platform for highly sensitive and naked-eye color-indicating detection of biomolecules, and, thus, may facilitate the development of point-of-care devices for the detection of disease-related biomarkers. PMID:26713215

  17. High sensitive photonic crystal multiplexed biosensor array using H0 sandwiched cavities

    NASA Astrophysics Data System (ADS)

    Arafa, Safia; Bouchemat, Mohamed; Bouchemat, Touraya; Benmerkhi, Ahlem

    2017-03-01

    We theoretically investigate a high sensitive photonic crystal integrated biosensor array structure which is potentially used for label-free multiplexed sensing. The proposed device consists of an array of three sandwiched H0 cavities patterned above silicon on insulator (SOI) substrate; each cavity has been designed for different cavity spacing and different resonant wavelength. Results obtained by performing finite-difference time-domain (FDTD) simulations, indicate that the response of each detection unit shifts independently in terms of refractive index variations. The optimized design makes possible the combination of sensing as a function of location, as well as a function of time in the same platform. A refractive index sensitivity of 520nm/RIU and a quality factor over 104 are both achieved with an accompanied crosstalk of less than -26 dB. In addition, the device presents an improved detection limit (DL) of 1.24.10-6 RIU and a wide measurement range. These features make the designed device a promising element for performing label-free multiplexed detection in monolithic substrate for medical diagnostics and environmental monitoring.

  18. Label-free detection of cardiac troponin I with a photonic crystal biosensor.

    PubMed

    Zhang, Bailin; Morales, Andres W; Peterson, Ralph; Tang, Liang; Ye, Jing Yong

    2014-08-15

    A biosensor has been developed with a photonic crystal structure used in a total-internal-reflection (PC-TIR) configuration for label-free detection of a cardiac biomarker: Troponin I (cTnI). In contrast to a conventional optical microcavity that has a closed structure with its cavity layer sandwiched between two high-reflection surfaces, the PC-TIR configuration creates a unique open microcavity, which allows its cavity layer (sensing layer) to be easily functionalized and directly exposed to analyte molecules for bioassays. In this study, a PC-TIR sensor has been used for the label-free measurements of cardiac biomarkers by monitoring the changes in the resonant condition of the cavity due to biomolecular binding processes. Antibodies against cTnI are immobilized on the sensor surface for specific detection of cTnI with a wide range of concentrations. Detection limit of cTnI with a concentration as low as 0.1ngmL(-1) has been achieved.

  19. Transparency microplates under impact.

    PubMed

    Lau, Chun Yat; Roslan, Zulhanif; Cheong, Brandon Huey-Ping; Chua, Wei Seong; Liew, Oi Wah; Ng, Tuck Wah

    2014-07-15

    Transparency microplates enable biochemical analysis in resource-limited laboratories. During the process of transfer, the analytes tittered into the wells may undergo spillage from one well to another due to lateral impact. Sidelong impact tests conducted found the absence of non-linear effects (e.g., viscoelastic behavior) but high energy loss. Finite element simulations conducted showed that the rectangular plate holding the transparencies could undergo z-axis deflections when a normal component of the force was present despite constraints being used. High speed camera sequences confirmed this and also showed the asymmetrical z-axis deflection to cause the contact line closer to impact to displace first when the advancing condition was exceeded. Capillary waves were found to travel toward the contact line at the opposite end, where if the advancing contact angle condition was exceeded, also resulted in spreading. The presence of surface scribing was found to limit contact line movement better. With water drops dispensed on scribed transparencies, immunity from momentum change of up to 9.07 kgm/s on impact was possible for volumes of 40 μL. In the case of glycerol drops immunity from momentum change of up to 9.07 kgm/s on impact extended to volumes of 90 μL. The improved immunity of glycerol was attributed to its heightened dampening characteristics and its higher attenuation of capillary waves. Overall, scribed transparency microplates were able to better withstand spillage from accidental impact. Accidental impact was also found not to cause any detrimental effects on the fluorescence properties of enhanced green fluorescent protein samples tested.

  20. Edge-driven microplate kinematics

    USGS Publications Warehouse

    Schouten, Hans; Klitgord, Kim D.; Gallo, David G.

    1993-01-01

    It is known from plate tectonic reconstructions that oceanic microplates undergo rapid rotation about a vertical axis and that the instantaneous rotation axes describing the microplate's motion relative to the bounding major plates are frequently located close to its margins with those plates, close to the tips of propagating rifts. We propose a class of edge-driven block models to illustrate how slip across the microplate margins, block rotation, and propagation of rifting may be related to the relative motion of the plates on either side. An important feature of these edge-driven models is that the instantaneous rotation axes are always located on the margins between block and two bounding plates. According to those models the pseudofaults or traces of disrupted seafloor resulting from the propagation of rifting between microplate and major plates may be used independently to approximately trace the continuous kinematic evolution of the microplate back in time. Pseudofault geometries and matching rotations of the Easter microplate show that for most of its 5 m.y. history, block rotation could be driven by the drag of the Nazca and Pacific plates on the microplate's edges rather than by a shear flow of mantle underneath.

  1. Edge-driven microplate kinematics

    USGS Publications Warehouse

    Schouten, Hans; Klitgord, Kim D.; Gallo, David G.

    1993-01-01

    It is known from plate tectonic reconstructions that oceanic microplates undergo rapid rotation about a vertical axis and that the instantaneous rotation axes describing the microplate's motion relative to the bounding major plates are frequently located close to its margins with those plates, close to the tips of propagating rifts. We propose a class of edge-driven block models to illustrate how slip across the microplate margins, block rotation, and propagation of rifting may be related to the relative motion of the plates on either side. An important feature of these edge-driven models is that the instantaneous rotation axes are always located on the margins between block and two bounding plates. According to those models the pseudofaults or traces of disrupted seafloor resulting from the propagation of rifting between microplate and major plates may be used independently to approximately trace the continuous kinematic evolution of the microplate back in time. Pseudofault geometries and matching rotations of the Easter microplate show that for most of its 5 m.y. history, block rotation could be driven by the drag of the Nazca and Pacific plates on the microplate's edges rather than by a shear flow of mantle underneath.

  2. Label-free liquid crystal biosensor for L-histidine: A DNAzyme-based platform for small molecule assay.

    PubMed

    Liao, Shuzhen; Ding, Huazhi; Wu, Yan; Wu, Zhaoyang; Shen, Guoli; Yu, Ruqin

    2016-05-15

    We have developed a novel DNAzyme-based liquid crystal (LC) biosensor with high sensitivity for L-histidine, which is based on L-histidine-mediated formation of DNA duplexes by cleaving DNAzyme using L-histidine, resulting in a remarkable optical signal. Firstly, an optimal amount of capture probe is bound to the glass slide, which changes the surface topology as little as possible and shows a zero-background for the sensing system. When the DNAzyme molecule is cleaved by the target, L-histidine, a partial substrate strand is produced, which in turn can hybridize with the capture probe, forming a DNA duplex. The DNA duplexes induce LC molecules to undergo a homeotropic-to-tiled transition, obtaining a remarkable optical signal. The results show that the DNAzyme-based LC biosensor is highly sensitive to L-histidine with a detection limit of 50 nM. Compared with previously reported multi-step amplified methods, this newly designed assay system for L-histidine has no amplified procedures with comparable sensitivity. This method is an unprecedented example of DNAzyme-based LC biosensor for small molecules, which has potential to offer a DNAzyme-based LC model used in various targets.

  3. A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index.

    PubMed

    Konopsky, Valery N; Alieva, Elena V

    2010-01-15

    A high-precision optical biosensor technique capable of independently determining the refractive index (RI) of liquids is presented. Photonic crystal surface waves were used to detect surface binding events, while an independent registration of the critical angle was used for accurate determination of the liquid RI. This technique was tested using binding of biotin molecules to a streptavidin monolayer at low and high biotin concentrations. The attained baseline noise is 5x10(-13) m/Hz(1/2) for adlayer thickness changes and 9x10(-8) RIU/Hz(1/2) for RI changes. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Photonic Crystal Surfaces as a General Purpose Platform for Label-Free and Fluorescent Assays.

    PubMed

    Cunningham, Brian T

    2010-04-01

    Photonic crystal surfaces can be designed to provide a wide range of functions that are used to perform biochemical and cell-based assays. Detection of the optical resonant reflections from photonic crystal surfaces enables high sensitivity label-free biosensing, while the enhanced electromagnetic fields that occur at resonant wavelengths can be used to enhance the detection sensitivity of any surface-based fluorescence assay. Fabrication of photonic crystals from inexpensive plastic materials over large surface areas enables them to be incorporated into standard formats that include microplates, microarrays, and microfluidic channels. This report reviews the design of photonic crystal biosensors, their associated detection instrumentation, and biological applications. Applications including small molecule high throughput screening, cell membrane integrin activation, gene expression analysis, and protein biomarker detection are highlighted. Recent results in which photonic crystal surfaces are used for enhancing the detection of Surface-Enhanced Raman Spectroscopy, and the development of high resolution photonic crystal-based laser biosensors are also described.

  5. Development of optical biosensor based on photonic crystal made of TiO2 using liquid phase deposition

    NASA Astrophysics Data System (ADS)

    Aono, Keigo; Aki, Shoma; Sueyoshi, Kenji; Hisamoto, Hideaki; Endo, Tatsuro

    2016-08-01

    We fabricated a titanium dioxide (TiO2)-based photonic crystal (PhC) using liquid phase deposition (LPD) to develop highly sensitive optical biosensors. The optical characteristics of the PhCs in the visible region were sensitive to the change in the refractive index of the surrounding medium due to an antigen-antibody reaction; thus, applications using the optical biosensor are expected to be highly sensitive. However, a base material with a high refractive index is indispensable for the fabrication of the PhC. Here, TiO2, which has optical transparency in the visible region, was selected as the high refractive index base material. The present LPD method allowed fabrication using low-cost apparatus. Furthermore, the mild conditions of the LPD method led to formation of TiO2-based PhC with fewer crack structures. Finally, the anti-neuron-specific enolase antibody was immobilized onto the TiO2-based PhC surface, and 1-1000 ng/mL of the neuron-specific enolase antigen was successfully detected.

  6. Glucose biosensor based on GOx/HRP bienzyme at liquid-crystal/aqueous interface.

    PubMed

    Khan, Mashooq; Park, Soo-Young

    2015-11-01

    Glucose oxidase (GOx) and horseradish peroxidase (HRP) were co-immobilized to the polyacrylicacid block of a poly(acrylicacid-b-4-cyanobiphenyl-4'-undecylacrylate) (PAA-b-LCP) copolymer in water. PAA-b-LCP was strongly anchored by the LCP block in 4-cyano-4'-pentylbiphenyl (5CB) which was contained in a transmission electron microscope (TEM) grid for glucose detection. The optimal conditions for the performance of the TEM grid glucose biosensor were studied in terms of the activity and stability of the immobilized enzymes. Glucose in water was detected by the 5CB changing from a planar to a homeotropic orientation, as observed through a polarized optical microscope. The TEM biosensor detected glucose concentrations at ⩾0.02 mM, with an optimal GOx/HRP molar ratio of 3/1. This glucose biosensor has characteristics of enzyme sensitivity and stability, reusability, the ease and selective glucose detection which may provide a new way of detecting glucose.

  7. Development of a Mass Sensitive Quartz Crystal Microbalance (QCM)-Based DNA Biosensor Using a 50 MHz Electronic Oscillator Circuit

    PubMed Central

    García-Martinez, Gonzalo; Bustabad, Enrique Alonso; Perrot, Hubert; Gabrielli, Claude; Bucur, Bogdan; Lazerges, Mathieu; Rose, Daniel; Rodriguez-Pardo, Loreto; Fariña, Jose; Compère, Chantal; Vives, Antonio Arnau

    2011-01-01

    This work deals with the design of a high sensitivity DNA sequence detector using a 50 MHz quartz crystal microbalance (QCM) electronic oscillator circuit. The oscillator circuitry is based on Miller topology, which is able to work in damping media. Calibration and experimental study of frequency noise are carried out, finding that the designed sensor has a resolution of 7.1 ng/cm2 in dynamic conditions (with circulation of liquid). Then the oscillator is proved as DNA biosensor. Results show that the system is able to detect the presence of complementary target DNAs in a solution with high selectivity and sensitivity. DNA target concentrations higher of 50 ng/mL can be detected. PMID:22164037

  8. A biosensor of high-density lipoprotein of human serum on a liquid crystal and polymer composite film

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Chang, Kai-Han; Chu, Wei-Lin; Tsou, Yu-Shih; Wu, Li-Ching; Li, Chien-Feng

    2013-10-01

    A biosensor for the concentration of high-density lipoprotein (HDL) in human serum on a liquid crystal and polymer composite film (LCPCF) is demonstrated. The sensing mechanism is based on a polar-polar interaction between orientation of LC directors and HDL in human serum. The concentration of polar HDL in human serum affects the orientations of LC directors at the interface between LCPCF and the human serum. In addition, the surface free energy of LCPCF changes with the applied voltage due to the electrically tunable orientations of LC directors anchored among the polymer grains of LCPCF. As a result, the droplet motion of human serum on LCPCF under applied voltages can sense the concentration of HDL in human serum.

  9. Development of a mass sensitive quartz crystal microbalance (QCM)-based DNA biosensor using a 50 MHz electronic oscillator circuit.

    PubMed

    García-Martinez, Gonzalo; Bustabad, Enrique Alonso; Perrot, Hubert; Gabrielli, Claude; Bucur, Bogdan; Lazerges, Mathieu; Rose, Daniel; Rodriguez-Pardo, Loreto; Fariña, Jose; Compère, Chantal; Vives, Antonio Arnau

    2011-01-01

    This work deals with the design of a high sensitivity DNA sequence detector using a 50 MHz quartz crystal microbalance (QCM) electronic oscillator circuit. The oscillator circuitry is based on Miller topology, which is able to work in damping media. Calibration and experimental study of frequency noise are carried out, finding that the designed sensor has a resolution of 7.1 ng/cm(2) in dynamic conditions (with circulation of liquid). Then the oscillator is proved as DNA biosensor. Results show that the system is able to detect the presence of complementary target DNAs in a solution with high selectivity and sensitivity. DNA target concentrations higher of 50 ng/mL can be detected.

  10. Evaluation of nucleic acid duplex formation on gold over layers in biosensor fabricated using Czochralski-grown single-crystal silicon substrate.

    PubMed

    Gopinath, Subash C B; Kumaresan, Ramanujam; Awazu, Koichi; Fujimaki, Makoto; Mizuhata, Minoru; Tominaga, Junji; Kumar, Penmetcha K R

    2010-09-01

    With a view to developing an economical and elegant biosensor chip, we compared the efficiencies of biosensors that use gold-coated single-crystal silicon and amorphous glass substrates. The reflectivity of light over a wide range of wavelengths was higher from gold layer coated single-crystal silicon substrates than from glass substrates. Furthermore, the efficiency of reflection from gold layers of two different thicknesses was examined. The thicker gold layer (100 nm) on the single-crystal silicon showed a higher reflectivity than the thinner gold film (10 nm). The formation of a nucleic acid duplex and aptamer-ligand interactions were evaluated on these gold layers, and a crystalline silicon substrate coated with the 100-nm-thick gold layer is proposed as an alternative substrate for studies of interactions of biomolecules.

  11. ELISPOT assay on membrane microplates.

    PubMed

    Kalyuzhny, Alexander E

    2009-01-01

    Membranes used for western blotting can be also used for ELISPOT, an enzyme-linked immunospot assay, which allows determining frequencies of cytokine-secreting immune system cells. In addition to their high antibody-retaining capacity PVDF and NC membranes provide good support to immune system cells cultured in vitro and do not affect their physiology. ELISPOT assays utilizing membrane-backed microplates are used in many areas of research including vaccine development, HIV research, cancer and infection disease research, autoimmune disease, and allergy research.ELISPOT utilizes the same antibody "sandwich" technique as enzyme-linked immunosorbent assay, but unlike the latter ELISPOT belongs to state-of-the-art techniques when outcome of the assay depends on skills and accuracy of the operator, a thorough selection of matched pairs of capture and detection antibodies, and using appropriate staining reagents. This review covers basics of ELISPOT assay including its immunochemical design, selection of reagents and membrane microplates, and some troubleshooting recommendations.

  12. A semistatic microplate-based phytotoxicity test

    SciTech Connect

    Radetski, C.M.; Ferard, J.F. . Centre des Sciences de l'Environnement); Blaise, C. )

    1995-02-01

    A novel phytotoxicity test is described herein that employs a microplate equipped with membrane-bottomed wells. This MultiScreen[trademark] (Millipore Corp., Bedford, MA) microplate allows performance of a semistatic algal test, in which test medium is renewed periodically. With such a design, the algal test becomes comparable to other short-term tests used to evaluate chronic toxicity of chemicals and effluents. The EC50s obtained for Cu[sup 2+], Cd[sup 2+], Cr[sup 6+], atrazine, and one leachate sample (municipal sludge incinerator residue) with static and semistatic algal microplate tests were compared in this study. The semistatic microplate test revealed greater sensitivity than did the static microplate test.

  13. Protein crystallization and biosensor applications of hydrogel-based molecularly imprinted polymers.

    PubMed

    Reddy, Subrayal M; Phan, Quan T; El-Sharif, Hazim; Govada, Lata; Stevenson, Derek; Chayen, Naomi E

    2012-12-10

    We have characterized the imprinting capability of a family of acrylamide polymer-based molecularly imprinted polymers (MIPs) for bovine hemoglobin (BHb) and trypsin (Tryp) using spectrophotometric and quartz crystal microbalance (QCM) sensor techniques. Bulk gel characterization on acrylamide (AA), N-hydroxymethylacrylamide (NHMA), and N-isopropylacrylamide (NiPAM) gave varied selectivities when compared with nonimprinted polymers. We have also harnessed the ability of the MIPs to facilitate protein crystallization as a means of evaluating their selectivity for cognate and noncognate proteins. Crystallization trials indicated improved crystal formation in the order NiPAMcrystallization studies validated the hydrophilic efficacy of MIPS indicated in the QCM studies.

  14. Seismicity of the Adriatic microplate

    USGS Publications Warehouse

    Console, R.; Di, Giovambattista R.; Favali, P.; Presgrave, B.W.; Smriglio, G.

    1993-01-01

    The Adriatic microplate was previously considered to be a unique block, tectonically active only along its margins. The seismic sequences that took place in the basin from 1986 to 1990 give new information about the geodynamics of this area. Three subsets of well recorded events were relocated by the joint hypocentre determination technique. On the whole, this seismic activity was concentrated in a belt crossing the southern Adriatic sea around latitude 42??, in connection with regional E-W fault systems. Some features of this seismicity, similar to those observed in other well known active margins of the Adriatic plate, support a model of a southern Adriatic lithospheric block, detached from the Northern one. Other geophysical information provides evidence of a transitional zone at the same latitude. ?? 1993.

  15. Using the angle-dependent resonances of molded plasmonic crystals to improve the sensitivities of biosensors.

    PubMed

    Gao, Hanwei; Yang, Jiun-Chan; Lin, Julia Y; Stuparu, Andreea D; Lee, Min Hyung; Mrksich, Milan; Odom, Teri W

    2010-07-14

    This paper describes how angle-dependent resonances from molded plasmonic crystals can be used to improve real-time biosensing. First, an inexpensive and massively parallel approach to create single-use, two-dimensional metal nanopyramidal gratings was developed. Second, although constant in bulk dielectric environments, the sensitivities (resonance wavelength shift and resonance width) of plasmonic crystals to adsorbed molecular layers of varying thickness were found to depend on incident excitation angle. Third, protein binding at dilute concentrations of protein was carried out at an angle that optimized the signal to noise of our plasmonic sensing platform. This angle-dependent sensitivity, which is intrinsic to grating-based sensors, is a critical parameter that can assist in maximizing signal to noise.

  16. Wireless-electrodeless quartz-crystal-microbalance biosensors for studying interactions among biomolecules: A review

    PubMed Central

    OGI, Hirotsugu

    2013-01-01

    The mass sensitivity of quartz-crystal microbalance (QCM) was drastically improved by removing electrodes and wires attached on the quartz surfaces. Instead of wire connections, intended vibrations of quartz oscillators were excited and detected by antennas through electromagnetic waves. This noncontacting measurement is the key for ultrahigh-sensitive detection of proteins in liquids as well as quantitative measurements. This review shows the principle of wireless QCMs, their applications to studying interactions among biomolecules and aggregation reactions of amyloid β peptides, and the next-generation MEMS QCM, the resonance acoustic microbalance with naked embedded quartz (RAMNE-Q). PMID:24213205

  17. The evaluation of loop-mediated isothermal amplification-quartz crystal microbalance (LAMP-QCM) biosensor as a real-time measurement of HPV16 DNA.

    PubMed

    Jearanaikoon, Patcharee; Prakrankamanant, Preeda; Leelayuwat, Chanvit; Wanram, Surasak; Limpaiboon, Temduang; Promptmas, Chamras

    2016-03-01

    We have previously developed quartz crystal microbalance biosensor integrated with loop-mediated isothermal amplification (LAMP-QCM) for human papillomavirus (HPV) type58 DNA detection. Infection with HPV, particularly HPV16, remains a serious health problem due to its major risk factor contributing to cervical cancer. In the present study, LAMP-QCM biosensor was evaluated in terms of a quantitative assay for copy number of HPV16 DNA in cervical samples compared to quantitative PCR using TaqMan assay (TaqMan-qPCR). The detection limit of LAMP-QCM was found to be 10 fold more sensitive than TaqMan-qPCR with 100% specificity and 7.6% imprecision. Different plot of HPV16 DNA copy number using Bland-Altman analysis revealed 94% correlation between LAMP-QCM and qPCR. We therefore concluded that the developed LAMP-QCM biosensor provides a possible rapid and sensitive assay for HPV16 DNA quantification in a routine laboratory.

  18. Photonic crystal based biosensor for the detection of glucose concentration in urine

    NASA Astrophysics Data System (ADS)

    Robinson, Savarimuthu; Dhanlaksmi, Nagaraj

    2017-03-01

    Photonic sensing technology is a new and accurate measurement technology for bio-sensing applications. In this paper, a two-dimensional photonic crystal ring resonator based sensor is proposed and designed to detect the glucose concentration in urine over the range of 0 gm/dl-15 gm/dl. The proposed sensor is consisted of two inverted "L" waveguides and a ring resonator. If the glucose concentration in urine is varied, the refractive index of the urine is varied, which in turn the output response of sensor will be varied. By having the aforementioned principle, the glucose concentration in urine, glucose concentration in blood, albumin, urea, and bilirubin concentration in urine are predicted. The size of the proposed sensor is about 11.4 µm×11.4 µm, and the sensor can predict the result very accurately without any delay, hence, this attempt could be implemented for medical applications.

  19. Photonic crystal based biosensor for the detection of glucose concentration in urine

    NASA Astrophysics Data System (ADS)

    Robinson, Savarimuthu; Dhanlaksmi, Nagaraj

    2016-10-01

    Photonic sensing technology is a new and accurate measurement technology for bio-sensing applications. In this paper, a two-dimensional photonic crystal ring resonator based sensor is proposed and designed to detect the glucose concentration in urine over the range of 0 gm/dl-15 gm/dl. The proposed sensor is consisted of two inverted "L" waveguides and a ring resonator. If the glucose concentration in urine is varied, the refractive index of the urine is varied, which in turn the output response of sensor will be varied. By having the aforementioned principle, the glucose concentration in urine, glucose concentration in blood, albumin, urea, and bilirubin concentration in urine are predicted. The size of the proposed sensor is about 11.4 µm×11.4 µm, and the sensor can predict the result very accurately without any delay, hence, this attempt could be implemented for medical applications.

  20. Optical biosensors.

    PubMed

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  1. Optical biosensors

    PubMed Central

    Damborský, Pavel; Švitel, Juraj

    2016-01-01

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. PMID:27365039

  2. Enhanced sandwich immunoassay using antibody-functionalized magnetic iron-oxide nanoparticles for extraction and detection of soluble transferrin receptor on a photonic crystal biosensor.

    PubMed

    Peterson, Ross D; Chen, Weili; Cunningham, Brian T; Andrade, Juan E

    2015-12-15

    Iron deficiency anemia (IDA) has detrimental effects on individuals and societies worldwide. A standard sandwich assay (SA) for the detection of soluble transferrin receptor (sTfR), a biomarker of IDA, on a photonic crystal (PC) biosensor was established, but it was susceptible to non-specific signals from complex matrixes. In this study, iron-oxide nanoparticles (fAb-IONs) were used as magnetic immuno-probes to bind sTfR and minimize non-specific signals, while enhancing detection on the PC biosensor. This inverse sandwich assay (IA) method completely bound sTfR with low variability (<4% RSD) in buffer and allowed for its accurate and precise detection in sera (Liquichek™ control sera) on the PC biosensor using two certified ELISAs as reference methods. A linear dose-response curve was elicited at the fAb-IONs concentration in which the theoretical binding ratio (sTfR:fAb-IONs) was calculated to be <1 on the IA. The LoDs for sTfR in the SA and IA were similar (P>0.05) at 14 and 21 μg/mL, respectively. The inherent imprecision of the IA and reference ELISAs was σ(δ)=0.45 µg/mL and the mean biases for Liquichek™ 1, 2 and 3 were 0.18, 0.19 and -0.04 µg/mL, respectively. Whereas the inherent imprecision of the SA and reference ELISAs was σ(δ)=0.52 µg/mL and the biases for Liquichek™ 1, 2 and 3 were 0.66, 0.14 and -0.67 µg/mL, respectively. Thus, unlike the SA, the IA method measures sTfR with the same bias as the reference ELISAs. Combined magnetic separation and detection of nutrition biomarkers on PC biosensors represents a facile method for their accurate and reliable quantification in complex matrixes.

  3. Utilizing a high fundamental frequency quartz crystal resonator as a biosensor in a digital microfluidic platform

    PubMed Central

    Lederer, Thomas; Stehrer, Brigitte P.; Bauer, Siegfried; Jakoby, Bernhard; Hilber, Wolfgang

    2011-01-01

    We demonstrate the operation of a digital microfluidic lab-on-a-chip system utilizing Electro Wetting on Dielectrics (EWOD) as the actuation principle and a High Fundamental Frequency (HFF; 50 MHz) quartz crystal microbalance (QCM) resonator as a mass-sensitive sensor. In a first experiment we have tested the reversible formation of a phosphor-lipid monolayer of phospholipid vesicles out of an aqueous buffer suspension onto a bio-functionalized integrated QCM sensor. A binding of bio-molecules results in an altered mass load of the resonant sensor and a shift of the resonance frequency can be measured. In the second part of the experiment, the formation of a protein multilayer composed of the biomolecule streptavidin and biotinylated immunoglobulin G was monitored. Additionally, the macroscopic contact angle was optically measured in order to verify the bio-specific binding and to test the implications onto the balance of the surface tensions. Using these sample applications, we were able to demonstrate and to verify the feasibility of integrating a mass-sensitive QCM sensor into a digital microfluidic chip. PMID:22241942

  4. Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection.

    PubMed

    Mannelli, Ilaria; Minunni, Maria; Tombelli, Sara; Mascini, Marco

    2003-03-01

    A DNA piezoelectric sensor has been developed for the detection of genetically modified organisms (GMOs). Single stranded DNA (ssDNA) probes were immobilised on the sensor surface of a quartz crystal microbalance (QCM) device and the hybridisation between the immobilised probe and the target complementary sequence in solution was monitored. The probe sequences were internal to the sequence of the 35S promoter (P) and Nos terminator (T), which are inserted sequences in the genome of GMOs regulating the transgene expression. Two different probe immobilisation procedures were applied: (a) a thiol-dextran procedure and (b) a thiol-derivatised probe and blocking thiol procedure. The system has been optimised using synthetic oligonucleotides, which were then applied to samples of plasmidic and genomic DNA isolated from the pBI121 plasmid, certified reference materials (CRM), and real samples amplified by the polymerase chain reaction (PCR). The analytical parameters of the sensor have been investigated (sensitivity, reproducibility, lifetime etc.). The results obtained showed that both immobilisation procedures enabled sensitive and specific detection of GMOs, providing a useful tool for screening analysis in food samples.

  5. Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor.

    PubMed

    He, Zonghu; Tian, Fei; Zhu, Yinian; Lavlinskaia, Nina; Du, Henry

    2011-08-15

    Using long-period gratings (LPG) inscribed in photonic crystal fiber (PCF) and coupling this structure with an optically aligned flow cell, we have developed an optofluidic refractive index transduction platform for label-free biosensing. The LPG-PCF scheme possesses extremely high sensitivity to the change in refractive index induced by localized binding event in different solution media. A model immunoassay experiment was carried out inside the air channels of PCF by a series of surface modification steps in sequence that include adsorption of poly(allylamine hydrochloride) monolayer, immobilization of anti-rat bone sialoprotein monoclonal primary antibody, and binding interactions with non-specific goat anti-rabbit IgG (H+L) and specific secondary goat anti-mouse IgG (H+L) antibodies. These adsorption and binding events were monitored in situ using the LPG-PCF by measuring the shift of the core-to-cladding mode coupling resonance wavelength. Steady and significant resonance changes, about 0.75 nm per nanometer-thick adsorbed/bound bio-molecules, have been observed following the sequence of the surface events with monolayer sensitivity, suggesting the promising potential of LPG-PCF for biological sensing and evaluation.

  6. Enhancement of Enzymatic Colorimetric Response by Silver Island Films on High Throughput Screening Microplates

    PubMed Central

    Abel, Biebele; Clement, Travis C.; Aslan, Kadir

    2014-01-01

    In this study, we report the use of an enzyme-based hybrid platform, which is comprised of silver island films, enzymes (HRP and AP) and high-throughput screening (HTS) microplates, to enhance the colorimetric response of enzymatic reactions. The hybrid platform was designed in a two-step process: (i) deposition of SIFs onto HTS microplates with low, medium, and high loading (refers to the extent of the surface plasmon resonance peak of SIFs at 460 nm) using Tollen’s reaction scheme; and (ii) attachment of b-BSA or BEA as linkers for the immobilization of enzymes. The presence of SIFs within the wells of the HTS microplates was confirmed using an optical spectrophotometer and real-color photography. Control experiments, where SIFs were omitted from the surfaces were carried out to confirm the effect of SIFs on the enzymatic colorimetric response. Significant colorimetric signal enhancement was observed for HRP or AP on SIFs (high loading) deposited HTS microplates using b-BSA (up to ~ 3-fold for AP and ~6-fold HRP) or BEA (up to ~ 7-fold for both HRP and AP), as compared to our control samples. The observed increase in colorimetric response can be attributed to the nature of BEA, which exposes surface-bound enzymes to the substrate present in bulk more efficiently than b-BSA. This study proves that SIFs can serve as a valuable tool to improve the signal output of existing bioassays carried out in HTS microplates, which can be applicable to the field biosensors and plasmonics. PMID:24950456

  7. Immobilization of bovine serum albumin as a sensitive biosensor for the detection of trace lead ion in solution by piezoelectric quartz crystal impedance.

    PubMed

    Yin, Jian; Wei, Wanzhi; Liu, Xiaoying; Kong, Bo; Wu, Ling; Gong, Shuguo

    2007-01-01

    A biosensor based on bovine serum albumin (BSA) for the detection of lead (Pb(2+)) ion was developed and characterized. BSA was immobilized onto a colloidal Au-modified piezoelectric quartz crystal (PQC) as a biosensor for the detection of Pb(2+) ion by piezoelectric quartz crystal impedance (PQCI). Calibration curves for the quantification of Pb(2+) ion showed excellent linearity throughout the concentration range from 1.0 x 10(-7) to 3.0 x 10(-9)mol/L. The interaction between the Pb(2+) ions and the sensor chip is influenced significantly by the pH of the reaction buffer, and the optimal pH for the experiment was 5.4. Under the optimal conditions, the detection limit of 1.0 x 10(-9)mol/L for Pb(2+) was obtained. Kinetic parameters of the Pb(2+)-BSA interactions were also determined by using this chip. The sensor chip could be regenerated for use by dipping in the ethylenediaminetetraacetic acid (EDTA) solution for approximately 2h, and the chip was used to detect Pb(2+) ion for eight times without obvious signal attenuation.

  8. Multiplexed specific label-free detection of NCI-H358 lung cancer cell line lysates with silicon based photonic crystal microcavity biosensors.

    PubMed

    Chakravarty, Swapnajit; Lai, Wei-Cheng; Zou, Yi; Drabkin, Harry A; Gemmill, Robert M; Simon, George R; Chin, Steve H; Chen, Ray T

    2013-05-15

    We experimentally demonstrate label-free photonic crystal (PC) microcavity biosensors in silicon-on-insulator (SOI) to detect the epithelial-mesenchymal transition (EMT) transcription factor, ZEB1, in minute volumes of sample. Multiplexed specific detection of ZEB1 in lysates from NCI-H358 lung cancer cells down to an estimated concentration of 2 cells per micro-liter is demonstrated. L13 photonic crystal microcavities, coupled to W1 photonic crystal waveguides, are employed in which resonances show high Q in the bio-ambient phosphate buffered saline (PBS). When the sensor surface is derivatized with a specific antibody, the binding of the corresponding antigen from a complex whole-cell lysate generates a change in refractive index in the vicinity of the photonic crystal microcavity, leading to a change in the resonance wavelength of the resonance modes of the photonic crystal microcavity. The shift in the resonance wavelength reveals the presence of the antigen. The sensor cavity has a surface area of ∼11μm(2). Multiplexed sensors permit simultaneous detection of many binding interactions with specific immobilized antibodies from the same bio-sample at the same instant of time. Specificity was demonstrated using a sandwich assay which further amplifies the detection sensitivity at low concentrations. The device represents a proof-of-concept demonstration of label-free, high throughput, multiplexed detection of cancer cells with specificity and sensitivity on a silicon chip platform.

  9. Multiplexed Specific Label-Free Detection of NCI-H358 Lung Cancer Cell Line Lysates with Silicon Based Photonic Crystal Microcavity Biosensors

    PubMed Central

    Chakravarty, Swapnajit; Lai, Wei-Cheng; Zou, Yi; Drabkin, Harry A.; Gemmill, Robert M.; Simon, George R.; Chin, Steve H.; Chen, Ray T.

    2012-01-01

    We experimentally demonstrate label-free photonic crystal (PC) microcavity biosensors in silicon-on-insulator (SOI) to detect the epithelial-mesenchymal transition (EMT) transcription factor, ZEB1, in minute volumes of sample. Multiplexed specific detection of ZEB1 in lysates from NCI-H358 lung cancer cells down to an estimated concentration of 2 cells per micro-liter is demonstrated. L13 photonic crystal microcavities, coupled to W1 photonic crystal waveguides, are employed in which resonances show high Q in the bio-ambient phosphate buffered saline (PBS). When the sensor surface is derivatized with a specific antibody, the binding of the corresponding antigen from a complex whole-cell lysate generates a change in refractive index in the vicinity of the photonic crystal microcavity, leading to a change in the resonance wavelength of the resonance modes of the photonic crystal microcavity. The shift in the resonance wavelength reveals the presence of the antigen. The sensor cavity has a surface area of ~11 μm2. Multiplexed sensors permit simultaneous detection of many binding interactions with specific immobilized antibodies from the same bio-sample at the same instant of time. Specificity was demonstrated using a sandwich assay which further amplifies the detection sensitivity at low concentrations. The device represents a proof-of-concept demonstration of label-free, high throughput, multiplexed detection of cancer cells with specificity and sensitivity on a silicon chip platform. PMID:23274197

  10. Biosensors for hepatitis B virus detection

    PubMed Central

    Yao, Chun-Yan; Fu, Wei-Ling

    2014-01-01

    A biosensor is an analytical device used for the detection of analytes, which combines a biological component with a physicochemical detector. Recently, an increasing number of biosensors have been used in clinical research, for example, the blood glucose biosensor. This review focuses on the current state of biosensor research with respect to efficient, specific and rapid detection of hepatitis B virus (HBV). The biosensors developed based on different techniques, including optical methods (e.g., surface plasmon resonance), acoustic wave technologies (e.g., quartz crystal microbalance), electrochemistry (amperometry, voltammetry and impedance) and novel nanotechnology, are also discussed. PMID:25253948

  11. Highly sensitive and selective detection of Pb2+ ions using a novel and simple DNAzyme-based quartz crystal microbalance with dissipation biosensor.

    PubMed

    Teh, Hui Boon; Li, Haiyan; Yau Li, Sam Fong

    2014-10-21

    A novel, label-free DNAzyme-based quartz crystal microbalance with dissipation monitoring (QCM-D) biosensor was developed for the highly sensitive and specific detection of Pb(2+) ions. To enhance the performance of the sensor, oligonucleotide-functionalized gold nanoparticles were used for both frequency and dissipation amplification. This sensor was developed by immobilizing Pb(2+)-specific DNAzymes onto the QCM-D sensor surface and allowing them to hybridize with substrate-functionalized AuNPs. The DNAzyme catalyzed the cleavage of the substrate in the presence of Pb(2+) ions, causing the cleaved substrate-functionalized AuNPs to be removed from the sensor surface. Thus, Pb(2+) ions can be determined on-line by monitoring the change in frequency and dissipation signals. The results revealed that the sensor showed a sensitive response to Pb(2+) ions with detection limits of 14 nM and 20 nM for frequency and dissipation, respectively. This QCM-D biosensor also exhibited excellent selectivity toward Pb(2+) ions in the presence of other divalent metal ions. In addition, the approach was able to detect Pb(2+) in tap water, demonstrating its great potential for monitoring drinking water quality. The proposed sensor system described here represents a new class of lead ion sensor. Its simple detection strategy makes it feasible for 'pollution-free' detection; thus, the approach could have applications in on-line water quality monitoring.

  12. Computer-assisted photometric microplate analysis.

    PubMed

    Hörer, O L; Pop, D A

    1987-01-01

    The main algorithm of computer-assisted absorption and emission photometry of samples on a microplate is presented. The software can be used for the enzyme immunoassay (EIA) and other virological tests. The performances of an SPF-500 (Aminco) spectrofluorometer/Felix M18 microcomputer system are discussed on the ground of some results obtained by using the implemented programs.

  13. An aptamer-based quartz crystal microbalance biosensor for sensitive and selective detection of leukemia cells using silver-enhanced gold nanoparticle label.

    PubMed

    Shan, Wenqian; Pan, Yuliang; Fang, Heting; Guo, Manli; Nie, Zhou; Huang, Yan; Yao, Shouzhuo

    2014-08-01

    An aptamer-based quartz crystal microbalance (QCM) biosensor was developed for the selective and sensitive detection of leukemia cells. In this strategy, aminophenylboronic acid-modified gold nanoparticles (APBA-AuNPs) which could bind to cell membrane were used for the labeling of cells followed by silver enhancement, through which significant signal amplification was achieved. Both the QCM and fluorescence microscopy results manifested the selectivity of the sensor designed. A good linear relationship between the frequency response and cell concentration over the range of 2×10(3)-1×10(5)cells/mL was obtained, with a detection limit of 1160cells/mL. This approach provides a simple, rapid, and economical method for leukemia cell analysis which might have great potential for further use. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Versatile wetting measurement of microplate wells

    NASA Astrophysics Data System (ADS)

    Ng, Enoch Ming Wei; Cheong, Brandon Huey-Ping; Yu, Yang; Liew, Oi Wah; Ng, Tuck Wah

    2016-11-01

    A method to measure the contact angle, which is indicative of wetting, using small liquid volumes dispensed directly on microplate wells is described and demonstrated. Experiments with enhanced green protein samples of volumes 4.4-6 μl showed no measured variance in the contact angle. Experiments with phosphate buffer solution with varied concentrations of a non-ionic detergent (Tween 20) dissolved, however, revealed smaller contact angles with increased detergent concentration. It is experimentally shown that drops can be located up to 7° from the lowest position of the well without affecting the accuracy of contact angle measurements. Numerical simulations confirm the ability of the drops to manifest the correct contact angle despite the lack of axis-symmetry in their shape while residing on a circular surface. This method offers a convenient means to determine the wetting characteristics of different liquid samples in different microplates.

  15. Blueprint of quartz crystal microbalance biosensor for early detection of breast cancer through salivary autoantibodies against ATP6AP1.

    PubMed

    Arif, Sania; Qudsia, Syeda; Urooj, Samina; Chaudry, Nazia; Arshad, Aneeqa; Andleeb, Saadia

    2015-03-15

    Breast cancer represents a significant health problem because of its high prevalence. Tests like mammography, which are used abundantly for the detection of breast cancer, suffer from serious limitations. Mammography correctly detects malignancy about 80-90% of the times, failing in places when (1) the tumor is small at early stage, (2) breast tissue is dense or (3) in women of less than 40 years. Serum-based detection of biomarkers involves risk of disease transfer, along with other concerns. These techniques compromise in the early detection of breast cancer. Early detection of breast cancer is a crucial factor to enhance the survival rate of patient. Development of regular screening tests for early diagnosis of breast cancer is a challenge. This review highlights the design of a handy and household biosensor device aimed for self-screening and early diagnosis of breast cancer. The design makes use of salivary autoantibodies for specificity to develop a noninvasive procedure, breast cancer specific biomarkers for precision for the development of device, and biosensor technology for sensitivity to screen the early cases of breast cancer more efficiently.

  16. Critical assessment of the Quartz Crystal Microbalance with Dissipation as an analytical tool for biosensor development and fundamental studies: Metallophthalocyanine-glucose oxidase biocomposite sensors.

    PubMed

    Fogel, R; Mashazi, P; Nyokong, T; Limson, J

    2007-08-30

    One of the challenges in electrochemical biosensor design is gaining a fundamental knowledge of the processes underlying immobilisation of the molecules onto the electrode surface. This is of particular importance in biocomposite sensors where concerns have arisen as to the nature of the interaction between the biological and synthetic molecules immobilised. We examined the use of the Quartz Crystal Microbalance with Dissipation (QCM-D) as a tool for fundamental analyses of a model sensor constructed by the immobilisation of cobalt(II) phthalocyanine (TCACoPc) and glucose oxidase (GOx) onto a gold-quartz electrode (electrode surface) for the enhanced detection of glucose. The model sensor was constructed in aqueous phase and covalently linked the gold surface to the TCACoPc, and the TCACoPc to the GOx, using the QCM-D. The aqueous metallophthalocyanine (MPc) formed a multi-layer over the surface of the electrode, which could be removed to leave a monolayer with a mass loading that compared favourably to the theoretical value expected. Analysis of frequency and dissipation plots indicated covalent attachment of glucose oxidase onto the metallophthalocyanine layer. The amount of GOx bound using the model system compared favourably to calculations derived from the maximal amperometric functioning of the electrochemical sensor (examined in previously-published literature, Mashazi, P.N., Ozoemena, K.I., Nyokong, T., 2006. Electrochim. Acta 52, 177-186), but not to theoretical values derived from dimensions of GOx as established by crystallography. The strength of the binding of the GOx film with the TCACoPc layer was tested by using 2% SDS as a denaturant/surfactant, and the GOx film was not found to be significantly affected by exposure to this. This paper thus showed that QCM-D can be used in order to model essential processes and interactions that dictate the functional parameters of a biosensor.

  17. Photonic Crystal Surfaces as a General Purpose Platform for Label-Free and Fluorescent Assays

    PubMed Central

    Cunningham, Brian T.

    2009-01-01

    Photonic crystal surfaces can be designed to provide a wide range of functions that are used to perform biochemical and cell-based assays. Detection of the optical resonant reflections from photonic crystal surfaces enables high sensitivity label-free biosensing, while the enhanced electromagnetic fields that occur at resonant wavelengths can be used to enhance the detection sensitivity of any surface-based fluorescence assay. Fabrication of photonic crystals from inexpensive plastic materials over large surface areas enables them to be incorporated into standard formats that include microplates, microarrays, and microfluidic channels. This report reviews the design of photonic crystal biosensors, their associated detection instrumentation, and biological applications. Applications including small molecule high throughput screening, cell membrane integrin activation, gene expression analysis, and protein biomarker detection are highlighted. Recent results in which photonic crystal surfaces are used for enhancing the detection of Surface-Enhanced Raman Spectroscopy, and the development of high resolution photonic crystal-based laser biosensors are also described. PMID:20383277

  18. Helium isotope ratios in Easter microplate basalts

    NASA Astrophysics Data System (ADS)

    Poreda, R. J.; Schilling, J. G.; Craig, H.

    1993-09-01

    He-3/He-4 ratios in Easter Microplate basalt glasses show clear evidence of the effects of a mantle plume. The East Rift of the microplate between 26 and 28 deg S, identified by La/Sm, Sr and Pb isotopes and ridge crest elevation as the region of maximum plume influence, has He-3/He-4 ratios spanning the entire range from 7.5 to 11.7 R(sub A). The Easter Microplate is the only section of the entire East Pacific Rise that is associated with a known `hotspot' track (mantle plume) and has elevated He-3/He-4 ratios. Although most of the West Rift basalts contain MORB helium (8.0 - 8.7 (R sub A)), the basalt closest to the East Rift has an elevated He-3/He-4 ratio (11.3 R(sub A)), consistent with a significant plume component. The diversity in isotopic signatures also indicates that homogenization of isotopic anomalies does not occur, even in this region of `super-fast' spreading. The overall He-3/He-4-Pb-206/Pb-204 and He-3/He-4-Sr-87/Sr-86 trends have positive correlations, although the high between the He and Sr isotope distribution is modeled in the context of a plume source-migrating ridge sink. During channeling of the plume toward the ridge, helium if preferentially lost from the center of the channeled plume, resulting in lower He/Pb and He/Sr concentration ratios in the high He-3/He-4 component. Mixing trajectories in He-Sr isotopic space between a LILE depleted asthenosphere and a variably degassed plume component provide a reasonably good fit to the data and may explain the isotope systematics of plume-ridge interactions in the context of modern theories of plume dynamics.

  19. Plasmonic Biosensors

    PubMed Central

    Hill, Ryan T.

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The “gold standard” film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming LSPR-based and plasmonically coupled sensor technology. PMID:25377594

  20. Cantilever biosensors.

    PubMed

    Fritz, Jürgen

    2008-07-01

    This review will provide a general introduction to the field of cantilever biosensors by discussing the basic principles and the basic technical background necessary to understand and evaluate this class of sensors. Microfabricated cantilever sensors respond to changes in their environment or changes on their surface with a mechanical bending in the order of nanometers which can easily be detected. They are able to detect pH and temperature changes, the formation of self-assembled monolayers, DNA hybridization, antibody-antigen interactions, or the adsorption of bacteria. The review will focus on the surface stress mode of microfabricated cantilever arrays and their application as biosensors in molecular life science. A general background on biosensors, an overview of the different modes of operation of cantilever sensors and some details on sensor functionalization will be given. Finally, key experiments and current theoretical efforts to describe the surface stress mode of cantilever sensors will be discussed.

  1. A living cell quartz crystal microbalance biosensor for continuous monitoring of cytotoxic responses of macrophages to single-walled carbon nanotubes

    PubMed Central

    2011-01-01

    Background Numerous engineered nanomaterials (ENMs) exist and new ENMs are being developed. A challenge to nanotoxicology and environmental health and safety is evaluating toxicity of ENMs before they become widely utilized. Cellular assays remain the predominant test platform yet these methods are limited by using discrete time endpoints and reliance on organic dyes, vulnerable to interference from ENMs. Label-free, continuous, rapid response systems with biologically meaningful endpoints are needed. We have developed a device to detect and monitor in real time responses of living cells to ENMs. The device, a living cell quartz crystal microbalance biosensor (QCMB), uses macrophages adherent to a quartz crystal. The communal response of macrophages to treatments is monitored continuously as changes in crystal oscillation frequency (Δf). We report the ability of this QCMB to distinguish benign from toxic exposures and reveal unique kinetic information about cellular responses to varying doses of single-walled carbon nanotubes (SWCNTs). Results We analyzed macrophage responses to additions of Zymosan A, polystyrene beads (PBs) (benign substances) or SWCNT (3-150 μg/ml) in the QCMB over 18 hrs. In parallel, toxicity was monitored over 24/48 hrs using conventional viability assays and histological stains to detect apoptosis. In the QCMB, a stable unchanging oscillation frequency occurred when cells alone, Zymosan A alone, PBs alone or SWCNTs without cells at the highest dose alone were used. With living cells in the QCMB, when Zymosan A, PBs or SWCNTs were added, a significant decrease in frequency occurred from 1-6 hrs. For SWCNTs, this Δf was dose-dependent. From 6-18 hrs, benign substances or low dose SWCNT (3-30 μg/ml) treatments showed a reversal of the decrease of oscillation frequency, returning to or exceeding pre-treatment levels. Cell recovery was confirmed in conventional assays. The lag time to see the Δf reversal in QCMB plots was linearly SWCNT

  2. India-Eurasia collision triggers formation of an oceanic microplate

    NASA Astrophysics Data System (ADS)

    Matthews, Kara; Müller, Dietmar; Sandwell, David

    2016-04-01

    Detailed mapping of seafloor tectonic fabric in the Indian Ocean, using high-resolution satellite-derived vertical gravity gradient data, reveals an extinct Pacific-style oceanic microplate - the Mammerickx Microplate - west of the Ninetyeast Ridge. It is one of the first Pacific-style microplates to be mapped outside the Pacific basin, suggesting that geophysical conditions during formation probably resembled those that have dominated at eastern Pacific ridges. The microplate formed at the Indian-Antarctic ridge and is bordered by an extinct ridge in the north and pseudofault in the south, whose conjugate is located north of the Kerguelen Plateau. Independent microplate rotation is indicated by asymmetric pseudofaults and rotated abyssal hill fabric, also identified in multibeam data. Magnetic anomaly picks and age estimates calculated from published spreading rates suggest formation during chron 21o (~47.3 Ma). Plate reorganizations can trigger ridge propagation and microplate development, and we propose that formation of the Mammerickx Microplate is linked with the initial 'soft' stage of the India-Eurasia collision. The collision altered the stress regime at the Indian-Antarctic ridge, leading to a change in segmentation and ridge propagation from an establishing transform fault. Fast Indian-Antarctic spreading that preceded microplate formation, and Kerguelen Plume activity may have facilitated ridge propagation via the production of thin and weak lithosphere. However, both factors had been present for tens of millions of years and are therefore unlikely to have triggered the event. Prior to the collision, this combination of fast spreading and plume activity was responsible for the production of a wide region of undulate seafloor to the north of the extinct ridge and 'W' shaped lineations that record back and forth ridge propagation. Microplate formation provides a means of dating the onset of the India-Eurasia collision, and is completely independent of and

  3. Comparison of a Resonant Mirror Biosensor (IAsys) and a Quartz Crystal Microbalance (QCM) for the Study on Interaction between Paeoniae Radix 801 and Endothelin-1

    PubMed Central

    Huang, Jiadong; Lin, Qing; Yu, Jinghua; Ge, Shenguang; Li, Jing; Yu, Min; Zhao, Zixia; Wang, Xinsheng; Zhang, Xiuming; He, Xiaorui; Yuan, Liang; Yin, Huijun; Osa, Tetsuo; Chen, Keji; Chen, Qiang

    2008-01-01

    A resonant mirror biosensor, IAsys, and a quartz crystal microbalance (QCM) are known independently as surface sensitive analytical devices capable of label-free and in situ bioassays. In this study, an IAsys and a QCM are employed for a new study on the action mechanism of Paeoniae Radix 801 (P. radix 801) by detecting the specific interaction between P. radix 801 and endothelin-1 (ET-1). In the experiments, ET-1 was immobilized on the surfaces of the IAsys cuvette and the QCM substrate by surface modification techniques, and then P. radix 801 solution was contacted to the cuvette and the substrate, separately. Then, the binding and interaction process between P. radix 801 and ET-1 was monitored by IAsys and QCM, respectively. The experimental results showed that P. radix 801 binds ET-1 specifically. The IAsys and QCM response curves to the ET-1 immobilization and P. radix 801 binding are similar in reaction process, but different in binding profiles, reflecting different resonation principles. Although both IAsys and QCM could detect the interaction of P. radix 801 and ET-1 with high reproducibility and reliability through optimization of the ET-1 coating, the reproducibility and reliability obtained by IAsys are better than those obtained by QCM, since the QCM frequency is more sensitive to temperature fluctuations, atmospheric changes and mechanical disturbances. However, IAsys and QCM are generally potent and reliable tools to study the interaction of P. radix 801 and ET-1, and can conclusively be applied to the action mechanism of P. radix 801. PMID:27873988

  4. 3D photonic crystal-based biosensor functionalized with quantum dot-based aptamer for thrombine detection

    NASA Astrophysics Data System (ADS)

    Lim, Chae Young; Choi, Eunpyo; Park, Youngkyu; Park, Jungyul

    2013-05-01

    In this paper, we propose a new technique for protein detection by using the enhancement of intensity in quantum dots (Qdot) whose emission is guided by 3D photonic crystal (PC) structures. For easy to use, we design the emitted light from the sensor can be recovered, when the chemical antibody (aptamer) conjugated with guard DNA (g-DNA) labeled with a quencher (Black FQ) hybridizes with the target proteins. In detail, we synthesis a Qdot-aptamer complex and then immobilize these complex on the PC surfaces. Next, we perform the hybridization of the Qdot-aptamer complex with g-DNA labeled with the quencher. It induces the quenching effect of fluoresce intensity in the Qdot-aptamer. In presence of target protein (thrombin), the Qdot-aptamer complex prefers to form the thrombin-aptamer complex: this results in the release of Black FQ-g-DNA and the quenched light intensity recovers into the original high intensity with Qdot. The intensity recovery varies quantitatively according to the level of the target protein concentration. This proposed sensor shows much higher detection sensitivity than the general fluorescent detection mechanism, which is functionalized on the flat surfaces because of the light guiding effect from 3D photonic crystal structures.

  5. Mitochondrial biosensors.

    PubMed

    De Michele, Roberto; Carimi, Francesco; Frommer, Wolf B

    2014-03-01

    Biosensors offer an innovative tool for measuring the dynamics of a wide range of metabolites in living organisms. Biosensors are genetically encoded, and thus can be specifically targeted to specific compartments of organelles by fusion to proteins or targeting sequences. Mitochondria are central to eukaryotic cell metabolism and present a complex structure with multiple compartments. Over the past decade, genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of mitochondrial physiology. To date, sensors for ATP, NADH, pH, hydrogen peroxide, superoxide anion, redox state, cAMP, calcium and zinc have been used in the matrix, intermembrane space and in the outer membrane region of mitochondria of animal and plant cells. This review summarizes the different types of sensors employed in mitochondria and their main limits and advantages, and it provides an outlook for the future application of biosensor technology in studying mitochondrial biology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Revision of Microplitis species from China with description of a new species.

    PubMed

    Zhang, Wangzhen; Song, Dongbao; Chen, Jiahua

    2017-02-09

    Microplitis bicoloratus Chen 2004 is a synonym of Microplitis prodeniae Rao & Kurian 1950, and is also the junior homonym of Microplitis bicoloratus Xu & He 2003. A new species, Microplitis fujianica sp. nov. is described and illustrated. The new species is compared with its related species from the Oriental region.

  7. Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors

    SciTech Connect

    Chakravarty, Swapnajit Hosseini, Amir; Xu, Xiaochuan; Zhu, Liang; Zou, Yi; Chen, Ray T.

    2014-05-12

    We analyze the contributions of quality factor, fill fraction, and group index of chip-integrated resonance microcavity devices, to the detection limit for bulk chemical sensing and the minimum detectable biomolecule concentration in biosensing. We analyze the contributions from analyte absorbance, as well as from temperature and spectral noise. Slow light in two-dimensional photonic crystals provide opportunities for significant reduction of the detection limit below 1 × 10{sup −7} RIU (refractive index unit) which can enable highly sensitive sensors in diverse application areas. We demonstrate experimentally detected concentration of 1 fM (67 fg/ml) for the binding between biotin and avidin, the lowest reported till date.

  8. Biosensor of endotoxin and sepsis

    NASA Astrophysics Data System (ADS)

    Shao, Yang; Wang, Xiang; Wu, Xi; Gao, Wei; He, Qing-hua; Cai, Shaoxi

    2001-09-01

    To investigate the relation between biosensor of endotoxin and endotoxin of plasma in sepsis. Method: biosensor of endotoxin was designed with technology of quartz crystal microbalance bioaffinity sensor ligand of endotoxin were immobilized by protein A conjugate. When a sample soliton of plasma containing endotoxin 0.01, 0.03, 0.06, 0.1, 0.5, 1.0Eu, treated with perchloric acid and injected into slot of quartz crystal surface respectively, the ligand was released from the surface of quartz crystal to form a more stable complex with endotoxin in solution. The endotoxin concentration corresponded to the weight change on the crystal surface, and caused change of frequency that occurred when desorbed. The result was biosensor of endotoxin might detect endotoxin of plasma in sepsis, measurements range between 0.05Eu and 0.5Eu in the stop flow mode, measurement range between 0.1Eu and 1Eu in the flow mode. The sensor of endotoxin could detect the endotoxin of plasm rapidly, and use for detection sepsis in clinically.

