Science.gov

Sample records for crystal diamond devices

  1. Thermal neutron dosimeter by synthetic single crystal diamond devices.

    PubMed

    Almaviva, S; Marinelli, Marco; Milani, E; Prestopino, G; Tucciarone, A; Verona, C; Verona-Rinati, G; Angelone, M; Pillon, M

    2009-07-01

    We report on a new solid state dosimeter based on chemical vapor deposition (CVD) single crystal diamond fabricated at Roma "Tor Vergata" University laboratories. The dosimeter has been specifically designed for direct neutron dose measurements in boron neutron capture therapy (BNCT). The response to thermal neutrons of the proposed diamond dosimeter is directly due to (10)B and, therefore, the dosimeter response is directly proportional to the boron absorbed doses in BNCT. Two single crystal diamond detectors are fabricated in a p-type/intrinsic/metal configuration and are sandwiched together with a boron containing layer in between the metallic contacts (see Fig.1). Neutron irradiations were performed at the Frascati Neutron Generator (FNG) using the 2.5 MeV neutrons produced through the D(d,n)(3)He fusion reaction. Thermal neutrons were then produced by slowing down the 2.5 MeV neutrons using a cylindrical polymethylmethacrylate (PMMA) moderator. The diamond dosimeter was placed in the center of the moderator. The products of (10)B(n,alpha)Li nuclear reaction were collected simultaneously giving rise to a single peak. Stable performance, high reproducibility, high efficiency and good linearity were observed.

  2. Single crystal diamond boron 'delta doped' nanometric layers for 2D electronic devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Butler, James

    2016-10-01

    Use of diamond as a semiconductor material suffers from the high activation energy of all known impurity dopants (0.37 eV for Boron, 0.6 eV for Phosphorous). To achieve the simultaneous carrier concentration and mobility desired for devices operating at room temperature, growth of a nanometric thick `delta' layer doped to above the metal insulator transition adjacent to high mobility intrinsic material can provide a 2D high mobility conduction layer. Critical to obtaining the enhanced mobility of the carriers in the layer next to the `delta' doped layer is the abruptness of the doping interface. Single and multiple nanometer thick epitaxial layers of heavily boron `delta' doped diamond have been grown on high quality, intrinsic lab grown diamond single crystals. These layers were grown in a custom microwave plasma activated chemical vapor deposition reactor based on a rapid reactant switching technique. Characterization of the `delta' layers by various analytical techniques will be presented. Electrical measurements demonstrating enhanced hole mobility (100 to 800 cm2/V sec) as well as other electrical characterizations will be presented.

  3. Diamond drumhead crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kolodziej, Tomasz; Vodnala, Preeti; Terentyev, Sergey A.; Blank, Vladimir D.; Shvyd'ko, Yuri V.

    2016-09-01

    Ultra-thin (< 100 um) diamond single crystals are essential for the realization of numerous next generation x-ray optical devices. Fabrication and handling of such ultra-thin crystal components without introducing damage and strain is a challenge. Drumhead crystals, monolithic crystal structures comprised of a thin membrane furnished with a surrounding solid collar would be a solution for the proper handling ensuring mechanically stable and strain-free mount of the membranes with efficient thermal transport. However, diamond being one of the hardest and chemically inert materials poses insurmountable difficulties in the fabrication. Here we report on a successful manufacturing of the diamond drumhead crystals using picosecond laser milling. Subsequent temperature treatment appears to be crucial for the membranes to become defect-free and unstrained, as revealed by x-ray double-crystal topography on an example of drumhead crystals with 1-mm in diameter and 28 um to 47 um-thick membranes in the (100) orientation.

  4. Synchrotron Bragg diffraction imaging characterization of synthetic diamond crystals for optical and electronic power device applications1 1

    PubMed Central

    Tran Thi, Thu Nhi; Morse, J.; Caliste, D.; Fernandez, B.; Eon, D.; Härtwig, J.; Mer-Calfati, C.; Tranchant, N.; Arnault, J. C.; Lafford, T. A.; Baruchel, J.

    2017-01-01

    Bragg diffraction imaging enables the quality of synthetic single-crystal diamond substrates and their overgrown, mostly doped, diamond layers to be characterized. This is very important for improving diamond-based devices produced for X-ray optics and power electronics applications. The usual first step for this characterization is white-beam X-ray diffraction topography, which is a simple and fast method to identify the extended defects (dislocations, growth sectors, boundaries, stacking faults, overall curvature etc.) within the crystal. This allows easy and quick comparison of the crystal quality of diamond plates available from various commercial suppliers. When needed, rocking curve imaging (RCI) is also employed, which is the quantitative counterpart of monochromatic Bragg diffraction imaging. RCI enables the local determination of both the effective misorientation, which results from lattice parameter variation and the local lattice tilt, and the local Bragg position. Maps derived from these parameters are used to measure the magnitude of the distortions associated with polishing damage and the depth of this damage within the volume of the crystal. For overgrown layers, these maps also reveal the distortion induced by the incorporation of impurities such as boron, or the lattice parameter variations associated with the presence of growth-incorporated nitrogen. These techniques are described, and their capabilities for studying the quality of diamond substrates and overgrown layers, and the surface damage caused by mechanical polishing, are illustrated by examples. PMID:28381981

  5. Diamond Electronic Devices

    NASA Astrophysics Data System (ADS)

    Isberg, J.

    2010-11-01

    For high-power and high-voltage applications, silicon is by far the dominant semiconductor material. However, silicon has many limitations, e.g. a relatively low thermal conductivity, electric breakdown occurs at relatively low fields and the bandgap is 1.1 eV which effectively limits operation to temperatures below 175° C. Wide-bandgap materials, such as silicon carbide (SiC), gallium nitride (GaN) and diamond offer the potential to overcome both the temperature and power handling limitations of silicon. Diamond is the most extreme in this class of materials. By the fundamental material properties alone, diamond offers the largest benefits as a semiconductor material for power electronic applications. On the other hand, diamond has a problem with a large carrier activation energy of available dopants which necessitates specialised device concepts to allow room temperature (RT) operation. In addition, the role of common defects on the charge transport properties of diamond is poorly understood. Notwithstanding this, many proof-of-principle two-terminal and three-terminal devices have been made and tested. Two-terminal electronic diamond devices described in the literature include: p-n diodes, p-i-n diodes, various types of radiation detectors, Schottky diodes and photoconductive or electron beam triggered switches. Three terminal devices include e.g. MISFETs and JFETs. However, the development of diamond devices poses great challenges for the future. A particularly interesting way to overcome the doping problem, for which there has been some recent progress, is to make so-called delta doped (or pulse-doped) devices. Such devices utilise very thin (˜1 nm) doped layers in order to achieve high RT activation.

  6. A novel synthetic single crystal diamond device for in vivo dosimetry

    SciTech Connect

    Marinelli, Marco; Prestopino, G. Tonnetti, A.; Verona, C.; Verona-Rinati, G.; Falco, M. D.; Bagalà, P.; Pimpinella, M.; Guerra, A. S.; De Coste, V.

    2015-08-15

    Purpose: Aim of the present work is to evaluate the synthetic single crystal diamond Schottky photodiode developed at the laboratories of “Tor Vergata” University in Rome in a new dosimeter configuration specifically designed for offline wireless in vivo dosimetry (IVD) applications. Methods: The new diamond based dosimeter, single crystal diamond detector (SCDD-iv), consists of a small unwired detector and a small external reading unit that can be connected to commercial electrometers for getting the detector readout after irradiation. Two nominally identical SCDD-iv dosimeter prototypes were fabricated and tested. A basic dosimetric characterization of detector performances relevant for IVD application was performed under irradiation with {sup 60}Co and 6 MV photon beams. Preirradiation procedure, response stability, short and long term reproducibility, leakage charge, fading effect, linearity with dose, dose rate dependence, temperature dependence, and angular response were investigated. Results: The SCDD-iv is simple, with no cables linked to the patient and the readout is immediate. The range of response with dose has been tested from 1 up to 12 Gy; the reading is independent of the accumulated dose and dose rate independent in the range between about 0.5 and 5 Gy/min; its temperature dependence is within 0.5% between 25 and 38 °C, and its directional dependence is within 2% from 0° to 90°. The combined relative standard uncertainty of absorbed dose to water measurements is estimated lower than the tolerance and action level of 5%. Conclusions: The reported results indicate the proposed novel offline dosimeter based on a synthetic single crystal diamond Schottky photodiode as a promising candidate for in vivo dosimetry applications with photon beams.

  7. A novel synthetic single crystal diamond device for in vivo dosimetry.

    PubMed

    Marinelli, Marco; Prestopino, G; Tonnetti, A; Verona, C; Verona-Rinati, G; Falco, M D; Bagalà, P; Pimpinella, M; Guerra, A S; De Coste, V

    2015-08-01

    Aim of the present work is to evaluate the synthetic single crystal diamond Schottky photodiode developed at the laboratories of "Tor Vergata" University in Rome in a new dosimeter configuration specifically designed for offline wireless in vivo dosimetry (IVD) applications. The new diamond based dosimeter, single crystal diamond detector (SCDD-iv), consists of a small unwired detector and a small external reading unit that can be connected to commercial electrometers for getting the detector readout after irradiation. Two nominally identical SCDD-iv dosimeter prototypes were fabricated and tested. A basic dosimetric characterization of detector performances relevant for IVD application was performed under irradiation with (60)Co and 6 MV photon beams. Preirradiation procedure, response stability, short and long term reproducibility, leakage charge, fading effect, linearity with dose, dose rate dependence, temperature dependence, and angular response were investigated. The SCDD-iv is simple, with no cables linked to the patient and the readout is immediate. The range of response with dose has been tested from 1 up to 12 Gy; the reading is independent of the accumulated dose and dose rate independent in the range between about 0.5 and 5 Gy/min; its temperature dependence is within 0.5% between 25 and 38 °C, and its directional dependence is within 2% from 0° to 90°. The combined relative standard uncertainty of absorbed dose to water measurements is estimated lower than the tolerance and action level of 5%. The reported results indicate the proposed novel offline dosimeter based on a synthetic single crystal diamond Schottky photodiode as a promising candidate for in vivo dosimetry applications with photon beams.

  8. A procedure for diamond turning KDP crystals

    SciTech Connect

    Montesanti, R.C.; Thompson, S.L.

    1995-07-07

    A procedure and the equipment necessary for single-point diamond flycutting (loosely referred to as diamond turning) potassium di-hydrogen phosphate (KDP) crystals are described. It is based on current KDP diamond turning activities at the Lawrence Livermore National Laboratory (LLNL), drawing upon knowledge from the Nova crystal finishing development during the 1980`s and incorporating refinements from our efforts during 1995. In addition to describing a step-by-step process for diamond turning KDP, specific discussions are included on the necessary diamond tool geometry and edge sharpness, cutting fluid, and crystal preparation, handling, cleaning, and inspection. The authors presuppose that the reader is already familiar with diamond turning practices.

  9. Prospects of bipolar diamond devices

    NASA Astrophysics Data System (ADS)

    Aleksov, A.; Denisenko, A.; Kohn, E.

    2000-02-01

    The prospects of diamond bipolar devices are analysed theoretically and experimentally in respect to the problem of deep doping, especially the deep donor in diamond. For this purpose a set of p- n- p bipolar junction transistors (BJTs) is fabricated on p-type diamond substrates by epitaxial growth using boron ( EA=0.4 eV) and nitrogen ( ED=1.7 eV) as the p- and n-type dopants respectively. It is shown that at the boron/nitrogen junction a p- n junction is formed. The built-in potential of the junction is determined by the ionised boron/nitrogen impurities. The specific features of the fabricated devices are the high resistivity of the nitrogen doped base (10 GΩ·cm at 20°C) and a significant leakage current of the reverse biased p- n junctions. These factors limit the transistor action to d.c.-operation in the nA-current range and to temperatures below 200°C where leakage starts to dominate. The values of the static current gain IC/ IB are measured in the common base mode 200 and in the common emitter mode 1.1. The theoretical section of the paper deals with the calculation of the static current gain of diamond pnp transistor structures in dependence of the donor energy level, temperature and frequency. Both the theoretical and the experimental results indicate that diamond bipolar transistors with a nitrogen doped n-type base can exhibit a current gain β of up to 30,000 in the d.c.-regime provided the leakage of the p- n junctions is sufficiently low. High-gain diamond transistors operating in GHz-frequency can be expected as soon as n-doping by shallow donor like phosphorous ( ED<0.5 eV) becomes available.

  10. Ultratough single crystal boron-doped diamond

    DOEpatents

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  11. Fast synchrotron and FEL beam monitors based on single-crystal diamond detectors and InGaAs/InAlAs quantum well devices

    NASA Astrophysics Data System (ADS)

    Antonelli, M.; Di Fraia, M.; Carrato, S.; Cautero, G.; Menk, R. H.; Jark, W. H.; Ganbold, T.; Biasiol, G.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2013-12-01

    Simultaneous photon-beam position and intensity monitoring is becoming of increasing importance for new-generation synchrotron radiation sources and free-electron lasers (FEL). Thus, novel concepts of beam diagnostics are required in order to keep such beams under control. From this perspective diamond is a promising material for the production of semitransparent in situ photon beam monitors, which can withstand the high dose rates occurring in such radiation facilities. Here, we report on the development of freestanding, single-crystal chemical-vapor-deposited diamond detectors with segmented electrodes. Due to their direct, low-energy band gap, InGaAs quantum well devices operated at room temperature may also be used as fast detectors for photons ranging from visible to X-ray. These features are valuable in low-energy and time-resolved FEL applications. In particular, a novel segmented InGaAs/InAlAs device has been developed and will be discussed. Dedicated measurements carried out on both these devices at the Elettra Synchrotron show their capability to monitor the position and the intensity of the photon beam with bunch-by-bunch temporal performances. Furthermore, preliminary tests have been performed on diamond detectors at the Fermi FEL, extracting quantitative intensity and position information for 100-fs-wide FEL pulses with a photon energy of 28.8 eV.

  12. Diamond MEMS: wafer scale processing, devices, and technology insertion

    NASA Astrophysics Data System (ADS)

    Carlisle, J. A.

    2009-05-01

    Diamond has long held the promise of revolutionary new devices: impervious chemical barriers, smooth and reliable microscopic machines, and tough mechanical tools. Yet it's been an outsider. Laboratories have been effectively growing diamond crystals for at least 25 years, but the jump to market viability has always been blocked by the expense of diamond production and inability to integrate with other materials. Advances in chemical vapor deposition (CVD) processes have given rise to a hierarchy of carbon films ranging from diamond-like carbon (DLC) to vapor-deposited diamond coatings, however. All have pros and cons based on structure and cost, but they all share some of diamond's heralded attributes. The best performer, in theory, is the purest form of diamond film possible, one absent of graphitic phases. Such a material would capture the extreme hardness, high Young's modulus and chemical inertness of natural diamond. Advanced Diamond Technologies Inc., Romeoville, Ill., is the first company to develop a distinct chemical process to create a marketable phase-pure diamond film. The material, called UNCD® (for ultrananocrystalline diamond), features grain sizes from 3 to 300 nm in size, and layers just 1 to 2 microns thick. With significant advantages over other thin films, UNCD is designed to be inexpensive enough for use in atomic force microscopy (AFM) probes, microelectromechanical machines (MEMS), cell phone circuitry, radio frequency devices, and even biosensors.

  13. Growth, Characterization and Device Development in Monocrystalline Diamond Films

    DTIC Science & Technology

    1992-09-01

    AD-A256 283 Quarterly Letter Report Growth, Characterization and Device Development in Monocrystalline Diamond Films DT C * F LEC EGOT 2 1992L... Characterization and Device Development in s400003srrO8 Monocrystalline Diamond Films 1114SS 6. AUTHOR(S) N00179N66005 Robert F. Davis 4B855 7. PERFORMING...deposited on single crystal Si(100) substrates via in-situ carburization followed by bias-enhanced nucleation. Photoluminescence and Raman spectroscopy

  14. Diamond Pixel Detectors and 3D Diamond Devices

    NASA Astrophysics Data System (ADS)

    Venturi, N.

    2016-12-01

    Results from detectors of poly-crystalline chemical vapour deposited (pCVD) diamond are presented. These include the first analysis of data of the ATLAS Diamond Beam Monitor (DBM). The DBM module consists of pCVD diamond sensors instrumented with pixellated FE-I4 front-end electronics. Six diamond telescopes, each with three modules, are placed symmetrically around the ATLAS interaction point. The DBM tracking capabilities allow it to discriminate between particles coming from the interaction point and background particles passing through the ATLAS detector. Also, analysis of test beam data of pCVD DBM modules are presented. A new low threshold tuning algorithm based on noise occupancy was developed which increases the DBM module signal to noise ratio significantly. Finally first results from prototypes of a novel detector using pCVD diamond and resistive electrodes in the bulk, forming a 3D diamond device, are discussed. 3D devices based on pCVD diamond were successfully tested with test beams at CERN. The measured charge is compared to that of a strip detector mounted on the same pCVD diamond showing that the 3D device collects significantly more charge than the planar device.

  15. Diamond coated artificial cardiovascular devices

    PubMed Central

    Zeng, Hongjun; Jarvik, Robert; Catausan, Grace; Moldovan, Nicolaie; Carlisle, John

    2016-01-01

    Ultrananocrystalline diamond (UNCD), an extremely smooth, low cost diamond coating was successfully developed herein for antithrombogenic application which requires high biocompatibility, low wear, low friction, and chemical inertness. The substrate materials utilized in the Jarvik 2000 ventricular assist device (VAD), silicon carbide and titanium alloy, provide an excellent substrate match for UNCD integration. The paper addresses the development of medical-quality UNCD films to significantly improve the knowledge base regarding the defect mechanisms of UNCD films, to reduce or eliminate known wear-inducing imperfections in the film, and to thoroughly characterize and test the films as well as assembled UNCD-coated VADs. After the defect reduction and seeding experiments to improve film adhesion and coating quality, the best candidate deposition method has been down-selected for coating and assembly of VAD parts from Jarvik Heart. The coated and assembled devices have been tested with mechanical and blood-simulating fluid hydrodynamic testing at Jarvik Heart for full verification of the new coating technology. UNCD interface takes advantage of combining unmatched durability and antithrombogenicity. PMID:27867245

  16. Microplasma device architectures with various diamond nanostructures

    NASA Astrophysics Data System (ADS)

    Kunuku, Srinivasu; Jothiramalingam Sankaran, Kamatchi; Leou, Keh-Chyang; Lin, I.-Nan

    2017-02-01

    Diamond nanostructures (DNSs) were fabricated from three different morphological diamonds, microcrystalline diamond (MCD), nanocrystalline diamond (NCD), and ultrananocrystalline diamond (UNCD) films, using a reactive ion etching method. The plasma illumination (PI) behavior of microplasma devices using the DNSs and the diamond films as cathode were investigated. The Paschen curve approach revealed that the secondary electron emission coefficient (γ value) of diamond materials is similar irrespective of the microstructure (MCD, NCD, and UNCD) and geometry of the materials (DNSs and diamond films). The diamond materials show markedly larger γ-coefficient than conventional metallic cathode materials such as Mo that resulted in markedly better PI behavior for the corresponding microplasma devices. Moreover, the PI behavior, i.e. the voltage dependence of plasma current density (J pl‑V), plasma density (n e‑V), and the robustness of the devices, varied markedly with the microstructure and geometry of the cathode materials that was closely correlated to the electron field emission (EFE) properties of the cathode materials. The UNCD nanopillars, possessing good EFE properties, resulted in superior PI behavior, whereas the MCD diamond films with insufficient EFE properties led to inferior PI behavior. Consequently, enhancement of plasma characteristics is the collective effects of EFE behavior and secondary electron emission characteristics of diamond-based cathode materials.

  17. Bunch by bunch beam monitoring in 3rd and 4th generation light sources by means of single crystal diamond detectors and quantum well devices

    NASA Astrophysics Data System (ADS)

    Antonelli, M.; Di Fraia, M.; Tallaire, A.; Achard, J.; Carrato, S.; Menk, R. H.; Cautero, G.; Giuressi, D.; Jark, W. H.; Biasiol, G.; Ganbold, T.; Oliver, K.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2012-10-01

    New generation Synchrotron Radiation (SR) sources and Free Electron Lasers (FEL) require novel concepts of beam diagnostics to keep photon beams under surveillance, asking for simultaneous position and intensity monitoring. To deal with high power load and short time pulses provided by these sources, novel materials and methods are needed for the next generation BPMs. Diamond is a promising material for the production of semitransparent in situ X-ray BPMs withstanding the high dose rates of SR rings and high energy FELs. We report on the development of freestanding, single crystal CVD diamond detectors. Performances in both low and radio frequency SR beam monitoring are presented. For the former, sensitivity deviation was found to be approximately 2%; a 0.05% relative precision in the intensity measurements and a 0.1-μm precision in the position encoding have been estimated. For the latter, single-shot characterizations revealed sub-nanosecond rise-times and spatial precisions below 6 μm, which allowed bunch-by-bunch monitoring in multi-bunch operation. Preliminary measurements at the Fermi FEL have been performed with this detector, extracting quantitative intensity and position information for FEL pulses (~ 100 fs, energy 12 ÷ 60 eV), with a long-term spatial precision of about 85 μm results on FEL radiation damages are also reported. Due to their direct, low-energy band gap, InGaAs quantum well devices too may be used as fast detectors for photons ranging from visible to X-ray. Results are reported which show the capability of a novel InGaAs/InAlAs device to detect intensity and position of 100-fs-wide laser pulses.

  18. Dynamic actuation of single-crystal diamond nanobeams

    SciTech Connect

    Sohn, Young-Ik; Burek, Michael J.; Lončar, Marko; Kara, Vural; Kearns, Ryan

    2015-12-14

    We show the dielectrophoretic actuation of single-crystal diamond nanomechanical devices. Gradient radio-frequency electromagnetic forces are used to achieve actuation of both cantilever and doubly clamped beam structures, with operation frequencies ranging from a few MHz to ∼50 MHz. Frequency tuning and parametric actuation are also studied.

  19. Liquid Crystal Devices.

    ERIC Educational Resources Information Center

    Bradshaw, Madeline J.

    1983-01-01

    The nature of liquid crystals and several important liquid crystal devices are described. Ideas for practical experiments to illustrate the properties of liquid crystals and their operation in devices are also described. (Author/JN)

  20. Single crystal diamond detector for radiotherapy

    NASA Astrophysics Data System (ADS)

    Schirru, F.; Kisielewicz, K.; Nowak, T.; Marczewska, B.

    2010-07-01

    The new generation of synthetic diamonds grown as a CVD single crystal on a high pressure high temperature substrate offers a wide range of applications. In particular, because of the near tissue equivalence and its small size (good spatial resolution), CVD single crystal diamond finds applicability in radiotherapy as a dosemeter of ionizing radiation. In this paper we report the electrical and dosimetric properties of a new diamond detector which was fabricated at IFJ based on a single crystal detector-grade CVD diamond provided with a novel contact metallization. Diamond properties were assessed at IFJ using a Theratron 680E therapeutic 60Co gamma rays unit and at COOK with 6 and 18 MV x-rays Varian Clinac CL2300 C/D accelerator. The new dosemeter showed high electric and dosimetric performances: low value of dark current, high current at the level of some nanoamperes during irradiation, very fast dynamic response with a rise time amounting to parts of a second, good stability and repeatability of the current and linearity of the detector signal at different dose and dose rate levels typically applied in radiotherapy. The results confirm the potential applicability of diamond material as a dosemeter for applications in radiotherapy.

  1. Diamond drumhead crystals for X-ray optics applications

    SciTech Connect

    Kolodziej, Tomasz; Vodnala, Preeti; Terentyev, Sergey; Blank, Vladimir; Shvyd'ko, Yuri

    2016-07-14

    Thin (<50 µm) and flawless diamond single crystals are essential for the realization of numerous advanced X-ray optical devices at synchrotron radiation and free-electron laser facilities. The fabrication and handling of such ultra-thin components without introducing crystal damage and strain is a challenge. Drumhead crystals, monolithic crystal structures composed of a thin membrane furnished with a surrounding solid collar, are a solution ensuring mechanically stable strain-free mounting of the membranes with efficient thermal transport. Diamond, being one of the hardest and most chemically inert materials, poses significant difficulties in fabrication. Reported here is the successful manufacture of diamond drumhead crystals in the [100] orientation using picosecond laser milling. Subsequent high-temperature treatment appears to be crucial for the membranes to become defect free and unstrained, as revealed by X-ray topography on examples of drumhead crystals with a 26 µm thick (1 mm in diameter) and a 47 µm thick (1.5 × 2.5 mm) membrane.

  2. Characterization of single-crystal diamond grown from the vapor phase on substrates of natural diamond

    SciTech Connect

    Altukhov, A. A.; Vikharev, A. L.; Gorbachev, A. M.; Dukhnovsky, M. P.; Zemlyakov, V. E.; Ziablyuk, K. N.; Mitenkin, A. V.; Muchnikov, A. B. Radishev, D. B.; Ratnikova, A. K.; Fedorov, Yu. Yu.

    2011-03-15

    The results of studies of single-crystal diamond layers with orientation (100) grown on substrates of IIa-type natural diamond by chemical-vapor deposition and of semiconductor diamond obtained subsequently by doping by implantation of boron ions are reported. Optimal conditions of postimplantation annealing of diamond that provide the hole mobility of 1150 cm{sup 2} V{sup -1} s{sup -1} (the highest mobility obtained so far for semiconductor diamond after ion implantation) are given.

  3. The failure strengths of perfect diamond crystals

    NASA Technical Reports Server (NTRS)

    Whitlock, J.; Ruoff, A. L.

    1981-01-01

    Finite elasticity analysis is extended to the 110 direction, where off axis strain symmetry is not present, and the third order elastic data are obtained for diamond. The compressive yield strengths of perfect diamond crystals loaded in the 100, 110, and 111 directions are predicted to be 2.2, 5.6, and 2.8 Mbars, respectively, while the corresponding tensile fracture strengths are 1.0, 0.5, and 0.5 Mbars. From these results and from Hertz theory it is predicted that ring fracture of spherically tipped diamonds pressed against a flat will occur at pressures of 1.8-1.9 Mbars, substantially below the yield pressure (above 3 Mbars). Modification of the tip shape leads to a predicted increase in the pressure at which fracture occurs.

  4. Ultratough CVD single crystal diamond and three dimensional growth thereof

    DOEpatents

    Hemley, Russell J.; Mao, Ho-kwang; Yan, Chih-shiue

    2009-09-29

    The invention relates to a single-crystal diamond grown by microwave plasma chemical vapor deposition that has a toughness of at least about 30 MPa m.sup.1/2. The invention also relates to a method of producing a single-crystal diamond with a toughness of at least about 30 MPa m.sup.1/2. The invention further relates to a process for producing a single crystal CVD diamond in three dimensions on a single crystal diamond substrate.

  5. Phononic crystal devices

    DOEpatents

    El-Kady, Ihab F [Albuquerque, NM; Olsson, Roy H [Albuquerque, NM

    2012-01-10

    Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.

  6. Single crystal CVD diamond membranes for betavoltaic cells

    NASA Astrophysics Data System (ADS)

    Delfaure, C.; Pomorski, M.; de Sanoit, J.; Bergonzo, P.; Saada, S.

    2016-06-01

    A single crystal diamond large area thin membrane was assembled as a p-doped/Intrinsic/Metal (PIM) structure and used in a betavoltaic configuration. When tested with a 20 keV electron beam from a high resolution scanning electron microscope, we measured an open circuit voltage (Voc) of 1.85 V, a charge collection efficiency (CCE) of 98%, a fill-factor of 80%, and a total conversion efficiency of 9.4%. These parameters are inherently linked to the diamond membrane PIM structure that allows full device depletion even at 0 V and are among the highest reported up to now for any other material tested for betavoltaic devices. It enables to drive a high short-circuit current Isc up to 7.12 μA, to reach a maximum power Pmax of 10.48 μW, a remarkable value demonstrating the high-benefit of diamond for the realization of long-life radioisotope based micro-batteries.

  7. Single crystal CVD diamond membranes for betavoltaic cells

    SciTech Connect

    Delfaure, C.; Pomorski, M. Sanoit, J. de; Bergonzo, P.; Saada, S.

    2016-06-20

    A single crystal diamond large area thin membrane was assembled as a p-doped/Intrinsic/Metal (PIM) structure and used in a betavoltaic configuration. When tested with a 20 keV electron beam from a high resolution scanning electron microscope, we measured an open circuit voltage (V{sub oc}) of 1.85 V, a charge collection efficiency (CCE) of 98%, a fill-factor of 80%, and a total conversion efficiency of 9.4%. These parameters are inherently linked to the diamond membrane PIM structure that allows full device depletion even at 0 V and are among the highest reported up to now for any other material tested for betavoltaic devices. It enables to drive a high short-circuit current I{sub sc} up to 7.12 μA, to reach a maximum power P{sub max} of 10.48 μW, a remarkable value demonstrating the high-benefit of diamond for the realization of long-life radioisotope based micro-batteries.

  8. Thermal diffusion boron doping of single-crystal natural diamond

    NASA Astrophysics Data System (ADS)

    Seo, Jung-Hun; Wu, Henry; Mikael, Solomon; Mi, Hongyi; Blanchard, James P.; Venkataramanan, Giri; Zhou, Weidong; Gong, Shaoqin; Morgan, Dane; Ma, Zhenqiang

    2016-05-01

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.

  9. Thermal diffusion boron doping of single-crystal natural diamond

    SciTech Connect

    Seo, Jung-Hun; Mikael, Solomon; Mi, Hongyi; Venkataramanan, Giri; Ma, Zhenqiang; Wu, Henry; Morgan, Dane; Blanchard, James P.; Zhou, Weidong; Gong, Shaoqin

    2016-05-28

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.

  10. Enhancing the mechanical properties of single-crystal CVD diamond.

    PubMed

    Liang, Qi; Yan, Chih-Shiue; Meng, Yufei; Lai, Joseph; Krasnicki, Szczesny; Mao, Ho-Kwang; Hemley, Russell J

    2009-09-09

    Approaches for enhancing the strength and toughness of single-crystal diamond produced by chemical vapor deposition (CVD) at high growth rates are described. CVD processes used to grow single-crystal diamond in high density plasmas were modified to incorporate boron and nitrogen. Semi-quantitative studies of mechanical properties were carried out using Vickers indentation techniques. The introduction of boron in single-crystal CVD diamond can significantly enhance the fracture toughness of this material without sacrificing its high hardness (∼78 GPa). Growth conditions were varied to investigate its effect on boron incorporation and optical properties by means of photoluminescence, infrared, and ultraviolet-visible absorption spectroscopy. Boron can be readily incorporated into single-crystal diamond by the methods used, but with nitrogen addition, the incorporation of boron was hindered. The spectroscopic measurements indicate that nitrogen and boron coexist in the diamond structure, which helps explain the origin of the enhanced fracture toughness of this material. Further, low pressure/high temperature annealing can enhance the intrinsic hardness of single-crystal CVD diamond by a factor of two without appreciable loss in fracture toughness. This doping and post-growth treatment of diamond may lead to new technological applications that require enhanced mechanical properties of diamond.

  11. Enhancing the Mechanical Properties of Single-Crystal CVD Diamond

    SciTech Connect

    Liang, Q.; Yan, C; Meng, Y; Lai, J; Krasnicki, S; Mao, H; Hemley, R

    2009-01-01

    Approaches for enhancing the strength and toughness of single-crystal diamond produced by chemical vapor deposition (CVD) at high growth rates are described. CVD processes used to grow single-crystal diamond in high density plasmas were modified to incorporate boron and nitrogen. Semi-quantitative studies of mechanical properties were carried out using Vickers indentation techniques. The introduction of boron in single-crystal CVD diamond can significantly enhance the fracture toughness of this material without sacrificing its high hardness ({approx}78 GPa). Growth conditions were varied to investigate its effect on boron incorporation and optical properties by means of photoluminescence, infrared, and ultraviolet-visible absorption spectroscopy. Boron can be readily incorporated into single-crystal diamond by the methods used, but with nitrogen addition, the incorporation of boron was hindered. The spectroscopic measurements indicate that nitrogen and boron coexist in the diamond structure, which helps explain the origin of the enhanced fracture toughness of this material. Further, low pressure/high temperature annealing can enhance the intrinsic hardness of single-crystal CVD diamond by a factor of two without appreciable loss in fracture toughness. This doping and post-growth treatment of diamond may lead to new technological applications that require enhanced mechanical properties of diamond.

  12. Transparent nanocrystalline diamond coatings and devices

    DOEpatents

    Sumant, Anirudha V.; Khan, Adam

    2017-08-22

    A method for coating a substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The plasma ball has a diameter. The plasma ball is disposed at a first distance from the substrate and the substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the substrate, and a diamond coating is deposited on the substrate. The diamond coating has a thickness. Furthermore, the diamond coating has an optical transparency of greater than about 80%. The diamond coating can include nanocrystalline diamond. The microwave plasma source can have a frequency of about 915 MHz.

  13. Synthetic single crystal diamond diodes for radiotherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Almaviva, S.; Marinelli, Marco; Milani, E.; Tucciarone, A.; Verona-Rinati, G.; Consorti, R.; Petrucci, A.; De Notaristefani, F.; Ciancaglioni, I.

    2008-09-01

    Synthetic single crystal diamonds in a p-type/intrinsic/metal structure were tested as dosimeters for radiotherapy. The devices have been analyzed by using 6 and 10 MV Bremsstrahlung X-ray beams and electron beams from 6 MeV up to 18 MeV from a CLINAC DHX Varian accelerator. All measurements have been performed in a water phantom and ionization chambers were used for calibration and comparison. The dosimeters were operated in photovoltaic regime with no external bias voltage applied. A few Gy pre-irradiation was performed in order to stabilize the device output, resulting in fluctuations sensitivity below ±0.5%. No dose rate dependence of the detector response was observed. Very good reproducibility and linearity were obtained as well.

  14. Ultrananocrystalline diamond contacts for electronic devices

    SciTech Connect

    Sumant, Anirudha V.; Smedley, John; Muller, Erik

    2016-11-01

    A method of forming electrical contacts on a diamond substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The mixture of gases include a source of a p-type or an n-type dopant. The plasma ball is disposed at a first distance from the diamond substrate. The diamond substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the diamond substrate for a first time, and a UNCD film, which is doped with at least one of a p-type dopant and an n-type dopant, is disposed on the diamond substrate. The doped UNCD film is patterned to define UNCD electrical contacts on the diamond substrate.

  15. Colloidal crystals with diamond symmetry at optical lengthscales

    PubMed Central

    Wang, Yifan; Jenkins, Ian C.; McGinley, James T.; Sinno, Talid; Crocker, John C.

    2017-01-01

    Future optical materials promise to do for photonics what semiconductors did for electronics, but the challenge has long been in creating the structure they require—a regular, three-dimensional array of transparent microspheres arranged like the atoms in a diamond crystal. Here we demonstrate a simple approach for spontaneously growing double-diamond (or B32) crystals that contain a suitable diamond structure, using DNA to direct the self-assembly process. While diamond symmetry crystals have been grown from much smaller nanoparticles, none of those previous methods suffice for the larger particles needed for photonic applications, whose size must be comparable to the wavelength of visible light. Intriguingly, the crystals we observe do not readily form in previously validated simulations; nor have they been predicted theoretically. This finding suggests that other unexpected microstructures may be accessible using this approach and bodes well for future efforts to inexpensively mass-produce metamaterials for an array of photonic applications. PMID:28194025

  16. Colloidal crystals with diamond symmetry at optical lengthscales

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; Jenkins, Ian C.; McGinley, James T.; Sinno, Talid; Crocker, John C.

    2017-02-01

    Future optical materials promise to do for photonics what semiconductors did for electronics, but the challenge has long been in creating the structure they require--a regular, three-dimensional array of transparent microspheres arranged like the atoms in a diamond crystal. Here we demonstrate a simple approach for spontaneously growing double-diamond (or B32) crystals that contain a suitable diamond structure, using DNA to direct the self-assembly process. While diamond symmetry crystals have been grown from much smaller nanoparticles, none of those previous methods suffice for the larger particles needed for photonic applications, whose size must be comparable to the wavelength of visible light. Intriguingly, the crystals we observe do not readily form in previously validated simulations; nor have they been predicted theoretically. This finding suggests that other unexpected microstructures may be accessible using this approach and bodes well for future efforts to inexpensively mass-produce metamaterials for an array of photonic applications.

  17. Colloidal crystals with diamond symmetry at optical lengthscales.

    PubMed

    Wang, Yifan; Jenkins, Ian C; McGinley, James T; Sinno, Talid; Crocker, John C

    2017-02-13

    Future optical materials promise to do for photonics what semiconductors did for electronics, but the challenge has long been in creating the structure they require-a regular, three-dimensional array of transparent microspheres arranged like the atoms in a diamond crystal. Here we demonstrate a simple approach for spontaneously growing double-diamond (or B32) crystals that contain a suitable diamond structure, using DNA to direct the self-assembly process. While diamond symmetry crystals have been grown from much smaller nanoparticles, none of those previous methods suffice for the larger particles needed for photonic applications, whose size must be comparable to the wavelength of visible light. Intriguingly, the crystals we observe do not readily form in previously validated simulations; nor have they been predicted theoretically. This finding suggests that other unexpected microstructures may be accessible using this approach and bodes well for future efforts to inexpensively mass-produce metamaterials for an array of photonic applications.

  18. Luminescent properties of diamond single crystals of pyramidal shape

    NASA Astrophysics Data System (ADS)

    Alekseev, A. M.; Tuyakova, F. T.; Obraztsova, E. A.; Korostylev, E. V.; Klinov, D. V.; Prusakov, K. A.; Malykhin, S. A.; Ismagilov, R. R.; Obraztsov, A. N.

    2016-11-01

    The luminescence properties of needle-like crystals of diamond, obtained by selective oxidation of textured polycrystalline diamond films, are studied. Diamond films were grown by chemical vapor deposition from a methane-hydrogen mixture activated by a DC discharge. The spectra of photo- and cathodoluminescence and the spatial distribution of the intensity of radiation at different wavelengths are obtained for individual needle-like crystals. Based on the spectral characteristics, conclusions are made about the presence of optically active defects containing nitrogen and silicon impurities in their structure, as well as the significant effect of structural defects on their luminescence spectra.

  19. Nanostructured Diamond Device for Biomedical Applications.

    PubMed

    Fijalkowski, M; Karczemska, A; Lysko, J M; Zybala, R; KozaneckI, M; Filipczak, P; Ralchenko, V; Walock, M; Stanishevsky, A; Mitura, S

    2015-02-01

    Diamond is increasingly used in biomedical applications because of its unique properties such as the highest thermal conductivity, good optical properties, high electrical breakdown voltage as well as excellent biocompatibility and chemical resistance. Diamond has also been introduced as an excellent substrate to make the functional microchip structures for electrophoresis, which is the most popular separation technique for the determination of analytes. In this investigation, a diamond electrophoretic chip was manufactured by a replica method using a silicon mold. A polycrystalline 300 micron-thick diamond layer was grown by the microwave plasma-assisted CVD (MPCVD) technique onto a patterned silicon substrate followed by the removal of the substrate. The geometry of microstructure, chemical composition, thermal and optical properties of the resulting free-standing diamond electrophoretic microchip structure were examined by CLSM, SFE, UV-Vis, Raman, XRD and X-ray Photoelectron Spectroscopy, and by a modified laser flash method for thermal property measurements.

  20. Electronic devices from diamond-like carbon

    NASA Astrophysics Data System (ADS)

    Milne, W. I.

    2003-03-01

    This paper reviews the work carried out over the past few years on the application of diamond-like carbon (DLC) materials to electronic devices. The use of such materials is still in its infancy due to their high defect state density and associated low mobilities. To date, the major effort in the electronic field has been in their attempted use as cold cathode field emitters where their low threshold field has attracted much attention. However, attempts have also been made to produce metal semiconductor metal structures, diodes, a-C/c-Si heterostructures and thin film transistors with varying degrees of success. A brief review of work carried out on the use of DLCs in solar cell manufacture will also be presented but it seems at this early stage in their development that the most promising area for future development will be in the field of microelectromechanical structures where their friction, stiction and wear properties make them prime candidates for use in moving mechanical assemblies.

  1. Chromatographic study of formation conditions of rhombododecahedral diamond crystals

    NASA Astrophysics Data System (ADS)

    Zhimulev, E. I.; Sonin, V. M.; Chepurov, A. I.; Tomilenko, A. A.

    2009-06-01

    The results of chromatographic study of the formation of rhombododecahedral diamonds synthesized in the Fe-Ni-(Ti)-C system at 5.5-6.0 GPa and 1350-1450°C are presented, including crystals with rounded surfaces of the rhombododecahedron with parallel striation, which are morphological analogues of natural diamonds abundant at various kimberlite, lamproite, and placer deposits. Chromatography was performed at 150°C with mechanical breakup of diamonds. The stable release of methane when diamonds of habit {110} are crushed is established. It is concluded that the appearance of the habit rhombododecahedron may be related not only to the effect of temperature and pressure on crystal growth but also to reductive conditions of crystallization. At the same time, the appearance of significant amounts of hydrocarbons in the system probably results in stopping of the growth of faces {110} and {100} and, instead, formation of specific surfaces that are composed of microscopic accessories faced by planes {111}.

  2. Some Properties Of Synthetic Single Crystal And Thin Film Diamonds

    NASA Astrophysics Data System (ADS)

    Yazu, Shuji; Sato, Shuichi; Fujimori, Naoji

    1989-01-01

    Large synthetic diamond single crystals, in sizes up to 1.4 ct, are produced on 4 commercial basis for some industrial application fields by Sumitomo Electric. The crystals are yellow colored type Ib stones which contain lower amounts of nitrogen (up to about 100 ppm) dispersed through the crystal structure in the form of singly substituting atoms. The impurity controlled type lb crystals have the highest thermal conductivity which is equivalent to that of pure type IIa crystals. Optical and thermal properties of diamond crystals are strongly affected by dispersed impurities. We studied the kinds of dispersed impurities and amounts of those impurity atoms in our synthesized crystals by SIMS. A relation of the thermal conductivities and the nitrogen concentrations of the crystals was examined. The state of nitrogen impurity in the crystals could be transformed by electron irradiation and subsequent high temperature annealing. The reaction rates for the transformation Ib nitrogen to type IaA aggregates and differences in crystal growth sectors have been studied. Vapor phase deposited diamond films are hopeful candidates for optical application of diamond. Preliminary spectroscopic analysis has been done for the free standing polycrystalline films.

  3. X-ray beam monitor made by thin-film CVD single-crystal diamond.

    PubMed

    Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Angelone, M; Pillon, M; Kachkanov, V; Tartoni, N; Benetti, M; Cannatà, D; Di Pietrantonio, F

    2012-11-01

    A novel beam position monitor, operated at zero bias voltage, based on high-quality chemical-vapor-deposition single-crystal Schottky diamond for use under intense synchrotron X-ray beams was fabricated and tested. The total thickness of the diamond thin-film beam monitor is about 60 µm. The diamond beam monitor was inserted in the B16 beamline of the Diamond Light Source synchrotron in Harwell (UK). The device was characterized under monochromatic high-flux X-ray beams from 6 to 20 keV and a micro-focused 10 keV beam with a spot size of approximately 2 µm × 3 µm square. Time response, linearity and position sensitivity were investigated. Device response uniformity was measured by a raster scan of the diamond surface with the micro-focused beam. Transmissivity and spectral responsivity versus beam energy were also measured, showing excellent performance of the new thin-film single-crystal diamond beam monitor.

  4. Single Crystal Diamond Needle as Point Electron Source

    NASA Astrophysics Data System (ADS)

    Kleshch, Victor I.; Purcell, Stephen T.; Obraztsov, Alexander N.

    2016-10-01

    Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2–0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics.

  5. Single Crystal Diamond Needle as Point Electron Source

    PubMed Central

    Kleshch, Victor I.; Purcell, Stephen T.; Obraztsov, Alexander N.

    2016-01-01

    Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2–0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics. PMID:27731379

  6. Metal films on the surfaces and within diamond crystals from Arkhangelskaya and Yakutian diamond provinces

    NASA Astrophysics Data System (ADS)

    Makeev, A. B.; Kriulina, G. Yu.

    2012-12-01

    Representative samples of diamonds from five kimberlite pipes (Lomonosovskaya, Archangel'sk, Snegurochka, XXIII Congress of the Communist Party of the Soviet Union (CPSU), and Internationalnaya) of the Arkhangelskaya and Yakutian diamond provinces in Russia have been studied. Thirty-three varieties of metal films have been identified as syngenetic associated minerals. The films consist of 15 chemical elements that occur in the form of native metals and their natural alloys. Remnants of metal films were detected within diamond crystals. The metal films coating diamonds are a worldwide phenomenon. To date, these films have been described from Europe, Asia, South America, and Africa. Native metals, their alloys, and intermetallides are actual companion minerals of diamond.

  7. Implanted contacts for diamond semiconductor devices

    NASA Astrophysics Data System (ADS)

    Tan, Soo-Hee; Beetz, C. P., Jr.

    1992-01-01

    The key to future diamond semiconductor development are ohmic and Schottky contacts that are stable at high temperatures. Wide bandgap materials, such as diamond (5.5 eV), pose special problems and demand ingenious solutions. Prior to our work, recent research into stable ohmic and Schottky contacts had been primarily limited to e-beam evaporation of carbide forming metals such as Ti, Ta, and Mo. These approaches have been relatively successful at decreasing the specific contact resistivity to as low as 10(exp -5) ohm sq cm on natural semiconducting diamond with about 10(exp 16) boron atoms/cubic cm. In our Phase 1 SBIR program we investigated metal systems coupled with a shallow Si implant that would form low resistivity, high temperature stable metal silicides. We showed in our Phase 1 results that the barrier height of metals such as Pt, Ti and Mo were reduced when deposited on shallow Si implants and given a heat treatment at 500 C. The barrier height of Pt on diamond was reduced from 1.89 to 0.97 eV by annealing of a sputtered Pt contact on a Si implanted dose of 10(exp 15) cm(exp -2) sq A into the diamond surface. Using the same approach, the barrier height of Ti on diamond was reduced from 2.00 to 1.29 eV.

  8. Structural peculiarities of single crystal diamond needles of nanometer thickness

    NASA Astrophysics Data System (ADS)

    Orekhov, Andrey S.; Tuyakova, Feruza T.; Obraztsova, Ekaterina A.; Loginov, Artem B.; Chuvilin, Andrey L.; Obraztsov, Alexander N.

    2016-11-01

    Diamond is attractive for various applications due to its unique mechanical and optical properties. In particular, single crystal diamond needles with high aspect ratios and sharp apexes of nanometer size are demanded for different types of optical sensors including optically sensing tip probes for scanning microscopy. This paper reports on electron microscopy and Raman spectroscopy characterization of the diamond needles having geometrically perfect pyramidal shapes with rectangular atomically flat bases with (001) crystallography orientation, 2-200 nm sharp apexes, and with lengths from about 10-160 μm. The needles were produced by selective oxidation of (001) textured polycrystalline diamond films grown by chemical vapor deposition. Here we study the types and distribution of defects inside and on the surface of the single crystal diamond needles. We show that sp3 type point defects are incorporated into the volume of the diamond crystal during growth, while the surface of the lateral facets is enriched by multiple extended defects. Nitrogen addition to the reaction mixture results in increase of the growth rate on {001} facets correlated with the rise in the concentration of sp3 type defects.

  9. Studies of single crystal CVD diamonds for potential applications in x-ray crystal optics

    NASA Astrophysics Data System (ADS)

    Stoupin, Stanislav; Antipov, Sergey P.; Baryshev, Sergey V.; Baturin, Stanislav; Liu, Zunping; Khounsary, Ali M.; Segre, Carlo U.

    2016-09-01

    Several single crystal CVD diamonds with (001) and (111) surface orientations were studied using x-ray diffraction rocking curve mapping in the double-crystal pseudo plane-wave configuration using Bragg reflection geometry. Strongly nonuniform distributions of rocking curve parameters on the studied crystal surfaces were observed, which indicates that the crystals exhibit substantial lattice distortions. Selected crystal pairs were tested in the nondispersive double-crystal configuration using polychromatic bending magnet synchrotron radiation. The results suggest that CVD diamond crystals could be used as high-flux broadband x-ray monochromators in applications where preservation of the radiation wavefront is not a primary goal.

  10. Mechanism for diamond nucleation and growth on single crystal copper surfaces implanted with carbon

    NASA Technical Reports Server (NTRS)

    Ong, T. P.; Xiong, Fulin; Chang, R. P. H.; White, C. W.

    1992-01-01

    The nucleation and growth of diamond crystals on single-crystal copper surfaces implanted with carbon ions is studied. Microwave plasma-enhanced chemical-vapor deposition is used for diamond growth. The single-crystal copper substrates were implanted either at room or elevated temperature with carbon ions prior to diamond nucleation. This procedure leads to the formation of a graphite film on the copper surface which greatly enhances diamond crystallite nucleation. A simple lattice model is constructed for diamond growth on graphite as 111 line (diamond) parallel to 0001 line (graphite) and 110 line (diamond) parallel to 1 1 -2 0 (graphite).

  11. Mechanism for diamond nucleation and growth on single crystal copper surfaces implanted with carbon

    NASA Technical Reports Server (NTRS)

    Ong, T. P.; Xiong, Fulin; Chang, R. P. H.; White, C. W.

    1992-01-01

    The nucleation and growth of diamond crystals on single-crystal copper surfaces implanted with carbon ions is studied. Microwave plasma-enhanced chemical-vapor deposition is used for diamond growth. The single-crystal copper substrates were implanted either at room or elevated temperature with carbon ions prior to diamond nucleation. This procedure leads to the formation of a graphite film on the copper surface which greatly enhances diamond crystallite nucleation. A simple lattice model is constructed for diamond growth on graphite as 111 line (diamond) parallel to 0001 line (graphite) and 110 line (diamond) parallel to 1 1 -2 0 (graphite).

  12. Free-standing nanomechanical and nanophotonic structures in single-crystal diamond

    NASA Astrophysics Data System (ADS)

    Burek, Michael John

    Realizing complex three-dimensional structures in a range of material systems is critical to a variety of emerging nanotechnologies. This is particularly true of nanomechanical and nanophotonic systems, both relying on free-standing small-scale components. In the case of nanomechanics, necessary mechanical degrees of freedom require physically isolated structures, such as suspended beams, cantilevers, and membranes. For nanophotonics, elements like waveguides and photonic crystal cavities rely on light confinement provided by total internal reflection or distributed Bragg reflection, both of which require refractive index contrast between the device and surrounding medium (often air). Such suspended nanostructures are typically fabricated in a heterolayer structure, comprising of device (top) and sacrificial (middle) layers supported by a substrate (bottom), using standard surface nanomachining techniques. A selective, isotropic etch is then used to remove the sacrificial layer, resulting in free-standing devices. While high-quality, crystalline, thin film heterolayer structures are readily available for silicon (as silicon-on-insulator (SOI)) or III-V semiconductors (i.e. GaAs/AlGaAs), there remains an extensive list of materials with attractive electro-optic, piezoelectric, quantum optical, and other properties for which high quality single-crystal thin film heterolayer structures are not available. These include complex metal oxides like lithium niobate (LiNbO3), silicon-based compounds such as silicon carbide (SiC), III-V nitrides including gallium nitride (GaN), and inert single-crystals such as diamond. Diamond is especially attractive for a variety of nanoscale technologies due to its exceptional physical and chemical properties, including high mechanical hardness, stiffness, and thermal conductivity. Optically, it is transparent over a wide wavelength range (from 220 nm to the far infrared), has a high refractive index (n ~ 2.4), and is host to a vast

  13. Self-assembling hybrid diamond-biological quantum devices

    NASA Astrophysics Data System (ADS)

    Albrecht, A.; Koplovitz, G.; Retzker, A.; Jelezko, F.; Yochelis, S.; Porath, D.; Nevo, Y.; Shoseyov, O.; Paltiel, Y.; Plenio, M. B.

    2014-09-01

    The realization of scalable arrangements of nitrogen vacancy (NV) centers in diamond remains a key challenge on the way towards efficient quantum information processing, quantum simulation and quantum sensing applications. Although technologies based on implanting NV-centers in bulk diamond crystals or hybrid device approaches have been developed, they are limited by the achievable spatial resolution and by the intricate technological complexities involved in achieving scalability. We propose and demonstrate a novel approach for creating an arrangement of NV-centers, based on the self-assembling capabilities of biological systems and their beneficial nanometer spatial resolution. Here, a self-assembled protein structure serves as a structural scaffold for surface functionalized nanodiamonds, in this way allowing for the controlled creation of NV-structures on the nanoscale and providing a new avenue towards bridging the bio-nano interface. One-, two- as well as three-dimensional structures are within the scope of biological structural assembling techniques. We realized experimentally the formation of regular structures by interconnecting nanodiamonds using biological protein scaffolds. Based on the achievable NV-center distances of 11 nm, we evaluate the expected dipolar coupling interaction with neighboring NV-centers as well as the expected decoherence time. Moreover, by exploiting these couplings, we provide a detailed theoretical analysis on the viability of multiqubit quantum operations, suggest the possibility of individual addressing based on the random distribution of the NV intrinsic symmetry axes and address the challenges posed by decoherence and imperfect couplings. We then demonstrate in the last part that our scheme allows for the high-fidelity creation of entanglement, cluster states and quantum simulation applications.

  14. Radiation-induced diamond crystallization: Origin of carbonados and its implications on meteorite nano-diamonds

    USGS Publications Warehouse

    Ozima, M.; Tatsumoto, M.

    1997-01-01

    Ten carbonados from Central Africa were studied for U-Th-Pb systematics. To extract U, Th, and Pb from the samples, we developed a cold combustion technique wherein diamond was burnt in liquid oxygen. The technique gave low blanks; 25-50 pg for Pb, 3 pg for U, and 5 pg for Th. After very thorough acid treatments of the carbonados with hot HNO3, HF, and HCl over one week, most of U, Th, and Pb were removed from the samples. Lead in the acid-leached diamonds was highly radiogenic (206Pb/204Pb up to 470). However, the amounts of U and Th in the acid-leached diamonds are too low to account for the radiogenic Pb even if we assume 4.5 Ga for the age of the diamonds. Therefore, we conclude that the radiogenic Pb was implanted into the diamonds from surroundings by means of recoil energy of radioactive decays of U and Th. From the radiogenic lead isotopic composition, we estimate a minimum age of 2.6 Ga and a maximum age of 3.8 Ga for the formation of the carbonados. The above findings of the implantation of recoiled radiogenic Pb into carbonados is consistent with the process of radiation-induced crystallization which was proposed for carbonado by Kaminsky (1987). We show from some theoretical considerations that when highly energetic particles, such as those emitted from radioactive decay of U and Th, interact with carbonaceous materials, they give rise to cascades of atomic disturbance (over regions of about a few nanometer), and the disturbed atoms are likely to recrystallize to form micro-diamonds because of increasing surface energy due to small size. The radiation-induced diamond formation mechanism may be relevant to the origin of nano-diamonds in primitive meteorites. Copyright ?? 1997 Elsevier Science Ltd.

  15. Growth, Characterization and Device Development in Monocrystalline Diamond Films

    DTIC Science & Technology

    1990-09-30

    silicon substrate surfaces. The aspect ratio of diamond grown on single crystals of different substrate materials correlates with their surface free ...to check the feasibility of such considerations for the present research. The surface free energy of diamond is estimated to be 3387 ergs/cm 2, [Il...while the surface free energies of Si, Ni, Mo, Ta, and W are 1457 ergs/cm2 , 2072 ergs/cm 2, 2463 ergs/cm 2 , 2628 ergs/cm 2 and 3111 ergs/cm 2

  16. Polycrystalline CVD diamond device level modeling for particle detection applications

    NASA Astrophysics Data System (ADS)

    Morozzi, A.; Passeri, D.; Kanxheri, K.; Servoli, L.; Lagomarsino, S.; Sciortino, S.

    2016-12-01

    Diamond is a promising material whose excellent physical properties foster its use for radiation detection applications, in particular in those hostile operating environments where the silicon-based detectors behavior is limited due to the high radiation fluence. Within this framework, the application of Technology Computer Aided Design (TCAD) simulation tools is highly envisaged for the study, the optimization and the predictive analysis of sensing devices. Since the novelty of using diamond in electronics, this material is not included in the library of commercial, state-of-the-art TCAD software tools. In this work, we propose the development, the application and the validation of numerical models to simulate the electrical behavior of polycrystalline (pc)CVD diamond conceived for diamond sensors for particle detection. The model focuses on the characterization of a physically-based pcCVD diamond bandgap taking into account deep-level defects acting as recombination centers and/or trap states. While a definite picture of the polycrystalline diamond band-gap is still debated, the effect of the main parameters (e.g. trap densities, capture cross-sections, etc.) can be deeply investigated thanks to the simulated approach. The charge collection efficiency due to β -particle irradiation of diamond materials provided by different vendors and with different electrode configurations has been selected as figure of merit for the model validation. The good agreement between measurements and simulation findings, keeping the traps density as the only one fitting parameter, assesses the suitability of the TCAD modeling approach as a predictive tool for the design and the optimization of diamond-based radiation detectors.

  17. Implanted Contacts for Diamond Semiconductor Devices

    DTIC Science & Technology

    1992-01-27

    resistivity, high temperature stable metal silicides . We showed in our Phase I results that the barrier height of metals such as Pt, Ti and Mo were...that would form low resistivity, high temperature stable metal silicides . We showed in our Phase I results that the barrier height of metals such as Pt...Likewise using the same approach, the barrier height of Ti on diamond was reduced from 2.00 eV to 1.29 eV. Although we have no direct evidence for silicide

  18. Diamond and Carbon Nanotube Composites for Supercapacitor Devices

    NASA Astrophysics Data System (ADS)

    Moreira, João Vitor Silva; May, Paul William; Corat, Evaldo José; Peterlevitz, Alfredo Carlos; Pinheiro, Romário Araújo; Zanin, Hudson

    2017-02-01

    We report on the synthesis and electrochemical properties of diamond grown onto vertically aligned carbon nanotubes with high surface areas as a template, resulting in a composite material exhibiting high double-layer capacitance as well as low electrochemical impedance electrodes suitable for applications as supercapacitor devices. We contrast results from devices fabricated with samples which differ in both their initial substrates (Si and Ti) and their final diamond coatings, such as boron-doped diamond and diamond-like carbon (DLC). We present for first time a conducting model for non-doped DLC thin-films. All samples were characterized by scanning and transmission electron microscopy and Fourier transform infrared and Raman spectroscopy. Our results show specific capacitance as high as 8.25 F g-1 (˜1 F cm-2) and gravimetric specific energy and power as high as 0.7 W h kg-1 and 176.4 W kg-1, respectively, which suggest that these diamond/carbon nanotube composite electrodes are excellent candidates for supercapacitor fabrication.

  19. The boron doping of single crystal diamond for high power diode applications

    NASA Astrophysics Data System (ADS)

    Nicley, Shannon Singer

    Diamond has the potential to revolutionize the field of high power and high frequency electronic devices as a superlative electronic material. The realization of diamond electronics depends on the control of the growth process of both lightly and heavily boron doped diamond. This dissertation work is focused on furthering the state of the art of boron doped diamond (BDD) growth toward the realization of high power diamond Schottky barrier diodes (SBDs). The achievements of this work include the fabrication of a new dedicated reactor for lightly boron doped diamond deposition, the optimization of growth processes for both heavily and lightly boron doped single crystal diamond (SCD), and the proposal and realization of the corner architecture SBD. Boron doped SCD is grown in microwave plasma-assisted chemical vapor deposition (MPACVD) plasma disc bell-jar reactors, with feedgas mixtures including hydrogen, methane, carbon dioxide, and diborane. Characterization methods for the analysis of BDD are described, including Fourier-transformed infrared spectroscopy (FTIR), Secondary Ion Mass Spectroscopy (SIMS) and temperature-dependent four point probe conductivity for activation energy. The effect of adding carbon dioxide to the plasma feedgas for lightly boron doped diamond is investigated. The effect of diborane levels and other growth parameters on the incorporated boron levels are reported, and the doping efficiency is calculated over a range of boron concentrations. The presence of defects is shown to affect the doping uniformity. The substrate growth temperature dependence of the plasma gas-phase to solid-phase doping efficiency in heavily boron doped SCD deposition is investigated. The substrate temperature during growth is shown to have a significant effect on the grown sample defect morphology, and a temperature dependence of the doping efficiency is also shown. The effect of the growth rate on the doping efficiency is discussed, and the ratio of the boron

  20. Ordered porous diamond films fabricated by colloidal crystal templating

    NASA Astrophysics Data System (ADS)

    Kurdyukov, D. A.; Feoktistov, N. A.; Nashchekin, A. V.; Zadiranov, Yu M.; Aleksenskii, A. E.; Vul', A. Ya; Golubev, V. G.

    2012-01-01

    We have developed a colloidal crystal templating method for preparation of diamond films with 2D and 3D ordered porous structures. The technological process involved breaks down into (a) impregnation into the pores of silica colloidal crystal (opal) films of detonation nanodiamond (DND) particles from their hydrosol; (b) microwave plasma-enhanced chemical vapor deposition (MWPECVD) regrowth with diamond of pores with high DND filling; (c) Ar + ion dry etching of fragments of shells of coalesced diamond crystallites which form in the course of MWPECVD on the surface of the SiO2 beads making up the outer surface of a film and (d) wet etching of the SiO2 template in aqueous HF solution. The final samples are either connected to the substrate or free-standing films of various thicknesses having 2D or 3D ordered porous structures. The morphology of the diamond films fabricated by this method replicates the pore network of the opal template. Raman measurements confirm the diamond structure of the synthesized ordered porous material.

  1. Single crystal diamond for infrared sensing applications

    SciTech Connect

    Majdi, S. Kovi, K. K.; Isberg, J.; Kolahdouz, M.; Moeen, M.; Radamson, H. H.; Balmer, R. S.

    2014-10-20

    The synthesis of new materials for thermal infrared (IR) detection has been an intensive research area in recent years. Among new semiconductor materials, synthetic diamond has the ability to function even under very high temperature and high radiation conditions. In the present work, diamond Schottky diodes with boron concentrations in the range of 10{sup 14 }< B < 10{sup 17 }cm{sup −3} are presented as candidates for IR thermal sensors with an excellent temperature coefficient of resistance (−8.42%/K) and very low noise levels around 6.6 × 10{sup −15} V{sup 2}/Hz. This enables huge performance enhancements for a wide variety of systems, e.g., automotive and space applications.

  2. Silica based polishing of {100} and {111} single crystal diamond

    PubMed Central

    Thomas, Evan L H; Mandal, Soumen; Brousseau, Emmanuel B; Williams, Oliver A

    2014-01-01

    Diamond is one of the hardest and most difficult to polish materials. In this paper, the polishing of {111} and {100} single crystal diamond surfaces by standard chemical mechanical polishing, as used in the silicon industry, is demonstrated. A Logitech Tribo Chemical Mechanical Polishing system with Logitech SF1 Syton and a polyurethane/polyester polishing pad was used. A reduction in roughness from 0.92 to 0.23 nm root mean square and 0.31 to 0.09 nm rms for {100} and {111} samples respectively was observed. PMID:27877689

  3. Diamond turning of Si and Ge single crystals

    SciTech Connect

    Blake, P.; Scattergood, R.O.

    1988-12-01

    Single-point diamond turning studies have been completed on Si and Ge crystals. A new process model was developed for diamond turning which is based on a critical depth of cut for plastic flow-to-brittle fracture transitions. This concept, when combined with the actual machining geometry for single-point turning, predicts that {open_quotes}ductile{close_quotes} machining is a combined action of plasticity and fracture. Interrupted cutting experiments also provide a meant to directly measure the critical depth parameter for given machining conditions.

