Science.gov

Sample records for crystal electric field

  1. Crystal growth under external electric fields

    SciTech Connect

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo

    2014-10-06

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal.

  2. Transient current electric field profiling of single crystal CVD diamond

    NASA Astrophysics Data System (ADS)

    Isberg, J.; Gabrysch, M.; Tajani, A.; Twitchen, D. J.

    2006-08-01

    The transient current technique (TCT) has been adapted for profiling of the electric field distribution in intrinsic single crystal CVD diamond. It was found that successive hole transits do not appreciably affect the electric field distribution within the sample. Transits of holes can therefore be used to probe the electric field distribution and also the distribution of trapped charge. Electron transits, on the other hand, cause an accumulation of negative charge in the sample. Illumination with blue or green light was shown to lead to accumulation of positive charge. Low concentrations of trapped charge can be detected in diamond using TCT, corresponding to an ionized impurity concentration below N = 1010 cm-3.

  3. Electric-field-tuned color in photonic crystal elastomers

    NASA Astrophysics Data System (ADS)

    Zhao, Qibin; Haines, Andrew; Snoswell, David; Keplinger, Christoph; Kaltseis, Rainer; Bauer, Siegfried; Graz, Ingrid; Denk, Richard; Spahn, Peter; Hellmann, Goetz; Baumberg, Jeremy J.

    2012-03-01

    Electrically tuned photonic crystals are produced by applying fields across shear-assembled elastomeric polymer opal thin films. At increasing voltages, the polymer opal films stretch biaxially under Maxwell stress, deforming the nanostructure and producing marked color changes. This quadratic electro-optic tuning of the photonic bandgap is repeatable over many cycles, switches within 100 ms, and bridges the gap between electro-active materials and photonic crystals.

  4. Switching plastic crystals of colloidal rods with electric fields

    PubMed Central

    Liu, Bing; Besseling, Thijs H.; Hermes, Michiel; Demirörs, Ahmet F.; Imhof, Arnout; van Blaaderen, Alfons

    2014-01-01

    When a crystal melts into a liquid both long-ranged positional and orientational order are lost, and long-time translational and rotational self-diffusion appear. Sometimes, these properties do not change at once, but in stages, allowing states of matter such as liquid crystals or plastic crystals with unique combinations of properties. Plastic crystals/glasses are characterized by long-ranged positional order/frozen-in-disorder but short-ranged orientational order, which is dynamic. Here we show by quantitative three-dimensional studies that charged rod-like colloidal particles form three-dimensional plastic crystals and glasses if their repulsions extend significantly beyond their length. These plastic phases can be reversibly switched to full crystals by an electric field. These new phases provide insight into the role of rotations in phase behaviour and could be useful for photonic applications. PMID:24446033

  5. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    SciTech Connect

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J.; Tachibana, M.; Kojima, K.

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  6. Coherent infrared emission from myoglobin crystals: an electric field measurement.

    PubMed

    Groot, Marie-Louise; Vos, Marten H; Schlichting, Ilme; van Mourik, Frank; Joffre, Manuel; Lambry, Jean-Christophe; Martin, Jean-Louis

    2002-02-01

    We introduce coherent infrared emission interferometry as a chi(2) vibrational spectroscopy technique and apply it to studying the initial dynamics upon photoactivation of myoglobin (Mb). By impulsive excitation (using 11-fs pulses) of a Mb crystal, vibrations that couple to the optical excitation are set in motion coherently. Because of the order in the crystal lattice the coherent oscillations of the different proteins in the crystal that are associated with charge motions give rise to a macroscopic burst of directional multi-teraHertz radiation. This radiation can be detected in a phase-sensitive way by heterodyning with a broad-band reference field. In this way both amplitude and phase of the different vibrations can be obtained. We detected radiation in the 1,000-1,500 cm(-1) frequency region, which contains modes sensitive to the structure of the heme macrocycle, as well as peripheral protein modes. Both in carbonmonoxy-Mb and aquomet-Mb we observed emission from six modes, which were assigned to heme vibrations. The phase factors of the modes contributing to the protein electric field show a remarkable consistency, taking on values that indicate that the dipoles are created "emitting" at t = 0, as one would expect for impulsively activated modes. The few deviations from this behavior in Mb-CO we propose are the result of these modes being sensitive to the photodissociation process and severely disrupted by it.

  7. Imposed Orientation of Dye Molecules by Liquid Crystals and an Electric Field.

    ERIC Educational Resources Information Center

    Sadlej-Sosnowska, Nina

    1980-01-01

    Describes experiments using dye solutions in liquid crystals in which polar molecules are oriented in an electrical field and devices are constructed to change their color in response to an electric signal. (CS)

  8. Electric-field-assisted position and orientation control of organic single crystals.

    PubMed

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2014-12-01

    We have investigated the motion of growing pentacene single crystals in solution under various electric fields. The pentacene single crystals in 1,2,4-trichlorobenzene responded to the electric field as if they were positively charged. By optimizing the strength and frequency of an alternating electric field, the pentacene crystals automatically bridged the electrodes on SiO2. The pentacene crystal with a large aspect ratio tended to direct the [1̅10] orientation parallel to the conduction direction, which will be suitable from a viewpoint of anisotropy in mobility. The present result shows a possibility of controlling the position and orientation of organic single crystals by the use of an electric field, which leads to high throughput and low cost industrial manufacturing of the single crystal array from solution.

  9. Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices (Invited)

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1999-01-01

    As illustrated by the invited paper at this conference and other works, SiC wafers and epilayers contain a variety of crystallographic imperfections, including micropipes, closed-core screw dislocations, grain boundaries, basal plane dislocations, heteropolytypic inclusions, and surfaces that are often damaged and contain atomically rough features like step bunching and growth pits or hillocks. Present understanding of the operational impact of various crystal imperfections on SiC electrical devices is reviewed, with an emphasis placed on high-field SiC power devices and circuits.

  10. Electric-field variations within a nematic-liquid-crystal layer.

    PubMed

    Cummings, L J; Mema, E; Cai, C; Kondic, L

    2014-07-01

    A thin layer of nematic liquid crystal (NLC) across which an electric field is applied is a setup of great industrial importance in liquid crystal display devices. There is thus a large literature modeling this situation and related scenarios. A commonly used assumption is that an electric field generated by electrodes at the two bounding surfaces of the layer will produce a field that is uniform: that is, the presence of NLC does not affect the electric field. In this paper, we use calculus of variations to derive the equations coupling the electric potential to the orientation of the NLC's director field, and use a simple one-dimensional model to investigate the limitations of the uniform field assumption in the case of a steady applied field. The extension of the model to the unsteady case is also briefly discussed.

  11. Dielectric Permittivity of Polymer Composites with Encapsulated Liquid Crystals in Strong Electric Fields

    NASA Astrophysics Data System (ADS)

    Zhdanov, K. R.; Romanenko, A. I.; Zharkova, G. M.; Suslyaev, V. I.; Zhuravlev, V. A.

    2013-12-01

    It is demonstrated that the threshold value of the electric Fredericks transition in the composite based on polyvinyl acetate with 35% weight content of nematic liquid crystal 5СВ (4-pentyl-4'-cyanobiphenyl) is observed at a voltage of 60 V. A cell and a circuit for measuring the dielectric permittivity of polymer composites with encapsulated liquid crystals in strong electric fields are described.

  12. Electric Field-Controlled Crystallizing CaCO3 Nanostructures from Solution.

    PubMed

    Qi, Jian Quan; Guo, Rui; Wang, Yu; Liu, Xuan Wen; Chan, Helen Lai Wah

    2016-12-01

    The role of electric field is investigated in determining the structure, morphology, and crystallographic characteristics of CaCO3 nanostructures crystallized from solution. It is found that the lattice structure and crystalline morphology of CaCO3 can be tailed by the electric field applied to the solution during its crystallization. The calcite structure with cubic-like morphology can be obtained generally without electric field, and the vaterite structure with the morphology of nanorod is formed under the high electric field. The vaterite nanorods can be piled up to the petaliform layers. Both the nanorod and the petaliform layer can have mesocrystal structures which are piled up by much fine units of the rods with the size of several nanometers. Beautiful rose-like nanoflowers can be self-arranged by the petaliform layers. These structures can have potential application as carrier for medicine to involve into metabolism of living cell.

  13. Electric Field-Controlled Crystallizing CaCO3 Nanostructures from Solution

    NASA Astrophysics Data System (ADS)

    Qi, Jian Quan; Guo, Rui; Wang, Yu; Liu, Xuan Wen; Chan, Helen Lai Wah

    2016-03-01

    The role of electric field is investigated in determining the structure, morphology, and crystallographic characteristics of CaCO3 nanostructures crystallized from solution. It is found that the lattice structure and crystalline morphology of CaCO3 can be tailed by the electric field applied to the solution during its crystallization. The calcite structure with cubic-like morphology can be obtained generally without electric field, and the vaterite structure with the morphology of nanorod is formed under the high electric field. The vaterite nanorods can be piled up to the petaliform layers. Both the nanorod and the petaliform layer can have mesocrystal structures which are piled up by much fine units of the rods with the size of several nanometers. Beautiful rose-like nanoflowers can be self-arranged by the petaliform layers. These structures can have potential application as carrier for medicine to involve into metabolism of living cell.

  14. Self-Aligned Growth of Organic Semiconductor Single Crystals by Electric Field.

    PubMed

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2016-01-19

    We proposed a novel but facile method for growing organic semiconductor single-crystals via solvent vapor annealing (SVA) under electric field. In the conventional SVA growth process, nuclei of crystals appeared anywhere on the substrate and their crystallographic axes were randomly distributed. We applied electric field during the SVA growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) on the SiO2/Si substrate on which a pair of electrodes had been deposited beforehand. Real-time observation of the SVA process revealed that rodlike single crystals grew with their long axes parallel to the electric field and bridged the prepatterned electrodes. As a result, C8-BTBT crystals automatically formed a field effect transistor (FET) structure and the mobility reached 1.9 cm(2)/(V s). Electric-field-assisted SVA proved a promising method for constructing high-mobility single-crystal FETs at the desired position by a low-cost solution process.

