DOE Office of Scientific and Technical Information (OSTI.GOV)
Gromova, T. Yu., E-mail: duk@img.ras.ru; Demidyuk, I. V.; Kostrov, S. V.
2008-09-15
A protealysin precursor (the enzyme of the peptidase family M4) was crystallized for the first time. The crystal-growth conditions were found, and single crystals of the protein with dimensions of 0.3-0.5 mm were grown. The preliminary X-ray diffraction study of the enzyme was performed. The protealysin precursor was shown to crystallize in two crystal modifications suitable for the X-ray diffraction study of the three-dimensional structure of the protein molecule at atomic resolution.
Maximizing Macromolecule Crystal Size for Neutron Diffraction Experiments
NASA Technical Reports Server (NTRS)
Judge, R. A.; Kephart, R.; Leardi, R.; Myles, D. A.; Snell, E. H.; vanderWoerd, M.; Curreri, Peter A. (Technical Monitor)
2002-01-01
A challenge in neutron diffraction experiments is growing large (greater than 1 cu mm) macromolecule crystals. In taking up this challenge we have used statistical experiment design techniques to quickly identify crystallization conditions under which the largest crystals grow. These techniques provide the maximum information for minimal experimental effort, allowing optimal screening of crystallization variables in a simple experimental matrix, using the minimum amount of sample. Analysis of the results quickly tells the investigator what conditions are the most important for the crystallization. These can then be used to maximize the crystallization results in terms of reducing crystal numbers and providing large crystals of suitable habit. We have used these techniques to grow large crystals of Glucose isomerase. Glucose isomerase is an industrial enzyme used extensively in the food industry for the conversion of glucose to fructose. The aim of this study is the elucidation of the enzymatic mechanism at the molecular level. The accurate determination of hydrogen positions, which is critical for this, is a requirement that neutron diffraction is uniquely suited for. Preliminary neutron diffraction experiments with these crystals conducted at the Institute Laue-Langevin (Grenoble, France) reveal diffraction to beyond 2.5 angstrom. Macromolecular crystal growth is a process involving many parameters, and statistical experimental design is naturally suited to this field. These techniques are sample independent and provide an experimental strategy to maximize crystal volume and habit for neutron diffraction studies.
Jaimohan, S. M.; Naresh, M. D.; Arumugam, V.; Mandal, A. B.
2009-01-01
Birds often show efficient oxygen management in order to meet the special demands of their metabolism. However, the structural studies of avian haemoglobins (Hbs) are inadequate for complete understanding of the mechanism involved. Towards this end, purification, crystallization and preliminary X-ray diffraction studies have been carried out for parakeet Hb. Parakeet Hb was crystallized as the met form in low-salt buffered conditions after extracting haemoglobin from crude blood by microcentrifugation and purifying the sample by column chromatography. Good-quality crystals were grown from 10% PEG 3350 and a crystal diffracted to about 2.8 Å resolution. Preliminary diffraction data showed that the Hb crystal belonged to the monoclinic system (space group C2), with unit-cell parameters a = 110.68, b = 64.27, c = 56.40 Å, β = 109.35°. Matthews volume analysis indicated that the crystals contained a half-tetramer in the asymmetric unit. PMID:19851014
Jaimohan, S M; Naresh, M D; Arumugam, V; Mandal, A B
2009-10-01
Birds often show efficient oxygen management in order to meet the special demands of their metabolism. However, the structural studies of avian haemoglobins (Hbs) are inadequate for complete understanding of the mechanism involved. Towards this end, purification, crystallization and preliminary X-ray diffraction studies have been carried out for parakeet Hb. Parakeet Hb was crystallized as the met form in low-salt buffered conditions after extracting haemoglobin from crude blood by microcentrifugation and purifying the sample by column chromatography. Good-quality crystals were grown from 10% PEG 3350 and a crystal diffracted to about 2.8 A resolution. Preliminary diffraction data showed that the Hb crystal belonged to the monoclinic system (space group C2), with unit-cell parameters a = 110.68, b = 64.27, c = 56.40 A, beta = 109.35 degrees . Matthews volume analysis indicated that the crystals contained a half-tetramer in the asymmetric unit.
Phononic crystal diffraction gratings
NASA Astrophysics Data System (ADS)
Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent
2012-02-01
When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.
Boggon, T J; Helliwell, J R; Judge, R A; Olczak, A; Siddons, D P; Snell, E H; Stojanoff, V
2000-07-01
A comprehensive study of microgravity and ground-grown chicken egg-white lysozyme crystals is presented using synchrotron X-ray reciprocal-space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed reduced intrinsic mosaicities on average, but no differences in terms of strain over their ground-grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the ground-control case only a small volume of the crystal contributed to the intensity at the diffraction peak. The techniques prove to be highly complementary, with the reciprocal-space mapping providing a quantitative measure of the crystal mosaicity and strain (or variation in lattice spacing) and the topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out at the synchrotron.
NASA Technical Reports Server (NTRS)
Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.
2000-01-01
A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.
Optical Anisotropy of Photonic Crystals of Cubic Symmetry Induced by Multiple Diffraction of Light
NASA Astrophysics Data System (ADS)
Ukleev, T. A.; Shevchenko, N. N.; Iurasova, D. I.; Sel'kin, A. V.
2018-05-01
The optical spectra of Bragg reflection from opal-like photonic crystals under conditions of the resonant enhancement of the multiple diffraction of light have been studied experimentally and theoretically using the photonic crystal structures prepared of monodisperse polystyrene globules. It is shown that the reflection signal registered in mutually orthogonal configurations of the polarizer and analyzer is related to the intrinsic optical anisotropy of the crystals and is a specific manifestation of the multiple Bragg diffraction in three-dimensional photonic crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haishuang; Krysiak, Yaşar; Hoffmann, Kristin
The crystal structure and disorder phenomena of Al{sub 4}B{sub 2}O{sub 9}, an aluminum borate from the mullite-type family, were studied using automated diffraction tomography (ADT), a recently established method for collection and analysis of electron diffraction data. Al{sub 4}B{sub 2}O{sub 9}, prepared by sol-gel approach, crystallizes in the monoclinic space group C2/m. The ab initio structure determination based on three-dimensional electron diffraction data from single ordered crystals reveals that edge-connected AlO{sub 6} octahedra expanding along the b axis constitute the backbone. The ordered structure (A) was confirmed by TEM and HAADF-STEM images. Furthermore, disordered crystals with diffuse scattering along themore » b axis are observed. Analysis of the modulation pattern implies a mean superstructure (AAB) with a threefold b axis, where B corresponds to an A layer shifted by ½a and ½c. Diffraction patterns simulated for the AAB sequence including additional stacking disorder are in good agreement with experimental electron diffraction patterns. - Graphical abstract: Crystal structure and disorder phenomena of B-rich Al{sub 4}B{sub 2}O{sub 9} studied by automated electron diffraction tomography (ADT) and described by diffraction simulation using DISCUS. - Highlights: • Ab-initio structure solution by electron diffraction from single nanocrystals. • Detected modulation corresponding mainly to three-fold superstructure. • Diffuse diffraction streaks caused by stacking faults in disordered crystals. • Observed streaks explained by simulated electron diffraction patterns.« less
Silambarasan, A; Krishna Kumar, M; Thirunavukkarasu, A; Mohan Kumar, R; Umarani, P R
2015-01-25
An organic nonlinear optical bulk single crystal, Ammonium 3-carboxy-4-hydroxy benzenesulfonate monohydrate (ACHBS) was successfully grown by solution growth technique. Single crystal X-ray diffraction study confirms that, the grown crystal belongs to P21/c space group. Powder X-ray diffraction and high resolution X-ray diffraction analyses revealed the crystallinity of the grown crystal. Infrared spectral analysis showed the vibrational behavior of chemical bonds and its functional groups. The thermal stability and decomposition stages of the grown crystal were studied by TG-DTA analysis. UV-Visible transmittance studies showed the transparency region and cut-off wavelength of the grown crystal. The third-order nonlinear optical susceptibility of the grown crystal was estimated by Z-scan technique using He-Ne laser source. The mechanical property of the grown crystal was studied by using Vicker's microhardness test. Copyright © 2014 Elsevier B.V. All rights reserved.
Glazer, A M; Collins, S P; Zekria, D; Liu, J; Golshan, M
2004-03-01
In 1947 Kathleen Lonsdale conducted a series of experiments on X-ray diffraction using a divergent beam external to a crystal sample. Unlike the Kossel technique, where divergent X-rays are excited by the presence of fluorescing atoms within the crystal, the use of an external divergent source made it possible to study non-fluorescing crystals. The resulting photographs not only illustrated the complexity of X-ray diffraction from crystals in a truly beautiful way, but also demonstrated unprecedented experimental precision. This long-forgotten work is repeated here using a synchrotron radiation source and, once again, considerable merit is found in Lonsdale's technique. The results of this experiment suggest that, through the use of modern 'third-generation' synchrotron sources, divergent-beam diffraction could soon enjoy a renaissance for high-precision lattice-parameter determination and the study of crystal perfection.
Renuka, N; Ramesh Babu, R; Vijayan, N; Vasanthakumar, Geetha; Krishna, Anuj; Ramamurthi, K
2015-02-25
In the present work, pure and metal substituted L-Prolinium trichloroacetate (LPTCA) single crystals were grown by slow evaporation method. The grown crystals were subjected to single crystal X-ray diffraction (XRD), powder X-ray diffraction, FTIR, UV-Visible-NIR, hardness, photoluminescence and dielectric studies. The dopant concentration in the crystals was measured by inductively coupled plasma (ICP) analysis. Single crystal X-ray diffraction studies of the pure and metal substituted LPTCA revealed that the grown crystals belong to the trigonal system. Ni(2+) and Co(2+) doping slightly altered the lattice parameters of LPTCA without affecting the basic structure of the crystal. FTIR spectral analysis confirms the presence of various functional groups in the grown crystals. The mechanical behavior of pure and doped crystals was analyzed by Vickers's microhardness test. The optical transmittance, dielectric and photoluminescence properties of the pure and doped crystals were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.
Growing Larger Crystals for Neutron Diffraction
NASA Technical Reports Server (NTRS)
Pusey, Marc
2003-01-01
Obtaining crystals of suitable size and high quality has been a major bottleneck in macromolecular crystallography. With the advent of advanced X-ray sources and methods the question of size has rapidly dwindled, almost to the point where if one can see the crystal then it was big enough. Quality is another issue, and major national and commercial efforts were established to take advantage of the microgravity environment in an effort to obtain higher quality crystals. Studies of the macromolecule crystallization process were carried out in many labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. While technological improvements are resulting in a diminishing of the minimum crystal size required, neutron diffraction structural studies still require considerably larger crystals, by several orders of magnitude, than X-ray studies. From a crystal growth physics perspective there is no reason why these 'large' crystals cannot be obtained: the question is generally more one of supply than limitations mechanism. This talk will discuss our laboratory s current model for macromolecule crystal growth, with highlights pertaining to the growth of crystals suitable for neutron diffraction studies.
Diffraction and Imaging Study of Imperfections of Protein Crystals with Coherent X-rays
NASA Technical Reports Server (NTRS)
Hu, Z. W.; Thomas, B. R.; Chernov, A. A.; Chu, Y. S.; Lai, B.
2004-01-01
High angular-resolution x-ray diffraction and phase contrast x-ray imaging were combined to study defects and perfection of protein crystals. Imperfections including line defects, inclusions and other microdefects were observed in the diffraction images of a uniformly grown lysozyme crystal. The observed line defects carry distinct dislocation features running approximately along the <110> growth front and have been found to originate mostly in a central growth area and occasionally in outer growth regions. Slow dehydration led to the broadening of a fairly symmetric 4 4 0 rocking curve by a factor of approximately 2.6, which was primarily attributed to the dehydration-induced microscopic effects that are clearly shown in diffraction images. X-ray imaging and diffraction characterization of the quality of apoferritin crystals will also be discussed in the presentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathyalakshmi, R.; Bhagavannarayana, G.; Ramasamy, P.
L-(+)-Glutamic acid hydro bromide, an isomorphic salt of L-glutamic acid hydrochloride, was synthesized and the synthesis was confirmed using Fourier transform infrared analysis. Solubility of the material in water was determined. L-Glutamic acid hydro bromide crystals were grown by low temperature solution growth using the solvent evaporation technique. Single crystal X-ray diffraction studies were carried out and the cell parameters, atomic co-ordinates, bond lengths and bond angles were reported. High-resolution X-ray diffraction studies were carried out and good crystallinity for the grown crystal was observed from the diffraction curve. The grown crystals were subjected to dielectric studies. Ultraviolet-visible-near infrared spectralmore » analysis shows good optical transmission in the visible and infrared region of the grown crystals. The second harmonic generation efficiency of L-glutamic acid hydro bromide crystal was determined using the Kurtz powder test and it was found that it had efficiency comparable with that of the potassium di-hydrogen phosphate crystal.« less
Comparative Analysis of Thaumatin Crystals Grown on Earth and in Microgravity. Experiment 23
NASA Technical Reports Server (NTRS)
Ng, Joseph D.; Lorber, Bernard; Giege, Richard; Koszelak, Stanley; Day, John; Greenwood, Aaron; McPherson, Alexander
1998-01-01
The protein thaumatin was studied as a model macromolecule for crystallization in microgravity environment experiments conducted on two U.S. Space Shuttle missions (second United States Microgravity Laboratory (USML-2) and Life and Microgravity Spacelab (LMS)). In this investigation we evaluated and compared the quality of space- and Earth-grown thaumatin crystals using x-ray diffraction analysis and characterized them according to crystal size, diffraction resolution limit, and mosaicity. Two different approaches for growing thaumatin crystals in the microgravity environment, dialysis and liquid-liquid diffusion, were employed as a joint experiment by our two investigative teams. Thaumatin crystals grown under a microgravity environment were generally larger in volume with fewer total crystals. They diffracted to significantly higher resolution and with improved diffraction properties as judged by relative Wilson plots. The mosaicity for space-grown crystals was significantly less than for those grown on Earth. Increasing concentrations of protein in the crystallization chambers under microgravity lead to larger crystals. The data presented here lend further support to the idea that protein crystals of improved quality can be obtained in a microgravity environment.
Observing the overall rocking motion of a protein in a crystal
NASA Astrophysics Data System (ADS)
Ma, Peixiang; Xue, Yi; Coquelle, Nicolas; Haller, Jens D.; Yuwen, Tairan; Ayala, Isabel; Mikhailovskii, Oleg; Willbold, Dieter; Colletier, Jacques-Philippe; Skrynnikov, Nikolai R.; Schanda, Paul
2015-10-01
The large majority of three-dimensional structures of biological macromolecules have been determined by X-ray diffraction of crystalline samples. High-resolution structure determination crucially depends on the homogeneity of the protein crystal. Overall `rocking' motion of molecules in the crystal is expected to influence diffraction quality, and such motion may therefore affect the process of solving crystal structures. Yet, so far overall molecular motion has not directly been observed in protein crystals, and the timescale of such dynamics remains unclear. Here we use solid-state NMR, X-ray diffraction methods and μs-long molecular dynamics simulations to directly characterize the rigid-body motion of a protein in different crystal forms. For ubiquitin crystals investigated in this study we determine the range of possible correlation times of rocking motion, 0.1-100 μs. The amplitude of rocking varies from one crystal form to another and is correlated with the resolution obtainable in X-ray diffraction experiments.
NASA Astrophysics Data System (ADS)
Boyko, K. M.; Nikolaeva, A. Yu.; Kachalova, G. S.; Bonchuk, A. N.; Popov, V. O.
2017-11-01
The spatial organization of the genome is controlled by a special class of architectural proteins, including proteins containing BTB domains that are able to dimerize or multimerize. The centrosomal protein 190 is one of such architectural proteins. The purification, crystallization, and preliminary X-ray diffraction study of the BTB domain of the centrosomal protein 190 are reported. The crystallization conditions were found by the vapor-diffusion technique. The crystals diffracted to 1.5 Å resolution and belonged to sp. gr. P3221. The structure was solved by the molecular replacement method. The structure refinement is currently underway.
Controlled dehydration improves the diffraction quality of two RNA crystals.
Park, HaJeung; Tran, Tuan; Lee, Jun Hyuck; Park, Hyun; Disney, Matthew D
2016-11-03
Post-crystallization dehydration methods, applying either vapor diffusion or humidity control devices, have been widely used to improve the diffraction quality of protein crystals. Despite the fact that RNA crystals tend to diffract poorly, there is a dearth of reports on the application of dehydration methods to improve the diffraction quality of RNA crystals. We use dehydration techniques with a Free Mounting System (FMS, a humidity control device) to recover the poor diffraction quality of RNA crystals. These approaches were applied to RNA constructs that model various RNA-mediated repeat expansion disorders. The method we describe herein could serve as a general tool to improve diffraction quality of RNA crystals to facilitate structure determinations.
Preparation and Analysis of RNA Crystals
NASA Technical Reports Server (NTRS)
Todd, Paul
2000-01-01
The crystallization of RiboNucleic Acids (RNA) was studied from the standpoint of mechanisms of crystal growth in three tasks: (1) preparation of high-quality crystals of oligonuclotides for X-ray diffraction, (2) finding pathways to the growth of high-quality crystals for X-ray diffraction and (3) investigation of mechanisms of action of inertial acceleration on crystal growth. In these tasks: (1) RNA crystals were prepared and studied by X-ray diffraction; (2) a pathway to high-quality crystals was discovered and characterized; a combination of kinetic and equilibrium factors could be optimized as described below; and (3) an interplay between purity and gravity was found in a combination of space and ground experiments with nucleic acids and proteins. Most significantly, the rate of concentration of precipitant and RNA can be controlled by membrane-based methods of water removal or by diffusion of multivalent cations across an interface stabilized by a membrane. Oligonucleotide solutions are electrokinetically stabilized colloids, and crystals can form by the controlled addition of multivalent cations.
Highly efficient acousto-optic diffraction in Sn2P2S6 crystals.
Martynyuk-Lototska, I Yu; Mys, O G; Grabar, A A; Stoika, I M; Vysochanskii, Yu M; Vlokh, R O
2008-01-01
We have studied the acousto-optic (AO) diffraction in Sn2P2S6 crystals and found that they manifest high values of an AO figure of merit. The above crystals may therefore be used as highly efficient materials in different AO applications.
Three-dimensional Bragg diffraction in growth-disordered opals
NASA Astrophysics Data System (ADS)
Baryshev, A. V.; Kaplyanskii, Alexander A.; Kosobukin, Vladimir A.; Limonov, M. F.; Samusev, K. B.; Usvyat, D. E.
2003-06-01
After artificial opals as well as opal-based infilled and inverted composites are considered to be promising representatives of photonic crystal materials. Earlier, photonic stop gaps in opals were studied mainly in transmission or specular reflection geometries corresponding to "one-dimensional" Bragg diffraction. On the contrary, this work was aimed at observing the typical patterns of optical Bragg diffraction in which phenomenon opal crystal structure acts as a three-dimensional diffraction grating. Although our experiments were performed for artificial opals possessing unavoidable imperfections a well-pronounced diffraction peaks were observed characteristic of a crystal structure. Each of the diffraction maxima reveals a photonic stop gap in the specified direction, while the spectral width of the peak is a measure of the photonic stop gap width.
Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals
Dao, E. Han; Sierra, Raymond G.; Laksmono, Hartawan; ...
2015-04-30
In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecondmore » X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.« less
Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haugh, M. J., E-mail: haughmj@nv.doe.gov; Jacoby, K. D.; Wu, M.
2014-11-15
This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals thatmore » we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishitani, Yuichi; Maruyama, Daisuke; Nonaka, Tsuyoshi
2006-04-01
Preliminary X-ray diffraction studies on N-acetylglucosamine-phosphate mutase from C. albicans are reported. N-acetylglucosamine-phosphate mutase (AGM1) is an essential enzyme in the synthesis of UDP-N-acetylglucosamine (UDP-GlcNAc) in eukaryotes and belongs to the α-d-phosphohexomutase superfamily. AGM1 from Candida albicans (CaAGM1) was purified and crystallized by the sitting-drop vapour-diffusion method. The crystals obtained belong to the primitive monoclinic space group P2{sub 1}, with unit-cell parameters a = 60.2, b = 130.2, c = 78.0 Å, β = 106.7°. The crystals diffract X-rays to beyond 1.8 Å resolution using synchrotron radiation.
Growth and characterization of organic NLO material: Clobetasol propionate
NASA Astrophysics Data System (ADS)
Purusothaman, R.; Rajesh, P.; Ramasamy, P.
2015-06-01
Single crystals of clobetasol propionate (CP) have been grown by slow evaporation solution technique using mixed solvent of methanol-acetone. The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm their lattice parameter and space group. The powder X-ray diffraction pattern of the grown CP has been indexed. Thermal analysis was performed to study the thermal stability of the grown crystals. Photoluminescence spectrum shows broad emission peak observed at 421 nm. Nonlinear optical studies were carried out for the grown crystal and second harmonic generation (SHG) efficiency was found in the crystal.
Inorganic pyrophosphatase crystals from Thermococcus thioreducens for X-ray and neutron diffraction.
Hughes, Ronny C; Coates, Leighton; Blakeley, Matthew P; Tomanicek, Steve J; Langan, Paul; Kovalevsky, Andrey Y; García-Ruiz, Juan M; Ng, Joseph D
2012-12-01
Inorganic pyrophosphatase (IPPase) from the archaeon Thermococcus thioreducens was cloned, overexpressed in Escherichia coli, purified and crystallized in restricted geometry, resulting in large crystal volumes exceeding 5 mm3. IPPase is thermally stable and is able to resist denaturation at temperatures above 348 K. Owing to the high temperature tolerance of the enzyme, the protein was amenable to room-temperature manipulation at the level of protein preparation, crystallization and X-ray and neutron diffraction analyses. A complete synchrotron X-ray diffraction data set to 1.85 Å resolution was collected at room temperature from a single crystal of IPPase (monoclinic space group C2, unit-cell parameters a=106.11, b=95.46, c=113.68 Å, α=γ=90.0, β=98.12°). As large-volume crystals of IPPase can be obtained, preliminary neutron diffraction tests were undertaken. Consequently, Laue diffraction images were obtained, with reflections observed to 2.1 Å resolution with I/σ(I) greater than 2.5. The preliminary crystallographic results reported here set in place future structure-function and mechanism studies of IPPase.
Measuring the X-ray Resolving Power of Bent Potassium Acid Phthalate Diffraction Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haugh, M. J.; Wu, M.; Jacoby, K. D.
2014-11-01
This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals thatmore » we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories (SNL) in Albuquerque, NM. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a dual goniometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.« less
Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystalsa)
NASA Astrophysics Data System (ADS)
Haugh, M. J.; Wu, M.; Jacoby, K. D.; Loisel, G. P.
2014-11-01
This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.
X-ray characterization of curved crystals for hard x-ray astronomy
NASA Astrophysics Data System (ADS)
Buffagni, Elisa; Bonnini, Elisa; Ferrari, Claudio; Virgilli, Enrico; Frontera, Filippo
2015-05-01
Among the methods to focus photons the diffraction in crystals results as one of the most effective for high energy photons. An assembling of properly oriented crystals can form a lens able to focus x-rays at high energy via Laue diffraction in transmission geometry; this is a Laue lens. The x-ray diffraction theory provides that the maximum diffraction efficiency is achieved in ideal mosaic crystals, but real mosaic crystals show diffraction efficiencies several times lower than the ideal case due to technological problems. An alternative and convenient approach is the use of curved crystals. We have recently optimized an efficient method based on the surface damage of crystals to produce self-standing uniformly curved Si, GaAs and Ge tiles of thickness up to 2-3 mm and curvature radii R down to a few meters. We show that, for curved diffracting planes, such crystals have a diffraction efficiency nearly forty times higher than the diffraction efficiency of perfect similar flat crystals, thus very close to that of ideal mosaic crystals. Moreover, in an alternative configuration where the diffracting planes are perpendicular to the curved ones, a focusing effect occurs and will be shown. These results were obtained for several energies between 17 and 120 keV with lab sources or at high energy facilities such as LARIX at Ferrara (Italy), ESRF at Grenoble (France), and ANKA at Karlsruhe (Germany).
Rose, A S J Lucia; Selvarajan, P; Perumal, S
2011-10-15
Phosphoric acid admixtured L-alanine (PLA) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 18 mm×12 mm×8 mm have been obtained in 28 days. The grown crystals were colorless and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV-visible transmittance spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied. Copyright © 2011 Elsevier B.V. All rights reserved.
Towards protein-crystal centering using second-harmonic generation (SHG) microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kissick, David J.; Dettmar, Christopher M.; Becker, Michael
2013-05-01
The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals has been explored. The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals was explored. These studies included (i) comparison of microcrystal positions in cryoloops as determined by SHG imaging and by X-ray diffraction rastering and (ii) X-ray structure determinations of selected proteins to investigate the potential for laser-induced damage from SHG imaging. In studies using β{sub 2} adrenergic receptor membrane-protein crystals prepared in lipidic mesophase, the crystal locations identified by SHGmore » images obtained in transmission mode were found to correlate well with the crystal locations identified by raster scanning using an X-ray minibeam. SHG imaging was found to provide about 2 µm spatial resolution and shorter image-acquisition times. The general insensitivity of SHG images to optical scatter enabled the reliable identification of microcrystals within opaque cryocooled lipidic mesophases that were not identified by conventional bright-field imaging. The potential impact of extended exposure of protein crystals to five times a typical imaging dose from an ultrafast laser source was also assessed. Measurements of myoglobin and thaumatin crystals resulted in no statistically significant differences between structures obtained from diffraction data acquired from exposed and unexposed regions of single crystals. Practical constraints for integrating SHG imaging into an active beamline for routine automated crystal centering are discussed.« less
Yanagisawa, Yasuhide; Chatake, Toshiyuki; Chiba-Kamoshida, Kaori; Naito, Sawa; Ohsugi, Tadanori; Sumi, Hiroyuki; Yasuda, Ichiro; Morimoto, Yukio
2010-12-01
Nattokinase is a single polypeptide chain composed of 275 amino acids (molecular weight 27,724) which displays strong fibrinolytic activity. Moreover, it can activate other fibrinolytic enzymes such as pro-urokinase and tissue plasminogen activator. In the present study, native nattokinase from Bacillus subtilis natto was purified using gel-filtration chromatography and crystallized to give needle-like crystals which could be used for X-ray diffraction experiments. The crystals belonged to space group C2, with unit-cell parameters a=74.3, b=49.9, c=56.3 Å, β=95.2°. Diffraction images were processed to a resolution of 1.74 Å with an Rmerge of 5.2% (15.3% in the highest resolution shell) and a completeness of 69.8% (30.0% in the highest resolution shell). This study reports the first X-ray diffraction analysis of nattokinase.
Yanagisawa, Yasuhide; Chatake, Toshiyuki; Chiba-Kamoshida, Kaori; Naito, Sawa; Ohsugi, Tadanori; Sumi, Hiroyuki; Yasuda, Ichiro; Morimoto, Yukio
2010-01-01
Nattokinase is a single polypeptide chain composed of 275 amino acids (molecular weight 27 724) which displays strong fibrinolytic activity. Moreover, it can activate other fibrinolytic enzymes such as pro-urokinase and tissue plasminogen activator. In the present study, native nattokinase from Bacillus subtilis natto was purified using gel-filtration chromatography and crystallized to give needle-like crystals which could be used for X-ray diffraction experiments. The crystals belonged to space group C2, with unit-cell parameters a = 74.3, b = 49.9, c = 56.3 Å, β = 95.2°. Diffraction images were processed to a resolution of 1.74 Å with an R merge of 5.2% (15.3% in the highest resolution shell) and a completeness of 69.8% (30.0% in the highest resolution shell). This study reports the first X-ray diffraction analysis of nattokinase. PMID:21139221
Crystal structure and density of helium to 232 kbar
NASA Technical Reports Server (NTRS)
Mao, H. K.; Wu, Y.; Jephcoat, A. P.; Hemley, R. J.; Bell, P. M.; Bassett, W. A.
1988-01-01
The properties of helium and hydrogen at high pressure are topics of great interest to the understanding of planetary interiors. These materials constitute 95 percent of the entire solar system. A technique was presented for the measurement of X-ray diffraction from single-crystals of low-Z condenses gases in a diamond-anvil cell at high pressure. The first such single-crystal X-ray diffraction measurements on solid hydrogen to 26.5 GPa were presented. The application of this technique to the problem of the crystal structure, equation of state, and phase diagram of solid helium is reported. Crucial for X-ray diffraction studies of these materials is the use of a synchrotron radiation source which provides high brillance, narrow collimation of the incident and diffracted X-ray beams to reduce the background noise, and energy-dispersive diffraction techniques with polychromatic (white) radiation, which provides high detection efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughlan, H. D.; Darmanin, C.; Kirkwood, H. J.
2016-03-14
Three-dimensional imaging of protein crystals during X-ray diffraction experiments opens up a range of possibilities for optimising crystal quality and gaining new insights into the fundamental processes that drive radiation damage. Obtaining this information at the appropriate lengthscales however is extremely challenging. One approach that has been recently demonstrated as a promising avenue for charactering the size and shape of protein crystals at nanometre lengthscales is Bragg Coherent Diffractive Imaging (BCDI). BCDI is a recently developed technique that is able to recover the phase of the continuous diffraction intensity signal around individual Bragg peaks. When data is collected at multiplemore » points on a rocking curve a Reciprocal Space Map (RSM) can be assembled and then inverted using BCDI to obtain a three-dimensional image of the crystal. The first demonstration of two-dimensional BCDI of protein crystals was reported by Boutet at al., recently this work was extended to the study of radiation damage of micron-sized crystals. Here we present the first three-dimensional reconstructions of a Lysozyme protein crystal using BDI. The results are validated against RSM and TEM data and have implications for both radiation damage studies and for developing new approaches to structure retrieval from micron-sized protein crystals.« less
Imperfection and radiation damage in protein crystals studied with coherent radiation
Nave, Colin; Sutton, Geoff; Evans, Gwyndaf; Owen, Robin; Rau, Christoph; Robinson, Ian; Stuart, David Ian
2016-01-01
Fringes and speckles occur within diffraction spots when a crystal is illuminated with coherent radiation during X-ray diffraction. The additional information in these features provides insight into the imperfections in the crystal at the sub-micrometre scale. In addition, these features can provide more accurate intensity measurements (e.g. by model-based profile fitting), detwinning (by distinguishing the various components), phasing (by exploiting sampling of the molecular transform) and refinement (by distinguishing regions with different unit-cell parameters). In order to exploit these potential benefits, the features due to coherent diffraction have to be recorded and any change due to radiation damage properly modelled. Initial results from recording coherent diffraction at cryotemperatures from polyhedrin crystals of approximately 2 µm in size are described. These measurements allowed information about the type of crystal imperfections to be obtained at the sub-micrometre level, together with the changes due to radiation damage. PMID:26698068
Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry.
Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei
2017-04-01
X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La 3 Ga 5 SiO 14 ) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space-time modulation of an X-ray beam.
Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry1
Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei
2017-01-01
X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La3Ga5SiO14) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space–time modulation of an X-ray beam. PMID:28381976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Tsutomu; Ishikawa, Kazuhiko; Hagihara, Yoshihisa
The expression, purification and preliminary X-ray diffraction studies of a chitin-binding domain of the chitinase from P. furiosus are reported. The crystallization and preliminary X-ray diffraction analysis of the chitin-binding domain of chitinase from a hyperthermophilic archaeon, Pyrococcus furiosus, are reported. The recombinant protein was prepared using an Escherichia coli overexpression system and was crystallized by the hanging-drop vapour-diffusion method. An X-ray diffraction data set was collected to 1.70 Å resolution. The crystal belonged to space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2. The unit-cell parameters were determined to be a = b = 48.8, c = 85.0 Å.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aravinth, K., E-mail: anandcgc@gmail.com; Babu, G. Anandha, E-mail: anandcgc@gmail.com; Ramasamy, P., E-mail: anandcgc@gmail.com
2014-04-24
4-chloro-3-nitrobenzophenone (4C3N) has been grown by using vertical Bridgman technique. The grown crystal was confirmed by Powder X-ray diffraction analysis. The crystalline perfection of the grown crystal was examined by high-resolution X-ray diffraction study. The fluorescence spectra of grown 4C3N single crystals exhibit emission peak at 575 nm. The micro hardness measurements were used to analyze the mechanical property of the grown crystal.
Bandyopadhyay, Rebanta; Selbo, Jon; Amidon, Gregory E; Hawley, Michael
2005-11-01
This study investigates the effects of crystal lattice deformation on the powder X-ray diffraction (PXRD) patterns of compressed polycrystalline specimen (compacts/tablets) made from molecular, crystalline powders. The displacement of molecules and the corresponding adjustment of interplanar distances (d-spacings) between diffracting planes of PNU-288034 and PNU-177553, which have crystal habits with a high aspect ratio favoring preferred orientation during tableting, are demonstrated by shifts in the diffracted peak positions. The direction of shift in diffracted peak positions suggests a reduction of interplanar d-spacing in the crystals of PNU-288034 and PNU-177553 following compaction. There is also a general reduction of peak intensities following compression at the different compressive loads. The lattice strain representing the reduction in d-spacing is proportional to the original d-spacing of the uncompressed sample suggesting that, as with systems that obey a simple Hooke's law relationship, the further apart the planes of atoms/molecules within the lattice are, the easier it is for them to approach each other under compressive stresses. For a third model compound comprising more equant-shaped crystals of PNU-141659, the shift in diffracted peak positions are consistent with an expansion of lattice spacing after compression. This apparent anomaly is supported by the PXRD studies of the bulk powder consisting of fractured crystals where also, the shift in peak position suggests expansion of the lattice planes. Thus the crystals of PNU-141659 may be fracturing under the compressive loads used to produce the compacts. Additional studies are underway to relate the PXRD observations with the bulk tableting properties of these model compounds.
Ok, Kang Min; Lee, Dong Woo; Smith, Ronald I; O'Hare, Dermot
2012-10-31
In the first in situ neutron powder diffraction study of a supercritical hydrothermal synthesis, the crystallization of KTiOPO(4) (KTP) at 450 °C and 380 bar has been investigated. The time-resolved diffraction data suggest that the crystallization of KTP occurs by the reaction between dissolved K(+)(aq), PO(4)(3-)(aq), and [Ti(OH)(x)]((4-x)+)(aq) species.
Structural and optical properties of WTe2 single crystals synthesized by DVT technique
NASA Astrophysics Data System (ADS)
Dixit, Vijay; Vyas, Chirag; Pathak, V. M.; Soalanki, G. K.; Patel, K. D.
2018-05-01
Layered transition metal di-chalcogenide (LTMDCs) crystals have attracted much attention due to their potential in optoelectronic device applications recently due to realization of their monolayer based structures. In the present investigation we report growth of WTe2 single crystals by direct vapor transport (DVT) technique. These crystals are then characterized by energy dispersive analysis of x-rays (EDAX) to study stoichiometric composition after growth. The structural properties are studied by x-ray diffraction (XRD) and selected area electron diffraction (SAED) is used to confirm orthorhombic structure of grown WTe2 crystal. Surface morphological properties of the crystals are also studied by scanning electron microscope (SEM). The optical properties of the grown crystals are studied by UV-Visible spectroscopy which gives direct band gap of 1.44 eV for grown WTe2 single crystals.
DIFFRACTION FROM MODEL CRYSTALS
USDA-ARS?s Scientific Manuscript database
Although calculating X-ray diffraction patterns from atomic coordinates of a crystal structure is a widely available capability, calculation from non-periodic arrays of atoms has not been widely applied to cellulose. Non-periodic arrays result from modeling studies that, even though started with at...
Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc
2015-06-01
Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and 'relaxed' after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal.
Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc
2015-01-01
Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and ‘relaxed’ after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal. PMID:26089755
Use of a miniature diamond-anvil cell in high-pressure single-crystal neutron Laue diffraction
Binns, Jack; Kamenev, Konstantin V.; McIntyre, Garry J.; Moggach, Stephen A.; Parsons, Simon
2016-01-01
The first high-pressure neutron diffraction study in a miniature diamond-anvil cell of a single crystal of size typical for X-ray diffraction is reported. This is made possible by modern Laue diffraction using a large solid-angle image-plate detector. An unexpected finding is that even reflections whose diffracted beams pass through the cell body are reliably observed, albeit with some attenuation. The cell body does limit the range of usable incident angles, but the crystallographic completeness for a high-symmetry unit cell is only slightly less than for a data collection without the cell. Data collections for two sizes of hexamine single crystals, with and without the pressure cell, and at 300 and 150 K, show that sample size and temperature are the most important factors that influence data quality. Despite the smaller crystal size and dominant parasitic scattering from the diamond-anvil cell, the data collected allow a full anisotropic refinement of hexamine with bond lengths and angles that agree with literature data within experimental error. This technique is shown to be suitable for low-symmetry crystals, and in these cases the transmission of diffracted beams through the cell body results in much higher completeness values than are possible with X-rays. The way is now open for joint X-ray and neutron studies on the same sample under identical conditions. PMID:27158503
NASA Astrophysics Data System (ADS)
Boyko, K. M.; Nikolaeva, A. Yu.; Kachalova, G. S.; Bonchuk, A. N.; Dorovatovskii, P. V.; Popov, V. O.
2017-11-01
The Drosophila genome has several dozens of transcription factors (TTK group) containing BTB domains assembled into octamers. The LOLA protein belongs to this family. The purification, crystallization, and preliminary X-ray diffraction and small-angle X-ray scattering (SAXS) studies of the BTB domain of this protein are reported. The crystallization conditions were found by the vapor-diffusion technique. A very low diffraction resolution (8.7 Å resolution) of the crystals was insufficient for the determination of the threedimensional structure of the BTB domain. The SAXS study demonstrated that the BTB domain of the LOLA protein exists as an octamer in solution.
Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Matthias; Carlson, David B.; Hunter, Mark
2014-02-28
Here we present femtosecond x-ray diffraction patterns from two-dimensional (2-D) protein crystals using an x-ray free electron laser (XFEL). To date it has not been possible to acquire x-ray diffraction from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permits a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy methodology at the Linac Coherent Light Source, we observed Bragg diffraction to better than 8.5 Å resolution for two different 2-D protein crystal samples that were maintained at room temperature. These proof-of-principle results show promisemore » for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.« less
Diffraction Correlation to Reconstruct Highly Strained Particles
NASA Astrophysics Data System (ADS)
Brown, Douglas; Harder, Ross; Clark, Jesse; Kim, J. W.; Kiefer, Boris; Fullerton, Eric; Shpyrko, Oleg; Fohtung, Edwin
2015-03-01
Through the use of coherent x-ray diffraction a three-dimensional diffraction pattern of a highly strained nano-crystal can be recorded in reciprocal space by a detector. Only the intensities are recorded, resulting in a loss of the complex phase. The recorded diffraction pattern therefore requires computational processing to reconstruct the density and complex distribution of the diffracted nano-crystal. For highly strained crystals, standard methods using HIO and ER algorithms are no longer sufficient to reconstruct the diffraction pattern. Our solution is to correlate the symmetry in reciprocal space to generate an a priori shape constraint to guide the computational reconstruction of the diffraction pattern. This approach has improved the ability to accurately reconstruct highly strained nano-crystals.
Sawaya, Michael R.; Cascio, Duilio; Gingery, Mari; Rodriguez, Jose; Goldschmidt, Lukasz; Colletier, Jacques-Philippe; Messerschmidt, Marc M.; Boutet, Sébastien; Koglin, Jason E.; Williams, Garth J.; Brewster, Aaron S.; Nass, Karol; Hattne, Johan; Botha, Sabine; Doak, R. Bruce; Shoeman, Robert L.; DePonte, Daniel P.; Park, Hyun-Woo; Federici, Brian A.; Sauter, Nicholas K.; Schlichting, Ilme; Eisenberg, David S.
2014-01-01
It has long been known that toxins produced by Bacillus thuringiensis (Bt) are stored in the bacterial cells in crystalline form. Here we describe the structure determination of the Cry3A toxin found naturally crystallized within Bt cells. When whole Bt cells were streamed into an X-ray free-electron laser beam we found that scattering from other cell components did not obscure diffraction from the crystals. The resolution limits of the best diffraction images collected from cells were the same as from isolated crystals. The integrity of the cells at the moment of diffraction is unclear; however, given the short time (∼5 µs) between exiting the injector to intersecting with the X-ray beam, our result is a 2.9-Å-resolution structure of a crystalline protein as it exists in a living cell. The study suggests that authentic in vivo diffraction studies can produce atomic-level structural information. PMID:25136092
Grazing-incidence X-ray diffraction from a crystal with subsurface defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaevskii, A. Yu., E-mail: transilv@mail.ru; Golentus, I. E.
2015-03-15
The diffraction of X rays incident on a crystal surface under grazing angles under conditions of total external reflection has been investigated. An approach is proposed in which exact solutions to the dynamic problem of grazing-incidence diffraction in an ideal crystal are used as initial functions to calculate the diffuse component of diffraction in a crystal with defects. The diffuse component of diffraction is calculated for a crystal with surface defects of a dilatation-center type. Exact formulas of the continuum theory which take into account the mirror-image forces are used for defect-induced atomic displacements. Scattering intensity maps near Bragg peaksmore » are constructed for different scan modes, and the conditions for detecting primarily the diffuse component are determined. The results of dynamic calculations of grazing-incidence diffraction in defect-containing crystals are compared with calculations in the kinematic approximation.« less
NASA Astrophysics Data System (ADS)
Mohanraj, K.; Balasubramanian, D.; Jhansi, N.
2017-11-01
A new non-linear optical (NLO) single crystal of lithium boro phthalate (LiBP) was grown by slow solvent evaporation technique. The powder sample was subjected to powder X-ray diffraction (PXRD) to find its crystalline nature and the crystal structure of the grown crystal was determined using single crystal X-ray (SXRD) diffraction analysis. The Fourier Transform Infrared (FTIR) spectrum was recorded for grown crystal to identify the various functional groups present in the compound. The mechanical property of the LiBP single crystal was studied using Vickers microhardness tester. The dielectric constant and dielectric loss measurements were carried out for the grown crystal at various temperatures. The grown crystal was subjected to UV-Visible Spectral Studies to analyze the linear optical behavior of the grown crystal. The Kurtz-Perry Powder technique was employed to measure the Second Harmonic Generation efficiency of the grown crystal.
Optical-diffraction method for determining crystal orientation
Sopori, B.L.
1982-05-07
Disclosed is an optical diffraction technique for characterizing the three-dimensional orientation of a crystal sample. An arbitrary surface of the crystal sample is texture etched so as to generate a pseudo-periodic diffraction grating on the surface. A laser light beam is then directed onto the etched surface, and the reflected light forms a farfield diffraction pattern in reflection. Parameters of the diffraction pattern, such as the geometry and angular dispersion of the diffracted beam are then related to grating shape of the etched surface which is in turn related to crystal orientation. This technique may be used for examining polycrystalline silicon for use in solar cells.
NASA Astrophysics Data System (ADS)
Anbarasi, A.; Ravi Kumar, S. M.; Sundar, G. J. Shanmuga; Mosses, M. Allen; Raj, M. Packiya; Prabhakaran, M.; Ravisankar, R.; Gunaseelan, R.
2017-10-01
Bis(thiourea) ammonium nitrate (BTAN), a new nonlinear optical crystal was grown successfully by slow evaporation technique using water as solvent at room temperature. The grown crystals were optically good quality with dimensions upto 10 × 6 × 3 mm3. Single crystal X-Ray diffraction analysis reveals that the crystal lattice is orthorhombic. From Powder X-ray diffraction analysis the diffraction planes have been indexed. The presence of the various functional groups of BTAN was identified through FTIR spectroscopic analysis. UV cut-off wavelength was observed from optical absorbance spectrum and it was found to be 240 nm. Second harmonic efficiency was determined using Kurtz powder method in comparison with KDP to confirm the nonlinearity of the material. Thermal analysis confirmed that grown crystal is thermally stable upto 184 °C. Microhardness studies show that hardness number (Hv) increases with load. Conductivity measurements such as dielectric, ac and photoconductivity were studied. Growth mechanism and surface features of the as grown single crystal was analysed by chemical etching analysis.
NASA Astrophysics Data System (ADS)
Szeleszczuk, Łukasz; Gubica, Tomasz; Zimniak, Andrzej; Pisklak, Dariusz M.; Dąbrowska, Kinga; Cyrański, Michał K.; Kańska, Marianna
2017-10-01
A convenient method for the indirect crystal structure verification of methyl glycosides was demonstrated. Single-crystal X-ray diffraction structures for methyl glycoside acetates were deacetylated and subsequently subjected to DFT calculations under periodic boundary conditions. Solid-state NMR spectroscopy served as a guide for calculations. A high level of accuracy of the modelled crystal structures of methyl glycosides was confirmed by comparison with published results of neutron diffraction study using RMSD method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitazawa, Takenori; Yamao, Takeshi, E-mail: yamao@kit.ac.jp; Hotta, Shu
2016-02-01
We have fabricated optical devices using an organic semiconductor crystal as an emission layer in combination with a two-dimensional (2D) inorganic diffraction grating used as an optical cavity. We formed the inorganic diffraction grating by wet etching of aluminum-doped zinc oxide (AZO) under a 2D cyclic olefin copolymer (COC) diffraction grating used as a mask. The COC diffraction grating was fabricated by nanoimprint lithography. The AZO diffraction grating was composed of convex prominences arranged in a triangular lattice. The organic crystal placed on the AZO diffraction grating indicated narrowed peaks in its emission spectrum under ultraviolet light excitation. These aremore » detected parallel to the crystal plane. The peaks were shifted by rotating the optical devices around the normal to the crystal plane, which reflected the rotational symmetries of the triangular lattice through 60°.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashikawa, Yuji; Uchimura, Hiromasa; Fujimoto, Zui
2007-06-01
The NAD(P)H:ferredoxin oxidoreductase in carbazole 1,9a-dioxygenase from Janthinobacterium sp. J3 was crystallized and diffraction data were collected to 2.60 Å resolution. Carbazole 1,9a-dioxygenase (CARDO), which consists of an oxygenase component (CARDO-O) and the electron-transport components ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R), catalyzes dihydroxylation at the C1 and C9a positions of carbazole. CARDO-R was crystallized at 277 K using the hanging-drop vapour-diffusion method with the precipitant PEG 8000. Two crystal types (types I and II) were obtained. The type I crystal diffracted to a maximum resolution of 2.80 Å and belonged to space group P4{sub 2}2{sub 1}2, with unit-cell parameters amore » = b = 158.7, c = 81.4 Å. The type II crystal was obtained in drops from which type I crystals had been removed; it diffracted to 2.60 Å resolution and belonged to the same space group, with unit-cell parameters a = b = 161.8, c = 79.5 Å.« less
Dynamic X-ray diffraction sampling for protein crystal positioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less
Dynamic X-ray diffraction sampling for protein crystal positioning
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; ...
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less
Dynamic X-ray diffraction sampling for protein crystal positioning
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; Kissick, David J.; Zhang, Shijie; Newman, Justin A.; Sheedlo, Michael J.; Chowdhury, Azhad U.; Fischetti, Robert F.; Das, Chittaranjan; Buzzard, Gregery T.; Bouman, Charles A.; Simpson, Garth J.
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations. PMID:28009558
Dynamic X-ray diffraction sampling for protein crystal positioning.
Scarborough, Nicole M; Godaliyadda, G M Dilshan P; Ye, Dong Hye; Kissick, David J; Zhang, Shijie; Newman, Justin A; Sheedlo, Michael J; Chowdhury, Azhad U; Fischetti, Robert F; Das, Chittaranjan; Buzzard, Gregery T; Bouman, Charles A; Simpson, Garth J
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Dell, William B.; Swartz, Paul D.; Weiss, Kevin L.
Lytic polysaccharide monooxygenases (LPMOs) are carbohydrate-disrupting enzymes secreted by bacteria and fungi that break glycosidic bondsviaan oxidative mechanism. Fungal LPMOs typically act on cellulose and can enhance the efficiency of cellulose-hydrolyzing enzymes that release soluble sugars for bioethanol production or other industrial uses. The enzyme PMO-2 fromNeurospora crassa(NcPMO-2) was heterologously expressed inPichia pastoristo facilitate crystallographic studies of the fungal LPMO mechanism. Diffraction resolution and crystal morphology were improved by expressingNcPMO-2 from a glycoengineered strain ofP. pastorisand by the use of crystal seeding methods, respectively. These improvements resulted in high-resolution (1.20 Å) X-ray diffraction data collection at 100 K and themore » production of a largeNcPMO-2 crystal suitable for room-temperature neutron diffraction data collection to 2.12 Å resolution.« less
Crystal structure determination of new antimitotic agent bis(p-fluorobenzyl)trisulfide.
An, Haoyun; Hu, Xiurong; Gu, Jianming; Chen, Linshen; Xu, Weiming; Mo, Xiaopeng; Xu, Wanhong; Wang, Xiaobo; Xu, Xiao
2008-01-01
The purpose of this research was to investigate the physical characteristics and crystalline structure of bis(p-fluorobenzyl)trisulfide, a new anti-tumor agent. Methods used included X-ray single crystal diffraction, X-ray powder diffraction (XRPD), Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetric (DSC) and thermogravimetric (TG) analyses. The findings obtained with X-ray single crystal diffraction showed that a monoclinic unit cell was a = 12.266(1) A, b = 4.7757(4) A, c = 25.510(1) A, beta = 104.25(1) degrees ; cell volume = 1,448.4(2) A(3), Z = 4, and space group C2/c. The XRPD studies of the four crystalline samples, obtained by recrystallization from four different solvents, indicated that they had the same diffraction patterns. The diffraction pattern stimulated from the crystal structure data is in excellent agreement with the experimental results. In addition, the identical FT-IR spectra of the four crystalline samples revealed absorption bands corresponding to S-S and C-S stretching as well as the characteristic aromatic substitution. Five percent weight loss at 163.3 degrees C was observed when TG was used to study the decomposition process in the temperature range of 20-200 degrees C. DSC also allowed for the determination of onset temperatures at 60.4(1)-60.7(3) degrees C and peak temperatures at 62.1(3)-62.4(3) degrees C for the four crystalline samples studied. The results verified that the single crystal structure shared the same crystal form with the four crystalline samples investigated.
NASA Astrophysics Data System (ADS)
Thomas Joseph Prakash, J.; Martin Sam Gnanaraj, J.
2015-01-01
Semiorganic nonlinear optical crystals of Cadmium Thiosemicarbazide Bromide was grown by slow evaporation solution growth technique. The unit cell parameters were estimated by subjecting the crystals to single crystal X-ray diffraction. The grown crystals were subjected to Powder X-ray diffraction for analyzing the crystalline nature of the sample. FTIR studies reveal the functional groups and the optical characters were analyzed by UV-Vis spectral studies. Mechanical stability of the sample was assessed by Vicker's micro hardness test. The presence of surface dislocations was identified by chemical etching technique. Antibacterial study was carried out against ACDP declared harmful pathogens. SHG efficiency of CTSB crystal was tested using Nd: YAG laser and it was found to be ∼1.8 times that of potassium dihydrogen phosphate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voothaluru, Rohit; Bedekar, Vikram; Xie, Qingge
This work integrates in-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in high carbon bearing steels. The presence of a kinematically metastable retained austenite in bearing steels can significantly affect the macro-mechanical and micro-mechanical material response. Mechanical characterization of metastable austenite is a critical component in accurately capturing the micro-mechanical behavior under typical application loads. Traditional mechanical characterization techniques are unable to discretely quantify the micro-mechanical response of the austenite, and as a result, the computational predictions rely heavily on trial and error or qualitative descriptions of the austenite phase. Inmore » order to overcome this, in the present work, we use in-situ neutron diffraction of a uniaxial tension test of an A485 Grade 1 bearing steel specimen. The mechanical response determined from the neutron diffraction analysis was incorporated into a hybrid crystal plasticity finite element model that accounts for the martensite's crystal plasticity and the stress-assisted transformation from austenite to martensite in bearing steels. Here, the modeling response was used to estimate the single crystal elastic constants of the austenite and martensite phases. Finally, the results show that using in-situ neutron diffraction, coupled with a crystal plasticity model, can successfully predict both the micro-mechanical and macro-mechanical responses of bearing steels while accounting for the martensitic transformation of the retained austenite.« less
Voothaluru, Rohit; Bedekar, Vikram; Xie, Qingge; ...
2018-11-21
This work integrates in-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in high carbon bearing steels. The presence of a kinematically metastable retained austenite in bearing steels can significantly affect the macro-mechanical and micro-mechanical material response. Mechanical characterization of metastable austenite is a critical component in accurately capturing the micro-mechanical behavior under typical application loads. Traditional mechanical characterization techniques are unable to discretely quantify the micro-mechanical response of the austenite, and as a result, the computational predictions rely heavily on trial and error or qualitative descriptions of the austenite phase. Inmore » order to overcome this, in the present work, we use in-situ neutron diffraction of a uniaxial tension test of an A485 Grade 1 bearing steel specimen. The mechanical response determined from the neutron diffraction analysis was incorporated into a hybrid crystal plasticity finite element model that accounts for the martensite's crystal plasticity and the stress-assisted transformation from austenite to martensite in bearing steels. Here, the modeling response was used to estimate the single crystal elastic constants of the austenite and martensite phases. Finally, the results show that using in-situ neutron diffraction, coupled with a crystal plasticity model, can successfully predict both the micro-mechanical and macro-mechanical responses of bearing steels while accounting for the martensitic transformation of the retained austenite.« less
The effect of laser radiation on the diffraction of X-rays in crystals
NASA Astrophysics Data System (ADS)
Trushin, V. N.; Chuprunov, E. V.; Khokhlov, A. F.
1988-10-01
The effect of laser radiation on the intensity of the X-ray diffraction peaks of KDP, ADP, and CuSO4-5H2O crystals was studied experimentally. This intensity was found to increase as a function of the laser beam power. This result suggests that it is possible to use laser beams to control X-ray intensity in the crystals considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budayova-Spano, Monika, E-mail: spano@embl-grenoble.fr; Institut Laue-Langevin, 6 Rue Jules Horowitz, BP 156, 38042 Grenoble; Bonneté, Françoise
2006-03-01
Neutron diffraction data of hydrogenated recombinant urate oxidase enzyme (Rasburicase), complexed with a purine-type inhibitor 8-azaxanthin, was collected to 2.1 Å resolution from a crystal grown in D{sub 2}O by careful control and optimization of crystallization conditions via knowledge of the phase diagram. Deuterium atoms were clearly seen in the neutron-scattering density map. Crystallization and preliminary neutron diffraction measurements of rasburicase, a recombinant urate oxidase enzyme expressed by a genetically modified Saccharomyces cerevisiae strain, complexed with a purine-type inhibitor (8-azaxanthin) are reported. Neutron Laue diffraction data were collected to 2.1 Å resolution using the LADI instrument from a crystal (grownmore » in D{sub 2}O) with volume 1.8 mm{sup 3}. The aim of this neutron diffraction study is to determine the protonation states of the inhibitor and residues within the active site. This will lead to improved comprehension of the enzymatic mechanism of this important enzyme, which is used as a protein drug to reduce toxic uric acid accumulation during chemotherapy. This paper illustrates the high quality of the neutron diffraction data collected, which are suitable for high-resolution structural analysis. In comparison with other neutron protein crystallography studies to date in which a hydrogenated protein has been used, the volume of the crystal was relatively small and yet the data still extend to high resolution. Furthermore, urate oxidase has one of the largest primitive unit-cell volumes (space group I222, unit-cell parameters a = 80, b = 96, c = 106 Å) and molecular weights (135 kDa for the homotetramer) so far successfully studied with neutrons.« less
The Influence of Surface Morphology and Diffraction Resolution of Canavalin Crystals
NASA Technical Reports Server (NTRS)
Plomp, M.; Thomas, B. R.; Day, J. S.; McPherson, A.; Chernov, A. A.; Malkin, A.