  4. ESR and Microwave Absorption in Boron Doped Diamond Single Crystals

    NASA Astrophysics Data System (ADS)

    Timms, Christopher

    2015-03-01

    Superconductivity has been reportedly found in boron-doped diamond. Most research to date has only studied superconductivity in polycrystalline and thin film boron-diamonds, as opposed to a single crystal. In fact, only one other group has examined a macro scale boron-doped diamond crystal. Our group has successfully grown large single crystals by using the High Temperature High Pressure method (HTHP) and observed a transition to metallic and superconducting states for high B concentrations. For the present, we are studying BDD crystal using Electron Spin Resonance. We conducted our ESR analysis over a range of temperatures (2K to 300K) and found several types of signals, proving the existence of charge carriers with spin 1/2 in BDD. Moreover, we have found that with increasing B concentrations, from n ~ 1018 cm-3 to n of over 1020 cm-3, the ESR signal changes from that of localized spins to the Dysonian shape of free carriers. The low magnetic field microwave absorption has also been studied in BDD samples at various B concentrations and the clear transition to superconducting state has been found below Tc that ranges from 2K to 4 K depending on concentration and quality of crystal. Sergey Polyakov, Victor Denisov, Vladimir Blank, Ray Baughman, Anvar Zakhidov.

  5. Thermochemical micro imprinting of single-crystal diamond surface using a nickel mold under high-pressure conditions

    NASA Astrophysics Data System (ADS)

    Imoto, Yuji; Yan, Jiwang

    2017-05-01

    Single-crystal diamond is an important material for cutting tools, micro electro mechanical systems, optical devices, and semiconductor substrates. However, the techniques for producing microstructures on diamond surface with high efficiency and accuracy have not been established. This paper proposes a thermochemical imprinting method for transferring microstructures from a nickel (Ni) mold onto single-crystal diamond surface. The Ni mold was micro-structured by a nanoindenter and then pressed against the diamond surface under high temperature and pressure in argon atmosphere. Results show that microstructures on the Ni mold were successfully transferred onto the diamond surface, and their depth increased with both pressure and temperature. Laser micro-Raman spectroscopy, transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) analyses indicate that a graphite layer was formed over the contact area between diamond and Ni during pressing, and after washing by a mixed acid, the graphite layer could be completely removed. This study demonstrated the feasibility of a cost-efficient fabrication method for large-area microstructures on single-crystal diamond.

  6. Spontaneous synthesis of diamond crystals from graphite irradiated by {gamma} rays

    SciTech Connect

    Dutov, A. G.; Azarko, I. I. Kozlova, E. I.; Komar, V. A.; Kurilovich, N. F.; Shipilo, V. B.; Shipilo, N. V.

    2006-01-15

    The model of martensite transition of graphite to diamond (specifically, the mechanism of inheritance of the properties of radiation-modified graphite by synthesized diamond crystals) is confirmed experimentally.

  7. Large-area low-temperature ultrananocrystaline diamond (UNCD) films and integration with CMOS devices for monolithically integrated diamond MEMD/NEMS-CMOS systems.

    SciTech Connect

    Sumant, A.V.; Auciello, O.; Yuan, H.-C; Ma, Z.; Carpick, R. W.; Mancini, D. C.; Univ. of Wisconsin; Univ. of Pennsylvania

    2009-05-01

    Because of exceptional mechanical, chemical, and tribological properties, diamond has a great potential to be used as a material for the development of high-performance MEMS and NEMS such as resonators and switches compatible with harsh environments, which involve mechanical motion and intermittent contact. Integration of such MEMS/NEMS devices with complementary metal oxide semiconductor (CMOS) microelectronics will provide a unique platform for CMOS-driven commercial MEMS/NEMS. The main hurdle to achieve diamond-CMOS integration is the relatively high substrate temperatures (600-800 C) required for depositing conventional diamond thin films, which are well above the CMOS operating thermal budget (400 C). Additionally, a materials integration strategy has to be developed to enable diamond-CMOS integration. Ultrananocrystalline diamond (UNCD), a novel material developed in thin film form at Argonne, is currently the only microwave plasma chemical vapor deposition (MPCVD) grown diamond film that can be grown at 400 C, and still retain exceptional mechanical, chemical, and tribological properties comparable to that of single crystal diamond. We have developed a process based on MPCVD to synthesize UNCD films on up to 200 mm in diameter CMOS wafers, which will open new avenues for the fabrication of monolithically integrated CMOS-driven MEMS/NEMS based on UNCD. UNCD films were grown successfully on individual Si-based CMOS chips and on 200 mm CMOS wafers at 400 C in a MPCVD system, using Ar-rich/CH4 gas mixture. The CMOS devices on the wafers were characterized before and after UNCD deposition. All devices were performing to specifications with very small degradation after UNCD deposition and processing. A threshold voltage degradation in the range of 0.08-0.44V and transconductance degradation in the range of 1.5-9% were observed.

  8. Sonic crystal acoustic switch device.

    PubMed

    Alagoz, Serkan; Alagoz, Baris Baykant

    2013-06-01

    This study reports a wave-controlled sonic crystal switch device that exhibits a destructive interference-based wave to wave reverse switching effect. By applying control waves, this acoustic device, composed of a two-dimensional square lattice sonic crystal block, reduces acoustic wave transmission from input to output. The finite difference time domain simulation and experimental results confirm the wave-to-wave reverse switching effect at the peak frequencies of the second band. The proposed sonic crystal switch prototype provides a contrast rate of 86% at 11.3 kHz frequency. This wave-to-wave switching effect is useful for controlling wave propagation for smart structure applications.

  9. Nucleation and growth of diamond on carbon-implanted single crystal copper surfaces

    SciTech Connect

    Ong, T.P.; Xiong, F.; Chang, R.P.H. ); White, C.W. )

    1992-09-01

    The nucleation and growth of diamond crystals on single crystal copper surfaces has been studied. Microwave plasma enhanced chemical vapor deposition (MPECVD) was used for diamond nucleation and growth. Prior to diamond nucleation, the single crystal copper surface is modified by carbon ion implantation at an elevated temperature ({similar to}820 {degree}C). This procedure leads to the formation of a graphite film on the copper surface, resulting in an enhancement of diamond crystallite nucleation. A simple lattice model has been constructed to describe the mechanism of diamond nucleation on graphite as {l angle}111{r angle}{sub diamond} parallel to {l angle}0001{r angle}{sub graphite} and {l angle}110{r angle}{sub diamond} parallel to {l angle}1120{r angle}{sub graphite}. This leads to a good understanding of diamond growth on carbon-implanted copper surfaces.

  10. Analysis of synthetic diamond single crystals by X-ray topography and double-crystal diffractometry

    SciTech Connect

    Prokhorov, I. A.; Ralchenko, V. G.; Bolshakov, A. P.; Polskiy, A. V.; Vlasov, A. V.; Subbotin, I. A.; Podurets, K. M.; Pashaev, E. M.; Sozontov, E. A.

    2013-12-15

    Structural features of diamond single crystals synthesized under high pressure and homoepitaxial films grown by chemical vapor deposition (CVD) have been analyzed by double-crystal X-ray diffractometry and topography. The conditions of a diffraction analysis of diamond crystals using Ge monochromators have been optimized. The main structural defects (dislocations, stacking faults, growth striations, second-phase inclusions, etc.) formed during crystal growth have been revealed. The nitrogen concentration in high-pressure/high-temperature (HPHT) diamond substrates is estimated based on X-ray diffraction data. The formation of dislocation bundles at the film-substrate interface in the epitaxial structures has been revealed by plane-wave topography; these dislocations are likely due to the relaxation of elastic macroscopic stresses caused by the lattice mismatch between the substrate and film. The critical thicknesses of plastic relaxation onset in CVD diamond films are calculated. The experimental techniques for studying the real diamond structure in optimizing crystal-growth technology are proven to be highly efficient.

  11. Radiation attenuation by single-crystal diamond windows

    DOE PAGES

    Guthrie, Malcolm; Pruteanu, Ciprian G.; Donnelly, Mary -Ellen; ...

    2017-02-01

    As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leadingmore » to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. Furthermore, this article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities.« less

  12. Single Crystal Diamond Beam Position Monitors with Radiofrequency Electronic Readout

    SciTech Connect

    Solar, B.; Graafsma, H.; Potdevin, G.; Trunk, U.; Morse, J.; Salome, M.

    2010-06-23

    Over the energy range 5{approx}30 keV a suitably contacted, thin ({approx}100 {mu}m) diamond plate can be operated in situ as a continuous monitor of X-ray beam intensity and position as the diamond absorbs only a small percentage of the incident beam. Single crystal diamond is a completely homogeneous material showing fast (ns), spatially uniform signal response and negligible (diamond beam position monitors of simple quadrant electrode designs with metal contacts, operated using wideband electronic readout corresponding to the RF accelerator frequency. The instrumentation for these monitors must cover a large range of operating conditions: different beam sizes, fluxes, energies and time structure corresponding to the synchrotron fill patterns. Sophisticated new RF sampling electronics can satisfy most requirements: using a modified Libera Brilliance readout system, we measured the center of gravity position of a 25 {mu}m beam at the DORIS III F4 beam line at a rate of 130 Msample/s with narrowband filtering of a few MHz bandwidth. Digitally averaging the signal further provided a spatial resolution {approx}20 nm.

  13. Low propagation loss in a one-port SAW resonator fabricated on single-crystal diamond for super-high-frequency applications.

    PubMed

    Fujii, Satoshi; Odawara, Tatsuya; Yamada, Haruya; Omori, Tatsuya; Hashimoto, Ken-Ya; Torii, Hironori; Umezawa, Hitoshi; Shikata, Shinichi

    2013-05-01

    Diamond has the highest known SAW phase velocity, sufficient for applications in the gigahertz range. However, although numerous studies have demonstrated SAW devices on polycrystalline diamond thin films, all have had much larger propagation loss than single-crystal materials such as LiNbO3. Hence, in this study, we fabricated and characterized one-port SAW resonators on single-crystal diamond substrates synthesized using a high-pressure and high-temperature method to identify and minimize sources of propagation loss. A series of one-port resonators were fabricated with the interdigital transducer/ AlN/diamond structure and their characteristics were measured. The device with the best performance exhibited a resonance frequency f of 5.3 GHz, and the equivalent circuit model gave a quality factor Q of 5509. Thus, a large fQ product of approximately 2.9 × 10(13) was obtained, and the propagation loss was found to be only 0.006 dB/wavelength. These excellent properties are attributed mainly to the reduction of scattering loss in a substrate using a single-crystal diamond, which originated from the grain boundary of diamond and the surface roughness of the AlN thin film and the diamond substrate. These results show that single-crystal diamond SAW resonators have great potential for use in low-noise super-high-frequency oscillators.

  14. Scalable fabrication of high-quality, ultra-thin single crystal diamond membrane windows

    NASA Astrophysics Data System (ADS)

    Piracha, Afaq Habib; Ganesan, Kumaravelu; Lau, Desmond W. M.; Stacey, Alastair; McGuinness, Liam P.; Tomljenovic-Hanic, Snjezana; Prawer, Steven

    2016-03-01

    High quality, ultra-thin single crystal diamond (SCD) membranes that have a thickness in the sub-micron range are of extreme importance as a materials platform for photonics, quantum sensing, nano/micro electro-mechanical systems (N/MEMS) and other diverse applications. However, the scalable fabrication of such thin SCD membranes is a challenging process. In this paper, we demonstrate a new method which enables high quality, large size (~4 × 4 mm) and low surface roughness, low strain, ultra-thin SCD membranes which can be fabricated without deformations such as breakage, bowing or bending. These membranes are easy to handle making them particularly suitable for fabrication of optical and mechanical devices. We demonstrate arrays of single crystal diamond membrane windows (SCDMW), each up to 1 × 1 mm in dimension and as thin as ~300 nm, supported by a diamond frame as thick as ~150 μm. The fabrication method is robust, reproducible, scalable and cost effective. Microwave plasma chemical vapour deposition is used for in situ creation of single nitrogen-vacancy (NV) centers into the thin SCDMW. We have also developed SCD drum head mechanical resonator composed of our fully clamped and freely suspended membranes.High quality, ultra-thin single crystal diamond (SCD) membranes that have a thickness in the sub-micron range are of extreme importance as a materials platform for photonics, quantum sensing, nano/micro electro-mechanical systems (N/MEMS) and other diverse applications. However, the scalable fabrication of such thin SCD membranes is a challenging process. In this paper, we demonstrate a new method which enables high quality, large size (~4 × 4 mm) and low surface roughness, low strain, ultra-thin SCD membranes which can be fabricated without deformations such as breakage, bowing or bending. These membranes are easy to handle making them particularly suitable for fabrication of optical and mechanical devices. We demonstrate arrays of single crystal diamond

  15. A neutron sensor based on synthetic single crystal diamond

    SciTech Connect

    Schmid, G J; Koch, J A; Lerche, R A; Moran, M J

    2003-10-17

    We report the first neutron data for a single crystal Chemical Vapor Deposition (CVD) diamond sensor. Results are presented for 2.5, 14.1, and 14.9 MeV incident neutrons. We show that the energy resolution for 14.1 MeV neutrons is at least 2.9% (as limited by the energy spread of the incident neutrons), and perhaps as good as 0.4% (as extrapolated from high resolution {alpha} particle data). This result could be relevant to fusion neutron spectroscopy at machines like the International Thermonuclear Experimental Reactor (ITER). We also show that our sensor has a high neutron linear attenuation coefficient, due to the high atomic density of diamond, and this could lead to applications in fission neutron detection.

  16. Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis.

    PubMed

    Wilts, Bodo D; Michielsen, Kristel; Kuipers, Jeroen; De Raedt, Hans; Stavenga, Doekele G

    2012-07-07

    The neotropical diamond weevil, Entimus imperialis, is marked by rows of brilliant spots on the overall black elytra. The spots are concave pits with intricate patterns of structural-coloured scales, consisting of large domains of three-dimensional photonic crystals that have a diamond-type structure. Reflectance spectra measured from individual scale domains perfectly match model spectra, calculated with anatomical data and finite-difference time-domain methods. The reflections of single domains are extremely directional (observed with a point source less than 5°), but the special arrangement of the scales in the concave pits significantly broadens the angular distribution of the reflections. The resulting virtually angle-independent green coloration of the weevil closely approximates the colour of a foliaceous background. While the close-distance colourful shininess of E. imperialis may facilitate intersexual recognition, the diffuse green reflectance of the elytra when seen at long-distance provides cryptic camouflage.

  17. Super-thin single crystal diamond membrane radiation detectors

    SciTech Connect

    Pomorski, Michal; Caylar, Benoit; Bergonzo, Philippe

    2013-09-09

    We propose to use the non-electronic grade (nitrogen content 5 ppb < [N] < 5 ppm) single crystal (sc) chemical vapour deposited (CVD) diamond as a thin-membrane radiation detector. Using deep Ar/O{sub 2} plasma etching it is possible to produce self-supported few micrometres thick scCVD membranes of a size approaching 7 mm × 7 mm, with a very good surface quality. After metallization and contacting, electrical properties of diamond membrane detectors were probed with 5.486 MeV α-particles as an ionization source. Despite nitrogen impurity, scCVD membrane detectors exhibit stable operation, charge collection efficiency close to 100%, with homogenous response, and extraordinary dielectric strength up to 30 V/μm.

  18. Very High Efficiency, Miniaturized, Long-Lived Alpha Particle Power Source Using Diamond Devices for Extreme Space Environments

    NASA Technical Reports Server (NTRS)

    Kolawa, Elizabeth A. (Inventor); Patel, Jagdishbhai U. (Inventor); Fleurial, Jean-Pierre (Inventor)

    2004-01-01

    A power source that converts a-particle energy into electricity by coulomb collision in doped diamond films is described. Alpha particle decay from curium-244 creates electron-hole pairs by free- ing electrons and holes inside the crystal lattice in N- and P-doped diamond films. Ohmic contacts provide electrical connection to an electronic device. Due to the built-in electric field at the rectifying junction across the hT- and P-doped diamond films, the free electrons are constrained to traveling in generally one direction. This one direction then supplies electrons in a manner similar to that of a battery. The radioactive curium layer may be disposed on diamond films for even distribution of a-particle radiation. The resulting power source may be mounted on a diamond substrate that serves to insulate structures below the diamond substrate from a-particle emission. Additional insulation or isolation may be provided in order to prevent damage from a-particle collision. N-doped silicon may be used instead of N-doped diamond.

  19. Very High Efficiency, Miniaturized, Long-Lived Alpha Particle Power Source Using Diamond Devices for Extreme Space Environments

    NASA Technical Reports Server (NTRS)

    Kolawa, Elizabeth A. (Inventor); Patel, Jagdishbhai U. (Inventor); Fleurial, Jean-Pierre (Inventor)

    2004-01-01

    A power source that converts a-particle energy into electricity by coulomb collision in doped diamond films is described. Alpha particle decay from curium-244 creates electron-hole pairs by free- ing electrons and holes inside the crystal lattice in N- and P-doped diamond films. Ohmic contacts provide electrical connection to an electronic device. Due to the built-in electric field at the rectifying junction across the hT- and P-doped diamond films, the free electrons are constrained to traveling in generally one direction. This one direction then supplies electrons in a manner similar to that of a battery. The radioactive curium layer may be disposed on diamond films for even distribution of a-particle radiation. The resulting power source may be mounted on a diamond substrate that serves to insulate structures below the diamond substrate from a-particle emission. Additional insulation or isolation may be provided in order to prevent damage from a-particle collision. N-doped silicon may be used instead of N-doped diamond.

  20. Surface structures of high-quality diamond crystals synthesized by the oxy-acetylene flame method

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Keiji; Amanuma, Shuji; Hirose, Yoichi

    1992-02-01

    The microstructures of the {111} surfaces of high-quality diamond crystals deposited by the oxy-acetylene flame method have been studied using a high-resolution scanning electron microscope to clear the mechanism of the crystal growth. On the {111} surfaces of the high-quality diamond crystals, the two-dimensional nucleation rate is suppressed and the two-dimensional crystal growth rate is promoted. The suppression of the two-dimensional nucleation rate and the promotion of the two-dimensional crystal growth rate reduce the number of faults, dislocations, and defects and result in the formation of high-quality diamond crystals.

  1. Modeling liquid crystal polymeric devices

    NASA Astrophysics Data System (ADS)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  2. Dedicated multichannel readout ASIC coupled with single crystal diamond for dosimeter application

    NASA Astrophysics Data System (ADS)

    Fabbri, A.; Falco, M. D.; De Notaristefani, F.; Galasso, M.; Marinelli, M.; Orsolini Cencelli, V.; Tortora, L.; Verona, C.; Verona Rinati, G.

    2013-02-01

    This paper reports on the tests of a low-noise, multi-channel readout integrated circuit used as a readout electronic front-end for a diamond multi-pixel dosimeter. The system is developed for dose distribution measurement in radiotherapy applications. The first 10-channel prototype chip was designed and fabricated in a 0.18 um CMOS process. Every channel includes a charge integrator with a 10 pF capacitor and a double slope A/D converter. The diamond multi-pixel detector, based on CVD synthetic single crystal diamond Schottky diodes, is made by a 3 × 3 sensor matrix. The overall device has been tested under irradiation with 6 MeV radio therapeutic photon beams at the Policlinico ``Tor Vergata'' (PTV) hospital. Measurements show a 20 fA RMS leakage current from the front-end input stage and a negligible dark current from the diamond detector, a stable temporal response and a good linear behaviour as a function of both dose and dose rate. These characteristics were common to each tested channel.

  3. Redistribution of nitrogen implanted in the crystals of synthetic diamond

    NASA Astrophysics Data System (ADS)

    Cherepov, E. I.; Tishkovsky, E. G.; Obodnikov, V. I.; Pal'yanov, Ju. N.; Sokol, A. G.; Sobolev, N. V.

    2001-10-01

    The redistribution of nitrogen atoms implanted in synthetic diamond crystals was investigated by secondary ion mass-spectrometry in course of an isothermal annealing program at 1400°C during 1, 5 and 20 h. It was shown that the nitrogen profiles spread at a macroscopic scale, and the broadening is well described in terms of the diffusion movement of impurity atoms. The preliminary estimates of diffusion coefficients were obtained: 2.3×10 -15 cm2/ s for 1 h annealing, 8.5×10 -16 cm2/ s for 5 h annealing and 3.7×10 -16 cm2/ s for 20 h annealing.

  4. Scalable fabrication of high-quality, ultra-thin single crystal diamond membrane windows.

    PubMed

    Piracha, Afaq Habib; Ganesan, Kumaravelu; Lau, Desmond W M; Stacey, Alastair; McGuinness, Liam P; Tomljenovic-Hanic, Snjezana; Prawer, Steven

    2016-03-28

    High quality, ultra-thin single crystal diamond (SCD) membranes that have a thickness in the sub-micron range are of extreme importance as a materials platform for photonics, quantum sensing, nano/micro electro-mechanical systems (N/MEMS) and other diverse applications. However, the scalable fabrication of such thin SCD membranes is a challenging process. In this paper, we demonstrate a new method which enables high quality, large size (∼4 × 4 mm) and low surface roughness, low strain, ultra-thin SCD membranes which can be fabricated without deformations such as breakage, bowing or bending. These membranes are easy to handle making them particularly suitable for fabrication of optical and mechanical devices. We demonstrate arrays of single crystal diamond membrane windows (SCDMW), each up to 1 × 1 mm in dimension and as thin as ∼300 nm, supported by a diamond frame as thick as ∼150 μm. The fabrication method is robust, reproducible, scalable and cost effective. Microwave plasma chemical vapour deposition is used for in situ creation of single nitrogen-vacancy (NV) centers into the thin SCDMW. We have also developed SCD drum head mechanical resonator composed of our fully clamped and freely suspended membranes.

  5. Multistrip synthetic single-crystal-diamond photodiode based on a p-type/intrinsic/Schottky metal transverse configuration

    NASA Astrophysics Data System (ADS)

    Ciancaglioni, I.; Marinelli, Marco; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.; Angelone, M.; Pillon, M.; Dolbnya, I.; Sawhney, K.; Tartoni, N.

    2011-04-01

    A synthetic multistrip single-crystal-diamond detector based on a p-type/intrinsic diamond/Schottky metal transverse configuration, operating at zero-bias voltage, was developed. The device was characterized at the Diamond Light Source synchrotron in Harwell (UK) under monochromatic high-flux X-ray beams from 6 to 20 keV and a micro-focused 10 keV beam with a spot size of ~3 μm. No significant pixel-to-pixel variation of both spectral responsivity and time response, high spatial resolution and good signal uniformity along each strip were found, suggesting the tested device structure as a promising sensor for X-ray and UV radiation imaging.

  6. Application of a single crystal chemical vapor deposition diamond detector for deuteron plasma neutron measurement

    NASA Astrophysics Data System (ADS)

    Xie, Xufei; Yuan, Xi; Zhang, Xing; Chen, Zhongjing; Peng, Xingyu; Du, Tengfei; Li, Tao; Hu, Zhimeng; Cui, Zhiqiang; Chen, Jinxiang; Li, Xiangqing; Zhang, Guohui; Fan, Tieshuan; Yuan, Guoliang; Yang, Jinwei; Yang, Qingwei

    2014-10-01

    A single crystal chemical vapor deposition (scCVD) diamond detector has been characterized and employed for the neutron measurement at the HL-2A tokamak device. The scCVD diamond detector has been deposited with 5 μm of lithium fluoride (LiF) layer to enhance the sensitivity to thermal neutrons. Time stability of the detector has been studied with α-source and good performance has been found for more than 12 h. Neutron irradiations have been performed in four quasi-monoenergetic neutron fields in the energy range from 2.50 MeV to 16.03 MeV. The measured response function of the scCVD diamond detector to 14.13 MeV neutrons shows a narrow 12C (n, α)9Be reaction peak which is well isolated from other structures by about 1 MeV in energy, indicating the great potential as a fast neutron spectrometer. Neutron measurement of deuterium plasma discharge was established at the HL-2A tokamak device, and good consistence has been revealed among this detector signal and other related signals.

  7. Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal

    PubMed Central

    Wilts, Bodo D.; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G.

    2012-01-01

    The brilliant structural body colours of many animals are created by three-dimensional biological photonic crystals that act as wavelength-specific reflectors. Here, we report a study on the vividly coloured scales of the diamond weevil, Entimus imperialis. Electron microscopy identified the chitin and air assemblies inside the scales as domains of a single-network diamond (Fd3m) photonic crystal. We visualized the topology of the first Brillouin zone (FBZ) by imaging scatterometry, and we reconstructed the complete photonic band structure diagram (PBSD) of the chitinous photonic crystal from reflectance spectra. Comparison with calculated PBSDs indeed showed a perfect overlap. The unique method of non-invasive hemispherical imaging of the FBZ provides key insights for the investigation of photonic crystals in the visible wavelength range. The characterized extremely large biophotonic nanostructures of E. imperialis are structurally optimized for high reflectance and may thus be well suited for use as a template for producing novel photonic devices, e.g. through biomimicry or direct infiltration from dielectric material. PMID:22188768

  8. Growth, Characterization and Device Development in Monocrystalline Diamond Films

    DTIC Science & Technology

    1991-09-30

    Electrical Conductivity Measurements of Natural Diamond and Diamond Films", To be published in "Surface and Coatings Technology", Proceedings of the First...European Conference on Diamond and Diamond-Like Carbon Coatings , Sept 17-19, 1990. 3. M.I. I andstrass and K.V. Ravi, "The Resistivity of CVD Diamond...that the avalanche mechanism involves deep level semiconductors as shown in Fig. 3. The critical field states corresponding to residual impurities

  9. Dosimetric characterization of a synthetic single crystal diamond detector in clinical radiation therapy small photon beams

    SciTech Connect

    Ciancaglioni, I.; Marinelli, Marco; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.; Consorti, R.; Petrucci, A.; De Notaristefani, F.

    2012-07-15

    Purpose: To determine the potentialities of synthetic single crystal diamond Schottky diodes for accurate dose measurements in radiation therapy small photon beams. Methods: The dosimetric properties of a diamond-based detector were assessed by comparison with a reference microionization chamber. The diamond device was operated at zero bias voltage under irradiation with high-energy radiotherapic photon beams. The stability of the detector response and its dose and dose rate dependence were measured. Different square field sizes ranging from 1 Multiplication-Sign 1 cm{sup 2} to 10 Multiplication-Sign 10 cm{sup 2} were used during comparative dose distribution measurements by means of percentage depth dose curves (PDDs), lateral beam profiles, and output factors. The angular and temperature dependence of the diamond detector response were also studied. Results: The detector response shows a deviation from linearity of less than {+-}0.5% in the 0.01-7 Gy range and dose rate dependence below {+-}0.5% in the 1-6 Gy/min range. PDDs and output factors are in good agreement with those measured by the reference ionization chamber within 1%. No angular dependence is observed by rotating the detector along its axis, while {approx}3.5% maximum difference is measured by varying the radiation incidence angle in the polar direction. The temperature dependence was investigated as well and a {+-}0.2% variation of the detector response is found in the 18-40 Degree-Sign C range. Conclusions: The obtained results indicate the investigated synthetic diamond-based detector as a candidate for small field clinical radiation dosimetry in advanced radiation therapy techniques.

  10. Dosimetric characterization of a synthetic single crystal diamond detector in clinical radiation therapy small photon beams.

    PubMed

    Ciancaglioni, I; Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Consorti, R; Petrucci, A; De Notaristefani, F

    2012-07-01

    To determine the potentialities of synthetic single crystal diamond Schottky diodes for accurate dose measurements in radiation therapy small photon beams. The dosimetric properties of a diamond-based detector were assessed by comparison with a reference microionization chamber. The diamond device was operated at zero bias voltage under irradiation with high-energy radiotherapic photon beams. The stability of the detector response and its dose and dose rate dependence were measured. Different square field sizes ranging from 1 × 1 cm(2) to 10 × 10 cm(2) were used during comparative dose distribution measurements by means of percentage depth dose curves (PDDs), lateral beam profiles, and output factors. The angular and temperature dependence of the diamond detector response were also studied. The detector response shows a deviation from linearity of less than ±0.5% in the 0.01-7 Gy range and dose rate dependence below ±0.5% in the 1-6 Gy∕min range. PDDs and output factors are in good agreement with those measured by the reference ionization chamber within 1%. No angular dependence is observed by rotating the detector along its axis, while ∼3.5% maximum difference is measured by varying the radiation incidence angle in the polar direction. The temperature dependence was investigated as well and a ±0.2% variation of the detector response is found in the 18-40 °C range. The obtained results indicate the investigated synthetic diamond-based detector as a candidate for small field clinical radiation dosimetry in advanced radiation therapy techniques.

  11. Investigations of high mobility single crystal chemical vapor deposition diamond for radiotherapy photon beam monitoring

    SciTech Connect

    Tromson, D.; Descamps, C.; Tranchant, N.; Bergonzo, P.; Nesladek, M.; Isambert, A.

    2008-03-01

    The intrinsic properties of diamond make this material theoretically very suitable for applications in medical physics. Until now ionization chambers have been fabricated from natural stones and are commercialized by PTW, but their fairly high costs and long delivery times have often limited their use in hospital. The properties of commercialized intrinsic polycrystalline diamond were investigated in the past by many groups. The results were not completely satisfactory due to the nature of the polycrystalline material itself. In contrast, the recent progresses in the growth of high mobility single crystal synthetic diamonds prepared by chemical vapor deposition (CVD) technique offer new alternatives. In the framework of the MAESTRO project (Methods and Advanced Treatments and Simulations for Radio Oncology), the CEA-LIST is studying the potentialities of synthetic diamond for new techniques of irradiation such as intensity modulated radiation therapy. In this paper, we present the growth and characteristics of single crystal diamond prepared at CEA-LIST in the framework of the NoRHDia project (Novel Radiation Hard CVD Diamond Detector for Hadrons Physics), as well as the investigations of high mobility single crystal CVD diamond for radiotherapy photon beam monitoring: dosimetric analysis performed with the single crystal diamond detector in terms of stability and repeatability of the response signal, signal to noise ratio, response speed, linearity of the signal versus the absorbed dose, and dose rate. The measurements performed with photon beams using radiotherapy facilities demonstrate that single crystal CVD diamond is a good alternative for air ionization chambers for beam quality control.

  12. Find of anisotropic carbonic matter on a curve-faced diamond crystal

    NASA Astrophysics Data System (ADS)

    Brodskaya, R. L.; Golubev, E. A.; Isaenko, S. I.

    2016-12-01

    The study focuses on the identification and investigation of crystal-optical anisotropy phenomena observed on surfaces of a curve-faced diamond crystal found in alluvial sediments of the Lower Us'va River in Perm territory. Raman spectroscopy and atomic force microscopy show that interference of polarized light reflected from the tetrahexahedral faces of the diamond crystal is inspired by anisotropic carbonic matter, which appears as a film with graphene or nanographite structure and about 4 nm in thickness. The data allow us to suggest the formation conditions of curve-faced diamond crystals and origin of nanocrystalline carbonic matter on their faces.

  13. Ohmic contact between iridium film and hydrogen-terminated single crystal diamond.

    PubMed

    Wang, Yan-Feng; Chang, Xiaohui; Li, Shuoye; Zhao, Dan; Shao, Guoqing; Zhu, Tianfei; Fu, Jiao; Zhang, Pengfei; Chen, Xudong; Li, Fengnan; Liu, Zongchen; Fan, Shuwei; Bu, Renan; Wen, Feng; Zhang, Jingwen; Wang, Wei; Wang, Hong-Xing

    2017-09-22

    Investigation of ohmic contact between iridium (Ir) film and hydrogen-terminated single crystal diamond has been carried out with annealing temperature from 300 to 600 °C in argon (Ar) and hydrogen ambient. Electrodes were deposited on hydrogen-terminated single crystal diamond by electron beam evaporation technique, and specific contact resistivity has been measured by transmission line model. The interface between Ir film and hydrogen-terminated single crystal diamond was characterized by transmission electron microscopy and energy dispersive X-ray spectroscopy. Theoretical calculation value of barrier height between Ir film and hydrogen-terminated single crystal diamond was around -1.1 eV. All results indicate that an excellent ohmic contact could be formed between Ir film and hydrogen-terminated single diamond.

  14. Observations of growth process of chemically vapor deposited diamond single crystal

    NASA Astrophysics Data System (ADS)

    Itoh, Hideaki; Nakamura, Tadashi; Iwahara, Hiroyasu; Sakamoto, Hiromichi

    1991-02-01

    The growth process and morphological variations of diamond single crystals obtained by microwave plasma CVD of the CO-H 2 reactant system were observed using scanning electron microscopy. The optimum conditions for spontaneous nucleation and growth of diamond on a (100) Si wafer were microwave power of 550 W, total pressure of 30-60 Torr, total flow rate of 200 ml/min and CO concentration of 5-10 vol%. Cubo-octahedral single crystals of diamond composed of {111} and {100} planes were grown epitaxially for 50 h by treating the coarse seed crystals of natural diamonds under the above growth conditions. Concave and terrace parts of the growing crystal surface were preferentially grown, resulting in the formation of symmetric single crystals. Typical trigonal pit patterns were formed on {111} planes of the developing crystal surface, while pyramidal shaped growth steps were observed on the {100} planes.

  15. The stability of a crystal with diamond structure for patchy particles with tetrahedral symmetry

    NASA Astrophysics Data System (ADS)

    Noya, Eva G.; Vega, Carlos; Doye, Jonathan P. K.; Louis, Ard A.

    2010-06-01

    The phase diagram of model anisotropic particles with four attractive patches in a tetrahedral arrangement has been computed at two different values of the range of the potential, with the aim of investigating the conditions under which a diamond crystal can be formed. We find that the diamond phase is never stable for our longer-ranged potential. At low temperatures and pressures, the fluid freezes into a body-centered-cubic solid that can be viewed as two interpenetrating diamond lattices with a weak interaction between the two sublattices. Upon compression, an orientationally ordered face-centered-cubic crystal becomes more stable than the body-centered-cubic crystal, and at higher temperatures, a plastic face-centered-cubic phase is stabilized by the increased entropy due to orientational disorder. A similar phase diagram is found for the shorter-ranged potential, but at low temperatures and pressures, we also find a region over which the diamond phase is thermodynamically favored over the body-centered-cubic phase. The higher vibrational entropy of the diamond structure with respect to the body-centered-cubic solid explains why it is stable even though the enthalpy of the latter phase is lower. Some preliminary studies on the growth of the diamond structure starting from a crystal seed were performed. Even though the diamond phase is never thermodynamically stable for the longer-ranged model, direct coexistence simulations of the interface between the fluid and the body-centered-cubic crystal and between the fluid and the diamond crystal show that at sufficiently low pressures, it is quite probable that in both cases the solid grows into a diamond crystal, albeit involving some defects. These results highlight the importance of kinetic effects in the formation of diamond crystals in systems of patchy particles.

  16. The stability of a crystal with diamond structure for patchy particles with tetrahedral symmetry.

    PubMed

    Noya, Eva G; Vega, Carlos; Doye, Jonathan P K; Louis, Ard A

    2010-06-21

    The phase diagram of model anisotropic particles with four attractive patches in a tetrahedral arrangement has been computed at two different values of the range of the potential, with the aim of investigating the conditions under which a diamond crystal can be formed. We find that the diamond phase is never stable for our longer-ranged potential. At low temperatures and pressures, the fluid freezes into a body-centered-cubic solid that can be viewed as two interpenetrating diamond lattices with a weak interaction between the two sublattices. Upon compression, an orientationally ordered face-centered-cubic crystal becomes more stable than the body-centered-cubic crystal, and at higher temperatures, a plastic face-centered-cubic phase is stabilized by the increased entropy due to orientational disorder. A similar phase diagram is found for the shorter-ranged potential, but at low temperatures and pressures, we also find a region over which the diamond phase is thermodynamically favored over the body-centered-cubic phase. The higher vibrational entropy of the diamond structure with respect to the body-centered-cubic solid explains why it is stable even though the enthalpy of the latter phase is lower. Some preliminary studies on the growth of the diamond structure starting from a crystal seed were performed. Even though the diamond phase is never thermodynamically stable for the longer-ranged model, direct coexistence simulations of the interface between the fluid and the body-centered-cubic crystal and between the fluid and the diamond crystal show that at sufficiently low pressures, it is quite probable that in both cases the solid grows into a diamond crystal, albeit involving some defects. These results highlight the importance of kinetic effects in the formation of diamond crystals in systems of patchy particles.

  17. Mechanical design of thin-film diamond crystal mounting apparatus for coherence preservation hard x-ray optics

    SciTech Connect

    Shu, Deming Shvyd’ko, Yuri V.; Stoupin, Stanislav; Kim, Kwang-Je

    2016-07-27

    A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.

  18. Temporal and spectral deconvolution of data from diamond, photoconductive devices

    NASA Astrophysics Data System (ADS)

    Knauer, J. P.; Gindele, N. C.

    2004-10-01

    Diamond, photoconductive devices (DPCDs) have proven to be stable detectors of x-ray emission from plasmas. An array of six DPCDs is used on the OMEGA target chamber to measure the temporal and spectral dependence of x rays emitted from targets. 100 ps laser pulses incident on high-Z targets are used to measure the time response of the detectors, bias circuits, cables, and digitizer. This information is used to deconvolve the measured data to extract the temporal shape of the x-ray emission. The x-ray spectrum is measured by placing absorber filters for a specific x-ray energy region in front of the DPCDs. The data are analyzed with a linear algebraic method to determine the spectral shape. This technique removes the need to apply smoothing to the spectral analysis and provides "confidence bands" for the x-ray spectrum.

  19. Stimulated Raman scattering-active isotopically pure 12C and 13C diamond crystals: A milestone in the development of diamond photonics

    NASA Astrophysics Data System (ADS)

    Kaminskii, A. A.; Ral'chenko, V. G.; Yoneda, H.; Bol'shakov, A. P.; Inyushkin, A. V.

    2016-09-01

    Isotopically pure 12C and 13C diamonds are synthesized by chemical vapor deposition and impulsive stimulated Raman scattering in these crystals is investigated. The thermal conductivity of 12C isotopically pure damond and natC diamond with natural isotopic composition is measured. Phonon-nondegenerate Stokes lasing based on the χ(3) nonlinearity in the 12C, 13C, and natC diamond "triad" is attained, which opens a new stage in the development of diamond photonics.

  20. Diamond bio electronics.

    PubMed

    Linares, Robert; Doering, Patrick; Linares, Bryant

    2009-01-01

    The use of diamond for advanced applications has been the dream of mankind for centuries. Until recently this dream has been realized only in the use of diamond for gemstones and abrasive applications where tons of diamonds are used on an annual basis. Diamond is the material system of choice for many applications, but its use has historically been limited due to the small size, high cost, and inconsistent (and typically poor) quality of available diamond materials until recently. The recent development of high quality, single crystal diamond crystal growth via the Chemical Vapor Deposition (CVD) process has allowed physcists and increasingly scientists in the life science area to think beyond these limitations and envision how diamond may be used in advanced applications ranging from quantum computing, to power generation and molecular imaging, and eventually even diamond nano-bots. Because of diamond's unique properties as a bio-compatible material, better understanding of diamond's quantum effects and a convergence of mass production, semiconductor-like fabrication process, diamond now promises a unique and powerful key to the realization of the bio-electronic devices being envisioned for the new era of medical science. The combination of robust in-the-body diamond based sensors, coupled with smart bio-functionalized diamond devices may lead to diamond being the platform of choice for bio-electronics. This generation of diamond based bio-electronic devices would contribute substantially to ushering in a paradigm shift for medical science, leading to vastly improved patient diagnosis, decrease of drug development costs and risks, and improved effectiveness of drug delivery and gene therapy programs through better timed and more customized solutions.

  1. Single-crystal CVD diamond detector for high-resolution particle spectrometry

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Murakami, H.; Shimaoka, T.; Tsubota, M.; Kaneko, J. H.

    2014-11-01

    The performance of a single-crystal diamond detector, grown by chemical vapour deposition, as an energy spectrometer for charged particles was studied. The detector was able to identify four different energies of 241\\text{Am} α -particles (5.389, 5.443, 5.486, and 5.545 MeV) thanks to a superior intrinsic energy resolution of ˜0.4{%} (full width at half maximum). The electrode configuration, specifically the electric field configuration inside the diamond crystal, and the electrode materials, strongly affect the energy resolution for charged particles. The charge collection efficiency inside the diamond crystal was ˜97{%} for both electrons and holes.

  2. Morphology of flattened diamond crystals synthesized by the oxy-acetylene flame method

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Keiji; Kimura, Takeshi; Hirose, Yoichi

    1993-01-01

    Flattened diamond crystals were synthesized by the oxy-acetyle flame method under high O2/C2H2 gas ratio conditions (≥0.95). The morphology of the flattened diamond crystals is characterized as follows: the ratio of the size of the top face and the height is 5:1 or more and all the faces are {111} faces. The twin boundaries are formed many times parallel to the top face. Scanning electron microscopy observations indicate that the flattened diamond crystals exhibit a good crystalline morphology. The motive force of lateral growth is caused by a re-entrant corner effect which results from the formation of twin boundaries.

  3. Achieving ultra-hard surface of mechanically polished diamond crystal by thermo-chemical refinement

    NASA Astrophysics Data System (ADS)

    Zong, Wenjun; Zhang, Junjie; Liu, Yue; Sun, Tao

    2014-10-01

    In the present work, we propose a novel thermo-chemical post-processing method for refining the mechanically polished surface of natural diamond crystal. The deformation mechanisms of diamond crystal during mechanical polishing are elucidated by Raman Spectroscopy corroborated by molecular dynamics simulations. Moreover, the surface mechanical properties of diamond crystal are qualitatively characterized by nanoindentation tests. Our results reveal that under mechanical polishing there are phase transformations from diamond carbons to layered graphite, amorphous sp3 and sp2 hybrided structures occurred in the topmost surface layer, which consequently deteriorates the intrinsic surface strength of diamond crystal. In the following thermo-chemical refinement, the polishing-induced amorphous carbons, layered graphite and internal stress are largely removed through the weak oxidation reaction. It is found that the formation of considerable graphene structures in the topmost surface layer results in an ultra-hard diamond crystal surface with dramatically enhanced hardness and Young's modulus. Our findings shed light on the preparation of natural diamond crystal surface with superior mechanical properties.

  4. Recent Advances in High-Growth Rate Single-Crystal CVD Diamond

    SciTech Connect

    Liang, Q.; Yan, C; Meng, Y; Lai, J; Krasnicki, S; Mao, H; Hemley, R

    2009-01-01

    There have been important advances in microwave plasma chemical vapor deposition (MPCVD) of large single-crystal CVD diamond at high growth rates and applications of this diamond. The types of gas chemistry and growth conditions, including microwave power, pressure, and substrate surface temperatures, have been varied to optimize diamond quality and growth rates. The diamond has been characterized by a variety of spectroscopic and diffraction techniques. We have grown single-crystal CVD diamond over ten carats and above 1 cm in thickness at growth rates of 50-100 {micro}m/h. Colorless and near colorless single crystals up to two carats have been produced by further optimizing the process. The nominal Vickers fracture toughness of this high-growth rate diamond can be tuned to exceed 20 MPa m{sup 1/2} in comparison to 5-10 MPa m{sup 1/2} for conventional natural and CVD diamond. Post-growth high-pressure/high-temperature (HPHT) and low-pressure/high-temperature (LPHT) annealing have been carried out to alter the optical, mechanical, and electronic properties. Most recently, single-crystal CVD diamond has been successfully annealed by LPHT methods without graphitization up to 2200 C and < 300 Torr for periods of time ranging from a fraction of minute to a few hours. Significant changes observed in UV, visible, infrared, and photoluminescence spectra are attributed to changes in various vacancy centers and extended defects.

  5. HPHT synthesis of N-H co-doped diamond single crystals

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Jia, Xiaopeng; Chen, Ning; Li, Yadong; Guo, Longsuo; Chen, Liangchao; Ma, Hong-an; Liu, Xiaobing

    2016-02-01

    In this paper, a series of nitrogen and hydrogen elements (N-H) co-doped diamond single crystals were synthesized in the NiMnCo-C system with melamine (C3N6H6) additive by temperature gradient growth (TGG) method under high-pressure and high-temperature (HPHT). High nitrogen and hydrogen growth environment obviously reduces the growth rate of the diamond. The synthetic diamond crystals are octahedral shape with a green or dark green color. This results indicate that the morphology of the synthetic N-H co-doped gem-diamond can be well-controlled by TGG method. Fourier transform infrared spectroscopy (FTIR) indicate that high-quality diamond single crystals with nitrogen concentrations up to 2100 ppm have been successfully synthesized and the hydrogen related peaks at 2850 cm-1 (sp3-CH3) and 2920 cm-1 (sp3-CH2-) are found in these synthetic diamond. Meanwhile, with the increasing of C-centers the nitrogen atoms aggregate and form into A-centers in these synthetic diamonds. This is the highest quality of N-H co-doped gem-diamond single crystal synthesized in high nitrogen and high hydrogen growth environment reported so far.

  6. A relation between a metallic film covering on diamond formed during growth and nanosized inclusions in HPHT as-grown diamond single crystals

    NASA Astrophysics Data System (ADS)

    Yin, L.-W.; Li, M.-S.; Gong, Z.-G.; Bai, Y.-J.; Li, F.-Z.; Hao, Z.-Y.

    One of the most important characteristics and basic phenomena during diamond growth from liquid metal catalyst solutions saturated with carbon at high temperature-high pressure (HPHT) is that there exists a thin metallic film covering on the growing diamond, through which carbon-atom clusters are delivered to the surface of the growing diamond by diffusion. A study of microstructures of such a metallic film and a relation between the thin metallic film and the inclusions trapped in HPHT as-grown diamond single crystals may be helpful to obtain high-purity diamond single crystals. It was found that both the metallic film and the HPHT as-grown diamond single crystals contain some nanostructured regions. Examination by transmission electron microscopy suggests that the microstructure of the thin metallic film is in accordance with nanosized particles contained in HPHT as-grown diamond single crystals. The nanosized particles with several to several tens of nanometers in dimension distribute homogeneously in the metallic film and in the diamond matrix. Generally, the size of the particles in the thin metallic film is relatively larger than that within the diamond matrix. Selected area electron diffraction patterns suggest that the nanosized particles in the metallic film and nanometer inclusions within the diamond are mainly composed of f.c.c. (FeNi)23C6, hexagonal graphite and cubic γ-(FeNi). The formation of the nanosized inclusions within the diamond single crystals is thought not only to relate to the growth process and rapid quenching from high temperature after diamond synthesis, but also to be associated with large amounts of defects in the diamond, because the free energy in these defect areas is very high. The critical size of carbide, γ-(FeNi)and graphite particles within the diamond matrix should decrease and not increase according to thermodynamic theory during quenching from HPHT to room temperature and ambient pressure.

  7. Cooling device featuring thermoelectric and diamond materials for temperature control of heat-dissipating devices

    NASA Technical Reports Server (NTRS)

    Vandersande, Ian W. (Inventor); Ewell, Richard (Inventor); Fleurial, Jean-Pierre (Inventor); Lyon, Hylan B. (Inventor)

    1998-01-01

    A cooling device for lowering the temperature of a heat-dissipating device. The cooling device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with the heat-dissipating device. During operation, heat flows from the heat-dissipating device into the heat-conducting substrate, where it is spread out over a relatively large area. A thermoelectric cooling material (e.g., a Bi.sub.2 Te.sub.3 -based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. Application of electrical power to the thermoelectric material drives the thermoelectric material to pump heat into a second heat-conducting substrate which, in turn, is attached to a heat sink.

  8. Fluid inclusions in carbonado diamond_Implication to the crystal growth environment

    NASA Astrophysics Data System (ADS)

    Kagi, H.; Ishibashi, H.; Sakurai, H.; Ohfuji, H.

    2010-12-01

    Diamond is a unique geological material carrying inside fluid and solid inclusions which are pristine witnesses of diamond crystallization media. Carbonado is natural polycrystalline diamond whose origin is still under hot depate. Our previous study on Central African carbonado reported the presence of fluid inclusions and high residual pressure in the diamond [1]. These results suggested that C-O-H mantle fluid was trapped in the carbonado sample and carbonado had grown in the volatile-rich environment in the mantle. However, it was unclear that the fluid inclusions in carbonado existed inside of diamond grains or in the grain boundaries. In this study, we precisely investigated the location of fluid inclusions from spectroscopic measurements and TEM observations. A carbonado grain with hundreds of micrometer in diameter was heated incrementally at temperatures from 700 to 1100°C under vacuum. After heating at each temperature condition, infrared absorption spectra were measured. Dehydration of hydrous minerals were observed with increasing temperature. In contrast, absorption bands assignable to liquid water were observed up to 950°C right before graphitization occurred. This observation strongly suggests that the fluid was trapped inside of diamond grains. For obtaining direct evidence of fluid inclusion existing inside of a diamond grain, we conducted TEM observations on an FIB-fabricated thin foil of carbonado. We found a void in the carbonado sample. The void was surrounded by (111) equivalent crystal faces. The octahedral void controlled by crystal habit of host diamond strongly suggests that the void is the negative crystal of diamond. The existence of negative crystal of diamond indicates that the fluid equilibrated with surrounding diamond crystals. Moreover, it was found that the grain boundary of the polished carbonado sample was in zig-zag texture. The detailed EBSD analyses on the grain boundary indicated that the grain boundary corresponded to the

  9. Method to fabricate micro and nano diamond devices

    DOEpatents

    Morales, Alfredo M; Anderson, Richard J; Yang, Nancy Y. C.; Skinner, Jack L; Rye, Michael J

    2014-10-07

    A method including forming a diamond material on the surface of a substrate; forming a first contact and a separate second contact; and patterning the diamond material to form a nanowire between the first contact and the second contact. An apparatus including a first contact and a separate second contact on a substrate; and a nanowire including a single crystalline or polycrystalline diamond material on the substrate and connected to each of the first contact and the second contact.

  10. Method to fabricate micro and nano diamond devices

    DOEpatents

    Morales, Alfredo M.; Anderson, Richard J.; Yang, Nancy Y. C.; Skinner, Jack L.; Rye, Michael J.

    2017-04-11

    A method including forming a diamond material on the surface of a substrate; forming a first contact and a separate second contact; and patterning the diamond material to form a nanowire between the first contact and the second contact. An apparatus including a first contact and a separate second contact on a substrate; and a nanowire including a single crystalline or polycrystalline diamond material on the substrate and connected to each of the first contact and the second contact.

  11. Crystallization of diamond from a silicate melt of kimberlite composition in high-pressure and high-temperature experiments

    SciTech Connect

    Arima, Makoto; Nakayama, Kazuhiro ); Akaishi, Minoru; Yamaoka, Shinobu; Kanda, Hisao )

    1993-11-01

    In high-pressure and high-temperature experiments (1800-2200[degrees]C and 7.0-7.7 GPa), diamond crystallized and grew in a volatile-rich silicate melt of kimberlite composition. This diamond has well-developed [111] faces, and its morphologic characteristics resemble those of natural diamond but differ from those of synthetic diamond grown from metallic solvent-catalysts. The kimberlite melt has a strong solvent-catalytic effect on diamond formation, supporting the view that some natural diamonds crystallized from volatile-rich melts in the upper mantle. 19 refs., 3 figs., 1 tab.

  12. Adhesion and friction of single-crystal diamond in contact with transition metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    An investigation was conducted to examine the adhesion and friction of single-crystal diamond in contact with various transition metals and the nature of metal transfer to diamond. Sliding friction experiments were conducted with diamond in sliding contact with the metals yttrium, titanium, zirconium, vanadium, iron, cobalt, nickel, tungsten, platinum, rhenium and rhodium. All experiments were conducted with loads of 0.05 to 0.3 N, at a sliding velocity of 0.003 m per minute, in a vacuum of 10 to the -8th Pa, at room temperature, and on the (111) plane of diamond with sliding in the 110 line type direction. The results of the investigation indicate that the coefficient of friction for diamond in contact with various metals is related to the relative chemical activity of the metals in high vacuum. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to the surface of diamond in sliding.

  13. Single-crystal diamond pyramids: synthesis and application for atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Tuyakova, Feruza T.; Obraztsova, Ekaterina A.; Ismagilov, Rinat R.

    2016-03-01

    Here we present the results of investigations aimed at the development and testing of robust, chemically inert single-crystal diamond probes for atomic force microscopy (AFM). The probes were prepared by assembling common silicon probes with micrometer-sized pyramid-shaped single-crystal diamonds (SCD). The SCD were obtained by the selective thermal oxidation of the polycrystalline films grown by chemical vapor deposition. Electrostatic spray of adhesive coating onto silicon probes was used to attach individual SCD. Geometrical parameters of produced AFM SCD probes were revealed with transmission electron microscopy: the apex angle of the pyramidal diamond crystallite was ˜10 deg, and the curvature radius at the apex was ˜2 to 10 nm. The diamond AFM probes were used for surface imaging of deoxyribonucleic acid deposited on graphite substrate. Obtained results demonstrate high efficiency of the diamond AFM probes, allowing improvement of the image quality compared to standard silicon probes.

  14. Coupling of silicon-vacancy centers to a single crystal diamond cavity.

    PubMed

    Lee, Jonathan C; Aharonovich, Igor; Magyar, Andrew P; Rol, Fabian; Hu, Evelyn L

    2012-04-09

    Optical coupling of an ensemble of silicon-vacancy (SiV) centers to single-crystal diamond microdisk cavities is demonstrated. The cavities are fabricated from a single-crystal diamond membrane generated by ion implantation and electrochemical liftoff followed by homo-epitaxial overgrowth. Whispering gallery modes spectrally overlap with the zero-phonon line (ZPL) of the SiV centers and exhibit quality factors ∼ 2200. Lifetime reduction from 1.8 ns to 1.48 ns is observed from SiV centers in the cavity compared to those in the membrane outside the cavity. These results are pivotal in developing diamond integrated photonics networks.

  15. A single-crystal diamond-based thermal neutron beam monitor for instruments at pulsed neutron sources

    NASA Astrophysics Data System (ADS)

    Pietropaolo, A.; Verona Rinati, G.; Verona, C.; Schooneveld, E. M.; Angelone, M.; Pillon, M.

    2009-11-01

    Single-crystal diamond detectors manufactured through a Chemical Vapour Deposition (CVD) technique are recent technology devices that have been employed in reactor and Tokamak environments in order to detect both thermal and almost monochromatic 14 MeV neutrons produced in deuterium-tritium ( d-t) nuclear fusion reactions. Their robustness and compactness are the key features that can be exploited for different applications as well. Aim of the present experimental investigation is the assessment of the performance of a diamond detector as a thermal neutron beam monitor at pulsed neutron sources. To this aim, a test measurement was carried out on the Italian Neutron Experimental Station (INES) beam line at the ISIS spallation neutron source (Great Britain). The experiment has shown the capability of these devices to work at a pulsed neutron source for beam monitoring purposes. Other interesting possible applications are also suggested.

  16. GaN-on-diamond electronic device reliability: Mechanical and thermo-mechanical integrity

    SciTech Connect

    Liu, Dong; Sun, Huarui; Pomeroy, James W.; Kuball, Martin; Francis, Daniel; Faili, Firooz; Twitchen, Daniel J.

    2015-12-21

    The mechanical and thermo-mechanical integrity of GaN-on-diamond wafers used for ultra-high power microwave electronic devices was studied using a micro-pillar based in situ mechanical testing approach combined with an optical investigation of the stress and heat transfer across interfaces. We find the GaN/diamond interface to be thermo-mechanically stable, illustrating the potential for this material for reliable GaN electronic devices.

  17. Electron Microscopy of Natural and Epitaxial Diamond

    NASA Technical Reports Server (NTRS)

    Posthill, J. B.; George, T.; Malta, D. P.; Humphreys, T. P.; Rudder, R. A.; Hudson, G. C.; Thomas, R. E.; Markunas, R. J.

    1993-01-01

    Semiconducting diamond films have the potential for use as a material in which to build active electronic devices capable of operating at high temperatures or in high radiation environments. Ultimately, it is preferable to use low-defect-density single crystal diamond for device fabrication. We have previously investigated polycrystalline diamond films with transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and homoepitaxial films with SEM-based techniques. This contribution describes some of our most recent observations of the microstructure of natural diamond single crystals and homoepitaxial diamond thin films using TEM.

  18. Electron Microscopy of Natural and Epitaxial Diamond

    NASA Technical Reports Server (NTRS)

    Posthill, J. B.; George, T.; Malta, D. P.; Humphreys, T. P.; Rudder, R. A.; Hudson, G. C.; Thomas, R. E.; Markunas, R. J.

    1993-01-01

    Semiconducting diamond films have the potential for use as a material in which to build active electronic devices capable of operating at high temperatures or in high radiation environments. Ultimately, it is preferable to use low-defect-density single crystal diamond for device fabrication. We have previously investigated polycrystalline diamond films with transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and homoepitaxial films with SEM-based techniques. This contribution describes some of our most recent observations of the microstructure of natural diamond single crystals and homoepitaxial diamond thin films using TEM.

  19. New diamond cell for single-crystal x-ray diffraction

    SciTech Connect

    Boehler, Reinhard

    2006-11-15

    A new design for a high-precision diamond cell is described. Two kinematically mounted steel disks are elastically deflected to generate pressure. This principle provides higher precision in the diamond anvil alignment than most sliding piston-cylinder or guide-pin devices at significantly lower cost. With this new diamond cell conical diamond anvils with an x-ray aperture of 85 degree sign were successfully tested to over 50 GPa using helium as a pressure medium. Anvil thickness of less than 1.4 mm provides high x-ray transmission and low background, a significant improvement compared to beryllium or diamond-disk backing plates. Because the diamond anvils are supported by tungsten carbide seats, samples and pressure media can be annealed by external or laser heating to provide hydrostatic pressure conditions.

  20. Influence of annealing treatment on as-grown Ib-type diamond crystal at a high temperature and high pressure

    NASA Astrophysics Data System (ADS)

    Huang, Guo-Feng; Yin, Ji-Wen; Bai, Hong-Bo; Hu, Yi-Ga; Kai, Li; Jing, Jing; Ma, Hong-An; Jia, Xiao-Peng

    2012-10-01

    In this paper, we report on the influence of annealing treatment on as-grown Ib-type diamond crystal under high pressure and high temperature in a china-type cubic anvil high-pressure apparatus. Experiments are carried out at a pressure of 7.0 GPa and temperatures ranging from 1700 °C to 1900 °C for 1 h. Annealing treatment of the diamond crystal shows that the aggregation rate constant of nitrogen atoms in the as-grown Ib-type diamond crystal strongly depends on diamond morphology and annealing temperature. The aggregation rate constant of nitrogen remarkably increases with the increase of annealing temperature and its value in octahedral diamond is much higher than that in cubic diamond annealed at the same temperature. The colour of octahedral diamond crystal is obviously reduced from yellow to nearly colorless after annealing treatment for 1 h at 1900 °C, which is induced by nitrogen aggregation in a diamond lattice. The extent of nitrogen aggregation in an annealed diamond could approach approximately 98% indicated from the infrared absorption spectra. The micro-Raman spectrum reveals that the annealing treatment can improve the crystalline quality of Ib-type diamond characterized by a half width at full maximum at first order Raman peak, and therefore the annealed diamond crystals exhibit nearly the same properties as the natural IaA-type diamond stones of high quality in the Raman measurements.

  1. EBS/C proton spectra from a virgin diamond crystal

    NASA Astrophysics Data System (ADS)

    Erich, M.; Kokkoris, M.; Fazinić, S.; Petrović, S.

    2016-08-01

    In the present work, elastic backscattering channeling spectra, EBS/C, of protons in a <1 0 0> diamond crystal were experimentally and theoretically studied via a new computer simulation code. Proton incident energies for EBS/C spectra were in the energy range from 1.0 MeV to 1.9 MeV. The energy range was chosen in order to explore a distinct strong resonance of the 12C(p,p0)12C elastic scattering at 1737 keV. The computer simulation code applied for the fitting of the experimental spectra in the random mode was compared with the corresponding SIMNRA results. In the channeling mode, it assumes a Gompertz type sigmoidal dechanneling function, which has two fitting parameters, xc and k, the dechanneling range and rate, respectively. It also uses α, ratio of the channeling to random energy losses, as a fitting parameter. It was observed that xc increases, k decreases and α stays relatively constant with the proton incident energy. These observations confirm the physical interpretation of the fitting parameters. Also, they constitute the basics for the further development of the code for the quantification of induced amorphization and depth profiling of implanted ions.

  2. The mechanical properties of various chemical vapor deposition diamond structures compared to the ideal single crystal

    NASA Astrophysics Data System (ADS)

    Hess, Peter

    2012-03-01

    The structural and electronic properties of the diamond lattice, leading to its outstanding mechanical properties, are discussed. These include the highest elastic moduli and fracture strength of any known material. Its extreme hardness is strongly connected with the extreme shear modulus, which even exceeds the large bulk modulus, revealing that diamond is more resistant to shear deformation than to volume changes. These unique features protect the ideal diamond lattice also against mechanical failure and fracture. Besides fast heat conduction, the fast vibrational movement of carbon atoms results in an extreme speed of sound and propagation of crack tips with comparable velocity. The ideal mechanical properties are compared with those of real diamond films, plates, and crystals, such as ultrananocrystalline (UNC), nanocrystalline, microcrystalline, and homo- and heteroepitaxial single-crystal chemical vapor deposition (CVD) diamond, produced by metastable synthesis using CVD. Ultrasonic methods have played and continue to play a dominant role in the determination of the linear elastic properties, such as elastic moduli of crystals or the Young's modulus of thin films with substantially varying impurity levels and morphologies. A surprising result of these extensive measurements is that even UNC diamond may approach the extreme Young's modulus of single-crystal diamond under optimized deposition conditions. The physical reasons for why the stiffness often deviates by no more than a factor of two from the ideal value are discussed, keeping in mind the large variety of diamond materials grown by various deposition conditions. Diamond is also known for its extreme hardness and fracture strength, despite its brittle nature. However, even for the best natural and synthetic diamond crystals, the measured critical fracture stress is one to two orders of magnitude smaller than the ideal value obtained by ab initio calculations for the ideal cubic lattice. Currently

  3. Liquid crystal device and method thereof

    DOEpatents

    Shiyanovskii, Sergij V; Gu, Mingxia; Lavrentovich, Oleg D

    2012-10-23

    The invention provides a liquid crystal device and method thereof. Subsequent to applying a first electrical voltage on a liquid crystal to induce a reorientation of the liquid crystal, a second electrical voltage with proper polarity is applied on the liquid crystal to assist the relaxation of the reorientation that was induced by the first electrical voltage. The "switch-off" phase of the liquid crystal can therefore be accelerated or temporally shortened, and the device can exhibit better performance such as fast response to on/off signals. The invention can be widely used LCD, LC shutter, LC lens, spatial light modulator, telecommunication device, tunable filter, beam steering device, and electrically driven LC device, among others.

  4. Kelvin probe characterization of buried graphitic microchannels in single-crystal diamond

    SciTech Connect

    Bernardi, E. Battiato, A.; Olivero, P.; Vittone, E.; Picollo, F.

    2015-01-14

    In this work, we present an investigation by Kelvin Probe Microscopy (KPM) of buried graphitic microchannels fabricated in single-crystal diamond by direct MeV ion microbeam writing. Metal deposition of variable-thickness masks was adopted to implant channels with emerging endpoints and high temperature annealing was performed in order to induce the graphitization of the highly-damaged buried region. When an electrical current was flowing through the biased buried channel, the structure was clearly evidenced by KPM maps of the electrical potential of the surface region overlying the channel at increasing distances from the grounded electrode. The KPM profiling shows regions of opposite contrast located at different distances from the endpoints of the channel. This effect is attributed to the different electrical conduction properties of the surface and of the buried graphitic layer. The model adopted to interpret these KPM maps and profiles proved to be suitable for the electronic characterization of buried conductive channels, providing a non-invasive method to measure the local resistivity with a micrometer resolution. The results demonstrate the potential of the technique as a powerful diagnostic tool to monitor the functionality of all-carbon graphite/diamond devices to be fabricated by MeV ion beam lithography.