  15. Self-Aligned Growth of Organic Semiconductor Single Crystals by Electric Field.

    PubMed

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2016-01-19

    We proposed a novel but facile method for growing organic semiconductor single-crystals via solvent vapor annealing (SVA) under electric field. In the conventional SVA growth process, nuclei of crystals appeared anywhere on the substrate and their crystallographic axes were randomly distributed. We applied electric field during the SVA growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) on the SiO2/Si substrate on which a pair of electrodes had been deposited beforehand. Real-time observation of the SVA process revealed that rodlike single crystals grew with their long axes parallel to the electric field and bridged the prepatterned electrodes. As a result, C8-BTBT crystals automatically formed a field effect transistor (FET) structure and the mobility reached 1.9 cm(2)/(V s). Electric-field-assisted SVA proved a promising method for constructing high-mobility single-crystal FETs at the desired position by a low-cost solution process. PMID:26695105

  16. Low magnification differential phase contrast imaging of electric fields in crystals with fine electron probes.

    PubMed

    Taplin, D J; Shibata, N; Weyland, M; Findlay, S D

    2016-10-01

    To correlate atomistic structure with longer range electric field distribution within materials, it is necessary to use atomically fine electron probes and specimens in on-axis orientation. However, electric field mapping via low magnification differential phase contrast imaging under these conditions raises challenges: electron scattering tends to reduce the beam deflection due to the electric field strength from what simple models predict, and other effects, most notably crystal mistilt, can lead to asymmetric intensity redistribution in the diffraction pattern which is difficult to distinguish from that produced by long range electric fields. Using electron scattering simulations, we explore the effects of such factors on the reliable interpretation and measurement of electric field distributions. In addition to these limitations of principle, some limitations of practice when seeking to perform such measurements using segmented detector systems are also discussed.

  17. Resistive memory effects in BiFeO3 single crystals controlled by transverse electric fields

    NASA Astrophysics Data System (ADS)

    Kawachi, S.; Kuroe, H.; Ito, T.; Miyake, A.; Tokunaga, M.

    2016-04-01

    The effects of electric fields perpendicular to the c-axis of the trigonal cell in single crystals of BiFeO3 are investigated through magnetization and resistance measurements. Magnetization and resistance exhibit hysteretic changes under applied electric fields, which can be ascribed to the reorientation of the magnetoelectric domains. Samples are repetitively switched between high- and low-resistance states by changing the polarity of the applied electric fields over 20 000 cycles at room temperature. These results demonstrate the potential of BiFeO3 for use in non-volatile memory devices.

  18. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field.

    PubMed

    García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M; Geday, Morten A

    2016-01-01

    Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules.

  19. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field.

    PubMed

    García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M; Geday, Morten A

    2016-01-01

    Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules. PMID:27547599

  20. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field

    PubMed Central

    García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M

    2016-01-01

    Summary Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules. PMID:27547599

  1. Dynamics of electroconvective nematic liquid crystal structures in a nonharmonic electric field

    NASA Astrophysics Data System (ADS)

    Kartavykh, N. N.; Smorodin, B. L.

    2010-10-01

    The emergence of electroconvection in a nematic liquid crystal under the action of a nonharmonic electric field is investigated. Analysis is carried out using a 2D model. We propose new forms of the varying electric field acting on the system, for which subharmonic oscillations exist: (a) electric field of a trapezoidal form and (b) external field varying in accordance with the law of “joined cosines.” The behavior of synchronous excitations in the insulating and conducting regimes, as well as subharmonic oscillations, is analyzed. The parametric instability domains are found, and the critical frequencies of transition between different response regimes are determined. The stability maps of the nematic liquid crystal are constructed on the frequency-voltage amplitude plane.

  2. Semiconductor crystal growth in crossed electric and magnetic fields: Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    1996-01-01

    A unique growth cell was designed in which crossed electric and magnetic fields could be separately or simultaneously applied during semiconductor crystal growth. A thermocouple was inserted into an InSb melt inside the growth cell to examine the temperature response of the fluid to applied electromagnetic fields. A static magnetic field suppressed time-dependent convection when a destabilizing thermal field was applied. The simultaneous application of electric and magnetic fields resulted in forced convection in the melt. The InSb ingots grown in the cell were polycrystalline. An InGaSb crystal, 0.5 cm in diameter and 23-cm long, was grown without electromagnetic fields applied. The axial composition results indicated that complete mixing in the melt occurred for this large aspect ratio.

  3. Imprint electric field controlled electronic transport in TlGaSe2 crystals

    NASA Astrophysics Data System (ADS)

    Seyidov, MirHasan Yu; Suleymanov, Rauf A.; Balaban, Ertan; Şale, Yasin

    2013-09-01

    The effect of built-in electric field onto the dc electrical conductivity, photoconductivity, and electrical switching phenomenon were investigated in TlGaSe2 layered semiconductor within the temperature range of 77-300 K. We have used different types of electrodes for different TlGaSe2 samples in both parallel and perpendicular directions to the plane of layers. The effect of electric field was investigated by cooling the samples from the room temperature under the electric field and then removing it at ˜80 K. After the procedure, it was found that a built-in internal electric field which strongly affects transport properties appears in TlGaSe2 crystals. Substantial increasing of both dark currents and photo-conductivities were observed predominantly at low temperatures, where hopping was the main conductivity mechanism. The anomalous decrease of the activation energy in the low temperature region and the switching effect are also the main experimental findings of the present work. Such behavior can be understood by assuming that the built-in electric field greatly increases the contribution of the hopping conductivity at low temperatures. Obtained results are discussed on the basis of the models widely used for disordered semiconductors. It was shown that TlGaSe2 crystal demonstrates the peculiar behavior that is typical to such type of semiconductors.

  4. Electric field effects in nematic liquid crystals doped with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cîrtoaje, Cristina; Petrescu, Emil; Moţoc, Cornelia

    2013-12-01

    The aim of this paper was to investigate electric field induced effects in mixtures of nematic liquid crystals (NLCs) with positive electric anisotropies (MCL 6601 Merck) with carbon nanotubes (MWCNT from Aldrich). In planar alignment, the current-electric field dependence and the current-temperature dependence were explained by assuming a Poole-Frenkel effect (i.e. a tunnelling mechanism) and good agreement with the experimental data was obtained. Within this high field range it resulted that in planar aligned NLC-CNTs mixture the conductivity decreases when the temperature was increased. In homeotropic aligned mixture, the conduction mechanism is similar to the one occurring in a semiconductor: the conductivity increases when increasing temperature. This happens because in thin liquid crystal cells there is a possibility to realize an inner contact between nanotubes and electrodes so the mixture behaves like a semiconductor.

  5. Phase transitional behaviors of bent-cored liquid crystal in electric field

    NASA Astrophysics Data System (ADS)

    Peng, Huan-Gao; Zhou, Zicong; Merlitz, Holger; Wu, Chen-Xu

    2016-06-01

    Monte Carlo (MC) simulations based on lattice model were performed to study the phase diagram (anisotropy, uniaxiality and biaxiality) of liquid crystals formed by bent-cored molecules with a strong transverse dipole moment deviating from their angular bisector. It is shown that the asymmetric strong dipolar interaction enhances biaxiality slightly but encourages uniaxiality greatly and as a result suppresses the system's isotropic order, which is different from a system free from external field in that dipole moment increases biaxiality by suppressing the uniaxial and the isotropic orders simultaneously. It is also found that an external electric field encourages the biaxiality slightly but considerably enhances the uniaxiality of bent-cored liquid crystal.

  6. Direct current electric field assembly of colloidal crystals displaying reversible structural color.

    PubMed

    Shah, Aayush A; Ganesan, Mahesh; Jocz, Jennifer; Solomon, Michael J

    2014-08-26

    We report the application of low-voltage direct current (dc) electric fields to self-assemble close-packed colloidal crystals in nonaqueous solvents from colloidal spheres that vary in size from as large as 1.2 μm to as small as 0.1 μm. The assemblies are created rapidly (∼2 min) from an initially low volume fraction colloidal particle suspension using a simple capacitor-like electric field device that applies a steady dc electric voltage. Confocal microscopy is used to observe the ordering that is produced by the assembly method. This spatial evidence for ordering is consistent with the 6-fold diffraction patterns identified by light scattering. Red, green, and blue structural color is observed for the ordered assemblies of colloids with diameters of 0.50, 0.40, and 0.29 μm, respectively, consistent with spectroscopic measurements of reflectance. The diffraction and spectrophotometry results were found to be consistent with the theoretical Bragg's scattering expected for closed-packed crystals. By switching the dc electric field from on to off, we demonstrate reversibility of the structural color response on times scales ∼60 s. The dc electric field assembly method therefore represents a simple method to produce reversible structural color in colloidal soft matter.

  7. Electric field generation of Skyrmion-like structures in a nematic liquid crystal.

    PubMed

    Cattaneo, Laura; Kos, Žiga; Savoini, Matteo; Kouwer, Paul; Rowan, Alan; Ravnik, Miha; Muševič, Igor; Rasing, Theo

    2016-01-21

    Skyrmions are particle-like topological objects that are increasingly drawing attention in condensed matter physics, where they are connected to inversion symmetry breaking and chirality. Here we report the generation of stable Skyrmion-like structures in a thin nematic liquid crystal film on chemically patterned patchy surfaces. Using the interplay of material elasticity and surface boundary conditions, we use a strong electric field to quench the nematic liquid crystal from a fully aligned phase to vortex-like nematic liquid crystal structures, centered on patterned patches, which carry two different sorts of topological defects. Numerical calculations reveal that these are Skyrmion-like structures, seeded from the surface boojum topological defects and swirling towards the second confining surface. These observations, supported by numerical methods, demonstrate the possibility to generate, manipulate and study Skyrmion-like objects in nematic liquid crystals on patterned surfaces. PMID:26549212

  8. Conoscopic analysis of electric field driven planar aligned nematic liquid crystal.

    PubMed

    Ranjini, Radhakrishnan; Matham, Murukeshan Vadakke; Nguyen, Nam-Trung

    2014-05-01

    This paper illustrates the conoscopic observation of a molecular reconstruction occurring across a nematic liquid crystal (NLC) medium in the presence of an external electric field. Conoscopy is an optical interferometric method, employed to determine the orientation of an optic axis in uniaxial crystals. Here a planar aligned NLC medium is used, and the topological changes with respect to various applied voltages are monitored simultaneously. Homogenous planar alignment is obtained by providing suitable surface treatments to the ITO coated cell walls. The variation in the conoscopic interferometric patterns clearly demonstrates the transition from planar to homeotropic state through various intermediate states. PMID:24921859

  9. Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1999-01-01

    Commercial epilayers are known to contain a variety of crystallographic imperfections. including micropipes, closed core screw dislocations. low-angle boundaries, basal plane dislocations, heteropolytypic inclusions, and non-ideal surface features like step bunching and pits. This paper reviews the limited present understanding of the operational impact of various crystal defects on SiC electrical devices. Aside from micropipes and triangular inclusions whose densities have been shrinking towards manageably small values in recent years, many of these defects appear to have little adverse operational and/or yield impact on SiC-based sensors, high-frequency RF, and signal conditioning electronics. However high-power switching devices used in power management and distribution circuits have historically (in silicon experience) demanded the highest material quality for prolonged safe operation, and are thus more susceptible to operational reliability problems that arise from electrical property nonuniformities likely to occur at extended crystal defects. A particular emphasis is placed on the impact of closed-core screw dislocations on high-power switching devices, because these difficult to observe defects are present in densities of thousands per cm,in commercial SiC epilayers. and their reduction to acceptable levels seems the most problematic at the present time.