  9. A novel dendritic surfactant for enhanced microcystin-LR detection by double amplification in a quartz crystal microbalance biosensor.

    PubMed

    Xia, Yuetong; Zhang, Jianping; Jiang, Long

    2011-08-01

    Enhanced sensitivity for the hepatotoxin microcystin-LR (MC-LR) was achieved in a quartz crystal microbalance (QCM) system via double amplification. For primary amplification, an innovative interface on the QCM was obtained as a matrix by the vesicle layer formed by our synthetic dendritic surfactant, bis (amidoethyl-carbamoylethyl) octadecylamine (C18N3). The vesicle matrix was then functionalised by an optimised concentration of monoclonal antibodies against MC-LR (anti-MC-LR) to detect the analyte. The results showed that a detection limit of 100 ng/mL was achieved by primary amplification. To achieve higher sensitivity, secondary amplification was implemented with anti-MC-LR gold nanoparticle (AuNPs) conjugates as probes, which lowered the detection limit for MC-LR to 1 ng/mL (the maximum concentration recommended by the World Health Organization [WHO] in drinking water for humans). The QCM immunosensor reported here has advantages such as high sensitivity, portability, simplicity, and cost-effectiveness for MC-LR detection. It would be uniquely superior compared with current MC-LR detection techniques for on-the-spot water detection. Furthermore, the methodology described here is also potentially significant in many fields for the routine monitoring of environmental and food safety.

  10. Biosensors: Development status

    NASA Astrophysics Data System (ADS)

    Hilpert, R.

    The progress achieved in the field of biosensors is described. Following a definition of the concept, the main function of biosensors is explained, using an example. Several measuring transformers and their functions are presented. The proper methods of connection between biological constituents and measuring transformers are indicated. Possible uses, biosensor markets, currently available commercial biosensors are mentioned. Main problems and their solutions in the framework of biosensor develoment are outlined. National and international centers of development are indicated. A project concerning biosensors for water supervision is described.

  11. Absorbance and fluorometric sensing with capillary wells microplates

    SciTech Connect

    Tan, Han Yen; Cheong, Brandon Huey-Ping; Neild, Adrian; Wah Ng, Tuck; Liew, Oi Wah

    2010-12-15

    Detection and readout from small volume assays in microplates are a challenge. The capillary wells microplate approach [Ng et al., Appl. Phys. Lett. 93, 174105 (2008)] offers strong advantages in small liquid volume management. An adapted design is described and shown here to be able to detect, in a nonimaging manner, fluorescence and absorbance assays minus the error often associated with meniscus forming at the air-liquid interface. The presence of bubbles in liquid samples residing in microplate wells can cause inaccuracies. Pipetting errors, if not adequately managed, can result in misleading data and wrong interpretations of assay results; particularly in the context of high throughput screening. We show that the adapted design is also able to detect for bubbles and pipetting errors during actual assay runs to ensure accuracy in screening.

  12. Nanotechnology and biosensors.

    PubMed

    Jianrong, Chen; Yuqing, Miao; Nongyue, He; Xiaohua, Wu; Sijiao, Li

    2004-09-01

    Nanotechnology is playing an increasingly important role in the development of biosensors. The sensitivity and performance of biosensors is being improved by using nanomaterials for their construction. The use of these nanomaterials has allowed the introduction of many new signal transduction technologies in biosensors. Because of their submicron dimensions, nanosensors, nanoprobes and other nanosystems have allowed simple and rapid analyses in vivo. Portable instruments capable of analyzing multiple components are becoming available. This work reviews the status of the various nanostructure-based biosensors. Use of the self-assembly techniques and nano-electromechanical systems (NEMS) in biosensors is discussed.

  13. Surface oxide effect on optical sensing and photoelectric conversion of α-In2Se3 hexagonal microplates.

    PubMed

    Ho, Ching-Hwa; Lin, Chien-Hao; Wang, Yi-Ping; Chen, Ying-Cen; Chen, Shin-Hong; Huang, Ying-Sheng

    2013-03-01

    The surface formation oxide assists of visible to ultraviolet photoelectric conversion in α-In2Se3 hexagonal microplates has been explored. Hexagonal α-In2Se3 microplates with the sizes of 10s to 100s of micrometers were synthesized and prepared by the chemical vapor transport method using ICl3 as a transport agent. Many vacancies and surface imperfection states have been found in the bulk and on the surface of the microplate because of the intrinsic defect nature of α-In2Se3. To discover physical and chemical properties and finding technological uses of α-In2Se3, several experiments including transmission electron miscopy (TEM), X-ray photoelectron spectroscopy (XPS), surface photovoltage (SPV), photoluminescence (PL), surface photoresponse (SPR), photoconductivity (PC), and thermoreflectance (TR) measurements have been carried out. Experimental results of TEM, XPS, SPV, PL, and SPR measurements show that a surface oxidation layer α-In2Se3-3xO3x (0 ≤ x ≤ 1) has formed on the crystal face of α-In2Se3 in environmental air with the inner layer content close to In2Se3 but the outermost layer content approaching In2O3. The near band edge transitions of α-In2Se3 microplates have been probed experimentally by TR and PC measurements. The direct band gap of α-In2Se3 has been determined to be 1.453 eV. The SPV result shows a maximum quantum efficiency of the surface oxide α-In2Se3-3xO3x (0 ≤ x ≤ 1) that presents a peak photoresponse near 2.18 eV. The analyses of SPV, SPR, PL, TR, and PC measurements revealed that the surface oxide layer facilitates the conversion of the ultraviolet to the visible range while the native defects (Se and In vacancies) sustain photoconductivity in the near-infrared region. On the basis of the experimental results a wide-energy-range photodetector that combines PC- and SPR-mode operations for α-In2Se3 microplate has been made. The testing results show a well-behaved function of photoelectric conversion in the near-infrared to

  14. Microplate Bioassay for Determining Substrate Selectivity of "Candida rugosa" Lipase

    ERIC Educational Resources Information Center

    Wang, Shi-zhen; Fang, Bai-shan

    2012-01-01

    Substrate selectivity of "Candida rugosa" lipase was tested using "p"-nitrophenyl esters of increasing chain length (C[subscript 1], C[subscript 7], C[subscript 15]) using the high-throughput screening method. A fast and easy 96-well microplate bioassay was developed to help students learn and practice biotechnological specificity screen. The…

  15. Microplate Bioassay for Determining Substrate Selectivity of "Candida rugosa" Lipase

    ERIC Educational Resources Information Center

    Wang, Shi-zhen; Fang, Bai-shan

    2012-01-01

    Substrate selectivity of "Candida rugosa" lipase was tested using "p"-nitrophenyl esters of increasing chain length (C[subscript 1], C[subscript 7], C[subscript 15]) using the high-throughput screening method. A fast and easy 96-well microplate bioassay was developed to help students learn and practice biotechnological specificity screen. The…

  16. Microplates in liquid chromatography--new solution in clinical research? A review.

    PubMed

    Krcmova, Lenka; Solichova, Dagmar; Solich, Petr

    2013-10-15

    Microplates are routinely used in Radio- or Immuno-assays. Recently, microplates have found use not only in analytical but also in the pre-analytical phase in bioanalyses (sample storage, sample preparation). New connection of this technology to liquid chromatography could be economical, fast and simple solution for many routine laboratories handling large sequences of biological samples. This review summarises the application of microplates in bioanalytical laboratories. Different types of sorbents, materials and shapes of microplates are discussed, and the main advantages and disadvantages of microplates used in clinical research are presented.

  17. Trends in tactile biosensors, smell-sensitive biosensors

    NASA Astrophysics Data System (ADS)

    Higuchi, K.; Kawana, Y.; Kimura, J.

    1986-03-01

    Biosensors, whch combine substances from living organisms such as enzymes with electrochemical transducers, are considered taste-sensitive biosensors. Touch sensors were analyzed using various pressure-sensitive elements, but no attempts were made to use substances from organisms. The sense of smell is a gase sensor for the body; there are numerous uncertainties about the meaning of smell-sensitive biosensors. Tactile biosensors and olfactor biosensors were examined. Biosensors include sensors directly apply materials extracted from organisms and sensors which copy sensors.

  18. Method with high-throughput screening potential for antioxidative substances using Escherichia coli biosensor katG'::lux.

    PubMed

    Tienaho, Jenni; Sarjala, Tytti; Franzén, Robert; Karp, Matti

    2015-11-01

    A new method is described for the rapid real-time screening of antioxidative properties using a recombinant Escherichia coli DPD2511 biosensor. This microplate technique, without time-consuming pre-incubations and handling, has potential for a high-throughput search of bioactive compounds. Special emphasis was given to obtaining highly reliable and repeatable results. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Microplate based biosensing with a computer screen aided technique.

    PubMed

    Filippini, Daniel; Andersson, Tony P M; Svensson, Samuel P S; Lundström, Ingemar

    2003-10-30

    Melanophores, dark pigment cells from the frog Xenopus laevis, have the ability to change light absorbance upon stimulation by different biological agents. Hormone exposure (e.g. melatonin or alpha-melanocyte stimulating hormone) has been used here as a reversible stimulus to test a new compact microplate reading platform. As an application, the detection of the asthma drug formoterol in blood plasma samples is demonstrated. The present system utilizes a computer screen as a (programmable) large area light source, and a standard web camera as recording media enabling even kinetic microplate reading with a versatile and broadly available platform, which suffices to evaluate numerous bioassays. Especially in the context of point of care testing or self testing applications these possibilities become advantageous compared with highly dedicated comparatively expensive commercial systems.

  20. Cryoalgotox: Use of cryopreserved alga in a semistatic microplate test

    SciTech Connect

    Benhra, A.; Radetski, C.M.; Ferard, J.F.

    1997-03-01

    Use of cryopreserved alga Selenastrum capricornutum has been evaluated as a simple and cost-efficient procedure in a new semistatic algal ecotoxicity test. Experiments have been conducted to compare performance criteria of this method, named Cryoalgotox, versus the classic microplate test using fresh algae. Cryoalgotox 72-h 50% effective concentrations (EC50s) determined with Cd{sup 2+}, Cu{sup 2+}, Cr{sup 6+}, and atrazine were more sensitive, repeatable (low coefficients of variation), and reproducible (low time effect) than the results obtained with the classical microplate tests. The effect of storage time at {minus}80 C on the sensitivity of the algae was assessed using cadmium as a toxic reference; it was shown that algae stored at {minus}80 C over a 3-month period gave comparable toxicity results to those found with fresh algae.

  1. Surface tension drawing of liquid from microplate capillary wells.

    PubMed

    Schwalb, Willem; Ng, Tuck Wah; Lye, Jonathan Kok Keung; Liew, Oi Wah; Cheong, Brandon Huey-Ping

    2012-01-01

    Pressure differentials are routinely used to actuate flow in capillaries. We advance here an alternative means of flow generation that capitalizes on the extension of a liquid bridge achieved by the drawing of a rod through the action of surface tension. This meets the exigencies of creating controllable flow using simpler and more compact means. We found the ability to generate controllable flow to be strongly affected by the liquid bridge sustaining features, and that the use of rod diameters larger than the capillary was more conducive. The extensional flow resulting from the rupture of the liquid bridge was also found to have a strong circulation component which facilitated mixing. The approach here is highly amenable for use in capillary well microplates which have significant advantages over standard microplates. The features of this approach offer usage possibilities in biochemical applications in the field, such as in the leukocyte cell adhesion and hemagglutination tests of blood samples.

  2. Quantitative Microplate-Based Respirometry with Correction for Oxygen Diffusion

    PubMed Central

    2009-01-01

    Respirometry using modified cell culture microplates offers an increase in throughput and a decrease in biological material required for each assay. Plate based respirometers are susceptible to a range of diffusion phenomena; as O2 is consumed by the specimen, atmospheric O2 leaks into the measurement volume. Oxygen also dissolves in and diffuses passively through the polystyrene commonly used as a microplate material. Consequently the walls of such respirometer chambers are not just permeable to O2 but also store substantial amounts of gas. O2 flux between the walls and the measurement volume biases the measured oxygen consumption rate depending on the actual [O2] gradient. We describe a compartment model-based correction algorithm to deconvolute the biological oxygen consumption rate from the measured [O2]. We optimize the algorithm to work with the Seahorse XF24 extracellular flux analyzer. The correction algorithm is biologically validated using mouse cortical synaptosomes and liver mitochondria attached to XF24 V7 cell culture microplates, and by comparison to classical Clark electrode oxygraph measurements. The algorithm increases the useful range of oxygen consumption rates, the temporal resolution, and durations of measurements. The algorithm is presented in a general format and is therefore applicable to other respirometer systems. PMID:19555051

  3. Split luciferase-based biosensors for characterizing EED binders.

    PubMed

    Li, Ling; Feng, Lijian; Shi, Minlong; Zeng, Jue; Chen, Zijun; Zhong, Li; Huang, Li; Guo, Weihui; Huang, Ying; Qi, Wei; Lu, Chris; Li, En; Zhao, Kehao; Gu, Justin

    2017-04-01

    The EED (embryonic ectoderm development) subunit of the Polycomb repressive complex 2 (PRC2) plays an important role in the feed forward regulation of the PRC2 enzymatic activity. We recently identified a new class of allosteric PRC2 inhibitors that bind to the H3K27me3 pocket of EED. Multiple assays were developed and used to identify and characterize this type of PRC2 inhibitors. One of them is a genetically encoded EED biosensor based on the EED[G255D] mutant and the split firefly luciferase. This EED biosensor can detect the compound binding in the transfected cells and in the in vitro biochemical assays. Compared to other commonly used cellular assays, the EED biosensor assay has the advantage of shorter compound incubation with cells. The in vitro EED biosensor is much more sensitive than other label-free biophysical assays (e.g. DSF, ITC). Based on the crystal structure, the DSF data as well as the biosensor assay data, it's most likely that compound-induced increase in the luciferase activity of the EED[G255D] biosensor results from the decreased non-productive interactions between the EED subdomain and other subdomains within the biosensor construct. This new insight of the mechanism might help to broaden the use of the split luciferase based biosensors.

  4. Maximizing Photoluminescence Extraction in Silicon Photonic Crystal Slabs

    PubMed Central

    Mahdavi, Ali; Sarau, George; Xavier, Jolly; Paraïso, Taofiq K.; Christiansen, Silke; Vollmer, Frank

    2016-01-01

    Photonic crystal modes can be tailored for increasing light matter interactions and light extraction efficiencies. These PhC properties have been explored for improving the device performance of LEDs, solar cells and precision biosensors. Tuning the extended band structure of 2D PhC provides a means for increasing light extraction throughout a planar device. This requires careful design and fabrication of PhC with a desirable mode structure overlapping with the spectral region of emission. We show a method for predicting and maximizing light extraction from 2D photonic crystal slabs, exemplified by maximizing silicon photoluminescence (PL). Systematically varying the lattice constant and filling factor, we predict the increases in PL intensity from band structure calculations and confirm predictions in micro-PL experiments. With the near optimal design parameters of PhC, we demonstrate more than 500-fold increase in PL intensity, measured near band edge of silicon at room temperature, an enhancement by an order of magnitude more than what has been reported. PMID:27113674

  5. Maximizing Photoluminescence Extraction in Silicon Photonic Crystal Slabs.

    PubMed

    Mahdavi, Ali; Sarau, George; Xavier, Jolly; Paraïso, Taofiq K; Christiansen, Silke; Vollmer, Frank

    2016-04-26

    Photonic crystal modes can be tailored for increasing light matter interactions and light extraction efficiencies. These PhC properties have been explored for improving the device performance of LEDs, solar cells and precision biosensors. Tuning the extended band structure of 2D PhC provides a means for increasing light extraction throughout a planar device. This requires careful design and fabrication of PhC with a desirable mode structure overlapping with the spectral region of emission. We show a method for predicting and maximizing light extraction from 2D photonic crystal slabs, exemplified by maximizing silicon photoluminescence (PL). Systematically varying the lattice constant and filling factor, we predict the increases in PL intensity from band structure calculations and confirm predictions in micro-PL experiments. With the near optimal design parameters of PhC, we demonstrate more than 500-fold increase in PL intensity, measured near band edge of silicon at room temperature, an enhancement by an order of magnitude more than what has been reported.

  6. Maximizing Photoluminescence Extraction in Silicon Photonic Crystal Slabs

    NASA Astrophysics Data System (ADS)

    Mahdavi, Ali; Sarau, George; Xavier, Jolly; Paraïso, Taofiq K.; Christiansen, Silke; Vollmer, Frank

    2016-04-01

    Photonic crystal modes can be tailored for increasing light matter interactions and light extraction efficiencies. These PhC properties have been explored for improving the device performance of LEDs, solar cells and precision biosensors. Tuning the extended band structure of 2D PhC provides a means for increasing light extraction throughout a planar device. This requires careful design and fabrication of PhC with a desirable mode structure overlapping with the spectral region of emission. We show a method for predicting and maximizing light extraction from 2D photonic crystal slabs, exemplified by maximizing silicon photoluminescence (PL). Systematically varying the lattice constant and filling factor, we predict the increases in PL intensity from band structure calculations and confirm predictions in micro-PL experiments. With the near optimal design parameters of PhC, we demonstrate more than 500-fold increase in PL intensity, measured near band edge of silicon at room temperature, an enhancement by an order of magnitude more than what has been reported.

  7. GPS estimates of microplate motions, northern Caribbean: evidence for a Hispaniola microplate and implications for earthquake hazard

    NASA Astrophysics Data System (ADS)

    Benford, B.; DeMets, C.; Calais, E.

    2012-09-01

    We use elastic block modelling of 126 GPS site velocities from Jamaica, Hispaniola, Puerto Rico and other islands in the northern Caribbean to test for the existence of a Hispaniola microplate and estimate angular velocities for the Gônave, Hispaniola, Puerto Rico-Virgin Islands and two smaller microplates relative to each other and the Caribbean and North America plates. A model in which the Gônave microplate spans the whole plate boundary between the Cayman spreading centre and Mona Passage west of Puerto Rico is rejected at a high confidence level. The data instead require an independently moving Hispaniola microplate between the Mona Passage and a likely diffuse boundary within or offshore from western Hispaniola. Our updated angular velocities predict 6.8 ± 1.0 mm yr-1 of left-lateral slip along the seismically hazardous Enriquillo-Plantain Garden fault zone of southwest Hispaniola, 9.8 ± 2.0 mm yr-1 of slip along the Septentrional fault of northern Hispaniola and ˜14-15 mm yr-1 of left-lateral slip along the Oriente fault south of Cuba. They also predict 5.7 ± 1 mm yr-1 of fault-normal motion in the vicinity of the Enriquillo-Plantain Garden fault zone, faster than previously estimated and possibly accommodated by folds and faults in the Enriquillo-Plantain Garden fault zone borderlands. Our new and a previous estimate of Gônave-Caribbean plate motion suggest that enough elastic strain accumulates to generate one to two Mw˜ 7 earthquakes per century along the Enriquillo-Plantain Garden and nearby faults of southwest Hispaniola. That the 2010 M= 7.0 Haiti earthquake ended a 240-yr-long period of seismic quiescence in this region raises concerns that it could mark the onset of a new earthquake sequence that will relieve elastic strain that has accumulated since the late 18th century.

  8. Piezoelectric Biosensors for Organophosphate and Carbamate Pesticides: A Review

    PubMed Central

    Marrazza, Giovanna

    2014-01-01

    Due to the great amount of pesticides currently being used, there is an increased interest for developing biosensors for their detection. Among all the physical transducers, piezoelectric systems have emerged as the most attractive due to their simplicity, low instrumentation costs, possibility for real-time and label-free detection and generally high sensitivity. This paper presents an overview of biosensors based on the quartz crystal microbalance, which have been reported in the literature for organophosphate and carbamate pesticide analysis. PMID:25587424

  9. Biosensors for Cell Analysis.

    PubMed

    Zhou, Qing; Son, Kyungjin; Liu, Ying; Revzin, Alexander

    2015-01-01

    Biosensors first appeared several decades ago to address the need for monitoring physiological parameters such as oxygen or glucose in biological fluids such as blood. More recently, a new wave of biosensors has emerged in order to provide more nuanced and granular information about the composition and function of living cells. Such biosensors exist at the confluence of technology and medicine and often strive to connect cell phenotype or function to physiological or pathophysiological processes. Our review aims to describe some of the key technological aspects of biosensors being developed for cell analysis. The technological aspects covered in our review include biorecognition elements used for biosensor construction, methods for integrating cells with biosensors, approaches to single-cell analysis, and the use of nanostructured biosensors for cell analysis. Our hope is that the spectrum of possibilities for cell analysis described in this review may pique the interest of biomedical scientists and engineers and may spur new collaborations in the area of using biosensors for cell analysis.

  10. Enhancement of Fluorescence-Based Sandwich Immunoassay Using Multilayered Microplates Modified with Plasma-Polymerized Films.

    PubMed

    Yano, Kazuyoshi; Iwasaki, Akira

    2016-12-25

    A functional modification of the surface of a 96-well microplate coupled with a thin layer deposition technique is demonstrated for enhanced fluorescence-based sandwich immunoassays. The plasma polymerization technique enabling the deposition of organic thin films was employed for the modification of the well surface of a microplate. A silver layer and a plasma-polymerized film were consecutively deposited on the microplate as a metal mirror and the optical interference layer, respectively. When Cy3-labeled antibody was applied to the wells of the resulting multilayered microplate without any immobilization step, greatly enhanced fluorescence was observed compared with that obtained with the unmodified one. The same effect could be also exhibited for an immunoassay targeting antigen directly adsorbed on the multilayered microplate. Furthermore, a sandwich immunoassay for the detection of interleukin 2 (IL-2) was performed with the multilayered microplates, resulting in specific and 88-fold-enhanced fluorescence detection.

  11. Plasma-Treated Microplates with Enhanced Protein Recoveries and Minimized Extractables

    PubMed Central

    Weikart, Christopher M.; Klibanov, Alexander M.; Breeland, Adam P.; Taha, Ahmad H.; Maurer, Brian R.; Martin, Steven P.

    2016-01-01

    SiO2 Medical Products, Inc. (SiO) has developed a proprietary technology that greatly enhances protein recoveries and reduces extractables from commercial microplates used for bioanalytical assays and storage of biologics. SiO technology is based on plasma treatment that chemically modifies the surface of polypropylene with predominantly hydrogen-bond-acceptor uncharged polar groups. The resultant surface resists nonspecific protein adsorption over a wide range of protein concentrations, thereby eliminating the need to passivate (and hence potentially contaminate) the microplates with blocking proteins. High shelf-life stability and cleanliness of the plasma-treated microplates have been demonstrated using five different proteins for two common microplate formats. The protein recovery performance of plasma-treated microplates is found to be higher compared with commercial low-protein-binding microplates. PMID:27651466

  12. Enhancement of Fluorescence-Based Sandwich Immunoassay Using Multilayered Microplates Modified with Plasma-Polymerized Films

    PubMed Central

    Yano, Kazuyoshi; Iwasaki, Akira

    2016-01-01

    A functional modification of the surface of a 96-well microplate coupled with a thin layer deposition technique is demonstrated for enhanced fluorescence-based sandwich immunoassays. The plasma polymerization technique enabling the deposition of organic thin films was employed for the modification of the well surface of a microplate. A silver layer and a plasma-polymerized film were consecutively deposited on the microplate as a metal mirror and the optical interference layer, respectively. When Cy3-labeled antibody was applied to the wells of the resulting multilayered microplate without any immobilization step, greatly enhanced fluorescence was observed compared with that obtained with the unmodified one. The same effect could be also exhibited for an immunoassay targeting antigen directly adsorbed on the multilayered microplate. Furthermore, a sandwich immunoassay for the detection of interleukin 2 (IL-2) was performed with the multilayered microplates, resulting in specific and 88-fold–enhanced fluorescence detection. PMID:28029144

  13. Genomagnetic Electrochemical Biosensors

    NASA Astrophysics Data System (ADS)

    Wang, Joseph; Erdem, Arzum

    The use of nucleic acid technologies has significantly improved preparation and diagnostic procedures in life sciences. Nucleic acid layers combined with electrochemical or optical transducers produce a new kind of affinity biosensors as DNA Biosensor for small molecular weight molecules. Electrochemical DNA biosensors are attractive devices for converting the hybridization event into an analytical signal for obtaining sequence-specific information in connection with clinical, environmental or forensic investigations. DNA hybridization biosensors, based on electrochemical transduction of hybridization, couple the high specificity of hybridization reactions with the excellent sensitivity and portability of electrochemical transducers. The main goal in all researches is to design DNA biosensors for preparing a basis for the future DNA microarray system. DNA chip has now become a powerful tool in biological research, however the real clinic assay is still under development. Recently, there has been a great interest to the magnetic beads and/or nanoparticles labelled with metals such as gold, cadmium, silver, etc. for designing of novel electrochemical DNA biosensor approaches resulting in efficient separation. The attractive features of this technology include simple approach, rapid results, multi-analyte detection, low-cost per measurument, stable, and non-hazardous reagents, and reduced waste handling. Some of these new approaches and applications of the electrochemical DNA biosensors based on magnetic beads and its combining with nanoparticles labelled with metals are described and discussed.

  14. Nucleation-fibrillation dynamics of Aβ1-40 peptides on liquid-solid surface studied by total-internal-reflection fluorescence microscopy coupled with quartz-crystal microbalance biosensor

    NASA Astrophysics Data System (ADS)

    Hamada, Hiroki; Ogi, Hirotsugu; Noi, Kentaro; Yagi, Hisashi; Goto, Yuji; Hirao, Masahiko

    2015-07-01

    We have successfully developed the total-internal-reflection-fluorescence microscopy combined with a quartz-crystal microbalance (TIRFM-QCM) biosensor, and monitored the nucleation-fibrillation phenomenon of amyloid β1-40 peptide on the naked quartz surface. The cross-β-sheet structures were visualized with the TIRFM using the thioflavin-T (Th-T) label, and other unlabeled aggregates were detected through the frequency change of the 58-MHz wireless-electrodeless QCM throughout the aggregation reaction. The QCM response indicates significant adsorption of the peptides on the quartz surface at the early stage, which is followed by fibrillation. The non-cross-β-sheet oligomers are first formed, and nuclei appear in the oligomer region, from which fibrils originate and elongate. The two-color TIRFM observation was performed after the aggregation reaction with the Nile-red label as well as the ThT label for identifying nucleation from non-β-sheet regions. An aggregation model is proposed.

  15. Thin-Layer Matrix Sublimation with Vapor-Sorption Induced Co-Crystallization for Sensitive and Reproducible SAMDI-TOF MS Analysis of Protein Biosensors

    NASA Astrophysics Data System (ADS)

    Roth, Michael J.; Kim, Jaekuk; Maresh, Erica M.; Plymire, Daniel A.; Corbett, John R.; Zhang, Junmei; Patrie, Steven M.

    2012-10-01

    Coupling immunoassays on self-assembled monolayers (SAMs) to matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) provides improved assay selectivity compared with traditional photometric detection techniques. We show that thin-layer-transfer (TLT) of α-cyano-4-hydroxycinnaminic acid (CHCA) MALDI matrix via vacuum sublimation followed by organic solvent-based vapor-sorption induced co-crystallization (VIC) results in unique matrix/analyte co-crystallization tendencies that optimizes assay reproducibility and sensitivity. Unique matrix crystal morphologies resulted from VIC solvent vapors, indicating nucleation and crystal growth characteristics depend upon VIC parameters. We observed that CHCA microcrystals generated by methanol VIC resulted in >10× better sensitivity, increased analyte charging, and improved precision compared with dried droplet measurements. The uniformity of matrix/analyte co-crystallization across planar immunoassays directed at intact proteins yielded low spectral variation for single shot replicates (18.5 % relative standard deviation, RSD) and signal averaged spectra (<10 % RSD). We envision that TLT and VIC for MALDI-TOF will enable high-throughput, reproducible array-based immunoassays for protein molecular diagnostic assays in diverse biochemical and clinical applications.

  16. A Cenozoic tectonic model for Southeast Asia - microplates and basins

    SciTech Connect

    Maher, K.A.

    1995-04-01

    A computer-assisted Cenozoic tectonic model was built for Southeast Asia and used to construct 23 base maps, 2 to 6 million years apart. This close temporal spacing was necessary to constrain all the local geometric shifts in a consistent and geologically feasible fashion. More than a hundred individual blocks were required to adequately treat Cenozoic microplate processes at a basic level. The reconstructions show tectonic evolution to be characterized by long periods of gradual evolution, interrupted by brief, widespread episodes of reorganization in fundamental plate geometries and kinematics. These episodes are triggered by major collisions, or by accumulation of smaller changes. The model takes into account difficulties inherent in the region. The Pacific and Indo-Australian plates and their predecessors have driven westward and northward since the late Paleozoic, towards each other and the relatively stationary backstop of Asia. Southeast Asia is therefore the result of a long-lived, complex process of convergent tectonics, making it difficult to reconstruct tectonic evolution as much of the continental margin and sea floor spreading record was erased. In addition, the region has been dominated by small-scale microplate processes with short time scales and internal deformation, taking place in rapidly evolving and more ductile buffer zones between the major rigid plate systems. These plate interaction zones have taken up much of the relative motion between the major plates. Relatively ephemeral crustal blocks appear and die within the buffer zones, or accrete to and disperse from the margins of the major plate systems. However, such microplate evolution is the dominant factor in Cenozoic basin evolution. This detailed testonic model aids in comprehension and prediction of basin development, regional hydrocarbon habitat, and petroleum systems.

  17. Introduction to biosensors

    PubMed Central

    Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello

    2016-01-01

    Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. PMID:27365030

  18. GMR-based PhC biosensor: FOM analysis and experimental studies

    SciTech Connect

    Syamprasad, Jagadeesh; Narayanan, Roshni; Joseph, Joby; Takahashi, Hiroki; Sandhu, Adarsh; Jindal, Rajeev

    2014-02-20

    Guided Mode Resonance based Photonic crystal biosensor has a lot of potential applications. In our work, we are trying to improve their figure of merit values in order to achieve an optimum level through design and fabrication techniques. A robust and low-cost alternative for current biosensors is also explored through this research.

  19. Boar taint detection using parasitoid biosensors.

    PubMed

    Wäckers, Felix; Olson, Dawn; Rains, Glen; Lundby, Frank; Haugen, John-Erik

    2011-01-01

    The off-flavor boar taint associated with the substances skatole, androstenone, and possibly indole represents a significant problem in the pig husbandry industry. Boar taint may occur in meat from uncastrated sexually mature male pigs; consumers commonly show a strong aversion to tainted meat. Consequently, there is a need for rapid methods to sort out and remove tainted carcasses at the slaughterline. We tested the ability of wasps, Microplitis croceipes to perceive and learn the 3 boar taint compounds both individually and in combination using classical conditioning paradigms. We also established the effectiveness and reliability of boar taint odor detection when wasps were used as biosensors in a contained system called the "wasp hound" using a cohort of trained wasps. We found that the wasps are able to successfully learn indole, skatole and to also detect them when presented a 1:1:1 mixture of all 3 compounds. This was shown for both a single hand-manipulated wasp bioassay and when using the "wasp hound" detector device. In contrast, the wasps showed a weak conditioned response to androstenone at the concentration tested. The estimated gas phase concentrations that the wasps perceived during training were in the range of 10 ± 0.4 pg/s for skatole and indole, and 2 ± 0.5 pg/s for androstenone. We conclude that use of these wasps as biosensors presents a promising method for boar taint detection and discuss future training paradigms that may improve their responses to compounds such as androstenone. Practical Application: The development of a perceptive, inexpensive, and reliable means of detecting boar taint before the product is presented to sensitive consumers.

  20. Biosensors Incorporating Bimetallic Nanoparticles.

    PubMed

    Rick, John; Tsai, Meng-Che; Hwang, Bing Joe

    2015-12-31

    This article presents a review of electrochemical bio-sensing for target analytes based on the use of electrocatalytic bimetallic nanoparticles (NPs), which can improve both the sensitivity and selectivity of biosensors. The review moves quickly from an introduction to the field of bio-sensing, to the importance of biosensors in today's society, the nature of the electrochemical methods employed and the attendant problems encountered. The role of electrocatalysts is introduced with reference to the three generations of biosensors. The contributions made by previous workers using bimetallic constructs, grouped by target analyte, are then examined in detail; following which, the synthesis and characterization of the catalytic particles is examined prior to a summary of the current state of endeavor. Finally, some perspectives for the future of bimetallic NPs in biosensors are given.

  1. Biosensors in clinical chemistry.

    PubMed

    D'Orazio, Paul

    2003-08-01

    Biosensors are analytical devices composed of a recognition element of biological origin and a physico-chemical transducer. The biological element is capable of sensing the presence, activity or concentration of a chemical analyte in solution. The sensing takes place either as a binding event or a biocatalytical event. These interactions produce a measurable change in a solution property, which the transducer converts into a quantifiable electrical signal. Present-day applications of biosensors to clinical chemistry are reviewed, including basic and applied research, commercial applications and fabrication techniques. Recognition elements include enzymes as biocatalytic recognition elements and immunoagents and DNA segments as affinity ligand recognition elements, coupled to electrochemical and optical modes of transduction. The future will include biosensors based on synthetic recognition elements to allow broad applicability to different classes of analytes and modes of transduction extending lower limits of sensitivity. Microfabrication will permit biosensors to be constructed as arrays and incorporated into lab-on-a-chip devices.

  2. BIOSENSORS FOR ENVIRONMENTAL APPLICATIONS

    EPA Science Inventory

    A review, with 19 references, is given on challenges and possible opportunities for the development of biosensors for environmental monitoring applications. The high cost and slow turnaround times typically associated with the measurement of regulated pollutants clearly indicates...

  3. Biosensors Incorporating Bimetallic Nanoparticles

    PubMed Central

    Rick, John; Tsai, Meng-Che; Hwang, Bing Joe

    2015-01-01

    This article presents a review of electrochemical bio-sensing for target analytes based on the use of electrocatalytic bimetallic nanoparticles (NPs), which can improve both the sensitivity and selectivity of biosensors. The review moves quickly from an introduction to the field of bio-sensing, to the importance of biosensors in today’s society, the nature of the electrochemical methods employed and the attendant problems encountered. The role of electrocatalysts is introduced with reference to the three generations of biosensors. The contributions made by previous workers using bimetallic constructs, grouped by target analyte, are then examined in detail; following which, the synthesis and characterization of the catalytic particles is examined prior to a summary of the current state of endeavor. Finally, some perspectives for the future of bimetallic NPs in biosensors are given. PMID:28344262

  4. Characterization of methods for determining sterilization efficacy and reuse efficiency of oxygen biosensor multiwell plates.

    PubMed

    Birmele, Michele; Roberts, Michael; Garland, Jay

    2006-12-01

    High-throughput screening (HTS) assays based upon fluorometric detection of oxygen consumption in microtiter plates were primarily developed for applications in drug discovery and ecotoxicology but have recently been adopted for use in microbial community-level physiological profiling assays (CLPP). The widespread use of oxygen biosensor systems for CLPP applications has, however, been hindered by the relatively high cost of oxygen biosensor reagent systems and limited access to microplate fluorometer instrumentation platforms. The ability to recycle and reuse oxygen biosensor system plates would expand their utilization for CLPP assays and other research applications in microbial ecology. Here, the efficacy and cost effectiveness of multiple procedures for sterilization of Oxygen Biosensor System (OBS; BD Biosciences) plates for reuse was evaluated. OBS plates were sterilized using ethylene oxide, ultraviolet radiation, and bleach treatments, then evaluated for biosensor response and plate life-cycle performance. Of the sterilization methods tested, ethylene oxide sterilization was most effective based on its low cost, high sterilization efficacy, and minimal impact upon OBS plate response.

  5. Triggered optical biosensor

    DOEpatents

    Song, Xuedong; Swanson, Basil I.

    2001-10-02

    An optical biosensor is provided for the detection of a multivalent target biomolecule, the biosensor including a substrate having a bilayer membrane thereon, a recognition molecule situated at the surface, the recognition molecule capable of binding with the multivalent target biomolecule, the recognition molecule further characterized as including a fluorescence label thereon and as being movable at the surface and a device for measuring a fluorescence change in response to binding between the recognition molecule and the multivalent target biomolecule.

  6. Ejection of small droplet from microplate using focused ultrasound

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroki; Mizuno, Yosuke; Nakamura, Kentaro

    2017-08-01

    We discussed an ultrasonic system for single-droplet ejection from a microplate, which is one of the basic and important procedures in the noncontact handling of droplets in air. In this system, a 1.5 MHz concave transducer located below the microplate is used for chasing the liquid surface through a pulse echo method, and also for the ejection of a 1 µL single droplet by the burst of focused ultrasound. We investigated the relationship between the droplet ejection characteristics, the distance from the transducer to the surface of liquid, the material property, and the excitation condition of the focused ultrasonic transducer. It was verified that the optimal position of the transducer was off the focal point of sound pressure by ±1 mm, because the sound intensity had to be controlled to eject a single droplet. Subsequently, we confirmed experimentally that the ejected droplet volume linearly depended on the surface tension of the liquid, and that the droplet volume and ejection velocity were determined by the Webber number, Reynolds number, and Ohnesolge number. In addition, by optimizing the duration of the burst ultrasound, the droplet volume and ejection velocity were controlled.

  7. Calcofluor fluorescence assay for wort beta-glucan in a microplate format

    USDA-ARS?s Scientific Manuscript database

    The widely-used fluorescent (Calcofluor) flow injection analysis method for determining the concentrations of beta-glucans in Congress worts from barley malts is adapted to microplate format. Adaptation of the Calcofluor assay to use widely available fluorescent microplate readers makes the assay m...

  8. Structural patterns and tectonic history of the Bauer microplate, Eastern Tropical Pacific

    USGS Publications Warehouse

    Eakins, B.W.; Lonsdale, P.F.

    2003-01-01

    The Bauer microplate was an independent slab of oceanic lithosphere that from 17 Ma to 6 Ma grew from 1.4 ?? 105 km2 to 1.2 ?? 106 km2 between the rapidly diverging Pacific and Nazca plates. Growth was by accretion at the lengthening and overlapping axes of the (Bauer-Nazca) Galapagos Rise (GR) and the (Pacific-Bauer) East Pacific Rise (EPR). EPR and GR axial propagation to create and rapidly grow the counter-clockwise spinning microplate occurred in two phases: (1) 17-15Ma, when the EPR axis propagated north and the GR axis propagated south around a narrow (100- to 200-km-wide) core of older lithosphere; and (2) 8-6 Ma, when rapid northward propagation of the EPR axis resumed, overlapping ???400 km of the fast-spreading Pacific-Nazca rise-crest and appending a large (200- to 400-km-wide) area of the west flank of that rise as a 'northern annex' to the microplate. Between 15 and 8 Ma the microplate grew principally by crustal accretion at the crest of its rises. The microplate was captured by the Nazca plate and the Galapagos Rise axis became extinct soon after 6 Ma, when the south end of the Pacific-Bauer EPR axis became aligned with the southern Pacific-Nazca EPR axis and its north end was linked by the Quebrada Transform to the northern Pacific-Nazca EPR axis. Incomplete multibeam bathymetry of the microplate margins, and of both flanks of the Pacific-Bauer and Bauer-Nazca Rises, together with archival magnetic and satellite altimetry data, clarifies the growth and (counter-clockwise) rotation of the microplate, and tests tectonic models derived from studies of the still active, much smaller, Easter and Juan Fernandez microplates. Our interpretations differ from model predictions in that Euler poles were not located on the microplate boundary, propagation in the 15-8 Ma phase of growth was not toward these poles, and microplate rotation rates were small (5??/m.y.) for much of its history, when long, bounding transform faults reduced coupling to Nazca plate

  9. Tectonics and evolution of the Juan Fernandez microplate at the Pacific-Nazca-Antarctic triple junction

    NASA Technical Reports Server (NTRS)

    Anderson-Fontana, S.; Larson, R. L.; Engein, J. F.; Lundgren, P.; Stein, S.

    1986-01-01

    Magnetic and bathymetric profiles derived from the R/V Endeavor survey and focal mechanism studies for earthquakes on two of the Juan Fernandez microplate boundaries are analyzed. It is observed that the Nazca-Juan Fernandez pole is in the northern end of the microplate since the magnetic lineation along the East Ridge of the microplate fans to the south. The calculation of the relative motion of the Juan Fernandez-Pacific-Nazca-Antarctic four-plate system using the algorithm of Minster et al. (1974) is described. The development of tectonic and evolutionary models of the region is examined. The tectonic model reveals that the northern boundary of the Juan Fernandez microplate is a zone of compression and that the West Ridge and southwestern boundary are spreading obliquely; the evolutionary model relates the formation of the Juan Fernandez microplate to differential spreading rates at the triple junction.

  10. Recombinant antibodies and their use in biosensors.

    PubMed

    Zeng, Xiangqun; Shen, Zhihong; Mernaugh, Ray

    2012-04-01

    Inexpensive, noninvasive immunoassays can be used to quickly detect disease in humans. Immunoassay sensitivity and specificity are decidedly dependent upon high-affinity, antigen-specific antibodies. Antibodies are produced biologically. As such, antibody quality and suitability for use in immunoassays cannot be readily determined or controlled by human intervention. However, the process through which high-quality antibodies can be obtained has been shortened and streamlined by use of genetic engineering and recombinant antibody techniques. Antibodies that traditionally take several months or more to produce when animals are used can now be developed in a few weeks as recombinant antibodies produced in bacteria, yeast, or other cell types. Typically most immunoassays use two or more antibodies or antibody fragments to detect antigens that are indicators of disease. However, a label-free biosensor, for example, a quartz-crystal microbalance (QCM) needs one antibody only. As such, the cost and time needed to design and develop an immunoassay can be substantially reduced if recombinant antibodies and biosensors are used rather than traditional antibody and assay (e.g. enzyme-linked immunosorbant assay, ELISA) methods. Unlike traditional antibodies, recombinant antibodies can be genetically engineered to self-assemble on biosensor surfaces, at high density, and correctly oriented to enhance antigen-binding activity and to increase assay sensitivity, specificity, and stability. Additionally, biosensor surface chemistry and physical and electronic properties can be modified to further increase immunoassay performance above and beyond that obtained by use of traditional methods. This review describes some of the techniques investigators have used to develop highly specific and sensitive, recombinant antibody-based biosensors for detection of antigens in simple or complex biological samples.

  11. Microplate technique for determining accumulation of metals by algae

    SciTech Connect

    Hassett, J.M.; Jennett, J.C.; Smith, J.E.

    1981-05-01

    A microplate technique was developed to determine the conditions under which pure cultures of algae removed heavy metals from aqueous solutions. Variables investigated included algal species and strain, culture age (11 and 44 days), metal (mercury, lead, cadmium, and zinc), pH, effects of different buffer solutions, and time of exposure. Plastic, U-bottomed microtiter plates were used in conjunction with heavy metal radionuclides to determine concentration factors for metal-alga combinations. The technique developed was rapid, statistically reliable, and economical of materials and cells. All species of algae studied removed mercury from solution. Green algae proved better at accumulating cadmium than did blue-green algae. No alga studied removed zinc, perhaps because cells were maintained in the dark during the labeling period. Chlamydomonas sp. proved superior in ability to remove lead from solution.

  12. Photoelectrochemical enzymatic biosensors.

    PubMed

    Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-06-15

    Enzymatic biosensors have been valuable bioanalytical devices for analysis of diverse targets in disease diagnosis, biological and biomedical research, etc. Photoelectrochemical (PEC) bioanalysis is a recently emerged method that promptly becoming a subject of new research interests due to its attractive potential for future bioanalysis with high sensitivity and specificity. PEC enzymatic biosensors integrate the inherent sensitivities of PEC bioanalysis and the selectivity of enzymes and thus share their both advantages. Currently, PEC enzymatic biosensors have become a hot topic of significant research and the recent impetus has grown rapidly as demonstrated by increased research papers. Given the pace of advances in this area, this review will make a thorough discussion and survey on the fundamentals, sensing strategies, applications and the state of the art in PEC enzymatic biosensors, followed by future prospects based on our own opinions. We hope this work could provide an accessible introduction to PEC enzymatic biosensors for any scientist. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The western transverse ranges microplate as a native terrane

    SciTech Connect

    Campbell, M.D.; Reed, W.E. )

    1994-04-01

    Palocurrent measurements from the entire Cretaceous section of the western Transverse Ranges microplate (WTRM) yield a northerly flow direction. Point count data indicate a mixed provenance for both conglomerates and associated sandstones. The dominant provenance was mixed magmatic arc/recycled orogen and disected/transitional arc terranes. Petrographic, quantitative SEM and microprobe analysis also indicate the presence of diagnostic Franciscan mineralogy in these sediments, including glaucophane, riebeckite, lawsonite, and serpentine, suggesting derivation from a subduction complex. Olistoclasts of chert, jadeitic graywacke, serpentine and blueschist are found intermixed within the arc-derived sediments. Olistoclasts range in size from sub-millimeter to centimeter scale and olistoliths range up to 150 m. Well preserved internal bedding in some of the olistoliths suggest emplacement by landsliding indicating very short transport distance. This Franciscan material represents the oldest melange-derived material reported from this part of California and documents uplift and erosion of the subduction complex earlier than previously suggested. These data are consistent with deposition in a Cretaceous fore-arc basin located west or south of the San Diego area. The allochthonous WTRM of southern California can be reconstructed to an originally north-south oriented fore-arc basin. After deposition of the Sespe Formation (22 Ma [+-]) the microplate was slivered by strike-slip faults and rotated clockwise approximately 90[degrees], after which, the block again accreted against the continental margin. Our reconstruction suggest that depositional and structural trends for Eocene and Cretaceous sediments is likely to be different from that in the Miocene Monterey pay zones in the Santa Barbara channel region. If our reconstruction is correct, exploration strategy for Eocene and Cretaceous petroleum in the southern California Bight should take this tectonic model into account.

  14. Biosensors: sense and sensibility.

    PubMed

    Turner, Anthony P F

    2013-04-21

    This review is based on the Theophilus Redwood Medal and Award lectures, delivered to Royal Society of Chemistry meetings in the UK and Ireland in 2012, and presents a personal overview of the field of biosensors. The biosensors industry is now worth billions of United States dollars, the topic attracts the attention of national initiatives across the world and tens of thousands of papers have been published in the area. This plethora of information is condensed into a concise account of the key achievements to date. The reasons for success are examined, some of the more exciting emerging technologies are highlighted and the author speculates on the importance of biosensors as a ubiquitous technology of the future for health and the maintenance of wellbeing.

  15. Introduction to biosensors.

    PubMed

    Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello; Estrela, Pedro

    2016-06-30

    Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  16. A simple automated solution for removing and applying sealing microplate lids.

    PubMed

    Clarke, G A; Feiglin, M N; King, G W; Bishop, J; Skwish, S; Kath, G S

    2001-10-01

    With the improved reliability and efficiency of automation, there has been an increased desire to integrate automated sample management with automated screening systems. In order to store samples "on line" for an extended period of time, an automation-compatible means for sealing and unsealing microplates is necessary. Numerous commercial solutions are available for removing loose-fitting microplate lids; however, the task of removing a tight-fitting matted lid such as the RoboLid is more challenging. This paper discusses the design of an automated workstation for the application and removal of such tight-fitting microplate lids.

  17. Biosensor development in Russia.

    PubMed

    Reshetilov, Anatoly N

    2007-07-01

    The review summarizes the current Russian research in the field of biological sensors for detection of carbohydrates, alcohols, medicines, enzyme inhibitors, toxicants, heavy metal ions, as well as viruses and microbial cells. Some of the presented works describe the analytical parameters of biosensors; other publications provide a basis for their development. The review covers mainly publications that have appeared over the past 10 years. As a whole, the collected material gives an idea of the main tendencies of biosensor development in Russia. The review is not meant to be comprehensive but highlights the major trends in this field in the last decade.

  18. Electrochemical biosensors for hormone analyses.

    PubMed

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Surface stress-based biosensors.

    PubMed

    Sang, Shengbo; Zhao, Yuan; Zhang, Wendong; Li, Pengwei; Hu, Jie; Li, Gang

    2014-01-15

    Surface stress-based biosensors, as one kind of label-free biosensors, have attracted lots of attention in the process of information gathering and measurement for the biological, chemical and medical application with the development of technology and society. This kind of biosensors offers many advantages such as short response time (less than milliseconds) and a typical sensitivity at nanogram, picoliter, femtojoule and attomolar level. Furthermore, it simplifies sample preparation and testing procedures. In this work, progress made towards the use of surface stress-based biosensors for achieving better performance is critically reviewed, including our recent achievement, the optimally circular membrane-based biosensors and biosensor array. The further scientific and technological challenges in this field are also summarized. Critical remark and future steps towards the ultimate surface stress-based biosensors are addressed. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Biosensors for bioprocesses

    SciTech Connect

    Van Brunt, J.

    1987-05-01

    The advent of biosensors has been touted as the marriage of the century - a marriage of microelectronics and biotechnology. But exactly what is a biosensor. Actually, the term is used interchangeably for two sometimes very different classes of devices - those that measure biological molecules and particles and those that use biomolecules as part of the sensing mechanism. The basic conceptual design of a biosensor is simple: a biological receptor is coupled to an electronic tranducer in such a way that the transducer converts biochemical activity at one end into electrical activity at the other. The biological component is usually an enzyme (for selective chemical catalysis) or an antibody (for highly selective binding), although cell membrane receptors, tissue slices, and microbial cells are used as well. The electronic component measures voltage (potentiometric), current (amperometric), light, sound, temperaure, or mass (piezoelectric). Biosensors display several unique features that make them especially attractive. They are small. They are simple to use many procedures require one step, no additional reagents, and no radioactivity. They are portable. And they are inexpensive and perfect for data processing.

  1. Recent Trends in Biosensors

    NASA Astrophysics Data System (ADS)

    Karube, Isao

    The determination of organic compounds in foods is very important in food industries. A various compounds are contained in foods, selective determination methods are required for food processing and analysis. Electrochemical monitoring devices (biosensors) employing immobilized biocatalysts such as immobilized enzymes, organelles, microorganisms, and tissue have definite advantages. The enzyme Sensors consisted of immobilized enzymes and electrochemical devices. Enzyme sensors could be used for the determination of sugars, amino acids, organic acids, alcohols, lipids, nucleic acid derivatives, etc.. Furthermore, a multifunctional biosensor for the determination of several compounds has been developed for food processing. On the other hand, microbial sensors consisted of immobilized microorganisms and electrodes have been used for industrial and environmental analysis. Microbial sensors were applied for the determination of sugars, organic acids, alcohols, amino acids, mutagens, me thane, ammonia, and BOD. Furthermore, micro-biosensors using immobilized biocatalysts and ion sensitive field effect transistor or microelectrodes prepared by silicon fabrication technologies have been developed for medical ap. plication and food processing. This review summarizes the design and application of biosensors.

  2. Pull-in instability tuning in imperfect nonlinear circular microplates under electrostatic actuation

    NASA Astrophysics Data System (ADS)

    Jallouli, A.; Kacem, N.; Bourbon, G.; Le Moal, P.; Walter, V.; Lardies, J.

    2016-12-01

    Dynamic range improvement based on geometric nonlinearity and initial deflection is demonstrated with imperfect circular microplates under electrostatic actuation. Depending on design parameters, we prove how the von Kármán nonlinearity and the plate imperfections lead to a significant delay in pull-in occurrence. These promising results open the way towards an accurate identification of static parameters of circular microplates and the development of a predictive model for the nonlinear dynamics of imperfect capacitive micromachined ultrasonic transducers.

  3. A New, Sensitive Marine Microalgal Recombinant Biosensor Using Luminescence Monitoring for Toxicity Testing of Antifouling Biocides

    PubMed Central

    Sanchez-Ferandin, Sophie; Leroy, Fanny; Bouget, François-Yves

    2013-01-01

    In this study, we propose the use of the marine green alga Ostreococcus tauri, the smallest free-living eukaryotic cell known to date, as a new luminescent biosensor for toxicity testing in the environment. Diuron and Irgarol 1051, two antifouling biocides commonly encountered in coastal waters, were chosen to test this new biosensor along with two degradation products of diuron. The effects of various concentrations of the antifoulants on four genetic constructs of O. tauri (based on genes involved in photosynthesis, cell cycle, and circadian clock) were compared using 96-well culture microplates and a luminometer to automatically measure luminescence over 3 days. This was compared to growth inhibition of O. tauri wild type under the same conditions. Luminescence appeared to be more sensitive than growth inhibition as an indicator of toxicity. Cyclin-dependent kinase (CDKA), a protein involved in the cell cycle, fused to luciferase (CDKA-Luc) was found to be the most sensitive of the biosensors, allowing an accurate determination of the 50% effective concentration (EC50) after only 2 days (diuron, 5.65 ± 0.44 μg/liter; Irgarol 1015, 0.76 ± 0.10 μg/liter). The effects of the antifoulants on the CDKA-Luc biosensor were then compared to growth inhibition in natural marine phytoplankton. The effective concentrations of diuron and Irgarol 1051 were found to be similar, indicating that this biosensor would be suitable as a reliable ecotoxicological test. The advantage of this biosensor over cell growth inhibition testing is that the process can be easily automated and could provide a high-throughput laboratory approach to perform short-term toxicity tests. The ability to genetically transform and culture recombinant O. tauri gives it huge potential for screening many other toxic compounds. PMID:23144143

  4. The larval parasitoid Microplitis croceipes oviposits in conspecific adults

    NASA Astrophysics Data System (ADS)

    Takasu, Keiji; Hoang Le, K.

    2007-03-01

    Microplitis croceipes (Hymenoptera: Braconidae) is a larval parasitoid of Helicoverpa/Heliothis spp. In the course of mass rearing of M. croceipes, we found that females oviposited in the conspecific adults in rearing cages. When 20 pairs of inexperienced females and males or of experienced females and males were reared in a cage, the males lived for 14-15 days and the females for 18-20 days on average. At their death, 37-42% of the males and 50-57% of the females contained conspecific eggs or first instar larvae in their abdominal cavity. When two of inexperienced females met on a host-infested leaf of soybean, they attempted to sting each other. Of the attacked females, 30% contained a conspecific egg laid in their abdomen. In abdominal cavity of the adults parasitized by a conspecific female, the majority of the parasitoid eggs laid disappeared within 1 day after oviposition. Only 10-30% of the parasitoid eggs laid in conspecific adults hatched 3-4 days after oviposition, but those larvae never molted to second instar. When the adults were stung by one or two conspecific females, their subsequent longevity was significantly shorter than that for the control adults. Oviposition in conspecific adults may be prevalent in other parasitic wasps that quickly oviposit without intensive host examination, and have cuticle and size of abdomen to be stung by conspeicifcs.

  5. The larval parasitoid Microplitis croceipes oviposits in conspecific adults.

    PubMed

    Takasu, Keiji; Hoang Le, K

    2007-03-01

    Microplitis croceipes (Hymenoptera: Braconidae) is a larval parasitoid of Helicoverpa/Heliothis spp. In the course of mass rearing of M. croceipes, we found that females oviposited in the conspecific adults in rearing cages. When 20 pairs of inexperienced females and males or of experienced females and males were reared in a cage, the males lived for 14-15 days and the females for 18-20 days on average. At their death, 37-42% of the males and 50-57% of the females contained conspecific eggs or first instar larvae in their abdominal cavity. When two of inexperienced females met on a host-infested leaf of soybean, they attempted to sting each other. Of the attacked females, 30% contained a conspecific egg laid in their abdomen. In abdominal cavity of the adults parasitized by a conspecific female, the majority of the parasitoid eggs laid disappeared within 1 day after oviposition. Only 10-30% of the parasitoid eggs laid in conspecific adults hatched 3-4 days after oviposition, but those larvae never molted to second instar. When the adults were stung by one or two conspecific females, their subsequent longevity was significantly shorter than that for the control adults. Oviposition in conspecific adults may be prevalent in other parasitic wasps that quickly oviposit without intensive host examination, and have cuticle and size of abdomen to be stung by conspeicifcs.