  5. Radial mosaic internal structure of rounded diamond crystals from alluvial placers of Siberian platform

    NASA Astrophysics Data System (ADS)

    Ragozin, A. L.; Zedgenizov, D. A.; Kuper, K. E.; Shatsky, V. S.

    2016-12-01

    The specific gray to almost black diamonds of rounded morphology are especially typical in alluvial placers of the northeastern part of the Siberian platform. The results of study of internal structure of these diamonds are presented. X-ray topography and birefringence patterns of polished plates of studied diamonds show their radial mosaic structure. Diamonds consists of slightly misorientated (up to 20') subindividuals which are combined to mosaic wedge-shaped sectors. Electron back-scatter diffraction technique has demonstrated that subindividuals are often combined in the single large blocks (subgrains). The whole crystals commonly consist of several large subgrains misoriented up to 5° to one another. The total nitrogen content of these diamonds vary in the range 900-3300 ppm and nitrogen aggregation state (NB/(NB + NA)*100) from 25 to 64 %. Rounded diamond crystals of variety V are suggested to have been formed at the high growth rate caused by the high oversaturation of carbon in the crystallization medium. It may result in the splitting of growing crystal and their radial mosaic structure as a sequence. High content of structural nitrogen defects and the great number of mechanical impurities - various mineral and fluid inclusions may also favor to generation of this structure.

  6. Growth, Characterization and Device Development in Monocrystalline Diamond Films

    DTIC Science & Technology

    1993-10-31

    of these phases must be determined by HRTEM . The research of this grant has included the studies of the process parameters and substrate3 effects on...resolution transmission electron mi- cleation). Fedoseev et al.5- 7 presented theoretical argu- croscopy ( HRTEM ) of diamond nucleation on "diamond ments...diffusivity of the predeposition of carbonaceous layers of diamondlike carbon in the respective carbide. However, attempts in carbon2 -2 ( DLC ) or even oil

  7. Invited Article: Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides

    NASA Astrophysics Data System (ADS)

    Schukraft, M.; Zheng, J.; Schröder, T.; Mouradian, S. L.; Walsh, M.; Trusheim, M. E.; Bakhru, H.; Englund, D. R.

    2016-05-01

    We demonstrate a self-aligned lithographic technique for precision generation of nitrogen vacancy (NV) centers within photonic nanostructures on bulk diamond substrates. The process relies on a lithographic mask with nanoscale implantation apertures for NV creation, together with larger features for producing waveguides and photonic nanocavities. This mask allows targeted nitrogen ion implantation, and precision dry etching of nanostructures on bulk diamond. We demonstrate high-yield generation of single NVs at pre-determined nanoscale target regions on suspended diamond waveguides. We report implantation into the mode maximum of diamond photonic crystal nanocavities with a single-NV per cavity yield of ˜26% and Purcell induced intensity enhancement of the zero-phonon line. The generation of NV centers aligned with diamond photonic structures marks an important tool for scalable production of optically coupled spin memories.

  8. Effects of hydrogen on diamond single crystal synthesized under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Li, Yong; Jia, Xiaopeng; Song, Mousheng; Ma, Hong-An; Zhou, Zhenxiang; Fang, Chao; Wang, Fangbiao; Chen, Ning; Wang, Ying

    2015-09-01

    In this paper, diamond single crystals doped with LiH and boron additives were synthesized in Fe64Ni36-C system under high pressure and high temperature. Under the fixed pressure condition, we found that the synthesis temperature increased slightly after the addition of LiH in the synthesis system. The {100}-orientated surface morphology was investigated by scanning electron microscopy (SEM). The nitrogen concentration in the obtained diamond was analyzed and evaluated using Fourier transmission infrared spectroscopy (FTIR). Furthermore, the electrical properties of Ib-type and boron-doped diamond before and after hydrogenation using Hall effect measurement, which suggested that the conductivity of diamond co-doped with hydrogen and boron was obviously enhanced than that of boron-doped diamond.

  9. Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth

    NASA Astrophysics Data System (ADS)

    Tang, Y.-H.; Golding, B.

    2016-02-01

    A method for lateral overgrowth of low-stress single crystal diamond by chemical vapor deposition (CVD) is described. The process is initiated by deposition of a thin (550 nm) (001) diamond layer on Ir-buffered a-plane sapphire. The diamond is partially masked by periodic thermally evaporated Au stripes using photolithography. Lateral overgrowth of the Au occurs with extremely effective filtering of threading dislocations. Thermal stress resulting from mismatch of the low thermal expansion diamond and the sapphire substrate is largely accommodated by the ductile Au layer. The stress state of the diamond is investigated by Raman spectroscopy for two thicknesses: at 10 μm where the film has just overgrown the Au mask and at 180 μm where the film thickness greatly exceeds the scale of the masking. For the 10-μm film, the Raman linewidth shows spatial oscillations with the period of the Au stripes with a factor of 2 to 3 reduction relative to the unmasked region. In a 180-μm thick diamond film, the overall surface stress was extremely low, 0.00 ± 0.16 GPa, obtained from the Raman shift averaged over the 7.5 mm diameter of the crystal at its surface. We conclude that the metal mask protects the overgrown diamond layer from substrate-induced thermal stress and cracking. It is also responsible for low internal stress by reducing dislocation density by several orders of magnitude.

  10. Relationship between carbon isotope composition and crystal morphology of coated and polycrystalline diamonds

    NASA Astrophysics Data System (ADS)

    Janson, G. F.; Muehlenbachs, K.; Stachel, T.

    2009-12-01

    The carbon isotope composition of diamond coats from Diavik Mine, Canada was measured by secondary ion mass spectrometry (SIMS). In most cases, carbon isotope ratio increases outwards from approximately -8.5 to approximately -6.5‰. Although it has not been widely noted in the literature due to sparse data coverage, this trend is consistent with measurements by other researchers at other sampling localities and therefore represents a unique insight into fluid evolution during the formation of diamond coat. We model the outwards increase in carbon isotope ratio by Rayleigh fractionation during growth of diamond coat in a closed system from an oxidized, carbon supersaturated fluid with a mantle-like carbon isotope signature. The carbon may have been exsolved as a volatile-rich fluid from upwelling kimberlite magma at depths greater than 120 km. The fluid either encountered preexisting diamond ‘seed’ crystals which served as nuclei for the coats or, in the absence of such seeds, precipitated opaque cuboid crystals. Reduction of oxidized carbon to diamond would be driven by the reduced character of the depleted lithosphere (Haggerty and Tompkins, 1983). Several polycrystalline diamonds were also studied by SIMS. These are homogeneous with respect to δ13C and therefore show no isotopic evidence of fluid evolution during their growth. The degree of supersaturation of a fluid commonly determines the crystal habit of minerals precipitated from the fluid. In the case of diamonds, dendritic coat is interpreted as a product of conditions intermediate between the low degree carbon supersaturation that produces polyhedral and hopper morphologies, and the very high supersaturation responsible for the growth of polycrystalline diamond. During closed system growth, precipitation of diamond depletes the fluid reservoir of carbon, resulting in isotopic profiles consistent with Rayleigh fractionation. This depletion necessarily reduces the chemical potential between fluid and

  11. Laser-assisted synthesis of diamond crystals in open air through vibrational excitation of precursor molecules

    NASA Astrophysics Data System (ADS)

    Xie, Z. Q.; Zhou, Y. S.; He, X. N.; Gao, Y.; Park, J. B.; Guillemet, T.; Lu, Y. F.

    2011-03-01

    Fast growth of diamond crystals in open air was achieved by laser-assisted combustion synthesis through vibrational excitation of precursor molecules. A wavelength-tunable CO2 laser (spectrum range from 9.2 to 10.9 μm) was used for the vibrational excitation in synthesis of diamond crystals. A pre-mixed C2H4/C2H2/O2 gas mixture was used as precursors. Through resonant excitation of the CH2-wagging mode of ethylene (C2H4) molecules using the CO2 laser tuned at 10.532 Μm, high-quality diamond crystals were grown on silicon substrates with a high growth rate of ~139 μm/hr. Diamond crystals with a length up to 5 mm and a diameter of 1 mm were grown in 36 hours. Sharp Raman peaks at 1332 cm-1 with full width at half maximum (FWHM) values around 4.5 cm-1 and distinct X-ray diffraction spectra demonstrated the high quality of the diamond crystals. The effects of the resonant excitation of precursor molecules by the CO2 laser were investigated using optical emission spectroscopy.

  12. Microfabricated phononic crystal devices and applications

    NASA Astrophysics Data System (ADS)

    Olsson, R. H., III; El-Kady, I.

    2009-01-01

    Phononic crystals are the acoustic wave analogue of photonic crystals. Here a periodic array of scattering inclusions located in a homogeneous host material forbids certain ranges of acoustic frequencies from existence within the crystal, thus creating what are known as acoustic bandgaps. The majority of previously reported phononic crystal devices have been constructed by hand, assembling scattering inclusions in a viscoelastic medium, predominantly air, water or epoxy, resulting in large structures limited to frequencies below 1 MHz. Recently, phononic crystals and devices have been scaled to VHF (30-300 MHz) frequencies and beyond by utilizing microfabrication and micromachining technologies. This paper reviews recent developments in the area of micro-phononic crystals including design techniques, material considerations, microfabrication processes, characterization methods and reported device structures. Micro-phononic crystal devices realized in low-loss solid materials are emphasized along with their potential application in radio frequency communications and acoustic imaging for medical ultrasound and nondestructive testing. The reported advances in batch micro-phononic crystal fabrication and simplified testing promise not only the deployment of phononic crystals in a number of commercial applications but also greater experimentation on a wide variety of phononic crystal structures.

  13. Patterning of nanocrystalline diamond films for diamond microstructures useful in MEMS and other devices

    DOEpatents

    Gruen, Dieter M.; Busmann, Hans-Gerd; Meyer, Eva-Maria; Auciello, Orlando; Krauss, Alan R.; Krauss, Julie R.

    2004-11-02

    MEMS structure and a method of fabricating them from ultrananocrystalline diamond films having average grain sizes of less than about 10 nm and feature resolution of less than about one micron . The MEMS structures are made by contacting carbon dimer species with an oxide substrate forming a carbide layer on the surface onto which ultrananocrystalline diamond having average grain sizes of less than about 10 nm is deposited. Thereafter, microfabrication process are used to form a structure of predetermined shape having a feature resolution of less than about one micron.

  14. Morphology of diamond crystals grown in magnesium-based systems at high temperatures and high pressures

    NASA Astrophysics Data System (ADS)

    Khokhryakov, Alexander F.; Sokol, Alexander G.; Borzdov, Yuri M.; Palyanov, Yuri N.

    2015-09-01

    A series of experiments on diamond growth in the Mg45Cu55-C, Mg50Ni50-C, Mg50Cu25Ni25-C, Mg50Ag25Ni25-C and Mg25Cu25Ni50-C systems at a pressure of 6.3 GPa in the temperature range of 1550-1650 °C was conducted. The morphology of diamond crystals and the features of their growth were studied. The {111} and {100} faces, with the cube faces playing the dominant role, were found to be the plane-faced forms of diamond crystal growth. If the magnesium content in the system is 45-50 at%, crystal growth occurs in the regime of inhibition of the {100} faces with the formation of antiskeletal crystals. In case of a constant intensity of the face inhibition up to its complete growing out, the quasi-faces of trapezohedron {311} are formed with striations in the [110] direction. The inhibition of face growth and formation of antiskeletal crystals are related to oxygen inflow from the cell parts and are accompanied by crystallization of magnesium oxide on the diamond surface. A reduction in the magnesium content in the system from 50 to 25 at% or an increase in the temperature leads to the cessation of {100} face inhibition and promotes growth of plane-faced crystals.

  15. Integration of high-dielectric constant Ta{sub 2}O{sub 5} oxides on diamond for power devices

    SciTech Connect

    Cheng Shaoheng; Sang Liwen; Liao Meiyong; Imura, Masataka; Liu Jiangwei; Li Hongdong; Koide, Yasuo

    2012-12-03

    The authors report on the direct integration of high-dielectric constant (high-k) Ta{sub 2}O{sub 5} films on p-type single crystal diamond for high-power electronic devices. Crystallized hexagonal phase {delta}-Ta{sub 2}O{sub 5} film is achieved on diamond by annealing the amorphous Ta{sub 2}O{sub 5} film deposited by a sputter-deposition technique. The electrical properties of the Ta{sub 2}O{sub 5} thin films are investigated by fabricating metal-insulator-semiconductor (MIS) diodes. The leakage current of the MIS diode is as low as 10{sup -8} A/cm{sup 2} for the as-deposited amorphous Ta{sub 2}O{sub 5} film and 10{sup -2} A/cm{sup 2} for the crystallized film, which is 10{sup 8} and 10{sup 2} times lower than that of the Schottky diode at a forward bias of -3 V, respectively. The dielectric constant of the amorphous Ta{sub 2}O{sub 5} films is measured to be 16 and increases to 29 after annealing at 800 Degree-Sign C. Different current leakage mechanisms and charge trapping behaviors are proposed for the amorphous and crystallized Ta{sub 2}O{sub 5} thin films.

  16. Adaptive optics for high power beam lines using diamond crystal monochromators

    SciTech Connect

    Sharma, S.; Berman, L.E.; Hastings, J.B.; Hart, M.

    1992-12-31

    Preserving the high source brightness of the third generation of synchrotron radiation facilities will require that thermal and pressure deformations of the monochromator crystals be maintained within a few arc- seconds. Recent experiments at the National Synchrotron Light Source (NSLS) have demonstrated the potential of adaptive crystal optics to cope with high power densities. In this technique the crystals deformations are minimized both by an efficient water-jet cooling and by externally applied pressure loads. Thermal deformation can be reduced further with diamond crystals because of their high thermal conductivity and low coefficient of thermal expansion. In this paper we describe the results achieved by optimization of adaptive crystal optics for diamond crystals.

  17. Adaptive optics for high power beam lines using diamond crystal monochromators

    SciTech Connect

    Sharma, S.; Berman, L.E.; Hastings, J.B. ); Hart, M. )

    1992-01-01

    Preserving the high source brightness of the third generation of synchrotron radiation facilities will require that thermal and pressure deformations of the monochromator crystals be maintained within a few arc- seconds. Recent experiments at the National Synchrotron Light Source (NSLS) have demonstrated the potential of adaptive crystal optics to cope with high power densities. In this technique the crystals deformations are minimized both by an efficient water-jet cooling and by externally applied pressure loads. Thermal deformation can be reduced further with diamond crystals because of their high thermal conductivity and low coefficient of thermal expansion. In this paper we describe the results achieved by optimization of adaptive crystal optics for diamond crystals.

  18. Science and technology of ultrananocrystalline diamond (UNCD) thin films for multifunctional devices

    SciTech Connect

    Auciello, O.; Krauss, A. R.; Gruen, D. M.; Jayatissa, A.; Sumant, A.; Tucek, J.; Mancini, D.; Molodvan, N.; Erdemir, A.; Ersoy, D.; Gardos, M. N.; Busman, H. G.; Meyer, E. M.

    2000-08-24

    MEMS devices are currently fabricated primarily in silicon because of the available surface machining technology. However, Si has poor mechanical and tribological properties, and practical MEMS devices are currently limited primarily to applications involving only bending and flexural motion, such as cantilever accelerometers and vibration sensors. However, because of the poor flexural strength and fracture toughness of Si, and the tendency of Si to adhere to hydrophyllic surfaces, even these simple devices have limited dynamic range. Future MEMS applications that involve significant rolling or sliding contact will require the use of new materials with significantly improved mechanical and tribological properties, and the ability to perform well in harsh environments. Diamond is a superhard material of high mechanical strength, exceptional chemical inertness, and outstanding thermal stability. The brittle fracture strength is 23 times that of Si, and the projected wear life of diamond MEMS moving mechanical assemblies (MEMS-MMAs) is 10,000 times greater than that of Si MMAs. However, as the hardest known material, diamond is notoriously difficult to fabricate. Conventional CVD thin film deposition methods offer an approach to the fabrication of ultra-small diamond structures, but the films have large grain size, high internal stress, poor intergranular adhesion, and very rough surfaces, and are consequently ill-suited for MEMS-MMA applications. A thin film deposition process has been developed that produces phase-pure nanocrystalline diamond with morphological and mechanical properties that are ideally suited for MEMS applications in general, and MMA use in particular. The authors have developed lithographic techniques for the fabrication of diamond microstructure including cantilevers and multi-level devices, acting as precursors to micro-bearings and gears, making nanocrystalline diamond a promising material for the development of high performance MEMS devices.

  19. Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond.

    PubMed

    Riedrich-Möller, Janine; Arend, Carsten; Pauly, Christoph; Mücklich, Frank; Fischer, Martin; Gsell, Stefan; Schreck, Matthias; Becher, Christoph

    2014-09-10

    Deterministic coupling of single solid-state emitters to nanocavities is the key for integrated quantum information devices. We here fabricate a photonic crystal cavity around a preselected single silicon-vacancy color center in diamond and demonstrate modification of the emitters internal population dynamics and radiative quantum efficiency. The controlled, room-temperature cavity coupling gives rise to a resonant Purcell enhancement of the zero-phonon transition by a factor of 19, coming along with a 2.5-fold reduction of the emitter's lifetime.

  20. Deterministic Coupling of a Single Silicon-Vacancy Color Center to a Photonic Crystal Cavity in Diamond

    NASA Astrophysics Data System (ADS)

    Riedrich-Möller, Janine; Arend, Carsten; Pauly, Christoph; Mücklich, Frank; Fischer, Martin; Gsell, Stefan; Schreck, Matthias; Becher, Christoph

    2014-09-01

    Deterministic coupling of single solid-state emitters to nanocavities is the key for integrated quantum information devices. We here fabricate a photonic crystal cavity around a preselected single silicon-vacancy color center in diamond and demonstrate modification of the emitters internal population dynamics and radiative quantum efficiency. The controlled, room-temperature cavity coupling gives rise to a resonant Purcell enhancement of the zero-phonon transition by a factor of 19, coming along with a 2.5-fold reduction of the emitter's lifetime.

  1. Focusing of white synchrotron radiation using large-acceptance cylindrical refractive lenses made of single – crystal diamond

    SciTech Connect

    Polikarpov, M.; Snigireva, I.; Snigirev, A.

    2016-07-27

    Large-aperture cylindrical refractive lenses were manufactured by laser cutting of single-crystal diamond. Five linear single lenses with apertures of 1 mm and the depth of the structure of 1.2 mm were fabricated and tested at the ESRF ID06 beamline performing the focusing of white-beam synchrotron radiation. Uniform linear focus was stable during hours of exposure, representing such lenses as pre-focusing and collimating devices suitable for the front-end sections of today synchrotron radiation sources.

  2. The peculiarities of natural plastically deformed diamond crystals from “Internatsionalnaya” pipe (Yakutia)

    NASA Astrophysics Data System (ADS)

    Rylov, G. M.; Fedorova, E. N.; Logvinova, A. M.; Pokhilenko, N. P.; Kulipanov, G. N.; Sobolev, N. V.

    2007-05-01

    An internal structure of a representative collection of plastically deformed diamond crystals from "Internatsionalnaya" kimberlite pipe among which are brown, gray-smoky, purplish-pink crystals has been studied by synchrotron radiation (Laue-SR method). The obtained data made it possible to classify the studied crystals by the degree of deformation and polygonization. The results obtained by Laue-SR method correlate well with IR spectroscopy data.

  3. Diamond crystallization in a CO2-rich alkaline carbonate melt with a nitrogen additive

    NASA Astrophysics Data System (ADS)

    Khokhryakov, Alexander F.; Palyanov, Yuri N.; Kupriyanov, Igor N.; Nechaev, Denis V.

    2016-09-01

    Diamond crystallization was experimentally studied in a CO2-bearing alkaline carbonate melt with an increased content of nitrogen at pressure of 6.3 GPa and temperature of 1500 °C. The growth rate, morphology, internal structure of overgrown layers, and defect-impurity composition of newly formed diamond were investigated. The type of growth patterns on faces, internal structure, and nitrogen content were found to be controlled by both the crystallographic orientation of the growth surfaces and the structure of the original faces of diamond seed crystals. An overgrown layer has a uniform structure on the {100} plane faces of synthetic diamond and a fibrillar (fibrous) structure on the faceted surfaces of a natural diamond cube. The {111} faces have a polycentric vicinal relief with numerous twin intergrowths and micro twin lamellae. The stable form of diamond growth under experimental conditions is a curved-face hexoctahedron with small cube faces. The nitrogen impurity concentration in overgrown layers varies depending on the growth direction and surface type, from 100 to 1100 ppm.

  4. Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source

    SciTech Connect

    Zhu, Diling Feng, Yiping; Lemke, Henrik T.; Fritz, David M.; Chollet, Matthieu; Glownia, J. M.; Alonso-Mori, Roberto; Sikorski, Marcin; Song, Sanghoon; Williams, Garth J.; Messerschmidt, Marc; Boutet, Sébastien; Robert, Aymeric; Stoupin, Stanislav; Shvyd'ko, Yuri V.; Terentyev, Sergey A.; Blank, Vladimir D.; Driel, Tim B. van

    2014-06-15

    A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High-Pressure High-Temperature grown type-IIa diamond crystal plates with the (111) orientation. The first crystal has a thickness of ∼100 μm to allow high reflectivity within the Bragg bandwidth and good transmission for the other wavelengths for downstream use. The second crystal is about 300 μm thick and makes the exit beam of the monochromator parallel to the incoming beam with an offset of 600 mm. Here we present details on the monochromator design and its performance.

  5. Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source.

    PubMed

    Zhu, Diling; Feng, Yiping; Stoupin, Stanislav; Terentyev, Sergey A; Lemke, Henrik T; Fritz, David M; Chollet, Matthieu; Glownia, J M; Alonso-Mori, Roberto; Sikorski, Marcin; Song, Sanghoon; van Driel, Tim B; Williams, Garth J; Messerschmidt, Marc; Boutet, Sébastien; Blank, Vladimir D; Shvyd'ko, Yuri V; Robert, Aymeric

    2014-06-01

    A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High-Pressure High-Temperature grown type-IIa diamond crystal plates with the (111) orientation. The first crystal has a thickness of ~100 μm to allow high reflectivity within the Bragg bandwidth and good transmission for the other wavelengths for downstream use. The second crystal is about 300 μm thick and makes the exit beam of the monochromator parallel to the incoming beam with an offset of 600 mm. Here we present details on the monochromator design and its performance.

  6. A photoemission study of the diamond and the single crystal C60

    SciTech Connect

    Wu, Jin

    1994-03-01

    This report studied the elctronic structure of diamond (100) and diamond/metal interface and C60, using angle-resolved and core level photoemission. The C(100)-(2X1) surface electronic structure was studied using both core level and angle resolved valence band photoemission spectroscopy. The surface component of the C 1s core level spectrum agrees with theoretical existence of only symmetrical dimers. In the case of metal/diamond interfaces, core level and valence photoelectron spectroscopy and LEED studies WERE MADE OF B and Sb on diamond (100) and (111) surfaces. In the case of single-crystal C60, photoemission spectra show sharp molecular features, indicating that the molecular orbitals are relatively undisturbed in solid C60.

  7. Erbium ion implantation into diamond - measurement and modelling of the crystal structure.

    PubMed

    Cajzl, Jakub; Nekvindová, Pavla; Macková, Anna; Malinský, Petr; Sedmidubský, David; Hušák, Michal; Remeš, Zdeněk; Varga, Marián; Kromka, Alexander; Böttger, Roman; Oswald, Jiří

    2017-02-22

    Diamond is proposed as an extraordinary material usable in interdisciplinary fields, especially in optics and photonics. In this contribution we focus on the doping of diamond with erbium as an optically active centre. In the theoretical part of the study based on DFT simulations we have developed two Er-doped diamond structural models with 0 to 4 carbon vacancies in the vicinity of the Er atom and performed geometry optimizations by the calculation of cohesive energies and defect formation energies. The theoretical results showed an excellent agreement between the calculated and experimental cohesive energies for the parent diamond. The highest values of cohesive energies and the lowest values of defect formation energies were obtained for models with erbium in the substitutional carbon position with 1 or 3 vacancies in the vicinity of the erbium atom. From the geometry optimization the structural model with 1 vacancy had an octahedral symmetry whereas the model with 3 vacancies had a coordination of 10 forming a trigonal structure with a hexagonal ring. In the experimental part, erbium doped diamond crystal samples were prepared by ion implantation of Er(+) ions using ion implantation fluences ranging from 1 × 10(14) ions per cm(2) to 5 × 10(15) ions per cm(2). The experimental results revealed a high degree of diamond structural damage after the ion implantation process reaching up to 69% of disordered atoms in the samples. The prepared Er-doped diamond samples annealed at the temperatures of 400, 600 and 800 °C in a vacuum revealed clear luminescence, where the 〈110〉 cut sample has approximately 6-7 times higher luminescence intensity than the 〈001〉 cut sample with the same ion implantation fluence. The reported results are the first demonstration of the Er luminescence in the single crystal diamond structure for the near-infrared spectral region.

  8. TH-C-19A-06: Measurements with a New Commercial Synthetic Single Crystal Diamond Detector

    SciTech Connect

    Laub, W; Crilly, R

    2014-06-15

    Purpose: A commercial version of a synthetic single crystal diamond detector in a Scottky diode configuration was recently released as the new type 60019 microDiamond detector (PTW-Freiburg). In this study we investigate the dosimetric properties of this detector and explore if the use of the microDiamond detector can be expanded to high energy photon beams of up to 15MV and to large field measurements. Methods: Energy dependency was investigated. Photon and electron depth-dose curves were measured. Photon PDDs were measured with the Semiflex type 31010, microLion type 31018, P-Diode type 60016, SRS Diode type 60018, and the microDiamond type 60019 detector. Electron depth-dose curves were measured with a Markus chamber type 23343, an E Diode type 60017 and the microDiamond type 60019 detector (all PTW-Freiburg). Profiles were measured with the E-Diode and microDiamond at dose maximum depths. Results: The microDiamond detector shows no energy dependence in high energy photon or electron dosimetry. Electron PDD measurements with the E-Diode and microDiamond are in good agreement except for the bremsstrahlungs region, where values are about 0.5 % lower with the microDiamond detector. Markus detector measurements agree with E-Diode measurements in this region. For depths larger than dmax, depth-dose curves of photon beams measured with the microDiamond detector are in close agreement to those measured with the microLion detector for small fields and with those measured with a Semiflex 0.125cc ionization chamber for large fields. For profile measurements, microDiamond detector measurements agree well with microLion and P-Diode measurements in the high-dose region and the penumbra region. For areas outside the open field, P-Diode measurements are about 0.5–1.0% higher than microDiamond and microLion measurements. Conclusion: The investigated diamond detector is suitable for a wide range of applications in high energy photon and electron dosimetry and is interesting

  9. Science and technology of ultrananocrystalline diamond (UNCD) thin films for multifunctional devices.

    SciTech Connect

    Auciello, O.; Gruen, D. M.; Krauss, A. R.; Jayatissa, A.; Sumant, A.; Tucek, J.; Mancini, D.; Moldovan, N.; Erdemir, A.; Ersoy, D.; Gardos, M. N.; Busmann, H. G.; Meyer, E. M.

    2000-11-15

    MEMS devices are currently fabricated primarily in silicon because of the available surface machining technology. However, Si has poor mechanical and tribological properties, and practical MEMS devices are currently limited primarily to applications involving only bending and flexural motion, such as cantilever accelerometers and vibration sensors, However, because of the poor flexural strength and fracture toughness of Si, and the tendency of Si to adhere to hydrophyllic surfaces, even these simple devices have limited dynamic range. Future MEMS applications that involve significant rolling or sliding contact will require the use of new materials with significantly improved mechanical and tribological properties, and the ability to perform well in harsh environments. Diamond is a superhard material of high mechanical strength, exceptional chemical inertness, and outstanding thermal stability. The brittle fracture strength is 23 times that of Si, and the projected wear life of diamond MEMS moving mechanical assemblies (MEMS-MMAS) is 10,000 times greater than that of Si MMAs. However, as the hardest known material, diamond is notoriously difficult to fabricate. Conventional CVD thin film deposition methods offer an approach to the fabrication of ultra-small diamond structures, but the films have large grain size, high internal stress, poor intergranular adhesion, and very rough surfaces, and are consequently ill-suited for MEMS-MMA applications. A thin film deposition process has been developed that produces phase-pure ultrananocrystalline diamond (UNCD) with morphological and mechanical properties that are ideally suited for MEMS applications in general, and MMA use in particular. We have developed lithographic techniques for the fabrication of diamond microstructure including cantilevers and multi-level devices, acting as precursors to micro-bearings and gears, making UNCD a promising material for the development of high performance MEMS devices.

  10. Single-Crystal Diamond Nanowire Tips for Ultrasensitive Force Microscopy.

    PubMed

    Tao, Y; Degen, C L

    2015-12-09

    We report the fabrication, integration, and assessment of sharp diamond tips for ultrasensitive force microscopy experiments. Two types of tips, corresponding to the upper and lower halves of a diamond nanowire, were fabricated by top-down plasma etching from a single-crystalline substrate. The lower, surface-attached halves can be directly integrated into lithographically defined nanostructures, like cantilevers. The upper, detachable halves result in diamond nanowires with a tunable diameter (50-500 nm) and lengths of a few microns. Tip radii were around 10 nm and tip apex angles around 15°. We demonstrate the integration of diamond nanowires for use as scanning tips onto ultrasensitive pendulum-style silicon cantilevers. We find the noncontact friction and frequency jitter to be exceptionally low, with no degradation in the intrinsic mechanical quality factor (Q ≈ 130,000) down to tip-to-surface distances of about 10 nm. Our results are an encouraging step toward further improvement of the sensitivity and resolution of force-detected magnetic resonance imaging.

  11. Fabrication of three-dimensional terahertz photonic crystals with diamond structure by particle manipulation assembly

    NASA Astrophysics Data System (ADS)

    Takagi, Kenta; Kawasaki, Akira

    2009-01-01

    We reported the fabrication of terahertz photonic crystals by three-dimensional (3D) particle manipulation assembly. Our method, which is based on pick-and-place manipulation and interparticle laser welding, enabled accurate assembling of an arbitrary 3D structure, regardless of particle polydispersity. By using this method, we fabricated a diamond crystal from ZrO2/polyethylene composite particles (diameter of 400 μm). The obtained crystal exhibited a photonic stop gap in the ⟨111⟩ direction; this result was in good agreement with the theoretical result, suggesting that the crystal has a full photonic bandgap at around 0.2 THz.

  12. Scalable Fabrication of Integrated Nanophotonic Circuits on Arrays of Thin Single Crystal Diamond Membrane Windows.

    PubMed

    Piracha, Afaq H; Rath, Patrik; Ganesan, Kumaravelu; Kühn, Stefan; Pernice, Wolfram H P; Prawer, Steven

    2016-05-11

    Diamond has emerged as a promising platform for nanophotonic, optical, and quantum technologies. High-quality, single crystalline substrates of acceptable size are a prerequisite to meet the demanding requirements on low-level impurities and low absorption loss when targeting large photonic circuits. Here, we describe a scalable fabrication method for single crystal diamond membrane windows that achieves three major goals with one fabrication method: providing high quality diamond, as confirmed by Raman spectroscopy; achieving homogeneously thin membranes, enabled by ion implantation; and providing compatibility with established planar fabrication via lithography and vertical etching. On such suspended diamond membranes we demonstrate a suite of photonic components as building blocks for nanophotonic circuits. Monolithic grating couplers are used to efficiently couple light between photonic circuits and optical fibers. In waveguide coupled optical ring resonators, we find loaded quality factors up to 66 000 at a wavelength of 1560 nm, corresponding to propagation loss below 7.2 dB/cm. Our approach holds promise for the scalable implementation of future diamond quantum photonic technologies and all-diamond photonic metrology tools.

  13. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    SciTech Connect

    Kagan, Harris; Kass, Richard; Gan, K. K.

    2014-01-23

    With the LHC upgrades in 2013, and further LHC upgrades scheduled in 2018, most LHC experiments are planning for detector upgrades which require more radiation hard technologies than presently available. At present all LHC experiments now have some form of diamond detector. As a result Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of all LHC experiments. Moreover CVD diamond is now being discussed as an alternative sensor material for tracking very close to the interaction region of the HL-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications. Our accomplishments include: • Developed a two U.S.companies to produce electronic grade diamond, • Worked with companies and acquired large area diamond pieces, • Performed radiation hardness tests using various proton energies: 70 MeV (Cyric, Japan), 800 MeV (Los Alamos), and 24 GeV (CERN).

  14. Growth, Characterization and Device Development in Monocrystalline Diamond Films

    DTIC Science & Technology

    1990-02-01

    high carrier drift velocities, and a much higher thermal conductivity (from 1000 to 10,000 W/m-K) than even copper , which is considered a good...observed by HREM in the present study. Particles nucleated in the gas phase and electrodeposited particles of a variety of materials have been shown to...35. Pin (dbm) Comparision of P-channel diamond and N-channel GaAs powerI MESFET at 10 GHz I I 119i i i 50. I i 40. % fto ,30. E a- 20. 3 10. i 0.0 I

  15. Growth, Characterization and Device Development in Monocrystalline Diamond Films

    DTIC Science & Technology

    1993-09-01

    step of the selection process used a program called ORPHEUS developed by Braun [6, 7]. The program overlays the reciprocal surface nets of the substrate... ORPHEUS program. 4 J l i •mmmm •mm [ m ] m m immI Those results are summarized in Table II. The strain energy density was lowest for Ni{O01) interlayers on...hydrogen evolves and the surface to change to a positive electron affinity. The free diamond (M(X)) surface has two unsatisfied bonds which would in

  16. Potentiality of semiconducting diamond as the base material of millimeter-wave and terahertz IMPATT devices

    NASA Astrophysics Data System (ADS)

    Acharyya, Aritra; Banerjee, Suranjana; Banerjee, J. P.

    2014-03-01

    An attempt is made in this paper to explore the potentiality of semiconducting type-IIb diamond as the base material of double-drift region (DDR) impact avalanche transit time (IMPATT) devices operating at both millimetre-wave (mm-wave) and terahertz (THz) frequencies. A rigorous large-signal (L-S) simulation based on the non-sinusoidal voltage excitation (NSVE) model developed earlier by the authors is used in this study. At first, a simulation study based on avalanche response time reveals that the upper cut-off frequency for DDR diamond IMPATTs is 1.5 THz, while the same for conventional DDR Si IMPATTs is much smaller, i.e. 0.5 THz. The L-S simulation results show that the DDR diamond IMPATT device delivers a peak RF power of 7.79 W with an 18.17% conversion efficiency at 94 GHz; while at 1.5 THz, the peak power output and conversion efficiency decrease to 6.19 mW and 8.17% respectively, taking 50% voltage modulation. A comparative study of DDR IMPATTs based on diamond and Si shows that the former excels over the later as regards high frequency and high power performance at both mm-wave and THz frequency bands. The effect of band to band tunneling on the L-S properties of DDR diamond and Si IMPATTs has also been studied at different mm-wave and THz frequencies.

  17. Effects of catalyst height on diamond crystal morphology under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Ya-Dong, Li; Xiao-Peng, Jia; Bing-Min, Yan; Ning, Chen; Chao, Fang; Yong, Li; Hong-An, Ma

    2016-04-01

    The effect of the catalyst height on the morphology of diamond crystal is investigated by means of temperature gradient growth (TGG) under high pressure and high temperature (HPHT) conditions with using a Ni-based catalyst in this article. The experimental results show that the morphology of diamond changes from an octahedral shape to a cub-octahedral shape as the catalyst height rises. Moreover, the finite element method (FEM) is used to simulate the temperature field of the melted catalyst/solvent. The results show that the temperature at the location of the seed diamond continues to decrease with the increase of catalyst height, which is conducive to changing the morphology of diamond. This work provides a new way to change the diamond crystal morphology. Project supported by the National Natural Science Foundation of China (Grant No. 51172089), the Program for New Century Excellent Talents in University, the Natural Science Foundation of Guizhou Provincial Education Department (Grant No. KY[2013]183), and the Collaborative Fund of Science and Technology Office of Guizhou Province, China (Grant No. LH[2015]7232).

  18. Wettability of ultrananocrystalline diamond and graphite nanowalls films: a comparison with their single crystal analogs.

    PubMed

    Ostrovskaya, L Y u; Ralchenko, V G; Bolshakov, A P; Saveliev, A V; Dzbanovsky, N N; Shmegera, S V

    2009-06-01

    Dramatic changes in wettability of diamond and graphite are observed when these materials are prepared in nanostructured forms--undoped and nitrogen-doped ultrananocrystalline diamond (UNCD) films, and graphite nanowalls (GNW), respectively. The nanostructured carbon films were deposited on Si by microwave plasma CVD processes. The advancing contact angle theta for water on hydrogenated undoped UNCD films increases to 106 +/- 3 degrees compared to hydrogenated single crystal diamond (theta = 92 degrees). Nitrogen doping (N2 addition to plasma) during UNCD growth makes the film more hydrophilic. The GNW films exhibited superhydrophobic behavior with theta = 144 +/- 3 degrees for water, which is higher than the contact angle of monocrystalline graphite (the basal plane) by a factor of 1.8. No chemical surface treatment is necessary to achieve such high hydrophobicity, it is accomplished solely by a specific (nanoporous, high aspect ratio) surface morphology with very low free surface energy inherent in it. The wetting behaviour of nanostructured films can be described with the Cassie-Baxter equation for heterophase nanoporous surfaces. Oxidation and hydrogenation of UNCD films make it possible to control theta over a much wider range as compared to a single crystal diamond. The influence of diamond grain size on wetting is considered taking into account the surface treatment. The corresponding variation in surface energy has been determined by the modified Young's equation.

  19. Photonic band structure of diamond colloidal crystals in a cholesteric liquid crystal

    NASA Astrophysics Data System (ADS)

    Changizrezaei, Setarehalsadat; Denniston, Colin

    2017-09-01

    In this paper, we demonstrate the presence of a photonic band gap for a diamond lattice structure made of particles with normal anchoring inside a cholesteric liquid crystal. As is typical for liquid crystals (LCs), there is considerable contrast between the dielectric constant parallel ɛ∥ and perpendicular ɛ⊥ to the director, with ɛ∥/ɛ⊥˜4 here. It is shown that the size of the photonic band gap is directly related to the size of colloidal particles and the contrast between the dielectric constant in the particles and the extreme values of ɛ in the LC medium (one needs either ɛ in the particle much smaller than ɛ⊥ o r much bigger than ɛ∥). No opening is seen in the band diagrams for small particles. For larger particles a partial gap opens when the particles are composed of very low dielectric material but never a complete gap. On the other hand, a complete gap starts to be revealed when the size of the colloidal particles is increased and when a high dielectric constant is used for filling inside the particles. The maximum size of the gap is observed when the particles are large enough so that their surfaces overlap.

  20. Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry

    SciTech Connect

    Di Venanzio, C.; Marinelli, Marco; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.; Falco, M. D.; Bagala, P.; Santoni, R.; Pimpinella, M.

    2013-02-15

    Purpose: To investigate the dosimetric properties of synthetic single crystal diamond based Schottky diodes under irradiation with therapeutic electron beams from linear accelerators. Methods: A single crystal diamond detector was fabricated and tested under 6, 8, 10, 12, and 15 MeV electron beams. The detector performances were evaluated using three types of commercial detectors as reference dosimeters: an Advanced Markus plane parallel ionization chamber, a Semiflex cylindrical ionization chamber, and a p-type silicon detector. Preirradiation, linearity with dose, dose rate dependence, output factors, lateral field profiles, and percentage depth dose profiles were investigated and discussed. Results: During preirradiation the diamond detector signal shows a weak decrease within 0.7% with respect to the plateau value and a final signal stability of 0.1% (1{sigma}) is observed after about 5 Gy. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below {+-}0.3% in the dose range from 0.02 to 10 Gy. In addition, the detector response is dose rate independent, with deviations below 0.3% in the investigated dose rate range from 0.17 to 5.45 Gy/min. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. A good agreement within experimental uncertainties was also found in terms of output factor measurements between the diamond detector and reference dosimeters. Conclusions: The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical electron beam dosimetry.

  1. Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry.

    PubMed

    Di Venanzio, C; Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Falco, M D; Bagalà, P; Santoni, R; Pimpinella, M

    2013-02-01

    To investigate the dosimetric properties of synthetic single crystal diamond based Schottky diodes under irradiation with therapeutic electron beams from linear accelerators. A single crystal diamond detector was fabricated and tested under 6, 8, 10, 12, and 15 MeV electron beams. The detector performances were evaluated using three types of commercial detectors as reference dosimeters: an Advanced Markus plane parallel ionization chamber, a Semiflex cylindrical ionization chamber, and a p-type silicon detector. Preirradiation, linearity with dose, dose rate dependence, output factors, lateral field profiles, and percentage depth dose profiles were investigated and discussed. During preirradiation the diamond detector signal shows a weak decrease within 0.7% with respect to the plateau value and a final signal stability of 0.1% (1σ) is observed after about 5 Gy. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below ±0.3% in the dose range from 0.02 to 10 Gy. In addition, the detector response is dose rate independent, with deviations below 0.3% in the investigated dose rate range from 0.17 to 5.45 Gy∕min. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. A good agreement within experimental uncertainties was also found in terms of output factor measurements between the diamond detector and reference dosimeters. The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical electron beam dosimetry.

  2. High crystalline quality single crystal chemical vapour deposition diamond.

    PubMed

    Martineau, P M; Gaukroger, M P; Guy, K B; Lawson, S C; Twitchen, D J; Friel, I; Hansen, J O; Summerton, G C; Addison, T P G; Burns, R

    2009-09-09

    Homoepitaxial chemical vapour deposition (CVD) on high pressure, high temperature (HPHT) synthetic diamond substrates allows the production of diamond material with controlled point defect content. In order to minimize the extended defect content, however, it is necessary to minimize the number of substrate extended defects that reach the initial growth surface and the nucleation of dislocations at the interface between the CVD layer and its substrate. X-ray topography has indicated that when type IIa HPHT synthetic substrates are used, the density of dislocations nucleating at the interface can be less than 400  cm(-2). X-ray topography, photoluminescence imaging and birefringence microscopy of HPHT grown synthetic type IIa diamond clearly show that the extended defect content is growth sector dependent. ⟨111⟩ sectors contain the highest concentration of both stacking faults and dislocations but ⟨100⟩ sectors are relatively free of both. It has been shown that HPHT treatment of such material can significantly reduce the area of stacking faults and cause dislocations to move. This knowledge, coupled with an understanding of how growth sectors develop during HPHT synthesis, has been used to guide selection and processing of substrates suitable for CVD synthesis of material with high crystalline perfection and controlled point defect content.

  3. Electrocatalytic processes promoted by diamond nanoparticles in enzymatic biosensing devices.

    PubMed

    Briones, M; Petit-Domínguez, M D; Parra-Alfambra, A M; Vázquez, L; Pariente, F; Lorenzo, E; Casero, E

    2016-10-01

    We have developed a biosensing platform for lactate determination based on gold electrodes modified with diamond nanoparticles of 4nm of nominal diameter, employing the enzyme lactate oxidase and (hydroxymethyl)ferrocene (HMF) as redox mediator in solution. This system displays a response towards lactate that is completely different to those typically observed for lactate biosensors based on other nanomaterials, such as graphene, carbon nanotubes, gold nanoparticles or even diamond nanoparticles of greater size. We have observed by cyclic voltammetry that, under certain experimental conditions, an irreversible wave (E(0)=+0.15V) appears concomitantly with the typical Fe(II)/Fe(III) peaks (E(0)=+0.30V) of HMF. In this case, the biosensor response to lactate shows simultaneous electrocatalytic peaks at +0.15V and +0.30V, indicating the concurrence of different feedback mechanisms. The achievement of a biosensor response to lactate at +0.15V is very convenient in order to avoid potential interferences. The developed biosensor presents a linear concentration range from 0.02mM to 1.2mM, a sensitivity of 6.1μAmM(-1), a detection limit of 5.3μM and excellent stability. These analytical properties compare well with those obtained for other lactate-based biosensors that also include nanomaterials and employ HMF as redox mediator. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. White electroluminescence of n-ZnO:Al/p-diamond heterostructure devices

    NASA Astrophysics Data System (ADS)

    Yang, Can; Wang, Xiao-Ping; Wang, Li-Jun; Pan, Xiu-Fang; Li, Song-Kun; Jing, Long-Wei

    2013-08-01

    An n-ZnO:Al/p-boron-doped diamond heterostructure electroluminescent device is produced, and a rectifying behavior can be observed. The electroluminescence spectrum at room temperature exhibits two visible bands centred at 450 nm-485 nm (blue emission) and 570 nm-640 nm (yellow emission). Light emission with a luminance of 15 cd/m2 is observed from the electroluminescent device at a forward applied voltage of 85 V, which is distinguished from white light by the naked eye.

  5. Diamond photonic crystal slab: leaky modes and modified photoluminescence emission of surface-deposited quantum dots.

    PubMed

    Ondič, Lukáš; Babchenko, Oleg; Varga, Marián; Kromka, Alexander; Ctyroký, Jiří; Pelant, Ivan

    2012-01-01

    Detailed analysis of a band diagram of a photonic crystal (PhC) slab prepared on a nano-diamond layer is presented. Even though the PhC is structurally imperfect, the existence of leaky modes, determined both theoretically and experimentally in the broad spectral region, implies that an efficient light interaction with a material periodicity occurs in the sample. It is shown that the luminescence emission spectrum of a light source placed directly on the PhC surface can be modified by employing the optical modes of the studied structure. We stress also the impact of intrinsic optical losses of the nano-diamond on this modification.

  6. Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices.

    SciTech Connect

    Krauss, A. R.; Gruen, D. M.; Jayatissa, A.; Sumant, A.; Tucek, J.; Auciello, O.; Mancini, D.; Moldovan, N.; Erdemir, A.; Ersoy, D.; Gardos, M. N.; Busmann, H. G.; Meyer, E. M.; Ding, M. Q.; Univ. of Illinois at Chicago; Raytheon Electronic Systems Comp.; Fraunhofer Inst. for Applied Materials Science; Univ. of Bremen; Beijing Inst. of Electronics

    2001-11-01

    MEMS devices are currently fabricated primarily in silicon because of the available surface machining technology. A major problem with the Si-based MEMS technology is that Si has poor mechanical and tribological properties [J.J. Sniegowski, in: B. Bushan (Ed.), Tribology Issues and Opportunities in MEMS, Kluwer Academic Publisher, The Netherlands, 1998, p. 325; A.P. Lee, A.P. Pisano, M.G. Lim, Mater. Res. Soc. Symp. Proc. 276 (1992) 67.], and practical MEMS devices are currently limited primarily to applications involving only bending and flexural motion, such as cantilever accelerometers and vibration sensors. However, because of the poor flexural strength and fracture toughness of Si, and the tendency of Si to adhere to hydrophilic surfaces, even these simple devices have limited dynamic range. Future MEMS applications that involve significant rolling or sliding contact will require the use of new materials with significantly improved mechanical and tribological properties, and the ability to perform well in harsh environments, Diamond is a superhard material of high mechanical strength, exceptional chemical inertness, and outstanding thermal stability. The brittle fracture strength is 23 times that of Si, and the projected wear life of diamond MEMS moving mechanical assemblies (MEMS MMAs) is 10 000 times greater than that of Si MMAs. However, as the hardest known material, diamond is notoriously difficult to fabricate. Conventional CVD thin film deposition methods offer an approach to the fabrication of ultra-small diamond structures, but the films have large grain size, high internal stress, poor intergranular adhesion, and very rough surfaces, and are consequently ill-suited for MEMS MMA applications. Diamond-like films are also being investigated for application to MEMS devices. However, they involve mainly physical vapor deposition methods that are not suitable for good conformal deposition on high aspect ratio features, and generally they do not exhibit the

  7. Single-crystal CVD diamonds as small-angle X-ray scattering windows for high-pressure research.

    PubMed

    Wang, Suntao; Meng, Yu-Fei; Ando, Nozomi; Tate, Mark; Krasnicki, Szczesny; Yan, Chih-Shiue; Liang, Qi; Lai, Joseph; Mao, Ho-Kwang; Gruner, Sol M; Hemley, Russell J

    2012-06-01

    Small-angle X-ray scattering (SAXS) was performed on single-crystal chemical vapor deposition (CVD) diamonds with low nitrogen concentrations, which were fabricated by microwave plasma-assisted chemical vapor deposition at high growth rates. High optical quality undoped 500 µm-thick single-crystal CVD diamonds grown without intentional nitrogen addition proved to be excellent as windows on SAXS cells, yielding parasitic scattering no more intense than a 7.5 µm-thick Kapton film. A single-crystal CVD diamond window was successfully used in a high-pressure SAXS cell.

  8. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    SciTech Connect

    Harris Kagan; K.K. Gan; Richard Kass

    2009-03-31

    Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2009, and the LHC upgrades expected in 2013, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

  9. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    SciTech Connect

    Rainer Wallny

    2012-10-15

    Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2010, and the LHC upgrades expected in 2015, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed and operational in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

  10. Diamond fiber field emitters

    DOEpatents

    Blanchet-Fincher, Graciela B.; Coates, Don M.; Devlin, David J.; Eaton, David F.; Silzars, Aris K.; Valone, Steven M.

    1996-01-01

    A field emission electron emitter comprising an electrode formed of at least one diamond, diamond-like carbon or glassy carbon composite fiber, said composite fiber having a non-diamond core and a diamond, diamond-like carbon or glassy carbon coating on said non-diamond core, and electronic devices employing such a field emission electron emitter.

  11. Clinical radiation therapy measurements with a new commercial synthetic single crystal diamond detector.

    PubMed

    Laub, Wolfram U; Crilly, Richard

    2014-11-08

    A commercial version of a synthetic single crystal diamond detector (SCDD) in a Schottky diode configuration was recently released as the new type 60019 microDiamond detector (PTW-Freiburg, Germany). In this study we investigate the dosimetric properties of this detector to independently confirm that findings from the developing group of the SCDDs still hold true for the commercial version of the SCDDs. We further explore if the use of the microDiamond detector can be expanded to high-energy photon beams of up to 15 MV and to large field measure- ments. Measurements were performed with an Elekta Synergy linear accelerator delivering 6, 10, and 15 MV X-rays, as well as 6, 9, 12, 15, and 20 MeV electron beams. The dependence of the microdiamond detector response on absorbed dose after connecting the detector was investigated. Furthermore, the dark current of the diamond detector was observed after irradiation. Results are compared to similar results from measurements with a diamond detector type 60003. Energy dependency was investigated, as well. Photon depth-dose curves were measured for field sizes 3 × 3, 10 × 10, and 30 × 30 cm2. PDDs were measured with the Semiflex type 31010 detector, microLion type 31018 detector, P Diode type 60016, SRS Diode type 60018, and the microDiamond type 60019 detector (all PTW-Freiburg). Photon profiles were measured at a depth of 10 cm. Electron depth-dose curves normalized to the dose maximum were measured with the 14 × 14 cm2 electron cone. PDDs were measured with a Markus chamber type 23343, an E Diode type 60017 and the microDiamond type 60019 detector (all PTW-Freiburg). Profiles were measured with the E Diode and microDiamond at half of D90, D90, D70, and D50 depths and for electron cone sizes of 6 × 6 cm2, 14 × 14 cm2, and 20 × 20 cm2. Within a tol- erance of 0.5% detector response of the investigated detector was stable without any preirradiation. After preirradition with approximately 250 cGy the detector response

  12. N-type control of single-crystal diamond films by ultra-lightly phosphorus doping

    NASA Astrophysics Data System (ADS)

    Kato, Hiromitsu; Ogura, Masahiko; Makino, Toshiharu; Takeuchi, Daisuke; Yamasaki, Satoshi

    2016-10-01

    A wide impurity doping range of p- and n-type diamond semiconductors will facilitate the development of various electronics. This study focused on producing n-type diamond with ultra-lightly impurity doping concentrations. N-type single-crystal diamond films were grown on (111)-oriented diamond substrates by phosphorus doping using the optimized doping conditions based on microwave plasma-enhanced chemical vapor deposition with a high magnetron output power of 3600 W. The surface morphology was investigated by an optical microscopy using the Nomarski prism and confocal laser microscopy, and the phosphorus concentration was estimated by a secondary ion mass spectrometry. The phosphorus concentration was reproducibly controlled to between 2 × 1015 and 3 × 1017 cm-3 using a standard mass flow controller, and the average incorporation efficiency was around 0.1%. The electrical properties of the films were characterized by the Hall effect measurements as a function of temperature over a wide range from 220 to 900 K. N-type conductivity with thermal activation from a phosphorus donor level at around 0.57 eV was clearly observed for all the phosphorus-doped diamond films. The electron mobility of the film with a phosphorus concentration of 2 × 1015 cm-3 was recorded at 1060 cm2/V s at 300 K and 1500 cm2/V s at 225 K.

  13. Science and technology of piezoelectric/diamond heterostructures for monolithically integrated high performance MEMS/NEMS/CMOS devices.

    SciTech Connect

    Auciello, O.; Sumant, A. V.; Hiller, J.; Kabius, B.; Ma, Z.; Srinivasan, S.

    2008-12-01

    This paper describes the fundamental and applied science performed to integrate piezoelectric PbZr{sub x}Ti{sub 1-x}O{sub 3} and AlN films with a novel mechanically robust ultrananocrystalline diamond layer to enable a new generation of low voltage/high-performance piezoactuated hybrid piezoelectric/diamond MEMS/NEMS devices.

  14. First in-situ single-crystal structure refinement of a garnet included in diamond

    NASA Astrophysics Data System (ADS)

    Nestola, Fabrizio; Nimis, Paolo; Longo, Micaela; Kopylova, Maya; de Stefano, Andrea; Marzoli, Andrea; Fedortchouk, Yana; Manghnani, Murli; Harris, Jeff W.

    2010-05-01

    The study of mineral inclusions in diamond is providing invaluable insight into the geodynamics of the Earth's mantle. A complete characterization of inclusions in diamond is fundamental in order to evaluate the P-T-ƒO2 conditions and thus they represent a real "Earth's ultra-deep microprobe". The in-situ investigation of the inclusions using non-destructive techniques remains challenging. One of the potentially most powerful non-destructive methods is single-crystal X-ray diffraction. The application of such technique on inclusions in diamond is hampered by the complicated centering of the X-ray beam on the inclusion single-crystal (Kunz et al. 2002). Because of this experimental problem, in-situ single-crystal structure refinements of inclusions in diamond have never been carried out. In this work we investigated by X-ray diffraction a diamond-hosted garnet single-crystal from the Jericho kimberlite (Slave Craton, Canada). The garnet, not clearly visible under the microscope due to the irregular shape of the diamond host, had the largest size not greater than 100 microns. We used two STADI-IV STOE single-crystal diffractometers: the first instrument, equipped with a CCD detector, allowed us to collect a large number of diffraction reflections and to obtain an approximate orientation matrix for the garnet. Using this matrix, we mounted the diamond on the second instrument, equipped with a point detector and the software SINGLE (Angel et al. 2000), capable of obtaining an accurate X-ray beam centering through the 8-position centering method (this method is often used in high-pressure, in-situ X-ray studies). Such a procedure allowed us to measure with very high accuracy and precision the unit-cell edge (a = 11.5826(2)Å). Then we mounted back the diamond with the perfectly centered garnet on the first diffractometer and collected a complete X-ray intensity dataset in order to obtain complete structural information. We collected 410 unique reflections up to 2theta

  15. Numerical modeling of thermal loading of diamond crystal in X-ray FEL oscillators

    NASA Astrophysics Data System (ADS)

    Song, Mei-Qi; Zhang, Qing-Min; Guo, Yu-Hang; Li, Kai; Deng, Hai-Xiao

    2016-04-01

    Due to high reflectivity and high resolution of X-ray pulses, diamond is one of the most popular Bragg crystals serving as the reflecting mirror and mono-chromator in the next generation of free electron lasers (FELs). The energy deposition of X-rays will result in thermal heating, and thus lattice expansion of the diamond crystal, which may degrade the performance of X-ray FELs. In this paper, the thermal loading effect of diamond crystal for X-ray FEL oscillators has been systematically studied by combined simulation with Geant4 and ANSYS, and its dependence on the environmental temperature, crystal size, X-ray pulse repetition rate and pulse energy are presented. Our results show that taking the thermal loading effects into account, X-ray FEL oscillators are still robust and promising with an optimized design. Supported by National Natural Science Foundation of China (11175240, 11205234, 11322550) and Program for Changjiang Scholars and Innovative Research Team in University (IRT1280)

  16. Optical emission diagnostics of plasmas in chemical vapor deposition of single-crystal diamond

    DOE PAGES

    Hemawan, Kadek W.; Hemley, Russell J.

    2015-08-03

    Here, a key aspect of single crystal diamond growth via microwave plasma chemical vapor deposition is in-process control of the local plasma-substrate environment, that is, plasma gas phase concentrations of activated species at the plasma boundary layer near the substrate surface. Emission spectra of the plasma relative to the diamond substrate inside the microwave plasma reactor chamber have been analyzed via optical emission spectroscopy. The spectra of radical species such as CH, C2, and H (Balmer series) important for diamond growth were found to be more depndent on operating pressure than on microwave power. Plasma gas temperatures were calculated frommore » measurements of the C2 Swan band (d3Π → a3Π transition) system. The plasma gas temperature ranges from 2800 to 3400 K depending on the spatial location of the plasma ball, microwave power and operating pressure. Addition of Ar into CH4 + H2 plasma input gas mixture has little influence on the Hα, Hβ, and Hγ intensities and single-crystal diamond growth rates.« less

  17. Optical emission diagnostics of plasmas in chemical vapor deposition of single-crystal diamond

    SciTech Connect

    Hemawan, Kadek W. Hemley, Russell J.

    2015-11-15

    A key aspect of single crystal diamond growth via microwave plasma chemical vapor deposition is in-process control of the local plasma–substrate environment, that is, plasma gas phase concentrations of activated species at the plasma boundary layer near the substrate surface. Emission spectra of the plasma relative to the diamond substrate inside the microwave plasma reactor chamber have been analyzed via optical emission spectroscopy. The spectra of radical species such as CH, C{sub 2}, and H (Balmer series) important for diamond growth were identified and analyzed. The emission intensities of these electronically excited species were found to be more dependent on operating pressure than on microwave power. Plasma gas temperatures were calculated from measurements of the C{sub 2} Swan band (d{sup 3}Π → a{sup 3}Π transition) system. The plasma gas temperature ranges from 2800 to 3400 K depending on the spatial location of the plasma ball, microwave power and operating pressure. Addition of Ar into CH{sub 4}+H{sub 2} plasma input gas mixture has little influence on the Hα, Hβ, and Hγ intensities and single-crystal diamond growth rates.

  18. Optical emission diagnostics of plasmas in chemical vapor deposition of single-crystal diamond

    SciTech Connect

    Hemawan, Kadek W.; Hemley, Russell J.

    2015-08-03

    Here, a key aspect of single crystal diamond growth via microwave plasma chemical vapor deposition is in-process control of the local plasma-substrate environment, that is, plasma gas phase concentrations of activated species at the plasma boundary layer near the substrate surface. Emission spectra of the plasma relative to the diamond substrate inside the microwave plasma reactor chamber have been analyzed via optical emission spectroscopy. The spectra of radical species such as CH, C2, and H (Balmer series) important for diamond growth were found to be more depndent on operating pressure than on microwave power. Plasma gas temperatures were calculated from measurements of the C2 Swan band (d3Π → a3Π transition) system. The plasma gas temperature ranges from 2800 to 3400 K depending on the spatial location of the plasma ball, microwave power and operating pressure. Addition of Ar into CH4 + H2 plasma input gas mixture has little influence on the Hα, Hβ, and Hγ intensities and single-crystal diamond growth rates.

  19. Liquid crystal devices for photonics applications

    NASA Astrophysics Data System (ADS)

    Chigrinov, Vladimir G.

    2007-11-01

    Liquid crystal (LC) devices for Photonics applications is a hot topic of research. Such elements begin to appear in Photonics market. Passive elements for fiber optical communication systems (DWDM components) based on LC cells can successfully compete with the other elements used for the purpose, such as micro electromechanical (MEM), thermo-optical, opto-mechanical or acousto-optical devices. Application of nematic and ferroelectric LC for high speed communication systems, producing elements that are extremely fast, stable, durable, of low loss, operable over a wide temperature range, and that require small operating voltages and extremely low power consumption. The known LC applications in fiber optics enable to produce switches, filters, attenuators, equalizers, polarization controllers, phase emulators and other fiber optical components. Good robustness due to the absence of moving parts and compatibility with VLSI technology, excellent parameters in a large photonic wavelength range, whereas the complexity of the design and the cost of the device are equivalent to regular passive matrix LC displays makes LC fiber optical devices very attractive for mass production. We have already successfully fabricated certain prototypes of the optical switches based on ferroelectric and nematic LC materials. The electrooptical modes used for the purpose included the light polarization rotation, voltage controllable diffraction and fast switching of the LC refractive index. We used the powerful software to optimize the LC modulation characteristics. Use of photo-alignment technique pioneered by us makes it possible to develop new LC fiber components. Almost all the criteria of perfect LC alignment are met in case of azo-dye layers. We have already used azo-dye materials to align LC in superthin photonic holes, curved and 3D surfaces and as cladding layers in microring silicon based resonators. The prototypes of new LC efficient Photonics devices are envisaged. Controllable

  20. Electroluminescence from a diamond device with ion-beam-micromachined buried graphitic electrodes

    NASA Astrophysics Data System (ADS)

    Forneris, J.; Battiato, A.; Gatto Monticone, D.; Picollo, F.; Amato, G.; Boarino, L.; Brida, G.; Degiovanni, I. P.; Enrico, E.; Genovese, M.; Moreva, E.; Traina, P.; Verona, C.; Verona Rinati, G.; Olivero, P.

    2015-04-01

    Focused MeV ion microbeams are suitable tools for the direct writing of conductive graphitic channels buried in an insulating diamond bulk, as demonstrated in previous works with the fabrication of multi-electrode ionizing radiation detectors and cellular biosensors. In this work we investigate the suitability of the fabrication method for the electrical excitation of color centers in diamond. Differently from photoluminescence, electroluminescence requires an electrical current flowing through the diamond sub-gap states for the excitation of the color centers. With this purpose, buried graphitic electrodes with a spacing of 10 μm were fabricated in the bulk of a detector-grade CVD single-crystal diamond sample using a scanning 1.8 MeV He+ micro-beam. The current flowing in the gap region between the electrodes upon the application of a 450 V bias voltage was exploited as the excitation pump for the electroluminescence of different types of color centers localized in the above-mentioned gap. The bright light emission was spatially mapped using a confocal optical microscopy setup. The spectral analysis of electroluminescence revealed the emission from neutrally-charged nitrogen-vacancy centers (NV0, λZPL = 575 nm), as well as from cluster crystal dislocations (A-band, λ = 400-500 nm). Moreover, an electroluminescence signal with appealing spectral features (sharp emission at room temperature, low phonon sidebands) from He-related defects was detected (λZPL = 536.3 nm, λZPL = 560.5 nm); a low and broad peak around λ = 740 nm was also observed and tentatively ascribed to Si-V or GR1 centers. These results pose interesting future perspectives for the fabrication of electrically-stimulated single-photon emitters in diamond for applications in quantum optics and quantum cryptography.

  1. Two-dimensional single crystal diamond refractive x-ray lens

    SciTech Connect

    Antipov, S. Baryshev, S. V.; Butler, J. E.; Antipova, O.; Liu, Z.; Stoupin, S.

    2016-07-27

    The next generation light sources such as diffraction-limited storage rings and high repetition rate x-ray free-electron lasers will generate x-ray beams with significantly increased brilliance. These future machines will require X-ray optical components that are capable of handling higher instantaneous and average power densities while tailoring the properties of the x-ray beams for a variety of scientific experiments. Single crystal diamond is one of the best bulk materials for this application, because it is radiation hard, has a suitable uniform index of refraction and the best available thermal properties. In this paper we report on fabrication and experimental testing of a two-dimensional (2D) single crystal diamond compound refractive X-ray lenses (CRL). These lenses were manufactured using femto-second laser cutting and tested at the Advanced Photon Source of Argonne National Laboratory.