2003-01-01
Canavalin crystals grown from material purified and not purified by High Performance Liquid Chromatography were studied by atomic force microscopy and x-ray diffraction. After purification, resolution was improved from 2.55Angstroms to 2.22Angstroms and jagged isotropic spiral steps transformed into regular, well polygonized steps.
Growth and properties of benzil doped benzimidazole (BMZ) single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in; Crystal Growth and Crystallography Section, National Physical Laboratory, Krishnan Marg, New Delhi 110 012; Sukumar, M.
2010-09-15
In the present work, we have made an attempt to study the effect of benzil doping on the properties of benzimidazole single crystals. For this purpose we have grown pure and benzil doped benzimidazole single crystals by vertical Bridgman technique. The grown crystals were characterized by various characterization techniques. The presence of dopants confirmed by powder X-ray diffraction (XRD). Crystalline perfection of the grown crystals has been analysed by high-resolution X-ray diffraction (HRXRD). The transmittance, electrical property and mechanical strength have been analysed using UV-vis-NIR spectroscopic, dielectric and Vicker's hardness studies. The relative second harmonic generation efficiency of pure andmore » doped benzimidazole crystals measured using Kurtz powder test.« less
NASA Astrophysics Data System (ADS)
Sugahara, Mitsuaki; Sekino-Suzuki, Naoko; Ohno-Iwashita, Yoshiko; Miki, Kunio
1996-10-01
θ-Toxin (perfringolysin O), a cholesterol-binding, pore-forming cytolysin of Clostridium perfringens type A was crystallized by the vapor diffusion procedure using polyethyleneglycol 4000 and sodium chloride as precipitants in 2-(cyclohexylamino)ethanesulfonic acid (CHES) buffer at pH 9.5. The diffraction patterns of precession photographs indicated that the crystals belong to the orthorhombic system and the space group C222 1 with unit-cell dimensions of a = 47.7 Å, b = 182.0 Å and c = 175.8 Å. Assuming that the asymmetric unit contains one or two molecules (Mw 52 700), the Vm value is calculated as 3.6 or 1.8 Å 3/dalton, respectively. The crystals diffract X-rays to at least 3 Å resolution and are suitable for high resolution X-ray crystal structure determination.
NASA Astrophysics Data System (ADS)
Abramchik, Yu. A.; Timofeev, V. I.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.
2016-11-01
Ribokinase from a thermophilic strain of Thermus species 2.9 belonging to the carbohydrate ribokinase family (EC 2.7.1.15) was isolated, purified, and crystallized. The crystallization conditions were found by the vapor-diffusion technique and were then optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals, which were grown by the counter-diffusion technique, at the SPring-8 synchrotron radiation facility to 2.87 Å resolution. The crystals belong to sp. gr. P1211 and have the following unit-cell parameters: a = 81.613 Å, b = 156.132 Å, c = 87.714 Å, α = γ = 90°, β = 103.819°. The X-ray diffraction data set is suitable for determining the three-dimensional structure of the protein by the molecular-replacement method.
Wang, Jian-Rong; Yu, Xueping; Zhou, Chun; Lin, Yunfei; Chen, Chen; Pan, Guoyu; Mei, Xuefeng
2015-03-01
6-Mercaptopurine (6-MP) is a clinically important antitumor drug. The commercially available form was provided as monohydrate and belongs to BCS class II category. Co-crystallization screening by reaction crystallization method (RCM) and monitored by powder X-ray diffraction led to the discovery of a new co-crystal formed between 6-MP and isonicotinamide (co-crystal 1). Co-crystal 1 was thoroughly characterized by X-ray diffraction, FT-IR and Raman spectroscopy, and thermal analysis. Noticeably, the in vitro and in vivo studies revealed that co-crystal 1 possesses improved dissolution rate and superior bioavailability on animal model. Copyright © 2015 Elsevier Ltd. All rights reserved.
Free-falling Crystals: Biological Macromolecular Crystal Growth Studies in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Judge, Russell A.; Snell, E. H.; Pusey, M. L.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Spacecraft orbiting the earth experience a reduced acceleration environment due to being in a state of continuous free-fall. This state colloquially termed microgravity, has produced improved X-ray diffraction quality crystals of biological macromolecules. Improvements in X-ray diffraction resolution (detail) or signal to noise, provide greater detail in the three-dimensional molecular structure providing information about the molecule, how it works, how to improve its function or how to impede it. Greater molecular detail obtained by crystallization in microgravity, has important implications for structural biology. In this article we examine the theories behind macromolecule crystal quality improvement in microgravity using results obtained from studies with the model protein, chicken egg white lysozyme.
Osica, V D; Pyatigorskaya, T L; Polyvtsev, O F; Dembo, A T; Kliya, M O; Vasilchenko, V N; Verkin, B I; Sukharevskya, B Y
1977-04-01
Double-stranded DNA molecules (molecular weight 2.5 X 10(5) - 5 X 10(5) daltons) have been crystallized from water-salt solutions as cetyltrimethylammonium salts (CTA-DNA). Variation of crystallization conditions results in a production of different types of CTA-DNA crystals: spherulits, dendrites, needle-shaped and faceted rhombic crystals, the latter beeing up to 0.3 mm on a side. X-ray diffraction data indicate that DNA molecules in the crystals form a hexagonal lattice which parameters vary slightly with the morphological type of the crystal. Comparison of the melting curves of the DNA preparation before and after crystallization suggests that DNA molecules are partially fractionated in the course of crystallization. Crystals of the CTA-DNA-proflavine complex have also been obtained.
Osica, V D; Pyatigorskaya, T L; Polyvtsev, O F; Dembo, A T; Kliya, M O; Vasilchenko, V N; Verkin, B I; Sukharevskya, B Y
1977-01-01
Double-stranded DNA molecules (molecular weight 2.5 X 10(5) - 5 X 10(5) daltons) have been crystallized from water-salt solutions as cetyltrimethylammonium salts (CTA-DNA). Variation of crystallization conditions results in a production of different types of CTA-DNA crystals: spherulits, dendrites, needle-shaped and faceted rhombic crystals, the latter beeing up to 0.3 mm on a side. X-ray diffraction data indicate that DNA molecules in the crystals form a hexagonal lattice which parameters vary slightly with the morphological type of the crystal. Comparison of the melting curves of the DNA preparation before and after crystallization suggests that DNA molecules are partially fractionated in the course of crystallization. Crystals of the CTA-DNA-proflavine complex have also been obtained. Images PMID:866188
Applications of the diffraction and interference of light and electronic waves
NASA Astrophysics Data System (ADS)
Bahrim, Cristian; Lanning, Robert
2010-10-01
As part of a NSF sponsored program, called STAIRSTEP, at Lamar University we work on improving the basic knowledge of our physics majors in topics with broader impact in various areas of science and engineering [1]. The purpose is to facilitate a deeper understanding of some fundamental concepts in the field of optics through hands-on experience [2]. We choose to study the interference/diffraction of light and matter waves, because of its fundamental importance in physics with many applications. We target multiple goals in our field of study such as to understand the formation of electronic waves (wave packets) and their interaction with atoms in crystals (electron diffraction); the Fourier analysis of light with applications in spectroscopy, etc. We can show that a crystal lattice Fourier transforms the sinusoidal waves associated to free electrons fired toward the crystal. Our studies led to a simple and instructive recipe for discovering the arrangement of atoms in crystals from the analysis of the diffraction patterns produced by radiation or by electrons transmitted through crystals. [1] Doerschuk P. et al., 39th ASEE/IEEE Frontiers in Education Conference, San Antonio 2009, M3F-1. [2] Bahrim C, Innovation 2006 -- World Innovations in Engineering Education and Research, Chapter 17, iNEER Innovation Series, ISBN 0-9741252-5-3.
Spherical quartz crystals investigated with synchrotron radiation
Pereira, N. R.; Macrander, A. T.; Hill, K. W.; ...
2015-10-27
The quality of x-ray spectra and images obtained from plasmas with spherically bent crystals depends in part on the crystal's x-ray diffraction across the entire crystal surface. We employ the energy selectivity and high intensity of synchrotron radiation to examine typical spherical crystals from alpha-quartz for their diffraction quality, in a perpendicular geometry that is particularly convenient to examine sagittal focusing. The crystal's local diffraction is not ideal: the most noticeable problems come from isolated regions that so far have failed to correlate with visible imperfections. In conclusion, excluding diffraction from such problem spots has little effect on the focusmore » beyond a decrease in background.« less
Study of structural and optical properties of YAG and Nd:YAG single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostić, S.; Lazarević, Z.Ž., E-mail: lzorica@yahoo.com; Radojević, V.
2015-03-15
Highlights: • Transparent YAG and pale pink Nd:YAG single crystals were produced by the Czochralski technique. • Growth mechanisms and shape of the liquid/solid interface and incorporation of Nd{sup 3+} were studied. • The structure of the crystals was investigated by X-ray diffraction, Raman and IR spectroscopy. • The 15 Raman and 17 IR modes were observed. • The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. - Abstract: Yttrium aluminum garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) and yttrium aluminum garnet doped with neodymium (Nd:YAG) single crystals were grown by the Czochralski technique. Themore » critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. As a result of our experiments, the transparent YAG and pale pink Nd:YAG single crystals were produced. The obtained crystals were studied by X-ray diffraction, Raman and IR spectroscopy. The crystal structure was confirmed by XRD. The 15 Raman and 17 IR modes were observed. The Raman and IR spectroscopy results are in accordance with X-ray diffraction analysis. The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. The absence of a core was confirmed by viewing polished crystal slices. Also, it is important to emphasize that the obtained Nd:YAG single crystal has a concentration of 0.8 wt.% Nd{sup 3+} that is characteristic for laser materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, SP.; Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in; Velusamy, P.
2011-11-15
Highlights: {yields} Growth of bulk single crystal of 8-hydroxyquinoline (8-HQ) by vertical Bridgman technique for the first time. {yields} The crystalline perfection is reasonably good. {yields} The photoluminescence spectrum shows that the material is suitable for blue light emission. -- Abstract: Single crystal of organic nonlinear optical material, 8-hydroxyquinoline (8-HQ) of dimension 52 mm (length) x 12 mm (dia.) was grown from melt using vertical Bridgman technique. The crystal system of the material was confirmed by powder X-ray diffraction analysis. The crystalline perfection of the grown crystal was examined by high-resolution X-ray diffraction study. Low angular spread around 400'' ofmore » the diffraction curve and the low full width half maximum values show that the crystalline perfection is reasonably good. The recorded photoluminescence spectrum shows that the material is suitable for blue light emission. Optical transmittance for the UV and visible region was measured and mechanical strength was estimated from Vicker's microhardness test along the growth face of the grown crystal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoica, Alexandru Dan
2011-01-01
Twin variant reorientation in single-crystal Ni-Mn-Ga during quasi-static mechanical compression was studied using in situ neutron diffraction. The volume fraction of reoriented twin variants for different stress amplitudes were obtained from the changes in integrated intensities of high-order neutron diffraction peaks. It is shown that, during compressive loading, {approx}85% of the twins were reoriented parallel to the loading direction resulting in a maximum pseudoplasticstrain of {approx}5.5%, which is in agreement with measured macroscopic strain.
Pandi, P; Peramaiyan, G; Sudhahar, S; Chakkaravarthi, G; Mohan Kumar, R; Bhagavannarayana, G; Jayavel, R
2012-12-01
Picolinium maleate (PM), an organic material has been synthesised and single crystals were grown by slow evaporation technique. The structure of the grown crystal was elucidated by using single crystal X-ray diffraction analysis. PM crystal belongs to the monoclinic crystallographic system with space group P2(1)/c. The crystalline perfection of the grown crystals was analyzed by high-resolution X-ray diffraction rocking curve measurements. The presence of functional groups in PM was identified by FTIR and FT-NMR spectral analyses. Thermal behaviour and stability of picolinium maleate were studied by TGA/DTA analyses. UV-Vis spectral studies reveal that PM crystals are transparent in the wavelength region 327-1100 nm. The laser damage threshold value of PM crystal was found to be 4.3 GW/cm(2) using Nd:YAG laser. The Kurtz and Perry powder second harmonic generation technique confirms the nonlinear optical property of the grown crystal. Copyright © 2012 Elsevier B.V. All rights reserved.
7 Å resolution in protein two-dimensional-crystal X-ray diffraction at Linac Coherent Light Source
Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Hunter, Mark S.; Zatsepin, Nadia A.; Barty, Anton; Benner, W. Henry; Boutet, Sébastien; Feld, Geoffrey K.; Hau-Riege, Stefan P.; Kirian, Richard A.; Kupitz, Christopher; Messerschmitt, Marc; Ogren, John I.; Pardini, Tommaso; Segelke, Brent; Williams, Garth J.; Spence, John C. H.; Abela, Rafael; Coleman, Matthew; Evans, James E.; Schertler, Gebhard F. X.; Frank, Matthias; Li, Xiao-Dan
2014-01-01
Membrane proteins arranged as two-dimensional crystals in the lipid environment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. Previously, X-ray diffraction from individual two-dimensional crystals did not represent a suitable investigational tool because of radiation damage. The recent availability of ultrashort pulses from X-ray free-electron lasers (XFELs) has now provided a means to outrun the damage. Here, we report on measurements performed at the Linac Coherent Light Source XFEL on bacteriorhodopsin two-dimensional crystals mounted on a solid support and kept at room temperature. By merging data from about a dozen single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 Å, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase in the resolution. The presented results pave the way for further XFEL studies on two-dimensional crystals, which may include pump–probe experiments at subpicosecond time resolution. PMID:24914166
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy Choudhury, Subhasree; Gomes, Aparna; Gomes, Antony
2006-03-01
A cytotoxin from Indian Russell’s viper (D. russelli russelli) venom having multifunctional activity has been crystallized in space group P4{sub 1}. Larger crystals diffracted to 1.5 Å but were found to be twinned; preliminary data were therefore collected (2.93 Å) from a smaller crystal. A cytotoxin (MW 7.2 kDa) from Indian Russell’s viper (Daboia russelli russelli) venom possessing antiproliferative activity, cardiotoxicity, neurotoxicity and myotoxicity has been purified, characterized and crystallized. The crystals belong to the tetragonal space group P4{sub 1}, with unit-cell parameters a = b = 47.94, c = 50.2 Å. Larger crystals, which diffracted to 1.5 Å, weremore » found to be twinned; diffraction data were therefore collected to 2.93 Å resolution using a smaller crystal. Molecular-replacement calculations identified two molecules of the protein in the asymmetric unit, which is in accordance with the calculated V{sub M} value.« less
Increasing dissolution of trospium chloride by co-crystallization with urea
NASA Astrophysics Data System (ADS)
Skořepová, Eliška; Hušák, Michal; Čejka, Jan; Zámostný, Petr; Kratochvíl, Bohumil
2014-08-01
The search for various solid forms of an active pharmaceutical ingredient (API) is an important step in drug development. Our aim was to prepare co-crystals of trospium chloride, an anticholinergic drug used for the treatment of incontinence, and to investigate if they have advantageous properties for drug formulation. Phase identification was done by powder X-ray diffraction and single-crystal X-ray diffraction. The chemical composition was verified by solution NMR and the dissolution rate of the prepared phases was studied by IDR (intrinsic dissolution rate). For further analysis of phase stability and transitions, combined thermal analysis and temperature-resolved X-ray powder diffraction were used. Urea was selected as a co-crystallization partner. Trospium chloride urea (1:1) co-crystal was prepared by a solvent evaporation. From single-crystal data, the co-crystal structure was solved in a space group P21/c and compared to previously published structures of trospium chloride. Intrinsic dissolution rate revealed that the co-crystal dissolves 32% faster than pure API. However, its low thermal and pressure stability makes it a challenging choice for the final drug formulation.
de Armas, Héctor Novoa; Peeters, Oswald M; Van den Mooter, Guy; Blaton, Norbert
2007-05-01
A new polymorphic form of Alprazolam (Xanax), 8-chloro-1-methyl-6-phenyl-4H-[1,2,4]triazolo-[4,3-alpha][1,4]benzodiazepine, C(17)H(13)ClN(4), has been investigated by means of X-ray powder diffraction (XRPD), single crystal X-ray diffraction, and differential scanning calorimetry (DSC). This polymorphic form (form III) was obtained during DSC experiments after the exothermic recrystallization of the melt of form I. The crystal unit cell dimensions for form III were determined from diffractometer methods. The monoclinic unit cell found for this polymorph using XRPD after indexing the powder diffractogram was confirmed by the cell parameters obtained from single crystal X-ray diffractometry on a crystal isolated from the DSC pans. The single crystal unit cell parameters are: a = 28.929(9), b = 13.844(8), c = 7.361(3) angstroms, beta = 92.82(3) degrees , V = 2944(2) angstroms(3), Z = 8, space group P2(1) (No.4), Dx = 1.393 Mg/m(3). The structure obtained from single crystal X-ray diffraction was used as initial model for Rietveld refinement on the powder diffraction data of form III. The temperature phase transformations of alprazolam were also studied using high temperature XRPD. A review of the different phases available in the Powder Diffraction File (PDF) database for this drug is described bringing some clarification and corrections. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.
High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation
NASA Technical Reports Server (NTRS)
Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)
2000-01-01
We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.
Coughlan, H D; Darmanin, C; Kirkwood, H J; Phillips, N W; Hoxley, D; Clark, J N; Vine, D J; Hofmann, F; Harder, R J; Maxey, E; Abbey, B
2017-01-01
The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals (Helliwell, 1984). Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to the diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. A possible mechanism to account for these observations is proposed.
Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography
Coughlan, H. D.; Darmanin, C.; Kirkwood, H. J.; ...
2017-01-01
The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals. Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to themore » diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. As a result, a possible mechanism to account for these observations is proposed.« less
Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughlan, H. D.; Darmanin, C.; Kirkwood, H. J.
The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals. Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to themore » diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. As a result, a possible mechanism to account for these observations is proposed.« less
Yamamura, Shigeo; Momose, Yasunori
2003-06-18
The purpose of this study is to characterize the monoclinic crystals in tablets by using X-ray powder diffraction data and to evaluate the deformation feature of crystals during compression. The monoclinic crystals of acetaminophen and benzoic acid were used as the samples. The observed X-ray diffraction intensities were fitted to the analytic expression, and the fitting parameters, such as the lattice parameters, the peak-width parameters, the preferred orientation parameter and peak asymmetric parameter were optimized by a non-linear least-squares procedure. The Gauss and March distribution functions were used to correct the preferred orientation of crystallites in the tablet. The March function performed better in correcting the modification of diffraction intensity by preferred orientation of crystallites, suggesting that the crystallites in the tablets had fiber texture with axial orientation. Although a broadening of diffraction peaks was observed in acetaminophen tablets with an increase of compression pressure, little broadening was observed in the benzoic tablets. These results suggest that "acetaminophen is a material consolidating by fragmentation of crystalline particles and benzoic acid is a material consolidating by plastic deformation then occurred rearrangement of molecules during compression". A pattern-fitting procedure is the superior method for characterizing the crystalline drugs of monoclinic crystals in the tablets, as well as orthorhombic isoniazid and mannitol crystals reported in the previous paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taguchi, Chiho; Quantum Beam Science Directorate, Japan Atomic Energy Agency; Taura, Futoshi
Polyketide synthase-1 from C. sativa has been crystallized. The crystal diffracted to 1.55 Å resolution with sufficient quality for further structure determination. Polyketide synthase-1 (PKS-1) is a novel type III polyketide synthase that catalyzes the biosynthesis of hexanoyl triacetic acid lactone in Cannabis sativa (Mexican strain). PKS-1 was overproduced in Escherichia coli, purified and finally crystallized in two different space groups. The crystal obtained in 0.1 M HEPES buffer pH 7.5 containing 0.2 M calcium acetate and 20%(w/v) polyethylene glycol 3350 diffracted to 1.65 Å resolution and belonged to space group P1, with unit-cell parameters a = 54.3, b =more » 59.3, c = 62.6 Å, α = 69, β = 81, γ = 80°. Another crystal obtained in 0.1 M HEPES buffer pH 7.5 containing 0.2 M sodium chloride and 20%(w/v) polyethylene glycol 3350 diffracted to 1.55 Å resolution and belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 54.3, b = 110, c = 130 Å. These data will enable us to determine the crystal structure of PKS-1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Mitsuhiro; Protein Research Group, RIKEN Yokohama Institute, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045; Kaminishi, Tatsuya
2007-11-01
A truncated variant of human ribosomal protien L10 was prepared and crystallized. Diffraction data were collected to 2.5 Å resolution. Eukaryotic ribosomal protein L10 is an essential component of the large ribosomal subunit, which organizes the architecture of the aminoacyl-tRNA binding site. The human L10 protein is also called the QM protein and consists of 214 amino-acid residues. For crystallization, the L10 core domain (L10CD, Phe34–Glu182) was recombinantly expressed in Escherichia coli and purified to homogeneity. A hexagonal crystal of L10CD was obtained by the sitting-drop vapour-diffusion method. The L10CD crystal diffracted to 2.5 Å resolution and belongs to spacemore » group P3{sub 1}21 or P3{sub 2}21.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maruyama, Daisuke; Nishitani, Yuichi; Nonaka, Tsuyoshi
2006-12-01
UDP-N-acetylglucosamine pyrophosphorylase was purified and crystallized and X-ray diffraction data were collected to 2.3 Å resolution. UDP-N-acetylglucosamine pyrophosphorylase (UAP) is an essential enzyme in the synthesis of UDP-N-acetylglucosamine. UAP from Candida albicans was purified and crystallized by the sitting-drop vapour-diffusion method. The crystals of the substrate and product complexes both diffract X-rays to beyond 2.3 Å resolution using synchrotron radiation. The crystals of the substrate complex belong to the triclinic space group P1, with unit-cell parameters a = 47.77, b = 62.89, c = 90.60 Å, α = 90.01, β = 97.72, γ = 92.88°, whereas those of the productmore » complex belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 61.95, b = 90.87, c = 94.88 Å.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramchik, Yu. A.; Timofeev, V. I., E-mail: tostars@mail.ru; Muravieva, T. I.
2016-11-15
Ribokinase from a thermophilic strain of Thermus species 2.9 belonging to the carbohydrate ribokinase family (EC 2.7.1.15) was isolated, purified, and crystallized. The crystallization conditions were found by the vapor-diffusion technique and were then optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals, which were grown by the counter-diffusion technique, at the SPring-8 synchrotron radiation facility to 2.87 Å resolution. The crystals belong to sp. gr. P12{sub 1}1 and have the following unit-cell parameters: a = 81.613 Å, b = 156.132 Å, c = 87.714 Å, α = γ = 90°, βmore » = 103.819°. The X-ray diffraction data set is suitable for determining the three-dimensional structure of the protein by the molecular-replacement method.« less
3D coherent X-ray diffractive imaging of an Individual colloidal crystal grain
NASA Astrophysics Data System (ADS)
Shabalin, A.; Meijer, J.-M.; Sprung, M.; Petukhov, A. V.; Vartanyants, I. A.
Self-assembled colloidal crystals represent an important model system to study nucleation phenomena and solid-solid phase transitions. They are attractive for applications in photonics and sensorics. We present results of a coherent x-ray diffractive imaging experiment performed on a single colloidal crystal grain. The full three-dimensional (3D) reciprocal space map measured by an azimuthal rotational scan contained several orders of Bragg reflections together with the coherent interference signal between them. Applying the iterative phase retrieval approach, the 3D structure of the crystal grain was reconstructed and positions of individual colloidal particles were resolved. We identified an exact stacking sequence of hexagonal close-packed layers including planar and linear defects. Our results open up a breakthrough in applications of coherent x-ray diffraction for visualization of the inner 3D structure of different mesoscopic materials, such as photonic crystals. Present address: University of California - San Diego, USA.
Crystal growth of enzymes in low gravity (L-5)
NASA Technical Reports Server (NTRS)
Morita, Yuhei
1993-01-01
Recent developments in protein engineering have expanded the possibilities of studies of enzymes and other proteins. Now such studies are not limited to the elucidation of the relationship between the structure and function of the protein. They also aim at the production of proteins with new and practical functions, based on results obtained during investigation of structure and function. For continuing research in this field, investigation of the tertiary structure of proteins is important. X-ray diffraction of single crystals of protein is usually used for this purpose. The main difficulty is the preparation of the crystals. The theme of the research is to prepare such crystals at very low gravity, with the main purpose being to obtain large single crystals of proteins suitable for x-ray diffraction studies.
Zhang, Aili; Guo, Erhong; Qian, Lanfang; Tang, Nga-Yeung; Watt, Rory M.; Bartlam, Mark
2016-01-01
Exopolyphosphatase (PPX) enzymes degrade inorganic polyphosphate (poly-P), which is essential for the survival of microbial cells in response to external stresses. In this study, a putative exopolyphosphatase from Zymomonas mobilis (ZmPPX) was crystallized. Crystals of the wild-type enzyme diffracted to 3.3 Å resolution and could not be optimized further. The truncation of 29 amino acids from the N-terminus resulted in crystals that diffracted to 1.8 Å resolution. The crystals belonged to space group C2, with unit-cell parameters a = 122.0, b = 47.1, c = 89.5 Å, α = γ = 90, β = 124.5°. An active-site mutant that crystallized in the same space group and with similar unit-cell parameters diffracted to 1.56 Å resolution. One molecule was identified per asymmetric unit. Analytical ultracentrifugation confirmed that ZmPPX forms a dimer in solution. It was confirmed that ZmPPX possesses exopolyphosphatase activity against a synthetic poly-P substrate. PMID:26919520
Zhang, Aili; Guo, Erhong; Qian, Lanfang; Tang, Nga-Yeung; Watt, Rory M; Bartlam, Mark
2016-03-01
Exopolyphosphatase (PPX) enzymes degrade inorganic polyphosphate (poly-P), which is essential for the survival of microbial cells in response to external stresses. In this study, a putative exopolyphosphatase from Zymomonas mobilis (ZmPPX) was crystallized. Crystals of the wild-type enzyme diffracted to 3.3 Å resolution and could not be optimized further. The truncation of 29 amino acids from the N-terminus resulted in crystals that diffracted to 1.8 Å resolution. The crystals belonged to space group C2, with unit-cell parameters a = 122.0, b = 47.1, c = 89.5 Å, α = γ = 90, β = 124.5°. An active-site mutant that crystallized in the same space group and with similar unit-cell parameters diffracted to 1.56 Å resolution. One molecule was identified per asymmetric unit. Analytical ultracentrifugation confirmed that ZmPPX forms a dimer in solution. It was confirmed that ZmPPX possesses exopolyphosphatase activity against a synthetic poly-P substrate.
Diffraction and imaging study of imperfections of crystallized lysozyme with coherent X-rays
NASA Technical Reports Server (NTRS)
Hu, Z. W.; Chu, Y. S.; Lai, B.; Thomas, B. R.; Chernov, A. A.
2004-01-01
Phase-contrast X-ray diffraction imaging and high-angular-resolution diffraction combined with phase-contrast radiographic imaging were employed to characterize defects and perfection of a uniformly grown tetragonal lysozyme crystal in the symmetric Laue case. The full-width at half-maximum (FWHM) of a 4 4 0 rocking curve measured from the original crystal was approximately 16.7 arcsec and imperfections including line defects, inclusions and other microdefects were observed in the diffraction images of the crystal. The observed line defects carry distinct dislocation features running approximately along the <1 1 0> growth front and have been found to originate mostly in a central growth area and occasionally in outer growth regions. Inclusions of impurities or formations of foreign particles in the central growth region are resolved in the images with high sensitivity to defects. Slow dehydration led to the broadening of a fairly symmetric 4 4 0 rocking curve by a factor of approximately 2.6, which was primarily attributed to the dehydration-induced microscopic effects that are clearly shown in X-ray diffraction images. The details of the observed defects and the significant change in the revealed microstructures with drying provide insight into the nature of imperfections, nucleation and growth, and the properties of protein crystals.
Improving the diffraction of apoA-IV crystals through extreme dehydration.
Deng, Xiaodi; Davidson, W Sean; Thompson, Thomas B
2012-01-01
Apolipoproteins are the protein component of high-density lipoproteins (HDL), which are necessary for mobilizing lipid-like molecules throughout the body. Apolipoproteins undergo self-association, especially at higher concentrations, making them difficult to crystallize. Here, the crystallization and diffraction of the core fragment of apolipoprotein A-IV (apoA-IV), consisting of residues 64-335, is presented. ApoA-IV(64-335) crystallized readily in a variety of hexagonal (P6) morphologies with similar unit-cell parameters, all containing a long axis of nearly 550 Å in length. Preliminary diffraction experiments with the different crystal morphologies all resulted in limited streaky diffraction to 3.5 Å resolution. Crystal dehydration was applied to the different morphologies with variable success and was also used as a quality indicator of crystal-growth conditions. The results show that the morphologies that withstood the most extreme dehydration conditions showed the greatest improvement in diffraction. One morphology in particular was able to withstand dehydration in 60% PEG 3350 for over 12 h, which resulted in well defined intensities to 2.7 Å resolution. These results suggest that the approach of integrating dehydration with variation in crystal-growth conditions might be a general technique to optimize diffraction. © 2012 International Union of Crystallography. All rights reserved.
NASA Astrophysics Data System (ADS)
Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.
2018-04-01
Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.
Micro-beam Laue alignment of multi-reflection Bragg coherent diffraction imaging measurements
Hofmann, Felix; Phillips, Nicholas W.; Harder, Ross J.; ...
2017-08-08
Multi-reflection Bragg coherent diffraction imaging has the potential to allow three-dimensional (3D) resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here, in this paper, a different approach is demonstrated, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focusedmore » ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Lastly, our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples.« less
Micro-beam Laue alignment of multi-reflection Bragg coherent diffraction imaging measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, Felix; Phillips, Nicholas W.; Harder, Ross J.
Multi-reflection Bragg coherent diffraction imaging has the potential to allow three-dimensional (3D) resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here, in this paper, a different approach is demonstrated, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focusedmore » ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Lastly, our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples.« less
Micro-beam Laue alignment of multi-reflection Bragg coherent diffraction imaging measurements.
Hofmann, Felix; Phillips, Nicholas W; Harder, Ross J; Liu, Wenjun; Clark, Jesse N; Robinson, Ian K; Abbey, Brian
2017-09-01
Multi-reflection Bragg coherent diffraction imaging has the potential to allow three-dimensional (3D) resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here a different approach is demonstrated, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focused ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples.
Micro-beam Laue Alignment of Multi-Reflection Bragg Coherent Diffraction Imaging Measurements
Hofmann, Felix; Phillips, Nicholas W.; Harder, Ross J.; Liu, Wenjun; Clark, Jesse N.; Robinson, Ian K.; Abbey, Brian
2017-01-01
Multi-reflection Bragg coherent diffraction imaging has the potential to allow 3D resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here we demonstrate a different approach, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focussed ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples. PMID:28862628
Femtosecond X-ray protein nanocrystallography.
Chapman, Henry N; Fromme, Petra; Barty, Anton; White, Thomas A; Kirian, Richard A; Aquila, Andrew; Hunter, Mark S; Schulz, Joachim; DePonte, Daniel P; Weierstall, Uwe; Doak, R Bruce; Maia, Filipe R N C; Martin, Andrew V; Schlichting, Ilme; Lomb, Lukas; Coppola, Nicola; Shoeman, Robert L; Epp, Sascha W; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Kimmel, Nils; Weidenspointner, Georg; Holl, Peter; Liang, Mengning; Barthelmess, Miriam; Caleman, Carl; Boutet, Sébastien; Bogan, Michael J; Krzywinski, Jacek; Bostedt, Christoph; Bajt, Saša; Gumprecht, Lars; Rudek, Benedikt; Erk, Benjamin; Schmidt, Carlo; Hömke, André; Reich, Christian; Pietschner, Daniel; Strüder, Lothar; Hauser, Günter; Gorke, Hubert; Ullrich, Joachim; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kühnel, Kai-Uwe; Messerschmidt, Marc; Bozek, John D; Hau-Riege, Stefan P; Frank, Matthias; Hampton, Christina Y; Sierra, Raymond G; Starodub, Dmitri; Williams, Garth J; Hajdu, Janos; Timneanu, Nicusor; Seibert, M Marvin; Andreasson, Jakob; Rocker, Andrea; Jönsson, Olof; Svenda, Martin; Stern, Stephan; Nass, Karol; Andritschke, Robert; Schröter, Claus-Dieter; Krasniqi, Faton; Bott, Mario; Schmidt, Kevin E; Wang, Xiaoyu; Grotjohann, Ingo; Holton, James M; Barends, Thomas R M; Neutze, Richard; Marchesini, Stefano; Fromme, Raimund; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Andersson, Inger; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn; Spence, John C H
2011-02-03
X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.
Mesoscopic monodisperse ferromagnetic colloids enable magnetically controlled photonic crystals.
Xu, Xiangling; Majetich, Sara A; Asher, Sanford A
2002-11-20
We report here the first synthesis of mesoscopic, monodisperse particles which contain nanoscopic inclusions of ferromagnetic cobalt ferrites. These monodisperse ferromagnetic composite particles readily self-assemble into magnetically responsive photonic crystals that efficiently Bragg diffract incident light. Magnetic fields can be used to control the photonic crystal orientation and, thus, the diffracted wavelength. We demonstrate the use of these ferromagnetic particles to fabricate magneto-optical diffracting fluids and magnetically switchable diffracting mirrors.
Inclined monochromator for high heat-load synchrotron x-ray radiation
Khounsary, A.M.
1994-02-15
A double crystal monochromator is described including two identical, parallel crystals, each of which is cut such that the normal to the diffraction planes of interest makes an angle less than 90 degrees with the surface normal. Diffraction is symmetric, regardless of whether the crystals are symmetrically or asymmetrically cut, enabling operation of the monochromator with a fixed plane of diffraction. As a result of the inclination of the crystal surface, an incident beam has a footprint area which is elongated both vertically and horizontally when compared to that of the conventional monochromator, reducing the heat flux of the incident beam and enabling more efficient surface cooling. Because after inclination of the crystal only a fraction of thermal distortion lies in the diffraction plane, slope errors and the resultant misorientation of the diffracted beam are reduced. 11 figures.
Inclined monochromator for high heat-load synchrotron x-ray radiation
Khounsary, Ali M.
1994-01-01
A double crystal monochromator including two identical, parallel crystals, each of which is cut such that the normal to the diffraction planes of interest makes an angle less than 90 degrees with the surface normal. Diffraction is symmetric, regardless of whether the crystals are symmetrically or asymmetrically cut, enabling operation of the monochromator with a fixed plane of diffraction. As a result of the inclination of the crystal surface, an incident beam has a footprint area which is elongated both vertically and horizontally when compared to that of the conventional monochromator, reducing the heat flux of the incident beam and enabling more efficient surface cooling. Because after inclination of the crystal only a fraction of thermal distortion lies in the diffraction plane, slope errors and the resultant misorientation of the diffracted beam are reduced.
Study of Inverse Ni-based Photonic Crystal using the Microradian X-ray Diffraction
NASA Astrophysics Data System (ADS)
Vasilieva, A. V.; Grigoryeva, N. A.; Mistonov, A. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Lukashin, A. V.; Tretyakov, Yu D.; Petukhov, A. V.; Byelov, D.; Chernyshov, D.; Okorokov, A. I.; Bouwman, W. G.; Grigoriev, S. V.
2010-10-01
Inverse photonic nickel-based crystal films formed by electrocrystallization of metal inside the voids of polymer artificial opal have been studied using the microradian X-ray diffraction. Analysis of the diffraction images agrees with an face-centred cubic (FCC) structure with the lattice constant a0 = 650 ± 10 nm and indicates two types of stacking sequences coexisting in the crystal (twins of ABCABC... and ACBACB... ordering motifs), the ratio between them being 4:5 The transverse structural correlation length Ltran is 2.4 ± 0.1 μm, which corresponds to a sample thickness of 6 layers. The in-plane structural correlation length Llong is 3.4 ± 0.2 μm, and the structure mosaic is of order of 10°.
Specific features of two diffraction schemes for a widely divergent X-ray beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avetyan, K. T.; Levonyan, L. V.; Semerjian, H. S.
2015-03-15
We investigated the specific features of two diffraction schemes for a widely divergent X-ray beam that use a circular diaphragm 30–50 μm in diameter as a point source of characteristic radiation. In one of the schemes, the diaphragm was set in front of the crystal (the diaphragm-crystal (d-c) scheme); in the other, it was installed behind the crystal (the crystal-diaphragm (c-d) scheme). It was established that the diffraction image in the c-d scheme is a topographic map of the investigated crystal area. In the d-c scheme at L = 2l (l and L are the distances between the crystal andmore » the diaphragm and between the photographic plate and the diaphragm, respectively), the branches of hyperbolas formed in this family of planes (hkl) by the characteristic K{sub α} and K{sub β} radiations, including higher order reflections, converge into one straight line. It is experimentally demonstrated that this convergence is very sensitive to structural inhomogeneities in the crystal under study.« less
NASA Astrophysics Data System (ADS)
Cheung, Eugene Y.; David, Sarah E.; Harris, Kenneth D. M.; Conway, Barbara R.; Timmins, Peter
2007-03-01
We report the formation and structural properties of co-crystals containing gemfibrozil and hydroxy derivatives of t-butylamine H 2NC(CH 3) 3-n(CH 2OH) n, with n=0, 1, 2 and 3. In each case, a 1:1 co-crystal is formed, with transfer of a proton from the carboxylic acid group of gemfibrozil to the amino group of the t-butylamine derivative. All of the co-crystal materials prepared are polycrystalline powders, and do not contain single crystals of suitable size and/or quality for single crystal X-ray diffraction studies. Structure determination of these materials has been carried out directly from powder X-ray diffraction data, using the direct-space Genetic Algorithm technique for structure solution followed by Rietveld refinement. The structural chemistry of this series of co-crystal materials reveals well-defined structural trends within the first three members of the family ( n=0, 1, 2), but significantly contrasting structural properties for the member with n=3.
NASA Astrophysics Data System (ADS)
Divya, R.; Nair, Lekshmi P.; Bijini, B. R.; Nair, C. M. K.; Gopakumar, N.; Babu, K. Rajendra
2017-12-01
Strontium cyanurate crystals with novel structure and unique optical property like mechanoluminescence have been grown by conventional gel method. Transparent crystals were obtained. The single crystal X-ray diffraction analysis reveals the exquisite structure of the grown crystal. The crystal is centrosymmetric and has a three dimensional polymeric structure. The powder X ray diffraction analysis confirms its crystalline nature. The functional groups present in the crystal were identified by Fourier transform infrared spectroscopy. Elemental analysis confirmed the composition of the complex. A study of thermal properties was done by thermo gravimetric analysis and differential thermal analysis. The optical properties like band gap, refractive index and extinction coefficient were evaluated from the UV visible spectral analysis. The etching study was done to reveal the dislocations in the crystal which in turn explains mechanoluminescence emission. The mechanoluminescence property exhibited by the crystal makes it suitable for stress sensing applications. Besides being a centrosymmetric crystal, it also exhibits NLO behavior. Dielectric properties were studied and theoretical calculations of Fermi energy, valence electron plasma energy, penn gap and polarisability have been done.
Diffractive-refractive optics: X-ray splitter.
Hrdý, Jaromír
2010-01-01
The possibility of splitting a thin (e.g. undulator) X-ray beam based on diffraction-refraction effects is discussed. The beam is diffracted from a crystal whose diffracting surface has the shape of a roof with the ridge lying in the plane of diffraction. The crystal is cut asymmetrically. One half of the beam impinges on the left-hand part of the roof and the other half impinges on the right-hand side of the roof. Owing to refraction the left part of the beam is deviated to the left whereas the right part is deviated to the right. The device proposed consists of two channel-cut crystals with roof-like diffraction surfaces; the crystals are set in a dispersive position. The separation of the beams after splitting is calculated at a distance of 10 m from the crystals for various asymmetry and inclination angles. It is shown that such a splitting may be utilized for long beamlines. Advantages and disadvantages of this method are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barabanenkov, M. Yu., E-mail: barab@iptm.ru; Vyatkin, A. F.; Volkov, V. T.
2015-12-15
Single-mode submicrometer-thick strip waveguides on silicon-on-insulator substrates, fabricated by silicon-planar-technology methods are considered. To solve the problem of 1.5-µm wavelength radiation input-output and its frequency filtering, strip diffraction gratings and two-dimensional photonic crystals are integrated into waveguides. The reflection and transmission spectra of gratings and photonic crystals are calculated. The waveguide-mode-attenuation coefficient for a polycrystalline silicon waveguide is experimentally estimated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Jing; Li, Ming; Chen, Jiashu
Crystals of a non-haemorrhagic fibrin(ogen)olytic metalloproteinase from the venom of A. acutus have been obtained and characterized by X-ray diffraction. A non-haemorrhagic fibrin(ogen)olytic metalloproteinase from the venom of Agkistrodon acutus has been crystallized by the hanging-drop method. The crystals belong to space group P3{sub 1}21, with unit-cell parameters a = b = 80.57, c = 66.77 Å and one molecule in the asymmetric unit. X-ray diffraction data were collected to 1.86 Å resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Feifei; Gao, Feng; Li, Honglin
The cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of Rv3705c from M. tuberculosis are described. The conserved protein Rv3705c from Mycobacterium tuberculosis has been cloned, expressed, purified and crystallized by the sitting-drop vapour-diffusion method using PEG 3350 as a precipitant. The Rv3705c crystals exhibited space group P6{sub 1}22 or P6{sub 5}22, with unit-cell parameters a = b = 198.0, c = 364.1 Å, α = β = 90, γ = 120°, and diffracted to a resolution of 3.3 Å.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lustbader, J.W.; Birken, S.; Pileggi, N.F.
1989-11-28
Crystals suitable for X-ray diffraction studies at moderate resolution have been grown from two forms of human chorionic gonadotropin (hCG): HF-treated hCG and neuraminidase-treated hCG. The enzymatically desialylated form of hCG produced crystals that diffract to 2.8 {angstrom} as compared to the HF-treated hCG crystals that diffract to 3.0 {angstrom}. Although it was assumed that the high and heterogeneous carbohydrate content of the glycoprotein hormones inhibited their crystallization, this report suggests that it is the negatively charged surface sugars and neither the total carbohydrate content nor its heterogeneity which interferes with crystal formation. Chemical deglycosylation resulted in significantly increased proteinmore » degradation during crystal growth. Such peptide bond cleavages were observed to a much lesser extent in the crystals grown from neuraminidase-digested hCG. Sequence analysis of the HF-treated hCG crystals suggested that up to 45% of the molecules within the crystal had an acid-labile peptide bond cleaved. In contrast, the neuraminidase-treated hCG exhibited less than 9% of this type of cleavage. The manner in which hCG was treated prior to crystallization was found to be a very important factor in the extent of peptide bound cleavages occurring during crystal growth. HF treatment of glycoproteins may render glycoproteins more susceptible to peptide bond cleavage during crystal growth.« less
Casadei, Cecilia M.; Tsai, Ching-Ju; Barty, Anton; ...
2018-01-01
Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography atmore » X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casadei, Cecilia M.; Tsai, Ching-Ju; Barty, Anton
Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography atmore » X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.« less
X-Ray Diffraction and Imaging Study of Imperfections of Crystallized Lysozyme with Coherent X-Rays
NASA Technical Reports Server (NTRS)
Hu, Zheng-Wei; Chu, Y. S.; Lai, B.; Cai, Z.; Thomas, B. R.; Chernov, A. A.
2003-01-01
Phase-sensitive x-ray diffraction imaging and high angular-resolution diffraction combined with phase contrast radiographic imaging are employed to characterize defects and perfection of a uniformly grown tetragonal lysozyme crystal in symmetric Laue case. The fill width at half-maximum (FWHM) of a 4 4 0 rocking curve measured from the original crystal is approximately 16.7 arcseconds, and defects, which include point defects, line defects, and microscopic domains, have been clearly observed in the diffraction images of the crystal. The observed line defects carry distinct dislocation features running approximately along the <110> growth front, and they have been found to originate mostly at a central growth area and occasionally at outer growth regions. Individual point defects trapped at a crystal nucleus are resolved in the images of high sensitivity to defects. Slow dehydration has led to the broadening of the 4 4 0 rocking curve by a factor of approximately 2.4. A significant change of the defect structure and configuration with drying has been revealed, which suggests the dehydration induced migration and evolution of dislocations and lattice rearrangements to reduce overall strain energy. The sufficient details of the observed defects shed light upon perfection, nucleation and growth, and properties of protein crystals.
Barnes, Cindy L; Snell, Edward H; Kundrot, Craig E
2002-05-01
This paper reports results from the first biological crystal-growth experiment on the International Space Station (ISS). Crystals of thaumatin were grown using liquid-liquid diffusion in Tygon tubing transported in the Enhanced Gaseous Nitrogen Dewar (EGN). Different volume ratios and concentrations of protein and precipitant were used to test different adaptations of the vapor-diffusion crystallization recipe to the liquid-liquid diffusion method. The EGN warmed up from 77 to 273 K in about 4 d, about the same time it took to warm from 273 to 293 K. The temperature within the EGN was 293-297 K for the majority of the experiment. Air gaps that blocked liquid-liquid diffusion formed in the tubes. Nonetheless, crystals were grown. Synchrotron diffraction data collected from the best space-grown crystal extended to 1.28 A, comparable to previous studies of space-grown thaumatin crystals. The resolution of the best ground-control crystal was only 1.47 A. It is not clear if the difference in diffraction limit arises from factors other than crystal size. Improvements in temperature control and the elimination of air gaps are needed, but the results show that the EGN on the ISS can be used to produce space-grown crystals that diffract to high resolution.
NASA Technical Reports Server (NTRS)
Kundrot, Craig; Barnes, Cindy L.; Snell, Edward H.; Stinson, Thomas N. (Technical Monitor)
2002-01-01
This paper reports results from the first biological crystal growth experiment on the International Space Station (ISS). Crystals of thaumatin were grown using liquid-liquid diffusion in Tygon tubing transported in the Enhanced Gaseous Nitrogen Dewar (EGN). Different Volume ratios and concentrations of protein and precipitant were used to test different adaptations of the vapor diffusion crystallization recipe to the liquid-liquid diffusion method. The EGN warmed up from -196 C to 0 C in about four days, about the same time it took to warm from 0 C to 20 C. The temperature within the EGN was 20 - 24 C for the majority of the experiment. Air gaps that blocked liquid-liquid diffusion formed in the tubes. Nonetheless, crystals were grown. Synchrotron diffraction data collected from the best space grown crystal extended to 1.28 Angstroms, comparable to previous studies of space-grown thaumatin crystals. The resolution of the best ground control crystal was only 1.47 Angstroms. It is not clear if the difference in diffraction limit is due to factors other than crystal size. Improvements in temperature control and the elimination of air gaps are needed, but the results show that EGN on the ISS can be used to produce space grown crystals that diffract to high resolution.
Laser Scattering Tomography for the Study of Defects in Protein Crystals
NASA Technical Reports Server (NTRS)
Feigelson, Robert S.; DeLucas, Lawrence; DeMattei, R. C.
1997-01-01
The goal of this research is to explore the application of the non-destructive technique of Laser Scattering Tomography (LST) to study the defects in protein crystals and relate them to the x-ray diffraction performance of the crystals. LST has been used successfully for the study of defects in inorganic crystals and. in the case of lysozyme, for protein crystals.
7 Å Resolution in Protein 2-Dimentional-Crystal X-Ray Diffraction at Linac Coherent Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido
2014-06-09
Membrane proteins arranged as two-dimensional (2D) crystals in the lipid en- vironment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. X-ray diffraction from individual 2D crystals did not represent a suitable investigation tool because of radiation damage. The recent availability of ultrashort pulses from X-ray Free Electron Lasers (X-FELs) has now provided a mean to outrun the damage. Here we report on measurements performed at the LCLS X-FEL on bacteriorhodopsin 2D crystals mounted on a solid support and kept at room temperature. By merg- ing data from about a dozen of single crystalmore » diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 °A, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase of resolution. The presented results pave the way to further X-FEL studies on 2D crystals, which may include pump-probe experiments at subpicosecond time resolution.« less
NASA Astrophysics Data System (ADS)
Nikolaeva, A. Yu.; Timofeev, V. I.; Boiko, K. M.; Korzhenevskii, D. A.; Rakitina, T. V.; Dorovatovskii, P. V.; Lipkin, A. V.
2015-11-01
HU proteins are involved in bacterial DNA and RNA repair. Since these proteins are absent in cells of higher organisms, inhibitors of HU proteins can be used as effective and safe antibiotics. The crystallization conditions for the M. gallisepticum HU protein were found and optimized by the vapor-diffusion method. The X-ray diffraction data set was collected to 2.91 Å resolution from the crystals grown by the vapor-diffusion method on a synchrotron source. The crystals of the HU protein belong to sp. gr. P41212 and have the following unit-cell parameters: a = b = 97.94 Å, c = 77.92 Å, α = β = γ = 90°.
Li, James C. M.; Chu, Sungnee G.
1980-01-01
A hemispherical Laue camera comprises a crystal sample mount for positioning a sample to be analyzed at the center of sphere of a hemispherical, X-radiation sensitive film cassette, a collimator, a stationary or rotating sample mount and a set of standard spherical projection spheres. X-radiation generated from an external source is directed through the collimator to impinge onto the single crystal sample on the stationary mount. The diffracted beam is recorded on the hemispherical X-radiation sensitive film mounted inside the hemispherical film cassette in either transmission or back-reflection geometry. The distances travelled by X-radiation diffracted from the crystal to the hemispherical film are the same for all crystal planes which satisfy Bragg's Law. The recorded diffraction spots or Laue spots on the film thereby preserve both the symmetry information of the crystal structure and the relative intensities which are directly related to the relative structure factors of the crystal orientations. The diffraction pattern on the exposed film is compared with the known diffraction pattern on one of the standard spherical projection spheres for a specific crystal structure to determine the orientation of the crystal sample. By replacing the stationary sample support with a rotating sample mount, the hemispherical Laue camera can be used for crystal structure determination in a manner previously provided in conventional Debye-Scherrer cameras.
Peramaiyan, G; Pandi, P; Sornamurthy, B M; Bhagavannarayana, G; Mohan Kumar, R
2012-09-01
Picolinium tartrate monohydrate (PTM), a novel organic nonlinear optical material was synthesized and bulk crystals were grown from aqueous solution by slow cooling technique. The cell parameters of the grown crystal were found by single and powder X-ray diffraction analyses. The crystalline perfection of the grown crystals has been analyzed by high-resolution X-ray diffraction (HRXRD) rocking curve measurements. The presence of functional groups in the grown crystal was identified by FTIR and FT-Raman spectral analyses. UV-Vis spectral studies reveal PTM crystals are transparent in the wavelength region of 295-1100 nm. The thermal characteristics of PTM were analyzed by TGA/DTA studies. The dielectric and mechanical behaviours of PTM crystals were investigated. Dislocation density was estimated to be 2.89 × 10(3) cm(-2) on the flat-surface of PTM crystals from the etching studies. The laser induced surface damage threshold for the grown crystal was measured using Nd:YAG laser. Its second harmonic generation relative efficiency was measured by Kurtz and Perry powder technique and was observed to be comparable with KDP crystal. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivasubramani, V.; Pandian, Muthu Senthil, E-mail: senthilpandianm@ssn.edu.in; Ramasamy, P.
2016-05-23
2-amino-5-nitropyridinium nitrate (2A5NPN) is a semi-organic nonlinear optical crystal and optically good quality 2A5NPN single crystals were successfully grown by slow evaporation solution growth technique (SEST) at ambient temperature. The crystallographic structure of the grown crystal was determined by single crystal X-Ray diffraction analysis and it belongs to Monoclinic crystal system with centro symmetric crystalline nature. The crystallinity of the grown crystal was confirmed by powder X-ray diffraction analysis. The other physical properties of grown crystals are also characterized using TG-DTA, UV-Visible NIR, chemical etching, photoconductivity and Z-scan measurements. The Z-scan method reveals that the 2A5NPN crystal possesses multi photonmore » absorption behaviour and the significantly higher third order susceptibility and it is a promising potential NLO material.« less
Dynamical effects in Bragg coherent x-ray diffraction imaging of finite crystals
NASA Astrophysics Data System (ADS)
Shabalin, A. G.; Yefanov, O. M.; Nosik, V. L.; Bushuev, V. A.; Vartanyants, I. A.
2017-08-01
We present simulations of Bragg coherent x-ray diffractive imaging (CXDI) data from finite crystals in the frame of the dynamical theory of x-ray diffraction. The developed approach is based on a numerical solution of modified Takagi-Taupin equations and can be applied for modeling of a broad range of x-ray diffraction experiments with finite three-dimensional crystals of arbitrary shape also in the presence of strain. We performed simulations for nanocrystals of a cubic and hemispherical shape of different sizes and provided a detailed analysis of artifacts in the Bragg CXDI reconstructions introduced by the dynamical diffraction. Based on our theoretical analysis we developed an analytical procedure to treat effects of refraction and absorption in the reconstruction. Our results elucidate limitations for the kinematical approach in the Bragg CXDI and suggest a natural criterion to distinguish between kinematical and dynamical cases in coherent x-ray diffraction on a finite crystal.
Influence of solvents on the habit modification of alpha lactose monohydrate single crystals
NASA Astrophysics Data System (ADS)
Parimaladevi, P.; Srinivasan, K.
2013-02-01
Restricted evaporation of solvent method was adopted for the growth of alpha lactose monohydrate single crystals from different solvents. The crystal habits of grown crystals were analysed. The form of crystallization was confirmed by powder x-ray diffraction analysis. Thermal behaviour of the grown crystals was studied by using differential scanning calorimetry.
Invited Review Article: Development of crystal lenses for energetic photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smither, Robert K.
2014-08-15
This paper follows the development of crystal diffraction lenses designed to focus energetic photons. It begins with the search for a solution to the astrophysics problem of how to detect weak astrophysics sources of gamma rays and x-rays. This led to the basic designs for a lens and to the understanding of basic limitations of lens design. The discussion of the development of crystal diffraction lenses is divided into two parts: lenses using crystals with mosaic structure, and lenses that use crystals with curved crystal planes. This second group divides into two sub-groups: (1) Curved crystals that are used tomore » increase the acceptance angle of the diffraction of a monochromatic beam and to increase the energy bandwidth of the diffraction. (2) Curved crystals used to focus gamma ray beams. The paper describes how these two types of crystals affect the design of the corresponding crystal lenses in different fields: astrophysics, medical imaging, detection of weak, distant, gamma-ray sources, etc. The designs of crystal lenses for these applications are given in enough detail to allow the reader to design a lens for his own application.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renzi, Fabiana; Panetta, Gianna; Vallone, Beatrice
Recombinant His-tagged XendoU, a eukaryotic endoribonuclease, appeared to aggregate in the presence of divalent cations. Monodisperse protein which yielded crystals diffracting to 2.2 Å was obtained by addition of EDTA. XendoU is the first endoribonuclease described in higher eukaryotes as being involved in the endonucleolytic processing of intron-encoded small nucleolar RNAs. It is conserved among eukaryotes and its viral homologue is essential in SARS replication and transcription. The large-scale purification and crystallization of recombinant XendoU are reported. The tendency of the recombinant enzyme to aggregate could be reversed upon the addition of chelating agents (EDTA, imidazole): aggregation is a potentialmore » drawback when purifying and crystallizing His-tagged proteins, which are widely used, especially in high-throughput structural studies. Purified monodisperse XendoU crystallized in two different space groups: trigonal P3{sub 1}21, diffracting to low resolution, and monoclinic C2, diffracting to higher resolution.« less
The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerdts, Cory J.; Elliott, Mark; Lovell, Scott
2012-02-08
The Microcapillary Protein Crystallization System (MPCS) embodies a new semi-automated plug-based crystallization technology which enables nanolitre-volume screening of crystallization conditions in a plasticware format that allows crystals to be easily removed for traditional cryoprotection and X-ray diffraction data collection. Protein crystals grown in these plastic devices can be directly subjected to in situ X-ray diffraction studies. The MPCS integrates the formulation of crystallization cocktails with the preparation of the crystallization experiments. Within microfluidic Teflon tubing or the microfluidic circuitry of a plastic CrystalCard, {approx}10-20 nl volume droplets are generated, each representing a microbatch-style crystallization experiment with a different chemical composition.more » The entire protein sample is utilized in crystallization experiments. Sparse-matrix screening and chemical gradient screening can be combined in one comprehensive 'hybrid' crystallization trial. The technology lends itself well to optimization by high-granularity gradient screening using optimization reagents such as precipitation agents, ligands or cryoprotectants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harada, Ayaka; Sato, Yukari; Kamimura, Naofumi
2016-11-30
A tetrahydrofolate-dependentO-demethylase, LigM, from Sphingobiumsp. SYK-6 was crystallized by the hanging-drop vapour-diffusion method. However, the obtained P3 121 orP3 221 crystals, which diffracted to 2.5–3.3 Å resolution, were hemihedrally twinned. To overcome the twinning problem, microseeding using P3 121/P3 2 21 crystals as microseeds was performed with optimization of the reservoir conditions. As a result, another crystal form was obtained. The newly obtained crystal diffracted to 2.5–3.0 Å resolution and belonged to space group P2 12 12, with unit-cell parametersa= 102.0,b= 117.3,c = 128.1 Å. The P2 12 12 crystals diffracted to better than 2.0 Å resolution after optimizing themore » cryoconditions. Phasing using the single anomalous diffraction method was successful at 3.0 Å resolution with a Pt-derivative crystal. This experience suggested that microseeding is an effective method to overcome the twinning problem, even when twinned crystals are utilized as microseeds.« less
An Overview of Hardware for Protein Crystallization in a Magnetic Field.