  6. Microplate fecal coliform method to monitor stream water pollution.

    PubMed Central

    Maul, A; Block, J C

    1983-01-01

    A study has been carried out on the Moselle River by means of a microtechnique based on the most-probable-number method for fecal coliform enumeration. This microtechnique, in which each serial dilution of a sample is inoculated into all 96 wells of a microplate, was compared with the standard membrane filter method. It showed a marked overestimation of about 14% due, probably, to the lack of absolute specificity of the method. The high precision of the microtechnique (13%, in terms of the coefficient of variation for log most probable number) and its relative independence from the influence of bacterial density allowed the use of analysis of variance to investigate the effects of spatial and temporal bacterial heterogeneity on the estimation of coliforms. Variability among replicate samples, subsamples, handling, and analytical errors were considered as the major sources of variation in bacterial titration. Variances associated with individual components of the sampling procedure were isolated, and optimal replications of each step were determined. Temporal variation was shown to be more influential than the other three components (most probable number, subsample, sample to sample), which were approximately equal in effect. However, the incidence of sample-to-sample variability (16%, in terms of the coefficient of variation for log most probable number) caused by spatial heterogeneity of bacterial populations in the Moselle River is shown and emphasized. Consequently, we recommend that replicate samples be taken on each occasion when conducting a sampling program for a stream pollution survey. PMID:6360044

  7. Recent advances in phosphate biosensors.

    PubMed

    Upadhyay, Lata Sheo Bachan; Verma, Nishant

    2015-07-01

    A number of biosensors have been developed for phosphate analysis particularly, concerning its negative impact within the environmental and biological systems. Enzymatic biosensors comprising either a single or multiple enzymatic system have been extensively used for the direct and indirect analysis of phosphate ions. Furthermore, some non-enzymatic biosensors, such as affinity-based biosensors, provide an alternative analytical approach with a higher selectivity. This article reviews the recent advances in the field of biosensor developed for phosphate estimation in clinical and environmental samples, concerning the techniques involved, and the sensitivity toward phosphate ions. The biosensors have been classified and discussed on the basis of the number of enzymes used to develop the analytical system, and a comparative analysis has been performed.

  8. Graphene as a signal amplifier for preparation of ultrasensitive electrochemical biosensors

    PubMed Central

    Filip, Jaroslav; Kasák, Peter; Tkac, Jan

    2016-01-01

    Early diagnostics of diseases performed with minimal money and time consumption has become achievable due to recent advances in development of biosensors. These devices use biorecognition elements for selective interaction with an analyte and signal readout is obtained via different types of transducers. Operational characteristics of biosensors have been reported to improve substantially, when a diverse range of nanomaterials was employed. This review presents construction of electrochemical biosensors based on graphene, atomically thin 2D carbon crystals, which is currently intensively studied nanomaterial. The most attractive directions of graphene applications in biosensor preparation are discussed here including novel detection and amplification schemes exploiting graphene’s unique electrochemical, physical and chemical properties. The future of graphene-based biosensors is most likely bright, but there is still a lot of work to do to fulfill high expectations. PMID:27242391

  9. Graphene as a signal amplifier for preparation of ultrasensitive electrochemical biosensors.

    PubMed

    Filip, Jaroslav; Kasák, Peter; Tkac, Jan

    2015-01-01

    Early diagnostics of diseases performed with minimal money and time consumption has become achievable due to recent advances in development of biosensors. These devices use biorecognition elements for selective interaction with an analyte and signal readout is obtained via different types of transducers. Operational characteristics of biosensors have been reported to improve substantially, when a diverse range of nanomaterials was employed. This review presents construction of electrochemical biosensors based on graphene, atomically thin 2D carbon crystals, which is currently intensively studied nanomaterial. The most attractive directions of graphene applications in biosensor preparation are discussed here including novel detection and amplification schemes exploiting graphene's unique electrochemical, physical and chemical properties. The future of graphene-based biosensors is most likely bright, but there is still a lot of work to do to fulfill high expectations.

  10. Nanomaterial-Based Electrochemical Biosensors and Bioassays

    SciTech Connect

    Liu, Guodong; Mao, Xun; Gurung, Anant; Baloda, Meenu; Lin, Yuehe; He, Yuqing

    2010-08-31

    This book chapter summarizes the recent advance in nanomaterials for electrochemical biosensors and bioassays. Biofunctionalization of nanomaterials for biosensors fabrication and their biomedical applications are discussed.

  11. Carbon nanotube biosensors

    PubMed Central

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  12. Whole Blood Optical Biosensor

    PubMed Central

    Bonanno, Lisa M.; DeLouise, Lisa A.

    2007-01-01

    The future of rapid point-of-care diagnostics depends on the development of cheap, noncomplex, and easily integrated systems to analyze biological samples directly from the patient (eg. blood, urine, saliva). A key concern in diagnostic biosensing is signal differentiation between non-specifically bound material and the specific capture of target molecules. This is a particular challenge for optical detection devices in analyzing complex biological samples. Here we demonstrate a porous silicon (PSi) label-free optical biosensor that has intrinsic size-exclusion filtering capabilities which enhances signal differentiation. We present the first demonstration of highly repeatable, specific detection of immunoglobulin G (IgG) in serum and whole blood samples over a typical physiological range using the PSi material as both a biosensor substrate and filter. PMID:17720473

  13. Carbon Nanotube Biosensors

    NASA Astrophysics Data System (ADS)

    Tilmaciu, Carmen-Mihaela; Morris, May

    2015-10-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  14. Large-scale preparation of shape controlled SnO and improved capacitance for supercapacitors: from nanoclusters to square microplates

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Ji, Hongmei; Zhu, Feng; Chen, Zhi; Yang, Yang; Jiang, Xuefan; Pinto, João; Yang, Gang

    2013-07-01

    Here, we first provide a facile ultrasonic-assisted synthesis of SnO using SnCl2 and the organic solvent of ethanolamine (ETA). The moderate alkalinity of ETA and ultrasound play very important roles in the synthesis of SnO. After the hydrolysis of the intermediate of ETA-Sn(ii), the as-synthesized SnO nanoclusters undergo assembly, amalgamation, and preferential growth to microplates in hydrothermal treatment. The as-synthesized SnO was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible absorption spectroscopy (UV-vis) and X-ray diffraction (XRD). To explore its potential applications in energy storage, SnO was fabricated into a supercapacitor electrode and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements. The as-synthesized SnO exhibits remarkable pseudocapacitive activity including high specific capacitance (208.9 F g-1 at 0.1 A g-1), good rate capability (65.8 F g-1 at 40 A g-1), and excellent cycling stability (retention 119.3% after 10 000 cycles) for application in supercapacitors. The capacitive behavior of SnO with various crystal morphologies was observed by fitted EIS using an equivalent circuit. The novel synthetic route for SnO is a convenient and potential way to large-scale production of microplates which is expected to be applicable in the synthesis of other metal oxide nanoparticles.Here, we first provide a facile ultrasonic-assisted synthesis of SnO using SnCl2 and the organic solvent of ethanolamine (ETA). The moderate alkalinity of ETA and ultrasound play very important roles in the synthesis of SnO. After the hydrolysis of the intermediate of ETA-Sn(ii), the as-synthesized SnO nanoclusters undergo assembly, amalgamation, and preferential growth to microplates in hydrothermal treatment. The as-synthesized SnO was characterized by scanning

  15. Graphene-based biosensors

    NASA Astrophysics Data System (ADS)

    Lebedev, A. A.; Davydov, V. Yu.; Novikov, S. N.; Litvin, D. P.; Makarov, Yu. N.; Klimovich, V. B.; Samoilovich, M. P.

    2016-07-01

    Results of developing and testing graphene-based sensors capable of detecting protein molecules are presented. The biosensor operation was checked using an immunochemical system comprising fluorescein dye and monoclonal antifluorescein antibodies. The sensor detects fluorescein concentration on a level of 1-10 ng/mL and bovine serum albumin-fluorescein conjugate on a level of 1-5 ng/mL. The proposed device has good prospects for use for early diagnostics of various diseases.

  16. Micro-algal biosensors.

    PubMed

    Brayner, Roberta; Couté, Alain; Livage, Jacques; Perrette, Catherine; Sicard, Clémence

    2011-08-01

    Fighting against water pollution requires the ability to detect pollutants for example herbicides or heavy metals. Micro-algae that live in marine and fresh water offer a versatile solution for the construction of novel biosensors. These photosynthetic microorganisms are very sensitive to changes in their environment, enabling the detection of traces of pollutants. Three groups of micro-algae are described in this paper: chlorophyta, cyanobacteria, and diatoms.

  17. Symposium on Biosensors

    DTIC Science & Technology

    1989-11-01

    the same side of irreversible thermodynamic equation is the pyroelectric effect in which a thermal cradient induces a field and a measurable voltage...permit analysis of phosphate and bicarbonate, for example, and Li+ and Mg÷2 among the cations. Design of optical sensors has again lagged behind trial...make good enthatipetric biosensors for use in flow injectic analysis systems. First, a bimo:-ph is constructed by placing two sheets of the fiV face

  18. Biosensors, antibiotics and food.

    PubMed

    Virolainen, Nina; Karp, Matti

    2014-01-01

    Antibiotics are medicine's leading asset for fighting microbial infection, which is one of the leading causes of death worldwide. However, the misuse of antibiotics has led to the rapid spread of antibiotic resistance among bacteria and the development of multiple resistant pathogens. Therefore, antibiotics are rapidly losing their antimicrobial value. The use of antibiotics in food production animals is strictly controlled by the European Union (EU). Veterinary use is regulated to prevent the spread of resistance. EU legislation establishes maximum residue limits for veterinary medicinal products in foodstuffs of animal origin and enforces the establishment and execution of national monitoring plans. Among samples selected for monitoring, suspected noncompliant samples are screened and then subjected to confirmatory analysis to establish the identity and concentration of the contaminant. Screening methods for antibiotic residues are typically based on microbiological growth inhibition, whereas physico-chemical methods are used for confirmatory analysis. This chapter discusses biosensors, especially whole-cell based biosensors, as emerging screening methods for antibiotic residues. Whole-cell biosensors can offer highly sensitive and specific detection of residues. Applications demonstrating quantitative analysis and specific analyte identification further improve their potential as screening methods.

  19. Thermoresponsive amperometric glucose biosensor.

    PubMed

    Pinyou, Piyanut; Ruff, Adrian; Pöller, Sascha; Barwe, Stefan; Nebel, Michaela; Alburquerque, Natalia Guerrero; Wischerhoff, Erik; Laschewsky, André; Schmaderer, Sebastian; Szeponik, Jan; Plumeré, Nicolas; Schuhmann, Wolfgang

    2015-03-24

    The authors report on the fabrication of a thermoresponsive biosensor for the amperometric detection of glucose. Screen printed electrodes with heatable gold working electrodes were modified by a thermoresponsive statistical copolymer [polymer I: poly(ω-ethoxytriethylenglycol methacrylate-co-3-(N,N-dimethyl-N-2-methacryloyloxyethyl ammonio) propanesulfonate-co-ω-butoxydiethylenglycol methacrylate-co-2-(4-benzoyl-phenoxy)ethyl methacrylate)] with a lower critical solution temperature of around 28 °C in aqueous solution via electrochemically induced codeposition with a pH-responsive redox-polymer [polymer II: poly(glycidyl methacrylate-co-allyl methacrylate-co-poly(ethylene glycol)methacrylate-co-butyl acrylate-co-2-(dimethylamino)ethyl methacrylate)-[Os(bpy)2(4-(((2-(2-(2-aminoethoxy)ethoxy)ethyl)amino)methyl)-N,N-dimethylpicolinamide)](2+)] and pyrroloquinoline quinone-soluble glucose dehydrogenase acting as biological recognition element. Polymer II bears covalently bound Os-complexes that act as redox mediators for shuttling electrons between the enzyme and the electrode surface. Polymer I acts as a temperature triggered immobilization matrix. Probing the catalytic current as a function of the working electrode temperature shows that the activity of the biosensor is dramatically reduced above the phase transition temperature of polymer I. Thus, the local modulation of the temperature at the interphase between the electrode and the bioactive layer allows switching the biosensor from an on- to an off-state without heating of the surrounding analyte solution.

  20. A portable array biosensor

    NASA Astrophysics Data System (ADS)

    Golden, Joel P.; Shriver-Lake, Lisa C.; Taitt, Chris R.; Fertig, Stephanie; Sapsford, Kim E.; Ligler, Fran S.

    2004-12-01

    An array biosensor developed for performing simultaneous analysis of multiple samples for multiple analytes has been miniaturized and fully automated. The biochemical component of the multi-analyte biosensor consists of a patterned array of biological recognition elements ("capture" antibodies) immobilized on the surface of a planar waveguide. A fluorescence assay is performed on the patterned surface, yielding an array of fluorescent spots, the locations of which are used to identify what analyte is present. Signal transduction is accomplished by means of a diode laser for fluorescence excitation, optical filters and a CCD camera for image capture. A laptop computer controls the miniaturized fluidics system and image capture. Data analysis software has been developed to locate each spot and quantify the fluorescent signal in each spot. The array biosensor is capable of detecting a variety of analytes including toxins, bacteria and viruses and shows minimal interference from complex physiological sample matrices such whole blood and blood components, fecal matter, saliva, nasal secretions, and urine. Some results from recent field trials are presented.

  1. Nano-machining of biosensor electrodes through gold nanoparticles deposition produced by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Della Ventura, B.; Funari, R.; Anoop, K. K.; Amoruso, S.; Ausanio, G.; Gesuele, F.; Velotta, R.; Altucci, C.

    2015-06-01

    We report an application of femtosecond laser ablation to improve the sensitivity of biosensors based on a quartz crystal microbalance device. The nanoparticles produced by irradiating a gold target with 527-nm, 300-fs laser pulses, in high vacuum, are directly deposited on the quartz crystal microbalance electrode. Different gold electrodes are fabricated by varying the deposition time, thus addressing how the nanoparticles surface coverage influences the sensor response. The modified biosensor is tested by weighting immobilized IgG antibody from goat and its analyte (IgG from mouse), and the results are compared with a standard electrode. A substantial increase of biosensor sensitivity is achieved, thus demonstrating that femtosecond laser ablation and deposition is a viable physical method to improve the biosensor sensitivity by means of nanostructured electrodes.

  2. Microplate Alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing.

    PubMed

    Pettit, Robin K; Weber, Christine A; Kean, Melissa J; Hoffmann, Holger; Pettit, George R; Tan, Rui; Franks, Kelly S; Horton, Marilyn L

    2005-07-01

    Biofilms are at the root of many infections largely because they are much more antibiotic resistant than their planktonic counterparts. Antibiotics that target the biofilm phenotype are desperately needed, but there is still no standard method to assess biofilm drug susceptibility. Staphylococcus epidermidis ATCC 35984 biofilms treated with eight different approved antibiotics and five different experimental compounds were exposed to the oxidation reduction indicator Alamar blue for 60 min, and reduction relative to untreated controls was determined visually and spectrophotometrically. The minimum biofilm inhibitory concentration was defined as < or = 50% reduction and a purplish well 60 min after the addition of Alamar blue. All of the approved antibiotics had biofilm MICs (MBICs) of >512 microg/ml (most >4,096 microg/ml), and four of the experimental compounds had MBICs of < or = 128 microg/ml. The experimental aaptamine derivative hystatin 3 was used to correlate Alamar blue reduction with 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction and viable counts (CFU/ml) for S. epidermidis ATCC 35984, ATCC 12228, and two clinical isolates. For all four strains, Alamar blue results correlated well with XTT (r = 0.83 to 0.97) and with CFU/ml results (r = 0.85 to 0.94). Alamar blue's stability and lack of toxicity allowed CFU/ml to be determined from the same wells as Alamar blue absorbances. If the described method of microplate Alamar blue biofilm susceptibility testing, which is simple, reproducible, cost-effective, nontoxic, and amenable to high throughput, is applicable to other important biofilm forming species, it should greatly facilitate the discovery of biofilm specific agents.

  3. Magmatic evolution of the Easter microplate-Crough Seamount region (South East Pacific)

    USGS Publications Warehouse

    Hekinian, R.; Stoffers, P.; Akermand, D.; Binard, N.; Francheteau, Jean; Devey, C.; Garbe-Schonberg, D.

    1995-01-01

    The Easter microplate-Crough Seamount region located between 25?? S-116?? W and 25?? S-122?? W consists of a chain of seamounts forming isolated volcanoes and elongated (100-200 km in length) en echelon volcanic ridges oriented obliquely NE (N 065??), to the present day general spreading direction (N 100??) of the Pacific-Nazca plates. The extension of this seamount chain into the southwestern edge of the Easter microplate near 26??30??? S-115?? W was surveyed and sampled. The southern boundary including the Orongo fracture zone and other shallow ridges ( 0.25) MORBs which are similar in composition to other more recent basalts from the Southwest and East Rifts spreading axes of the Easter microplate. Incompatible element ratios normalized to chondrite values [(Ce/Yb)N = 1-2.5}, {(La/Sm)N = 0.4-1.2} and {(Zr/Y)N = 0.7-2.5} of the basalts are also similar to present day volcanism found in the Easter microplate. The volcanics from the Easter microplate-Crough region are unrelated to other known South Pacific intraplate magmatism (i.e. Society, Pitcairn, and Salas y Gomez Islands). Instead their range in incompatible element ratios is comparable to the submarine basalts from the recently investigated Ahu and Umu volcanic field (Easter hotspot) (Scientific Party SO80, 1993) and centered at about 80 km west of Easter Island. The oblique ridges and their associated seamounts are likely to represent ancient leaky transform faults created during the initial stage of the Easter microplate formation (??? 5 Ma). It appears that volcanic activity on seamounts overlying the oblique volcanic ridges has continued during their westward drift from the microplate as shown by the presence of relatively fresh lava observed on one of these structures, namely the first Oblique Volcanic Ridge near 25?? S-118?? W at about 160 km west of the Easter microplate West Rift. Based on a reconstruction of the Easter microplate, it is suggested that the Crough seamount (< 800 m depth) was formed

  4. Novel versatile smart phone based Microplate readers for on-site diagnoses.

    PubMed

    Fu, Qiangqiang; Wu, Ze; Li, Xiuqing; Yao, Cuize; Yu, Shiting; Xiao, Wei; Tang, Yong

    2016-07-15

    Microplate readers are important diagnostic instruments, used intensively for various readout test kits (biochemical analysis kits and ELISA kits). However, due to their expensive and non-portability, commercial microplate readers are unavailable for home testing, community and rural hospitals, especially in developing countries. In this study, to provide a field-portable, cost-effective and versatile diagnostic tool, we reported a novel smart phone based microplate reader. The basic principle of this devise relies on a smart phone's optical sensor that measures transmitted light intensities of liquid samples. To prove the validity of these devises, developed smart phone based microplate readers were applied to readout results of various analytical targets. These targets included analanine aminotransferase (ALT; limit of detection (LOD) was 17.54 U/L), alkaline phosphatase (AKP; LOD was 15.56 U/L), creatinine (LOD was 1.35μM), bovine serum albumin (BSA; LOD was 0.0041mg/mL), prostate specific antigen (PSA; LOD was 0.76pg/mL), and ractopamine (Rac; LOD was 0.31ng/mL). The developed smart phone based microplate readers are versatile, portable, and inexpensive; they are unique because of their ability to perform under circumstances where resources and expertize are limited. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Microplate-based method for high-throughput screening of microalgae growth potential.

    PubMed

    Van Wagenen, Jon; Holdt, Susan Løvstad; De Francisci, Davide; Valverde-Pérez, Borja; Plósz, Benedek Gy; Angelidaki, Irini

    2014-10-01

    Microalgae cultivation conditions in microplates will differ from large-scale photobioreactors in crucial parameters such as light profile, mixing and gas transfer. Hence volumetric productivity (P(v)) measurements made in microplates cannot be directly scaled up. Here we demonstrate that it is possible to use microplates to measure characteristic exponential growth rates and determine the specific growth rate light intensity dependency (μ-I curve), which is useful as the key input for several models that predict P(v). Nannochloropsis salina and Chlorella sorokiniana specific growth rates were measured by repeated batch culture in microplates supplied with continuous light at different intensities. Exponential growth unlimited by gas transfer or self-shading was observable for a period of several days using fluorescence, which is an order of magnitude more sensitive than optical density. The microplate datasets were comparable to similar datasets obtained in photobioreactors and were used an input for the Huesemann model to accurately predict P(v). Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Protein Detection with Aptamer Biosensors

    PubMed Central

    Strehlitz, Beate; Nikolaus, Nadia; Stoltenburg, Regina

    2008-01-01

    Aptamers have been developed for different applications. Their use as new biological recognition elements in biosensors promises progress for fast and easy detection of proteins. This new generation of biosensor (aptasensors) will be more stable and well adapted to the conditions of real samples because of the specific properties of aptamers. PMID:27879936

  7. Rigid and non-rigid micro-plates: Philippines and Myanmar-Andaman case studies

    NASA Astrophysics Data System (ADS)

    Rangin, Claude

    2016-01-01

    Generally, tectonic plates are considered as rigid. Oblique plate convergence favors the development of micro-plates along the converging boundaries. The north-south-trending Philippines archipelago (here named Philippine Mobile Belt, PMB), a few hundreds kilometers wide, is one of such complex tectonic zones. We show here that it is composed of rigid rotating crustal blocks (here called platelets). In Myanmar, the northernmost tip of the Sumatra-Andaman subduction system is another complex zone made of various crustal blocks in-between convergent plates. Yet, contrary to PMB, it sustains internal deformation with platelet buckling, altogether indicative of a non-rigid behavior. Therefore, the two case studies, Philippine Mobile Belt and Myanmar-Andaman micro-plate (MAS), illustrate the complexity of micro-plate tectonics and kinematics at convergent plate boundaries.

  8. A direct heating model to overcome the edge effect in microplates.

    PubMed

    Lau, Chun Yat; Zahidi, Alifa Afiah Ahmad; Liew, Oi Wah; Ng, Tuck Wah

    2015-01-01

    Array-based tests in a microplate format are complicated by the regional variation in results of the outer against the inner wells of the plate. Analysis of the evaporation mechanics of sessile drops showed that evaporation rate increase with temperature was due to changes in the heat of vaporization, density and diffusion coefficient. In simulations of direct bottom heating of standard microplates, considerable heat transfer via conduction from the side walls was found to be responsible for lower temperatures in the liquid in wells close to the edge. Applying a two temperature heating mode, 304 K at the side compared to 310 K at the bottom, allowed for a more uniform temperature distribution. Transparency microplates were found to inherently possess immunity to the edge effect problem due to the presence of air between the liquid and solid wall. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Comparative studies on algal toxicity testing using fluorometric microplate and Erlenmeyer flask growth-inhibition assays.

    PubMed

    Eisentraeger, Adolf; Dott, Wolfgang; Klein, Joern; Hahn, Stefan

    2003-03-01

    Two fluorometric microplate algae growth-inhibition assays with a liquid volume of 2 mL and 200 microL per well are presented, and comparative studies on the toxicity of chemicals are carried out with Erlenmeyer flask assays. The test procedures are in accordance with the standards ISO 8692 (DIN 38412 L9 and EN 28692), OECD 201 and DIN 38412 L33. By testing four toxicants several times laboratory internal repeatability is proven. Statistical evaluation demonstrates that the results obtained with both the 24-well and the 96-well microplates are nearly identical with the results of the Erlenmeyer flask assay. Therefore, the microplate growth-inhibition assays can be applied for the testing of a wide range of chemicals and environmental samples if some methodical aspects are taken into account. Apart from that, there is a strong need for harmonization if the dependency of the EC values on the toxicological endpoint is considered.

  10. [Nanobiotechnology and biosensor research].

    PubMed

    Reshetilov, A N; Bezborodov, A M

    2008-01-01

    Nanobiotechnology is defined as an interdisciplinary field of science that studies the application of fine-sized biological objects (of nanoscale, 1-100 nm) to design the devices and systems of the same size that utilize for new purposes the unusual, known, or previously unknown effects. Analysis demonstrates that the final goals, approaches, solution methods, and applications of nanostructures and biological sensors have much in common. This brief review attempts to systematize a number of the available data and pick out an organic connection of the new research direction with the field of biosensor technology, which have reached the level of sustainable development.

  11. Direct monitoring of molecular recognition processes using fluorescence enhancement at colloid-coated microplates.

    PubMed

    Lobmaier, C; Hawa, G; Götzinger, M; Wirth, M; Pittner, F; Gabor, F

    2001-01-01

    Direct monitoring of recognition processes at the molecular level is a valuable tool for studying reaction kinetics to assess affinity constants (e.g. drugs to receptors) and for designing rapid single step immunoassays. Methods currently used to gain information about binding processes predominantly depend on surface plasmon resonance. These systems use excitation with coherent light in attenuated total reflection geometry to obtain discrimination between surface-bound and free molecules in solution. Therefore labeling of the compounds is not necessary, but due to the complexity of the measuring setup the method is rather costly. In this contribution we present a simple method for performing kinetic single step biorecognition assays with fluorophore labeled compounds using the fluorescence enhancement properties of surface bound silver colloids. Silver colloids are bound to standard microplates via silanization of the plastic surface. Fluorophores close to this colloid coated surface show a significant gain in fluorescence compared to fluorophores farther away in the bulk solution. Therefore discrimination between surface bound and free fluorophores is possible and the binding of, for example, fluorophore labeled antibodies to antigens immobilized on the colloid surface results in increasing fluorescence intensity. Utilization of standard microplates makes this method fully compatible with conventional microplate processing and reading devices. Neither excitation with coherent laser light nor ATR geometry is required, the measurement is performed in a standard fluorescence microplate reader in front face geometry with a xenon flash lamp as excitation source. Methods for the preparation of colloid-coated microplates and fluorescence-enhanced biorecognition assays are presented. Additionally the dependence of the system performance on the structure and properties of the metal colloid coated surface is described. A two-component biorecognition model system shows a

  12. Crustal Accretion and Mantle Geodynamics at Microplates: Constraints from Gravity Analysis

    NASA Astrophysics Data System (ADS)

    Ames, K.; Georgen, J. E.; Dordevic, M. M.

    2013-12-01

    Oceanic crustal accretion occurs in a variety of locations, including mid-ocean ridges and back-arc spreading centers, and in unique settings within these systems, such as plate boundary triple junctions, intra-transform spreading centers, and microplates. This study focuses on crustal accretion and mantle geodynamics at microplates. The Easter and Juan Fernandez microplates are located in the South Pacific along the Pacific, Nazca and Antarctic plate boundaries. Both microplates formed 3-5 Ma and they are currently rotating clockwise at 15 deg/Ma and 9 deg/Ma respectively (e.g., Searle et al. J. Geol. Soc. Lond. 1993). The study area also encompasses the Easter/Sala y Gomez mantle plume and the Foundation seamount chain, both of which are located close to spreading centers. We calculate mantle Bouguer anomaly (MBA) from satellite gravity measurements and shipboard soundings in order to gain a better understanding of the thermal structure of these two oceanic microplates and to quantify the effect that melting anomalies may have on their boundaries. We assume a crustal thickness of 6.0 km, a 1.7 g/cm^3 density difference at the water/crust interface, and a 0.6 g/cm^3 density difference at the crust/mantle interface. The west rift of the Easter microplate has an MBA low ranging from approximately -50 to -100 mGal, while the east rift has slightly higher MBA values ranging from roughly 10 to -50 mGal. The west rift of the Juan Fernandez microplate has a maximum MBA low of about -100 mGal with a sharp increase to -20 mGal at -35 deg S. The east rift of the Juan Fernandez microplate is characterized by more variable MBA, ranging from 0 to -140 mGal. The MBA low associated with the Easter/Sala y Gomez mantle plume has a maximum amplitude about 150 mGal. Likewise, the Foundation seamounts show a gravity low of -140 to -150 mGal. These spatial variations in gravity, as well as published isotopic data and exploratory numerical models, are used to constrain upper mantle

  13. Development of a magnetic microplate chemifluorimmunoassay for rapid detection of bacteria and toxin in blood.

    PubMed

    Yu, H; Ahmed, H; Vasta, G R

    1998-07-15

    A magnetic microplate chemifluorimmunoassay (MMCIA) is described using an immunomagnetic separation and a fluorescent microplate technique for rapid detection of low-level Escherichia coli O157:H7, Bacillus subtilis var. niger spores, and Staphylococcal enterotoxin type B from whole blood. In general, the MMCIA has at least several-fold more sensitivity than the conventional enzyme-linked immunosorbent assay. In addition, the assay sensitivities using direct fluorochrome label as the reporter, or alkaline phosphatase (AP) with various assay substrates, such as pNPP and AttoPhos, were assessed. Copyright 1998 Academic Press.

  14. Microplate-compatible total internal reflection fluorescence microscopy for receptor pharmacology

    NASA Astrophysics Data System (ADS)

    Chen, Minghan; Zaytseva, Natalya V.; Wu, Qi; Li, Min; Fang, Ye

    2013-05-01

    We report the use of total internal reflection fluorescence (TIRF) microscopy for analyzing receptor pharmacology and the development of a microplate-compatible TIRF imaging system. Using stably expressed green fluorescence protein tagged β2-adrenergic receptor as the reporter, we found that the activation of different receptors results in distinct kinetic signatures of the TIRF intensity of cells. These TIRF signatures closely resemble the characteristics of their respective label-free dynamic mass redistribution signals in the same cells. This suggests that TIRF in microplate can be used for profiling and screening drugs.

  15. Silaffin peptides as a novel signal enhancer for gravimetric biosensors.

    PubMed

    Nam, Dong Hyun; Lee, Jeong-O; Sang, Byoung-In; Won, Keehoon; Kim, Yong Hwan

    2013-05-01

    Application of biomimetic silica formation to gravimetric biosensors has been conducted for the first time. As a model system, silaffin peptides fused with green fluorescent protein (GFP) were immobilized on a gold quartz crystal resonator for quartz crystal microbalances using a self-assembled monolayer. When a solution of silicic acid was supplied, silica particles were successfully deposited on the Au surface, resulting in a significant change in resonance frequency (i.e., signal enhancement) with the silaffin-GFP. However, frequency was not altered when bare GFP was used as a control. The novel peptide enhancer is advantageous because it can be readily and quantitatively conjugated with sensing proteins using recombinant DNA technology. As a proof of concept, this study shows that the silaffin domains can be employed as a novel and efficient biomolecular signal enhancer for gravimetric biosensors.

  16. Guided Bloch surface wave resonance for biosensor designs.

    PubMed

    Kang, Xiu-Bao; Liu, Lan-Jun; Lu, Hai; Li, Hai-Dong; Wang, Zhi-Guo

    2016-05-01

    A guided Bloch surface wave resonance (GBR) configuration is introduced for label-free biosensing. The GBR is realized by coupling the first-order diffraction of a subwavelength grating with the Bloch surface wave at the interface between a 1D photonic crystal slab and bio-solution. In addition to sustaining the Bloch surface mode, the photonic crystal provides the design freedom of simultaneously increasing the quality and decreasing the sideband transmissions of the resonance spectrum. The low sideband and high-quality features along with the large sensitivity rising from the strong overlap between the Bloch surface mode and the bio-solution make the GBR suitable for the design of biosensors. Biosensors with a high figure of merit are realized by the compact configurations.

  17. Electrochemical biosensors and nanobiosensors

    PubMed Central

    Hammond, Jules L.; Formisano, Nello; Carrara, Sandro; Tkac, Jan

    2016-01-01

    Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications–in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an approximately 70% share of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market. In this review, we present the basic principles of electrochemical biosensor devices. A description of the different generations of glucose sensors is used to describe in some detail the operation of amperometric sensors and how the introduction of mediators can enhance the performance of the sensors. Electrochemical impedance spectroscopy is a technique being increasingly used in devices due to its ability to detect variations in resistance and capacitance upon binding events. Novel advances in electrochemical sensors, due to the use of nanomaterials such as carbon nanotubes and graphene, are presented as well as future directions that the field is taking. PMID:27365037

  18. Improved Biosensors for Soils

    NASA Astrophysics Data System (ADS)

    Silberg, J. J.; Masiello, C. A.; Cheng, H. Y.

    2014-12-01

    Microbes drive processes in the Earth system far exceeding their physical scale, affecting crop yields, water quality, the mobilization of toxic materials, and fundamental aspects of soil biogeochemistry. The tools of synthetic biology have the potential to significantly improve our understanding of microbial Earth system processes: for example, synthetic microbes can be be programmed to report on environmental conditions that stimulate greenhouse gas production, metal oxidation, biofilm formation, pollutant degradation, and microbe-plant symbioses. However, these tools are only rarely deployed in the lab. This research gap arises because synthetically programmed microbes typically report on their environment by producing molecules that are detected optically (e.g., fluorescent proteins). Fluorescent reporters are ideal for petri-dish applications and have fundamentally changed how we study human health, but their usefulness is quite limited in soils where detecting fluorescence is challenging. Here we describe the construction of gas-reporting biosensors, which release nonpolar gases that can be detected in the headspace of incubation experiments. These constructs can be used to probe microbial processes within soils in real-time noninvasive lab experiments. These biosensors can be combined with traditional omics-based approaches to reveal processes controlling soil microbial behavior and lead to improved environmental management decisions.

  19. Biosensors based on cantilevers.

    PubMed

    Alvarez, Mar; Carrascosa, Laura G; Zinoviev, Kiril; Plaza, Jose A; Lechuga, Laura M

    2009-01-01

    Microcantilevers based-biosensors are a new label-free technique that allows the direct detection of biomolecular interactions in a label-less way and with great accuracy by translating the biointeraction into a nanomechanical motion. Low cost and reliable standard silicon technologies are widely used for the fabrication of cantilevers with well-controlled mechanical properties. Over the last years, the number of applications of these sensors has shown a fast growth in diverse fields, such as genomic or proteomic, because of the biosensor flexibility, the low sample consumption, and the non-pretreated samples required. In this chapter, we report a dedicated design and a fabrication process of highly sensitive microcantilever silicon sensors. We will describe as well an application of the device in the environmental field showing the immunodetection of an organic toxic pesticide as an example. The cantilever biofunctionalization process and the subsequent pesticide determination are detected in real time by monitoring the nanometer-scale bending of the microcantilever due to a differential surface stress generated between both surfaces of the device.

  20. Field Friendly Tuberculosis Biosensor

    NASA Astrophysics Data System (ADS)

    Proper, N.; Scherman, M. S.; Jevsevar, K. L.; Stone, J.; McNeil, M. R.; Krapf, D.

    2009-10-01

    Tuberculosis (TB) is a fading threat in the United States, but in the developing world it is still a major health-care concern. Given the rising number of cases and lack of resources, there is a desperate need for an affordable, portable detection system. We are working towards the development of a field-friendly immunological biosensor that utilizes florescence microscopy to undertake this task. We observe fluorescently labeled antibodies/antigens as they bind to a glass slide treated with polyethylene glycol (PEG) in order to inhibit non-specific adsorption. Antibodies against the antigens of interest are bound to the PEGylated glass slides via biotin-streptavidin interactions. Then, fluorescently labeled antibodies are mixed with different concentrations of TB antigens and this solution is incubated on the treated glass slides for 30 minutes. The slides are thoroughly rinsed with water following the incubation period. The antigens are then detected by fluorescence using a low-cost biosensor. Our system includes a ``supermarket-scanner'' HeNe laser, home-built electronics, off-the-shelf optics and a Si photodiode. Work is underway to incorporate a flow-cell into the system, in a small portable box.

  1. Guided-Wave Optical Biosensors

    PubMed Central

    Passaro, Vittorio M. N.; Dell'Olio, Francesco; Casamassima, Biagio; De Leonardis, Francesco

    2007-01-01

    Guided-wave optical biosensors are reviewed in this paper. Advantages related to optical technologies are presented and integrated architectures are investigated in detail. Main classes of bio receptors and the most attractive optical transduction mechanisms are discussed. The possibility to use Mach-Zehnder and Young interferometers, microdisk and microring resonators, surface plasmon resonance, hollow and antiresonant waveguides, and Bragg gratings to realize very sensitive and selective, ultra-compact and fast biosensors is discussed. Finally, CMOS-compatible technologies are proved to be the most attractive for fabrication of guided-wave photonic biosensors.

  2. Biosensor commercialization strategy - a theoretical approach.

    PubMed

    Lin, Chin-Tsai; Wang, Su-Man

    2005-01-01

    Biosensors are analytical devices, which use biological interactions to provide either qualitative or quantitative results. They are extensively employed in many fields such as clinical diagnosis and biomedicine, military applications, anti-terrorism, farm, garden and veterinary analysis, process control, fermentation control and analysis, pharmaceutical and drug analysis, food and drink production and analysis, pollution control and monitoring, microbiology, bacterial and viral analysis, mining, and industrial and toxic gases. The biosensor market has significantly increased and will be mushrooming in the next decade. The total biosensor market is estimated to be 10.8 billion dollars by 2007. The emerging biosensor market presents both opportunities and obstacles to start-up biosensor entrepreneurs. The major challenge and threat for these entrepreneurs is how to predict the biosensor market and how to convert promising biosensor technology into commercialized biosensors. By adopting a simple commercialization strategy framework, we identify two key elements of biosensor commercialization strategy: excludability and complementary asset. We further divide biosensor commercialization environments into four distinct sub-environments: the Attacker's Advantage, Reputation-Based Idea Trading, Greenfield Competition and Ideas Factories. This paper explains how the interaction between these two key elements shapes biosensor commercialization strategy and biosensor industry dynamics. This paper also discusses alternative commercialization strategies for each specific commercialization environment and how to choose from these alternatives. The analysis of this study further provides a good reference for start-up biosensor entrepreneurs to formulate effective biosensor commercialization strategy.

  3. Graphene electrochemistry: fabricating amperometric biosensors.

    PubMed

    Brownson, Dale A C; Banks, Craig E

    2011-05-21

    The electrochemical sensing of hydrogen peroxide is of substantial interest to the operation of oxidase-based amperometric biosensors. We explore the fabrication of a novel and highly sensitive electro-analytical biosensor using well characterised commercially available graphene and compare and contrast responses using Nafion -graphene and -graphite modified electrodes. Interestingly we observe that graphite exhibits a superior electrochemical response due to its enhanced percentage of edge plane sites when compared to graphene. However, when Nafion, routinely used in amperometric biosensors, is introduced onto graphene and graphite modified electrodes, re-orientation occurs in both cases which is beneficial in the former and detrimental in the latter; insights into this contrasting behaviour are consequently presented providing acuity into sensor design and development where graphene is utilised in biosensors.

  4. Organic photodiodes for biosensor miniaturization.

    PubMed

    Wojciechowski, Jason R; Shriver-Lake, Lisa C; Yamaguchi, Mariko Y; Füreder, Erwin; Pieler, Roland; Schamesberger, Martin; Winder, Christoph; Prall, Hans Jürgen; Sonnleitner, Max; Ligler, Frances S

    2009-05-01

    Biosensors have successfully demonstrated the capability to detect multiple pathogens simultaneously at very low levels. Miniaturization of biosensors is essential for use in the field or at the point of care. While microfluidic systems reduce the footprint for biochemical processing devices and electronic components are continually becoming smaller, optical components suitable for integration--such as LEDs and CMOS chips--are generally still too expensive for disposable components. This paper describes the integration of polymer diodes onto a biosensor chip to create a disposable device that includes both the detector and the sensing surface coated with immobilized capture antibody. We performed a chemiluminescence immunoassay on the OPD substrate and measured the results using a hand-held reader attached to a laptop computer. The miniaturized biosensor with the disposable slide including the organic photodiode detected Staphylococcal enterotoxin B at concentrations as low as 0.5 ng/mL.

  5. High-throughput living cell-based optical biosensor for detection of bacterial lipopolysaccharide (LPS) using a red fluorescent protein reporter system

    PubMed Central

    Jiang, Hui; Jiang, Donglei; Shao, Jingdong; Sun, Xiulan; Wang, Jiasheng

    2016-01-01

    Due to the high toxicity of bacterial lipopolysaccharide (LPS), resulting in sepsis and septic shock, two major causes of death worldwide, significant effort is directed toward the development of specific trace-level LPS detection systems. Here, we report sensitive, user-friendly, high-throughput LPS detection in a 96-well microplate using a transcriptional biosensor system, based on 293/hTLR4A-MD2-CD14 cells that are transformed by a red fluorescent protein (mCherry) gene under the transcriptional control of an NF-κB response element. The recognition of LPS activates the biosensor cell, TLR4, and the co-receptor-induced NF-κB signaling pathway, which results in the expression of mCherry fluorescent protein. The novel cell-based biosensor detects LPS with specificity at low concentration. The cell-based biosensor was evaluated by testing LPS isolated from 14 bacteria. Of the tested bacteria, 13 isolated Enterobacteraceous LPSs with hexa-acylated structures were found to increase red fluorescence and one penta-acylated LPS from Pseudomonadaceae appeared less potent. The proposed biosensor has potential for use in the LPS detection in foodstuff and biological products, as well as bacteria identification, assisting the control of foodborne diseases. PMID:27841364

  6. Development of LEDs-based microplate reader for bioanalytical assay measurements

    NASA Astrophysics Data System (ADS)

    Alaruri, Sami D.; Katzlinger, Michael; Schinwald, Bernhard; Kronberger, Georg; Atzler, Joseph

    2013-10-01

    The optical design for an LEDs-based microplate reader that can perform fluorescence intensity (top and bottom), absorbance, luminescence and time-resolved fluorescence measurements is described. The microplate reader is the first microplate reader in the marketplace that incorporates LEDs as excitation light sources. Absorbance measurements over the 0-3.5 optical density range for caffeine solution are presented. Additionally, fluorescence intensity readings collected at 535 and 625 nm from a green and a red RediPlateTM are reported. Furthermore, fluorescence decay lifetime measurements obtained for Eu (europium) and Sm (samarium) standard solutions using 370 nm excitation are presented. The microplate reader detection limits for the fluorescence intensity top, fluorescence intensity bottom, fluorescence polarization and time-resolved fluorescence modes are 1.5 fmol 100 µL-1 fluorescein (384-well plate), 25 fmol 100 µL-1 fluorescein (384-well plate), 5 mP at 10 nM fluorescein (black 384-well plate) and 30 amol 100 µL-1 europium solution (white 384-well plate), respectively.

  7. Characterization of growth inhibition of oral bacteria by sophorolipid using a microplate-format assay

    USDA-ARS?s Scientific Manuscript database

    Sophorolipid (SL) is a class of glycolipid biosurfactant produced by yeast and has potent antimicrobial activity against many microorganisms. In this paper, a microplate-based method was developed to characterize the growth inhibition by SL on five representative species of caries-causing oral bact...

  8. High-throughput measurements of the optical redox ratio using a commercial microplate reader

    NASA Astrophysics Data System (ADS)

    Cannon, Taylor M.; Shah, Amy T.; Walsh, Alex J.; Skala, Melissa C.

    2015-01-01

    There is a need for accurate, high-throughput, functional measures to gauge the efficacy of potential drugs in living cells. As an early marker of drug response in cells, cellular metabolism provides an attractive platform for high-throughput drug testing. Optical techniques can noninvasively monitor NADH and FAD, two autofluorescent metabolic coenzymes. The autofluorescent redox ratio, defined as the autofluorescence intensity of NADH divided by that of FAD, quantifies relative rates of cellular glycolysis and oxidative phosphorylation. However, current microscopy methods for redox ratio quantification are time-intensive and low-throughput, limiting their practicality in drug screening. Alternatively, high-throughput commercial microplate readers quickly measure fluorescence intensities for hundreds of wells. This study found that a commercial microplate reader can differentiate the receptor status of breast cancer cell lines (p<0.05) based on redox ratio measurements without extrinsic contrast agents. Furthermore, microplate reader redox ratio measurements resolve response (p<0.05) and lack of response (p>0.05) in cell lines that are responsive and nonresponsive, respectively, to the breast cancer drug trastuzumab. These studies indicate that the microplate readers can be used to measure the redox ratio in a high-throughput manner and are sensitive enough to detect differences in cellular metabolism that are consistent with microscopy results.

  9. Coupling the Torpedo Microplate-Receptor Binding Assay with Mass Spectrometry to Detect Cyclic Imine Neurotoxins

    PubMed Central

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M.; Zakarian, Armen; Molgó, Jordi

    2014-01-01

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility. PMID:23131021

  10. High-throughput measurements of the optical redox ratio using a commercial microplate reader

    PubMed Central

    Cannon, Taylor M.; Shah, Amy T.; Walsh, Alex J.; Skala, Melissa C.

    2015-01-01

    Abstract. There is a need for accurate, high-throughput, functional measures to gauge the efficacy of potential drugs in living cells. As an early marker of drug response in cells, cellular metabolism provides an attractive platform for high-throughput drug testing. Optical techniques can noninvasively monitor NADH and FAD, two autofluorescent metabolic coenzymes. The autofluorescent redox ratio, defined as the autofluorescence intensity of NADH divided by that of FAD, quantifies relative rates of cellular glycolysis and oxidative phosphorylation. However, current microscopy methods for redox ratio quantification are time-intensive and low-throughput, limiting their practicality in drug screening. Alternatively, high-throughput commercial microplate readers quickly measure fluorescence intensities for hundreds of wells. This study found that a commercial microplate reader can differentiate the receptor status of breast cancer cell lines (p<0.05) based on redox ratio measurements without extrinsic contrast agents. Furthermore, microplate reader redox ratio measurements resolve response (p<0.05) and lack of response (p>0.05) in cell lines that are responsive and nonresponsive, respectively, to the breast cancer drug trastuzumab. These studies indicate that the microplate readers can be used to measure the redox ratio in a high-throughput manner and are sensitive enough to detect differences in cellular metabolism that are consistent with microscopy results. PMID:25634108

  11. Coupling the Torpedo microplate-receptor binding assay with mass spectrometry to detect cyclic imine neurotoxins.

    PubMed

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M; Zakarian, Armen; Molgó, Jordi

    2012-12-04

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility.

  12. Design of guided Bloch surface wave resonance bio-sensors with high sensitivity

    NASA Astrophysics Data System (ADS)

    Kang, Xiu-Bao; Wen, Li-Wei; Wang, Zhi-Guo

    2017-01-01

    The sensing performance of bio-sensors based on guided Bloch surface wave (BSW) resonance (GBR) is studied. GBR is realized by coupling the propagating electromagnetic wave with BSW on one side of a one-dimensional photonic crystal slab via the grating on the other side. The sensitivity of the designed bio-sensors is proportional to the grating constant when the wavelength spectrum is analyzed, and inversely proportional to the normal wave vector of the incident electromagnetic wave when the angular spectrum is resolved. For a GBR bio-sensor designed to operate near 70° angle of incidence from air, the angular sensitivity is very high, reaching 128 deg RIU-1. The sensitivity can be substantially increased by designing bio-sensors for operating at larger angles of incidence.

  13. Sensors and Biosensors for the Determination of Small Molecule Biological Toxins

    PubMed Central

    Wang, Xiang-Hong; Wang, Shuo

    2008-01-01

    The following review of sensors and biosensors focuses on the determination of commonly studied small molecule biological toxins, including mycotoxins and small molecule neurotoxins. Because of the high toxicity of small molecule toxins, an effective analysis technique for determining their toxicity is indispensable. Sensors and biosensors have emerged as sensitive and rapid techniques for toxicity analysis in the past decade. Several different sensors for the determination of mycotoxins and other small molecule neurotoxins have been reported in the literature, and many of these sensors such as tissue biosensors, enzyme sensors, optical immunosensors, electrochemical sensors, quartz crystal sensors, and surface plasmon resonance biosensors are reviewed in this paper. Sensors are a practical and convenient monitoring tool in the area of routine analysis, and their specificity, sensitivity, reproducibility and analysis stability should all be improved in future work. In addition, accuracy field portable sensing devices and multiplexing analysis devices will be important requirement for the future. PMID:27873857

  14. The electrophotonic silicon biosensor

    PubMed Central

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E.; Scullion, Mark G.; Krauss, Thomas F.; Johnson, Steven D.

    2016-01-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale. PMID:27624590

  15. Integrated optic biosensor

    NASA Astrophysics Data System (ADS)

    Boiarski, Anthony A.; Busch, James R.; Bhullar, Ballwant S.; Ridgway, Richard W.; Miller, Larry S.; Zulich, A. W.

    1993-05-01

    A micro-sized biosensor is formed using integrated-optic channel waveguides in a Mach- Zehnder interferometer configuration. The device measures refractive index changes on the waveguide surface, so it is called a biorefractometer. With an appropriate overlay or selective coating, the sensor can monitor proteins in blood or pollutants and bio-warfare agents in water. The waveguides are fabricated in a glass substrate using potassium ion exchange. A patterned glass buffer layer defines the interferometer's sensing and reference arms. A silicone-rubber cell arrangement brings sample analytes into contact with proteins immobilized on the integrated-optical waveguide surface. Data obtained for antigen-antibody binding of the proteins human Immunoglobulin-G and staph enterotoxin-B indicate that a 50 - 100 ng/ml concentration levels can be measured in less than ten minutes.

  16. Noninvasive biosensor for hypoglycemia

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Whitchurch, Ashwin K.; Sarukesi, Karunakaran

    2003-01-01

    Hypoglycemia-abnormal decrease in blood sugar- is a major obstacle in the management of diabetes and prevention of long-term complications, and it may impose serious effects on the brain, including impairment of memory and other cognitive functions. This is especially a concern in early childhood years when the nervous system is still developing. Hypoglycemic unawareness (in which the body"s normal ability to signal low blood sugar doesn"t work and an oncoming low blood sugar episode proceeds undetected) is a particularly frightening problem for many people with diabetes. Researchers have now uncovered evidence that repeated bouts of insulin-induced hypoglycemia can harm the brain over time, causing confusion, abnormal behavior, loss of consciousness, and seizures. Extreme cases have resulted in coma and death. In this paper, a non-invasive biosensor in a wrist watch along with a wireless data downloading system is proposed.

  17. Glycan and lectin biosensors

    PubMed Central

    Belický, Štefan; Katrlík, Jaroslav

    2016-01-01

    A short description about the importance of glycan biorecognition in physiological (blood cell type) and pathological processes (infections by human and avian influenza viruses) is provided in this review. Glycans are described as much better information storage media, compared to proteins or DNA, due to the extensive variability of glycan structures. Techniques able to detect an exact glycan structure are briefly discussed with the main focus on the application of lectins (glycan-recognising proteins) in the specific analysis of glycans still attached to proteins or cells/viruses. Optical, electrochemical, piezoelectric and micromechanical biosensors with immobilised lectins or glycans able to detect a wide range of analytes including whole cells/viruses are also discussed. PMID:27365034

  18. The electrophotonic silicon biosensor

    NASA Astrophysics Data System (ADS)

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E.; Scullion, Mark G.; Krauss, Thomas F.; Johnson, Steven D.

    2016-09-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale.

  19. DNA nanotechnology-enabled biosensors.

    PubMed

    Chao, Jie; Zhu, Dan; Zhang, Yinan; Wang, Lianhui; Fan, Chunhai

    2016-02-15

    Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. DNA-based biosensors, as a sub-field to biosensor, utilize DNA strands with short oligonucleotides as probes for target recognition. Although DNA-based biosensors have offered a promising alternative for fast, simple and cheap detection of target molecules, there still exist key challenges including poor stability and reproducibility that hinder their competition with the current gold standard for DNA assays. By exploiting the self-recognition properties of DNA molecules, researchers have dedicated to make versatile DNA nanostructures in a highly rigid, controllable and functionalized manner, which offers unprecedented opportunities for developing DNA-based biosensors. In this review, we will briefly introduce the recent advances on design and fabrication of static and dynamic DNA nanostructures, and summarize their applications for fabrication and functionalization of DNA-based biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. New GPS Constrains on Crustal Deformation within the Puerto Rico-Virgin Islands Microplate

    NASA Astrophysics Data System (ADS)

    Solares, M. M.; Lopez, A. M.; Jansma, P. E.; Mattioli, G. S.

    2015-12-01

    Over twenty years of Global Positioning System (GPS) observations along the northeastern region of the Caribbean plate boundary zone have been used to evaluate crustal deformation in the Puerto Rico and Virgin Islands (PRVI) microplate, which generally translates westward relative to the Caribbean plate. New data from continuous GPS stations (cGPS) and re-occupied campaign GPS stations (eGPS) obtained between 2014 and 2015 allowed us to update the velocity field of the PRVI GPS Network and redefine the existing plate kinematics model of the PRVI microplate from previous measurements (Jansma et al., 2000; Jansma & Mattioli, 2005). Geodetic datasets for this epoch were processed with GIPSY/OASIS II (v.6.2) using an absolute point positioning strategy with final, precise orbits and clocks from JPL (IGS08). Results of sites velocity in the PRVI block are presented with respect to North America and Caribbean reference frames in ITRF08. The horizontal velocity components were used to calculate baseline lengths changes between selected GPS stations that span on-land faults and microplate boundaries, thus allowing quantification of internal deformation within the PRVI block. This enables us to locate zones of active deformation and faulting in order to understand how the relative motion between geological structures is accommodated. Our updated velocity field constrains intraplate deformation to 1-3 mm/yr across the PRVI microplate and active extension of 1-2 mm/yr in the Anegada passage eastern boundary. In addition, counterclockwise rotation has been observed and may be related to the deformation in southwestern Puerto Rico continuing offshore to the Muertos Trough along PRVI's southern boundary. Despite the PRVI microplate slow motion and small deformation, increasing velocities from east to west coincides with the most active microseismic zone and ongoing deformation in southwestern Puerto Rico suggesting independent motion along this segment of the PRVI block.

  1. Gas sensing in microplates with optodes: influence of oxygen exchange between sample, air, and plate material.

    PubMed

    Arain, Sarina; Weiss, Svenja; Heinzle, Elmar; John, Gernot T; Krause, Christian; Klimant, Ingo

    2005-05-05

    Microplates with integrated optical oxygen sensors are a new tool to study metabolic rates and enzyme activities. Precise measurements are possible only if oxygen exchange between the sample and the environment is known. In this study we quantify gas exchange in plastic microplates. Dissolved oxygen was detected using either an oxygen-sensitive film fixed at the bottom of each well or a needle-type sensor. The diffusion of oxygen into wells sealed with different foils, paraffin oil, and paraffin wax, respectively, was quantified. Although foil covers showed the lowest oxygen permeability, they include an inevitable gas phase between sample and sealing and are difficult to manage. The use of oil was found to be critical due to the extensive shaking caused by movement of the plates during measurements in microplate readers. Thus, paraffin wax was the choice material because it avoids convection of the sample and is easy to handle. Furthermore, without shaking, significant gradients in pO2 levels within a single well of a polystyrene microplate covered with paraffin oil were detected with the needle-type sensor. Higher pO2 levels were obtained near the surface of the sample as well as near the wall of the well. A significant diffusion of oxygen through the plastic plate material was found using plates based on polystyrene. Thus, the location of a sensor element within the well has an effect on the measured pO2 level. Using a sensor film fixed on the bottom of a well or using a dissolved pO2-sensitive indicator results in pO2 offset and in apparently lower respiration rates or enzyme activities. Oxygen diffusion through a polystyrene microplate was simulated for measurements without convection--that is, for samples without oxygen diffusion through the cover and for unshaken measurements using permeable sealings. This mathematical model allows for calculation of the correct kinetic parameters. Copyright 2005 Wiley Periodicals, Inc.

  2. BIOSENSORS FOR ENVIRONMENTAL MONITORING: A REGULATORY PERSPECTIVE

    EPA Science Inventory

    Biosensors show the potential to complement laboratory-based analytical methods for environmental applications. Although biosensors for potential environmental-monitoring applications have been reported for a wide range of environmental pollutants, from a regulatory perspective, ...

  3. BIOSENSORS FOR ENVIRONMENTAL MONITORING: A REGULATORY PERSPECTIVE

    EPA Science Inventory

    Biosensors show the potential to complement laboratory-based analytical methods for environmental applications. Although biosensors for potential environmental-monitoring applications have been reported for a wide range of environmental pollutants, from a regulatory perspective, ...

  4. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    EPA Science Inventory

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  5. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    EPA Science Inventory

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  6. Hybrid optofluidic biosensors

    NASA Astrophysics Data System (ADS)

    Parks, Joshua W.