  10. Imaging the oblique propagation of electrons in germanium crystals at low temperature and low electric field

    NASA Astrophysics Data System (ADS)

    Moffatt, R. A.; Cabrera, B.; Corcoran, B. M.; Kreikebaum, J. M.; Redl, P.; Shank, B.; Yen, J. J.; Young, B. A.; Brink, P. L.; Cherry, M.; Tomada, A.; Phipps, A.; Sadoulet, B.; Sundqvist, K. M.

    2016-01-01

    Excited electrons in the conduction band of germanium collect into four energy minima, or valleys, in momentum space. These local minima have highly anisotropic mass tensors which cause the electrons to travel in directions which are oblique to an applied electric field at sub-Kelvin temperatures and low electric fields, in contrast to the more isotropic behavior of the holes. This experiment produces a full two-dimensional image of the oblique electron and hole propagation and the quantum transitions of electrons between valleys for electric fields oriented along the [0,0,1] direction. Charge carriers are excited with a focused laser pulse on one face of a germanium crystal and then drifted through the crystal by a uniform electric field of strength between 0.5 and 6 V/cm. The pattern of charge density arriving on the opposite face is used to reconstruct the trajectories of the carriers. Measurements of the two-dimensional pattern of charge density are compared in detail with Monte Carlo simulations developed for the Cryogenic Dark Matter Search (SuperCDMS) to model the transport of charge carriers in high-purity germanium detectors.

  11. Electrostimulation of the magnetoplastic effect in LiF crystals by an "internal" electric field induced during indentation

    NASA Astrophysics Data System (ADS)

    Galustashvili, M. V.; Driaev, D. G.; Akopov, F. Kh.; Tsakadze, S. D.

    2013-08-01

    Indented LiF crystals demonstrate a change in the length of the dislocation rosette rays during their exposure to jointly acting dc magnetic and electric fields. It is shown that magnetic field with induction B = 1 T causes the electrostimulation or electrosuppression depending on the magnitude and direction of the external electric field with respect to the "internal" electric field induced by the charge transfer due to dislocations moving during the indentation.

  12. Electric-field-induced weakly chaotic transients in ferroelectric liquid crystals.

    PubMed

    Śliwa, I; Jeżewski, W; Kuczyński, W

    2016-01-01

    Nonlinear dynamics induced in surface stabilized ferroelectric liquid crystals by strong alternating external electric fields is studied both theoretically and experimentally. As has already been shown, molecular reorientations induced by sufficiently strong fields of high-enough frequencies can reveal a long transient behavior that has a weakly chaotic character. The resulting complex dynamics of ferroelectric liquid crystals can be considered not only as a consequence of irregular motions of particular molecules but also as a repercussion of a surface-enforced partial decorrelation of nonlinear molecular motions within smectic layers. To achieve more insight into the nature of this phenomenon and to show that the underlying complex field-induced behavior of smectic liquid crystals is not exceptional, ranges of system parameters for which the chaotic behavior occurs are determined. It is proved that there exists a large enough set of initial phase trajectory points, for which weakly chaotic long-time transitory phenomena occur, and, thereby, it is demonstrated that such a chaotic behavior can be regarded as being typical for strongly field-driven thin liquid crystal systems. Additionally, the influence of low-amplitude random noise on the duration of the transient processes is numerically studied. The strongly nonlinear contribution to the electro-optic response, experimentally determined for liquid crystal samples at frequencies lower than the actual field frequency, is also analyzed for long-time signal sequences. Using a statistical approach to distinguish numerically response signals of samples from noise generated by measuring devices, it is shown that the distribution of sample signals distinctly differs from the device noise. This evidently corroborates the occurrence of the nonlinear low-frequency effect, found earlier for different surface stabilized liquid crystal samples.

  13. Electric-field-induced weakly chaotic transients in ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Śliwa, I.; JeŻewski, W.; Kuczyński, W.

    2016-01-01

    Nonlinear dynamics induced in surface stabilized ferroelectric liquid crystals by strong alternating external electric fields is studied both theoretically and experimentally. As has already been shown, molecular reorientations induced by sufficiently strong fields of high-enough frequencies can reveal a long transient behavior that has a weakly chaotic character. The resulting complex dynamics of ferroelectric liquid crystals can be considered not only as a consequence of irregular motions of particular molecules but also as a repercussion of a surface-enforced partial decorrelation of nonlinear molecular motions within smectic layers. To achieve more insight into the nature of this phenomenon and to show that the underlying complex field-induced behavior of smectic liquid crystals is not exceptional, ranges of system parameters for which the chaotic behavior occurs are determined. It is proved that there exists a large enough set of initial phase trajectory points, for which weakly chaotic long-time transitory phenomena occur, and, thereby, it is demonstrated that such a chaotic behavior can be regarded as being typical for strongly field-driven thin liquid crystal systems. Additionally, the influence of low-amplitude random noise on the duration of the transient processes is numerically studied. The strongly nonlinear contribution to the electro-optic response, experimentally determined for liquid crystal samples at frequencies lower than the actual field frequency, is also analyzed for long-time signal sequences. Using a statistical approach to distinguish numerically response signals of samples from noise generated by measuring devices, it is shown that the distribution of sample signals distinctly differs from the device noise. This evidently corroborates the occurrence of the nonlinear low-frequency effect, found earlier for different surface stabilized liquid crystal samples.

  14. Single molecule spectroscopy of conjugated polymer chains in an electric field-aligned liquid crystal.

    PubMed

    Chang, Wei-Shun; Link, Stephan; Yethiraj, Arun; Barbara, Paul F

    2008-01-17

    Using single molecule polarization spectroscopy, we investigated the alignment of a polymer solute with respect to the liquid crystal (LC) director in an LC device while applying an external electric field. The polymer solute is poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (or MEH-PPV), and the LC solvent is 5CB. The electric field induces a change in the LC director orientation from a planar alignment (no electric field) to a perpendicular (homeotropic) alignment with an applied field of 5.5 x 103 V/cm. We find that the polymer chains align with the LC director in both planar and homeotropic alignment when measured in the bulk of the LC solution away from the device interface. Single molecule polarization distributions measured as a function of distance from the LC device interface reveal a continuous change of the MEH-PPV alignment from planar to homeotropic. The observed polarization distributions are modeled using a conventional elastic model that predicts the depth profile of the LC director orientation for the applied electric field. The excellent agreement between experiment and simulations shows that the alignment of MEH-PPV follows the LC director throughout the LC sample. Furthermore, our results suggest that conjugated polymers such as MEH-PPV can be used as sensitive local probes to explore complex (and unknown) structures in anisotropic media. PMID:17975912

  15. Changes in crystal structure and physicochemical properties of potato starch treated by induced electric field.

    PubMed

    Li, Dandan; Yang, Na; Jin, Yamei; Zhou, Yuyi; Xie, Zhengjun; Jin, Zhengyu; Xu, Xueming

    2016-11-20

    The effects of induced electric field (IEF) on the crystal structure and physicochemical properties of potato starch were investigated by subjecting identically treated control and electrically-modified samples to the same temperature history. Additionally, a method of combining IEF with heating for efficient modification of native polymer was also proposed. Results showed that the application of IEF at an electric voltage of 75V has a statistically significant effect on starch gelatinization and pasting properties, especially when combined with heating at 50°C. After treatment by the combination method for 96h, the gelatinization temperatures increased, which can be explained by the slight increase in the ratio of 1044/1015cm(-1) and relative crystallinity. Furthermore, IEF reduced granular swelling and therefore contributed to decreasing the peak, breakdown, and setback viscosity of potato starch. This study explores the potential of IEF as innovative technology for starch modification. PMID:27561526

  16. Changes in crystal structure and physicochemical properties of potato starch treated by induced electric field.

    PubMed

    Li, Dandan; Yang, Na; Jin, Yamei; Zhou, Yuyi; Xie, Zhengjun; Jin, Zhengyu; Xu, Xueming

    2016-11-20

    The effects of induced electric field (IEF) on the crystal structure and physicochemical properties of potato starch were investigated by subjecting identically treated control and electrically-modified samples to the same temperature history. Additionally, a method of combining IEF with heating for efficient modification of native polymer was also proposed. Results showed that the application of IEF at an electric voltage of 75V has a statistically significant effect on starch gelatinization and pasting properties, especially when combined with heating at 50°C. After treatment by the combination method for 96h, the gelatinization temperatures increased, which can be explained by the slight increase in the ratio of 1044/1015cm(-1) and relative crystallinity. Furthermore, IEF reduced granular swelling and therefore contributed to decreasing the peak, breakdown, and setback viscosity of potato starch. This study explores the potential of IEF as innovative technology for starch modification.