  2. Cryptic iridescence in a fossil weevil generated by single diamond photonic crystals.

    PubMed

    McNamara, Maria E; Saranathan, Vinod; Locatelli, Emma R; Noh, Heeso; Briggs, Derek E G; Orr, Patrick J; Cao, Hui

    2014-11-06

    Nature's most spectacular colours originate in integumentary tissue architectures that scatter light via nanoscale modulations of the refractive index. The most intricate biophotonic nanostructures are three-dimensional crystals with opal, single diamond or single gyroid lattices. Despite intense interest in their optical and structural properties, the evolution of such nanostructures is poorly understood, due in part to a lack of data from the fossil record. Here, we report preservation of single diamond (Fd-3m) three-dimensional photonic crystals in scales of a 735,000 year old specimen of the brown Nearctic weevil Hypera diversipunctata from Gold Run, Canada, and in extant conspecifics. The preserved red to green structural colours exhibit near-field brilliancy yet are inconspicuous from afar; they most likely had cryptic functions in substrate matching. The discovery of pristine fossil examples indicates that the fossil record is likely to yield further data on the evolution of three-dimensional photonic nanostructures and their biological functions.

  3. Cryptic iridescence in a fossil weevil generated by single diamond photonic crystals

    PubMed Central

    McNamara, Maria E.; Saranathan, Vinod; Locatelli, Emma R.; Noh, Heeso; Briggs, Derek E. G.; Orr, Patrick J.; Cao, Hui

    2014-01-01

    Nature's most spectacular colours originate in integumentary tissue architectures that scatter light via nanoscale modulations of the refractive index. The most intricate biophotonic nanostructures are three-dimensional crystals with opal, single diamond or single gyroid lattices. Despite intense interest in their optical and structural properties, the evolution of such nanostructures is poorly understood, due in part to a lack of data from the fossil record. Here, we report preservation of single diamond (Fd-3m) three-dimensional photonic crystals in scales of a 735 000 year old specimen of the brown Nearctic weevil Hypera diversipunctata from Gold Run, Canada, and in extant conspecifics. The preserved red to green structural colours exhibit near-field brilliancy yet are inconspicuous from afar; they most likely had cryptic functions in substrate matching. The discovery of pristine fossil examples indicates that the fossil record is likely to yield further data on the evolution of three-dimensional photonic nanostructures and their biological functions. PMID:25185581

  4. Devices made on single crystal silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Dong, Ying

    The interchip delay and performance mismatch at the chip level degrades the system performance. Further increases in system performance will require one to move from integrated circuits assembled on a board to true integrated systems. All the devices that perform different functions are put on a single substrate. Using this method, the interconnect distance decreases from centimeters to micrometers, thus dramatically decreasing the delay. Also, much of the chip level mismatch is eliminated. The single crystal silicon nanoparticle is a good candidate for one of the primary building blocks of such an integrated system. The devices made on silicon are stable; carrier mobility in single crystal silicon is reasonably high; modern silicon manufacturing infrastructure can be used to make silicon nanoparticle devices easily; and there exists a technology to localize the particles. In addition, the particle is a 3-D structure, making it possible to build a compact 3-D integrated system. In this thesis, a vacuum system was built to generate single crystal silicon nanoparticles. The particles were generated in a silane plasma, focused by aerodynamic lens and annealed in flight using a high temperature furnace. Single crystal silicon nanoparticles as large as 100 nm have been obtained. MSM (Metal-Silicon-Metal) structure was made on the silicon particles and the current-voltage (I-V) relationship through the particles was obtained. Thermionic theory and space charge limited current theory were used to explain the operation of the device. Schottky barrier height and trap density were obtained. SBFETs (Schottky Barrier Field Effect Transistors) were also built. Devices show PMOS characteristics and asymmetric characteristics to the zero drain voltage. Numerical simulation was performed on the MSM structure and SBFET to help understand the mechanism of device performance. I-V relationship generally shows good agreement with the measured result. Contours of band structure and

  5. Topology and bistability in liquid crystal devices.

    PubMed

    Majumdar, A; Newton, C J P; Robbins, J M; Zyskin, M

    2007-05-01

    We study nematic liquid crystal configurations in a prototype bistable device -- the post aligned bistable nematic (PABN) cell. Working within the Oseen-Frank continuum model, we describe the liquid crystal configuration by a unit-vector field n , in a model version of the PABN cell. First, we identify four distinct topologies in this geometry. We explicitly construct trial configurations with these topologies which are used as initial conditions for a numerical solver, based on the finite-element method. The morphologies and energetics of the corresponding numerical solutions qualitatively agree with experimental observations and suggest a topological mechanism for bistability in the PABN cell geometry.

  6. Surface finishing of ZnGeP2 single crystal by diamond tool turning method

    NASA Astrophysics Data System (ADS)

    Yue, Xiaobin; Xu, Min; Du, Wenhao; Chu, Chong

    2017-09-01

    In this work, diamond tool turning of vertical gradient freeze (VGF) grown single crystal ZnGeP2 (ZGP) was investigated. The flatness of machined ZGP surface was measured with a Zygo interferometry to be less than λ/10 and the roughness was measured with a Taloy profilermeter to be 0.7-0.9 nm. The laser-induced damage threshold was measured with a 2.07 μm wavelength pulsed laser to be >3 J/cm2.

  7. Color center fluorescence and spin manipulation in single crystal, pyramidal diamond tips

    NASA Astrophysics Data System (ADS)

    Nelz, Richard; Fuchs, Philipp; Opaluch, Oliver; Sonusen, Selda; Savenko, Natalia; Podgursky, Vitali; Neu, Elke

    2016-11-01

    We investigate bright fluorescence of nitrogen (NV)- and silicon-vacancy color centers in pyramidal, single crystal diamond tips, which are commercially available as atomic force microscope probes. We coherently manipulate NV electronic spin ensembles with T2 = 7.7(3) μs. Color center lifetimes in different tip heights indicate effective refractive index effects and quenching. Using numerical simulations, we verify enhanced photon rates from emitters close to the pyramid apex rendering them promising as scanning probe sensors.

  8. Characterization of single crystal chemical vapor deposition diamond detectors for neutron spectrometry.

    PubMed

    Gagnon-Moisan, F; Zimbal, A; Nolte, R; Reginatto, M; Schuhmacher, H

    2012-10-01

    Detectors made from artificial chemical vapor deposition single crystal diamond have shown great potential for fast neutron spectrometry. In this paper, we present the results of measurements made at the Physikalisch-Technische Bundesanstalt accelerator using neutron fields in the energy range from 7 MeV to 16 MeV. This study presents the first results of the characterization of the detector in this energy range.

  9. Applications of diamond crystal ATR FTIR spectroscopy to the characterization of ambers.

    PubMed

    Guiliano, Michel; Asia, Laurence; Onoratini, Gérard; Mille, Gilbert

    2007-08-01

    Diamond crystal ATR FTIR spectroscopy is a rapid technique with virtually no sample preparation which requires small sample amounts and showed potential in the study of ambers. FTIR spectra of ambers present discriminating patterns and can be used to distinguish amber from immature resins as copal, to determine local or Baltic origin of archaeological ambers and to detect most of the falsifications encountered in the amber commercialisation.

  10. The world's first high voltage GaN-on-Diamond power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Baltynov, Turar; Unni, Vineet; Narayanan, E. M. Sankara

    2016-11-01

    This paper presents the detailed fabrication method and extensive electrical characterisation results of the first-ever demonstrated high voltage GaN power semiconductor devices on CVD Diamond substrate. Fabricated circular GaN-on-Diamond HEMTs with gate-to-drain drift length of 17 μm and source field plate length of 3 μm show an off-state breakdown voltage of ∼1100 V. Temperature characterisation of capacitance-voltage characteristics and on-state characteristics provides insight on the temperature dependence of key parameters such as threshold voltage, 2DEG sheet carrier concentration, specific on-state resistance, and drain saturation current in the fabricated devices.

  11. Thermal crystallization of sputter-deposited amorphous Ge films: Competition of diamond cubic and hexagonal phases

    NASA Astrophysics Data System (ADS)

    Okugawa, M.; Nakamura, R.; Ishimaru, M.; Yasuda, H.; Numakura, H.

    2016-12-01

    Following our previous studies on crystallization induced by electron irradiation, we have investigated the crystallization of sputter-deposited amorphous germanium films by heat treatments. On continuous heating, samples aged for 3 days and 4 months at room temperature crystallized at 500°C to form coarse spherical particles of a hexagonal structure, of about 100 nm in diameter, whereas samples aged for 7 months turned to homogeneous nanograins of the diamond cubic structure at 600°C. When the films aged for 4 months at room temperature were annealed at 350°C for 2 h and then heated, they crystallized at 550°C to form a mixture of the two microstructures, and those annealed at 350°C and further at 500°C for 1 h crystallized at 600°C mostly to nanograins. Crystallization by electron irradiation at 350°C to 4-month-aged samples has also been studied. With increasing annealing time at 350°C, coarse particles of a hexagonal structure ceased to appear, and were replaced by fine nanograins of the diamond cubic structure. These observations can be understood in terms of structural instability of sputter-deposited amorphous films. Medium-range ordered clusters must initially be present in the films and serve as nuclei of the metastable hexagonal phase. They are unstable, however, and are eliminated by annealing, resulting in the reduction in size and number of coarse particles with a metastable structure.

  12. Nanoimplantation and Purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond

    SciTech Connect

    Riedrich-Möller, Janine; Becher, Christoph; Pezzagna, Sébastien; Meijer, Jan; Pauly, Christoph; Mücklich, Frank; Markham, Matthew; Edmonds, Andrew M.

    2015-06-01

    We present the controlled creation of single nitrogen-vacancy (NV) centers via ion implantation at the center of a photonic crystal cavity which is fabricated in an ultrapure, single crystal diamond membrane. High-resolution placement of NV centers is achieved using collimation of a 5 keV-nitrogen ion beam through a pierced tip of an atomic force microscope. We demonstrate coupling of the implanted NV centers' broad band fluorescence to a cavity mode and observe Purcell enhancement of the spontaneous emission. The results are in good agreement with a master equation model for the cavity coupling.

  13. Observations on the crystallization of spodumene from aqueous solutions in a hydrothermal diamond-anvil cell

    USGS Publications Warehouse

    Li, Jianking; Chou, I-Ming; Yuan, Shunda; Burruss, Robert A.

    2013-01-01

    Crystallization experiments were conducted in a new type of hydrothermal diamond-anvil cell (HDAC; type V) using LiAlSi2O6 (S) gel and H2O (W) as starting materials. A total of 21 experiments were performed at temperatures up to 950°C and pressures up to 788 MPa. In the samples with relatively low W/S ratios, many small crystals formed in the melt phase during cooling. In those with high W/S ratios, only a few crystals with smooth surfaces crystallized from the aqueous fluid in the presence of melt droplets, which were gradually consumed during crystal growth, indicating rapid transfer of material from the melt to the crystals through the aqueous fluid. The nucleation of crystals started at 710 (±70)°C and 520 (±80) MPa, and crystal growth ended at 570 (±40)°C and 320 (±90) MPa, with the cooling P-T path within the stability field of spodumene + quartz in the S-W system. The observed linear crystal growth rates in the aqueous phase, calculated by dividing the maximum length of a single crystal by the duration of the entire growth step, were 4.7 × 10−6 and 5.7 × 10−6 cm s−1 for the cooling rates of 0.5 and 1°C min−1, respectively. However, a rapid crystal growth rate of 3.6 × 10−5 cm s−1 in the aqueous fluid was observed when the components were supplied by nearby melt droplets. Our results show that when crystals nucleate in the aqueous fluid instead of the melt phase, there are fewer nuclei formed, and they grow much faster due to the low viscosity of the aqueous fluid, which accelerates diffusion of components for the growth of crystals. Therefore, the large crystals in granitic pegmatite can crystallize directly from aqueous fluids rather than hydrosilicate melt.

  14. Hybrid Quantum Device with Nitrogen-Vacancy Centers in Diamond Coupled to Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Peng-Bo; Xiang, Ze-Liang; Rabl, Peter; Nori, Franco

    2016-07-01

    We show that nitrogen-vacancy (NV) centers in diamond interfaced with a suspended carbon nanotube carrying a dc current can facilitate a spin-nanomechanical hybrid device. We demonstrate that strong magnetomechanical interactions between a single NV spin and the vibrational mode of the suspended nanotube can be engineered and dynamically tuned by external control over the system parameters. This spin-nanomechanical setup with strong, intrinsic, and tunable magnetomechanical couplings allows for the construction of hybrid quantum devices with NV centers and carbon-based nanostructures, as well as phonon-mediated quantum information processing with spin qubits.

  15. Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks

    SciTech Connect

    Bayn, I.; Mouradian, S.; Li, L.; Goldstein, J. A.; Schröder, T.; Zheng, J.; Chen, E. H.; Gaathon, O.; Englund, Dirk; Lu, M.; Stein, A.; Ruggiero, C. A.; Salzman, J.; Kalish, R.

    2014-11-24

    A scalable approach for integrated photonic networks in single-crystal diamond using triangular etching of bulk samples is presented. We describe designs of high quality factor (Q = 2.51 × 10{sup 6}) photonic crystal cavities with low mode volume (V{sub m} = 1.062 × (λ/n){sup 3}), which are connected via waveguides supported by suspension structures with predicted transmission loss of only 0.05 dB. We demonstrate the fabrication of these structures using transferred single-crystal silicon hard masks and angular dry etching, yielding photonic crystal cavities in the visible spectrum with measured quality factors in excess of Q = 3 × 10{sup 3}.

  16. Modelling defect cavities formed in inverse three-dimensional rod-connected diamond photonic crystals

    NASA Astrophysics Data System (ADS)

    Taverne, M. P. C.; Ho, Y.-L. D.; Zheng, X.; Liu, S.; Chen, L.-F.; Lopez-Garcia, M.; Rarity, J. G.

    2016-12-01

    Defect cavities in 3D photonic crystal can trap and store light in the smallest volumes allowable in dielectric materials, enhancing non-linearities and cavity QED effects. Here, we study inverse rod-connected diamond (RCD) crystals containing point defect cavities using plane-wave expansion and finite-difference time domain methods. By optimizing the dimensions of the crystal, wide photonic bandgaps are obtained. Mid-bandgap resonances can then be engineered by introducing point defects in the crystal. We investigate a variety of single spherical defects at different locations in the unit cell focusing on high-refractive-index-contrast (3.3:1) inverse RCD structures; quality factors (Q-factors) and mode volumes of the resonant cavity modes are calculated. By choosing a symmetric arrangement, consisting of a single sphere defect located at the center of a tetrahedral arrangement, mode volumes < 0.06 cubic wavelengths are obtained, a record for high-index cavities.

  17. Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices

    SciTech Connect

    Issaoui, R.; Achard, J.; Tallaire, A.; Silva, F.; Gicquel, A.; Bisaro, R.; Servet, B.; Garry, G.; Barjon, J.

    2012-03-19

    In this study, 4 x 4 mm{sup 2} freestanding boron-doped diamond single crystals with thickness up to 260 {mu}m have been fabricated by plasma assisted chemical vapour deposition. The boron concentrations measured by secondary ion mass spectroscopy were 10{sup 18} to 10{sup 20} cm{sup -3} which is in a good agreement with the values calculated from Fourier transform infrared spectroscopy analysis, thus indicating that almost all incorporated boron is electrically active. The dependence of lattice parameters and crystal mosaicity on boron concentrations have also been extracted from high resolution x-ray diffraction experiments on (004) planes. The widths of x-ray rocking curves have globally shown the high quality of the material despite a substantial broadening of the peak, indicating a decrease of structural quality with increasing boron doping levels. Finally, the suitability of these crystals for the development of vertical power electronic devices has been confirmed by four-point probe measurements from which electrical resistivities as low as 0.26 {Omega} cm have been obtained.

  18. Development of a synthetic single crystal diamond dosimeter for dose measurement of clinical proton beams

    NASA Astrophysics Data System (ADS)

    Moignier, Cyril; Tromson, Dominique; de Marzi, Ludovic; Marsolat, Fanny; García Hernández, Juan Carlos; Agelou, Mathieu; Pomorski, Michal; Woo, Romuald; Bourbotte, Jean-Michel; Moignau, Fabien; Lazaro, Delphine; Mazal, Alejandro

    2017-07-01

    The scope of this work was to develop a synthetic single crystal diamond dosimeter (SCDD-Pro) for accurate relative dose measurements of clinical proton beams in water. Monte Carlo simulations were carried out based on the MCNPX code in order to investigate and reduce the dose curve perturbation caused by the SCDD-Pro. In particular, various diamond thicknesses were simulated to evaluate the influence of the active volume thickness (e AV) as well as the influence of the addition of a front silver resin (250 µm in thickness in front of the diamond crystal) on depth-dose curves. The simulations indicated that the diamond crystal alone, with a small e AV of just 5 µm, already affects the dose at Bragg peak position (Bragg peak dose) by more than 2% with respect to the Bragg peak dose deposited in water. The optimal design that resulted from the Monte Carlo simulations consists of a diamond crystal of 1 mm in width and 150 µm in thickness with the front silver resin, enclosed by a water-equivalent packaging. This design leads to a deviation between the Bragg peak dose from the full detector modeling and the Bragg peak dose deposited in water of less than 1.2%. Based on those optimizations, an SCDD-Pro prototype was built and evaluated in broad passive scattering proton beams. The experimental evaluation led to probed SCDD-Pro repeatability, dose rate dependence and linearity, that were better than 0.2%, 0.4% (in the 1.0-5.5 Gy min-1 range) and 0.4% (for dose higher than 0.05 Gy), respectively. The depth-dose curves in the 90-160 MeV energy range, measured with the SCDD-Pro without applying any correction, were in good agreement with those measured using a commercial IBA PPC05 plane-parallel ionization chamber, differing by less than 1.6%. The experimental results confirmed that this SCDD-Pro is suitable for measurements with standard electrometers and that the depth-dose curve perturbation is negligible, with no energy dependence and no significant dose rate

  19. Nanocrystalline diamond micro-anvil grown on single crystal diamond as a generator of ultra-high pressures

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Moore, Samuel L.; Velisavljevic, Nenad; Tsoi, Georgiy M.; Baker, Paul A.; Vohra, Yogesh K.

    2016-09-01

    By combining mask-less lithography and chemical vapor deposition (CVD) techniques, a novel two-stage diamond anvil has been fabricated. A nanocrystalline diamond (NCD) micro-anvil 30 μ m in diameter was grown at the center of a [100]-oriented, diamond anvil by utilizing microwave plasma CVD method. The NCD micro-anvil has a diamond grain size of 115 nm and micro-focused Raman and X-ray Photoelectron spectroscopy analysis indicate sp3-bonded diamond content of 72%. These CVD grown NCD micro-anvils were tested in an opposed anvil configuration and the transition metals osmium and tungsten were compressed to high pressures of 264 GPa in a diamond anvil cell.

  20. Dynamic Actuation of Single-Crystal Diamond Nanobeams

    DTIC Science & Technology

    2014-08-25

    knowledge, this is the highest actuation frequency of flexural mechanical vibration achieved by dielectrophoretic actuation to date. Unfortunately, in...quality factor (Q) nanoscale mechanical resonators. These devices are of interest for realization of stable, high f · Q product, RF oscillators and inertial...between an NV− center and a mechanical resonator could enable high fidelity control of NV− spin state via rapid adiabatic passage,10 and potentially the

  1. Diamond Opal-Replica Photonic Crystals and Graphitic Metallic Photonic Band Gap Structures: Fabrication and Properties

    NASA Astrophysics Data System (ADS)

    Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Khayrullin, I. I.; Ralchenko, V. G.

    1998-03-01

    We demonstrate a new method for the formation of photonic bandgap crystals that operate at optical wavelengths. This method involves the templating of a self-assempled SiO2 lattice with diamond, graphite, or amorphous forms of carbon, followed by the removal of the original SiO2 lattice matrix by chemical means. Such carbon opal replicas are the "air type" of photonic crystal (where air replaces silica spheres) that are most favourable for photonic bandgap formation. Surprisingly, the structure of the original opal lattice having a typical cubic lattice dimension of 250 nm) is reliably replicated down to the nanometer scale using either a diamond, graphite, or amorphous carbon templated material. The optical properties of these photonic bandgap crystals are reported and compared with both theory and experimental results on other types of opal-derived lattices that we have investigated. The graphitic reverse opal is the first example of a network type metallic photonic crystal for the optical domain, for which a large photonic bandgap have been predicted.

  2. Pulse-height defect in single-crystal CVD diamond detectors

    NASA Astrophysics Data System (ADS)

    Beliuskina, O.; Strekalovsky, A. O.; Aleksandrov, A. A.; Aleksandrova, I. A.; Devaraja, H. M.; Heinz, C.; Heinz, S.; Hofmann, S.; Ilich, S.; Imai, N.; Kamanin, D. V.; Kis, M.; Knyazheva, G. N.; Kozhuharov, C.; Kuznetsova, E. A.; Maurer, J.; Mishinsky, G. V.; Pomorski, M.; Pyatkov, Yu. V.; Strekalovsky, O. V.; Träger, M.; Zhuchko, V. E.

    2017-02-01

    The pulse-height versus deposited energy response of a single-crystal chemical vapor deposition (scCVD) diamond detector was measured for ions of Ti, Cu, Nb, Ag, Xe, Au, and of fission fragments of 252 Cf at different energies. For the fission fragments, data were also measured at different electric field strengths of the detector. Heavy ions have a significant pulse-height defect in CVD diamond material, which increases with increasing energy of the ions. It also depends on the electrical field strength applied at the detector. The measured pulse-height defects were explained in the framework of recombination models. Calibration methods known from silicon detectors were modified and applied. A comparison with data for the pulse-height defect in silicon detectors was performed.

  3. Performances of homoepitaxial single crystal diamond in diagnostic x-ray dosimetry

    SciTech Connect

    Garino, Y.; Lo Giudice, A.; Manfredotti, C.; Marinelli, Marco; Milani, E.; Tucciarone, A.; Verona-Rinati, G.

    2006-04-10

    Pulsed x-ray dose measurements have been carried at maximum x-ray energies from 40 to 120 KeV out by using a single crystal epitaxial diamond sample grown by chemical vapor deposition (CVD). Delivered doses were between 0.1 and 10 mGy and pulse duration times between 0.01 and 0.5 s. Values of dose linearity index very close to 1 (between 1.02 and 1.07) at increasing x-ray energies and pulse decay times between 15 and 20 ms were obtained. The reproducibility was very good with no memory effects. CVD homoepitaxial diamond results to be very promising for x-ray diagnostic applications.

  4. Effect of nitrogen on the growth of boron doped single crystal diamond

    SciTech Connect

    Karna, Sunil; Vohra, Yogesh

    2013-11-18

    Boron-doped single crystal diamond films were grown homoepitaxially on synthetic (100) Type Ib diamond substrates using microwave plasma assisted chemical vapor deposition. A modification in surface morphology of the film with increasing boron concentration in the plasma has been observed using atomic force microscopy. Use of nitrogen during boron doping has been found to improve the surface morphology and the growth rate of films but it lowers the electrical conductivity of the film. The Raman spectra indicated a zone center optical phonon mode along with a few additional bands at the lower wavenumber regions. The change in the peak profile of the zone center optical phonon mode and its downshift were observed with the increasing boron content in the film. Furthermore, sharpening and upshift of Raman line was observed in the film that was grown in presence of nitrogen along with diborane in process gas.

  5. Single-crystal diamond refractive lens for focusing X-rays in two dimensions

    PubMed Central

    Antipov, S.; Baryshev, S. V.; Butler, J. E.; Antipova, O.; Liu, Z.; Stoupin, S.

    2016-01-01

    The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses. PMID:26698059

  6. Effect of nitrogen on the growth of boron doped single crystal diamond

    DOE PAGES

    Karna, Sunil; Vohra, Yogesh

    2013-11-18

    Boron-doped single crystal diamond films were grown homoepitaxially on synthetic (100) Type Ib diamond substrates using microwave plasma assisted chemical vapor deposition. A modification in surface morphology of the film with increasing boron concentration in the plasma has been observed using atomic force microscopy. Use of nitrogen during boron doping has been found to improve the surface morphology and the growth rate of films but it lowers the electrical conductivity of the film. The Raman spectra indicated a zone center optical phonon mode along with a few additional bands at the lower wavenumber regions. The change in the peak profilemore » of the zone center optical phonon mode and its downshift were observed with the increasing boron content in the film. Furthermore, sharpening and upshift of Raman line was observed in the film that was grown in presence of nitrogen along with diborane in process gas.« less

  7. Single-crystal diamond refractive lens for focusing X-rays in two dimensions.

    PubMed

    Antipov, S; Baryshev, S V; Butler, J E; Antipova, O; Liu, Z; Stoupin, S

    2016-01-01

    The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses.

  8. Single-crystal diamond refractive lens for focusing X-rays in two dimensions

    SciTech Connect

    Antipov, S.; Baryshev, Sergey; Butler, J. E.; Antipova, O.; Liu, Zunping; Stoupin, S.

    2016-01-01

    The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses.

  9. A mechanism for crystal twinning in the growth of diamond by chemical vapour deposition.

    PubMed

    Butler, James E; Oleynik, Ivan

    2008-01-28

    A model for the formation of crystal twins in chemical vapour deposited diamond materials is presented. The twinning mechanism originates from the formation of a hydrogen-terminated four carbon atom cluster on a local {111} surface morphology, which also serves as a nucleus to the next layer of growth. Subsequent growth proceeds by reaction at the step edges with one and two carbon atom-containing species. The model also provides an explanation for the high defect concentration observed in 111 growth sectors, the formation of penetration and contact twins, and the dramatic enhancement in polycrystalline diamond growth rates and morphology changes when small amounts of nitrogen are added to the plasma-assisted growth environments.

  10. Unusual growth macrolayers on {100} faces of diamond crystals from magnesium-based systems

    NASA Astrophysics Data System (ADS)

    Khokhryakov, Alexander F.; Nechaev, Denis V.; Palyanov, Yuri N.

    2016-12-01

    We studied unusual growth macrolayers on the {100} faces of diamond crystals grown in Mg-C and Mg0.9Ge0.1-C systems at 7.0 GPa and in the temperature range of 1800-1900 °C. The layers were shaped as rectangles highly elongated in one of the [110] directions. The layer elongation (length to width ratio) was different, but did not exceed 23. We found that the ends of the macrolayers in most cases were composed of {111} microfacets, and their growth occurred by layers along these microfacets. Using selective etching, we found that the macrolayers were not associated with outcrops of dislocations and any planar defects on the {100} faces. It is supposed that the formation of these highly elongated layers occurs by two-dimensional nucleation that becomes possible at high carbon supersaturation under conditions of kinetically limited diamond growth in Mg-based systems.

  11. Linear parabolic single-crystal diamond refractive lenses for synchrotron X-ray sources.

    PubMed

    Terentyev, Sergey; Polikarpov, Maxim; Snigireva, Irina; Di Michiel, Marco; Zholudev, Sergey; Yunkin, Vyacheslav; Kuznetsov, Sergey; Blank, Vladimir; Snigirev, Anatoly

    2017-01-01

    Linear parabolic diamond refractive lenses are presented, designed to withstand high thermal and radiation loads coming from upgraded accelerator X-ray sources. Lenses were manufactured by picosecond laser treatment of a high-quality single-crystal synthetic diamond. Twelve lenses with radius of curvature at parabola apex R = 200 µm, geometrical aperture A = 900 µm and length L = 1.5 mm were stacked as a compound refractive lens and tested at the ESRF ID06 beamline. A focal spot of size 2.2 µm and a gain of 20 were measured at 8 keV. The lens profile and surface quality were estimated by grating interferometry and X-ray radiography. In addition, the influence of X-ray glitches on the focusing properties of the compound refractive lens were studied.

  12. Parabolic single-crystal diamond lenses for coherent x-ray imaging

    NASA Astrophysics Data System (ADS)

    Terentyev, Sergey; Blank, Vladimir; Polyakov, Sergey; Zholudev, Sergey; Snigirev, Anatoly; Polikarpov, Maxim; Kolodziej, Tomasz; Qian, Jun; Zhou, Hua; Shvyd'ko, Yuri

    2015-09-01

    We demonstrate parabolic single-crystal diamond compound refractive lenses designed for coherent x-ray imaging resilient to extreme thermal and radiation loading expected from next generation light sources. To ensure the preservation of coherence and resilience, the lenses are manufactured from the highest-quality single-crystalline synthetic diamond material grown by a high-pressure high-temperature technique. Picosecond laser milling is applied to machine lenses to parabolic shapes with a ≃ 1 μ m precision and surface roughness. A compound refractive lens comprised of six lenses with a radius of curvature R = 200 μ m at the vertex of the parabola and a geometrical aperture A = 900 μ m focuses 10 keV x-ray photons from an undulator source at the Advanced Photon Source facility to a focal spot size of ≃ 20 × 90 μ m 2 with a gain factor of ≃ 50 - 100 .

  13. Thermal property characterization of single crystal diamond with varying isotopic composition

    SciTech Connect

    Wei, L.

    1993-01-01

    The mirage-effect/thermal wave technique as a modern technique for thermal property characterization is described. The thermal diffusivity of a material is determined by measuring the time and space varying temperature distribution (thermal wave) in the material generated by an intensity modulated heating laser beam. These thermal waves are detected through the deflection of a probe laser beam due to modulation of gradient of the index of refraction (mirage effect) either in the air above the specimens (the in-air technique) or in the specimen itself (the in-solid technique). Three-dimensional theories, for both in-air and in-solid mirage techniques, are represented. In order to extract the material parameters by comparing the theory with experimental data, an extensive data analysis procedure based on multiparameter-least-squares has been developed. The experimental and data analysis details are discussed. Topics concerns with the quality and reliability of the measurements are addressed. This technique has been successfully applied to the thermal property characterization of single crystal diamond with varying isotope contents. The results showed a 50% enhancement in the thermal conductivity by removal of C[sup 13] content from 1.1% to 0.1% in diamond at room temperature. The technique has also been adapted to function in cryogenic temperatures. The temperature dependence of thermal conductivity in the temperature range 80-378K for natural IIA specimen and 187-375K for isotopically enriched specimen are obtained, the former results agree with previous works and the latter results demonstrate the isotope effect on the thermal conductivity of single crystal diamond consistently in a large temperature range. The physical source of this enhancement in diffusivity due to the isotope effect in diamond is discussed. The discussion is based on the full Callaway's theory with emphasizing the role of N-processes in the phonon scattering mechanism.

  14. Enhancing the plasma illumination behaviour of microplasma devices using microcrystalline/ultra-nanocrystalline hybrid diamond materials as cathodes.

    PubMed

    Chang, Tinghsun; Lou, Shiucheng; Chen, Huangchin; Chen, Chulung; Lee, Chiyoung; Tai, Nyanhwa; Lin, Inan

    2013-08-21

    The properties of capacity-type microplasma devices were significantly enhanced due to the utilisation of hybrid diamond films as cathodes. The performance of the microplasma devices was closely correlated with the electron field emission (EFE) properties of the diamond cathode materials. The nanoemitters, which were prepared by growing duplex-structured diamond films [microcrystalline diamond (MCD)/ultra-nanocrystalline diamond (UNCD)] on Si-pyramid templates via a two-step microwave plasma enhanced chemical vapour deposition (MPE-CVD) process, exhibited improved EFE properties (E0 = 5.99 V μm(-1), J(e) = 1.10 mA cm(-2) at 8.50 V μm(-1) applied field), resulting in superior microplasma device performance (with a lower threshold field of 200 V mm(-1) and a higher plasma current density of 7.80 mA cm(-2)) in comparison with UNCD film devices prepared using a single-step MPE-CVD process. The superior EFE properties of the duplex-structured MCD-UNCD films relative to those of the UNCD films can be attributed to the unique granular structure of the diamond films. High-resolution transmission electron microscopy reveals that the MCD-UNCD films consisted of abundant graphitic phases located at the periphery of large diamond aggregates and at the boundaries between the ultra-small diamond grains. The presence of the graphite phase is presumed to be the prime factor that renders these films more conductive and causes these films to exhibit higher EFE properties, thus resulting in the improved plasma illumination properties of the microplasma devices.

  15. Device For Controlling Crystallization Of Protein

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1993-01-01

    Variable sandwich spacer enables optimization of evaporative driving force that governs crystallization of protein from solution. Mechanically more rigid than hanging-drop and sitting-drop devices. Large oscillations and dislodgment of drop of solution in response to vibrations suppressed by glass plates. Other advantages include: suitable for automated delivery, stable handling, and programmable evaporation of protein solution; controlled configuration enables simple and accurate determination of volume of solution without disrupting crystallization; pH and concentration of precipitant controlled dynamically because pH and concentration coupled to rate of evaporation, controllable via adjustment of gap between plates; and enables variation of ratio between surface area and volume of protein solution. Alternative version, plates oriented vertically instead of horizontally.

  16. Development and high temperature testing by 14 MeV neutron irradiation of single crystal diamond detectors

    NASA Astrophysics Data System (ADS)

    Pilotti, R.; Angelone, M.; Pagano, G.; Loreti, S.; Pillon, M.; Sarto, F.; Marinelli, M.; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.

    2016-06-01

    In the present paper, the performances of single crystal diamond detectors "ad hoc" designed to operate at high temperature are reported. The detectors were realized using commercial CVD single crystal diamond films, 500 micron thick with metal contacts deposited by sputtering method on each side. The new detector layout is based upon mechanical contacts between the diamond film and the electric ground. The detector was first characterized by measuring the leakage current as function of temperature and applied biasing voltage (I-V characteristics). The results obtained using two different metal contacts, Pt and Ag respectively, while irradiated with 14 MeV neutrons at the Frascati neutron generator (FNG) are reported and compared. It is shown that diamond detectors with Ag metal contacts can be properly operated in spectrometric mode up to 240oC with energy resolution (FWHM) of about 3.5%.

  17. Effects of additive NaN3 on the HPHT synthesis of large single crystal diamond grown by TGM

    NASA Astrophysics Data System (ADS)

    Huang, Guofeng; Jia, Xiaopeng; Li, Shangsheng; Hu, Meihua; Li, Yong; Zhao, Ming; Yan, Bingmin; Ma, Hongan

    2010-10-01

    In this paper, large single crystal diamond with perfect shape and high nitrogen concentration approximately 1671-1742 ppm was successfully synthesized by temperature gradient method (TGM) under high pressure and high temperature (HPHT). The HPHT synthesis conditions were about 5.5 GPa and 1500-1550 K. Sodium azide (NaN3) with different amount was added as the source of nitrogen into the synthesis system of high pure graphite and kovar alloy. The effects of additive NaN3 on crystal growth habit were investigated in detail. The crystal morphology, nitrogen concentration and existing form in synthetic diamond were characterized by means of scanning electron microscope (SEM) and infrared (IR) absorption spectra, respectively. The results show that with an increase of the content of NaN3 added in the synthesis system, the region of synthesis temperature for high-quality diamond becomes narrow, and crystal growth rate is restricted, whereas the nitrogen concentration in synthetic diamond increases. Nitrogen exists in diamond mainly in dispersed form (C-centers) and partially aggregated form (A-centers). The defects occur more frequently on crystal surface when excessive NaN3 is added in the synthesis system.

  18. Electronic properties of single-crystal diamonds heavily doped with boron

    SciTech Connect

    Buga, S. G.; Blank, V. D.; Terent'ev, S. A.; Kuznetsov, M. S.; Nosukhin, S. A.; Kulbachinskii, V. A. Krechetov, A. V.; Kytin, V. G.; Kytin, G. A.

    2007-04-15

    Single-crystal diamonds with characteristic sizes of 2-7 mm doped with boron in the concentration range 10{sup 19}-10{sup 20} cm{sup -3} have been grown by the temperature gradient method at high static pressures. The temperature dependence of the resistance R of the synthesized single crystals has been measured in the range 0.5 K < T < 297 K. An activated dependence R(T) with an activation energy of about 50 meV is observed in the range from room temperature to T {approx} 200 K. At temperatures below approximately 50 K, the temperature dependence of the conductivity for heavily doped crystals is proportional to T{sup 1/2}, which is characteristic of degenerate semiconductors with a high number of defects.

  19. Fast ion energy distribution from third harmonic radio frequency heating measured with a single crystal diamond detector at the Joint European Torus

    SciTech Connect

    Nocente, M.; Rebai, M.; Gorini, G.; Cazzaniga, C.; Tardocchi, M.; Giacomelli, L.; Muraro, A.; Binda, F.; Eriksson, J.; Sharapov, S.; Collaboration:

    2015-10-15

    Neutron spectroscopy measurements with a single crystal diamond detector have been carried out at JET, for the first time in an experiment aimed at accelerating deuterons to MeV energies with radio frequency heating at the third harmonic. Data are interpreted by means of the expected response function of the detector and are used to extract parameters of the highly non-Maxwellian distribution function generated in this scenario. A comparison with observations using a time of flight and liquid scintillator neutron spectrometers is also presented. The results demonstrate the capability of diamond detectors to contribute to fast ion physics studies at JET and are of more general relevance in view of the application of such detectors for spectroscopy measurements in the neutron camera of next step tokamak devices.

  20. Effects of FeNi-phosphorus-carbon system on crystal growth of diamond under high pressure and high temperature conditions

    NASA Astrophysics Data System (ADS)

    Hu, Mei-Hua; Bi, Ning; Li, Shang-Sheng; Su, Tai-Chao; Zhou, Ai-Guo; Hu, Qiang; Jia, Xiao-Peng; Ma, Hong-An

    2015-03-01

    This paper reports the crystal growth of diamond from the FeNi-Carbon system with additive phosphorus at high pressures and high temperatures of 5.4-5.8 GPa and 1280-1360 °C. Attributed to the presence of additive phosphorus, the pressure and temperature condition, morphology, and color of diamond crystals change obviously. The pressure and temperature condition of diamond growth increases evidently with the increase of additive phosphorus content and results in the moving up of the V-shape region. The surfaces of the diamonds also become coarse as the additive phosphorus added in the growth system. Raman spectra indicate that diamonds grown from the FeNi-phosphorus-carbon system have more crystal defects and impurities. This work provides a new way to enrich the doping of diamond and improve the experimental exploration for future material applications. Project supported by the Doctoral Fund of Henan Polytechnic University, China (Grant Nos. B2013-013 and B2013-044) and the Research Projects of Science and Technology of the Education Department of Henan Province, China (Grant Nos. 14B430026 and 12A430010).

  1. The local crystallization in nanoscale diamond-like carbon films during annealing

    SciTech Connect

    Kolpakov, A. Ya. Poplavsky, A. I.; Galkina, M. E.; Gerus, J. V.; Manokhin, S. S.

    2014-12-08

    The local crystallization during annealing at 600 °C in nanoscale diamond-like carbon coatings films grown by pulsed vacuum-arc deposition method was observed using modern techniques of high-resolution transmission electron microscopy. The crystallites formed by annealing have a face-centred cubic crystal structure and grow in the direction [01{sup ¯}1{sup ¯}] as a normal to the film surface. The number and size of the crystallites depend on the initial values of the intrinsic stresses before annealing, which in turn depend on the conditions of film growth. The sizes of crystallites are 10 nm for films with initial compressive stresses of 3 GPa and 17 nm for films with initial compressive stresses of 12 GPa. Areas of local crystallization arising during annealing have a structure different from the graphite. Additionally, the investigation results of the structure of nanoscale diamond-like carbon coatings films using Raman spectroscopy method are presented, which are consistent with the transmission electron microscopy research results.

  2. High-reflectivity High-resolution X-ray Crystal Optics with Diamonds

    SciTech Connect

    Shvyd’ko, Y.; Stoupin, S; Cunsolo, A; Said, A; Huang, X

    2010-01-01

    Owing to the depth to which hard X-rays penetrate into most materials, it is commonly accepted that the only way to realize hard-X-ray mirrors with near 100% reflectance is under conditions of total external reflection at grazing incidence to a surface. At angles away from grazing incidence, substantial reflectance of hard X-rays occurs only as a result of constructive interference of the waves scattered from periodically ordered atomic planes in crystals (Bragg diffraction). Theory predicts that even at normal incidence the reflection of X-rays from diamond under the Bragg condition should approach 100% - substantially higher than from any other crystal. Here we demonstrate that commercially produced synthetic diamond crystals do indeed show an unprecedented reflecting power at normal incidence and millielectronvolt-narrow reflection bandwidths for hard X-rays. Bragg diffraction measurements of reflectivity and the energy bandwidth show remarkable agreement with theory. Such properties are valuable to the development of hard-X-ray optics, and could greatly assist the realization of fully coherent X-ray sources, such as X-ray free-electron laser oscillators.

  3. Temperature dependence of the elastic and vibronic behavior of Si, Ge, and diamond crystals

    NASA Astrophysics Data System (ADS)

    Gu, Mingxia; Zhou, Yichun; Pan, Likun; Sun, Zhuo; Wang, Shanzhong; Sun, Chang Q.

    2007-10-01

    The thermally induced softening of the elastic and vibronic identities in crystals and their correlations have long been a puzzle. Analytical solutions have been developed, showing that the detectable elastic and vibronic properties could be related directly to the bonding parameters, such as bond length and strength, and their response to the temperature change. Reproduction of measured T-dependent Young's modulus and Raman shift of Si, Ge, and diamond reveals that the thermally driven softening of the elasticity and the optical Raman frequency arises from bond expansion and vibration, with derived information about the atomic cohesive energy and clarification of their interdependence.

  4. Curved diamond-crystal spectrographs for x-ray free-electron laser noninvasive diagnostics

    DOE PAGES

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz; ...

    2016-12-29

    Here, we report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-µm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0.6 m and R = 0.1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for ' 8 keV X-rays. All of the components of the bending mechanism (about 10 parts) aremore » manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons, and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.« less

  5. Curved diamond-crystal spectrographs for x-ray free-electron laser noninvasive diagnostics.

    PubMed

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz; Shvyd'ko, Yuri

    2016-12-01

    We report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-μm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0.6 m and R = 0.1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for ≃8 keV X-rays. All of the components of the bending mechanism (about 10 parts) are manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.

  6. Curved diamond-crystal spectrographs for x-ray free-electron laser noninvasive diagnostics

    NASA Astrophysics Data System (ADS)

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz; Shvyd'ko, Yuri

    2016-12-01

    We report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-μm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0.6 m and R = 0.1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for ≃8 keV X-rays. All of the components of the bending mechanism (about 10 parts) are manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.

  7. Curved diamond-crystal spectrographs for x-ray free-electron laser noninvasive diagnostics

    SciTech Connect

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz; Shvyd’ko, Yuri

    2016-12-29

    Here, we report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-µm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0.6 m and R = 0.1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for ' 8 keV X-rays. All of the components of the bending mechanism (about 10 parts) are manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons, and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.

  8. Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals.

    PubMed

    Chanda, Debashis; Abolghasemi, Ladan E; Haque, Moez; Ng, Mi Li; Herman, Peter R

    2008-09-29

    We present a novel multi-level diffractive optical element for diffractive optic near-field lithography based fabrication of large-area diamond-like photonic crystal structure in a single laser exposure step. A multi-level single-surface phase element was laser fabricated on a thin polymer film by two-photon polymerization. A quarter-period phase shift was designed into the phase elements to generate a 3D periodic intensity distribution of double basis diamond-like structure. Finite difference time domain calculation of near-field diffraction patterns and associated isointensity surfaces are corroborated by definitive demonstration of a diamond-like woodpile structure formed inside thick photoresist. A large number of layers provided a strong stopband in the telecom band that matched predictions of numerical band calculation. SEM and spectral observations indicate good structural uniformity over large exposure area that promises 3D photonic crystal devices with high optical quality for a wide range of motif shapes and symmetries. Optical sensing is demonstrated by spectral shifts of the Gamma-Zeta stopband under liquid emersion.

  9. Enhanced optical properties of chemical vapor deposited single crystal diamond by low-pressure/high-temperature annealing.

    PubMed

    Meng, Yu-fei; Yan, Chih-shiue; Lai, Joseph; Krasnicki, Szczesny; Shu, Haiyun; Yu, Thomas; Liang, Qi; Mao, Ho-kwang; Hemley, Russell J

    2008-11-18

    Single crystal diamond produced by chemical vapor deposition (CVD) at very high growth rates (up to 150 microm/h) has been successfully annealed without graphitization at temperatures up to 2200 degrees C and pressures <300 torr. Crystals were annealed in a hydrogen environment by using microwave plasma techniques for periods of time ranging from a fraction of minute to a few hours. This low-pressure/high-temperature (LPHT) annealing enhances the optical properties of this high-growth rate CVD single crystal diamond. Significant decreases are observed in UV, visible, and infrared absorption and photoluminescence spectra. The decrease in optical absorption after the LPHT annealing arises from the changes in defect structure associated with hydrogen incorporation during CVD growth. There is a decrease in sharp line spectral features indicating a reduction in nitrogen-vacancy-hydrogen (NVH(-)) defects. These measurements indicate an increase in relative concentration of nitrogen-vacancy (NV) centers in nitrogen-containing LPHT-annealed diamond as compared with as-grown CVD material. The large overall changes in optical properties and the specific types of alterations in defect structure induced by this facile LPHT processing of high-growth rate single-crystal CVD diamond will be useful in the creation of diamond for a variety of scientific and technological applications.

  10. Enhanced Optical Properties of Chemical Vapor Deposited Single Crystal Diamond by Low-Pressure/High-Temperature Annealing

    SciTech Connect

    Meng, Y.; Yan, C; Lai, Y; Krasnicki, S; Shu, H; Yu, T; Liang, Q; Mao, H; Hemley, R

    2008-01-01

    Single crystal diamond produced by chemical vapor deposition (CVD) at very high growth rates (up to 150 em/h) has been successfully annealed without graphitization at temperatures up to 2200 C and pressures <300 torr. Crystals were annealed in a hydrogen environment by using microwave plasma techniques for periods of time ranging from a fraction of minute to a few hours. This low-pressure/high-temperature (LPHT) annealing enhances the optical properties of this high-growth rate CVD single crystal diamond. Significant decreases are observed in UV, visible, and infrared absorption and photoluminescence spectra. The decrease in optical absorption after the LPHT annealing arises from the changes in defect structure associated with hydrogen incorporation during CVD growth. There is a decrease in sharp line spectral features indicating a reduction in nitrogen-vacancy-hydrogen (NVH-) defects. These measurements indicate an increase in relative concentration of nitrogen-vacancy (NV) centers in nitrogen-containing LPHT-annealed diamond as compared with as-grown CVD material. The large overall changes in optical properties and the specific types of alterations in defect structure induced by this facile LPHT processing of high-growth rate single-crystal CVD diamond will be useful in the creation of diamond for a variety of scientific and technological applications.

  11. Characterization of a new commercial single crystal diamond detector for photon- and proton-beam dosimetry

    PubMed Central

    Akino, Yuichi; Gautam, Archana; Coutinho, Len; Würfel, Jan; Das, Indra J.

    2015-01-01

    A synthetic single crystal diamond detector (SCDD) is commercially available and is characterized for radiation dosimetry in various radiation beams in this study. The characteristics of the commercial SCDD model 60019 (PTW) with 6- and 15-MV photon beams, and 208-MeV proton beams, were investigated and compared with the pre-characterized detectors: Semiflex (model 31010) and PinPoint (model 31006) ionization chambers (PTW), the EDGE diode detector (Sun Nuclear Corp) and the SFD Stereotactic Dosimetry Diode Detector (IBA). To evaluate the effects of the pre-irradiation, the diamond detector, which had not been irradiated on the day, was set up in the water tank, and the response to 100 MU was measured every 20 s. The depth–dose and profiles data were collected for various field sizes and depths. For all radiation types and field sizes, the depth–dose data of the diamond chamber showed identical curves to those of the ionization chambers. The profile of the diamond detector was very similar to those of the EDGE and SFD detectors, although the Semiflex and PinPoint chambers showed volume-averaging effects in the penumbrae region. The temperature dependency was within 0.7% in the range of 4–41°C. A dose of 900 cGy and 1200 cGy was needed to stabilize the chamber to the level within 0.5% and 0.2%, respectively. The PTW type 60019 SCDD detector showed suitable characteristics for radiation dosimetry, for relative dose, depth–dose and profile measurements for a wide range of field sizes. However, at least 1000 cGy of pre-irradiation will be needed for accurate measurements. PMID:26268483

  12. Photonic crystal cavities and integrated optical devices

    NASA Astrophysics Data System (ADS)

    Gan, Lin; Li, ZhiYuan

    2015-11-01

    This paper gives a brief introduction to our recent works on photonic crystal (PhC) cavities and related integrated optical structures and devices. Theoretical background and numerical methods for simulation of PhC cavities are first presented. Based on the theoretical basis, two relevant quantities, the cavity mode volume and the quality factor are discussed. Then the methods of fabrication and characterization of silicon PhC slab cavities are introduced. Several types of PhC cavities are presented, such as the usual L3 missing-hole cavity, the new concept waveguide-like parallel-hetero cavity, and the low-index nanobeam cavity. The advantages and disadvantages of each type of cavity are discussed. This will help the readers to decide which type of PhC cavities to use in particular applications. Furthermore, several integrated optical devices based on PhC cavities, such as optical filters, channel-drop filters, optical switches, and optical logic gates are described in both the working principle and operation characteristics. These devices designed and realized in our group demonstrate the wide range of applications of PhC cavities and offer possible solutions to some integrated optical problems.

  13. Tailoring liquid crystals to become fast and efficient terahertz devices

    NASA Astrophysics Data System (ADS)

    Pickwell-MacPherson, E.; Parrott, E. P. J.; Park, H.; Fan, F.; Chigrinov, V. G.

    2012-10-01

    Liquid crystals have been employed for several decades in devices such as phase shifters, Fabry-Perot filters, polarizers, phase gratings, and Bragg switches at optical frequencies. However it is only recently that such devices have been demonstrated at terahertz frequencies. This is because of several fundamental frequency dependent relationships between device properties and frequency of operation. When designing liquid crystal devices, we need to find liquid crystals with high birefringence, low viscosity and low absorption at terahertz frequencies. In this paper we will present some measurements and simulations of potentially suitable liquid crystal mixtures.

  14. Unusual paired pattern of radiohaloes on a diamond crystal from Guaniamo (Venezuela)

    NASA Astrophysics Data System (ADS)

    Schulze, Daniel J.; Nasdala, Lutz

    2016-11-01

    An octahedral diamond crystal from Guaniamo, Venezuela shows a multitude of round radiocolouration spots that indicate a remarkable formation history. Spots always occur in pairs, with similar spacing and intensity ratio between the two spots of each pair. We interpret this pattern to be the result of long-term irradiation of the stone emanating from a multitude of radioactive point sources. At some point during the irradiation, the stone must have experienced a translational movement which shifted it ca. 50 μm relative to the adjacent material [i.e., the (111) crystal face was a fault plane], after which irradiation continued. The Neoproterozoic age of the Guaniamo kimberlites and the high degree of radiation damage suggest that both of the two irradiation periods lasted over hundreds of millions of years. This interpretation is supported by results of He-irradiation experiments.

  15. I19, the small-molecule single-crystal diffraction beamline at Diamond Light Source.

    PubMed

    Nowell, Harriott; Barnett, Sarah A; Christensen, Kirsten E; Teat, Simon J; Allan, David R

    2012-05-01

    The dedicated small-molecule single-crystal X-ray diffraction beamline (I19) at Diamond Light Source has been operational and supporting users for over three years. I19 is a high-flux tunable-wavelength beamline and its key details are described in this article. Much of the work performed on the beamline involves structure determination from small and weakly diffracting crystals. Other experiments that have been supported to date include structural studies at high pressure, studies of metastable species, variable-temperature crystallography, studies involving gas exchange in porous materials and structural characterizations that require analysis of the diffuse scattering between Bragg reflections. A range of sample environments to facilitate crystallographic studies under non-ambient conditions are available as well as a number of options for automation. An indication of the scope of the science carried out on the beamline is provided by the range of highlights selected for this paper.

  16. Practical approach for a rod-connected diamond photonic crystal operating at optical wavelengths

    NASA Astrophysics Data System (ADS)

    Aoki, Kanna

    2009-11-01

    Production of a rod-connected diamond (RCD) photonic crystal structure in a semiconductor material is proposed. Periodic shifting of only one building block can create a complicated three-dimensional network, with a RCD structure exhibiting a full bandgap as wide as 0.20 on a gap/midgap (Δω /ωM) basis. A point defect cavity in the structure sustains single-mode resonance throughout the operative range because of its low symmetry. The resonant mode's highest quality factor (Q-factor) was calculated as 1.5×104 for a crystal of 11.5ax×4.25ay×12az for ai (i =x,y,z) representing three axes' period lengths.

  17. Tracking performance of a single-crystal and a polycrystalline diamond pixel-detector

    SciTech Connect

    Menasce, D.; et al.

    2013-06-01

    We present a comparative characterization of the performance of a single-crystal and a polycrystalline diamond pixel-detector employing the standard CMS pixel readout chips. Measurements were carried out at the Fermilab Test Beam Facility, FTBF, using protons of momentum 120 GeV/c tracked by a high-resolution pixel telescope. Particular attention was directed to the study of the charge-collection, the charge-sharing among adjacent pixels and the achievable position resolution. The performance of the single-crystal detector was excellent and comparable to the best available silicon pixel-detectors. The measured average detection-efficiency was near unity, ε = 0.99860±0.00006, and the position-resolution for shared hits was about 6 μm. On the other hand, the performance of the polycrystalline detector was hampered by its lower charge collection distance and the readout chip threshold. A new readout chip, capable of operating at much lower threshold (around 1 ke$-$), would be required to fully exploit the potential performance of the polycrystalline diamond pixel-detector.

  18. Methane-related diamond crystallization in the Earth's mantle: Stable isotope evidences from a single diamond-bearing xenolith

    NASA Astrophysics Data System (ADS)

    Thomassot, E.; Cartigny, P.; Harris, J. W.; (Fanus) Viljoen, K. S.

    2007-05-01

    Mineralogical studies of deep-seated xenoliths and mineral inclusions in diamonds indicate that there is significant variability in oxygen fugacity within the Earth's upper mantle. This variability is consistent both with the occurrence of reduced (methane-bearing) or oxidized (CO 2/carbonate-bearing) fluids. Invariably, direct sampling of reduced deep fluids is not possible as they are unquenchable and re-equilibrate with either the surrounding mantle or are affected by degassing. Key information about the nature of such fluids might be found in diamond if it were possible to study a population related to a single source. Usually, diamonds within a kimberlite pipe have different parageneses and can be shown to have formed at different times and depths. We studied 59 diamonds extracted from a single diamondiferous peridotite xenolith (with a volume of only 27 cm 3), from the Cullinan mine (formerly called the Premier mine) in South Africa. Diamond sizes range from 0.0005 to 0.169 carats (0.1 to 33.8 mg). A correlation between the nitrogen contents of the diamonds (range 40 to 1430 ppm) and their nitrogen aggregation state (varying from 10 to 85% of IaB defects) is compatible with a single growth event. δ 13C-values range from - 4.2‰ to - 0.1‰, with slight internal variability measured in the largest diamonds. Nitrogen isotope measurements show δ 15N ranging from - 1.2‰ to + 7.2‰. On the centimeter scale of this upper mantle rock, the variations for nitrogen content, nitrogen aggregation state, carbon and nitrogen isotopic compositions, respectively, cover 64%, 75%, 15% and 23% of the ranges known for peridotitic diamonds. In spite of such large ranges, N-content, δ 13C and δ 15N within this diamond population are distinctly coupled. These relationships do not support a mixing of carbon sources, but are best explained by a Rayleigh distillation within the sub-continental mantle at depths > 150 km and T > 1200 °C, which precipitates diamonds from methane

  19. Pulse height reduction effects of single-crystal CVD diamond detector for low-energy heavy ions

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Shimaoka, T.; Kaneko, J. H.; Murakami, H.; Miyazaki, D.; Tsubota, M.; Chayahara, A.; Umezawa, H.; Shikata, S.

    2013-10-01

    The performance of a diamond detector made of single-crystal diamond grown by chemical vapour deposition was studied for heavy ions, having energy of 3 MeV. Energy peaks of these low-energy ions were clearly observed. However, the pulse height for individual incident ion decreases with increasing atomic number of the ions. For understanding this pulse height reduction effect, we calculated the amount of ionizing and non-ionizing energy loss of incident ions in the diamond detector. The results of our calculation suggest the contribution of charge loss mechanisms other than the recombination effect of electron-hole pairs produced along the ionized track. We also mentioned the incomplete charge collection near the boundary region between the metal electrode and the diamond surface.

  20. Electron-beam induced diamond-like-carbon passivation of plasmonic devices

    NASA Astrophysics Data System (ADS)

    Balaur, Eugeniu; Sadatnajafi, Catherine; Langley, Daniel; Lin, Jiao; Kou, Shan Shan; Abbey, Brian

    2015-12-01

    Engineered materials with feature sizes on the order of a few nanometres offer the potential for producing metamaterials with properties which may differ significantly from their bulk counterpart. Here we describe the production of plasmonic colour filters using periodic arrays of nanoscale cross shaped apertures fabricated in optically opaque silver films. Due to its relatively low loss in the visible and near infrared range, silver is a popular choice for plasmonic devices, however it is also unstable in wet or even ambient conditions. Here we show that ultra-thin layers of Diamond-Like Carbon (DLC) can be used to prevent degradation due to oxidative stress, ageing and corrosion. We demonstrate that DLC effectively protects the sub-micron features which make up the plasmonic colour filter under both atmospheric conditions and accelerated aging using iodine gas. Through a systematic study we confirm that the nanometre thick DLC layers have no effect on the device functionality or performance.

  1. Functional photonic crystal fiber sensing devices

    NASA Astrophysics Data System (ADS)

    Villatoro, Joel; Finazzi, Vittoria; Pruneri, Valerio

    2011-12-01

    We report on a functional, highly reproducible and cost effective sensing platform based on photonic crystal fibers (PCFs). The platform consists of a centimeter-length segment of an index-guiding PCF fusion spliced to standard single mode fibers (SMFs). The voids of the PCF are intentionally sealed over an adequate length in the PCF-SMF interfaces. A microscopic collapsed region in the PCF induces a mode field mismatch which combined with the axial symmetry of the structure allow the efficient excitation and recombination or overlapping of azimuthal symmetric modes in the PCF. The transmission or reflection spectrum of the devices exhibits a high-visibility interference pattern or a single, profound and narrow notch. The interference pattern or the notch position shifts when the length of the PCF experiences microelongations or when liquids or coatings are present on the PCF surface. Thus, the platform here proposed can be useful for sensing diverse parameters such as strain, vibration, pressure, humidity, refractive index, gases, etc. Unlike other PCF-based sensing platforms the multiplexing of the devices here proposed is simple for which it is possible to implement PCF-based sensor arrays or networks.

  2. Nonreciprocal Electromagnetic Devices in Gyromagnetic Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Yuan; Liu, Rong-Juan; Gan, Lin; Fu, Jin-Xin; Lian, Jin

    2014-01-01

    Gyromagnetic photonic crystal (GPC) offers a promising way to realize robust transport of electromagnetic waves against backscattering from various disorders, perturbations and obstacles due to existence of unique topological electromagnetic states. The dc magnetic field exerting upon the GPC brings about the time-reversal symmetry breaking, splits the band degeneracy and opens band gaps where the topological chiral edge states (CESs) arise. The band gap can originate either from long-range Bragg-scattering effect or from short-range localized magnetic surface plasmon resonance (MSP). These topological edge states can be explored to construct backscattering-immune one-way waveguide and other nonreciprocal electromagnetic devices. In this paper we review our recent theoretical and experimental studies of the unique electromagnetic properties of nonreciprocal devices built in GPCs. We will discuss various basic issues like experimental instrumental setup, sample preparations, numerical simulation methods, tunable properties against magnetic field, band degeneracy breaking and band gap opening and creation of topological CESs. We will investigate the unidirectional transport properties of one-way waveguide under the influence of waveguide geometries, interface morphologies, intruding obstacles, impedance mismatch, lattice disorders, and material dissipation loss. We will discuss the unique coupling properties between one-wave waveguide and resonant cavities and their application as novel one-way bandstop filter and one-way channel-drop filter. We will also compare the CESs created in the Bragg-scattering band gap and the MSP band gap under the influence of lattice disorders. These results can be helpful for designing and exploring novel nonreciprocal electromagnetic devices for optical integration and information processing.

  3. A new single crystal diamond dosimeter for small beam: comparison with different commercial active detectors

    NASA Astrophysics Data System (ADS)

    Marsolat, F.; Tromson, D.; Tranchant, N.; Pomorski, M.; Le Roy, M.; Donois, M.; Moignau, F.; Ostrowsky, A.; De Carlan, L.; Bassinet, C.; Huet, C.; Derreumaux, S.; Chea, M.; Cristina, K.; Boisserie, G.; Bergonzo, P.

    2013-11-01

    Recent developments of new therapy techniques using small photon beams, such as stereotactic radiotherapy, require suitable detectors to determine the delivered dose with a high accuracy. The dosimeter has to be as close as possible to tissue equivalence and to exhibit a small detection volume compared to the size of the irradiation field, because of the lack of lateral electronic equilibrium in small beam. Characteristics of single crystal diamond (tissue equivalent material Z = 6, high density) make it an ideal candidate to fulfil most of small beam dosimetry requirements. A commercially available Element Six electronic grade synthetic diamond was used to develop a single crystal diamond dosimeter (SCDDo) with a small detection volume (0.165 mm3). Long term stability was studied by irradiating the SCDDo in a 60Co beam over 14 h. A good stability (deviation less than ± 0.1%) was observed. Repeatability, dose linearity, dose rate dependence and energy dependence were studied in a 10 × 10 cm2 beam produced by a Varian Clinac 2100 C linear accelerator. SCDDo lateral dose profile, depth dose curve and output factor (OF) measurements were performed for small photon beams with a micro multileaf collimator m3 (BrainLab) attached to the linac. This study is focused on the comparison of SCDDo measurements to those obtained with different commercially available active detectors: an unshielded silicon diode (PTW 60017), a shielded silicon diode (Sun Nuclear EDGE), a PinPoint ionization chamber (PTW 31014) and two natural diamond detectors (PTW 60003). SCDDo presents an excellent spatial resolution for dose profile measurements, due to its small detection volume. Low energy dependence (variation of 1.2% between 6 and 18 MV photon beam) and low dose rate dependence of the SCDDo (variation of 1% between 0.53 and 2.64 Gy min-1) are obtained, explaining the good agreement between the SCDDo and the efficient unshielded diode (PTW 60017) in depth dose curve measurements. For

  4. A new single crystal diamond dosimeter for small beam: comparison with different commercial active detectors.

    PubMed

    Marsolat, F; Tromson, D; Tranchant, N; Pomorski, M; Le Roy, M; Donois, M; Moignau, F; Ostrowsky, A; De Carlan, L; Bassinet, C; Huet, C; Derreumaux, S; Chea, M; Cristina, K; Boisserie, G; Bergonzo, P

    2013-11-07

    Recent developments of new therapy techniques using small photon beams, such as stereotactic radiotherapy, require suitable detectors to determine the delivered dose with a high accuracy. The dosimeter has to be as close as possible to tissue equivalence and to exhibit a small detection volume compared to the size of the irradiation field, because of the lack of lateral electronic equilibrium in small beam. Characteristics of single crystal diamond (tissue equivalent material Z = 6, high density) make it an ideal candidate to fulfil most of small beam dosimetry requirements. A commercially available Element Six electronic grade synthetic diamond was used to develop a single crystal diamond dosimeter (SCDDo) with a small detection volume (0.165 mm(3)). Long term stability was studied by irradiating the SCDDo in a (60)Co beam over 14 h. A good stability (deviation less than ± 0.1%) was observed. Repeatability, dose linearity, dose rate dependence and energy dependence were studied in a 10 × 10 cm(2) beam produced by a Varian Clinac 2100 C linear accelerator. SCDDo lateral dose profile, depth dose curve and output factor (OF) measurements were performed for small photon beams with a micro multileaf collimator m3 (BrainLab) attached to the linac. This study is focused on the comparison of SCDDo measurements to those obtained with different commercially available active detectors: an unshielded silicon diode (PTW 60017), a shielded silicon diode (Sun Nuclear EDGE), a PinPoint ionization chamber (PTW 31014) and two natural diamond detectors (PTW 60003). SCDDo presents an excellent spatial resolution for dose profile measurements, due to its small detection volume. Low energy dependence (variation of 1.2% between 6 and 18 MV photon beam) and low dose rate dependence of the SCDDo (variation of 1% between 0.53 and 2.64 Gy min(-1)) are obtained, explaining the good agreement between the SCDDo and the efficient unshielded diode (PTW 60017) in depth dose curve

  5. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers

    PubMed Central

    Schreck, Matthias; Gsell, Stefan; Brescia, Rosaria; Fischer, Martin

    2017-01-01

    A detailed mechanism for heteroepitaxial diamond nucleation under ion bombardment in a microwave plasma enhanced chemical vapour deposition setup on the single crystal surface of iridium is presented. The novel mechanism of Ion Bombardment Induced Buried Lateral Growth (IBI-BLG) is based on the ion bombardment induced formation and lateral spread of epitaxial diamond within a ~1 nm thick carbon layer. Starting from one single primary nucleation event the buried epitaxial island can expand laterally over distances of several microns. During this epitaxial lateral growth typically thousands of isolated secondary nuclei are generated continuously. The unique process is so far only observed on iridium surfaces. It is shown that a diamond single crystal with a diameter of ~90 mm and a weight of 155 carat can be grown from such a carbon film which initially consisted of 2 · 1013 individual grains. PMID:28294167

  6. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers

    NASA Astrophysics Data System (ADS)

    Schreck, Matthias; Gsell, Stefan; Brescia, Rosaria; Fischer, Martin

    2017-03-01

    A detailed mechanism for heteroepitaxial diamond nucleation under ion bombardment in a microwave plasma enhanced chemical vapour deposition setup on the single crystal surface of iridium is presented. The novel mechanism of Ion Bombardment Induced Buried Lateral Growth (IBI-BLG) is based on the ion bombardment induced formation and lateral spread of epitaxial diamond within a ~1 nm thick carbon layer. Starting from one single primary nucleation event the buried epitaxial island can expand laterally over distances of several microns. During this epitaxial lateral growth typically thousands of isolated secondary nuclei are generated continuously. The unique process is so far only observed on iridium surfaces. It is shown that a diamond single crystal with a diameter of ~90 mm and a weight of 155 carat can be grown from such a carbon film which initially consisted of 2 · 1013 individual grains.