Yan, Er-Kai; Zhang, Chen-Yan; He, Jin; Yin, Da-Chuan
2016-11-16
Protein crystallization under a magnetic field is an interesting research topic because a magnetic field may provide a special environment to acquire improved quality protein crystals. Because high-quality protein crystals are very useful in high-resolution structure determination using diffraction techniques (X-ray, neutron, and electron diffraction), research using magnetic fields in protein crystallization has attracted substantial interest; some studies have been performed in the past two decades. In this research field, the hardware is especially essential for successful studies because the environment is special and the design and utilization of the research apparatus in such an environment requires special considerations related to the magnetic field. This paper reviews the hardware for protein crystallization (including the magnet systems and the apparatus designed for use in a magnetic field) and progress in this area. Future prospects in this field will also be discussed.
An Overview of Hardware for Protein Crystallization in a Magnetic Field
Yan, Er-Kai; Zhang, Chen-Yan; He, Jin; Yin, Da-Chuan
2016-01-01
Protein crystallization under a magnetic field is an interesting research topic because a magnetic field may provide a special environment to acquire improved quality protein crystals. Because high-quality protein crystals are very useful in high-resolution structure determination using diffraction techniques (X-ray, neutron, and electron diffraction), research using magnetic fields in protein crystallization has attracted substantial interest; some studies have been performed in the past two decades. In this research field, the hardware is especially essential for successful studies because the environment is special and the design and utilization of the research apparatus in such an environment requires special considerations related to the magnetic field. This paper reviews the hardware for protein crystallization (including the magnet systems and the apparatus designed for use in a magnetic field) and progress in this area. Future prospects in this field will also be discussed. PMID:27854318
Femtosecond X-ray protein nanocrystallography
Chapman, Henry N.; Fromme, Petra; Barty, Anton; White, Thomas A.; Kirian, Richard A.; Aquila, Andrew; Hunter, Mark S.; Schulz, Joachim; DePonte, Daniel P.; Weierstall, Uwe; Doak, R. Bruce; Maia, Filipe R. N. C.; Martin, Andrew V.; Schlichting, Ilme; Lomb, Lukas; Coppola, Nicola; Shoeman, Robert L.; Epp, Sascha W.; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Kimmel, Nils; Weidenspointner, Georg; Holl, Peter; Liang, Mengning; Barthelmess, Miriam; Caleman, Carl; Boutet, Sébastien; Bogan, Michael J.; Krzywinski, Jacek; Bostedt, Christoph; Bajt, Saša; Gumprecht, Lars; Rudek, Benedikt; Erk, Benjamin; Schmidt, Carlo; Hömke, André; Reich, Christian; Pietschner, Daniel; Strüder, Lothar; Hauser, Günter; Gorke, Hubert; Ullrich, Joachim; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kühnel, Kai-Uwe; Messerschmidt, Marc; Bozek, John D.; Hau-Riege, Stefan P.; Frank, Matthias; Hampton, Christina Y.; Sierra, Raymond G.; Starodub, Dmitri; Williams, Garth J.; Hajdu, Janos; Timneanu, Nicusor; Seibert, M. Marvin; Andreasson, Jakob; Rocker, Andrea; Jönsson, Olof; Svenda, Martin; Stern, Stephan; Nass, Karol; Andritschke, Robert; Schröter, Claus-Dieter; Krasniqi, Faton; Bott, Mario; Schmidt, Kevin E.; Wang, Xiaoyu; Grotjohann, Ingo; Holton, James M.; Barends, Thomas R. M.; Neutze, Richard; Marchesini, Stefano; Fromme, Raimund; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Andersson, Inger; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn; Spence, John C. H.
2012-01-01
X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded1-3. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source4. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes5. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (~200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes6. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage. PMID:21293373
Bonnini, Elisa; Buffagni, Elisa; Zappettini, Andrea; Doyle, Stephen; Ferrari, Claudio
2015-06-01
The efficiency of a Laue lens for X- and γ-ray focusing in the energy range 60-600 keV is closely linked to the diffraction efficiency of the single crystals composing the lens. A powerful focusing system is crucial for applications like medical imaging and X-ray astronomy where wide beams must be focused. Mosaic crystals with a high density, such as Cu or Au, and bent crystals with curved diffracting planes (CDPs) are considered for the realization of a focusing system for γ-rays, owing to their high diffraction efficiency in a predetermined angular range. In this work, a comparison of the efficiency of CDP crystals and Cu and Au mosaic crystals was performed on the basis of the theory of X-ray diffraction. Si, GaAs and Ge CDP crystals with optimized thicknesses and moderate radii of curvature of several tens of metres demonstrate comparable or superior performance with respect to the higher atomic number mosaic crystals generally used. In order to increase the efficiency of the lens further, a stack of several CDP crystals is proposed as an optical element. CDP crystals were obtained by a surface-damage method, and a stack of two surface-damaged bent Si crystals was prepared and tested. Rocking curves of the stack were performed with synchrotron radiation at 19 keV to check the lattice alignment: they exhibited only one diffraction peak.
Coughlan, H D; Darmanin, C; Phillips, N W; Hofmann, F; Clark, J N; Harder, R J; Vine, D J; Abbey, B
2015-07-01
For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources.
Coughlan, H. D.; Darmanin, C.; Phillips, N. W.; Hofmann, F.; Clark, J. N.; Harder, R. J.; Vine, D. J.; Abbey, B.
2015-01-01
For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources. PMID:26798804
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughlan, H. D.; Darmanin, C.; Phillips, N. W.
For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources.
Coughlan, H. D.; Darmanin, C.; Phillips, N. W.; ...
2015-04-29
For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources.
A simple 2D composite image analysis technique for the crystal growth study of L-ascorbic acid.
Kumar, Krishan; Kumar, Virender; Lal, Jatin; Kaur, Harmeet; Singh, Jasbir
2017-06-01
This work was destined for 2D crystal growth studies of L-ascorbic acid using the composite image analysis technique. Growth experiments on the L-ascorbic acid crystals were carried out by standard (optical) microscopy, laser diffraction analysis, and composite image analysis. For image analysis, the growth of L-ascorbic acid crystals was captured as digital 2D RGB images, which were then processed to composite images. After processing, the crystal boundaries emerged as white lines against the black (cancelled) background. The crystal boundaries were well differentiated by peaks in the intensity graphs generated for the composite images. The lengths of crystal boundaries measured from the intensity graphs of composite images were in good agreement (correlation coefficient "r" = 0.99) with the lengths measured by standard microscopy. On the contrary, the lengths measured by laser diffraction were poorly correlated with both techniques. Therefore, the composite image analysis can replace the standard microscopy technique for the crystal growth studies of L-ascorbic acid. © 2017 Wiley Periodicals, Inc.
Crystal structure, thermal and optical properties of Benzimidazole benzimidazolium picrate crystal
NASA Astrophysics Data System (ADS)
Jagadesan, A.; Peramaiyan, G.; Srinivasan, T.; Kumar, R. Mohan; Arjunan, S.
2016-02-01
A new organic framework of benzimidazole with picric acid has been synthesized. A single crystal with a size of 38×10×4 mm3 was grown by a slow evaporation solution growth technique. X-ray diffraction study revealed that the BZP crystal belongs to triclinic system with space group P-1. High resolution X-ray diffraction study shows the absence of grain boundaries without any defects. The thermal stability and specific heat capacity of BZP were investigated by TG/DT and TG/DSC analyses. From the UV-vis-NIR spectral study, optical transmission window and band gap of BZP were found out. The nonlinear refractive index (n2) and third order susceptibility Re(χ(3)) values of BZP crystal are estimated to be 1.73×10-7 cm2/W and 1.26×10-5 esu, respectively using a Z-scan technique.
Kumagai, H; Nohara, S; Suzuki, H; Hashimoto, W; Yamamoto, K; Sakai, H; Sakabe, K; Fukuyama, K; Sakabe, N
1993-12-20
gamma-Glutamyltranspeptidase (EC 2.3.2.2) from Escherichia coli K-12 has been purified and crystallized by means of vapor diffusion in hanging drops. Two kinds of crystals on cell dimensions were found for X-ray diffraction analysis, one from ammonium sulfate and the other from polyethylene glycol 6000 as precipitants. The crystals of the orthorhombic form grown in the presence of 15% polyethylene glycol and 20 mM sodium acetate buffer were chosen for further analysis. The crystals belonged to space group P2(1)2(1)2(1), with cell dimensions of a = 128.1, b = 129.9 and c = 79.2 A, and two molecules constitute an asymmetric unit. These crystals diffracted to 2.0 A resolution and were suitable for X-ray crystallographic studies.
Improved crystallization of the coxsackievirus B3 RNA-dependent RNA polymerase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jabafi, Ilham; Selisko, Barbara; Coutard, Bruno
2007-06-01
The first crystal of a coxsackievirus RNA-dependent RNA polymerase is reported. The Picornaviridae virus family contains a large number of human pathogens such as poliovirus, hepatitis A virus and rhinoviruses. Amongst the viruses belonging to the genus Enterovirus, several serotypes of coxsackievirus coexist for which neither vaccine nor therapy is available. Coxsackievirus B3 is involved in the development of acute myocarditis and dilated cardiomyopathy and is thought to be an important cause of sudden death in young adults. Here, the first crystal of a coxsackievirus RNA-dependent RNA polymerase is reported. Standard crystallization methods yielded crystals that were poorly suited tomore » X-ray diffraction studies, with one axis being completely disordered. Crystallization was improved by testing crystallization solutions from commercial screens as additives. This approach yielded crystals that diffracted to 2.1 Å resolution and that were suitable for structure determination.« less
NASA Astrophysics Data System (ADS)
Bogomazova, E. A.; Kalinin, B. N.; Naumenko, G. A.; Padalko, D. V.; Potylitsyn, A. P.; Sharafutdinov, A. F.; Vnukov, I. E.
2003-01-01
A series of experiments on the parametric X-rays radiation (PXR) generation and radiation soft component diffraction of relativistic electrons in pyrolytic graphite (PG) crystals have been carried out at the Tomsk synchrotron. It is shown that the experimental results with PG crystals are explained by the kinematic PXR theory if we take into account a contribution of the real photons diffraction (transition radiation, bremsstrahlung and PXR photons as well). The measurements of the emission spectrum of channeled electrons in the photon energy range much smaller than the characteristic energy of channeling radiation have been performed with a crystal-diffraction spectrometer. For electrons incident along the <1 1 0> axis of a silicon crystal, the radiation intensity in the energy range 30⩽ ω⩽360 keV exceeds the bremsstrahlung one almost by an order of magnitude. Different possibilities to create an effective source of the monochromatic X-ray beam based on the real and virtual photons diffraction in the PG crystals have been considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathuri, Puja; Nguyen, Emily Tam; Luecke, Hartmut, E-mail: hudel@uci.edu
2006-11-01
α-11 giardin from the intestinal protozoan parasite, G. lamblia has been cloned, expressed, purified and crystallized under two different conditions and in two different space groups. Crystals from the first condition diffracted to 1.1 Å and belong to a primitive orthorhombic space group and crystals obtained in the second condition diffracted to 2.93 Å and belong to a primitive monoclinic space group. α-11 Giardin, a protein from the annexin superfamily, is a 35.0 kDa protein from the intestinal protozoan parasite Giardia lamblia which triggers a form of diarrhea called giardiasis. Here, the cloning, expression, purification and the crystallization of α-11more » giardin under two different conditions and in two different space groups is reported. Crystals from the first condition diffracted to 1.1 Å and belong to a primitive orthorhombic space group, while crystals from the second condition, which included calcium in the crystallization solution, diffracted to 2.93 Å and belong to a primitive monoclinic space group. Determination of the detailed atomic structure of α-11 giardin will provide a better insight into its biological function and might establish whether this class of proteins is a potential drug target against giardiasis.« less
X-ray diffraction studies of phase transformations in heavy-metal fluoride glasses
NASA Technical Reports Server (NTRS)
Bansal, N. P.; Doremus, R. H.
1985-01-01
Powder X-ray diffraction and differential scanning calorimetry studies of the crystallization properties of five ZrF4-based glass compositions have indicated that the crystalline phase in Zr-Ba-La-Pb fluoride glass is beta-BaZrF6; no such identification of crystal phases was obtainable, however, for the other glasses. Reversible polymorphic phase transformations occur in Zr-Ba-La-Li and Zr-Ba-La-Na fluoride glasses, upon heating to higher temperatures.
NASA Astrophysics Data System (ADS)
Prabhu, Shobha R.; Jayarama, A.; Chandrasekharan, K.; Upadhyaya, V.; Ng, Seik Weng
2017-05-01
A new chalcone compound (2E)-3-(3-methylphenyl)-1-(4-nitrophenyl)prop-2-en-1-one (3MPNP) with molecular formula C16H13NO3 has been synthesized and crystallized by slow solvent evaporation technique. The Fourier transform infrared, Fourier transform Raman and nuclear magnetic resonance techniques were used for structural characterization. UV-visible absorption studies were carried out to study the transparency of the crystal in the visible region. Differential scanning calorimetry study shows thermal stability of crystals up to temperature 122 °C. Single crystal X-ray diffraction and powder X-ray diffraction techniques were used to study crystal structure and cell parameters. The Hirshfeld surface and 2-D fingerprint analysis were performed to study the nature of interactions and their quantitative contributions towards the crystal packing. The third order non-linear optical properties have been studied using single beam Z-scan technique and the results show that the material is a potential candidate for optical device applications such as optical limiters and optical switches.
Gicquel, Yannig; Schubert, Robin; Kapis, Svetlana; Bourenkov, Gleb; Schneider, Thomas; Perbandt, Markus; Betzel, Christian; Chapman, Henry N; Heymann, Michael
2018-04-24
This protocol describes fabricating microfluidic devices with low X-ray background optimized for goniometer based fixed target serial crystallography. The devices are patterned from epoxy glue using soft lithography and are suitable for in situ X-ray diffraction experiments at room temperature. The sample wells are lidded on both sides with polymeric polyimide foil windows that allow diffraction data collection with low X-ray background. This fabrication method is undemanding and inexpensive. After the sourcing of a SU-8 master wafer, all fabrication can be completed outside of a cleanroom in a typical research lab environment. The chip design and fabrication protocol utilize capillary valving to microfluidically split an aqueous reaction into defined nanoliter sized droplets. This loading mechanism avoids the sample loss from channel dead-volume and can easily be performed manually without using pumps or other equipment for fluid actuation. We describe how isolated nanoliter sized drops of protein solution can be monitored in situ by dynamic light scattering to control protein crystal nucleation and growth. After suitable crystals are grown, complete X-ray diffraction datasets can be collected using goniometer based in situ fixed target serial X-ray crystallography at room temperature. The protocol provides custom scripts to process diffraction datasets using a suite of software tools to solve and refine the protein crystal structure. This approach avoids the artefacts possibly induced during cryo-preservation or manual crystal handling in conventional crystallography experiments. We present and compare three protein structures that were solved using small crystals with dimensions of approximately 10-20 µm grown in chip. By crystallizing and diffracting in situ, handling and hence mechanical disturbances of fragile crystals is minimized. The protocol details how to fabricate a custom X-ray transparent microfluidic chip suitable for in situ serial crystallography. As almost every crystal can be used for diffraction data collection, these microfluidic chips are a very efficient crystal delivery method.
Crystallization screening test for the whole-cell project on Thermus thermophilus HB8
Iino, Hitoshi; Naitow, Hisashi; Nakamura, Yuki; Nakagawa, Noriko; Agari, Yoshihiro; Kanagawa, Mayumi; Ebihara, Akio; Shinkai, Akeo; Sugahara, Mitsuaki; Miyano, Masashi; Kamiya, Nobuo; Yokoyama, Shigeyuki; Hirotsu, Ken; Kuramitsu, Seiki
2008-01-01
It was essential for the structural genomics of Thermus thermophilus HB8 to efficiently crystallize a number of proteins. To this end, three conventional robots, an HTS-80 (sitting-drop vapour diffusion), a Crystal Finder (hanging-drop vapour diffusion) and a TERA (modified microbatch) robot, were subjected to a crystallization condition screening test involving 18 proteins from T. thermophilus HB8. In addition, a TOPAZ (microfluidic free-interface diffusion) designed specifically for initial screening was also briefly examined. The number of diffraction-quality crystals and the time of appearance of crystals increased in the order HTS-80, Crystal Finder, TERA. With the HTS-80 and Crystal Finder, the time of appearance was short and the rate of salt crystallization was low. With the TERA, the number of diffraction-quality crystals was high, while the time of appearance was long and the rate of salt crystallization was relatively high. For the protein samples exhibiting low crystallization success rates, there were few crystallization conditions that were common to the robots used. In some cases, the success rate depended greatly on the robot used. The TOPAZ showed the shortest time of appearance and the highest success rate, although the crystals obtained were too small for diffraction studies. These results showed that the combined use of different robots significantly increases the chance of obtaining crystals, especially for proteins exhibiting low crystallization success rates. The structures of 360 of 944 purified proteins have been successfully determined through the combined use of an HTS-80 and a TERA. PMID:18540056
NASA Astrophysics Data System (ADS)
Suresh, A.; Manikandan, N.; Jauhar, RO. MU.; Murugakoothan, P.; Vinitha, G.
2018-06-01
Urea p-nitrophenol, an organic nonlinear optical crystal was synthesized and grown adopting slow evaporation and seed rotation method. Single crystal X-ray diffraction study confirmed the formation of the desired crystal. High resolution X-ray diffraction study showed the defect nature of the crystal. The presence of functional groups in the material was confirmed by FTIR analysis. UV-Vis-NIR study indicates that the grown crystal has a wider transparency region with the lower cutoff wavelength at 423 nm. The grown crystal is thermally stable up to 120 °C as assessed by TG-DTA analysis. The optical homogeneity of the grown crystal was confirmed by birefringence study. The 1064 nm Nd-YAG laser was used to obtain laser induced surface damage threshold which was found to be 0.38, 0.25 and 0.33 GW/cm2 for (0 1 0), (1 1 - 1) and (0 1 1) planes, respectively. The dielectric study was performed to find the charge distribution inside the crystal. The hardness property of the titular material has been found using Vicker's microhardness study. The optical nonlinearity obtained from third order nonlinear optical measurements carried out using Z-scan technique showed that these samples could be exploited for optical limiting studies.
Tang, M X; Zhang, Y Y; E, J C; Luo, S N
2018-05-01
Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, M. X.; Zhang, Y. Y.; E, J. C.
Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of themore » diffraction patterns is discussed.« less
Roy Choudhury, Subhasree; Gomes, Aparna; Gomes, Antony; Dattagupta, Jiban K.; Sen, Udayaditya
2006-01-01
A cytotoxin (MW 7.2 kDa) from Indian Russell’s viper (Daboia russelli russelli) venom possessing antiproliferative activity, cardiotoxicity, neurotoxicity and myotoxicity has been purified, characterized and crystallized. The crystals belong to the tetragonal space group P41, with unit-cell parameters a = b = 47.94, c = 50.2 Å. Larger crystals, which diffracted to 1.5 Å, were found to be twinned; diffraction data were therefore collected to 2.93 Å resolution using a smaller crystal. Molecular-replacement calculations identified two molecules of the protein in the asymmetric unit, which is in accordance with the calculated V M value. PMID:16511326
Crystallization of Proteins from Crude Bovine Rod Outer Segments☆
Baker, Bo Y.; Gulati, Sahil; Shi, Wuxian; Wang, Benlian; Stewart, Phoebe L.; Palczewski, Krzysztof
2015-01-01
Obtaining protein crystals suitable for X-ray diffraction studies comprises the greatest challenge in the determination of protein crystal structures, especially for membrane proteins and protein complexes. Although high purity has been broadly accepted as one of the most significant requirements for protein crystallization, a recent study of the Escherichia coli proteome showed that many proteins have an inherent propensity to crystallize and do not require a highly homogeneous sample (Totir et al., 2012). As exemplified by RPE65 (Kiser, Golczak, Lodowski, Chance, & Palczewski, 2009), there also are cases of mammalian proteins crystallized from less purified samples. To test whether this phenomenon can be applied more broadly to the study of proteins from higher organisms, we investigated the protein crystallization profile of bovine rod outer segment (ROS) crude extracts. Interestingly, multiple protein crystals readily formed from such extracts, some of them diffracting to high resolution that allowed structural determination. A total of seven proteins were crystallized, one of which was a membrane protein. Successful crystallization of proteins from heterogeneous ROS extracts demonstrates that many mammalian proteins also have an intrinsic propensity to crystallize from complex biological mixtures. By providing an alternative approach to heterologous expression to achieve crystallization, this strategy could be useful for proteins and complexes that are difficult to purify or obtain by recombinant techniques. PMID:25950977
Meena, K; Muthu, K; Meenatchi, V; Rajasekar, M; Bhagavannarayana, G; Meenakshisundaram, S P
2014-04-24
Transparent optical quality single crystals of imidazolium L-tartrate (IMLT) were grown by conventional slow evaporation solution growth technique. Crystal structure of the as-grown IMLT was determined by single crystal X-ray diffraction analysis. Thermal analysis reveals the purity of the crystal and the sample is stable up to the melting point. Good transmittance in the visible region is observed and the band gap energy is estimated using diffuse reflectance data by the application of Kubelka-Munk algorithm. The powder X-ray diffraction study reveals the crystallinity of the as-grown crystal and it is compared with that of the experimental one. An additional peak in high resolution X-ray diffraction (HRXRD) indicates the presence of an internal structural low angle boundary. Second harmonic generation (SHG) activity of IMLT is significant as estimated by Kurtz and Perry powder technique. HOMO-LUMO energies and first-order molecular hyperpolarizability of IMLT have been evaluated using density functional theory (DFT) employing B3LYP functional and 6-31G(d,p) basis set. The optimized geometry closely resembles the ORTEP. The vibrational patterns present in the molecule are confirmed by FT-IR coinciding with theoretical patterns. Copyright © 2014 Elsevier B.V. All rights reserved.
Crystallization of human nicotinamide phosphoribosyltransferase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Ryo; Nakamura, Shota; Yoshida, Takuya
2007-05-01
Human nicotinamide phosphoribosyltransferase has been crystallized using microseeding methods and X-ray diffraction data have been collected at 2.0 Å resolution. In the NAD biosynthetic pathway, nicotinamide phosphoribosyltransferase (NMPRTase; EC 2.4.2.12) plays an important role in catalyzing the synthesis of nicotinamide mononucleotide from nicotinamide and 5′-phosphoribosyl-1′-pyrophosphate. Because the diffraction pattern of the initally obtained crystals was not suitable for structure analysis, the crystal quality was improved by successive use of the microseeding technique. The resultant crystals diffracted to 2.0 Å resolution. These crystals belonged to space group P21, with unit-cell parameters a = 60.56, b = 106.40, c = 82.78 Å.more » Here, the crystallization of human NMPRTase is reported in the free form; the crystals should be useful for inhibitor-soaking experiments on the enzyme.« less
Continuous diffraction of molecules and disordered molecular crystals
Yefanov, Oleksandr M.; Ayyer, Kartik; White, Thomas A.; Barty, Anton; Morgan, Andrew; Mariani, Valerio; Oberthuer, Dominik; Pande, Kanupriya
2017-01-01
The intensities of far-field diffraction patterns of orientationally aligned molecules obey Wilson statistics, whether those molecules are in isolation (giving rise to a continuous diffraction pattern) or arranged in a crystal (giving rise to Bragg peaks). Ensembles of molecules in several orientations, but uncorrelated in position, give rise to the incoherent sum of the diffraction from those objects, modifying the statistics in a similar way as crystal twinning modifies the distribution of Bragg intensities. This situation arises in the continuous diffraction of laser-aligned molecules or translationally disordered molecular crystals. This paper develops the analysis of the intensity statistics of such continuous diffraction to obtain parameters such as scaling, beam coherence and the number of contributing independent object orientations. When measured, continuous molecular diffraction is generally weak and accompanied by a background that far exceeds the strength of the signal. Instead of just relying upon the smallest measured intensities or their mean value to guide the subtraction of the background, it is shown how all measured values can be utilized to estimate the background, noise and signal, by employing a modified ‘noisy Wilson’ distribution that explicitly includes the background. Parameters relating to the background and signal quantities can be estimated from the moments of the measured intensities. The analysis method is demonstrated on previously published continuous diffraction data measured from crystals of photosystem II [Ayyer et al. (2016 ▸), Nature, 530, 202–206]. PMID:28808434
Angular rheology study of colloidal nanocrystals using Coherent X-ray Diffraction
NASA Astrophysics Data System (ADS)
Liang, Mengning; Harder, Ross; Robinson, Ian
2007-03-01
A new method using coherent x-ray diffraction provides a way to investigate the rotational motion of a colloidal suspension of crystals in real time. Coherent x-ray diffraction uses the long coherence lengths of synchrotron sources to illuminate a nanoscale particle coherently over its spatial dimensions. The penetration of high energy x-rays into various media allows for in-situ measurements making it ideal for suspensions. This technique has been used to image the structure of nanocrystals for some time but also has the capability of providing information about the orientation and dynamics of crystals. The particles are imaged in a specific diffraction condition allowing us to determine their orientation and observe how they rotate in real time with exceptional resolution. Such sensitivity allows for the study of rotational Brownian motion of nanocrystals in various suspensions and conditions. We present a study of the angular rheology of alumina and TiO2 colloidal nanocrystals in media using coherent x-ray diffraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moiseyenko, Rayisa P.; Georgia Institute of Technology, UMI Georgia Tech – CNRS, George W. Woodruff School of Mechanical Engineering, Georgia Tech Lorraine, 2 rue Marconi, 57070 Metz-Technopole; Liu, Jingfei
The possibility of surface wave generation by diffraction of pressure waves on deeply corrugated one-dimensional phononic crystal gratings is studied both theoretically and experimentally. Generation of leaky surface waves, indeed, is generally invoked in the explanation of the beam displacement effect that can be observed upon reflection on a shallow grating of an acoustic beam of finite width. True surface waves of the grating, however, have a dispersion that lies below the sound cone in water. They thus cannot satisfy the phase-matching condition for diffraction from plane waves of infinite extent incident from water. Diffraction measurements indicate that deeply corrugatedmore » one-dimensional phononic crystal gratings defined in a silicon wafer are very efficient diffraction gratings. They also confirm that all propagating waves detected in water follow the grating law. Numerical simulations however reveal that in the sub-diffraction regime, acoustic energy of a beam of finite extent can be transferred to elastic waves guided at the surface of the grating. Their leakage to the specular direction along the grating surface explains the apparent beam displacement effect.« less
Nederlof, Igor; van Genderen, Eric; Li, Yao-Wang; Abrahams, Jan Pieter
2013-01-01
When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespective of the diffraction technique used. Here, it is shown that at a very low electron dose (at most 0.1 e− Å−2), a Medipix2 quantum area detector is sufficiently sensitive to allow the collection of a 30-frame rotation series of 200 keV electron-diffraction data from a single ∼100 nm thick protein crystal. A highly parallel 200 keV electron beam (λ = 0.025 Å) allowed observation of the curvature of the Ewald sphere at low resolution, indicating a combined mosaic spread/beam divergence of at most 0.4°. This result shows that volumes of crystal with low mosaicity can be pinpointed in electron diffraction. It is also shown that strategies and data-analysis software (MOSFLM and SCALA) from X-ray protein crystallography can be used in principle for analysing electron-diffraction data from three-dimensional nanocrystals of proteins. PMID:23793148
Umeda, Takashi; Katsuki, Junichi; Usami, Yusuke; Inoue, Kengo; Noguchi, Haruko; Fujimoto, Zui; Ashikawa, Yuji; Yamane, Hisakazu; Nojiri, Hideaki
2008-01-01
Novosphingobium sp. KA1 uses carbazole 1,9a-dioxygenase (CARDO) as the first dioxygenase in its carbazole-degradation pathway. The CARDO of KA1 contains a terminal oxygenase component and two electron-transfer components: ferredoxin and ferredoxin reductase. In contrast to the CARDO systems of other species, the ferredoxin component of KA1 is a putidaredoxin-type protein. This novel ferredoxin was crystallized at 293 K by the hanging-drop vapour-diffusion method using PEG MME 550 as the precipitant under anaerobic conditions. The crystals belong to space group C2221 and diffraction data were collected to a resolution of 1.9 Å (the diffraction limit was 1.6 Å). PMID:18607094
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajesh, P., E-mail: rajeshp@ssn.edu.in; Charoen In, Urit; Manyum, Prapun
2014-11-15
Highlights: • Bulk size KDP crystal has been grown with higher growth rate. • Systematic study on the effect of starting materials has been done. • Crystalline perfection is maintained in the entire crystal. - Abstract: A systematic study on the effect of purity of starting materials on the growth and properties of potassium dihydrogen phosphate single crystals is crucial for the future study of the material for nonlinear optical applications. Potassium dihydrogen phosphate crystals were grown using high pure (99.999%) and ordinary (99.9%) starting raw materials using slow cooling method in identical conditions. Their optical transparency and crystalline perfectionmore » are studied by UV and high resolution X-ray diffraction analyses respectively. The results are checked with the help of etching analyses. The full width at half maximum is 8″ which is close to that expected from the plane wave theory of dynamical X-ray diffraction for an ideally perfect crystal. Results of those studies are correlated with each other. The quantitative results show that the raw material plays an important role in the growth of good quality crystals.« less
Interactions that know no boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Michael E.
Deviations from an ideal crystal lead to diffuse scattering (DS) intensity, both between and beneath the Bragg peaks in diffraction patterns (Guinier, 1963). First characterized using simple ionic crystals in early studies of X-ray diffraction (Lonsdale, 1942), DS has a rich history (Welberry & Weber, 2016) and is a well established technique in smallmolecule crystallography (Welberry, 2004). DS studies in macromolecular crystallography began more recently (Phillips et al., 1980) and now the potential for obtaining information about protein motions is fueling the growing interest in DS (Meisburger et al., 2017).
Interactions that know no boundaries
Wall, Michael E.
2018-03-01
Deviations from an ideal crystal lead to diffuse scattering (DS) intensity, both between and beneath the Bragg peaks in diffraction patterns (Guinier, 1963). First characterized using simple ionic crystals in early studies of X-ray diffraction (Lonsdale, 1942), DS has a rich history (Welberry & Weber, 2016) and is a well established technique in smallmolecule crystallography (Welberry, 2004). DS studies in macromolecular crystallography began more recently (Phillips et al., 1980) and now the potential for obtaining information about protein motions is fueling the growing interest in DS (Meisburger et al., 2017).
NASA Astrophysics Data System (ADS)
Daniel, D. Joseph; Ramasamy, P.; Ramaseshan, R.; Kim, H. J.; Kim, Sunghwan; Bhagavannarayana, G.; Cheon, Jong-Kyu
2017-10-01
Polycrystalline compounds of LiBaF3 were synthesized using conventional solid state reaction route and the phase purity was confirmed using powder X-ray diffraction technique. Using vertical Bridgman technique single crystal was grown from melt. Rocking curve measurements have been carried out to study the structural perfection of the grown crystal. The single peak of diffraction curve clearly reveals that the grown crystal was free from the structural grain boundaries. The low temperature thermoluminescence of the X-ray irradiated sample has been analyzed and found four distinguishable peaks having maximum temperatures at 18, 115, 133 and 216 K. Activation energy (E) and frequency factor (s) for the individual peaks have been studied using Peak shape method and the computerized curve fitting method combining with the Tmax- TStop procedure. Nanoindentation technique was employed to study the mechanical behaviour of the crystal. The indentation modulus and Vickers hardness of the grown crystal have values of 135.15 GPa and 680.81 respectively, under the maximum indentation load of 10 mN.
NASA Astrophysics Data System (ADS)
Senthil, S.; Madhavan, J.
2015-02-01
In the present paper, attempts were made to grow good quality metaNitroaniline (mNA) and N-3-Nitrophenyl (3-NAA) single crystals. The lattice parameter values from the Powder X-ray diffraction pattern confirms that mNA belongs to orthorhombic crystal system with the unit cell parameter values of a = 6.501 Å, b = 19.330 Å and c = 5.082 Å with space group Pbc21. Similarly the powder XRD data indicates that 3-NAA crystal retained its monoclinic structure with lattice parameter values a = 9.762 Å, b =13.287 Å, c =13.226 Å, and β = 102.99°. Investigation has been carried out to assign the vibrational frequencies of the grown crystals by Fourier Transform infrared spectroscopy technique. The SHG efficiency of mNA and 3NAA was determined by Kurtz and Perry powder technique. The Optical absorption study confirms the suitability of the crystals for device applications. The mechanical properties of the grown crystals have been studied using Vickers microhardness tester.
NASA Astrophysics Data System (ADS)
Paszkowicz, Wojciech; Shekhovtsov, Alexei; Kosmyna, Miron; Loiko, Pavel; Vilejshikova, Elena; Minikayev, Roman; Romanowski, Przemysław; Wierzchowski, Wojciech; Wieteska, Krzysztof; Paulmann, Carsten; Bryleva, Ekaterina; Belikov, Konstantin; Fitch, Andrew
2017-11-01
Materials of the Ca9RE(VO4)7 (CRVO) formula (RE = rare earth) and whitlockite-related structures are considered for applications in optoelectronics, e.g., in white-light emitting diodes and lasers. In the CRVO structure, the RE atoms are known to share the site occupation with Ca atoms at two or three among four Ca sites, with partial occupancy values depending on the choice of the RE atom. In this work, the structure and quality of a Czochralski-grown crystal of this family, Ca9Gd(VO4)7 (CGVO), are studied using X-ray diffraction methods. The room-temperature structure is refined using the powder diffraction data collected at a high-resolution synchrotron beamline ID22 (ESRF, Grenoble); for comparison purposes, a laboratory diffraction pattern was collected and analyzed, as well. The site occupancies are discussed on the basis of comparison with literature data of isostructural synthetic crystals of the CRVO series. The results confirm the previously reported site-occupation scheme and indicate a tendency of the CGVO compound to adopt a Gd-deficient composition. Moreover, the thermal expansion coefficient is determined for CGVO as a function of temperature in the 302-1023 K range using laboratory diffraction data. Additionally, for CGVO and six other single crystals of the same family, thermal expansion is studied in the 298-473 K range, using the dilatometric data. The magnitude and anisotropy of thermal expansion, being of importance for laser applications, are discussed for these materials.
An evaluation of adhesive sample holders for advanced crystallographic experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzorana, Marco; Sanchez-Weatherby, Juan, E-mail: juan.sanchez-weatherby@diamond.ac.uk; Sandy, James
Commercially available adhesives have been evaluated for crystal mounting when undertaking complex macromolecular crystallography experiments. Here, their use as tools for advanced sample mounting and cryoprotection is assessed and their suitability for room-temperature data-collection and humidity-controlled studies is investigated. The hydration state of macromolecular crystals often affects their overall order and, ultimately, the quality of the X-ray diffraction pattern that they produce. Post-crystallization techniques that alter the solvent content of a crystal may induce rearrangement within the three-dimensional array making up the crystal, possibly resulting in more ordered packing. The hydration state of a crystal can be manipulated by exposingmore » it to a stream of air at controlled relative humidity in which the crystal can equilibrate. This approach provides a way of exploring crystal hydration space to assess the diffraction capabilities of existing crystals. A key requirement of these experiments is to expose the crystal directly to the dehydrating environment by having the minimum amount of residual mother liquor around it. This is usually achieved by placing the crystal on a flat porous support (Kapton mesh) and removing excess liquid by wicking. Here, an alternative approach is considered whereby crystals are harvested using adhesives that capture naked crystals directly from their crystallization drop, reducing the process to a one-step procedure. The impact of using adhesives to ease the harvesting of different types of crystals is presented together with their contribution to background scattering and their usefulness in dehydration experiments. It is concluded that adhesive supports represent a valuable tool for mounting macromolecular crystals to be used in humidity-controlled experiments and to improve signal-to-noise ratios in diffraction experiments, and how they can protect crystals from modifications in the sample environment is discussed.« less
Crystallization Dynamics of Organolead Halide Perovskite by Real-Time X-ray Diffraction.
Miyadera, Tetsuhiko; Shibata, Yosei; Koganezawa, Tomoyuki; Murakami, Takurou N; Sugita, Takeshi; Tanigaki, Nobutaka; Chikamatsu, Masayuki
2015-08-12
We analyzed the crystallization process of the CH3NH3PbI3 perovskite by observing real-time X-ray diffraction immediately after combining a PbI2 thin film with a CH3NH3I solution. A detailed analysis of the transformation kinetics demonstrated the fractal diffusion of the CH3NH3I solution into the PbI2 film. Moreover, the perovskite crystal was found to be initially oriented based on the PbI2 crystal orientation but to gradually transition to a random orientation. The fluctuating characteristics of the crystallization process of perovskites, such as fractal penetration and orientational transformation, should be controlled to allow the fabrication of high-quality perovskite crystals. The characteristic reaction dynamics observed in this study should assist in establishing reproducible fabrication processes for perovskite solar cells.
Takehira, Rieko; Momose, Yasunori; Yamamura, Shigeo
2010-10-15
A pattern-fitting procedure using an X-ray diffraction pattern was applied to the quantitative analysis of binary system of crystalline pharmaceuticals in tablets. Orthorhombic crystals of isoniazid (INH) and mannitol (MAN) were used for the analysis. Tablets were prepared under various compression pressures using a direct compression method with various compositions of INH and MAN. Assuming that X-ray diffraction pattern of INH-MAN system consists of diffraction intensities from respective crystals, observed diffraction intensities were fitted to analytic expression based on X-ray diffraction theory and separated into two intensities from INH and MAN crystals by a nonlinear least-squares procedure. After separation, the contents of INH were determined by using the optimized normalization constants for INH and MAN. The correction parameter including all the factors that are beyond experimental control was required for quantitative analysis without calibration curve. The pattern-fitting procedure made it possible to determine crystalline phases in the range of 10-90% (w/w) of the INH contents. Further, certain characteristics of the crystals in the tablets, such as the preferred orientation, size of crystallite, and lattice disorder were determined simultaneously. This method can be adopted to analyze compounds whose crystal structures are known. It is a potentially powerful tool for the quantitative phase analysis and characterization of crystals in tablets and powders using X-ray diffraction patterns. Copyright 2010 Elsevier B.V. All rights reserved.
X-ray diffraction and X-ray standing-wave study of the lead stearate film structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blagov, A. E.; Dyakova, Yu. A.; Kovalchuk, M. V.
2016-05-15
A new approach to the study of the structural quality of crystals is proposed. It is based on the use of X-ray standing-wave method without measuring secondary processes and considers the multiwave interaction of diffraction reflections corresponding to different harmonics of the same crystallographic reflection. A theory of multiwave X-ray diffraction is developed to calculate the rocking curves in the X-ray diffraction scheme under consideration for a long-period quasi-one-dimensional crystal. This phase-sensitive method is used to study the structure of a multilayer lead stearate film on a silicon substrate. Some specific structural features are revealed for the surface layer ofmore » the thin film, which are most likely due to the tilt of the upper layer molecules with respect to the external normal to the film surface.« less
Aikawa, Yoshiki; Kida, Hiroshi; Nishitani, Yuichi; Miki, Kunio
2015-09-01
Proper protein folding is an essential process for all organisms. Prefoldin (PFD) is a molecular chaperone that assists protein folding by delivering non-native proteins to group II chaperonin. A heterohexamer of eukaryotic PFD has been shown to specifically recognize and deliver non-native actin and tubulin to chaperonin-containing TCP-1 (CCT), but the mechanism of specific recognition is still unclear. To determine its crystal structure, recombinant human PFD was reconstituted, purified and crystallized. X-ray diffraction data were collected to 4.7 Å resolution. The crystals belonged to space group P21212, with unit-cell parameters a = 123.2, b = 152.4, c = 105.9 Å.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Paul R.; Mohammad, Shabaz; Melrose, Helen J.
2008-08-01
Glyceraldehyde-3-phosphate dehydrogenase B from H. pylori has been cloned, expressed, purified and crystallized in the presence of NAD. Crystals of GAPDHB diffracted to 2.8 Å resolution and belonged to space group P6{sub 5}22, with unit-cell parameters a = b = 166.1, c = 253.1 Å. Helicobacter pylori is a dangerous human pathogen that resides in the upper gastrointestinal tract. Little is known about its metabolism and with the onset of antibiotic resistance new treatments are required. In this study, the expression, purification, crystallization and preliminary X-ray diffraction of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from H. pylori are reported.
Mohamad Aris, Sayangku Nor Ariati; Thean Chor, Adam Leow; Mohamad Ali, Mohd Shukuri; Basri, Mahiran; Salleh, Abu Bakar; Raja Abd Rahman, Raja Noor Zaliha
2014-01-01
Three-dimensional structure of thermostable lipase is much sought after nowadays as it is important for industrial application mainly found in the food, detergent, and pharmaceutical sectors. Crystallization utilizing the counter diffusion method in space was performed with the aim to obtain high resolution diffracting crystals with better internal order to improve the accuracy of the structure. Thermostable T1 lipase enzyme has been crystallized in laboratory on earth and also under microgravity condition aboard Progress spacecraft to the ISS in collaboration with JAXA (Japanese Aerospace Exploration Agency). This study is conducted with the aims of improving crystal packing and structure resolution. The diffraction data set for ground grown crystal was collected to 1.3 Å resolution and belonged to monoclinic C2 space group with unit cell parameters a = 117.40 Å, b = 80.95 Å, and c = 99.81 Å, whereas the diffraction data set for space grown crystal was collected to 1.1 Å resolution and belonged to monoclinic C2 space group with unit cell parameters a = 117.31 Å, b = 80.85 Å, and c = 99.81 Å. The major difference between the two crystal growth systems is the lack of convection and sedimentation in microgravity environment resulted in the growth of much higher quality crystals of T1 lipase.
NASA Astrophysics Data System (ADS)
Thomas, Prince; Dhole, S. D.; Joseph, Ginson P.
2018-07-01
Single crystals of L-Arginine Maleate Dihydrate (LAMD) have been synthesized by slow solvent evaporation technique and irradiated with 6 MeV electrons at fluences of 0.5 ×1015e /cm2 , 1.0 ×1015e /cm2 and 1.5 ×1015e /cm2 . The Powder X-ray Diffraction (PXRD) studies showed that the intensity of the diffraction peaks of the Electron Beam (EB) irradiated crystals decreases with irradiation fluence. The electron irradiation induced effects on the optical parameters such as cut-off wavelength, band gap, Urbach energy and refractive index have been studied and the results are tabulated. The electronic parameters such as valence electron plasma energy, ℏωp , Penn gap, Ep , Fermi energy, EF and Electronic polarizability, α for pure and irradiated LAMD crystals are calculated. The electrical and thermal properties of the pure and irradiated LAMD crystals are also investigated.
Jagadeesan, G; Malathy, P; Gunasekaran, K; Harikrishna Etti, S; Aravindhan, S
2014-11-01
Haemoglobin is the iron-containing oxygen-transport metalloprotein that is present in the red blood cells of all vertebrates. In recent decades, there has been substantial interest in attempting to understand the structural basis and functional diversity of avian haemoglobins. Towards this end, purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies have been carried out on cormorant (Phalacrocorax carbo) haemoglobin. Crystals were grown by the hanging-drop vapour-diffusion method using PEG 3350, NaCl and glycerol as precipitants. The crystals belonged to the trigonal system P3₁21, with unit-cell parameters a=b=55.64, c=153.38 Å, β=120.00°; a complete data set was collected to a resolution of 3.5 Å. Matthews coefficient analysis indicated that the crystals contained a half-tetramer in the asymmetric unit.
Albetran, Hani; Vega, Victor; Prida, Victor M; Low, It-Meng
2018-02-23
The influence of calcination time on the phase transformation and crystallization kinetics of anodized titania nanotube arrays was studied using in-situ isothermal and non-isothermal synchrotron radiation diffraction from room temperature to 900 °C. Anatase first crystallized at 400 °C, while rutile crystallized at 550 °C. Isothermal heating of the anodized titania nanotubes by an increase in the calcination time at 400, 450, 500, 550, 600, and 650 °C resulted in a slight reduction in anatase abundance, but an increase in the abundance of rutile because of an anatase-to-rutile transformation. The Avrami equation was used to model the titania crystallization mechanism and the Arrhenius equation was used to estimate the activation energies of the titania phase transformation. Activation energies of 22 (10) kJ/mol for the titanium-to-anatase transformation, and 207 (17) kJ/mol for the anatase-to-rutile transformation were estimated.
Single crystal X-ray diffraction study of the HgBa2CuO4+δ superconducting compound
NASA Astrophysics Data System (ADS)
Bordet, P.; Duc, F.; Lefloch, S.; Capponi, J. J.; Alexandre, E.; Rosa-Nunes, M.; Antipov, E. V.; Putilin, S.
1996-02-01
A high precision X-ray diffraction analysis up to sin θ/λ = 1.15 of a HgBa2CuO4+δ single crystal having a Tc of ~ 90 K is presented. The cell parameters are a = 3.8815(4), c = 9.485 (7) Å. The refinements indicate the existence of a split barium site due to the presence of excess oxygen in the mercury layer. The position of this excess oxygen might be slightly displaced from the (1/2 1/2 0) position. A 6% mercury deficiency is observed. Models, including mercury defects, substitution by copper cations, or carbonate groups, are compared. However, we obtain no definite evidence for either of the three models. A possible disorder of the Hg position, due to the formation of chemical bonds with neighbouring extra oxygen anions, could correlate to the refinements of mixed species at the Hg site. A low temperature single crystal x-ray diffraction study, and comparison of refinements for the same single crystal with different extra oxygen contents, are in progress to help clarify this problem.
Zipper, Lauren E; Aristide, Xavier; Bishop, Dylan P; Joshi, Ishita; Kharzeev, Julia; Patel, Krishna B; Santiago, Brianna M; Joshi, Karan; Dorsinvil, Kahille; Sweet, Robert M; Soares, Alexei S
2014-12-01
A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63-82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. The results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.
Krishnan, P; Gayathri, K; Bhagavannarayana, G; Gunasekaran, S; Anbalagan, G
2013-02-01
Monohydrate piperazine hydrogen phosphate (MPHP), a semi organic nonlinear optical material has been synthesized and single crystals were grown from aqueous solution by slow evaporation technique. Single crystal X-ray diffraction study on grown crystal reveals that they belong to monoclinic crystal system with space group P2(1)/c; (a=6.39Å; b=12.22Å; c=11.16Å; β=97.14°; V=864Å(3)). The structural perfection of the grown crystal was analyzed by high-resolution X-ray diffraction (HRXRD) rocking curve measurements. FTIR spectrum confirms the presence of the functional groups in synthesized material. UV-Vis spectrum indicates that the crystal is transparent in the entire visible region with a lower cut off wavelength of 387 nm. The variation of dielectric properties of the grown crystal with respect to frequency has been investigated at different temperatures. Thermal analysis carried out on the MPHP crystal shows that the crystal is stable up to 135°C. Relative powder second harmonic generation efficiency tested by Kurtz-Perry powder technique, which was about 0.638 times that of Potassium dihydrogen phosphate. Copyright © 2012 Elsevier B.V. All rights reserved.
Crystallization of PTP Domains.
Levy, Colin; Adams, James; Tabernero, Lydia
2016-01-01
Protein crystallography is the most powerful method to obtain atomic resolution information on the three-dimensional structure of proteins. An essential step towards determining the crystallographic structure of a protein is to produce good quality crystals from a concentrated sample of purified protein. These crystals are then used to obtain X-ray diffraction data necessary to determine the 3D structure by direct phasing or molecular replacement if the model of a homologous protein is available. Here, we describe the main approaches and techniques to obtain suitable crystals for X-ray diffraction. We include tools and guidance on how to evaluate and design the protein construct, how to prepare Se-methionine derivatized protein, how to assess the stability and quality of the sample, and how to crystallize and prepare crystals for diffraction experiments. While general strategies for protein crystallization are summarized, specific examples of the application of these strategies to the crystallization of PTP domains are discussed.
NASA Technical Reports Server (NTRS)
Steiner, Bruce; Dobbyn, Ronald C.; Black, David; Burdette, Harold; Kuriyama, Masao; Fripp, Archibald; Simchik, Richard
1991-01-01
Irregularities in three crystals grown in space and in four terrestrial crystals grown under otherwise comparable conditions have been observed in high resolution diffraction imaging. The images provide important new clues to the nature and origins of irregularities in each crystal. For two of the materials, mercuric iodide and lead tin telluride, more than one phase (an array of non-diffracting inclusions) was observed in terrestrial samples; but the formation of these multiple phases appears to have been suppressed in directly comparable crystals grown in microgravity. The terrestrial seed crystal of triglycine sulfate displayed an unexpected layered structure, which propagated during directly comparable space growth. Terrestrial Bridgman regrowth of gallium arsenide revealed a mesoscopic structure substantially different from that of the original Czochralski material. A directly comparable crystal is to be grown shortly in space.
Low Temperature and Neutron Physics Studies: Final Progress Report, March 1, 1986--May 31, 1987
DOE R&D Accomplishments Database
Shull, C.G.
1989-07-27
A search for a novel coupling interaction between the Pendelloesung periodicity which is formed in a diffracting crystal and the Larmor precession of neutrons in a magnetic field has been carried out. This interaction is expected to exhibit a resonant behavior when the two spatial periodicities become matched upon scanning the magnetic field being applied to the crystal. Observations on a diffracting, perfect crystal of silicon with neutrons of wavelength 1 Angstrom show the expected resonant action but some discrepancy between the observed magnitude of the resonance effects remains for interpretation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramchik, Yu. A., E-mail: inna@ns.crys.ras.ru; Timofeev, V. I., E-mail: espiov@ibch.ru; Zhukhlistova, N. E., E-mail: tostars@mail.ru
2015-07-15
Crystals of E. coli purine nucleoside phosphorylase were grown in microgravity by the capillary counter-diffusion method through a gel layer. The X-ray diffraction data set suitable for the determination of the three-dimensional structure at atomic resolution was collected from one crystal at the Spring-8 synchrotron facility to 0.99 Å resolution. The crystals belong to sp. gr. P2{sub 1} and have the following unit-cell parameters: a = 74.1 Å, b = 110.2 Å, c = 88.2 Å, α = γ = 90°, β = 111.08°. The crystal contains six subunits of the enzyme comprising a hexamer per asymmetric unit. The hexamermore » is the biological active form of E. coli. purine nucleoside phosphorylase.« less
Crystallization and X-ray diffraction of crystals formed in water-plasticized amorphous lactose.
Jouppila, K; Kansikas, J; Roos, Y H
1998-01-01
Effects of storage time and relative humidity on crystallization and crystal forms produced from amorphous lactose were investigated. Crystallization was observed from time-dependent loss of sorbed water and increasing intensities of peaks in X-ray diffraction patterns. The rate of crystallization increased with increasing storage relative humidity. Lactose crystallized mainly as alpha-lactose monohydrate and anhydrous crystals with alpha- and beta-lactose in a molar ratio of 5:3. The results suggested that the crystal form was defined by the early nucleation process. The crystallization data are important in modeling of crystallization phenomena and prediction of stability of lactose-containing food and pharmaceutical materials.
Stsiapanava, Alena; Chaloupkova, Radka; Fortova, Andrea; Brynda, Jiri; Weiss, Manfred S; Damborsky, Jiri; Smatanova, Ivana Kuta
2011-02-01
Haloalkane dehalogenases make up an important class of hydrolytic enzymes which catalyse the cleavage of carbon-halogen bonds in halogenated aliphatic compounds. There is growing interest in these enzymes owing to their potential use in environmental and industrial applications. The haloalkane dehalogenase DhaA from Rhodococcus rhodochrous NCIMB 13064 can slowly detoxify the industrial pollutant 1,2,3-trichloropropane (TCP). Structural analysis of this enzyme complexed with target ligands was conducted in order to obtain detailed information about the structural limitations of its catalytic properties. In this study, the crystallization and preliminary X-ray analysis of complexes of wild-type DhaA with 2-propanol and with TCP and of complexes of the catalytically inactive variant DhaA13 with the dye coumarin and with TCP are described. The crystals of wild-type DhaA were plate-shaped and belonged to the triclinic space group P1, while the variant DhaA13 can form prism-shaped crystals belonging to the orthorhombic space group P2(1)2(1)2(1) as well as plate-shaped crystals belonging to the triclinic space group P1. Diffraction data for crystals of wild-type DhaA grown from crystallization solutions with different concentrations of 2-propanol were collected to 1.70 and 1.26 Å resolution, respectively. A prism-shaped crystal of DhaA13 complexed with TCP and a plate-shaped crystal of the same variant complexed with the dye coumarin diffracted X-rays to 1.60 and 1.33 Å resolution, respectively. A crystal of wild-type DhaA and a plate-shaped crystal of DhaA13, both complexed with TCP, diffracted to atomic resolutions of 1.04 and 0.97 Å, respectively.
Guizard, C; Chanzy, H; Sarko, A
1985-06-05
The crystal and molecular structure of a dextran hydrate has been determined through combined electron and X-ray diffraction analysis, aided by stereochemical model refinement. A total of 65 hk0 electron diffraction intensities were measured on frozen single crystals held at the temperature of liquid nitrogen, to a resolution limit of 1.6 A. The X-ray intensities were measured from powder patterns recorded from collections of the single crystals. The structure crystallizes in a monoclinic unit cell with parameters a = 25.71 A, b = 10.21 A, c (chain axis) = 7.76 A and beta = 91.3 degrees. The space group is P2(1) with b axis unique. The unit cell contains six chains and eight water molecules, with three chains of the same polarity and four water molecules constituting the asymmetric unit. Along the chain direction the asymmetric unit is a dimer residue; however, the individual glucopyranose residues are very nearly related by a molecular 2-fold screw axis. The conformation of the chain is very similar to that in the anhydrous structure, but the chain packing differs in the two structures in that the rotational positions of the chains about the helix axes (the chain setting angles) are considerably different. The chains still pack in the form of sheets that are separated by water molecules. The difference in the chain setting angles between the anhydrous and hydrate structures corresponds to the angle between like unit cell axes observed in the diffraction diagrams recorded from hybrid crystals containing both polymorphs. Despite some beam damage effects, the structure was determined to a satisfactory degree of agreement, with the residuals R''(electron diffraction) = 0.258 and R(X-ray) = 0.127.