  17. Radiation Damage of Myoglobin Crystals in Weak Stationary Electric and Magnetic Fields

    PubMed Central

    Trame, C B; Dragovic, M; Chiu, H-J

    2014-01-01

    Radiation damage is one of the bottlenecks in the field of structural biology. Cryo-cooling of protein crystals provided a breakthrough in the 1980s and resulted in significant reductions in radiation damage. Other factors positively influencing the progression of damage include the application of radical scavengers and reductions in the experimental beam size. Here we study the impact on radiation damage of applying static magnetic and electric fields during protein diffraction experiments, ultimately probing the Lorenz force effect on primary photoelectrons and secondary Auger electrons, which both contribute to the damage process. The design of a special mounting pin using graphene for applying electric fields on a crystalline sample is described. Analyses of myoglobin protein crystals exposed to the fields of ~40 mT and −300 V show a slower global radiation damage rate and also changes in the progression of specific damage process on the molecular level, in particular at doses extending beyond the Garman limit of 30 MGy. PMID:25089148

  18. Time-Resolved, Electric-Field-Induced Domain Switching and Strain in Ferroelectric Ceramics and Crystals

    NASA Astrophysics Data System (ADS)

    Jones, Jacob L.; Nino, Juan C.; Pramanick, Abhijit; Daniels, John E.

    Ferroelectric materials are used in a variety of applications including diagnostic and therapeutic ultrasound, sonar, vibration and displacement sensors, and non-volatile random access memory. The electromechanical response in ferroelectric materials is comprised of both intrinsic (piezoelectric lattice strain) and extrinsic (e.g., domain wall motion) components that are expressed as characteristic changes in the diffraction pattern. By applying slow, step-wise changes in the electric field, prior quasi-dynamic diffraction measurements have demonstrated both lattice strains and non-180 ∘ domain switching at fields exceeding the macroscopically defined coercive field. However, the loading conditions which most replicate real device operation involve dynamic actuation with sub-coercive, cyclic electric fields. At these operating conditions, extrinsic irreversibilities lead to hysteresis, frequency dispersion and nonlinearity of macroscopic properties. Observation of strain and domain switching at these cyclic loading conditions is an area in which we have reported recent advances using stroboscopic techniques. This chapter highlights the electric-field-induced lattice strain and kinetics of domain switching in a number of materials including technologically-relevant lead zirconate titanate (PZT) ceramics and relaxor single crystals. An outlook on the continuing use of time-resolved diffraction techniques in the characterization of ferroelectric materials is also discussed.

  19. General equations for the motions of ice crystals and water drops in gravitational and electric fields

    NASA Technical Reports Server (NTRS)

    Nisbet, John S.

    1989-01-01

    General equations for the Reynolds number of a variety of types of ice crystals and water drops are given in terms of the Davies, Bond, and Knudsen numbers. The equations are in terms of the basic physical parameters of the system and are valid for calculating velocities in gravitational and electric fields over a very wide range of sizes and atmospheric conditions. The equations are asymptotically matched at the bottom and top of the size spectrum, useful when checking large computer codes. A numerical system for specifying the dimensional properties of ice crystals is introduced. Within the limits imposed by such variables as particle density, which have large deviations, the accuracy of velocities appears to be within 10 percent over the entire range of sizes of interest.

  20. General equations for the motions of ice crystals and water drops in gravitational and electric fields

    NASA Technical Reports Server (NTRS)

    Nisbet, John S.

    1988-01-01

    General equations for the Reynolds number of a variety of types of ice crystals and water drops are given in terms of the Davies, Bond, and Knudsen numbers. The equations are in terms of the basic physical parameters of the system and are valid for calculating velocities in gravitational and electric fields over a very wide range of sizes and atmospheric conditions. The equations are asymptotically matched at the bottom and top of the size spectrum, useful when checking large computer codes. A numerical system for specifying the dimensional properties of ice crystals is introduced. Within the limits imposed by such variables as particle density, which have large deviations, the accuracy of velocities appears to be within 10 percent over the entire range of sizes of interest.

  1. Optical electric-field sensor based on angular optical bias using single β-BaB2O4 crystal.

    PubMed

    Li, Changsheng; Shen, Xiaoli; Zeng, Rong

    2013-11-01

    A novel optical electric-field sensor is proposed and demonstrated in experiment by use of a single beta barium borate (β-BaB2O4, BBO) crystal. The optical sensing unit is only composed of one BBO crystal and two polarizers. An optical phase bias of 0.5π is provided by using natural birefringence in the BBO crystal itself. A small angle (e.g., 0.6°) between the sensing light beam and principal axis of the crystal is required in order to produce the above optical bias. Thus the BBO crystal is used as the electric-field-sensing element and quarter waveplate. The ac electric field in the range of (1.4-703.2) kV/m has been measured with measurement sensitivity of 1.39 mV/(kV/m) and nonlinear error of 0.6%. Compared with lithium niobate crystal used as an electric-field sensor, main advantages of the BBO crystal include higher measurement sensitivity, compact configuration, and no ferroelectric ringing effect.

  2. Effect of an electric field on the orientation of a liquid crystal in a cell with a nonuniform director distribution

    NASA Astrophysics Data System (ADS)

    Aksenova, E. V.; Karetnikov, A. A.; Karetnikov, N. A.; Kovshik, A. P.; Ryumtsev, E. I.; Sakhatskii, A. S.; Svanidze, A. V.

    2016-05-01

    The electric field-induced reorientation of a nematic liquid crystal in cells with a planar helicoidal or a homeoplanar structure of a director field is studied theoretically and experimentally. The dependences of the capacitances of these systems on the voltage in an applied electric field below and above the Fréedericksz threshold are experimentally obtained and numerically calculated. The calculations use the director distribution in volume that is obtained by direct minimization of free energy at various voltages. The inhomogeneity of the electric field inside a cell is taken into account. The calculation results are shown to agree with the experimental data.

  3. Liquid Crystal Switching Response by Localized Surface Plasmon Induced Electric Fields

    NASA Astrophysics Data System (ADS)

    Nuno, Zachary; Hirst, Linda; Ghosh, Sayantani

    2013-03-01

    We investigate the effect of electric fields induced by localized surface plasmons (LSPs) from gold nanoparticles (AuNPs) on the director of a nematic liquid crystal (LC). We deposit LC thin films on a self-assembled AuNP layer and excite the LSPs in the AuNPs using 530 nm excitation light. Using polarized optical microscopy we follow the birefringence of the LC film as the excitation is turned on and off and observe the homeotropic alignment of the LC change to planar. This realignment response is observed to be dependent on the excitation wavelength, excitation power, and temperature; occurring only within 1 degree Celsius of the LC phase transition from nematic to isotropic. This work was funded by UC Merced GRC Summer Fellowship.

  4. Tight Binding Calculation of Electric Field Gradients in Arsenic Chalcogenide Crystals and Glasses

    NASA Astrophysics Data System (ADS)

    Nelson, Chris B.; Taylor, P. Craig; Harrison, Walter A.

    2000-03-01

    We apply a tight binding approach to calculate the electric field gradient at As atoms due to three nearest neighbor chalcogen atoms in the two inequivalent As sites of crystalline As_2S_3, As_2Se_3, orthorhombic As (Or-As), and rhombohedral As (Rh-As). We first orthogonalize the 4s and 4p valence states on an As atom with respect to sp hybride states constructed on the three nearest neighbor chalcogen atoms. The orthogonalized As valence states are then othogonalized with respect to the As 2p and 3p core states using the Gramm-Schmidt procedure. The resulting state is used aa a first approximation to calculate the electric field gradient at the As nuclear site. Using Harrison's tight binding parameters,[1] which were constructed for tetrahedrally-coordinated semiconductors, we obtain excellent agreement with experiment for Rh-As and are within a factor of 2 ~ 4 for the Or-As, As_2S_3, As_2Se_3, crystal structures. Because the calculation depends only on the number of nearest neighbors it may be extendable to disordered systems, such as a glass. 1. S.Froyen and W.A. Harrison, Phys. Rev. B, 20, 2420 (1979).

  5. Dynamics of a director reorientation and optical response of polymer films filled with a liquid crystal under strong electric field

    NASA Astrophysics Data System (ADS)

    Pasechnik, S. V.; Shmeleva, D. V.; Chopik, A. P.; Vakulenko, A. A.; Zakharov, A. V.

    2016-08-01

    The dynamics of the director reorientation in nematic liquid crystals (NLC) confined by cylindrical cavities of porous polymeric films under strong electric field E with has been investigated theoretically. The main attention was paid to the specific mode of field application characterized by abrupt changes of the applied voltage's polarity. In experiments with porous films filled with a liquid crystal 5CB such mode resulted in appearance of strong peak -like decreasing of an optical transparence of the films. Two mechanisms of such unusual response based on assumption of electrically induced motion of ions and overall motion of a liquid were considered and applied to explain experimental results.

  6. Effect of an electric field on the magnetization of a SmFe3(BO3)4 single crystal

    NASA Astrophysics Data System (ADS)

    Freidman, A. L.; Balaev, A. D.; Dubrovskii, A. A.; Eremin, E. V.; Shaikhutdinov, K. A.; Temerov, V. L.; Gudim, I. A.

    2015-07-01

    A change in the magnetization of a SmFe3(BO3)4 single crystal in response to an applied alternating electric field has been experimentally observed for the first time. The measurements have demonstrated that the magnetization oscillates not only at a frequency of the applied electric field but also at twice the frequency. The dependences of the magnetoelectric effect on the magnetic and electric fields and temperature have been measured. It has been assumed that the existence of the second harmonic of the magnetoelectric effect is due to the electrostriction.

  7. Concentrating colloids with electric field gradients. I. Particle transport and growth mechanism of hard-sphere-like crystals in an electric bottle.

    PubMed

    Leunissen, Mirjam E; Sullivan, Matthew T; Chaikin, Paul M; van Blaaderen, Alfons

    2008-04-28

    This work concerns the use of electric field gradients to manipulate the local particle concentration in a hard-sphere-like suspension. Inside a specially designed "electric bottle," we observed our colloids to collect in the regions of lowest field strength ("negative dielectrophoresis"). This allows for the use of larger field gradients and stronger dielectrophoretic forces than in the original electric bottle design, which was based on positive dielectrophoresis [M. T. Sullivan et al., Phys. Rev. Lett. 96, 015703 (2006)]. We used confocal scanning laser microscopy to quantitatively follow the time-dependent change in the particle density and the suspension structure. Within a few days, the dielectrophoretic compression was seen to initiate a heterogeneouslike growth of large single crystals, which took place far out-of-equilibrium. The crystals had a random hexagonal close-packed structure and displayed an intriguing growth mechanism, during which the entire crystal was continuously transported, while growing both on the "high-field" and the "low-field" sides, although at different rates. After switching off the electric field, the compressed crystals were found to relax to a lower packing fraction and melt, at a much slower rate than the crystal growth. Besides revealing the particular (far out-of-equilibrium) crystal growth mechanism in these electric bottles, our observations also shed light on the role of the different particle transport processes in the cell and some of the relevant tuning parameters. This is useful for different types of experiments, for instance, focusing more on melting, homogeneous crystallization, or the glass transition.