    Optofluidics, born of the desire to create a system containing microfluidic environments with integrated optical elements, has seen dramatic increases in popularity over the last 10 years. In particular, the application of this technology towards chip based molecular sensors has undergone significant development. The most sensitive of these biosensors interface liquid- and solid-core antiresonant reflecting optical waveguides (ARROWs). These sensor chips are created using conventional silicon microfabrication. As such, ARROW technology has previously been unable to utilize state-of-the-art microfluidic developments because the technology used--soft polydimethyl siloxane (PDMS) micromolded chips--is unamenable to the silicon microfabrication workflows implemented in the creation of ARROW detection chips. The original goal of this thesis was to employ hybrid integration, or the connection of independently designed and fabricated optofluidic and microfluidic chips, to create enhanced biosensors with the capability of processing and detecting biological samples on a single hybrid system. After successful demonstration of this paradigm, this work expanded into a new direction--direct integration of sensing and detection technologies on a new platform with dynamic, multi-dimensional photonic re-configurability. This thesis reports a number of firsts, including: • 1,000 fold optical transmission enhancement of ARROW optofluidic detection chips through thermal annealing, • Detection of single nucleic acids on a silicon-based ARROW chip, • Hybrid optofluidic integration of ARROW detection chips and passive PDMS microfluidic chips, • Hybrid optofluidic integration of ARROW detection chips and actively controllable PDMS microfluidic chips with integrated microvalves, • On-chip concentration and detection of clinical Ebola nucleic acids, • Multimode interference (MMI) waveguide based wavelength division multiplexing for detection of single influenza virions,

  7. Measurement of factor v activity in human plasma using a microplate coagulation assay.

    PubMed

    Tilley, Derek; Levit, Irina; Samis, John A

    2012-09-09

    In response to injury, blood coagulation is activated and results in generation of the clotting protease, thrombin. Thrombin cleaves fibrinogen to fibrin which forms an insoluble clot that stops hemorrhage. Factor V (FV) in its activated form, FVa, is a critical cofactor for the protease FXa and accelerator of thrombin generation during fibrin clot formation as part of prothrombinase (1, 2). Manual FV assays have been described (3, 4), but they are time consuming and subjective. Automated FV assays have been reported (5-7), but the analyzer and reagents are expensive and generally provide only the clot time, not the rate and extent of fibrin formation. The microplate platform is preferred for measuring enzyme-catalyzed events because of convenience, time, cost, small volume, continuous monitoring, and high-throughput (8, 9). Microplate assays have been reported for clot lysis (10), platelet aggregation (11), and coagulation Factors (12), but not for FV activity in human plasma. The goal of the method was to develop a microplate assay that measures FV activity during fibrin formation in human plasma. This novel microplate method outlines a simple, inexpensive, and rapid assay of FV activity in human plasma. The assay utilizes a kinetic microplate reader to monitor the absorbance change at 405 nm during fibrin formation in human plasma (Figure 1) (13). The assay accurately measures the time, initial rate, and extent of fibrin clot formation. It requires only μl quantities of plasma, is complete in 6 min, has high-throughput, is sensitive to 24-80 pM FV, and measures the amount of unintentionally activated (1-stage activity) and thrombin-activated FV (2-stage activity) to obtain a complete assessment of its total functional activity (2-stage activity - 1-stage activity). Disseminated intravascular coagulation (DIC) is an acquired coagulopathy that most often develops from pre-existing infections (14). DIC is associated with a poor prognosis and increases mortality

  8. Biosensor for metal analysis and speciation

    DOEpatents

    Aiken, Abigail M.; Peyton, Brent M.; Apel, William A.; Petersen, James N.

    2007-01-30

    A biosensor for metal analysis and speciation is disclosed. The biosensor comprises an electron carrier immobilized to a surface of an electrode and a layer of an immobilized enzyme adjacent to the electrode. The immobilized enzyme comprises an enzyme having biological activity inhibited by a metal to be detected by the biosensor.

  9. Aptamer-Based Fluorescent Biosensors

    PubMed Central

    Wang, Rongsheng E.; Zhang, Yin; Cai, Jianfeng; Cai, Weibo; Gao, Ting

    2011-01-01

    Selected from random pools of DNA or RNA molecules through systematic evolution of ligands by exponential enrichment (SELEX), aptamers can bind to target molecules with high affinity and specificity, which makes them ideal recognition elements in the development of biosensors. To date, aptamer-based biosensors have used a wide variety of detection techniques, which are briefly summarized in this article. The focus of this review is on the development of aptamer-based fluorescent biosensors, with emphasis on their design as well as properties such as sensitivity and specificity. These biosensors can be broadly divided into two categories: those using fluorescently-labeled aptamers and others that employ label-free aptamers. Within each category, they can be further divided into “signal-on” and “signal-off” sensors. A number of these aptamer-based fluorescent biosensors have shown promising results in biological samples such as urine and serum, suggesting their potential applications in biomedical research and disease diagnostics. PMID:21838688

  10. Porous silicon biosensor: current status.

    PubMed

    Dhanekar, Saakshi; Jain, Swati

    2013-03-15

    Biosensing technologies cater to modern day diagnostics and point of care multi-specialty clinics, hospitals and laboratories. Biosensors aggregate the sensitivity of detection methodologies and constitutional selectivity of biomolecules. Endeavors to develop highly sensitive, fast, stable and low cost biosensors have been made possible by extensive and arduous research. Immense research work is going on for detection of molecules using various materials as immobilization substrate and sensing elements. Amongst materials being used as bio-sensing substrates, nano-porous silicon (PS) has amassed attention and gained popularity in recent years. It has captivating and tunable features like ease of fabrication, special optico-physico properties, tailored morphological structure and versatile surface chemistry enhancing its prospects as transducer for fabricating biosensors. The present review describes the fabrication of PS and its biosensing capabilities for detection of various analytes including, but not limited to, glucose, DNA, antibodies, bacteria and viruses. Attention has been consecrated on the various methodologies such as electrical, electrochemical, optical and label free techniques along with the performances of these biosensors. It concludes with some future prospects and challenges of PS based biosensors.

  11. Biosensors for termite control

    NASA Astrophysics Data System (ADS)

    Farkhanda, M.

    2013-12-01

    Termites are major urban pests in Pakistan and cause damage to wooden structures and buildings. Termite management has two parts: prevention and control. The most difficult part of termite control is termite detection as most of them are subterranean in Pakistan and have tunneling habit.Throughout the world, chemical termiticides are going to be replaced by baits, microwave and sensor technology. Termite species are distinct biologically and have specific foraging behaviors. Termite Detection Radar, Moisture meter and Remote Thermal Sensor with Laser are available throughout the world. These can detect termites underground and use fewer chemicals than traditional methods. For wooden buildings, a termite sensor and an intrusion detection system for detecting termites are designed. A pair of electrodes is disposed inside the container. A pair of terminals is connected to these electrodes, these extend outside the container. Termites are detected by a change of conductivity between the electrodes, when termites are detected a warning device generates a warning signal. In Pakistan, there is dire need to develop such biosensoring devices locally, then apply control methods that would save money and protect the environment.

  12. Plants as Environmental Biosensors

    PubMed Central

    Ranatunga, Don Rufus A

    2006-01-01

    Plants are continuously exposed to a wide variety of perturbations including variation of temperature and/or light, mechanical forces, gravity, air and soil pollution, drought, deficiency or surplus of nutrients, attacks by insects and pathogens, etc., and hence, it is essential for all plants to have survival sensory mechanisms against such perturbations. Consequently, plants generate various types of intracellular and intercellular electrical signals mostly in the form of action and variation potentials in response to these environmental changes. However, over a long period, only certain plants with rapid and highly noticeable responses for environmental stresses have received much attention from plant scientists. Of particular interest to our recent studies on ultra fast action potential measurements in green plants, we discuss in this review the evidence supporting the foundation for utilizing green plants as fast biosensors for molecular recognition of the direction of light, monitoring the environment, and detecting the insect attacks as well as the effects of pesticides, defoliants, uncouplers, and heavy metal pollutants. PMID:19521490

  13. Amplified DNA Biosensors

    NASA Astrophysics Data System (ADS)

    Willner, Itamar; Shlyahovsky, Bella; Willner, Bilha; Zayats, Maya

    Amplified detection of DNA is a central research topic in modern bioanalytical science. Electronic or optical transduction of DNA recognition events provides readout signals for DNA biosensors. Amplification of the DNA analysis is accomplished by the coupling of nucleic acid-functionalized enzymes or nucleic acid-functionalized nanoparticles (NP) as labels for the DNA duplex formation. This chapter discusses the amplified amperometric analysis of DNA by redox enzymes, the amplified optical sensing of DNA by enzymes or DNAzymes, and the amplified voltammetric, optical, or microgravimetric analysis of DNA using metallic or semiconductor nanoparticles. Further approaches to amplify DNA detection involve the use of micro-carriers of redox compounds as labels for DNA complex formation on electrodes, or the use of micro-objects such as liposomes, that label the resulting DNA complexes on electrodes and alter the interfacial properties of the electrodes. Finally, DNA machines are used for the optical detection of DNA, and the systems are suggested as future analytical procedures that could substitute the polymerase chain reaction (PCR) process.

  14. DNA biosensors that reason.

    PubMed

    Sainz de Murieta, Iñaki; Rodríguez-Patón, Alfonso

    2012-08-01

    Despite the many designs of devices operating with the DNA strand displacement, surprisingly none is explicitly devoted to the implementation of logical deductions. The present article introduces a new model of biosensor device that uses nucleic acid strands to encode simple rules such as "IF DNA_strand(1) is present THEN disease(A)" or "IF DNA_strand(1) AND DNA_strand(2) are present THEN disease(B)". Taking advantage of the strand displacement operation, our model makes these simple rules interact with input signals (either DNA or any type of RNA) to generate an output signal (in the form of nucleotide strands). This output signal represents a diagnosis, which either can be measured using FRET techniques, cascaded as the input of another logical deduction with different rules, or even be a drug that is administered in response to a set of symptoms. The encoding introduces an implicit error cancellation mechanism, which increases the system scalability enabling longer inference cascades with a bounded and controllable signal-noise relation. It also allows the same rule to be used in forward inference or backward inference, providing the option of validly outputting negated propositions (e.g. "diagnosis A excluded"). The models presented in this paper can be used to implement smart logical DNA devices that perform genetic diagnosis in vitro.

  15. Sulfurizing-Induced Hollowing of Co9S8 Microplates with Nanosheet Units for Highly Efficient Water Oxidation.

    PubMed

    Liu, Huan; Ma, Fei-Xiang; Xu, Cheng-Yan; Yang, Li; Du, Yue; Wang, Pan-Pan; Yang, Shuang; Zhen, Liang

    2017-03-14

    Transition metal-based compounds are promising alternative non-precious electrocatalysts for hydrogen and oxygen evolution to noble metals-based materials. Nanosheets-constructed hollow structures can efficiently promote the electrocatalystic activity, mainly because of their largely exposed active sites. Herein, hierarchical Co9S8 hollow microplates with nanosheet building units are fabricated via sulfurization and subsequent calcination of pre-formed Co-glycolate microplates. Benefited from the advantages of hollow structure, nanosheet units and high Co3+ content, Co9S8 hollow microplates exhibit remarkable catalytic performance for oxygen evolution reaction (OER) with low overpotential of 278 mV to reach current density of 10 mA cm-2, low Tafel slope of 53 mV dec-1 and satisfied stability. This construction method of Co9S8 hierarchical hollow microplates composing by nanosheets structure is an effective tactics for promoting OER performance of water splitting electrocatalysts.

  16. Fluidics cube for biosensor miniaturization

    NASA Technical Reports Server (NTRS)

    Dodson, J. M.; Feldstein, M. J.; Leatzow, D. M.; Flack, L. K.; Golden, J. P.; Ligler, F. S.

    2001-01-01

    To create a small, portable, fully automated biosensor, a compact means of fluid handling is required. We designed, manufactured, and tested a "fluidics cube" for such a purpose. This cube, made of thermoplastic, contains reservoirs and channels for liquid samples and reagents and operates without the use of any internal valves or meters; it is a passive fluid circuit that relies on pressure relief vents to control fluid movement. We demonstrate the ability of pressure relief vents to control fluid movement and show how to simply manufacture or modify the cube. Combined with the planar array biosensor developed at the Naval Research Laboratory, it brings us one step closer to realizing our goal of a handheld biosensor capable of analyzing multiple samples for multiple analytes.

  17. Biofuel metabolic engineering with biosensors.

    PubMed

    Morgan, Stacy-Anne; Nadler, Dana C; Yokoo, Rayka; Savage, David F

    2016-12-01

    Metabolic engineering offers the potential to renewably produce important classes of chemicals, particularly biofuels, at an industrial scale. DNA synthesis and editing techniques can generate large pathway libraries, yet identifying the best variants is slow and cumbersome. Traditionally, analytical methods like chromatography and mass spectrometry have been used to evaluate pathway variants, but such techniques cannot be performed with high throughput. Biosensors - genetically encoded components that actuate a cellular output in response to a change in metabolite concentration - are therefore a promising tool for rapid and high-throughput evaluation of candidate pathway variants. Applying biosensors can also dynamically tune pathways in response to metabolic changes, improving balance and productivity. Here, we describe the major classes of biosensors and briefly highlight recent progress in applying them to biofuel-related metabolic pathway engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A biosensor for ferric ion.

    PubMed

    Barrero, J M; Morino-Bondi, M C; Pérez-Conde, M C; Cámara, C

    1993-11-01

    A new biosensor for monitoring iron has been developed. The active solid phase is pyoverdin, a natural fluorescent pigment biosynthesized by Pseudomonas fluorescens immobilized on controlled pore glass (CPG) and packed in a quartz flow-through cell. The biosensor is very selective for iron(III) and can be easily regenerated in about 2 min by passing 1M HCl through the cell. The optimum conditions and analytical characteristics (detection limit, precision and linear range) for the new sensor in solution (DL = 10 ng/ml) and in immobilized form (DL = 3 ng/ml) are reported. The biosensor has good stability and can be used continuously over a period for at least 3 months (over 1000 determinations). The sensor was successfully applied to determine iron in different water samples. There were no significant differences between the new method and the Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) reference method at the 95% confidence level.

  19. A review on impedimetric biosensors.

    PubMed

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2016-01-01

    Electrochemical impedance spectroscopy (EIS) is a sensitive technique for the analysis of the interfacial properties related to biorecognition events such as reactions catalyzed by enzymes, biomolecular recognition events of specific binding proteins, lectins, receptors, nucleic acids, whole cells, antibodies or antibody-related substances, occurring at the modified surface. Many studies on impedimetric biosensors are focused on immunosensors and aptasensors. In impedimetric immunosensors, antibodies and antigens are bound each other and thus immunocomplex is formed and the electrode is coated with a blocking layer. As a result of that electron transfer resistance increases. In impedimetric aptasensors, impedance changes following the binding of target sequences, conformational changes, or DNA damages. Impedimetric biosensors allow direct detection of biomolecular recognition events without using enzyme labels. In this paper, impedimetric biosensors are reviewed and the most interesting ones are discussed.

  20. Fluidics cube for biosensor miniaturization

    NASA Technical Reports Server (NTRS)

    Dodson, J. M.; Feldstein, M. J.; Leatzow, D. M.; Flack, L. K.; Golden, J. P.; Ligler, F. S.

    2001-01-01

    To create a small, portable, fully automated biosensor, a compact means of fluid handling is required. We designed, manufactured, and tested a "fluidics cube" for such a purpose. This cube, made of thermoplastic, contains reservoirs and channels for liquid samples and reagents and operates without the use of any internal valves or meters; it is a passive fluid circuit that relies on pressure relief vents to control fluid movement. We demonstrate the ability of pressure relief vents to control fluid movement and show how to simply manufacture or modify the cube. Combined with the planar array biosensor developed at the Naval Research Laboratory, it brings us one step closer to realizing our goal of a handheld biosensor capable of analyzing multiple samples for multiple analytes.

  1. Seismic evidence for rotating mantle flow around subducting slab edge associated with oceanic microplate capture

    NASA Astrophysics Data System (ADS)

    Mosher, Stephen G.; Audet, Pascal; L'Heureux, Ivan

    2014-07-01

    Tectonic plate reorganization at a subduction zone edge is a fundamental process that controls oceanic plate fragmentation and capture. However, the various factors responsible for these processes remain elusive. We characterize seismic anisotropy of the upper mantle in the Explorer region at the northern limit of the Cascadia subduction zone from teleseismic shear wave splitting measurements. Our results show that the mantle flow field beneath the Explorer slab is rotating anticlockwise from the convergence-parallel motion between the Juan de Fuca and the North America plates, re-aligning itself with the transcurrent motion between the Pacific and North America plates. We propose that oceanic microplate fragmentation is driven by slab stretching, thus reorganizing the mantle flow around the slab edge and further contributing to slab weakening and increase in buoyancy, eventually leading to cessation of subduction and microplate capture.

  2. A Fast Optical Method for the Determination of Liquid Levels in Microplates

    PubMed Central

    Thurow, Kerstin; Stoll, Norbert; Ritterbusch, Kai

    2011-01-01

    Parallel liquid handling systems are widely used in different applications of life sciences. In order to avoid false positive or negative results which lead to higher costs due to the replication of the experiments it is necessary to monitor the process and success of liquid delivery. An easy method for the determination of the liquid levels in microplates has been developed and evaluated. The optical method bases on the measurement of the liquid level using CCD cameras followed by special algorithms for the evaluation and visualization of the measured data. The proposed method was tested in changing environmental lighting for two different liquids. These tests confirm our approach towards optical liquid level determination for smallest volumes in microplates and also show the challenges regarding environmental lighting and different physical properties of fluids. PMID:21747734

  3. Quantitative, competitive PCR assay for HIV-1 using a microplate-based detection system.

    PubMed

    Guenthner, P C; Hart, C E

    1998-05-01

    We have developed a quantitative competitive PCR (QC-PCR) assay in a microplate format for quantifying human immunodeficiency virus Type 1 (HIV-1) DNA or RNA in a broad range of source materials. Our QC-PCR assay is a modification of technique originally described by Piatak et al. (1993), which is based on the presence of a competitive internal standard containing an internal 80-bp deletion of HIV-1 gag target sequence. For improved detection and quantification of the wild-type and internal-standard PCR products in a microplate format, we introduced a non-HIV, 31-bp insert into the internal standard as a probe hybridization site that does not cross-hybridize with wild-type HIV-1 products. By using a primer pair in which one primer is biotinylated, QC-PCRs can be bound to a streptavidin-coated microplate, denatured and probed with a digoxigenin (Dig)-labeled, wild-type or internal-standard probe. The hybridized Dig-labeled probes are detected with an anti-Dig antibody conjugated to detector molecules for luminometry (aequorin) or optical densitometry (peroxidase), yielding results that are quantifiable over the range of 100-10,000 copies of HIV gag. Tested source materials for HIV-1 DNA or RNA quantification include plasma, vaginal lavage and cultured cells. The application of the QC-PCR assay using the microplate format affords a convenient and cost-effective method for quantifying HIV-1 proviral and viral loads from a variety of body fluids, cells and tissues.

  4. Application of a microplate scale fluorochrome staining assay for the assessment of viability of probiotic preparations.

    PubMed

    Alakomi, H-L; Mättö, J; Virkajärvi, I; Saarela, M

    2005-07-01

    Cell viability in probiotic preparations is traditionally assessed by the plate count technique. Additionally, fluorescent staining combined with epifluorescence microscopy or flow cytometry has been developed for the viability assessment, but the currently available assays are either laborious or require highly sophisticated equipment. The aim of this study was to investigate the applicability of a microplate scale fluorochrome assay for predicting the cell state of freeze-dried Lactobacillus rhamnosus and Bifidobacterium animalis subsp. lactis preparations. In addition to viability assessment with LIVE/DEAD BacLight Bacterial Viability Kit, DiBAC(4)3 stain was used for the kinetic measurement of changes in bifidobacterial cell membrane functions during exposure to low pH. The microplate scale fluorochrome assay results on the viability and cell numbers of probiotic preparations correlated well with the results obtained with the culture-based technique and (with few exceptions) with epifluorescence microscopy. The assay was applicable also for the viability assessment of stressed (acid-treated) cells provided that the cell density in treatments was adjusted to the optimal measurement level of the fluorometer. The microplate scale fluorochrome assay offers a rapid and robust tool for the viability assessment of probiotic preparations, and enables also kinetic measurements.

  5. High-throughput microplate enzymatic assays for fast sugar and acid quantification in apple and tomato.

    PubMed

    Vermeir, S; Nicolaï, B M; Jans, K; Maes, G; Lammertyn, J

    2007-05-02

    In this article, we report on the use of miniaturized and automated enzymatic assays as an alternative technology for fast sugar and acid quantification in apples and tomatoes. Enzymatic assays for d-glucose, d-fructose, sucrose, D-sorbitol/xylitol, L-malic acid, citric acid, succinic acid, and L-glutamic acid were miniaturized from the standard 3 mL assays in cuvettes into assays of 200 microL or lower in 96 or 384 well microplates. The miniaturization and the automation were achieved with a four channel automatic liquid handling system in order to reduce the dispensing errors and to obtain an increased sample throughput. Performance factors (limit of detection, linearity of calibration curve, and repeatability) of the assays with standard solutions were proven to be satisfactory. The automated and miniaturized assays were validated with high-pressure liquid chromatography (HPLC) analyses for the quantification of sugars and acids in tomato and apple extracts. The high correlation between the two techniques for the different components indicates that the high-throughput microplate enzymatic assays can serve as a fast, reliable, and inexpensive alternative for HPLC as the standard analysis technique in the taste characterization of fruit and vegetables. In addition to the analysis of extracts, the high-throughput microplate enzymatic assays were used for the direct analysis of centrifuged and filtered tomato juice with an additional advantage that the sample preparation time and analysis costs are reduced significantly.

  6. The detection of cocaine in hair specimens using micro-plate enzyme immunoassay.

    PubMed

    Moore, C; Deitermann, D; Lewis, D; Feeley, B; Niedbala, R S

    1999-05-01

    The analysis of hair for drugs of abuse is becoming increasingly popular and is under consideration by the Division of Health and Human Services as a possible alternative or adjunct to urinalysis in workplace programs. The detection of cocaine in human hair using a commercially available micro-plate enzyme immunoassay is described for the first time. Sample size and incubation time were the major variables in the optimization of the method. In order to validate the procedure, the method was applied to 105 consecutive hair samples routinely received into our laboratory. The samples were simultaneously analyzed by the Micro-Plate immunoassay (EIA), as well as our current fluorescence polarization immunoassay (FPIA) procedure and gas chromatography-mass spectrometry (GC/MS). The sensitivity of the EIA and FPIA assays were 75% and 67.8% respectively; specificity 97.4% and 80.5% respectively; and efficiency 91.4 and 77.1% respectively. The Micro-Plate EIA was shown to be a valid alternative to other immunoassay screening methods for the detection of cocaine in hair by demonstrating increased sensitivity, specificity and efficiency over our current technique.

  7. Size-dependent electromechanical coupling behaviors of circular micro-plate due to flexoelectricity

    NASA Astrophysics Data System (ADS)

    Li, Anqing; Zhou, Shenjie; Qi, Lu

    2016-10-01

    In this paper, the flexoelectric theory is re-expressed by a set of orthogonal components of strain gradient tensor. The general formulations of flexoelectric theory in orthogonal curvilinear coordinates are derived and, then, are specified for the case of cylindrical coordinates. A flexoelectric circular micro-plate model is established based on the current formulations in cylindrical coordinates to evaluate its size-dependent static and dynamic responses. The governing equations, boundary conditions and initial conditions are obtained according to the Hamilton's principle. A static bending problem of simply supported axisymmetric circular micro-plate is solved in two cases, of which one is subjected to a distributed load and the other is subjected to a voltage across the plate thickness. And the free vibration problem of a simply supported circular micro-plate is also analyzed. The bending numerical results show that both the deflection and the electric potential exhibit obvious size dependency in the two cases. Both the induced electric potential in direct flexoelectric effect and the induced deflection in inverse flexoelectric effect decrease as the decrease in flexoelectric coefficient and even disappear when the flexoelectric coefficient equals zero. Moreover, the numerical results of free vibration demonstrate the dimensionless natural frequency shows obvious size effect, while the influence of flexoelectric coefficient on dimensionless natural frequency is negligible.

  8. Biosensors in Clinical Practice: Focus on Oncohematology

    PubMed Central

    Fracchiolla, Nicola S.; Artuso, Silvia; Cortelezzi, Agostino

    2013-01-01

    Biosensors are devices that are capable of detecting specific biological analytes and converting their presence or concentration into some electrical, thermal, optical or other signal that can be easily analysed. The first biosensor was designed by Clark and Lyons in 1962 as a means of measuring glucose. Since then, much progress has been made and the applications of biosensors are today potentially boundless. This review is limited to their clinical applications, particularly in the field of oncohematology. Biosensors have recently been developed in order to improve the diagnosis and treatment of patients affected by hematological malignancies, such as the biosensor for assessing the in vitro pre-treatment efficacy of cytarabine in acute myeloid leukemia, and the fluorescence resonance energy transfer-based biosensor for assessing the efficacy of imatinib in chronic myeloid leukemia. The review also considers the challenges and future perspectives of biosensors in clinical practice. PMID:23673681

  9. Biosensors and their applications – A review

    PubMed Central

    Mehrotra, Parikha

    2016-01-01

    The various types of biosensors such as enzyme-based, tissue-based, immunosensors, DNA biosensors, thermal and piezoelectric biosensors have been deliberated here to highlight their indispensable applications in multitudinous fields. Some of the popular fields implementing the use of biosensors are food industry to keep a check on its quality and safety, to help distinguish between the natural and artificial; in the fermentation industry and in the saccharification process to detect precise glucose concentrations; in metabolic engineering to enable in vivo monitoring of cellular metabolism. Biosensors and their role in medical science including early stage detection of human interleukin-10 causing heart diseases, rapid detection of human papilloma virus, etc. are important aspects. Fluorescent biosensors play a vital role in drug discovery and in cancer. Biosensor applications are prevalent in the plant biology sector to find out the missing links required in metabolic processes. Other applications are involved in defence, clinical sector, and for marine applications. PMID:27195214

  10. Electrical percolation based biosensors.

    PubMed

    Bruck, Hugh Alan; Yang, Minghui; Kostov, Yordan; Rasooly, Avraham

    2013-10-01

    A new approach to label free biosensing has been developed based on the principle of "electrical percolation". In electrical percolation, long-range electrical connectivity is formed in randomly oriented and distributed systems of discrete elements. By applying this principle to biological interactions, it is possible to measure biological components both directly and electronically. The main element for electrical percolation biosensor is the biological semiconductor (BSC) which is a multi-layer 3-D carbon nanotube-antibody network. In the BSC, molecular interactions, such as binding of antigens to the antibodies, disrupt the network continuity causing increased resistance of the network. BSCs can be fabricated by immobilizing conducting elements, such as pre-functionalized single-walled carbon nanotubes (SWNTs)-antibody complex, directly onto a substrate, such as a Poly(methyl methacrylate) (PMMA) surface (also known as plexi-glass or Acrylic). BSCs have been demonstrated for direct (label-free) electronic measurements of antibody-antigen binding using SWNTs. If the concentration of the SWNT network is slightly above the electrical percolation threshold, then binding of a specific antigen to the pre-functionalized SWNT dramatically increases the electrical resistance due to changes in the tunneling between the SWNTs. Using anti-staphylococcal enterotoxin B (SEB) IgG as a "gate" and SEB as an "actuator", it was demonstrated that the BSC was able to detect SEB at concentrations of 1 ng/ml. Based on this concept, an automated configuration for BSCs is described here that enables real time continuous detection. The new BSC configuration may permit assembly of multiple sensors on the same chip to create "biological central processing units (CPUs)" with multiple biological elements, capable of processing and sorting out information on multiple analytes simultaneously.

  11. Electrical Percolation Based Biosensors

    PubMed Central

    Bruck, Hugh Alan; Yang, Minghui; Kostov, Yordan; Rasooly, Avraham

    2013-01-01

    A new approach to label free biosensing has been developed based on the principle of “electrical percolation”. In electrical percolation, long-range electrical connectivity is formed in randomly oriented and distributed systems of discrete elements. By applying this principle to biological interactions, it is possible to measure biological components both directly and electronically. The main element for electrical percolation biosensor is the biological semiconductor (BSC) which is a multi-layer 3-D carbon nanotube-antibody network. In the BSC, molecular interactions, such as binding of antigens to the antibodies, disrupt the network continuity causing increased resistance of the network. BSCs can be fabricated by immobilizing conducting elements, such as pre-functionalized single-walled carbon nanotubes (SWNTs)-antibody complex, directly onto a substrate, such as a Poly(methyl methacrylate) (PMMA) surface (also known as plexi-glass or Acrylic). BSCs have been demonstrated for direct (label-free) electronic measurements of antibody-antigen binding using SWNTs. If the concentration of the SWNT network is slightly above the electrical percolation threshold, then binding of a specific antigen to the pre-functionalized SWNT dramatically increases the electrical resistance due to changes in the tunneling between the SWNTs. Using anti-Staphylococcal enterotoxin B (SEB) IgG as a “gate” and SEB as an “actuator”, it was demonstrated that the BSC was able to detect SEB at concentrations of 1 ng/ml. Based on this concept, an automated configuration for BSCs is described here that enables real time continuous detection. The new BSC configuration may permit assembly of multiple sensors on the same chip to create “Biological Central Processing Units (CPUs)” with multiple biological elements, capable of processing and sorting out information on multiple analytes simultaneously. PMID:24041756

  12. A luminescent nisin biosensor

    NASA Astrophysics Data System (ADS)

    Immonen, Nina; Karp, Matti

    2006-02-01

    Nisin is a lantibiotic, an antibacterial peptide produced by certain Lactococcus lactis strains that kills or inhibits the growth of other bacteria. Nisin is widely used as a food preservative, and its long-time use suggests that it can be generally regarded as safe. We have developed a method for determining the amount of nisin in food samples that is based on luminescent biosensor bacteria. Bacterial luciferase operon luxABCDE was inserted into plasmid pNZ8048, and the construct was transformed by electroporation into Lc. lactis strain NZ9800, whose ability to produce nisin has been erased by deletion of the gene nisA. The operon luxABCDE has been modified to be functional in gram-positive bacteria to confer a bioluminescent phenotype without the requirement of adding an exogenous substrate. In the plasmid pNZ8048, the operon was placed under control of the nisin-inducible nisA promoter. The chromosomal nisRK genes of Lc. lactis NZ9800 allow it to sense nisin in the environment and relay this signal via signal transduction proteins NisK and NisR to initiate transcription from nisA promoter. In the case of our sensor bacteria, this leads to production of luciferase and, thus, luminescence that can be directly measured from living bacteria. Luminescence can be detected as early as within minutes of induction. The nisin assay described here provides a detection limit in the sub-picogram level per ml, and a linear area between 1 - 1000 pg/ml. The sensitivity of this assay exceeds the performance of all previously published methods.

  13. Whole-cell biosensor of cellobiose and application to wood decay detection.

    PubMed

    Toussaint, Maxime; Bontemps, Cyril; Besserer, Arnaud; Hotel, Laurence; Gérardin, Philippe; Leblond, Pierre

    2016-12-10

    Fungal biodegradation of wood is one of the main threats regarding its use as a material. So far, the detection of this decaying process is empirically assessed by loss of mass, when the fungal attack is advanced and woody structure already damaged. Being able to detect fungal attack on wood in earlier steps is thus of special interest for the wood economy. In this aim, we designed here a new diagnostic tool for wood degradation detection based on the bacterial whole-cell biosensor technology. It was designed in diverting the soil bacteria Streptomyces CebR sensor system devoted to cellobiose detection, a cellulolytic degradation by-product emitted by lignolytic fungi since the onset of wood decaying process. The conserved regulation scheme of the CebR system among Streptomyces allowed constructing a molecular tool easily transferable in different strains or species and enabling the screen for optimal host strains for cellobiose detection. Assays are performed in microplates using one-day culture lysates. Diagnostic is performed within one hour by a spectrophotometric measuring of the cathecol deshydrogenase activity. The selected biosensor was able to detect specifically cellobiose at concentrations similar to those measured in decaying wood and in a spruce leachate attacked by a lignolytic fungus, indicating a high potential of applicability to detect ongoing wood decay process. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Block rotation and continental extension in Afar: A comparison to oceanic microplate systems

    NASA Astrophysics Data System (ADS)

    Acton, Gary D.; Stein, Seth; Engeln, Joseph F.

    1991-06-01

    The reorganization of oceanic spreading centers separating major plates often appears to occur by a process in which discrete microplates form and evolve by rift propagation. To see whether such microplate behavior has implications for continental rifting, we investigate the application of a microplate model to the Afar region at the Nubia-Somalia-Arabia triple junction. Studies of marine magnetic anomalies, volcanic ages, bathymetry, and seismicity suggest that the westward propagating Gulf of Aden spreading center has propagated into eastern Afar within the past 2 m.y., causing rifting and extension within the continent. We derive constraints on the extension history from the geometry and timing of rift formation and from paleomagnetic data indicating that Pliocene to Pleistocene age rocks have undergone a clockwise rotation of ˜11°. We suggest that the history of rifting, the rotation, and several other features of the regional geology can be described by combining features of an oceanic microplate model and the concept of rift localization previously proposed for Afar. In this scenario, motion occurring on several rifts within an extensional zone preceding the propagating spreading center is gradually transferred to a single rift. While motion is transferred, the overlap region between the growing and dying rifts acts as one or more microplates or blocks that rotate relative to the surrounding major plates. The rifting history and rotations in eastern Afar are thus related to the rift propagation and localization that occurs as the plate boundary evolves. Provided the constraints we use are appropriate, our model better describes the regional kinematics than alternative block models including one based on "bookshelf" faulting. If the tectonics of Afar are typical for continental breakup, they have interesting implications for the geometry of passive margins. In particular, asymmetric rifted margins can be produced if the final location of the rift axis is not

  15. One microplate - three orogens: Alps, Dinarides, Apennines and the role of the Adriatic plate

    NASA Astrophysics Data System (ADS)

    Ustaszewski, Kamil; Le Breton, Eline; Balling, Philipp; Handy, Mark R.; Molli, Giancarlo; Tomljenović, Bruno

    2017-04-01

    The motion of the Adriatic microplate with respect to the Eurasian and African plates is responsible for the Mesozoic to present tectonic evolution of the Alps, Carpathians, the Dinarides and Hellenides as well as the Apennines. The classical approach for reconstructing plate motions is to assume that tectonic plates are rigid, then apply Euler's theorem to describe their rotation on an ideally spherical Earth by stepwise restorations of magnetic anomalies and fracture zones in oceanic basins. However, this approach is inadequate for reconstructing the motion of Mediterranean microplates like Adria, which, at present, is surrounded by convergent margins and whose oceanic portions have by now been entirely subducted. Most constraints on the motion of the Adriatic microplate come either from palaeomagnetics or from shortening estimates in the Alps, i.e., its northern margin. This approach renders plate tectonic reconstructions prone to numerous errors, yielding inadmissible misfits in the Ionian Sea between southern Italy and northern Greece. At the same time, Adria's western and eastern margins in the Apennines and in the Dinarides have hitherto not been appropriately considered for improving constraints on the motion of Adria. This presentation presents new results of ongoing collaborative research that aims at improving the relative motion path for the Adriatic microplate for the Cenozoic by additionally quantifying and restoring the amount of shortening and extension in a set of geophysical-geological transects from the Tyrrhenian Sea, the Apennines and the Dinarides. Already now, our approach yields an improved motion path for the Adriatic microplate for the last 20 Ma, which minimizes misfits in previous reconstructions. The currently largest challenge in our reconstructions is to reconcile amount and age of shortening in the Dinarides fold-and-thrust belt. For one thing, we see good agreement between the cross-sectional length of subducted material (c. 135 km

  16. Fiber optic-based biosensor

    NASA Astrophysics Data System (ADS)

    Ligler, Frances S.

    1991-12-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  17. Fiber optic-based biosensor

    NASA Technical Reports Server (NTRS)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  18. Improved Ion-Channel Biosensors

    NASA Technical Reports Server (NTRS)

    Nadeau, Jay; White, Victor; Dougherty, Dennis; Maurer, Joshua

    2004-01-01

    An effort is underway to develop improved biosensors of a type based on ion channels in biomimetic membranes. These sensors are microfabricated from silicon and other materials compatible with silicon. As described, these sensors offer a number of advantages over prior sensors of this type.

  19. Fiber optic-based biosensor

    NASA Technical Reports Server (NTRS)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  20. A High-Content Assay for Biosensor Validation and for Examining Stimuli that Affect Biosensor Activity.

    PubMed

    Slattery, Scott D; Hahn, Klaus M

    2014-12-01

    Biosensors are valuable tools used to monitor many different protein behaviors in vivo. Demand for new biosensors is high, but their development and characterization can be difficult. During biosensor design, it is necessary to evaluate the effects of different biosensor structures on specificity, brightness, and fluorescence responses. By co-expressing the biosensor with upstream proteins that either stimulate or inhibit the activity reported by the biosensor, one can determine the difference between the biosensor's maximally activated and inactivated state, and examine response to specific proteins. We describe here a method for biosensor validation in a 96-well plate format using an automated microscope. This protocol produces dose-response curves, enables efficient examination of many parameters, and unlike cell suspension assays, allows visual inspection (e.g., for cell health and biosensor or regulator localization). Optimization of single-chain and dual-chain Rho GTPase biosensors is addressed, but the assay is applicable to any biosensor that can be expressed or otherwise loaded in adherent cells. The assay can also be used for purposes other than biosensor validation, using a well-characterized biosensor as a readout for effects of upstream molecules.

  1. A high content assay for biosensor validation and for examining stimuli that affect biosensor activity

    PubMed Central

    Slattery, Scott D.; Hahn, Klaus M.

    2015-01-01

    Biosensors are valuable tools used to monitor many different protein behaviors in vivo. Demand for new biosensors is high, but their development and characterization can be difficult. During biosensor design, it is necessary to evaluate the effects of different biosensor structures on specificity, brightness, and fluorescence responses. By co-expressing the biosensor with upstream proteins that either stimulate or inhibit the activity reported by the biosensor, one can determine the difference between the biosensor’s maximally activated and inactivated state, and examine response to specific proteins. This involves considerable labor and expense, as expression conditions must be optimized to saturate the biosensor with the regulator, and multiple replicates and controls are required. We describe here a protocol for biosensor validation in a 96-well plate format using an automated microscope. This protocol produces dose-response curves, enables efficient examination of many parameters, and unlike cell suspension assays allows visual inspection (eg for cell health and biosensor or regulator localization). Optimization of single chain and dual chain Rho GTPase biosensors is addressed, but the assay is applicable to any biosensor that can be expressed or otherwise loaded in adherent cells. The assay can also be used for purposes other than biosensor validation, using a well-characterized biosensor as a readout for variations in upstream molecules. PMID:25447074

  2. Microscale vapour diffusion for protein crystallization.

    PubMed

    Korczyńska, Justyna; Hu, Ting Chou; Smith, David K; Jenkins, Joby; Lewis, Rob; Edwards, Tom; Brzozowski, Andrzej M

    2007-09-01

    The development of new crystallization platforms via the application of high-throughput technologies has delivered a plethora of crystallization plates suitable for robot-driven and manual setups. However, practically all these plates (except for microfluidic channel chips) are based on a very similar design and well (precipitant):drop (protein) volume ratios. A new type of crystallization plate (microplate) has therefore been developed and tested that still employs the classical vapour-diffusion technique but minimizes the precipitant well volume to 1.2 microl for a 150 nl protein drop setup. This enables a very significant saving on the total bulk of the crystallization screen, hence allowing the application of new, rare and expensive solutions in automated crystallization-screening procedures. Additionally, owing to the very low drop:well volume ratio, the new microplate can significantly accelerate the equilibrium time necessary for crystal nucleation and growth, in many cases shortening the high-throughput crystallization screening process to a few hours.

  3. Semiconductor Quantum Dots in Chemical Sensors and Biosensors

    PubMed Central

    Frasco, Manuela F.; Chaniotakis, Nikos

    2009-01-01

    Quantum dots are nanometre-scale semiconductor crystals with unique optical properties that are advantageous for the development of novel chemical sensors and biosensors. The surface chemistry of luminescent quantum dots has encouraged the development of multiple probes based on linked recognition molecules such as peptides, nucleic acids or small-molecule ligands. This review overviews the design of sensitive and selective nanoprobes, ranging from the type of target molecules to the optical transduction scheme. Representative examples of quantum dot-based optical sensors from this fast-moving field have been selected and are discussed towards the most promising directions for future research. PMID:22423206

  4. Capacitive Biosensors and Molecularly Imprinted Electrodes

    PubMed Central

    Ertürk, Gizem; Mattiasson, Bo

    2017-01-01

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications. PMID:28218689

  5. Lipase and phospholipase biosensors: a review.

    PubMed

    Herrera-López, Enrique J

    2012-01-01

    Recent advances in the field of biology, electronics, and nanotechnology have improved the development of biosensors. A biosensor is a device composed of a biological recognition element and a sensor element. Biosensor applications are becoming increasingly important in areas such as biotechnology, pharmaceutics, food, and environment. Lipases and phospholipases are enzymes which have been used widely in food industry, oleochemical industry, biodegradable polymers, detergents, and other applications. In the medical industry, lipases and phospholipases are used as diagnostic tools to detect triglycerides, cholesterol, and phospholipids levels in blood samples. Therefore, the development of lipase and phospholipase biosensors is of paramount importance in the clinical area. This chapter introduces the reader into the preliminaries of biosensor and reviews recent developments of lipase and phospholipase biosensors.

  6. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    PubMed

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  7. Faulting and strain partitioning in Jamaica from GPS and structural data: Implications for Gonave and Hispaniola microplate kinematics, northern Caribbean

    NASA Astrophysics Data System (ADS)

    Benford, Bryn

    A series of small microplates separate the Caribbean and North America plates in the northern Caribbean. My dissertation focuses on understanding the structural evolution and neotectonic deformation of Jamaica, and how it relates to the overall microplates and tectonics of the northern Caribbean. Jamaica, which lies along the same seismically active plate boundary as Haiti, has had twelve earthquakes with Modified Mercalli intensities of VII to X since 1667. However, remarkably little is known about which faults presently constitute the most significant seismic hazards. This research provides insight into tectonic processes and facilitates mitigation of geological hazards in the region. Two chapters focus on characterizing deformation in Jamaica through modeling GPS velocities and through field mapping. The best-fitting models based on GPS velocities place most strike-slip motion on faults in central Jamaica and suggest that faults in northern Jamaica have minimal motion. I estimate 4--5 mm yr-1 of slip for faults near the capital city of Kingston of southeastern Jamaica, implying significant seismic hazard. Field mapping combined with present-day topography, focal mechanisms, geology, gravity, and well and borehole data indicate that east-west contraction is accommodated by reactivated, NNW-striking reverse faults, which are bound by E-striking strike-slip faults in southern Jamaica. The other two chapters of my thesis focuses on understanding the behavior of the microplates along the Caribbean-North America plate boundary: I model GPS velocities and use shear-wave splitting to understand the crustal and mantle behaviors, respectively of the microplates. The GPS data require an independently moving Hispaniola microplate between the Mona Passage and a likely diffuse boundary just west of or within western Hispaniola. The new microplate angular velocities predict 6.8+/-1.0 mm yr-1 of left-lateral slip and 5.7+/-1 mm yr-1 of convergent motion surrounding the

  8. Recent Development in Optical Fiber Biosensors

    PubMed Central

    Bosch, María Espinosa; Sánchez, Antonio Jesús Ruiz; Rojas, Fuensanta Sánchez; Ojeda, Catalina Bosch

    2007-01-01

    Remarkable developments can be seen in the field of optical fibre biosensors in the last decade. More sensors for specific analytes have been reported, novel sensing chemistries or transduction principles have been introduced, and applications in various analytical fields have been realised. This review consists of papers mainly reported in the last decade and presents about applications of optical fiber biosensors. Discussions on the trends in optical fiber biosensor applications in real samples are enumerated.

  9. Conventional tube and microplate Limulus amoebocyte lysate procedures for determination of gram-negative bacteria in milk.

    PubMed

    May, S A; Mikolajcik, E M; Richter, E R

    1989-05-01

    A comparison was made of the conventional tube and microplate Limulus amoebocyte lysate assay for detection of gram-negative bacterial lipopolysaccharide in milk. Raw whole milk samples were maintained frozen and portions were examined periodically on alternate days during 13-d storage to evaluate the reproducibility of both Limulus amoebocyte lysate procedures and to determine optimum reaction conditions for the microplate method. One-day-old, raw and locally purchased pasteurized milk samples, held at 7 degrees C, were analyzed during storage to establish the correlation of both procedures with aerobic and modified psychrotrophic plate counts. Vitamin- and mineral-fortified dairy-based products were examined using the microplate Limulus amoebocyte lysate test as a potential indicator of raw material or finished product bacterial quality and possible postprocessing contamination. Statistical analysis of the data collected comparing the conventional tube and the microplate Limulus amoebocyte lysate assay demonstrated no significant difference exists between the methods when either the modified psychrotrophic bacterial count or the aerobic plate count was used to determine gram-negative bacteria in pasteurized or raw milk (P less than .91). The microplate method, which uses half the lysate reagent, was a good indicator of the bacterial quality of milk and fortified dairy products, consistently detecting bacterial levels greater than 10(3) to 10(4)/ml.

  10. Establishment and validation of a method for multi-dose irradiation of cells in 96-well microplates

    SciTech Connect

    Abatzoglou, Ioannis; Zois, Christos E.; Pouliliou, Stamatia

    2013-02-15

    Highlights: ► We established a method for multi-dose irradiation of cell cultures within a 96-well plate. ► Equations to adjust to preferable dose levels are produced and provided. ► Up to eight different dose levels can be tested in one microplate. ► This method results in fast and reliable estimation of radiation dose–response curves. -- Abstract: Microplates are useful tools in chemistry, biotechnology and molecular biology. In radiobiology research, these can be also applied to assess the effect of a certain radiation dose delivered to the whole microplate, to test radio-sensitivity, radio-sensitization or radio-protection. Whether different radiation doses can be accurately applied to a single 96-well plate to further facilitate and accelerated research by one hand and spare funds on the other, is a question dealt in the current paper. Following repeated ion-chamber, TLD and radiotherapy planning dosimetry we established a method for multi-dose irradiation of cell cultures within a 96-well plate, which allows an accurate delivery of desired doses in sequential columns of the microplate. Up to eight different dose levels can be tested in one microplate. This method results in fast and reliable estimation of radiation dose–response curves.

  11. Characterization of growth inhibition of oral bacteria by sophorolipid using a microplate-format assay.

    PubMed

    Solaiman, Daniel K Y; Ashby, Richard D; Uknalis, Joseph

    2017-05-01

    Sophorolipid (SL) is a class of glycolipid biosurfactant produced by yeast and has potent antimicrobial activity against many microorganisms. In this paper, a microplate-based method was developed to characterize the growth inhibition by SL on five representative species of caries-causing oral bacteria. Bacterial growth on microplate in the absence and presence of varying concentrations of SL was continuously monitored by recording the absorbance at 600nm of the cultures using a microplate reader. The results showed that SL completely inhibited the growth of the Lactobacilli at ≥1mg/ml and the Streptococci at much lower concentrations of ≥50μg/ml. More importantly, we further defined the mechanism of antimicrobial activity of SL by analyzing the pattern of the cell growth curves. SL at sublethal concentrations (<1mg/ml) is bactericidal towards the Lactobacilli; it lengthens the apparent cell-doubling time (Td) and decreases the final cell density (as indicated by A600nm) in a concentration-dependent manner. Against the oral Streptococci, on the other hand, SL at sublethal concentrations (<50μg/ml) is bacteriostatic; it delays the onset of cell growth in a concentration-dependent fashion, but once the cell growth is commenced there is no noticeable adverse effect on Td and the final A600nm. Scanning electron microscopic (SEM) study of L. acidophilus grown in sublethal concentration of SL reveals extensive structural damage to the cells. S. mutans grown in sublethal level of SL did not show morphological damage to the cells, but numerous protruding structures could be seen on the cell surface. At the respective lethal levels of SL, L. acidophilus cells were lysed (at 1mg/ml SL) and the cell surface structure of S. mutans (at 130μg/ml SL) was extensively deformed. In summary, this paper presents the first report on a detailed analysis of the effects of SL on Lactobacilli and Streptococci important to oral health and hygiene.

  12. The Geometry of the Subducting Slabs Beneath the PRVI Microplate Based on 3D Tomography

    NASA Astrophysics Data System (ADS)

    Xu, X.; Keller, G. R.; Holland, A. A.; Keranen, K. M.; Li, H.

    2011-12-01

    The Puerto Rico and the Virgin Islands (PRVI) microplate is located between two subduction zones, with the Puerto Rico trench to the north and the Muertos trough to the south. The Puerto Rico trench is caused by southward-directed subduction of the North American Plate, and the Muertos trough is the northern boundary of the Caribbean Plate. There is no active volcanism on Puerto Rico; however, earthquake depths and seismic tomography imply that the slab of Caribbean plate continues northward beneath Puerto Rico. Puerto Rico overlies these two slabs with extension to both the west (Mona Passage) and southeast (Anacapa Passage). The cause of the extension is unknown, but GPS measurements show that Puerto Rico is experiencing anti-clockwise rotation, and the extension associated with the Anacapa Passage may be produced by this rotation. To the west, it is debated whether the Mona Passage is a boundary between two micro-plates or simple a local rift basin. To address the sources of the extension and the cause of the rotation, we are investigating if the deep structures can be the dynamic source for the observed kinematic movements. We collected data on earthquakes occurring between 2009-2011 in the PRVI region and relocated them using the SEISAN code provided by the Institute of Solid Earth Physics, University of Bergen. The FMTOMO code from Australian National University was used for 3D tomography from P and S wave arrival times. By comparing the relocated epicenters and the 3D tomography results, the subducting slabs were identified. When integrated with the results of previous studies, the geometric model of the slabs is a critical key to understanding the evolution of the PRVI microplate in the past and the future.

  13. In vitro toxicity testing with microplate cell cultures: Impact of cell binding.

    PubMed

    Gülden, Michael; Schreiner, Jeannine; Seibert, Hasso

    2015-06-05

    In vitro generated data on toxic potencies are generally based on nominal concentrations. However, cellular and extracellular binding and elimination processes may reduce the available free fraction of a compound. Then, nominal effective concentrations do not represent appropriate measures of toxic exposure in vitro and underestimate toxic potencies. In this study it was investigated whether cell binding can affect the availability of chemicals in microplate based toxicity assays. To this end the cytotoxicity of compounds like mercury chloride, digitonin and alcohol ethoxylates, accumulated by cells via different modes, was investigated in 96-well microplate cultures with varying concentrations of Balb/c 3T3 cells. The median effective nominal concentrations of all but one of the tested compounds depended linearly from the cell concentration. Applying a previously developed equilibrium distribution model cell concentration-independent median effective extracellular concentrations and cell burdens, respectively, could be calculated. The compounds were accumulated by the cells with bioconcentration factors, BCF, between 480 and ≥ 25,000. Cell binding of the alcohol ethoxylates was correlated with their lipophilicity. The results show that significant cell binding can occur even at the small cell volume fractions (∼ 1 × 10(-5) to 3 × 10(-3) L/L) encountered in microplate assays. To what extent cell binding affects the bioavailability depends on the BCF and the cell volume fraction. EC50 measurements in the presence of at least two different cell concentrations allow for excluding or detecting significant cell binding and for determining more appropriate measures of toxic exposure in vitro like median effective extracellular (free) concentrations or cell burdens.

  14. Nanoscale Biosensor Based on Silicon Photonic Cavity for Home Healthcare Diagnostic Application

    NASA Astrophysics Data System (ADS)

    Ebrahimy, Mehdi N.; Moghaddam, Aydin B.; Andalib, Alireza; Naziri, Mohammad; Ronagh, Nazli

    2015-09-01

    In this paper, a new ultra-compact optical biosensor based on photonic crystal (phc) resonant cavity is proposed. This sensor has ability to work in chemical optical processes for the determination and analysis of liquid material. Here, we used an optical filter based on two-dimensional phc resonant cavity on a silicon layer and an active area is created in center of cavity. According to results, with increasing the refractive index of cavity, resonant wavelengths shift so that this phenomenon provides the ability to measure the properties of materials. This novel designed biosensor has more advantage to operate in the biochemical process for example sensing protein and DNA molecule refractive index. This nanoscale biosensor has quality factor higher than 1.5 × 104 and it is suitable to be used in the home healthcare diagnostic applications.

  15. Zinc oxide interdigitated electrode for biosensor application

    NASA Astrophysics Data System (ADS)

    Sin L., L.; Arshad, M. K. Md.; Fathil, M. F. M.; Adzhri, R.; M. Nuzaihan M., N.; Ruslinda, A. R.; Gopinath, Subash C. B.; Hashim, U.

    2016-07-01

    In biosensors, zinc oxide (ZnO) thin film plays a crucial role in term of stability, sensitivity, biocompatibility and low cost. Interdigitated electrode (IDE) design is one of the device architecture in biosensor for label free, stability and sensitivity. In this paper, we discuss the fabrication of zinc oxide deposited on the IDE as a transducer for sensing of biomolecule. The formation of APTES had increase the performance of the surface functionalization..Furthermore we extend the discuss on the surface functionalization process which is utilized for probe attachment onto the surface of biosensor through surface immobilization process, thus enables the sensing of biomolecules for biosensor application.

  16. Vibration and bending analyses of magneto-electro-thermo-elastic sandwich microplates resting on viscoelastic foundation

    NASA Astrophysics Data System (ADS)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-08-01

    Magneto-electro-thermo-mechanical bending and free vibration analysis of a sandwich microplate using strain gradient theory is expressed in this paper. The sandwich plate is made of a core and two integrated piezo-magnetic face sheets. The structure is subjected to electric and magnetic potentials, thermal loadings, and resting on Pasternak's foundation. Electro-magnetic equations are developed by considering the variation form of Hamilton's principle. The effects of important parameters of this problem such as applied electric and magnetic potentials, direct and shear parameter of foundation, three microlength-scale parameters, and two parameters of temperature rising are investigated on the vibration and bending results of problem.

  17. Sensitive microplate assay for the detection of proteolytic enzymes using radiolabeled gelatin

    SciTech Connect

    Robertson, B.D.; Kwan-Lim, G.E.; Maizels, R.M.

    1988-07-01

    A sensitive, microplate assay is described for the detection of a wide range of proteolytic enzymes, using radio-iodine-labeled gelatin as substrate. The technique uses the Bolton-Hunter reagent to label the substrate, which is then coated onto the wells of polyvinyl chloride microtiter plates. By measuring the radioactivity released the assay is able to detect elastase, trypsin, and collagenase in concentrations of 1 ng/ml or less, while the microtiter format permits multiple sample handling and minimizes sample volumes required for analysis.

  18. Microplate-based high throughput screening procedure for the isolation of lipid-rich marine microalgae

    PubMed Central

    2011-01-01

    We describe a new selection method based on BODIPY (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene) staining, fluorescence activated cell sorting (FACS) and microplate-based isolation of lipid-rich microalgae from an environmental sample. Our results show that direct sorting onto solid medium upon FACS can save about 3 weeks during the scale-up process as compared with the growth of the same cultures in liquid medium. This approach enabled us to isolate a biodiverse collection of several axenic and unialgal cultures of different phyla. PMID:22192119

  19. Microplate quantification of enzymes of the plant ascorbate-glutathione cycle.

    PubMed

    Murshed, Ramzi; Lopez-Lauri, Félicie; Sallanon, Huguette

    2008-12-15

    Here, we describe microplate assays for determining the specific activities of four enzymes that constitute the ascorbate-glutathione cycle: APX, MDHAR, DHAR, and GR. In plants, these enzymes play a major role in detoxifying reactive oxygen species produced in cells under environmental stress. This work presents the development of plate reader assays to allow rapid analysis of the ascorbate-glutathione cycle activity using tomato fruits subjected to salt stress as a model. With this method, it is possible to analyze easily in one day the activities of the four enzymes for 30 experimental samples, all in triplicate and with blanks.

  20. Ultrasensitive impedimetric lectin biosensors with efficient antifouling properties applied in glycoprofiling of human serum samples.

    PubMed

    Bertok, Tomas; Klukova, Ludmila; Sediva, Alena; Kasák, Peter; Semak, Vladislav; Micusik, Matej; Omastova, Maria; Chovanová, Lucia; Vlček, Miroslav; Imrich, Richard; Vikartovska, Alica; Tkac, Jan

    2013-08-06

    Ultrasensitive impedimetric lectin biosensors recognizing different glycan entities on serum glycoproteins were constructed. Lectins were immobilized on a novel mixed self-assembled monolayer containing 11-mercaptoundecanoic acid for covalent immobilization of lectins and betaine terminated thiol to resist nonspecific interactions. Construction of biosensors based on Concanavalin A (Con A), Sambucus nigra agglutinin type I (SNA), and Ricinus communis agglutinin (RCA) on polycrystalline gold electrodes was optimized and characterized with a battery of tools including electrochemical impedance spectroscopy, various electrochemical techniques, quartz crystal microbalance (QCM), Fourier transform infrared (FT-IR) spectroscopy, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) and compared with a protein/lectin microarray. The lectin biosensors were able to detect glycoproteins from 1 fM (Con A), 10 fM (Ricinus communis agglutinin (RCA), or 100 fM (SNA) with a linear range spanning 6 (SNA), 7 (RCA), or 8 (Con A) orders of magnitude. Furthermore, a detection limit for the Con A biosensor down to 1 aM was achieved in a sandwich configuration. A nonspecific binding of proteins for the Con A biosensor was only 6.1% (probed with an oxidized invertase) of the signal toward its analyte invertase and a negligible nonspecific interaction of the Con A biosensor was observed in diluted human sera (1000×), as well. The performance of the lectin biosensors was finally tested by glycoprofiling of human serum samples from healthy individuals and those having rheumatoid arthritis, which resulted in a distinct glycan pattern between these two groups.