NASA Astrophysics Data System (ADS)
Kabra, Saurabh; Kelleher, Joe; Kockelmann, Winfried; Gutmann, Matthias; Tremsin, Anton
2016-09-01
Single crystals of a partially twinned magnetic shape memory alloy, Ni2MnGa, were imaged using neutron diffraction and energy-resolved imaging techniques at the ISIS spallation neutron source. Single crystal neutron diffraction showed that the crystal produces two twin variants with a specific crystallographic relationship. Transmission images were captured using a time of flight MCP/Timepix neutron counting detector. The twinned and untwinned regions were clearly distinguishable in images corresponding to narrow-energy transmission images. Further, the spatially-resolved transmission spectra were used to elucidate the orientations of the crystallites in the different volumes of the crystal.
Huang, Li-shar; Borders, Toni M.; Shen, John T.; Wang, Chung-Jen; Berry, Edward
2006-01-01
Synopsis A multi-subunit mitochondrial membrane protein complex involved in the Krebs Cycle and respiratory chain has been crystallized in a form suitable for near-atomic resolution structure determination. A procedure is presented for preparation of diffraction-quality crystals of a vertebrate mitochondrial respiratory Complex II. The crystals have the potential to diffract to at least 2.0 Å with optimization of post-crystal-growth treatment and cryoprotection. This should allow determination of the structure of this important and medically relevant membrane protein complex at near-atomic resolution and provide great detail of the mode of binding of substrates and inhibitors at the two substrate-binding sites. PMID:15805592
Mine, Shouhei; Nakamura, Tsutomu; Hirata, Kunio; Ishikawa, Kazuhiko; Hagihara, Yoshihisa; Uegaki, Koichi
2006-01-01
The crystallization and preliminary X-ray diffraction analysis of a catalytic domain of chitinase (PF1233 gene) from the hyperthermophilic archaeon Pyrococcus furiosus is reported. The recombinant protein, prepared using an Escherichia coli expression system, was crystallized by the hanging-drop vapour-diffusion method. An X-ray diffraction data set was collected at the undulator beamline BL44XU at SPring-8 to a resolution of 1.50 Å. The crystals belong to space group P212121, with unit-cell parameters a = 90.0, b = 92.8, c = 107.2 Å. PMID:16880559
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagadeesan, G.; Malathy, P.; Gunasekaran, K.
2014-10-25
The great cormorant hemoglobin has been isolated, purified and crystallized and the three dimensional structure is solved using molecular replacement technique. Haemoglobin is the iron-containing oxygen-transport metalloprotein that is present in the red blood cells of all vertebrates. In recent decades, there has been substantial interest in attempting to understand the structural basis and functional diversity of avian haemoglobins. Towards this end, purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies have been carried out on cormorant (Phalacrocorax carbo) haemoglobin. Crystals were grown by the hanging-drop vapour-diffusion method using PEG 3350, NaCl and glycerol as precipitants. The crystals belonged to themore » trigonal system P3{sub 1}21, with unit-cell parameters a = b = 55.64, c = 153.38 Å, β = 120.00°; a complete data set was collected to a resolution of 3.5 Å. Matthews coefficient analysis indicated that the crystals contained a half-tetramer in the asymmetric unit.« less
NASA Astrophysics Data System (ADS)
Gumus, Ilkay; Solmaz, Ummuhan; Binzet, Gun; Keskin, Ebru; Arslan, Birdal; Arslan, Hakan
2018-04-01
The novel N-(bis(3,5-dimethoxybenzyl)carbamothioyl)-4-R-benzamide (R: H, Cl, CH3 and OCH3) compounds have been synthesized and characterized by FT-IR, 1H NMR and 13C NMR spectroscopy. Their crystal structures were also determined by single-crystal X-ray diffraction studies. Hirshfeld surfaces analysis and their associated two dimensional fingerprint plots of compounds were used as theoretical approach to assess driving force for crystal structure formation via the intermolecular interactions in the crystal lattices of synthesized compounds. The study of X-ray single crystal diffraction and Hirshfeld surfaces analysis of the prepared compounds shows that hydrogen bonding and other weaker interactions such as Nsbnd H⋯S, weak Csbnd H⋯S, Csbnd H⋯O, Csbnd H⋯N and Csbnd H···π intermolecular interactions and π-π stacking, among molecules of synthesized compounds participate in a cooperative way to stabilize the supramolecular structures.
Sivakumar, N; Srividya, J; Mohana, J; Anbalagan, G
2015-03-15
l-tryptophan p-nitrophenol trisolvate (LTPN), an organic nonlinear optical material was synthesized using ethanol-water mixed solvent and the crystals were grown by a slow solvent evaporation method. The crystal structure and morphology were studied by single crystal X-ray diffraction analysis. The crystalline perfection of the LTPN crystal was analyzed by high-resolution X-ray diffraction study. The molecular structure of the crystal was confirmed by observing the various characteristic functional groups of the material using vibrational spectroscopy. The cut-off wavelength, optical transmission, refractive index and band gap energy were determined using UV-visible data. The variation of refractive index with wavelength shows the normal behavior. The second harmonic generation of the crystal was confirmed and the efficiency was measured using Kurtz Perry powder method. Single and multiple shot methods were employed to measure surface laser damage of the crystal. The photoluminescence spectral study revealed that the emission may be associated with the radiative recombination of trapped electrons and holes. Microhardness measurements revealed that LTPN belongs to a soft material category. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohman, Ali; Oosterwijk, Niels van; Kralj, Slavko
2007-11-01
The β-xylosidase was crystallized using PEG 6000 as precipitant. 5% PEG 6000 yielded bipyramid-shaped tetragonal crystals diffracting to 1.55 Å resolution, and 13% PEG 6000 gave rectangular monoclinic crystals diffracting to 1.80 Å resolution. The main enzymes involved in xylan-backbone hydrolysis are endo-1,4-β-xylanase and β-xylosidase. β-Xylosidase converts the xylo-oligosaccharides produced by endo-1,4-β-xylanase into xylose monomers. The β-xylosidase from the thermophilic Geobacillus thermoleovorans IT-08, a member of glycoside hydrolase family 43, was crystallized at room temperature using the hanging-drop vapour-diffusion method. Two crystal forms were observed. Bipyramid-shaped crystals belonging to space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = bmore » = 62.53, c = 277.4 Å diffracted to 1.55 Å resolution. The rectangular crystals belonged to space group P2{sub 1}, with unit-cell parameters a = 57.94, b = 142.1, c = 153.9 Å, β = 90.5°, and diffracted to 1.80 Å resolution.« less
NASA Astrophysics Data System (ADS)
Imai, Yasuhiko; Yoda, Yoshitaka; Kitao, Shinji; Masuda, Ryo; Higashitaniguchi, Satoshi; Inaba, Chika; Seto, Makoto
2007-09-01
We have developed a high-resolution monochromator (HRM) for the measurement of nuclear resonant scattering (NRS) of synchrotron radiation by Te-125 at 35.49 keV using the backscattering of sapphire (9 1 -10 68). HRMs for nuclei with excitation energies less than 30 keV have been successfully developed using high angle diffractions by silicon crystals. Nearly perfect silicon crystal, however, is not suitable for high efficient HRMs at higher energy regions because the symmetry of the crystal structure is high and the Debye-temperature is low. Therefore, we used high quality synthetic sapphire crystal, which has low symmetry of crystal structure and high Debye-temperature. The temperature of the crystal was precisely controlled around 218 K to diffract synchrotron radiation with a Bragg angle of π/2 - 0.52 mrad. Energy was tuned by changing the crystal temperature under the condition of constant diffraction angle. Energy resolution was measured by detecting nuclear forward scattering by Te-125 in enriched TeO II. The relative energy resolution of 2.1×10 -7 is achieved, that is 7.5 meV in energy bandwidth. This HRM opens studies on element-specific dynamics and electronic state of substances containing Te-125.
Mahadevan, M; Ramachandran, K; Anandan, P; Arivanandhan, M; Bhagavannarayana, G; Hayakawa, Y
2014-12-10
Single crystals of l-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) have been grown successfully from the solution of l-arginine and 4-nitrophenol. Slow evaporation of solvent technique was adopted to grow the bulk single crystals. Single crystal X-ray diffraction analysis confirms the grown crystal has monoclinic crystal system with space group of P21. Powder X-ray diffraction analysis shows the good crystalline nature. The crystalline perfection of the grown single crystals was analyzed by HRXRD by employing a multicrystal X-ray diffractometer. The functional groups were identified from proton NMR spectroscopic analysis. Linear and nonlinear optical properties were determined by UV-Vis spectrophotometer and Kurtz powder technique respectively. It is found that the grown crystal has no absorption in the green wavelength region and the SHG efficiency was found to be 2.66 times that of the standard KDP. The Thermal stability of the crystal was found by obtaining TG/DTA curve. The mechanical behavior of the grown crystal has been studied by Vicker's microhardness method. Copyright © 2014 Elsevier B.V. All rights reserved.
Dinakaran, Paul M; Bhagavannarayana, G; Kalainathan, S
2012-11-01
4-Methoxy 4-nitrostilbene (MONS), a new organic nonlinear optical material has been synthesized. Based on the solubility data good quality single crystal with dimensions up to 38×11×3 mm(3) has been grown by slow evaporation method using ethyl methyl ketone (MEK) as a solvent. Powder XRD confirms the crystalline property and also the diffraction planes have been indexed. The lattice parameters for the grown MONS crystals were determined by using single crystal X-ray diffraction analysis and it reveals that the crystal lattice system is triclinic. The crystalline perfection of the grown crystals has been analysed by high resolution X-ray diffraction (HRXRD) rocking curve measurements. Fourier transform infrared (FTIR) spectrum for powdered MONS sample confirms the functional groups present in the grown crystal. The UV-vis absorption spectrum has been recorded in the range of 190-1100 nm and the cut off wavelength 499 nm has been determined. The optical constants of MONS have been determined through UV-vis-NIR spectroscopy. The MONS crystals were further subjected to other characterizations. i.e., (1)H NMR, TG/DTA, photoluminescence and microhardness test. The Kurtz and Perry powder technique confirms the NLO property of the grown crystal and the SHG efficiency of MONS was found to be 1.55× greater than that of KDP crystal. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sica, F.; Adinolfi, S.; Berisio, R.; De Lorenzo, C.; Mazzarella, L.; Piccoli, R.; Vitagliano, L.; Zagari, A.
1999-01-01
Bovine seminal ribonuclease (BS-RNase) is an intriguing homodimeric enzyme which exists as two conformational isomers, characterized by distinct catalytic and biological properties, referred to as M×M and M=M. Reduction of inter-chain disulfide bridges produces a stable monomeric derivative (M) which is still active. This paper reports the screening and optimization of crystallization conditions for growing single diffraction-quality crystals for the various BS-RNase forms. The crystallization trials were performed using both the vapor diffusion and microbatch methods. The M×M dimer was crystallized in the free form from polyethylene glycol (PEG) 4000 at pH 8.5 and as a complex with the substrate analog uridylyl(2'- 5')guanosine (UpG) from an unbuffered ammonium sulfate (AS) solution. These two crystal types diffract X-rays to 2.5 and 1.9 Å resolution, respectively. Two different crystal types were obtained both for the M=M dimer and for the monomeric derivative. (M=M)a crystals, grown from PEG 4000 (8% w/v) at pH 5.6, diffract X-rays to 4.0 Å. At higher PEG concentration (15% w/v) a different crystal type was obtained, (M=M)b, which showed a better diffraction limit (2.5 Å). For the monomer, type (M)a and (M)b crystals, diffracting X-rays to 2.5 Å resolution, were obtained from AS at pH 6.5 and from PEG 4000 at pH 8.5, respectively. A comparison with previously crystallized forms of the dimer M×M and its complexes with uridylyl(2'-5')adenosine and 2'-deoxycytidylyl(3'-5')-2'-deoxyadenosine is also presented. The three-dimensional structure analysis of (M×M)·UpG and (M=M)b is in progress.
One-Micron Beams for Macromolecular Crystallography at GM/CA-CAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoder, D. W.; Sanishvili, R.; Xu, S.
2010-06-23
GM/CA-CAT has developed a 1-{mu}m beam for challenging micro-diffraction experiments with macromolecular crystals (e.g. small crystals) and for radiation damage studies. Reflective (Kirkpatrick-Baez mirrors) and diffractive (Fresnel zone plates) optics have been used to focus the beam. Both cases are constrained by the need to maintain a small beam convergence. Using two different zone plates, 1.0x1.0 and 0.8x0.9 {mu}m{sup 2} (VxH,FWHM) beams were created at 15.2 keV and 18.5 keV, respectively. Additionally, by introducing a vertical focusing mirror upstream of the zone plate, a line focus at 15.2 keV was created (28x1.4 {mu}m{sup 2} VxH,FWHM) with the line oriented perpendicularmore » to the X-ray polarization and the crystal rotation axis. Crystal-mounting stages with nanometer resolution have been assembled to profile these beams and to perform diffraction experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacik, John-Paul; Brigley, Angela M.; Channon, Lisa D.
2005-06-01
Ectromelia virus glutaredoxin has been crystallized in the presence of the reducing agent DTT. A diffraction data set has been collected and processed to 1.8 Å resolution. Ectromelia, vaccinia, smallpox and other closely related viruses of the orthopoxvirus genus encode a glutaredoxin gene that is not present in poxviruses outside of this genus. The vaccinia glutaredoxin O2L has been implicated as the reducing agent for ribonucleotide reductase and may thus play an important role in viral deoxyribonucleotide synthesis. As part of an effort to understand nucleotide metabolism by poxviruses, EVM053, the O2L ortholog of the ectromelia virus, has been crystallized.more » EVM053 crystallizes in space group C222{sub 1}, with unit-cell parameters a = 61.98, b = 67.57, c = 108.55 Å. Diffraction data have been processed to 1.8 Å resolution and a self-rotation function indicates that there are two molecules per asymmetric unit.« less
Zhao, Shun; Liu, Lin
2016-10-01
GDP-D-mannose pyrophosphorylase catalyzes the production of GDP-D-mannose, an intermediate product in the plant ascorbic acid (AsA) biosynthetic pathway. This enzyme is a key regulatory target in AsA biosynthesis and is encoded by VITAMIN C DEFECTIVE 1 (VTC1) in the Arabidopsis thaliana genome. Here, recombinant VTC1 was expressed, purified and crystallized. Diffraction data were obtained from VTC1 crystals grown in the absence and presence of substrate using X-rays. The ligand-free VTC1 crystal diffracted X-rays to 3.3 Å resolution and belonged to space group R32, with unit-cell parameters a = b = 183.6, c = 368.5 Å, α = β = 90, γ = 120°; the crystal of VTC1 in the presence of substrate diffracted X-rays to 1.75 Å resolution and belonged to space group P2 1 , with unit-cell parameters a = 70.8, b = 83.9, c = 74.5 Å, α = γ = 90.0, β = 114.9°.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramchik, Yu. A.; Timofeev, V. I., E-mail: tostars@mail.ru; Muravieva, T. I.
2017-01-15
Phosphoribosylpyrophosphate synthetases (PRPP synthetases) are among the key enzymes essential for vital functions of organisms and are involved in the biosynthesis of purine and pyrimidine nucleotides, coenzymes, and the amino acids histidine and tryptophan. These enzymes are used in biotechnology for the combined chemoenzymatic synthesis of natural nucleotide analogs. Recombinant phosphoribosylpyrophosphate synthetase I from the thermophilic strain HB27 of the bacterium Thermus thermophilus (T. th HB27) has high thermal stability and shows maximum activity at 75°Ð¡, due to which this enzyme holds promise for biotechnological applications. In order to grow crystals and study them by X-ray crystallography, an enzyme sample,more » which was produced using a highly efficient producer strain, was purified by affinity and gel-filtration chromatography. The screening of crystallization conditions was performed by the vapor-diffusion technique. The crystals of the enzyme suitable for X-ray diffraction were grown by the counter-diffusion method through a gel layer. These crystals were used to collect the X-ray diffraction data set at the SPring-8 synchrotron radiation facility (Japan) to 3-Å resolution. The crystals belong to sp. gr. P2{sub 1} and have the following unitcell parameters: a = 107.7 Å, b = 112.6 Å, c = 110.2 Å, α = γ = 90°, β = 116.6°. The X-ray diffraction data set is suitable for determining the three-dimensional structure of the enzyme at 3.0-Å resolution.« less
NASA Astrophysics Data System (ADS)
Abramchik, Yu. A.; Timofeev, V. I.; Muravieva, T. I.; Sinitsyna, E. V.; Esipov, R. S.; Kuranova, I. P.
2017-01-01
Phosphoribosylpyrophosphate synthetases (PRPP synthetases) are among the key enzymes essential for vital functions of organisms and are involved in the biosynthesis of purine and pyrimidine nucleotides, coenzymes, and the amino acids histidine and tryptophan. These enzymes are used in biotechnology for the combined chemoenzymatic synthesis of natural nucleotide analogs. Recombinant phosphoribosylpyrophosphate synthetase I from the thermophilic strain HB27 of the bacterium Thermus thermophilus ( T. th HB27) has high thermal stability and shows maximum activity at 75°C, due to which this enzyme holds promise for biotechnological applications. In order to grow crystals and study them by X-ray crystallography, an enzyme sample, which was produced using a highly efficient producer strain, was purified by affinity and gel-filtration chromatography. The screening of crystallization conditions was performed by the vapor-diffusion technique. The crystals of the enzyme suitable for X-ray diffraction were grown by the counter-diffusion method through a gel layer. These crystals were used to collect the X-ray diffraction data set at the SPring-8 synchrotron radiation facility (Japan) to 3-Å resolution. The crystals belong to sp. gr. P21 and have the following unitcell parameters: a = 107.7 Å, b = 112.6 Å, c = 110.2 Å, α = γ = 90°, β = 116.6°. The X-ray diffraction data set is suitable for determining the three-dimensional structure of the enzyme at 3.0-Å resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zipper, Lauren E.; Aristide, Xavier; Bishop, Dylan P.
A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under differentmore » conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. Ultimately, the results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.« less
A study of X-ray multiple diffraction by means of section topography.
Kohn, V G; Smirnova, I A
2015-09-01
The results of theoretical and experimental study are presented for the question of how the X-ray multiple diffraction in a silicon single crystal influences the interference fringes of section topography for the 400 reflection in the Laue case. Two different cases of multiple diffraction are discovered for zero and very small values of the azimuthal angle for the sample in the form of a plate with the surface normal to the 001 direction. The cases are seen on the same topogram without rotation of the crystal. Accurate computer simulations of the section topogram for the case of X-ray multiple diffraction are performed for the first time. It is shown that the structure of interference fringes on the section topogram in the region of multiple diffraction becomes more complicated. It has a very sharp dependence on the azimuthal angle. The experiment is carried out using a laboratory source under conditions of low resolution over the azimuthal angle. Nevertheless, the characteristic inclination of the interference fringes on the tails of the multiple diffraction region is easily seen. This phenomenon corresponds completely to the computer simulations.
Growth and microtopographic study of CuInSe{sub 2} single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, Sanjaysinh M.; Chaki, Sunil, E-mail: sunilchaki@yahoo.co.in; Deshpande, M. P.
2016-05-23
The CuInSe{sub 2} single crystals were grown by chemical vapour transport (CVT) technique using iodine as transporting agent. The elemental composition of the as-grown CuInSe{sub 2} single crystals was determined by energy dispersive analysis of X-ray (EDAX). The unit cell crystal structure and lattice parameters were determined by X-ray diffraction (XRD) technique. The surface microtopographic study of the as-grown CuInSe{sub 2} single crystals surfaces were done to study the defects, growth mechanism, etc. of the CVT grown crystals.
Diagnosing the Internal Architecture of Zeolite Ferrierite
Schmidt, Joel E.; Hendriks, Frank C.; Lutz, Martin; Post, L. Christiaan; Fu, Donglong
2017-01-01
Abstract Large crystals of zeolite ferrierite (FER) are important model systems for spatially resolved catalysis and diffusion studies, though there is considerable variation in crystal habit depending on the chemical composition and employed synthesis conditions. A synergistic combination of techniques has been applied, including single crystal X‐ray diffraction, high‐temperature in situ confocal fluorescence microscopy, fluorescent probe molecules, wide‐field microscopy and atomic force microscopy to unravel the internal architecture of three distinct FER zeolites. Pyrolyzed template species can be used as markers for the 8‐membered ring direction as they are trapped in the terraced roof of the FER crystals. This happens as the materials grow in a layer‐by‐layer, defect‐free manner normal to the large crystal surface, and leads to a facile method to diagnose the pore system orientation, which avoids tedious single crystal X‐ray diffraction experiments. PMID:28809081
NASA Astrophysics Data System (ADS)
Prakash, M.; Geetha, D.; Lydia Caroline, M.
2011-10-01
Tris( L-phenylalanine) L-phenylalaninium nitrate, C 9H 12NO 2+·NO 3-·3C 9H 11NO 2 (TPLPN), a new organic nonlinear optical material was grown from aqueous solution by slow evaporation solution growth at room temperature. The grown crystals were subjected to powder X-ray diffraction and single crystal X-ray diffraction studies to confirm the crystalline nature and crystal structure. The modes of vibration of different molecular groups present in TPLPN have been identified by FTIR spectral analysis. The presence of hydrogen and carbon in the grown crystal were confirmed by using proton and carbon nuclear magnetic resonance (NMR) spectral analyses. The optical transmission spectral study establishes good transmitting ability of the crystal in the entire visible region. The thermogravimetric (TG) and differential thermal analyses (DTA) were carried out to understand the thermal stability of the sample. The nonlinear optical property of the compound observed using Kurtz powder second harmonic generation test assets the suitability of the grown material for the frequency conversion of laser radiation of Nd:YAG.
Collection of X-ray diffraction data from macromolecular crystals
Dauter, Zbigniew
2017-01-01
Diffraction data acquisition is the final experimental stage of the crystal structure analysis. All subsequent steps involve mainly computer calculations. Optimally measured and accurate data make the structure solution and refinement easier and lead to more faithful interpretation of the final models. Here, the important factors in data collection from macromolecular crystals are discussed and strategies appropriate for various applications, such as molecular replacement, anomalous phasing, atomic-resolution refinement etc., are presented. Criteria useful for judging the diffraction data quality are also discussed. PMID:28573573
X-ray plane-wave diffraction effects in a crystal with third-order nonlinearity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balyan, M. K., E-mail: mbalyan@ysu.am
The two-wave dynamical diffraction in the Laue geometry has been theoretically considered for a plane X-ray wave in a crystal with a third-order nonlinear response to the external field. An analytical solution to the problem stated is found for certain diffraction conditions. A nonlinear pendulum effect is analyzed. The nonlinear extinction length is found to depend on the incident-wave intensity. A pendulum effect of a new type is revealed: the intensities of the transmitted and diffracted waves periodically depend on the incidentwave intensity at a fixed crystal thickness. The rocking curves and Borrmann nonlinear effect are numerically calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov; Shvyd’ko, Yuri; Trakhtenberg, Emil
2016-07-27
We report progress on implementation and commissioning of sequential X-ray diffraction topography at 1-BM Optics Testing Beamline of the Advanced Photon Source to accommodate growing needs of strain characterization in diffractive crystal optics and other semiconductor single crystals. The setup enables evaluation of strain in single crystals in the nearly-nondispersive double-crystal geometry. Si asymmetric collimator crystals of different crystallographic orientations were designed, fabricated and characterized using in-house capabilities. Imaging the exit beam using digital area detectors permits rapid sequential acquisition of X-ray topographs at different angular positions on the rocking curve of a crystal under investigation. Results on sensitivity andmore » spatial resolution are reported based on experiments with high-quality Si and diamond crystals. The new setup complements laboratory-based X-ray topography capabilities of the Optics group at the Advanced Photon Source.« less
The collection of MicroED data for macromolecular crystallography.
Shi, Dan; Nannenga, Brent L; de la Cruz, M Jason; Liu, Jinyang; Sawtelle, Steven; Calero, Guillermo; Reyes, Francis E; Hattne, Johan; Gonen, Tamir
2016-05-01
The formation of large, well-ordered crystals for crystallographic experiments remains a crucial bottleneck to the structural understanding of many important biological systems. To help alleviate this problem in crystallography, we have developed the MicroED method for the collection of electron diffraction data from 3D microcrystals and nanocrystals of radiation-sensitive biological material. In this approach, liquid solutions containing protein microcrystals are deposited on carbon-coated electron microscopy grids and are vitrified by plunging them into liquid ethane. MicroED data are collected for each selected crystal using cryo-electron microscopy, in which the crystal is diffracted using very few electrons as the stage is continuously rotated. This protocol gives advice on how to identify microcrystals by light microscopy or by negative-stain electron microscopy in samples obtained from standard protein crystallization experiments. The protocol also includes information about custom-designed equipment for controlling crystal rotation and software for recording experimental parameters in diffraction image metadata. Identifying microcrystals, preparing samples and setting up the microscope for diffraction data collection take approximately half an hour for each step. Screening microcrystals for quality diffraction takes roughly an hour, and the collection of a single data set is ∼10 min in duration. Complete data sets and resulting high-resolution structures can be obtained from a single crystal or by merging data from multiple crystals.
Aikawa, Yoshiki; Kida, Hiroshi; Nishitani, Yuichi; Miki, Kunio
2015-01-01
Proper protein folding is an essential process for all organisms. Prefoldin (PFD) is a molecular chaperone that assists protein folding by delivering non-native proteins to group II chaperonin. A heterohexamer of eukaryotic PFD has been shown to specifically recognize and deliver non-native actin and tubulin to chaperonin-containing TCP-1 (CCT), but the mechanism of specific recognition is still unclear. To determine its crystal structure, recombinant human PFD was reconstituted, purified and crystallized. X-ray diffraction data were collected to 4.7 Å resolution. The crystals belonged to space group P21212, with unit-cell parameters a = 123.2, b = 152.4, c = 105.9 Å. PMID:26323306
NASA Astrophysics Data System (ADS)
Yuan, Chaosheng; Chu, Kunkun; Li, Haining; Su, Lei; Yang, Kun; Wang, Yongqiang; Li, Xiaodong
2016-09-01
Pressure-induced crystallization of Choline chloride/Urea (ChCl/Urea) deep eutectic solvent (DES) has been investigated by in-situ Raman spectroscopy and synchrotron X-ray diffraction. The results indicated that high pressure crystals appeared at around 2.6 GPa, and the crystalline structure was different from that formed at ambient pressure. Upon increasing the pressure, the Nsbnd H stretching modes of Urea underwent dramatic change after liquid-solid transition. It appears that high pressures may enhance the hydrogen bonds formed between ChCl and Urea. P versus T phase diagram of ChCl/Urea DES was constructed, and the crystallization mechanism of ChCl/Urea DES was discussed in view of hydrogen bonds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szlachetko, J.; Institute of Physics, Jan Kochanowski University, 25-406 Kielce; Nachtegaal, M.
2012-10-15
We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.
Yoshida, Hiromi; Yamada, Mitsugu; Nishitani, Takeyori; Takada, Goro; Izumori, Ken; Kamitori, Shigehiro
2007-02-01
D-Tagatose 3-epimerase (D-TE) from Pseudomonas cichorii catalyzes the epimerization of various ketohexoses at the C3 position. The epimerization of D-psicose has not been reported with epimerases other than P. cichorii D-TE and D-psicose 3-epimerase from Agrobacterium tumefaciens. Recombinant P. cichorii D-TE has been purified and crystallized. Crystals of P. cichorii D-TE were obtained by the sitting-drop method at room temperature. The crystal belongs to the monoclinic space group P2(1), with unit-cell parameters a = 76.80, b = 94.92, c = 91.73 A, beta = 102.82 degrees . Diffraction data were collected to 2.5 A resolution. The asymmetric unit is expected to contain four molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chon, Hyongi; Matsumura, Hiroyoshi; Koga, Yuichi
2005-03-01
A thermostable ribonuclease HIII from B. stearothermophilus (Bst RNase HIII) was crystallized and preliminary crystallographic studies were performed. Plate-like overlapping polycrystals were grown by the sitting-drop vapour-diffusion method at 283 K.
BX90: A new diamond anvil cell design for X-ray diffraction and optical measurements
NASA Astrophysics Data System (ADS)
Kantor, I.; Prakapenka, V.; Kantor, A.; Dera, P.; Kurnosov, A.; Sinogeikin, S.; Dubrovinskaia, N.; Dubrovinsky, L.
2012-12-01
We present a new design of a universal diamond anvil cell, suitable for different kinds of experimental studies under high pressures. Main features of the cell are an ultimate 90-degrees symmetrical axial opening and high stability, making the presented cell design suitable for a whole range of techniques from optical absorption to single-crystal X-ray diffraction studies, also in combination with external resistive or double-side laser heating. Three examples of the cell applications are provided: a Brillouin scattering of neon, single-crystal X-ray diffraction of α-Cr2O3, and resistivity measurements on the (Mg0.60Fe0.40)(Si0.63Al0.37)O3 silicate perovskite.
Zipper, Lauren E.; Aristide, Xavier; Bishop, Dylan P.; Joshi, Ishita; Kharzeev, Julia; Patel, Krishna B.; Santiago, Brianna M.; Joshi, Karan; Dorsinvil, Kahille; Sweet, Robert M.; Soares, Alexei S.
2014-01-01
A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. The results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations. PMID:25484231
Zipper, Lauren E.; Aristide, Xavier; Bishop, Dylan P.; ...
2014-11-28
A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under differentmore » conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. Ultimately, the results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.« less
Rybin, Mikhail V.; Samusev, Kirill B.; Lukashenko, Stanislav Yu.; Kivshar, Yuri S.; Limonov, Mikhail F.
2016-01-01
We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters. PMID:27491952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balotra, Sahil; Newman, Janet; French, Nigel G.
2014-02-19
The amidase domain of the allophanate hydrolase AtzF from Pseudomonas sp. strain ADP has been crystallized and preliminary X-ray diffraction data have been collected. The allophanate hydrolase from Pseudomonas sp. strain ADP was expressed and purified, and a tryptic digest fragment was subsequently identified, expressed and purified. This 50 kDa construct retained amidase activity and was crystallized. The crystals diffracted to 2.5 Å resolution and adopted space group P2{sub 1}, with unit-cell parameters a = 82.4, b = 179.2, c = 112.6 Å, β = 106.6°.
In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells
Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kevin; ...
2016-03-01
The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. Furthermore, the observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.
In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kevin
The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. Furthermore, the observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.
In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells
Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kèvin; Stellato, Francesco; Liang, Mengning; White, Thomas A.; Seine, Thomas; Messerschmidt, Marc; Chapman, Henry N.; Wilmanns, Matthias
2016-01-01
The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. The observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined. PMID:27006771
Powder diffraction and crystal structure prediction identify four new coumarin polymorphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shtukenberg, Alexander G.; Zhu, Qiang; Carter, Damien J.
Coumarin, a simple, commodity chemical isolated from beans in 1820, has, to date, only yielded one solid state structure. Here, we report a rich polymorphism of coumarin grown from the melt. Four new metastable forms were identified and their crystal structures were solved using a combination of computational crystal structure prediction algorithms and X-ray powder diffraction. With five crystal structures, coumarin has become one of the few rigid molecules showing extensive polymorphism at ambient conditions. We demonstrate the crucial role of advanced electronic structure calculations including many-body dispersion effects for accurate ranking of the stability of coumarin polymorphs and themore » need to account for anharmonic vibrational contributions to their free energy. As such, coumarin is a model system for studying weak intermolecular interactions, crystallization mechanisms, and kinetic effects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timofeev, V. I., E-mail: tostars@mail.ru; Chupova, L. A.; Esipov, R. S.
Crystals of M. tuberculosis phosphopantetheine adenylyltransferase were grown in microgravity by the capillary counter-diffusion method through a gel layer. The X-ray diffraction data set suitable for the determination of the three-dimensional structure at atomic resolution was collected from one crystal at the Spring-8 synchrotron facility to 2.00-Å resolution. The crystals belong to sp. gr. P3{sub 2} and have the following unit-cell parameters: a = b = 106.47 Å, c = 71.32 Å, α = γ = 90°, β = 120°. The structure was solved by the molecular-replacement method. There are six subunits of the enzyme comprising a hexamer per asymmetricmore » unit. The hexamer is a biologically active form of phosphopantetheine adenylyltransferase from M. tuberculosis.« less
Powder diffraction and crystal structure prediction identify four new coumarin polymorphs
Shtukenberg, Alexander G.; Zhu, Qiang; Carter, Damien J.; ...
2017-05-15
Coumarin, a simple, commodity chemical isolated from beans in 1820, has, to date, only yielded one solid state structure. Here, we report a rich polymorphism of coumarin grown from the melt. Four new metastable forms were identified and their crystal structures were solved using a combination of computational crystal structure prediction algorithms and X-ray powder diffraction. With five crystal structures, coumarin has become one of the few rigid molecules showing extensive polymorphism at ambient conditions. We demonstrate the crucial role of advanced electronic structure calculations including many-body dispersion effects for accurate ranking of the stability of coumarin polymorphs and themore » need to account for anharmonic vibrational contributions to their free energy. As such, coumarin is a model system for studying weak intermolecular interactions, crystallization mechanisms, and kinetic effects.« less
High-Pressure Neutron Diffraction Studies for Materials Sciences and Energy Sciences
NASA Astrophysics Data System (ADS)
Zhao, Y.; Los Alamos High Pressure Materials Research Team
2013-05-01
The development of neutron diffraction under extreme pressure (P) and temperature (T) conditions is highly valuable to condensed matter physics, crystal chemistry, materials sciences, as well as earth and planetary sciences. We have incorporated a 500-ton press TAP-98 into the HiPPO diffractometer at LANSCE to conduct in situ high P-T neutron diffraction experiments. We have worked out a large gem-crystal anvil cell, ZAP, to conduct neutron diffraction experiments at high-P and low-T. The ZAP cell can be used to integrate multiple experimental techniques such as neutron diffraction, laser spectroscopy, and ultrasonic interferometery. Recently, we have developed high-P low-T gas/fluid cells in conjunction with neutron diffraction and inelastic neutron scattering instruments. These techniques enable in-situ and real-time examination of gas uptake/release processes and allow high-resolution time-dependent determination of changes in crystal structure and related reaction kinetics. We have successfully used these techniques to study the equation of state, structural phase transition, and thermo-mechanical properties of metals, ceramics, and minerals. We have conducted researches on the formation of methane and hydrogen clathrates, and hydrogen adsorption of the inclusion compounds such as the recently discovered metal-organic frameworks (MOFs). The aim of our research is to accurately map phase diagram, lattice parameters, thermal parameters, bond lengths, bond angles, neighboring atomic environments, and phase stability in P-T-X space. We are currently developing further high P-T technology with a new "true" triaxial loading press, TAP_6x, to compress cubic sample package to achieve pressures up to 20 GPa and temperatures up to 2000 K in routine experiments. The implementation of TAP_6x300 with high-pressure neutron beamlines is underway for simultaneous high P-T neutron diffraction, ultrasonic, calorimetry, radiography, and tomography studies. Studies based on high-pressure neutron diffraction are important for multidisciplinary science, particularly for the theoretical/computational modeling/simulations.;
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassetta, Alberto, E-mail: alberto.cassetta@ic.cnr.it; Büdefeld, Tomaž; Lanišnik Rižner, Tea
2005-12-01
The expression, purification and crystallization of 17β-hydroxysteroid dehydrogenase from the filamentous fungus C. lunatus and its Y167F mutant, both in the apo form, are described. X-ray diffraction analysis and phasing by Patterson-search techniques are reported. 17β-Hydroxysteroid dehydrogenase from the filamentous fungus Cochliobolus lunatus (17β-HSDcl) is an NADP(H)-dependent enzyme that preferentially catalyses the oxidoreduction of oestrogens and androgens. The enzyme belongs to the short-chain dehydrogenase/reductase superfamily and is the only fungal hydroxysteroid dehydrogenase known to date. 17β-HSDcl has recently been characterized and cloned and has been the subject of several functional studies. Although several hypotheses on the physiological role of 17β-HSDclmore » in fungal metabolism have been formulated, its function is still unclear. An X-ray crystallographic study has been undertaken and the optimal conditions for crystallization of 17β-HSDcl (apo form) were established, resulting in well shaped crystals that diffracted to 1.7 Å resolution. The space group was identified as I4{sub 1}22, with unit-cell parameters a = b = 67.14, c = 266.77 Å. Phasing was successfully performed by Patterson search techniques. A catalytic inactive mutant Tyr167Phe was also engineered, expressed, purified and crystallized for functional and structural studies.« less
Pagan, Darren C.; Miller, Matthew P.
2014-01-01
A forward modeling diffraction framework is introduced and employed to identify slip system activity in high-energy diffraction microscopy (HEDM) experiments. In the framework, diffraction simulations are conducted on virtual mosaic crystals with orientation gradients consistent with Nye’s model of heterogeneous single slip. Simulated diffraction peaks are then compared against experimental measurements to identify slip system activity. Simulation results compared against diffraction data measured in situ from a silicon single-crystal specimen plastically deformed under single-slip conditions indicate that slip system activity can be identified during HEDM experiments. PMID:24904242
Heymann, Michael; Opthalage, Achini; Wierman, Jennifer L.; Akella, Sathish; Szebenyi, Doletha M. E.; Gruner, Sol M.; Fraden, Seth
2014-01-01
An emulsion-based serial crystallographic technology has been developed, in which nanolitre-sized droplets of protein solution are encapsulated in oil and stabilized by surfactant. Once the first crystal in a drop is nucleated, the small volume generates a negative feedback mechanism that lowers the supersaturation. This mechanism is exploited to produce one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room-temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different unoriented crystals. As proof of concept, the structure of glucose isomerase was solved to 2.1 Å, demonstrating the feasibility of high-throughput serial X-ray crystallography using synchrotron radiation. PMID:25295176
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Ken-ichi; Tanaka, Nobutada, E-mail: ntanaka@pharm.showa-u.ac.jp; Ishikura, Shuhei
Pig heart carbonyl reductase has been crystallized in the presence of NADPH. Diffraction data have been collected using synchrotron radiation. Pig heart carbonyl reductase (PHCR), which belongs to the short-chain dehydrogenase/reductase (SDR) family, has been crystallized by the hanging-drop vapour-diffusion method. Two crystal forms (I and II) have been obtained in the presence of NADPH. Form I crystals belong to the tetragonal space group P4{sub 2}, with unit-cell parameters a = b = 109.61, c = 94.31 Å, and diffract to 1.5 Å resolution. Form II crystals belong to the tetragonal space group P4{sub 1}2{sub 1}2, with unit-cell parameters amore » = b = 120.10, c = 147.00 Å, and diffract to 2.2 Å resolution. Both crystal forms are suitable for X-ray structure analysis at high resolution.« less
Diffractive-refractive optics: (+,-,-,+) X-ray crystal monochromator with harmonics separation.
Hrdý, Jaromír; Mikulík, Petr; Oberta, Peter
2011-03-01
A new kind of two channel-cut crystals X-ray monochromator in dispersive (+,-,-,+) position which spatially separates harmonics is proposed. The diffracting surfaces are oriented so that the diffraction is inclined. Owing to refraction the diffracted beam is sagittally deviated. The deviation depends on wavelength and is much higher for the first harmonics than for higher harmonics. This leads to spatial harmonics separation. The idea is supported by ray-tracing simulation.
Tsukui, Shu; Kimura, Fumiko; Kusaka, Katsuhiro; Baba, Seiki; Mizuno, Nobuhiro; Kimura, Tsunehisa
2016-07-01
Protein microcrystals magnetically aligned in D2O hydrogels were subjected to neutron diffraction measurements, and reflections were observed for the first time to a resolution of 3.4 Å from lysozyme microcrystals (∼10 × 10 × 50 µm). This result demonstrated the possibility that magnetically oriented microcrystals consolidated in D2O gels may provide a promising means to obtain single-crystal neutron diffraction from proteins that do not crystallize at the sizes required for neutron diffraction structure determination. In addition, lysozyme microcrystals aligned in H2O hydrogels allowed structure determination at a resolution of 1.76 Å at room temperature by X-ray diffraction. The use of gels has advantages since the microcrystals are measured under hydrated conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cupp-Vickery, Jill R., E-mail: jvickery@uci.edu; Igarashi, Robert Y.; Meyer, Christopher R.
2005-03-01
Crystallization and X-ray diffraction methods for native A. tumefaciens ADP-glucose pyrophosphorylase and its selenomethionyl derivative are described. Two crystal forms are identified, both of which diffract to 2 Å.
Cranston, Laura J; Roszak, Aleksander W; Cogdell, Richard J
2014-06-01
LH2 from the purple photosynthetic bacterium Marichromatium (formerly known as Chromatium) purpuratum is an integral membrane pigment-protein complex that is involved in harvesting light energy and transferring it to the LH1-RC `core' complex. The purified LH2 complex was crystallized using the sitting-drop vapour-diffusion method at 294 K. The crystals diffracted to a resolution of 6 Å using synchrotron radiation and belonged to the tetragonal space group I4, with unit-cell parameters a=b=109.36, c=80.45 Å. The data appeared to be twinned, producing apparent diffraction symmetry I422. The tetragonal symmetry of the unit cell and diffraction for the crystals of the LH2 complex from this species reveal that this complex is an octamer.
Cranston, Laura J.; Roszak, Aleksander W.; Cogdell, Richard J.
2014-01-01
LH2 from the purple photosynthetic bacterium Marichromatium (formerly known as Chromatium) purpuratum is an integral membrane pigment–protein complex that is involved in harvesting light energy and transferring it to the LH1–RC ‘core’ complex. The purified LH2 complex was crystallized using the sitting-drop vapour-diffusion method at 294 K. The crystals diffracted to a resolution of 6 Å using synchrotron radiation and belonged to the tetragonal space group I4, with unit-cell parameters a = b = 109.36, c = 80.45 Å. The data appeared to be twinned, producing apparent diffraction symmetry I422. The tetragonal symmetry of the unit cell and diffraction for the crystals of the LH2 complex from this species reveal that this complex is an octamer. PMID:24915099
(NZ)CH...O contacts assist crystallization of a ParB-like nuclease.
Shaw, Neil; Cheng, Chongyun; Tempel, Wolfram; Chang, Jessie; Ng, Joseph; Wang, Xin-Yu; Perrett, Sarah; Rose, John; Rao, Zihe; Wang, Bi-Cheng; Liu, Zhi-Jie
2007-07-07
The major bottleneck for determination of 3 D structures of proteins using X-rays is the production of diffraction quality crystals. Often proteins are subjected to chemical modification to improve the chances of crystallization Here, we report the successful crystallization of a nuclease employing a reductive methylation protocol. The key to crystallization was the successful introduction of 44 new cohesive (NZ) CH...O contacts (3.2-3.7 A) by the addition of 2 methyl groups to the side chain amine nitrogen (NZ) of 9 lysine residues of the nuclease. The new contacts dramatically altered the crystallization properties of the protein, resulting in crystals that diffracted to 1.2 A resolution. Analytical ultracentrifugation analysis and thermodynamics results revealed a more compact protein structure with better solvent exclusion of buried Trp residues in the folded state of the methylated protein, assisting crystallization. In this study, introduction of novel cohesive (NZ)CH...O contacts by reductive methylation resulted in the crystallization of a protein that had previously resisted crystallization in spite of extensive purification and crystallization space screening. Introduction of (NZ)CH...O contacts could provide a solution to crystallization problems for a broad range of protein targets.
Large-size TlBr single crystal growth and defect study
NASA Astrophysics Data System (ADS)
Zhang, Mingzhi; Zheng, Zhiping; Chen, Zheng; Zhang, Sen; Luo, Wei; Fu, Qiuyun
2018-04-01
Thallium bromide (TlBr) is an attractive semiconductor material for fabrication of radiation detectors due to its high photon stopping power originating from its high atomic number, wide band gap and high resistivity. In this paper the vertical Bridgman method was used for crystal growth and TlBr single crystals with diameter of 15 mm were grown. X-ray diffraction (XRD) was used to identify phase and orientation. Electron backscatter diffraction (EBSD) was used to investigate crystal microstructure and crystallographic orientation. The optical and electric performance of the crystal was characterized by infrared (IR) transmittance spectra and I-V measurement. The types of point defects in the crystals were investigated by thermally stimulated current (TSC) spectra and positron annihilation spectroscopy (PAS). Four types of defects, with ionization energy of each defect fitting as follows: 0.1308, 0.1540, 0.3822 and 0.538 eV, were confirmed from the TSC result. The PAS result showed that there were Tl vacancies in the crystal.
Analysis of synthetic diamond single crystals by X-ray topography and double-crystal diffractometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru; Ralchenko, V. G.; Bolshakov, A. P.
2013-12-15
Structural features of diamond single crystals synthesized under high pressure and homoepitaxial films grown by chemical vapor deposition (CVD) have been analyzed by double-crystal X-ray diffractometry and topography. The conditions of a diffraction analysis of diamond crystals using Ge monochromators have been optimized. The main structural defects (dislocations, stacking faults, growth striations, second-phase inclusions, etc.) formed during crystal growth have been revealed. The nitrogen concentration in high-pressure/high-temperature (HPHT) diamond substrates is estimated based on X-ray diffraction data. The formation of dislocation bundles at the film-substrate interface in the epitaxial structures has been revealed by plane-wave topography; these dislocations are likelymore » due to the relaxation of elastic macroscopic stresses caused by the lattice mismatch between the substrate and film. The critical thicknesses of plastic relaxation onset in CVD diamond films are calculated. The experimental techniques for studying the real diamond structure in optimizing crystal-growth technology are proven to be highly efficient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buts, Lieven; De Jonge, Natalie; Loris, Remy, E-mail: reloris@vub.ac.be
2005-10-01
The CcdA C-terminal domain was crystallized in complex with CcdB in two crystal forms that diffract to beyond 2.0 Å resolution. CcdA and CcdB are the antidote and toxin of the ccd addiction module of Escherichia coli plasmid F. The CcdA C-terminal domain (CcdA{sub C36}; 36 amino acids) was crystallized in complex with CcdB (dimer of 2 × 101 amino acids) in three different crystal forms, two of which diffract to high resolution. Form II belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 37.6, b = 60.5, c = 83.8 Å and diffracts to 1.8more » Å resolution. Form III belongs to space group P2{sub 1}, with unit-cell parameters a = 41.0, b = 37.9, c = 69.6 Å, β = 96.9°, and diffracts to 1.9 Å resolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Leandra; Nascimento, Alessandro S.; Zamorano, Laura S.
2007-09-01
The purification, crystallization, X-ray diffraction data acquisition and molecular-replacement results of royal palm tree (R. regia) peroxidase are described. Royal palm tree peroxidase (RPTP), which was isolated from Roystonea regia leaves, has an unusually high stability that makes it a promising candidate for diverse applications in industry and analytical chemistry [Caramyshev et al. (2005 ▶), Biomacromolecules, 6, 1360–1366]. Here, the purification and crystallization of this plant peroxidase and its X-ray diffraction data collection are described. RPTP crystals were obtained by the hanging-drop vapour-diffusion method and diffraction data were collected to a resolution of 2.8 Å. The crystals belong to themore » trigonal space group P3{sub 1}21, with unit-cell parameters a = b = 116.83, c = 92.24 Å, and contain one protein molecule per asymmetric unit. The V{sub M} value and solvent content are 4.07 Å{sup 3} Da{sup −1} and 69.8%, respectively.« less
Pechkova, E; Vasile, F; Spera, R; Fiordoro, S; Nicolini, C
2005-11-01
Protein nanocrystallography, a new technology for crystal growth based on protein nanotemplates, has recently been shown to produce diffracting, stable and radiation-resistant lysozyme crystals. This article, by computing these lysozyme crystals' atomic structures, obtained by the diffraction patterns of microfocused synchrotron radiation, provides a possible mechanism for this increased stability, namely a significant decrease in water content accompanied by a minor but significant alpha-helix increase. These data are shown to be compatible with the circular dichroism and two-dimensional Fourier transform spectra of high-resolution H NMR of proteins dissolved from the same nanotemplate-based crystal versus those from a classical crystal. Finally, evidence for protein direct transfer from the nanotemplate to the drop and the participation of the template proteins in crystal nucleation and growth is provided by high-resolution NMR spectrometry and mass spectrometry. Furthermore, the lysozyme nanotemplate appears stable up to 523 K, as confirmed by a thermal denaturation study using spectropolarimetry. The overall data suggest that heat-proof lysozyme presence in the crystal provides a possible explanation of the crystal's resistance to synchrotron radiation.
NASA Astrophysics Data System (ADS)
Senthil, K.; Kalainathan, S.; Ruban Kumar, A.
Optically transparent crystal of the organic salt DEASI (2-[2-(4-Diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide) has been synthesized by using knoevenagel condensation reaction method. The synthesized material has been purified by successfully recrystallization process. Single crystals of DEASI have been grown by slow evaporation technique at room temperature. The solubility of the title material has been determined at different temperature in acetonitrile/methanol mixture. The cell parameters and crystallinity of the title crystal were determined by single crystal XRD. The powder diffraction was carried out to study the reflection plane of the grown crystal and diffraction peaks were indexed. The presence of different functional groups in the crystal was confirmed by Fourier transform infrared (FTIR) analysis. 1H NMR spectrum was recorded to confirm the presence of hydrogen nuclei in the synthesized material. The optical property of the title crystal was studied by UV-Vis-NIR spectroscopic analysis. The melting point and thermal property of DEASI were studied using TGA/DSC technique. The Vicker’s hardness (Hv) was carried out to know the category. The dielectric constant and dielectric loss of the compound decreases with an increase in frequencies. Chemical etching studies showed that the DEASI grows in the two dimensional growth mechanisms. The Kurtz-Perry powder second harmonic generation (SHG) test has done for title crystal.
Senthil, K; Kalainathan, S; Ruban Kumar, A
2014-05-05
Optically transparent crystal of the organic salt DEASI (2-[2-(4-Diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide) has been synthesized by using knoevenagel condensation reaction method. The synthesized material has been purified by successfully recrystallization process. Single crystals of DEASI have been grown by slow evaporation technique at room temperature. The solubility of the title material has been determined at different temperature in acetonitrile/methanol mixture. The cell parameters and crystallinity of the title crystal were determined by single crystal XRD. The powder diffraction was carried out to study the reflection plane of the grown crystal and diffraction peaks were indexed. The presence of different functional groups in the crystal was confirmed by Fourier transform infrared (FTIR) analysis. (1)H NMR spectrum was recorded to confirm the presence of hydrogen nuclei in the synthesized material. The optical property of the title crystal was studied by UV-Vis-NIR spectroscopic analysis. The melting point and thermal property of DEASI were studied using TGA/DSC technique. The Vicker's hardness (Hv) was carried out to know the category. The dielectric constant and dielectric loss of the compound decreases with an increase in frequencies. Chemical etching studies showed that the DEASI grows in the two dimensional growth mechanisms. The Kurtz-Perry powder second harmonic generation (SHG) test has done for title crystal. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quesada, Odayme; Gurda, Brittney; Govindasamy, Lakshmanan
2007-12-01
Crystals of baculovirus-expressed adeno-associated virus serotype 7 capsids have been produced which diffract X-rays to ∼3.0 Å resolution. Crystals of baculovirus-expressed adeno-associated virus serotype 7 capsids diffract X-rays to ∼3.0 Å resolution. The crystals belong to the rhombohedral space group R3, with unit-cell parameters a = 252.4, c = 591.2 Å in the hexagonal setting. The diffraction data were processed and reduced to an overall completeness of 79.0% and an R{sub merge} of 12.0%. There are three viral capsids in the unit cell. The icosahedral threefold axis is coincident with the crystallographic threefold axis, resulting in one third of amore » capsid (20 monomers) per crystallographic asymmetric unit. The orientation of the viral capsid has been determined by rotation-function searches and is positioned at (0, 0, 0) by packing considerations.« less
Josts, Inokentijs; Grinter, Rhys; Kelly, Sharon M; Mosbahi, Khedidja; Roszak, Aleksander; Cogdell, Richard; Smith, Brian O; Byron, Olwyn; Walker, Daniel
2014-09-01
TamB is a recently described inner membrane protein that, together with its partner protein TamA, is required for the efficient secretion of a subset of autotransporter proteins in Gram-negative bacteria. In this study, the C-terminal DUF490963-1138 domain of TamB was overexpressed in Escherichia coli K-12, purified and crystallized using the sitting-drop vapour-diffusion method. The crystals belonged to the primitive trigonal space group P3121, with unit-cell parameters a = b = 57.34, c = 220.74 Å, and diffracted to 2.1 Å resolution. Preliminary secondary-structure and X-ray diffraction analyses are reported. Two molecules are predicted to be present in the asymmetric unit. Experimental phasing using selenomethionine-labelled protein will be undertaken in the future.
Pink-beam serial crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meents, A.; Wiedorn, M. O.; Srajer, V.
Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, “pink”, beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized formore » very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.« less
Pink-beam serial crystallography
Meents, A.; Wiedorn, M. O.; Srajer, V.; ...
2017-11-03
Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, “pink”, beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized formore » very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.« less
X-ray diffraction analysis and in vitro characterization of the UAM2 protein from Oryza sativa
Welner, Ditte Hededam; Tsai, Alex Yi-Lin; DeGiovanni, Andy M.; ...
2017-03-29
The role of seemingly non-enzymatic proteins in complexes interconverting UDP-arabinopyranose and UDP-arabinofuranose (UDP-arabinosemutases; UAMs) in the plant cytosol remains unknown. To shed light on their function, crystallographic and functional studies of the seemingly non-enzymatic UAM2 protein from Oryza sativa (OsUAM2) were undertaken. Here, X-ray diffraction data are reported, as well as analysis of the oligomeric state in the crystal and in solution. OsUAM2 crystallizes readily but forms highly radiation-sensitive crystals with limited diffraction power, requiring careful low-dose vector data acquisition. Using size-exclusion chromatography, it is shown that the protein is monomeric in solution. Finally, limited proteolysis was employed to demonstratemore » DTT-enhanced proteolytic digestion, indicating the existence of at least one intramolecular disulfide bridge or, alternatively, a requirement for a structural metal ion.« less
Macromolecular diffractive imaging using imperfect crystals
Ayyer, Kartik; Yefanov, Oleksandr; Oberthür, Dominik; Roy-Chowdhury, Shatabdi; Galli, Lorenzo; Mariani, Valerio; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Schaffer, Alexander; Dörner, Katerina; James, Daniel; Kupitz, Christopher; Metz, Markus; Nelson, Garrett; Lourdu Xavier, Paulraj; Beyerlein, Kenneth R.; Schmidt, Marius; Sarrou, Iosifina; Spence, John C. H.; Weierstall, Uwe; White, Thomas A.; Yang, Jay-How; Zhao, Yun; Liang, Mengning; Aquila, Andrew; Hunter, Mark S.; Robinson, Joseph S.; Koglin, Jason E.; Boutet, Sébastien; Fromme, Petra; Barty, Anton; Chapman, Henry N.