  8. Propagation characteristics of a focused laser beam in a strontium barium niobate photorefractive crystal under reverse external electric field.

    PubMed

    Guo, Q L; Liang, B L; Wang, Y; Deng, G Y; Jiang, Y H; Zhang, S H; Fu, G S; Simmonds, P J

    2014-10-01

    The propagation characteristics of a focused laser beam in a SBN:75 photorefractive crystal strongly depend on the signal-to-background intensity ratio (R=Is/Ib) under reverse external electric field. In the range 20>R>0.05, the laser beam shows enhanced self-defocusing behavior with increasing external electric field, while it shows self-focusing in the range 0.03>R>0.01. Spatial solitons are observed under a suitable reverse external electric field for R=0.025. A theoretical model is proposed to explain the experimental observations, which suggest a new type of soliton formation due to "enhancement" not "screening" of the external electrical field.

  9. Velocity profiles of electric-field-induced backflows in liquid crystals confined between parallel plates

    NASA Astrophysics Data System (ADS)

    Tsuji, Tomohiro; Chono, Shigeomi; Matsumi, Takanori

    2015-02-01

    For the purpose of developing liquid crystalline microactuators, we visualize backflows induced between two parallel plates for various parameters such as the twist angle, cell gap, applied voltage, and molecular configuration mode. We use 4-cyano-4'-pentyl biphenyl, a typical low-molar-mass nematic liquid crystal. By increasing the twist angle from 0° to 180°, the velocity component parallel to the anchoring direction of the lower plate changes from an S-shaped profile to a distorted S-shaped profile before finally becoming unidirectional. In contrast, the velocity component perpendicular to the anchoring direction evolves from a flat profile at 0° into an S-shaped profile at 180°. Because both an increase in the applied voltage and a decrease in the cell gap increase the electric field intensity, the backflow becomes large. The hybrid molecular configuration mode induces a larger backflow than that for the planar aligned mode. The backflow develops in two stages: an early stage with a microsecond time scale and a later stage with a millisecond time scale. The numerical predictions are in qualitative agreement with the measurements, but not quantitative agreement because our computation ignores the plate edge effect of surface tension.

  10. Crystal electric field excitations in quasicrystal approximant TbCd6 studied by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Das, Pinaki; Flint, R.; Kong, T.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.; de Boissieu, M.; Lory, P.-F.; Beutier, G.; Hiroto, T.

    All of the known quasicrystals with local moments exhibit frustration and spin glass-like behavior at low temperature. The onset of the spin freezing temperature is believed to be affected by the crystal electric field (CEF) splitting of the local moments. The quasicrystal approximant TbCd6 and its related icosahedral quasicrystal phase, i-Tb-Cd, form a set of model systems to explore how magnetism evolves from a conventional lattice (approximant phase) to an aperiodic quasicrystal. Though TbCd6 shows long-range antiferromagnetic ordering (TN = 24 K), only spin glass like behavior is observed in i-Tb-Cd with a spin freezing temperature of TF = 6 K. To investigate further, we have performed inelastic neutron scattering measurements on powder samples of TbCd6 and observed two distinct CEF excitations at low energies which points to a high degeneracy of the CEF levels related to the Tb surrounding with almost icosahedral symmetry. Work at Ames Laboratory was supported by the DOE, BES, Division of Materials Sciences & Engineering, under Contract No. DE-AC02-07CH11358. This research used resources at Institut Laue-Langevin, France.

  11. Giant electric-field induced strain in ferroelectric crystals by point-defect mediated reversible domain switching

    NASA Astrophysics Data System (ADS)

    Ren, Xiaobing

    2004-03-01

    Ferroelectric crystals are characterized by their asymmetric or polar structures. In electric field, ions undergo asymmetric displacement and result in a small change in crystal dimension, which is proportional to the applied field. Such electric-field induced strain (or piezoelectricity) has found extensive applications in actuators and sensors. However, the effect is generally very small and thus limits its usefulness. Here I show that with a different mechanism, an aged BaTiO3 single crystal can generate a large recoverable non-linear strain of 0.75% at a low field of 200V/mm. At the same field this value is about 40 times higher than piezoelectric PZT ceramics and more than 10 times higher than the high strain PZN-PT single crystals. This giant electro-strain stems from an unusual reversible domain switching (most importantly the switching of non-180^o domains) in which the restoring force is provided by a general symmetry-conforming property of point defects. This mechanism provides a general method to achieve large electro-strain effect in a wide range of ferroelectric systems and the effect may lead to novel applications in ultra large stroke and non-linear actuators.

  12. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching

    NASA Astrophysics Data System (ADS)

    Ren, Xiaobing

    2004-02-01

    Ferroelectric crystals are characterized by their asymmetric or polar structures. In an electric field, ions undergo asymmetric displacement and result in a small change in crystal dimension, which is proportional to the applied field. Such electric-field-induced strain (or piezoelectricity) has found extensive applications in actuators and sensors. However, the effect is generally very small and thus limits its usefulness. Here I show that with a different mechanism, an aged BaTiO3 single crystal can generate a large recoverable nonlinear strain of 0.75% at a low field of 200 V mm-1. At the same field this value is about 40 times higher than piezoelectric Pb(Zr, Ti)O3 (PZT) ceramics and more than 10 times higher than the high-strain Pb(Zn1/3Nb2/3)O3-PbTiO3 (PZN-PT) single crystals. This large electro-strain stems from an unusual reversible domain switching (most importantly the switching of non-180° domains) in which the restoring force is provided by a general symmetry-conforming property of point defects. This mechanism provides a general method to achieve large electro-strain effect in a wide range of ferroelectric systems and the effect may lead to novel applications in ultra-large stroke and nonlinear actuators.

  13. Specific features of attenuated light transmission by liquid-crystal twist cells in constant and alternating electric fields

    NASA Astrophysics Data System (ADS)

    Konshina, E. A.; Amosova, L. P.

    2012-07-01

    Optical transmission characteristics of dual-frequency nematic liquid crystal (NLC) twist cells with different alignment layers (rubbed polyimide and obliquely deposited cerium dioxide) have been studied in constant and alternating electric fields. It has been established that a change in the optical (twist effect) threshold and dynamic range of attenuated transmission depend both on the boundary conditions (that influence the screening of applied voltage) and on the parameters of the applied electric field. The maximum dynamic range (49.5 dB) has been obtained in the cell with a CeO2 alignment layer controlled by a constant potential. In the case of an alternating electric field, the dynamic range decreases because of reduced effective voltage.

  14. Influence of Electric Fields on the Flow of a Liquid Crystal Mixture in Circular-Pipe Electrodes

    NASA Astrophysics Data System (ADS)

    Tsukiji, Tetsuhiro; Koyabu, Eitaro; Tsuji, Tomohiro; Chono, Shigeomi

    Two types of circular-pipe electrode are designed to control the pressure and flow rate of electrorheological(ER) fluids under the application of an electric field. The shape of the electrode is a circular pipe and some parts of the inner surface of the pipe are made of electrode strips. A liquid crystal mixture is selected as a homogeneous ER fluid and the pressure drop in the circular-pipe electrode is measured at constant flow rates. On the other hand, numerical analysis of the electric field and the fluid flow in the circular-pipe electrode is conducted. It is assumed that the viscosity, which depends on the electric field intensity, is distributed in the flow fields. The relationships between the flow rate and the pressure are simulated numerically for various electric field intensities, which agree with experimental results. The difference in the ER effect between the two types of electrodes is discussed on the basis of the distributions of the electric field intensity and the pressure drop. Furthermore, the influence of both the number of electrode strips and the gaps between electrode strips in the pipe on the flow rate vs. pressure characteristics is investigated numerically, and a comparison of the flow characteristics between the present electrodes and two types of parallel-plate electrodes is conducted.

  15. Effective long-range interlayer interactions and electric-field-induced subphases in ferrielectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Chandani, A. D. L.; Fukuda, Atsuo; Vij, Jagdish K.; Takanishi, Yoichi; Iida, Atsuo

    2016-04-01

    Microbeam resonant x-ray scattering experiments recently revealed the sequential emergence of electric-field-induced subphases (stable states) with exceptionally large unit cells consisting of 12 and 15 smectic layers. We explain the emergence of the field-induced subphases by the quasimolecular model based on the Emelyanenko-Osipov long-range interlayer interactions (LRILIs) together with our primitive way of understanding the frustration in clinicity using the qE number defined as qE=|[R ] -[L ] | /([R ] +[L ] ) ; here [R ] and [L ] refer to the numbers of smectic layers with directors tilted to the right and to the left, respectively, in the unit cell of a field-induced subphase. We show that the model actually stabilizes the field-induced subphases with characteristic composite unit cells consisting of several blocks, each of which is originally a ferrielectric three-layer unit cell stabilized by the LRILIs, but some of which would be modified to become ferroelectric by an applied electric field. In a similar line of thought, we also try to understand the puzzling electric-field-induced birefringence data in terms of the LRILIs.

  16. Magnetic anisotropy and crystalline electric field effects in RRh{sub 4}B{sub 4} single crystals.

    SciTech Connect

    Zhou, H.; Lambert, S. E.; Maple, M. B.; Dunlap, B. D.; Materials Science Division; Univ. of California at San Diego

    2009-08-01

    Research on polycrystalline RRh{sub 4}B{sub 4} samples has shown that crystalline electric field (CEF) effects play an important role in these compounds. The successful synthesis of single crystal samples of RRh{sub 4}B{sub 4} with R = Y, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu has provided an opportunity to further investigate CEF effects in these materials. Magnetization and magnetic susceptibility measurements on the RRh{sub 4}B{sub 4} single crystals revealed strong magnetic anisotropy, and the experimental results could be described well by CEF calculations based on the parameters derived from an analysis of experimental data for ErRh{sub 4}B{sub 4} single crystals. The easy directions of magnetization of these compounds are consistent with the signs of the Stevens factor {alpha}J of the CEF Hamiltonian. A strong influence of magnetic anisotropy on superconductivity was also observed.