  7. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers.

    PubMed

    Schreck, Matthias; Gsell, Stefan; Brescia, Rosaria; Fischer, Martin

    2017-03-15

    A detailed mechanism for heteroepitaxial diamond nucleation under ion bombardment in a microwave plasma enhanced chemical vapour deposition setup on the single crystal surface of iridium is presented. The novel mechanism of Ion Bombardment Induced Buried Lateral Growth (IBI-BLG) is based on the ion bombardment induced formation and lateral spread of epitaxial diamond within a ~1 nm thick carbon layer. Starting from one single primary nucleation event the buried epitaxial island can expand laterally over distances of several microns. During this epitaxial lateral growth typically thousands of isolated secondary nuclei are generated continuously. The unique process is so far only observed on iridium surfaces. It is shown that a diamond single crystal with a diameter of ~90 mm and a weight of 155 carat can be grown from such a carbon film which initially consisted of 2 · 10(13) individual grains.

  8. Diamond-based MEMS devices for biosensing based on electrochemical and gravimetric

    NASA Astrophysics Data System (ADS)

    Carlisle, John

    2005-03-01

    Diamond offers several potential advantages as a platform material for bioinorganic interfaces, including chemical and bio-inertness, electrochemistry, and high acoustic velocity. Ultrananocrystalline diamond (UNCD), with a unique combination of physical, chemical and electrical properties, is attractive for a variety of biochemical/biomedical applications such as hermetic bio-inert coatings, MEMS compatible biosensors, and electrochemical biointerfaces. Over the past several years we have worked on both the fundamental and applied science related to enabling UNCD-based bioMEMS devices, which has encompassed both the development of UNCD surface functionalization strategies that allow fine control of surface hydrophobicity and bioactivity, as well as the development of material integration strategies and surface micromachining techniques to enable the microfabrication of UNCD structural layers (e.g. cantilevers) that incorporate these functionalized surfaces into MEMS devices which are back-end compatible with CMOS electronics. These devices could thus combine the electrochemical and gravimetric transduction of the selective adsorption of target analytes in MEMS structures fabricated directly on top of a silicon microchip.. In the past year we have successfully demonstrated the use of conducting UNCD thin films as electrochemical biointerfaces, via the successful attachment of a redox enzyme onto the UNCD surface, Glucose oxidase (GOD). The procedure to achieve GOD immobilization involved the electrochemical immobilization of nitrophenyl groups to the UNCD surface and transformation of nitrophenyl to aminophenyl groups and the covalent bonding of GOD to the carboxyl groups using the diisopropylcarbodiimide/ N-hydroxysuccinimide (DCC/NHS) as the catalyst. After immobilization, the activity of the enzyme was demonstrated via the direct electrochemical detection of hydrogen peroxide. We have also developed CMOS-compatible UNCD MEMS cantilevers and fixed-fixed beam

  9. Processing of Diamond for Integrated Optic Devices Using Q-Switched Nd:YAG Laser at Different Wavelengths

    NASA Astrophysics Data System (ADS)

    Sudheer, S. K.; Pillai, V. P. Mahadevan; Nayar, V. U.

    In the present investigation, a Q-switched Nd:YAG laser is used to study the various aspects of diamond processing for fabricating integrated optic and UV optoelectronic devices. Diamond is a better choice of substrate compared to silicon and gallium arsenide for the fabrication of waveguides to perform operations such as modulation, switching, multiplexing, and filtering, particularly in the ultraviolet spectrum. The experimental setup of the present investigation consists of two Q-Switched Nd:YAG lasers capable of operating at wavelengths of 1064 nm and 532 nm. The diamond cutting is performed using these two wavelengths by making the "V"-shaped groove with various opening angle. The variation of material loss of diamond during cutting is noted for the two wavelengths. The cut surface morphology and elemental and structural analysis of graphite formed during processing in both cases are compared using scanning electron microscopy (SEM) and laser Raman spectroscopy. Both the Q-Switched Nd:YAG laser systems (at 1064 nm and 532 nm) show very good performance in terms of peak-to-peak output stability, minimal spot diameter, smaller divergence angle, higher peak power in Q-switched mode, and good fundamental TEM00 mode quality for processing natural diamond stones. Less material loss and minimal micro cracks are achieved with wavelength 532 nm whereas a better diamond cut surface is achieved with processing at 1064 nm with minimum roughness.

  10. Design of a three-dimensional photonic crystal nanocavity based on a \\langle 110\\rangle -layered diamond structure

    NASA Astrophysics Data System (ADS)

    Tajiri, Takeyoshi; Takahashi, Shun; Tandaechanurat, Aniwat; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2014-01-01

    We design a three-dimensional (3D) photonic crystal (PC) nanocavity based on a \\langle 110\\rangle -layered diamond structure. The designed structure, comprised of self-sustainable layers, is suitable for fabrication by layer stacking techniques. Quality factors (Q-factors) of nanocavities were calculated for the \\langle 110\\rangle -layered diamond and a commonly-used woodpile structures, both of which are generated from the same diamond lattice with a lattice constant adiamond. The Q-factor of the designed nanocavity can reach as high as 230,000 with 35 stacked layers and a square in-plane PC area of the length of one side of 5\\sqrt{2} a^{\\text{diamond}}. This is 1.5 times higher than that of a 3D PC nanocavity based on the woodpile structure with the same in-plane PC size and with the same number of stacked layers. The higher Q-factor in the \\langle 110\\rangle -layered diamond structure originates from its stronger in-plane light confinement over the woodpile structure. The \\langle 110\\rangle -layered diamond structure will be beneficial for improving experimentally attainable Q-factors of 3D PC nanocavities particularly fabricated by a micromanipulation method.

  11. Experimental characterisation of PD SOI MOSFET devices fabricated with diamond-shaped body contact

    NASA Astrophysics Data System (ADS)

    Daghighi, Arash; Osman, Mohamed A.

    2011-06-01

    The design of diamond-shaped body-contacted (DSBC) devices using standard layers in a 0.35 µm silicon-on-insulator (SOI) complementary metal-oxide-semiconductor process is described in this article. The technology is based on a manufacturable partially depleted SOI process targeted for radio frequency applications. The experimental measurements of drain induced barrier lowering for the fabricated DSBC structure showed suppression of floating body effects (FBE) at the promising rate of 24 mV/V. The measurement results confirmed current drive (I DS) improvement by 25% at V DS = 1.5 V and V GS = 1.5 V compared to conventional body-tied-source (BTS) device. A constant and steady output conductance (g DS) in the saturation region was observed for the DSBC structure. The gate trans-conductance (g m) is improved by 34% at V DS = 1.5 V and V GS = 1.5 V compared to conventional BTS device. Three-dimensional device simulation provides insight on FBE suppression and channel current improvement. Experimental results confirmed the area efficiency of the DSBC structure and its excellent current drive performance.

  12. Bistable liquid crystal device fabricated via microscale liquid crystal alignment

    NASA Astrophysics Data System (ADS)

    Honma, Michinori; Toyoshima, Wataru; Nose, Toshiaki

    2016-10-01

    Bistable liquid crystal (LC) molecular orientation properties in micropatterned LC cells were investigated experimentally and theoretically. When an LC cell was heated to the phase-transition temperature and then cooled, an LC orientation with ±π/2-twist domains (±π/2-twist mode) was obtained. Furthermore, a different LC orientation with ±π-twist domains (±π-twist mode) was observed when a 10-V potential was applied across a sample LC cell. Both orientation states were stably retained over a long period. Herein, cross-sectional LC orientation models in the ±π/2- and ±π-twist modes are proposed to explain the generation and behavior of two different disclination lines. The total energies within one period in the ±π/2- and ±π-twist modes (F±π/2 and F±π, respectively) were estimated theoretically. These energies were found to depend on the LC layer thickness and to cross over at a certain thickness; this indicates that F±π is equal to F±π/2 at this equilibrium thickness. The best temporal stability is likely attained at this equilibrium thickness. We demonstrated a bistable color-switching device by combining a full-wave plate and crossed polarizers. When these optical components were configured properly, stable bistable switching between two colors was achieved.

  13. Study of the dispersive properties of three-dimensional photonic crystals with diamond lattices containing metamaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Feng; Liu, Shao-Bin; Kong, Xiang-Kun

    2013-10-01

    In this paper, the dispersive properties of three-dimensional photonic crystals with diamond lattices containing isotropic dielectric and metamaterials are theoretically studied by a modified plane wave expansion method. In order to simplify the study, one only kind of the metamaterials is considered—the epsilon-negative materials. The eigenvalue equations of their structure depending on the diamond lattice realization (spheres with epsilon-negative materials inserted in the dielectric background) are deduced. A photonic band gap (PBG), a flatband region, and the first two stop band gaps (SBGs) above the flatband region in the Γ-X and Γ-L directions are found to appear. The results show that the upper edge of the flatband region cannot be tuned by any parameters except for the electronic plasma frequency. The PBG and first SBGs above the flatband region in the Γ-X and Γ-L directions for PCs can be modulated by the filling factor, relative dielectric constant and electronic plasma frequency, respectively. However, the damping factor has no effect on the locations of first PBG and the SBGs above the flatband region in the Γ-X and Γ-L directions.

  14. Channeling STIM analysis of radiation damage in single crystal diamond membrane

    NASA Astrophysics Data System (ADS)

    Sudić, I.; Cosic, D.; Ditalia Tchernij, S.; Olivero, P.; Pomorski, M.; Skukan, N.; Jakšić, M.

    2017-08-01

    The use of focused ion beam transmission channeling patterns to monitor the damage creation process in thin diamond single crystal membrane is described. A 0.8 MeV proton beam from the Ruđer Bošković Institute nuclear microprobe was used to perform Channeling Scanning Transmission Ion Microscopy (CSTIM) measurements. CSTIM was used instead of RBS channeling because of (several orders of magnitude) lower damage done to the sample during the measurements. Damage was introduced in selected areas by 15 MeV carbon beam in range of fluences 3·1015-2·1017 ions/cm2. Contrary to Ion Beam Induced Charge (IBIC), CSTIM is shown to be sensitive to the large fluences of ion beam radiation. Complementary studies of both IBIC and CSTIM are presented to show that very high fluence range can be covered by these two microprobe techniques, providing much wider information about the diamond radiation hardness. In addition micro Raman measurements were performed and the height of the GR 1 peak was correlated to the ion beam fluence.

  15. Improvement of the quality factor of single crystal diamond mechanical resonators

    NASA Astrophysics Data System (ADS)

    Liao, Meiyong; Toda, Masaya; Sang, Liwen; Teraji, Tokuyuki; Imura, Masataka; Koide, Yasuo

    2017-02-01

    Single-crystal diamond (SCD) has the potential to boost microelectromechanical system (MEMS) with unprecedented performance in terms of its intrinsic mechanical, chemical, and electronic properties, especially in the applications under extreme conditions. On the basis of the analysis of the energy dissipation in diamond mechanical resonators, the authors report on the marked improvement of the quality factor of SCD-MEMS resonators. Ion implantation assisted lift-off technique (IAL) is utilized to fabricate the SCD resonators. The quality factor of the resonator fabricated from the ion-damaged SCD layer alone is as low as 100-300 owing to the bulk or surface defects. The growth of homoepitaxial layers on the ion-implanted SCD substrates significantly improves the quality factor by more than 100 times. Cantilevers made of SCD epilayers of different thicknesses are examined. It is found that the quality factor increases with increasing the epilayer thickness. The maximum quality factor of the SCD cantilevers fabricated by the IAL technique reaches 3.9 × 104. A bilayer model is proposed to describe the variation of the quality factor.

  16. Parabolic single-crystal diamond lenses for coherent x-ray imaging

    DOE PAGES

    Terentyev, Sergey; Blank, Vladimir; Polyakov, Sergey; ...

    2015-09-18

    We demonstrate parabolic single-crystal diamond compound refractive lenses designed for coherent x-ray imaging resilient to extreme thermal and radiation loading expected from next generation light sources. To ensure the preservation of coherence and resilience, the lenses are manufactured from the highest-quality single-crystalline synthetic diamond material grown by a high-pressure high-temperature technique. Picosecond laser milling is applied to machine lenses to parabolic shapes with a ≃1 μm precision and surface roughness. The compound refractive lens comprised of six lenses with a radius of curvature R=200 μm at the vertex of the parabola and a geometrical aperture A=900 μm focuses 10 keVmore » x-ray photons from an undulator source at the Advanced Photon Source facility to a focal spot size of ≃20×90 μm2 with a gain factor of ≃50-100.« less

  17. Parabolic Singl-Crystal Diamond Lenses for Coherent X-ray Imaging

    SciTech Connect

    Terentyev, Sergey; Blank, Vladimir; Polyakov, Sergey; Zholudev, Sergey; Snigirev, Anatoly; Polikarpov, Maxim; Qian, Jun; Zhou, Hua; Kolodziej, Tomasz; Shvydko, Yuri

    2015-09-14

    We demonstrate parabolic single-crystal diamond compound refractive lenses designed for coherent x-ray imaging resilient to extreme thermal and radiation loading expected from next generation light sources. To ensure the preservation of coherence and resilience, the lenses are manufactured from the highest-quality single-crystalline synthetic diamond material grown by a high-pressure high-temperature technique. Picosecond laser milling is applied to machine lenses to parabolic with a similar or equal to 1 mu m precision and surface roughness. A compound refractive lens comprised of six lenses with a radius of curvature R = 200 mu m at the vertex of the parabola and a geometrical aperture A = 900 mu m focuses 10 keV x-ray photons from an undulator source at the Advanced Photon Source facility to a focal spot size of similar or equal to 20 x 90 mu m(2) with a gain factor of similar or equal to 50 - 100. (C) 2015 Author(s).

  18. Parabolic single-crystal diamond compound refractive lenses for coherent x-ray imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Terentyev, Sergey; Blank, Vladimir D.; Polyakov, Sergey; Zholudev, Sergey; Snigirev, Anatoly A.; Polikarpov, Maxim; Kolodziej, Tomasz; Qian, Jun; Zhou, Hua; Shvyd'ko, Yuri V.

    2016-09-01

    We demonstrate parabolic single-crystal diamond compound refractive lenses [1] designed for coherent x-ray imaging resilient to extreme thermal and radiation loading expected from next generation light sources. To ensure the preservation of coherence and resilience, the lenses are manufactured from the highest-quality single-crystalline synthetic diamond material grown by a high-pressure high-temperature technique. Picosecond laser milling is applied to machine lenses to parabolic shapes with a 1-micron precision and surface roughness. A compound refractive lens comprised of six lenses with a radius of curvature R=200 microns at the vertex of the parabola and a geometrical aperture A=900 microns focuses 10 keV x-ray photons from an undulator source at the Advanced Photon Source facility to a focal spot size of 10x40 microns^2 with a gain factor of 100. [1] S. Terentyev, V. Blank, S. Polyakov, S. Zholudev, A. Snigirev, M. Polikarpov, T. Kolodziej, J. Qian, H. Zhou, and Yu. Shvyd'ko Applied Physics Letters 107, 111108 (2015); doi: 10.1063/1.4931357

  19. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1983-01-01

    GaAs device technology has recently reached a new phase of rapid advancement, made possible by the improvement of the quality of GaAs bulk crystals. At the same time, the transition to the next generation of GaAs integrated circuits and optoelectronic systems for commercial and government applications hinges on new quantum steps in three interrelated areas: crystal growth, device processing and device-related properties and phenomena. Special emphasis is placed on the establishment of quantitative relationships among crystal growth parameters-material properties-electronic properties and device applications. The overall program combines studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and investigation of electronic properties and phenomena controlling device applications and device performance.

  20. Graphitic Patterns on CVD Diamond Plate as Microheating/Thermometer Devices.

    PubMed

    Di Gioacchino, Daniele; Marcelli, Augusto; Puri, Alessandro; De Sio, Antonio; Cestelli Guidi, Mariangela; Kamili, Yimamu; Della Ventura, Giancarlo; Notargiacomo, Andrea; Postorino, Paolo; Mangialardo, Sara; Woerner, Eckhard; Pace, Emanuele

    2015-05-27

    A simple compact temperature sensor and microheater in a wide temperature range has been developed, realizing a laser-patterned resistive structure on the surface of a synthetic polycrystalline diamond plate. Imaging and spectroscopy techniques used to investigate morphology, structure, and composition of the pattern showed that it incorporates different nondiamond carbon phases. Transport experiments revealed the semiconducting behavior of this microresistor. Thermal power measurements versus temperature are presented. A possible application of this device that may easily match compact experimental layouts avoiding both thermal anchoring offset and mechanical stress between sample and sensor is discussed. The patterned structure undergoes testing as a microthermometer, providing fast response and excellent stability versus time. It exhibits a good sensitivity that coupled to an easy calibration procedure minimizes errors and guarantees high accuracy. Plot of temperature versus input power of the resistive patterned line used as microheater shows a linear behavior in an extended temperature range.

  1. Integration of piezoelectric aluminum nitride and ultrananocrystalline diamond films for implantable biomedical microelectromechanical devices

    NASA Astrophysics Data System (ADS)

    Zalazar, M.; Gurman, P.; Park, J.; Kim, D.; Hong, S.; Stan, L.; Divan, R.; Czaplewski, D.; Auciello, O.

    2013-03-01

    The physics for integration of piezoelectric aluminum nitride (AlN) films with underlying insulating ultrananocrystalline diamond (UNCD), and electrically conductive grain boundary nitrogen-incorporated UNCD (N-UNCD) and boron-doped UNCD (B-UNCD) layers, as membranes for microelectromechanical system implantable drug delivery devices, has been investigated. AlN films deposited on platinum layers on as grown UNCD or N-UNCD layer (5-10 nm rms roughness) required thickness of ˜400 nm to induce (002) AlN orientation with piezoelectric d33 coefficient ˜1.91 pm/V at ˜10 V. Chemical mechanical polished B-UNCD films (0.2 nm rms roughness) substrates enabled (002) AlN film 200 nm thick, yielding d33 = 5.3 pm/V.

  2. Boron Doped Diamond Paste Electrodes for Microfluidic Paper-Based Analytical Devices.

    PubMed

    Nantaphol, Siriwan; Channon, Robert B; Kondo, Takeshi; Siangproh, Weena; Chailapakul, Orawon; Henry, Charles S

    2017-04-04

    Boron doped diamond (BDD) electrodes have exemplary electrochemical properties; however, widespread use of high-quality BDD has previously been limited by material cost and availability. In the present article, we report the use of a BDD paste electrode (BDDPE) coupled with microfluidic paper-based analytical devices (μPADs) to create a low-cost, high-performance electrochemical sensor. The BDDPEs are easy to prepare from a mixture of BDD powder and mineral oil and can be easily stencil-printed into a variety of electrode geometries. We demonstrate the utility and applicability of BDDPEs through measurements of biological species (norepinephrine and serotonin) and heavy metals (Pb and Cd) using μPADs. Compared to traditional carbon paste electrodes (CPE), BDDPEs exhibit a wider potential window, lower capacitive current, and are able to circumvent the fouling of serotonin. These results demonstrate the capability of BDDPEs as point-of-care sensors when coupled with μPADs.

  3. A 3D diamond detector for particle tracking

    NASA Astrophysics Data System (ADS)

    Bachmair, F.; Bäni, L.; Bergonzo, P.; Caylar, B.; Forcolin, G.; Haughton, I.; Hits, D.; Kagan, H.; Kass, R.; Li, L.; Oh, A.; Phan, S.; Pomorski, M.; Smith, D. S.; Tyzhnevyi, V.; Wallny, R.; Whitehead, D.

    2015-06-01

    A novel device using single-crystal chemical vapour deposited diamond and resistive electrodes in the bulk forming a 3D diamond detector is presented. The electrodes of the device were fabricated with laser assisted phase change of diamond into a combination of diamond-like carbon, amorphous carbon and graphite. The connections to the electrodes of the device were made using a photo-lithographic process. The electrical and particle detection properties of the device were investigated. A prototype detector system consisting of the 3D device connected to a multi-channel readout was successfully tested with 120 GeV protons proving the feasibility of the 3D diamond detector concept for particle tracking applications for the first time.

  4. Theory of the birefringence due to dislocations in single crystal CVD diamond.

    PubMed

    Pinto, H; Jones, R

    2009-09-09

    Single crystal diamond grown by chemical vapour deposition (CVD) often exhibits strain induced birefringence arising from bundles of edge dislocations lying almost parallel to the [001] growth axis. The birefringent pattern changes when the crossed-polarizers are rotated with respect to the underlying lattice. For polarizers parallel to ⟨110⟩ directions, the birefringence pattern consists of four bright petals with dark arms along ⟨110⟩. For polarizers parallel to ⟨100⟩, the birefringence pattern consists of eight petals of weaker intensity with dark arms along ⟨110⟩ and ⟨100⟩ directions. We evaluate the birefringence intensity by using isotropic elasticity theory and find that these patterns can be explained by a specific dislocation arrangement which is consistent with x-ray topographic studies.

  5. A Bayesian method to estimate the neutron response matrix of a single crystal CVD diamond detector

    SciTech Connect

    Reginatto, Marcel; Araque, Jorge Guerrero; Nolte, Ralf; Zbořil, Miroslav; Zimbal, Andreas; Gagnon-Moisan, Francis

    2015-01-13

    Detectors made from artificial chemical vapor deposition (CVD) single crystal diamond are very promising candidates for applications where high resolution neutron spectrometry in very high neutron fluxes is required, for example in fusion research. We propose a Bayesian method to estimate the neutron response function of the detector for a continuous range of neutron energies (in our case, 10 MeV ≤ E{sub n} ≤ 16 MeV) based on a few measurements with quasi-monoenergetic neutrons. This method is needed because a complete set of measurements is not available and the alternative approach of using responses based on Monte Carlo calculations is not feasible. Our approach uses Bayesian signal-background separation techniques and radial basis function interpolation methods. We present the analysis of data measured at the PTB accelerator facility PIAF. The method is quite general and it can be applied to other particle detectors with similar characteristics.

  6. Single-crystal Diamond Detector for DT and DD plasmas diagnostic

    NASA Astrophysics Data System (ADS)

    Rebai, M.; Cazzaniga, C.; Tardocchi, M.; Grosso, G.; Croci, G.; Perelli Cippo, E.; Calvani, P.; Girolami, M.; Trucchi, D. M.; Gorini, G.

    2016-11-01

    Single-crystal Diamond Detectors (SDD) are good candidates as high-energy neutron detectors in the extreme conditions of the next generation thermonuclear fusion facilities like the ITER experiment, due to their high radiation hardness, fast response time and small size. Neutron detection in SDDs is based on the collection of electron-hole pairs produced by charged particles generated by neutron interaction on 12 C . In this work the SDD response to neutrons with energies between 2.8 and 3.8MeV was determined at the Legnaro CN accelerator at the INFN Laboratories in Legnaro (PD, Italy). This work is relevant for the characterization of SDDs response functions, which are key points for Deuterium-Deuterium and Deuterium-Tritium plasma diagnostic.

  7. Amorphous diamond-structured photonic crystal in the feather barbs of the scarlet macaw

    PubMed Central

    Yin, Haiwei; Dong, Biqin; Liu, Xiaohan; Zhan, Tianrong; Shi, Lei; Zi, Jian; Yablonovitch, Eli

    2012-01-01

    Noniridescent coloration by the spongy keratin in parrot feather barbs has fascinated scientists. Nonetheless, its ultimate origin remains as yet unanswered, and a quantitative structural and optical description is still lacking. Here we report on structural and optical characterizations and numerical simulations of the blue feather barbs of the scarlet macaw. We found that the sponge in the feather barbs is an amorphous diamond-structured photonic crystal with only short-range order. It possesses an isotropic photonic pseudogap that is ultimately responsible for the brilliant noniridescent coloration. We further unravel an ingenious structural optimization for attaining maximum coloration apparently resulting from natural evolution. Upon increasing the material refractive index above the level provided by nature, there is an interesting transition from a photonic pseudogap to a complete bandgap. PMID:22615350

  8. A Bayesian method to estimate the neutron response matrix of a single crystal CVD diamond detector

    NASA Astrophysics Data System (ADS)

    Reginatto, Marcel; Gagnon-Moisan, Francis; Araque, Jorge Guerrero; Nolte, Ralf; Zbořil, Miroslav; Zimbal, Andreas

    2015-01-01

    Detectors made from artificial chemical vapor deposition (CVD) single crystal diamond are very promising candidates for applications where high resolution neutron spectrometry in very high neutron fluxes is required, for example in fusion research. We propose a Bayesian method to estimate the neutron response function of the detector for a continuous range of neutron energies (in our case, 10 MeV ≤ En ≤ 16 MeV) based on a few measurements with quasi-monoenergetic neutrons. This method is needed because a complete set of measurements is not available and the alternative approach of using responses based on Monte Carlo calculations is not feasible. Our approach uses Bayesian signal-background separation techniques and radial basis function interpolation methods. We present the analysis of data measured at the PTB accelerator facility PIAF. The method is quite general and it can be applied to other particle detectors with similar characteristics.

  9. Single Crystal Preparation for High-Pressure Experiments in the Diamond Anvil Cell

    SciTech Connect

    Aracne, C; Farber, D; Benterou, J; Occelli, F; Krisch, M; Antonangeli, D; Requardt, H; Fiquet, G

    2003-07-01

    Most research conducted in diamond anvil cells (DAC) is performed on polycrystalline samples. While data from polycrystalline samples are sufficient for determining the bulk properties, high-pressure experiments on single crystals allow for measurements on a range of tensor properties such as: thermal and electrical conductivity; magnetic susceptibility; elasticity; and plasticity. However, in order to achieve pressures above 1 Mbar in a DAC, single crystal samples must be <50 m in diameter and <15 m thick while maintaining a high degree of crystallinity. Thus, we have developed new procedures for producing extremely high-quality micro single crystal samples from commercially available material. Our sample preparation steps include cutting, classical metallographic polishing, and laser ablation. The key to our new process is the preservation of crystallinity during cutting and thinning. We have been successful in maintaining orientation, along with an extremely high degree of crystallinity in completed metal samples. To date, we have analyzed cobalt and molybdenum samples with both white-light interferometry and synchrotron x-ray diffraction, and are in the process of extending these methods to other metals and ceramics.

  10. Research on subsurface defects of potassium dihydrogen phosphate crystals fabricated by single point diamond turning technique

    NASA Astrophysics Data System (ADS)

    Tie, Guipeng; Dai, Yifan; Guan, Chaoliang; Chen, Shaoshan; Song, Bing

    2013-03-01

    Potassium dihydrogen phosphate (KDP) crystals, which are widely used in high-power laser systems, are required to be free of defects on fabricated subsurfaces. The depth of subsurface defects (SSD) of KDP crystals is significantly influenced by the parameters used in the single point diamond turning technique. In this paper, based on the deliquescent magnetorheological finishing technique, the SSD of KDP crystals is observed and the depths under various cutting parameters are detected and discussed. The results indicate that no SSD is generated under small parameters and with the increase of cutting parameters, SSD appears and the depth rises almost linearly. Although the ascending trends of SSD depths caused by cutting depth and feed rate are much alike, the two parameters make different contributions. Taking the same material removal efficiency as a criterion, a large cutting depth generates shallower SSD depth than a large feed rate. Based on the experiment results, an optimized cutting procedure is obtained to generate defect-free surfaces.

  11. Demonstration of a three-dimensional photonic crystal nanocavity in a 〈110〉-layered diamond structure

    SciTech Connect

    Tajiri, T.; Takahashi, S.; Ota, Y.; Tatebayashi, J.; Iwamoto, S.; Arakawa, Y.

    2015-08-17

    We experimentally demonstrate a three-dimensional photonic crystal (3D PC) nanocavity in a 〈110〉-layered diamond structure with a quality factor (Q-factor) of 12 800 at a wavelength of 1.1 μm. The observed Q is 1.2 times higher than that of a 3D PC nanocavity in a woodpile structure with the same in-plane size and the same number of stacked layers. This result indicates the potential importance of the 〈110〉-layered diamond structure for getting high Q 3D PC nanocavities within a limited in-plane space.

  12. Fine Structure in the Secondary Electron Emission Peak for Diamond Crystal with (100) Negative Electron Affinity Surface

    NASA Technical Reports Server (NTRS)

    Asnin, V. M.; Krainsky, I. L.

    1998-01-01

    A fine structure was discovered in the low-energy peak of the secondary electron emission spectra of the diamond surface with negative electron affinity. We studied this structure for the (100) surface of the natural type-IIb diamond crystal. We have found that the low-energy peak consists of a total of four maxima. The relative energy positions of three of them could be related to the electron energy minima near the bottom of the conduction band. The fourth peak, having the lowest energy, was attributed to the breakup of the bulk exciton at the surface during the process of secondary electron emission.

  13. Photonic crystal devices formed by a charged-particle beam

    DOEpatents

    Lin, Shawn-Yu; Koops, Hans W. P.

    2000-01-01

    A photonic crystal device and method. The photonic crystal device comprises a substrate with at least one photonic crystal formed thereon by a charged-particle beam deposition method. Each photonic crystal comprises a plurality of spaced elements having a composition different from the substrate, and may further include one or more impurity elements substituted for spaced elements. Embodiments of the present invention may be provided as electromagnetic wave filters, polarizers, resonators, sources, mirrors, beam directors and antennas for use at wavelengths in the range from about 0.2 to 200 microns or longer. Additionally, photonic crystal devices may be provided with one or more electromagnetic waveguides adjacent to a photonic crystal for forming integrated electromagnetic circuits for use at optical, infrared, or millimeter-wave frequencies.

  14. Fluorinated diamond-like carbon as antithrombogenic coating for blood-contacting devices.

    PubMed

    Hasebe, Terumitsu; Shimada, Atsushi; Suzuki, Tetsuya; Matsuoka, Yoshiaki; Saito, Toshiya; Yohena, Satoshi; Kamijo, Aki; Shiraga, Nobuyuki; Higuchi, Mutsumi; Kimura, Kanako; Yoshimura, Hirokuni; Kuribayashi, Sachio

    2006-01-01

    Diamond-like carbon (DLC) is being considered for widespread clinical use as a surface coating for cardiovascular devices. We synthesized fluorinated DLC (F-DLC) coatings in order to create a more hydrophobic surface with improved antithrombogenicity and flexibility when compared with conventional DLC coatings by combining the inertness of DLC films with the advantage of fluorination. The purpose of this study was to evaluate the in vitro hemocompatibility and in vivo biocompatibility of the F-DLC coating for medical devices. The in vitro whole blood model confirmed that platelet loss was lower in the F-DLC group than in the noncoated group (SUS316L), which suggests the adhesion of a smaller number of platelets to F-DLC-coated materials. Furthermore, the biomarkers of mechanically induced platelet activation (beta-thromboglobulin) and activated coagulation (thrombin-antithrombin-three complex) were markedly reduced in the F-DLC-coated group. In vivo rat implant model studies revealed no excessive local and systemic inflammatory responses in the F-DLC group. The thickness of the fibrous tissue capsule surrounding the F-DLC-coated disk was almost equal to that of the noncoated SUS316L disk, which has the favorable biocompatibility for metallic implant materials. F-DLC coating thus appears to be a promising candidate for use as a coating material in blood-contacting devices. (c) 2005 Wiley Periodicals, Inc

  15. Large single crystal diamond grown in FeNiMnCo-S-C system under high pressure and high temperature conditions

    NASA Astrophysics Data System (ADS)

    Zhang, He; Li, Shangsheng; Su, Taichao; Hu, Meihua; Li, Guanghui; Ma, Hongan; Jia, Xiaopeng

    2016-11-01

    Large diamonds have successfully been synthesized from FeNiMnCo-S-C system at temperatures of 1255-1393 °C and pressures of 5.3-5.5 GPa. Because of the presence of sulfur additive, the morphology and color of the large diamond crystals change obviously. The content and shape of inclusions change with increasing sulfur additive. It is found that the pressure and temperature conditions required for the synthesis decrease to some extent with the increase of S additive, which results in left down of the V-shape region. The Raman spectra show that the introduction of additive sulfur reduces the quality of the large diamond crystals. The x-ray photoelectron spectroscopy (XPS) spectra show the presence of S in the diamonds. Furthermore, the electrical properties of the large diamond crystals are tested by a four-point probe and the Hall effect method. When sulfur in the cell of diamond is up to 4.0 wt.%, the resistance of the diamond is 9.628×105 Ω·cm. It is shown that the large single crystal samples are n type semiconductors. This work is helpful for the further research and application of sulfur-doped semiconductor large diamond. Project supported by the National Natural Science Foundation of China (Grant No. 51172089), the Education Department of Henan Province, China (Grant No. 12A430010), and the Fundamental Research Funds for the Universities of Henan Province, China (Grant No. NSFRF140110).

  16. Methods of making composite optical devices employing polymer liquid crystal

    DOEpatents

    Jacobs, Stephen D.; Marshall, Kenneth L.; Cerqua, Kathleen A.

    1991-01-01

    Composite optical devices using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T.sub.g) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device.

  17. Methods of making composite optical devices employing polymer liquid crystal

    DOEpatents

    Jacobs, S.D.; Marshall, K.L.; Cerqua, K.A.

    1991-10-08

    Composite optical devices are disclosed using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T[sub g]) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device. 7 figures.

  18. Multiple delta doping of single crystal cubic boron nitride films heteroepitaxially grown on (001)diamonds

    SciTech Connect

    Yin, H.; Ziemann, P.

    2014-06-23

    Phase pure cubic boron nitride (c-BN) films have been epitaxially grown on (001) diamond substrates at 900 °C. The n-type doping of c-BN epitaxial films relies on the sequential growth of nominally undoped (p-) and Si doped (n-) layers with well-controlled thickness (down to several nanometer range) in the concept of multiple delta doping. The existence of nominally undoped c-BN overgrowth separates the Si doped layers, preventing Si dopant segregation that was observed for continuously doped epitaxial c-BN films. This strategy allows doping of c-BN films can be scaled up to multiple numbers of doped layers through atomic level control of the interface in the future electronic devices. Enhanced electronic transport properties with higher hall mobility (10{sup 2} cm{sup 2}/V s) have been demonstrated at room temperature as compared to the normally continuously Si doped c-BN films.

  19. Multiple delta doping of single crystal cubic boron nitride films heteroepitaxially grown on (001)diamonds

    NASA Astrophysics Data System (ADS)

    Yin, H.; Ziemann, P.

    2014-06-01

    Phase pure cubic boron nitride (c-BN) films have been epitaxially grown on (001) diamond substrates at 900 °C. The n-type doping of c-BN epitaxial films relies on the sequential growth of nominally undoped (p-) and Si doped (n-) layers with well-controlled thickness (down to several nanometer range) in the concept of multiple delta doping. The existence of nominally undoped c-BN overgrowth separates the Si doped layers, preventing Si dopant segregation that was observed for continuously doped epitaxial c-BN films. This strategy allows doping of c-BN films can be scaled up to multiple numbers of doped layers through atomic level control of the interface in the future electronic devices. Enhanced electronic transport properties with higher hall mobility (102 cm2/V s) have been demonstrated at room temperature as compared to the normally continuously Si doped c-BN films.

  20. Changes in the content and crystal morphology of diamonds from Paleozoic and Mesozoic kimberlits in the northeastern Yakutian kimberlite province

    NASA Astrophysics Data System (ADS)

    Biller, Anastasia; Smelov, Alexander; Zaitsev, Albert

    2010-05-01

    The Yakutian kimberlite province combines more than 1000 kimberlite bodies. It is subdivided into two parts: southern and northeastern. The southern part contains highly diamondiferous kimberlite pipes of Middle Paleozoic age. In the northeastern part, weakly diamondiferous or barren kimberlite pipes of Paleozoic and Mesozoic age are found. The content of diamond-bearing pipes in the southern part is 27 %, and in the northeastern part - 0.06 %. The kimberlite pipes from the northeastern part are characterized by kimberlite- and Brazilian-type diamonds present in different proportions. We have made a statistical analyses of the content of morphologically different diamonds in these kimberlites with regard to their age. The most representative information was obtained for the kimberlite pipes Zapolyarnaya (360 Ma), Komsomol'skaya (382 Ma), Novinka (355 Ma), Leninrgad (380 Ma), Aerologicheskaya (409 Ma), Djanga (243 Ma), Malokuonapskaya (170 Ma), Grenada and Nadezhda (159 Ma) as well as for the Luchekan field kimberlites with an average age of 197 Ma. Diamonds from the Paleozoic and Mesozoic kimberlites reveal a reverse relationship between the contents of octahedral and rounded crystals (r = - 0.969). Such relationship is characteristic of a single geologic body. The younger kimberlites contain higher amounts of Brazilian-type diamonds. In the age interval of 400-160 Ma, the average degree of diamond content in kimberlites decreases by about 85 %, and average weight of crystals by 55 %. More complex relationships are established in the systems: octahedral crystals - kimberlite age and rounded crystals - kimberlite age. The first system is characterized by a decrease in the amount of octahedra in the 400-250 Ma interval (r = 0.848,) and their increase in the interval from 250 to 160 Ma (r = - 0.901). Characteristic of the second system is the growing content of rounded diamonds in the interval 400-250 Ma (r = - 0.835) and their decline in the interval from 250 to 160

  1. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1984-01-01

    The crystal growth, device processing and device related properties and phenomena of GaAs are investigated. Our GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor materials (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; (3) investigation of electronic properties and phenomena controlling device applications and device performance. The ground based program is developed which would insure successful experimentation with and eventually processing of GaAs in a near zero gravity environment.

  2. Bandgap properties of diamond structure photonic crystal heterostructures with inclined and curved interfaces

    SciTech Connect

    Lei, Haitao; Li, Yong; Wang, Hong

    2014-06-14

    The 3D (dimensional) diamond structure photonic crystal heterostructures with different lattice constants were prepared using rapid prototyping and gel casting with alumina. In this paper, heterostructures with inclined and curved interfaces were designed and its bandgap properties were studied. The normalized resonant intensity of electromagnetic wave in heterostructure with inclined and curved interface is stronger than that in the ordinary heterostructure without modified interface. The influence of curved interface on transmission properties of electromagnetic wave was investigated with the radius of curvature ranging from 17 mm to 37 mm at 5 mm interval. The results show that two resonant modes appear in the photonic band gap, being similar to the band gap characteristics of the photonic crystals with two defects inside. With the increasing of the radius of curvature, the resonant mode shift to higher frequency. In the structure with a radius of curvature of 32 mm, a guiding band appears in the photonic band gap. Further increase in the radius of curvature, the guiding band will split into two resonant modes again and the two resonant modes shift to lower frequencies.

  3. Charge transfer effects, thermo and photochromism in single crystal CVD synthetic diamond.

    PubMed

    Khan, R U A; Martineau, P M; Cann, B L; Newton, M E; Twitchen, D J

    2009-09-09

    We report on the effects of thermal treatment and ultraviolet irradiation on the point defect concentrations and optical absorption profiles of single crystal CVD synthetic diamond. All thermal treatments were below 850 K, which is lower than the growth temperature and unlikely to result in any structural change. UV-visible absorption spectroscopy measurements showed that upon thermal treatment (823 K), various broad absorption features diminished: an absorption band at 270 nm (used to deduce neutral single substitutional nitrogen (N(S)(0)) concentrations) and also two broad features centred at approximately 360 and 520 nm. Point defect centre concentrations as a function of temperature were also deduced using electron paramagnetic resonance (EPR) spectroscopy. Above ∼500 K, we observed a decrease in the concentration of N(S)(0) centres and a concomitant increase in the negatively charged nitrogen-vacancy-hydrogen (NVH) complex (NVH(-)) concentration. Both transitions exhibited an activation energy between 0.6 and 1.2 eV, which is lower than that for the N(S)(0) donor (∼1.7 eV). Finally, it was found that illuminating samples with intense short-wave ultraviolet light recovered the N(S)(0) concentration and also the 270, 360 and 520 nm absorption features. From these results, we postulate a valence band mediated charge transfer process between NVH and single nitrogen centres with an acceptor trap depth for NVH of 0.6-1.2 eV. Because the loss of N(S)(0) concentration is greater than the increase in NVH(-) concentration we also suggest the presence of another unknown acceptor existing at a similar energy to NVH. The extent to which the colour in CVD synthetic diamond is dependent on prior history is discussed.

  4. Inclusions in diamonds from Snap Lake kimberlites (Slave Craton, Canada): Geochemical features of crystallization

    NASA Astrophysics Data System (ADS)

    Ivanova, O. A.; Logvinova, A. M.; Pokhilenko, N. P.

    2017-05-01

    The results of integrated studies of inclusion-containing diamonds from kimberlites of the Snap Lake dike complex (Canada) are presented. Features of the morphology, defect-impurity composition, and internal structure of the diamonds were determined by optic and scanning microscopy. The chemical composition of crystalline inclusions (olivine, garnet, and pyroxene) in diamonds was studied using a microanalyzer with an electronic probe. The inclusions of ultramafic paragenesis in the diamond (87%) are predominant. Carbonates, sulfide and hydrated silicate phases were found only in multiphase microinclusions. The large phlogopite inclusion studied was similar in composition to earlier studied nanosize inclusions of high-silica mica in diamonds from Snap Lake kimberlites. Revealed features of studied diamonds and presence of high-silica mica suggest that diamonds from Snap Lake have formed as the result of interaction between enriched in volatile and titanium high-potassium carbonate-silicate melts and peridotitic substrate at the base of thick lithospheric mantle.

  5. Fiber field-effect device via in situ channel crystallization.

    PubMed

    Danto, Sylvain; Sorin, Fabien; Orf, Nicholas D; Wang, Zheng; Speakman, Scott A; Joannopoulos, John D; Fink, Yoel

    2010-10-01

    The in situ crystallization of the incorporated amorphous semiconductor within the multimaterial fiber device yields a large decrease in defect density and a concomitant five-order-of-magnitude decrease in resistivity of the novel metal-insulator-crystalline semiconductor structure. Using a post-drawing crystallization process, the first tens-of-meters-long single-fiber field-effect device is demonstrated. This work opens significant opportunities for incorporating higher functionality in functional fibers and fabrics.

  6. Nano-inclusions in diamond: Evidence of diamond genesis

    NASA Astrophysics Data System (ADS)

    Wirth, R.

    2015-12-01

    The use of Focused Ion Beam technology (FIB) for TEM sample preparation introduced approximately 15 years ago revolutionized the application of TEM in Geosciences. For the first time, FIB enabled cutting samples for TEM use from exactly the location we are interested in. Applied to diamond investigation, this technique revealed the presence of nanometre-sized inclusions in diamond that have been simply unknown before. Nanoinclusions in diamond from different location and origin such as diamonds from the Lower and Upper Mantle, metamorphic diamonds (Kazakhstan, Erzgebirge, Bohemia), diamonds from ophiolites (Tibet, Mongolia, Xinjiang, Ural Mountains), diamonds from igneous rocks (Hawaii, Kamchatka) and impact diamonds (Popigai Crater, Siberia) have been investigated during the last 15 years. The major conclusion of all these TEM studies is, that the nanoinclusions, their phases and phase composition together with the micro- and nanostructure evidence the origin of diamond and genesis of diamond. We can discriminate Five different mechanisms of diamond genesis in nature are observed: Diamond crystallized from a high-density fluid (Upper mantle and metamorphic diamond). Diamond crystallized from carbonatitic melt (Lower mantle diamond). Diamond precipitates from a metal alloy melt (Diamond from ophiolites). Diamond crystallized by gas phase condensation or chemical vapour condensation (CVD) (Lavas from Kamchatka, xenoliths in Hawaiian lavas). Direct transformation of graphite into diamond.

  7. Design and fabrication of high-performance diamond triple-gate field-effect transistors

    PubMed Central

    Liu, Jiangwei; Ohsato, Hirotaka; Wang, Xi; Liao, Meiyong; Koide, Yasuo

    2016-01-01

    The lack of large-area single-crystal diamond wafers has led us to downscale diamond electronic devices. Here, we design and fabricate a hydrogenated diamond (H-diamond) triple-gate metal-oxide-semiconductor field-effect transistor (MOSFET) to extend device downscaling and increase device output current. The device’s electrical properties are compared with those of planar-type MOSFETs, which are fabricated simultaneously on the same substrate. The triple-gate MOSFET’s output current (174.2 mA mm−1) is much higher than that of the planar-type device (45.2 mA mm−1), and the on/off ratio and subthreshold swing are more than 108 and as low as 110 mV dec−1, respectively. The fabrication of these H-diamond triple-gate MOSFETs will drive diamond electronic device development forward towards practical applications. PMID:27708372

  8. Design and fabrication of high-performance diamond triple-gate field-effect transistors

    NASA Astrophysics Data System (ADS)

    Liu, Jiangwei; Ohsato, Hirotaka; Wang, Xi; Liao, Meiyong; Koide, Yasuo

    2016-10-01

    The lack of large-area single-crystal diamond wafers has led us to downscale diamond electronic devices. Here, we design and fabricate a hydrogenated diamond (H-diamond) triple-gate metal-oxide-semiconductor field-effect transistor (MOSFET) to extend device downscaling and increase device output current. The device’s electrical properties are compared with those of planar-type MOSFETs, which are fabricated simultaneously on the same substrate. The triple-gate MOSFET’s output current (174.2 mA mm-1) is much higher than that of the planar-type device (45.2 mA mm-1), and the on/off ratio and subthreshold swing are more than 108 and as low as 110 mV dec-1, respectively. The fabrication of these H-diamond triple-gate MOSFETs will drive diamond electronic device development forward towards practical applications.

  9. Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals.

    PubMed

    Stoupin, Stanislav; Shvyd'ko, Yuri; Shu, Deming; Khachatryan, Ruben; Xiao, Xianghui; DeCarlo, Francesco; Goetze, Kurt; Roberts, Timothy; Roehrig, Christian; Deriy, Alexey

    2012-02-01

    We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of ΔE(X) ≃ 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E(H) = 13.903 keV of the (008) reflection in diamond. The monochromator is utilized for high-energy-resolution diffraction characterization of diamond crystals as elements of advanced x-ray crystal optics for synchrotrons and x-ray free-electron lasers. The monochromator and the related controls are made portable such that they can be installed and operated at any appropriate synchrotron beamline equipped with a pre-monochromator.

  10. Pulse shape distortion of output signals from single-crystal CVD diamond detector in few-GHz broadband amplifiers

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Shimaoka, T.; Kaneko, J. H.; Murakami, H.; Miyazaki, D.; Tsubota, M.; Chayahara, A.; Umezawa, H.; Shikata, S.

    2014-04-01

    The response of a diamond detector made from a single crystal grown by chemical vapour deposition was studied using a broadband amplifier. A short pulse width of {\\sim}1\\ \\text{ns} for 241Am-α-particles was observed with a digital oscilloscope. To discuss pulse shape distortion from the detector in a measurement system, we simulated waveforms with a SPICE simulator using an equivalent circuit model that contained three main parts: detector, amplifier, and oscilloscope. In the simulation, we found that the pulse width spread by more than 200 ps following amplification. We discuss the effects of the detector read-out circuit time constant on the observed waveforms and confirm that the pulse width spread was restrained by use of a short time constant compared with carrier drift time in diamond crystals.

  11. X-ray spectrometer based on a bent diamond crystal for high repetition rate free-electron laser applications

    DOE PAGES

    Boesenberg, Ulrike; Samoylova, Liubov; Roth, Thomas; ...

    2017-02-03

    A precise spectral characterization of every single pulse is required in many x-ray free-electron laser (XFEL) experiments due to the fluctuating spectral content of self-amplified spontaneous emission (SASE) beams. Bent single-crystal spectrometers can provide sufficient spectral resolution to resolve the SASE spikes while also covering the full SASE bandwidth. To better withstand the high heat load induced by the 4.5 MHz repetition rate of pulses at the forthcoming European XFEL facility, a spectrometer based on single-crystal diamond has been developed. Here, we report a direct comparison of the diamond spectrometer with its Si counterpart in experiments performed at the Linacmore » Coherent Light Source.« less

  12. Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals.

    SciTech Connect

    Stoupin, S.; Shvydko, Y.; Shu, D.; Khachatryan, R.; Xiao, X.

    2012-01-01

    We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of {Delta}E{sub x} {approx_equal} 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E{sub H} = 13.903 keV of the (008) reflection in diamond. The monochromator is utilized for high-energy-resolution diffraction characterization of diamond crystals as elements of advanced x-ray crystal optics for synchrotrons and x-ray free-electron lasers. The monochromator and the related controls are made portable such that they can be installed and operated at any appropriate synchrotron beamline equipped with a pre-monochromator.

  13. Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals

    SciTech Connect

    Stoupin, Stanislav; Shvyd'ko, Yuri; Shu Deming; Khachatryan, Ruben; Xiao, Xianghui; DeCarlo, Francesco; Goetze, Kurt; Roberts, Timothy; Roehrig, Christian; Deriy, Alexey

    2012-02-15

    We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of {Delta}E{sub X}{approx_equal} 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E{sub H} = 13.903 keV of the (008) reflection in diamond. The monochromator is utilized for high-energy-resolution diffraction characterization of diamond crystals as elements of advanced x-ray crystal optics for synchrotrons and x-ray free-electron lasers. The monochromator and the related controls are made portable such that they can be installed and operated at any appropriate synchrotron beamline equipped with a pre-monochromator.

  14. Evaluation of the dosimetric properties of a synthetic single crystal diamond detector in high energy clinical proton beams

    SciTech Connect

    Mandapaka, A. K.; Ghebremedhin, A.; Patyal, B.; Marinelli, Marco; Prestopino, G.; Verona, C.; Verona-Rinati, G.

    2013-12-15

    Purpose: To investigate the dosimetric properties of a synthetic single crystal diamond Schottky diode for accurate relative dose measurements in large and small field high-energy clinical proton beams.Methods: The dosimetric properties of a synthetic single crystal diamond detector were assessed by comparison with a reference Markus parallel plate ionization chamber, an Exradin A16 microionization chamber, and Exradin T1a ion chamber. The diamond detector was operated at zero bias voltage at all times. Comparative dose distribution measurements were performed by means of Fractional depth dose curves and lateral beam profiles in clinical proton beams of energies 155 and 250 MeV for a 14 cm square cerrobend aperture and 126 MeV for 3, 2, and 1 cm diameter circular brass collimators. ICRU Report No. 78 recommended beam parameters were used to compare fractional depth dose curves and beam profiles obtained using the diamond detector and the reference ionization chamber. Warm-up/stability of the detector response and linearity with dose were evaluated in a 250 MeV proton beam and dose rate dependence was evaluated in a 126 MeV proton beam. Stem effect and the azimuthal angle dependence of the diode response were also evaluated.Results: A maximum deviation in diamond detector signal from the average reading of less than 0.5% was found during the warm-up irradiation procedure. The detector response showed a good linear behavior as a function of dose with observed deviations below 0.5% over a dose range from 50 to 500 cGy. The detector response was dose rate independent, with deviations below 0.5% in the investigated dose rates ranging from 85 to 300 cGy/min. Stem effect and azimuthal angle dependence of the diode signal were within 0.5%. Fractional depth dose curves and lateral beam profiles obtained with the diamond detector were in good agreement with those measured using reference dosimeters.Conclusions: The observed dosimetric properties of the synthetic single

  15. Evaluation of the dosimetric properties of a synthetic single crystal diamond detector in high energy clinical proton beams.

    PubMed

    Mandapaka, A K; Ghebremedhin, A; Patyal, B; Marinelli, Marco; Prestopino, G; Verona, C; Verona-Rinati, G

    2013-12-01

    To investigate the dosimetric properties of a synthetic single crystal diamond Schottky diode for accurate relative dose measurements in large and small field high-energy clinical proton beams. The dosimetric properties of a synthetic single crystal diamond detector were assessed by comparison with a reference Markus parallel plate ionization chamber, an Exradin A16 microionization chamber, and Exradin T1a ion chamber. The diamond detector was operated at zero bias voltage at all times. Comparative dose distribution measurements were performed by means of Fractional depth dose curves and lateral beam profiles in clinical proton beams of energies 155 and 250 MeV for a 14 cm square cerrobend aperture and 126 MeV for 3, 2, and 1 cm diameter circular brass collimators. ICRU Report No. 78 recommended beam parameters were used to compare fractional depth dose curves and beam profiles obtained using the diamond detector and the reference ionization chamber. Warm-up∕stability of the detector response and linearity with dose were evaluated in a 250 MeV proton beam and dose rate dependence was evaluated in a 126 MeV proton beam. Stem effect and the azimuthal angle dependence of the diode response were also evaluated. A maximum deviation in diamond detector signal from the average reading of less than 0.5% was found during the warm-up irradiation procedure. The detector response showed a good linear behavior as a function of dose with observed deviations below 0.5% over a dose range from 50 to 500 cGy. The detector response was dose rate independent, with deviations below 0.5% in the investigated dose rates ranging from 85 to 300 cGy∕min. Stem effect and azimuthal angle dependence of the diode signal were within 0.5%. Fractional depth dose curves and lateral beam profiles obtained with the diamond detector were in good agreement with those measured using reference dosimeters. The observed dosimetric properties of the synthetic single crystal diamond detector indicate that

  16. Large-surface-area diamond (111) crystal plates for applications in high-heat-load wavefront-preserving X-ray crystal optics.

    PubMed

    Stoupin, Stanislav; Antipov, Sergey; Butler, James E; Kolyadin, Alexander V; Katrusha, Andrey

    2016-09-01

    Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configuration and data analysis using rocking-curve topography. The variations of the rocking-curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.

  17. Large-surface-area diamond (111) crystal plates for applications in high-heat-load wavefront-preserving X-ray crystal optics

    SciTech Connect

    Stoupin, Stanislav; Antipov, Sergey; Butler, James E.; Kolyadin, Alexander V.; Katrusha, Andrey

    2016-08-10

    Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configuration and data analysis using rocking-curve topography. In conclusion, the variations of the rocking-curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.

  18. Large-surface-area diamond (111) crystal plates for applications in high-heat-load wavefront-preserving X-ray crystal optics

    DOE PAGES

    Stoupin, Stanislav; Antipov, Sergey; Butler, James E.; ...

    2016-08-10

    Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configurationmore » and data analysis using rocking-curve topography. In conclusion, the variations of the rocking-curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.« less

  19. Lithium niobate single-crystal and photo-functional device

    DOEpatents

    Gopalan, Venkatraman; Mitchell, Terrence E.; Kitamura, Kenji; Furukawa, Yasunori

    2001-01-01

    Provided are lithium niobate single-crystal that requires a low voltage of not larger than 10 kV/nm for its ferroelectric polarization inversion and of which the polarization can be periodically inverted with accuracy even at such a low voltage, and a photo-functional device comprising the crystal. The crystal has a molar fraction of Li.sub.2 O/(Nb.sub.2 O.sub.5 +Li.sub.2 O) of falling between 0.49 and 0.52. The photo-functional device can convert a laser ray being incident thereon.

  20. In situ crystal chemical study of solid diamond inclusions from Quaternary alluvial deposit in the Siberian craton

    NASA Astrophysics Data System (ADS)

    Dera, P. K.; Manghnani, M. H.; Hushur, A.; Sobolev, N. V.; Logvinova, A. M.; Newville, M.; Lanzirotti, A.

    2013-12-01

    Kimberlites belong to rare rock type available only within the Earth's cratonic areas and have been a subject of detailed studies because of the great depth of their origin in the mantle. Kimberlitic diamonds often contain pristine inclusions derived from significant depths with different histories of their origins. Many of kimberlitic diamonds were formed in ultramafic (peridotitic) and mafic (eclogitic) environments of the upper mantle. Thus far only a handful of comprehensive in situ studies including single-crystal X-ray diffraction characterization of pristine diamond solid inclusions have been reported (e.g. Kunz et al. 2001, Nestola et al. 2011). In this study five single-crystal solid inclusions from diamonds found in the Quaternary alluvial deposit in NW of the Siberian craton have been investigated using a combination of in situ single-crystal X-ray diffraction, Raman spectroscopy, synchrotron X-ray microfluorescence and X-ray Absorption Near Edge Spectroscopy (XANES). The grains were identified to be a suite of major upper mantle minerals including olivine, enstatite orthopyroxene (opx), C2/c omphacite clinopyroxene (cpx) and majoritic garnet (two grains), indicating eclogitic origin. All five inclusions are chemically homogeneous, do not show compositional zoning, and exhibit very similar major element chemistry, with significant amounts of Mn2+, Ni2+ and Cr3+ incorporated into the crystal structures, suggesting common geologic origin. All samples were studied in situ, while still embedded in the diamond crystals. High quality single-crystal X-ray diffraction data was collected at the Advanced Photon Source, Argonne National Laboratory to reveal details of the crystal structures and provide crystal chemical information. Some of the structural characteristics of the solid inclusions were found to be fairly uncommon, e.g. the orthoenstatite exhibits an unusually high Ca2+ content (Carlson et al. 1988), and omphacite occurs as the less common C2/c

  1. Device for isolation of seed crystals during processing of solution

    DOEpatents

    Montgomery, Kenneth E.; Zaitseva, Natalia P.; Deyoreo, James J.; Vital, Russell L.

    1999-01-01

    A device for isolation of see crystals during processing of solutions. The device enables a seed crystal to be introduced into the solution without exposing the solution to contaminants or to sources of drying and cooling. The device constitutes a seed protector which allows the seed to be present in the growth solution during filtration and overheating operations while at the same time preventing the seed from being dissolved by the under saturated solution. When the solution processing has been completed and the solution cooled to near the saturation point, the seed protector is opened, exposing the seed to the solution and allowing growth to begin.

  2. Device for isolation of seed crystals during processing of solution

    DOEpatents

    Montgomery, K.E.; Zaitseva, N.P.; Deyoreo, J.J.; Vital, R.L.

    1999-05-18

    A device is described for isolation of seed crystals during processing of solutions. The device enables a seed crystal to be introduced into the solution without exposing the solution to contaminants or to sources of drying and cooling. The device constitutes a seed protector which allows the seed to be present in the growth solution during filtration and overheating operations while at the same time preventing the seed from being dissolved by the under saturated solution. When the solution processing has been completed and the solution cooled to near the saturation point, the seed protector is opened, exposing the seed to the solution and allowing growth to begin. 3 figs.

  3. Diffractive devices based on blue phase liquid crystals

    NASA Astrophysics Data System (ADS)

    Li, Yan; Huang, Shuaijia; Su, Yikai

    2016-09-01

    Blue phase liquid crystal (BPLC) has been attractive for display and photonic applications for its sub-millisecond response time, no need for surface alignment, and an optically isotropic dark state. Because of these advantages, diffractive devices based on blue phase liquid crystals have great potential for wide applications. In this work, we present several BPLC diffractive devices. The operation principles, fabrication and experimental measurements will be discussed in details for two BPLC gratings realized by holographic method and a BPLC Fresnel lens using a spatial light modulator projector. All of these devices exhibit several attractive features such as sub-millisecond response, relatively high spatial resolution and polarization-independence.

  4. Direct local epitaxy of diamond on Si(100) and surface-roughening-induced crystal misorientation

    PubMed

    Jiang; Jia

    2000-04-17

    A direct diamond epitaxy on the silicon substrate is demonstrated not only at the interface formed during the growth process but also at the nucleation sites. The small (001) terraces with dimensions of several atomic distances at the site of nucleation are formed due to the roughening of silicon surface and lead to the grain misorientation. A model is presented which attempts to explain the initial stages of diamond growth. Predictions are made for methods of improving the nucleation of epitaxial diamond crystallites.

  5. A plasma photonic crystal bandgap device

    SciTech Connect

    Wang, B.; Cappelli, M. A.

    2016-04-18

    A fully tunable plasma photonic crystal is used to control the propagation of free space electromagnetic waves in the S to X bands of the microwave spectrum. An array of discharge plasma tubes forms a simple square crystal structure with the individual plasma dielectric constant tuned through variation in the plasma density. We show, through simulations and experiments, that transverse electric mode bandgaps exist, arising from the positive and negative dielectric constant regimes of the plasma, and that the respective bandgap frequencies can be shifted through changing the dielectric constant by varying discharge current density.

  6. Characterization of damage induced by heavy neutron irradiation on multilayered {sup 6}LiF-single crystal chemical vapor deposition diamond detectors

    SciTech Connect

    Almaviva, S.; Marinelli, Marco; Milani, E.; Prestopino, G.; Tucciarone, A.; Verona, C.; Verona-Rinati, G.; Angelone, M.; Pillon, M.