2016-01-01
The three-dimensional structures of macromolecules and their complexes are predominantly elucidated by X-ray protein crystallography. A major limitation is access to high-quality crystals, to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields sufficiently high-resolution information that the crystal structure can be solved. The observation that crystals with shrunken unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks1,2 hints that crystallographic resolution for some macromolecules may be limited not by their heterogeneity but rather by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern, equal to the incoherent sum of diffraction from rigid single molecular complexes aligned along several discrete crystallographic orientations and hence with an increased information content3. Although such continuous diffraction patterns have long been observed—and are of interest as a source of information about the dynamics of proteins4 —they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5 Å limit of measurable Bragg peaks, which allows us to directly phase5 the pattern. With the molecular envelope conventionally determined at 4.5 Å as a constraint, we then obtain a static image of the photosystem II dimer at 3.5 Å resolution. This result shows that continuous diffraction can be used to overcome long-supposed resolution limits of macromolecular crystallography, with a method that puts great value in commonly encountered imperfect crystals and opens up the possibility for model-free phasing6,7. PMID:26863980
1994-11-24
complexes with reversible ligands, including edrophonium, d-tubocurarine and huperzine A , diffracting to similar resolution. The X26c Laue beam line...The EMBL-DESY synchrotron facility at Hamburg was employed to collect a complete 2.3 A data set for a crystal of native Torpedo AChE, as well as for...at the NSLS synchrotron facility at Brookhaven National Laboratory (BNL) was used to obtain a Laue diffraction pattern for a crystal of native Torpedo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, James F., E-mail: parsonsj@umbi.umd.edu; Shi, Katherine; Calabrese, Kelly
2006-03-01
Salicylate synthase, which catalyzes the first step in the synthesis of the siderophore yersiniabactin, has been crystallized. Diffraction data have been collected to 2.5 Å. Bacteria have evolved elaborate schemes that help them thrive in environments where free iron is severely limited. Siderophores such as yersiniabactin are small iron-scavenging molecules that are deployed by bacteria during iron starvation. Several studies have linked siderophore production and virulence. Yersiniabactin, produced by several Enterobacteriaceae, is derived from the key metabolic intermediate chorismic acid via its conversion to salicylate by salicylate synthase. Crystals of salicylate synthase from the uropathogen Escherichia coli CFT073 have beenmore » grown by vapour diffusion using polyethylene glycol as the precipitant. The monoclinic (P2{sub 1}) crystals diffract to 2.5 Å. The unit-cell parameters are a = 57.27, b = 164.07, c = 59.04 Å, β = 108.8°. The solvent content of the crystals is 54% and there are two molecules of the 434-amino-acid protein in the asymmetric unit. It is anticipated that the structure will reveal key details about the reaction mechanism and the evolution of salicylate synthase.« less
NASA Astrophysics Data System (ADS)
Miyajima, Kensuke; Akatsu, Tatsuro; Itoh, Ken
2018-05-01
We evaluated the crystal size, shape, and alignment of the lattice planes of CuCl quantum dots (QDs) embedded in NaCl single crystals by optical measurements, X-ray diffraction (XRD) patterns, and transmission electron microscopy (TEM). We obtained, for the first time, an XRD pattern and TEM images for CuCl QDs in NaCl crystals. The XRD pattern showed that the lattice planes of the CuCl QDs were parallel to those of the NaCl crystals. In addition, the size of the QDs was estimated from the diffraction width. It was apparent from the TEM images that almost all CuCl QDs were polygonal, although some cubic QDs were present. The mean size and size distribution of the QDs were also obtained. The dot size obtained from optical measurements, XRD, and TEM image were almost consistent. Our new findings can help to reveal the growth mechanism of semiconductor QDs embedded in a crystallite matrix. In addition, this work will play an important role in progressing the study of optical phenomena originating from assembled semiconductor QDs.
Madden, Jeremy T.; Toth, Scott J.; Dettmar, Christopher M.; Newman, Justin A.; Oglesbee, Robert A.; Hedderich, Hartmut G.; Everly, R. Michael; Becker, Michael; Ronau, Judith A.; Buchanan, Susan K.; Cherezov, Vadim; Morrow, Marie E.; Xu, Shenglan; Ferguson, Dale; Makarov, Oleg; Das, Chittaranjan; Fischetti, Robert; Simpson, Garth J.
2013-01-01
Nonlinear optical (NLO) instrumentation has been integrated with synchrotron X-ray diffraction (XRD) for combined single-platform analysis, initially targeting applications for automated crystal centering. Second-harmonic-generation microscopy and two-photon-excited ultraviolet fluorescence microscopy were evaluated for crystal detection and assessed by X-ray raster scanning. Two optical designs were constructed and characterized; one positioned downstream of the sample and one integrated into the upstream optical path of the diffractometer. Both instruments enabled protein crystal identification with integration times between 80 and 150 µs per pixel, representing a ∼103–104-fold reduction in the per-pixel exposure time relative to X-ray raster scanning. Quantitative centering and analysis of phenylalanine hydroxylase from Chromobacterium violaceum cPAH, Trichinella spiralis deubiquitinating enzyme TsUCH37, human κ-opioid receptor complex kOR-T4L produced in lipidic cubic phase (LCP), intimin prepared in LCP, and α-cellulose samples were performed by collecting multiple NLO images. The crystalline samples were characterized by single-crystal diffraction patterns, while α-cellulose was characterized by fiber diffraction. Good agreement was observed between the sample positions identified by NLO and XRD raster measurements for all samples studied. PMID:23765294
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaduk, James; Gindhart, Amy; Blanton, Thomas
The crystal structure of 17α-dihydroequilin has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. 17α-dihydroequilin crystallizes in space group P212121 (#19) with a = 6.76849(1) Å, b = 8.96849(1) Å, c = 23.39031(5) Å, V = 1419.915(3) Å3, and Z = 4. Both hydroxyl groups form hydrogen bonds to each other, resulting in zig-zag chains along the b-axis. The powder diffraction pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ as the entry 00-066-1608.
Albetran, Hani; Vega, Victor
2018-01-01
The influence of calcination time on the phase transformation and crystallization kinetics of anodized titania nanotube arrays was studied using in-situ isothermal and non-isothermal synchrotron radiation diffraction from room temperature to 900 °C. Anatase first crystallized at 400 °C, while rutile crystallized at 550 °C. Isothermal heating of the anodized titania nanotubes by an increase in the calcination time at 400, 450, 500, 550, 600, and 650 °C resulted in a slight reduction in anatase abundance, but an increase in the abundance of rutile because of an anatase-to-rutile transformation. The Avrami equation was used to model the titania crystallization mechanism and the Arrhenius equation was used to estimate the activation energies of the titania phase transformation. Activation energies of 22 (10) kJ/mol for the titanium-to-anatase transformation, and 207 (17) kJ/mol for the anatase-to-rutile transformation were estimated. PMID:29473854
Acousto-optic interaction in alpha-BaB(2)O(4)and Li(2)B(4)O(7) crystals.
Martynyuk-Lototska, Irina; Mys, Oksana; Dudok, Taras; Adamiv, Volodymyr; Smirnov, Yevgen; Vlokh, Rostyslav
2008-07-01
Experimental studies and analysis of acousto-optic diffraction in alpha-BaB(2)O(4) and Li(2)B(4)O(7) crystals are given. Ultrasonic wave velocity, elastic compliance and stiffness coefficients, and piezo-optic and photoelastic coefficients of alpha-BaB(2)O(4) and Li(2)B(4)O(7) crystals are determined. The acousto-optic figure of merit has been estimated for different possible geometries of acousto-optic interaction. It is shown that the acousto-optic figures of merit for alpha-BaB(2)O(4) crystals reach the value M(2)=(270 +/- 70) x 10(-15) s(3)/kg for the case of interaction with the slowest ultrasonic wave. The directions of propagation and polarization of those acoustic waves are obtained on the basis of construction of acoustic slowness surfaces. The acousto-optic diffraction is experimentally studied for alpha-BaB(2)O(4) and Li(2)B(4)O(7) crystals.
Alsarraf, Husam M. A. B.; Laroche, Fabrice; Spaink, Herman; Thirup, Søren; Blaise, Mickael
2011-01-01
Cell metabolic processes are constantly producing reactive oxygen species (ROS), which have deleterious effects by triggering, for example, DNA damage. Numerous enzymes such as catalase, and small compounds such as vitamin C, provide protection against ROS. The TLDc domain of the human oxidation resistance protein has been shown to be able to protect DNA from oxidative stress; however, its mechanism of action is still not understood and no structural information is available on this domain. Structural information on the TLDc domain may therefore help in understanding exactly how it works. Here, the purification, crystallization and preliminary crystallographic studies of the TLDc domain from zebrafish are reported. Crystals belonging to the orthorhombic space group P21212 were obtained and diffracted to 0.97 Å resolution. Selenomethionine-substituted protein could also be crystallized; these crystals diffracted to 1.1 Å resolution and the structure could be solved by SAD/MAD methods. PMID:22102041
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimminau, G; Nagler, B; Higginbotham, A
2008-06-19
Calculations of the x-ray diffraction patterns from shocked crystals derived from the results of Non-Equilibrium-Molecular-Dynamics (NEMD) simulations are presented. The atomic coordinates predicted by the NEMD simulations combined with atomic form factors are used to generate a discrete distribution of electron density. A Fast-Fourier-Transform (FFT) of this distribution provides an image of the crystal in reciprocal space, which can be further processed to produce quantitative simulated data for direct comparison with experiments that employ picosecond x-ray diffraction from laser-irradiated crystalline targets.
X-ray diffraction imaging (topography) of electroopticcrystals by synchrotron radiation
NASA Technical Reports Server (NTRS)
Steiner, Bruce; Kuriyama, Masao; Dobbyn, Ronald C.; Laor, Uri
1988-01-01
Information of special interest to crystal growers and device physicists now available from monochromatic synchrotron diffraction imaging (topography) is reviewed. Illustrations are taken from a variety of electro-optic crystals. Aspects of the detailed understanding of crystal growth processes obtainable from carefully selected samples are described. Finally, new experimental opportunities now available for exploitation are indicated.
An Excel Spreadsheet for a One-Dimensional Fourier Map in X-ray Crystallography
ERIC Educational Resources Information Center
Clegg, William
2004-01-01
The teaching of crystal structure determination with single-crystal X-ray diffraction at undergraduate level faces numerous challenges. Single-crystal X-ray diffraction is used in a vast range of chemical research projects and forms the basis for a high proportion of structural results that are presented to high-school, undergraduate, and graduate…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harada, Ayaka; Sato, Yukari; Kamimura, Naofumi
2016-11-30
A tetrahydrofolate-dependentO-demethylase, LigM, fromSphingobiumsp. SYK-6 was crystallized by the hanging-drop vapour-diffusion method. However, the obtainedP3 121 orP3 221 crystals, which diffracted to 2.5–3.3 Å resolution, were hemihedrally twinned. To overcome the twinning problem, microseeding usingP3 121/P3 221 crystals as microseeds was performed with optimization of the reservoir conditions. As a result, another crystal form was obtained. The newly obtained crystal diffracted to 2.5–3.0 Å resolution and belonged to space groupP2 12 12, with unit-cell parametersa= 102.0,b= 117.3,c= 128.1 Å. TheP2 12 12 crystals diffracted to better than 2.0 Å resolution after optimizing the cryoconditions. Phasing using the single anomalous diffractionmore » method was successful at 3.0 Å resolution with a Pt-derivative crystal. This experience suggested that microseeding is an effective method to overcome the twinning problem, even when twinned crystals are utilized as microseeds.« less
Crystallization and preliminary crystallographic analysis of the Clostridium perfringens enterotoxin
Briggs, David C.; Smedley, James G.; McClane, Bruce A.; Basak, Ajit K.
2010-01-01
Clostridium perfringens is a Gram-positive anaerobic species of bacterium that is notable for its ability to produce a plethora of toxins, including membrane-active toxins (α-toxins), pore-forming toxins (∊-toxins) and binary toxins (ι-toxins). Here, the crystallization of the full-length wild-type C. perfringens enterotoxin is reported, which is the causative agent of the second most prevalent food-borne illness in the United States and has been implicated in many other gastrointestinal pathologies. Several crystal forms were obtained. However, only two of these optimized crystal forms (I and II) were useable for X-ray diffraction data collection. The form I crystals diffracted to d min = 2.7 Å and belonged to space group C2, while the form II crystals diffracted to d min = 4 Å and belonged to space group P213. PMID:20606275
LCP crystallization and X-ray diffraction analysis of VcmN, a MATE transporter from Vibrio cholerae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusakizako, Tsukasa; Tanaka, Yoshiki; Hipolito, Christopher J.
A V. cholerae MATE transporter was crystallized using the lipidic cubic phase (LCP) method. X-ray diffraction data sets were collected from single crystals obtained in a sandwich plate and a sitting-drop plate to resolutions of 2.5 and 2.2 Å, respectively. Multidrug and toxic compound extrusion (MATE) transporters, one of the multidrug exporter families, efflux xenobiotics towards the extracellular side of the membrane. Since MATE transporters expressed in bacterial pathogens contribute to multidrug resistance, they are important therapeutic targets. Here, a MATE-transporter homologue from Vibrio cholerae, VcmN, was overexpressed in Escherichia coli, purified and crystallized in lipidic cubic phase (LCP). X-raymore » diffraction data were collected to 2.5 Å resolution from a single crystal obtained in a sandwich plate. The crystal belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 52.3, b = 93.7, c = 100.2 Å. As a result of further LCP crystallization trials, crystals of larger size were obtained using sitting-drop plates. X-ray diffraction data were collected to 2.2 Å resolution from a single crystal obtained in a sitting-drop plate. The crystal belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 61.9, b = 91.8, c = 100.9 Å. The present work provides valuable insights into the atomic resolution structure determination of membrane transporters.« less
Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser
Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; ...
2015-06-27
Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here in this study, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallizationmore » conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.« less
X-ray transparent Microfluidics for Protein Crystallization and Biomineralization
NASA Astrophysics Data System (ADS)
Opathalage, Achini
Protein crystallization demands the fundamental understanding of nucleation and applying techniques to find the optimal conditions to achieve the kinetic pathway for a large and defect free crystal. Classical nucleation theory predicts that the nucleation occurs at high supersaturation conditions. In this dissertation we sought out to develop techniques to attain optimal supersaturation profile to a large defect free crystal and subject it to in-situ X-ray diffraction using microfluidics. We have developed an emulsion-based serial crystallographic technology in nanolitre-sized droplets of protein solution encapsulated in to nucleate one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different un-oriented crystals. As proof of concept, the structure of Glucose Isomerase was solved to 2.1 A. We have developed a suite of X-ray semi-transparent micrfluidic devices which enables; controlled evaporation as a method of increasing supersaturation and manipulating the phase space of proteins and small molecules. We exploited the inherently high water permeability of the thin X-ray semi-transparent devices as a mean of increasing the supersaturation by controlling the evaporation. We fabricated the X-ray semi-transparent version of the PhaseChip with a thin PDMS membrane by which the storage and the reservoir layers are separated, and studies the phase transition of amorphous CaCO3.
Crystallization and preliminary X-ray diffraction analysis of West Nile virus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufmann, Barbel; Plevka, Pavel; Kuhn, Richard J.
2010-05-25
West Nile virus, a human pathogen, is closely related to other medically important flaviviruses of global impact such as dengue virus. The infectious virus was purified from cell culture using polyethylene glycol (PEG) precipitation and density-gradient centrifugation. Thin amorphously shaped crystals of the lipid-enveloped virus were grown in quartz capillaries equilibrated by vapor diffusion. Crystal diffraction extended at best to a resolution of about 25 {angstrom} using synchrotron radiation. A preliminary analysis of the diffraction images indicated that the crystals had unit-cell parameters a {approx_equal} b {approx_equal} 480 {angstrom}, {gamma} = 120{sup o}, suggesting a tight hexagonal packing of onemore » virus particle per unit cell.« less
NASA Astrophysics Data System (ADS)
Muche, Simon; Müller, Matthias; Hołyńska, Małgorzata
2018-03-01
The condensation reaction of ortho-vanillin and L-cysteine leads to formation of a racemic mixture of (2RS,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid and not, as reported in the available literature, to a Schiff base. The racemic mixture was fully characterized by 1D and 2D NMR techniques, ESI-MS and X-ray diffraction. Addition of ZnCl2 led to formation of crystals in form of colorless needles, suitable for X-ray diffraction studies. The measured crystals were identified as the diastereomer (2R,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid 1. The bulk material is racemic. Thiazolidine exists as zwitterion in solid state, as indicated by the crystal structure.
Yoshida, Hiromi; Yamada, Mitsugu; Nishitani, Takeyori; Takada, Goro; Izumori, Ken; Kamitori, Shigehiro
2007-01-01
d-Tagatose 3-epimerase (D-TE) from Pseudomonas cichorii catalyzes the epimerization of various ketohexoses at the C3 position. The epimerization of d-psicose has not been reported with epimerases other than P. cichorii D-TE and d-psicose 3-epimerase from Agrobacterium tumefaciens. Recombinant P. cichorii D-TE has been purified and crystallized. Crystals of P. cichorii D-TE were obtained by the sitting-drop method at room temperature. The crystal belongs to the monoclinic space group P21, with unit-cell parameters a = 76.80, b = 94.92, c = 91.73 Å, β = 102.82°. Diffraction data were collected to 2.5 Å resolution. The asymmetric unit is expected to contain four molecules. PMID:17277456
Crystallization and preliminary crystallographic analysis of human common-type acylphosphatase
Yeung, Rachel C. Y.; Lam, Sonia Y.; Wong, Kam-Bo
2006-01-01
Human acylphosphatase, an 11 kDa enzyme that catalyzes the hydrolysis of carboxyl phosphate bonds, has been studied extensively as a model system for amyloid-fibril formation. However, the structure is still not known of any isoform of human acylphosphatase. Here, the crystallization and preliminary X-ray diffraction data analysis of human common-type acylphosphatase are reported. Crystals of human common-type acylphosphatase have been grown by the sitting-drop vapour-diffusion method at 289 K using polyethylene glycol 4000 as precipitant. Diffraction data were collected to 1.45 Å resolution at 100 K. The crystals belong to space group P212121, with unit-cell parameters a = 42.58, b = 47.23, c = 57.26 Å. PMID:16511269
NASA Astrophysics Data System (ADS)
Ono, Hiroshi; Kuzuwata, Mitsuru; Sasaki, Tomoyuki; Noda, Kohei; Kawatsuki, Nobuhiro
2014-03-01
The blazed vector grating possessing antisymmetric distributions of the birefringence were fabricated by exposing the line-focused linearly polarized ultraviolet light on the photosensitive polymer liquid crystals. The polarization states of the diffraction beams can be highly and widely controlled by designing the blazed structures, and the diffraction properties were well-explained by Jones calculus.
Instrument and method for focusing X-rays, gamma rays and neutrons
Smither, Robert K.
1984-01-01
A crystal diffraction instrument or diffraction grating instrument with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the crystalline structure, by assembling a plurality of crystalline structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal diffraction case.
Instrument and method for focusing x rays, gamma rays, and neutrons
Smither, R.K.
1982-03-25
A crystal-diffraction instrument or diffraction-grating instrument is described with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the line structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam, or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal-diffraction case.
Data Exploration Toolkit for serial diffraction experiments
Zeldin, Oliver B.; Brewster, Aaron S.; Hattne, Johan; ...
2015-01-23
Ultrafast diffraction at X-ray free-electron lasers (XFELs) has the potential to yield new insights into important biological systems that produce radiation-sensitive crystals. An unavoidable feature of the 'diffraction before destruction' nature of these experiments is that images are obtained from many distinct crystals and/or different regions of the same crystal. Combined with other sources of XFEL shot-to-shot variation, this introduces significant heterogeneity into the diffraction data, complicating processing and interpretation. To enable researchers to get the most from their collected data, a toolkit is presented that provides insights into the quality of, and the variation present in, serial crystallography datamore » sets. These tools operate on the unmerged, partial intensity integration results from many individual crystals, and can be used on two levels: firstly to guide the experimental strategy during data collection, and secondly to help users make informed choices during data processing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagelueken, Gregor; Huang, Hexian; Harlos, Karl
2012-10-01
The optimization of WbdD crystals using a novel dehydration protocol and experimental phasing at 3.5 Å resolution by cross-crystal averaging followed by molecular replacement of electron density into a non-isomorphous 3.0 Å resolution native data set are reported. WbdD is a bifunctional kinase/methyltransferase that is responsible for regulation of lipopolysaccharide O antigen polysaccharide chain length in Escherichia coli serotype O9a. Solving the crystal structure of this protein proved to be a challenge because the available crystals belonging to space group I23 only diffracted to low resolution (>95% of the crystals diffracted to resolution lower than 4 Å and most onlymore » to 8 Å) and were non-isomorphous, with changes in unit-cell dimensions of greater than 10%. Data from a serendipitously found single native crystal that diffracted to 3.0 Å resolution were non-isomorphous with a lower (3.5 Å) resolution selenomethionine data set. Here, a strategy for improving poor (3.5 Å resolution) initial phases by density modification and cross-crystal averaging with an additional 4.2 Å resolution data set to build a crude model of WbdD is desribed. Using this crude model as a mask to cut out the 3.5 Å resolution electron density yielded a successful molecular-replacement solution of the 3.0 Å resolution data set. The resulting map was used to build a complete model of WbdD. The hydration status of individual crystals appears to underpin the variable diffraction quality of WbdD crystals. After the initial structure had been solved, methods to control the hydration status of WbdD were developed and it was thus possible to routinely obtain high-resolution diffraction (to better than 2.5 Å resolution). This novel and facile crystal-dehydration protocol may be useful for similar challenging situations.« less
Multiple film plane diagnostic for shocked lattice measurements (invited)
NASA Astrophysics Data System (ADS)
Kalantar, Daniel H.; Bringa, E.; Caturla, M.; Colvin, J.; Lorenz, K. T.; Kumar, M.; Stölken, J.; Allen, A. M.; Rosolankova, K.; Wark, J. S.; Meyers, M. A.; Schneider, M.; Boehly, T. R.
2003-03-01
Laser-based shock experiments have been conducted in thin Si and Cu crystals at pressures above the Hugoniot elastic limit. In these experiments, static film and x-ray streak cameras recorded x rays diffracted from lattice planes both parallel and perpendicular to the shock direction. These data showed uniaxial compression of Si(100) along the shock direction and three-dimensional compression of Cu(100). In the case of the Si diffraction, there was a multiple wave structure observed, which may be due to a one-dimensional phase transition or a time variation in the shock pressure. A new film-based detector has been developed for these in situ dynamic diffraction experiments. This large-angle detector consists of three film cassettes that are positioned to record x rays diffracted from a shocked crystal anywhere within a full π steradian. It records x rays that are diffracted from multiple lattice planes both parallel and at oblique angles with respect to the shock direction. It is a time-integrating measurement, but time-resolved data may be recorded using a short duration laser pulse to create the diffraction source x rays. This new instrument has been fielded at the OMEGA and Janus lasers to study single-crystal materials shock compressed by direct laser irradiation. In these experiments, a multiple wave structure was observed on many different lattice planes in Si. These data provide information on the structure under compression.
Analyzing shear band formation with high resolution X-ray diffraction
Pagan, Darren C.; Obstalecki, Mark; Park, Jun-Sang; ...
2018-01-10
Localization of crystallographic slip into shear bands during uniaxial compression of a copper single crystal is studied using very far-field high-energy diffraction microscopy (vff-HEDM). Diffracted intensity was collected in-situ as the crystal deformed using a unique mobile detector stage that provided access to multiple diffraction peaks with high-angular resolution. From the diffraction data, single crystal orientation pole figures (SCPFs) were generated and are used to track the evolution of the distribution of lattice orientation that develops as slip localizes. To aid the identification of ‘signatures’ of shear band formation and analyze the SCPF data, a model of slip-driven lattice reorientationmore » within shear bands is introduced. Confidence is built in conclusions drawn from the SCPF data about the character of internal slip localization through comparisons with strain fields on the sample surface measured simultaneously using digital image correlation. From the diffraction data, we find that the active slip direction and slip plane are not directly aligned with the orientation of the shear bands that formed. In fact, by extracting the underlying slip system activity from the SCPF data, we show that intersecting shear bands measured on the surface of the sample arise from slip primarily on the same underlying single slip system. These new vff-HEDM results raise significant questions on the use of surface measurements for slip system activity estimation.« less
A microcrystal selection technique in protein crystallization
NASA Astrophysics Data System (ADS)
Han, Qing; Lin, Sheng-Xiang
1996-10-01
The goal of protein crystallization is to obtain high quality single crystals for X-ray diffraction analysis. A new and easy technique was employed to control the number and quality of crystals by eliminating poor microcrystals after the spontaneous nucleation. The process was carried out with two samples: human 17β-hydroxysteroid dehydrogenase (17β-HSD) and hen egg white lysozyme. The present study suggests a useful method for the successful crystal growth of biomacromolecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madden, Jeremy T.; Toth, Scott J.; Dettmar, Christopher M.
Nonlinear optical (NLO) instrumentation has been integrated with synchrotron X-ray diffraction (XRD) for combined single-platform analysis, initially targeting applications for automated crystal centering. Second-harmonic-generation microscopy and two-photon-excited ultraviolet fluorescence microscopy were evaluated for crystal detection and assessed by X-ray raster scanning. Two optical designs were constructed and characterized; one positioned downstream of the sample and one integrated into the upstream optical path of the diffractometer. Both instruments enabled protein crystal identification with integration times between 80 and 150 µs per pixel, representing a ~10 3–10 4-fold reduction in the per-pixel exposure time relative to X-ray raster scanning. Quantitative centering andmore » analysis of phenylalanine hydroxylase fromChromobacterium violaceumcPAH,Trichinella spiralisdeubiquitinating enzyme TsUCH37, human κ-opioid receptor complex kOR-T4L produced in lipidic cubic phase (LCP), intimin prepared in LCP, and α-cellulose samples were performed by collecting multiple NLO images. The crystalline samples were characterized by single-crystal diffraction patterns, while α-cellulose was characterized by fiber diffraction. Good agreement was observed between the sample positions identified by NLO and XRD raster measurements for all samples studied.« less
Singh, Anar; Schefer, Jurg; Sura, Ravi; ...
2016-03-24
The existing controversy about the symmetry of the crystal structure of the ground state of the critical doped La 1.95Sr 0.05CuO 4 has been resolved by analyzing the single crystal neutron diffraction data collected between 5 and 730 K. We observed small but significant intensities for "forbidden" reflections given by extinction rules of the orthorhombic Bmab space group at low temperatures. A careful investigation of neutron diffraction data reveals that the crystal structure of La 1.95Sr 0.05CuO 4 at 5 K is monoclinic with B2/m (2/m 1 1) space group. The monoclinic structure emerges from the orthorhombic structure in amore » continuous way; however, the structure is stable below similar to 120K which agrees with other observed phenomena. Lastly, our results on symmetry changes are crucial for the interpretation of physical properties also in other high temperature superconductors with similar structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timofeev, V. I., E-mail: inna@ns.crys.ras.ru; Abramchik, Yu. A., E-mail: tostars@mail.ru; Zhukhlistova, N. E., E-mail: ugama@yandex.ru
2015-09-15
Enzymes of the phosphoribosyl pyrophosphate synthetase family (PRPPS, EC 2.7.6.1) catalyze the formation of 5-phosphoribosyl pyrophosphate (5-PRPP) from adenosine triphosphate and ribose 5-phosphate. 5-Phosphoribosyl pyrophosphate is an important intermediate in the synthesis of purine, pyrimidine, and pyridine nucleotides, as well as of the amino acids histidine and tryptophan. The crystallization conditions for E. coli PRPPS were found by the vapor-diffusion technique and were optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals grown by the counter-diffusion technique using a synchrotron radiation source to 3.1-Å resolution. The crystals of PRPPS belong to sp.more » gr. P6{sub 3}22 and have the following unit-cell parameters: a = b = 104.44 Å, c = 124.98 Å, α = β = 90°, γ = 120°. The collected X-ray diffraction data set is suitable for the solution of the three-dimensional structure of PRPPS at 3.1-Å resolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Anar, E-mail: singhanar@gmail.com; Schefer, Jürg; Frontzek, Matthias
2016-03-28
The existing controversy about the symmetry of the crystal structure of the ground state of the critical doped La{sub 1.95}Sr{sub 0.05}CuO{sub 4} has been resolved by analyzing the single crystal neutron diffraction data collected between 5 and 730 K. We observed small but significant intensities for “forbidden” reflections given by extinction rules of the orthorhombic Bmab space group at low temperatures. A careful investigation of neutron diffraction data reveals that the crystal structure of La{sub 1.95}Sr{sub 0.05}CuO{sub 4} at 5 K is monoclinic with B2/m (2/m 1 1) space group. The monoclinic structure emerges from the orthorhombic structure in a continuous way;more » however, the structure is stable below ∼120 K which agrees with other observed phenomena. Our results on symmetry changes are crucial for the interpretation of physical properties also in other high temperature superconductors with similar structures.« less
Periodic order and defects in Ni-based inverse opal-like crystals on the mesoscopic and atomic scale
NASA Astrophysics Data System (ADS)
Chumakova, A. V.; Valkovskiy, G. A.; Mistonov, A. A.; Dyadkin, V. A.; Grigoryeva, N. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Petukhov, A. V.; Grigoriev, S. V.
2014-10-01
The structure of inverse opal crystals based on nickel was probed on the mesoscopic and atomic levels by a set of complementary techniques such as scanning electron microscopy and synchrotron microradian and wide-angle diffraction. The microradian diffraction revealed the mesoscopic-scale face-centered-cubic (fcc) ordering of spherical voids in the inverse opal-like structure with unit cell dimension of 750±10nm. The diffuse scattering data were used to map defects in the fcc structure as a function of the number of layers in the Ni inverse opal-like structure. The average lateral size of mesoscopic domains is found to be independent of the number of layers. 3D reconstruction of the reciprocal space for the inverse opal crystals with different thickness provided an indirect study of original opal templates in a depth-resolved way. The microstructure and thermal response of the framework of the porous inverse opal crystal was examined using wide-angle powder x-ray diffraction. This artificial porous structure is built from nickel crystallites possessing stacking faults and dislocations peculiar for the nickel thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arreola, Rodrigo; Vega-Miranda, Anita; Gómez-Puyou, Armando
The gene-regulation factor PyrR from B. halodurans has been crystallized in two crystal forms. Preliminary crystallographic analysis showed that the protein forms tetramers in both space groups. The PyrR transcriptional regulator is widely distributed in bacteria. This RNA-binding protein is involved in the control of genes involved in pyrimidine biosynthesis, in which uridyl and guanyl nucleotides function as effectors. Here, the crystallization and preliminary X-ray diffraction analysis of two crystal forms of Bacillus halodurans PyrR are reported. One of the forms belongs to the monoclinic space group P2{sub 1} with unit-cell parameters a = 59.7, b = 87.4, c =more » 72.1 Å, β = 104.4°, while the other form belongs to the orthorhombic space group P22{sub 1}2{sub 1} with unit-cell parameters a = 72.7, b = 95.9, c = 177.1 Å. Preliminary X-ray diffraction data analysis and molecular-replacement solution revealed the presence of four and six monomers per asymmetric unit; a crystallographic tetramer is formed in both forms.« less
Wojdyla, Justyna Aleksandra; Panepucci, Ezequiel; Martiel, Isabelle; Ebner, Simon; Huang, Chia-Ying; Caffrey, Martin; Bunk, Oliver; Wang, Meitian
2016-01-01
A fast continuous grid scan protocol has been incorporated into the Swiss Light Source (SLS) data acquisition and analysis software suite on the macromolecular crystallography (MX) beamlines. Its combination with fast readout single-photon counting hybrid pixel array detectors (PILATUS and EIGER) allows for diffraction-based identification of crystal diffraction hotspots and the location and centering of membrane protein microcrystals in the lipid cubic phase (LCP) in in meso in situ serial crystallography plates and silicon nitride supports. Diffraction-based continuous grid scans with both still and oscillation images are supported. Examples that include a grid scan of a large (50 nl) LCP bolus and analysis of the resulting diffraction images are presented. Scanning transmission X-ray microscopy (STXM) complements and benefits from fast grid scanning. STXM has been demonstrated at the SLS beamline X06SA for near-zero-dose detection of protein crystals mounted on different types of sample supports at room and cryogenic temperatures. Flash-cooled crystals in nylon loops were successfully identified in differential and integrated phase images. Crystals of just 10 µm thickness were visible in integrated phase images using data collected with the EIGER detector. STXM offers a truly low-dose method for locating crystals on solid supports prior to diffraction data collection at both synchrotron microfocusing and free-electron laser X-ray facilities. PMID:27275141
Dinakaran, Paul M; Kalainathan, S
2013-07-01
4-Chloro 4-nitrostilbene (CONS) a new organic nonlinear optical material has been synthesized. Employing slow evaporation method, good optical quality single crystals (dimensions up to 6×2×3 mm(3)) have been grown using ethyl methyl ketone (EMK) as a solvent. The grown crystals have been subjected to various characterizations such as single crystal X-ray diffraction, powder XRD, Fourier Transform Infrared spectroscopy (FTIR), proton NMR, solid UV absorption, SHG studies. Single crystal X-ray diffraction reveals that the crystal system belongs to monoclinic with noncentrosymmetric space group P21. The UV-Vis absorption spectrum has been recorded and found that the cut off wavelength is 380 nm. Functional groups and the structure of the title compound have been confirmed by FTIR and (1)H NMR spectroscopic analyses respectively. Molecular mass of the CONS confirmed by the high resolution mass spectral analysis .The thermal behavior of the grown crystal has been studied by TG/DTA analysis and it shows the melting point is at 188.66 °C. Dislocations and growth pattern present in the grown crystal revealed by the etching study. The mechanical strength of the CONS crystal has been studied by Vicker's hardness measurement. The SHG efficiency of the grown crystal has been determined by Kurtz and Perry powder test which revealed that the CONS crystal (327 mV) has 15 times greater efficiency than that of KDP (21.7 mV). Copyright © 2013 Elsevier B.V. All rights reserved.
An X-ray diffractometer using mirage diffraction
Fukamachi, Tomoe; Jongsukswat, Sukswat; Ju, Dongying; Negishi, Riichirou; Hirano, Keiichi; Kawamura, Takaaki
2014-01-01
Some characteristics are reported of a triple-crystal diffractometer with a (+, −, +) setting of Si(220) using mirage diffraction. The first crystal is flat, while the second and third crystals are bent. Basically, the first crystal is used as a collimator, the second as a monochromator and the third as the sample. The third crystal also works as an analyzer. The advantages of this diffractometer are that its setup is easy, its structure is simple, the divergence angle from the second crystal is small and the energy resolution of the third crystal is high, of the order of sub-meV. PMID:25242911
NASA Technical Reports Server (NTRS)
Steiner, B.; Dobbyn, R.; Black, D.; Burdette, H.; Kuriyama, M.; Spal, R.; Vandenberg, L.; Fripp, A.; Simchick, R.; Lal, R.
1991-01-01
Irregularities found in three crystals grown in space, in four crystals grown entirely on the ground were examined and compared. Irregularities were observed in mercuric iodide, lead tin telluride, triglycine sulfate, and gallium arsenide by high resolution synchrotron x radiation diffraction imaging. Radiation detectors made from mercuric iodide crystals grown in microgravity were reported to perform far better than conventional detectors grown from the same material under full gravity. Effort is now underway to reproduce these 'space' crystals, optimize their properties, and extend comparable superiority to other types of materials.
Crystallization and preliminary X-ray diffraction analysis of restriction endonuclease EcoRII
NASA Technical Reports Server (NTRS)
Karpova, E. A.; Meehan, E.; Pusey, M. L.; Chen, L.
1999-01-01
Crystals of the restriction endonuclease EcoRII have been obtained by the vapor-diffusion technique in the presence of ammonium sulfate or polyethylene glycol. The best crystals were grown with ammonium sulfate as a precipitant. Crystals with dimensions of up to 0.6 x 0. 6 x 0.6 mm have been observed. The crystals diffract to about 4.0 A resolution at a cryo-temperature of 100 K using a rotating-anode X-ray source and a Rigaku R-AXIS IV imaging-plate detector. The space group has been determined to be either I23 or I2(1)3, with unit-cell parameters a = b = c = 160.3 A, alpha = beta = gamma = 90 degrees. The crystal asymmetric unit contains two protein molecules, and self-rotation function analysis shows a pseudo-twofold symmetry relating the two monomers. Attempts to improve the resolution of crystal diffraction and to search for heavy-atom derivatives are under way.
Tran Thi, Thu Nhi; Morse, J.; Caliste, D.; Fernandez, B.; Eon, D.; Härtwig, J.; Mer-Calfati, C.; Tranchant, N.; Arnault, J. C.; Lafford, T. A.; Baruchel, J.
2017-01-01
Bragg diffraction imaging enables the quality of synthetic single-crystal diamond substrates and their overgrown, mostly doped, diamond layers to be characterized. This is very important for improving diamond-based devices produced for X-ray optics and power electronics applications. The usual first step for this characterization is white-beam X-ray diffraction topography, which is a simple and fast method to identify the extended defects (dislocations, growth sectors, boundaries, stacking faults, overall curvature etc.) within the crystal. This allows easy and quick comparison of the crystal quality of diamond plates available from various commercial suppliers. When needed, rocking curve imaging (RCI) is also employed, which is the quantitative counterpart of monochromatic Bragg diffraction imaging. RCI enables the local determination of both the effective misorientation, which results from lattice parameter variation and the local lattice tilt, and the local Bragg position. Maps derived from these parameters are used to measure the magnitude of the distortions associated with polishing damage and the depth of this damage within the volume of the crystal. For overgrown layers, these maps also reveal the distortion induced by the incorporation of impurities such as boron, or the lattice parameter variations associated with the presence of growth-incorporated nitrogen. These techniques are described, and their capabilities for studying the quality of diamond substrates and overgrown layers, and the surface damage caused by mechanical polishing, are illustrated by examples. PMID:28381981
Characterization of a bent Laue double-crystal beam-expanding monochromator
Martinson, Mercedes; Samadi, Nazanin; Shi, Xianbo; ...
2017-10-19
A bent Laue double-crystal monochromator system has been designed for vertically expanding the X-ray beam at the Canadian Light Source's BioMedical Imaging and Therapy beamlines. Expansion by a factor of 12 has been achieved without deteriorating the transverse coherence of the beam, allowing phase-based imaging techniques to be performed with high flux and a large field of view. However, preliminary studies revealed a lack of uniformity in the beam, presumed to be caused by imperfect bending of the silicon crystal wafers used in the system. Results from finite-element analysis of the system predicted that the second crystal would be mostmore » severely affected and has been shown experimentally. It has been determined that the majority of the distortion occurs in the second crystal and is likely caused by an imperfection in the surface of the bending frame. Here, measurements were then taken to characterize the bending of the crystal using both mechanical and diffraction techniques. In particular, two techniques commonly used to map dislocations in crystal structures have been adapted to map local curvature of the bent crystals. One of these, a variation of Berg–Berrett topography, has been used to quantify the diffraction effects caused by the distortion of the crystal wafer. This technique produces a global mapping of the deviation of the diffraction angle relative to a perfect cylinder. Finally, this information is critical for improving bending and measuring tolerances of imperfections by correlating this mapping to areas of missing intensity in the beam.« less
Characterization of a bent Laue double-crystal beam-expanding monochromator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinson, Mercedes; Samadi, Nazanin; Shi, Xianbo
A bent Laue double-crystal monochromator system has been designed for vertically expanding the X-ray beam at the Canadian Light Source's BioMedical Imaging and Therapy beamlines. Expansion by a factor of 12 has been achieved without deteriorating the transverse coherence of the beam, allowing phase-based imaging techniques to be performed with high flux and a large field of view. However, preliminary studies revealed a lack of uniformity in the beam, presumed to be caused by imperfect bending of the silicon crystal wafers used in the system. Results from finite-element analysis of the system predicted that the second crystal would be mostmore » severely affected and has been shown experimentally. It has been determined that the majority of the distortion occurs in the second crystal and is likely caused by an imperfection in the surface of the bending frame. Here, measurements were then taken to characterize the bending of the crystal using both mechanical and diffraction techniques. In particular, two techniques commonly used to map dislocations in crystal structures have been adapted to map local curvature of the bent crystals. One of these, a variation of Berg–Berrett topography, has been used to quantify the diffraction effects caused by the distortion of the crystal wafer. This technique produces a global mapping of the deviation of the diffraction angle relative to a perfect cylinder. Finally, this information is critical for improving bending and measuring tolerances of imperfections by correlating this mapping to areas of missing intensity in the beam.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueser, Timothy C., E-mail: timothy.mueser@utoledo.edu; Griffith, Wendell P.; Kovalevsky, Andrey Y.
2010-11-01
X-ray and neutron diffraction studies of cyanomethemoglobin are being used to evaluate the structural waters within the dimer–dimer interface involved in quaternary-state transitions. Improvements in neutron diffraction instrumentation are affording the opportunity to re-examine the structures of vertebrate hemoglobins and to interrogate proton and solvent position changes between the different quaternary states of the protein. For hemoglobins of unknown primary sequence, structural studies of cyanomethemoglobin (CNmetHb) are being used to help to resolve sequence ambiguity in the mass spectra. These studies have also provided additional structural evidence for the involvement of oxidized hemoglobin in the process of erythrocyte senescence. X-raymore » crystal studies of Tibetan snow leopard CNmetHb have shown that this protein crystallizes in the B state, a structure with a more open dyad, which possibly has relevance to RBC band 3 protein binding and erythrocyte senescence. R-state equine CNmetHb crystal studies elaborate the solvent differences in the switch and hinge region compared with a human deoxyhemoglobin T-state neutron structure. Lastly, comparison of histidine protonation between the T and R state should enumerate the Bohr-effect protons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuz'micheva, G. M., E-mail: galkuz@mitht.ru; Zaharko, O.; Tyunina, E. A.
Langatate crystals of the general composition La{sub 3}(Ga{sub 0.5}Ta{sub 0.5})Ga{sub 5}O{sub 14}, grown by the Czochralski method, have been investigated by neutron diffraction (single crystals) and X-ray diffraction (ground single crystals). The crystals were grown in an atmosphere of 99% Ar + 1% O{sub 2} in the Y54{sup o} direction (rotation by 54{sup o} with respect to the y axis), without subsequent annealing (orange crystal) or with vacuum annealing (colorless crystal). It is established that colorless crystals have a higher gallium content and, therefore, a larger number of oxygen vacancies in comparison with colored crystals; this is a possible reasonmore » for their lower microhardness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mise, Takeshi; Matsunami, Hideyuki; Samatey, Fadel A.
The periplasmic domain of the E. coli aspartate receptor Tar was cloned, expressed, purified and crystallized with and without bound ligand. The crystals obtained diffracted to resolutions of 1.58 and 1.95 Å, respectively. The cell-surface receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni{sup 2+}. To understand the molecular mechanisms underlying the induction of Tar activity by its ligands, the Escherichia coli Tar periplasmic domain with and without bound aspartate (Asp-Tar and apo-Tar, respectively) were each crystallized in two different forms. Using ammonium sulfate as a precipitant, crystals of apo-Tar1 and Asp-Tar1 weremore » grown and diffracted to resolutions of 2.10 and 2.40 Å, respectively. Alternatively, using sodium chloride as a precipitant, crystals of apo-Tar2 and Asp-Tar2 were grown and diffracted to resolutions of 1.95 and 1.58 Å, respectively. Crystals of apo-Tar1 and Asp-Tar1 adopted space group P4{sub 1}2{sub 1}2, while those of apo-Tar2 and Asp-Tar2 adopted space groups P2{sub 1}2{sub 1}2{sub 1} and C2, respectively.« less
Prakash, M; Geetha, D; Lydia Caroline, M
2011-10-15
Tris(L-phenylalanine)L-phenylalaninium nitrate, C(9)H(12)NO(2)(+)·NO(3)(-)·3C(9)H(11)NO(2) (TPLPN), a new organic nonlinear optical material was grown from aqueous solution by slow evaporation solution growth at room temperature. The grown crystals were subjected to powder X-ray diffraction and single crystal X-ray diffraction studies to confirm the crystalline nature and crystal structure. The modes of vibration of different molecular groups present in TPLPN have been identified by FTIR spectral analysis. The presence of hydrogen and carbon in the grown crystal were confirmed by using proton and carbon nuclear magnetic resonance (NMR) spectral analyses. The optical transmission spectral study establishes good transmitting ability of the crystal in the entire visible region. The thermogravimetric (TG) and differential thermal analyses (DTA) were carried out to understand the thermal stability of the sample. The nonlinear optical property of the compound observed using Kurtz powder second harmonic generation test assets the suitability of the grown material for the frequency conversion of laser radiation of Nd:YAG. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sathyamoorthy, K.; Vinothkumar, P.; Irshad Ahamed, J.; Murali Manohar, P.; Priya, M.; Liu, Jinghe
2018-04-01
Single crystals of organometallic (DL)-trithioureatartrato-O1,O2,O3-cadmium(II) (TUDLC) have been grown from methanol solution by using the slow evaporation of solvent growth technique. The lattice structure and crystalline perfection have been determined by carrying out single crystal X-ray diffraction and high resolution X-ray diffraction measurements. The grown crystal was characterized thermally and mechanically by carrying out thermo-gravimetric and micro hardness measurements. The linear and nonlinear optical characterizations were made by carrying out optical transmittance, surface laser damage threshold, particle size-dependent second harmonic generation (SHG) efficiency and photo conductivity measurements. The grown crystal was electrically characterized by carrying out frequency-dependent dielectric measurements. Chemical etching study was also carried out and the dislocation density was estimated. Results obtained in the present study indicate that the grown TUDLC crystal is optically transparent with lower cut-off wavelength 304 nm, mechanically soft, thermally stable up to 101 °C and NLO active with SHG efficiency 2.13 (in KDP unit). The grown crystal is found to have considerably large size, good crystalline perfection, large specific heat capacity, higher surface laser damage threshold and negative photoconductivity.
Zakharov, Boris; Fisyuk, Alexander; Fitch, Andy; Watier, Yves; Kostyuchenko, Anastasia; Varshney, Dushyant; Sztucki, Michael; Boldyreva, Elena; Shalaev, Evgenyi
2016-07-01
Ice formation and recrystallization is a key phenomenon in freezing and freeze-drying of pharmaceuticals and biopharmaceuticals. In this investigation, high-resolution synchrotron X-ray diffraction is used to quantify the extent of disorder of ice crystals in binary aqueous solutions of a cryoprotectant (sorbitol) and a protein, bovine serum albumin. Ice crystals in more dilute (10 wt%) solutions have lower level of microstrain and larger crystal domain size than these in more concentrated (40 wt%) solutions. Warming the sorbitol-water mixtures from 100 to 228 K resulted in partial ice melting, with simultaneous reduction in the microstrain and increase in crystallite size, that is, recrystallization. In contrast to sorbitol solutions, ice crystals in the BSA solutions preserved both the microstrain and smaller crystallite size on partial melting, demonstrating that BSA inhibits ice recrystallization. The results are consistent with BSA partitioning into quasi-liquid layer on ice crystals but not with a direct protein-ice interaction and protein sorption on ice surface. The study shows for the first time that a common (i.e., not-antifreeze) protein can have a major impact on ice recrystallization and also presents synchrotron X-ray diffraction as a unique tool for quantification of crystallinity and disorder in frozen aqueous systems. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Rekha, P; Peramaiyan, G; NizamMohideen, M; Kumar, R Mohan; Kanagadurai, R
2015-03-15
A novel organic single crystal of Piperazinium (bis) p-toluenesulfonate (PPTS) was grown by a slow evaporation solution growth technique. The structure of the grown crystal was determined using single crystal X-ray diffraction analysis. The PPTS crystal belongs to the triclinic crystal system with space group of P1¯. The presence of functional groups was confirmed by FTIR spectral analysis. The optical transmittance range and cut-off wavelength were identified by UV-vis-NIR spectral studies. The luminescent properties of PPTS crystal were investigated. The thermal behavior of PPTS crystal was studied by TG-DT analyses. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shalini, D.; Kalainathan, S.; Ambika, V. Revathi; Hema, N.; Jayalakshmi, D.
2017-11-01
Semi-organic nonlinear optical crystal Calcium5-Sulfosalicylate (CA5SS) was grown by slow evaporation solution growth technique. The cell parameters and molecular structure of the grown crystal were studied by single crystal x-ray diffraction analysis. The presence of various functional groups of the grown crystal was confirmed using Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman) analysis. UV-Visible spectrum shows that CA5SS crystals have high transmittance in the range of 330-900 nm. The refractive index, birefringence and transient photoluminescence properties of the grown crystal were analyzed. The frequency doubling of the grown crystal (CA5SS) were studied and compared with that of KDP.
Magnetic state of a Zn1 - x Cr x Se bulk crystal
NASA Astrophysics Data System (ADS)
Dubinin, S. F.; Sokolov, V. I.; Korolev, A. V.; Teploukhov, S. G.; Chukalkin, Yu. G.; Parkhomenko, V. D.; Gruzdev, N. B.
2008-06-01
The spin system of a Zn1 - x Cr x Se bulk crystal ( x = 0.045) was studied using thermal-neutron diffraction and magnetic measurements. Previously, it was reported in the literature that thin films (˜200 nm thick) of this type of semiconductors exhibit a ferromagnetic order. In this study, the ferromagnetic order is found to be absent in the bulk crystal.
Diffraction crystal for sagittally focusing x-rays
Ice, Gene E.; Sparks, Jr., Cullie J.
1984-01-01
The invention is a new type of diffraction crystal designed for sagittally focusing photons of various energies. The invention is based on the discovery that such focusing is not obtainable with conventional crystals because of distortion resulting from anticlastic curvature. The new crystal comprises a monocrystalline base having a front face contoured for sagittally focusing photons and a back face provided with rigid, upstanding, stiffening ribs restricting anticlastic curvature. When mounted in a suitable bending device, the reflecting face of the crystal can be adjusted to focus photons having any one of a range of energies.
Diffraction crystals for sagittally focusing x-rays
Ice, G.E.; Sparks, C.J. Jr.
1982-06-07
The invention is a new type of diffraction crystal designed for sagittally focusing photons of various energies. The invention is based on the discovery that such focusing is not obtainable with conventional crystals because of distortion resulting from anticlastic curvature. The new crystal comprises a monocrystalline base having a front face contoured for sagittally focusing photons and a back face provided with rigid, upstanding, stiffening ribs restricting anticlastic curvature. When mounted in a suitable bending device, the reflecting face of the crystal can be adjusted to focus photons having any one of a range of energies.
Vyas, Rajan; Kumar, Vijay; Panjikar, Santosh; Karthikeyan, Subramanian; Kishan, K. V. Radha; Tewari, Rupinder; Weiss, Manfred S.
2008-01-01
Aspartate semialdehyde dehydrogenase from Mycobacterium tuberculosis (Asd, ASADH, Rv3708c), which is the second enzyme in the lysine/homoserine-biosynthetic pathways, has been expressed heterologously in Escherichia coli. The enzyme was purified using affinity and gel-filtration chromatographic techniques and crystallized in two different crystal forms. Preliminary diffraction data analysis suggested the presence of up to four monomers in the asymmetric unit of the orthorhombic crystal form A and of one or two monomers in the cubic crystal form B. PMID:18323599
A simple X-ray source of two orthogonal beams for small samples imaging
NASA Astrophysics Data System (ADS)
Hrdý, J.
2018-04-01
A simple method for simultaneous imaging of small samples by two orthogonal beams is proposed. The method is based on one channel-cut crystal which is oriented such that the beam is diffracted on two crystallographic planes simultaneously. These planes are symmetrically inclined to the crystal surface. The beams are three times diffracted. After the first diffraction the beam is split. After the second diffraction the split beams become parallel. Finally, after the third diffraction the beams become convergent and may be used for imaging. The corresponding angular relations to obtain orthogonal beams are derived.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, F.; Ramakrishnan, V.; Schoenborn, B.P.
1994-12-31
Neutron diffraction has become one of the best ways to study light atoms, such as hydrogens. Hydrogen however has a negative coherent scattering factor, and a large incoherent scattering factor, while deuterium has virtually no incoherent scattering, but a large positive coherent scattering factor. Beside causing high background due to its incoherent scattering, the negative coherent scattering of hydrogen tends to cancel out the positive contribution from other atoms in a neutron density map. Therefore a fully deuterated sample will yield better diffraction data with stronger density in the hydrogen position. On this basis, a sperm whale myoglobin gene modifiedmore » to include part of the A cII protein gene has been cloned into the T7 expression system. Milligram amounts of fully deuterated holo-myoglobin have been obtained and used for crystallization. The synthetic sperm whale myoglobin crystallized in P2{sub 1} space group isomorphous with the native protein crystal. A complete X-ray diffraction dataset at 1.5{Angstrom} has been collected. This X-ray dataset, and a neutron data set collected previously on a protonated carbon-monoxymyoglobin crystal have been used for solvent structure studies. Both X-ray and neutron data have shown that there are ordered hydration layers around the protein surface. Solvent shell analysis on the neutron data further has shown that the first hydration layer behaves differently around polar and apolar regions of the protein surface. Finally, the structure of per-deuterated myoglobin has been refined using all reflections to a R factor of 17%.« less
Anisotropic Light Diffraction by Ultrasound in Crystals with Strong Acoustic Anisotropy
NASA Astrophysics Data System (ADS)
Voloshin, Andrey S.; Balakshy, Vladimir I.
In modern acousto-optics, crystalline materials are used predominantly for manufacturing acousto-optic instruments. Among these materials, such crystals as paratellurite, tellurium, calomel, TAS and some others occupy a prominent place, which are distinguished by exceptionally large anisotropy of acoustic properties. In this work, the influence of acoustic beam energy walk-off on characteristics of Bragg diffraction of light is studied by the example of tellurium crystal. It is shown that the walk-off can substantially change angular and frequency ranges, resulting in their narrowing or broadening subject to position of the operating point in the Bragg angle frequency characteristic. Coefficients of broadening are introduced for characterization of this effect.
Electron-beam-irradiation-induced crystallization of amorphous solid phase change materials
NASA Astrophysics Data System (ADS)
Zhou, Dong; Wu, Liangcai; Wen, Lin; Ma, Liya; Zhang, Xingyao; Li, Yudong; Guo, Qi; Song, Zhitang
2018-04-01
The electron-beam-irradiation-induced crystallization of phase change materials in a nano sized area was studied by in situ transmission electron microscopy and selected area electron diffraction. Amorphous phase change materials changed to a polycrystalline state after being irradiated with a 200 kV electron beam for a long time. The results indicate that the crystallization temperature strongly depends on the difference in the heteronuclear bond enthalpy of the phase change materials. The selected area electron diffraction patterns reveal that Ge2Sb2Te5 is a nucleation-dominated material, when Si2Sb2Te3 and Ti0.5Sb2Te3 are growth-dominated materials.
NASA Astrophysics Data System (ADS)
Ellmer, K.; Seeger, S.; Mientus, R.
2006-08-01
By rapid thermal crystallization of an amorphous WS3+x film, deposited by reactive magnetron sputtering at temperatures below 150 °C, layer-type semiconducting tungsten disulfide films (WS2) were grown. The rapid crystallization was monitored in real-time by in situ energy-dispersive X-ray diffraction. The films crystallize very fast (>40 nm/s), provided that a thin nickel film acts as nucleation seeds. Experiments on different substrates and the onset of the crystallization only at a temperature between 600 and 700 °C points to the decisive role of seeds for the textured growth of WS2, most probably liquid NiSx drops. The rapidly crystallized WS2 films exhibit a pronounced (001) texture with the van der Waals planes oriented parallel to the surface, leading to photoactive layers with a high hole mobility of about 80 cm2/Vs making such films suitable as absorbers for thin film solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huet, Joëlle, E-mail: jhuet@ulb.ac.be; Azarkan, Mohamed; Looze, Yvan
2008-05-01
A chitinase isolated from the latex of the tropical species Carica papaya has been crystallized. The addition of N-acetyl-d-glucosamine to the crystallization solution has improved the diffraction quality resolution of the crystal to 1.8 Å resolution. A chitinase isolated from the latex of the tropical species Carica papaya has been purified to homogeneity and crystallized. This enzyme belongs to glycosyl hydrolase family 19 and exhibits exceptional resistance to proteolysis. The initially observed crystals, which diffracted to a resolution of 2.0 Å, were improved through modification of the crystallization protocol. Well ordered crystals were subsequently obtained using N-acetyl-d-glucosamine, the monomer resultingmore » from the hydrolysis of chitin, as an additive to the crystallization solution. Here, the characterization of a chitinase crystal that belongs to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 69.08, b = 44.79, c = 76.73 Å, β = 95.33° and two molecules per asymmetric unit, is reported. Diffraction data were collected to a resolution of 1.8 Å. Structure refinement is currently in progress.« less
Phase modulation due to crystal diffraction by ptychographic imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Civita, M.; Diaz, A.; Bean, R. J.