  17. Noise-induced resonance-like phenomena in InP crystals embedded in fluctuating electric fields

    NASA Astrophysics Data System (ADS)

    Persano Adorno, D.; Pizzolato, N.; Spagnolo, B.

    2016-05-01

    We explore and discuss the complex electron dynamics inside a low-doped n-type InP bulk embedded in a sub-THz electric field, fluctuating for the superimposition of an external source of Gaussian correlated noise. The results presented in this study derive from numerical simulations obtained by means of a multi-valley Monte Carlo approach to simulate the nonlinear transport of electrons inside the semiconductor crystal. The electronic noise characteristics are statistically investigated by calculating the correlation function of the velocity fluctuations, its spectral density and the integrated spectral density, i.e. the total noise power, for different values of both amplitude and frequency of the driving oscillating electric field and for different correlation times of the field fluctuations. Our results show that the nonlinear response of electrons is strongly affected by the field fluctuations. In particular, crucially depending on the relationship between the correlation times of the external Gaussian noise and the timescales of complex phenomena involved in the electron dynamical behavior: (i) electrons self-organize among different valleys, giving rise to intrinsic noise suppression; (ii) this cooperative behavior causes the appearance of a resonance-like phenomenon in the noise spectra.

  18. Experimental study of the self-deflection of a light beam in a photorefractive crystal exposed to an external alternating electric field

    NASA Astrophysics Data System (ADS)

    Asselborn, S. A.; Kundikova, N. D.; Novikov, I. V.

    2008-02-01

    We have experimentally studied the propagation of an intensity-modulated light beam in a Ba2NaNb5O15 photorefractive crystal exposed to an external alternating sinusoidal electric field. The dependence of the extent of beam self-focusing on the applied field amplitude is determined. The possibility of soliton formation under such conditions is demonstrated.

  19. Dynamics of the director reorientation in confined nematic liquid crystals imposed by a strong orthogonal electric field

    NASA Astrophysics Data System (ADS)

    Pasechnik, S. V.; Vakulenko, A. A.; Zakharov, A. V.

    2016-08-01

    The dynamics of the periodic distortions in confined nematic liquid crystals (LCs) has been investigated theoretically basing on the hydrodynamic theory including the director motion with appropriate boundary and initial conditions. Analysis of the numerical results for the turn-on process provides an evidence for the appearance of the spatially periodic patterns in confined LC film, only in response to the suddenly applied strong electric field. It has been shown that there is a threshold value of the amplitude of the thermal fluctuations of the director over the LC sample which provides the nonuniform rotation mode rather than the uniform one, whereas the lower values of the amplitude dominate the uniform mode. During the turn-off process the reorientation of the director to the direction preferred by the surfaces is characterized by the complex destruction of the initially periodic structure to a monodomain state.

  20. Investigation of electric field effect on the third order nonlinear optical properties of Fe3O4 nanoparticles-doped nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Dehghani, Z.; Saievar Iranizad, E.; Nadafan, M.

    2015-01-01

    Third order nonlinearity of Fe3O4 nanoparticles (NPs) doped in nematic liquid crystals (NLCs) was evaluated due to laser induced self-phase modulation. The influence of electric field on the nonlinear optical responses of the NLCs doped with Fe3O4 NPs was considered in different voltages. The measurements were performed for two commonly initial alignments (homogeneous and homeotropic) with different small compositional percentages of magnetic NPs. The experimental results show that the homogenous- aligned cell was considerably affected on the applied electric field while the nonlinearity of homeotropic-aligned NLCs with the Fe3O4 NPs did not approximately change in the presence of electric field.

  1. Effect of two-dimensional confinement on switching of vertically aligned liquid crystals by an in-plane electric field.

    PubMed

    Choi, Tae-Hoon; Woo, Jae-Hyeon; Choi, Yeongyu; Yoon, Tae-Hoon

    2016-09-01

    We investigated the two-dimensional (2-D) confinement effect of liquid crystals (LCs) on the switching of vertically aligned LCs by an in-plane electric field. When an in-plane field is applied to a vertical alignment (VA) cell, virtual walls are built at the center of the interdigitated electrodes and at the middle of the gaps between them. The LC molecules are confined not only by the two substrates but also by the virtual walls so that the turn-off time of a VA cell driven by an in-plane field is dependent on the pitch of the interdigitated electrodes as well as the cell gap. Therefore, the turn-off time of a VA cell driven by an in-plane field can be reduced simply by decreasing the pitch of the interdigitated electrodes as a result of the enhanced anchoring provided by the virtual walls. The experimental results showed good agreement with a simple model based on the 2-D confinement effect of LCs.

  2. Effect of two-dimensional confinement on switching of vertically aligned liquid crystals by an in-plane electric field.

    PubMed

    Choi, Tae-Hoon; Woo, Jae-Hyeon; Choi, Yeongyu; Yoon, Tae-Hoon

    2016-09-01

    We investigated the two-dimensional (2-D) confinement effect of liquid crystals (LCs) on the switching of vertically aligned LCs by an in-plane electric field. When an in-plane field is applied to a vertical alignment (VA) cell, virtual walls are built at the center of the interdigitated electrodes and at the middle of the gaps between them. The LC molecules are confined not only by the two substrates but also by the virtual walls so that the turn-off time of a VA cell driven by an in-plane field is dependent on the pitch of the interdigitated electrodes as well as the cell gap. Therefore, the turn-off time of a VA cell driven by an in-plane field can be reduced simply by decreasing the pitch of the interdigitated electrodes as a result of the enhanced anchoring provided by the virtual walls. The experimental results showed good agreement with a simple model based on the 2-D confinement effect of LCs. PMID:27607702

  3. Crystal Field Handbook

    NASA Astrophysics Data System (ADS)

    Newman, D. J.; Ng, Betty

    2007-09-01

    List of contributors; Preface; Introduction; 1. Crystal field splitting mechanisms D. J. Newman and Betty Ng; 2. Empirical crystal fields D. J. Newman and Betty Ng; 3. Fitting crystal field parameters D. J. Newman and Betty Ng; 4. Lanthanide and actinide optical spectra G. K. Liu; 5. Superposition model D. J. Newman and Betty Ng; 6. Effects of electron correlation on crystal field splitting M. F. Reid and D. J. Newman; 7. Ground state splittings in S-state ions D. J. Newman and Betty Ng; 8. Invariants and moments Y. Y. Yeung; 9. Semiclassical model K. S. Chan; 10. Transition intensities M. F. Reid; Appendix 1. Point symmetry D. J. Newman and Betty Ng; Appendix 2. QBASIC programs D. J. Newman and Betty Ng; Appendix 3. Accessible program packages Y. Y. Yeung, M. F. Reid and D. J. Newman; Appendix 4. Computer package CST Cz. Rudowicz; Bibliography; Index.

  4. Switching ferroelectric domain configurations using both electric and magnetic fields in Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 single-crystal lamellae

    PubMed Central

    Evans, D. M.; Schilling, A.; Kumar, Ashok; Sanchez, D.; Ortega, N.; Katiyar, R. S.; Scott, J. F.; Gregg, J. M.

    2014-01-01

    Thin single-crystal lamellae cut from Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 ceramic samples have been integrated into simple coplanar capacitor devices. The influence of applied electric and magnetic fields on ferroelectric domain configurations has been mapped, using piezoresponse force microscopy. The extent to which magnetic fields alter the ferroelectric domains was found to be strongly history dependent: after switching had been induced by applying electric fields, the susceptibility of the domains to change under a magnetic field (the effective magnetoelectric coupling parameter) was large. Such large, magnetic field-induced changes resulted in a remanent domain state very similar to the remanent state induced by an electric field. Subsequent magnetic field reversal induced more modest ferroelectric switching. PMID:24421376

  5. Effect of external electric field and background illumination on the intensity distribution of optical surface waves in the metal – photorefractive crystal system

    SciTech Connect

    Akhmedzhanov, I M

    2013-11-30

    The influence of the external electric field and background illumination on the intensity distribution of optical photorefractive surface waves at the metal – photorefractive crystal interface has been numerically simulated. The simulation is performed for a strontium – barium niobate (SBN) crystal using the parameters corresponding to the experimental data. The replacement of a real metal with an ideal one and the choice of the corresponding boundary conditions (depending on the wave power) in the numerical simulation have been substantiated. The calculation results have shown good agreement with the previously published experimental data on the effect of background illumination and a significant discrepancy for the data on the effect of the external electric field. It is found that the effect of the external electric field can be significantly enhanced by reducing the optical power of the photorefractive wave to values close to the threshold ones. (nonlinear optical phenomena)

  6. Effect of electric field and temperature gradient on the orientational dynamics of liquid crystals in a microvolume cylindrical cavity

    NASA Astrophysics Data System (ADS)

    Zakharov, A. V.; Vakulenko, A. A.; Romano, Silvano

    2009-10-01

    We have considered a homogeneously aligned liquid crystal (HALC) microvolume confined between two infinitely long horizontal coaxial cylinders and investigated dynamic field pumping, i.e., studied the interactions between director, velocity, and electric E fields as well as a radially applied temperature gradient ∇T, where the inner cylinder is kept at a lower temperature than the outer one. In order to elucidate the role of ∇T in producing hydrodynamic flow u, we have carried out a numerical study of a system of hydrodynamic equations including director reorientation, fluid flow, and temperature redistribution across the HALC cavity. Calculations show that only under the influence of ∇T does the initially quiescent HALC sample settle down to a stationary flow regime with horizontal component of velocity ueq(r). The effects of ∇T and of the size of the HALC cavity on magnitude and direction of ueq(r) have been investigated for a number of hydrodynamic regimes. Calculations also showed that E influences only the director redistribution across the HALC but not the magnitude of the velocity ueq(r).