  1. Plasmonic Nanostructures for Biosensor Applications

    NASA Astrophysics Data System (ADS)

    Gadde, Akshitha

    Improving the sensitivity of existing biosensors is an active research topic that cuts across several disciplines, including engineering and biology. Optical biosensors are the one of the most diverse class of biosensors which can be broadly categorized into two types based on the detection scheme: label-based and label-free detection. In label-based detection, the target bio-molecules are labeled with dyes or tags that fluoresce upon excitation, indicating the presence of target molecules. Label-based detection is highly-sensitive, capable of single molecule detection depending on the detector type used. One method of improving the sensitivity of label-based fluorescence detection is by enhancement of the emission of the labels by coupling them with metal nanostructures. This approach is referred as plasmon-enhanced fluorescence (PEF). PEF is achieved by increasing the electric field around the nano metal structures through plasmonics. This increased electric field improves the enhancement from the fluorophores which in turn improves the photon emission from the fluorophores which, in turn, improves the limit of detection. Biosensors taking advantage of the plasmonic properties of metal films and nanostructures have emerged an alternative, low-cost, high sensitivity method for detecting labeled DNA. Localized surface plasmon resonance (LSPR) sensors employing noble metal nanostructures have recently attracted considerable attention as a new class of plasmonic nanosensors. In this work, the design, fabrication and characterization of plasmonic nanostructures is carried out. Finite difference time domain (FDTD) simulations were performed using software from Lumerical Inc. to design a novel LSPR structure that exhibit resonance overlapping with the absorption and emission wavelengths of quantum dots (QD). Simulations of a composite Au/SiO2 nanopillars on silicon substrate were performed using FDTD software to show peak plasmonic enhancement at QD emission wavelength

  2. Organic Photodiodes for Biosensor Miniaturization

    DTIC Science & Technology

    2009-01-01

    1 pW/mm2. Using this system, sandwich immunoassays were performed on the OPD substrate for detection of Staphylococcal enterotoxin B (SEB). Results...demonstrated the capability to detect multiple pathogens simultaneously at very low levels. Miniaturization of biosensors is essential for use in the field or...the sensing surface coated with immobilized capture antibody. We performed a chemiluminescence immunoassay on the OPD substrate and measured the results

  3. Biosensors for DNA sequence detection

    NASA Technical Reports Server (NTRS)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  4. Biosensors for DNA sequence detection

    NASA Technical Reports Server (NTRS)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  5. Alginate cryogel based glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  6. Cholesterol self-powered biosensor.

    PubMed

    Sekretaryova, Alina N; Beni, Valerio; Eriksson, Mats; Karyakin, Arkady A; Turner, Anthony P F; Vagin, Mikhail Yu

    2014-10-07

    Monitoring the cholesterol level is of great importance, especially for people with high risk of developing heart disease. Here we report on reagentless cholesterol detection in human plasma with a novel single-enzyme, membrane-free, self-powered biosensor, in which both cathodic and anodic bioelectrocatalytic reactions are powered by the same substrate. Cholesterol oxidase was immobilized in a sol-gel matrix on both the cathode and the anode. Hydrogen peroxide, a product of the enzymatic conversion of cholesterol, was electrocatalytically reduced, by the use of Prussian blue, at the cathode. In parallel, cholesterol oxidation catalyzed by mediated cholesterol oxidase occurred at the anode. The analytical performance was assessed for both electrode systems separately. The combination of the two electrodes, formed on high surface-area carbon cloth electrodes, resulted in a self-powered biosensor with enhanced sensitivity (26.0 mA M(-1) cm(-2)), compared to either of the two individual electrodes, and a dynamic range up to 4.1 mM cholesterol. Reagentless cholesterol detection with both electrochemical systems and with the self-powered biosensor was performed and the results were compared with the standard method of colorimetric cholesterol quantification.

  7. Lipophilic rather than hydrophilic photosensitizers show strong adherence to standard cell culture microplates under cell-free conditions.

    PubMed

    Engelhardt, Victoria; Kiesslich, Tobias; Berlanda, Juergen; Hofbauer, Stefanie; Krammer, Barbara; Plaetzer, Kristjan

    2011-06-02

    Analysis of photosensitizer (PS) uptake kinetics into tumor cells is a standard cell culture experiment in photodynamic therapy (PDT) - usually performed in plastic microplates or petri dishes. Organic substances such as PS can potentially interact with the plastic surfaces. In this study, we provide a qualitative comparison of three lipophilic PS (hypericin, Foscan® and Photofrin®) and two rather hydrophilic PS formulations (PVP-hypericin and aluminum (III) phthalocyanine tetrasulfonate chloride) regarding their adherence to the surfaces of 96-well microplates obtained from four different manufacturers. For estimation of the relevance of PS adherence for cellular uptake studies we compared the fluorescence signal of the respective PS in microplates containing A431 human epithelial carcinoma cells with microplates incubated with the respective PS under cell-free conditions. We demonstrate that lipophilic PS substances show a strong adherence to microplates - in case of direct lysis and fluorescence measurement resulting in 50% up to 90% of the overall signal to be caused by adherence of the substances to the plastic materials in a cellular uptake experiment. For the hydrophilic compounds, adherence is negligible. Interestingly, adherence of PS agents to microplates takes place in a time-dependent and thus kinetic-like manner, requiring up to several hours to reach a plateau of the fluorescence signal. Furthermore, PS adherence is a function of the PS concentration applied and no saturation effect was observed for the concentrations used in this study. Taken together, this study provides a systematic analysis under which conditions PS adherence to cell culture plates may contribute to the overall fluorescence signal in - for example - PS uptake experiments.

  8. Combinatorially Developed Peptide Receptors for Biosensors

    NASA Astrophysics Data System (ADS)

    Nakamura, Chikashi; Miyake, Jun

    Various combinatorial libraries were screened for short peptides of 4-10 mer, which were used as sensor molecules for capturing target chemicals or biomolecules. Immuno-antibodies can be synthesized in the living bodies of higher animals even for low-molecular-weight nonnatural chemical compounds, such as dioxins or PCBs. Recently, some peptide ligands that can even bind to inorganic crystals have been reported. This indicates that the 20 natural amino acids have the potential to recognize almost all types of molecules and substances. The question arises whether one should design a “rational” mini library of peptides consisting of a limited number of amino acids according to the motifs in epitopes or paratopes or the binding pocket sequences in receptors, or a completely “random” combinatorial library containing all sequences. If one wants to obtain a peptide binder to target a small chemical compound, the answer is a “random” library, since the molecular interaction between the target compound and an amino acid cannot be precisely predicted beforehand. In this section, we discuss the possibility of using short combinatorial peptides as binders for biosensors to detect chemical compounds.

  9. A simple and rapid microplate assay for glycoprotein-processing glycosidases.

    PubMed

    Kang, M S; Zwolshen, J H; Harry, B S; Sunkara, P S

    1989-08-15

    A simple and convenient microplate assay for glycosidases involved in the glycoprotein-processing reactions is described. The assay is based on specific binding of high-mannose-type oligosaccharide substrates to concanavalin A-Sepharose, while monosaccharides liberated by enzymatic hydrolysis do not bind to concanavalin A-Sepharose. By the use of radiolabeled substrates [( 3H]glucose for glucosidases and [3H]mannose for mannosidases), the radioactivity in the liberated monosaccharides can be determined as a measure of the enzymatic activity. This principle was employed earlier for developing assays for glycosidases previously reported (B. Saunier et al. (1982) J. Biol. Chem. 257, 14155-14161; T. Szumilo and A. D. Elbein (1985) Anal. Biochem. 151, 32-40). These authors have reported the separation of substrate from the product by concanavalin A-Sepharose column chromatography. This procedure is handicapped by the fact that it cannot be used for a large number of samples and is time consuming. We have simplified this procedure and adapted it to the use of a microplate (96-well plate). This would help in processing a large number of samples in a short time. In this report we show that the assay is comparable to the column assay previously reported. It is linear with time and enzyme concentration and shows expected kinetics with castanospermine, a known inhibitor of alpha-glucosidase I.

  10. Inline chemical process analysis in micro-plants based on thermoelectric flow and impedimetric sensors

    NASA Astrophysics Data System (ADS)

    Jacobs, T.; Kutzner, C.; Kropp, M.; Brokmann, G.; Lang, W.; Steinke, A.; Kienle, A.; Hauptmann, P.

    2010-10-01

    In micro-plants, as used in chemical micro-process engineering, an integrated inline analytics is regarded as an important factor for the development and optimization of chemical processes. Up to now, there is a lack of sensitive, robust and low-priced micro-sensors for monitoring mixing and chemical conversion in micro-fluidic channels. In this paper a novel sensor system combining an impedimetric sensor and a novel pressure stable thermoelectric flow sensor for monitoring chemical reactions in micro-plants is presented. The CMOS-technology-based impedimetric sensor mainly consists of two capacitively coupled interdigital electrodes on a silicon chip. The thermoelectric flow sensor consists of a heater in between two thermopiles on a perforated membrane. The pulsed and constant current feeds of the heater were analyzed. Both sensors enable the analysis of chemical conversion by means of changes in the thermal and electrical properties of the liquid. The homogeneously catalyzed synthesis of n-butyl acetate as a chemical model system was studied. Experimental results revealed that in an overpressure regime, relative changes of less than 1% in terms of thermal and electrical properties can be detected. Furthermore, the transition from one to two liquid phases accompanied by the change in slug flow conditions could be reproducibly detected.

  11. Metabolic activities of five botryticides against Botrytis cinerea examined using the Biolog FF MicroPlate

    PubMed Central

    Wang, Hancheng; Wang, Jin; Li, Licui; Hsiang, Tom; Wang, Maosheng; Shang, Shenghua; Yu, Zhihe

    2016-01-01

    Tobacco grey mold caused by Botrytis cinerea is an important fungal disease worldwide. Boscalid, carbendazim, iprodione, pyrimethanil and propiconazole are representative botryticides for grey mold management. This research investigated the sensitivities of B. cinerea from tobacco to these chemicals using the Biolog FF Microplate. All five chemicals showed inhibitory activity, with average EC50 values of 0.94, 0.05, 0.50, 0.61 and 0.31 μg ml−1, respectively. B. cinerea metabolized 96.8% of tested carbon sources, including 29 effectively and 33 moderately, but the metabolic fingerprints differed under pressures imposed by these botryticides. For boscalid, B. cinerea was unable to metabolize many substrates related to tricarboxylic acid cycle. For carbendazim, carbon sources related to glycolysis were not metabolized. For iprodione, use of most carbon substrates was weakly inhibited, and the metabolic profile was similar to that of the control. For propiconazole, no carbon substrates were metabolized and the physiological and biochemical functions of the pathogen were totally inhibited. These findings provide useful information on metabolic activities of these botryticides, and may lead to future applications of the Biolog FF Microplate for examining metabolic effects of other fungicides on other fungi, as well as providing a metabolic fingerprint of B. cinerea that could be useful for identification. PMID:27491536

  12. A simple and rapid microplate assay for glycoprotein-processing glycosidases

    SciTech Connect

    Kang, M.S.; Zwolshen, J.H.; Harry, B.S.; Sunkara, P.S. )

    1989-08-15

    A simple and convenient microplate assay for glycosidases involved in the glycoprotein-processing reactions is described. The assay is based on specific binding of high-mannose-type oligosaccharide substrates to concanavalin A-Sepharose, while monosaccharides liberated by enzymatic hydrolysis do not bind to concanavalin A-Sepharose. By the use of radiolabeled substrates (( 3H)glucose for glucosidases and (3H)mannose for mannosidases), the radioactivity in the liberated monosaccharides can be determined as a measure of the enzymatic activity. This principle was employed earlier for developing assays for glycosidases previously reported. These authors have reported the separation of substrate from the product by concanavalin A-Sepharose column chromatography. This procedure is handicapped by the fact that it cannot be used for a large number of samples and is time consuming. We have simplified this procedure and adapted it to the use of a microplate (96-well plate). This would help in processing a large number of samples in a short time. In this report we show that the assay is comparable to the column assay previously reported. It is linear with time and enzyme concentration and shows expected kinetics with castanospermine, a known inhibitor of alpha-glucosidase I.

  13. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers

    NASA Astrophysics Data System (ADS)

    Sanjay, Sharma T.; Dou, Maowei; Sun, Jianjun; Li, Xiujun

    2016-07-01

    Enzyme linked immunosorbent assay (ELISA) is one of the most widely used laboratory disease diagnosis methods. However, performing ELISA in low-resource settings is limited by long incubation time, large volumes of precious reagents, and well-equipped laboratories. Herein, we developed a simple, miniaturized paper/PMMA (poly(methyl methacrylate)) hybrid microfluidic microplate for low-cost, high throughput, and point-of-care (POC) infectious disease diagnosis. The novel use of porous paper in flow-through microwells facilitates rapid antibody/antigen immobilization and efficient washing, avoiding complicated surface modifications. The top reagent delivery channels can simply transfer reagents to multiple microwells thus avoiding repeated manual pipetting and costly robots. Results of colorimetric ELISA can be observed within an hour by the naked eye. Quantitative analysis was achieved by calculating the brightness of images scanned by an office scanner. Immunoglobulin G (IgG) and Hepatitis B surface Antigen (HBsAg) were quantitatively analyzed with good reliability in human serum samples. Without using any specialized equipment, the limits of detection of 1.6 ng/mL for IgG and 1.3 ng/mL for HBsAg were achieved, which were comparable to commercial ELISA kits using specialized equipment. We envisage that this simple POC hybrid microplate can have broad applications in various bioassays, especially in resource-limited settings.

  14. Crustal Structure of Southern Baja California Peninsula, Mexico, From Magdalena Microplate to Farallon Basin

    NASA Astrophysics Data System (ADS)

    Robles, L. N.; Gonzalez-Fernandez, A.; Fletcher, J. M.; Lizarralde, D.; Kent, G. M.; Harding, A. J.; Holbrook, W. S.; Umhoefer, P. J.; Axen, G. J.

    2004-12-01

    Wide-angle seismic data were used to investigate the crustal structure of a transect between the Magdalena Microplate to the Farallon Basin in the Gulf of California, crossing the southern Baja California Peninsula to the north of La Paz (Mexico). This is the first deep seismic study in the area, providing information of the fossil subduction zone of the Magdalena Microplate under Baja California. We have also obtained results of the seismic structure of major fault zones in the area such as Tosco-Abreojos and Santa Margarita. Seismic data were recorded by Ocean Bottom Seismometers (OBS) in the Pacific and the Gulf of California and by portable seismic instruments onshore. More than 5000 offshore high-volume air gun shots were used as energy source in both sides of the Peninsula. Wide-angle data were processed to enhance the signal to noise ratio to help in the identification of the seismic energy arrivals. We used a direct method of interpretation, including ray tracing, travel times and synthetic seismograms calculation. The availability of a number of recording instruments allows multiple coverage of the crustal structure.

  15. Biocompatibility of microplates for culturing epithelial renal cells evaluated by a microcalorimetric technique.

    PubMed

    Xie, Y; DePierre, J W; Nässberger, L

    2000-09-01

    In the present study we have developed a microcalorimetric procedure which allows convenient investigation of biocompatibility in a microsystem. We examined the biocompatibility of a porcine renal epithelial tubule cell line LLC-PK1 and a human primary renal epithelial tubule cell (RPTEC) with microplates composed of three different materials, i.e. Thermanox, transparent film and titanium. All three materials showed equal biocompatibility with LLC-PK1 cells, judging from the attainment of steady-state power curves and the same rate of heat production per cell (2.5 microW / microg DNA). The human renal cells were poorly biocompatible with the Thermanox and transparent film. However, on titanium the RPTEC cell did adhere, as demonstrated by a steady-state power curve. The human cells also showed a higher metabolic activity (3.0 microW / microg DNA), than did LLC-PK1 cells cultured on the same type of microplates. In research on biocompatibility there is a need for alternatives to experimental animal investigations. The present technique allows studies of cellular interactions with different biomaterials in a rapid and standardized manner and may therefore prove to be a useful screening procedure. Copyright 2000 Kluwer Academic Publishers

  16. Microplate subtractive hybridization to enrich for bacteroidales genetic markers for fecal source identification.

    PubMed

    Dick, Linda K; Simonich, Michael T; Field, Katharine G

    2005-06-01

    The ability to identify sources of fecal pollution plays a key role in the analysis of human health risk and the implementation of water resource management strategies. One approach to this problem involves the identification of bacterial lineages or gene sequences that are found exclusively in a particular host species or group. We used subtractive hybridization to enrich for target host-specific fecal Bacteroidales rRNA gene fragments that were different from those of very closely related reference (subtracter) host sources. Target host rRNA gene fragments were hybridized to subtracter rRNA gene fragments immobilized in a microplate well, and target sequences that did not hybridize were cloned and sequenced for PCR primer design. The use of microplates for DNA immobilization resulted in a one-step subtractive hybridization in which the products could be directly amplified with PCR. The new host-specific primers designed from subtracted target fragments differentiated among very closely related Bacteroidales rRNA gene sequences and distinguished between similar fecal sources, such as elk and cow or human and domestic pet (dog).

  17. Microplate-reader method for the rapid analysis of copper in natural waters with chemiluminescence detection

    PubMed Central

    Durand, Axel; Chase, Zanna; Remenyi, Tomas; Quéroué, Fabien

    2013-01-01

    We have developed a method for the determination of copper in natural waters at nanomolar levels. The use of a microplate-reader minimizes sample processing time (~25 s per sample), reagent consumption (~120 μL per sample), and sample volume (~700 μL). Copper is detected by chemiluminescence. This technique is based on the formation of a complex between copper and 1,10-phenanthroline and the subsequent emission of light during the oxidation of the complex by hydrogen peroxide. Samples are acidified to pH 1.7 and then introduced directly into a 24-well plate. Reagents are added during data acquisition via two reagent injectors. When trace metal clean protocols are employed, the reproducibility is generally less than 7% on blanks and the detection limit is 0.7 nM for seawater and 0.4 nM for freshwater. More than 100 samples per hour can be analyzed with this technique, which is simple, robust, and amenable to at-sea analysis. Seawater samples from Storm Bay in Tasmania illustrate the utility of the method for environmental science. Indeed other trace metals for which optical detection methods exist (e.g., chemiluminescence, fluorescence, and absorbance) could be adapted to the microplate-reader. PMID:23335917

  18. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers

    PubMed Central

    Sanjay, Sharma T.; Dou, Maowei; Sun, Jianjun; Li, XiuJun

    2016-01-01

    Enzyme linked immunosorbent assay (ELISA) is one of the most widely used laboratory disease diagnosis methods. However, performing ELISA in low-resource settings is limited by long incubation time, large volumes of precious reagents, and well-equipped laboratories. Herein, we developed a simple, miniaturized paper/PMMA (poly(methyl methacrylate)) hybrid microfluidic microplate for low-cost, high throughput, and point-of-care (POC) infectious disease diagnosis. The novel use of porous paper in flow-through microwells facilitates rapid antibody/antigen immobilization and efficient washing, avoiding complicated surface modifications. The top reagent delivery channels can simply transfer reagents to multiple microwells thus avoiding repeated manual pipetting and costly robots. Results of colorimetric ELISA can be observed within an hour by the naked eye. Quantitative analysis was achieved by calculating the brightness of images scanned by an office scanner. Immunoglobulin G (IgG) and Hepatitis B surface Antigen (HBsAg) were quantitatively analyzed with good reliability in human serum samples. Without using any specialized equipment, the limits of detection of 1.6 ng/mL for IgG and 1.3 ng/mL for HBsAg were achieved, which were comparable to commercial ELISA kits using specialized equipment. We envisage that this simple POC hybrid microplate can have broad applications in various bioassays, especially in resource-limited settings. PMID:27456979

  19. Coated and uncoated cellophane as materials for microplates and open-channel microfluidics devices.

    PubMed

    Hamedi, Mahiar M; Ünal, Barış; Kerr, Emily; Glavan, Ana C; Fernandez-Abedul, M Teresa; Whitesides, George M

    2016-10-05

    This communication describes the use of uncoated cellophane (regenerated cellulose films) for the fabrication of microplates, and the use of coated cellophane for the fabrication of open-channel microfluidic devices. The microplates based on uncoated cellophane are particularly interesting for applications that require high transparency in the ultraviolet (UV) regime, and offer a low-cost alternative to expensive quartz-well plates. Uncoated cellophane is also resistant to damage by various solvents. The microfluidic devices, based on coated cellophane, can have features with dimensions as small as 500 μm, and complex, non-planar geometries. Electrodes can be printed on the surface of the coated cellophane, and embedded in microfluidic devices, to develop resistive heaters and electroanalytical devices for flow injection analysis, and continuous flow electrochemiluminescence (ECL) applications. These open-channel devices are appropriate for applications where optical transparency (especially in the visible regime), resistance to damage by water, biocompatibility and biodegradability are important. Cellophane microfluidic systems complement existing cellulose-based paper microfluidic systems, and provide an alternative to other materials used in microfluidics, such as synthetic polymers or glass. Cellulose films are plausible materials for uses in integrated microfluidic systems for diagnostics, analyses, cell-culture, and MEMS.

  20. Highly Multiplexed RNA Aptamer Selection using a Microplate-based Microcolumn Device

    PubMed Central

    Reinholt, Sarah J.; Ozer, Abdullah; Lis, John T.; Craighead, Harold G.

    2016-01-01

    We describe a multiplexed RNA aptamer selection to 19 different targets simultaneously using a microcolumn-based device, MEDUSA (Microplate-based Enrichment Device Used for the Selection of Aptamers), as well as a modified selection process, that significantly reduce the time and reagents needed for selections. We exploited MEDUSA’s reconfigurable design between parallel and serially-connected microcolumns to enable the use of just 2 aliquots of starting library, and its 96-well microplate compatibility to enable the continued use of high-throughput techniques in downstream processes. Our modified selection protocol allowed us to perform the equivalent of a 10-cycle selection in the time it takes for 4 traditional selection cycles. Several aptamers were discovered with nanomolar dissociation constants. Furthermore, aptamers were identified that not only bound with high affinity, but also acted as inhibitors to significantly reduce the activity of their target protein, mouse decapping exoribonuclease (DXO). The aptamers resisted DXO’s exoribonuclease activity, and in studies monitoring DXO’s degradation of a 30-nucleotide substrate, less than 1 μM of aptamer demonstrated significant inhibition of DXO activity. This aptamer selection method using MEDUSA helps to overcome some of the major challenges with traditional aptamer selections, and provides a platform for high-throughput selections that lends itself to process automation. PMID:27432610

  1. Antimicrobial properties of cyclodextrin-antiseptics-complexes determined by microplate laser nephelometry and ATP bioluminescence assay.

    PubMed

    Finger, Susanne; Wiegand, Cornelia; Buschmann, Hans-Jürgen; Hipler, Uta-Christina

    2012-10-15

    Antimicrobial effects of substances can be determined with different methods that measure distinct parameters. Thus, a comparison of the results obtained can be difficult. In this study, two in vitro methods were employed to determine concentration and time dependent effects of cyclodextrin (CD)-complexes with the antiseptics chlorhexidine diacetate (CHX), iodine (IOD) and polihexanide (PHMB) on Candida albicans and Malassezia pachydermatis. Using both, microplate laser nephelometry and the ATP bioluminescence assay, it could be shown that CD-antiseptics-complexes tested exhibited significant antifungal effects with the exception of γ-CD-CHX in the case of C. albicans. Microplate laser nephelometry (MLN) is an optical method and enables a quantitative determination of particle concentrations in solution. By means of this method, microbial growth under influence of potential antimicrobial substances can be monitored over a prolonged time period. In addition, the antimicrobial activity was analyzed by measurement of the microbial adenosine triphosphate (ATP) content with a bioluminescent assay. The luminescent signal is directly proportional to the amount of ATP, and thus, a linear function of the number of living microbial cells present. Both methods were compared according to the half maximal inhibitory concentration (IC(50)) calculated and the statistical evaluation of Pearson's correlation coefficient (r). In summary, it could be demonstrated that both methods yield similar results although they differ in the parameter.

  2. Revision of the genera Microplitis and Snellenius (Hymenoptera, Braconidae, Microgastrinae) from Area de Conservacion Guanacaste, Costa Rica, with a key to all species previously described from Mesoamerica

    USDA-ARS?s Scientific Manuscript database

    The genera Microplitis and Snellenius (Hymenoptera: Braconidae, Microgastrinae) from Area de Conservacion Guanacaste (ACG), Costa Rica, are revised. A total of 28 new species are described: 23 of Snellenius (the first record for Mesoamerica) and five of Microplitis. A key is provided to all new spec...

  3. Nanomaterials based biosensors for cancer biomarker detection

    NASA Astrophysics Data System (ADS)

    Malhotra, Bansi D.; Kumar, Saurabh; Mouli Pandey, Chandra

    2016-04-01

    Biosensors have enormous potential to contribute to the evolution of new molecular diagnostic techniques for patients suffering with cancerous diseases. A major obstacle preventing faster development of biosensors pertains to the fact that cancer is a highly complex set of diseases. The oncologists currently rely on a few biomarkers and histological characterization of tumors. Some of the signatures include epigenetic and genetic markers, protein profiles, changes in gene expression, and post-translational modifications of proteins. These molecular signatures offer new opportunities for development of biosensors for cancer detection. In this context, conducting paper has recently been found to play an important role towards the fabrication of a biosensor for cancer biomarker detection. In this paper we will focus on results of some of the recent studies obtained in our laboratories relating to fabrication and application of nanomaterial modified paper based biosensors for cancer biomarker detection.

  4. ZnO-Based Amperometric Enzyme Biosensors

    PubMed Central

    Zhao, Zhiwei; Lei, Wei; Zhang, Xiaobing; Wang, Baoping; Jiang, Helong

    2010-01-01

    Nanostructured ZnO with its unique properties could provide a suitable microenvironment for immobilization of enzymes while retaining their biological activity, and thus lead to an expanded use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance. ZnO-based enzyme electrochemical biosensors are summarized in several tables for an easy overview according to the target biosensing analyte (glucose, hydrogen peroxide, phenol and cholesterol), respectively. Moreover, recent developments in enzyme electrochemical biosensors based on ZnO nanomaterials are reviewed with an emphasis on the fabrications and features of ZnO, approaches for biosensor construction (e.g., modified electrodes and enzyme immobilization) and biosensor performances. PMID:22205864

  5. Renewable Surface Biosensors with Optical Detection

    SciTech Connect

    Bruckner-Lea, Cindy J.; Ackerman, Eric J.; Dockendorff, Brian P.; Holman, David A.; Grate, Jay W.

    2001-04-30

    One major challenge in the development of biosensors is the limited lifetime of a chemically selective surface that includes biomolecules. Renewable surface biosensors address this issue by using fresh aliquots of derivatized microbeads for each analysis. The analyte detection can then occur on the microbeads, or downstream from the microbeads. In this paper, we will describe two types of renewable surface biosensors. The first renewable biosensor system includes on-column optical detection for monitoring the binding of biomolecules onto protein or DNA-derivatized Sepharose beads. The second renewable biosensor system includes detection downstream from the microparticles and is based on the use of derivatized magnetic particles for selective binding. The magnetic particles are fluidically captured and released in a sequential injection system to allow the automation of an Enzyme Linked ImmunoSorbent Assay.

  6. Renewable Surface Biosensors With Optical Detection

    SciTech Connect

    Bruckner-Lea, Cynthia J.; Ackerman, Eric J.; Dockendorff, Brian P.; Holman, David A.; Grate, Jay W.

    2001-12-01

    One major challenge in the development of biosensors is the limited lifetime of a chemically selective surface that includes biomolecules. Renewable surface biosensors address this issue by using fresh aliquots of derivatized microbeads for each analysis. The analyte detection can then occur on the microbeads, or downstream from the microbeads. In this paper, we will describe two types of renewable surface biosensors. The first renewable biosensor system includes on-column optical detection for monitoring the binding of biomolecules onto protein or DNA-derivatized Sepharose beads. The second renewable biosensor system includes detection downstream from the microparticles and is based on the use of derivatized magnetic particles for selective binding. The magnetic particles are fluidically captured and released in a sequential injection system to allow the automation of an Enzyme Linked ImmunoSorbent Assay.

  7. Microfabricated silicon biosensors for microphysiometry

    NASA Technical Reports Server (NTRS)

    Bousse, L. J.; Libby, J. M.; Parce, J. W.

    1993-01-01

    Microphysiometers are biosensor devices that measure the metabolic rate of living cells by detecting the rate of extracellular acidification caused by a small number of cells. The cells are entrapped in a microvolume chamber, whose bottom surface is a silicon sensor chip. In a further miniaturization step, we have recently fabricated multichannel flow-through chips that will allow greater throughput and multiplicity. Microphysiometer technology can be applied to the detection of microorganisms. We describe the sensitive detection of bacteria and yeast. Further applications of microphysiometry to the characterization of microorganisms can be anticipated.

  8. Localized deformation zones in the offshore leading edge of the Yakutat microplate, Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Lowe, L. A.; Gulick, S. P.; Pavlis, T.; Bruhn, R. L.; Mann, P.

    2006-12-01

    The Gulf of Alaska margin is dominated by the collision and subduction of the Yakutat microplate as it travels northwest with respect to North America at near Pacific Plate velocities (\\~45 mm/yr). The oblique Yakutat block collision with North America is in transition between convergence to the west and translation along the Queen Charlotte-Fairweather-Denali Fault system to the east and north. Industry seismic reflection and high- resolution seismic reflection data collected by the R/V Maurice Ewing (2004) provides insight into how the Yakutat-North America collision is accommodated by active offshore structures near the leading edge of the Yakutat microplate. A \\~200 km wide area bounded by the Ten Fathom Fault, the offshore N. America-Yakutat contact, to the west and the eastern edge of the Pamplona Zone (PZ) to the east has previously been mapped as a continuous deformation zone consisting of NE-SW trending imbricate thrusts and folds. Though this mapping corroborates onshore measurements of active deformation west of the Bering Glacier in the Yakutat block, the relationship between current onshore deformation and the observed offshore structures remains unclear. Our observations indicate that neotectonic deformation is accommodated offshore by highly localized, asynchronous thrusts that, when analyzed in an accretionary context, may be connected by a sub-horizontal decollement. Data from the eastern edge of the PZ, the proposed deformation front, shows surface deformation caused by east-verging thrust faults. Seismic reflection profiles in the western PZ and the Bering Trough show no evidence of active tectonic deformation and up to \\~200 m of undisturbed sediments indicating that faulting in this part of the Yakutat block has been inactive since the Last Glacial Maximum or earlier. Farther west, above the Kayak Island fault zone, directly east of the Ten Fathom Fault, the presence of up to \\~50 m of undeformed sediments suggests a recent (ca. 14 ka

  9. Population subdivision of hydrothermal vent polychaete Alvinella pompejana across equatorial and Easter Microplate boundaries.

    PubMed

    Jang, Sook-Jin; Park, Eunji; Lee, Won-Kyung; Johnson, Shannon B; Vrijenhoek, Robert C; Won, Yong-Jin

    2016-10-28

    The Equator and Easter Microplate regions of the eastern Pacific Ocean exhibit geomorphological and hydrological features that create barriers to dispersal for a number of animals associated with deep-sea hydrothermal vent habitats. This study examined effects of these boundaries on geographical subdivision of the vent polychaete Alvinella pompejana. DNA sequences from one mitochondrial and eleven nuclear genes were examined in samples collected from ten vent localities that comprise the species' known range from 23°N latitude on the East Pacific Rise to 38°S latitude on the Pacific Antarctic Ridge. Multi-locus genotypes inferred from these sequences clustered the individual worms into three metapopulation segments - the northern East Pacific Rise (NEPR), southern East Pacific Rise (SEPR), and northeastern Pacific Antarctic Ridge (PAR) - separated by the Equator and Easter Microplate boundaries. Genetic diversity estimators were negatively correlated with tectonic spreading rates. Application of the isolation-with-migration (IMa2) model provided information about divergence times and demographic parameters. The PAR and NEPR metapopulation segments were estimated to have split roughly 4.20 million years ago (Mya) (2.42-33.42 Mya, 95 % highest posterior density, (HPD)), followed by splitting of the SEPR and NEPR segments about 0.79 Mya (0.07-6.67 Mya, 95 % HPD). Estimates of gene flow between the neighboring regions were mostly low (2 Nm < 1). Estimates of effective population size decreased with southern latitudes: NEPR > SEPR > PAR. Highly effective dispersal capabilities allow A. pompejana to overcome the temporal instability and intermittent distribution of active hydrothermal vents in the eastern Pacific Ocean. Consequently, the species exhibits very high levels of genetic diversity compared with many co-distributed vent annelids and mollusks. Nonetheless, its levels of genetic diversity in partially isolated populations are inversely

  10. From a collage of microplates to stable continental crust - an example from Precambrian Europe

    NASA Astrophysics Data System (ADS)

    Korja, Annakaisa

    2013-04-01

    Svecofennian orogen (2.0-1.7 Ga) comprises the oldest undispersed orogenic belt on Baltica and Eurasian plate. Svecofennian orogenic belt evolved from a series of short-lived terrane accretions around Baltica's Archean nucleus during the formation of the Precambrian Nuna supercontinent. Geological and geophysical datasets indicate W-SW growth of Baltica with NE-ward dipping subduction zones. The data suggest a long-lived retreating subduction system in the southwestern parts whereas in the northern and central parts the northeasterly transport of continental fragments or microplates towards the continental nucleus is also documented. The geotectonic environment resembles that of the early stages of the Alpine-Himalayan or Indonesian orogenic system, in which dispersed continental fragments, arcs and microplates have been attached to the Eurasian plate margin. Thus the Svecofennian orogeny can be viewed as proxy for the initial stages of an internal orogenic system. Svecofennian orogeny is a Paleoproterozoic analogue of an evolved orogenic system where terrane accretion is followed by lateral spreading or collapse induced by change in the plate architecture. The exposed parts are composed of granitoid intrusions as well as highly deformed supracrustal units. Supracrustal rocks have been metamorphosed in LP-HT conditions in either paleo-lower-upper crust or paleo-upper-middle crust. Large scale seismic reflection profiles (BABEL and FIRE) across Baltica image the crust as a collage of terranes suggesting that the bedrock has been formed and thickened in sequential accretions. The profiles also image three fold layering of the thickened crust (>55 km) to transect old terrane boundaries, suggesting that the over-thickened bedrock structures have been rearranged in post-collisional spreading and/or collapse processes. The middle crust displays typical large scale flow structures: herringbone and anticlinal ramps, rooted onto large scale listric surfaces also suggestive

  11. An acquired distaste: Sugar discrimination by the larval parasitoid Microplitis croceipes (Hymenoptera: Braconidae) is affected by prior sugar exposure

    USDA-ARS?s Scientific Manuscript database

    As sugar quality feeding is very important in the lives of adult parasitoids, we examined several feeding responses of Microplitis croceipes to sugars commonly found in nectar. We first examined the relationship between feeding time and consumption of sucrose, glucose, fructose and maltose by Microp...

  12. Microplate-based active/inactive 1 screen for biomass degrading enzyme library purification and gene discovery

    USDA-ARS?s Scientific Manuscript database

    We present here a whole-cell and permeabilized E. coli cell 1' active/inactive microplate screen for ß-D-xylosidase, xylanase, endocellulase, and ferulic acid esterase enzyme activities which are critical for the enzymatic deconstruction of biomass for fuels and chemicals. Transformants from genomic...

  13. Polyclonal Antibodies in Microplates to Predict the Maximum Adsorption Activities of Enzyme/Mutants from Cell Lysates.

    PubMed

    Feng, Yiran; Yang, Xiaolan; Wang, Deqiang; Hu, Xiaolei; Chong, Huimin; Liao, Juan; Zhan, Chang-Guo; Liao, Fei

    2017-06-01

    With microplate-immobilized polyclonal antibodies against a starting enzyme or its active mutant bearing consistent accessible epitopes, the maximum activity of an adsorbed enzyme/mutant (Vs) was predicted for comparison to recognize weakly-positive mutants. Rabbit antisera against Escherichia coli alkaline phosphatase (ECAP) were fractionated with 33% ammonium sulfate to yield crude polyclonal antibodies for conventional immobilization in 96-well microplates. The response curve of the activities of ECAP/mutant adsorbed by the immobilized polyclonal antibodies to protein quantities from a cell lysate was fit to an approximation model to predict Vs. With 0.4 μg crude polyclonal antibody for immobilization, Vs was consistent for ECAP in cell lysates bearing fourfold differences in its apparent specific activities when its abundance was greater than 0.9%. The ratio of Vs of the mutant R168K to that of ECAP was 1.5 ± 0.1 (n = 2), consistent with that of their specific activities after affinity purification. Unfortunately, the prediction of Vs with polyclonal antibodies that saturated microplate wells was ineffective to Pseudomonas aeruginosa arylsulfatase bearing less than 2% specific activity of ECAP. Therefore, with microplate-immobilized polyclonal antibodies to adsorb enzyme/mutants from cell lysates, high-throughput prediction of Vs was practical to recognize weakly-positive mutants of starting enzymes bearing fairly-high activities.

  14. The role of photoperiod and temperature in diapause induction of the endoparasitoid wasp, Microplitis mediator (Haliday) (Hymenoptera: Braconidae)

    USDA-ARS?s Scientific Manuscript database

    Diapause in Microplitis mediator is manifested during the pupal stage and normally occurs during the winter season because of a photoperiodic response which is highly dependant on temperature. In the reported study, diapause was determine by photoperiod and mediated by temperature, which supports th...

  15. Slow light Mach-Zehnder interferometer as label-free biosensor with scalable sensitivity

    SciTech Connect

    Qin, Kun; Hu, Shuren; Retterer, Scott T.; Kravchenko, Ivan I.; Weiss, Sharon M.

    2016-02-05

    Our design, fabrication, and characterization of a label-free Mach–Zehnder interferometer (MZI) optical biosensor that incorporates a highly dispersive one-dimensional (1D) photonic crystal in one arm are presented. The sensitivity of this slow light MZI-based sensor scales with the length of the slow light photonic crystal region. The numerically simulated sensitivity of a MZI sensor with a 16 μm long slow light region is 115,000 rad/RIU-cm, which is sevenfold higher than traditional MZI biosensors with millimeter-length sensing regions. Moreover, the experimental bulk refractive index detection sensitivity of 84,000 rad/RIU-cm is realized and nucleic acid detection is also demonstrated.

  16. Slow light Mach-Zehnder interferometer as label-free biosensor with scalable sensitivity

    DOE PAGES

    Qin, Kun; Hu, Shuren; Retterer, Scott T.; ...

    2016-02-05

    Our design, fabrication, and characterization of a label-free Mach–Zehnder interferometer (MZI) optical biosensor that incorporates a highly dispersive one-dimensional (1D) photonic crystal in one arm are presented. The sensitivity of this slow light MZI-based sensor scales with the length of the slow light photonic crystal region. The numerically simulated sensitivity of a MZI sensor with a 16 μm long slow light region is 115,000 rad/RIU-cm, which is sevenfold higher than traditional MZI biosensors with millimeter-length sensing regions. Moreover, the experimental bulk refractive index detection sensitivity of 84,000 rad/RIU-cm is realized and nucleic acid detection is also demonstrated.

  17. Characterization of Textile-Insulated Capacitive Biosensors.

    PubMed

    Ng, Charn Loong; Reaz, Mamun Bin Ibne

    2017-03-12

    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test.

  18. Characterization of Textile-Insulated Capacitive Biosensors

    PubMed Central

    Ng, Charn Loong; Reaz, Mamun Bin Ibne

    2017-01-01

    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test. PMID:28287493

  19. Nanotubes, Nanowires, and Nanocantilevers in Biosensor Development

    SciTech Connect

    Wang, Jun; Liu, Guodong; Lin, Yuehe

    2007-03-08

    In this chapter, the reviews on biosensor development based on 1-D nanomaterials, CNTs, semiconducting nanowires, and some cantilevers will be introduced. The emphasis of this review will be placed on CNTs and electrochemical/electronic biosensor developments. Section 2 of this chapter gives a detailed description of carbon nanotubes-based biosensor development, from fabrication of carbon nanotubes, the strategies for construction of carbon nanotube based biosensors to their bioapplications. In the section of the applications of CNTs based biosensors, various detection principles, e. g. electrochemical, electronic, and optical method, and their applications are reviewed in detail. Section 3 introduces the method for synthesis of semiconducting nanowires, e.g. silicon nanowires, conducting polymer nanowires and metal oxide nanowires and their applications in DNA and proteins sensing. Section 4 simply describes the development for nanocantilevers based biosensors and their application in DNA and protein diagnosis. Each section starts from a brief introduction and then goes into details. Finally in the Conclusion section, the development of 1-D nanomaterials based biosensor development is summarized.

  20. Evidences for recent plume-induced subduction, microplates and localized lateral plate motions on Venus

    NASA Astrophysics Data System (ADS)

    Davaille, Anne; Smrekar, Suzanne

    2017-04-01

    Using laboratory experiments and theoretical modeling, we recently showed that plumes could induce roll-back subduction around large coronae. When a hot plume rises under a brittle and visco-elasto-plastic skin/lithosphere, the latter undergoes a flexural deformation which puts it under tension. Radial cracks and rifting of the skin then develop, sometimes using pre-existing weaknesses. Plume material upwells through the cracks (because it is more buoyant) and spreads as a axisymmetric gravity current above the broken denser skin. The latter bends and sinks under the combined force of its own weight and that of the plume gravity current. However, due to the brittle character of the upper part of the experimental lithosphere, it cannot deform viscously to accomodate the sinking motions. Instead, the plate continues to tear, as a sheet of paper would do upon intrusion. Several slabs are therefore produced, associated with trenches localized along partial circles on the plume, and strong roll-back is always observed. Depending on the lithospheric strength, roll-back can continue and triggers a complete resurfacing, or it stops when the plume stops spreading. Two types of microplates are also observed. First, the upwelling plume material creates a set of new plates interior to the trench segments. These plates move rapidly and expand through time, but do not subduct.. In a few cases, we also observe additional microplates exterior to the trenches. This happens when the subducting plate contains preexisting heterogeneities (e.g. fractures) and the subducted slab is massive enough for slab pull to become efficient and induce horizontal plate motions. Scalings derived from the experiments suggest that Venus lithosphere is soft enough to undergo such a regime. And indeed, at least two candidates can be identified on Venus, where plume-induced subduction could have operated. (1) Artemis Coronae is the largest (2300 km across) coronae on Venus and is bounded over 270° of

  1. Analysis and interpretation of microplate-based oxygen consumption and pH data.

    PubMed

    Divakaruni, Ajit S; Paradyse, Alexander; Ferrick, David A; Murphy, Anne N; Jastroch, Martin

    2014-01-01

    Breakthrough technologies to measure cellular oxygen consumption and proton efflux are reigniting the study of cellular energetics by increasing the scope and pace with which discoveries are made. As we learn the variation in metabolism between cell types is large, it is helpful to continually provide additional perspectives and update our roadmap for data interpretation. In that spirit, this chapter provides the following for those conducting microplate-based oxygen consumption experiments: (i) a description of the standard parameters for measuring respiration in intact cells, (ii) a framework for data analysis and normalization, and (iii) examples of measuring respiration in permeabilized cells to follow up results observed with intact cells. Additionally, rate-based measurements of extracellular pH are increasingly used as a qualitative indicator of glycolytic flux. As a resource to help interpret these measurements, this chapter also provides a detailed accounting of proton production during glucose oxidation in the context of plate-based assays.

  2. Modal interactions in primary and subharmonic resonant dynamics of imperfect microplates with geometric nonlinearities

    NASA Astrophysics Data System (ADS)

    Farokhi, Hamed; Ghayesh, Mergen H.

    2016-06-01

    This paper analyses the modal interactions in the nonlinear, size-dependent dynamics of geometrically imperfect microplates. Based on the modified couple stress theory, the equations of motion for the in-plane and out-of-plane motions are obtained employing the von Kármán plate theory as well as Kirchhoff's hypotheses by means of the Lagrange equations. The equations of motions are solved using the pseudo-arclength continuation technique and direct time-integration method. The system parameters are tuned to the values associated with modal interactions, and then nonlinear resonant responses and energy transfer are analysed. Nonlinear motion characteristics are shown in the form of frequency-response and force-response curves, time histories, phase-plane portraits, and fast Fourier transforms.

  3. Rapid microplate, green method for high-throughput evaluation of vinegar acidity using thermal infrared enthalpimetry.

    PubMed

    Tischer, Bruna; Oliveira, Alessandra Stangherlin; Ferreira, Daniele de Freitas; Menezes, Cristiano Ragagnin; Duarte, Fábio Andrei; Wagner, Roger; Barin, Juliano Smanioto

    2017-01-15

    Infrared thermal imaging was combined with disposable microplates to perform enthalpimetric analysis using an infrared camera to monitor temperature without contact. The proposed thermal infrared enthalpimetry (TIE) method was used to determine the total, fixed and volatile acidities of vinegars. Sample preparation and analysis were performed in the same vessel, avoiding excessive sample handling and reducing energy expenditure by more than ten times. The results agreed with those of the conventional method for different kinds of vinegars, with values of 1.7%, and 2.3% for repeatability and intermediate precision, respectively. A linear calibration curve was obtained from 0.040 to 1.30molL(-1). The proposed method provided rapid results (within 10s) for four samples simultaneously, a sample throughput of up to 480 samples per hour. In addition, the method complies with at least eight of twelve recommendations for green analytical chemistry, making TIE a promising tool for routine vinegar analysis.

  4. Microplate assay analysis of the distribution of organophosphate and carbamate resistance in Guatemalan Anopheles albimanus

    PubMed Central

    Brogdon, W. G.; Beach, R. F.; Stewart, J. M.; Castanaza, L.

    1988-01-01

    Simple microplate assay methods for determining the frequency of insecticide resistance in single mosquitos were used to study the distribution and localization of organophosphate and carbamate resistance in field populations of Anopheles albimanus Weidemann in Guatemala, where such resistance, caused by heavy use of agricultural pesticides, has long been assumed to be widespread. Areas of complete susceptibility to organophosphates and carbamates were observed, as well as areas where the resistant phenotypes represented up to 98% of the population. Overall, the resistance levels were lower and more localized than expected. Two mechanisms of resistance were identified by the microassay methods. These were the elevated esterase (nonspecific esterase) and insensitive acetylcholinesterase mechanisms which were selected independently, the former (documented for the first time in Central American anophelines) being predominant. These methods represent a promising new technology for the detection and assessment of resistance and will facilitate improved control strategy decisions. PMID:3262440

  5. Determination of nitrite in waters by microplate fluorescence spectroscopy and HPLC with fluorescence detection.

    PubMed

    Büldt, A; Karst, U

    1999-08-01

    A selective and versatile fluorescence spectroscopic method for the determination of nitrite in waters has been developed. Nitrite reacts in the presence of mineral acids with the nonfluorescent N-methyl-4-hydrazino-7-nitrobenzofurazan forming N-methyl-4-amino-7-nitrobenzofurazan, which can be detected by fluorescence spectroscopy with an excitation maximum at lambda = 468 nm and an emission maximum at lambda = 537 nm in acetonitrile. Three new methods based on this reaction have been developed: Direct fluorescence spectroscopy, HPLC/fluorescence, or HPLC with UV/vis detector may be selected as detection techniques. On microplates, high-throughput fluorescence spectroscopy is achieved, while HPLC/fluorescence provides lower limits of detection, and HPLC with UV/vis detection enables evaluation of the reaction with standard instrumentation. Different water samples were investigated using all detection modes, and a photometric standard procedure was successfully employed to validate the new methods with an independent technique.

  6. Microplate technique to determine hemolytic activity for routine typing of Listeria strains.

    PubMed Central

    Dominguez Rodriguez, L; Vazquez Boland, J A; Fernandez Garayzabal, J F; Echalecu Tranchant, P; Gomez-Lucia, E; Rodriguez Ferri, E F; Suarez Fernandez, G

    1986-01-01

    Because the hemolysis produced by Listeria monocytogenes and Listeria seeligeri on blood agar is frequently difficult to interpret, we developed a microplate technique for the routine determination of hemolytic activity with erythrocyte suspensions. This microtechnique is a simple and reliable test for distinguishing clearly between hemolytic and nonhemolytic strains and could be used instead of the CAMP (Christie-Atkins-Munch-Petersen) test with Staphylococcus aureus in the routine typing of Listeria strains. Furthermore, our results suggest that the quantitation of the hemolytic activity of the Listeria strains, along with the D-xylose, L-rhamnose, and alpha-methyl-D-mannoside acidification tests, allows the differentiation of L. monocytogenes, L. seeligeri, and Listeria ivanovii. We also observed that the treatment of erythrocytes with crude exosubstances of rhodococcus equi, Pseudomonas fluorescens, Acinetobacter calcoaceticus, and S. aureus enhanced the hemolytic activity of all Listeria strains with this characteristic. PMID:3088037

  7. Evaluation of the ProSpecT Microplate Assay for detection of Campylobacter: a routine laboratory perspective.

    PubMed

    Dediste, A; Vandenberg, O; Vlaes, L; Ebraert, A; Douat, N; Bahwere, P; Butzler, J-P

    2003-11-01

    To evaluate the use of the new enzyme-linked immunosorbent assay, the ProSpecT Campylobacter Microplate Assay (Alexon-Trend, Minneapolis, MN, USA), which allows 2-h detection of both Campylobacter jejuni and Campylobacter coli antigen directly in stool specimens. Over 4 months, all stool samples preserved in Cary-Blair medium, or fresh specimens, from non-hospitalized children and HIV-infected patients (adults and children), submitted to our laboratory were evaluated with the ProSpecT Campylobacter Microplate Assay. Results were compared with those obtained by routine culture methods using both a specific medium and a filtration method for the recovery of Campylobacter spp. Of the 1205 stool specimens cultured, 101 were found to be positive for either C. jejuni or C. coli, giving an overall recovery rate of 8.38%. Ninety samples were positive by both culture and ProSpecT Campylobacter Microplate Assay, and 11 were positive by culture only, giving a sensitivity of 89.1%. In addition, of 1104 samples negative by culture, 25 were initially positive by ProSpecT Campylobacter Microplate Assay. We found no cross-reaction with other bacterial enteropathogens isolated from stool specimens. These results thus confirm a high specificity (97.7%) for both C. jejuni and C. coli. The positive and negative predictive values found were 78.3% and 99%, respectively. There was no statistically significant difference in sensitivity and specificity if the stool was fresh or preserved with Cary-Blair medium. These data suggest that the ProSpecT Campylobacter Microplate Assay is a rapid and easy-to-use test for the detection of both C. jejuni and C. coli in stool specimens. It could be used for patients for whom early antibiotic therapy is needed or for epidemiologic studies.

  8. A transparent nanostructured optical biosensor.

    PubMed

    He, Yuan; Li, Xiang; Que, Long

    2014-05-01

    Herein we report a new transparent nanostructured Fabry-Perot interferometer (FPI) device. The unique features of the nanostructured optical device can be summarized as the following: (i) optically transparent nanostructured optical device; (ii) simple and inexpensive for fabrication; (iii) easy to be fabricated and scaled up as an arrayed format. These features overcome the existing barriers for the current nanopore-based interferometric optical biosensors by measuring the transmitted optical signals rather than the reflected optical signals, thereby facilitating the optical testing significantly for the arrayed biosensors and thus paving the way for their potential for high throughput biodetection applications. The optically transparent nanostructures (i.e., anodic aluminum oxide nanopores) inside the FPI devices are fabricated from 2.2 microm thick lithographically patterned Al thin film on an indium tin oxide (ITO) glass substrate using a two-step anodization process. Utilizing the binding between Protein A and porcine immunoglobulin G (IgG) as a model, the detection of the bioreaction between biomolecules has been demonstrated successfully. Experiments found that the lowest detection concentration of proteins is in the range of picomolar level using current devices, which can be easily tuned into the range of femtomolar level by optimizing the performance of devices.

  9. Biosensor approach to psychopathology classification.

    PubMed

    Koshelev, Misha; Lohrenz, Terry; Vannucci, Marina; Montague, P Read

    2010-10-21

    We used a multi-round, two-party exchange game in which a healthy subject played a subject diagnosed with a DSM-IV (Diagnostic and Statistics Manual-IV) disorder, and applied a Bayesian clustering approach to the behavior exhibited by the healthy subject. The goal was to characterize quantitatively the style of play elicited in the healthy subject (the proposer) by their DSM-diagnosed partner (the responder). The approach exploits the dynamics of the behavior elicited in the healthy proposer as a biosensor for cognitive features that characterize the psychopathology group at the other side of the interaction. Using a large cohort of subjects (n = 574), we found statistically significant clustering of proposers' behavior overlapping with a range of DSM-IV disorders including autism spectrum disorder, borderline personality disorder, attention deficit hyperactivity disorder, and major depressive disorder. To further validate these results, we developed a computer agent to replace the human subject in the proposer role (the biosensor) and show that it can also detect these same four DSM-defined disorders. These results suggest that the highly developed social sensitivities that humans bring to a two-party social exchange can be exploited and automated to detect important psychopathologies, using an interpersonal behavioral probe not directly related to the defining diagnostic criteria.

  10. Electrochemical application of DNA biosensors

    NASA Astrophysics Data System (ADS)

    Mascini, M.; Lucarelli, F.; Palchetti, I.; Marrazza, G.

    2001-09-01

    Disposable electrochemical DNA-based biosensors are reviewed; they have been used for the determination of low- molecular weight compounds with affinity for nucleic acids and for the detection of hybridization reaction. The first application is related to the molecular interaction between surface-linked DNA and pollutants or drugs, in order to develop a simple device for rapid screening of toxic compounds. The determination of such compounds was measured by their effect simple device for rapid screening of toxic compounds. The determination of such compounds was measured by their effect on the oxidation signal of the guanine peak of calf thymus DNA immobilized on the electrode surface and investigated by chronopotentiometric or voltammetric analysis. Applicability to river and wastewater sample is demonstrated. Moreover, disposable electrochemical sensors for the detection of a specific sequence of DNA were realized by immobilizing synthetic single-stranded oligonucleotides onto a graphite screen-printed electrode. The probes because hybridized with different concentrations of complementary sequences present in the sample. The hybrids formed on the electrode surface were evaluated by chronopotentiometric analysis using daunomycin as the indicator of the hybridization reaction. The hybridization was also performed using real samples. Application to apolipoprotein E is described, in this case samples have to be amplified by PCR and then analyzed by the DNA biosensor. The extension of such procedures to samples of environmental interest or to contamination of food is discussed.

  11. Deformation driven by subduction and microplate collision: Geodynamics of Cook Inlet basin, Alaska

    USGS Publications Warehouse

    Bruhn, R.L.; Haeussler, P.J.

    2006-01-01

    Late Neogene and younger deformation in Cook Inlet basin is caused by dextral transpression in the plate margin of south-central Alaska. Collision and subduction of the Yakutat microplate at the northeastern end of the Aleutian subduction zone is driving the accretionary complex of the Chugach and Kenai Mountains toward the Alaska Range on the opposite side of the basin. This deformation creates belts of fault-cored anticlines that are prolific traps of hydrocarbons and are also potential sources for damaging earthquakes. The faults dip steeply, extend into the Mesozoic basement beneath the Tertiary basin fill, and form conjugate flower structures at some localities. Comparing the geometry of the natural faults and folds with analog models created in a sandbox deformation apparatus suggests that some of the faults accommodate significant dextral as well as reverse-slip motion. We develop a tectonic model in which dextral shearing and horizontal shortening of the basin is driven by microplate collision with an additional component of thrust-type strain caused by plate subduction. This model predicts temporally fluctuating stress fields that are coupled to the recurrence intervals of large-magnitude subduction zone earthquakes. The maximum principal compressive stress is oriented east-southeast to east-northeast with nearly vertical least compressive stress when the basin's lithosphere is mostly decoupled from the underlying subduction megathrust. This stress tensor is compatible with principal stresses inferred from focal mechanisms of earthquakes that occur within the crust beneath Cook Inlet basin. Locking of the megathrust between great magnitude earthquakes may cause the maximum principal compressive stress to rotate toward the northwest. Moderate dipping faults that strike north to northeast may be optimally oriented for rupture in the ambient stress field, but steeply dipping faults within the cores of some anticlines are unfavorably oriented with respect to

  12. Validation and characterization of optical redox ratio measurements with a microplate reader in breast cancer cells

    NASA Astrophysics Data System (ADS)

    Cannon, Taylor M.; Shah, Amy T.; Skala, Melissa C.