Solving the phase problem in x-ray crystallography has occupied a considerable scientific effort in the 20th century and led to great advances in structural science. Here we use x-ray ptychography to demonstrate an interference method which measures the phase of the beam transmitted through a crystal, relative to the incoming beam, when diffraction takes place. The observed phase change of the direct beam through a small gold crystal is found to agree with both a quasikinematical model and full dynamical theories of diffraction. Our discovery of a diffraction contrast mechanism will enhance the interpretation of data obtained from crystalline samplesmore » using the ptychography method, which provides some of the most accurate x-ray phase-contrast images.« less
Phase modulation due to crystal diffraction by ptychographic imaging
Civita, M.; Diaz, A.; Bean, R. J.; ...
2018-03-06
Solving the phase problem in x-ray crystallography has occupied a considerable scientific effort in the 20th century and led to great advances in structural science. Here we use x-ray ptychography to demonstrate an interference method which measures the phase of the beam transmitted through a crystal, relative to the incoming beam, when diffraction takes place. The observed phase change of the direct beam through a small gold crystal is found to agree with both a quasikinematical model and full dynamical theories of diffraction. Our discovery of a diffraction contrast mechanism will enhance the interpretation of data obtained from crystalline samplesmore » using the ptychography method, which provides some of the most accurate x-ray phase-contrast images.« less
Phase modulation due to crystal diffraction by ptychographic imaging
NASA Astrophysics Data System (ADS)
Civita, M.; Diaz, A.; Bean, R. J.; Shabalin, A. G.; Gorobtsov, O. Yu.; Vartanyants, I. A.; Robinson, I. K.
2018-03-01
Solving the phase problem in x-ray crystallography has occupied a considerable scientific effort in the 20th century and led to great advances in structural science. Here we use x-ray ptychography to demonstrate an interference method which measures the phase of the beam transmitted through a crystal, relative to the incoming beam, when diffraction takes place. The observed phase change of the direct beam through a small gold crystal is found to agree with both a quasikinematical model and full dynamical theories of diffraction. Our discovery of a diffraction contrast mechanism will enhance the interpretation of data obtained from crystalline samples using the ptychography method, which provides some of the most accurate x-ray phase-contrast images.
Yamamoto, Hiroyuki; Obara, Keiji; Higashihara, Shohei; Obama, Yuki; Yamao, Takeshi; Hotta, Shu
2016-04-01
We have succeeded in directly engraving one-dimensional diffraction gratings on the surface of organic semiconducting oligomer crystals by using focused ion beam (FIB) lithography and laser ablation (LA) methods. The FIB method enabled us to shape the gratings with varying periods down to ~150 nm. With the LA method a large-area grating with a ~500-nm period was readily accessible. All the above crystals indicated spectrally-narrowed emission (SNE) lines even in the case of shallow groove depths ~2-4 nm. In particular, we definitively observed the SNE pertinent to the first-order diffraction with the crystal having the diffraction grating of a 148.3-nm average period. The present results indicate utility of the built-in gratings that can directly be fabricated on the surface of the crystals.
NASA Astrophysics Data System (ADS)
Zucchini, A.; Comodi, P.; Katerinopoulou, A.; Balic-Zunic, T.; McCammon, C.; Frondini, F.
2012-04-01
A combined powder and single-crystal X-ray diffraction analysis of dolomite [CaMg(CO3)2] heated to 1,200°C at 3 GPa was made to study the order-disorder-reorder process. The order/disorder transition is inferred to start below 1,100°C, and complete disorder is attained at approximately 1,200°C. Twinned crystals characterized by high internal order were found in samples annealed over 1,100°C, and their fraction was found to increase with temperature. Evidences of twinning domains combined with probable remaining disordered portions of the structure imply that reordering processes occur during the quench. Twin domains are hereby proposed as a witness to thermally induced intra-layer-type cation disordering.
Diffractive optical devices produced by light-assisted trapping of nanoparticles.
Muñoz-Martínez, J F; Jubera, M; Matarrubia, J; García-Cabañes, A; Agulló-López, F; Carrascosa, M
2016-01-15
One- and two-dimensional diffractive optical devices have been fabricated by light-assisted trapping and patterning of nanoparticles. The method is based on the dielectrophoretic forces appearing in the vicinity of a photovoltaic crystal, such as Fe:LiNbO3, during or after illumination. By illumination with the appropriate light distribution, the nanoparticles are organized along patterns designed at will. One- and two-dimensional diffractive components have been achieved on X- and Z-cut Fe:LiNbO3 crystals, with their polar axes parallel and perpendicular to the crystal surface, respectively. Diffraction gratings with periods down to around a few micrometers have been produced using metal (Al, Ag) nanoparticles with radii in the range of 70-100 nm. Moreover, several 2D devices, such as Fresnel zone plates, have been also produced showing the potential of the method. The diffractive particle patterns remain stable when light is removed. A method to transfer the diffractive patterns to other nonphotovoltaic substrates, such as silica glass, has been also reported.
Schellenberger, Pascale; Demangeat, Gérard; Lemaire, Olivier; Ritzenthaler, Christophe; Bergdoll, Marc; Oliéric, Vincent; Sauter, Claude; Lorber, Bernard
2011-05-01
The small icosahedral plant RNA nepovirus Grapevine fanleaf virus (GFLV) is specifically transmitted by a nematode and causes major damage to vineyards worldwide. To elucidate the molecular mechanisms underlying the recognition between the surface of its protein capsid and cellular components of its vector, host and viral proteins synthesized upon infection, the wild type GFLV strain F13 and a natural mutant (GFLV-TD) carrying a Gly₂₉₇Asp mutation were purified, characterized and crystallized. Subsequently, the geometry and volume of their crystals was optimized by establishing phase diagrams. GFLV-TD was twice as soluble as the parent virus in the crystallization solution and its crystals diffracted X-rays to a resolution of 2.7 Å. The diffraction limit of GFLV-F13 crystals was extended from 5.5 to 3 Å by growth in agarose gel. Preliminary crystallographic analyses indicate that both types of crystals are suitable for structure determination. Keys for the successful production of GFLV crystals include the rigorous quality control of virus preparations, crystal quality improvement using phase diagrams, and crystal lattice reinforcement by growth in agarose gel. These strategies are applicable to the production of well-diffracting crystals of other viruses and macromolecular assemblies. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2009-01-01
A method provides X-ray diffraction (XRD) data suitable for integral detection of a twin defect in a strained or lattice-matched epitaxial material made from components having crystal structures having symme try belonging to different space groups. The material is mounted in a n X-ray diffraction (XRD) system. In one embodiment, the XRD system's goniometer angle Omega is set equal to (Theta(sub B)-Beta) where The ta(sub B) is a Bragg angle for a designated crystal plane of the allo y that is disposed at a non-perpendicular orientation with respect to the {111) crystal plane, and Beta is the angle between the designate d crystal plane and a { 111 } crystal plane of one of the epitaxial components. The XRD system's detector angle is set equal to (Theta(su b B)+Beta). The material can be rotated through an angle of azimuthal rotation Phi about the axis aligned with the material. Using the det ector, the intensity of the X-ray diffraction is recorded at least at the angle at which the twin defect occurs.
In situ high-pressure measurement of crystal solubility by using neutron diffraction
NASA Astrophysics Data System (ADS)
Chen, Ji; Hu, Qiwei; Fang, Leiming; He, Duanwei; Chen, Xiping; Xie, Lei; Chen, Bo; Li, Xin; Ni, Xiaolin; Fan, Cong; Liang, Akun
2018-05-01
Crystal solubility is one of the most important thermo-physical properties and plays a key role in industrial applications, fundamental science, and geoscientific research. However, high-pressure in situ measurements of crystal solubility remain very challenging. Here, we present a method involving high-pressure neutron diffraction for making high-precision in situ measurements of crystal solubility as a function of pressure over a wide range of pressures. For these experiments, we designed a piston-cylinder cell with a large chamber volume for high-pressure neutron diffraction. The solution pressures are continuously monitored in situ based on the equation of state of the sample crystal. The solubility at a high pressure can be obtained by applying a Rietveld quantitative multiphase analysis. To evaluate the proposed method, we measured the high-pressure solubility of NaCl in water up to 610 MPa. At a low pressure, the results are consistent with the previous results measured ex situ. At a higher pressure, more reliable data could be provided by using an in situ high-pressure neutron diffraction method.
Anisotropic light diffraction in crystals with a large acoustic-energy walk-off
NASA Astrophysics Data System (ADS)
Balakshy, V. I.; Voloshin, A. S.; Molchanov, V. Ya.
2014-11-01
The influence of energy walk-off in an acoustic beam on the characteristic of anisotropic Bragg diffraction of light has been investigated by the example of paratellurite crystal. The angular and frequency characteristics of acousto-optic diffraction have been calculated in wide ranges of ultrasound frequencies and Bragg angles using the modified Raman-Nath equations. It is shown that the walk-off of an acoustic beam may change (either widen or narrow) significantly the frequency and angular ranges. The calculation results have been experimentally checked on an acousto-optic cell made of 10.5°-cut paratellurite crystal.
X-Ray Topography of Tetragonal Lysozyme Grown by the Temperature-Controlled Technique
NASA Technical Reports Server (NTRS)
Stojanoff, V.; Siddons, D. P.; Monaco, Lisa A.; Vekilov, Peter; Rosenberger, Franz
1997-01-01
Growth-induced defects in lysozyme crystals were observed by white-beam and monochromatic X-ray topography at the National Synchrotron Light Source (NSLS) at the Brookhaven National Laboratory (BNL). The topographic methods were non-destructive to the extent that traditional diffraction data collection could be performed to high resolution after topography. It was found that changes in growth parameters, defect concentration as detected by X-ray topography, and the diffraction quality obtainable from the crystals were all strongly correlated. In addition, crystals with fewer defects showed lower mosaicity and higher diffraction resolution as expected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badasso, Mohammed O., E-mail: badas001@umn.edu; Anderson, Dwight L.; Department of Oral Science, University of Minnesota, Minneapolis, MN 55455
2005-04-01
ϕ29 bacteriophage scaffolding protein (gp7) has been overproduced in E. coli, purified, crystallized and characterized by X-ray diffraction. Two distinct crystal forms were obtained and a diffraction data set was collected to 1.8 Å resolution. The Bacillus subtilis bacteriophage ϕ29 scaffolding protein (gp7) has been crystallized by the hanging-drop vapour-diffusion method at 293 K. Two new distinct crystal forms that both differed from a previously crystallized and solved scaffolding protein were grown under the same conditions. Form I belongs to the primitive tetragonal space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 77.13, c = 37.12 Å.more » Form II crystals exhibit an orthorhombic crystal form, with space group C222 and unit-cell parameters a = 107.50, b = 107. 80, c = 37.34 Å. Complete data sets have been collected to 1.78 and 1.80 Å for forms I and II, respectively, at 100 K using Cu Kα X-rays from a rotating-anode generator. Calculation of a V{sub M} value of 2.46 Å{sup 3} Da{sup −1} for form I suggests the presence of one molecule in the asymmetric unit, corresponding to a solvent content of 50.90%, whereas form II has a V{sub M} of 4.80 Å{sup 3} Da{sup −1} with a solvent content of 48.76% and two molecules in the asymmetric unit. The structures of both crystal forms are being determined by the molecular-replacement method using the coordinates of the published crystal structure of gp7.« less
Three-dimensional electron diffraction of plant light-harvesting complex
Wang, Da Neng; Kühlbrandt, Werner
1992-01-01
Electron diffraction patterns of two-dimensional crystals of light-harvesting chlorophyll a/b-protein complex (LHC-II) from photosynthetic membranes of pea chloroplasts, tilted at different angles up to 60°, were collected to 3.2 Å resolution at -125°C. The reflection intensities were merged into a three-dimensional data set. The Friedel R-factor and the merging R-factor were 21.8 and 27.6%, respectively. Specimen flatness and crystal size were critical for recording electron diffraction patterns from crystals at high tilts. The principal sources of experimental error were attributed to limitations of the number of unit cells contributing to an electron diffraction pattern, and to the critical electron dose. The distribution of strong diffraction spots indicated that the three-dimensional structure of LHC-II is less regular than that of other known membrane proteins and is not dominated by a particular feature of secondary structure. ImagesFIGURE 1FIGURE 2 PMID:19431817
Krishnan, P; Gayathri, K; Bhagavannarayana, G; Jayaramakrishnan, V; Gunasekaran, S; Anbalagan, G
2013-08-01
Dibrucinium sulfate heptahydrate (DBSH), a semi-organic nonlinear optical material, has been synthesized and single crystals were grown from water-ethanol solution at room temperature up to dimensions of 10×7×2 mm(3). The unit cell parameters were determined from single crystal and powder X-ray diffraction studies. The structural perfection of the grown crystal has been analyzed by high-resolution X-ray diffraction (HRXRD) study. FTIR and Raman studies were performed to identify the functional groups present in the title compound. The activation energy (E), entropy (ΔS), enthalpy (ΔH) and Gibbs free energy (ΔG), of the thermal decomposition reaction have been derived from thermo gravimetric (TGA) and differential thermal (DTA) analysis curves, using Coats-Redfern method. The variation of dielectric properties of the grown crystal with respect to frequency has been investigated at different temperatures. Microhardness measurements revealed the mechanical strength of grown crystal. The optical parameters, the optical band gap E(g) and width of localized states Eu were determined using the transmittance data in the spectral range 200-800 nm. The relative second harmonic efficiency of the compound is found to be 1.4 times greater than that of KDP. Birefringence and Laser damage threshold studies were carried out for the grown crystal. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kovalchuk, M. V.; Prosekov, P. A.; Marchenkova, M. A.; Blagov, A. E.; D'yakova, Yu. A.; Tereshchenko, E. Yu.; Pisarevskii, Yu. V.; Kondratev, O. A.
2014-09-01
The results of an in situ study of the growth of tetragonal lysozyme crystals by high-resolution X-ray diffractometry are considered. The crystals are grown by the sitting-drop method on crystalline silicon substrates of different types: both on smooth substrates and substrates with artificial surface-relief structures using graphoepitaxy. The crystals are grown in a special hermetically closed crystallization cell, which enables one to obtain images with an optical microscope and perform in situ X-ray diffraction studies in the course of crystal growth. Measurements for lysozyme crystals were carried out in different stages of the crystallization process, including crystal nucleation and growth, developed crystals, the degradation of the crystal structure, and complete destruction.
Serrano-Posada, Hugo; Centeno-Leija, Sara; Rojas-Trejo, Sonia; ...
2015-08-25
Here, labdane-related diterpenoids are natural products with potential pharmaceutical applications that are rarely found in bacteria. Here, a putative class I labdane-related diterpene synthase (LrdC) identified by genome mining in a streptomycete was successfully crystallized using the microbatch method. Crystals of the LrdC enzyme were obtained in a holo form with its natural cofactor Mg 2+ (LrdC-Mg 2+) and in complex with inorganic pyrophosphate (PP i) (LrdC-Mg 2+–PP i). Crystals of native LrdC-Mg 2+ diffracted to 2.50 Å resolution and belonged to the trigonal space group P3 221, with unit-cell parameters a = b = 107.1, c = 89.2 Å.more » Crystals of the LrdC-Mg 2+–PP i complex grown in the same conditions as the native enzyme with PEG 8000 diffracted to 2.36 Å resolution and also belonged to the trigonal space group P3 221. Crystals of the LrdC-Mg 2+–PP i complex grown in a second crystallization condition with PEG 3350 diffracted to 2.57 Å resolution and belonged to the monoclinic space group P2 1, with unit-cell parameters a = 49.9, b = 104.1, c = 66.5 Å, β = 111.4°. The structure was determined by the single-wavelength anomalous dispersion (SAD) technique using the osmium signal from a potassium hexachloroosmate (IV) derivative.« less
Protein Crystal Movements and Fluid Flows During Microgravity Growth
NASA Technical Reports Server (NTRS)
Boggon, Titus J.; Chayen, Naomi E.; Snell, Edward H.; Dong, Jun; Lautenschlager, Peter; Potthast, Lothar; Siddons, D. Peter; Stojanoff, Vivian; Gordon, Elspeth; Thompson, Andrew W.;
1998-01-01
The growth of protein crystals suitable for x-ray crystal structure analysis is an important topic. The quality (perfection) of protein crystals is now being evaluated by mosaicity analysis (rocking curves) and x-ray topographic images as well as the diffraction resolution limit and overall data quality. In yet another study, use of hanging drop vapour diffusion geometry on the IML-2 shuttle mission showed, again via CCD video monitoring, growing apocrustacyanin C(sub 1) protein crystal executing near cyclic movement, reminiscent of Marangoni convection flow of fluid, the crystals serving as "markers" of the fluid flow. A review is given here of existing results and experience over several microgravity missions. Some comment is given on gel protein crystal growth in attempts to 'mimic' the benefits of microgravity on Earth. Finally, the recent new results from our experiments on the shuttle mission LMS are described. These results include CCD video as well as interferometry during the mission, followed, on return to Earth, by reciprocal space mapping at the NSLS, Brookhaven, and full X-ray data collection on LMS and Earth control lysozyme crystals. Diffraction data recorded from LMS and ground control apocrustacyanin C(sub 1) crystals are also described.
Beam-smiling in bent-Laue monochromators
NASA Astrophysics Data System (ADS)
Ren, B.; Dilmanian, F. A.; Chapman, L. D.; Wu, X. Y.; Zhong, Z.; Ivanov, I.; Thomlinson, W. C.; Huang, X.
1997-07-01
When a wide fan-shaped x-ray beam is diffracted by a bent crystal in the Laue geometry, the profile of the diffracted beam generally does not appear as a straight line, but as a line with its ends curved up or curved down. This effect, referred to as "beam-smiling", has been a major obstacle in developing bent-Laue crystal monochromators for medical applications of synchrotron x-ray. We modeled a cylindrically bent crystal using the Finite Element Analysis (FEA) method, and we carried out experiments at the National Synchrotron Light Source and Cornell High Energy Synchrotron Source. Our studies show that, while beam-smiling exists in most of the crystal's area because of anticlastic bending effects, there is a region parallel to the bending axis of the crystal where the diffracted beam is "smile-free". By applying asymmetrical bending, this smile-free region can be shifted vertically away from the geometric center of the crystal, as desired. This leads to a novel method of compensating for beam-smiling. We will discuss the method of "differential bending" for smile removal, beam-smiling in the Cauchios and the polychromatic geometry, and the implications of the method on developing single- and double-bent Laue monochromators. The experimental results will be discussed, concentrating on specific beam-smiling observation and removal as applied to the new monochromator of the Multiple Energy Computed Tomography [MECT] project of the Medical Department, Brookhaven National Laboratory.
Growth, structural, optical and surface analysis of piperazinium tartrate: A NLO single crystal
NASA Astrophysics Data System (ADS)
Gupta, Apurva; Raseel Rahman M., K.; Nair, Lekha
2018-05-01
Single crystal of piperazinium tartrate (PPZT) was grown by the slow evaporation solution growth technique at room temperature. Crystallinity of grown crystal was examined by powder X-ray diffraction. High transparency and wide band gap were observed in the UV-Visible spectroscopic studies. Intense and broad emissions were observed in the blue region, as that is indicated by photoluminescence spectroscopy. The quality of the grown PPZT single crystals were analyzed by the etching studies using the water as the etchant.
Crystallization of heavy metal fluoride glasses
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Bruce, Allan J.; Doremus, R. H.; Moynihan, C. T.
1984-01-01
The kinetics of crystallization of a number of fluorozirconate glasses were studied using isothermal and dynamic differential scanning calorimetry and X-ray diffraction. The addition of the fluorides LiF, NaF, AlF3, LaF3 to a base glass composition of ZrF4-BaF2 reduced the tendency to crystallize, probably by modifying the viscosity-temperature relation. ZrF4-BaF2-LaF3-AlF3-NaF glass was the most stable against devitrification and perhaps is the best composition for optical fibers with low scattering loss. Some glasses first crystallize out into metastable beta-BaZr2F10 and beta-BaZrF6 phases, which transform into the most stable alpha-phases when heated to higher temperatures. The size of the crystallites was estimated to be about 600 A from X-ray diffraction.
Human insulin polymorphism upon ligand binding and pH variation: the case of 4-ethylresorcinol.
Fili, S; Valmas, A; Norrman, M; Schluckebier, G; Beckers, D; Degen, T; Wright, J; Fitch, A; Gozzo, F; Giannopoulou, A E; Karavassili, F; Margiolaki, I
2015-09-01
This study focuses on the effects of the organic ligand 4-ethylresorcinol on the crystal structure of human insulin using powder X-ray crystallography. For this purpose, systematic crystallization experiments have been conducted in the presence of the organic ligand and zinc ions within the pH range 4.50-8.20, while observing crystallization behaviour around the isoelectric point of insulin. High-throughput crystal screening was performed using a laboratory X-ray diffraction system. The most representative samples were selected for synchrotron X-ray diffraction measurements, which took place at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS). Four different crystalline polymorphs have been identified. Among these, two new phases with monoclinic symmetry have been found, which are targets for the future development of microcrystalline insulin drugs.
Human insulin polymorphism upon ligand binding and pH variation: the case of 4-ethylresorcinol
Fili, S.; Valmas, A.; Norrman, M.; Schluckebier, G.; Beckers, D.; Degen, T.; Wright, J.; Fitch, A.; Gozzo, F.; Giannopoulou, A. E.; Karavassili, F.; Margiolaki, I.
2015-01-01
This study focuses on the effects of the organic ligand 4-ethylresorcinol on the crystal structure of human insulin using powder X-ray crystallography. For this purpose, systematic crystallization experiments have been conducted in the presence of the organic ligand and zinc ions within the pH range 4.50–8.20, while observing crystallization behaviour around the isoelectric point of insulin. High-throughput crystal screening was performed using a laboratory X-ray diffraction system. The most representative samples were selected for synchrotron X-ray diffraction measurements, which took place at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS). Four different crystalline polymorphs have been identified. Among these, two new phases with monoclinic symmetry have been found, which are targets for the future development of microcrystalline insulin drugs. PMID:26306195
Huyet, Jessica; Gilbert, Maryse; Popoff, Michel R; Basak, Ajit
2011-03-01
Clostridium perfringens is a Gram-positive anaerobic bacterium that is responsible for a wide range of diseases in humans and both wild and domesticated animals, including birds. C. perfringens is notable for its ability to produce a plethora of toxins, e.g. phospholipases C (alpha-toxin), pore-forming toxins (epsilon-toxin, beta-toxin and enterotoxin) and binary toxins (iota-toxin). Based on alpha-, beta-, epsilon- and iota-toxin production, the bacterium is classified into five different toxinotypes (A-E). Delta-toxin, which is a 32.6 kDa protein with 290 amino acids, is one of three haemolysins released by type C and possibly by type B strains of C. perfringens. This toxin is immunogenic and lytic to erythrocytes from the even-toed ungulates sheep, goats and pigs, and is cytotoxic to other cell types such as rabbit macrophages, human monocytes and blood platelets from goats, rabbits, guinea pigs and humans. The recombinant delta-toxin has been cloned, expressed, purified and crystallized in two different crystal forms by the hanging-drop vapour-diffusion method. Of these two different crystal forms, only the form II crystal diffracted to atomic resolution (dmin=2.4 Å), while the form I crystal diffracted to only 15 Å resolution. The form II crystals belonged to space group P2(1)2(1)2, with one molecule in the crystallographic asymmetric unit and unit-cell parameters a=49.66, b=58.48, c=112.93 Å.
NASA Astrophysics Data System (ADS)
Withers, Ray L.; Höche, Thomas; Liu, Yun; Esmaeilzadeh, Saeid; Keding, Ralf; Sales, Brian
2004-10-01
High-purity Rb2V3O8 has been grown and temperature-dependent electron and single-crystal X-ray diffraction used to carefully investigate its fresnoite-type reciprocal lattice. In contrast to other recently investigated representatives of the fresnoite family of compounds, Rb2V3O8 is not incommensurately modulated with an incommensurate basal plane primary modulation wave vector given by q∼0.3 <110>*. A careful low-temperature electron diffraction study has, however, revealed the existence of weak incommensurate satellite reflections characterized by the primitive primary modulation wave vector q1∼0.16c*. The reciprocal space positioning of these incommensurate satellite reflections, the overall (3+1)-d superspace group symmetry, as well as the shapes of the refined displacement ellipsoids determined from single-crystal XRD refinement, are all consistent with their arising from a distinct type of condensed rigid unit modes (RUMs) of distortion of the Rb2V3O8 parent structure.
Structural changes induced by lattice-electron interactions: SiO2 stishovite and FeTiO3 ilmenite.
Yamanaka, Takamitsu
2005-09-01
The bright source and highly collimated beam of synchrotron radiation offers many advantages for single-crystal structure analysis under non-ambient conditions. The structure changes induced by the lattice-electron interaction under high pressure have been investigated using a diamond anvil pressure cell. The pressure dependence of electron density distributions around atoms is elucidated by a single-crystal diffraction study using deformation electron density analysis and the maximum entropy method. In order to understand the bonding electrons under pressure, diffraction intensity measurements of FeTiO3 ilmenite and gamma-SiO2 stishovite single crystals at high pressures were made using synchrotron radiation. Both diffraction studies describe the electron density distribution including bonding electrons and provide the effective charge of the cations. In both cases the valence electrons are more localized around the cations with increasing pressure. This is consistent with molecular orbital calculations, proving that the bonding electron density becomes smaller with pressure. The thermal displacement parameters of both samples are reduced with increasing pressure.
Crystallization and X-ray diffraction studies of a complete bacterial fatty-acid synthase type I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enderle, Mathias; Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried; McCarthy, Andrew
Bacterial and fungal type I fatty-acid synthases (FAS I) are evolutionarily connected, as bacterial FAS I is considered to be the ancestor of fungal FAS I. In this work, the production, crystallization and X-ray diffraction data analysis of a bacterial FAS I are reported. While a deep understanding of the fungal and mammalian multi-enzyme type I fatty-acid synthases (FAS I) has been achieved in recent years, the bacterial FAS I family, which is narrowly distributed within the Actinomycetales genera Mycobacterium, Corynebacterium and Nocardia, is still poorly understood. This is of particular relevance for two reasons: (i) although homologous to fungalmore » FAS I, cryo-electron microscopic studies have shown that bacterial FAS I has unique structural and functional properties, and (ii) M. tuberculosis FAS I is a drug target for the therapeutic treatment of tuberculosis (TB) and therefore is of extraordinary importance as a drug target. Crystals of FAS I from C. efficiens, a homologue of M. tuberculosis FAS I, were produced and diffracted X-rays to about 4.5 Å resolution.« less
Rapid time-resolved diffraction studies of protein structures using synchrotron radiation
NASA Astrophysics Data System (ADS)
Bartunik, Hans D.; Bartunik, Lesley J.
1992-07-01
The crystal structure of intermediate states in biological reactions of proteins of multi-protein complexes may be studied by time-resolved X-ray diffraction techniques which make use of the high spectral brilliance, continuous wavelength distribution and pulsed time structure of synchrotron radiation. Laue diffraction methods provide a means of investigating intermediate structures with lifetimes in the millisecond time range at presently operational facilities. Third-generation storage rings which are under construction may permit one to reach a time resolution of one microsecond for non-cyclic and one nanosecond for cyclic reactions. The number of individual exposures required for exploring reciprocal space and hence the total time scale strongly depend on the lattice order that may be affected, e.g., by conformational changes. Time-resolved experiments require high population of a specific intermediate which has to be homogeneous over the crystal volume. A number of external excitation techniques have been developed including in situ liberation of active metabolites by laser pulse photolysis of photolabile inactive precursors. First applications to crystal structure analysis of catalytic intermediates of enzymes demonstrate the potential of time-resolved protein crystallography.
Crystal structure of human tooth enamel studied by neutron diffraction
NASA Astrophysics Data System (ADS)
Ouladdiaf, Bachir; Rodriguez-Carvajal, Juan; Goutaudier, Christelle; Ouladdiaf, Selma; Grosgogeat, Brigitte; Pradelle, Nelly; Colon, Pierre
2015-02-01
Crystal structure of human tooth enamel was investigated using high-resolution neutron powder diffraction. Excellent agreement between observed and refined patterns is obtained, using the hexagonal hydroxyapatite model for the tooth enamel, where a large hydroxyl deficiency ˜70% is found in the 4e site. Rietveld refinements method combined with the difference Fourier maps have revealed, however, that the hydroxyl ions are not only disordered along the c-axis but also within the basal plane. Additional H ions located at the 6h site and forming HPO42- anions were found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pramanick, Abhijit; An, Ke; Stoica, Alexandru Dan
2011-01-01
Twin variant reorientation in single crystal Ni-Mn-Ga during quasi-static mechanical compression was studied using in-situ neutron diffraction. The volume fraction of reoriented twin variants for different stress amplitudes were obtained from the changes in integrated intensities of high-order neutron diffraction peaks. It is shown that during compressive loading, ~85% of the twins were reoriented parallel to the loading direction resulting in a maximum macroscopic strain of ~5.5%, which is in agreement with measured macroscopic strain.
Studies on Aspirin Crystals Generated by a Modified Vapor Diffusion Method.
Mittal, Amit; Malhotra, Deepak; Jain, Preeti; Kalia, Anupama; Shunmugaperumal, Tamilvanan
2016-08-01
The objectives of the current investigation were (1) to study the influence of selected two different non-solvents (diethylether and dichloromethane) on the drug crystal formation of a model drug, aspirin (ASP-I) by the modified vapor diffusion method and (2) to characterize and compare the generated crystals (ASP-II and ASP-III) using different analytical techniques with that of unprocessed ASP-I. When compared to the classical vapor diffusion method which consumes about 15 days to generate drug crystals, the modified method needs only 12 h to get the same. Fourier transform-infrared spectroscopy (FT-IR) reveals that the internal structures of ASP-II and ASP-III crystals were identical when compared with ASP-I. Although the drug crystals showed a close similarity in X-ray diffraction patterns, the difference in the relative intensities of some of the diffraction peaks (especially at 2θ values of around 7.7 and 15.5) could be attributed to the crystal habit or crystal size modification. Similarly, the differential scanning calorimetry (DSC) study speculates that only the crystal habit modifications might occur but without involving any change in internal structure of the generated drug polymorphic form I. This is further substantiated from the scanning electron microscopy (SEM) pictures that indicated the formation of platy shape for the ASP-II crystals and needle shape for the ASP-III crystals. In addition, the observed slow dissolution of ASP crystals should indicate polymorph form I formation. Thus, the modified vapor diffusion method could routinely be used to screen and legally secure all possible forms of other drug entities too.
High Pressure Single Crystal Diffraction at PX 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Dongzhou; Dera, Przemyslaw K.; Eng, Peter J.
2017-01-01
In this report, we describe detailed procedures for carrying out single crystal X-ray diffraction experiments with a diamond anvil cell at the GSECARS 13-BM-C beamline at the Advanced Photon Source. ATREX and RSV programs are used to analyze the data.
Idealized powder diffraction patterns for cellulose polymorphs
USDA-ARS?s Scientific Manuscript database
Cellulose samples are routinely analyzed by X-ray diffraction to determine their crystal type (polymorph) and crystallinity. However, the connection is seldom made between those efforts and the crystal structures of cellulose that have been determined with synchrotron X-radiation and neutron diffrac...
Curved focusing crystals for hard X-ray astronomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrari, C., E-mail: ferrari@imem.cnr.it; Buffagni, E.; Bonnini, E.
A lens made by a properly arranged array of crystals can be used to focus x-rays of energy ranging from 30 to 500 keV for x-ray astronomy. Mosaic or curved crystals can be employed as x-ray optical elements. In this work self standing curved focusing Si and GaAs crystals in which the lattice bending is induced by a controlled damaging process on one side of planar crystals are characterized. Diffraction profiles in Laue geometry have been measured in crystals at x-ray energies E = 17, 59 and 120 keV. An enhancement of diffraction efficiency is found in asymmetric geometries.
Khvostichenko, Daria S.; Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.; ...
2014-08-21
Crystallization from lipidic mesophase matrices is a promising route to diffraction-quality crystals and structures of membrane proteins. The microfluidic approach reported here eliminates two bottlenecks of the standard mesophase-based crystallization protocols: (i) manual preparation of viscous mesophases and (ii) manual harvesting of often small and fragile protein crystals. In the approach reported here, protein-loaded mesophases are formulated in an X-ray transparent microfluidic chip using only 60 nL of the protein solution per crystallization trial. The X-ray transparency of the chip enables diffraction data collection from multiple crystals residing in microfluidic wells, eliminating the normally required manual harvesting and mounting ofmore » individual crystals. In addition, we validated our approach by on-chip crystallization of photosynthetic reaction center, a membrane protein from Rhodobacter sphaeroides, followed by solving its structure to a resolution of 2.5 Å using X-ray diffraction data collected on-chip under ambient conditions. A moderate conformational change in hydrophilic chains of the protein was observed when comparing the on-chip, room temperature structure with known structures for which data were acquired under cryogenic conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khvostichenko, Daria S.; Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.
2014-10-01
Crystallization from lipidic mesophase matrices is a promising route to diffraction-quality crystals and structures of membrane proteins. The microfluidic approach reported here eliminates two bottlenecks of the standard mesophase-based crystallization protocols: (i) manual preparation of viscous mesophases and (ii) manual harvesting of often small and fragile protein crystals. In the approach reported here, protein-loaded mesophases are formulated in an X-ray transparent microfluidic chip using only 60 nL of the protein solution per crystallization trial. The X-ray transparency of the chip enables diffraction data collection from multiple crystals residing in microfluidic wells, eliminating the normally required manual harvesting and mounting ofmore » individual crystals. We validated our approach by on-chip crystallization of photosynthetic reaction center, a membrane protein from Rhodobacter sphaeroides, followed by solving its structure to a resolution of 2.5 Å using X-ray diffraction data collected on-chip under ambient conditions. A moderate conformational change in hydrophilic chains of the protein was observed when comparing the on-chip, room temperature structure with known structures for which data were acquired under cryogenic conditions.« less
The High Resolution Powder Diffraction Beam Line at ESRF.
Fitch, A N
2004-01-01
The optical design and performance of the high-resolution powder diffraction beam line BM16 at ESRF are discussed and illustrated. Some recent studies carried out on BM16 are described, including crystal structure solution and refinement, anomalous scattering, in situ measurements, residual strain in engineering components, investigation of microstructure, and grazing-incidence diffraction from surface layers. The beam line is built on a bending magnet, and operates in the energy range from 5 keV to 40 keV. After the move to an undulator source in 2002, it will benefit from an extented energy range up to 60 keV and increased flux and resolution. It is anticipated that enhancements to the data quality will be achieved, leading to the solution of larger crystal structures, and improvements in the accuracy of refined structures. The systematic exploitation of anisotropic thermal expansion will help reduce the effects of peak overlap in the analysis of powder diffraction data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadjichristov, Georgi B., E-mail: georgibh@issp.bas.bg; Marinov, Yordan G.; Petrov, Alexander G.
2016-03-25
We present a study on electrically- and spatially-controllable laser beam diffraction, electrooptic (EO) phase modulation, as well as amplitude-frequency EO modulation by single-layer microscale polymer-dispersed liquid crystal (PDLC) phase gratings (PDLC SLPGs) of interest for device applications. PDLC SLPGs were produced from nematic liquid crystal (LC) E7 in photo-curable NOA65 polymer. The wedge-formed PDLC SLPGs have a continuously variable thickness (2–25 µm). They contain LC droplets of diameters twice as the layer thickness, with a linear-gradient size distribution along the wedge. By applying alternating-current (AC) electric field, the PDLC SLPGs produce efficient: (i) diffraction splitting of transmitted laser beams; (ii)more » spatial redistribution of diffracted light intensity; (iii) optical phase modulation; (iv) amplitude-frequency modulation, all controllable by the driven AC field and the droplet size gradient.« less
NASA Astrophysics Data System (ADS)
Dera, P. K.; Manghnani, M. H.; Hushur, A.; Sobolev, N. V.; Logvinova, A. M.; Newville, M.; Lanzirotti, A.
2013-12-01
Kimberlites belong to rare rock type available only within the Earth's cratonic areas and have been a subject of detailed studies because of the great depth of their origin in the mantle. Kimberlitic diamonds often contain pristine inclusions derived from significant depths with different histories of their origins. Many of kimberlitic diamonds were formed in ultramafic (peridotitic) and mafic (eclogitic) environments of the upper mantle. Thus far only a handful of comprehensive in situ studies including single-crystal X-ray diffraction characterization of pristine diamond solid inclusions have been reported (e.g. Kunz et al. 2001, Nestola et al. 2011). In this study five single-crystal solid inclusions from diamonds found in the Quaternary alluvial deposit in NW of the Siberian craton have been investigated using a combination of in situ single-crystal X-ray diffraction, Raman spectroscopy, synchrotron X-ray microfluorescence and X-ray Absorption Near Edge Spectroscopy (XANES). The grains were identified to be a suite of major upper mantle minerals including olivine, enstatite orthopyroxene (opx), C2/c omphacite clinopyroxene (cpx) and majoritic garnet (two grains), indicating eclogitic origin. All five inclusions are chemically homogeneous, do not show compositional zoning, and exhibit very similar major element chemistry, with significant amounts of Mn2+, Ni2+ and Cr3+ incorporated into the crystal structures, suggesting common geologic origin. All samples were studied in situ, while still embedded in the diamond crystals. High quality single-crystal X-ray diffraction data was collected at the Advanced Photon Source, Argonne National Laboratory to reveal details of the crystal structures and provide crystal chemical information. Some of the structural characteristics of the solid inclusions were found to be fairly uncommon, e.g. the orthoenstatite exhibits an unusually high Ca2+ content (Carlson et al. 1988), and omphacite occurs as the less common C2/c polymorph (Banno, 1970), both of which are considered signatures of eclogitic high-temperature facies. Fe Ka-edge XANES was used to investigate the oxidation state of iron in the solid inclusions. All of the inclusions show predominantly Fe2+, indicating reducing conditions of formation. The combined results of our spectroscopic and diffraction experiments will be interpreted in the context of the conditions and mechanism of formation (syngenesis vs. protogenesis) and possible retrograde transformation the inclusions may have experienced when transported to the surface. References Carlson, W.D. J.S. Swinnea, D.E. Miser (1988) 'Stability of orthoenstatite at high temperature and low pressure' Amer. Mineral. 73: 1255-1263. Banno, S. (1970) 'Classification of eclogites in terms of physical condition of their origin' Phys. Earth. Planet. Interiors 3: 405-421. Kunz, M., P. Gillet, et al. (2002). "Combined in situ X-ray diffraction and Raman spectroscopy on majoritic garnet inclusions in diamonds." Earth and Planet. Sci. Lett. 198: 485-493. Nestola, F., P. Nimis, et al. (2011). "First crystal-structure determination of olivine in diamond: Composition and implications for provenance in the Earth's mantle." Earth and Planet. Sci. Lett. 305: 249-255.
Study of the specific features of single-crystal boron microstructure
NASA Astrophysics Data System (ADS)
Blagov, A. E.; Vasil'ev, A. L.; Dmitriev, V. P.; Ivanova, A. G.; Kulikov, A. G.; Marchenkov, N. V.; Popov, P. A.; Presnyakov, M. Yu.; Prosekov, P. A.; Pisarevskii, Yu. V.; Targonskii, A. V.; Chernaya, T. S.; Chernyshov, D. Yu.
2017-09-01
A complex study of the structure of β-boron single crystal grown by the floating-zone method, with sizes significantly exceeding the analogs known in the literature, has been performed. The study includes X-ray diffraction analysis and X-ray diffractometry (measurement of pole figures and rocking curves), performed on both laboratory and synchrotron sources; atomic-resolution scanning transmission electron microscopy with spherical aberration correction; and energy-dispersive microanalysis. X-ray diffraction analysis using synchrotron radiation has been used to refine the β-boron structure and find impurity Si atoms. The relative variations in the unit-cell parameters a and c for the crystal bulk are found to be δ a/ a ≈ 0.4 and δ c/ c ≈ 0.1%. X-ray diffractometry has revealed that the single-crystal growth axis coincides with the [2\\bar 2013] crystallographic axis and makes an angle of 21.12° with the [0001] threefold axis. Electron microscopy data have confirmed that the sample under study is a β-boron crystal, which may contain 0.3-0.4 at % Si as an impurity. Planar defects (stacking faults and dislocations) are found. The results of additional measurements of the temperature dependence of the thermal conductivity of the crystal in the range of 50-300 K are indicative of its high structural quality.
Exploration of New Principles in Spintronics Based on Topological Insulators (Option 1)
2012-05-14
on the surface and found that our crystals are exceedingly homogeneous (Supplementary Information). The persistently narrow X - ray diffraction peaks...modified Bridgman method (see Supplementary Information for details). X - ray diffraction measurements indicated the monotonic shrinkage of a and c axis...and annealing at that temperature for 4 days. X - ray diffraction analyses confirmed that all the samples have the same crystal structure (R 3m
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zipper, Lauren E.; Binghamton University, 4400 Vestal Parkway East, Vestal, NY 13902; Aristide, Xavier
This article describes the use of evaporation control lids that are fitted to crystallization plates to improve the reproducibility of trials using as little as 5 nl. The plate lids contain apertures which are large enough for the transfer of protein containing droplets, but small enough to greatly reduce the rate of evaporation during the time needed to prepare the plate. A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fittingmore » the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. The results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.« less
Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.
Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s −1 . At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution of diffracted intensitymore » within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ∼1.5–2 compared with those observed at conventional dose rates. Improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less
Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.
Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s –1. At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution ofmore » diffracted intensity within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ~1.5–2 compared with those observed at conventional dose rates. As a result, improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less
Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams
Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.; ...
2017-10-13
Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s –1. At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution ofmore » diffracted intensity within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ~1.5–2 compared with those observed at conventional dose rates. As a result, improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less
Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams
Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.; ...
2017-10-13
Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s −1 . At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution of diffracted intensitymore » within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ∼1.5–2 compared with those observed at conventional dose rates. Improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less
Lv, C L; Liu, Q B; Cai, C Y; Huang, J; Zhou, G W; Wang, Y G
2015-01-01
In the transmission electron microscopy, a revised real space (RRS) method has been confirmed to be a more accurate dynamical electron diffraction simulation method for low-energy electron diffraction than the conventional multislice method (CMS). However, the RRS method can be only used to calculate the dynamical electron diffraction of orthogonal crystal system. In this work, the expression of the RRS method for non-orthogonal crystal system is derived. By taking Na2 Ti3 O7 and Si as examples, the correctness of the derived RRS formula for non-orthogonal crystal system is confirmed by testing the coincidence of numerical results of both sides of Schrödinger equation; moreover, the difference between the RRS method and the CMS for non-orthogonal crystal system is compared at the accelerating voltage range from 40 to 10 kV. Our results show that the CMS method is almost the same as the RRS method for the accelerating voltage above 40 kV. However, when the accelerating voltage is further lowered to 20 kV or below, the CMS method introduces significant errors, not only for the higher-order Laue zone diffractions, but also for zero-order Laue zone. These indicate that the RRS method for non-orthogonal crystal system is necessary to be used for more accurate dynamical simulation when the accelerating voltage is low. Furthermore, the reason for the increase of differences between those diffraction patterns calculated by the RRS method and the CMS method with the decrease of the accelerating voltage is discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Structural Mineral Physics at Extreme Conditions
NASA Astrophysics Data System (ADS)
Chariton, S.; Dubrovinsky, L. S.; Dubrovinskaia, N.
2017-12-01
Laser heating techniques in diamond anvil cells (DACs) cover a wide pressure-temperature range - above 300 GPa and up to 5000 K. Recent advantages in on-line laser heating techniques resulted in a significant improvement of reliability of in situ X-ray powder diffraction studies in laser-heated DACs, which have become routine at a number of synchrotron facilities including specialized beam-lines at the 3rd generation synchrotrons. However, until recently, existing DAC laser-heating systems could not be used for structural X-ray diffraction studies aimed at structural refinements, i.e. measuring of the diffraction intensities, and not only at determining of lattice parameters. The reason is that in existing DAC laser-heating facilities the laser beam enters the cell at a fixed angle, and a partial rotation of the DAC, as required in monochromatic structural X-ray diffraction experiments, results in a loss of the target crystal and may be even dangerous if the powerful laser light starts to scatter in arbitrary directions by the diamond anvils. In order to overcome this problem we have develop a portable laser heating system and implement it at different diffraction beam lines. We demonstrate the application of this system for simultaneous high-pressure and high-temperature powder and single crystal diffraction studies using examples of studies of chemical and phase relations in the Fe-O system, transition metals carbonates, and silicate perovskites.
Reversible thermosalience of 4-aminobenzonitrile.
Alimi, Lukman O; van Heerden, Dewald P; Lama, Prem; Smith, Vincent J; Barbour, Leonard J
2018-05-31
Crystals of 4-aminobenzonitrile grown by sublimation undergo reversible thermosalient phase changes during cooling and subsequent heating. Single-crystal diffraction studies have been carried out at 20 K intervals during cooling from 300 to 100 K in order to explain the structural change that occurs.
An evaluation of adhesive sample holders for advanced crystallographic experiments
Mazzorana, Marco; Sanchez-Weatherby, Juan; Sandy, James; Lobley, Carina M. C.; Sorensen, Thomas
2014-01-01
The hydration state of macromolecular crystals often affects their overall order and, ultimately, the quality of the X-ray diffraction pattern that they produce. Post-crystallization techniques that alter the solvent content of a crystal may induce rearrangement within the three-dimensional array making up the crystal, possibly resulting in more ordered packing. The hydration state of a crystal can be manipulated by exposing it to a stream of air at controlled relative humidity in which the crystal can equilibrate. This approach provides a way of exploring crystal hydration space to assess the diffraction capabilities of existing crystals. A key requirement of these experiments is to expose the crystal directly to the dehydrating environment by having the minimum amount of residual mother liquor around it. This is usually achieved by placing the crystal on a flat porous support (Kapton mesh) and removing excess liquid by wicking. Here, an alternative approach is considered whereby crystals are harvested using adhesives that capture naked crystals directly from their crystallization drop, reducing the process to a one-step procedure. The impact of using adhesives to ease the harvesting of different types of crystals is presented together with their contribution to background scattering and their usefulness in dehydration experiments. It is concluded that adhesive supports represent a valuable tool for mounting macromolecular crystals to be used in humidity-controlled experiments and to improve signal-to-noise ratios in diffraction experiments, and how they can protect crystals from modifications in the sample environment is discussed. PMID:25195752
Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.
Martí-Rujas, Javier; Kawano, Masaki
2013-02-19
Porous coordination networks are materials that maintain their crystal structure as molecular "guests" enter and exit their pores. They are of great research interest with applications in areas such as catalysis, gas adsorption, proton conductivity, and drug release. As with zeolite preparation, the kinetic states in coordination network preparation play a crucial role in determining the final products. Controlling the kinetic state during self-assembly of coordination networks is a fundamental aspect of developing further functionalization of this class of materials. However, unlike for zeolites, there are few structural studies reporting the kinetic products made during self-assembly of coordination networks. Synthetic routes that produce the necessary selectivity are complex. The structural knowledge obtained from X-ray crystallography has been crucial for developing rational strategies for design of organic-inorganic hybrid networks. However, despite the explosive progress in the solid-state study of coordination networks during the last 15 years, researchers still do not understand many chemical reaction processes because of the difficulties in growing single crystals suitable for X-ray diffraction: Fast precipitation can lead to kinetic (metastable) products, but in microcrystalline form, unsuitable for single crystal X-ray analysis. X-ray powder diffraction (XRPD) routinely is used to check phase purity, crystallinity, and to monitor the stability of frameworks upon guest removal/inclusion under various conditions, but rarely is used for structure elucidation. Recent advances in structure determination of microcrystalline solids from ab initio XRPD have allowed three-dimensional structure determination when single crystals are not available. Thus, ab initio XRPD structure determination is becoming a powerful method for structure determination of microcrystalline solids, including porous coordination networks. Because of the great interest across scientific disciplines in coordination networks, especially porous coordination networks, the ability to determine crystal structures when the crystals are not suitable for single crystal X-ray analysis is of paramount importance. In this Account, we report the potential of kinetic control to synthesize new coordination networks and we describe ab initio XRPD structure determination to characterize these networks' crystal structures. We describe our recent work on selective instant synthesis to yield kinetically controlled porous coordination networks. We demonstrate that instant synthesis can selectively produce metastable networks that are not possible to synthesize by conventional solution chemistry. Using kinetic products, we provide mechanistic insights into thermally induced (573-723 K) (i.e., annealing method) structural transformations in porous coordination networks as well as examples of guest exchange/inclusion reactions. Finally, we describe a memory effect that allows the transfer of structural information from kinetic precursor structures to thermally stable structures through amorphous intermediate phases. We believe that ab initio XRPD structure determination will soon be used to investigate chemical processes that lead intrinsically to microcrystalline solids, which up to now have not been fully understood due to the unavailability of single crystals. For example, only recently have researchers used single-crystal X-ray diffraction to elucidate crystal-to-crystal chemical reactions taking place in the crystalline scaffold of coordination networks. The potential of ab initio X-ray powder diffraction analysis goes beyond single-crystal-to-single-crystal processes, potentially allowing members of this field to study intriguing in situ reactions, such as reactions within pores.
Order and disorder in crystals of hexameric NTPases from dsRNA bacteriophages.
Mancini, Erika J; Grimes, Jonathan M; Malby, Robyn; Sutton, Geoffrey C; Kainov, Denis E; Juuti, Jarmo T; Makeyev, Eugene V; Tuma, Roman; Bamford, Dennis H; Stuart, David I
2003-12-01
The packaging of genomic RNA in members of the Cystoviridae is performed by P4, a hexameric protein with NTPase activity. Across family members such as Phi6, Phi8 and Phi13, the P4 proteins show low levels of sequence identity, but presumably have similar atomic structures. Initial structure-determination efforts for P4 from Phi6 and Phi8 were hampered by difficulties in obtaining crystals that gave ordered diffraction. Diffraction from crystals of full-length P4 showed a variety of disorder and anisotropy. Subsequently, crystals of Phi13 P4 were obtained which yielded well ordered diffraction to 1.7 A. Comparison of the packing arrangements of P4 hexamers in different crystal forms and analysis of the disorder provides insights into the flexibility of this family of proteins, which might be an integral part of their biological function.
Goniometer-based femtosecond crystallography with X-ray free electron lasers
Cohen, Aina E.; Soltis, S. Michael; González, Ana; ...
2014-10-31
The emerging method of femtosecond crystallography (FX) may extend the diffraction resolution accessible from small radiation-sensitive crystals and provides a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzymes. Automated goniometer-based instrumentation developed for use at the Linac Coherent Light Source enabled efficient and flexible FX experiments to be performed on a variety of sample types. In the case of rod-shaped Cpl hydrogenase crystals, only five crystals and about 30 min of beam time were used to obtain the 125 still diffraction patterns used to produce a 1.6-Å resolution electron density map. With smaller crystals, high-density grids were usedmore » to increase sample throughput; 930 myoglobin crystals mounted at random orientation inside 32 grids were exposed, demonstrating the utility of this approach. Screening results from cryocooled crystals of β 2-adrenoreceptor and an RNA polymerase II complex indicate the potential to extend the diffraction resolution obtainable from very radiation-sensitive samples beyond that possible with undulator-based synchrotron sources.« less
Goniometer-based femtosecond crystallography with X-ray free electron lasers
Cohen, Aina E.; Soltis, S. Michael; González, Ana; Aguila, Laura; Alonso-Mori, Roberto; Barnes, Christopher O.; Baxter, Elizabeth L.; Brehmer, Winnie; Brewster, Aaron S.; Brunger, Axel T.; Calero, Guillermo; Chang, Joseph F.; Chollet, Matthieu; Ehrensberger, Paul; Eriksson, Thomas L.; Feng, Yiping; Hattne, Johan; Hedman, Britt; Hollenbeck, Michael; Holton, James M.; Keable, Stephen; Kobilka, Brian K.; Kovaleva, Elena G.; Kruse, Andrew C.; Lemke, Henrik T.; Lin, Guowu; Lyubimov, Artem Y.; Manglik, Aashish; Mathews, Irimpan I.; McPhillips, Scott E.; Nelson, Silke; Peters, John W.; Sauter, Nicholas K.; Smith, Clyde A.; Song, Jinhu; Stevenson, Hilary P.; Tsai, Yingssu; Uervirojnangkoorn, Monarin; Vinetsky, Vladimir; Wakatsuki, Soichi; Weis, William I.; Zadvornyy, Oleg A.; Zeldin, Oliver B.; Zhu, Diling; Hodgson, Keith O.
2014-01-01
The emerging method of femtosecond crystallography (FX) may extend the diffraction resolution accessible from small radiation-sensitive crystals and provides a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzymes. Automated goniometer-based instrumentation developed for use at the Linac Coherent Light Source enabled efficient and flexible FX experiments to be performed on a variety of sample types. In the case of rod-shaped Cpl hydrogenase crystals, only five crystals and about 30 min of beam time were used to obtain the 125 still diffraction patterns used to produce a 1.6-Å resolution electron density map. For smaller crystals, high-density grids were used to increase sample throughput; 930 myoglobin crystals mounted at random orientation inside 32 grids were exposed, demonstrating the utility of this approach. Screening results from cryocooled crystals of β2-adrenoreceptor and an RNA polymerase II complex indicate the potential to extend the diffraction resolution obtainable from very radiation-sensitive samples beyond that possible with undulator-based synchrotron sources. PMID:25362050
Liao, Yu-Yang; Chen, Yung-Tsan; Chen, Chien-Chun; Huang, Jian-Jang
2018-04-03
The sensitivity of traditional diffraction grating sensors is limited by the spatial resolution of the measurement setup. Thus, a large space is required to improve sensor performance. Here, we demonstrate a compact hexagonal photonic crystal (PhC) optical sensor with high sensitivity. PhCs are able to diffract optical beams to various angles in azimuthal space. The critical wavelength that satisfies the phase matching or becomes evanescent was used to benchmark the refractive index of a target analyte applied on a PhC sensor. Using a glucose solution as an example, our sensor demonstrated very high sensitivity and a low limit of detection. This shows that the diffraction mechanism of hexagonal photonic crystals can be used for sensors when compact size is a concern.
Growth and characterization of diammonium copper disulphate hexahydrate single crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siva Sankari, R.; Perumal, Rajesh Narayana, E-mail: r.shankarisai@gmail.com
2014-03-01
Graphical abstract: Diammonium copper disulphate hexahydrate (DACS) is one of the most promising inorganic dielectric crystals with exceptional mechanical properties. Good quality crystals of DACS were grown by using solution method in a period of 30 days. The grown crystals were subjected to single crystal X-ray diffraction analysis in order to establish their crystalline nature. Thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis were performed for the crystal. Several solid state physical parameters have been determined for the grown crystals. The dielectric constant and the dielectric loss and AC conductivity of the grown crystal were studied as a functionmore » of frequency and temperature has been calculated and plotted. - Highlights: • Diammonium copper disulphate is grown for the first time and CCDC number obtained. • Thermal analysis is done to see the stability range of the crystals. • Band gap and UV cut off wavelength of the crystal are determined to be 2.4 eV and 472.86 nm, respectively. • Dielectric constant, dielectric loss and AC conductivity are plotted as a function of applied field. - Abstract: Diammonium copper disulphate hexahydrate is one of the most promising inorganic crystals with exceptional dielectric properties. A good quality crystal was harvested in a 30-day period using solution growth method. The grown crystal was subjected to various characterization techniques like single crystal X-ray diffraction analysis, thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis. Unit cell dimensions of the grown crystal have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Thermal stability of the samples was checked by TG/DTA studies. Band gap of the crystal was calculated. The dielectric constant and dielectric loss were studied as a function of frequency of the applied field. AC conductivity was plotted as a function of temperature.« less
Graphene as a protein crystal mounting material to reduce background scatter.