  7. Reentrant smectic-[ital C] and smectic-[ital C][sup *] phases in liquid crystals under an electric field

    SciTech Connect

    Benguigui, L. ); Jacobs, A.E. )

    1994-05-01

    Kondo [ital et] [ital al]. [Jpn. J. Appl. Phys. 22, L43 (1983)] discovered that both the smectic-[ital C] and smectic-[ital C][sup *] phases in the liquid crystal [ital p]-[ital n]-decyloxybenzylidene-[ital p]-amino-2-methylbutyl-cinnamate are reentrant with temperature for a range of electric fields. We show that the Landau theory with no adjustable parameters provides a semiquantitative explanation of the phase diagram. The double reentrance is due to two fourth-order terms, one chiral and the other achiral, and is intimately related to the maximum in the pitch, unlike the reentrance under magnetic field. The Sm-C--Sm-C[sup *] transition curve displays both main types of second-order phase transition, instability, and nucleation, separated by a first-order segment. [ital p]-azoxy-cinnamate-methyl-2-butanol and other compounds with divergent pitch should also show the double reentrance, but the physical origin is different.

  8. The effect of an electric field on the morphological stability of the crystal-melt interface of a binary alloy. III - Weakly nonlinear theory

    NASA Technical Reports Server (NTRS)

    Wheeler, A. A.; Mcfadden, G. B.; Coriell, S. R.; Hurle, D. T. J.

    1990-01-01

    The effect of a constant electric current on the crystal-melt interface morphology during directional solidification at constant velocity of a binary alloy is considered. A linear temperature field is assumed, and thermoelectric effects and Joule heating are neglected; electromigration and differing electrical conductivities of crystal and melt are taken into account. A two-dimensional weakly nonlinear analysis is carried out to third order in the interface amplitude, resulting in a cubic amplitude equation that describes whether the bifurcation from the planar state is supercritical or subcritical. For wavelengths corresponding to the most dangerous mode of linear theory, the demarcation between supercritical and subcritical behavior is calculated as a function of processing conditions and material parameters. The bifurcation behavior is a sensitive function of the magnitude and direction of the electric current and of the electrical conductivity ratio.

  9. Electric Field Imaging Project

    NASA Technical Reports Server (NTRS)

    Wilcutt, Terrence; Hughitt, Brian; Burke, Eric; Generazio, Edward

    2016-01-01

    NDE historically has focused technology development in propagating wave phenomena with little attention to the field of electrostatics and emanating electric fields. This work is intended to bring electrostatic imaging to the forefront of new inspection technologies, and new technologies in general. The specific goals are to specify the electric potential and electric field including the electric field spatial components emanating from, to, and throughout volumes containing objects or in free space.

  10. Electric field induced metastable ferroelectric phase and its behavior in (Pb, La)(Zr, Sn, Ti)O{sub 3} antiferroelectric single crystal near morphotropic phase boundary

    SciTech Connect

    Li, Yuanyuan; Li, Qiang Yan, Qingfeng; Gao, Jinghan; Zhuo, Fangping; Cao, Wenwu; Xi, Xiaoqing; Zhang, Yiling; Chu, Xiangcheng

    2014-02-03

    Antiferroelectric (AFE) (Pb, La)(Zr, Sn, Ti)O{sub 3} (PLZST) single crystal with composition near morphotropic phase boundary has been grown and studied. X-ray diffraction analysis and electrical properties reveal coexistence of antiferroelectric/ferroelectric (FE) phases, with the AFE phase dominated at room temperature. Temperature-dependent polarization and strain measurements indicate that the AFE phase can be induced into a metastable FE phase by electric field. The FE phase can be maintained in a wide temperature range above room temperature and recovers to AFE phase around a critical temperature of 90 °C, accompanied with remarkable change in field-induced strain. The strain at 90 °C (∼0.50%) is ten times larger than that at room temperature (∼0.04%), which makes the PLZST single crystal a promising candidate for thermal switch and actuator application.

  11. Electric field induced metastable ferroelectric phase and its behavior in (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric single crystal near morphotropic phase boundary

    NASA Astrophysics Data System (ADS)

    Li, Yuanyuan; Cao, Wenwu; Li, Qiang; Yan, Qingfeng; Gao, Jinghan; Zhuo, Fangping; Xi, Xiaoqing; Zhang, Yiling; Chu, Xiangcheng

    2014-02-01

    Antiferroelectric (AFE) (Pb, La)(Zr, Sn, Ti)O3 (PLZST) single crystal with composition near morphotropic phase boundary has been grown and studied. X-ray diffraction analysis and electrical properties reveal coexistence of antiferroelectric/ferroelectric (FE) phases, with the AFE phase dominated at room temperature. Temperature-dependent polarization and strain measurements indicate that the AFE phase can be induced into a metastable FE phase by electric field. The FE phase can be maintained in a wide temperature range above room temperature and recovers to AFE phase around a critical temperature of 90 °C, accompanied with remarkable change in field-induced strain. The strain at 90 °C (˜0.50%) is ten times larger than that at room temperature (˜0.04%), which makes the PLZST single crystal a promising candidate for thermal switch and actuator application.

  12. Electric field induced biaxiality and the electro-optic effect in a bent-core nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Nagaraj, Mamatha; Panarin, Y. P.; Manna, U.; Vij, J. K.; Keith, C.; Tschierske, C.

    2010-01-01

    We report the observation of a biaxial nematic phase in a bent-core molecular system using polarizing microscopy, electro-optics, and dielectric spectroscopy, where we find that the biaxiality exists on a microscopic scale. An application of electric field induces a macroscopic biaxiality and in consequence gives rise to electro-optic switching. This electro-optic effect shows significant potential in applications for displays due to its fast high-contrast response. The observed electro-optic switching is explained in terms of the interaction of the ferroelectric clusters with the electric field.

  13. Statistical electric field and switching time distributions in PZT 1Nb2Sr ceramics: Crystal- and microstructure effects

    NASA Astrophysics Data System (ADS)

    Zhukov, Sergey; Kungl, Hans; Genenko, Yuri A.; von Seggern, Heinz

    2014-01-01

    Dispersive polarization response of ferroelectric PZT ceramics is analyzed assuming the inhomogeneous field mechanism of polarization switching. In terms of this model, the local polarization switching proceeds according to the Kolmogorov-Avrami-Ishibashi scenario with the switching time determined by the local electric field. As a result, the total polarization reversal is dominated by the statistical distribution of the local field magnitudes. Microscopic parameters of this model (the high-field switching time and the activation field) as well as the statistical field and consequent switching time distributions due to disorder at a mesoscopic scale can be directly determined from a set of experiments measuring the time dependence of the total polarization switching, when applying electric fields of different magnitudes. PZT 1Nb2Sr ceramics with Zr/Ti ratios 51.5/48.5, 52.25/47.75, and 60/40 with four different grain sizes each were analyzed following this approach. Pronounced differences of field and switching time distributions were found depending on the Zr/Ti ratios. Varying grain size also affects polarization reversal parameters, but in another way. The field distributions remain almost constant with grain size whereas switching times and activation field tend to decrease with increasing grain size. The quantitative changes of the latter parameters with grain size are very different depending on composition. The origin of the effects on the field and switching time distributions are related to differences in structural and microstructural characteristics of the materials and are discussed with respect to the hysteresis loops observed under bipolar electrical cycling.

  14. Non-180° polarization rotation of ferroelectric (Bi0.5Na0.5)TiO3 single crystals under electric field

    NASA Astrophysics Data System (ADS)

    Kitanaka, Yuuki; Yanai, Ken; Noguchi, Yuji; Miyayama, Masaru; Kagawa, Yutaka; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2014-03-01

    The behavior of the polarization switching by applying electric fields (E) along the <100> and <111> directions has been investigated for the single crystals of ferroelectric (Bi0.5Na0.5)TiO3 (BNT) using high-energy synchrotron radiation x-ray diffraction (SR-XRD) and density functional theory (DFT) calculations. Single-crystal SR-XRD analyses reveal that the E-induced switching of spontaneous polarization (Ps) occurs via the non-180° (71° and/or 109°) Ps rotation. The DFT calculations show that the energy barrier for the 71° Ps rotation is much lower than those for the 109° Ps rotation and for the direct 180° Ps reversal. These experimental and DFT calculation results lead to the conclusion that the 71° Ps rotation is the dominant pathway for the E-induced polarization switching in the BNT crystals.

  15. The effect of an electric field on the morphological stability of the crystal-melt interface of a binary alloy

    NASA Technical Reports Server (NTRS)

    Wheeler, A. A.; Coriell, S. R.; Mcfadden, G. B.; Hurle, D. T. J.

    1988-01-01

    A fully time-dependent linear stability analysis of the morphological stability of a planar interface during directional solidification of a binary alloy at constant velocity in the presence of an electric field, is performed. The electromigration of solute and the differing electrical conductivities of solid and liquid for a model in which the temperature gradient is constant are taken into account. The present results are compared with the constitutional supercooling criterion, and it is shown there may be substantial differences. A modified constitutional supercooling criterion which is valid over a large range of conditions is derived. It is also found under certain conditions that the onset of instability may be time dependent.

  16. Effect of an applied electric field on a weakly anchored non-planar Nematic Liquid Crystal (NLC) layer

    NASA Astrophysics Data System (ADS)

    Mema, Ensela; Cummings, Linda J.; Kondic, Lou

    We consider a mathematical model that consists of a NLC layer sandwiched between two parallel bounding plates, across which an external field is applied. We investigate its effect on the director orientation by considering the dielectric and flexoelectric contributions and varying parameters that represent the anchoring conditions and the electric field strength. In particular, we investigate possible director configurations that occur in weakly anchored and non-planar systems. We observe that non-planar anchoring angles destroy any hysteresis seen in a planar system by eliminating the fully vertical director configuration and the ''saturation threshold'' seen in weakly anchored planar Freedericksz cells. Supported by NSF Grant No. DMS-1211713.

  17. Nonequilibrium kinetics of the electron–phonon sybsystem of a crystal in a strong electric field as a base of the electroplastic effect

    SciTech Connect

    Karas, V. I. Vlasenko, A. M.; Sokolenko, V. I.; Zakharov, V. E.