    2009-10-01

    High performance neutron detectors sensitive to both thermal and fast neutrons are of great interest to monitor the high neutron flux produced, e.g., by fission and fusion reactors. An obvious requirement for such an application is neutron irradiation hardness. This is why diamond based neutron detectors are currently under test in some of these facilities. In this paper the damaging effects induced in chemical vapor deposition (CVD) diamond based detectors by a neutron fluence of approx2x10{sup 16} neutrons/cm{sup 2} have been studied and significant changes in spectroscopic, electrical, and optical properties have been observed. The detectors are fabricated using high quality synthetic CVD single crystal diamond using the p-type/intrinsic/Schottky metal/{sup 6}LiF layered structure recently proposed by Marinelli et al. [Appl. Phys. Lett. 89, 143509 (2006)], which allows simultaneous detection of thermal and fast neutrons. Neutron radiation hardness up to at least 2x10{sup 14} n/cm{sup 2} fast (14 MeV) neutron fluence has been confirmed so far [see Pillon et al., (Fusion Eng. Des. 82, 1174 (2007)]. However, at the much higher neutron fluence of approx2x10{sup 16} neutrons/cm{sup 2} damage is observed. The detector response to 5.5 MeV {sup 241}Am alpha-particles still shows a well resolved alpha-peak, thus confirming the good radiation hardness of the device but a remarkable degradation and a significant instability with time of charge collection efficiency and energy resolution arise. Symmetric, nearly Ohmic I-V (current-voltage) characteristics have been recorded from the metal/intrinsic/p-doped diamond layered structure, which before neutron irradiation acted as a Schottky barrier diode with a strong rectifying behavior. The nature and the distribution of the radiation induced damage have been deeply examined by means of cathodoluminescence spectroscopy. A more heavily damaged area into the intrinsic diamond at the same position and with the same extension of

  7. Non-linear optical crystal vibration sensing device

    DOEpatents

    Kalibjian, R.

    1994-08-09

    A non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser is disclosed. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam. The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam, modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal. 3 figs.

  8. Non-linear optical crystal vibration sensing device

    DOEpatents

    Kalibjian, Ralph

    1994-01-11

    A non-linear optical crystal vibration sensing device (10) including a photorefractive crystal (26) and a laser (12). The laser (12 ) produces a coherent light beam (14) which is split by a beam splitter (18) into a first laser beam (20) and a second laser beam (22). After passing through the crystal (26) the first laser beam (20) is counter-propagated back upon itself by a retro-mirror (32), creating a third laser beam (30). The laser beams (20, 22, 30) are modulated, due to the mixing effect within the crystal (26) by vibration of the crystal (30). In the third laser beam (30), modulation is stable and such modulation is converted by a photodetector (34) into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal (26).

  9. Small Device for Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Daniel Carter (center), president of New Century Pharmaceuticals, and Dr. Joseph Ho (right), vice president, examine a diffusion Controlled Apparatus for Microgravity (DCAM). At left, Dr. John Ruble, a senior scientist, examines some specimens. The plastic DCAM has two chambers joined by a porous plug through which fluids can diffuse at a controlled rate. This allows researchers to mix protein solutions on Earth and load them aboard the Space Shuttle shortly before launch. The diffusion and crystallization processes are already under way, but at such a slow pace that crystals do not start growing before the DCAM is in orbit aboard the Shuttle or a space station. Dozens of DCAM units can be flown in a small volume and require virtually no crew attention. Specimens are returned to Earth for analysis. Photo credit: NASA/Marshall Space Flight Center

  10. Small Device for Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Daniel Carter (center), president of New Century Pharmaceuticals, and Dr. Joseph Ho (right), vice president, examine a diffusion Controlled Apparatus for Microgravity (DCAM). At left, Dr. John Ruble, a senior scientist, examines some specimens. The plastic DCAM has two chambers joined by a porous plug through which fluids can diffuse at a controlled rate. This allows researchers to mix protein solutions on Earth and load them aboard the Space Shuttle shortly before launch. The diffusion and crystallization processes are already under way, but at such a slow pace that crystals do not start growing before the DCAM is in orbit aboard the Shuttle or a space station. Dozens of DCAM units can be flown in a small volume and require virtually no crew attention. Specimens are returned to Earth for analysis. Photo credit: NASA/Marshall Space Flight Center

  11. CVD-diamond external cavity Raman laser at 573 nm.

    PubMed

    Mildren, Richard P; Butler, James E; Rabeau, James R

    2008-11-10

    Recent progress in diamond growth via chemical vapor deposition (CVD) has enabled the manufacture of single crystal samples of sufficient size and quality for realizing Raman laser devices. Here we report an external cavity CVD-diamond Raman laser pumped by a Q-switched 532 nm laser. In the investigated configuration, the dominant output coupling was by reflection loss at the diamond's uncoated Brewster angle facets caused by the crystal's inherent birefringence. Output pulses of wavelength 573 nm with a combined energy of 0.3 mJ were obtained with a slope efficiency of conversion of up to 22%.

  12. Electrically Driven Photonic Crystal Nanocavity Devices

    DTIC Science & Technology

    2012-01-01

    Brown-Goebeler, J. L. Jewell, and J. V. Hove, “Top- surface-emitting GaAs four- quantum - well lasers emitting at 0.85 μm,” Electorn. Lett., vol. 26, pp...modulation, lasers , light-emitting diodes, modulation, photodetectors, photonic bandgap materials, quantum dots (QDs). I. INTRODUCTION PHOTONIC...improved versus similar quantum well (QW) systems [32]. Fig. 2 shows a simplified schematic diagram of the lateral junction photonic crystal fabrication

  13. Enhanced Extraction of Silicon-Vacancy Centers Light Emission Using Bottom-Up Engineered Polycrystalline Diamond Photonic Crystal Slabs.

    PubMed

    Ondič, Lukáš; Varga, Marian; Hruška, Karel; Fait, Jan; Kapusta, Peter

    2017-03-28

    Silicon vacancy (SiV) centers are optically active defects in diamond. The SiV centers, in contrast to nitrogen vacancy (NV) centers, possess narrow and efficient luminescence spectrum (centered at ≈738 nm) even at room temperature, which can be utilized for quantum photonics and sensing applications. However, most of light generated in diamond is trapped in the material due to the phenomenon of total internal reflection. In order to overcome this issue, we have prepared two-dimensional photonic crystal slabs from polycrystalline diamond thin layers with high density of SiV centers employing bottom-up growth on quartz templates. We have shown that the spectral overlap between the narrow light emission of the SiV centers and the leaky modes extracting the emission into almost vertical direction (where it can be easily detected) can be obtained by controlling the deposition time. More than 14-fold extraction enhancement of the SiV centers photoluminescence was achieved compared to an uncorrugated sample. Computer simulation confirmed that the extraction enhancement originates from the efficient light-matter interaction between light emitted from the SiV centers and the photonic crystal slab.

  14. The effect of substrate temperature and growth rate on the doping efficiency of single crystal boron doped diamond

    SciTech Connect

    Demlow, SN; Rechenberg, R; Grotjohn, T

    2014-10-01

    The substrate growth temperature dependence of the plasma gas-phase to solid-phase doping efficiency in single crystal, boron doped diamond (BDD) deposition is investigated. Single crystal diamond (SCD) is grown by microwave plasma assisted chemical vapor deposition (MPACVD) on high pressure, high temperature (HPHT) type Ib substrates. Samples are grown at substrate temperatures of 850-950 degrees C for each of five doping concentration levels, to determine the effect of the growth temperature on the doping efficiency and defect morphology. The substrate temperature during growth is shown to have a significant effect on the grown sample defect morphology, and a temperature dependence of the doping efficiency is also shown. The effect of the growth rate on the doping efficiency is discussed, and the ratio of the boron concentration in the gas phase to the flux of carbon incorporated into the solid diamond phase is shown to be a more predictive measure of the resulting boron concentration than the gas phase boron to carbon ratio that is more commonly reported. (C) 2014 Elsevier B.V. All rights reserved.

  15. Semiconducting polymer single crystals and devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dong, Huanli

    2016-11-01

    Highly ordered organic semiconductors in solid state with optimal molecular packing are critical to their electrical performance. Single crystals with long-range molecular orders and nearly perfect molecular packing are the best candidates, which already have been verified to exhibit the highest performance whether based on inorganic or small organic materials. However, in comparison, preparing high quality polymer crystals remains a big challenge in polymer science because of the easy entanglements of the long and flexible polymer chains during self-assembly process, which also significantly limits the development of their crystalline polymeric electronic devices. Here we have carried out systematical investigations to prepare high quality semiconducting polymers and high performance semiconducting polymer crystal optoelectronic devices have been successfully fabricated. The semiconducting polymeric devices demonstrate significantly enhanced charge carreir transport compared to their thin films, and the highest carreir mobiltiy could be approcahing 30 cm2 V-1s-1, one of the highest mobiltiy values for polymer semiconductors.

  16. Plasma spraying method for forming diamond and diamond-like coatings

    DOEpatents

    Holcombe, C.E.; Seals, R.D.; Price, R.E.

    1997-06-03

    A method and composition is disclosed for the deposition of a thick layer of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate. The softened or molten composition crystallizes on the substrate to form a thick deposition layer comprising at least a diamond or diamond-like material. The selected composition includes at least glassy carbon as a primary constituent and may include at least one secondary constituent. Preferably, the secondary constituents are selected from the group consisting of at least diamond powder, boron carbide (B{sub 4}C) powder and mixtures thereof. 9 figs.

  17. Plasma spraying method for forming diamond and diamond-like coatings

    DOEpatents

    Holcombe, Cressie E.; Seals, Roland D.; Price, R. Eugene

    1997-01-01

    A method and composition for the deposition of a thick layer (10) of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition (12) including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate (20). The softened or molten composition (18) crystallizes on the substrate (20) to form a thick deposition layer (10) comprising at least a diamond or diamond-like material. The selected composition (12) includes at least glassy carbon as a primary constituent (14) and may include at least one secondary constituent (16). Preferably, the secondary constituents (16) are selected from the group consisting of at least diamond powder, boron carbide (B.sub.4 C) powder and mixtures thereof.

  18. Modeling of Optical Aberration Correction using a Liquid Crystal Device

    NASA Technical Reports Server (NTRS)

    Xinghua, Wang; Bin, Wang; McManamon, Paul F.; Pouch, John J.; Miranda, Felix A.

    2006-01-01

    Gruneisen (sup 1-3), has shown that small, light weight, liquid crystal based devices can correct for the optical distortion caused by an imperfect primary mirror in a telescope and has discussed the efficiency of this correction. In this paper we expand on that work and propose a semi-analytical approach for quantifying the efficiency of a liquid crystal based wavefront corrector for this application.

  19. Use of a miniature diamond-anvil cell in high-pressure single-crystal neutron Laue diffraction

    PubMed Central

    Binns, Jack; Kamenev, Konstantin V.; McIntyre, Garry J.; Moggach, Stephen A.; Parsons, Simon

    2016-01-01

    The first high-pressure neutron diffraction study in a miniature diamond-anvil cell of a single crystal of size typical for X-ray diffraction is reported. This is made possible by modern Laue diffraction using a large solid-angle image-plate detector. An unexpected finding is that even reflections whose diffracted beams pass through the cell body are reliably observed, albeit with some attenuation. The cell body does limit the range of usable incident angles, but the crystallographic completeness for a high-symmetry unit cell is only slightly less than for a data collection without the cell. Data collections for two sizes of hexamine single crystals, with and without the pressure cell, and at 300 and 150 K, show that sample size and temperature are the most important factors that influence data quality. Despite the smaller crystal size and dominant parasitic scattering from the diamond-anvil cell, the data collected allow a full anisotropic refinement of hexamine with bond lengths and angles that agree with literature data within experimental error. This technique is shown to be suitable for low-symmetry crystals, and in these cases the transmission of diffracted beams through the cell body results in much higher completeness values than are possible with X-rays. The way is now open for joint X-ray and neutron studies on the same sample under identical conditions. PMID:27158503

  20. Use of a miniature diamond-anvil cell in high-pressure single-crystal neutron Laue diffraction.

    PubMed

    Binns, Jack; Kamenev, Konstantin V; McIntyre, Garry J; Moggach, Stephen A; Parsons, Simon

    2016-05-01

    The first high-pressure neutron diffraction study in a miniature diamond-anvil cell of a single crystal of size typical for X-ray diffraction is reported. This is made possible by modern Laue diffraction using a large solid-angle image-plate detector. An unexpected finding is that even reflections whose diffracted beams pass through the cell body are reliably observed, albeit with some attenuation. The cell body does limit the range of usable incident angles, but the crystallographic completeness for a high-symmetry unit cell is only slightly less than for a data collection without the cell. Data collections for two sizes of hexamine single crystals, with and without the pressure cell, and at 300 and 150 K, show that sample size and temperature are the most important factors that influence data quality. Despite the smaller crystal size and dominant parasitic scattering from the diamond-anvil cell, the data collected allow a full anisotropic refinement of hexamine with bond lengths and angles that agree with literature data within experimental error. This technique is shown to be suitable for low-symmetry crystals, and in these cases the transmission of diffracted beams through the cell body results in much higher completeness values than are possible with X-rays. The way is now open for joint X-ray and neutron studies on the same sample under identical conditions.

  1. Soft x-ray measurements using photoconductive type-IIa and single-crystal chemical vapor deposited diamond detectors

    SciTech Connect

    Moore, A. S.; Bentley, C. D.; Foster, J. M.; Goedhart, G.; Graham, P.; Taylor, M. J.; Hellewell, E.

    2008-10-15

    Photoconductive detectors (PCDs) are routinely used alongside vacuum x-ray diodes (XRDs) to provide an alternative x-ray flux measurement at laser facilities such as HELEN at AWE Aldermaston, UK, and Omega at the Laboratory for Laser Energetics. To evaluate diamond PCDs as an alternative to XRD arrays, calibration measurements made at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory are used to accurately calculate the x-ray flux from a laser-heated target. This is compared to a flux measurement using the Dante XRD diagnostic. Estimates indicate that the photoinduced conductivity from measurements made at Omega are too large, and calculations using the radiometric calibrations made at the NSLS agree with this hypothesis. High-purity, single-crystal, chemical vapor deposited (CVD) diamond samples are compared to natural type-IIa PCDs and show promising high resistivity effects, the corollary of which preliminary results show is a slower response time.

  2. Tool wear of a single-crystal diamond tool in nano-groove machining of a quartz glass plate

    NASA Astrophysics Data System (ADS)

    Yoshino, Masahiko; Nakajima, Satoshi; Terano, Motoki

    2015-12-01

    Tool wear characteristics of a diamond tool in ductile mode machining are presented in this paper. Nano-groove machining of a quartz glass plate was conducted to examine the tool wear rate of a single-crystal diamond tool. Effects of lubrication on the tool wear rate were also evaluated. A numerical simulation technique was developed to evaluate the tool temperature and normal stress acting on the wear surface. From the simulation results it was found that the tool temperature does not increase during the machining experiment. It is also demonstrated that tool wear is attributed to the abrasive wear mechanism, but the effect of the adhesion wear mechanism is minor in nano-groove machining. It is found that the tool wear rate is reduced by using water or kerosene as a lubricant.

  3. Soft x-ray measurements using photoconductive type-IIa and single-crystal chemical vapor deposited diamond detectors.

    PubMed

    Moore, A S; Bentley, C D; Foster, J M; Goedhart, G; Graham, P; Taylor, M J; Hellewell, E

    2008-10-01

    Photoconductive detectors (PCDs) are routinely used alongside vacuum x-ray diodes (XRDs) to provide an alternative x-ray flux measurement at laser facilities such as HELEN at AWE Aldermaston, UK, and Omega at the Laboratory for Laser Energetics. To evaluate diamond PCDs as an alternative to XRD arrays, calibration measurements made at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory are used to accurately calculate the x-ray flux from a laser-heated target. This is compared to a flux measurement using the Dante XRD diagnostic. Estimates indicate that the photoinduced conductivity from measurements made at Omega are too large, and calculations using the radiometric calibrations made at the NSLS agree with this hypothesis. High-purity, single-crystal, chemical vapor deposited (CVD) diamond samples are compared to natural type-IIa PCDs and show promising high resistivity effects, the corollary of which preliminary results show is a slower response time.

  4. Small liquid-crystal display device for projection

    NASA Astrophysics Data System (ADS)

    Miyajima, Akira; Morokawa, Shigeru; Yamada, Osamu; Arai, Motonao

    1990-08-01

    In recent years, LCDs have drawn the attention of persons who present data such as sentences and patterns on the screen. This paper describes a new type of the device for projection using the LCD. CITIZEN has developed a multi-pixel, high-density and small-sized liquid crystal cell, using the Chip on Glass method. Driver ICs are directly connected to glass substrates. CITIZEN has developed a small liquid crystal display device, which is located between the light source and the lens of a conventional slide projector so that an image on the LCD is projected.

  5. SU-F-BRE-02: Characterization of a New Commercial Single Crystal Diamond Detector in Photon, Electron and Proton Beams

    SciTech Connect

    Akino, Y; Das, I

    2014-06-15

    Purpose: Diamond detectors even with superior characteristics have become obsolete due to poor design, selection of crystal and cost. Recently, microDiamond using synthetic single crystal diamond detector (SCDD) is commercially available which is characterized in various radiation beams in this study. Methods: The characteristics of a commercial SCDD model 60019 (PTW) to a 6- and 15-MV photon beams, 6- and 20-MeV electron beams, and 208 MeV proton beams were investigated and compared to the pre-characterized detectors: TN31010 (0.125 cm{sup 3}) and TN30006 (pinpoint) ionization chambers (PTW), EDGE detector (Sun Nuclear Corp), and SFD Stereotactic Dosimetry Diode Detector (IBA). The depth-dose and profiles data were collected for various field sizes and depths. The dose linearity and dose rate dependency were also evaluated. To evaluate the effects of the preirradiation, the diamond detector which had not been irradiated on the day was set up in the water tank and the response to 100 MU was measured every 20 s. The temperature dependency was tested for the range of 4–60 °C. Angular dependency was evaluated in water phantom by rotating the SCDD. Results: For all radiation types and field sizes, the depth-dose data of the diamond chamber showed identical curve to those of ionization chambers. The profile of the diamond detector was very similar to those of the Edge and SFD detectors, although the 0.125 cm{sup 3} and pinpoint chambers showed averaging effects in the penumbrae region. The temperature dependency was within 0.7% in the range of 4–41°C. A dose of 900 cGy and 1200 cGy were needed to stabilize the chamber to the level within 0.5% and 0.2%, respectively. Conclusion: The type 60019 SCDD detector showed suitable characteristics for depth-dose and profile measurements for wide range of field sizes. However, at least 1000 cGy of pre-irradiation is needed for accurate measurements.

  6. Diamond nanophotonics.

    PubMed

    Beha, Katja; Fedder, Helmut; Wolfer, Marco; Becker, Merle C; Siyushev, Petr; Jamali, Mohammad; Batalov, Anton; Hinz, Christopher; Hees, Jakob; Kirste, Lutz; Obloh, Harald; Gheeraert, Etienne; Naydenov, Boris; Jakobi, Ingmar; Dolde, Florian; Pezzagna, Sébastien; Twittchen, Daniel; Markham, Matthew; Dregely, Daniel; Giessen, Harald; Meijer, Jan; Jelezko, Fedor; Nebel, Christoph E; Bratschitsch, Rudolf; Leitenstorfer, Alfred; Wrachtrup, Jörg

    2012-01-01

    We demonstrate the coupling of single color centers in diamond to plasmonic and dielectric photonic structures to realize novel nanophotonic devices. Nanometer spatial control in the creation of single color centers in diamond is achieved by implantation of nitrogen atoms through high-aspect-ratio channels in a mica mask. Enhanced broadband single-photon emission is demonstrated by coupling nitrogen-vacancy centers to plasmonic resonators, such as metallic nanoantennas. Improved photon-collection efficiency and directed emission is demonstrated by solid immersion lenses and micropillar cavities. Thereafter, the coupling of diamond nanocrystals to the guided modes of micropillar resonators is discussed along with experimental results. Finally, we present a gas-phase-doping approach to incorporate color centers based on nickel and tungsten, in situ into diamond using microwave-plasma-enhanced chemical vapor deposition. The fabrication of silicon-vacancy centers in nanodiamonds by microwave-plasma-enhanced chemical vapor deposition is discussed in addition.

  7. Diamond nanophotonics

    PubMed Central

    Beha, Katja; Wolfer, Marco; Becker, Merle C; Siyushev, Petr; Jamali, Mohammad; Batalov, Anton; Hinz, Christopher; Hees, Jakob; Kirste, Lutz; Obloh, Harald; Gheeraert, Etienne; Naydenov, Boris; Jakobi, Ingmar; Dolde, Florian; Pezzagna, Sébastien; Twittchen, Daniel; Markham, Matthew; Dregely, Daniel; Giessen, Harald; Meijer, Jan; Jelezko, Fedor; Nebel, Christoph E; Bratschitsch, Rudolf; Leitenstorfer, Alfred; Wrachtrup, Jörg

    2012-01-01

    Summary We demonstrate the coupling of single color centers in diamond to plasmonic and dielectric photonic structures to realize novel nanophotonic devices. Nanometer spatial control in the creation of single color centers in diamond is achieved by implantation of nitrogen atoms through high-aspect-ratio channels in a mica mask. Enhanced broadband single-photon emission is demonstrated by coupling nitrogen–vacancy centers to plasmonic resonators, such as metallic nanoantennas. Improved photon-collection efficiency and directed emission is demonstrated by solid immersion lenses and micropillar cavities. Thereafter, the coupling of diamond nanocrystals to the guided modes of micropillar resonators is discussed along with experimental results. Finally, we present a gas-phase-doping approach to incorporate color centers based on nickel and tungsten, in situ into diamond using microwave-plasma-enhanced chemical vapor deposition. The fabrication of silicon–vacancy centers in nanodiamonds by microwave-plasma-enhanced chemical vapor deposition is discussed in addition. PMID:23365803

  8. Polymer-dispersed liquid crystal devices with graphene electrodes.

    PubMed

    Chung, Seok-Hwan; Noh, Hee Yeon

    2015-12-14

    Although polymer-dispersed liquid crystal (PDLC) devices have considerable potential application in smart windows, the high material cost of the indium tin oxide (ITO) electrodes conventionally used in these devices hinders their wide usage. In this work, we explore the use of graphene electrodes as a potential substitute for ITO electrodes in PDLC devices. The fabricated PDLC devices with graphene electrodes exhibit higher contrast and faster response than PDLC devices with ITO electrodes fabricated using the same chemical formulation and polymerization process. However, they also exhibit higher operation voltage and haze, which is primarily attributed to the inherently large resistance and inhomogeneity of the large-area graphene sheets initially transferred onto the transparent substrates. PDLC devices with graphene electrodes are robust under standard operating conditions and also have the advantage of flexibility and stretchability, unlike PDLCs with ITO electrodes.

  9. Prototyping and performance study of a single crystal diamond detector for operation at high temperatures

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Kumar, Arvind; Topkar, Anita; Das, D.

    2017-06-01

    Prototype single crystal diamond detectors with different types of metallization and post metallization treatment were fabricated for the applications requiring fast neutron measurements in the Indian Test Blanket Module (TBM) at the International Thermonuclear Experimental Reactor (ITER) Experiment. The detectors were characterized by leakage current measurements to ascertain that the leakage currents are low and breakdown voltages are higher than the voltage required for full charge collection. The detector response to charged particles was evaluated using a 238+239 Pu dual energy alpha source. The detectors showed an energy resolution of about 2% at 5.5 MeV. In order to study their suitability for the operation at higher temperatures, leakage current variation and alpha response were studied up to 300 °C. At 300 °C, peaks corresponding to 5.156 MeV and 5.499 MeV alphas could be separated and there was no significant degradation of energy resolution. Finally, the detector response to fast neutrons was evaluated using a Deuterium-Tritium (D-T) neutron generator. The observed spectrum showed peaks corresponding to various channels of n-C interactions with a clear isolated peak corresponding to 8.5 MeV alphas. The detectors also showed high sensitivity of 3.4×10-2 cps/n/(cm2 s)-4.5×10-2 cps/n/(cm2 s) and excellent linearity of response in terms of count rate at different neutron flux in the observed range of 3.2×105 n/(cm2 s) to 2.0×106 n/(cm2 s).

  10. Design, Build & Test of a Double Crystal Monochromator for Beamlines I09 & I23 at the Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Kelly, J.; Lee, T.; Alcock, S.; Patel, H.

    2013-03-01

    A high stability Double Crystal Monochromator has been developed at The Diamond Light Source for beamlines I09 and I23. The design specification was a cryogenic, fixed exit, energy scanning monochromator, operating over an energy range of 2.1 - 25 keV using a Si(111) crystal set. The novel design concepts are the direct drive, air bearing Bragg axis, low strain crystal mounts and the cooling scheme. The instrument exhibited superb stability and repeatability on the B16 Test Beamline. A 20 keV Si(555), 1.4 μrad rocking curve was demonstrated. The DCM showed good stability without any evidence of vibration or Bragg angle nonlinearity.

  11. Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges

    NASA Astrophysics Data System (ADS)

    Tallaire, Alexandre; Achard, Jocelyn; Silva, François; Brinza, Ovidiu; Gicquel, Alix

    2013-02-01

    Diamond is a material with outstanding properties making it particularly suited for high added-value applications such as optical windows, power electronics, radiation detection, quantum information, bio-sensing and many others. Tremendous progresses in its synthesis by microwave plasma assisted chemical vapour deposition have allowed obtaining single crystal optical-grade material with thicknesses of up to a few millimetres. However the requirements in terms of size, purity and crystalline quality are getting more and more difficult to achieve with respect to the forecasted applications, thus pushing the synthesis method to its scientific and technological limits. In this paper, after a short description of the operating principles of the growth technique, the challenges of increasing crystal dimensions both laterally and vertically, decreasing and controlling point and extended defects as well as modulating crystal conductivity by an efficient doping will be detailed before offering some insights into ways to overcome them.

  12. Ion implantation of diamond: Damage, doping, and lift-off

    SciTech Connect

    Parikh, N.R.; McGucken, E.; Swanson, M.L.; Hunn, J.D.; White, C.W.; Zuhr, R.A.

    1993-09-01

    In order to make good quality economical diamond electronic devices, it is essential to grow films and to dope these films to obtain n- and p- type conductivity. This review talk discuss first doping by ion implantation plus annealing of the implantation damage, and second flow to make large area single crystal diamonds. C implantation damage below an estimated Frenkel defect concentration of 7% could be recovered almost completely by annealing at 950C. For a defect concentration between 7 and 10%, a stable damage form of diamond (``green diamond``) was formed by annealing. At still higher damage levels, the diamond graphitized. To introduce p-type doping, we have co-implanted B and C into natural diamond at 77K, followed by annealing up to 1100C. The resulting semiconducting material has electrical properties similar to those of natural B-doped diamond. To create n-type diamond, we have implanted Na{sup +}, P+ and As{sup +} ions and have observed semiconducting behavior. This has been compared with carbon or noble element implantation, in an attempt to isolate the effect of radiation damage. Recently, in order to obtain large area signal crystals, we have developed a novel technique for removing thin layers of diamond from bulk or homoepitaxial films. This method consists of ion implantation, followed by selective etching. High energy (4--5 MeV) implantation of carbon or oxygen ions creates a well-defined layer of damaged diamond buried at a controlled depth. This layer is graphitized and selectivity etched either by heating at 550C in an oxygen ambient or by electrolysis. This process successfully lifts off the diamond plate above the graphite layer. The lift-off method, combined with well-established homoepitaxial growth processes, has potential for fabrication of large area single-crystal diamond sheets.

  13. Single-color centers implanted in diamond nanostructures

    NASA Astrophysics Data System (ADS)

    Hausmann, Birgit J. M.; Babinec, Thomas M.; Choy, Jennifer T.; Hodges, Jonathan S.; Hong, Sungkun; Bulu, Irfan; Yacoby, Amir; Lukin, Mikhail D.; Lončar, Marko

    2011-04-01

    The development of material-processing techniques that can be used to generate optical diamond nanostructures containing a single-color center is an important problem in quantum science and technology. In this work, we present the combination of ion implantation and top-down diamond nanofabrication in two scenarios: diamond nanopillars and diamond nanowires. The first device consists of a 'shallow' implant (~20 nm) to generate nitrogen-vacancy (NV) color centers near the top surface of the diamond crystal prior to device fabrication. Individual NV centers are then mechanically isolated by etching a regular array of nanopillars in the diamond surface. Photon anti-bunching measurements indicate that a high yield (>10%) of the devices contain a single NV center. The second device demonstrates 'deep' (~1 μm) implantation of individual NV centers into diamond nanowires as a post-processing step. The high single-photon flux of the nanowire geometry, combined with the low background fluorescence of the ultrapure diamond, allowed us to observe sustained photon anti-bunching even at high pump powers.

  14. Diamond detector - material science, design and application

    NASA Astrophysics Data System (ADS)

    Gaowei, Mengjia

    Modern synchrotrons, such as the NSLS-II, will enable unprecedented science by having extremely high brightness and flux with exceptional beam stability. These capabilities create a harsh and demanding environment for measuring the characteristics of the x-ray beam. In many cases, existing measurement techniques fail completely, requiring the development of new detectors which can meet the demands of the synchrotron. The combination of diamond properties ranked diamond an appealing candidate in the field of radiation detection in extreme conditions and it has been used as x-ray sensor material for decades. However, only until the development of chemical vapor deposition (CVD) process in the synthesis of diamond that has it been considered for wider applications in the state-of-art synchrotron light sources as part of beamline diagnostics, including the detection of x-ray beam flux and position. While defects and dislocations in CVD grown single crystal diamonds are inevitable, there are solutions in other aspects of a device fabrication to compensate this technological downside, including improving device performance in engineering diamond surface electrode materials and patterns and slicing and polishing diamond plates into thinner pieces. The content of this dissertation summarizes our effort in addressing several problems we encounter in the process of design and fabrication of single crystal CVD diamond based electronic devices. In order to study the generation of post-anneal photoconductive gain in our devices we have discussed in section 3 and 4 the two criteria for the observation of photoconductive current. In section 3 we reveal the correlation between structural defects in diamond and the post-anneal photoconductive regions. Section 4 introduces the measurements of hard x-ray photoelectron spectroscopy (HAXPES) we applied to investigate the diamond-metal Schottky barrier height for several metals and diamond surface terminations. The position of the

  15. Tailored liquid crystal devices for specific imaging applications

    NASA Astrophysics Data System (ADS)

    Safrani, A.; Abuleil, M.; Isaac, S.; Solodar, A.; Klapp, I.; Kirzhner, M. G.; Abdulhalim, I.

    2014-10-01

    Following the mature liquid crystals (LCs) display technology, there is a significant interest in implementing these devices into other non-display applications. Hence the emerging field of LC photonics is becoming increasingly active in which the strong electrooptic properties of LCs are harnessed for these applications particularly for imaging such as the use of SLMs, tunable focus lenses, tunable filters and polarization control devices. In this paper we review our recently developed LC devices integrated into full field optical coherence tomography system, into multi-spectral skin diagnosis system and in extended depth of focus imaging system.

  16. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1985-01-01

    The present program has been aimed at solving the fundamental and technological problems associated with Crystal Growth of Device Quality in Space. The initial stage of the program was devoted strictly to ground-based research. The unsolved problems associated with the growth of bulk GaAs in the presence of gravitational forces were explored. Reliable chemical, structural and electronic characterization methods were developed which would permit the direct relation of the salient materials parameters (particularly those affected by zero gravity conditions) to the electronic characteristics of single crystal GaAs, in turn to device performance. These relationships are essential for the development of optimum approaches and techniques. It was concluded that the findings on elemental semiconductors Ge and Si regarding crystal growth, segregation, chemical composition, defect interactions, and materials properties-electronic properties relationships are not necessarily applicable to GaAs (and to other semiconductor compounds). In many instances totally unexpected relationships were found to prevail.

  17. Radiation damage in single crystal CVD diamond material investigated with a high current relativistic 197Au beam

    NASA Astrophysics Data System (ADS)

    Pietraszko, J.; Galatyuk, T.; Grilj, V.; Koenig, W.; Spataro, S.; Träger, M.

    2014-11-01

    Single-crystal Chemical Vapor Deposition (ScCVD) diamond based prototype detectors have been constructed for the high intensity heavy ion experiments HADES and CBM at the future FAIR facility at GSI Darmstadt. Their properties have been studied with a high current density beam (about 2-3×106/s/mm2) of 1.25A GeV Au69+197 ions. Details of the design, the intrinsic properties of the detectors and their performance after irradiation with such a beam are reported.

  18. Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in Joint European Torus fusion plasmas

    SciTech Connect

    Cazzaniga, C. Gorini, G.; Nocente, M.; Sundén, E. Andersson; Binda, F.; Ericsson, G.; Croci, G.; Grosso, G.; Cippo, E. Perelli; Tardocchi, M.; Giacomelli, L.; Rebai, M.; Griesmayer, E.; Kaveney, G.; Syme, B.; Collaboration: JET-EFDA Contributors

    2014-04-15

    First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.

  19. Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in Joint European Torus fusion plasmas.

    PubMed

    Cazzaniga, C; Sundén, E Andersson; Binda, F; Croci, G; Ericsson, G; Giacomelli, L; Gorini, G; Griesmayer, E; Grosso, G; Kaveney, G; Nocente, M; Perelli Cippo, E; Rebai, M; Syme, B; Tardocchi, M

    2014-04-01

    First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.

  20. Bent diamond-crystal x-ray spectrographs for x-ray free-electron laser noninvasive diagnostics

    NASA Astrophysics Data System (ADS)

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz; Shvyd'ko, Yuri

    2016-09-01

    We report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-μm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0:6 m and R = 0:1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for 8 keV X-rays. All of the components of the bending mechanism (about 10 parts) are manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons, and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.

  1. Diamond Analyzed by Secondary Electron Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Krainsky, Isay L.

    1998-01-01

    Diamond is a promising semiconductor material for novel electronic applications because of its chemical stability and inertness, heat conduction properties, and so-called negative electron affinity (NEA). When a surface has NEA, electrons generated inside the bulk of the material are able to come out into the vacuum without any potential barrier (work function). Such a material would have an extremely high secondary electron emission coefficient o, very high photoelectron (quantum) yield, and would probably be an efficient field emitter. Chemical-vapor-deposited (CVD) polycrystalline diamond films have even more advantages than diamond single crystals. Their fabrication is relatively easy and inexpensive, and they can be grown with high levels of doping--consequently, they can have relatively high conductivity. Because of these properties, diamond can be used for cold cathodes and photocathodes in high-power electronics and in high-frequency and high-temperature semiconductor devices.

  2. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  3. Hybrid graphene nematic liquid crystal light scattering device

    NASA Astrophysics Data System (ADS)

    Qasim, M. M.; Khan, A. A.; Kostanyan, A.; Kidambi, P. R.; Cabrero-Vilatela, A.; Braeuninger-Weimer, P.; Gardiner, D. J.; Hofmann, S.; Wilkinson, T. D.

    2015-08-01

    A hybrid graphene nematic liquid crystal (LC) light scattering device is presented. This device exploits the inherent poly-crystallinity of chemical vapour deposited (CVD) graphene films to induce directional anchoring and formation of LC multi-domains. This thereby enables efficient light scattering without the need for crossed polarisers or separate alignment layers/additives. The hybrid LC device exhibits switching thresholds at very low electric fields (< 1 V μm-1) and repeatable, hysteresis free characteristics. This exploitation of LC alignment effects on CVD graphene films enables a new generation of highly efficient nematic LC scattering displays as well as many other possible applications.A hybrid graphene nematic liquid crystal (LC) light scattering device is presented. This device exploits the inherent poly-crystallinity of chemical vapour deposited (CVD) graphene films to induce directional anchoring and formation of LC multi-domains. This thereby enables efficient light scattering without the need for crossed polarisers or separate alignment layers/additives. The hybrid LC device exhibits switching thresholds at very low electric fields (< 1 V μm-1) and repeatable, hysteresis free characteristics. This exploitation of LC alignment effects on CVD graphene films enables a new generation of highly efficient nematic LC scattering displays as well as many other possible applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04094a

  4. Ultrananocrystalline diamond-CMOS device integration route for high acuity retinal prostheses.

    PubMed

    Ahnood, A; Escudie, M C; Cicione, R; Abeyrathne, C D; Ganesan, K; Fox, K E; Garrett, D J; Stacey, A; Apollo, N V; Lichter, S G; Thomas, C D L; Tran, N; Meffin, H; Prawer, S

    2015-01-01

    High density electrodes are a new frontier for biomedical implants. Increasing the density and the number of electrodes used for the stimulation of retinal ganglion cells is one possible strategy for enhancing the quality of vision experienced by patients using retinal prostheses. The present work presents an integration strategy for a diamond based, high density, stimulating electrode array with a purpose built application specific integrated circuit (ASIC). The strategy is centered on flip-chip bonding of indium bumps to create high count and density vertical interconnects between the stimulator ASIC and an array of diamond neural stimulating electrodes. The use of polydimethylsiloxane (PDMS) housing prevents cross-contamination of the biocompatible diamond electrode with non-biocompatible materials, such as indium, used in the microfabrication process. Micro-imprint lithography allowed edge-to-edge micro-scale pattering of the indium bumps on non-coplanar substrates that have a form factor that can conform to body organs and thus are ideally suited for biomedical applications. Furthermore, micro-imprint lithography ensures the compatibility of lithography with the silicon ASIC and aluminum contact pads. Although this work focuses on 256 stimulating diamond electrode arrays with a pitch of 150 μm, the use of indium bump bonding technology and vertical interconnects facilitates implants with tens of thousands electrodes with a pitch as low as 10 μm, thus ensuring validity of the strategy for future high acuity retinal prostheses, and bionic implants in general.

  5. Device and method for screening crystallization conditions in solution crystal growth

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1995-01-01

    A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1g or microgravity environments comprising a housing, defining at least one pair of chambers for containing crystallization solutions is presented. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place, the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.

  6. Device and Method for Screening Crystallization Conditions in Solution Crystal Growth

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1997-01-01

    A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1 g or microgravity environments comprising a housing defining at least one pair of chambers for containing crystallization solutions. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place. the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.

  7. Status review of the science and technology of Ultrananoscrystalline Diamond (UNCD (sup {trademark}) films and application to multifunctional devices.

    SciTech Connect

    Auciello, O.; Sumant, A. V.

    2010-07-01

    This review focuses on a status report on the science and technology of ultrananocrystalline diamond (UNCD) films developed and patented at Argonne National Laboratory. The UNCD material has been developed in thin film form and exhibit multifunctionalities applicable to a broad range of macro to nanoscale multifunctional devices. UNCD thin films are grown by microwave plasma chemical vapor deposition (MPCVD) or hot filament chemical vapor deposition (HFCVD) using new patented Ar-rich/CH4 or H2/CH4 plasma chemistries. UNCD films exhibit a unique nanostructure with 2-5 nm grain size (thus the trade name UNCD) and grain boundaries of 0.4-0.6 nm for plain films, and grain sizes of 7-10 nm and grain boundaries of 2-4 nm when grown with nitrogen introduced in the Ar-rich/CH4 chemistry, to produce UNCD films incorporated with nitrogen, which exhibit electrical conductivity up to semi-metallic level. This review provides a status report on the synthesis of UNCD films via MPCVD and integration with dissimilar materials like oxides for piezoactuated MEMS/NEMS, metal films for contacts, and biological matter for a new generation of biomedical devices and biosensors. A broad range of applications from macro to nanoscale multifunctional devices is reviewed, such as coatings for mechanical pumps seals, field-emission cold cathodes, RF MEMS/NEMS resonators and switches for wireless communications and radar systems, NEMS devices, biomedical devices, biosensors, and UNCD as a platform for developmental biology, involving biological cells growth on the surface. Comparisons with nanocrystalline diamond films and technology are made when appropriate.

  8. Raman spectroscopy of isotopically pure ({sup 12}C, {sup 13}C) and isotopically mixed ({sup 12.5}C) diamond single crystals at ultrahigh pressures

    SciTech Connect

    Enkovich, P. V. Brazhkin, V. V.; Lyapin, S. G.; Novikov, A. P.; Kanda, H.; Stishov, S. M.

    2016-09-15

    The Raman scattering by isotopically pure {sup 12}C and {sup 13}C diamond single crystals and by isotopically mixed {sup 12.5}C diamond single crystals is studied at a high accuracy. The studies are performed over a wide pressure range up to 73 GPa using helium as a hydrostatic pressure-transferring medium. It is found that the quantum effects, which determine the difference between the ratio of the Raman scattering frequencies in the {sup 12}C and {sup 13}C diamonds and the classical ratio (1.0408), increase to 30 GPa and then decrease. Thus, inversion in the sign of the quantum contribution to the physical properties of diamond during compression is detected. Our data suggest that the maximum possible difference between the bulk moduli of the {sup 12}C and {sup 13}C diamonds is 0.15%. The investigation of the isotopically mixed {sup 12.5}C diamond shows that the effective mass, which determines the Raman frequency, decreases during compression from 12.38 au at normal pressure to 12.33 au at 73 GPa.

  9. Thermally-induced single-crystal-to-single-crystal transformations from a 2D two-fold interpenetrating square lattice layer to a 3D four-fold interpenetrating diamond framework and its application in dye-sensitized solar cells.

    PubMed

    Gao, Song; Fan, Rui Qing; Wang, Xin Ming; Wei, Li Guo; Song, Yang; Du, Xi; Xing, Kai; Wang, Ping; Yang, Yu Lin

    2016-07-28

    In this work, a rare 2D → 3D single-crystal-to-single-crystal transformation (SCSC) is observed in metal-organic coordination complexes, which is triggered by thermal treatment. The 2D two-fold interpenetrating square lattice layer [Cd(IBA)2]n (1) is irreversibly converted into a 3D four-fold interpenetrating diamond framework {[Cd(IBA)2(H2O)]·2.5H2O}n (2) (HIBA = 4-(1H-imidazol-1-yl)benzoic acid). Consideration is given to these two complexes with different interpenetrating structures and dimensionality, and their influence on photovoltaic properties are studied. Encouraged by the UV-visible absorption and HOMO-LUMO energy states matched for sensitizing TiO2, the two complexes are employed in combination with N719 in dye-sensitized solar cells (DSSCs) to compensate absorption in the ultraviolet and blue-violet region, offset competitive visible light absorption of I3(-) and reducing charge the recombination of injected electrons. After co-sensitization with 1 and 2, the device co-sensitized by 1/N719 and 2/N719 to yield overall efficiencies of 7.82% and 8.39%, which are 19.94% and 28.68% higher than that of the device sensitized only by N719 (6.52%). Consequently, high dimensional interpenetrating complexes could serve as excellent co-sensitizers and have application in DSSCs.

  10. Realization of direct bonding of single crystal diamond and Si substrates

    NASA Astrophysics Data System (ADS)

    Liang, Jianbo; Masuya, Satoshi; Kasu, Makoto; Shigekawa, Naoteru

    2017-03-01

    Diamond/Si junctions have been achieved by surface activated bonding method without any chemical and heating treatments. Bonded interfaces were obtained that were free from voids and mechanical cracks. Observations by using transmission electron microscopy indicated that an amorphous layer with a thickness of ˜20 nm across the bonded interface was formed, and no structural defects were observed at the interface. The amorphous layer of the diamond side was confirmed to be the mixture of sp2 and sp3 carbons by electron energy loss spectroscopy analyzation. The sp3/(sp2 + sp3) ratio estimated from the X-ray photoemission spectra decreased from 53.8% to 27.5%, while the relative intensity of sp2 increased from 26.8% to 72.5% after the irradiation with Ar fast beam which should be predominantly attributable to the diamond-graphite conversion.

  11. Thermal and fast neutron detection in chemical vapor deposition single-crystal diamond detectors

    SciTech Connect

    Almaviva, S.; Marinelli, M.; Milani, E.; Prestopino, G.; Tucciarone, A.; Verona, C.; Verona-Rinati, G.; Angelone, M.; Lattanzi, D.; Pillon, M.; Montereali, R. M.; Vincenti, M. A.

    2008-03-01

    Recently, a compact solid-state neutron detector capable of simultaneously detecting thermal and fast neutrons was proposed [M. Marinelli et al., Appl. Phys. Lett. 89, 143509 (2006)]. Its design is based on a p-type/intrinsic/metal layered structure obtained by Microwave Plasma Chemical Vapor Deposition (CVD) of homoepitaxial diamond followed by thermal evaporation of an Al contact and a {sup 6}LiF converting layer. Fast neutrons are directly detected in the CVD diamond bulk, since they have enough energy to produce the {sup 12}C(n,{alpha}){sup 9}Be reaction in diamond. Thermal neutrons are instead converted into charged particles in the {sup 6}LiF layer through the {sup 6}Li(n,{alpha})T nuclear reaction. These charged particles are then detected in the diamond layer. The thickness of the {sup 6}LiF converting layer and the CVD diamond sensing layer affect the counting efficiency and energy resolution of the detector both for low- (thermal) and high-energy neutrons. An analysis is carried out on the dynamics of the {sup 6}Li(n,{alpha})T and the {sup 12}C(n,{alpha}){sup 9}Be reactions products, and the distribution of the energy released inside the sensitive layer is calculated. The detector counting efficiency and energy resolution were accordingly derived as a function of the thickness of the {sup 6}LiF and CVD diamond layers, both for thermal and fast neutrons, thus allowing us to choose the optimum detector design for any particular application. Comparison with experimental results is also reported.

  12. The effect of pressure on the kinetics of γ-anhydrite crystallization investigated by diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Liu, Chuanjiang; Zheng, Haifei; Du, Jianguo; Wang, Duojun

    2015-01-01

    The crystallization kinetics of γ-anhydrite was investigated in the temperature and pressure ranges of 373-473 K and 1094-1903 MPa using a hydrothermal diamond anvil cell (HDAC) and Raman spectroscopy. A calcium sulfate solution was formed by dissolving gypsum in water at high pressure, and γ-anhydrite crystallized due to the increasing temperature. The relationship among the reaction rate, k, the temperature, T, and the pressure, P was established as k=-1.75×10-3+1.83×10-6P+3.57×10-7T, with an R2 value of 0.943, of which the applicable range is 373 K≤T≤473 K and 1196 MPa≤P≤1903 MPa. An elevation of T or P will accelerate the crystallization rate of γ-anhydrite. The time exponent n obtained between 0.96 and 1.29 indicates that the process of crystallization should be controlled by instant nucleation on the grain boundary and diffusion controlled growth. In the process of crystallization, the volume is reduced because of the decrease of pressure, and the volume change ΔV is equal to -6.05×10-6 m3/mol. The calculated activation energy Ea is 10.7 kJ/mol, and the pre-exponential factor A is 2.27×10-2 s-1.

  13. Crystal Phases in Hybrid Metal-Semiconductor Nanowire Devices.

    PubMed

    David, J; Rossella, F; Rocci, M; Ercolani, D; Sorba, L; Beltram, F; Gemmi, M; Roddaro, S

    2017-04-12

    We investigate the metallic phases observed in hybrid metal-GaAs nanowire devices obtained by controlled thermal annealing of Ni/Au electrodes. Devices are fabricated onto a SiN membrane compatible with transmission electron microscopy studies. Energy dispersive X-ray spectroscopy allows us to show that the nanowire body includes two Ni-rich phases that thanks to an innovative use of electron diffraction tomography can be unambiguously identified as Ni3GaAs and Ni5As2 crystals. The mechanisms of Ni incorporation leading to the observed phenomenology are discussed.

  14. Ca(Ti,Si)O3 Diamond Inclusions Crystallized From Carbonate Melts in the Transition Zone: Experimental Constraints

    NASA Astrophysics Data System (ADS)

    Armstrong, L. S.; Walter, M. J.; Keshav, S.; Bulanova, G.; Pickles, J.; Lord, O. T.; Lennie, A.

    2007-12-01

    Composite diamond inclusions consisting of coexisting endmember CaSiO3 and CaTiO3 are rare but occur in diamond populations from Juina, Brazil1-2. Phase relations show that above ~9 GPa (at 1500 K) a perovskite-structured solid solution exists between these endmembers, while at lower pressures intermediate compositions produce coexisting CaTiO3-perovskite and CaSiO3 in the walstromite structure3. Inclusions with `perovskite' stoichiometry are commonly interpreted as fragments of solid mantle from the transition zone or lower mantle4-6. Here we report on two composite diamond inclusions from Juina kimberlite, and can effectively eliminate a subsolidus origin on the basis of experimental mineral phase relations. Instead, based on new melting experiments we find that the inclusions most likely crystallized directly from Ca-rich carbonate melts. Like other workers1-2 we interpret the composite inclusions as exsolution products of a high-pressure Ca(Ti,Si)O3 perovskite stable in the transition zone. Our bulk inclusion compositions are estimated to contain 50- 65 mol% CaTiO3, and are remarkably low in MgSiO3 component at less than 0.2 mol%. Experiments have shown that in peridotite or eclogite lithologies, Ca-rich perovskite in equilibrium with an MgSiO3-phase (majorite or Mg-perovskite) have about 3 to 7 mol% MgSiO37-8. Here we report on new subsolidus laser-heated diamond anvil cell experiments at 20-50 GPa in the ternary system CaSiO3-CaTiO3-MgSiO3 that bracket the CaTi-rich limb of the solvus between Ca- and Mg-rich perovskites. All experiments were made at 2000 (±200) K for 45-75 min, and were analysed using synchrotron micro-focus X-ray diffraction. We find that the solubility of MgSiO3 in CaTi-perovskite solid solutions increases significantly with increasing CaTiO3 component. Thus, Ti-rich calcium perovskite in peridotite or eclogite lithologies should have very high, not exceptionally low, MgSiO3 component. Accordingly, a subsolidus paragenesis is unlikely for

  15. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C.; Lagowski, Jacek

    1989-01-01

    The program on Crystal Growth of Device Quality GaAs in Space was initiated in 1977. The initial stage covering 1977 to 1984 was devoted strictly to ground-based research. By 1985 the program had evolved into its next logical stage aimed at space growth experiments; however, since the Challenger disaster, the program has been maintained as a ground-based program awaiting activation of experimentation in space. The overall prgram has produced some 80 original scientific publications on GaAs crystal growth, crystal characterization, and new approaches to space processing. Publication completed in the last three years are listed. Their key results are outlined and discussed in the twelve publications included as part of the report.

  16. Silicon and polymer nanophotonic devices based on photonic crystals

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Jiang, Yongqiang; Gu, Lanlan; Wang, Li; Chen, Xiaonan; Chen, Ray T.

    2006-02-01

    Photonic crystals (PhCs) provide a promising nanophotonic platform for developing novel optoelectronic devices with significantly reduced device size and power consumption. Silicon nanophotonics is anticipated to play a pivotal role in the future nano-system integration owing to the maturity of sub-micron silicon complementary metal oxide semiconductor (CMOS) technology. An ultra-compact silicon modulator was experimentally demonstrated based on silicon photonic crystal waveguides. Modulation operation was achieved by carrier injection into an 80-micron-long silicon PhC waveguide of a Mach-Zehnder interferometer (MZI) structure. The driving current to obtain a phase shift of pi across the active region was as low as 0.15 mA, owing to slow light group velocity in PhC waveguides. The modulation depth was 92%. The electrode between the two waveguide arms of the MZI structure was routed to the space outside the MZI. In real devices, this planarized routing design would be essential to integrating the silicon modulator with electrical driving circuitry on a single silicon chip. For laboratory test, this routing scheme also eliminated the need of placing a bulky pad between the two arms and gave our modulator a distinctive slim profile and a much smaller footprint. Polymeric photonic crystals were designed for superprism based laser beam steering applications, and were fabricated by nano-imprint and other techniques.

  17. 75 FR 74080 - In the Matter of Certain Liquid Crystal Display Devices, Including Monitors, Televisions, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... COMMISSION Inv. No. 337-TA-749 In the Matter of Certain Liquid Crystal Display Devices, Including Monitors... sale within the United States after importation of certain liquid crystal display devices, including... importation of certain liquid crystal display devices, including monitors, televisions, and modules, and...

  18. A nitrogen doped low-dislocation density free-standing single crystal diamond plate fabricated by a lift-off process

    SciTech Connect

    Mokuno, Yoshiaki Kato, Yukako; Tsubouchi, Nobuteru; Chayahara, Akiyoshi; Yamada, Hideaki; Shikata, Shinichi

    2014-06-23

    A nitrogen-doped single crystal diamond plate with a low dislocation density is fabricated by chemical vapor deposition (CVD) from a high pressure high temperature synthetic type IIa seed substrate by ion implantation and lift-off processes. To avoid sub-surface damage, the seed surface was subjected to deep ion beam etching. In addition, we introduced a nitrogen flow during the CVD step to grow low-strain diamond at a relatively high growth rate. This resulted in a plate with low birefringence and a dislocation density as low as 400 cm{sup −2}, which is the lowest reported value for a lift-off plate. Reproducing this lift-off process may allow mass-production of single crystal CVD diamond plates with low dislocation density and consistent quality.

  19. Deposition of TiO2/Al2O3 bilayer on hydrogenated diamond for electronic devices: Capacitors, field-effect transistors, and logic inverters

    NASA Astrophysics Data System (ADS)

    Liu, J. W.; Liao, M. Y.; Imura, M.; Banal, R. G.; Koide, Y.

    2017-06-01

    The wide bandgap semiconductor diamond has been studied to develop high-power and high-frequency electronic devices. Here, high dielectric constant (high-k) TiO2/Al2O3 bilayers are deposited on hydrogenated diamond (H-diamond) channel layers using sputter deposition (SD) and atomic layer deposition (ALD) techniques. Thin ALD-Al2O3 films are employed as buffer layers for the SD-TiO2 and ALD-TiO2 on H-diamond to suppress plasma discharge effect and to decrease leakage current density (J), respectively. The electrical properties of the resulting TiO2/Al2O3/H-diamond metal-oxide-semiconductor (MOS) capacitors, MOS field-effect transistors (MOSFETs), and MOSFET logic inverters are investigated. With the same thickness (4.0 nm) for ALD-Al2O3 buffer layer, the ALD-TiO2/ALD-Al2O3/H-diamond MOS capacitor shows a lower J and better capacitance-voltage characteristics than the SD-TiO2/ALD-Al2O3/H-diamond capacitor. The maximum capacitance of the ALD-TiO2/ALD-Al2O3/H-diamond capacitor and the k value of the ALD-TiO2/ALD-Al2O3 bilayer are 0.83 μF cm-2 and 27.2, respectively. Valence band offset between ALD-TiO2 and H-diamond is calculated to be 2.3 ± 0.2 eV based on the element binding energies measured using an X-ray photoelectron spectroscopy technique. Both the SD-TiO2/ALD-Al2O3/H-diamond and ALD-TiO2/ALD-Al2O3/H-diamond MOSFETs show p-type, pinch-off, and enhancement mode characteristics with on/off current ratios around 109. The subthreshold swings of them are 115 and as low as 79 mV dec-1, respectively. The ALD-TiO2/ALD-Al2O3/H-diamond MOSFET logic inverters, when coupled with load resistors, show distinct inversion characteristics with gains of 6.2-12.7.

  20. CVD diamond-based semi-transparent beam-position monitors for synchrotron beamlines: preliminary studies and device developments at CEA/Saclay.

    PubMed

    Bergonzo, P; Tromson, D; Mer, C

    2006-03-01

    Polycrystalline diamond synthesized using the chemical vapour deposition (CVD) technique can be used to fabricate new types of photodetectors for the characterization of X-ray light in synchrotron beamlines. Since diamond exhibits a low absorption to low-energy photons, such devices allow beam-position monitoring with very little beam attenuation at photon energies as low as 2 keV up to 15-20 keV. Here it is shown how diamond-based devices can simply be processed as ionization chambers for advanced semi-transparent position monitoring with high position resolution (<2 microm). Other configurations using the same principle can also enable in-line field profiling. It is also shown what can be expected from these devices in terms of performances, signal-to-noise ratios and reliability, together with their inherent limitations caused by the presence of defects in polycrystalline materials. In particular, diamond devices with extremely low carrier lifetimes, owing to quenched transport properties, could also be of particular interest for the characterization of the temporal structure of synchrotron light. Interest in these devices lies in the permanent insertion into beamlines and withstanding high levels of radiation for continuous beam monitoring.

  1. Crystal Growth of Device Quality Gaas in Space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.

    1985-01-01

    The GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and (3) investigation of electronic properties and phenomena controlling device applications and device performance. This effort is aimed at the essential ground-based program which would insure successful experimentation with and eventually processing of GaAs in near zero gravity environment. It is believed that this program addresses in a unique way materials engineering aspects which bear directly on the future exploitation of the potential of GaAs and related materials in device and systems applications.

  2. Effect of grain size of polycrystalline diamond on its heat spreading properties

    NASA Astrophysics Data System (ADS)

    Simon, Roland B.; Anaya, Julian; Faili, Firooz; Balmer, Richard; Williams, Gruffudd T.; Twitchen, Daniel J.; Kuball, Martin

    2016-06-01

    The exceptionally high thermal conductivity of polycrystalline diamond (>2000 W m-1 K-1) makes it a very attractive material for optimizing the thermal management of high-power devices. In this paper, the thermal conductivity of a diamond sample capturing grain size evolution from nucleation towards the growth surface is studied using an optimized 3ω technique. The thermal conductivity is found to decrease with decreasing grain size, which is in good agreement with theory. These results clearly reveal the minimum film thickness and polishing thickness from nucleation needed to achieve single-crystal diamond performance, and thus enable production of an optimal polycrystalline diamond for heat-spreading applications.

  3. Switchable Solar Window Devices Based on Polymer Dispersed Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Murray, Joseph; Ma, Dakang; Munday, Jeremy

    Windows are an interesting target for photovoltaics due to the potential for large area of deployment and because glass is already a ubiquitous component of solar cell devices. Many demonstrations of solar windows in recent years have used photovoltaic devices which are semitransparent in the visible region. Much research has focused on enhancing device absorption in the UV and IR ranges as a means to circumvent the basic tradeoff between efficiency and transparency to visible light. Use of switchable solar window is a less investigated alternative approach; these windows utilize the visible spectrum but can toggle between high transparency and high efficiency as needed. We present a novel switchable solar window device based on Polymer Dispersed Liquid Crystals (PDLC). By applying an electric field to the PDLC layer, the device can be switched from an opaque, light diffusing, efficient photovoltaic cell to a clear, transparent window. In the off state (i.e. scattering state), these devices have the added benefits of increased reflectivity for reduced lighting and cooling costs and haze for privacy. Further, we demonstrate that these windows have the potential for self-powering due to the very low power required to maintain the on, or high transparency, state. Support From: University of Maryland and Maryland Nano-center and its Fablab.

  4. Evaluation of a synthetic single-crystal diamond detector for relative dosimetry on the Leksell Gamma Knife Perfexion radiosurgery system

    SciTech Connect

    Mancosu, Pietro; Reggiori, Giacomo Stravato, Antonella; Gaudino, Anna; Lobefalo, Francesca; Palumbo, Valentina; Tomatis, Stefano; Navarria, Piera; Ascolese, Anna; Scorsetti, Marta; Picozzi, Piero; Marinelli, Marco; Verona-Rinati, Gianluca

    2015-09-15

    Purpose: To evaluate the new commercial PTW-60019 synthetic single-crystal microDiamond detector (PTW, Freiburg, Germany) for relative dosimetry measurements on a clinical Leksell Gamma Knife Perfexion radiosurgery system. Methods: Detector output ratios (DORs) for 4 and 8 mm beams were measured using a microDiamond (PTW-60019), a stereotactic unshielded diode [IBA stereotactic field detector (SFD)], a shielded diode (IBA photon field detector), and GafChromic EBT3 films. Both parallel and transversal acquisition directions were considered for PTW-60019 measurements. Measured DORs were compared to the new output factor reference values for Gamma Knife Perfexion (0.814 and 0.900 for 4 and 8 mm, respectively). Profiles in the three directions were also measured for the 4 mm beam to evaluate full width at half maximum (FWHM) and penumbra and to compare them with the corresponding Leksell GammaPlan profiles. Results: FWHM and penumbra for PTW-60019 differed from the calculated values by less than 0.2 and 0.3 mm, for the parallel and transversal acquisitions, respectively. GafChromic films showed FWHM and penumbra within 0.1 mm. The output ratio obtained with the PTW-60019 for the 4 mm field was 1.6% greater in transverse direction compared to the nominal value. Comparable differences up to 0.8% and 1.0% for, respectively, GafChromic films and SFD were found. Conclusions: The microDiamond PTW-60019 is a suitable detector for commissioning and routine use of Gamma Knife with good agreement of both DORs and profiles in the three directions.

  5. Evaluation of a synthetic single-crystal diamond detector for relative dosimetry on the Leksell Gamma Knife Perfexion radiosurgery system.

    PubMed

    Mancosu, Pietro; Reggiori, Giacomo; Stravato, Antonella; Gaudino, Anna; Lobefalo, Francesca; Palumbo, Valentina; Navarria, Piera; Ascolese, Anna; Picozzi, Piero; Marinelli, Marco; Verona-Rinati, Gianluca; Tomatis, Stefano; Scorsetti, Marta

    2015-09-01

    To evaluate the new commercial PTW-60019 synthetic single-crystal microDiamond detector (PTW, Freiburg, Germany) for relative dosimetry measurements on a clinical Leksell Gamma Knife Perfexion radiosurgery system. Detector output ratios (DORs) for 4 and 8 mm beams were measured using a microDiamond (PTW-60019), a stereotactic unshielded diode [IBA stereotactic field detector (SFD)], a shielded diode (IBA photon field detector), and GafChromic EBT3 films. Both parallel and transversal acquisition directions were considered for PTW-60019 measurements. Measured DORs were compared to the new output factor reference values for Gamma Knife Perfexion (0.814 and 0.900 for 4 and 8 mm, respectively). Profiles in the three directions were also measured for the 4 mm beam to evaluate full width at half maximum (FWHM) and penumbra and to compare them with the corresponding Leksell GammaPlan profiles. FWHM and penumbra for PTW-60019 differed from the calculated values by less than 0.2 and 0.3 mm, for the parallel and transversal acquisitions, respectively. GafChromic films showed FWHM and penumbra within 0.1 mm. The output ratio obtained with the PTW-60019 for the 4 mm field was 1.6% greater in transverse direction compared to the nominal value. Comparable differences up to 0.8% and 1.0% for, respectively, GafChromic films and SFD were found. The microDiamond PTW-60019 is a suitable detector for commissioning and routine use of Gamma Knife with good agreement of both DORs and profiles in the three directions.

  6. Sub-band gap photo-enhanced secondary electron emission from high-purity single-crystal chemical-vapor-deposited diamond

    SciTech Connect

    Yater, J. E. Shaw, J. L.; Pate, B. B.; Feygelson, T. I.

    2016-02-07

    Secondary-electron-emission (SEE) current measured from high-purity, single-crystal (100) chemical-vapor-deposited diamond is found to increase when sub-band gap (3.06 eV) photons are incident on the hydrogenated surface. Although the light does not produce photoemission directly, the SEE current increases by more than a factor of 2 before saturating with increasing laser power. In energy distribution curves (EDCs), the emission peak shows a corresponding increase in intensity with increasing laser power. However, the emission-onset energy in the EDCs remains constant, indicating that the bands are pinned at the surface. On the other hand, changes are observed on the high-energy side of the distribution as the laser power increases, with a well-defined shoulder becoming more pronounced. From an analysis of this feature in the EDCs, it is deduced that upward band bending is present in the near-surface region during the SEE measurements and this band bending suppresses the SEE yield. However, sub-band gap photon illumination reduces the band bending and thereby increases the SEE current. Because the bands are pinned at the surface, we conclude that the changes in the band levels occur below the surface in the electron transport region. Sample heating produces similar effects as observed with sub-band gap photon illumination, namely, an increase in SEE current and a reduction in band bending. However, the upward band bending is not fully removed by either increasing laser power or temperature, and a minimum band bending of ∼0.8 eV is established in both cases. The sub-band gap photo-excitation mechanism is under further investigation, although it appears likely at present that defect or gap states play a role in the photo-enhanced SEE process. In the meantime, the study demonstrates the ability of visible light to modify the electronic properties of diamond and enhance the emission capabilities, which may have potential impact for diamond-based vacuum electron

  7. Sub-band gap photo-enhanced secondary electron emission from high-purity single-crystal chemical-vapor-deposited diamond

    NASA Astrophysics Data System (ADS)

    Yater, J. E.; Shaw, J. L.; Pate, B. B.; Feygelson, T. I.