Wierman, Jennifer L; Alden, Jonathan S; Kim, Chae Un; McEuen, Paul L; Gruner, Sol M
2013-10-01
The overall signal-to-noise ratio per unit dose for X-ray diffraction data from protein crystals can be improved by reducing the mass and density of all material surrounding the crystals. This article demonstrates a path towards the practical ultimate in background reduction by use of atomically thin graphene sheets as a crystal mounting platform for protein crystals. The results show the potential for graphene in protein crystallography and other cases where X-ray scatter from the mounting material must be reduced and specimen dehydration prevented, such as in coherent X-ray diffraction imaging of microscopic objects.
Graphene as a protein crystal mounting material to reduce background scatter
Wierman, Jennifer L.; Alden, Jonathan S.; Kim, Chae Un; McEuen, Paul L.; Gruner, Sol M.
2013-01-01
The overall signal-to-noise ratio per unit dose for X-ray diffraction data from protein crystals can be improved by reducing the mass and density of all material surrounding the crystals. This article demonstrates a path towards the practical ultimate in background reduction by use of atomically thin graphene sheets as a crystal mounting platform for protein crystals. The results show the potential for graphene in protein crystallography and other cases where X-ray scatter from the mounting material must be reduced and specimen dehydration prevented, such as in coherent X-ray diffraction imaging of microscopic objects. PMID:24068843
A novel Monte Carlo algorithm for simulating crystals with McStas
NASA Astrophysics Data System (ADS)
Alianelli, L.; Sánchez del Río, M.; Felici, R.; Andersen, K. H.; Farhi, E.
2004-07-01
We developed an original Monte Carlo algorithm for the simulation of Bragg diffraction by mosaic, bent and gradient crystals. It has practical applications, as it can be used for simulating imperfect crystals (monochromators, analyzers and perhaps samples) in neutron ray-tracing packages, like McStas. The code we describe here provides a detailed description of the particle interaction with the microscopic homogeneous regions composing the crystal, therefore it can be used also for the calculation of quantities having a conceptual interest, as multiple scattering, or for the interpretation of experiments aiming at characterizing crystals, like diffraction topographs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sankari, R. Siva, E-mail: sivasankari.sh@act.edu.in; Perumal, Rajesh Narayana
2014-04-24
Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.
Generation of Protein Crystals Using a Solution-Stirring Technique
NASA Astrophysics Data System (ADS)
Adachi, Hiroaki; Niino, Ai; Matsumura, Hiroyoshi; Takano, Kazufumi; Kinoshita, Takayoshi; Warizaya, Masaichi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo
2004-06-01
Crystals of bovine adenosine deaminase (ADA) were grown over a two week period in the presence of an inhibitor, whereas ADA crystals did not form using conventional crystallization methods when the inhibitor was excluded. To obtain ADA crystals in the absence of the inhibitor, a solution-stirring technique was used. The crystals obtained using this technique were found to be of high quality and were shown to have high structural resolution for X-ray diffraction analysis. The results of this study indicate that the stirring technique is a useful method for obtaining crystals of proteins that do not crystallize using conventional techniques.
Tutorial: Crystal orientations and EBSD — Or which way is up?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britton, T.B., E-mail: b.britton@imperial.ac.uk; Jiang, J.; Guo, Y.
2016-07-15
Electron backscatter diffraction (EBSD) is an automated technique that can measure the orientation of crystals in a sample very rapidly. There are many sophisticated software packages that present measured data. Unfortunately, due to crystal symmetry and differences in the set-up of microscope and EBSD software, there may be accuracy issues when linking the crystal orientation to a particular microstructural feature. In this paper we outline a series of conventions used to describe crystal orientations and coordinate systems. These conventions have been used to successfully demonstrate that a consistent frame of reference is used in the sample, unit cell, pole figuremore » and diffraction pattern frames of reference. We establish a coordinate system rooted in measurement of the diffraction pattern and subsequently link this to all other coordinate systems. A fundamental outcome of this analysis is to note that the beamshift coordinate system needs to be precisely defined for consistent 3D microstructure analysis. This is supported through a series of case studies examining particular features of the microscope settings and/or unambiguous crystallographic features. These case studies can be generated easily in most laboratories and represent an opportunity to demonstrate confidence in use of recorded orientation data. Finally, we include a simple software tool, written in both MATLAB® and Python, which the reader can use to compare consistency with their own microscope set-up and which may act as a springboard for further offline analysis. - Highlights: • Presentation of conventions used to describe crystal orientations • Three case studies that outline how conventions are consistent • Demonstrates a pathway for calibration and validation of EBSD based orientation measurements • EBSD computer code supplied for validation by the reader.« less
ERIC Educational Resources Information Center
Bergsten, Ronald
1974-01-01
Discusses the production and structure of a sequence of optical crystals which can serve as one-, two-, and three-dimensional diffraction plates to illustrate diffraction patterns by using light rather than x-rays or particles. Applications to qualitative presentations of Laue theory at the secondary and college levels are recommended. (CC)
The significance of Bragg's law in electron diffraction and microscopy, and Bragg's second law.
Humphreys, C J
2013-01-01
Bragg's second law, which deserves to be more widely known, is recounted. The significance of Bragg's law in electron diffraction and microscopy is then discussed, with particular emphasis on differences between X-ray and electron diffraction. As an example of such differences, the critical voltage effect in electron diffraction is described. It is then shown that the lattice imaging of crystals in high-resolution electron microscopy directly reveals the Bragg planes used for the imaging process, exactly as visualized by Bragg in his real-space law. Finally, it is shown how in 2012, for the first time, on the centennial anniversary of Bragg's law, single atoms have been identified in an electron microscope using X-rays emitted from the specimen. Hence atomic resolution X-ray maps of a crystal in real space can be formed which give the positions and identities of the different atoms in the crystal, or of a single impurity atom in the crystal.
The magnetic and crystal structures of Sr2IrO4: A neutron diffraction study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Feng; Chi, Songxue; Chakoumakos, Bryan C
2013-01-01
We report a single-crystal neutron diffraction study of the layered Sr2IrO4. This work unambigu- ously determines the magnetic and crystal structures, and reveals that the spin orientation rigidly tracks the staggered rotation of the IrO6 octahedra in Sr2IrO4. The long-range antiferromagnetic order has a canted spin configuration with an ordered moment of 0.208(3) B/Ir site within the basal plane; a detailed examination of the spin canting yields 0.202(3) and 0.049(2) B/site for the a-axis and the b-axis, respectively. It is intriguing that forbidden nuclear reflections of space group I41/acd are also observed in a wide temperature range from 4 Kmore » to 600 K, which suggests a reduced crystal structure symmetry. This neutron scattering work provides a direct, well-refined experimen- tal characterization of the magnetic and crystal structures that are crucial to the understanding of the unconventional magnetism existent in this unusual magnetic insulator.« less
Suturin, S M; Fedorov, V V; Korovin, A M; Valkovskiy, G A; Konnikov, S G; Tabuchi, M; Sokolov, N S
2013-08-01
In this work epitaxial growth of cobalt on CaF 2 (111), (110) and (001) surfaces has been extensively studied. It has been shown by atomic force microscopy that at selected growth conditions stand-alone faceted Co nanoparticles are formed on a fluorite surface. Grazing-incidence X-ray diffraction (GIXD) and reflection high-energy electron diffraction (RHEED) studies have revealed that the particles crystallize in the face-centered cubic lattice structure otherwise non-achievable in bulk cobalt under normal conditions. The particles were found to inherit lattice orientation from the underlying CaF 2 layer. Three-dimensional reciprocal space mapping carried out using X-ray and electron diffraction has revealed that there exist long bright 〈111〉 streaks passing through the cobalt Bragg reflections. These streaks are attributed to stacking faults formed in the crystal lattice of larger islands upon coalescence of independently nucleated smaller islands. Distinguished from the stacking fault streaks, crystal truncation rods perpendicular to the {111} and {001} particle facets have been observed. Finally, grazing-incidence small-angle X-ray scattering (GISAXS) has been applied to decouple the shape-related scattering from that induced by the crystal lattice defects. Particle faceting has been verified by modeling the GISAXS patterns. The work demonstrates the importance of three-dimensional reciprocal space mapping in the study of epitaxial nanoparticles.
Suturin, S. M.; Fedorov, V. V.; Korovin, A. M.; Valkovskiy, G. A.; Konnikov, S. G.; Tabuchi, M.; Sokolov, N. S.
2013-01-01
In this work epitaxial growth of cobalt on CaF2(111), (110) and (001) surfaces has been extensively studied. It has been shown by atomic force microscopy that at selected growth conditions stand-alone faceted Co nanoparticles are formed on a fluorite surface. Grazing-incidence X-ray diffraction (GIXD) and reflection high-energy electron diffraction (RHEED) studies have revealed that the particles crystallize in the face-centered cubic lattice structure otherwise non-achievable in bulk cobalt under normal conditions. The particles were found to inherit lattice orientation from the underlying CaF2 layer. Three-dimensional reciprocal space mapping carried out using X-ray and electron diffraction has revealed that there exist long bright 〈111〉 streaks passing through the cobalt Bragg reflections. These streaks are attributed to stacking faults formed in the crystal lattice of larger islands upon coalescence of independently nucleated smaller islands. Distinguished from the stacking fault streaks, crystal truncation rods perpendicular to the {111} and {001} particle facets have been observed. Finally, grazing-incidence small-angle X-ray scattering (GISAXS) has been applied to decouple the shape-related scattering from that induced by the crystal lattice defects. Particle faceting has been verified by modeling the GISAXS patterns. The work demonstrates the importance of three-dimensional reciprocal space mapping in the study of epitaxial nanoparticles. PMID:24046491
Serrano-Posada, Hugo; Centeno-Leija, Sara; Rojas-Trejo, Sonia; Stojanoff, Vivian; Rodríguez-Sanoja, Romina; Rudiño-Piñera, Enrique; Sánchez, Sergio
2015-09-01
Labdane-related diterpenoids are natural products with potential pharmaceutical applications that are rarely found in bacteria. Here, a putative class I labdane-related diterpene synthase (LrdC) identified by genome mining in a streptomycete was successfully crystallized using the microbatch method. Crystals of the LrdC enzyme were obtained in a holo form with its natural cofactor Mg(2+) (LrdC-Mg(2+)) and in complex with inorganic pyrophosphate (PPi) (LrdC-Mg(2+)-PPi). Crystals of native LrdC-Mg(2+) diffracted to 2.50 Å resolution and belonged to the trigonal space group P3221, with unit-cell parameters a = b = 107.1, c = 89.2 Å. Crystals of the LrdC-Mg(2+)-PPi complex grown in the same conditions as the native enzyme with PEG 8000 diffracted to 2.36 Å resolution and also belonged to the trigonal space group P3221. Crystals of the LrdC-Mg(2+)-PPi complex grown in a second crystallization condition with PEG 3350 diffracted to 2.57 Å resolution and belonged to the monoclinic space group P21, with unit-cell parameters a = 49.9, b = 104.1, c = 66.5 Å, β = 111.4°. The structure was determined by the single-wavelength anomalous dispersion (SAD) technique using the osmium signal from a potassium hexachloroosmate (IV) derivative.
Advanced High Brilliance X-Ray Source
NASA Technical Reports Server (NTRS)
Gibson, Walter M.
1998-01-01
The possibility to dramatically increase the efficiency of laboratory based protein structure measurements through the use of polycapillary X-ray optics was investigated. This project initiated April 1, 1993 and concluded December 31, 1996 (including a no cost extension from June 31, 1996). This is a final report of the project. The basis for the project is the ability to collect X-rays from divergent electron bombardment laboratory X-ray sources and redirect them into quasiparallel or convergent (focused) beams. For example, a 0.1 radian (approx. 6 deg) portion of a divergent beam collected by a polycapillary collimator and transformed into a quasiparallel beam of 3 millradian (0.2 deg) could give a gain of 6(exp 2)/0.2(exp 2) x T for the intensity of a diffracted beam from a crystal with a 0.2 deg diffraction width. T is the transmission efficiency of the polycapillary diffraction optic, and for T=0.5, the gain would be 36/0.04 x O.5=45. In practice, the effective collection angle will depend on the source spot size, the input focal length of the optic (usually limited by the source spot-to-window distance on the x-ray tube) and the size of the crystal relative to the output diameter of the optic. The transmission efficiency, T, depends on the characteristics (fractional open area, surface roughness, shape and channel diameter) of the polycapillary optic and is typically in the range 0.2-0.4. These effects could substantially reduce the expected efficiency gain. During the course of this study, the possibility to use a weakly focused beam (0.5 deg convergence) was suggested which could give an additional 10-20 X efficiency gain for small samples . Weakly focused beams from double focusing mirrors are frequently used for macromolecular crystallography studies. Furthermore the crystals are typically oscillated by as much as 2 deg during each X-ray exposure in order to increase the reciprocal space (number of crystal planes) sampled and use of a slightly convergent beam could, in principle, provide a similar sampling benefit without oscillation. Although more problematic, because of complications in analyzing the diffraction patterns, it was also suggested that even more extreme beam convergence might be used to give another order of magnitude intensity gain and even smaller focused spot size which could make it possible to study smaller protein crystals than can be studied using standard laboratory based X-ray diffraction systems. This project represents the first systematic investigation of these possibilities. As initially proposed, the contract included requirements for design, purchase, evaluation and delivery of three polycapillary lenses to the Laboratory for Structural Biology at MSFC and demonstration of such optics at MSFC for selected protein crystal diffraction applications.
Analyzing shear band formation with high resolution X-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagan, Darren C.; Obstalecki, Mark; Park, Jun-Sang
Localization of crystallographic slip into shear bands during uniaxial compression of a copper single crystal is studied using very far-field high-energy diffraction microscopy (vff-HEDM). Diffracted intensity was collected in-situ as the crystal deformed using a unique mobile detector stage that provided access to multiple diffraction peaks with high-angular resolution. From the diffraction data, single crystal orientation pole figures (SCPFs) were generated and are used to track the evolution of the distribution of lattice orientation that develops as slip localizes. To aid the identification of 'signatures' of shear band formation and analyze the SCPF data, a model of slip-driven lattice reorientationmore » within shear bands is introduced. Confidence is built in conclusions drawn from the SCPF data about the character of internal slip localization through comparisons with strain fields on the sample surface measured simultaneously using digital image correlation. From the diffraction data, we find that the active slip direction and slip plane are not directly aligned with the orientation of the shear bands that formed. In fact, by extracting the underlying slip system activity from the SCPF data, we show that intersecting shear bands measured on the surface of the sample arise from slip primarily on the same underlying single slip system. These new vff-HEDM results raise significant questions on the use of surface measurements for slip system activity estimation. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less
Lan, Ti-Yen; Wierman, Jennifer L.; Tate, Mark W.; Philipp, Hugh T.; Elser, Veit
2017-01-01
Recently, there has been a growing interest in adapting serial microcrystallography (SMX) experiments to existing storage ring (SR) sources. For very small crystals, however, radiation damage occurs before sufficient numbers of photons are diffracted to determine the orientation of the crystal. The challenge is to merge data from a large number of such ‘sparse’ frames in order to measure the full reciprocal space intensity. To simulate sparse frames, a dataset was collected from a large lysozyme crystal illuminated by a dim X-ray source. The crystal was continuously rotated about two orthogonal axes to sample a subset of the rotation space. With the EMC algorithm [expand–maximize–compress; Loh & Elser (2009). Phys. Rev. E, 80, 026705], it is shown that the diffracted intensity of the crystal can still be reconstructed even without knowledge of the orientation of the crystal in any sparse frame. Moreover, parallel computation implementations were designed to considerably improve the time and memory scaling of the algorithm. The results show that EMC-based SMX experiments should be feasible at SR sources. PMID:28808431
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azarkan, Mohamed; Garcia-Pino, Abel; Dibiani, Rachid
2006-12-01
The Kunitz-type trypsin/chymotrypsin inhibitor isolated from C. papaya latex has been crystallized using the hanging-drop vapour-diffusion method. Two different crystal forms are observed, diffracting to 2.6 and 1.7 Å. A Kunitz-type protease inhibitor purified from the latex of green papaya (Carica papaya) fruits was crystallized in the presence and absence of divalent metal ions. Crystal form I, which is devoid of divalent cations, diffracts to a resolution of 2.6 Å and belongs to space group P3{sub 1} or P3{sub 2}. This crystal form is a merohedral twin with two molecules in the asymmetric unit and unit-cell parameters a = bmore » = 74.70, c = 78.97 Å. Crystal form II, which was grown in the presence of Co{sup 2+}, diffracts to a resolution of 1.7 Å and belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 44.26, b = 81.99, c = 140.89 Å.« less
Protein crystal growth and the International Space Station
NASA Technical Reports Server (NTRS)
DeLucas, L. J.; Moore, K. M.; Long, M. M.
1999-01-01
Protein structural information plays a key role in understanding biological structure-function relationships and in the development of new pharmaceuticals for both chronic and infectious diseases. The Center for Macromolecular Crystallography (CMC) has devoted considerable effort studying the fundamental processes involved in macromolecular crystal growth both in a 1-g and microgravity environment. Results from experiments performed on more than 35 U.S. space shuttle flights have clearly indicated that microgravity can provide a beneficial environment for macromolecular crystal growth. This research has led to the development of a new generation of pharmaceuticals that are currently in preclinical or clinical trials for diseases such as cutaneous T-cell lymphoma, psoriasis, rheumatoid arthritis, AIDS, influenza, stroke and other cardiovascular complications. The International Space Station (ISS) provides an opportunity to have complete crystallographic capability on orbit, which was previously not possible with the space shuttle orbiter. As envisioned, the x-ray Crystallography Facility (XCF) will be a complete facility for growing protein crystals; selecting, harvesting, and mounting sample crystals for x-ray diffraction; cryo-freezing mounted crystals if necessary; performing x-ray diffraction studies; and downlinking the data for use by crystallographers on the ground. Other advantages of such a facility include crystal characterization so that iterations in the crystal growth conditions can be made, thereby optimizing the final crystals produced in a three month interval on the ISS.
Lu, Y; Zheng, Q; Lu, D; Ma, P; Chen, Y
1995-06-01
Crystal structures of two compounds from Tripterygium wilfordii Hook f. have been determined by X-ray diffraction method. Structure factors influencing melting point of solid state have been analysed. Crystal class (or space group), recrystallization solvent, force between molecules and fine changes of molecular structures will all cause melting point changes of crystal substance.
NASA Astrophysics Data System (ADS)
Milkov, M. G.; Voloshinov, V. B.; Isaenko, L. I.; Vedenyapin, V. N.
2018-01-01
Acousto-optic interaction in an optically biaxial crystalline medium under propagation of light close to one of the optical axes of a potassium arsenate titanyl KTiOAsO4 crystal has been studied. The experimental dependences of the intensity of a diffracted optical beam on the angle of light incidence on an ultrasonic wave have been obtained. It has been shown that a flat cut of a wave-vector surface provides development of an ultra-wide-aperture and ultra-wide-band acousto-optic deflector to control radiation in the visible and infrared electromagnetic spectral ranges.
Structural studies of crystalline forms of triamterene with carboxylic acid, GRAS and API molecules
Rehman, Abida
2018-01-01
Pharmaceutical salt solvates (dimethyl sulfoxide, DMSO) of the drug triamterene with the coformers acetic, succinic, adipic, pimelic, azelaic and nicotinic acid and ibuprofen are prepared by liquid-assisted grinding and solvent-evaporative crystallization. The modified ΔpK a rule as proposed by Cruz-Cabeza [(2012 ▸). CrystEngComm, 14, 6362–6365] is in close agreement with the results of this study. All adducts were characterized by X-ray diffraction and thermal analytical techniques, including single-crystal X-ray diffraction, powder X-ray diffraction, differential scanning calorimetry and thermal gravimetric analysis. Hydrogen-bonded motifs combined to form a variety of extended tapes and sheets. Analysis of the crystal structures showed that all adducts existed as salt solvates and contained the aminopyridinium–carboxylate heterodimer, except for the solvate containing triamterene, ibuprofen and DMSO, as a result of the presence of a strong and stable hemitriamterenium duplex. A search of the Cambridge Structural Database (CSD 5.36, Version 1.18) to determine the frequency of occurrence of the putative supramolecular synthons found in this study showed good agreement with previous work. PMID:29755747
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qin, E-mail: yang@crystal.harvard.edu; Brüschweiler, Sven; Chou, James J., E-mail: yang@crystal.harvard.edu
2013-12-24
The N-terminal calmodulin-like domain of the human mitochondrial ATP-Mg/P{sub i} carrier SCaMC1 was crystallized in the presence of Ca{sup 2+}. X-ray diffraction data were collected to 2.9 Å resolution from crystals which belonged to space group P6{sub 2}22.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massant, Jan, E-mail: jan.massant@vub.ac.be; Peeters, Eveline; Charlier, Daniel
2006-01-01
The arginine repressor of the hyperthermophile T. neapolitana was crystallized with and without its corepressor arginine. Both crystals diffracted to high resolution and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with similar unit-cell parameters. The arginine repressor of Thermotoga neapolitana (ArgRTnp) is a member of the family of multifunctional bacterial arginine repressors involved in the regulation of arginine metabolism. This hyperthermophilic repressor shows unique DNA-binding features that distinguish it from its homologues. ArgRTnp exists as a homotrimeric protein that assembles into hexamers at higher protein concentrations and/or in the presence of arginine. ArgRTnp was crystallized with andmore » without its corepressor arginine using the hanging-drop vapour-diffusion method. Crystals of the aporepressor diffracted to a resolution of 2.1 Å and belong to the orthorhombic P2{sub 1}2{sub 1}2{sub 1} space group, with unit-cell parameters a = 117.73, b = 134.15, c = 139.31 Å. Crystals of the repressor in the presence of its corepressor arginine diffracted to a resolution of 2.4 Å and belong to the same space group, with similar unit-cell parameters.« less
Thomas, Michael; Anglim Lagones, Thomas; Judd, Martyna; Morshedi, Mahbod; O'Mara, Megan L; White, Nicholas G
2017-07-04
A combination of molecular dynamics (MD), NMR spectroscopy, and single crystal X-ray diffraction (SCXRD) techniques was used to probe the self-assembly of para- and meta-bis(amidinium) compounds with para-, meta-, and ortho-dicarboxylates. Good concordance was observed between the MD and experimental results. In DMSO solution, the systems form several rapidly exchanging assemblies, in part because a range of hydrogen bonding interactions is possible between the amidinium and carboxylate moieties. Upon crystallization, the majority of the systems form 1D supramolecular polymers, which are held together by short N-H⋅⋅⋅O hydrogen bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gavel, Olga Yu.; Kladova, Anna V.; Bursakov, Sergey A.; Dias, João M.; Texeira, Susana; Shnyrov, Valery L.; Moura, José J. G.; Moura, Isabel; Romão, Maria J.; Trincão, José
2008-01-01
Native zinc/cobalt-containing ATP sulfurylase (ATPS; EC 2.7.7.4; MgATP:sulfate adenylyltransferase) from Desulfovibrio desulfuricans ATCC 27774 was purified to homogeneity and crystallized. The orthorhombic crystals diffracted to beyond 2.5 Å resolution and the X-ray data collected should allow the determination of the structure of the zinc-bound form of this ATPS. Although previous biochemical studies of this protein indicated the presence of a homotrimer in solution, a dimer was found in the asymmetric unit. Elucidation of this structure will permit a better understanding of the role of the metal in the activity and stability of this family of enzymes. PMID:18607083
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jørgensen, Mads R. V.; Piccoli, Paula M. B.; Hathwar, Venkatesha R.
2017-01-31
The structural phase transition accompanied by a Jahn–Teller switch has been studied over a range of H/D ratios in (NH 4) 2[Cu(H 2O) 6](SO 4) 2(ACTS). In particular, single-crystal neutron diffraction investigations of crystals with deuteration in the range 50 to 82% are shown to be consistent with previous electron paramagnetic resonance (EPR) experiments exhibiting a phase boundary at 50% deuteration under ambient pressure. Polycrystalline samples show that the two phases can co-exist. In addition, single-crystal neutron and polycrystalline X-ray diffraction pressure experiments show a shift to lower pressure at 60% deuterationversusprevious measurements at 100% deuteration.
Method for detecting a mass density image of an object
Wernick, Miles N [Chicago, IL; Yang, Yongyi [Westmont, IL
2008-12-23
A method for detecting a mass density image of an object. An x-ray beam is transmitted through the object and a transmitted beam is emitted from the object. The transmitted beam is directed at an angle of incidence upon a crystal analyzer. A diffracted beam is emitted from the crystal analyzer onto a detector and digitized. A first image of the object is detected from the diffracted beam emitted from the crystal analyzer when positioned at a first angular position. A second image of the object is detected from the diffracted beam emitted from the crystal analyzer when positioned at a second angular position. A refraction image is obtained and a regularized mathematical inversion algorithm is applied to the refraction image to obtain a mass density image.
NASA Technical Reports Server (NTRS)
Kuriyama, Masao; Steiner, Bruce; Dobbyn, Ronald C.; Laor, Uri; Larson, David; Brown, Margaret
1988-01-01
Streaking images restricted to the direction of the diffraction (scattering) vector have been observed on transmission through undoped GaAs. These disruption images (caused by the reduction of diffraction in the direction of observation) appear both in the forward and in Bragg diffracted directions in monochromatic synchrontron radiation diffraction imaging. This previously unobserved phenomenon can be explained in terms of planar defects (interfaces) or platelets which affects the absorption coefficient in anomalous transmission. Such regions of the crystal look perfect despite the presence of imperfections when the scattering vector is not perpendicular to the normal of the platelets. The observed crystallographic orientation of these interfaces strongly indicates that they are antiphase boundaries.
Pauling, Linus
1988-01-01
A unified structure theory of icosahedral quasicrystals, combining the twinned-cubic-crystal theory and the Penrose-tiling-six-dimensional-projection theory, is described. Values of the primitive-cubic lattice constant for several quasicrystals are evaluated from x-ray and neutron diffraction data. The fact that the low-angle diffraction maxima can be indexed with cubic unit cells provides additional support for the twinned-cubic-crystal theory of icosahedral quasicrystals. PMID:16593990
NASA Astrophysics Data System (ADS)
Devi, S. Reena; Kalaiyarasi, S.; Zahid, I. MD.; Kumar, R. Mohan
2016-11-01
An ionic organic optical crystal of 4-methylpyridinium p-nitrophenolate was grown from methanol by slow evaporation method at ambient temperature. Powder and single crystal X-ray diffraction studies revealed the crystal system and its crystalline perfection. The rocking curve recorded from HRXRD study confirmed the crystal quality. FTIR spectral analysis confirmed the functional groups present in the title compound. UV-visible spectral study revealed the optical window and band gap of grown crystal. The thermal, electrical and surface laser damage threshold properties of harvested crystal were examined by using TGA/DTA, LCR/Impedance Analyzer and Nd:YAG laser system respectively. The third order nonlinear optical property of grown crystal was elucidated by Z-scan technique.
Accurate X-ray diffraction studies of KTiOPO{sub 4} single crystals doped with niobium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikova, N. E., E-mail: natnov@ns.crys.ras.ru; Sorokina, N. I.; Alekseeva, O. A.
2017-01-15
Single crystals of potassium titanyl phosphate doped with 4% of niobium (КТР:4%Nb) and 6% of niobium (KTP:6%Nb) are studied by accurate X-ray diffraction at room temperature. The niobium atoms are localized near the Ti1 and Ti2 atomic positions, and their positions are for the first time refined independent of the titanium atomic positions. Maps of difference electron density in the vicinity of K1 and K2 atomic positions are analyzed. It is found that in the structure of crystal КТР:4%Nb, additional positions of K atoms are located farther from the main positions and from each other than in КТРand KTP:6%Nbmore » crystals. The nonuniform distribution of electron density found in the channels of the КТР:4%Nb structure is responsible for ~20% increase in the signal of second harmonic generation.« less
Stabilization of Quinapril by Incorporating Hydrogen Bonding Interactions
Roy, B. N.; Singh, G. P.; Godbole, H. M.; Nehate, S. P.
2009-01-01
In the present study stability of various known solvates of quinapril hydrochloride has been compared with nitromethane solvate. Nitromethane solvate was found to be more stable compared to other known solvates. Single crystal X-ray diffraction analysis of quinapril nitromethane solvate shows intermolecular hydrogen bonding between quinapril molecule and nitromethane. Stabilization of quinapril by forming strong hydrogen bonding network as in case of co-crystals was further studied by forming co-crystal with tris(hydroxymethyl)amino methane. Quinapril free base forms a stable salt with tris(hydroxymethyl)amino methane not reported earlier. Quinapril tris(hydroxymethyl)amino methane salt found to be stable even at 80° for 72 h i.e. hardly any formation of diketopiperazine and diacid impurity. As expected single crystal X-ray diffraction analysis reveals tris(hydroxymethyl)amino methane salt of quinapril shows complex hydrogen bonding network between the two entities along with ionic bond. The properties of this stable salt - stable in solid as well as solution phase, might lead to an alternate highly stable formulation. PMID:20502545
Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi
2013-01-01
Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection. PMID:23999307
Phatak, R; Gupta, S K; Krishnan, K; Sali, S K; Godbole, S V; Das, A
2014-02-28
Double perovskite type compounds of the formula BaA'LaTeO6 (A' = Na, K, Rb) were synthesized by solid state route and their crystal structures were determined by Rietveld analysis using powder X-ray diffraction and neutron diffraction data. Na compound crystallizes in the monoclinic system with P2₁/n space group whereas, K and Rb compounds crystallize in Fm3m space group. All the three compounds show rock salt type ordering at B site. Crystal structure analysis shows that La ion occupies A site in Na compound whereas, it occupies B site in K and Rb compounds according to the general formula of AA'BB'O6 for a double perovskite type compound. Effect of this crystallographic site swapping of the La ion was also observed in the photoluminescence study by doping Eu(3+) in La(3+) site. The large decrease in the intensity of the electric dipole ((5)D0-(7)F2) transition in the Rb compound compared to the Na compound indicates that Eu(3+) ion resides in the centrosymmetric octahedral environment in the Rb compound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rantanen, Mika K.; Lehtiö, Lari; Rajagopal, Lakshmi
Two S. agalactiae proteins, the inorganic pyrophosphatase and the serine/threonine phosphatase, were crystallized and diffraction data were collected and processed from these crystals. The data from the two protein crystals extended to 2.80 and 2.65 Å, respectively. Streptococcus agalactiae, which infects human neonates and causes sepsis and meningitis, has recently been shown to possess a eukaryotic-like serine/threonine protein phosphorylation signalling cascade. Through their target proteins, the S. agalactiae Ser/Thr kinase and Ser/Thr phosphatase together control the growth as well as the morphology and virulence of this organism. One of the targets is the S. agalactiae family II inorganic pyrophosphatase. Themore » inorganic pyrophosphatase and the serine/threonine phosphatase have therefore been purified and crystallized and diffraction data have been collected from their crystals. The data were processed using XDS. The inorganic pyrosphosphatase crystals diffracted to 2.80 Å and the Ser/Thr phosphatase crystals to 2.65 Å. Initial structure-solution experiments indicate that structure solution will be successful in both cases. Solving the structure of the proteins involved in this cascade is the first step towards understanding this phenomenon in atomic detail.« less
Two-dimensional microsphere quasi-crystal: fabrication and properties
NASA Astrophysics Data System (ADS)
Noginova, Natalia E.; Venkateswarlu, Putcha; Kukhtarev, Nickolai V.; Sarkisov, Sergey S.; Noginov, Mikhail A.; Caulfield, H. John; Curley, Michael J.
1996-11-01
2D quasi-crystals were fabricated from polystyrene microspheres and characterized for their structural, diffraction, and non-linear optics properties. The quasi- crystals were produced with the method based on Langmuir- Blodgett thin film technique. Illuminating the crystal with the laser beam, we observed the diffraction pattern in the direction of the beam propagation and in the direction of the back scattering, similar to the x-ray Laue pattern observed in regular crystals with hexagonal structure. The absorption spectrum of the quasi-crystal demonstrated two series of regular maxima and minima, with the spacing inversely proportional to the microspheres diameter. Illumination of the dye-doped microspheres crystal with Q- switched radiation of Nd:YAG laser showed the enhancement of non-linear properties, in particular, second harmonic generation.
Reduced Iron Sulfide Systems for Removal of Heavy Metal Ions from Groundwater
2009-07-01
be gleaned from higher magnification of these samples. Each set of lattice fringes represents a single crystal of mackinawite (Ohfuji and Ricard...diffractograms, the diffraction peaks are broad and weak, indicating a poor degree of crystallization or a small crystallite size. For the non-magnetic...the lattice spacings of synthetic mackinawite in this study are shorter. The 3-day aging in this study resulted in a higher degree of crystallization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilhelmsson, Monica, E-mail: monica.vilhelmsson@medks.ki.se; Center for Infectious Medicine, Department of Medicine, Karolinska University Hospital, Huddinge, Stockholm; Hallberg, B. Martin
2006-02-01
Crystals of the M. sympodialis allergen Mala s 1 have been obtained using the hanging-drop vapour-diffusion method. A diffraction data set has been collected from native crystals to 1.35 Å resolution. The opportunistic yeast Malassezia sympodialis can act as an allergen and elicit specific IgE- and T-cell reactivity in patients with atopic eczema. The first identified major allergen from M. sympodialis, Mala s 1, is present on the cell surface of the yeast. Recombinant Mala s 1 was expressed in Escherichia coli, purified and refolded in a soluble form. Crystals of Mala s 1 were obtained in 25% PEG 8K,more » 0.2 M (NH{sub 4}){sub 2}SO{sub 4}. Crystals belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 44.4, b = 163.7, c = 50.6 Å, and diffract to 1.35 Å resolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordeiro, Artur T.; Feliciano, Patricia R.; Nonato, M. Cristina, E-mail: cristy@fcfrp.usp.br
2006-10-01
Dihydroorotate dehydrogenase from L. major has been crystallized by the vapour-diffusion technique using lithium sulfate as the precipitant agent. A complete data set from a native crystal has been collected to 2.0 Å resolution using an in-house rotating-anode generator. Dihydroorotate dehydrogenases (DHODHs) are flavin-containing enzymes that catalyze the oxidation of l-dihydroorotate to orotate, the fourth step in the de novo pyrimidine nucleotide synthesis pathway. In this study, DHODH from Leishmania major has been crystallized by the vapour-diffusion technique using lithium sulfate as the precipitating agent. The crystals belong to space group P6{sub 1}, with unit-cell parameters a = 143.7, cmore » = 69.8 Å. X-ray diffraction data were collected to 2.0 Å resolution using an in-house rotating-anode generator. Analysis of the solvent content and the self-rotation function indicate the presence of two molecules in the asymmetric unit. The structure has been solved by the molecular-replacement technique.« less
Synthesis, structural, spectroscopic and optical studies of charge transfer complex salts.
Manikandan, Maruthappan; Mahalingam, Thaiyan; Hayakawa, Yasuhiro; Ravi, Ganesan
2013-01-15
New charge transfer molecular complex adducts of picric acid (C6H3N3O7) with triethylamine (C6H15N) and dimethylformamide (HCON(CH3)2) were synthesized successfully for the first time. Chemical composition and stoichiometry of the synthesized complex salts were verified by CHN elemental analysis. Solubility of the complex salts have been determined by gravimetric method and single crystals of two new salts were grown by low temperature solution growth technique. Crystal system, crystalline nature and cell parameters of the grown crystals were determined by single crystal X-ray diffraction (SXRD) and powder X-ray diffraction (PXRD) analyses. The formations of the charge-transfer complex, functional groups and the modes of vibrations have been confirmed by Fourier transform infrared (FTIR) spectroscopy. In order to know the linear and nonlinear optical suitability for device fabrication, UV-Vis (UV) spectral analysis and relative second harmonic generation (SHG) efficiency test were performed for the grown crystals. Copyright © 2012 Elsevier B.V. All rights reserved.
Desborough, G.A.; Foord, E.E.
1992-01-01
A mineral with the approximate composition of Au94Hg6 - Au88Hg12 (atomic %) has been identified in Pleistocene Snake River alluvial deposits. The gold-mercury mineral occurs as very small grains or as polycrystalline masses composed of subhedral to nearly euhedral attached crystals. Vibratory cold-polishing techniques with 0.05-??m alumina abrasive for polished sections revealed a porous internal texture for most subhedral crystals after 48-72 hours of treatment. Thus, optical character (isotropic or anisotropic) could not be determined by reflected-light microscopy, and pore-free areas were too small for measurement of reflectance. X-ray-diffraction lines rather than individual reflections (spots), on powder camera X-ray films of unrotated spindles of single grains that morphologically appear to be single crystals, indicate that individual subhedral or euhedral crystals are composed of domains in random orientation. Thus, no material was found suitable for single-crystal X-ray diffraction studies. -from Authors
Synthesis, structural, spectroscopic and optical studies of charge transfer complex salts
NASA Astrophysics Data System (ADS)
Manikandan, Maruthappan; Mahalingam, Thaiyan; Hayakawa, Yasuhiro; Ravi, Ganesan
2013-01-01
New charge transfer molecular complex adducts of picric acid (C6H3N3O7) with triethylamine (C6H15N) and dimethylformamide (HCON(CH3)2) were synthesized successfully for the first time. Chemical composition and stoichiometry of the synthesized complex salts were verified by CHN elemental analysis. Solubility of the complex salts have been determined by gravimetric method and single crystals of two new salts were grown by low temperature solution growth technique. Crystal system, crystalline nature and cell parameters of the grown crystals were determined by single crystal X-ray diffraction (SXRD) and powder X-ray diffraction (PXRD) analyses. The formations of the charge-transfer complex, functional groups and the modes of vibrations have been confirmed by Fourier transform infrared (FTIR) spectroscopy. In order to know the linear and nonlinear optical suitability for device fabrication, UV-Vis (UV) spectral analysis and relative second harmonic generation (SHG) efficiency test were performed for the grown crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yan-Feng; Li, Lan-Fen; Yang, Cheng
2008-01-01
SMU.573 from S. mutans was expressed in E. coli and crystallized. The crystals belong to space group I4 and 2.5 Å resolution diffraction data were collected at an in-house chromium radiation source. SMU.573 from Streptococcus mutans is a structurally and functionally uncharacterized protein that was selected for structural biology studies. Native and SeMet-labelled proteins were expressed with an N-His tag in Escherichia coli BL21 (DE3) and purified by Ni{sup 2+}-chelating and size-exclusion chromatography. Crystals of the SeMet-labelled protein were obtained by the hanging-drop vapour-diffusion method and a 2.5 Å resolution diffraction data set was collected using an in-house chromium radiationmore » source. The crystals belong to space group I4, with unit-cell parameters a = b = 96.53, c = 56.26 Å, α = β = γ = 90°.« less
X-ray diffraction studies of enkephalins. Crystal structure of [(4'-bromo) Phe4,Leu5]enkephalin.
Ishida, T; Kenmotsu, M; Mino, Y; Inoue, M; Fujiwara, T; Tomita, K; Kimura, T; Sakakibara, S
1984-01-01
In order to investigate the structure-activity relationship of [Leu5]- and [Met5]enkephalins, [(4'-bromo)Phe4, Leu5]-, [(4'-bromo)Phe4, Met5]- and [Met5] enkephalins were synthesized and crystallized. The crystal structure of [(4'-bromo) Phe4, Leu5]- enkephalin was determined by X-ray diffraction method using the heavy atom method and refined to R = 0.092 by the least-squares method. The molecule in this crystal took essentially the same type I' beta-turn conformation found in [Leu5]enkephalin [Smith & Griffin (1978) Science 199, 1214-1216). On the other hand, the preliminary three-dimensional Patterson analyses showed that the most probable conformations of [(4'-bromo)Phe4,Met5]- and [Met5]enkephalins are both the dimeric extended forms. Based on these insights, the biologically active conformation of enkephalin was discussed in relation to the mu- and delta-receptors. PMID:6721829
Suganuma, Masatoshi; Teh, Aik Hong; Makino, Masatomo; Shimizu, Nobutaka; Kaneko, Tomonori; Hirata, Kunio; Yamamoto, Masaki; Kumasaka, Takashi
2009-01-01
RsbX from Bacillus subtilis is a manganese-dependent PPM phosphatase and negatively regulates the signal transduction of the general stress response by the dephosphorylation of RsbS and RsbR, which are activators of the alternative RNA polymerase σ factor SigB. In order to elucidate the structural–functional relationship of its Ser/Thr protein-phosphorylation mechanism, an X-ray crystallographic diffraction study of RsbX was performed. Recombinant RsbX was expressed in Escherichia coli, purified and crystallized. Crystals were obtained using the sitting-drop vapour-diffusion method and X-ray diffraction data were collected to 1.06 Å resolution with an R merge of 8.1%. The crystals belonged to the triclinic space group P1, with unit-cell parameters a = 33.3, b = 41.7, c = 68.6 Å, α = 98.8, β = 90.0, γ = 108.4°. PMID:19923733
Suganuma, Masatoshi; Teh, Aik Hong; Makino, Masatomo; Shimizu, Nobutaka; Kaneko, Tomonori; Hirata, Kunio; Yamamoto, Masaki; Kumasaka, Takashi
2009-11-01
RsbX from Bacillus subtilis is a manganese-dependent PPM phosphatase and negatively regulates the signal transduction of the general stress response by the dephosphorylation of RsbS and RsbR, which are activators of the alternative RNA polymerase sigma factor SigB. In order to elucidate the structural-functional relationship of its Ser/Thr protein-phosphorylation mechanism, an X-ray crystallographic diffraction study of RsbX was performed. Recombinant RsbX was expressed in Escherichia coli, purified and crystallized. Crystals were obtained using the sitting-drop vapour-diffusion method and X-ray diffraction data were collected to 1.06 angstrom resolution with an R(merge) of 8.1%. The crystals belonged to the triclinic space group P1, with unit-cell parameters a = 33.3, b = 41.7, c = 68.6 angstrom , alpha = 98.8, beta = 90.0, gamma = 108.4 degrees.
Mikhailov, A M; Smirnova, E A; Tsuprun, V L; Tagunova, I V; Vainshtein, B K; Linkova, E V; Komissarov, A A; Siprashvili, Z Z; Mironov, A S
1992-03-01
Uridine phosphorylase (UPH) from Escherichia coli K-12 has been purified to near homogeneity from a strain harbouring the udp gene, encoding UPH, on a multicopy plasmid. UPH was purified to electrophoretic homogeneity with the specific activity 230 units/mg with a recovery of 80%, yielding 120 mg of enzyme from 3g cells. Crystals of enzyme suitable for X-ray diffraction analysis were obtained in a preparative ultracentrifuge. The packing of the molecules in the crystals may be described by the space group P2(1)2(1)2(1) with the unit cell constants a = 90.4; b = 128.8; c = 136.8 A. There is one molecule per asymmetric unit, Vm = 2.4. These crystals diffract to at least 2.5-2.7 A resolution. The hexameric structure of UPH was directly demonstrated by electron microscopy study and image processing.
Carbonate-based zeolitic imidazolate framework for highly selective CO2 capture.
Basnayake, Sajani A; Su, Jie; Zou, Xiadong; Balkus, Kenneth J
2015-02-16
In this study, we report the formation of a new crystal structure, ZIF-CO3-1, which results from the reaction of Zn(2+), 2-methylimidazole, and carbonate. ZIF-CO3-1 can be synthesized solvothermally in N,N-dimethylformamide (DMF)/water (H2O) or by utilizing of CO2 gas at various temperatures in DMF/H2O or H2O. This reaction selectively consumes CO2 because CO2 is incorporated in the ZIF as carbonate. CO2 can be quantitatively released by acidifying the ZIF. Powder X-ray diffraction, single-crystal X-ray diffraction, FTIR spectroscopy, scanning electron microscopy, elemental analysis, and thermogravimetric analysis were used to characterize the ZIF structure. ZIF-CO3-1 (chemical formula C9H10N4O3Zn2), crystallizes in the orthorhombic crystal system with noncentrosymmetric space group Pba2.
Chen, Yu Wai; Tajima, Toshitaka; Rees, Martin; Garcia-Maya, Mitla
2009-09-01
Human homologue A of Rad23 (hHR23A) plays dual roles in DNA repair as well as serving as a shuttle vehicle targeting polyubiquitinated proteins for degradation. Its N-terminal ubiquitin-like (UbL) domain interacts with the 19S proteasomal cap and provides the docking mechanism for protein delivery. Pyramidal crystals of the UbL domain of hHR23A were obtained by the hanging-drop vapour-diffusion method with ammonium sulfate as the crystallizing agent. The crystals diffracted to beyond 2 A resolution and belonged to the hexagonal space group P6(5)22, with unit-cell parameters a = b = 78.48, c = 63.57 A. The structure was solved by molecular replacement using the UbL domain of yeast Dsk2 as the search model.
Lorenzo, Daniel A; Forrest, Sebastian J K; Sparkes, Hazel A
2016-02-01
A number of hydrogen-bonded co-crystals, consisting of a cinnamic acid derivative and a pyridyl co-crystallizer, have been synthesized and their properties investigated by X-ray diffraction. Samples were prepared by recrystallization or solvent drop grinding of trans-cinnamic acid (1), 4-methylcinnamic acid (2), 4-methoxy cinnamic acid (3) or 3,4-methoxy cinnamic acid (4), with 4,4-dipyridyl (A), iso-nicotinamide (B) or nicotinamide (C). The X-ray single-crystal structures of seven novel co-crystals, obtained through recrystallization, are examined and the hydrogen-bonding interactions discussed. Consistent hydrogen-bonding motifs were observed for samples prepared when using 4,4-dipyridyl (A) or iso-nicotinamide (B) as the co-crystallizing agent. Powder X-ray diffraction analysis of the samples prepared by solvent drop grinding suggests the formation of ten co-crystals.
Diffraction of three-colour radiation on an acoustic wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotov, V M
We study acousto-optic Bragg diffraction of three-colour radiation having wavelengths of 488, 514 and 633 nm on a single acoustic wave propagating in a TeO{sub 2} crystal. A technique is developed that allows one to find diffraction regimes with a proportional change in the intensity of all radiations by varying the acoustic power. According to the technique, radiation with a maximum wavelength has to be in strict Bragg synchronism with the acoustic wave, while other radiations diffract during the synchronism detuning. The results obtained using this technique are experimentally confirmed. (diffraction of light)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadhasivam, S.; Rajesh, N.P., E-mail: rajeshnp@hotmail.com
2016-02-15
Highlights: • Inorganic NdPO{sub 4} crystal was grown first time using potassium polyphosphate (K{sub 6}P{sub 4}O{sub 13}) flux. • NdPO{sub 4} crystal is insoluble in water, non-hygroscopic and high radiation resistance favoring for actinides host. • Actinide immobilization can be made at 1273 K. • High yield of 1061 nm photon emission. - Abstract: Rare earth orthophosphate (NdPO{sub 4}) monazite single crystals were grown using high temperature flux growth method employing K{sub 6}P{sub 4}O{sub 13} (K{sub 6}) as molten solvent. Their structural parameters were studied using single crystal X-ray diffraction (XRD) method. The grown crystals were examined by SEM andmore » EDX techniques for their homogeniousity and inclusion in the crystals. The influence of gamma irradiation in structural and optical absorption properties were studied by the powder XRD, FTIR and reflectance spectroscopy. The effect of gamma irradiation on luminescence properties was recorded. No significant structural change is observed up to 150 kGy gamma dose. The gamma ray induced charge trap in the crystal was saturated to 40 kGy dose. The luminescence intensity decreases with an increase in the irradiation. The emission of luminescence intensity stabilizes above 40 kGy gamma dose.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Sangeeta, E-mail: spt658@aucklanduni.ac.nz; Wei, Shanghai; Han, Jie
In this present study, hydroxyapatite which was obtained from cattle bones has been heat treated at temperature 400 °C and 600 °C. The microstructure after the treatment has been studied in detail using Transmission electron microscopy (TEM) and X-ray diffraction techniques. The TEM results indicate that natural bone consists of collagen and hydroxyapatite nano-crystals which are needle shaped. The heat treatment influences the crystallinity and growth of these hydroxyapatite nano-crystals known as ‘crystal maturation’ or ‘crystal ageing’. - Highlights: • Hydroxyapatite is obtained from cattle bones. • Material has been characterised using XRD and TEM. • Crystal growth and orientationmore » has been studied in detail.« less
Solid-state reaction kinetics of neodymium doped magnesium hydrogen phosphate system
NASA Astrophysics Data System (ADS)
Gupta, Rashmi; Slathia, Goldy; Bamzai, K. K.
2018-05-01
Neodymium doped magnesium hydrogen phosphate (NdMHP) crystals were grown by using gel encapsulation technique. Structural characterization of the grown crystals has been carried out by single crystal X-ray diffraction (XRD) and it revealed that NdMHP crystals crystallize in orthorhombic crystal system with space group Pbca. Kinetics of the decomposition of the grown crystals has been studied by non-isothermal analysis. The estimation of decomposition temperatures and weight loss has been made from the thermogravimetric/differential thermo analytical (TG/DTA) in conjuncture with DSC studies. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters.
Characterization of calcium crystals in Abelia using x-ray diffraction and electron microscopes
USDA-ARS?s Scientific Manuscript database
Localization, chemical composition, and morphology of calcium crystals in leaves and stems of Abelia mosanensis and A. ×grandiflora were analyzed with a variable pressure scanning electron microscope (VP-SEM) equipped with an X-ray diffraction system, low temperature SEM (LT-SEM) and a transmission ...
Using Two-Dimensional Colloidal Crystals to Understand Crystallography
ERIC Educational Resources Information Center
Bosse, Stephanie A.; Loening, Nikolaus M.
2008-01-01
X-ray crystallography is an essential technique for modern chemistry and biochemistry, but it is infrequently encountered by undergraduate students owing to lack of access to equipment, the time-scale for generating diffraction-quality molecular crystals, and the level of mathematics involved in analyzing the resulting diffraction patterns.…
Dislocation, crystallite size distribution and lattice strain of magnesium oxide nanoparticles
NASA Astrophysics Data System (ADS)
Sutapa, I. W.; Wahid Wahab, Abdul; Taba, P.; Nafie, N. L.
2018-03-01
The oxide of magnesium nanoparticles synthesized using sol-gel method and analysis of the structural properties was conducted. The functional groups of nanoparticles has been analysed by Fourier Transform Infrared Spectroscopy (FT-IR). Dislocations, average size of crystal, strain, stress, the energy density of crystal, crystallite size distribution and morphologies of the crystals were determined based on X-ray diffraction profile analysis. The morphological of the crystal was analysed based on the image resulted from SEM analysis. The crystallite size distribution was calculated with the contention that the particle size has a normal logarithmic form. The most orientations of crystal were determined based on the textural crystal from diffraction data of X-ray diffraction profile analysis. FT-IR results showed the stretching vibration mode of the Mg-O-Mg in the range of 400.11-525 cm-1 as a broad band. The average size crystal of nanoparticles resulted is 9.21 mm with dislocation value of crystal is 0.012 nm-2. The strains, stress, the energy density of crystal are 1.5 x 10-4 37.31 MPa; 0.72 MPa respectively. The highest texture coefficient value of the crystal is 0.98. This result is supported by morphological analysis using SEM which shows most of the regular cubic-shaped crystals. The synthesis method is suitable for simple and cost-effective synthesis model of MgO nanoparticles.
NASA Astrophysics Data System (ADS)
Sievänen, Elina; Toušek, Jaromír; Lunerová, Kamila; Marek, Jaromír; Jankovská, Dagmar; Dvorská, Margita; Marek, Radek
2010-08-01
In this article we present a detailed structural investigation for five homoisoflavonoids, molecules important from the pharmacological point of view. For studying the electron distribution as well as its influence on the physicochemical properties, NMR spectroscopy, X-ray diffraction, and theoretical calculations have been used. Nuclear magnetic shieldings obtained by using DFT calculations for optimized molecular geometries are correlated with the experimentally determined chemical shifts. The theoretical data are well in agreement with the experimental values. The single crystal X-ray structures of homoisoflavonoid derivatives 1, 3, and 4 have been solved. The molecular geometries and crystal packing determined by X-ray diffraction are used for characterizing the intermolecular interactions. Electron distribution is crucial for the stability of radicals and hence the antioxidant efficiency of flavonoid structures. The hydrogen bonding governs the formation of complexes of homoisoflavonoids with biological targets.
Single-drop optimization of protein crystallization.
Meyer, Arne; Dierks, Karsten; Hilterhaus, Dierk; Klupsch, Thomas; Mühlig, Peter; Kleesiek, Jens; Schöpflin, Robert; Einspahr, Howard; Hilgenfeld, Rolf; Betzel, Christian
2012-08-01
A completely new crystal-growth device has been developed that permits charting a course across the phase diagram to produce crystalline samples optimized for diffraction experiments. The utility of the device is demonstrated for the production of crystals for the traditional X-ray diffraction data-collection experiment, of microcrystals optimal for data-collection experiments at a modern microbeam insertion-device synchrotron beamline and of nanocrystals required for data collection on an X-ray laser beamline.
Discovery of a metastable Al20Sm4 phase
NASA Astrophysics Data System (ADS)
Ye, Z.; Zhang, F.; Sun, Y.; Mendelev, M. I.; Ott, R. T.; Park, E.; Besser, M. F.; Kramer, M. J.; Ding, Z.; Wang, C.-Z.; Ho, K.-M.
2015-03-01
We present an efficient genetic algorithm, integrated with experimental diffraction data, to solve a nanoscale metastable Al20Sm4 phase that evolves during crystallization of an amorphous magnetron sputtered Al90Sm10 alloy. The excellent match between calculated and experimental X-ray diffraction patterns confirms an accurate description of this metastable phase. Molecular dynamic simulations of crystal growth from the liquid phase predict the formation of disordered defects in the devitrified crystal.
Gelator-doped liquid-crystal phase grating with multistable and dynamic modes
NASA Astrophysics Data System (ADS)
Lin, Hui-Chi; Yang, Meng-Ru; Tsai, Sheng-Feng; Yan, Shih-Chiang
2014-01-01
We demonstrate a gelator-doped nematic liquid-crystal (LC) phase grating, which can be operated in both the multistable mode and the dynamic mode. Thermoreversible association and dissociation of the gelator molecules can vary and fix the multistable diffraction efficiencies of the gratings. A voltage (V) can also be applied to modulate dynamically the diffraction efficiencies of the grating, which behaves as a conventional LC grating. Experimental results show that the variations of the diffraction efficiencies in the multistable and dynamic modes are similar. The maximum diffraction efficiency is approximately 30% at V = 2 V.
Gelator-doped liquid-crystal phase grating with multistable and dynamic modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Hui-Chi, E-mail: huichilin@nfu.edu.tw; Yang, Meng-Ru; Tsai, Sheng-Feng
2014-01-06
We demonstrate a gelator-doped nematic liquid-crystal (LC) phase grating, which can be operated in both the multistable mode and the dynamic mode. Thermoreversible association and dissociation of the gelator molecules can vary and fix the multistable diffraction efficiencies of the gratings. A voltage (V) can also be applied to modulate dynamically the diffraction efficiencies of the grating, which behaves as a conventional LC grating. Experimental results show that the variations of the diffraction efficiencies in the multistable and dynamic modes are similar. The maximum diffraction efficiency is approximately 30% at V = 2 V.
Ultra-fast switching blue phase liquid crystals diffraction grating stabilized by chiral monomer
NASA Astrophysics Data System (ADS)
Manda, Ramesh; Pagidi, Srinivas; Sarathi Bhattacharya, Surjya; Yoo, Hyesun; T, Arun Kumar; Lim, Young Jin; Lee, Seung Hee
2018-05-01
We have demonstrated an ultra-fast switching and efficient polymer stabilized blue phase liquid crystal (PS-BPLC) diffraction grating utilizing a chiral monomer. We have obtained a 0.5 ms response time by a novel polymer stabilization method which is three times faster than conventional PS-BPLC. In addition, the diffraction efficiency was improved 2% with a much wider phase range and the driving voltage to switch the device is reduced. The polarization properties of the diffracted beam are unaffected by this novel polymer stabilization. This device can be useful for future photonic applications.