    2015-02-01

    There is a need for accurate, high-throughput measures to gauge the efficacy of potential drugs in living cells. Metabolism is an early marker of drug response in cells, and NADH and FAD are autofluorescent cellular metabolic coenzymes that can be non-invasively monitored using optical techniques. Relative rates of glycolysis and oxidative phosphorylation in a cell are quantified by the redox ratio, defined as the autofluorescence intensity of NADH divided by that of FAD. Microplate readers are high-throughput instruments that can rapidly measure NADH and FAD autofluorescence intensities for hundreds of wells, and are capable of identifying receptor status and resolving drug response in breast cancer cell lines. This study tests the accuracy and repeatability of plate reader experiments measuring the redox ratio in breast cancer cell lines. NADH and FAD fluorescence levels remained constant over the course of multiple measurements (p<0.1), ruling out the incidence of photobleaching. The contribution of media to background fluorescence signal was also investigated. Media fluorescence levels for both coenzymes were significantly lower (p<0.0001) than those from wells containing cells, and replacing the media with saline resulted in the same redox ratio trends among cell lines as initial measurements with media. Following treatment with carbonyl cyanide p-fluorodeoxyphenylhydrazone (FCCP), an oxidative phosphorylation inhibitor, the redox ratio decreased (p<0.05), validating NADH and FAD as the primary fluorescence sources. These findings verify that autofluorescence measurements taken by microplate readers accurately and reliably characterize NADH and FAD fluorescence, validating their promise in the areas of metabolic monitoring and drug development.

  13. Crustal Structure and Deformation of the Yakutat Microplate: New Insights From STEEP Marine Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    Lowe, L. A.; Gulick, S. P.; Christeson, G.; van Avendonk, H.; Reece, R.; Elmore, R.; Pavlis, T.

    2008-12-01

    In fall 2008, we will conduct an active source marine seismic experiment of the offshore Yakutat microplate in the northern Gulf of Alaska. The survey will be conducted aboard the academic research vessel, R/V Marcus Langseth, collecting deep-penetrating multi-channel seismic reflection survey using an 8-km, 640 channel hydrophone streamer and a 6600 cu. in., 36 airgun array. The survey is the concluding data acquisition phase for the ST. Elias Erosion and tectonics Project (STEEP), a multi-institution NSF-Continental Dynamics project investigating the interplay of climate and tectonics in the Chugach-St. Elias Mountains in southern Alaska. The experiment will also provide important site survey information for possible future Integrated Ocean Drilling Program investigations. Two profiles coincident with wide-angle refraction data (see Christeson, et al., this session) will image structural changes across the Dangerous River Zone from east to west and the Transition Fault from south to north. We will also image the western portion of the Transition Fault to determine the nature of faulting along this boundary including whether or not the Pacific Plate is underthrusting beneath the Yakutat microplate as part of this collision. Our westernmost profile will image the Kayak Island Zone, typically described as the northern extension of the Aleutian megathrust but which may be a forming suture acting as a deformation backstop for the converging Yakutat and North American plates. Profiles across the Pamplona Zone, the current Yakutat-North America deformation front, will further constrain relative timing of structural development and the depth of deformation on the broad folds and thrust faults that comprise the area. This new dataset will allow further insight into regional tectonics of the St. Elias region as well as provide more detail regarding the development of the south Alaskan margin during major Plio-Pleistocene glacial- interglacial periods.

  14. Rigidity of Major Plates and Microplates Estimated From GPS Solution GPS2006.0

    NASA Astrophysics Data System (ADS)

    Kogan, M. G.; Steblov, G. M.

    2006-05-01

    Here we analyze the rigidity of eight major lithospheric plates using our global GPS solution GPS2006.0. We included all daily observations in interval 1995.0 to 2006.0 collected at IGS stations, as well as observations at many important stations not included in IGS. Loose multiyear solution GPS2006.0 is based on daily solutions by GAMIT software, performed at SOPAC and at Columbia University; those daily solutions were combined by Kalman filter (GLOBK software) into a loose multiyear solution. The constrained solution for station positions and velocities was obtained without a conventional reference frame; instead, we applied translation and rotation in order to best fit the zero velocities of 76 stations in stable plate cores excluding the regions of postglacial rebound. Simultaneously, we estimated relative plate rotation vectors (RV) and the origin translation rate (OTR), and then corrected station velocities for it. Therefore, the velocities in GPS2006.0 are unaffected by the OTR error of ITRF2000 conventionally used to constrain a loose solution. The 1-sigma plate-residual velocity in a stable plate core is less than 1 mm/yr for the plates: Eurasia, Pacific, North and South Americas, Nubia, Australia, and Antarctica; it is 1.4 mm/yr for the Indian plate, most probably because of poorer data quality. Plate-residuals at other established plates (Arabia, Nazca, Caribbean, Philippine) were not assessed for lack of observations. From our analysis, an upper bound for the mobility of the plate inner area is 1 mm/yr. Plate- residual GPS velocities for several hypothesized microplates in east Asia, such as Okhotsk, Amuria, South China, are 3-4 times higher; corresponding strain rates for these microplates are an order of magnitude higher than for Eurasia, North America, and other large plates.

  15. Adaptation of Microplate-based Respirometry for Hippocampal Slices and Analysis of Respiratory Capacity

    PubMed Central

    Schuh, Rosemary A.; Clerc, Pascaline; Hwang, Hyehyun; Mehrabian, Zara; Bittman, Kevin; Chen, Hegang; Polster, Brian M.

    2011-01-01

    Multiple neurodegenerative disorders are associated with altered mitochondrial bioenergetics. Although mitochondrial O2 consumption is frequently measured in isolated mitochondria, isolated synaptic nerve terminals (synaptosomes), or cultured cells, the absence of mature brain circuitry is a remaining limitation. Here we describe the development of a method that adapts the Seahorse Extracellular Flux Analyzer (XF24) for the microplate-based measurement of hippocampal slice O2 consumption. As a first evaluation of the technique, we compared whole slice bioenergetics to previous measurements made with synaptosomes or cultured neurons. We found that mitochondrial respiratory capacity and O2 consumption coupled to ATP synthesis could be estimated in cultured or acute hippocampal slices with preserved neural architecture. Mouse organotypic hippocampal slices oxidizing glucose displayed mitochondrial O2 consumption that was well-coupled, as determined by the sensitivity to the ATP synthase inhibitor oligomycin. However stimulation of respiration by uncoupler was modest (<120% of basal respiration) compared to previous measurements in cells or synaptosomes, although enhanced slightly (to ~150% of basal respiration) by the acute addition of the mitochondrial complex I-linked substrate pyruvate. These findings suggest a high basal utilization of respiratory capacity in slices and a limitation of glucose-derived substrate for maximal respiration. The improved throughput of microplate-based hippocampal respirometry over traditional O2 electrode-based methods is conducive to neuroprotective drug screening. When coupled with cell type-specific pharmacology or genetic manipulations, the ability to efficiently measure O2 consumption from whole slices should advance our understanding of mitochondrial roles in physiology and neuropathology. PMID:21520220

  16. Deep sequencing identifies viral and wasp genes with potential roles in replication of Microplitis demolitor Bracovirus.

    PubMed

    Burke, Gaelen R; Strand, Michael R

    2012-03-01

    Viruses in the genus Bracovirus (BV) (Polydnaviridae) are symbionts of parasitoid wasps that specifically replicate in the ovaries of females. Recent analysis of expressed sequence tags from two wasp species, Cotesia congregata and Chelonus inanitus, identified transcripts related to 24 different nudivirus genes. These results together with other data strongly indicate that BVs evolved from a nudivirus ancestor. However, it remains unclear whether BV-carrying wasps contain other nudivirus-like genes and what types of wasp genes may also be required for BV replication. Microplitis demolitor carries Microplitis demolitor bracovirus (MdBV). Here we characterized MdBV replication and performed massively parallel sequencing of M. demolitor ovary transcripts. Our results indicated that MdBV replication begins in stage 2 pupae and continues in adults. Analysis of prereplication- and active-replication-stage ovary RNAs yielded 22 Gb of sequence that assembled into 66,425 transcripts. This breadth of sampling indicated that a large percentage of genes in the M. demolitor genome were sequenced. A total of 41 nudivirus-like transcripts were identified, of which a majority were highly expressed during MdBV replication. Our results also identified a suite of wasp genes that were highly expressed during MdBV replication. Among these products were several transcripts with conserved roles in regulating locus-specific DNA amplification by eukaryotes. Overall, our data set together with prior results likely identify the majority of nudivirus-related genes that are transcriptionally functional during BV replication. Our results also suggest that amplification of proviral DNAs for packaging into BV virions may depend upon the replication machinery of wasps.

  17. New portable biosensor technology for area reduction

    NASA Astrophysics Data System (ADS)

    Christensson, Magnus; Gardhagen, Peter

    1999-08-01

    This paper describes the expected performance of a new portable vapor detection system under development by Biosensor Applications Sweden AB. The system is designed for area reduction n humanitarian mine clearance operations. It consists of a collection system and a biosensor with a sensitivity capable of detecting picogram levels of TNT molecules. Biosensor has over the past four years developed the base technology for detection of TNT for a land mine application. A prototype for TNT detection will be tested in minefields during 1999. Our technology, sometimes called 'the artificial dog nose', has by many experts been described as revolutionary.

  18. Early Lung Cancer Diagnosis by Biosensors

    PubMed Central

    Zhang, Yuqian; Yang, Dongliang; Weng, Lixing; Wang, Lianhui

    2013-01-01

    Lung cancer causes an extreme threat to human health, and the mortality rate due to lung cancer has not decreased during the last decade. Prognosis or early diagnosis could help reduce the mortality rate. If microRNA and tumor-associated antigens (TAAs), as well as the corresponding autoantibodies, can be detected prior to clinical diagnosis, such high sensitivity of biosensors makes the early diagnosis and prognosis of cancer realizable. This review provides an overview of tumor-associated biomarker identifying methods and the biosensor technology available today. Laboratorial researches utilizing biosensors for early lung cancer diagnosis will be highlighted. PMID:23892596

  19. Design Strategies for Aptamer-Based Biosensors

    PubMed Central

    Han, Kun; Liang, Zhiqiang; Zhou, Nandi

    2010-01-01

    Aptamers have been widely used as recognition elements for biosensor construction, especially in the detection of proteins or small molecule targets, and regarded as promising alternatives for antibodies in bioassay areas. In this review, we present an overview of reported design strategies for the fabrication of biosensors and classify them into four basic modes: target-induced structure switching mode, sandwich or sandwich-like mode, target-induced dissociation/displacement mode and competitive replacement mode. In view of the unprecedented advantages brought about by aptamers and smart design strategies, aptamer-based biosensors are expected to be one of the most promising devices in bioassay related applications. PMID:22399891

  20. Remote sensing using an airborne biosensor

    SciTech Connect

    Ligler, F.S.; Anderson, G.P.; Davidson, P.T.; Stenger, D.A.; Ives, J.T.; King, K.D.; Page, G.; Whelan, J.P.

    1998-08-15

    There is no current method for remote identification of aerosolized bacteria. In particular, such a capability is required to warn of a biological warfare attack prior to human exposure. A fiber optic biosensor, capable of running four simultaneous immunoassays, was integrated with an automated fluidics unit, a cyclone-type air sampler, a radio transceiver, and batteries on a small, remotely piloted airplane capable of carrying a 4.5-kg payload. The biosensor system was able to collect aerosolized bacteria in flight, identify them, and transmit the data to the operator on the ground. The results demonstrate the feasibility of integrating a biosensor into a portable, remotely operated system for environmental analysis.

  1. Enhanced efficiency of a capillary-based biosensor over an optical fiber biosensor for detecting calpastatin.

    PubMed

    Bratcher, C L; Grant, S A; Vassalli, J T; Lorenzen, C L

    2008-06-15

    A capillary-based optical biosensor has been developed to detect calpastatin, an indicator of meat tenderness. Longissimus muscle samples (n=11) were extracted from beef carcasses at 0 and 48h post-mortem. These samples were assayed for calpastatin by traditional laboratory methods and with a newly developed capillary tube biosensor as well as for Warner-Bratzler shear force (WBSF) and crude protein and the responses were compared. Additionally, the response from the capillary-based biosensor was compared to a previously developed optical fiber biosensor. When the 0 and 48h sampling periods were combined, the capillary tube biosensor was moderately accurate in predicting calpastatin activity (R(2)=0.6058). There was less variation in the 0h capillary tube biosensor compared to the 0h pre-column (P=0.006) and post-column optical fiber biosensors (P=0.047), therefore the capillary tube biosensor is a more precise system of measurement. This research further advances the development of a calpastatin biosensor and makes online assessment one step closer to reality.

  2. System-level integration of active silicon photonic biosensors

    NASA Astrophysics Data System (ADS)

    Laplatine, L.; Al'Mrayat, O.; Luan, E.; Fang, C.; Rezaiezadeh, S.; Ratner, D. M.; Cheung, K.; Dattner, Y.; Chrostowski, L.

    2017-02-01

    Biosensors based on silicon photonic integrated circuits have attracted a growing interest in recent years. The use of sub-micron silicon waveguides to propagate near-infrared light allows for the drastic reduction of the optical system size, while increasing its complexity and sensitivity. Using silicon as the propagating medium also leverages the fabrication capabilities of CMOS foundries, which offer low-cost mass production. Researchers have deeply investigated photonic sensor devices, such as ring resonators, interferometers and photonic crystals, but the practical integration of silicon photonic biochips as part of a complete system has received less attention. Herein, we present a practical system-level architecture which can be employed to integrate the aforementioned photonic biosensors. We describe a system based on 1 mm2 dies that integrate germanium photodetectors and a single light coupling device. The die are embedded into a 16x16 mm2 epoxy package to enable microfluidic and electrical integration. First, we demonstrate a simple process to mimic Fan-Out Wafer-level-Packaging, which enables low-cost mass production. We then characterize the photodetectors in the photovoltaic mode, which exhibit high sensitivity at low optical power. Finally, we present a new grating coupler concept to relax the lateral alignment tolerance down to +/- 50 μm at 1-dB (80%) power penalty, which should permit non-experts to use the biochips in a"plug-and-play" style. The system-level integration demonstrated in this study paves the way towards the mass production of low-cost and highly sensitive biosensors, and can facilitate their wide adoption for biomedical and agro-environmental applications.

  3. A Novel Cell-Based Hybrid Acoustic Wave Biosensor with Impedimetric Sensing Capabilities

    PubMed Central

    Liu, Fei; Li, Fang; Nordin, Anis Nurashikin; Voiculescu, Ioana

    2013-01-01

    A novel multiparametric biosensor system based on living cells will be presented. The biosensor system includes two biosensing techniques on a single device: resonant frequency measurements and electric cell-substrate impedance sensing (ECIS). The multiparametric sensor system is based on the innovative use of the upper electrode of a quartz crystal microbalance (QCM) resonator as working electrode for the ECIS technique. The QCM acoustic wave sensor consists of a thin AT-cut quartz substrate with two gold electrodes on opposite sides. For integration of the QCM with the ECIS technique a semicircular counter electrode was fabricated near the upper electrode on the same side of the quartz crystal. Bovine aortic endothelial live cells (BAECs) were successfully cultured on this hybrid biosensor. Finite element modeling of the bulk acoustic wave resonator using COMSOL simulations was performed. Simultaneous gravimetric and impedimetric measurements performed over a period of time on the same cell culture were conducted to validate the device's sensitivity. The time necessary for the BAEC cells to attach and form a compact monolayer on the biosensor was 35∼45 minutes for 1.5 × 104 cells/cm2 BAECs; 60 minutes for 2.0 × 104 cells/cm2 BAECs; 70 minutes for 3.0 × 104 cells/cm2 BAECs; and 100 minutes for 5.0 × 104 cells/cm2 BAECs. It was demonstrated that this time is the same for both gravimetric and impedimetric measurements. This hybrid biosensor will be employed in the future for water toxicity detection. PMID:23459387

  4. Influence of electrical double-layer dispersion forces and size dependency on pull-in instability of clamped microplate immersed in ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Karimipour, I.; Beni, Yaghoub Tadi; Taheri, N.

    2017-10-01

    Plate-type clamped microplate is of the most common constructive elements for developing in-liquid-operating devices. While the electromechanical behavior of clamped microplate in non-liquid environments has exclusively been addressed in the literature, no theoretical studies have yet been conducted on precise modeling of the clamped microplate in electrolyte liquid. Herein, the electromechanical response and instability of the clamped microplate immersed in ionic electrolyte media are investigated. The electrochemical force field is determined using double layer theory and linearized Poisson-Boltzmann equation. The presence of dispersion forces, i.e., Casimir and van der Waals attractions, are included in the theoretical model considering the correction due to the presence of liquid media between the interacting surfaces (three-layer model). To this end, a kind of microplate has been designed, i.e., a square microplate with all edges clamped supported. The strain gradient elasticity is employed to model the size-dependent structural behavior of the clamped microplate. To solve the nonlinear constitutive equation of the system, Extended Kantorovich Method, is employed and the pull-in parameter of the microplate are extracted. Impacts of the dispersion forces and size effect on the instability characteristics are discussed as well as the effect of ion concentration and potential ratio. It is found that the significant difference between the pull-in instability parameters in the modified strain gradient theory and the classical theory for thin microplates is merely due to the consideration of size effect parameter in the modified strain gradient theory. To confirm the validity of formulations, the numerical values of the results are compared. The results predicted via the aforementioned approach are in excellent agreement with those in the literature. Some new examples are solved to demonstrate the applicability of the procedure.

  5. Developing Highly Sensitive Micro-Biosensors for in-situ Monitoring Mercury and Chromium(IV) Contaminants by Genetically-evolving and Computer-designing Metal-binding Proteins

    SciTech Connect

    Wang, Qinghong; Fang, Xiangdong; Goddard, William

    2013-10-17

    Mercury has been well known as an environmental pollutant to the environment and to cause serious effects on human health for several decades. To effectively control mercury pollution and reduce mercury damages, the sensitive determination of mercury is essential. Currently, many different types of sensor-based assays have been developed, while the whole-cell biosensor has been gaining increasingly attentions due to its easy reproducibility and the possibility to greatly reduce the cost. However, significant improvements on the specificity, sensitivity, stability and simplicity of the whole-cell biosensor are still needed prior to its eventual commercialization. Sponsored by US Department of Energy under the contract agreement DE-FG02-07ER64410, we applied the special synthetic biology and directed evolution strategies to improve the effectiveness and performance of whole-cell biosensors. We have constructed different whole-cell biosensors for the mercuric ion and methylmercury detection with metalloregulator MerR, fluorescent protein mCherry and organomercurial lyase MerB. By introducing the mercuric transporter MerT, we were able to increase the detection sensitivity of whole-cell biosensors by at least one fold. By introducing the bio-amplification genetic circuit based on the gene cascade expression system of PRM-cI from bacteriophage l and Pm-XylS2 from Pseudomonas putida, we have increased the detection sensitivity of whole-cell biosensors by 1~2 folds in our tested conditions. With the directed evolution of MerR and subsequent high-throughput screening via color assay and microplate screening, we have dramatically increased the detection sensitivity by up to 10 folds at low concentration of mercury (II) of 1-10nM. Structural modeling and computational analysis of the mutated MerR showed that many mutations could cause the change of a loop to helix, which could be responsible for the increased mercury sensitivity.

  6. Slotted Photonic Crystal Sensors

    PubMed Central

    Scullion, Mark G.; Krauss, Thomas F.; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  7. Electrochemical Biosensors - Sensor Principles and Architectures

    PubMed Central

    Grieshaber, Dorothee; MacKenzie, Robert; Vörös, Janos; Reimhult, Erik

    2008-01-01

    Quantification of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. However, converting the biological information to an easily processed electronic signal is challenging due to the complexity of connecting an electronic device directly to a biological environment. Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an electronic signal. Over the past decades several sensing concepts and related devices have been developed. In this review, the most common traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, such as nanowire or magnetic nanoparticle-based biosensing. Additional measurement techniques, which have been shown useful in combination with electrochemical detection, are also summarized, such as the electrochemical versions of surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry, quartz crystal microbalance, and scanning probe microscopy. The signal transduction and the general performance of electrochemical sensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches, such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymes into vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities for signal amplification. In particular, this review highlights the importance of the precise control over the delicate

  8. Recent Advances in Nanotechnology Applied to Biosensors

    PubMed Central

    Zhang, Xueqing; Guo, Qin; Cui, Daxiang

    2009-01-01

    In recent years there has been great progress the application of nanomaterials in biosensors. The importance of these to the fundamental development of biosensors has been recognized. In particular, nanomaterials such as gold nanoparticles, carbon nanotubes, magnetic nanoparticles and quantum dots have been being actively investigated for their applications in biosensors, which have become a new interdisciplinary frontier between biological detection and material science. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches, and challenges, with the aim of stimulating a broader interest in developing nanomaterial-based biosensors and improving their applications in disease diagnosis and food safety examination. PMID:22399954

  9. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    EPA Science Inventory

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  10. Enzyme Nanoparticles-Based Electronic Biosensor

    SciTech Connect

    Liu, Guodong; Lin, Yuehe; Ostatna, V.; Wang, Joseph

    2005-06-28

    A novel method for fabricating electronic biosensors based on coupling enzyme nanoparticles and self assembly technology is illustrated. Redox horseradish peroxidase nanoparticles were prepared by desolvation with ethanol and subsequent crosslinking with glutaraldehyde. The cross-linked enzyme nanoparticles were functionalized by cysteine to introduce thiol groups on the nanoparticle surface. Immobilized enzyme nanoparticle on the gold electrode by self-assembly kept redox and electrocatalytic activities, and was used to develop reagentless biosensors for H2O2 detection without promoters and mediators. The new approach is simple, low cost and circumvents complications associated with solution systems. It is a universal immobilization method for biosensor, biomedical devices, biofuel cells and enzymatic bioreactors fabrication and expected to open new opportunities for biosensor, clinical diagnostics, and for bioanalysis, in general.

  11. Market analysis of biosensors for food safety.

    PubMed

    Alocilja, Evangelyn C; Radke, Stephen M

    2003-05-01

    This paper is presented as an overview of the pathogen detection industry. The review includes pathogen detection markets and their prospects for the future. Potential markets include the medical, military, food, and environmental industries. Those industries combined have a market size of $563 million for pathogen detecting biosensors and are expected to grow at a compounded annual growth rate of 4.5%. The food market is further segmented into different food product industries. The overall food-pathogen testing market is expected to grow to $192 million and 34 million tests by 2005. The trend in pathogen testing emphasizes the need to commercialize biosensors for the food safety industry as legislation creates new standards for microbial monitoring. With quicker detection time and reusable features, biosensors will be important to those interested in real time diagnostics of disease causing pathogens. As the world becomes more concerned with safe food and water supply, the demand for rapid detecting biosensors will only increase.

  12. Biosensors a promising future in measurements

    NASA Astrophysics Data System (ADS)

    Saleem, Muhammad

    2013-12-01

    A biosensor is an analytical device which can be used to convert the existence of a molecule or compound into a measurable and useful signal. Biosensors use stimulus to translate changes to recognisable signals and have great importance to society. Applications include diagnosis tools for diseases, security appliances, and other biomedical equipments. Biosensors can also be used in the detection of pathogens and other microbes in foodstuffs, drugs and processing industries. Enormous progress and advancement has been witnessed in this area. Research and development in micro level systems serves to interface biology with novel materials such as nanomaterial. Development of high speed and accurate electronic devices tfor use in medicine and energy storage (such as biofuel cells) is one of the target areas. This paper discusses the importance, use and current and future trend in the application of biosensors.

  13. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    EPA Science Inventory

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  14. Surface plasmon resonance biosensors: advances and applications

    NASA Astrophysics Data System (ADS)

    Homola, Jirí

    2009-10-01

    Surface plasmon resonance (SPR) biosensors represent the most advanced label-free optical affinity biosensor technology. In the last decade numerous SPR sensor platforms have been developed and applied in the life sciences and bioanalytics. This contribution reviews the state of the art in the development of SPR (bio)sensor technology and presents selected results of research into SPR biosensors at the Institute of Photonics and Electronics, Prague. The developments discussed in detail include a miniature fiber optic SPR sensor for localized measurements, a compact SPR sensor for field use and a multichannel SPR sensor for high-throughput screening. Examples of applications for the detection of analytes related to medical diagnostics (biomarkers, hormones, antibodies), environmental monitoring (endocrine disrupting compounds), and food safety (pathogens and toxins) are given.

  15. REVIEW ARTICLE: Environmental applications of analytical biosensors

    NASA Astrophysics Data System (ADS)

    Marco, María-Pilar; Barceló, Damià

    1996-11-01

    A review of the fundamental aspects and environmental applications of biosensors is presented. The bases of different transducer principles such as electrochemical, optical and piezoelectric are discussed. Various examples are given of the applications of such principles to develop immunosensor devices to determine common environmental contaminants. Attention is also paid to catalytic biosensors, using enzymes as sensing elements. Biosensor devices based on the use of cholinesterase and various oxidase enzymes such as tyrosinase, laccase, peroxidase and aldehyde dehydrogenase are reported. Some examples are given of the applications of other biomolecules such as whole cells, DNA or proteins, to determine pollution. Validation studies are presented comparing biosensors with chromatographic techniques to determine organophosphorus pesticides and phenolic compounds in environmental samples.

  16. Angle-resolved diffraction grating biosensor based on porous silicon

    NASA Astrophysics Data System (ADS)

    Lv, Changwu; Jia, Zhenhong; Liu, Yajun; Mo, Jiaqing; Li, Peng; Lv, Xiaoyi

    2016-03-01

    In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensor was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.

  17. Angle-resolved diffraction grating biosensor based on porous silicon

    SciTech Connect

    Lv, Changwu; Li, Peng; Jia, Zhenhong Liu, Yajun; Mo, Jiaqing; Lv, Xiaoyi

    2016-03-07

    In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensor was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.

  18. Graphene-Based Biosensors: Going Simple.

    PubMed

    Morales-Narváez, Eden; Baptista-Pires, Luis; Zamora-Gálvez, Alejandro; Merkoçi, Arben

    2017-02-01

    The main properties of graphene derivatives facilitating optical and electrical biosensing platforms are discussed, along with how the integration of graphene derivatives, plastic, and paper can lead to innovative devices in order to simplify biosensing technology and manufacture easy-to-use, yet powerful electrical or optical biosensors. Some crucial issues to be overcome in order to bring graphene-based biosensors to the market are also underscored.

  19. Biosensors for Inorganic and Organic Arsenicals

    PubMed Central

    Chen, Jian; Rosen, Barry P.

    2014-01-01

    Arsenic is a natural environmental contaminant to which humans are routinely exposed and is strongly associated with human health problems, including cancer, cardiovascular and neurological diseases. To date, a number of biosensors for the detection of arsenic involving the coupling of biological engineering and electrochemical techniques has been developed. The properties of whole-cell bacterial or cell-free biosensors are summarized in the present review with emphasis on their sensitivity and selectivity. Their limitations and future challenges are highlighted. PMID:25587436

  20. Fiber Optic Biosensors for Contaminant Monitoring

    DTIC Science & Technology

    2005-12-01

    3 Biosensor response (as photomultiplier voltage change) following a change in analyte concentration. Figure 2-4 Reactions catalyzed by hydrolytic...biosensor measures small pH changes produced by the reaction of an enzyme with 1,2-DCA and techniques are required to distinguish these pH changes from...layer of the detection element contains bacteria with an enzyme that catalyzes a reaction with the analyte resulting in protons being released. The

  1. Gold coated ZnO nanorod biosensor for glucose detection

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Anuradha; Jain, Chhavi; Rao, V. Padmanapan; Banerjee, S.

    2012-06-01

    Gold coated ZnO nanorod based biosensor has been fabricated for its glucose detecting abilities and compared with that of ZnO nanorod based biosensor. SEM images of electrochemically grown ZnO nanorods show hexagonally grown ZnO nanorods on an ITO substrate. Electrochemical analysis show that gold coated ZnO based biosensors have higher sensitivity, lower limit of detection and a wider linear range for glucose detection. The results demonstrate that gold coated ZnO nanorod based biosensors are a promising material for biosensor applications over single component ZnO nanorod based biosensor.

  2. Nanoparticles Modified ITO Based Biosensor

    NASA Astrophysics Data System (ADS)

    Khan, M. Z. H.

    2017-04-01

    Incorporation of nanomaterials with controlled molecular architecture shows great promise in improving electronic communication between biomolecules and the electrode substrate. In electrochemical applications metal nanoparticles (NPs) modified electrodes have been widely used and are emerging as candidates to develop highly sensitive electrochemical sensors. There has been a growing technological interest in modified indium tin oxide (ITO) electrodes due to their prominent optoelectronic properties and their wide use as a transducing platform. The introduction of NPs into the transducing platform is commonly achieved by their adsorption onto conventional electrode surfaces in various forms, including that of a composite. The aim of this review is to discuss the role of metallic NPs for surface fabrication of ITO thin films leading to detection of specific biomolecules and applications as a biosensor platform.

  3. Integrated optical biosensor system (IOBS)

    DOEpatents

    Grace, Karen M.; Sweet, Martin R.; Goeller, Roy M.; Morrison, Leland Jean; Grace, Wynne Kevin; Kolar, Jerome D.

    2007-10-30

    An optical biosensor has a first enclosure with a pathogen recognition surface, including a planar optical waveguide and grating located in the first enclosure. An aperture is in the first enclosure for insertion of sample to be investigated to a position in close proximity to the pathogen recognition surface. A laser in the first enclosure includes means for aligning and means for modulating the laser, the laser having its light output directed toward said grating. Detection means are located in the first enclosure and in optical communication with the pathogen recognition surface for detecting pathogens after interrogation by the laser light and outputting the detection. Electronic means is located in the first enclosure and receives the detection for processing the detection and outputting information on the detection, and an electrical power supply is located in the first enclosure for supplying power to the laser, the detection means and the electronic means.

  4. Nanoparticles Modified ITO Based Biosensor

    NASA Astrophysics Data System (ADS)

    Khan, M. Z. H.

    2016-12-01

    Incorporation of nanomaterials with controlled molecular architecture shows great promise in improving electronic communication between biomolecules and the electrode substrate. In electrochemical applications metal nanoparticles (NPs) modified electrodes have been widely used and are emerging as candidates to develop highly sensitive electrochemical sensors. There has been a growing technological interest in modified indium tin oxide (ITO) electrodes due to their prominent optoelectronic properties and their wide use as a transducing platform. The introduction of NPs into the transducing platform is commonly achieved by their adsorption onto conventional electrode surfaces in various forms, including that of a composite. The aim of this review is to discuss the role of metallic NPs for surface fabrication of ITO thin films leading to detection of specific biomolecules and applications as a biosensor platform.

  5. Magnetic impedance biosensor: A review.

    PubMed

    Wang, Tao; Zhou, Yong; Lei, Chong; Luo, Jun; Xie, Shaorong; Pu, Huayan

    2017-04-15

    Though the magnetoimpedance effect was discovered two decades ago, the biomedical applications of the magnetoimpedance sensor are still in their infancy. In this review, the authors summarized the magnetoimpedance effect in soft ferromagnetic wires, ribbons and thin films for biosensing applications. Recent progress and achievements of the magnetoimpedance-based biosensing applications including the detection of magnetic Ferrofluid, magnetic beads, magnetic nanoparticles, magnetically labeled bioanalytes and biomagnetic fields of living systems were reviewed. The modification effect of the biochemical liquids, agglomeration effect of the magnetic particles, and the effect of the stray magnetic field on magnetoimpedance were investigated in this review. Some constructive strategies were proposed for design of the high-performance magnetoimpedance biosensor, for quantitative and ultrasensitive detection of magnetically labeled biomolecules. The theoretical and experimental results suggest that the magnetoimpedance sensors are particularly suitable for highly sensitive detection of low-concentration biomolecules, and might be used for early diagnosis and screening of cancers.

  6. Packaged bulk micromachined triglyceride biosensor

    NASA Astrophysics Data System (ADS)

    Mohanasundaram, S. V.; Mercy, S.; Harikrishna, P. V.; Rani, Kailash; Bhattacharya, Enakshi; Chadha, Anju

    2010-02-01

    Estimation of triglyceride concentration is important for the health and food industries. Use of solid state biosensors like Electrolyte Insulator Semiconductor Capacitors (EISCAP) ensures ease in operation with good accuracy and sensitivity when compared to conventional sensors. In this paper we report on packaging of miniaturized EISCAP sensors on silicon. The packaging involves glass to silicon bonding using adhesive. Since this kind of packaging is done at room temperature, it cannot damage the thin dielectric layers on the silicon wafer unlike the high temperature anodic bonding technique and can be used for sensors with immobilized enzyme without denaturing the enzyme. The packaging also involves a teflon capping arrangement which helps in easy handling of the bio-analyte solutions. The capping solves two problems. Firstly, it helps in the immobilization process where it ensures the enzyme immobilization happens only on one pit and secondly it helps with easy transport of the bio-analyte into the sensor pit for measurements.

  7. Biosensor technology: technology push versus market pull.

    PubMed

    Luong, John H T; Male, Keith B; Glennon, Jeremy D

    2008-01-01

    Biosensor technology is based on a specific biological recognition element in combination with a transducer for signal processing. Since its inception, biosensors have been expected to play a significant analytical role in medicine, agriculture, food safety, homeland security, environmental and industrial monitoring. However, the commercialization of biosensor technology has significantly lagged behind the research output as reflected by a plethora of publications and patenting activities. The rationale behind the slow and limited technology transfer could be attributed to cost considerations and some key technical barriers. Analytical chemistry has changed considerably, driven by automation, miniaturization, and system integration with high throughput for multiple tasks. Such requirements pose a great challenge in biosensor technology which is often designed to detect one single or a few target analytes. Successful biosensors must be versatile to support interchangeable biorecognition elements, and in addition miniaturization must be feasible to allow automation for parallel sensing with ease of operation at a competitive cost. A significant upfront investment in research and development is a prerequisite in the commercialization of biosensors. The progress in such endeavors is incremental with limited success, thus, the market entry for a new venture is very difficult unless a niche product can be developed with a considerable market volume.

  8. Overview of affinity biosensors in food analysis.

    PubMed

    Patel, Pradip D

    2006-01-01

    The 4 major driving forces that are expected to lead to increased use of affinity biosensors that meet crucial industrial test specifications, e.g., fast, reliable, cost-effective, and use of low-skilled personnel, are (1) strict legislative framework, e.g., recent changes proposed to the European food safety and hygiene legislation, EC No. 178/2002; (2) industrial shift from quality control to quality assurance procedures, e.g., Hazard Analysis Critical Control Point, ensuring effective positioning in the global competitive trade; (3) just-in-time production resulting in 'right' product every time; and (4) consumer demand for safe and wholesome products. The affinity biosensors field has expanded significantly over the past decade, with a projected global biosensors market growth from $6.1 billion in 2004 to $8.2 billion in 2009, representing major industrial sectors (e.g., Pharma, Medicare, and Food). This brief review is targeted to affinity biosensors developed for the food industry and includes research and development leading to biosensors for microbiological and chemical analytes of industrial concern, commercial biosensors products on the market, and examples of future prospects in this diagnostic field.

  9. Biosensors: the new wave in cancer diagnosis

    PubMed Central

    Bohunicky, Brian; Mousa, Shaker A

    2011-01-01

    The earlier cancer can be detected, the better the chance of a cure. Currently, many cancers are diagnosed only after they have metastasized throughout the body. Effective, accurate methods of cancer detection and clinical diagnosis are urgently needed. Biosensors are devices that are designed to detect a specific biological analyte by essentially converting a biological entity (ie, protein, DNA, RNA) into an electrical signal that can be detected and analyzed. The use of biosensors in cancer detection and monitoring holds vast potential. Biosensors can be designed to detect emerging cancer biomarkers and to determine drug effectiveness at various target sites. Biosensor technology has the potential to provide fast and accurate detection, reliable imaging of cancer cells, and monitoring of angiogenesis and cancer metastasis, and the ability to determine the effectiveness of anticancer chemotherapy agents. This review will briefly summarize the current obstacles to early detection of cancer and the expanding use of biosensors as a diagnostic tool, as well as some future applications of biosensor technology. PMID:24198482

  10. Biosensors in clinical chemistry: An overview.

    PubMed

    Murugaiyan, Sathish Babu; Ramasamy, Ramesh; Gopal, Niranjan; Kuzhandaivelu, V

    2014-01-01

    Biosensors are small devices that employ biological/biochemical reactions for detecting target analytes. Basically, the device consists of a biocatalyst and a transducer. The biocatalyst may be a cell, tissue, enzyme or even an oligonucleotide. The transducers are mainly amperometric, potentiometric or optical. The classification of biosensors is based on (a) the nature of the recognition event or (b) the intimacy between the biocatalyst and the transducer. Bioaffinity and biocatalytic devices are examples for the former and the first, whereas second and third generation instruments are examples for the latter. Cell-based biosensors utilizing immobilized cells, tissues as also enzyme immunosensors and DNA biosensors find variegated uses in diagnostics. Enzyme nanoparticle-based biosensors make use of small particles in the nanometer scale and are currently making a mark in laboratory medicine. Nanotechnology can help in optimizing the diagnostic biochips, which would facilitate sensitive, rapid, accurate and precise bedside monitoring. Biosensors render themselves as capable diagnostic tools as they meet most of the above-mentioned criteria.

  11. Biosensors-on-chip: a topical review

    NASA Astrophysics Data System (ADS)

    Chen, Sensen; Shamsi, Mohtashim H.

    2017-08-01

    This review will examine the integration of two fields that are currently at the forefront of science, i.e. biosensors and microfluidics. As a lab-on-a-chip (LOC) technology, microfluidics has been enriched by the integration of various detection tools for analyte detection and quantitation. The application of such microfluidic platforms is greatly increased in the area of biosensors geared towards point-of-care diagnostics. Together, the merger of microfluidics and biosensors has generated miniaturized devices for sample processing and sensitive detection with quantitation. We believe that microfluidic biosensors (biosensors-on-chip) are essential for developing robust and cost effective point-of-care diagnostics. This review is relevant to a variety of disciplines, such as medical science, clinical diagnostics, LOC technologies including MEMs/NEMs, and analytical science. Specifically, this review will appeal to scientists working in the two overlapping fields of biosensors and microfluidics, and will also help new scientists to find their directions in developing point-of-care devices.

  12. Immobilization of microbial cells on inner epidermis of onion bulb scale for biosensor application.

    PubMed

    Kumar, Jitendra; D'Souza, S F

    2011-07-15

    Inner epidermis of onion bulb scales was used as a natural support for immobilization of microbial cells for biosensor application. A bacterium Sphingomonas sp. that hydrolyzes methyl parathion into a chromophoric product, p-nitrophenol (PNP), has been isolated and identified in our laboratory. PNP can be detected by electrochemical and colorimetric methods. Whole cells of Sphingomonas sp. were immobilized on inner epidermis of onion bulb scale by adsorption followed by cross-linking methods. Cells immobilized onion membrane was directly placed in the wells of microplate and associated with the optical transducer. Methyl parathion is an organophosphorus pesticide that has been widely used in the field of agriculture for insect pest control. This pesticide causes environmental pollution and ecological problem. A detection range 4-80 μM of methyl parathion was estimated from the linear range of calibration plot of enzymatic assay. A single membrane was reused for 52 reactions and was found to be stable for 32 days with 90% of its initial hydrolytic activity. The applicability of the cells immobilized onion membrane was also demonstrated with spiked samples.

  13. A methodological combined framework for roadmapping biosensor research: a fault tree analysis approach within a strategic technology evaluation frame.

    PubMed

    Siontorou, Christina G; Batzias, Fragiskos A

    2014-03-01

    Biosensor technology began in the 1960s to revolutionize instrumentation and measurement. Despite the glucose sensor market success that revolutionized medical diagnostics, and artificial pancreas promise currently the approval stage, the industry is reluctant to capitalize on other relevant university-produced knowledge and innovation. On the other hand, the scientific literature is extensive and persisting, while the number of university-hosted biosensor groups is growing. Considering the limited marketability of biosensors compared to the available research output, the biosensor field has been used by the present authors as a suitable paradigm for developing a methodological combined framework for "roadmapping" university research output in this discipline. This framework adopts the basic principles of the Analytic Hierarchy Process (AHP), replacing the lower level of technology alternatives with internal barriers (drawbacks, limitations, disadvantages), modeled through fault tree analysis (FTA) relying on fuzzy reasoning to count for uncertainty. The proposed methodology is validated retrospectively using ion selective field effect transistor (ISFET) - based biosensors as a case example, and then implemented prospectively membrane biosensors, putting an emphasis on the manufacturability issues. The analysis performed the trajectory of membrane platforms differently than the available market roadmaps that, considering the vast industrial experience in tailoring and handling crystallic forms, suggest the technology path of biomimetic and synthetic materials. The results presented herein indicate that future trajectories lie along with nanotechnology, and especially nanofabrication and nano-bioinformatics, and focused, more on the science-path, that is, on controlling the natural process of self-assembly and the thermodynamics of bioelement-lipid interaction. This retained the nature-derived sensitivity of the biosensor platform, pointing out the differences

  14. A New Look at Spreading in Iceland: Propagating Rifts, Migrating Transform Faults, and Microplate Tectonics

    NASA Astrophysics Data System (ADS)

    Karson, J.; Horst, A. J.; Nanfito, A.

    2011-12-01

    Iceland has long been used as an analog for studies of seafloor spreading. Despite its thick (~25 km) oceanic crust and subaerial lavas, many features associated with accretion along mid-ocean ridge spreading centers, and the processes that generate them, are well represented in the actively spreading Neovolcanic Zone and deeply glaciated Tertiary crust that flanks it. Integrated results of structural and geodetic studies show that the plate boundary zone on Iceland is a complex array of linked structures bounding major crustal blocks or microplates, similar to oceanic microplates. Major rift zones propagate N and S from the hotspot centered beneath the Vatnajökull icecap in SE central Iceland. The southern propagator has extended southward beyond the South Iceland Seismic Zone transform fault to the Westman Islands, resulting in abandonment of the Eastern Rift Zone. Continued propagation may cause abandonment of the Reykjanes Ridge. The northern propagator is linked to the southern end of the receding Kolbeinsey Ridge to the north. The NNW-trending Kerlingar Pseudo-fault bounds the propagator system to the E. The Tjörnes Transform Fault links the propagator tip to the Kolbeinsey Ridge and appears to be migrating northward in incremental steps, leaving a swath of deformed crustal blocks in its wake. Block rotations, concentrated mainly to the west of the propagators, are clockwise to the N of the hotspot and counter-clockwise to the S, possibly resulting in a component of NS divergence across EW-oriented rift zones. These rotations may help accommodate adjustments of the plate boundary zone to the relative movements of the N American and Eurasian plates. The rotated crustal blocks are composed of highly anisotropic crust with rift-parallel internal fabric generated by spreading processes. Block rotations result in reactivation of spreading-related faults as major rift-parallel, strike-slip faults. Structural details found in Iceland can help provide information

  15. Multiplex bacterial growth monitoring in 24-well microplates using a dual optical sensor for dissolved oxygen and pH.

    PubMed

    Kocincová, Anna S; Nagl, Stefan; Arain, Sarina; Krause, Christian; Borisov, Sergey M; Arnold, Matthias; Wolfbeis, Otto S

    2008-06-15

    Non-invasive, simultaneous optical monitoring of oxygen and pH during bacterial cultivation in 24-well microplates is presented using an integrated dual sensor for dissolved oxygen and pH values. The dual sensor is based on oxygen-sensitive organosilica microparticles and pH-sensitive microbeads from a polymethacrylate derivative embedded into a polyurethane hydrogel. The readout is based on a phase-domain fluorescence lifetime-based method referred to as modified frequency domain dual lifetime referencing using a commercially available detector system for 24-well microplates. The sensor was used for monitoring the growth of Pseudomonas putida bacterial cultures. The method is suitable for parallelized, miniaturized bioprocessing, and cell-based high-throughput screening applications. (c) 2008 Wiley Periodicals, Inc.

  16. The Effect of Thermal Annealing on Charge Transport in Organolead Halide Perovskite Microplate Field-Effect Transistors.

    PubMed

    Li, Dehui; Cheng, Hung-Chieh; Wang, Yiliu; Zhao, Zipeng; Wang, Gongming; Wu, Hao; He, Qiyuan; Huang, Yu; Duan, Xiangfeng

    2017-01-01

    Transformation of unipolar n-type semiconductor behavior to ambipolar and finally to unipolar p-type behavior in CH3 NH3 PbI3 microplate field-effect transistors by thermal annealing is reported. The photoluminescence spectra essentially maintain the same features before and after the thermal annealing process, demonstrating that the charge transport measurement provides a sensitive way to probe low-concentration defects in perovskite materials.

  17. Assessing the Rigidity of the Puerto Rico-Virgin Islands Microplate: Results from GPS Geodesy in the British Virgin Islands

    NASA Astrophysics Data System (ADS)

    Stamps, D. S.; Baldwin, A.; Turner, H.; Mattioli, G.; Jansma, P.

    2005-12-01

    Recent studies provide evidence of three microplates defined by the Puerto Rico trench to the north and the Muertos trough to the south in the boundary zone between the North America and Caribbean plates in the northeastern Caribbean. From west to east, these are the Gonave, Hispaniola, and Puerto Rico-northern Virgin Islands (PRVI) microplates. The eastern and western boundaries of the Gonave and Hispaniola microplates and the western boundary of the PRVI microplate have been defined in previous studies. However, the easternmost terminus of PRVI is undetermined, but suspected to lie either within or at the eastern terminus of the British Virgin Islands (BVI). Previously reported geodetic data indicates east-west extension across Puerto Rico and between eastern Puerto Rico and Virgin Gorda in the BVI. Our 2005 campaign focused on defining the easternmost terminus of PRVI and testing the extensional hypothesis by collecting surface motion data using Global Positioning System (GPS) geodesy. We collected data at sites on Tortola and Anegada in the BVI and concluded that the GPS-derived velocities of Tortola and Anegada with respect to the Caribbean are 5.71 + 5.5 mm/yr to the NNW (one sigma) and 3.12 + 2.7 mm/yr to the WNW (one sigma), respectively. These velocities are similar to those of eastern Puerto Rico. No motion relative to the Caribbean for Tortola and Anegada also is a possibility within error. If the GPS-derived velocities of Tortola and Anegada are 3-5 mm/yr, little to no east-west extension occurs between the BVI and eastern Puerto Rico, implying that PRVI is rigid at the mm/yr level and that the eastern terminus of PRVI coincides with the eastern end of the BVI near Virgin Gorda.

  18. Cellphone-based hand-held microplate reader for point-of-care ELISA testing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Berg, Brandon; Cortazar, Bingen; Tseng, Derek; Ozkan, Haydar; Feng, Steve; Wei, Qingshan; Chan, Raymond Y.; Burbano, Jordi; Farooqui, Qamar; Lewinski, Michael; Di Carlo, Dino; Garner, Omai B.; Ozcan, Aydogan

    2016-03-01

    Enzyme-linked immunosorbent assay (ELISA) in a microplate format has been a gold standard first-line clinical test for diagnosis of various diseases including infectious diseases. However, this technology requires a relatively large and expensive multi-well scanning spectrophotometer to read and quantify the signal from each well, hindering its implementation in resource-limited-settings. Here, we demonstrate a cost-effective and handheld smartphone-based colorimetric microplate reader for rapid digitization and quantification of immunoserology-related ELISA tests in a conventional 96-well plate format at the point of care (POC). This device consists of a bundle of 96 optical fibers to collect the transmitted light from each well of the microplate and direct all the transmission signals from the wells onto the camera of the mobile-phone. Captured images are then transmitted to a remote server through a custom-designed app, and both quantitative and qualitative diagnostic results are returned back to the user within ~1 minute per 96-well plate by using a machine learning algorithm. We tested this mobile-phone based micro-plate reader in a clinical microbiology lab using FDA-approved mumps IgG, measles IgG, and herpes simplex virus IgG (HSV-1 and HSV-2) ELISA tests on 1138 remnant patient samples (roughly 50% training and 50% testing), and achieved an overall accuracy of ~99% or higher for each ELISA test. This handheld and cost-effective platform could be immediately useful for large-scale vaccination monitoring in low-infrastructure settings, and also for other high-throughput disease screening applications at POC.

  19. Optimization of Xenon Biosensors for Detection of ProteinInteractions

    SciTech Connect

    Lowery, Thomas J.; Garcia, Sandra; Chavez, Lana; Ruiz, E.Janette; Wu, Tom; Brotin, Thierry; Dutasta, Jean-Pierre; King, David S.; Schultz, Peter G.; Pines, Alex; Wemmer, David E..

    2005-08-03

    Hyperpolarized 129Xe NMR can detect the presence of specific low-concentration biomolecular analytes by means of the xenon biosensor, which consists of a water-soluble, targeted cryptophane-A cage that encapsulates xenon. In this work we use the prototypical biotinylated xenon biosensor to determine the relationship between the molecular composition of the xenon biosensor and the characteristics of protein-bound resonances. The effects of diastereomer overlap, dipole-dipole coupling, chemical shift anisotropy, xenon exchange, and biosensor conformational exchange on protein-bound biosensor signal were assessed. It was found that optimal protein-bound biosensor signal can be obtained by minimizing the number of biosensor diastereomers and using a flexible linker of appropriate length. Both the linewidth and sensitivity of chemical shift to protein binding of the xenon biosensor were found to be inversely proportional to linker length.

  20. Peptide code-on-a-microplate for protease activity analysis via MALDI-TOF mass spectrometric quantitation.

    PubMed

    Hu, Junjie; Liu, Fei; Ju, Huangxian

    2015-04-21

    A peptide-encoded microplate was proposed for MALDI-TOF mass spectrometric (MS) analysis of protease activity. The peptide codes were designed to contain a coding region and the substrate of protease for enzymatic cleavage, respectively, and an internal standard method was proposed for the MS quantitation of the cleavage products of these peptide codes. Upon the cleavage reaction in the presence of target proteases, the coding regions were released from the microplate, which were directly quantitated by using corresponding peptides with one-amino acid difference as the internal standards. The coding region could be used as the unique "Protease ID" for the identification of corresponding protease, and the amount of the cleavage product was used for protease activity analysis. Using trypsin and chymotrypsin as the model proteases to verify the multiplex protease assay, the designed "Trypsin ID" and "Chymotrypsin ID" occurred at m/z 761.6 and 711.6. The logarithm value of the intensity ratio of "Protease ID" to internal standard was proportional to trypsin and chymotrypsin concentration in a range from 5.0 to 500 and 10 to 500 nM, respectively. The detection limits for trypsin and chymotrypsin were 2.3 and 5.2 nM, respectively. The peptide-encoded microplate showed good selectivity. This proposed method provided a powerful tool for convenient identification and activity analysis of multiplex proteases.

  1. Adjustable bioadhesive control of PEGylated hyperbranch brushes on polystyrene microplate interface for the improved sensitivity of human blood typing.

    PubMed

    Chen, Yan-Wen; Chang, Yung; Lee, Rong-Ho; Li, Wen-Tyng; Chinnathambi, Arunachalam; Alharbi, Sulaiman Ali; Hsiue, Ging-Ho

    2014-08-05

    A PEGylated 96-well polystyrene (PS) microplate was first introduced for applications in high-throughput screening for selective blood typing to minimize the risks in blood transfusions. Herein, we present a hemocompatible PS 96-well microplate with adjustable PEGylated hyperbranch brush coverage prepared by ozone pretreated activation and thermally induced surface PEGylation. The grafting properties, hydration capacity, and blood compatibility of the PEGylated hyperbrush immobilized PS surfaces in human blood were illustrated by the combined chemical and physical properties of the surface, and the dependence of the specific absorption of human plasma fibrinogen onto the PEGylated surfaces on the grafting density was analyzed by monoclonal antibodies. The surface coverage of PEGylated brushes plays a major role in the bioadhesive properties of modified PS microplates, which in turn control the level of agglutination sensitivity in blood typing. The bioadhesive resistance toward proteins, platelets, and erythrocytes in human whole blood showed a correlation to the controlled hydration properties of the PEGylated hyperbrush-modified surfaces. Therefore, we suggested that the surface coverage of PEGylated hyperbrushes on PS surfaces can increase the sensitivity of cross-matching blood agglutination by up to 16-fold compared to that of the conventional 96-well virgin PS due to the regulated biorecognition of hematocrit and antibodies of the PEGylated hyperbrush-modified surfaces.

  2. A new cadmium reduction device for the microplate determination of nitrate in water, soil, plant tissue, and physiological fluids.

    PubMed

    Crutchfield, James D; Grove, John H

    2011-01-01

    A reusable catalytic reductor consisting of 96 copperized-cadmium pins attached to a microplate lid was developed to simultaneously reduce nitrate (NO3-) to nitrite (NO2-) in all wells of a standard microplate. The resulting NO2- is analyzed colorimetrically by the Griess reaction using a microplate reader. Nitrate data from groundwater samples analyzed using the new device correlated well with data obtained by ion chromatography (r2 = 0.9959). Soil and plant tissue samples previously analyzed for NO3- in an interlaboratory validation study sponsored by the Soil Science Society of America were also analyzed using the new technique. For the soil sample set, the data are shown to correlate well with the other methods used (r2 = 0.9976). Plant data correlated less well, especially for samples containing low concentrations of NO3-. Reasons for these discrepancies are discussed, and new techniques to increase the accuracy of the analysis are explored. In addition, a method is presented for analyzing NO3- in physiological fluids (blood serum and urine) after matrix modification with Somogyi's reagent. A protocol for statistical validation of data when analyzing samples with complex matrixes is also established. The simplicity, adaptability, and low cost of the device indicate its potential for widespread application.

  3. A fluorescence microplate assay using yopro-1 to measure apoptosis: application to HL60 cells subjected to oxidative stress.

    PubMed

    Plantin-Carrenard, E; Bringuier, A; Derappe, C; Pichon, J; Guillot, R; Bernard, M; Foglietti, M J; Feldmann, G; Aubery, M; Braut-Boucher, F

    2003-04-01

    A new one-step labeling procedure using the membrane permeant fluorescent probe yopro-1 in association with fluorescence microtitration for the rapid determination of apoptosis is reported. Programmed cell death was induced by the pro-apoptotic agents etoposide and staurosporine, and measured in nonadherent HL60 cells and adherent phorbol 12-myristate 13-acetate (PMA)-treated HL60 cells. Cell viability was controlled by trypan blue exclusion and calcein-AM staining. To confirm results of fluorescence microplate assay, apoptosis was measured by flow cytometry analysis using the same fluorescent probe, and results showed corresponding data between both procedures. Development of apoptosis was confirmed by the presence of PARP (poly(ADP-ribose) polymerase cleavage and nuclear DAPI (4,6-diamidino-2-phenylindole) staining, two well-known methods used to investigate apoptosis. The fluorescence microplate assay was also applied to measure apoptosis in cells exposed to an oxidative stress induced by tert-butylhydroperoxide (t-BHP), and results confirmed the potential of the fluorescence microplate assay in measuring events of apoptosis, especially in adherent, cultured, living cells.

  4. Graphene-based field-effect transistor biosensors

    DOEpatents

    Chen; , Junhong; Mao, Shun; Lu, Ganhua

    2017-06-14

    The disclosure provides a field-effect transistor (FET)-based biosensor and uses thereof. In particular, to FET-based biosensors using thermally reduced graphene-based sheets as a conducting channel decorated with nanoparticle-biomolecule conjugates. The present disclosure also relates to FET-based biosensors using metal nitride/graphene hybrid sheets. The disclosure provides a method for detecting a target biomolecule in a sample using the FET-based biosensor described herein.

  5. Geosmin induces genomic instability in the mammalian cell microplate-based comet assay.

    PubMed

    Silva, Aline Flor; Lehmann, Mauricio; Dihl, Rafael Rodrigues

    2015-11-01

    Geosmin (GEO) (trans-1,10-dimethyl-trans-9-decalol) is a metabolite that renders earthy and musty taste and odor to water. Data of GEO genotoxicity on mammalian cells are scarce in the literature. Thus, the present study assessed the genotoxicity of GEO on Chinese hamster ovary (CHO) cells in the microplate-based comet assay. The percent of tail DNA (tail intensity (TI)), tail moment (TM), and tail length (TL) were used as parameters for DNA damage assessment. The results demonstrated that concentrations of GEO of 30 and 60 μg/mL were genotoxic to CHO cells after 4- and 24-h exposure periods, in all parameters evaluated, such as TI, TM, and TL. Additionally, GEO 15 μg/mL was genotoxic in the three parameters only in the 24-h exposure time. The same was observed for GEO 7.5 μg/mL, which induced significant DNA damage observed as TI in the 24-h treatment. The results present evidence that exposure to GEO may be associated with genomic instability in mammalian cells.