    2016-02-01

    Secondary-electron-emission (SEE) current measured from high-purity, single-crystal (100) chemical-vapor-deposited diamond is found to increase when sub-band gap (3.06 eV) photons are incident on the hydrogenated surface. Although the light does not produce photoemission directly, the SEE current increases by more than a factor of 2 before saturating with increasing laser power. In energy distribution curves (EDCs), the emission peak shows a corresponding increase in intensity with increasing laser power. However, the emission-onset energy in the EDCs remains constant, indicating that the bands are pinned at the surface. On the other hand, changes are observed on the high-energy side of the distribution as the laser power increases, with a well-defined shoulder becoming more pronounced. From an analysis of this feature in the EDCs, it is deduced that upward band bending is present in the near-surface region during the SEE measurements and this band bending suppresses the SEE yield. However, sub-band gap photon illumination reduces the band bending and thereby increases the SEE current. Because the bands are pinned at the surface, we conclude that the changes in the band levels occur below the surface in the electron transport region. Sample heating produces similar effects as observed with sub-band gap photon illumination, namely, an increase in SEE current and a reduction in band bending. However, the upward band bending is not fully removed by either increasing laser power or temperature, and a minimum band bending of ˜0.8 eV is established in both cases. The sub-band gap photo-excitation mechanism is under further investigation, although it appears likely at present that defect or gap states play a role in the photo-enhanced SEE process. In the meantime, the study demonstrates the ability of visible light to modify the electronic properties of diamond and enhance the emission capabilities, which may have potential impact for diamond-based vacuum electron

  8. Channeling and radiation of the 855 MeV electrons enhanced by the re-channeling in a periodically bent diamond crystal

    NASA Astrophysics Data System (ADS)

    Korol, Andrei V.; Bezchastnov, Victor G.; Solov'yov, Andrey V.

    2017-06-01

    Channeling properties and radiation spectra are studied on the grounds of numerical simulations for the 855 MeV electrons in a periodically bent diamond crystal. The bent crystalline profiles are shown to enhance the re-channeling of the projectiles and to produce distinct lines in the radiation spectra. The results obtained are analyzed and contrasted to the properties of the planar channeling and of the channeling in uniformly bent crystals.

  9. Fundamentals and technology for monolithically integrated RF MEMS switches with ultra-nanocrystaline diamond dielectric/CMOS devices.

    SciTech Connect

    Auciello, O.; Sumant, A.; Goldsmith, C.; O'Brien, S.; Sampath, S.; Gudeman, C; Wang, W.; Hwang, J.; Swonger, J.; Carlisle, J.; Balachandran, S.; MEMtronics Corp.; Innovative Micro Technology; Lehigh Univ.; Peregrine Semiconductor; Advanced Diamond Technologies

    2010-01-01

    Most current capacitive RF-MEMS switch technology is based on conventional dielectric materials such as SiO{sub 2} and Si{sub 3}N{sub 4}. However, they suffer not only from charging problems but also stiction problems leading to premature failure of an RF-MEMS switch. Ultrananocrystalline diamond (UNCD{sup (R)}) (2-5 nm grains) and nanocrystalline diamond (NCD) (10-100 nm grains) films exhibit one of the highest Young's modulus ({approx} 980-1100 GPa) and demonstrated MEMS resonators with the highest quality factor (Q {ge} 10,000 in air for NCD) today, they also exhibit the lowest force of adhesion among MEMS/NEMS materials ({approx}10 mJ/m{sup 2}-close to van der Waals attractive force for UNCD) demonstrated today. Finally, UNCD exhibits dielectric properties (fast discharge) superior to those of Si and SiO{sub 2}, as shown in this paper. Thus, UNCD and NCD films provide promising platform materials beyond Si for a new generation of important classes of high-performance MEMS/NEMS devices.

  10. Microwave Plasma Source for Fabrication of Micro- and Nano-Crystalline Diamond Thin Films for Electronic Devices

    NASA Astrophysics Data System (ADS)

    Paosawatyanyong, Boonchoat; Rujisamphan, Nopporn; Bhanthumnavin, Worawan

    2013-01-01

    The design and utilization of an affordable compact-size high-density plasma reactor for micro- and nano-crystalline diamond (MCD/NCD) thin film deposition is presented. The system is based on a 2.45 GHz domestic microwave oven magnetron. A switching power supply module, which yields a low-voltage high-current AC filament feeding and a high-voltage low-current DC cathode bias, is constructed to serve as the magnetron power source. With a high stability of the power module combined with the usage of water cooling gaskets, over 100 h of plasma processing time was achieved without overheating or causing any damage to the magnetron. Depositions of well-faceted MCD/NCD thin films, with distinct diamond Raman characteristics, were obtained using H2-CH4 discharge with 1-5% CH4. Metal-semiconductor diode structures were fabricated using gold and aluminum as ohmic and rectifying contacts, respectively, and their responses to DC signals revealed a high rectification ratio of up to 106 in the intrinsic MCD/NCD devices.

  11. Improvement of radiation stability of semi-insulating gallium arsenide crystals by deposition of diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Klyui, N. I.; Lozinskii, V. B.; Liptuga, A. I.; Izotov, V. Yu.; Han, Wei; Liu, Bingbing

    2016-12-01

    We studied the properties of optical elements for the IR spectral range based on semi-insulating gallium arsenide (SI-GaAs) and antireflecting diamond-like carbon films (DLCF). Particular attention has been paid to the effect of penetrating γ-radiation on transmission of the developed optical elements. A Co60 source and step-by-step gaining of γ-irradiation dose were used for treatment of both an initial SI-GaAs crystal and DLCF/SI-GaAs structures. It was shown that DLCF deposition essentially increases degradation resistance of the SI-GaAs-based optical elements to γ-radiation. Particularly, the transmittance of the DLCF/SI-GaAs structure after γ-irradiation with a dose 9ṡ104 Gy even exceeds that of initial structures. The possible mechanism that explains the effect of γ-radiation on the SI-GaAs crystals and the DLCF/SI-GaAs structures at different irradiation doses was proposed. The effect of small doses is responsible for non-monotonic transmission changes in both SI-GaAs crystals and DLCF/SI-GaAs structures. At further increasing the γ-irradiation dose, the variation of properties of both DLCF and SI-GaAs crystal influences on the transmission of DLCF/SI-GaAs system. At high γ-irradiation dose 1.4ṡ105 Gy, passivation of radiation defects in the SI-GaAs bulk by hydrogen diffused from DLCF leads to increasing the degradation resistance of the SI-GaAs crystals coated with DLCF as compared with the crystals without DLCF.

  12. Evolution of nitrogen structure in N-doped diamond crystal after high pressure and high temperature annealing treatment

    NASA Astrophysics Data System (ADS)

    Zheng, You-Jin; Huang, Guo-Feng; Li, Zhan-Chang; Zuo, Gui-Hong

    2014-11-01

    In this paper, we have reported an investigation on the evolution of nitrogen structures in diamond crystals which contain nitrogen donor atoms in the range of 1500 ppm-1600 ppm following an annealing treatment at a high pressure of about 6.5 GPa and high temperatures of 1920 K-2120 K. The annealing treatment was found to completely transform nitrogen atoms originally arranged in a single substitutional form (C-center), into a pair form (A-center), indicated from infrared (IR) spectra. The photoluminescence (PL) spectra revealed that a small fraction of nitrogen atoms remained in C-center form, while some nitrogen atoms in A-center form were further transformed into N3 and H3 center structures. In addition, PL spectra have revealed the existence of two newly observed nitrogen-related structures with zero phonon lines at 611 nm and 711 nm. All these findings above are very helpful in understanding the formation mechanism of natural diamond stones of the Ia-type, which contains nitrogen atoms in an aggregated form.

  13. The properties of photonic band gaps for three-dimensional plasma photonic crystals in a diamond structure

    SciTech Connect

    Zhang Haifeng; Liu Shaobin; Kong Xiangkun, Chenchen; Bian Borui

    2013-04-15

    In this paper, the properties of photonic band gaps (PBGs) for two types of three-dimensional plasma photonic crystals (PPCs) composed of isotropic dielectric and unmagnetized plasma with diamond lattices are theoretically investigated for electromagnetic waves based on a modified plane wave expansion method. The equations for type-1 structure are theoretically deduced, which depend on the diamond lattices realization (dielectric spheres immersed in plasma background). The influences of dielectric constant of dielectric, plasma collision frequency, filling factor, and plasma frequency on PBGs are investigated, respectively, and some corresponding physical explanations and the possible methods to realize the three-dimensional PPCs in experiments are also given. From the numerical results, it has been shown that not only the locations but also the gap/midgap ratios of the PBGs for two types of PPCs can be tuned by plasma frequency, filling factor, and the relative dielectric constant, respectively. However, the plasma collision frequency has no effect on the frequency ranges and gap/midgap ratios of the PBGs for two types of PPCs.

  14. Photonic Crystal Devices for Quantum and Nanoscale Photonics

    NASA Astrophysics Data System (ADS)

    Vuckovic, Jelena

    2005-03-01

    Photonic crystal structures can be built to operate in two opposite regimes: one is a suppression of photon states inside the photonic band gap, and the other is a large enhancement of the density of photon states. Both regimes are of consequence to a number of applications in nanoscale and nonlinear optics, as well as to photonic quantum information technologies. Our work on the employment of photonic crystals to build hardware of solid-state photonic quantum information systems, as well as to construct miniaturized optical devices will be reviewed in this talk. We have demonstrated sources of single photons on demand based on quantum dots in micropost microcavities that exhibit a large spontaneous emission rate enhancement (Purcell factor of five) together with a small multi-photon probability (2% compared to a Poisson-distributed source of the same intensity). We have also tested the indistinguishability of emitted single photons from such a source through a Hong-Ou-Mandel-type two-photon interference experiment, and found that consecutive photons exhibit a mean wave-packet overlap as large as 0.81, making this source useful in a variety of experiments in quantum optics and quantum information. The applications of such a device include secure quantum cryptography and linear optical quantum computation. We have also developed two-dimensional photonic crystal microcavities of finite depth with embedded quantum dots that exhibit large quality factors (˜3000) together with small mode volumes (˜0.5(λ/n)^3) and with a maximum field intensity in the high-index region, which is of importance for enhanced interaction with quantum dot excitons. We have performed spectroscopy on a single quantum dot coupled to such a cavity, and demonstrated a very strong modification of its radiative properties, as well as a single-photon generation on demand. A strong interaction between a quantum dot exciton and the field enabled by such a microcavity is of importance for

  15. Colour-causing defects and their related optoelectronic transitions in single crystal CVD diamond.

    PubMed

    Khan, R U A; Cann, B L; Martineau, P M; Samartseva, J; Freeth, J J P; Sibley, S J; Hartland, C B; Newton, M E; Dhillon, H K; Twitchen, D J

    2013-07-10

    Defects causing colour in nitrogen-doped chemical vapour-deposited (CVD) diamond can adversely affect the exceptional optical, electronic and spintronic properties of the material. Several techniques were used to study these defects, namely optical absorption spectroscopy, thermoluminescence (TL) and electron paramagnetic resonance (EPR). From our studies, the defects causing colour in nitrogen-doped CVD diamond are clearly not the same as those causing similar colour in natural diamonds. The brown colour arises due to a featureless absorption profile that decreases in intensity with increasing wavelength, and a broad feature at 360 nm (3.49 eV) that scales in intensity with it. Another prominent absorption band, centred at 520 nm (2.39 eV), is ascribed to the neutral nitrogen-vacancy-hydrogen defect. The defects responsible for the brown colour possess acceptor states that are 1.5 eV from the valence band (VB) edge. The brown colour is removed by heat treatment at 1600 ° C, whereupon new defects possessing shallow (<1 eV) trap states are generated.

  16. A diamond nanowire single-photon source.

    PubMed

    Babinec, Thomas M; Hausmann, Birgit J M; Khan, Mughees; Zhang, Yinan; Maze, Jeronimo R; Hemmer, Philip R; Loncar, Marko

    2010-03-01

    The development of a robust light source that emits one photon at a time will allow new technologies such as secure communication through quantum cryptography. Devices based on fluorescent dye molecules, quantum dots and carbon nanotubes have been demonstrated, but none has combined a high single-photon flux with stable, room-temperature operation. Luminescent centres in diamond have recently emerged as a stable alternative, and, in the case of nitrogen-vacancy centres, offer spin quantum bits with optical readout. However, these luminescent centres in bulk diamond crystals have the disadvantage of low photon out-coupling. Here, we demonstrate a single-photon source composed of a nitrogen-vacancy centre in a diamond nanowire, which produces ten times greater flux than bulk diamond devices, while using ten times less power. This result enables a new class of devices for photonic and quantum information processing based on nanostructured diamond, and could have a broader impact in nanoelectromechanical systems, sensing and scanning probe microscopy.

  17. Characterization of a synthetic single crystal diamond detector for dosimetry in spatially fractionated synchrotron x-ray fields.

    PubMed

    Livingstone, Jayde; Stevenson, Andrew W; Butler, Duncan J; Häusermann, Daniel; Adam, Jean-François

    2016-07-01

    Modern radiotherapy modalities often use small or nonstandard fields to ensure highly localized and precise dose delivery, challenging conventional clinical dosimetry protocols. The emergence of preclinical spatially fractionated synchrotron radiotherapies with high dose-rate, sub-millimetric parallel kilovoltage x-ray beams, has pushed clinical dosimetry to its limit. A commercially available synthetic single crystal diamond detector designed for small field dosimetry has been characterized to assess its potential as a dosimeter for synchrotron microbeam and minibeam radiotherapy. Experiments were carried out using a synthetic diamond detector on the imaging and medical beamline (IMBL) at the Australian Synchrotron. The energy dependence of the detector was characterized by cross-referencing with a calibrated ionization chamber in monoenergetic beams in the energy range 30-120 keV. The dose-rate dependence was measured in the range 1-700 Gy/s. Dosimetric quantities were measured in filtered white beams, with a weighted mean energy of 95 keV, in broadbeam and spatially fractionated geometries, and compared to reference dosimeters. The detector exhibits an energy dependence; however, beam quality correction factors (kQ) have been measured for energies in the range 30-120 keV. The kQ factor for the weighted mean energy of the IMBL radiotherapy spectrum, 95 keV, is 1.05 ± 0.09. The detector response is independent of dose-rate in the range 1-700 Gy/s. The percentage depth dose curves measured by the diamond detector were compared to ionization chambers and agreed to within 2%. Profile measurements of microbeam and minibeam arrays were performed. The beams are well resolved and the full width at halfmaximum agrees with the nominal width of the beams. The peak to valley dose ratio (PVDR) calculated from the profiles at various depths in water agrees within experimental error with PVDR calculations from Gafchromic film data. The synthetic diamond detector is now well

  18. Applicability check of ZnO crystals for device applications

    NASA Astrophysics Data System (ADS)

    Bhowmick, Mithun; Ullrich, Bruno; Ariza, David; Xi, Haowen

    2014-03-01

    There has always been vital interest in wide-band gap semiconductors for their applicability in short-wavelength photonic devices and in electronic devices operating in high frequency regime. Historically, ZnO was never favored as a potential material for the above applications primarily because of difficulty in growing it. This situation, however, has improved drastically in the past decade thereby renewing the attention on this material system. Hence, ZnO is being proposed for potential light emitting devices in the blue and UV regions of electromagnetic spectrum. ZnO single crystals are also being considered for high power transistors. In this work, we present investigations of optical properties of pure (99.99%) ZnO performing transmittance, reflectance, Raman, and photoluminescence measurements. The ZnO single crystals employed in this work, were obtained commercially. We present detailed analysis of the measured data through theoretical calculations. Our results identify the state-of-the-art application potential of commercially available ZnO, revealing its advantages and limitations when compared to similar materials such as GaN.

  19. Epitaxial growth of mosaic diamond: Mapping of stress and defects in crystal junction with a confocal Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shu, Guoyang; Dai, Bing; Ralchenko, V. G.; Khomich, A. A.; Ashkinazi, E. E.; Bolshakov, A. P.; Bokova-Sirosh, S. N.; Liu, Kang; Zhao, Jiwen; Han, Jiecai; Zhu, Jiaqi

    2017-04-01

    We studied defects and stress distributions in mosaic epitaxial diamond film using a confocal Raman spectroscopy, with a special attention to the junction area between the crystals. The mosaics was grown by microwave plasma CVD on closely arranged (1 0 0)-oriented HPHT type Ib substrates. The width of stress affected and defect enriched region around the junction show a tendency of extending with the film thickness, from ≈40 μm on the film-substrate interface to ≈250 μm in the layer 500 μm above the substrate, as found from the mosaics analysis in cross-section. The stress field around the junction demonstrates a complex pattern, with mixed domains of tensile and compressive stress, with maximum value of σ ≈ 0.6 GPa. A similar non-uniform pattern was observed for defect distribution as well. No sign of amorphous sp2 carbon in the junction zone was revealed.

  20. Diamond heteroepitaxial lateral overgrowth

    NASA Astrophysics Data System (ADS)

    Tang, Yung-Hsiu

    This dissertation describes improvements in the growth of single crystal diamond by microwave plasma-assisted chemical vapor deposition (CVD). Heteroepitaxial (001) diamond was grown on 1 cm. 2 a-plane sapphiresubstrates using an epitaxial (001) Ir thin-film as a buffer layer. Low-energy ion bombardment of the Ir layer, a process known as bias-enhanced nucleation, is a key step in achieving a high density of diamond nuclei. Bias conditions were optimized to form uniformly-high nucleation densities across the substrates, which led to well-coalesced diamond thin films after short growth times. Epitaxial lateral overgrowth (ELO) was used as a means of decreasing diamond internal stress by impeding the propagation of threading dislocations into the growing material. Its use in diamond growth requires adaptation to the aggressive chemical and thermal environment of the hydrogen plasma in a CVD reactor. Three ELO variants were developed. The most successful utilized a gold (Au) mask prepared by vacuum evaporation onto the surface of a thin heteroepitaxial diamond layer. The Au mask pattern, a series of parallel stripes on the micrometer scale, was produced by standard lift-off photolithography. When diamond overgrows the mask, dislocations are largely confined to the substrate. Differing degrees of confinement were studied by varying the stripe geometry and orientation. Significant improvement in diamond quality was found in the overgrown regions, as evidenced by reduction of the Raman scattering linewidth. The Au layer was found to remain intact during diamond overgrowth and did not chemically bond with the diamond surface. Besides impeding the propagation of threading dislocations, it was discovered that the thermally-induced stress in the CVD diamond was significantly reduced as a result of the ductile Au layer. Cracking and delamination of the diamond from the substrate was mostly eliminated. When diamond was grown to thicknesses above 0.1 mm it was found that

  1. Surface Damage Growth Mitigation on KDP/DKDP Optics Using Single-Crystal Diamond Micro-Machining

    SciTech Connect

    Hrubesh, L; Adams, J; Feit, M; Sell, W; Stanley, J; Miller, E; Thompson, S; Whitman, P; Hackel, R

    2003-11-12

    A process whereby laser-initiated surface damage on KDP/DKDP optics is removed by spot micro-machining using a high-speed drill and a single-crystal diamond bit, is shown to mitigate damage growth for subsequent laser shots. Our tests show that machined dimples on both surfaces of an AR coated doubler (KDP) crystal are stable, for 526nm, {approx} 3.2ns pulses at {approx} 12J/cm{sup 2} fluences. Other tests also confirmed that the machined dimples on both surfaces of an AR coated tripler (DKDP) crystal are stable, for 351nm, {approx} 3ns pulses at {approx} 8J/cm{sup 2}. We have demonstrated successful mitigation of laser-initiated surface damage sites as large as 0.14mm diameter on DKDP, for up to 1000 shots at 351nm, 13J/cm{sup 2}, {approx} 11ns pulse length, and up to 10 shots at 351nm, 8J/cm{sup 2}, 3ns. Details of the method are presented, including estimates for the heat generated during micro-machining and a plan to implement this method to treat pre-initiated or retrieved-from-service, large-scale optics for use in high-peak-power laser applications.

  2. Making Diamond in the Laboratory

    ERIC Educational Resources Information Center

    Strong, Herbert

    1975-01-01

    Discusses the graphite to diamond transformation and a phase diagram for carbon. Describes high temperature-higher pressure experimental apparatus and growth of diamonds from seed crystals. Reviews properties of the diamond which suggest uses for the synthetic product. Illustrations with text. (GH)

  3. Making Diamond in the Laboratory

    ERIC Educational Resources Information Center

    Strong, Herbert

    1975-01-01

    Discusses the graphite to diamond transformation and a phase diagram for carbon. Describes high temperature-higher pressure experimental apparatus and growth of diamonds from seed crystals. Reviews properties of the diamond which suggest uses for the synthetic product. Illustrations with text. (GH)

  4. Conical diffraction thin crystal device on full-scene images

    NASA Astrophysics Data System (ADS)

    Álvarez, Ignacio; Enguita, José M.; Menéndez, Begoña H.; García, Ricardo; Sirat, Gabriel Y.

    2015-12-01

    Conical diffraction is an interesting phenomenon that occurs in biaxial crystals. Although the existence of this conical diffraction has been understood for a very long time, it was not until recently that the first applications started to appear, and most of them focus on the manipulation of laser beams. However, the potential use of conical diffraction for all-optical processing in full-scene imaging devices was never addressed. In this article we present a prototype of a general-purpose optical device in order to investigate the applicability of conical diffraction to full-scene imaging. We also show that conical diffraction can obtain the derivative of an image with high resolution. This is the first proof of the theoretical capabilities of conical diffraction in full scenes, and it is just one of its many applications in the field of machine vision.

  5. Process of negative-muon-induced formation of an ionized acceptor center (μA)- in crystals with the diamond structure

    NASA Astrophysics Data System (ADS)

    Belousov, Yu. M.

    2016-12-01

    The formation of an ionized acceptor center by a negative muon in crystals with the diamond structure is considered. The negative muon entering a target is captured by a nucleus, forming a muonic atom μA coupled to a lattice. The appearing radiation-induced defect has a significant electric dipole moment because of the violation of the local symmetry of the lattice and changes the phonon spectrum of the crystal. The ionized acceptor center is formed owing to the capture of an electron interacting with the electric dipole moment of the defect and with the radiation of a deformation-induced local-mode phonon. Upper and lower bounds of the formation rate of the ionized acceptor center in diamond, silicon, and germanium crystals are estimated. It is shown that the kinetics of the formation of the acceptor center should be taken into account when processing μSR experimental data.

  6. Process of negative-muon-induced formation of an ionized acceptor center ({sub μ}A){sup –} in crystals with the diamond structure

    SciTech Connect

    Belousov, Yu. M.

    2016-12-15

    The formation of an ionized acceptor center by a negative muon in crystals with the diamond structure is considered. The negative muon entering a target is captured by a nucleus, forming a muonic atom {sub μ}A coupled to a lattice. The appearing radiation-induced defect has a significant electric dipole moment because of the violation of the local symmetry of the lattice and changes the phonon spectrum of the crystal. The ionized acceptor center is formed owing to the capture of an electron interacting with the electric dipole moment of the defect and with the radiation of a deformation-induced local-mode phonon. Upper and lower bounds of the formation rate of the ionized acceptor center in diamond, silicon, and germanium crystals are estimated. It is shown that the kinetics of the formation of the acceptor center should be taken into account when processing μSR experimental data.

  7. Exploring Novel Crystals and Designs for Acousto-Optic Devices

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Jonathan B.

    Acousto-optic devices are a versatile technology that are driven electronically to precisely and rapidly control the intensity, frequency, and propagation direction of a laser beam. Applications include acousto-optic scanners, filters, mode lockers, and modulators. Despite the popularity of acousto-optic devices, there currently is no UV transparent device that can satisfy the requirements of the atomic clock and quantum computing communities. In this thesis, I describe my experimental efforts for discovering a new UV transparent, acousto-optic crystal that can meet the experimental requirements. I also present my graphical representations for locating practical and efficient acousto-optic designs in a given medium. The first part of this thesis describes how to measure the elastic-stiffness and photoelastic coefficients of a given crystal. The elastic-stiffness coefficients are essential for designing acousto-optic devices because they determine the velocity, diffraction, and polarization of acoustic waves in a given medium. I used both resonant ultrasound spectroscopy and a modified version of Schaefer-Bergman diffraction to measure elastic coefficients. I discuss in detail the strengths, differences, and similarities of the two experiments. The photoelastic coefficients are necessary for determining the diffraction efficiency of a given acousto-optic geometry. Similar to the elastic coefficients, I employ a modified version of the Schaefer-Bergmann experiment to measure the photoelastic coefficients. I corroborate the measured results with the well established Dixon experiment. The second part of this thesis describes four different graphical representations that help locate practical and efficient acousto-optic designs. I describe in detail each algorithm and how to interpret the calculated results. Several examples are provided for commonly used acosuto-optic materials. The thesis concludes by describing the design and performance of an acousto-optic frequency

  8. Thermally switchable flexible liquid crystal devices in prepolymer-doped cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Fuh, A. Y.-G.; Li, J.-H.; Cheng, K.-T.

    2010-10-01

    This work describes an approach for fabricating thermally switchable flexible liquid crystal devices in prepolymer-doped cholesteric liquid crystals (CLCs). The roughness of the UV-cured polymer film eliminates the stability of planar CLCs, allowing the textures in the UV-cured regions to be changed from planar to focal conic. Impurities associated with doping with prepolymers cause the clearing temperature of LCs in the UV-cured regions to differ from that in the uncured regions as the prepolymers are polymerized. Therefore, the textures in these two regions can be switched by controlling the temperature. Thermally switchable flexible LC devices, such as optically addressed smart cards, light valves, and others, can be realized using this approach.

  9. 75 FR 63856 - In the Matter of Certain Liquid Crystal Display Devices, Including Monitors, Televisions, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... COMMISSION In the Matter of Certain Liquid Crystal Display Devices, Including Monitors, Televisions, and... sale for importation, and the sale within the United States after importation of certain liquid crystal... importation of certain liquid crystal display devices, including monitors, televisions, and modules, and...

  10. Gold nanoparticle-ultrananocrystalline diamond hybrid structured materials for high-performance optoelectronic device applications

    NASA Astrophysics Data System (ADS)

    Sankaran, Kamatchi Jothiramalingam; Kunuku, Srinivasu; Sundaravel, Balakrishnan; Hsieh, Ping-Yen; Chen, Huang-Chin; Leou, Keh-Chyang; Tai, Nyan-Hwa; Lin, I.-Nan

    2015-02-01

    Hybridization of gold nanoparticles in the ultrananocrystalline diamond materials improves the electrical conductivity of the materials to a high level of 230 (Ω cm)-1 with a sheet carrier concentration of 8.9 × 1020 cm-2. These hybrid materials show enhanced electron field emission (EFE) properties, viz. a low turn-on field of 2.1 V μm-1 with a high EFE current density of 5.3 mA cm-2 (at an applied field of 4.9 V μm-1) and the life-time stability up to a period of 372 min. The fabrication of these hybrid materials with high conductivity and superior EFE behaviors is a direct and simple process which opens new prospects in flat panel displays and high brightness electron sources.Hybridization of gold nanoparticles in the ultrananocrystalline diamond materials improves the electrical conductivity of the materials to a high level of 230 (Ω cm)-1 with a sheet carrier concentration of 8.9 × 1020 cm-2. These hybrid materials show enhanced electron field emission (EFE) properties, viz. a low turn-on field of 2.1 V μm-1 with a high EFE current density of 5.3 mA cm-2 (at an applied field of 4.9 V μm-1) and the life-time stability up to a period of 372 min. The fabrication of these hybrid materials with high conductivity and superior EFE behaviors is a direct and simple process which opens new prospects in flat panel displays and high brightness electron sources. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07030e

  11. Liquid crystal devices based on photoalignment and photopatterning materials

    NASA Astrophysics Data System (ADS)

    Chigrinov, Vladimir

    2014-02-01

    Liquid crystal (LC) display and photonics devices based on photo-alignment and photo-patterning LC cells are developed. A fast switchable grating based on ferroelectric liquid crystals and orthogonal planar alignment by means of photo alignments. Both 1D and 2D gratings have been constructed. The proposed diffracting element provides fast response time of around 20 μs, contrast of 7000:1 and high diffraction efficiency, at the electric field of 6V/μm. A switchable LC Fresnel zone lens was also developed with the efficiency of ~42% that can be further improved, and the switching time for the 3 μm thick cell is ~6.7 ms which is relatively fast in comparison of existing devices. Thus, because of the photoalignment technology the fabrication of Fresnel lens became considerably simpler than others. A thin high spatial resolution, photo-patterned micropolarizer array for complementary metal-oxide-semiconductor (CMOS) image sensors was implemented for the complete optical visualization of so called "invisible" objects, which are completely transparent (reflective) and colorless. Four Stokes parameters, which fully characterized the reflected light beam can be simultaneously detected using the array of photo-patterned polarizers on CMOS sensor plate. The cheap, high resolution photo-patterned LC matrix sensor was developed to be able successfully compete with the expensive and low reliable wire grid polarizer patterned arrays currently used for the purpose.

  12. Surface characterization and orientation interaction between diamond- like carbon layer structure and dimeric liquid crystals

    NASA Astrophysics Data System (ADS)

    Naradikian, H.; Petrov, M.; Katranchev, B.; Milenov, T.; Tinchev, S.

    2017-01-01

    Diamond-like carbon (DLC) and amorphous carbon films are very promising type of semiconductor materials. Depending on the hybridization sp2/sp3 ratio, the material’s band gap varies between 0.8 and 3 eV. Moreover carbon films possess different interesting for practice properties: comparable to the Silicon, Diamond like structure has 22-time better thermal conductivity etc. Here we present one type of implementation of such type nanostructure. That is one attempt for orientation of dimeric LC by using of pre-deposited DLC layer with different ratio of sp2/sp3 hybridized carbon content. It could be expected a pronounced π1-π2interaction between s and p orbital levels on the surface and the dimeric ring of LC. We present comparison of surface anchoring strengths of both orientation inter-surfaces DLC/dimeric LC and single wall carbon nanotubes (SWCNT)/dimeric LC. The mechanism of interaction of dimeric LC and activated surfaces with DLC or SWCNT will be discussed. In both cases we have π-π interaction, which in combination with hydrogen bonding, typical for the dimeric LCs, influence the LC alignment. The Raman spectroscopy data evidenced the presence of charge transfer between contacting hexagonal rings of DLC and the C = O groups of the LC molecules.

  13. Chiral multichromic single crystals for optical devices (LDRD 99406).

    SciTech Connect

    Kemp, Richard Alan; Felix, Ana M. (University of New Mexico, Albuquerque, NM)

    2006-12-01

    This report summarizes our findings during the study of a novel system that yields multi-colored materials as products. This system is quite unusual as it leads to multi-chromic behavior in single crystals, where one would expect that only a single color would exist. We have speculated that these novel solids might play a role in materials applications such as non-linear optics, liquid crystal displays, piezoelectric devices, and other similar applications. The system examined consisted of a main-group alkyl compound (a p block element such as gallium or aluminum) complexed with various organic di-imines. The di-imines had substituents of two types--either alkyl or aromatic groups attached to the nitrogen atoms. We observed that single crystals, characterized by X-ray crystallography, were obtained in most cases. Our research during January-July, 2006, was geared towards understanding the factors leading to the multi-chromic nature of the complexes. The main possibilities put forth initially considered (a) the chiral nature of the main group metal, (b) possible reduction of the metal to a lower-valent, radical state, (c) the nature of the ligand(s) attached to the main group metal, and (d) possible degradation products of the ligand leading to highly-colored products. The work carried out indicates that the most likely explanation considered involves degradation of the aromatic ligands (a combination of (c) and (d)), as the experiments performed can clearly rule out (a) and (b).

  14. Photonic crystal cavities for spectrally-selective optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Yang, Hongjun

    Photonic crystal (PC) structures exhibit unconventional dispersion and refractive properties making possible hitherto not realizable optical and optoelectronic devices with high spectral selectivity. Functional PC devices (e.g., optical filters, reflectors, and photo detectors and light emitters) on both Si and III-V semiconductor material systems were fabricated via E-Beam lithography (EBL). The device layer can be further transferred onto foreign substrates such as glass or plastic (PET), using a low-cost "wet nanomembrane transfer technique" developed in this study. The broadband membrane reflectors (MR) based on Fano resonances in patterned silicon nanomembranes have been demonstrated. Resonance control of the reflectors was realized either by partially removing buried oxide layer underneath the device layer, or by controlled SiO2 film deposition on the top of the devices. Both blue- and red-shifts were demonstrated with a turning range of 50 nm for a center wavelength at 1550 nm. These results demonstrate practical post-process means for Fano resonance engineering for both narrow band filters and ultra-compact broadband reflectors. An optically pumped resonance cavity light emitting device (RCLED) with Si based membrane reflectors (MR) has been demonstrated experimentally. The stimulated cavity mode at 1545 nm was observed at room temperature with a pulsed green pumping laser light source. We observed significant spectral narrowing in RCLEDs with linewidth reduced from 50 nm down to <4 nm, owing to the presence of top and bottom MR reflectors. The measured photoluminescence efficiency also increased by a factor of 100 in RCLEDs, as compared to the value measured from as-grown InGaAsP QW structures on InP substrate. The mode shifts were also investigated over different temperatures and different pumping power levels. An InGaAsP QW LED array device was also fabricated and transferred onto flexible PET substrate. The devices showed very good electrical and

  15. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2001-01-01

    An overview of the industrial diamond industry is provided. More than 90 percent of the industrial diamond consumed in the U.S. and the rest of the world is manufactured diamond. Ireland, Japan, Russia, and the U.S. produce 75 percent of the global industrial diamond output. In 2000, the U.S. was the largest market for industrial diamond. Industrial diamond applications, prices for industrial diamonds, imports and exports of industrial diamonds, the National Defense Stockpile of industrial diamonds, and the outlook for the industrial diamond market are discussed.

  16. Structure and properties of diamond and diamond-like films

    SciTech Connect

    Clausing, R.E.

    1993-01-01

    This section is broken into four parts: (1) introduction, (2) natural IIa diamond, (3) importance of structure and composition, and (4) control of structure and properties. Conclusions of this discussion are that properties of chemical vapor deposited diamond films can compare favorably with natural diamond, that properties are anisotropic and are a strong function of structure and crystal perfection, that crystal perfection and morphology are functions of growth conditions and can be controlled, and that the manipulation of texture and thereby surface morphology and internal crystal perfection is an important step in optimizing chemically deposited diamond films for applications.

  17. Growth of bulk single crystals of organic materials for nonlinear optical devices - An overview

    NASA Technical Reports Server (NTRS)

    Penn, Benjamin G.; Cardelino, Beatriz H.; Moore, Craig E.; Shields, Angela W.; Frazier, D. O.

    1991-01-01

    Highly perfect single crystals of nonlinear optical organic materials are required for use in optical devices. An overview of the bulk crystal growth of these materials by melt, vapor, and solution processes is presented. Additionally, methods that may be used to purify starting materials, detect impurities at low levels, screen materials for crystal growth, and process grown crystals are discussed.

  18. Growth of bulk single crystals of organic materials for nonlinear optical devices - An overview

    NASA Technical Reports Server (NTRS)

    Penn, Benjamin G.; Cardelino, Beatriz H.; Moore, Craig E.; Shields, Angela W.; Frazier, D. O.

    1991-01-01

    Highly perfect single crystals of nonlinear optical organic materials are required for use in optical devices. An overview of the bulk crystal growth of these materials by melt, vapor, and solution processes is presented. Additionally, methods that may be used to purify starting materials, detect impurities at low levels, screen materials for crystal growth, and process grown crystals are discussed.

  19. Bent Diamond Crystals and Multilayer Based Optics at the new 5-Station Protein Crystallography Beamline 'Cassiopeia' at MAX-lab

    SciTech Connect

    Mammen, Christian B.; Als-Nielsen, Jens; Ursby, Thomas; Thunnissen, Marjolein

    2004-05-12

    A new 5-station beamline for protein crystallography is being commissioned at the Swedish synchrotron light source MAX-II at Lund University. Of the 2K/{gamma} = 14 mrad horizontal wiggler fan, the central 2 mrad are used and split in three parts. The central 1 mrad will be used for a station optimized for MAD experiments and on each side of the central fan, from 0.5 mrad to 1 mrad, there are two fixed energy stations using different energies of the same part of the beam. These, in total five stations, can be used simultaneously and independently for diffraction data collection. The two upstream monochromators for the side stations are meridionally bent asymmetric diamond(111) crystals in Laue transmission geometry. The monochromators for the downstream side stations are bent Ge(111) crystals in asymmetric Bragg reflection geometry. Curved multilayer mirrors inserted in the monochromatic beams provide focusing in the vertical plane. The first side station is under commissioning, and a preliminary test protein data set has been collected.

  20. Diamond Smoothing Tools

    NASA Technical Reports Server (NTRS)

    Voronov, Oleg

    2007-01-01

    Diamond smoothing tools have been proposed for use in conjunction with diamond cutting tools that are used in many finish-machining operations. Diamond machining (including finishing) is often used, for example, in fabrication of precise metal mirrors. A diamond smoothing tool according to the proposal would have a smooth spherical surface. For a given finish machining operation, the smoothing tool would be mounted next to the cutting tool. The smoothing tool would slide on the machined surface left behind by the cutting tool, plastically deforming the surface material and thereby reducing the roughness of the surface, closing microcracks and otherwise generally reducing or eliminating microscopic surface and subsurface defects, and increasing the microhardness of the surface layer. It has been estimated that if smoothing tools of this type were used in conjunction with cutting tools on sufficiently precise lathes, it would be possible to reduce the roughness of machined surfaces to as little as 3 nm. A tool according to the proposal would consist of a smoothing insert in a metal holder. The smoothing insert would be made from a diamond/metal functionally graded composite rod preform, which, in turn, would be made by sintering together a bulk single-crystal or polycrystalline diamond, a diamond powder, and a metallic alloy at high pressure. To form the spherical smoothing tip, the diamond end of the preform would be subjected to flat grinding, conical grinding, spherical grinding using diamond wheels, and finally spherical polishing and/or buffing using diamond powders. If the diamond were a single crystal, then it would be crystallographically oriented, relative to the machining motion, to minimize its wear and maximize its hardness. Spherically polished diamonds could also be useful for purposes other than smoothing in finish machining: They would likely also be suitable for use as heat-resistant, wear-resistant, unlubricated sliding-fit bearing inserts.

  1. Single crystal artificial diamond detectors for VUV and soft X-rays measurements on JET thermonuclear fusion plasma

    NASA Astrophysics Data System (ADS)

    Angelone, M.; Pillon, M.; Marinelli, Marco; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.; Coffey, I.; Murari, A.; Tartoni, N.; JET-EFDA contributors

    2010-11-01

    Diamond appears to be a promising material for VUV and soft X-ray radiation detection. Its wide band-gap (5.5 eV) results in a very low leakage current (it can operate above room temperature) and its electronic properties (high carrier mobility) allow a fast time response. More importantly, it is optimally suited for harsh environment applications, like those in the JET Tokamak located at the Culham laboratory (UK). Its extreme radiation hardness is well known and another interesting feature, again related to the wide band-gap, is its selective sensitivity to radiation with wavelengths shorter than 225 nm (visible-blind detectors).We report on the performances of two photodetectors based on Chemical Vapor Deposition (CVD) single crystal diamonds, one optimized for extreme UV detection, the other for soft X-ray radiation detection in the 0.8-8 keV range. These detectors have been fabricated at Roma "Tor Vergata" University using a p-type/intrinsic/metal configuration and they behave like photodiodes allowing operation with no external applied voltage. They have been installed on JET inside a vacuum chamber with a direct horizontal view of JET plasma without any wavelength selection. Their low thickness, low sensitivity to gamma ray and the unbiased operation mode make both detectors ideal for a Tokamak environment. The measurements routinely performed at JET show a low intrinsic dark current (˜0.01 pA) and very high signal to noise ratio (50 dB). Both detectors show a fast response and their signals are acquired using an electronic chain and ADC able to operate at 200 kHz, providing very interesting results for MHD and Edge Localized Modes (ELMs) instability studies on fusion plasmas.

  2. Thermal Conductivity of Diamond Composites

    PubMed Central

    Kidalov, Sergey V.; Shakhov, Fedor M.

    2009-01-01

    A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m·K) and 400 W/(m·K), respectively. Significantly, the thermal expansion coefficient of metals differs markedly from those of the materials employed in semiconductor electronics (mostly silicon); one should add here the low electrical resistivity metals possess. By contrast, natural single-crystal diamond is known to feature the highest thermal conductivity of all the bulk materials studied thus far, as high as 2,200 W/(m·K). Needless to say, it cannot be applied in heat removal technology because of high cost. Recently, SiC- and AlN-based ceramics have started enjoying wide use as heat sink materials; the thermal conductivity of such composites, however, is inferior to that of metals by nearly a factor two. This prompts a challenging scientific problem to develop diamond-based composites with thermal characteristics superior to those of aluminum and copper, adjustable thermal expansion coefficient, low electrical conductivity and a moderate cost, below that of the natural single-crystal diamond. The present review addresses this problem and appraises the results reached by now in studying the possibility of developing composites in diamond-containing systems with a view of obtaining materials with a high thermal conductivity.

  3. Charge multiplication effect in thin diamond films

    SciTech Connect

    Skukan, N. Grilj, V.; Sudić, I.; Jakšić, M.; Pomorski, M.; Kada, W.; Kambayashi, Y.; Andoh, Y.; Makino, T.; Onoda, S.; Sato, S.; Ohshima, T.; Kamiya, T.

    2016-07-25

    Herein, we report on the enhanced sensitivity for the detection of charged particles in single crystal chemical vapour deposition (scCVD) diamond radiation detectors. The experimental results demonstrate charge multiplication in thin planar diamond membrane detectors, upon impact of 18 MeV O ions, under high electric field conditions. Avalanche multiplication is widely exploited in devices such as avalanche photo diodes, but has never before been reproducibly observed in intrinsic CVD diamond. Because enhanced sensitivity for charged particle detection is obtained for short charge drift lengths without dark counts, this effect could be further exploited in the development of sensors based on avalanche multiplication and radiation detectors with extreme radiation hardness.

  4. The first prototype diamond monochromator at the Institut Laue-Langevin

    NASA Astrophysics Data System (ADS)

    Courtois, P.; Fernandez-Diaz, M. T.; Nenert, G.; Andersen, K. H.; Freund, A. K.; Gsell, S.; Fischer, M.; Schreck, M.; Link, P.; Meven, M.

    2014-07-01

    We report on the performance of the first diamond neutron monochromator built at the ILL. It has been designed for the hot neutron diffractometer D9 with the aim of improving significantly the instrument performance in particular for short wavelengths in the 0.3-0.9 Å wavelength range. Diamond crystal plates with dimensions of 1.5 x 1.5 x 0.18 cm3 an average mosaic spread of 0.15° have been synthesized at the University of Augsburg. They exhibited excellent neutron diffraction properties when examined on a neutron double-crystal test setup. Sufficiently thick diamond elements with a controlled mosaic spread of 0.25° have been obtained by stacking several of these crystals. First tests runs carried out at the ILL confirmed the predicted high reflectivity of the diamond stacks. The diamond prototype monochromator uses the (220) reflection in transmission geometry replacing the Cu (220) monochromator on D9 that has the same d-spacing. The final performance studies on D9 showed that the diamond device did not perform better than the original copper crystal. This unexpected result could be explained by significant optical aberrations caused by non- uniformities of both the angular and spatial mosaic distribution in the individual diamond crystals, as revealed by a detailed characterisation study using high-energy X-ray diffraction.

  5. Single photon emission from diamond nanocrystals in an opal photonic crystal.

    PubMed

    Stewart, L A; Zhai, Y; Dawes, J M; Steel, M J; Rabeau, J R; Withford, M J

    2009-09-28

    We present the first optical measurement of a single nitrogen-vacancy (NV) center in a three-dimensional photonic crystal. The photonic crystal, fabricated by self-assembly of polystyrene microspheres, exhibits a photonic stopband that overlaps the NV photoluminescence spectrum. A modified emission spectrum and photon antibunching were measured from the NV centers. Time-resolved fluorescence measurements revealed a 30% increase in the source lifetime. Encapsulation of single NV centers in a three-dimensional photonic crystal is a step towards controlling emission properties of a single photon source.

  6. Surface properties and blood compatibility of commercially available diamond-like carbon coatings for cardiovascular devices.

    PubMed

    Fedel, Mariangela; Motta, Antonella; Maniglio, Devid; Migliaresi, Claudio

    2009-07-01

    The aim of this study was to determine the relationships between the surface properties and blood compatibility of in-use diamond-like carbon (DLC) coatings for cardiovascular components. Commercially available DLC films were characterized with respect to surface topography and wettability, protein adsorption from human plasma, and platelets adhesion/activation. Fibrinogen (Fng) and human serum albumin (HSA) adsorbed onto the sample surfaces were in particular quantified as two of the main proteins involved in blood compatibility. A low tendency of platelets to spread and form aggregates onto the DLC-coated surfaces has been described and related to a low Fng-to-HSA adsorption ratio. This study provides evidence that the rapid and tenacious binding of albumin molecules to DLC materials tends to passivate the surfaces and to inhibit Fng adsorption, thus imparting thromboresistance to the carbon coatings by rendering the surfaces less adhesive and activating for platelets. Albumin preferential adsorption was ascribed to high chemical heterogeneity of the DLC sample surfaces. The DLC films tested present a favorable behavior as regards blood compatibility with respect to platelet thrombus formation by reason of their surface properties. (c) 2008 Wiley Periodicals, Inc.

  7. Visible scintillation photodetector device incorporating chalcopyrite semiconductor crystals

    DOEpatents

    Stowe, Ashley C.; Burger, Arnold

    2017-04-04

    A photodetector device, including: a scintillator material operable for receiving incident radiation and emitting photons in response; a photodetector material coupled to the scintillator material operable for receiving the photons emitted by the scintillator material and generating a current in response, wherein the photodetector material includes a chalcopyrite semiconductor crystal; and a circuit coupled to the photodetector material operable for characterizing the incident radiation based on the current generated by the photodetector material. Optionally, the scintillator material includes a gamma scintillator material and the incident radiation received includes gamma rays. Optionally, the photodetector material is further operable for receiving thermal neutrons and generating a current in response. The circuit is further operable for characterizing the thermal neutrons based on the current generated by the photodetector material.

  8. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Lagowski, J.

    1981-01-01

    Experimental and theoretical efforts in the development of crystal growth approaches, effective techniques for electronic characterization on a macro and microscale, and in the discovery of phenomena and processes relevant to GaAs device applications are reported. The growth of electron trap-free bulk GaAS with extremely low density of dislocations is described. In electroepitaxy, growth configuration which eliminates the substrate back-contact was developed. This configuration can be extended to the simultaneous growth on many substrates with a thin solution layer sandwiched between any two of them. The significant reduction of Joule heating effects in the configuration made it possible to realize the in situ measurement of the layer thickness and the growth velocity. Utilizing the advantages of electroepitaxy in achieving abrupt acceleration (or deceleration) of the growth it was shown that recombination centers are formed as a result of growth acceleration.

  9. Biokinetics and tissue response to ultrananocrystalline diamond nanoparticles employed as coating for biomedical devices.

    PubMed

    Tasat, Deborah R; Bruno, Marcos E; Domingo, Mariela; Gurman, Pablo; Auciello, Orlando; Paparella, María L; Evelson, Pablo; Guglielmotti, María B; Olmedo, Daniel G

    2016-09-12

    Although Ultrananocrystalline diamond (UNCD) has been proposed as a coating material for titanium biomedical implants, the biological effects and toxicity of UNCD particles that could eventually detach have not been studied to date. The biokinetics and biological effects of UNCD compared to titanium dioxide (TiO2 ) nanoparticles was evaluated in vivo using Wistar rats (n = 30) i.p. injected with TiO2 , UNCD or saline solution. After 6 months, blood, lung, liver, and kidney samples were histologically analyzed. Oxidative damage by membrane lipidperoxidation (thiobarbituric acid reactive substances-TBARS), generation of reactive oxygen species (superoxide anion- O2-), and antioxidant enzymes (superoxide dismutase-SOD, catalase-CAT) was evaluated in lung and liver. Histologic observation showed agglomerates of TiO2 or UNCD in the parenchyma of the studied organs, though there were fewer UNCD than TiO2 deposits. In addition, TiO2 caused areas compatibles with foci of necrosis in the liver and renal hyaline cylinders. Regarding UNCD, no membrane damage (TBARS) or mobilization of enzymatic antioxidants was observed either in lung or liver samples. No variations in O2- generation were observed in lung (Co: 35.1 ± 4.02 vs. UNCD: 48 ± 9.1, p > 0.05). Conversely, TiO2 exposure caused production of O2- in alveolar macrophages and consumption of catalase (p < 0.05). The studied parameters suggest that UNCD caused neither biochemical nor histological alterations, and therefore may prove useful as a surface coating for biomedical implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  10. Switchable Photonic Crystals Using One-Dimensional Confined Liquid Crystals for Photonic Device Application.

    PubMed

    Ryu, Seong Ho; Gim, Min-Jun; Lee, Wonsuk; Choi, Suk-Won; Yoon, Dong Ki

    2017-01-25

    Photonic crystals (PCs) have recently attracted considerable attention, with much effort devoted to photonic bandgap (PBG) control for varying the reflected color. Here, fabrication of a modulated one-dimensional (1D) anodic aluminum oxide (AAO) PC with a periodic porous structure is reported. The PBG of the fabricated PC can be reversibly changed by switching the ultraviolet (UV) light on/off. The AAO nanopores contain a mixture of photoresponsive liquid crystals (LCs) with irradiation-activated cis/trans photoisomerizable azobenzene. The resultant mixture of LCs in the porous AAO film exhibits a reversible PBG, depending on the cis/trans configuration of azobenzene molecules. The PBG switching is reliable over many cycles, suggesting that the fabricated device can be used in optical and photonic applications such as light modulators, smart windows, and sensors.

  11. Topics in Nanophotonic Devices for Nitrogen-Vacancy Color Centers in Diamond

    ERIC Educational Resources Information Center

    Babinec, Thomas Michael

    2012-01-01

    Recently, developments in novel and high-purity materials allow for the presence of a single, solitary crystalline defect to define the electronic, magnetic, and optical functionality of a device. The discrete nature of the active dopant, whose properties are defined by a quantum mechanical description of its structure, enables radically new…

  12. Topics in Nanophotonic Devices for Nitrogen-Vacancy Color Centers in Diamond

    ERIC Educational Resources Information Center

    Babinec, Thomas Michael

    2012-01-01

    Recently, developments in novel and high-purity materials allow for the presence of a single, solitary crystalline defect to define the electronic, magnetic, and optical functionality of a device. The discrete nature of the active dopant, whose properties are defined by a quantum mechanical description of its structure, enables radically new…

  13. Liquid crystal devices especially for use in liquid crystal point diffraction interferometer systems

    NASA Technical Reports Server (NTRS)

    Marshall, Kenneth L. (Inventor)

    2009-01-01

    Liquid crystal point diffraction interferometer (LCPDI) systems that can provide real-time, phase-shifting interferograms that are useful in the characterization of static optical properties (wavefront aberrations, lensing, or wedge) in optical elements or dynamic, time-resolved events (temperature fluctuations and gradients, motion) in physical systems use improved LCPDI cells that employ a "structured" substrate or substrates in which the structural features are produced by thin film deposition or photo resist processing to provide a diffractive element that is an integral part of the cell substrate(s). The LC material used in the device may be doped with a "contrast-compensated" mixture of positive and negative dichroic dyes.

  14. Liquid crystal devices especially for use in liquid crystal point diffraction interferometer systems

    DOEpatents

    Marshall, Kenneth L [Rochester, NY

    2009-02-17

    Liquid crystal point diffraction interferometer (LCPDI) systems that can provide real-time, phase-shifting interferograms that are useful in the characterization of static optical properties (wavefront aberrations, lensing, or wedge) in optical elements or dynamic, time-resolved events (temperature fluctuations and gradients, motion) in physical systems use improved LCPDI cells that employ a "structured" substrate or substrates in which the structural features are produced by thin film deposition or photo resist processing to provide a diffractive element that is an integral part of the cell substrate(s). The LC material used in the device may be doped with a "contrast-compensated" mixture of positive and negative dichroic dyes.

  15. Optical and Acoustic Device Applications of Ferroelastic Crystals

    NASA Astrophysics Data System (ADS)

    Meeks, Steven Wayne

    This dissertation presents the discovery of a means of creating uniformly periodic domain gratings in a ferroelastic crystal of neodymium pentaphosphate (NPP). The uniform and non-uniform domain structures which can be created in NPP have the potential applications as tunable active gratings for lasers, tunable diffraction gratings, tunable Bragg reflection gratings, tunable acoustic filters, optical modulators, and optical domain wall memories. The interaction of optical and acoustic waves with ferroelastic domain walls in NPP is presented in detail. Acoustic amplitude reflection coefficients from a single domain wall in NPP are much larger than other ferroelastic-ferroelectrics such as gadolinium molybdate (GMO). Domain walls of NPP are used to make two demonstration acoustic devices: a tunable comb filter and a tunable delay line. The tuning process is accomplished by moving the position of the reflecting surface (the domain wall). A theory of the reflection of optical waves from NPP domain walls is discussed. The optical reflection is due to a change in the polarization of the wave, and not a change in the index, as the wave crosses the domain wall. Theoretical optical power reflection coefficients show good agreement with the experimentally measured values. The largest optical reflection coefficient of a single domain wall is at a critical angle and is 2.2% per domain wall. Techniques of injecting periodic and aperiodic domain walls into NPP are presented. The nucleation process of the uniformly periodic domain gratings in NPP is described in terms of a newly-discovered domain structure, namely the ferroelastic bubble. A ferroelastic bubble is the elastic analogue to the well-known magnetic bubble. The period of the uniformly periodic domain grating is tunable from 100 to 0.5 microns and the grating period may be tuned relatively rapidly. The Bragg efficiency of these tunable gratings is 77% for an uncoated crystal. Several demonstration devices which use

  16. Toward high-throughput screening of NAD(P)-dependent oxidoreductases using boron-doped diamond microelectrodes and microfluidic devices.

    PubMed

    Oyobiki, Ryo; Kato, Taisuke; Katayama, Michinobu; Sugitani, Ai; Watanabe, Takeshi; Einaga, Yasuaki; Matsumoto, Yoshinori; Horisawa, Kenichi; Doi, Nobuhide

    2014-10-07

    Although oxidoreductases are widely used in many applications, such as biosensors and biofuel cells, improvements in the function of existing oxidoreductases or the discovery of novel oxidoreductases with greater activities is desired. To increase the activity of oxidoreductases by directed evolution, a powerful screening technique for oxidoreductases is required. In this study, we demonstrate the utility of boron-doped diamond (BDD) microelectrodes for quantitative and potentially high-throughput measurement of the activity of NAD(P)-dependent oxidoreductases. We first confirmed that BDD microelectrodes can quantify the activity of low concentrations (10-100 pM) of glucose-6-phosphate dehydrogenase and alcohol dehydrogenase with a measuring time of 1 ms per sample. In addition, we found that poisoning of BDD microelectrodes can be repressed by optimizing the pH and by adding l-arginine to the enzyme solution as an antiaggregation agent. Finally, we fabricated a microfluidic device containing a BDD electrode for the first time and observed the elevation of the oxidation current of NADH with increasing flow rate. These results imply that the combination of a BDD microelectrode and microfluidics can be used for high-throughput screening of an oxidoreductase library containing a large number (>10(6)) of samples, each with a small (nanoliter) sample volume.

  17. Full characterization of laser-accelerated ion beams using Faraday cup, silicon carbide, and single-crystal diamond detectors

    SciTech Connect

    Margarone, D.; Prokupek, J.; Rus, B.; Krasa, J.; Velyhan, A.; Laska, L.; Giuffrida, L.; Torrisi, L.; Picciotto, A.; Nowak, T.; Musumeci, P.; Mocek, T.; Ullschmied, J.

    2011-05-15

    Multi-MeV beams of light ions have been produced using the 300 picosecond, kJ-class iodine laser, operating at the Prague Asterix Laser System facility in Prague. Real-time ion diagnostics have been performed by the use of various time-of-flight (TOF) detectors: ion collectors (ICs) with and without absorber thin films, new prototypes of single-crystal diamond and silicon carbide detectors, and an electrostatic ion mass spectrometer (IEA). In order to suppress the long photopeak induced by soft X-rays and to avoid the overlap with the signal from ultrafast particles, the ICs have been shielded with Al foil filters. The application of large-bandgap semiconductor detectors (>3 eV) ensured cutting of the plasma-emitted visible and soft-UV radiation and enhancing the sensitivity to the very fast proton/ion beams. Employing the IEA spectrometer, various ion species and charge states in the expanding laser-plasma have been determined. Processing of the experimental data based on the TOF technique, including estimation of the plasma fast proton maximum and peak energy, ion beam currents and total charge, total number of fast protons, as well as deconvolution processes, ion stopping power, and ion/photon transmission calculations for the different metallic filters used, are reported.

  18. Full characterization of laser-accelerated ion beams using Faraday cup, silicon carbide, and single-crystal diamond detectors

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Krása, J.; Giuffrida, L.; Picciotto, A.; Torrisi, L.; Nowak, T.; Musumeci, P.; Velyhan, A.; Prokůpek, J.; Láska, L.; Mocek, T.; Ullschmied, J.; Rus, B.

    2011-05-01

    Multi-MeV beams of light ions have been produced using the 300 picosecond, kJ-class iodine laser, operating at the Prague Asterix Laser System facility in Prague. Real-time ion diagnostics have been performed by the use of various time-of-flight (TOF) detectors: ion collectors (ICs) with and without absorber thin films, new prototypes of single-crystal diamond and silicon carbide detectors, and an electrostatic ion mass spectrometer (IEA). In order to suppress the long photopeak induced by soft X-rays and to avoid the overlap with the signal from ultrafast particles, the ICs have been shielded with Al foil filters. The application of large-bandgap semiconductor detectors (>3 eV) ensured cutting of the plasma-emitted visible and soft-UV radiation and enhancing the sensitivity to the very fast proton/ion beams. Employing the IEA spectrometer, various ion species and charge states in the expanding laser-plasma have been determined. Processing of the experimental data based on the TOF technique, including estimation of the plasma fast proton maximum and peak energy, ion beam currents and total charge, total number of fast protons, as well as deconvolution processes, ion stopping power, and ion/photon transmission calculations for the different metallic filters used, are reported.

  19. Transmission diamond imaging detector

    SciTech Connect

    Smedley, John Pinelli, Don; Gaoweia, Mengjia; Muller, Erik; Ding, Wenxiang; Zhou, Tianyi; Bohon, Jen

    2016-07-27

    Many modern synchrotron techniques are trending toward use of high flux beams and/or beams which require enhanced stability and precise understanding of beam position and intensity from the front end of the beamline all the way to the sample. For high flux beams, major challenges include heat load management in optics (including the vacuum windows) and a mechanism of real-time volumetric measurement of beam properties such as flux, position, and morphology. For beam stability in these environments, feedback from such measurements directly to control systems for optical elements or to sample positioning stages would be invaluable. To address these challenges, we are developing diamond-based instrumented vacuum windows with integrated volumetric x-ray intensity, beam profile and beam-position monitoring capabilities. A 50 µm thick single crystal diamond has been lithographically patterned to produce 60 µm pixels, creating a >1kilopixel free-standing transmission imaging detector. This device, coupled with a custom, FPGA-based readout, has been used to image both white and monochromatic x-ray beams and capture the last x-ray photons at the National Synchrotron Light Source (NSLS). This technology will form the basis for the instrumented end-station window of the x-ray footprinting beamline (XFP) at NSLS-II.

  20. Light Sensitivity of Diamond Monocrystals

    NASA Astrophysics Data System (ADS)

    Bentele, Benjamin; Cumalat, John; Stenson, Kevin; Wagner, Steve

    2010-10-01

    We are investigating the use of diamonds as a low density, radiation-hard sensor for nuclear and particle research. Using a radioactive source, we have studied the response of minimum ionizing particles as a function of voltage, polarity, and time stability. While it is well known that polycrystalline diamond is light-sensitive, little is known about the light sensitivity of single crystal diamond. We will report on our studies of the diamond's electronic response to light and the diamond's internal ``polarization'' effect. We also describe our future plans.

  1. 75 FR 14470 - Enforcement Proceeding; In the Matter of Certain Liquid Crystal Display Devices and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Enforcement Proceeding; In the Matter of Certain Liquid Crystal Display Devices and Products... importation, and the sale within the United States after importation of certain liquid crystal display devices...

  2. Band gap and dispersion engineering of photonic crystal devices

    NASA Astrophysics Data System (ADS)

    Chen, Caihua

    Photonic crystals (PhCs) have been of great interest in a variety of fields in the past decade due to their great capability for manipulating photons in a manner similar to how electrons are controlled in a semiconductor material. In particular, PhCs are expected to revolutionize such fields as optical signal processing and optical communication by allowing the development of novel optical devices for high-density photonic integrated circuits (PICs). The development of PhC devices will be greatly accelerated by systematic designs. In this dissertation, I developed several procedures to systematically engineer the dispersion properties of PhCs. Using these procedures, I presented a variety of novel applications intended for use in future high-density PICs. These were achieved through efficient implementations of the finite-difference time-domain (FDTD) method and the plane wave method (PWM). Specifically, by combining these efficient electromagnetic tools with the direct binary search (DBS) method or simulated annealing (SA), I developed very efficient synthesis processes and used them to optimize absolute photonic band gaps (PBGs) of PhC structures and a beam steering device based on a PhC with PBG(s). I also presented another novel PhC device working in PBG, namely a PhC ring drop filter. On the other hand, I utilized the FDTD method and the PWM to shape dispersion surfaces and/or contours of PhC structures for manipulating light propagation. In particular, I engineered PhCs with square- and circle-shaped equi-frequency contours (EFCs) and presented several applications using these two unique PhCs. These applications include optical beam routing, coupling and splitting a wide beam into multiple narrow self-guiding beams, a unidirectional emitter, and an in-plane lens coupler. I also explored negative refraction and left-handed behavior in PhCs and presented a flat lens using a PhC exhibiting negative refraction and left-handed behavior.

  3. 21 CFR 872.4535 - Dental diamond instrument.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... A dental diamond instrument is an abrasive device intended to smooth tooth surfaces during the... which has diamond chips imbedded into it. Rotation of the diamond instrument provides an abrasive...

  4. 21 CFR 872.4535 - Dental diamond instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... A dental diamond instrument is an abrasive device intended to smooth tooth surfaces during the... which has diamond chips imbedded into it. Rotation of the diamond instrument provides an abrasive...

  5. 21 CFR 872.4535 - Dental diamond instrument.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... A dental diamond instrument is an abrasive device intended to smooth tooth surfaces during the... which has diamond chips imbedded into it. Rotation of the diamond instrument provides an abrasive...

  6. 21 CFR 872.4535 - Dental diamond instrument.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... A dental diamond instrument is an abrasive device intended to smooth tooth surfaces during the... which has diamond chips imbedded into it. Rotation of the diamond instrument provides an abrasive...

  7. 21 CFR 872.4535 - Dental diamond instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... A dental diamond instrument is an abrasive device intended to smooth tooth surfaces during the... which has diamond chips imbedded into it. Rotation of the diamond instrument provides an abrasive...

  8. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2003-01-01

    Statistics on the production, consumption, cost, trade, and government stockpile of natural and synthetic industrial diamond are provided. The outlook for the industrial diamond market is also considered.

  9. Polarization properties of the variable-grating-mode liquid-crystal device.

    PubMed

    Tanguay, A R; Chavel, P; Strand, T C; Wu, C S; Soffer, B H

    1984-05-01

    The principal features of the liquid-crystal molecular orientation within the variable-grating-mode liquid-crystal device have been determined as a function of the applied voltage across the cell by measurement of the polarization properties of light diffracted by the liquid-crystal birefringent phase grating.