X-ray Microscopic Characterization of Protein Crystals
NASA Technical Reports Server (NTRS)
Hu, Z. W.; Holmes, A.; Thomas, B.R.; Chernov, a. A.; Chu, Y. S.; Lai, B.
2004-01-01
The microscopic mapping of the variation in degree of perfection and in type of defects in entire protein crystals by x-rays may well be a prerequisite for better understanding causes of lattice imperfections, the growth history, and properties of protein crystals. However, x-ray microscopic characterization of bulk protein crystals, in the as-grown state, is frequently more challenging than that of small molecular crystals due to the experimental difficulties arising largely from the unique features possessed by protein crystals. In this presentation, we will illustrate ssme recent activities in employing coherence-based phase contrast x-ray imaging and high-angular-resolution diffraction techniques for mapping microdefects and the degree of perfection of protein crystals, and demonstrate a correlation between crystal perfection, diffraction phenomena., and crystallization conditions. The observed features and phenomena will be discussed in context to gain insight into the nature of defects, nucleation and growth, and the properties of protein crystals.
Macromolecule Crystal Quality Improvement in Microgravity: The Role of Impurities
NASA Technical Reports Server (NTRS)
Judge, Russell A.; Snell, Edward H.; Pusey, Marc L.; Sportiello, Michael G.; Todd, Paul; Bellamy, Henry; Borgstahl, Gloria E.; Pokros, Matt; Cassanto, John M.
2000-01-01
While macromolecule impurities may affect crystal size and morphology the over-riding question is; "How do macromolecule impurities effect crystal X-ray quality and diffraction resolution?" In the case of chicken egg white lysozyme, crystals can be grown in the presence of a number of impurities without affecting diffraction resolution. One impurity however, the lysozyme dimer, does negatively impact the X-ray crystal properties. Crystal quality improvement as a result of better partitioning of this impurity during crystallization in microgravity has been reported'. In our recent experimental work dimer partitioning was found to be not significantly different between the two environments. Mosaicity analysis of pure crystals showed a reduced mosaicity and increased signal to noise for the microgravity grown crystals. Dimer incorporation however, did greatly reduce the resolution limit in both ground and microgravity grown crystals. These results indicate that impurity effects in microgravity are complex and may rely on the conditions or techniques employed.
Photonic crystal borax competitive binding carbohydrate sensing motif†
Cui, Qingzhou; Muscatello, Michelle M. Ward; Asher, Sanford A.
2009-01-01
We developed a photonic crystal sensing method for diol containing species such as carbohydrates based on a poly(vinyl alcohol) (PVA) hydrogel containing an embedded crystalline colloidal array (CCA). The polymerized CCA (PCCA) diffracts visible light. We show that in the presence of borax the diffraction wavelength shifts as the concentration of glucose changes. The diffraction shifts result from the competitive binding of glucose to borate, which reduces the concentration of borate bound to the PVA diols. PMID:19381378
Investigation of Renal Stones by X-ray and Neutron Diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baeva, M.; Boianova, A.; Beskrovnyi, A. I.
2007-04-23
Renal stones were investigated by X-ray diffraction. The obtained results showed only one crystal phase in every sample. With the aim to verify eventual availability of second phase (under 3 volume %) the same renal stones were investigated by neutron diffraction. The neutron spectra proved that additional crystal phase was absent in the renal stones. The obtained results are scientific-practical, in aid of the medicine, especially in the case of renal stone disease.
Crystals of Serum Albumin for Use in Genetic Engineering and Rational Drug Design
NASA Technical Reports Server (NTRS)
Carter, Daniel C. (Inventor)
1996-01-01
Serum albumin crystal forms have been produced which exhibit superior x-ray diffraction quality. The crystals are produced from both recombinant and wild-type human serum albumin, canine, and baboon serum albumin and allow the performance of drug-binding studies as well as genetic engineering studies. The crystals are grown from solutions of polyethylene glycol or ammonium sulphate within prescribed limits during growth times from one to several weeks and include the following space groups: P2(sub 1), C2, P1.
NASA Astrophysics Data System (ADS)
Sinitsyna, E. V.; Timofeev, V. I.; Tuzova, E. S.; Kostromina, M. A.; Murav'eva, T. I.; Esipov, R. S.; Kuranova, I. P.
2017-07-01
Adenine phosphoribosyltransferase (APRT) belongs to the type I phosphoribosyltransferase family and catalyzes the formation of adenosine monophosphate via transfer of the 5-phosphoribosyl group from phosphoribosyl pyrophosphate to the nitrogen atom N9 of the adenine base. Proteins of this family are involved in a salvage pathway of nucleotide synthesis, thus providing purine base utilization and maintaining the optimal level of purine bases in the body. Adenine phosphoribosyltransferase from the extremely thermophilic Thermus thermophilus strain HB27 was produced using a highly efficient E. coli producer strain and was then purified by affinity and gel-filtration chromatography. This enzyme was successfully employed as a catalyst for the cascade biosynthesis of biologically important nucleotides. The screening of crystallization conditions for recombinant APRT from T. thermophilus HB27 was performed in order to determine the enzyme structure by X-ray diffraction. The crystallization conditions, which were found by the vapor-diffusion technique, were then optimized to apply the counter-diffusion technique. The crystals of the enzyme were grown by the capillary counter-diffusion method. The crystals belong to sp. gr. P1211 and have the following unitcell parameters: a = 69.86 Å, b = 82.16 Å, c = 91.39 Å, α = γ = 90°, β = 102.58°. The X-ray diffraction data set suitable for the determination of the APRT structure at 2.6 Å resolution was collected from the crystals at the SPring-8 synchrotron facility (Japan).
Corrosion and Passivity Studies with Titanium
1955-09-30
the (00.1) Face of a Titanium Single Crystal . - Part 3 Secondary Electron Emission from the Titanium Crystal , and from the Copper-Covered Titanium...ner upon the (00.1) face of a titaniuT single crystal . Low- energy electron diffraction is used to investigate the struc- ture of the deposit. Before...cathode emisaion is strongly dependent on the work function k. 8ince varies with crystal faces and the tip is generally so small that it is a single
Sparks, N.H.C.; Mann, S.; Bazylinski, D.A.; Lovley, D.R.; Jannasch, H.W.; Frankel, R.B.
1990-01-01
Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo??ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 ?? 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of {110} faces which are capped and truncated by {111} end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization. ?? 1990.
Second generation crystals for Laue lens applications
NASA Astrophysics Data System (ADS)
Barrière, N.; von Ballmoos, P.; Bastie, P.; Courtois, P.; Abrosimov, N. V.; Andersen, K.; Halloin, H.; Skinner, G.; Smither, R. K.
2006-06-01
A Laue lens gamma-ray telescope represents an exciting concept for a future high-energy mission. The feasibility of such a lens has been demonstrated by the CLAIRE lens prototype; since then various mission concepts featuring a Laue lens are being developed. The latest, which is also the most ambitious, is the European Gamma-Ray Imager (GRI). However, advancing from the CLAIRE prototype to a scientifically exploitable Laue lens requires still substantial research and development. First and foremost, diffracting elements (crystals) that constitute the Laue lens have to be optimized to offer the best efficiency and imaging capabilities for the resulting telescope. The characteristics of selected candidate crystals were measured at the European Synchrotron Radiation Facility on the high-energy beamline ID 15A using a beam tuned at 292 keV. The studied low mosaicity copper crystals have shown absolute reflectivity reaching 30%. These crystals are promising for the realization of a Laue lens, despite the fact that they produce a diffracted beam featuring a Gaussian intensity profile, which contributes to the spread of the focal spot. A composition gradient Si 1-x-Ge x crystal has been investigated as well, which showed a diffraction efficiency reaching 50% (disregarding absorption) - half of the theoretical maximum - that represents an absolute reflectivity around 39 %, the best that we measured at this energy to date. This gradient crystal also showed a square-shaped rocking curve that is almost the best case to minimize the spread of the focal spot. We also show that bending a gradient crystal could still enhance the focusing. Thanks to the better focusing, a factor of 2 in sensitivity improvement may be achieved.
NASA Astrophysics Data System (ADS)
Lassoued, Mohamed Saber; Abdelbaky, Mohammed S. M.; Lassoued, Abdelmajid; Ammar, Salah; Gadri, Abdellatif; Ben Salah, Abdelhamid; García-Granda, Santiago
2018-03-01
The present paper undertakes the study of (C6H16N2) SnCl6·3H2O which is a new hybrid compound. It was prepared and characterized by single crystal X-ray diffraction, X-ray powder, Hirshfeld surface, Spectroscopy measurement, thermal study and photoluminescence properties. The single crystal X-ray diffraction studies revealed that the compound crystallizes in monoclinic Cc space group with cell parameters a = 8.3309(9) Å, b = 22.956(2) Å, c = 9.8381(9) Å, β = 101.334(9) ° and Z = 4. The atomic arrangement shows an alternation of organic and inorganic entities. The cohesion between these entities is performed via Nsbnd H⋯Cl, Nsbnd H⋯O, Osbnd H⋯Cl and Osbnd H⋯O hydrogen bonding to form a three-dimensional network. Hirshfeld surface analysis was used to investigate intermolecular interactions, as well 2D finger plots were conducted to reveal the contribution of these interactions in the crystal structure quantitatively. The X-ray powder is in agreement with the X-ray structure. Scanning electron microscope (SEM) was carried out. Furthermore, the room temperature infrared (IR) spectrum of the title compound was recorded and analyzed on the basis of data found in the literature. Solid state 13C NMR spectrum shows four signals, confirming the solid state structure determined by X-ray diffraction. Besides, the thermal analysis studies were performed, but no phase transition was found in the temperature range between 30 and 450 °C. The optical and PL properties of the compound were investigated in the solid state at room temperature and exhibited three bands at 348 and 401 cm-1 and a strong fluorescence at 480 nm.
One-Dimensional Photonic Crystal Superprisms
NASA Technical Reports Server (NTRS)
Ting, David
2005-01-01
Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.
Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei
2015-03-01
Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods will become crucially important in the near future.
NASA Astrophysics Data System (ADS)
Rajkumar, R.; Praveen Kumar, P.
2018-05-01
Optical transparent crystal of piperazinium hydrogen phosphite monohydrate (PHPM) was grown by slow evaporation method. The grown crystal was characterized by single crystal X-ray diffraction analysis and the crystal belongs to monoclinic system. The functional groups present in PHPM crystal were confirmed by FTIR analysis. UV-Visible spectrum shows that the PHPM crystal is transparent in the visible region. The mechanical behavior of PHPM crystal was characterized by Vickers hardness test. Thermal stability of PHPM crystal was analyzed by thermogravimetric analysis. Dielectric studies were also carried out for the grown crystal. The third-order nonlinear parameters such as nonlinear refractive index and nonlinear absorption coefficient have been calculated using Z scan technique.
Liquid crystal devices especially for use in liquid crystal point diffraction interferometer systems
NASA Technical Reports Server (NTRS)
Marshall, Kenneth L. (Inventor)
2009-01-01
Liquid crystal point diffraction interferometer (LCPDI) systems that can provide real-time, phase-shifting interferograms that are useful in the characterization of static optical properties (wavefront aberrations, lensing, or wedge) in optical elements or dynamic, time-resolved events (temperature fluctuations and gradients, motion) in physical systems use improved LCPDI cells that employ a "structured" substrate or substrates in which the structural features are produced by thin film deposition or photo resist processing to provide a diffractive element that is an integral part of the cell substrate(s). The LC material used in the device may be doped with a "contrast-compensated" mixture of positive and negative dichroic dyes.
Liquid crystal devices especially for use in liquid crystal point diffraction interferometer systems
Marshall, Kenneth L [Rochester, NY
2009-02-17
Liquid crystal point diffraction interferometer (LCPDI) systems that can provide real-time, phase-shifting interferograms that are useful in the characterization of static optical properties (wavefront aberrations, lensing, or wedge) in optical elements or dynamic, time-resolved events (temperature fluctuations and gradients, motion) in physical systems use improved LCPDI cells that employ a "structured" substrate or substrates in which the structural features are produced by thin film deposition or photo resist processing to provide a diffractive element that is an integral part of the cell substrate(s). The LC material used in the device may be doped with a "contrast-compensated" mixture of positive and negative dichroic dyes.
Beam-splitter switches based on zenithal bistable liquid-crystal gratings.
Zografopoulos, Dimitrios C; Beccherelli, Romeo; Kriezis, Emmanouil E
2014-10-01
The tunable optical diffractive properties of zenithal bistable nematic liquid-crystal gratings are theoretically investigated. The liquid-crystal orientation is rigorously solved via a tensorial formulation of the Landau-de Gennes theory and the optical transmission properties of the gratings are investigated via full-wave finite-element frequency-domain simulations. It is demonstrated that by proper design the two stable states of the grating can provide nondiffracting and diffracting operation, the latter with equal power splitting among different diffraction orders. An electro-optic switching mechanism, based on dual-frequency nematic materials, and its temporal dynamics are further discussed. Such gratings provide a solution towards tunable beam-steering and beam-splitting components with extremely low power consumption.
Three-dimensional Bragg coherent diffraction imaging of an extended ZnO crystal.
Huang, Xiaojing; Harder, Ross; Leake, Steven; Clark, Jesse; Robinson, Ian
2012-08-01
A complex three-dimensional quantitative image of an extended zinc oxide (ZnO) crystal has been obtained using Bragg coherent diffraction imaging integrated with ptychography. By scanning a 2.5 µm-long arm of a ZnO tetrapod across a 1.3 µm X-ray beam with fine step sizes while measuring a three-dimensional diffraction pattern at each scan spot, the three-dimensional electron density and projected displacement field of the entire crystal were recovered. The simultaneously reconstructed complex wavefront of the illumination combined with its coherence properties determined by a partial coherence analysis implemented in the reconstruction process provide a comprehensive characterization of the incident X-ray beam.
Deterministic Bragg Coherent Diffraction Imaging.
Pavlov, Konstantin M; Punegov, Vasily I; Morgan, Kaye S; Schmalz, Gerd; Paganin, David M
2017-04-25
A deterministic variant of Bragg Coherent Diffraction Imaging is introduced in its kinematical approximation, for X-ray scattering from an imperfect crystal whose imperfections span no more than half of the volume of the crystal. This approach provides a unique analytical reconstruction of the object's structure factor and displacement fields from the 3D diffracted intensity distribution centred around any particular reciprocal lattice vector. The simple closed-form reconstruction algorithm, which requires only one multiplication and one Fourier transformation, is not restricted by assumptions of smallness of the displacement field. The algorithm performs well in simulations incorporating a variety of conditions, including both realistic levels of noise and departures from ideality in the reference (i.e. imperfection-free) part of the crystal.
Ullah, Anwar; Magalhães, Geraldo Santana; Masood, Rehana; Mariutti, Ricardo Barros; Coronado, Monika Aparecida; Murakami, Mário Tyago; Barbaro, Katia Cristina; Arni, Raghuvir Krishnaswamy
2014-10-01
Brown spider envenomation results in dermonecrosis, intravascular coagulation, haemolysis and renal failure, mainly owing to the action of sphingomyelinases D (SMases D), which catalyze the hydrolysis of sphingomyelin to produce ceramide 1-phosphate and choline or the hydrolysis of lysophosphatidylcholine to produce lysophosphatidic acid. Here, the heterologous expression, purification, crystallization and preliminary X-ray diffraction analysis of LgRec1, a novel SMase D from Loxosceles gaucho venom, are reported. The crystals belonged to space group P21212, with unit-cell parameters a = 52.98, b = 62.27, c = 84.84 Å and diffracted to a maximum resolution of 2.6 Å.
Ullah, Anwar; Magalhães, Geraldo Santana; Masood, Rehana; Mariutti, Ricardo Barros; Coronado, Monika Aparecida; Murakami, Mário Tyago; Barbaro, Katia Cristina; Arni, Raghuvir Krishnaswamy
2014-01-01
Brown spider envenomation results in dermonecrosis, intravascular coagulation, haemolysis and renal failure, mainly owing to the action of sphingomyelinases D (SMases D), which catalyze the hydrolysis of sphingomyelin to produce ceramide 1-phosphate and choline or the hydrolysis of lysophosphatidylcholine to produce lysophosphatidic acid. Here, the heterologous expression, purification, crystallization and preliminary X-ray diffraction analysis of LgRec1, a novel SMase D from Loxosceles gaucho venom, are reported. The crystals belonged to space group P21212, with unit-cell parameters a = 52.98, b = 62.27, c = 84.84 Å and diffracted to a maximum resolution of 2.6 Å. PMID:25286953
Philip, Armelle; Meyssonnier, Jacques; Kluender, Rafael T.; Baruchel, José
2013-01-01
Rocking curve imaging (RCI) is a quantitative version of monochromatic beam diffraction topography that involves using a two-dimensional detector, each pixel of which records its own ‘local’ rocking curve. From these local rocking curves one can reconstruct maps of particularly relevant quantities (e.g. integrated intensity, angular position of the centre of gravity, FWHM). Up to now RCI images have been exploited in the reflection case, giving a quantitative picture of the features present in a several-micrometre-thick subsurface layer. Recently, a three-dimensional Bragg diffraction imaging technique, which combines RCI with ‘pinhole’ and ‘section’ diffraction topography in the transmission case, was implemented. It allows three-dimensional images of defects to be obtained and measurement of three-dimensional distortions within a 50 × 50 × 50 µm elementary volume inside the crystal with angular misorientations down to 10−5–10−6 rad. In the present paper, this three-dimensional-RCI (3D-RCI) technique is used to study one of the grains of a three-grained ice polycrystal. The inception of the deformation process is followed by reconstructing virtual slices in the crystal bulk. 3D-RCI capabilities allow the effective distortion in the bulk of the crystal to be investigated, and the predictions of diffraction theories to be checked, well beyond what has been possible up to now. PMID:24046486
Philip, Armelle; Meyssonnier, Jacques; Kluender, Rafael T; Baruchel, José
2013-08-01
Rocking curve imaging (RCI) is a quantitative version of monochromatic beam diffraction topography that involves using a two-dimensional detector, each pixel of which records its own 'local' rocking curve. From these local rocking curves one can reconstruct maps of particularly relevant quantities ( e.g. integrated intensity, angular position of the centre of gravity, FWHM). Up to now RCI images have been exploited in the reflection case, giving a quantitative picture of the features present in a several-micrometre-thick subsurface layer. Recently, a three-dimensional Bragg diffraction imaging technique, which combines RCI with 'pinhole' and 'section' diffraction topography in the transmission case, was implemented. It allows three-dimensional images of defects to be obtained and measurement of three-dimensional distortions within a 50 × 50 × 50 µm elementary volume inside the crystal with angular misorientations down to 10 -5 -10 -6 rad. In the present paper, this three-dimensional-RCI (3D-RCI) technique is used to study one of the grains of a three-grained ice polycrystal. The inception of the deformation process is followed by reconstructing virtual slices in the crystal bulk. 3D-RCI capabilities allow the effective distortion in the bulk of the crystal to be investigated, and the predictions of diffraction theories to be checked, well beyond what has been possible up to now.
About Small Streams and Shiny Rocks: Macromolecular Crystal Growth in Microfluidics
NASA Technical Reports Server (NTRS)
vanderWoerd, Mark; Ferree, Darren; Spearing, Scott; Monaco, Lisa; Molho, Josh; Spaid, Michael; Brasseur, Mike; Curreri, Peter A. (Technical Monitor)
2002-01-01
We are developing a novel technique with which we have grown diffraction quality protein crystals in very small volumes, utilizing chip-based, microfluidic ("LabChip") technology. With this technology volumes smaller than achievable with any laboratory pipette can be dispensed with high accuracy. We have performed a feasibility study in which we crystallized several proteins with the aid of a LabChip device. The protein crystals are of excellent quality as shown by X-ray diffraction. The advantages of this new technology include improved accuracy of dispensing for small volumes, complete mixing of solution constituents without bubble formation, highly repeatable recipe and growth condition replication, and easy automation of the method. We have designed a first LabChip device specifically for protein crystallization in batch mode and can reliably dispense and mix from a range of solution constituents. We are currently testing this design. Upon completion additional crystallization techniques, such as vapor diffusion and liquid-liquid diffusion will be accommodated. Macromolecular crystallization using microfluidic technology is envisioned as a fully automated system, which will use the 'tele-science' concept of remote operation and will be developed into a research facility aboard the International Space Station.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurjar, Abhijit A.; Yennawar, Neela H.; Yennawar, Hemant P.
2007-06-01
The cloning, expression, purification and crystallization of recombinant Clostridium perfringens β2-toxin is described. The crystals diffracted to 2.9 Å resolution. Clostridium perfringens is a Gram-positive sporulating anaerobic bacterium that is responsible for a wide spectrum of diseases in animals, birds and humans. The virulence of C. perfringens is associated with the production of several enterotoxins and exotoxins. β2-toxin is a 28 kDa exotoxin produced by C. perfringens. It is implicated in necrotic enteritis in animals and humans, a disease characterized by a sudden acute onset with lethal hemorrhagic mucosal ulceration. The recombinant expression, purification and crystallization of β2-toxin using themore » batch-under-oil technique are reported here. Native X-ray diffraction data were obtained to 2.9 Å resolution on a synchrotron beamline at the F2 station at Cornell High Energy Synchrotron Source (CHESS) using an ADSC Quantum-210 CCD detector. The crystals belong to space group R3, with a dimer in the asymmetric unit; the unit-cell parameters are a = b = 103.71, c = 193.48 Å, α = β = 90, γ = 120° using the hexagonal axis setting. A self-rotation function shows that the two molecules are related by a noncrystallographic twofold axis with polar angles ω = 90.0, ϕ = 210.3°.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Sibani; Biswas, Sampa; Chakrabarti, Chandana
2005-06-01
Ervatamin A is a papain-family cysteine protease with high activity and stability. It has been isolated and purified from the latex of the medicinal flowering plant E. coronaria and crystallized by the vapour-diffusion technique. Crystals diffracted to 2.1 Å and the structure was solved by molecular replacement. The ervatamins are highly stable cysteine proteases that are present in the latex of the medicinal plant Ervatamia coronaria and belong to the papain family, members of which share similar amino-acid sequences and also a similar fold comprising two domains. Ervatamin A from this family, a highly active protease compared with others frommore » the same source, has been purified to homogeneity by ion-exchange chromatography and crystallized by the vapour-diffusion method. Needle-shaped crystals of ervatamin A diffract to 2.1 Å resolution and belong to space group C222{sub 1}, with unit-cell parameters a = 31.10, b = 144.17, c = 108.61 Å. The solvent content using an ervatamin A molecular weight of 27.6 kDa is 43.9%, with a V{sub M} value of 2.19 Å{sup 3} Da{sup −1} assuming one protein molecule in the asymmetric unit. A molecular-replacement solution has been found using the structure of ervatamin C as a search model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yap, Thai Leong; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551; Chen, Yen Liang
Crystals of the RNA-dependent RNA polymerase catalytic domain from the dengue virus NS5 protein have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration. These crystals diffract to 1.85 Å resolution and are thus suitable for a structure-based drug-design program. Dengue virus, a member of the Flaviviridae genus, causes dengue fever, an important emerging disease with several million infections occurring annually for which no effective therapy exists. The viral RNA-dependent RNA polymerase NS5 plays an important role in virus replication and represents anmore » interesting target for the development of specific antiviral compounds. Crystals that diffract to 1.85 Å resolution that are suitable for three-dimensional structure determination and thus for a structure-based drug-design program have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration.« less
Supercritical carbon dioxide treatment as a method for polymorph preparation of deoxycholic acid.
Tozuka, Yuichi; Kawada, Dai; Oguchi, Toshio; Yamamoto, Keiji
2003-09-16
A new polymorph of deoxycholic acid (DCA) was formed by using a supercritical carbon dioxide treatment. Deoxycholic acid crystals were stored in a pressure vessel purged with carbon dioxide at 12MPa, 60 degrees C for definite intervals. After storage for 1h in supercritical carbon dioxide (SC-CO2), new X-ray diffraction (XRD) peaks, not found in the bulk DCA crystal, were observed at 2theta = 7.4 degrees, 9.7 degrees and 14.0 degrees. The intensities of the new diffraction peaks increased with an increase in storage time, whereas the intensities of the diffraction peaks due to bulk DCA crystal decreased. On the DSC curves, the crystals obtained showed an exothermic peak at around 155 degrees C followed by the melting peak of bulk DCA crystal at 175 degrees C. By the temperature-controlled powder XRD measurement, the crystals obtained were found to be a metastable form of DCA. The polymorphs of DCA have not been reported; therefore, the SC-CO2 treatment would be a peculiar method to obtain a DCA polymorph.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Zhenming; Guo Zhenqi; Li Jianguo
2004-12-15
A new method for the evaluation of the quality of an Ohno continuous cast (OCC) Cu single crystal by X-ray diffraction (XRD) butterfly pattern was brought forward. Experimental results show that the growth direction of single crystal Cu is inclined from both sides of the single crystal Cu rod to the axis and is axially symmetric. The degree of deviation from the [100] orientation from the crystal axis is less than 5 deg. with a casting speed 10-40 mm/min. The orientation of single crystal Cu does not have a fixed direction but is in a regular range. Moreover, the orientationmore » of stray grains in the single crystal Cu is random from continuous casting.« less
Microseed matrix screening for optimization in protein crystallization: what have we learned?
D'Arcy, Allan; Bergfors, Terese; Cowan-Jacob, Sandra W; Marsh, May
2014-09-01
Protein crystals obtained in initial screens typically require optimization before they are of X-ray diffraction quality. Seeding is one such optimization method. In classical seeding experiments, the seed crystals are put into new, albeit similar, conditions. The past decade has seen the emergence of an alternative seeding strategy: microseed matrix screening (MMS). In this strategy, the seed crystals are transferred into conditions unrelated to the seed source. Examples of MMS applications from in-house projects and the literature include the generation of multiple crystal forms and different space groups, better diffracting crystals and crystallization of previously uncrystallizable targets. MMS can be implemented robotically, making it a viable option for drug-discovery programs. In conclusion, MMS is a simple, time- and cost-efficient optimization method that is applicable to many recalcitrant crystallization problems.
Microseed matrix screening for optimization in protein crystallization: what have we learned?
D’Arcy, Allan; Bergfors, Terese; Cowan-Jacob, Sandra W.; Marsh, May
2014-01-01
Protein crystals obtained in initial screens typically require optimization before they are of X-ray diffraction quality. Seeding is one such optimization method. In classical seeding experiments, the seed crystals are put into new, albeit similar, conditions. The past decade has seen the emergence of an alternative seeding strategy: microseed matrix screening (MMS). In this strategy, the seed crystals are transferred into conditions unrelated to the seed source. Examples of MMS applications from in-house projects and the literature include the generation of multiple crystal forms and different space groups, better diffracting crystals and crystallization of previously uncrystallizable targets. MMS can be implemented robotically, making it a viable option for drug-discovery programs. In conclusion, MMS is a simple, time- and cost-efficient optimization method that is applicable to many recalcitrant crystallization problems. PMID:25195878
X-ray evaluation of crystals for stellar spectrometers
NASA Technical Reports Server (NTRS)
Alexandropolos, N. G. (Editor)
1974-01-01
The report consists of three parts. The first part is an analysis of the principles involved in X-ray crystal evaluation and how they are applied to a number of crystals. The principles of crystal evaluation analysis as they apply to the special problems of X-ray astronomy are presented. A number of crystals were evaluated, and the energy dependence of the diffraction properties of (002) PET, (111) Ge, (101) ADP, (001) KAP, and (001) RAP are reported. The second part is a compilation of the diffraction properties of a number of crystals as reported by other authors. In the third part some technical details of a triple crystal spectrometer built by the author at Polytechnic Institute of Brooklyn are given. This spectrometer seems to be a most appropriate instrument for evaluation of crystal properties. (Modified author abstract)
Sugiyama, Shigeru; Nomura, Yusuke; Sakamoto, Taiichi; Kitatani, Tomoya; Kobayashi, Asako; Miyakawa, Shin; Takahashi, Yoshinori; Adachi, Hiroaki; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Nakamura, Yoshikazu; Matsumura, Hiroyoshi
2008-01-01
Aptamers, which are folded DNA or RNA molecules, bind to target molecules with high affinity and specificity. An RNA aptamer specific for the Fc fragment of human immunoglobulin G (IgG) has recently been identified and it has been demonstrated that an optimized 24-nucleotide RNA aptamer binds to the Fc fragment of human IgG and not to other species. In order to clarify the structural basis of the high specificity of the RNA aptamer, it was crystallized in complex with the Fc fragment of human IgG1. Preliminary X-ray diffraction studies revealed that the crystals belonged to the orthorhombic space group P21212, with unit-cell parameters a = 83.7, b = 107.2, c = 79.0 Å. A data set has been collected to 2.2 Å resolution. PMID:18931441
Kounosu, Asako; Hasegawa, Kazuya; Iwasaki, Toshio; Kumasaka, Takashi
2010-01-01
The hyperthermophilic archaeal Rieske-type [2Fe–2S] ferredoxin (ARF) from Sulfolobus solfataricus P1 contains a low-potential Rieske-type [2Fe–2S] cluster that has served as a tractable model for ligand-substitution studies on this protein family. Recombinant ARF harbouring a pET30a vector-derived N-terminal extension region plus a hexahistidine tag has been heterologously overproduced in Escherichia coli, purified and crystallized by the hanging-drop vapour-diffusion method using 0.05 M sodium acetate, 0.05 M HEPES, 2 M ammonium sulfate pH 5.5. The crystals diffracted to 1.85 Å resolution and belonged to the tetragonal space group P43212, with unit-cell parameters a = 60.72, c = 83.31 Å. The asymmetric unit contains one protein molecule. PMID:20606288
Kounosu, Asako; Hasegawa, Kazuya; Iwasaki, Toshio; Kumasaka, Takashi
2010-07-01
The hyperthermophilic archaeal Rieske-type [2Fe-2S] ferredoxin (ARF) from Sulfolobus solfataricus P1 contains a low-potential Rieske-type [2Fe-2S] cluster that has served as a tractable model for ligand-substitution studies on this protein family. Recombinant ARF harbouring a pET30a vector-derived N-terminal extension region plus a hexahistidine tag has been heterologously overproduced in Escherichia coli, purified and crystallized by the hanging-drop vapour-diffusion method using 0.05 M sodium acetate, 0.05 M HEPES, 2 M ammonium sulfate pH 5.5. The crystals diffracted to 1.85 A resolution and belonged to the tetragonal space group P4(3)2(1)2, with unit-cell parameters a = 60.72, c = 83.31 A. The asymmetric unit contains one protein molecule.
Purification, crystallization and preliminary X-ray analysis of the IgV domain of human nectin-4.
Xu, Xiang; Zhang, Xiaoai; Lu, Guangwen; Cai, Yongping
2012-08-01
Nectin-4 belongs to a family of immunoglobulin-like cell adhesion molecules and is highly expressed in cancer cells. Recently, nectin-4 was found to be a receptor of measles virus and the IgV domain sustains strong binding to measles virus H protein. In this study, the successful expression and purification of human nectin-4 V domain (nectin-4v) is reported. The purified protein was crystallized using the sitting-drop vapour-diffusion method. The crystals diffracted to 1.8 Å resolution and belonged to space group P2(1), with unit-cell parameters a = 33.1, b = 51.7, c = 56.9 Å, β = 94.7°. Preliminary analysis of the diffraction data was also performed.
Purification, crystallization and preliminary X-ray analysis of the IgV domain of human nectin-4
Xu, Xiang; Zhang, Xiaoai; Lu, Guangwen; Cai, Yongping
2012-01-01
Nectin-4 belongs to a family of immunoglobulin-like cell adhesion molecules and is highly expressed in cancer cells. Recently, nectin-4 was found to be a receptor of measles virus and the IgV domain sustains strong binding to measles virus H protein. In this study, the successful expression and purification of human nectin-4 V domain (nectin-4v) is reported. The purified protein was crystallized using the sitting-drop vapour-diffusion method. The crystals diffracted to 1.8 Å resolution and belonged to space group P21, with unit-cell parameters a = 33.1, b = 51.7, c = 56.9 Å, β = 94.7°. Preliminary analysis of the diffraction data was also performed. PMID:22869128
Pauling, Linus
1988-01-01
Analysis of the measured values of Q for the weak peaks (small maxima, usually considered to be background fluctuations, “noise”) on the x-ray powder diffraction curves for 17 rapidly quenched alloys leads directly to the conclusion that they are formed by an 820-atom or 1012-atom primitive cubic structure that by icosahedral twinning produces the so-called icosahedral quasi-crystals. PMID:16593948
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, K. F.; Murakami, M. T.; Cintra, A. C. O.
2007-04-01
Crotoxin, a potent neurotoxin from the venom of the South American rattlesnake Crotalus durissus terrificus, exists as a heterodimer formed between a phospholipase A{sub 2} and a catalytically inactive acidic phospholipase A{sub 2} analogue (crotapotin). Large single crystals of the crotoxin complex and of the isolated subunits have been obtained. Crotoxin, a potent neurotoxin from the venom of the South American rattlesnake Crotalus durissus terrificus, exists as a heterodimer formed between a phospholipase A{sub 2} and a catalytically inactive acidic phospholipase A{sub 2} analogue (crotapotin). Large single crystals of the crotoxin complex and of the isolated subunits have been obtained.more » The crotoxin complex crystal belongs to the orthorhombic space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 38.2, b = 68.7, c = 84.2 Å, and diffracted to 1.75 Å resolution. The crystal of the phospholipase A{sub 2} domain belongs to the hexagonal space group P6{sub 1}22 (or its enantiomorph P6{sub 5}22), with unit-cell parameters a = b = 38.7, c = 286.7 Å, and diffracted to 2.6 Å resolution. The crotapotin crystal diffracted to 2.3 Å resolution; however, the highly diffuse diffraction pattern did not permit unambiguous assignment of the unit-cell parameters.« less
Ferroelectrics under the Synchrotron Light: A Review.
Fuentes-Cobas, Luis E; Montero-Cabrera, María E; Pardo, Lorena; Fuentes-Montero, Luis
2015-12-30
Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO₃ perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure-function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described.
NASA Technical Reports Server (NTRS)
Hu, Z. W.; Thomas, B. R.; Chernov, A. A.
2001-01-01
Double-axis multiple-crystal X-ray topography, rocking-curve measurements and triple-axis reciprocal-space mapping have been combined to characterize protein crystals using a laboratory source. Crystals of lysozyme and lysozyme crystals doped with acetylated lysozyme impurities were examined. It was shown that the incorporation of acetylated lysozyme into crystals of lysozyme induces mosaic domains that are responsible for the broadening and/or splitting of rocking curves and diffraction-space maps along the direction normal to the reciprocal-lattice vector, while the overall elastic lattice strain of the impurity-doped crystals does not appear to be appreciable in high angular resolution reciprocal-space maps. Multiple-crystal monochromatic X-ray topography, which is highly sensitive to lattice distortions, was used to reveal the spatial distribution of mosaic domains in crystals which correlates with the diffraction features in reciprocal space. Discussions of the influence of acetylated lysozyme on crystal perfection are given in terms of our observations.
Hu, Z W; Thomas, B R; Chernov, A A
2001-06-01
Double-axis multiple-crystal X-ray topography, rocking-curve measurements and triple-axis reciprocal-space mapping have been combined to characterize protein crystals using a laboratory source. Crystals of lysozyme and lysozyme crystals doped with acetylated lysozyme impurities were examined. It was shown that the incorporation of acetylated lysozyme into crystals of lysozyme induces mosaic domains that are responsible for the broadening and/or splitting of rocking curves and diffraction-space maps along the direction normal to the reciprocal-lattice vector, while the overall elastic lattice strain of the impurity-doped crystals does not appear to be appreciable in high angular resolution reciprocal-space maps. Multiple-crystal monochromatic X-ray topography, which is highly sensitive to lattice distortions, was used to reveal the spatial distribution of mosaic domains in crystals which correlates with the diffraction features in reciprocal space. Discussions of the influence of acetylated lysozyme on crystal perfection are given in terms of our observations.
Crystallization of Δ{sup 1}-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoyama, Yoshinari; Takeuchi, Ayako; Taura, Futoshi
Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase from C. sativa was crystallized. The crystal diffracted to 2.7 Å resolution with sufficient quality for further structure determination. Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase is a novel oxidoreductase that catalyzes the biosynthesis of the psychoactive compound THCA in Cannabis sativa (Mexican strain). In order to investigate the structure–function relationship of THCA synthase, this enzyme was overproduced in insect cells, purified and finally crystallized in 0.1 M HEPES buffer pH 7.5 containing 1.4 M sodium citrate. A single crystal suitable for X-ray diffraction measurement was obtained in 0.09 M HEPES buffer pH 7.5 containing 1.26 Mmore » sodium citrate. The crystal diffracted to 2.7 Å resolution at beamline BL41XU, SPring-8. The crystal belonged to the primitive cubic space group P432, with unit-cell parameters a = b = c = 178.2 Å. The calculated Matthews coefficient was approximately 4.1 or 2.0 Å{sup 3} Da{sup −1} assuming the presence of one or two molecules of THCA synthase in the asymmetric unit, respectively.« less
NASA Astrophysics Data System (ADS)
Chandran, Senthilkumar; Paulraj, Rajesh; Ramasamy, P.
2017-05-01
Semi-organic lithium hydrogen oxalate monohydrate non-linear optical single crystals have been grown by slow evaporation solution growth technique at 35 °C. Single crystal X-ray diffraction study showed that the grown crystal belongs to the triclinic system with space group P1. The mechanical strength decreases with increasing load. The piezoelectric coefficient is found to be 1.41 pC/N. The nonlinear optical property was measured using Kurtz Perry powder technique and SHG efficiency was almost equal to that of KDP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Rajul Ranjan, E-mail: rajul@barc.gov.in; Chitra, R.; Abraham, Geogy J.
2015-06-24
X-ray powder diffraction and Raman measurements were performed on the mixed crystals of deuterated potassium dihydrogen phosphate (DKDP) and deuterated ammonium dihydrogen phosphate (DADP) grown at our lab. These crystals are known to behave like deuteron glasses due to frustration between ferroelectric and antiferroelectric ordering. Both spectral as well as structural studies indicate that crystals belonging to the glassy regions of the crystal composition have stronger O-D-O hydrogen bonds as compared to those belong to the ferroelectric or antiferroelectric regions of the crystal composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Michael R.; Selby, Thomas L.
2012-10-30
A recombinant metal-dependent phosphatidylinositol-specific phospholipase C (PI-PLC) fromStreptomyces antibioticushas been crystallized by the hanging-drop method with and without heavy metals. The native crystals belonged to the orthorhombic space groupP222, with unit-cell parametersa= 41.26,b= 51.86,c = 154.78 Å. The X-ray diffraction results showed significant differences in the crystal quality of samples soaked with heavy atoms. Additionally, drop pinning, which increases the surface area of the drops, was also used to improve crystal growth and quality. The combination of heavy-metal soaks and drop pinning was found to be critical for producing high-quality crystals that diffracted to 1.23 Å resolution.
The use of a mini-κ goniometer head in macromolecular crystallography diffraction experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brockhauser, Sandor; UJF–EMBL–CNRS UMI 3265, 6 Rue Jules Horowitz, 38043 Grenoble; Ravelli, Raimond B. G.
2013-07-01
Hardware and software solutions for MX data-collection strategies using the EMBL/ESRF miniaturized multi-axis goniometer head are presented. Most macromolecular crystallography (MX) diffraction experiments at synchrotrons use a single-axis goniometer. This markedly contrasts with small-molecule crystallography, in which the majority of the diffraction data are collected using multi-axis goniometers. A novel miniaturized κ-goniometer head, the MK3, has been developed to allow macromolecular crystals to be aligned. It is available on the majority of the structural biology beamlines at the ESRF, as well as elsewhere. In addition, the Strategy for the Alignment of Crystals (STAC) software package has been developed to facilitatemore » the use of the MK3 and other similar devices. Use of the MK3 and STAC is streamlined by their incorporation into online analysis tools such as EDNA. The current use of STAC and MK3 on the MX beamlines at the ESRF is discussed. It is shown that the alignment of macromolecular crystals can result in improved diffraction data quality compared with data obtained from randomly aligned crystals.« less
Structures of Astromaterials Revealed by EBSD
NASA Technical Reports Server (NTRS)
Zolensky, M.
2018-01-01
Groups at the Johnson Space Center and the University of Tokyo have been using electron back-scattered diffraction (EBSD) to reveal the crystal structures of extraterrestrial minerals for many years. Even though we also routinely use transmission electron microscopy, synchrotron X-ray diffraction (SXRD), and conventional electron diffraction, we find that EBSD is the most powerful technique for crystal structure elucidation in many instances. In this talk I describe a few of the cases where we have found EBSD to provide crucial, unique information. See attachment.
NASA Astrophysics Data System (ADS)
Verma, Madhu; Gupta, Rashmi; Singh, Harjinder; Bamzai, K. K.
2018-04-01
The growth of cadmium doped magnesium hydrogen phosphate was successfully carried out by using room temperature solution technique i.e., gel encapsulation technique. Grown crystals were confirmed by single crystal X-ray diffraction (XRD). The structure of the grown crystal belongs to orthorhombic crystal system and crystallizes in centrosymmetric space group. Kinetics of the decomposition of the grown crystals were studied by non-isothermal analysis. Thermo gravimetric / differential thermo analytical (TG/DTA) studies revealed that the grown crystal is stable upto 119 °C. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters. The optical studies shows that the grown crystals possess wide transmittance in the visible region and significant optical band gap of 5.5ev with cut off wavelength of 260 nm.
Preliminary crystallographic studies of four crystal forms of serum albumin
NASA Technical Reports Server (NTRS)
Carter, D. C.; Chang, B.; Ho, J. X.; Keeling, K.; Krishnasami, Z.
1994-01-01
Several crystal forms of serum albumin suitable for three-dimensional structure determination have been grown. These forms include crystals of recombinant and wild-type human serum albumin, baboon serum albumin, and canine serum albumin. The intrinsic limits of X-ray diffraction for these crystals are in the range 0.28-0.22 nm. Two of the crystal forms produced from human and canine albumin include incorporated long-chain fatty acids. Molecular replacement experiments have been successfully conducted on each crystal form using the previously determined atomic coordinates of human serum albumin illustrating the conserved tertiary structure.
Optical pendulum effect in one-dimensional diffraction-thick porous silicon based photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikov, V. B., E-mail: vb.novikov@physics.msu.ru; Svyakhovskiy, S. E.; Maydykovskiy, A. I.
We present the realization of the multiperiodic optical pendulum effect in 1D porous silicon photonic crystals (PhCs) under dynamical Bragg diffraction in the Laue scheme. The diffraction-thick PhC contained 360 spatial periods with a large variation of the refractive index of adjacent layers of 0.4. The experiments reveal switching of the light leaving the PhC between the two spatial directions, which correspond to Laue diffraction maxima, as the fundamental wavelength or polarization of the incident light is varied. A similar effect can be achieved when the temperature of the sample or the intensity of the additional laser beam illuminating themore » crystal are changed. We show that in our PhC structures, the spectral period of the pendulum effect is down to 5 nm, while the thermal period is about 10 °C.« less
The Growth of Protein Crystals Using McDUCK
NASA Technical Reports Server (NTRS)
Ewing, Felicia; Wilson, Lori; Nadarajah, Arunan; Pusey, Marc
1998-01-01
Most of the current microgravity crystal growth hardware is optimized to produce crystals within the limited time available on orbit. This often results in the actual nucleation and growth process being rushed or the system not coming to equilibrium within the limited time available. Longer duration hardware exists, but one cannot readily pick out crystals grown early versus those which nucleated and grew more slowly. We have devised a long duration apparatus, the Multi-chamber Dialysis Unit for Crystallization Kinetics, or McDUCK. This apparatus-is a series of protein chambers, stacked upon a precipitant reservoir chamber. All chambers are separated by a dialysis membrane, which serves to pass small molecules while retaining the protein. The volume of the Precipitant chamber is equal to the sum of the volumes of the protein chamber. In operation, the appropriate chambers are filled with precipitant solution or protein solution, and the McDUCK is placed standing upright, with the precipitant chamber on the bottom. The precipitant diffuses upwards over time, with the time to reach equilibration a function of the diffusivity of the precipitant and the overall length of the diffusion pathway. Typical equilibration times are approximately 2-4 months, and one can readily separate rapid from slow nucleation and growth crystals. An advantage on Earth is that the vertical precipitant concentration gradient dominates that of the solute, thus dampening out solute density gradient driven convective flows. However, large Earth-grown crystals have so far tended to be more two dimensional. Preliminary X-ray diffraction analysis of lysozyme crystals grown in McDUCK have indicated that the best, and largest, come from the middle chambers, suggesting that there is an optimal growth rate. Further, the improvements in diffraction resolution have been better signal to noise ratios in the low resolution data, not an increase in resolution overall. Due to the persistently large crystals grown we are currently proposing McDUCK for the growth of macromolecule crystals for use in neutron diffraction studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brewster, Aaron S.; Sawaya, Michael R.; University of California, Los Angeles, CA 90095-1570
2015-02-01
Special methods are required to interpret sparse diffraction patterns collected from peptide crystals at X-ray free-electron lasers. Bragg spots can be indexed from composite-image powder rings, with crystal orientations then deduced from a very limited number of spot positions. Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of the Computational Crystallography Toolbox (cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data setmore » from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set of diffraction patterns with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 Å resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented.« less
Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED
Sawaya, Michael R.; Rodriguez, Jose; Cascio, Duilio; Collazo, Michael J.; Shi, Dan; Reyes, Francis E.; Gonen, Tamir; Eisenberg, David S.
2016-01-01
Electrons, because of their strong interaction with matter, produce high-resolution diffraction patterns from tiny 3D crystals only a few hundred nanometers thick in a frozen-hydrated state. This discovery offers the prospect of facile structure determination of complex biological macromolecules, which cannot be coaxed to form crystals large enough for conventional crystallography or cannot easily be produced in sufficient quantities. Two potential obstacles stand in the way. The first is a phenomenon known as dynamical scattering, in which multiple scattering events scramble the recorded electron diffraction intensities so that they are no longer informative of the crystallized molecule. The second obstacle is the lack of a proven means of de novo phase determination, as is required if the molecule crystallized is insufficiently similar to one that has been previously determined. We show with four structures of the amyloid core of the Sup35 prion protein that, if the diffraction resolution is high enough, sufficiently accurate phases can be obtained by direct methods with the cryo-EM method microelectron diffraction (MicroED), just as in X-ray diffraction. The success of these four experiments dispels the concern that dynamical scattering is an obstacle to ab initio phasing by MicroED and suggests that structures of novel macromolecules can also be determined by direct methods. PMID:27647903
NASA Astrophysics Data System (ADS)
Boopathi, K.; Babu, S. Moorthy; Ramasamy, P.
2018-04-01
Tetrabromo (piperazinium) zincate, a new metal-organic crystal has been synthesized and its single crystal grown by slow evaporation method. The grown crystal has characterized by structural, spectral, thermal, linear and nonlinear optical properties. Single crystal X-ray diffractions study reveals that grown crystal belongs to orthorhombic crystal system with space group P212121. The presence of functional groups is identified by FT-IR spectral analysis. Thermal stability of the crystal was ascertained by TG-DTA measurement. The second order harmonic generation efficiency was measured using Kurtz and Perry technique and it was found to be 1.5 times that of KDP.
Crystallization and diffraction analysis of [beta]-N-acetylhexosaminidase from Aspergillus oryzae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanek, Ondrej; Brynd, Jirí; Hofbauerová, Katerina
2012-05-08
Fungal {beta}-N-acetylhexosaminidases are enzymes that are used in the chemoenzymatic synthesis of biologically interesting oligosaccharides. The enzyme from Aspergillus oryzae was produced and purified from its natural source and crystallized using the hanging-drop vapor-diffusion method. Diffraction data from two crystal forms (primitive monoclinic and primitive tetragonal) were collected to resolutions of 3.2 and 2.4 {angstrom}, respectively. Electrophoretic and quantitative N-terminal protein-sequencing analyses confirmed that the crystals are formed by a complete biologically active enzyme consisting of a glycosylated catalytic unit and a noncovalently attached propeptide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadhasivam, S., E-mail: sadha.phy1@gmail.com; Perumal, Rajesh Narayana
2-phenylphenol optical crystals were grown in cone ampoules using vertical Bridgman technique. Single crystal of 2-phenylphenol with 150 mm length has been grown. The inclination on the conical part of the ampoule reduces the growth defects in the 2-phenylphenol single crystal. The lattice parameters and structure studied using single crystal X-ray diffraction method. 2-phenylphenol single crystal belongs to orthorhombic space group Fdd2. The micro translation rate affects crystal growth of 2-phenylphenol crystal was studied. The translation rate dependent defects present in the crystal were investigated by transmittance, indentation and etching characterizations. The dislocation induced indentation crack lengths variations were studied. Etchmore » pits and striations observed for the selective etchants furnish significant information on growth aspects and degree of defect present in the crystal.« less
Ambaye, Nigus D; Gunzburg, Menachem J; Traore, Daouda A K; Del Borgo, Mark P; Perlmutter, Patrick; Wilce, Matthew C J; Wilce, Jacqueline A
2014-02-01
Human growth factor receptor-bound protein 7 (Grb7) is an adapter protein involved in cell growth, migration and proliferation. It is now recognized that Grb7 is an emerging therapeutic target in specific cancer subtypes. Recently, the discovery of a bicyclic peptide inhibitor that targets the Grb7 SH2 domain, named G7-B1, was reported. In an attempt to probe the foundation of its interaction with Grb7, the crystallization and preliminary data collection of both the apo and G7-B1-bound forms of the Grb7 SH2 domain are reported here. Diffraction-quality crystals were obtained using the hanging-drop vapour-diffusion method. After several rounds of microseeding, crystals of the apo Grb7 SH2 domain were obtained that diffracted to 1.8 Å resolution, while those of the G7-B1-Grb7 SH2 domain complex diffracted to 2.2 Å resolution. The apo Grb7 SH2 domain crystallized in the trigonal space group P63, whereas the G7-B1-Grb7 SH2 domain complex crystallized in the monoclinic space group P21. The experimental aspects of crystallization, crystal optimization and data collection and the preliminary data are reported.
Colloidal crystal growth monitored by Bragg diffraction interference fringes.
Bohn, Justin J; Tikhonov, Alexander; Asher, Sanford A
2010-10-15
We monitored the crystal growth kinetics of crystallization of a shear melted crystalline colloidal array (CCA). The fcc CCA heterogeneously nucleates at the flow cell wall surface. We examined the evolution of the (1 1 1) Bragg diffraction peak, and, for the first time, quantitatively monitored growth by measuring the temporal evolution of the Bragg diffraction interference fringes. Modeling of the evolution of the fringe patterns exposes the time dependence of the increasing crystal thickness. The initial diffusion-driven linear growth is followed by ripening-driven growth. Between 80 and 90 microM NaCl concentrations the fcc crystals first linearly grow at rates between 1.9 and 4.2 microm/s until they contact homogeneously nucleated crystals in the bulk. At lower salt concentrations interference fringes are not visible because the strong electrostatic interactions between particles result in high activation barriers, preventing defect annealing and leading to a lower crystal quality. The fcc crystals melt to a liquid phase at >90 microM NaCl concentrations. Increasing NaCl concentrations slow the fcc CCA growth rate consistent with the expectation of the classical Wilson-Frenkel growth theory. The final thickness of wall-nucleated CCA, that is determined by the competition between growth of heterogeneously and homogenously nucleated CCA, increases with higher NaCl concentrations. Copyright 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogeley, Lutz; Luecke, Hartmut, E-mail: hudel@uci.edu
2006-04-01
Crystals of Anabaena sensory rhodopsin transducer, the transducer for the cyanobacterial photosensor Anabaena sensory rhodopsin, obtained in the space groups P4, C2 and P2{sub 1}2{sub 1}2{sub 1} diffract to 1.8, 2.1 and 2.0 Å, respectively. Phases for these crystal forms were obtained by SIRAS phasing using an iodide quick-soak derivative (P4) and molecular replacement (C2 and P2{sub 1}2{sub 1}2{sub 1}). Anabaena sensory rhodopsin transducer (ASRT) is a 14.7 kDa soluble signaling protein associated with the membrane-embedded light receptor Anabaena sensory rhodopsin (ASR) from Anabaena sp., a freshwater cyanobacterium. Crystals of ASRT were obtained in three different space groups, P4, C2more » and P2{sub 1}2{sub 1}2{sub 1}, which diffract to 1.8, 2.1 and 2.0 Å, respectively. Phases for one of these crystal forms (P4) were obtained by SIRAS phasing using an iodide quick-soak derivative and a partial model was built. Phases for the remaining crystal forms were obtained by molecular replacement using the partial model from the P4 crystal form.« less
Swarna Sowmya, N; Sampathkrishnan, S; Vidyalakshmi, Y; Sudhahar, S; Mohan Kumar, R
2015-06-15
Organic nonlinear optical material, pyrrolidinium-2-carboxylate-4-nitrophenol (PCN) was synthesized and single crystals were grown by slow evaporation solution growth method. Single crystal X-ray diffraction analysis confirmed the structure and lattice parameters of PCN crystals. Infrared, Raman and NMR spectral analyses were used to elucidate the functional groups present in the compound. The thermal behavior of synthesized compound was studied by thermogravimetric and differential scanning calorimetry (TG-DSC) analyses. The photoluminescence property was studied by exciting the crystal at 360 nm. The relative second harmonic generation (SHG) efficiency of grown crystal was estimated by using Nd:YAG laser with fundamental wavelength of 1,064 nm. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jauhar, RO MU; Era, Paavai; Murugakoothan, P.
2018-05-01
Single crystal of imidazolium l-tartrate (IMLT), an organic nonlinear optical material, was successfully grown by slow evaporation solution growth technique (SEST) and Sankaranarayanan - Ramasamy (SR) method. The crystal structure and its lattice parameters were confirmed by single crystal X-ray diffraction study. The IMLT crystal belongs to monoclinic crystal system having a = 7.579(6) Å, b = 6.911(4) Å, c = 8.9281(5) Å, β = 101.45(8)°, volume, V = 458.33 Å3. The d33 coefficient found from the the piezoelectric study is 23 pC/N. The relative second harmonic generation efficiency of IMLT was found to be 3.16 times that of reference KDP material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Di; Miao, Yinbin; Xu, Ruqing
2016-04-01
Microbeam X-ray diffraction experiments were conducted at beam line 34-ID of the Advanced Photon Source (APS) on fission fragment energy Xe heavy ion irradiated single crystal Molybdenum (Mo). Lattice strain measurements were obtained with a depth resolution of 0.7 mu m, which is critical in resolving the peculiar heterogeneity of irradiation damage associated with heavy ion irradiation. Q-space diffraction peak shift measurements were correlated with lattice strain induced by the ion irradiations. Transmission electron microscopy (TEM) characterizations were performed on the as-irradiated materials as well. Nanometer sized Xe bubble microstructures were observed via TEM. Molecular Dynamics (MD) simulations were performedmore » to help interpret the lattice strain measurement results from the experiment. This study showed that the irradiation effects by fission fragment energy Xe ion irradiations can be collaboratively understood with the depth resolved X-ray diffraction and TEM measurements under the assistance of MD simulations. (c) 2015 Elsevier B.V. All rights reserved.« less
Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser
Popp, David; Loh, N. Duane; Zorgati, Habiba; ...
2017-06-02
A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments ( Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determinemore » that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.« less
Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popp, David; Loh, N. Duane; Zorgati, Habiba
A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments ( Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determinemore » that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.« less