  6. Evidence for Moho-lower crustal transition depth diking and rifting of the Sierra Nevada microplate

    NASA Astrophysics Data System (ADS)

    Smith, Kenneth D.; Kent, Graham M.; Seggern, David P.; Driscoll, Neal W.; Eisses, Amy

    2016-10-01

    Lithospheric rifting most often initiates in continental extensional settings where "breaking of a plate" may or may not progress to sea floor spreading. Generally, the strength of the lithosphere is greater than the tectonic forces required for rupture (i.e., the "tectonic force paradox"), and it has been proposed that rifting requires basaltic magmatism (e.g., dike emplacement) to reduce the strength and cause failure, except for the case of a thin lithosphere (<30 km thick). Here we isolate two very similar and unprecedented observations of Moho-lower crustal transition dike or fluid injection earthquake swarms under southern Sierra Valley (SV: 2011-2012) and North Lake Tahoe (LT: 2003-2004), California. These planar distributions of seismicity can be interpreted to define the end points, and cover 25% of the length, of an implied 56 km long structure, each striking N45°W and dipping 50°NE. A single event at 30 km depth that locates on the implied dipping feature between the two swarms is further evidence for a single Moho-transition depth structure. We propose that basaltic or fluid emplacement at or near Moho depths weakens the upper mantle lid, facilitating lithospheric rupture of the Sierra Microplate. Similar to the LT sequence, the SV event is also associated with increased upper crustal seismicity. An 27 October 2011, Mw 4.7 earthquake occurred directly above the deep SV sequence at the base of the upper crustal seismogenic zone ( 15 km depth).

  7. The Suckling Hills Fault, Kayak Island Zone, and accretion of the Yakutat microplate, Alaska

    NASA Astrophysics Data System (ADS)

    Chapman, James B.; Worthington, Lindsay L.; Pavlis, Terry L.; Bruhn, Ronald L.; Gulick, Sean P.

    2011-12-01

    The Suckling Hills and Kayak Island are isolated mountain blocks located along strike from each other within the foreland of the St. Elias orogen in southern Alaska. These blocks preserve an erosional surface that was deformed by slip on northwest-dipping reverse faults in the Pleistocene. We suggest that the Suckling Hills Fault and Kayak Island Zone form a segmented fault network that links with the Bering Glacier structure to the north. This fault network separates the central Yakataga fold and thrust belt from complex, multiply deformed structures in the western syntaxis. Ongoing accretion of the Yakutat microplate to North America results in translation of structures of the fold and thrust belt into the western syntaxis. The composite Suckling Hills Fault, Kayak Island Zone, and Bering Glacier structure may have formed because the older structures of the fold and thrust belt were unfavorably oriented within the western syntaxis region. This pattern of deformation provides a template for understanding the complex deformation within the core of the western syntaxis and predicts refolding and straightening of the western syntaxis margin with continued accretion. This study provides an analog for structural overprinting and changing deformation patterns through time in orogenic corners.

  8. Microplate assay for screening the antibacterial activity of Schiff bases derived from substituted benzopyran-4-one.

    PubMed

    Amin, Rehab M; Abdel-Kader, Nora S; El-Ansary, Aida L

    2012-09-01

    Schiff bases (SB(1)-SB(3)) were synthesized from the condensation of 6-formyl-7-hydroxy-5-methoxy-2-methylbenzopyran-4-one with 2-aminopyridine (SB(1)), p-phenylenediamine (SB(2)) and o-phenylenediamine (SB(3)), while Schiff bases (SB(4)-SB(6)) were synthesized by condensation of 5,7-dihydroxy-6-formyl-2-methylbenzopyran-4-one with 2-aminopyridine (SB(4)), p-phenylenediamine (SB(5)) and o-phenylenediamine (SB(6)). Schiff bases were characterized using elemental analysis, IR, UV-Vis, (1)H NMR, (13)C NMR and mass spectroscopy. These compounds were screened for antibacterial activities by micro-plate assay technique. Escherichia coli and Staphylococcus capitis were exposed to different concentrations of the Schiff bases. Results showed that the antibacterial effect of these Schiff bases on Gram-negative bacteria were higher than that on Gram-positive bacteria moreover, the Schiff bases containing substituent OCH(3) on position five have higher antibacterial activity than that containing hydroxy group on the same position.

  9. Investigation of mitochondrial dysfunction by sequential microplate-based respiration measurements from intact and permeabilized neurons.

    PubMed

    Clerc, Pascaline; Polster, Brian M

    2012-01-01

    Mitochondrial dysfunction is a component of many neurodegenerative conditions. Measurement of oxygen consumption from intact neurons enables evaluation of mitochondrial bioenergetics under conditions that are more physiologically realistic compared to isolated mitochondria. However, mechanistic analysis of mitochondrial function in cells is complicated by changing energy demands and lack of substrate control. Here we describe a technique for sequentially measuring respiration from intact and saponin-permeabilized cortical neurons on single microplates. This technique allows control of substrates to individual electron transport chain complexes following permeabilization, as well as side-by-side comparisons to intact cells. To illustrate the utility of the technique, we demonstrate that inhibition of respiration by the drug KB-R7943 in intact neurons is relieved by delivery of the complex II substrate succinate, but not by complex I substrates, via acute saponin permeabilization. In contrast, methyl succinate, a putative cell permeable complex II substrate, failed to rescue respiration in intact neurons and was a poor complex II substrate in permeabilized cells. Sequential measurements of intact and permeabilized cell respiration should be particularly useful for evaluating indirect mitochondrial toxicity due to drugs or cellular signaling events which cannot be readily studied using isolated mitochondria.

  10. Investigation of Mitochondrial Dysfunction by Sequential Microplate-Based Respiration Measurements from Intact and Permeabilized Neurons

    PubMed Central

    Clerc, Pascaline; Polster, Brian M.

    2012-01-01

    Mitochondrial dysfunction is a component of many neurodegenerative conditions. Measurement of oxygen consumption from intact neurons enables evaluation of mitochondrial bioenergetics under conditions that are more physiologically realistic compared to isolated mitochondria. However, mechanistic analysis of mitochondrial function in cells is complicated by changing energy demands and lack of substrate control. Here we describe a technique for sequentially measuring respiration from intact and saponin-permeabilized cortical neurons on single microplates. This technique allows control of substrates to individual electron transport chain complexes following permeabilization, as well as side-by-side comparisons to intact cells. To illustrate the utility of the technique, we demonstrate that inhibition of respiration by the drug KB-R7943 in intact neurons is relieved by delivery of the complex II substrate succinate, but not by complex I substrates, via acute saponin permeabilization. In contrast, methyl succinate, a putative cell permeable complex II substrate, failed to rescue respiration in intact neurons and was a poor complex II substrate in permeabilized cells. Sequential measurements of intact and permeabilized cell respiration should be particularly useful for evaluating indirect mitochondrial toxicity due to drugs or cellular signaling events which cannot be readily studied using isolated mitochondria. PMID:22496810

  11. Development of repeatable arrays of proteins using immobilized DNA microplate (RAPID-M) technology.

    PubMed

    Ashaari, Nur Suhanawati; Ramarad, Suganti; Khairuddin, Dzulaikha; Akhir, Nor Azurah Mat; Hara, Yuka; Mahadi, Nor Muhammad; Mohamed, Rahmah; Nathan, Sheila

    2015-11-12

    Protein microarrays have enormous potential as in vitro diagnostic tools stemming from the ability to miniaturize whilst generating maximum evaluation of diagnostically relevant information from minute amounts of sample. In this report, we present a method known as repeatable arrays of proteins using immobilized DNA microplates (RAPID-M) for high-throughput in situ protein microarray fabrication. The RAPID-M technology comprises of cell-free expression using immobilized DNA templates and in situ protein purification onto standard microarray slides. To demonstrate proof-of-concept, the repeatable protein arrays developed using our RAPID-M technology utilized green fluorescent protein (GFP) and a bacterial outer membrane protein (OmpA) as the proteins of interest for microarray fabrication. Cell-free expression of OmpA and GFP proteins using beads-immobilized DNA yielded protein bands with the expected molecular sizes of 27 and 30 kDa, respectively. We demonstrate that the beads-immobilized DNA remained stable for at least four cycles of cell-free expression. The OmpA and GFP proteins were still functional after in situ purification on the Ni-NTA microarray slide. The RAPID-M platform for protein microarray fabrication of two different representative proteins was successfully developed.

  12. Microplate quantification of total phenolic content from plant extracts obtained by conventional and ultrasound methods.

    PubMed

    Wong-Paz, Jorge E; Muñiz-Márquez, Diana B; Aguilar-Zárate, Pedro; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal N

    2014-01-01

    There is increasing interest in phenolic compounds around the world because of their potential positive impact on human health. Phenolic compounds are largely found in fruits and vegetables. Extraction of phenolic compounds is a very important step in their recovery. The newly developed technique of ultrasound-assisted extraction (UAE) appears to be an advantageous alternative compared with conventional techniques, because it is simple and environmental friendly. The potential of UAE needs to be evaluated in each plant in order to demonstrate its efficiency. The objective of the present study was to compare a conventional method and UAE on the extraction efficiency of phenolic compounds from Jatropha dioica, Fluorensia cernua, Turnera diffusa and Eucalyptus camaldulensis plants and evaluate the in vitro anti-oxidant potential. Validation of the new method was carried out using mixed-model methodology and regression analysis. Feasibility of this new method was shown and applied using several plants extracts obtained by different extraction methods from semi-arid Mexican plants, which were characterised by high levels of polyphenols. Additionally, the anti-oxidant potential of these extracts was determined by 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Results showed that the new microplate method can be used to determine total phenolic content in plant extracts. Additionally, an alternative extraction method by ultrasound was less efficient compared with the conventional method. The tested plants are good candidates to obtain nutraceuticals and functional food ingredients. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Microplate assay for quantitation of neutral lipids in extracts from microalgae.

    PubMed

    Higgins, Brendan T; Thornton-Dunwoody, Alexander; Labavitch, John M; VanderGheynst, Jean S

    2014-11-15

    Lipid quantitation is widespread in the algae literature, but popular methods such as gravimetry, gas chromatography and mass spectrometry (GC-MS), and Nile red cell staining suffer drawbacks, including poor quantitation of neutral lipids, expensive equipment, and variable results among algae species, respectively. A high-throughput microplate assay was developed that uses Nile red dye to quantify neutral lipids that have been extracted from algae cells. Because the algal extracts contained pigments that quenched Nile red fluorescence, a mild bleach solution was used to destroy pigments, resulting in a nearly linear response for lipid quantities in the range of 0.75 to 40 μg. Corn oil was used as a standard for quantitation, although other vegetable oils displayed a similar response. The assay was tested on lipids extracted from three species of Chlorella and resulted in close agreement with triacylglycerol (TAG) levels determined by thin layer chromatography. The assay was found to more accurately measure algal lipids conducive to biodiesel production and nutrition applications than the widely used gravimetric assay. Assay response was also consistent among different species, in contrast to Nile red cell staining procedures.

  14. Analysis of Genetic Variation across the Encapsidated Genome of Microplitis demolitor Bracovirus in Parasitoid Wasps

    PubMed Central

    Burke, Gaelen R.

    2016-01-01

    Insect parasitoids must complete part of their life cycle within or on another insect, ultimately resulting in the death of the host insect. One group of parasitoid wasps, the ‘microgastroid complex’ (Hymenoptera: Braconidae), engage in an association with beneficial symbiotic viruses that are essential for successful parasitism of hosts. These viruses, known as Bracoviruses, persist in an integrated form in the wasp genome, and activate to replicate in wasp ovaries during development to ultimately be delivered into host insects during parasitism. The lethal nature of host-parasitoid interactions, combined with the involvement of viruses in mediating these interactions, has led to the hypothesis that Bracoviruses are engaged in an arms race with hosts, resulting in recurrent adaptation in viral (and host) genes. Deep sequencing was employed to characterize sequence variation across the encapsidated Bracovirus genome within laboratory and field populations of the parasitoid wasp species Microplitis demolitor. Contrary to expectations, there was a paucity of evidence for positive directional selection among virulence genes, which generally exhibited signatures of purifying selection. These data suggest that the dynamics of host-parasite interactions may not result in recurrent rounds of adaptation, and that adaptation may be more variable in time than previously expected. PMID:27390861

  15. Knockdown of microplitis mediator odorant receptor involved in the sensitive detection of two chemicals.

    PubMed

    Li, Ke-Ming; Ren, Li-Yan; Zhang, Yong-Jun; Wu, Kong-Ming; Guo, Yu-Yuan

    2012-03-01

    Odorant receptors are thought to play critical roles in the perception of chemosensory stimuli by insects. The primary method to address the functions of odorant receptors in insects is to use in vitro binding assays between the receptors and potential chemical stimuli. We injected MmedOrco dsRNA into the abdominal cavity of a braconid wasp, Microplitis mediator, and assayed for expression of this gene 72 h after treatment (RNAi). Quantitative real-time PCR demonstrated that the level of mRNA expression in MmedOrco dsRNA-treated M. mediator was significantly reduced (>90%) when compared with water-treated controls. Furthermore, electroantennogram (EAG) responses of M. mediator to two chemical attractants, nonanal and farnesene, were also reduced significantly (~70%) in RNAi-treated M. mediator when compared to controls. RNAi-treated M. mediator also responded by walking/flying at a lower rate to both chemicals when compared with controls in a Y-tube olfactometer bioassay, which provides direct evidence that MmedOrco plays an important role in perception of nonanal and farnesene in M. mediator.

  16. Antimycobacterial screening of traditional medicinal plants using the microplate resazurin assay.

    PubMed

    Webster, Duncan; Lee, Timothy D G; Moore, Jill; Manning, Tracy; Kunimoto, Dennis; LeBlanc, Darren; Johnson, John A; Gray, Christopher A

    2010-06-01

    Multidrug-resistant Mycobacterium tuberculosis strains have rapidly become a global health concern. North American First Nations communities have used traditional medicines for generations to treat many pulmonary infections. In this study, we evaluated the antimycobacterial activity of 5 medicinal plants traditionally used as general therapeutics for pulmonary illnesses and specifically as treatments for tuberculosis. Aqueous extracts of Aralia nudicaulis, Symplocarpus foetidus, Heracleum maximum, Juniperus communis, and Acorus calamus were screened for antimycobacterial activity against Bacillus Calmette-Guérin, Mycobacterium avium, and M. tuberculosis H37Ra using the colorimetric microplate resazurin assay. Extracts of Acorus calamus and H. maximum root demonstrated significant antimycobacterial activity comparable to that of the rifampin control (2 microg/mL). Evaluation of the cytotoxicity of these 2 extracts using the MTT assay also showed that the extracts were less toxic to 3 human cell lines than was the DMSO positive control. This study demonstrates that aqueous extracts of the roots of H. maximum and Acorus calamus possess strong in vitro antimycobacterial activity, validates traditional knowledge, and provides potential for the development of urgently needed novel antituberculous therapeutics.

  17. Rapid evaluation of oxygen and water permeation through microplate sealing tapes.

    PubMed

    Zimmermann, Hartmut F; John, Gernot T; Trauthwein, Harald; Dingerdissen, Uwe; Huthmacher, Klaus

    2003-01-01

    Eight commercially available microplate sealing tapes and 10 other suitable materials (transparent wound dressings) are compared qualitatively in terms of their ability to minimize water evaporation from a multiwell plate while maintaining the oxygen supply as high as possible, which is necessary for applications like aerobic growth. The transparency and sterility of the products are considered as well. All evaluated commercially available sealing tapes fall into one of the following two classes: (1) O(2) transfer is comparable to that of an unsealed plate, but water vapor retention is relatively low, or (2) O(2) transfer via the sealing is slower, but the water retention capability is comparably high. All but one of the evaluated wound dressings fall under the second class. That dressing, however, constitutes a compromise by showing both moderate O(2) permeability and medium water retention. But the estimated mass transport in a microtiter plate sealed with this dressing is about 5 times slower than that of an unsealed 96 well plate. The aim of this publication is to enable the reader to choose a microtiter plate sealing from the materials evaluated within this work and to use the rapid methods described herein to easily perform tests of additional sealing materials.

  18. Quantitative microplate assay for studying mesenchymal stromal cell-induced neuropoiesis.

    PubMed

    Aizman, Irina; McGrogan, Michael; Case, Casey C

    2013-03-01

    Transplanting mesenchymal stromal cells (MSCs) or their derivatives in a neurodegenerative environment is believed to be beneficial because of the trophic support, migratory guidance, and neurogenic stimuli they provide. There is a growing need for in vitro models of mesenchymal-neural cell interactions to enable identification of mediators of the MSC activity and quantitative assessment of neuropoietic potency of MSC preparations. Here, we characterize a microplate-format coculture system in which primary embryonic rat cortex cells are directly cocultured with human MSCs on cell-derived extracellular matrix (ECM) in the absence of exogenous growth factors. In this system, expression levels of the rat neural stem/early progenitor marker nestin, as well as neuronal and astrocytic markers, directly depended on MSC dose, whereas an oligodendrogenic marker exhibited a biphasic MSC-dose response, as measured using species-specific quantitative reverse transcription-polymerase chain reaction in total cell lysates and confirmed using immunostaining. Both neural cell proliferation and differentiation contributed to the MSC-mediated neuropoiesis. ECM's heparan sulfate proteoglycans were essential for the growth of the nestin-positive cell population. Neutralization studies showed that MSC-derived fibroblast growth factor 2 was a major and diffusible inducer of rat nestin, whereas MSC-derived bone morphogenetic proteins (BMPs), particularly, BMP4, were astrogenesis mediators, predominantly acting in a coculture setting. This system enables analysis of multifactorial MSC-neural cell interactions and can be used for elucidating the neuropoietic potency of MSCs and their derivative preparations.

  19. Microplate array diagonal gel electrophoresis for cohort studies of microsatellite loci.

    PubMed

    Chen, Xiao-he; O'Dell, Sandra D; Day, Ian N M

    2002-05-01

    After PCR amplification, we have achieved precise sizing of trinucleotide and tetranucleotide microsatellite alleles on 96-well open-faced polyacrylamide microplate array diagonal gel electrophoresis (MADGE) gels: two tetranucleotide repeats, HUMTHOI (five alleles 248-263 bp) and DYS390 (eight alleles 200-228 bp), and DYS392, a trinucleotide repeat (eight alleles 210-231 bp). A gel matrix of Duracryl, a high mechanical strength polyacrylamide derivative, and appropriate ionic conditions provide the 1.3%-1.5% band resolution required. No end-labeling of primers is needed, as the sensitive Vistra Green intercalating dye is used for the visualization of bands. Co-run markers bracketing the PCR fragments ensure accurate sizing without inter-lane variability. Electrophoresis of multiple gels in a thermostatically controlled tank allows up to 1000 samples to be run in 90 min. Gel images were analyzed using a Fluorlmager 595 fluorescent scanning system, and alleles were identified using Phoretix software for band migration measurement and Microsoft Excel to compute fragment sizes. Estimated sizes were interpolated precisely to achieve accurate binning. Microsatellite-MADGE represents a utilitarian methodfor high-throughput genotyping in cohort studies, using standard laboratory equipment.

  20. Aqueous-biamphiphilic ionic liquid systems: self-assembly and synthesis of gold nanocrystals/microplates.

    PubMed

    Rao, K Srinivasa; Trivedi, Tushar J; Kumar, Arvind

    2012-12-13

    Biamphiphilic ionic liquids (BAILs) based on 1,3-dialkylimidazolium cation and alkyl sulfate anions ([C(n)H(2n+1)mim][C(m)H(2m+1)OSO(3)]; n = 4, 6, or 8; m = 8, 12) have been synthesized and characterized for their self-assembling behavior in the aqueous medium. Effects of alteration of alkyl chain length in cation and anion on surfactant properties of BAILs have been examined from surface tension measurements. The effectiveness of surface tension reduction for BAILs has been found to be exceptionally higher as compared to single chain surface active ILs/conventional surfactants. The thermodynamics of the aggregation process has been studied using isothermal titration calorimetry (ITC) and temperature dependent conductivity experiments. Dynamic light scattering (DLS), nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM) studies showed that BAILs formed distinct aggregated structures depending upon the amphiphilic character present in the cation and anion. BAILs ([C(n)H(2n+1)mim][C(m)H(2m+1)OSO(3)]) form micelles when n = 4, 6; m = 8, intermicellar aggregates when n = 4, 6; m = 12, and vesicles when n = 8; m = 8, 12. Gold nanoparticles and microplates have been synthesized in micellar and vesicle solutions of BAILs using a simple photoreduction method. The studies show the potential of BAILs for constructing micelles and supramolecular assemblies, such as bilayer vesicles, which are effective in preparation of nanomaterials of controlled size and morphology.

  1. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    PubMed

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  2. Evaluation of a novel microplate colorimetric hybridization genotyping assay for human papillomavirus.

    PubMed

    Barcellos, Regina Bones; Almeida, Sabrina Esteves de Matos; Sperhacke, Rosa Dea; Verza, Mirela; Rosso, Franciele; Medeiros, Rúbia Marília de; Perizzolo, Paulo Fernando; Cortez-Herrera, Elizabeth; Rossetti, Maria Lucia Rosa

    2011-10-01

    Persistent infection with high-risk human papillomavirus (HR-HPV) has been associated with cervical cancer. Developing assays for the identification of these viral types is of great importance for monitoring patients and controlling strategies. The development of the MCHA (microplate colorimetric hybridization assay), a PCR-based method for identifying six of the most common HR-HPV types (HPV 16, 18, 31, 33, 39 and 45) is described. The MCHA combines the amplification with the GP5+/GP6+ consensus primers followed by PCR reverse hybridization with specific probes and detection through a colorimetric assay. The performance of the MCHA was evaluated using 108 DNA samples typed previously by the PapilloCheck(®). The agreement between both methods was 69.4% for HPV 16; 79.1% for HPV 45; 82.4% for HPV 18; 93.6% for HPV 31; 87.9% for HPV 33, and 17.6% for HPV 39. The assay had higher sensitivity than the Papillocheck(®), particularly for identifying HPV 16 and 18. The MCHA seemed to be sensitive and specific for the identification of the most prevalent HPV types in invasive cervical cancer, HPV 16, 18, 45, 33 and 31. It requires low-cost reagents and common laboratory apparatus. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Rapid quantitative analysis of lipids using a colorimetric method in a microplate format.

    PubMed

    Cheng, Yu-Shen; Zheng, Yi; VanderGheynst, Jean S

    2011-01-01

    A colorimetric sulfo-phospho-vanillin (SPV) method was developed for high throughput analysis of total lipids. The developed method uses a reaction mixture that is maintained in a 96-well microplate throughout the entire assay. The new assay provides the following advantages over other methods of lipid measurement: (1) background absorbance can be easily corrected for each well, (2) there is less risk of handling and transferring sulfuric acid contained in reaction mixtures, (3) color develops more consistently providing more accurate measurement of absorbance, and (4) the assay can be used for quantitative measurement of lipids extracted from a wide variety of sources. Unlike other spectrophotometric approaches that use fluorescent dyes, the optimal spectra and reaction conditions for the developed assay do not vary with the sample source. The developed method was used to measure lipids in extracts from four strains of microalgae. No significant difference was found in lipid determination when lipid content was measured using the new method and compared to results obtained using a macro-gravimetric method.

  4. Antibacterial properties of cyclodextrin-antiseptics-complexes determined by microplate laser nephelometry and ATP bioluminescence assay.

    PubMed

    Finger, Susanne; Wiegand, Cornelia; Buschmann, Hans-Jürgen; Hipler, Uta-Christina

    2013-08-16

    Cyclodextrins (CDs) are able to form inclusion complexes with other molecules, thereby, protecting these guest molecules from degradation, enhancing their biocompatibility or influencing their physiological distribution while retaining their activity. Here, antibacterial effects of CD-complexes with the antiseptics chlorhexidine diacetate (CHX), iodine (IOD) and polihexanide (PHMB) were determined using two different in vitro methods, microplate laser nephelometry and an ATP bioluminescence assay. Laser nephelometry is a direct method for monitoring and evaluating growth of micro-organisms by measurement of the turbidity of the solution. In contrast, the ATP bioluminescence assay determines specifically the amount of metabolic active bacterial cells. The antibacterial effects of CD-antiseptics-complexes were examined for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis and the results of both methods were compared in respect of calculated means of half maximal inhibitory concentrations (IC50) and statistical evaluated Pearson's correlation coefficients (r). It could be demonstrated that both methods showed a high comparability although they differ in the parameters tested. This study revealed that CD-complexes with CHX and PHMB were most effective against E. coli and the tested staphylococci. While CD-IOD-complexes obtained high activity against K. pneumoniae, P. aeruginosa was distinctly more resistant compared to the other bacteria.

  5. Computational modeling and experimental validation of odor detection behaviors of classically conditioned parasitic wasp, Microplitis croceipes.

    PubMed

    Zhou, Zhongkun; Kulasiri, Don; Samarasinghe, Sandhya; Rains, Glen; Olson, Dawn M

    2015-01-01

    A prototype chemical sensor named Wasp hound® that utilizes five classically conditioned parasitoid wasps, Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), to detect volatile odors was successfully implemented in a previous study. To improve the odor-detecting ability of Wasp Hound®, searching behaviors of an individual wasp in a confined area are studied and modeled through stochastic differential equations in this paper. The wasps are conditioned to 20 mg of coffee when associated with food and subsequently, tested to 5, 10, 20, and 40 mg of coffee. A stochastic model is developed and validated based on three positive behavioral responses (walking, rotation around odor source, and self-rotation) from conditioned wasps at four different test dosages. The model is capable to reproducing the behaviors of conditioned wasps, and can be used to improve the ability of Wasp Hound® to assess changes in odor concentration. The model simulation results show the behaviors of conditioned wasps are significantly different when tested at different coffee dosages. We conjecture that the searching behaviors of conditioned wasps are based on the temporal and spatial neuron activity of olfactory receptor neurons and glomeruli, which are strongly correlated to the training dosages. The overall results demonstrate the utility of mathematical models for interpreting experimental observations, gaining novel insights into the dynamic behavior of classically conditioned wasps, as well as broadening the practical uses of Wasp Hound. © 2014 American Institute of Chemical Engineers.

  6. Comparative analysis of peptidoglycan recognition proteins in endoparasitoid wasp Microplitis mediator.

    PubMed

    Wang, Rui-Juan; Lin, Zhe; Jiang, Hong; Li, Jiancheng; Saha, Tusar T; Lu, Ziyun; Lu, Zhiqiang; Zou, Zhen

    2017-02-01

    Peptidoglycan recognition proteins (PGRPs) are a family of innate immune receptors that specifically recognize peptidoglycans (PGNs) on the surface of a number of pathogens. Here, we have identified and characterized six PGRPs from endoparasitoid wasp, Microplitis mediator (MmePGRPs). To understand the roles of PGRPs in parasitoid wasps, we analyzed their evolutionary relationship and orthology, expression profiles during different developmental stages, and transcriptional expression following infection with Gram-positive and -negative bacteria and a fungus. MmePGRP-S1 was significantly induced in response to pathogenic infection. This prompted us to evaluate the effects of RNA interference mediated gene specific knockdown of MmePGRP-S1. The knockdown of MmePGRP-S1 (iMmePGRP-S1) dramatically affected wasps' survival following challenge by Micrococcus luteus, indicating the involvement of this particular PGRP in immune responses against Gram-positive bacteria. This action is likely to be mediated by the Toll pathway, but the mechanism remains to be determined. MmePGRP-S1 does not play a significant role in anti-fungal immunity as indicated by the survival rate of iMmePGRP-S1 wasps. This study provides a comprehensive characterization of PGRPs in the economically important hymenopteran species M. mediator. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  7. A single-islet microplate assay to measure mouse and human islet insulin secretion.

    PubMed

    Truchan, Nathan A; Brar, Harpreet K; Gallagher, Shannon J; Neuman, Joshua C; Kimple, Michelle E

    2015-01-01

    One complication to comparing β-cell function among islet preparations, whether from genetically identical or diverse animals or human organ donors, is the number of islets required per assay. Islet numbers can be limiting, meaning that fewer conditions can be tested; other islet measurements must be excluded; or islets must be pooled from multiple animals/donors for each experiment. Furthermore, pooling islets negates the possibility of performing single-islet comparisons. Our aim was to validate a 96-well plate-based single islet insulin secretion assay that would be as robust as previously published methods to quantify glucose-stimulated insulin secretion from mouse and human islets. First, we tested our new assay using mouse islets, showing robust stimulation of insulin secretion 24 or 48 h after islet isolation. Next, we utilized the assay to quantify mouse islet function on an individual islet basis, measurements that would not be possible with the standard pooled islet assay methods. Next, we validated our new assay using human islets obtained from the Integrated Islet Distribution Program (IIDP). Human islets are known to have widely varying insulin secretion capacity, and using our new assay we reveal biologically relevant factors that are significantly correlated with human islet function, whether displayed as maximal insulin secretion response or fold-stimulation of insulin secretion. Overall, our results suggest this new microplate assay will be a useful tool for many laboratories, expert or not in islet techniques, to be able to precisely quantify islet insulin secretion from their models of interest.

  8. Amperometric biosensor for Salmonella typhimurium detection in milk

    USDA-ARS?s Scientific Manuscript database

    This paper reports an amperometric biosensor for rapid and sensitive Salmonella Typhimurium detection in milk. The biosensor was assembled from the self-assembled monolayers technique on a gold surface. In this device, polyclonal antibodies were oriented by protein A. The biosensor structure was cha...

  9. Device considerations for development of conductance-based biosensors

    PubMed Central

    Lee, Kangho; Nair, Pradeep R.; Scott, Adina; Alam, Muhammad A.; Janes, David B.

    2009-01-01

    Design and fabrication of electronic biosensors based on field-effect-transistor (FET) devices require understanding of interactions between semiconductor surfaces and organic biomolecules. From this perspective, we review practical considerations for electronic biosensors with emphasis on molecular passivation effects on FET device characteristics upon immobilization of organic molecules and an electrostatic model for FET-based biosensors. PMID:24753627

  10. Electrochemical biosensors: recommended definitions and classification.

    PubMed

    Thévenot, D R; Toth, K; Durst, R A; Wilson, G S

    2001-01-01

    Two Divisions of the International Union of Pure and Applied Chemistry (IUPAC), namely Physical Chemistry (Commission 1.7 on Biophysical Chemistry formerly Steering Committee on Biophysical Chemistry) and Analytical Chemistry (Commission V.5 on Electroanalytical Chemistry) have prepared recommendations on the definition, classification and nomenclature related to electrochemical biosensors: these recommendations could, in the future, be extended to other types of biosensors. An electrochemical biosensor is a self-contained integrated device, which is capable of providing specific quantitative or semi-quantitative analytical information using a biological recognition element (biochemical receptor) which is retained in direct spatial contact with an electrochemical transduction element. Because of their ability to be repeatedly calibrated, we recommend that a biosensor should be clearly distinguished from a bioanalytical system, which requires additional processing steps, such as reagent addition. A device that is both disposable after one measurement, i.e. single use, and unable to monitor the analyte concentration continuously or after rapid and reproducible regeneration, should be designated a single use biosensor. Biosensors may be classified according to the biological specificity-conferring mechanism or, alternatively, to the mode of physico-chemical signal transduction. The biological recognition element may be based on a chemical reaction catalysed by, or on an equilibrium reaction with macromolecules that have been isolated, engineered or present in their original biological environment. In the latter cases. equilibrium is generally reached and there is no further, if any, net consumption of analyte(s) by the immobilized biocomplexing agent incorporated into the sensor. Biosensors may be further classified according to the analytes or reactions that they monitor: direct monitoring of analyte concentration or of reactions producing or consuming such analytes

  11. Nanomaterial-mediated Biosensors for Monitoring Glucose

    PubMed Central

    Taguchi, Masashige; Ptitsyn, Andre; McLamore, Eric S.

    2014-01-01

    Real-time monitoring of physiological glucose transport is crucial for gaining new understanding of diabetes. Many techniques and equipment currently exist for measuring glucose, but these techniques are limited by complexity of the measurement, requirement of bulky equipment, and low temporal/spatial resolution. The development of various types of biosensors (eg, electrochemical, optical sensors) for laboratory and/or clinical applications will provide new insights into the cause(s) and possible treatments of diabetes. State-of-the-art biosensors are improved by incorporating catalytic nanomaterials such as carbon nanotubes, graphene, electrospun nanofibers, and quantum dots. These nanomaterials greatly enhance biosensor performance, namely sensitivity, response time, and limit of detection. A wide range of new biosensors that incorporate nanomaterials such as lab-on-chip and nanosensor devices are currently being developed for in vivo and in vitro glucose sensing. These real-time monitoring tools represent a powerful diagnostic and monitoring tool for measuring glucose in diabetes research and point of care diagnostics. However, concerns over the possible toxicity of some nanomaterials limit the application of these devices for in vivo sensing. This review provides a general overview of the state of the art in nanomaterial-mediated biosensors for in vivo and in vitro glucose sensing, and discusses some of the challenges associated with nanomaterial toxicity. PMID:24876594

  12. Photonic crystal microring resonator for label-free biosensing.

    PubMed

    Lo, Stanley M; Hu, Shuren; Gaur, Girija; Kostoulas, Yiorgos; Weiss, Sharon M; Fauchet, Philippe M

    2017-03-20

    A label-free optical biosensor based on a one-dimensional photonic crystal microring resonator with enhanced light-matter interaction is demonstrated. More than a 2-fold improvement in volumetric and surface sensing sensitivity is achieved compared to conventional microring sensors. The experimental bulk detection sensitivity is ~248nm/RIU and label-free detection of DNA and proteins is reported at the nanomolar scale. With a minimum feature size greater than 100nm, the photonic crystal microring resonator biosensor can be fabricated with the same standard lithographic techniques used to mass fabricate conventional microring resonators.

  13. Field-Friendly Tuberculosis Biosensor

    NASA Astrophysics Data System (ADS)

    Proper, Nathan; Stone, Jeremy; Jevsevar, Kristen L.; Scherman, Michael; McNeil, Michael R.; Krapf, Diego

    2010-03-01

    Tuberculosis is a fading threat in the United States, but in the developing world it is still a major health-care concern. With the rising number of cases and lack of resources, there is a desperate need for an affordable, portable detection system. Here, we demonstrate the feasibility of a field-friendly immunological biosensor that utilizes florescence and specialized surface chemistries. We observe fluorescently labeled antibodies as they bind to a glass slide. Slides are treated with biotinylated polyethylene glycol to inhibit non-specific interactions and facilitate the binding of primary antibodies allowing for a high degree of specificity. Solutions of tuberculosis-specific antigens where mixed with fluorescently labeled secondary antibodies and incubated on the treated surfaces. An array of different concentrations of antigens bound to fluorescent tags is then read in an epifluorescnece microscope. This assay was used in the portable detector to show that higher concentrations of bound labeled antigens produce a greater emission when excited by a HeNe laser. Home-built electronics, off-the-shelf optics, and a Si photodiode (PD) were used. The data collected from multiple concentrations show a measurable photocurrent. Work is now underway to incorporate a avalanche (PD), flow-cell technology, in a portable box.

  14. Electrochemical enzyme biosensors based on calcium phosphate materials for tyramine detection in food samples.

    PubMed

    Sánchez-Paniagua López, Marta; Redondo-Gómez, Esther; López-Ruiz, Beatriz

    2017-12-01

    Electrochemical tyrosinase biosensors for tyramine determination were developed by the immobilization of the enzyme in calcium phosphate materials (CaPs) followed by cross-linking with glutaraldehyde. Tyramine was detected by the electrochemical reduction at -0.1V of the o- enzymatically-formed dopaquinone. Three different CaPs were explored as immobilization systems, monetite, brushite and brushite cement. Biosensors based on brushite matrices provide better analytical properties than the monetite one. Compared to brushite, a 10-fold increase of sensitivity was obtained with the brushite cement-based biosensor, which highlights the effect of brushite crystal formation in the presence of the enzyme in the biosensor performance. Several variables involved in the enzyme immobilization method such as glutaraldehyde cross-linking time, PPO/brushite ratio and thickness of the brushite-enzyme film were investigated. Furthermore, the effects of pH and temperature on biosensor performance were also optimized. Brushite cement-PPO-GA biosensor resulted in a reliable, highly sensitive, fast, inexpensive and easy analytical method for tyramine detection. Under optimal conditions (time of 15min, a ratio of 1.0 and 50μg of the brushite-enzyme mixture, 20°C and pH 6,0), a linear range of 5.8 × 10(-7) to 1.6 × 10(-5), sensitivity 1.50 × 10(3)mAM(-1) cm(-2), detection limit, 4.85 × 10(-8)M and a response time, 6s were obtained. The suitability of the proposed biosensor to determine the tyramine content in cheese samples has been explored. The mean analytical recovery of added tyramine in gouda and brie cheeses were found to be 95.5±5.8 and 96.9±7.5 respectively. A study of the tyramine content evolution over the course of a week under inadequate storage showed the importance of monitoring the degradation of certain foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Design and application of a lactulose biosensor

    PubMed Central

    Wu, Jieyuan; Jiang, Peixia; Chen, Wei; Xiong, Dandan; Huang, Linglan; Jia, Junying; Chen, Yuanyuan; Jin, Jian-Ming; Tang, Shuang-Yan

    2017-01-01

    In this study the repressor of Escherichia coli lac operon, LacI, has been engineered for altered effector specificity. A LacI saturation mutagenesis library was subjected to Fluorescence Activated Cell Sorting (FACS) dual screening. Mutant LacI-L5 was selected and it is specifically induced by lactulose but not by other disaccharides tested (lactose, epilactose, maltose, sucrose, cellobiose and melibiose). LacI-L5 has been successfully used to construct a whole-cell lactulose biosensor which was then applied in directed evolution of cellobiose 2-epimerase (C2E) for elevated lactulose production. The mutant C2E enzyme with ~32-fold enhanced expression level was selected, demonstrating the high efficiency of the lactulose biosensor. LacI-L5 can also be used as a novel regulatory tool. This work explores the potential of engineering LacI for customized molecular biosensors which can be applied in practice. PMID:28387245

  16. Biosensor-guided screening for macrolides.

    PubMed

    Möhrle, V; Stadler, M; Eberz, G

    2007-07-01

    Macrolides are complex polyketides of microbial origin that possess an extraordinary variety of pharmacological properties, paired with an impressive structural diversity. Bioassays for specific detection of such compounds will be of advantage for a class-specific drug screening. The current paper describes a cell-based microbial biosensor, assigning a luminescence response to natural or chemically modified macrolides, independent from their biological activity. This biosensor is based on the coupling of the structural luciferase genes of Vibrio fischeri to the regulatory control mechanism of a bacterial erythromycin resistance operon. The bioassays is easy to handle and can be applied to various screening formats. The feasibility of the test system for natural products screening is exemplified by the isolation and characterization of picromycin from a Streptomyces species. Biosensor-guided screening for macrolides is based on macrolide-promoted expression of lux genes and induction of luminescence (independent of macrolide antibiotic activity).

  17. Novel Nanocomposite-based Potassium Ion Biosensor

    NASA Astrophysics Data System (ADS)

    Xue, R.; Gouma, P. I.

    2009-05-01

    Potassium ion (K+) is important in regulating normal cell function in the human body, specifically the heartbeat and the muscle function. Thus, it is important to be able to monitor potassium ion concentrations in human fluids. This paper describes a novel concept for a potassium ion biosensor that accurately, rapidly, and efficiently monitors the presence and records the concentration of potassium ions with high specificity, not only in serum and urine, but also in the sweat or even eye fluid. This specific biosensor design utilizes a nanomanufacturing technique, i.e. electrospinning, to produce advanced nano-bio-composites that specifically trace even minute quantities of potassium ions through the use of selective bio-receptors (ionophores) attached to high surface area nanofibers. Electroactive polymers are then employed as transducers to produce an electronic (rather than ionic) output that changes instantly with the change in K+ concentration. Such biosensors may be manufactured in a skin patch configuration.

  18. Thin Hydrogel Films for Optical Biosensor Applications

    PubMed Central

    Mateescu, Anca; Wang, Yi; Dostalek, Jakub; Jonas, Ulrich

    2012-01-01

    Hydrogel materials consisting of water-swollen polymer networks exhibit a large number of specific properties highly attractive for a variety of optical biosensor applications. This properties profile embraces the aqueous swelling medium as the basis of biocompatibility, non-fouling behavior, and being not cell toxic, while providing high optical quality and transparency. The present review focuses on some of the most interesting aspects of surface-attached hydrogel films as active binding matrices in optical biosensors based on surface plasmon resonance and optical waveguide mode spectroscopy. In particular, the chemical nature, specific properties, and applications of such hydrogel surface architectures for highly sensitive affinity biosensors based on evanescent wave optics are discussed. The specific class of responsive hydrogel systems, which can change their physical state in response to externally applied stimuli, have found large interest as sophisticated materials that provide a complex behavior to hydrogel-based sensing devices. PMID:24957962

  19. Antibodies and antibody-derived analytical biosensors

    PubMed Central

    Sharma, Shikha; Byrne, Hannah

    2016-01-01

    The rapid diagnosis of many diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Biosensors are now being applied for rapid diagnostics due to their capacity for point-of-care use with minimum need for operator input. Antibody-based biosensors or immunosensors have revolutionized diagnostics for the detection of a plethora of analytes such as disease markers, food and environmental contaminants, biological warfare agents and illicit drugs. Antibodies are ideal biorecognition elements that provide sensors with high specificity and sensitivity. This review describes monoclonal and recombinant antibodies and different immobilization approaches crucial for antibody utilization in biosensors. Examples of applications of a variety of antibody-based sensor formats are also described. PMID:27365031

  20. Graphene-Based Optical Biosensors and Imaging

    SciTech Connect

    Tang, Zhiwen; He, Shijiang; Pei, Hao; Du, Dan; Fan, Chunhai; Lin, Yuehe

    2014-01-13

    This chapter focuses on the design, fabrication and application of graphene based optical nanobiosensors. The emerging graphene based optical nanobiosensors demonstrated the promising bioassay and biomedical applications thanking to the unique optical features of graphene. According to the different applications, the graphene can be tailored to form either fluorescent emitter or efficient fluorescence quencher. The exceptional electronic feature of graphene makes it a powerful platform for fabricating the SPR and SERS biosensors. Today the graphene based optical biosensors have been constructed to detect various targets including ions, small biomolecules, DNA/RNA and proteins. This chapter reviews the recent progress in graphene-based optical biosensors and discusses the opportunities and challenges in this field.

  1. Biosensor technology for pesticides--a review.

    PubMed

    Verma, Neelam; Bhardwaj, Atul

    2015-03-01

    Pesticides, due to their lucrative outcomes, are majorly implicated in agricultural fields for crop production enhancement. Due to their pest removal properties, pesticides of various classes have been designed to persist in the environment over a longer duration after their application to achieve maximum effectiveness. Apart from their recalcitrant structure and agricultural benefits, pesticides also impose acute toxicological effects onto the other various life forms. Their accumulation in the living system may prove to be detrimental if established in higher concentrations. Thus, their prompt and accurate analysis is a crucial matter of concern. Conventional techniques like chromatographic techniques (HPLC, GC, etc.) used for pesticides detection are associated with various limitations like stumpy sensitivity and efficiency, time consumption, laboriousity, requirement of expensive equipments and highly trained technicians, and many more. So there is a need to recruit the methods which can detect these neurotoxic compounds sensitively, selectively, rapidly, and easily in the field. Present work is a brief review of the pesticide effects, their current usage scenario, permissible limits in various food stuffs and 21st century advancements of biosensor technology for pesticide detection. Due to their exceptional performance capabilities, easiness in operation and on-site working, numerous biosensors have been developed for bio-monitoring of various environmental samples for pesticide evaluation immensely throughout the globe. Till date, based on sensing element (enzyme based, antibody based, etc.) and type of detection method used (Electrochemical, optical, and piezoelectric, etc.), a number of biosensors have been developed for pesticide detection. In present communication, authors have summarized 21st century's approaches of biosensor technology for pesticide detection such as enzyme-based biosensors, immunosensors, aptamers, molecularly imprinted polymers, and

  2. Assembling Amperometric Biosensors for Clinical Diagnostics

    PubMed Central

    Belluzo, María Soledad; Ribone, María Élida; Lagier, Claudia Marina

    2008-01-01

    Clinical diagnosis and disease prevention routinely require the assessment of species determined by chemical analysis. Biosensor technology offers several benefits over conventional diagnostic analysis. They include simplicity of use, specificity for the target analyte, speed to arise to a result, capability for continuous monitoring and multiplexing, together with the potentiality of coupling to low-cost, portable instrumentation. This work focuses on the basic lines of decisions when designing electron-transfer-based biosensors for clinical analysis, with emphasis on the strategies currently used to improve the device performance, the present status of amperometric electrodes for biomedicine, and the trends and challenges envisaged for the near future. PMID:27879771

  3. Aptamer-based sandwich-type biosensors.

    PubMed

    Seo, Ho Bin; Gu, Man Bock

    2017-01-01

    Sandwich-type biosensor platforms have drawn lots of attentions due to its superior features, compared to other platforms, in terms of its stable and reproducible responses and easy enhancement in the detection sensitivity. The sandwich-type assays can be developed by utilizing a pair of receptors, which bind to the different sites of the same target. In this mini-review paper, the sandwich-type biosensors using either pairs of aptamers or aptamer-antibody pairs are reviewed in terms of its targets and platforms, the schematic designs, and their analytical performance.

  4. Biosensor Architectures for High-Fidelity Reporting of Cellular Signaling

    PubMed Central

    Dushek, Omer; Lellouch, Annemarie C.; Vaux, David J.; Shahrezaei, Vahid

    2014-01-01

    Understanding mechanisms of information processing in cellular signaling networks requires quantitative measurements of protein activities in living cells. Biosensors are molecular probes that have been developed to directly track the activity of specific signaling proteins and their use is revolutionizing our understanding of signal transduction. The use of biosensors relies on the assumption that their activity is linearly proportional to the activity of the signaling protein they have been engineered to track. We use mechanistic mathematical models of common biosensor architectures (single-chain FRET-based biosensors), which include both intramolecular and intermolecular reactions, to study the validity of the linearity assumption. As a result of the classic mechanism of zero-order ultrasensitivity, we find that biosensor activity can be highly nonlinear so that small changes in signaling protein activity can give rise to large changes in biosensor activity and vice versa. This nonlinearity is abolished in architectures that favor the formation of biosensor oligomers, but oligomeric biosensors produce complicated FRET states. Based on this finding, we show that high-fidelity reporting is possible when a single-chain intermolecular biosensor is used that cannot undergo intramolecular reactions and is restricted to forming dimers. We provide phase diagrams that compare various trade-offs, including observer effects, which further highlight the utility of biosensor architectures that favor intermolecular over intramolecular binding. We discuss challenges in calibrating and constructing biosensors and highlight the utility of mathematical models in designing novel probes for cellular signaling. PMID:25099816

  5. Break-up of Pangaea and Tectonic History of the Adria Microplate

    NASA Astrophysics Data System (ADS)

    Schettino, A.; Turco, E.

    2008-12-01

    A new kinematic model is proposed for the tectonic evolution of the western Tethys and the Adria microplate, constrained by the Atlantic plate kinematics and on land geologic evidences. The model defines thirteen tectonic phases, spanning the time interval from the late Ladinian (230 Ma) to the present. During the first phase, from the late Ladinian (230 Ma) to the latest Rhaetian (200 Ma), rifting proceeded along the eastern margin of North America, the northwest African margin, the High, Saharan and Tunisian Atlas, determining the formation of a separate Moroccan microplate at the interface between Gondwana and Laurasia. To the East, the break-up of Pangaea proceeded through a new phase of spreading in the central Mediterranean (Lagonegro basin) and the Tethys Ocean, while Adria remained attached to the southern Eurasian margin. During the second phase, from the latest Rhaetian (200 Ma) to the late Pliensbachian (185 Ma), oceanic crust started forming between the East Coast and Blake Spur magnetic anomalies, while the Morrocan Meseta simply continued to rift away from North America. During this time interval the Atlas rift reached its maximum extent. In the western Tethys region, cessation of spreading in the Lagonegro and Ionian Basins was accompanied by the formation of a new plate boundary which rifted Adria from Eurasia. The third phase, from the late Pliensbachian (185 Ma) to chron M21 (147.7 Ma), was triggered by the northward jump of the main plate boundary connecting the central Atlantic with the Tethys area. Therefore, as soon as rifting in the Atlas zone ceased, plate motion started along complex fault systems between Morocco and Iberia, while a rift/drift transition occurred in the northern segment of the central Atlantic, between Morocco and the conjugate margin of Nova Scotia. Sea floor spreading also started in the Mediterranean area, forming the Ligurian and Alpine Tethys oceans. The next two phases, from chron M21 (147.7 Ma) to chron M0 (120

  6. Mohorovičić Discontinuity at the Contact of the Adriatic Microplate and Pannonian Segment

    NASA Astrophysics Data System (ADS)

    Sumanovac, F.; Oreskovic, J.

    2009-12-01

    Two-dimensional seismic and gravity modellings were applied to the contact of the Dinarides and the Pannonian basin as a relation between the Adriatic microplate and Pannonian segment, as a contribution to solving structural and tectonic relations. The basic exploration was carried out on the profile Alp07, which was a part of the ALP 2002 experiment (Brückl et al., 2003). This profile stretches in Croatia from Istra to the Drava River at Hungarian-Croatian border in a WSW-ENE direction. Two-dimensional seismic modelling was carried out using tomographic inversion and ray tracing technique. The Moho depth is the greatest in the area of the Dinarides, reaching about 40 km, and is shallowest (30 to 20 km) in the Pannonian basin. In order to obtain additional constraints on the crustal structure, 2 D gravity modelling was also performed. The layer boundaries were retained from the seismic model and varying of densities in the model produced a good fit to the data. A geological model was constructed based on both geophysical models (Šumanovac et al., 2009). Three types of the crust were found along the profile: the Dinaridic and the Pannonian crusts that are separated by a relatively wide Transition zone. The Dinaridic upper crust is characterised by low seismic velocities and densities, but its lower crust has high velocities and densities. The Pannonian crust can be seen as unique layer characterised by both low seismic velocities and densities. Large lateral and vertical changes in densities and seismic velocities can be found in the Transition zone. Gravity modelling on the Alp07 profile enabled a definition of calibrated rock densities that were applied on other profiles set up in the study area, generally covering the area of Croatia and Bosnia-Herzegovina, for the purpose of determining the structural relations. This significantly improved the resolution of gravity modelling, as well. The structural units determined on the Alp07 profile (Pannonian crust

  7. Transdermal film-loaded finasteride microplates to enhance drug skin permeation: Two-step optimization study.

    PubMed

    Ahmed, Tarek A; El-Say, Khalid M

    2016-06-10

    The goal was to develop an optimized transdermal finasteride (FNS) film loaded with drug microplates (MIC), utilizing two-step optimization, to decrease the dosing schedule and inconsistency in gastrointestinal absorption. First; 3-level factorial design was implemented to prepare optimized FNS-MIC of minimum particle size. Second; Box-Behnken design matrix was used to develop optimized transdermal FNS-MIC film. Interaction among MIC components was studied using physicochemical characterization tools. Film components namely; hydroxypropyl methyl cellulose (X1), dimethyl sulfoxide (X2) and propylene glycol (X3) were optimized for their effects on the film thickness (Y1) and elongation percent (Y2), and for FNS steady state flux (Y3), permeability coefficient (Y4), and diffusion coefficient (Y5) following ex-vivo permeation through the rat skin. Morphological study of the optimized MIC and transdermal film was also investigated. Results revealed that stabilizer concentration and anti-solvent percent were significantly affecting MIC formulation. Optimized FNS-MIC of particle size 0.93μm was successfully prepared in which there was no interaction observed among their components. An enhancement in the aqueous solubility of FNS-MIC by more than 23% was achieved. All the studied variables, most of their interaction and quadratic effects were significantly affecting the studied variables (Y1-Y5). Morphological observation illustrated non-spherical, short rods, flakes like small plates that were homogeneously distributed in the optimized transdermal film. Ex-vivo study showed enhanced FNS permeation from film loaded MIC when compared to that contains pure drug. So, MIC is a successful technique to enhance aqueous solubility and skin permeation of poor water soluble drug especially when loaded into transdermal films. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Microplitis demolitor bracovirus genome segments vary in abundance and are individually packaged in virions

    SciTech Connect

    Beck, Markus H.; Inman, Ross B.; Strand, Michael R. . E-mail: mrstrand@bugs.ent.uga.edu

    2007-03-01

    Polydnaviruses (PDVs) are distinguished by their unique association with parasitoid wasps and their segmented, double-stranded (ds) DNA genomes that are non-equimolar in abundance. Relatively little is actually known, however, about genome packaging or segment abundance of these viruses. Here, we conducted electron microscopy (EM) and real-time polymerase chain reaction (PCR) studies to characterize packaging and segment abundance of Microplitis demolitor bracovirus (MdBV). Like other PDVs, MdBV replicates in the ovaries of females where virions accumulate to form a suspension called calyx fluid. Wasps then inject a quantity of calyx fluid when ovipositing into hosts. The MdBV genome consists of 15 segments that range from 3.6 (segment A) to 34.3 kb (segment O). EM analysis indicated that MdBV virions contain a single nucleocapsid that encapsidates one circular DNA of variable size. We developed a semi-quantitative real-time PCR assay using SYBR Green I. This assay indicated that five (J, O, H, N and B) segments of the MdBV genome accounted for more than 60% of the viral DNAs in calyx fluid. Estimates of relative segment abundance using our real-time PCR assay were also very similar to DNA size distributions determined from micrographs. Analysis of parasitized Pseudoplusia includens larvae indicated that copy number of MdBV segments C, B and J varied between hosts but their relative abundance within a host was virtually identical to their abundance in calyx fluid. Among-tissue assays indicated that each viral segment was most abundant in hemocytes and least abundant in salivary glands. However, the relative abundance of each segment to one another was similar in all tissues. We also found no clear relationship between MdBV segment and transcript abundance in hemocytes and fat body.

  9. Rapid analysis of glycolytic and oxidative substrate flux of cancer cells in a microplate.

    PubMed

    Pike Winer, Lisa S; Wu, Min

    2014-01-01

    Cancer cells exhibit remarkable alterations in cellular metabolism, particularly in their nutrient substrate preference. We have devised several experimental methods that rapidly analyze the metabolic substrate flux in cancer cells: glycolysis and the oxidation of major fuel substrates glucose, glutamine, and fatty acids. Using the XF Extracellular Flux analyzer, these methods measure, in real-time, the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of living cells in a microplate as they respond to substrates and metabolic perturbation agents. In proof-of-principle experiments, we analyzed substrate flux and mitochondrial bioenergetics of two human glioblastoma cell lines, SF188s and SF188f, which were derived from the same parental cell line but proliferate at slow and fast rates, respectively. These analyses led to three interesting observations: 1) both cell lines respired effectively with substantial endogenous substrate respiration; 2) SF188f cells underwent a significant shift from glycolytic to oxidative metabolism, along with a high rate of glutamine oxidation relative to SF188s cells; and 3) the mitochondrial proton leak-linked respiration of SF188f cells increased significantly compared to SF188s cells. It is plausible that the proton leak of SF188f cells may play a role in allowing continuous glutamine-fueled anaplerotic TCA cycle flux by partially uncoupling the TCA cycle from oxidative phosphorylation. Taken together, these rapid, sensitive and high-throughput substrate flux analysis methods introduce highly valuable approaches for developing a greater understanding of genetic and epigenetic pathways that regulate cellular metabolism, and the development of therapies that target cancer metabolism.