  10. Crystal structure engineering for improved performance of emerging nanoscale devices

    NASA Astrophysics Data System (ADS)

    Chimalgi, Vinay Uday

    Recent advances in growth techniques and increasing number of experimental studies have made nanostructures grown along different crystallographic directions a reality. These new structures could not only benefit the electronic devices used in mainstream information technology but also show great promise for applications in lasers, solid-state lighting, near-field photolithography, free-space quantum cryptography, consumer displays, quantum computation, as well as diagnostic medicine and imaging. However, only few theoretical investigations have been performed on these structures due to the complex nature of the interplay of atomicity, structural fields, polarization, and quantum size-quantization, all strong function of the crystallographic direction. The objective of this work is mainly four-fold: (1) Integrate a computational framework employing a combination of fully atomistic valence force-field molecular mechanics and 20-band sp3s*d5-SO tight-binding based electronic band­structure models, and numerically investigate the effects of internal fields on the electronic and optical properties of zincblende InAs/GaAs quantum dots grown on (100), (110), and (111) orientated substrates. (2) Augment/extend the open source NEMO 3-D bandstructure simulator by incorporating a recently proposed first principles based model to gauge the importance of nonlinear piezoelectricity on the single-particle electronic states and interband optical transitions in emerging In(Ga)N/GaN disk-in-wire LED structures having c-plane and m-plane wurtzite crystal symmetry. (3) Coupling the NEMO 3-D software toolkit with a commercial TCAD simulator to determine the terminal electrical and optical characteristics of InGaN/GaN disk-in-wire LEDs; and (4) Finding an optimum crystallographic device for InGaN/GaN disk-in-wire LEDs to achieve improved internal quantum efficiency (IQE).

  11. Dosimetry with diamond detectors

    NASA Astrophysics Data System (ADS)

    Gervino, G.; Marino, C.; Silvestri, F.; Lavagno, A.; Truc, F.

    2010-05-01

    In this paper we present the dosimetry analysis in terms of stability and repeatability of the signal and dose rate dependence of a synthetic single crystal diamond grown by Chemical Vapor Deposition (CVD) technique. The measurements carried out by 5 MeV X-ray photons beam show very promising results, even if the dose rate detector response points out that the charge trapping centers distribution is not uniform inside the crystal volume. This handicap that affects the detectors performances, must be ascribed to the growing process. Synthetic single crystal diamonds could be a valuable alternative to air ionization chambers for quality beam control and for intensity modulated radiation therapy beams dosimetry.

  12. Mean carrier transport properties and charge collection dynamics of single-crystal, natural type IIa diamonds from ion-induced conductivity measurements

    SciTech Connect

    Han, Sung Su

    1993-09-01

    Ion-induced conductivity has been used to investigate the detector characteristics of diamond detectors. Both integrated-charge, and time-resolved current measurements were performed to examine the mean carrier transport properties of diamond and the dynamics of charge collection under highly-localized and high-density excitation conditions. The integrated-charge measurements were conducted with a standard pulse-counting system with 241Am radioactivity as the excitation source for the detectors. The time-resolved current measurements were performed using a 70 GHz random sampling oscilloscope with the detectors incorporated into high-speed microstrip transmission lines and the excitation source for these measurements was an ion beam of either 5-MeV He+ or 10-MeV Si3+. The detectors used in both experiments can be described as metal-semiconductor-metal (MSM) devices where a volume of the detector material is sandwiched between two metal plates. A charge collection model was developed to interpret the integrated-charge measurements which enabled estimation of the energy required to produce an electron-hole pair (ϵdi) and the mean carrier transport properties in diamond, such as carrier mobility and lifetime, and the behavior of the electrical contacts to diamond.

  13. Multicenter evaluation of a synthetic single-crystal diamond detector for CyberKnife small field size output factors.

    PubMed

    Russo, Serenella; Masi, Laura; Francescon, Paolo; Frassanito, Maria Cristina; Fumagalli, Maria Luisa; Marinelli, Marco; Falco, Maria Daniela; Martinotti, Anna Stefania; Pimpinella, Maria; Reggiori, Giacomo; Verona Rinati, Gianluca; Vigorito, Sabrina; Mancosu, Pietro

    2016-04-01

    The aim of the present work was to evaluate small field size output factors (OFs) using the latest diamond detector commercially available, PTW-60019 microDiamond, over different CyberKnife systems. OFs were measured also by silicon detectors routinely used by each center, considered as reference. Five Italian CyberKnife centers performed OFs measurements for field sizes ranging from 5 to 60mm, defined by fixed circular collimators (5 centers) and by Iris(™) variable aperture collimator (4 centers). Setup conditions were: 80cm source to detector distance, and 1.5cm depth in water. To speed up measurements two diamond detectors were used and their equivalence was evaluated. MonteCarlo (MC) correction factors for silicon detectors were used for comparing the OF measurements. Considering OFs values averaged over all centers, diamond data resulted lower than uncorrected silicon diode ones. The agreement between diamond and MC corrected silicon values was within 0.6% for all fixed circular collimators. Relative differences between microDiamond and MC corrected silicon diodes data for Iris(™) collimator were lower than 1.0% for all apertures in the totality of centers. The two microDiamond detectors showed similar characteristics, in agreement with the technical specifications. Excellent agreement between microDiamond and MC corrected silicon diode detectors OFs was obtained for both collimation systems fixed cones and Iris(™), demonstrating the microDiamond could be a suitable detector for CyberKnife commissioning and routine checks. These results obtained in five centers suggest that for CyberKnife systems microDiamond can be used without corrections even at the smallest field size. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Growth and characterization of large, high quality single crystal diamond substrates via microwave plasma assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Nad, Shreya

    Single crystal diamond (SCD) substrates can be utilized in a wide range of applications. Important issues in the chemical vapor deposition (CVD) of such substrates include: shrinking of the SCD substrate area, stress and cracking, high defect density and hence low electronic quality and low optical quality due to high nitrogen impurities. The primary objective of this thesis is to begin to address these issues and to find possible solutions for enhancing the substrate dimensions and simultaneously improving the quality of the grown substrates. The deposition of SCD substrates is carried out in a microwave cavity plasma reactor via the microwave plasma assisted chemical vapor deposition technique. The operation of the reactor was first optimized to determine the safe and efficient operating regime. By adjusting the matching of the reactor cavity with the help of four internal tuning length variables, the system was further matched to operate at a maximum overall microwave coupling efficiency of ˜ 98%. Even with adjustments in the substrate holder position, the reactor remains well matched with a coupling efficiency of ˜ 95% indicating good experimental performance over a wide range of operating conditions. SCD substrates were synthesized at a high pressure of 240 Torr and with a high absorbed power density of 500 W/cm3. To counter the issue of shrinking substrate size during growth, the effect of different substrate holder designs was studied. An increase in the substrate dimensions (1.23 -- 2.5 times) after growth was achieved when the sides of the seeds were shielded from the intense microwave electromagnetic fields in a pocket holder design. Using such pocket holders, high growth rates of 16 -- 32 mum/hr were obtained for growth times of 8 -- 72 hours. The polycrystalline diamond rim deposition was minimized/eliminated from these growth runs, hence successfully enlarging the substrate size. Several synthesized CVD SCD substrates were laser cut and separated

  15. Substantiation of Epitaxial Growth of Diamond Crystals on the Surface of Carbide Fe3AlC0.66 Phase Nanoparticles.

    PubMed

    Dzevin, Ievgenij M; Mekhed, Alexander A

    2017-12-01

    Samples of Fe-Al-C alloys of varying composition were synthesized under high pressures and temperatures. From X-ray analysis data, only K-phase with usual for it average parameter of elemental lattice cell, a = 0.376 nm, carbide Fe3C and cubic diamond reflexes were present before and after cooling to the temperature of liquid nitrogen.Calculations were made of the parameters of unit cells, the enthalpy of formation of the Fe3AlC, Fe3.125Al0.825C0.5, Fe3.5Al0.5C0.5, Fe3.5Al0.5C, Fe3Al0.66C0.66, and Fe3AlC0.66 unit cells and crystallographic planes were identified on which epitaxial growth of the diamond phase was possible, using density functional theory as implemented in the WIEN2k package.The possibility of epitaxial growth of diamond crystals on Fe3AlC0.66 (K-phase) nanoparticles was, therefore, demonstrated. The [200] plane was established to be the most suitable plane for diamond growth, having four carbon atoms arranged in a square and a central vacancy which can be occupied by carbon during thermal-and-pressure treatment. Distances between carbon atoms in the [200] plane differ by only 5% from distances between the carbon atoms of a diamond. The electronic structure and energetic parameters of the substrate were also investigated. It was shown that the substrate with at least four intermediate layers of K-phase exhibits signs of stability such as negative enthalpy of formation and the Fermi level falling to minimum densities of states.

  16. Single-crystal CVD diamond detector for low-energy charged particles with energies ranging from 100 keV to 2 MeV

    SciTech Connect

    Yuki Sato; Hiroyuki Murakami; Takehiro Shimaoka; Masakatsu Tsubota; Junichi, H. Kaneko

    2015-07-01

    The performance of a diamond detector made of a single-crystal diamond grown by chemical vapor deposition was studied for charged particles, having energies ranging from 100 keV to 2 MeV. Energy peaks of these low-energy ions were clearly observed. However, we observed that the pulse height for individual incident ion decreases with increasing atomic number of the ions. We estimated the charge collection efficiency of the generated charge carriers by charged particle incident. The charge collection above ∼95% is achieved for helium (He{sup +}) with the energy above 1.5 MeV. On the other hand, the charge collection efficiency for heavy-ions shows wrong values compared with that of He{sup +}, ∼70% for silicon (Si{sup +}) and 35 to 40% for gold (Au{sup 3+}), at the same incident energy range, respectively. (authors)

  17. Phase-field crystal model for a diamond-cubic structure.

    PubMed

    Chan, V W L; Pisutha-Arnond, N; Thornton, K

    2015-05-01

    We present a structural phase-field crystal model [M. Greenwood et al., Phys. Rev. Lett. 105, 045702 (2010)] that yields a stable dc structure. The stabilization of a dc structure is accomplished by constructing a two-body direct correlation function (DCF) approximated by a combination of two Gaussian functions in Fourier space. A phase diagram containing a dc-liquid phase coexistence region is calculated for this model. We examine the energies of solid-liquid interfaces with normals along the [100], [110], and [111] directions. The dependence of the interfacial energy on a temperature parameter, which controls the heights of the peaks in the two-body DCF, is described by a Gaussian function. Furthermore, the dependence of the interfacial energy on the peak widths of the two-body DCF, which controls the excess energy associated with interfaces, defects, and strain, is described by an inverse power law. These relationships can be used to parametrize the phase-field crystal model for the dc structure to match solid-liquid interfacial energies to those measured experimentally or calculated from atomistic simulations.

  18. Phase-field crystal model for a diamond-cubic structure

    NASA Astrophysics Data System (ADS)

    Chan, V. W. L.; Pisutha-Arnond, N.; Thornton, K.

    2015-05-01

    We present a structural phase-field crystal model [M. Greenwood et al., Phys. Rev. Lett. 105, 045702 (2010), 10.1103/PhysRevLett.105.045702] that yields a stable d c structure. The stabilization of a d c structure is accomplished by constructing a two-body direct correlation function (DCF) approximated by a combination of two Gaussian functions in Fourier space. A phase diagram containing a d c -liquid phase coexistence region is calculated for this model. We examine the energies of solid-liquid interfaces with normals along the [100], [110], and [111] directions. The dependence of the interfacial energy on a temperature parameter, which controls the heights of the peaks in the two-body DCF, is described by a Gaussian function. Furthermore, the dependence of the interfacial energy on the peak widths of the two-body DCF, which controls the excess energy associated with interfaces, defects, and strain, is described by an inverse power law. These relationships can be used to parametrize the phase-field crystal model for the d c structure to match solid-liquid interfacial energies to those measured experimentally or calculated from atomistic simulations.

  19. NCD Diamond Semiconductor System for Advanced Power Electronics Systems Integration : CRADA report

    SciTech Connect

    Sumant, Anirudha

    2016-07-22

    The integration of 2D materials such as molybdenum disulphide (MoS2) with diamond (3D) was achieved by forming an heterojunction between these two materials and its electrical performance was studied experimentally. The device charactertics did show good rectifying nature when p-type single crystal diamond was integrated with n-type MoS2. These results are very encouraging indicating possible applications in semiconductor electronics, however further studies are required for a detailed understanding of the transport phenomena at the MoS2/diamond interface.

  20. Measurement-device-independent quantum key distribution with nitrogen vacancy centers in diamond

    NASA Astrophysics Data System (ADS)

    Lo Piparo, Nicoló; Razavi, Mohsen; Munro, William J.

    2017-02-01

    Memory-assisted measurement-device-independent quantum key distribution (MA-MDI-QKD) has recently been proposed as a possible intermediate step towards the realization of quantum repeaters. Despite its relaxing some of the requirements on quantum memories, the choice of memory in relation to the layout of the setup and the protocol has a stark effect on our ability to beat existing no-memory systems. Here, we investigate the suitability of nitrogen vacancy (NV) centers, as quantum memories, in MA-MDI-QKD. We particularly show that moderate cavity enhancement is required for NV centers if we want to outperform no-memory QKD systems. Using system parameters mostly achievable by today's state of the art, we then anticipate some total key rate advantage in the distance range between 300 and 500 km for cavity-enhanced NV centers. Our analysis accounts for major sources of error including the dark current, the channel loss, and the decoherence of the quantum memories.

  1. Growth Defects in Diamond Films

    DTIC Science & Technology

    1992-07-09

    growth of cadmium crystals21. However, we will not discuss this case and limit ourselves to crystals with diamond cubic structure . A key to...111 planes, but, on a larger scale the crystal grows in the < 211 > directions. A demonstration of the effect of twinning on growth in the diamond cubic ... structure is given by Hamilton and Seidensticker17. Five E=3 twin boundaries, at the most, can meet at a point on a plane, and usually (as discussed

  2. Single Crystal Substrates for Surface Acoustic Wave Devices.

    DTIC Science & Technology

    1981-01-01

    APPROVED: aJ. 2 .C. PAUL H. CARR Project Engineer APPROVED: PHILIPP BLACKSMITH , Acting Chief Electromagnetic Sciences Division FOR THE COMMANDER: /?p...relations between properties, composition and crystal structure . (ii) Both exploratory and systematic crystal arowth studies on a variety of materials...the piezoelectric constants for a qiven crystal structure . In conjunction with earlier criteria for identifyina temperature compensated materials

  3. Fabrication of UV Photodetector on TiO2/Diamond Film

    NASA Astrophysics Data System (ADS)

    Liu, Zhangcheng; Li, Fengnan; Li, Shuoye; Hu, Chao; Wang, Wei; Wang, Fei; Lin, Fang; Wang, Hongxing

    2015-09-01

    The properties of ultraviolet (UV) photodetector fabricated on TiO2/diamond film were investigated. Single crystal diamond layer was grown on high-pressure-high-temperature Ib-type diamond substrate by microwave plasma chemical vapor deposition method, upon which TiO2 film was prepared directly using radio frequency magnetron sputtering technique in Ar and O2 mixing atmosphere. Tungsten was used as electrode material to fabricate metal-semiconductor-metal UV photodetector. The dark current is measured to be 1.12 pA at 30 V. The photo response of the device displays an obvious selectivity between UV and visible light, and the UV-to-visible rejection ratio can reach 2 orders of magnitude. Compared with that directly on diamond film, photodetector on TiO2/diamond film shows higher responsivity.

  4. Fabrication of UV Photodetector on TiO2/Diamond Film.

    PubMed

    Liu, Zhangcheng; Li, Fengnan; Li, Shuoye; Hu, Chao; Wang, Wei; Wang, Fei; Lin, Fang; Wang, Hongxing

    2015-09-24

    The properties of ultraviolet (UV) photodetector fabricated on TiO2/diamond film were investigated. Single crystal diamond layer was grown on high-pressure-high-temperature Ib-type diamond substrate by microwave plasma chemical vapor deposition method, upon which TiO2 film was prepared directly using radio frequency magnetron sputtering technique in Ar and O2 mixing atmosphere. Tungsten was used as electrode material to fabricate metal-semiconductor-metal UV photodetector. The dark current is measured to be 1.12 pA at 30 V. The photo response of the device displays an obvious selectivity between UV and visible light, and the UV-to-visible rejection ratio can reach 2 orders of magnitude. Compared with that directly on diamond film, photodetector on TiO2/diamond film shows higher responsivity.

  5. Fabrication of UV Photodetector on TiO2/Diamond Film

    PubMed Central

    Liu, Zhangcheng; Li, Fengnan; Li, Shuoye; Hu, Chao; Wang, Wei; Wang, Fei; Lin, Fang; Wang, Hongxing

    2015-01-01

    The properties of ultraviolet (UV) photodetector fabricated on TiO2/diamond film were investigated. Single crystal diamond layer was grown on high-pressure-high-temperature Ib-type diamond substrate by microwave plasma chemical vapor deposition method, upon which TiO2 film was prepared directly using radio frequency magnetron sputtering technique in Ar and O2 mixing atmosphere. Tungsten was used as electrode material to fabricate metal-semiconductor-metal UV photodetector. The dark current is measured to be 1.12 pA at 30 V. The photo response of the device displays an obvious selectivity between UV and visible light, and the UV-to-visible rejection ratio can reach 2 orders of magnitude. Compared with that directly on diamond film, photodetector on TiO2/diamond film shows higher responsivity. PMID:26399514

  6. 75 FR 10311 - In the Matter of Certain Liquid Crystal Display Devices and Products Containing the Same; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... Liquid Crystal Display Devices and Products Containing the Same; Notice of Commission Determination To... importation of certain liquid crystal display (``LCD'') devices and products containing the same by reason of...

  7. Most diamonds were created equal

    NASA Astrophysics Data System (ADS)

    Jablon, Brooke Matat; Navon, Oded

    2016-06-01

    Diamonds crystallize deep in the mantle (>150 km), leaving their carbon sources and the mechanism of their crystallization debatable. They can form from elemental carbon, by oxidation of reduced species (e.g. methane) or reduction of oxidized ones (e.g. carbonate-bearing minerals or melts), in response to decreasing carbon solubility in melts or fluids or due to changes in pH. The mechanism of formation is clear for fibrous diamonds that grew from the carbonate-bearing fluids trapped in their microinclusions. However, these diamonds look different and, based on their lower level of nitrogen aggregation, are much younger than most monocrystalline (MC) diamonds. In the first systematic search for microinclusions in MC diamonds we examined twinned crystals (macles), assuming that during their growth, microinclusions were trapped along the twinning plane. Visible mineral inclusions (>10 μm) and nitrogen aggregation levels in these clear macles are similar to other MC diamonds. We found 32 microinclusions along the twinning planes in eight out of 30 diamonds. Eight inclusions are orthopyroxene; four contain >50% K2O (probably as K2(Mg, Ca)(CO3)2); but the major element compositions of the remaining 20 are similar to those of carbonate-bearing high-density fluids (HDFs) found in fibrous diamonds. We conclude that the source of carbon for these macles and for most diamonds is carbonate-bearing HDFs similar to those found here and in fibrous diamonds. Combined with the old ages of MC diamonds (up to 3.5 Ga), our new findings suggest that carbonates have been introduced into the reduced lithospheric mantle since the Archaean and that the mechanism of diamond formation is the same for most diamonds.

  8. Optical hyperpolarization of nitrogen donor spins in bulk diamond

    NASA Astrophysics Data System (ADS)

    Loretz, M.; Takahashi, H.; Segawa, T. F.; Boss, J. M.; Degen, C. L.

    2017-02-01

    We report hyperpolarization of the electronic spins associated with substitutional nitrogen defects in bulk diamond crystals. Hyperpolarization is achieved by optical pumping of nitrogen vacancy centers followed by rapid cross relaxation at the energy level matching condition in a 51 mT bias field. The maximum observed donor spin polarization is 0.9 % , corresponding to an enhancement of 25 compared to the thermal Boltzmann polarization. A further accumulation of polarization is impeded by an anomalous optical saturation effect that we attribute to charge state conversion processes. Hyperpolarized nitrogen donors may form a useful resource for increasing the efficiency of diamond-based dynamic nuclear polarization devices.

  9. Ultrafast laser processing of diamond

    NASA Astrophysics Data System (ADS)

    Salter, P. S.; Booth, M. J.

    2014-03-01

    Ultrashort pulsed lasers are used to fabricate 3D structures in single crystal CVD diamond. The interaction of the laser with diamond lattice leads to a permanent structural modification, which is highly localized at the focus. Severe spherical aberrations compromise fabrication precision below the diamond surface. We implement adaptive aberration compensation to ensure optimum fabrication performance. The nature of the structural modification is analysed for both surface and subsurface laser fabrications.

  10. Lattice dynamics of diamond-like crystals from a tight-binding calculation of valence bands

    NASA Astrophysics Data System (ADS)

    Roman, R.; Pascual, J.

    1988-11-01

    We report on the results of calculations of the TA(X) phonon energy in the series of C, Si, Ge, Sn homopolar crystals. The starting point is the tight-binding model for the electronic Hamiltonian where Es and Ep are taken to be the free atomic energies while the interatomic matrix elements are described by a universal d-2 Harrison's scaling law. The change of the total energy with the atomic distortion is given in terms of changes in the valence band energy and changes in the overlap energy. The numerical calculations for Si gives U1 = -21.77eV and U2 = 60.44eV, close to the values predicted by Harrison U1 = -17.76eV and U2 = 53.28eV. The calculations of the TA(X) phonon energy gives (in the case the interatomic distances are held constant): 26.09 THz (C), 6.46 THz (Si), 3.37THz (Ge) and 1.91 THz (Sn), in reasonably good agreement with the experimental results 24.1 THz (C), 4.49 THz (Si), 2.39 THz (Ge) and 1.26 THz (Sn).

  11. 76 FR 39897 - In the Matter of Certain Liquid Crystal Display Devices and Products Containing the Same; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... COMMISSION In the Matter of Certain Liquid Crystal Display Devices and Products Containing the Same; Notice... the United States after importation of certain liquid crystal display devices and products containing... importation of certain liquid crystal display devices and products containing the same that infringe one...

  12. 76 FR 11512 - In the Matter of Certain Liquid Crystal Display Devices, Products Containing Same, and Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... COMMISSION In the Matter of Certain Liquid Crystal Display Devices, Products Containing Same, and Methods for... within the United States after importation of certain liquid crystal display devices, products containing... after importation of certain liquid crystal display devices, products containing same, and methods...

  13. 75 FR 59290 - In the Matter of Certain Liquid Crystal Display Devices and Products Interoperable With the Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... COMMISSION In the Matter of Certain Liquid Crystal Display Devices and Products Interoperable With the Same... States after importation of certain liquid crystal display devices and products interoperable with the... after importation of certain liquid crystal display devices and products interoperable with the same...

  14. 75 FR 445 - In the Matter of Certain Liquid Crystal Display Devices and Products Containing the Same; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... Crystal Display Devices and Products Containing the Same; Notice of Investigation AGENCY: U.S... importation, and the sale within the United States after importation of certain liquid crystal display devices... crystal display devices or products containing same that infringe one or more of claims 1, 3, and 6 of U.S...

  15. CVD diamond metallization and characterization

    NASA Astrophysics Data System (ADS)

    Fraimovitch, D.; Adelberd, A.; Marunko, S.; Lefeuvre, G.; Ruzin, A.

    2017-02-01

    In this study we compared three diamond substrate grades: polycrystalline, optical grade single crystal, and electronic grade single crystal for detector application. Beside the bulk type, the choice of contact material, pre-treatment, and sputtering process details have shown to alter significantly the diamond detector performance. Characterization of diamond substrate permittivity and losses indicate grade and crystallinity related, characteristic differences for frequencies in 1 kHz-1 MHz range. Substantial grade related variations were also observed in surface electrostatic characterization performed by contact potential difference (CPD) mode of an atomic force microscope. Study of conductivity variations with temperature reveal that bulk trap energy levels are also dependent on the crystal grade.

  16. In situ serial Laue diffraction on a microfluidic crystallization device

    PubMed Central

    Perry, Sarah L.; Guha, Sudipto; Pawate, Ashtamurthy S.; Henning, Robert; Kosheleva, Irina; Srajer, Vukica; Kenis, Paul J. A.; Ren, Zhong

    2014-01-01

    Renewed interest in room-temperature diffraction has been prompted by the desire to observe structural dynamics of proteins as they function. Serial crystallography, an experimental strategy that aggregates small pieces of data from a large uniform pool of crystals, has been demonstrated at synchrotrons and X-ray free-electron lasers. This work utilizes a microfluidic crystallization platform for serial Laue diffraction from macroscopic crystals and proposes that a collection of small slices of Laue data from many individual crystals is a realistic solution to the difficulties in dynamic studies of irreversible biochemical reactions. PMID:25484843

  17. Applications Of Diamond In Optics

    NASA Astrophysics Data System (ADS)

    Seal, M.; van Enckevort, W. J. P.

    1989-01-01

    This paper reviews existing and new applications of single crystal diamond, both natural and synthetic, in optical science. The traditional application is as transmissive components, making use of the very wide spectral transmission range, high thermal conductivity, and chemical inertness of diamond. Diamond windows for corrosive environments are well known; diamond surgical endoscope components are under development; and the use of sharpened diamonds as combined surgical cutting instruments and light pipes for internal illumination of the edge is commercial reality. The superb ability of diamond to conduct heat, combined with its very low thermal expansion coefficient makes it suitable for the transmission of high power laser energy, though there is a problem currently being addressed of a high surface reflection coefficient. It is very probable that CVD diamond-like films will form good anti-reflection coatings for diamond. In new applications, the technology of making diamond lenses is being developed. The use of diamond as a detector of ionising radiation is well known, but recent work shows its possibilities in thermoluminescent as well as conduction and pulse counting modes. There are further possibilities of using diamond for the detection and measurement of optical radiation. Examples are low, medium, and high intensity far ultraviolet (< 225 nm) and very high intensity near ultraviolet and visible light from excimer, dye, or argon lasers. Diamond is very radiation resistant! Sensitivities, response times and impurity trap levels have been measured and appropriate diamonds can be synthesised. The use of diamond as fast opto-electronic switches has been reported in the literature and the mechanical and thermal design of diamond "heat sink" substrates for semiconductor laser diodes is advancing rapidly.

  18. The influence of detector size relative to field size in small-field photon-beam dosimetry using synthetic diamond crystals as sensors

    NASA Astrophysics Data System (ADS)

    Ade, N.; Nam, T. L.

    2015-08-01

    The choice of a detector for small-field dosimetry remains a challenge due to the size/volume effect of detectors in small fields. Aimed at selecting a suitable crystal type and detector size for small-field dosimetry, this study investigates the relationship between detector and field size by analysing output factors (OFs) measured with a Diode E (reference detector), a Farmer chamber and synthetic diamond detectors of various types and sizes in the dosimetry of a 6 MV photon beam with small fields between 0.3×0.3 cm2 and 10×10 cm2. The examined diamond sensors included two HPHT samples (HP1 and HP2) and six polycrystalline CVD specimens of optical grade (OG) and detector grade (DG) qualities with sizes between 0.3 and 1.0 cm. Each diamond was encapsulated in a tissue-equivalent probe housing which can hold crystals of various dimensions up to 1.0×1.0×0.1 cm3 and has different exposure geometries ('edge-on' and 'flat-on') for impinging radiation. The HPHT samples were found to show an overall better performance compared to the CVD crystals with the 'edge-on' orientation being a preferred geometry for OF measurement especially for very small fields. For instance, down to a 0.4×0.4 cm2 field a maximum deviation of 1.9% was observed between the OFs measured with Diode E and HP2 in the 'edge-on' orientation compared to a 4.6% deviation in the 'flat-on' geometry. It was observed that for fields below 4×4 cm2, the dose deviation between the OFs measured with the detectors and Diode E increase with increasing detector size. It was estimated from an established relationship between the dose deviation and the ratio of detector size to field size for the detectors that the dose deviation probably due to the volume averaging effect would be >3% when the detector size is >3/4 of the field size. A sensitivity value of 223 nC Gy-1 mm-3 was determined in a 0.5×0.5 cm2 field with HP2 compared to a value of 159.2 nC Gy-1 mm-3 obtained with the diode. The results of this

  19. An investigation of the role of defect levels on the radiation response of synthetic diamond crystals when used as sensors for the detection of mammography X-rays.

    PubMed

    Ade, Nicholas

    2017-09-01

    This study evaluates the role of defects on the performances of synthetic diamond sensors on exposure to mammography X-rays. Through systematic investigations, the main cause of instability of response of examined sensors necessitating pre-irradiation was isolated and ascribed to the presence of ambient light which has the effect of emptying shallow trapping levels. The changes in response between measurements in light and dark conditions varied from 2.8 ± 1.2% to 63.0 ± 0.3%. Sensitivities between 0.4 and 6.7nCGy(-1)mm(-3) determined for the sensors varied with defect levels. The study indicates that differences in crystal quality due to the presence and influence of defects would cause a discrepancy in the dosimetric performances of various diamond detectors. Once a sensor plate is selected (based on the influence of defect levels) and coupled to the probe housing with the response of the diamond sensor stabilised and appropriately shielded from ambient light, daily priming is not needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. 77 FR 5055 - Certain Liquid Crystal Display Devices and Products Containing the Same; Determination Not To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Liquid Crystal Display Devices and Products Containing the Same; Determination Not To Review Initial Determination Granting Joint Motion To Terminate Based on Settlement...

  1. 77 FR 45375 - Certain Liquid Crystal Display Devices, Including Monitors, Televisions, Modules, and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Liquid Crystal Display Devices, Including Monitors, Televisions, Modules, and Components Thereof; Commission Determination Not To Review an Initial Determination Terminating the Investigation as...

  2. 77 FR 3793 - Certain Liquid Crystal Display Devices, Including Monitors, Televisions, and Modules, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Liquid Crystal Display Devices, Including Monitors, Televisions, and Modules, and Components Thereof; Request for Statements on the Public Interest AGENCY: U.S. International Trade Commission...

  3. Diamonds in detonation soot

    NASA Technical Reports Server (NTRS)

    Greiner, N. Roy; Phillips, Dave; Johnson, J. D.; Volk, Fred

    1990-01-01

    Diamonds 4 to 7 nm in diameter have been identified and partially isolated from soot formed in detonations of carbon-forming composite explosives. The morphology of the soot has been examined by transmission electron microscopy (TEM), and the identity of the diamond has been established by the electron diffraction pattern of the TEM samples and by the X-ray diffraction (XRD) pattern of the isolated solid. Graphite is also present in the form of ribbons of turbostatic structure with a thickness of 2 to 4 nm. A fraction, about 25 percent of the soot by weight, was recovered from the crude soot after oxidation of the graphite with fuming perchloric acid. This fraction showed a distinct XRD pattern of diamond and the diffuse band of amorphous carbon. The IR spectrum of these diamonds closely matches that of diamonds recovered from meteorites (Lewis et al., 1987), perhaps indicating similar surface properties after the oxidation. If these diamonds are produced in the detonation itself or during the initial expansion, they exhibit a phenomenal crystal growth rate (5 nm/0.00001 s equal 1.8 m/hr) in a medium with a very low hydrogen/carbon ratio. Because the diamonds will be carried along with the expanding gases, they will be accelerated to velocities approaching 8 km/s.

  4. Simulation of planar channeling-radiation spectra of relativistic electrons and positrons channeled in a diamond-structure or tungsten single crystal (classical approach)

    NASA Astrophysics Data System (ADS)

    Azadegan, B.; Wagner, W.

    2015-01-01

    We present a Mathematica package for simulation of spectral-angular distributions and energy spectra of planar channeling radiation of relativistic electrons and positrons channeled along major crystallographic planes of a diamond-structure or tungsten single crystal. The program is based on the classical theory of channeling radiation which has been successfully applied to study planar channeling of light charged particles at energies higher than 100 MeV. Continuous potentials for different planes of diamond, Si, Ge and W single crystals are calculated using the Doyle-Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the classical one-dimensional equation of motion. The code is designed to calculate the trajectories, velocities and accelerations of electrons (positrons) channeled by the planar continuous potential. In the framework of classical electrodynamics, these data allow realistic simulations of spectral-angular distributions and energy spectra of planar channeling radiation. Since the generated output is quantitative, the results of calculation may be useful, e.g., for setup configuration and crystal alignment in channeling experiments, for the study of the dependence of channeling radiation on the input parameters of particle beams with respect to the crystal orientation, but also for the simulation of positron production by means of pair creation what is mandatory for the design of efficient positron sources necessary in high-energy and collider physics. Although the classical theory of channeling is well established for long time, there is no adequate library program for simulation of channeling radiation up to now, which is commonly available, sufficiently simple and effective to employ and, therefore, of benefit as for special investigations as for a quick overview of basic features of this type of radiation.

  5. Ferroelectric Tungsten Bronze Bulk Crystals and Epitaxial Thin Films for Electro-Optic Device Applications

    DTIC Science & Technology

    1983-05-01

    23 FERROELECTRIC TUNGSTEN BRONZE BULK CRYSTALS AND EPITAXIAL THIN FILMS FOR ELECTRO-OPTIC DEVICE APPLICATIONS 10 CO O Semi-Annual Technical... THIN FILMS FOR ELECTRO-OPTIC DEVICE APPLICATIONS s TV^C or REPORT * pcmoo COVCHCO Semi-Annual Tec1! Rpt #1 for period 09/30/82-03/31/83...months, considerable progress has been made in several areas, including single crystal and thin film growth and characteriza- tion. The new

  6. Optical homogenizing effects in nanoparticle-embedded liquid-crystal devices

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shunsuke; Shiraishi, Yukihide; Furue, Hirokazu; Chang, Kai-Han; Chien, Liang-Chy

    2017-02-01

    Herein, we report the enhancement of electro-optical performances of nanoparticle embedded liquid-crystal devices in the laser speckle pattern reduction, enhancement of viewing angle, and that of color gamut by doping the nano-particles(NPs) of PγCyclodixtrin-ZrO2 (Shiraishi lab) and Aerosil R-812(EVONIK) into the liquid crystal devices. This report will be done through updating of previous work [1-4] in particular giving physical modeling and simulations.

  7. Crystallographic orientations of olivine inclusions in diamonds

    NASA Astrophysics Data System (ADS)

    Milani, S.; Nestola, F.; Angel, R. J.; Nimis, P.; Harris, J. W.

    2016-11-01

    In this work we report for the first time the crystallographic orientations of olivine inclusions trapped in diamonds from the Kaapvaal craton (South Africa) determined by single-crystal X-ray diffraction, and analyze them together with all available data in the literature. The overall data set indicates no preferred orientation of the olivine inclusions with respect to their diamond hosts. However, diamonds containing multiple olivine inclusions sometimes show clusters of olivines with the same orientation in the same diamond host. We conclude that such clusters can only be interpreted as the remnants of single olivine crystals pre-dating the growth of the host diamonds.

  8. Behavior of crystal defects in synthetic type-IIa single-crystalline diamond at high temperatures under normal pressure

    NASA Astrophysics Data System (ADS)

    Tatsumi, Natsuo; Tamasaku, Kenji; Ito, Toshimichi; Sumiya, Hitoshi

    2017-01-01

    The behavior of dislocation lines (DLs) and stacking faults (SFs) in synthetic type-IIa single-crystalline diamond at high temperatures under normal pressure has been investigated. After annealing the diamond at 1500 °C for 60 min in pure N2 atmosphere, straight DLs were bent to converge to fewer curved dislocation bundles, so that some of the stacking faults were extinct while new DLs appeared at the edges of the removed SFs. These results indicate that SFs in the diamond examined belong to the Shockley type, and that the Shockley partials changed to a perfect dislocation. From this result, the following generation mechanism has been proposed for SFs in diamond. On one hand, because [112] dislocations in the (111) growth sector are contained in the slip plane labelled as (1 ̅ 1 ̅ 1), one perfect dislocation tends to be split into two Shockley partials and a SF when an appropriate stress is applied. On the other hand, the angle between the {111} slip plane and the direction of bundled dislocations in the (001) growth sector is as high as 54.7°, so that a perfect dislocation can hardly slip into partial dislocations. Thus, SFs exist only in the (111) growth sector of type IIa diamond.

  9. High-temperature long-lasting stability assessment of a single-crystal diamond detector under high-flux neutron irradiation

    NASA Astrophysics Data System (ADS)

    Pilotti, R.; Angelone, M.; Marinelli, M.; Milani, E.; Verona-Rinati, G.; Verona, C.; Prestopino, G.; Montereali, R. M.; Vincenti, M. A.; Schooneveld, E. M.; Scherillo, A.; Pietropaolo, A.

    2016-11-01

    An innovative diamond detector layout is presented that is designed to operate at high temperature under intense neutron and gamma fluxes. It is made of a 500 μm “electronic grade” diamond film with 100 nm thick Ag metal contacts deposited onto each surface of the film by means of thermal evaporation. A 2 μ \\text{m} thick layer of 6LiF has been deposited on top of one of the two Ag contacts to make the detector sensitive to thermal neutrons. The device was tested at the ISIS spallation neutron source (Rutherford Appleton Laboratory, UK) using the INES beam line. The detector was continuously irradiated for 100 hours in vacuum (p = 10-5 \\text{mbar}) , exposed to a neutron flux of about 106 n cm-2 s-1 at a temperature T =150 ^\\circ \\text{C} . The aim of this experiment was to study the time dependence of the diamond detector performance while operating at high temperature under irradiation, providing a first experimental proof of reliable continuous operation for 100 hours at high temperature in a harsh environment.

  10. Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals

    PubMed Central

    Ptasinski, Joanna; Khoo, Iam-Choon; Fainman, Yeshaiahu

    2014-01-01

    In this work we explore the negative thermo-optic properties of liquid crystal claddings for passive temperature stabilization of silicon photonic integrated circuits. Photonic circuits are playing an increasing role in communications and computing, but they suffer from temperature dependent performance variation. Most existing techniques aimed at compensation of thermal effects rely on power hungry Joule heating. We show that integrating a liquid crystal cladding helps to minimize the effects of a temperature dependent drift. The advantage of liquid crystals lies in their high negative thermo-optic coefficients in addition to low absorption at the infrared wavelengths. PMID:28788565

  11. Nitrogen termination of single crystal (100) diamond surface by radio frequency N{sub 2} plasma process: An in-situ x-ray photoemission spectroscopy and secondary electron emission studies

    SciTech Connect

    Chandran, Maneesh E-mail: choffman@tx.technion.ac.il; Shasha, Michal; Michaelson, Shaul; Hoffman, Alon E-mail: choffman@tx.technion.ac.il

    2015-09-14

    In this letter, we report the electronic and chemical properties of nitrogen terminated (N-terminated) single crystal (100) diamond surface, which is a promising candidate for shallow NV{sup −} centers. N-termination is realized by an indirect RF nitrogen plasma process without inducing a large density of surface defects. Thermal stability and electronic property of N-terminated diamond surface are systematically investigated under well-controlled conditions by in-situ x-ray photoelectron spectroscopy and secondary electron emission. An increase in the low energy cut-off of the secondary electron energy distribution curve (EDC), with respect to a bare diamond surface, indicates a positive electron affinity of the N-terminated diamond. Exposure to atomic hydrogen results in reorganization of N-terminated diamond to H-terminated diamond, which exhibited a negative electron affinity surface. The change in intensity and spectral features of the secondary electron EDC of the N-terminated diamond is discussed.

  12. Ultimate Atomic Bling: Nanotechnology of Diamonds

    SciTech Connect

    Dahl, Jeremy

    2010-05-25

    Diamonds exist in all sizes, from the Hope Diamond to minuscule crystals only a few atoms across. The smallest of these diamonds are created naturally by the same processes that make petroleum. Recently, researchers discovered that these 'diamondoids' are formed in many different structural shapes, and that these shapes can be used like LEGO blocks for nanotechnology. This talk will discuss the discovery of these nano-size diamonds and highlight current SLAC/Stanford research into their applications in electronics and medicine.

  13. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1980-01-01

    The apparatus and techniques used in effort to determine the relationships between crystal growth and electronic properties are described with emphasis on electroepitaxy and melt-grown gallium aresenide crystal. Applications of deep level transient spectroscopy, derivative photocapitance spectroscopy, and SEM-cathodoluminescene in characterizing wide bandgap semiconductors; determining photoionization in MOS, Schottky barriers, and p-n junctions; and for identifying inhomogeneities are examined, as well as the compensation of indium phosphide.

  14. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2012-01-01

    Estimated 2011 world production of natural and synthetic industrial diamond was about 4.45 billion carats. During 2011, natural industrial diamonds were produced in more than 20 countries, and synthetic industrial diamond was produced in at least 13 countries. About 98 percent of the combined natural and synthetic global output was produced in China, Ireland, Japan, Russia, South Africa and the United States. China is the world's leading producer of synthetic industrial diamond followed by Russia and the United States.

  15. Applications of diamond films and related materials; Proceedings of the 1st International Conference, Auburn, AL, Aug. 17-22, 1991

    NASA Technical Reports Server (NTRS)

    Tzeng, Yonhua (Editor); Yoshikawa, Manasori (Editor); Murakawa, Masao (Editor); Feldman, Albert (Editor)

    1991-01-01

    The present conference discusses the nucleation and growth of diamond from hydrocarbons, the cutting tool performance of CVD thick-film diamond, the characterization of CVD diamond grinding powder, industrial applications of crystalline diamond-coated tools, standardized SEM tribometry of diamond-coated substrates, residual stress in CVD diamond films, the optical properties of CVD diamond films, polycrystalline diamond films for optical applications, and diamond growth on ferrous metals. Also discussed are ion beam-irradiation smoothing of diamond films, electronic circuits on diamond substrates, diamond-laminated surfaces for evaporative spray cooling, electron devices based on the unique properties of diamond, diamond cold cathodes, thin-film diamond microstructure applications, Schottky diodes from flame-grown diamond, diamond films for thermionic applications, methods of diamond nucleation and selective deposition, high-rate/large-area diamond film production, halogen-assisted diamond growth, the economics of diamond technology, and the optical and mechanical properties of diamondlike films.

  16. Status of the Hughes charge-coupled-device-addressed liquid crystal light valve

    NASA Astrophysics Data System (ADS)

    Welkowsky, M. S.; Efron, Uzi; Byles, W.; Goodwin, N. W.

    1987-05-01

    This paper discusses the present state of development of the Hughes charge-coupled-device-addressed liquid crystal light valve (CCD LCLV). The device is based on the photoactivated silicon LCLV and is suitable for a range of applications, including adaptive optics and as a programmable mask for optical data processing systems.

  17. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2013-01-01

    Estimated 2012 world production of natural and synthetic industrial diamond was about 4.45 billion carats. During 2012, natural industrial diamonds were produced in at least 20 countries, and synthetic industrial diamond was produced in at least 12 countries. About 99 percent of the combined natural and synthetic global output was produced in Belarus, China, Ireland, Japan, Russia, South Africa and the United States. During 2012, China was the world’s leading producer of synthetic industrial diamond followed by the United States and Russia. In 2012, the two U.S. synthetic producers, one in Pennsylvania and the other in Ohio, had an estimated output of 103 million carats, valued at about $70.6 million. This was an estimated 43.7 million carats of synthetic diamond bort, grit, and dust and powder with a value of $14.5 million combined with an estimated 59.7 million carats of synthetic diamond stone with a value of $56.1 million. Also in 2012, nine U.S. firms manufactured polycrystalline diamond (PCD) from synthetic diamond grit and powder. The United States government does not collect or maintain data for either domestic PCD producers or domestic chemical vapor deposition (CVD) diamond producers for quantity or value of annual production. Current trade and consumption quantity data are not available for PCD or for CVD diamond. For these reasons, PCD and CVD diamond are not included in the industrial diamond quantitative data reported here.

  18. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2011-01-01

    Estimated world production of natural and synthetic industrial diamond was about 4.44 billion carats in 2010. Natural industrial diamond deposits have been found in more than 35 countries, and synthetic industrial diamond is produced in at least 15 countries.

  19. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2006-01-01

    In 2005, estimated world production of natural and synthetic industrial diamond was 630 million carats. Natural industrial diamond deposits were found in more than 35 countries. Synthetic industrial diamond is produced in at least 15 countries. More than 81% of the combined natural and synthetic global output was produced in Ireland, Japan, Russia, South Africa and the United States.

  20. Timekeeping with electron spin states in diamond

    NASA Astrophysics Data System (ADS)

    Hodges, J. S.; Yao, N. Y.; Maclaurin, D.; Rastogi, C.; Lukin, M. D.; Englund, D.

    2013-03-01

    Frequency standards based on atomic states, such as Rb or Cs vapors, or single-trapped ions, are the most precise measures of time. Here we propose and analyze a precision oscillator approach based upon spins in a solid-state system, in particular, the nitrogen-vacancy defect in single-crystal diamond. We show that this system can have stability approaching portable atomic standards and is readily incorporable as a chip-scale device. Using a pulsed spin-echo technique, we anticipate an Allan deviation of σy=10-7τ-1/2 limited by thermally-induced strain variations; in the absence of such thermal fluctuations, the system is limited by spin dephasing and harbors an Allan deviation nearing ˜10-12τ-1/2. Potential improvements based upon advanced diamond material processing, temperature stabilization, and nanophotonic engineering are discussed.

  1. Plasmonic resonators for enhanced diamond NV-center single photon sources.

    PubMed

    Bulu, Irfan; Babinec, Thomas; Hausmann, Birgit; Choy, Jennifer T; Loncar, Marko

    2011-03-14

    We propose a novel source of non-classical light consisting of plasmonic aperture with single-crystal diamond containing a single Nitrogen-Vacancy (NV) color center. Theoretical calculations of optimal structures show that these devices can simultaneously enhance optical pumping by a factor of 7, spontaneous emission rates by Fp~50 (Purcell factor), and offer collection efficiencies up to 40%. These excitation and collection enhancements occur over a broad range of wavelengths (~30 nm), and are independently tunable with device geometry, across the excitation (~530 nm) and emission (~600-800 nm) spectrum of the NV center. Implementing this system with top-down techniques in bulk diamond crystals will provide a scalable architecture for a myriad of diamond NV center applications.

  2. Analysis of diamond and diamondlike thin films using neutron depth profiling

    SciTech Connect

    Lamaze, G.P.

    1994-12-31

    Much progress in recent years has been made on the development of the technology for the production of thin films of diamond and diamond-like materials. Because of its physical properties, much interest has been shown in diamond as a material to construct semiconductor devices. Among the most important of these physical properties are the highest known thermal conductivity (20 W/cm {times} K), wide energy gap (5.5 eV), and high breakdown fields (107 V/cm). Natural type-II diamond crystals are known to be semiconductors where boron is the dominant acceptor with an activation energy of {approximately}0.3 eV. Recent efforts have concentrated on introducing the boron during the synthesis of thin diamond and diamond-like films. Fujimori et al. have shown that boron doping can be accomplished during the gas-phase growth by adding B{sub 2}H{sub 6} to the gas mixture. Knowing both the concentration and distribution of dopants in the diamond is important both for understanding the synthesis process and the correlation with the physical properties of the material. Neutron depth profiling is a procedure that allows the measurement of the concentration and distribution of the dopant (boron) in chemical vapor deposition diamonds.

  3. Effect of off-cut angle of hydrogen-terminated diamond(111) substrate on the quality of AlN towards high-density AlN/diamond(111) interface hole channel

    NASA Astrophysics Data System (ADS)

    Imura, Masataka; Banal, Ryan G.; Liao, Meiyong; Liu, Jiangwei; Aizawa, Takashi; Tanaka, Akihiro; Iwai, Hideo; Mano, Takaaki; Koide, Yasuo

    2017-01-01

    Single-crystal AlN/diamond heterojunction with high-density interface hole channel is successfully obtained by metal-organic vapor phase epitaxy. The AlN layer is epitaxially grown on hydrogen-terminated (H-)diamond(111) substrate. The thermal treatment of diamond substrate just before AlN growth under hydrogen and ammonia mixture environment at 1250 °C leads to surface sheet hole density as high as ˜1.0 × 1014 cm-2 without structural reconstruction of diamond surface. In addition, the use of smaller off-cut angle (0.20 ± 0.25°) H-diamond(111) substrate combined with this treatment enables to obtain single-crystal epitaxial AlN layer, which simultaneously acts as passivation of the surface hole channel with such a high density. The AlN/H-diamond(111) heterojunction reveals type-II staggered energy band configuration with valence band offset of ˜2.0 eV, which is suitable for the fabrication of p-channel field-effect transistor using AlN-gate-insulator/diamond heterojunction. These results are promising for the development of AlN/diamond hybrid power electronic devices.

  4. Simulation and bonding of dopants in nanocrystalline diamond.

    PubMed

    Barnard, A S; Russo, S P; Snook, I K

    2005-09-01

    The doping of the wide-band gap semiconductor diamond has led to the invention of many electronic and optoelectronic devices. Impurities can be introduced into diamond during chemical vapor deposition or high pressure-high temperature growth, resulting in materials with unusual physical and chemical properties. For electronic applications one of the main objectives in the doping of diamond is the production of p-type and n-type semiconductors materials; however, the study of dopants in diamond nanoparticles is considered important for use in nanodevices, or as qubits for quantum computing. Such devices require that bonding of dopants in nanodiamond must be positioned substitutionally at a lattice site, and must exhibit minimal or no possibility of diffusion to the nanocrystallite surface. In light of these requirements, a number of computational studies have been undertaken to examine the stability of various dopants in various forms of nanocrystalline diamond. Presented here is a review of some such studies, undertaken using quantum mechanical based simulation methods, to provide an overview of the crystal stability of doped nanodiamond for use in diamondoid nanodevices.

  5. Versatile alignment layer method for new types of liquid crystal photonic devices

    SciTech Connect

    Finnemeyer, V.; Bryant, D.; Lu, L.; Bos, P.; Reich, R.; Clark, H.; Berry, S.; Bozler, C.; Yaroshchuk, O.

    2015-07-21

    Liquid crystal photonic devices are becoming increasingly popular. These devices often present a challenge when it comes to creating a robust alignment layer in pre-assembled cells. In this paper, we describe a method of infusing a dye into a microcavity to produce an effective photo-definable alignment layer. However, previous research on such alignment layers has shown that they have limited stability, particularly against subsequent light exposure. As such, we further describe a method of utilizing a pre-polymer, infused into the microcavity along with the liquid crystal, to provide photostability. We demonstrate that the polymer layer, formed under ultraviolet irradiation of liquid crystal cells, has been effectively localized to a thin region near the substrate surface and provides a significant improvement in the photostability of the liquid crystal alignment. This versatile alignment layer method, capable of being utilized in devices from the described microcavities to displays, offers significant promise for new photonics applications.

  6. Solution-Grown Rubrene Crystals as Radiation Detecting Devices

    DOE PAGES

    Carman, Leslie; Martinez, H. Paul; Voss, Lars; ...

    2017-01-11

    There has been increased interest in organic semiconductors over the last decade because of their unique properties. Of these, 5, 6, 11, 12-tetraphenylnaphthacene (rubrene) has generated the most interest because of its high charge carrier mobility. In this paper, large single crystals with a volume of ~1 cm3 were grown from solution by a temperature reduction technique. The faceted crystals had flat surfaces and cm-scale, visually defect-free areas suitable for physical characterization. X-ray diffraction analysis indicates that solvent does not incorporate into the crystals and photoluminescence spectra are consistent with pristine, high-crystallinity rubrene. Furthermore, the response curve to pulsed opticalmore » illumination indicates that the solution grown crystals are of similar quality to those grown by physical vapor transport, albeit larger. The good quality of these crystals in combination with the improvement of electrical contacts by application of conductive polymer on the graphite electrodes have led to the clear observation of alpha particles with these rubrene detectors. Finally, preliminary results with a 252Cf source generate a small signal with the rubrene detector and may demonstrate that rubrene can also be used for detecting high-energy neutrons.« less

  7. Omnidirectional refractive devices for flexural waves based on graded phononic crystals

    SciTech Connect

    Torrent, Daniel Pennec, Yan; Djafari-Rouhani, Bahram

    2014-12-14

    Different omnidirectional refractive devices for flexural waves in thin plates are proposed and numerically analyzed. Their realization is explained by means phononic crystal plates, where a previously developed homogenization theory is employed for the design of graded index refractive devices. These devices consist of a circular cluster of inclusions with a properly designed gradient in their radius. With this approach, the Luneburg and Maxwell lenses and a family of beam splitters for flexural waves are proposed and analyzed. Results show that these devices work properly in a broadband frequency region, being therefore an efficient approach for the design of refractive devices specially interesting for nano-scale applications.

  8. Fundamental display properties of flexible devices containing polymer-stabilized ferroelectric liquid crystal between plastic substrates

    NASA Astrophysics Data System (ADS)

    Fujikake, Hideo; Murashige, Takeshi; Sato, Hiroto; Iino, Yoshiki; Kawakita, Masahiro; Kikuchi, Hiroshi

    2002-09-01

    We describe several fundamental display properties of a flexible ferroelectric liquid crystal device containing polymer fibers between thin plastic substrates. The composite film of liquid crystal and polymer was created from a solution of liquid crystal and monomer materials between the plastic substrates under ultraviolet light irradiation. The dynamic electrooptic response to analog voltage pulses was examined with an incidence of laser beam light, and its light modulation property exhibited good linearity in continuous gray-scale capability. The excellent spatial uniformity of liquid crystal alignment formed between the flexible substrates resulted in high-contrast light modulation, although slight spontaneous bending of liquid crystal alignment in the device plane was recognized. When the laser light beam was obliquely incident on the flexible display device, the measured transmittance revealed that the device has a wide viewing angle of more than 100 deg without contrast reversal. This is considered to be caused by the molecular switching in the device plane and the thin electrooptic layer in the display device.

  9. Process for making diamonds

    NASA Technical Reports Server (NTRS)

    Rasquin, J. R.; Estes, M. F. (Inventor)

    1973-01-01

    A description is given of a device and process for making industrial diamonds. The device is composed of an exponential horn tapering from a large end to a small end, with a copper plate against the large end. A magnetic hammer abuts the copper plate. The copper plate and magnetic hammer function together to create a shock wave at the large end of the horn. As the wave propagates to the small end, the extreme pressure and temperature caused by the wave transforms the graphite, present in an anvil pocket at the small end, into diamonds.

  10. Gradient index liquid crystal devices and method of fabrication thereof

    DOEpatents

    Lee, Jae-Cheul; Jacobs, Stephen

    1991-01-01

    Laser beam apodizers using cholesteric liquid crystals provides soft edge profile by use of two separate cholesteric liquid crystal mixtures with different selective reflection bands which in an overlap region have a gradient index where reflectivity changes as a function of position. The apodizers can be configured as a one-dimensional beam apod INTRODUCTION The U.S. government has rights in the invention under Contract No. DE-FC03-85DP40200 between the University of Rochester and the Department of Energy.

  11. Gradient index liquid crystal devices and method of fabrication thereof

    DOEpatents

    Lee, J.C.; Jacobs, S.

    1991-10-29

    Laser beam apodizers using cholesteric liquid crystals provides soft edge profile by use of two separate cholesteric liquid crystal mixtures with different selective reflection bands which in an overlap region have a gradient index where reflectivity changes as a function of position. The apodizers can be configured as a one-dimensional beam apod INTRODUCTION The U.S. government has rights in the invention under Contract No. DE-FC03-85DP40200 between the University of Rochester and the Department of Energy.

  12. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. A review of the state of the global industrial diamond industry in 1999 is presented. World consumption of industrial diamond has increased annually in recent years, with an estimated 500 million carats valued between $650 million and $800 million consumed in 1999. In 1999, the U.S. was the world's largest market for industrial diamond and was also one of the world's main producers; the others were Ireland, Russia, and South Africa. Uses of industrial diamonds are discussed, and prices of natural and synthetic industrial diamond are reported.

  13. PREFACE: Science's gem: diamond science 2009 Science's gem: diamond science 2009

    NASA Astrophysics Data System (ADS)

    Mainwood, Alison; Newton, Mark E.; Stoneham, Marshall

    2009-09-01

    dislocations. The understanding of the critical processes that are involved in CVD diamond growth are becoming clearer. Two papers in this issue model it on a microscopic scale [11, 12], and a further two explore the practical techniques [13, 14] in order to lead to improvement in deposition techniques. Diamond is emerging as an engineering material [3] with its cost no longer regarded as prohibitive even for some large-scale uses, such as the fusion reactor first wall. It is striking how few useful dopants can be put into diamond in a controlled way. The studies reported here, whether theory or experiment, concentrate on phosphorus [14] as the donor, and demonstrate that boron (although deep in semiconductor terms,) can act as the acceptor [3] in practical devices. Other impurities, with deeper levels, such as nitrogen [15], with the muon as an honorary hydrogen [16], are studied in depth. Here, many of the characterization techniques developed over several decades have been brought to bear, to attempt to quantify impurities and defects and ultimately assist in improving the crystal quality [17, 18, 15]. However, further, more novel techniques such as reflection anisotropy spectroscopy [19] and luminescence lifetime mapping [20] have been introduced to diamond in this issue, and one can see how such techniques might play a crucial role in areas such as systems for quantum information processing. The presence and migration of radiation damage defects [21, 22], vacancies and interstitials, and vacancy clusters can dramatically influence the exploitable properties of diamond [23, 24]. It is now apparent that charge traps not only impact on electrical properties, but also on the colour of diamond and that thermo-chromic and photo-chromic effects are more common than previously thought [25, 23]. Combinations, like the negatively charged nitrogen-vacancy centre, have proved impressive in quantum information studies [26]. But diamond has yet to benefit from the sort of dopant

  14. An Affordable Wet Chemical Route to Grow Conducting Hybrid Graphite-Diamond Nanowires: Demonstration by A Single Nanowire Device.

    PubMed

    Shellaiah, Muthaiah; Chen, Tin Hao; Simon, Turibius; Li, Liang-Chen; Sun, Kien Wen; Ko, Fu-Hsiang

    2017-09-11

    We report an affordable wet chemical route for the reproducible hybrid graphite-diamond nanowires (G-DNWs) growth from cysteamine functionalized diamond nanoparticles (ND-Cys) via pH induced self-assembly, which has been visualized through SEM and TEM images. Interestingly, the mechanistic aspects behind that self-assembly directed G-DNWs formation was discussed in details. Notably, above self-assembly was validated by AFM and TEM data. Further interrogations by XRD and Raman data were revealed the possible graphite sheath wrapping over DNWs. Moreover, the HR-TEM studies also verified the coexistence of less perfect sp(2) graphite layer wrapped over the sp(3) diamond carbon and the impurity channels as well. Very importantly, conductivity of hybrid G-DNWs was verified via fabrication of a single G-DNW. Wherein, the better conductivity of G-DNW portion L2 was found as 2.4 ± 1.92 × 10(-6) mS/cm and revealed its effective applicability in near future. In addition to note, temperature dependent carrier transport mechanisms and activation energy calculations were reported in details in this work. Ultimately, to demonstrate the importance of our conductivity measurements, the possible mechanism behind the electrical transport and the comparative account on electrical resistivities of carbon based materials were provided.

  15. High-mobility diamond

    NASA Astrophysics Data System (ADS)

    Landstrass, Maurice I.

    1994-04-01

    Recent improvements in the CVD diamond deposition process have made possible the fabrication of diamond photoconductive diodes with carrier mobility and lifetime exceeding the values typical of natural gemstones. One of the more surprising recent results is that the best room-temperature carrier properties have been measured on polycrystalline diamond films. The combined electron- hole mobility, as measured by transient photoconductivity at low carrier densities, is 4000 square centimeters per volt per second at electric field of 200 volts per centimeter and is comparable to that of the best single-crystal IIa natural diamonds. Carrier lifetimes measured under the same conditions are 150 picoseconds for the CVD diamond films. The collection distance within the diamond films, at the highest applied fields, is comparable to the average film grain size, indicative of little or no carrier scattering at grain boundaries. A comparison of SIMS measurements with electrical results suggest that impurity incorporation in the near grain boundary regions are responsible for controlling the carrier mobility.

  16. A new approach to kinetics study of the anhydrite crystallization at 373 K using a diamond anvil cell with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, C. J.; Zheng, H. F.

    2013-04-01

    A new approach to the kinetics study of anhydrite (CaSO4) crystallization has been performed in situ using a hydrothermal diamond anvil cell with Raman spectroscopy in the pressure range 896-1322 MPa and a constant temperature of 373 K. Transformed volume fraction X(t) was determined from Raman peak intensity of the sulfate ion in aqueous solution. The transformation-time plots display a sigmoidal shape with time, which indicates that the reaction rate is different at each stage of anhydrite crystallization. At 373 K, the rate constant k increases from 1.14 × 10-4 s-1 to 1.86 × 10-3 s-1, demonstrating a positive effect of pressure on the overall rate at isothermal condition. We first achieved the molar volume change (ΔVm) equal to -1.82 × 10-5 m3/mol in the course of anhydrite crystallization through Avrami kinetic theory, showing a process of reduction in volume at high pressure and high temperature. According to the exponent n derived from our experiments, a grain-boundary nucleation and diffusion-controlled growth kinetically dominates the crystallization of anhydrite.

  17. A new approach to kinetics study of the anhydrite crystallization at 373 K using a diamond anvil cell with Raman spectroscopy.

    PubMed

    Liu, C J; Zheng, H F

    2013-04-01

    A new approach to the kinetics study of anhydrite (CaSO4) crystallization has been performed in situ using a hydrothermal diamond anvil cell with Raman spectroscopy in the pressure range 896-1322 MPa and a constant temperature of 373 K. Transformed volume fraction X(t) was determined from Raman peak intensity of the sulfate ion in aqueous solution. The transformation-time plots display a sigmoidal shape with time, which indicates that the reaction rate is different at each stage of anhydrite crystallization. At 373 K, the rate constant k increases from 1.14 × 10(-4) s(-1) to 1.86 × 10(-3) s(-1), demonstrating a positive effect of pressure on the overall rate at isothermal condition. We first achieved the molar volume change (ΔVm) equal to -1.82 × 10(-5) m(3)∕mol in the course of anhydrite crystallization through Avrami kinetic theory, showing a process of reduction in volume at high pressure and high temperature. According to the exponent n derived from our experiments, a grain-boundary nucleation and diffusion-controlled growth kinetically dominates the crystallization of anhydrite.

  18. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1986-01-01

    It was established that the findings on elemental semiconductors Ge and Si regarding crystal growth, segregation, chemical composition, defect interactions, and materials properties-electronic properties relationships are not necessarily applicable to GaAs (and to other semiconductor compounds). In many instances totally unexpected relationships were found to prevail. It was further established that in compound semiconductors with a volatile constituent, control of stoichiometry is far more critical than any other crystal growth parameter. It was also shown that, due to suppression of nonstoichiometric fluctuations, the advantages of space for growth of semiconductor compounds extend far beyond those observed in elemental semiconductors. A novel configuration was discovered for partial confinement of GaAs melt in space which overcomes the two major problems associated with growth of semiconductors in total confinement. They are volume expansion during solidification and control of pressure of the volatile constituent. These problems are discussed in detail.

  19. Laser patterning of diamond films

    NASA Astrophysics Data System (ADS)

    Narayan, J.; Chen, X.

    1992-04-01

    Selective deposition and fine-scale patterning of hot filament deposited diamond films by the use of pulsed laser irradiation on silicon and copper substrates are reported. The substrates were abraded with diamond and alumina powders before hot-filament chemical vapor deposition. A drastic enhancement in diamond nucleation (using hot-filament chemical vapor deposition) was observed on specimens treated with diamond powder, whereas enhancement on specimens pretreated with alumina powder was relatively insignificant. It is found that the seeding of diamond crystals was substantially reduced by pulsed laser annealing/melting which removes the plastic damage as well as the seed crystals introduced by diamond powder pretreatment. The selective deposition or fine-scale patterning of diamond films was achieved either by a shadow masking or by scanning a focused laser beam to generate desired patterns. The nucleation can also be enhanced by laser deposition of thin films, such as diamond-like carbon and tungsten carbide (WC), and selective deposition and patterning achieved by controlled removal or deposition of the above films.

  20. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1979-01-01

    The optimization of space processing of GaAs is described. The detailed compositional, structural, and electronic characterization of GaAs on a macro- and microscale and the relationships between growth parameters and the properties of GaAs are among the factors discussed. The key parameters limiting device performance are assessed.