  10. Rapid Analysis of Glycolytic and Oxidative Substrate Flux of Cancer Cells in a Microplate

    PubMed Central

    Pike Winer, Lisa S.; Wu, Min

    2014-01-01

    Cancer cells exhibit remarkable alterations in cellular metabolism, particularly in their nutrient substrate preference. We have devised several experimental methods that rapidly analyze the metabolic substrate flux in cancer cells: glycolysis and the oxidation of major fuel substrates glucose, glutamine, and fatty acids. Using the XF Extracellular Flux analyzer, these methods measure, in real-time, the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of living cells in a microplate as they respond to substrates and metabolic perturbation agents. In proof-of-principle experiments, we analyzed substrate flux and mitochondrial bioenergetics of two human glioblastoma cell lines, SF188s and SF188f, which were derived from the same parental cell line but proliferate at slow and fast rates, respectively. These analyses led to three interesting observations: 1) both cell lines respired effectively with substantial endogenous substrate respiration; 2) SF188f cells underwent a significant shift from glycolytic to oxidative metabolism, along with a high rate of glutamine oxidation relative to SF188s cells; and 3) the mitochondrial proton leak-linked respiration of SF188f cells increased significantly compared to SF188s cells. It is plausible that the proton leak of SF188f cells may play a role in allowing continuous glutamine-fueled anaplerotic TCA cycle flux by partially uncoupling the TCA cycle from oxidative phosphorylation. Taken together, these rapid, sensitive and high-throughput substrate flux analysis methods introduce highly valuable approaches for developing a greater understanding of genetic and epigenetic pathways that regulate cellular metabolism, and the development of therapies that target cancer metabolism. PMID:25360519

  11. Long-term GNSS measurements from the northern Adria microplate reveal fault-induced fluid mobilization

    NASA Astrophysics Data System (ADS)

    Rossi, Giuliana; Zuliani, David; Fabris, Paolo

    2016-10-01

    Due to the development of denser permanent Global Navigation Satellite System (GNSS) networks over the last decade, the observation of transient deformations has significantly increased, mainly in high strain-rate zones. We analyzed the data from a group of permanent GNSS sites on the N-Adria microplate, where anomalous southward tilting and low-frequency tremors preceded the 1976 Mw = 6.4 earthquake. We present records from different stations of a transient signal with an approximately 2-year period that propagated through the northern edge of Adria, in a region 150 km wide. This represents the first time a transient deformation event has been observed in a continental collision area. We exclude surface and groundwater hydrological load effects because we corrected the data for such effects at seasonal, annual, and multiyear scales. The movement is initially upward, except in one location, with slight tilting parallel to the direction of the main tectonic structures. Later, the opposite behavior is observed. The novel methods used include earthquake location techniques and tomographic inversion of the arrival times. These methods demonstrated that the transient source was located spatially and temporally close to the 2004 Mw = 5.2 event in Bovec (Slovenia), attributed to the activity of the Ravne fault. We interpret the transient rises as the expression of a porosity wave, possibly produced by fault valve behavior of the NW tip of the Ravne fault. The propagation velocity is consistent with this hypothesis. As a further test, we invert the arrival times of the transient through hydraulic tomography to obtain hydraulic diffusivity: the values are compatible with the lithotypes present in the region and the literature. By substituting the tomographic velocity and diffusivity in the solitary/porosity wave equation, we infer an initial effective stress of approximately 0.23 bar, sufficient to alter the equilibrium of some fault segments and influence the subsequent

  12. Electrophysiological and behavioral responses of Microplitis mediator (Hymenoptera: Braconidae) to caterpillar-induced volatiles from cotton.

    PubMed

    Yu, Huilin; Zhang, Yongjun; Wyckhuys, Kris A G; Wu, Kongming; Gao, Xiwu; Guo, Yuyuan

    2010-04-01

    Microplitis mediator Haliday (Hymenoptera: Braconidae) is an important larval endoparasitoid of various lepidopteran pests, including Helicoverpa armigera (Hübner). In China, H. armigera is a key pest of cotton and is currently the focus of several biological control efforts that use M. mediator as principal natural enemy of this pest. To improve the success of biological control efforts, behavioral studies are needed that shed light on the interaction between M. mediator and H. armigera. In this study, we determined M. mediator response to volatile compounds from undamaged, mechanically injured, or H. armigera--damaged plants and identified attractive volatiles. In Y-tube olfactometer assays, we found that mechanically damaged plants and/or plants treated with H. armigera oral secretions did not attract wasps. However, volatiles from H. armigera-damaged plants elicited a strong attraction of both M. mediator sexes. Headspace extracts from H. armigera-damaged cotton were analyzed by coupled gas chromatography-electroantennographic detection (GC-EAD), and a total of seven different compounds were found to elicit electroantennogram (EAG) responses, including an unknown compound. Six different EAD-active volatiles were identified from caterpillar-damaged cotton plants, of which 3, 7-dimethyl-1, 3, 6-octatriene and (Z)-3-hexenyl acetate were the principal compounds. Olfactometer assays indicated that individual synthetic compounds of 3, 7-dimethyl-1, 3, 6-octatriene, (Z)-3-hexenyl acetate, and nonanal were attractive to M. mediator. Field cage studies showed that parasitism of H. armigera larvae by M. mediator was higher on cotton plants to which 3,7-dimethyl-1,3, 6-octatriene was applied. Our results show that the combination of terpenoids and green leaf volatiles may not only facilitate host, mate, or food location but may also increase H. armigera parasitism by M. mediator.

  13. Analysis of regional brain mitochondrial bioenergetics and susceptibility to mitochondrial inhibition utilizing a microplate based system

    PubMed Central

    Sauerbeck, Andrew; Pandya, Jignesh; Singh, Indrapal; Bittman, Kevin; Readnower, Ryan; Bing, Guoying; Sullivan, Patrick

    2012-01-01

    The analysis of mitochondrial bioenergetic function typically has required 50–100 μg of protein per sample and at least 15 min per run when utilizing a Clark-type oxygen electrode. In the present work we describe a method utilizing the Seahorse Biosciences XF24 Flux Analyzer for measuring mitochondrial oxygen consumption simultaneously from multiple samples and utilizing only 5 μg of protein per sample. Utilizing this method we have investigated whether regionally based differences exist in mitochondria isolated from the cortex, striatum, hippocampus, and cerebellum. Analysis of basal mitochondrial bioenergetics revealed that minimal differences exist between the cortex, striatum, and hippocampus. However, the cerebellum exhibited significantly slower basal rates of Complex I and Complex II dependent oxygen consumption (p < 0.05). Mitochondrial inhibitors affected enzyme activity proportionally across all samples tested and only small differences existed in the effect of inhibitors on oxygen consumption. Investigation of the effect of rotenone administration on Complex I dependent oxygen consumption revealed that exposure to 10 pM rotenone led to a clear time dependent decrease in oxygen consumption beginning 12 min after administration (p < 0.05). These studies show that the utilization of this microplate based method for analysis of mitochondrial bioenergetics is effective at quantifying oxygen consumption simultaneously from multiple samples. Additionally, these studies indicate that minimal regional differences exist in mitochondria isolated from the cortex, striatum, or hippocampus. Furthermore, utilization of the mitochondrial inhibitors suggests that previous work indicating regionally specific deficits following systemic mitochondrial toxin exposure may not be the result of differences in the individual mitochondria from the affected regions. PMID:21402103

  14. Automated panning and screening procedure on microplates for antibody generation from phage display libraries.

    PubMed

    Turunen, Laura; Takkinen, Kristiina; Söderlund, Hans; Pulli, Timo

    2009-03-01

    Antibody phage display technology is well established and widely used for selecting specific antibodies against desired targets. Using conventional manual methods, it is laborious to perform multiple selections with different antigens simultaneously. Furthermore, manual screening of the positive clones requires much effort. The authors describe optimized and automated procedures of these processes using a magnetic bead processor for the selection and a robotic station for the screening step. Both steps are performed in a 96-well microplate format. In addition, adopting the antibody phage display technology to automated platform polyethylene glycol precipitation of the enriched phage pool was unnecessary. For screening, an enzyme-linked immunosorbent assay protocol suitable for a robotic station was developed. This system was set up using human gamma-globulin as a model antigen to select antibodies from a VTT naive human single-chain antibody (scFv) library. In total, 161 gamma-globulin-selected clones were screened, and according to fingerprinting analysis, 9 of the 13 analyzed clones were different. The system was further tested using testosterone bovine serum albumin (BSA) and beta-estradiol-BSA as antigens with the same library. In total, 1536 clones were screened from 4 rounds of selection with both antigens, and 29 different testosterone-BSA and 23 beta-estradiol-BSA binding clones were found and verified by sequencing. This automated antibody phage display procedure increases the throughput of generating wide panels of target-binding antibody candidates and allows the selection and screening of antibodies against several different targets in parallel with high efficiency.

  15. Biosensor Systems for Homeland Security

    SciTech Connect

    Bruckner-Lea, Cindy J.

    2004-05-30

    The detection of biological agents is important to minimize the effects of pathogens that can harm people, livestock, or plants. In addition to pathogens distributed by man, there is a need to detect natural outbreaks. Recent outbreaks of SARS, mad cow disease, pathogenic E. coli and Salmonella, as well as the discovery of letters filled with anthrax spores have highlighted the need for biosensor systems to aid in prevention, early warning, response, and recovery. Rapid detection can be used to prevent exposure; and detection on a longer timescale can be used to minimize exposure, define treatment, and determine whether contaminated areas are clean enough for reuse. The common types of biological agents of concern include bacteria, spores, and viruses (Figure 1). From a chemist’s point of view, pathogens are essentially complex packages of chemicals that are assembled into organized packages with somewhat predictable physical characteristics such as size and shape. Pathogen detection methods can be divided into three general approaches: selective detection methods for specific identification such as nucleic acid analysis and structural recognition, semi-selective methods for broad-spectrum detection (e.g. physical properties, metabolites, lipids), and function-based methods (e.g. effect of the pathogen on organisms, tissues, or cells). The requirements for biodetection systems depend upon the application. While detect to warn sensors may require rapid detection on the order one minute, detection times of many minutes or hours may be suitable for determining appropriate treatments or for forensic analysis. Of course ideal sensor systems will meet the needs of many applications, and will be sensitive, selective, rapid, and simultaneously detect all agents of concern. They will also be reliable with essentially no false negatives or false positives, small, easy to use, and low cost with minimal consumables.

  16. DNA Generated Electric Current Biosensor.

    PubMed

    Hu, Lanshuang; Hu, Shengqiang; Guo, Linyan; Shen, Congcong; Yang, Minghui; Rasooly, Avraham

    2017-02-21

    In addition to its primary function as a genetic material, deoxyribonucleic acid (DNA) is also a potential biologic energy source for molecular electronics. For the first time, we demonstrate that DNA can generate a redox electric current. As an example of this new functionality, DNA generated redox current was used for electrochemical detection of human epidermal growth factor receptor 2 (HER2), a clinically important breast cancer biomarker. To induce redox current, the phosphate of the single stranded DNA aptamer backbone was reacted with molybdate to form redox molybdophosphate precipitate and generate an electrochemical current of ∼16.8 μA/μM cm(2). This detection of HER2 was performed using a sandwich detection assay. A HER2 specific peptide was immobilized onto a gold electrode surface for capturing HER2 in buffer and serum. The HER2 specific aptamer was used as both ligand to bind the captured HER2 and to generate a redox current signal. When tested for HER2 detection, the electrochemical current generated by the aptasensor was proportional to HER2 concentration in the range of 0.01 to 5 ng/mL, with a current generated in the range of ∼6.37 to 31.8 μA/cm(2) in both buffer and serum. This detection level is within the clinically relevant range of HER2 concentrations. This method of electrochemical signal amplification greatly simplifies the signal transduction of aptasensors, broadening their use for HER2 analysis. This novel approach of using the same aptamer as biosensor ligand and as transducer can be universally extended to other aptasensors for a wide array of biodetection applications. Moreover, electric currents generated by DNA or other nucleic acids can be used in molecular electronics or implanted devices for both power generation and measurement of output.

  17. The Dinaric fault system: Large-scale structure, rates of slip, and Plio-Pleistocene evolution of the transpressive northeastern boundary of the Adria microplate

    NASA Astrophysics Data System (ADS)

    Moulin, Adrien; Benedetti, Lucilla; Rizza, Magali; Jamšek Rupnik, Petra; Gosar, Andrej; Bourlès, Didier; Keddadouche, Karim; Aumaître, Georges; Arnold, Maurice; Guillou, Valery; Ritz, Jean-François

    2016-10-01

    Located at the northeastern corner of the Adria microplate, the Alps-Dinarides junction represents a key region for understanding how the Adria microplate interacts with stable Europe. However, little is known on how the present-day deformation imposed by the rotation of the Adria microplate is absorbed across the Dinarides. Using morphotectonic analysis based on satellite and aerial images, accurate topographical maps, and digital elevation models combined with field investigations, we mapped in detail the three main active faults of the Northern Dinarides. Geomorphic and geological cumulative displacements ranging from a few meters to several kilometers have been identified on those faults and dated for the most recent ones using 36Cl exposure dating. Those results yielded a total right-lateral motion of 3.8 ± 0.7 mm/yr oriented N317. Comparing our results with the motion expected from Adria rotation models suggests that the Northern Dinarides absorbs most of the predicted Adria-Eurasia motion, thus representing the eastern boundary of the microplate. However, a significant E-W component is lacking, suggesting that part of the stress imposed by the microplate rotation is transferred farther to the east. Finally, bounds placed on the Plio-Pleistocene kinematics confirm that faulting onset occurred during the Early Pliocene and evidence a significant kinematic change at the Early/Middle Pleistocene boundary.

  18. Free vibration and biaxial buckling analysis of magneto-electro-elastic microplate resting on visco-Pasternak substrate via modified strain gradient theory

    NASA Astrophysics Data System (ADS)

    Jamalpoor, A.; Ahmadi-Savadkoohi, A.; Hosseini-Hashemi, Sh

    2016-10-01

    This paper deals with the theoretical analysis of free vibration and biaxial buckling of magneto-electro-elastic (MEE) microplate resting on Kelvin-Voigt visco-Pasternak foundation and subjected to initial external electric and magnetic potentials, using modified strain gradient theory (MSGT). Kirchhoff plate model and Hamilton’s principle are employed to extract the governing equations of motion. Governing equations were analytically solved to obtain clear closed-form expression for complex natural frequencies and buckling loads using Navier’s approach. Numerical results are presented to reveal variations of natural frequency and buckling load ratio of MEE microplate against different amounts of the length scale parameter, initial external electric and magnetic potentials, aspect ratio, damping and transverse and shear stiffness parameters of the visco-Pasternak foundation, length to thickness ratio, microplate thickness and higher modes. Numerical results of this study illustrate that by increasing thickness-to-material length scale parameter ratio, both natural frequency and buckling load ratio predicted by MSGT and modified couple stress theory are reduced because the non-dimensional length scale parameter tends to decrease the stiffness of structures and make them more flexible. In addition, results show that initial external electric and initial external magnetic potentials have no considerable influence on the buckling load ratio and frequency of MEE microplate as the microplate thickness increases.

  19. Biosensors for Whole-Cell Bacterial Detection

    PubMed Central

    Rushworth, Jo V.; Hirst, Natalie A.; Millner, Paul A.

    2014-01-01

    SUMMARY Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost. PMID:24982325

  20. Fiber optic-based regenerable biosensor

    DOEpatents

    Sepaniak, Michael J.; Vo-Dinh, Tuan

    1993-01-01

    A fiber optic-based regenerable biosensor. The biosensor is particularly suitable for use in microscale work in situ. In one embodiment, the biosensor comprises a reaction chamber disposed adjacent the distal end of a waveguide and adapted to receive therein a quantity of a sample containing an analyte. Leading into the chamber is a plurality of capillary conduits suitable for introducing into the chamber antibodies or other reagents suitable for selective interaction with a predetermined analyte. Following such interaction, the contents of the chamber may be subjected to an incident energy signal for developing fluorescence within the chamber that is detectable via the optical fiber and which is representative of the presence, i.e. concentration, of the selected analyte. Regeneration of the biosensor is accomplished by replacement of the reagents and/or the analyte, or a combination of these, at least in part via one or more of the capillary conduits. The capillary conduits extend from their respective terminal ends that are in fluid communication with the chamber, away from the chamber to respective location(s) remote from the chamber thereby permitting in situ location of the chamber and remote manipulation and/or analysis of the activity with the chamber.

  1. Nanoscale bacteriophage biosensors beyond phage display

    PubMed Central

    Lee, Jong-Wook; Song, Jangwon; Hwang, Mintai P; Lee, Kwan Hyi

    2013-01-01

    Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology. PMID:24143096

  2. Nanoscale bacteriophage biosensors beyond phage display.

    PubMed

    Lee, Jong-Wook; Song, Jangwon; Hwang, Mintai P; Lee, Kwan Hyi

    2013-01-01

    Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology.

  3. Stability of Enzymatic Biosensors for Wearable Applications.

    PubMed

    Sonawane, Apurva; Manickam, Pandiaraj; Bhansali, Shekhar

    2017-05-19

    Technological evolution in wearable sensors is accounting for major growth and transformation in multitude of industries ranging from healthcare to computing & informatics to communication and biomedical sciences. The major driver for this transformation is the new-found ability to continuously monitor and analyze the patients' physiology in patients' natural setting. Numerous wearable sensors are already on the market and are summarized. Most of the current technologies have focused on electro-physiological, electro-mechanical or acoustic measurements. Wearable bio-chemical sensing devices are in their infancy. Traditional challenges in biochemical sensing such as reliability, repeatability, stability, and drift are amplified in wearable sensing systems due to variabilities in operating environment, sample/sensor handling and motion artifacts. Enzymatic sensing technologies, due to reduced fluidic challenges continue to be forerunners for translation into wearable sensors. This paper reviews the recent developments in wearable enzymatic sensors. The wearable sensors have been classified in three major groups based on sensor embodiment and placement relative to the human body: (i) On-body, (ii) Clothing/textile-based biosensors and (iii) Biosensor accessories. The sensors, which come in the forms of stickers, tattoos are categorized as on-body biosensors. The fabric-based biosensor comes in different models such as smart-shirts, socks, gloves and smart undergarments with printed sensors for continuous monitoring.

  4. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    EPA Science Inventory

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  5. Applications of Nanomaterials in Electrochemical Enzyme Biosensors

    PubMed Central

    Li, Huihui; Liu, Songqin; Dai, Zhihui; Bao, Jianchun; Yang, Xiaodi

    2009-01-01

    A biosensor is defined as a kind of analytical device incorporating a biological material, a biologically derived material or a biomimic intimately associated with or integrated within a physicochemical transducer or transducing microsystem. Electrochemical biosensors incorporating enzymes with nanomaterials, which combine the recognition and catalytic properties of enzymes with the electronic properties of various nanomaterials, are new materials with synergistic properties originating from the components of the hybrid composites. Therefore, these systems have excellent prospects for interfacing biological recognition events through electronic signal transduction so as to design a new generation of bioelectronic devices with high sensitivity and stability. In this review, we describe approaches that involve nanomaterials in direct electrochemistry of redox proteins, especially our work on biosensor design immobilizing glucose oxidase (GOD), horseradish peroxidase (HRP), cytochrome P450 (CYP2B6), hemoglobin (Hb), glutamate dehydrogenase (GDH) and lactate dehydrogenase (LDH). The topics of the present review are the different functions of nanomaterials based on modification of electrode materials, as well as applications of electrochemical enzyme biosensors. PMID:22291522

  6. Microbial Biosensors for Selective Detection of Disaccharides

    USDA-ARS?s Scientific Manuscript database

    Seven microbial strains were screened for their ability to detect disaccharides as components of Clark-type oxygen biosensors. Sensors responded to varying degrees to maltose, cellobiose, sucrose, and melibiose, but none responded strongly to lactose. Although microbial sensors are relatively nons...

  7. Clinical Assessment Applications of Ambulatory Biosensors

    ERIC Educational Resources Information Center

    Haynes, Stephen N.; Yoshioka, Dawn T.

    2007-01-01

    Ambulatory biosensor assessment includes a diverse set of rapidly developing and increasingly technologically sophisticated strategies to acquire minimally disruptive measures of physiological and motor variables of persons in their natural environments. Numerous studies have measured cardiovascular variables, physical activity, and biochemicals…

  8. Methods for using redox liposome biosensors

    DOEpatents

    Cheng, Quan; Stevens, Raymond C.

    2002-01-01

    The present invention provides methods and compositions for detecting the presence of biologically-important analytes by using redox liposome biosensors. In particular, the present invention provides liposome/sol-gel electrodes suitable for the detection of a wide variety of organic molecules, including but not limited to bacterial toxins.

  9. Boar taint detection using parasitoid biosensors

    USDA-ARS?s Scientific Manuscript database

    To evaluate the potential for a non-stinging wasp to be used as a biosensor in the pig industry, we trained wasps to 3 individual chemicals associated with boar taint. Training consisted of presenting the odors to hungry wasps while they were feeding on sugar. This associates the chemical with a fo...

  10. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    EPA Science Inventory

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  11. Single bead-based electrochemical biosensor

    PubMed Central

    Liu, Changchun; Schrlau, Michael G.; Bau, Haim H.

    2009-01-01

    A simple, robust, single bead-based electrochemical biosensor was fabricated and characterized. The sensor’s working electrode consists of an electrochemically-etched platinum wire, with a nominal diameter of 25 μm, hermetically heat-fusion sealed in a pulled glass capillary (micropipette). The sealing process does not require any epoxy or glue. A commercially available, densely functionalized agarose bead was mounted on the tip of the etched platinum wire. The use of a pre-functionalized bead eliminates the tedious and complicated surface functionalization process that is often the bottleneck in the development of electrochemical biosensors. We report on the use of a biotin agarose bead-based, micropipette, electrochemical (Bio-BMP) biosensor to monitor H2O2 concentration and the use of a streptavidin bead-based, micropipette, electrochemical (SA-BMP) biosensor to detect DNA amplicons. The Bio-BMP biosensor’s response increased linearly as the H2O2 concentration increased in the range from 1×10−6 to 1.2×10−4 M with a detection limit of 5×10−7 M. The SA-BMP was able to detect the amplicons of 1 pg DNA template of B. Cereus bacteria, thus providing better detection sensitivity than conventional gel-based electropherograms. PMID:19767195

  12. Clinical Assessment Applications of Ambulatory Biosensors

    ERIC Educational Resources Information Center

    Haynes, Stephen N.; Yoshioka, Dawn T.

    2007-01-01

    Ambulatory biosensor assessment includes a diverse set of rapidly developing and increasingly technologically sophisticated strategies to acquire minimally disruptive measures of physiological and motor variables of persons in their natural environments. Numerous studies have measured cardiovascular variables, physical activity, and biochemicals…

  13. Surface acoustic wave biosensors: a review.

    PubMed

    Länge, Kerstin; Rapp, Bastian E; Rapp, Michael

    2008-07-01

    This review presents an overview of 20 years of worldwide development in the field of biosensors based on special types of surface acoustic wave (SAW) devices that permit the highly sensitive detection of biorelevant molecules in liquid media (such as water or aqueous buffer solutions). 1987 saw the first approaches, which used either horizontally polarized shear waves (HPSW) in a delay line configuration on lithium tantalate (LiTaO(3)) substrates or SAW resonator structures on quartz or LiTaO(3) with periodic mass gratings. The latter are termed "surface transverse waves" (STW), and they have comparatively low attenuation values when operated in liquids. Later Love wave devices were developed, which used a film resonance effect to significantly reduce attenuation. All of these sensor approaches were accompanied by the development of appropriate sensing films. First attempts used simple layers of adsorbed antibodies. Later approaches used various types of covalently bound layers, for example those utilizing intermediate hydrogel layers. Recent approaches involve SAW biosensor devices inserted into compact systems with integrated fluidics for sample handling. To achieve this, the SAW biosensors can be embedded into micromachined polymer housings. Combining these two features will extend the system to create versatile biosensor arrays for generic lab use or for diagnostic purposes.

  14. Long-term response on growth, antioxidant enzymes, and secondary metabolites in salicylic acid pre-treated Uncaria tomentosa microplants.

    PubMed

    Sánchez-Rojo, Silvia; Cerda-García-Rojas, Carlos M; Esparza-García, Fernando; Plasencia, Javier; Poggi-Varaldo, Héctor M; Ponce-Noyola, Teresa; Ramos-Valdivia, Ana C

    2015-12-01

    To obtain micro propagated Uncaria tomentosa plantlets with enhanced secondary metabolites production, long-term responses to salicylic acid (SA) pre-treatments at 1 and 100 µM were evaluated after propagation of the plantlets in a SA-free medium. SA pre-treatments of single node cuttings OF U. tomentosa produced long-term responses in microplants grown for 75 days in a SA-free medium. Reduction in survival rate, root formation, and stem elongation were observed only with 100 µM SA pre-treatments with respect to the control (0 + DMSO).Both pre-treatments enhanced H2O2 and inhibited superoxide dismutase and catalase activities, while guaiacol peroxidase was increased only with 1 µM SA. Also, both pre-treatments increased total monoterpenoid oxindole alkaloids by ca. 55 % (16.5 mg g(-1) DW), including isopteropodine, speciophylline, mitraphylline, isomitraphylline, rhynchopylline, and isorhynchopylline; and flavonoids by ca. 21 % (914 μg g(-1) DW), whereas phenolic compounds were increased 80 % (599 μg g(-1) DW) at 1 µM and 8.2 % (359 μg g(-1) DW) at 100 µM SA. Pre-treatment with 1 µM SA of U.tomentosa microplants preserved the survival rate and increased oxindole alkaloids, flavonoids, and phenolic compounds in correlation with H2O2 and peroxidase activity enhancements, offering biotechnological advantages over non-treated microplants.

  15. A Microplate Growth Inhibition Assay for Screening Bacteriocins against Listeria monocytogenes to Differentiate Their Mode-of-Action.

    PubMed

    Vijayakumar, Paul Priyesh; Muriana, Peter M

    2015-06-11

    Lactic acid bacteria (LAB) have historically been used in food fermentations to preserve foods and are generally-recognized-as-safe (GRAS) by the FDA for use as food ingredients. In addition to lactic acid; some strains also produce bacteriocins that have been proposed for use as food preservatives. In this study we examined the inhibition of Listeria monocytogenes 39-2 by neutralized and non-neutralized bacteriocin preparations (Bac+ preps) produced by Lactobacillus curvatus FS47; Lb. curvatus Beef3; Pediococcus acidilactici Bac3; Lactococcus lactis FLS1; Enterococcus faecium FS56-1; and Enterococcus thailandicus FS92. Activity differences between non-neutralized and neutralized Bac+ preps in agar spot assays could not readily be attributed to acid because a bacteriocin-negative control strain was not inhibitory to Listeria in these assays. When neutralized and non-neutralized Bac+ preps were used in microplate growth inhibition assays against L. monocytogenes 39-2 we observed some differences attributed to acid inhibition. A microplate growth inhibition assay was used to compare inhibitory reactions of wild-type and bacteriocin-resistant variants of L. monocytogenes to differentiate bacteriocins with different modes-of-action (MOA) whereby curvaticins FS47 and Beef3, and pediocin Bac3 were categorized to be in MOA1; enterocins FS92 and FS56-1 in MOA2; and lacticin FLS1 in MOA3. The microplate bacteriocin MOA assay establishes a platform to evaluate the best combination of bacteriocin preparations for use in food applications as biopreservatives against L. monocytogenes.

  16. A Microplate Growth Inhibition Assay for Screening Bacteriocins against Listeria monocytogenes to Differentiate Their Mode-of-Action

    PubMed Central

    Vijayakumar, Paul Priyesh; Muriana, Peter M.

    2015-01-01

    Lactic acid bacteria (LAB) have historically been used in food fermentations to preserve foods and are generally-recognized-as-safe (GRAS) by the FDA for use as food ingredients. In addition to lactic acid; some strains also produce bacteriocins that have been proposed for use as food preservatives. In this study we examined the inhibition of Listeria monocytogenes 39-2 by neutralized and non-neutralized bacteriocin preparations (Bac+ preps) produced by Lactobacillus curvatus FS47; Lb. curvatus Beef3; Pediococcus acidilactici Bac3; Lactococcus lactis FLS1; Enterococcus faecium FS56-1; and Enterococcus thailandicus FS92. Activity differences between non-neutralized and neutralized Bac+ preps in agar spot assays could not readily be attributed to acid because a bacteriocin-negative control strain was not inhibitory to Listeria in these assays. When neutralized and non-neutralized Bac+ preps were used in microplate growth inhibition assays against L. monocytogenes 39-2 we observed some differences attributed to acid inhibition. A microplate growth inhibition assay was used to compare inhibitory reactions of wild-type and bacteriocin-resistant variants of L. monocytogenes to differentiate bacteriocins with different modes-of-action (MOA) whereby curvaticins FS47 and Beef3, and pediocin Bac3 were categorized to be in MOA1; enterocins FS92 and FS56-1 in MOA2; and lacticin FLS1 in MOA3. The microplate bacteriocin MOA assay establishes a platform to evaluate the best combination of bacteriocin preparations for use in food applications as biopreservatives against L. monocytogenes. PMID:26111195

  17. Neotethyan intraoceanic microplate rotation and variations in spreading axis orientation: Palaeomagnetic evidence from the Hatay ophiolite (southern Turkey)

    NASA Astrophysics Data System (ADS)

    Inwood, Jennifer; Morris, Antony; Anderson, Mark W.; Robertson, Alastair H. F.

    2009-04-01

    Insights into tectonic processes operating in ancient ocean basins are provided by analyses of fragments of oceanic lithosphere preserved as ophiolites during collisional orogenesis. Here we present a palaeomagnetic analysis of the Upper Cretaceous Hatay (Kizil Dağ) ophiolite of Turkey that provides evidence for intraoceanic microplate rotation and variations in ridge axis orientation in a Neotethyan ocean basin. Magnetizations at 46 sites are shown to be pre-deformational in origin and rotated from the relevant reference direction. A net tectonic rotation approach to the analysis of the data provides information on permissible net rotation poles and angles and allows uncertainties in input vectors to be considered. Results demonstrate that all levels of the ophiolite have been rotated anticlockwise by angles in excess of 90° around steeply inclined axes. The Hatay ophiolite formed in the same supra-subduction zone spreading system as the Troodos ophiolite (Cyprus), which is known to have rotated 90° anticlockwise in an intraoceanic setting in the Late Cretaceous to Early Eocene. By considering our results in the context of the known timing of the Troodos rotation, we infer that 50-60° of rotation of the Hatay ophiolite took place as part of an areally extensive "Troodos microplate". This phase of rotation was triggered by initial impingement of the Arabian continental margin with the Neotethyan subduction trench, consistent with models for modern day oceanic microplate rotation in complex convergent plate boundaries. The Hatay ophiolite then became detached from the actively rotating microplate and was emplaced onto the Arabian margin in the Maastrichtian, undergoing a further 30-40° of anticlockwise rotation during thrusting. Back-stripping of rotations allows correction of the Hatay sheeted dykes to their initial orientations. The restored dyke trend of 020° differs from that inferred previously for the Troodos sheeted dyke complex, demonstrating a primary

  18. Future of biosensors: a personal view.

    PubMed

    Scheller, Frieder W; Yarman, Aysu; Bachmann, Till; Hirsch, Thomas; Kubick, Stefan; Renneberg, Reinhard; Schumacher, Soeren; Wollenberger, Ulla; Teller, Carsten; Bier, Frank F

    2014-01-01

    Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the "100-dollar" personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday "consumables" such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of "autonomous" biosensors will emerge.

  19. Synthesis and characterization of nanoparticles for electrochemical biosensor applications

    NASA Astrophysics Data System (ADS)

    Won, Yu-Ho

    Biosensors have been developed for detection, quantification, and monitoring of specific biomolecules or chemical species for environmental, clinical, and industrial fields. Nanoparticles, which can be functionalized by various materials, have attracted research interest in the electrochemical biosensors field due to their versatile physical and chemical properties. Thus, nanoparticles and nanocomposites have been widely investigated as a matrix for the electrochemical biosensors of the detection of various molecules. In this work, nanoparticles, including Fe3O4/silica core/shell nanocomposites, CaCO3-CdSe/ZnS/silica composites, Au nanocrystals, and Cu2O & Cu2O/Au particles, were synthesized and applied for the design of electrochemical biosensors. The goal of this research is to investigate novel nanoparticle-based platforms for the design of highly sensitive and stable biosensors. Biosensors can be categorized into enzyme-based biosensors and enzyme-free biosensors depending on whether or not enzymes are present in the system. Fe3O 4/silica core/shell nanocomposites and CaCO3-CdSe/ZnS/silica composites were used as material platforms to immobilize enzymes and fabricate enzyme-based electrochemical biosensors. On the other hand, Au nanocrystals, Cu2O, and Cu2O/Au particles, which display significant catalytic and electron transfer properties, were investigated in enzyme-free biosensor configurations. In addition, the morphology-dependent biosensing properties of Au nanocrystals, Cu2O, and Cu2O/Au particles were investigated.

  20. Dependence of seed layer thickness on sensitivity of nano-ZnO cholesterol biosensor

    NASA Astrophysics Data System (ADS)

    Lu, Yang-Ming; Wang, Po-Chin; Tang, Jian-Fu; Chu, Sheng-Yuan

    2017-01-01

    The anemone-like ZnO nanostructures have been synthesized by hydrothermal method and were further adsorbed immobilized cholesterol oxidase (ChOx) as a nano-biosensor. In this study, the sensitivity of biosensor were improved by varying the thickness of the ZnO seed layer. The SEM analysis showed changes in thickness of seed layer will not affect the morphologies of anemone-like ZnO nanostructures. The X-ray Diffraction patterns showed that the (002) plane of anemone-like ZnO grown on various thickness of the seed layer was more prouded than other crystal plane. Abioelectrode (ChOx/ZnO/ITO/glass) grown on the 30nm of ZnO seed layer with high sensitivity of 57.533μAmM-1cm-2 (1.488 μA (mg/dl) -1cm-2), a wide sensitive range from 25 to 500 mg/dl. It is concluded that the thinner sputtered ZnO seed layer for growing anemone-like ZnO nanostructure can effectively improve the sensitivity of the ZnO biosensor.

  1. Label-free piezoelectric biosensor for prognosis and diagnosis of Systemic Lupus Erythematosus.

    PubMed

    do Nascimento, Noelle M; Juste-Dolz, Augusto; Grau-García, Elena; Román-Ivorra, Jose A; Puchades, Rosa; Maquieira, Angel; Morais, Sergi; Gimenez-Romero, David

    2017-04-15

    An autoantigen piezoelectric sensor to quantify specific circulating autoantibodies in human serum is developed. The sensor consisted on a quartz crystal microbalance with dissipation monitoring (QCM-D) where TRIM21 and TROVE2 autoantigens were covalently immobilized, allowing the selective determination of autoantibodies for diagnosis and prognosis of Systemic Lupus Erythematosus (SLE). The sensitivity of the biosensor, measured as IC50 value, was 1.51U/mL and 0.32U/mL, for anti-TRIM21 and anti-TROVE2 circulating autoantibodies, respectively. The sensor is also able to establish a structural interaction fingerprint pattern or profile of circulating autoantibodies, what allows scoring accurately SLE patients. Furthermore, a statistical association of global disease activity with TRIM21-TROVE2 interaction was found (n=130 lupic patient samples, p-value=0.0413). The performances of the biosensor were compared with standard ELISA and multiplex DVD-array high-throughput screening assays, corroborating the viability of piezoelectric biosensor as a cost-effective in vitro assay for the early detection, monitoring or treatment of rare diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Stalled Subduction and Microplates: P-wave Receiver Functions from NW Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Shore, M.; Biryol, C. B.; Lees, J. M.; Lee, S. J.

    2016-12-01

    The region that hosts NW Antarctic Peninsula (AP) and the South Shetland Islands (SSI) is one of the most active sections of the Antarctic plate margin. This region has long been a convergent plate boundary where the Phoenix plate was subducting southeastward beneath the Antarctic Plate. Upon collision of the Antarctic-Phoenix spreading center with the subduction front near SSI (ca. 4 Ma), the spreading stopped and the Phoenix plate became a part of the Antarctic Plate. Following the cessation of spreading, the subduction of the Phoenix plate slowed down dramatically and the Phoenix slab began to rollback slowly towards the Pacific. As a consequence of inter-plate coupling, the rollback of the Phoenix slab gave way to slow extension in the back arc region near SSI and opening of the Bransfield Basin (BB). Although there is consensus on the origin of the BB, the current configuration of the basin is still unclear. Most of the controversy stems from uncertainties regarding the crustal thickness of the BB and the tectonic setting of the surrounding region. We use data from temporary and permanent seismic deployments in the region to compute teleseismic and local receiver functions to constrain the lithospheric structure and crustal thickness of the BB, as well as the AP and SSI. The receiver functions from 10 broadband seismic stations located across the SSI, AP and at the periphery of central BB suggest that the crust is thins rapidly from 35 km to 20-25 km from the AP towards the SSI. The crustal thickness exceeds 40 km at the periphery of the central BB. High Vp/Vs ratios ( 1.9) beneath BB and SSI points at the presence of partial melts. Therefore, the crust of South Shetland region appears significantly different than the neighboring Antarctica plate, confirming the coalescing of the young South Shetland Microplate (SSM) through incipient rifting and seafloor spreading along the axis of the central BB. We argue that, the large difference between the crustal

  3. HNO₃-assisted polyol synthesis of ultralarge single-crystalline Ag microplates and their far propagation length of surface plasmon polariton.

    PubMed

    Chang, Cheng-Wei; Lin, Fan-Cheng; Chiu, Chun-Ya; Su, Chung-Yi; Huang, Jer-Shing; Perng, Tsong-Pyng; Yen, Ta-Jen

    2014-07-23

    We developed a HNO3-assisted polyol reduction method to synthesize ultralarge single-crystalline Ag microplates routinely. The edge length of the synthesized Ag microplates reaches 50 μm, and their top facets are (111). The mechanism for dramatically enlarging single-crystalline Ag structure stems from a series of competitive anisotropic growths, primarily governed by carefully tuning the adsorption of Ag(0) by ethylene glycol and the desorption of Ag(0) by a cyanide ion on Ag(100). Finally, we measured the propagation length of surface plasmon polaritons along the air/Ag interface under 534 nm laser excitation. Our single-crystalline Ag microplate exhibited a propagation length (11.22 μm) considerably greater than that of the conventional E-gun deposited Ag thin film (5.27 μm).

  4. Fabrication of Optical Devices Based on Printable Photonics Technology and Its Application for Biosensor

    NASA Astrophysics Data System (ADS)

    Endo, Tatsuro; Okuda, Norimichi; Yanagida, Yasuko; Tanaka, Satoru; Hatsuzawa, Takeshi

    The specific optical characteristics which can be observed nanostructured optical device have great potentials for applying to several applications such as lifescience, optical communications, and data storage. Application of nanostrcutured optical device to industry, we suggest “printable photonics technology” for fabrication of nanostructured optical device based on nanoimprint lithography (NIL). In this study, using printable photonics technology, fabrication of flexible photonic crystal (PC) and its application for biosensor was performed. Using printable photonics technology-based PC for biosensing application, high sensitive detection of protein adsorption (detection limit: 1 pg/ml) could be detected.

  5. Comparison of Benchtop Microplate Beta Counters with the Traditional Gamma Counting Method for Measurement of Chromium-51 Release in Cytotoxic Assays

    PubMed Central

    Wallace, Dora; Hildesheim, Allan; Pinto, Ligia A.

    2004-01-01

    The most traditional method used to measure the lytic activity of cytotoxic T lymphocytes or natural killer (NK) cells is the chromium release assay (CRA). No study has been reported that systematically compares the traditional gamma counting method with various benchtop microplate scintillation formats to measure chromium release. Here we investigated the utilization of microplate beta counters in comparison with the traditional gamma counting method to quantitate antigen-specific cytolysis, lymphokine-activated killer (LAK) activity, and NK activity in the CRA. Supernatants from standard CRA (n = 7) were directly transferred to a 96-well microplate containing either a solid scintillant (Lumaplate) or a liquid scintillant (flexible beta plate). Samples were quantified by using two benchtop microplate beta counters, Wallac Microbeta Trilux (Lumalux and Trilux methods, respectively) and Packard TopCount instruments (TopCount method). These results were then compared with data from an identical assay run in parallel using the traditional gamma counting method (LKB). The lytic activity for influenza virus-stimulated effectors measured in the benchtop microplate beta counters using Lumalux and Trilux methods exhibited excellent correlations with the one measured in the traditional LKB (r = 0.967 and 0.968, respectively). The TopCount method demonstrated a similar correlation (r = 0.966). Similar findings were observed for LAK and NK activity. The 96-well microplate format, specifically the dry-scintillant Lumaplates, offers several advantages over the traditional gamma counting format. Most notable are the reductions in sample volume needed and in the total sample preparation and counting time. Furthermore, this system reduces the amount of dry and mixed radioactive waste generated while using the same instrument for gamma- and beta-emitting isotopes. PMID:15013972

  6. Rapid determination of trace copper in animal feed based on micro-plate colorimetric reaction and statistical partitioning correction.

    PubMed

    Niu, Yiming; Wang, Jiayi; Zhang, Chi; Chen, Yiqiang

    2017-04-15

    The objective of this study was to develop a micro-plate based colorimetric assay for rapid and high-throughput detection of copper in animal feed. Copper ion in animal feed was extracted by trichloroacetic acid solution and reduced to cuprous ion by hydroxylamine. The cuprous ion can chelate with 2,2'-bicinchoninic acid to form a Cu-BCA complex which was detected with high sensitivity by micro-plate reader at 354nm. The whole assay procedure can be completed within 20min. To eliminate matrix interference, a statistical partitioning correction approach was proposed, which makes the detection of copper in complex samples possible. The limit of detection was 0.035μg/mL and the detection range was 0.1-10μg/mL of copper in buffer solution. Actual sample analysis indicated that this colorimetric assay produced results consistent with atomic absorption spectrometry analysis. These results demonstrated that the developed assay can be used for rapid determination of copper in animal feed.

  7. Microplate fluorescence protease assays test the inhibition of select North American snake venoms' activities with an anti-proteinase library.

    PubMed

    Price, Joseph A

    2015-09-01

    Snake envenomation is a relatively neglected significant world health problem, designated an orphan disease by the WHO. While often effective, antivenins are insufficient. Could another approach greatly aid inhibition of the venom toxins? New fluorescent substrates for measuring protease activity in microplate assays suitable for high throughput screening were tested and found reproducible with snake venom. Representative North American venoms showed relatively strong proteinase and collagenase, but weaker elastase activities. Caseinolytic activity is inhibited by the nonspecific proteinase inhibitor 1,10-phenanthroline and by EDTA, as is collagenase activity, consistent with the action of metalloproteinases. Both general protease and collagenase assays CV average 3%, and Km measured were above normal working conditions. Using a library of anti -proteinase compounds with multiple venoms revealed high inhibitor activity by three agents with known multiple metalloproteinase inhibitor activity (Actinonin, GM6001, and NNGH), which incidentally supports the concept that much of the degradative activity of certain venoms is due to metalloproteinases with collagenase activity. These results together support the use of microplate proteinase assays, particularly this collagenase assay, in future drug repurposing studies leading to the development of new treatments for those envenomations that have a major proteolytic component in their pathophysiology.

  8. Space-time model for migration of weak earthquakes along the northern boundary of the Amurian microplate

    NASA Astrophysics Data System (ADS)

    Trofimenko, S. V.; Bykov, V. G.; Merkulova, T. V.

    2017-03-01

    In this paper, we aimed to investigate the statistical distributions of shallow earthquakes with 2 ≤ M ≤ 4, located in 13 rectangular areas (clusters) bounded by 120°E and 144°E along the northern boundary of the Amurian microplate. As a result of our study, the displacement of seismicity maxima has been determined and three recurrent spatial cycles have been observed. The clusters with similar distribution of earthquakes are suggested to alternate being equally spaced at 7.26° (360-420 km). A comparison of investigation results on the structure of seismicity in various segments of the Amurian microplate reveals the identity between the alternation pattern observed for meridional zones of large earthquakes and a distinguished spatial period. The displacement vector for seismicity in the annual cycles is determined, and the correspondence between its E-W direction and the displacement of the fronts of large earthquakes is established. The elaborated model of seismic and deformation processes is considered, in which subsequent activation of clusters of weak earthquakes (2 ≤ M ≤ 4), tending to extend from the Japanese-Sakhalin island arc to the eastern closure of the Baikal rift zone, is initiated by the displacement of the strain wave front.

  9. Single laboratory method performance evaluation for the analysis of total food folate by trienzyme extraction and microplate assay.

    PubMed

    Chen, L; Eitenmiller, R R

    2007-06-01

    Single laboratory method performance parameters, including the calibration curve, accuracy, recovery, precision, limit of detection (LOD), and limit of quantification (LOQ), were evaluated for the analysis of total food folate by the trienzyme extraction and microplate assay with Lactobacillus casei subsp. rhamnosus. Standard Reference Material (SRM) 1546 (meat homogenate), SRM 2383 (baby food composite), SRM 1846 (infant formula), Certified Reference Material (CRM) 121 (wholemeal flour), and CRM 485 (mixed vegetables), representing a broad selection of food matrices, were used to evaluate the performance of the method. A generated 4-parameter logistic equation of the calibration curve was y= (0.0705 - 1.0396)/(1 + (x/0.0165) (1.3072)) + 1.0396 (P < 0.0001). The test of parallelism demonstrated that matrix components in the food extracts did not affect the accuracy. Measured values of the SRMs and CRMs were within their certified or reference values. Recoveries for all reference materials met the requirements of the AOAC guidelines for single laboratory validation. Precision measured as repeatability, including simultaneous and consecutive replicates for each SRM and CRM, met the Horwitz criterion. LOD and LOQ values were 0.3 and 0.6 mug/100 g, respectively. The results showed that trienzyme digestion using alpha-amylase, Pronase(R), and conjugase from chicken pancreas coupled with a 96-well microplate assay provided a highly accurate, reproducible, and sensitive method for the determination of folate in a variety of foods.

  10. Development of a simple fluorescence-based microplate method for the high-throughput analysis of proline in wine samples.

    PubMed

    Robert-Peillard, Fabien; Boudenne, Jean-Luc; Coulomb, Bruno

    2014-05-01

    This paper presents a simple, accurate and multi-sample method for the determination of proline in wines thanks to a 96-well microplate technique. Proline is the most abundant amino acid in wine and is an important parameter related to wine characteristics or maturation processes of grape. In the current study, an improved application of the general method based on sodium hypochlorite oxidation and o-phthaldialdehyde (OPA)-thiol spectrofluorometric detection is described. The main interfering compounds for specific proline detection in wines are strongly reduced by selective reaction with OPA in a preliminary step under well-defined pH conditions. Application of the protocol after a 500-fold dilution of wine samples provides a working range between 0.02 and 2.90gL(-1), with a limit of detection of 7.50mgL(-1). Comparison and validation on real wine samples by ion-exchange chromatography prove that this procedure yields accurate results. Simplicity of the protocol used, with no need for centrifugation or filtration, organic solvents or high temperature enables its full implementation in plastic microplates and efficient application for routine analysis of proline in wines. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. A marine bacterial adhesion microplate test using the DAPI fluorescent dye: a new method to screen antifouling agents.

    PubMed

    Leroy, C; Delbarre-Ladrat, C; Ghillebaert, F; Rochet, M J; Compère, C; Combes, D

    2007-04-01

    To develop a method to screen antifouling agents against marine bacterial adhesion as a sensitive, rapid and quantitative microplate fluorescent test. Our experimental method is based on a natural biofilm formed by mono-incubation of the marine bacterium Pseudoalteromonas sp. D41 in sterile natural sea water in a 96-well polystyrene microplate. The 4'6-diamidino-2-phenylindole dye was used to quantify adhered bacteria in each well. The total measured fluorescence in the wells was correlated with the amount of bacteria showing a detection limit of one bacterium per 5 microm(2) and quantifying 2 x 10(7) to 2 x 10(8) bacteria adhered per cm(2). The antifouling properties of three commercial surface-active agents and chlorine were tested by this method in the prevention of adhesion and also in the detachment of already adhered bacteria. The marine bacterial adhesion inhibition rate depending on the agent concentration showed a sigmoid shaped dose-response curve. This test is well adapted for a rapid and quantitative first screening of antifouling agents directly in seawater in the early steps of marine biofilm formation. In contrast to the usual screenings of antifouling products which detect a bactericidal activity, this test is more appropriate to screen antifouling agents for bacterial adhesion removal or bacterial adhesion inhibition activities. This screening test focuses on the antifouling properties of the products, especially the initial steps of marine biofilm formation.

  12. An optimized microplate assay system for quantitative evaluation of plant cell wall-degrading enzyme activity of fungal culture extracts.

    PubMed

    King, Brian C; Donnelly, Marie K; Bergstrom, Gary C; Walker, Larry P; Gibson, Donna M

    2009-03-01

    Developing enzyme cocktails for cellulosic biomass hydrolysis complementary to current cellulase systems is a critical step needed for economically viable biofuels production. Recent genomic analysis indicates that some plant pathogenic fungi are likely a largely untapped resource in which to prospect for novel hydrolytic enzymes for biomass conversion. In order to develop high throughput screening assays for enzyme bioprospecting, a standardized microplate assay was developed for rapid analysis of polysaccharide hydrolysis by fungal extracts, incorporating biomass substrates. Fungi were grown for 10 days on cellulose- or switchgrass-containing media to produce enzyme extracts for analysis. Reducing sugar released from filter paper, Avicel, corn stalk, switchgrass, carboxymethylcellulose, and arabinoxylan was quantified using a miniaturized colorimetric assay based on 3,5-dinitrosalicylic acid. Significant interactions were identified among fungal species, growth media composition, assay substrate, and temperature. Within a small sampling of plant pathogenic fungi, some extracts had crude activities comparable to or greater than T. reesei, particularly when assayed at lower temperatures and on biomass substrates. This microplate assay system should prove useful for high-throughput bioprospecting for new sources of novel enzymes for biofuel production.

  13. A Colorimetric Microplate Assay for DNA-Binding Activity of His-Tagged MutS Protein.

    PubMed

    Banasik, Michał; Sachadyn, Paweł

    2016-09-01

    A simple microplate method was designed for rapid testing DNA-binding activity of proteins. The principle of the assay involves binding of tested DNA by his-tagged protein immobilized on a nickel-coated ELISA plate, following colorimetric detection of biotinylated DNA with avidin conjugated to horseradish peroxidase. The method was used to compare DNA mismatch binding activities of MutS proteins from three bacterial species. The assay required relatively low amounts of tested protein (approximately 0.5-10 pmol) and DNA (0.1-10 pmol) and a relatively short time of analysis (up to 60 min). The method is very simple to apply and convenient to test different buffer conditions of DNA-protein binding. Sensitive colorimetric detection enables naked eye observations and quantitation with an ELISA reader. The performance of the assay, which we believe is a distinguishing trait of the method, is based on two strong and specific molecular interactions: binding of a his-tagged protein to a nickel-coated microplate and binding of biotinylated DNA to avidin. In the reported experiments, the solution was used to optimize the conditions for DNA mismatch binding by MutS protein; however, the approach could be implemented to test nucleic acids interactions with any protein of interest.

  14. Hypochlorite scavenging activity of hydroxycinnamic acids evaluated by a rapid microplate method based on the measurement of chloramines.

    PubMed

    Firuzi, Omidreza; Giansanti, Luisa; Vento, Roberta; Seibert, Cathrin; Petrucci, Rita; Marrosu, Giancarlo; Agostino, Roberta; Saso, Luciano

    2003-07-01

    Scavengers of hypochlorite (XOCl) could have beneficial effects in diseases in which this oxidant plays a pathogenic role. It has been reported that ferulic acid and chlorogenic acid, the quinic ester of caffeic acid, are good hypochlorite scavengers, but a systematic evaluation of the naturally occurring hydroxycinnamic acids (HCAs), which these substances belong to, has not been performed yet. Thus, in this work we studied, by two different in-vitro methods, the antioxidant activity of five HCAs: p-coumaric acid, ferulic acid, sinapinic acid, caffeic acid and chlorogenic acid. The methods applied in this study were based on the oxidation of human serum albumin (HSA) by XOCl, a new microplate method based on the measurement of chloramines and a previously described carbonyl assay. Firstly, lysine-derived chloramines, in the presence or absence of the HCAs, were detected using 5-thio-2-nitrobenzoic acid (TNB), measuring the absorbance at 415 nm by a microplate reader. To remove excess XOCl, Trolox, a known XOCl scavenger, was added before TNB. Secondly, lysine-derived carbonyls, in the presence or absence of the HCAs, were detected by using 2,4-dinitrophenylhydrazine. Hydroxycinnamic acids appeared active (caffeic >/= sinapinic > chlorogenic congruent with ferulic > p-coumaric acid) by both methods, suggesting possible pharmacological applications for these compounds, which are present at high concentrations in the plant kingdom.

  15. Space-time model for migration of weak earthquakes along the northern boundary of the Amurian microplate

    NASA Astrophysics Data System (ADS)

    Trofimenko, S. V.; Bykov, V. G.; Merkulova, T. V.

    2016-07-01

    In this paper, we aimed to investigate the statistical distributions of shallow earthquakes with 2 ≤ M ≤ 4, located in 13 rectangular areas (clusters) bounded by 120°E and 144°E along the northern boundary of the Amurian microplate. As a result of our study, the displacement of seismicity maxima has been determined and three recurrent spatial cycles have been observed. The clusters with similar distribution of earthquakes are suggested to alternate being equally spaced at 7.26° (360-420 km). A comparison of investigation results on the structure of seismicity in various segments of the Amurian microplate reveals the identity between the alternation pattern observed for meridional zones of large earthquakes and a distinguished spatial period. The displacement vector for seismicity in the annual cycles is determined, and the correspondence between its E-W direction and the displacement of the fronts of large earthquakes is established. The elaborated model of seismic and deformation processes is considered, in which subsequent activation of clusters of weak earthquakes (2 ≤ M ≤ 4), tending to extend from the Japanese-Sakhalin island arc to the eastern closure of the Baikal rift zone, is initiated by the displacement of the strain wave front.

  16. Development and initial testing of a novel slime mould biosensor.

    PubMed

    Whiting, James G H; de Lacy Costello, Ben; Adamatzky, Andrew

    2014-01-01

    A plurality of whole cell biosensors have been developed using many different cell types. Biosensors incorporate biomolecular components or whole cells to facilitate specific analyte interaction; research documented here presents a novel whole cell biosensor based on the slime mould Physarum polycephalum (PP). The electrical response of PP when exposed to multiple chemicals are measured and quantified in terms of amplitude and frequency response. The PP biosensor is capable of detecting the tested chemicals and individually identifying a large number in terms of a specific shift in either oscillation frequency or amplitude. However, it does exhibit a sensitivity to environmental changes such as light level and temperature which may interfere with the detection of the target analyte but could also be used for wider sensing applications. It is proposed that this novel biosensor is capable of detecting many organic chemicals beyond those presented in this work and that the biosensor may be used for environmental monitoring and toxicity evaluation.

  17. A general strategy to construct small molecule biosensors in eukaryotes

    DOE PAGES

    Feng, Justin; Jester, Benjamin W.; Tinberg, Christine E.; ...

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activatesmore » transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.« less

  18. A catechol biosensor based on electrospun carbon nanofibers

    PubMed Central

    Li, Dawei; Pang, Zengyuan; Chen, Xiaodong; Luo, Lei; Cai, Yibing

    2014-01-01

    Summary Carbon nanofibers (CNFs) were prepared by combining electrospinning with a high-temperature carbonization technique. And a polyphenol biosensor was fabricated by blending the obtained CNFs with laccase and Nafion. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscope (FE-SEM) were, respectively, employed to investigate the structures and morphologies of the CNFs and of the mixtures. Cyclic voltammetry and chronoamperometry were employed to study the electrocatalysis of the catechol biosensor. The results indicated that the sensitivity of the biosensor was 41 µA·mM−1, the detection limit was 0.63 µM, the linear range was 1–1310 µM and the response time was within 2 seconds, which excelled most other laccase-based biosensor reported. Furthermore, the biosensor showed good repeatability, reproducibility, stability and tolerance to interferences. This novel biosensor also demonstrated its promising application in detecting catechol in real water samples. PMID:24778958

  19. Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors.

    PubMed

    Mannan, Ahmad A; Liu, Di; Zhang, Fuzhong; Oyarzún, Diego A

    2017-08-09

    Metabolite biosensors are central to current efforts toward precision engineering of metabolism. Although most research has focused on building new biosensors, their tunability remains poorly understood and is fundamental for their broad applicability. Here we asked how genetic modifications shape the dose-response curve of biosensors based on metabolite-responsive transcription factors. Using the lac system in Escherichia coli as a model system, we built promoter libraries with variable operator sites that reveal interdependencies between biosensor dynamic range and response threshold. We developed a phenomenological theory to quantify such design constraints in biosensors with various architectures and tunable parameters. Our theory reveals a maximal achievable dynamic range and exposes tunable parameters for orthogonal control of dynamic range and response threshold. Our work sheds light on fundamental limits of synthetic biology designs and provides quantitative guidelines for biosensor design in applications such as dynamic pathway control, strain optimization, and real-time monitoring of metabolism.

  20. Carbon nanomaterials in biosensors: should you use nanotubes or graphene?

    PubMed

    Yang, Wenrong; Ratinac, Kyle R; Ringer, Simon P; Thordarson, Pall; Gooding, J Justin; Braet, Filip

    2010-03-15

    From diagnosis of life-threatening diseases to detection of biological agents in warfare or terrorist attacks, biosensors are becoming a critical part of modern life. Many recent biosensors have incorporated carbon nanotubes as sensing elements, while a growing body of work has begun to do the same with the emergent nanomaterial graphene, which is effectively an unrolled nanotube. With this widespread use of carbon nanomaterials in biosensors, it is timely to assess how this trend is contributing to the science and applications of biosensors. This Review explores these issues by presenting the latest advances in electrochemical, electrical, and optical biosensors that use carbon nanotubes and graphene, and critically compares the performance of the two carbon allotropes in this application. Ultimately, carbon nanomaterials, although still to meet key challenges in fabrication and handling, have a bright future as biosensors.