    2015-09-15

    We present the results of a kinetic analysis of nonequilibrium dynamics of the electron–phonon system of a crystal in a strong electric field based on the proposed method of numerically solving a set of Boltzmann equations for electron and phonon distribution functions without expanding the electron distribution function into a series in the phonon energy. It is shown that the electric field action excites the electron subsystem, which by transferring energy to the phonon subsystem creates a large amount of short-wave phonons that effectively influence the lattice defects (point, lines, boundaries of different phases), which results in a redistribution of and decrease in the lattice defect density, in damage healing, in a decrease in the local peak stress, and a decrease in the degradation level of the construction material properties.

  18. Nonequilibrium kinetics of the electron-phonon sybsystem of a crystal in a strong electric field as a base of the electroplastic effect

    NASA Astrophysics Data System (ADS)

    Karas, V. I.; Vlasenko, A. M.; Sokolenko, V. I.; Zakharov, V. E.

    2015-09-01

    We present the results of a kinetic analysis of nonequilibrium dynamics of the electron-phonon system of a crystal in a strong electric field based on the proposed method of numerically solving a set of Boltzmann equations for electron and phonon distribution functions without expanding the electron distribution function into a series in the phonon energy. It is shown that the electric field action excites the electron subsystem, which by transferring energy to the phonon subsystem creates a large amount of short-wave phonons that effectively influence the lattice defects (point, lines, boundaries of different phases), which results in a redistribution of and decrease in the lattice defect density, in damage healing, in a decrease in the local peak stress, and a decrease in the degradation level of the construction material properties.

  19. Distillation under electric fields

    SciTech Connect

    Shah, V.M.; Blankenship, K.D.; Tsouris, C.

    1997-11-01

    Distillation Is the most common separation process used in the chemical and petroleum industry. Major limitations in the applicability and efficiency of distillation come from thermodynamic equilibria, that is, vapor-liquid equilibria (VLE), and heat and mass transfer rates. In this work, electric fields are used to manipulate the VLE of mixtures. VLE experiments are performed for various binary mixtures in the presence of electric fields on the order of a few kilovolts per centimeter. The results show that the VLE is changed by electric fields, with changes in the separation factor as high as 10% being observed. Batch distillation experiments are also carried out for binary mixtures of 2-propanol and water with and without an applied electric field. Results show enhanced distillation rates and separation efficiency in the presence of an electric field but decreased separation enhancement when the electric current is increased. The latter phenomenon is caused by the formation at the surface of the liquid mixture of microdroplets that are entrained by the vapor. These observations suggest that there should be an electric field strength for each system for which the separation enhancement is maximum.

  20. Electric-field-induced optical path length change in LiNbO3:MgO crystals: spatial anisotropy analysis.

    PubMed

    Andrushchak, Anatoliy S; Yurkevych, Oleh V; Strychalyuk, Bogdan M; Klymash, Mykhailo M; Rusek, Andrzej; Kityk, Andriy V

    2013-06-01

    In this paper we describe the methodology behind the calculation of the indicative surfaces (ISs) of the electric-field-induced optical path length change (EFIOPC) in anisotropic crystal materials accounting for the piezoelectric deformation. It is considered in detail for a particular case of 3m point group symmetry and applied to LiNbO(3) single crystals doped with 7 mol. % MgO (hereafter LiNbO(3):MgO). The contribution of the inverse piezoelectricity into EFIOPC appears to be considerable and, in many cases, modifying, for instance, the spherical coordinates of the extreme directions or even leading to the appearance of new directional maxima on relevant ISs. The ISs of EFIOPC are of considerable practical importance as they allow us to determine an optimal geometry for electro-optic coupling. The spatial anisotropic analysis of EFIOPC in LiNbO(3):MgO crystals suggests that the lowest effective driving voltage is provided by electro-optic cells representing the rectangular slabs of X/50° crystal cut. The modulation efficiency of such electro-optic cells is about 1.5 times better than ones fabricated in the usual way (i.e., as rectangular crystal slabs with the faces parallel to the principal crystallographic directions). PMID:23736331

  1. Electric heating effects in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Shiyanovskii, S. V.; Lavrentovich, O. D.

    2006-07-01

    Electric heating effects in the nematic liquid crystal change the liquid crystal physical properties and dynamics. We propose a model to quantitatively describe the heating effects caused by dielectric dispersion and ionic conductivity in the nematic liquid crystals upon the application of an ac electric field. The temperature increase of the liquid crystal cell is related to the properties of the liquid crystal such as the imaginary part of the dielectric permittivity, thermal properties of the bounding plates, and the surrounding medium as well as frequency and amplitude of the electric field. To study the temperature dynamics experimentally, we use a small thermocouple inserted directly into the nematic bulk; we assure that the thermocouple does not alter the thermal behavior of the system by comparing the results to those obtained by a noncontact birefringent probing technique recently proposed by Wen and Wu [Appl. Phys. Lett. 86, 231104 (2005)]. We determine how the temperature dynamics and the stationary value of the temperature increase depend on the parameters of the materials and the applied field. We used different surrounding media, from extremely good heat conductors such as aluminum cooling device to extremely poor conductor, Styrofoam; these two provide two limiting cases as compared to typical conditions of nematic cell exploitation in a laboratory or in commercial devices. The experiments confirm the theoretical predictions, namely, that the temperature rise is controlled not only by the heat transfer coefficient of the surrounding medium (as in the previous model) but also by the thickness and the thermal conductivity coefficient of the bounding plates enclosing the nematic layer. The temperature increase strongly depends on the director orientation and can change nonmonotonously with the frequency of the applied field.

  2. Evidence of conduction-electron shielding of the crystal electric field of Tb sub x Gd sub 1 minus x Al sub 2 intermetallics

    SciTech Connect

    del Moral, A.; Joven, E. Instituto de Ciencio de Materiales de Aragon, Universidad de Zaragoza, Consejo Superior de Investigaciones Cientificas, Zaragoza )

    1990-12-01

    A comparison of the values obtained for the {ital B}{sub 4} crystal-electric-field (CEF) parameter in the series of cubic intermetallics Tb{sub {ital x}}Gd{sub 1{minus}{ital x}}Al{sub 2} with a model which predicts a dependence of {ital B}{sub 4} on the density of states with {ital d} character at the Fermi level, allows us to demonstrate directly the shielding effect of the conduction electrons on the CEF produced by the lattice of tripositive rare-earth and Al ions.

  3. Three-dimensional molecular dynamics simulations of reorientation process and backflow generation in nematic liquid crystals under application of electric fields

    NASA Astrophysics Data System (ADS)

    Sunarso, Alfeus; Tsuji, Tomohiro; Chono, Shigeomi

    2011-08-01

    The dynamic responses of nematic liquid crystals in a parallel-plate cell under the application of electric fields were investigated using three-dimensional molecular dynamics simulations, which should provide more precise dynamics as compared to those in two-dimensional molecular dynamics simulations as in our previous work [Sunarso et al., Appl. Phys. Lett. 93, 244106 (2008)]. The study is focused on the reorientation process and the generation of backflow, which should be important in the development of liquid crystalline actuators. It is shown that bulk reorientation is coupled with the generation of backflow owing to the conversion of electric-field-induced molecular rotation into bulk translational motion. The increase in electric torque due to the increase in electric field strength results in a faster change in the bulk orientation, thus accelerating the development of the flow field and increasing the magnitude of the generated velocity field. Different initial orientation angles result in similar dynamics, although the magnitude of the generated velocity decreases with increasing initial orientation angle. The development of velocity profiles confirms the results of the experiment and the simulation using a macroscopic continuum approach. Simulations under various molecular aspect ratios show that with an increase in the aspect ratio, the reorientation process becomes slower due to the increase in moment of inertia and elastic torque, whereas the magnitudes of the velocity show the trade-off between the speed of the orientation change and the effectiveness of the molecular motion conversion. Furthermore, the simulation results show the spatial variation in the reorientation process as the result of interplay between electric torque, elastic torque, and backflow.

  4. The linear and nonlinear response of infinite periodic systems to static and/or dynamic electric fields. Implementation in CRYSTAL code

    SciTech Connect

    Kirtman, Bernard; Springborg, Michael; Rérat, Michel; Ferrero, Mauro; Lacivita, Valentina; Dovesi, Roberto; Orlando, Roberto

    2015-01-22

    An implementation of the vector potential approach (VPA) for treating the response of infinite periodic systems to static and dynamic electric fields has been initiated within the CRYSTAL code. The VPA method is based on the solution of a time-dependent Hartree-Fock or Kohn-Sham equation for the crystal orbitals wherein the usual scalar potential, that describes interaction with the field, is replaced by the vector potential. This equation may be solved either by perturbation theory or by finite field methods. With some modification all the computational procedures of molecular ab initio quantum chemistry can be adapted for periodic systems. Accessible properties include the linear and nonlinear responses of both the nuclei and the electrons. The programming of static field pure electronic (hyper)polarizabilities has been successfully tested. Dynamic electronic (hyper)polarizabilities, as well as infrared and Raman intensities, are in progress while the addition of finite fields for calculation of vibrational (hyper)polarizabilities, through nuclear relaxation procedures, will begin shortly.

  5. Macroscopic biaxiality and electric-field-induced rotation of the minor director in the nematic phase of a bent-core liquid crystal

    NASA Astrophysics Data System (ADS)

    Nagaraj, Mamatha; Merkel, K.; Vij, J. K.; Kocot, A.

    2010-09-01

    Biaxiality in the nematic phase has been investigated for the bent-core liquid-crystal para-heptylbenzoate diester, using polarised IR spectroscopy. Anisotropic fluctuations of the nematic director are discussed in terms of the self-assembly of the chiral conformers. The ordering of the minor director for the homeotropicaly aligned sample is found to depend on the rubbing of the substrates of the cell and the amplitude of in-plane electric field. On increasing the in-plane electric field, the rotation of the minor director in the plane of the substrate is observed with an angle of approximately 45°, where initially the minor director is shown to lie along the rubbing direction. It is also shown that on the average the long axis of the molecules is normal to the substrate with surface treatment, with and without rubbing. The electric in-plane field combined with rubbing is shown to induce biaxial order in the nematic phase of a material with negative dielectic anisotropy for the first time.

  6. Electrical switching in cadmium boracite single crystals

    NASA Technical Reports Server (NTRS)

    Takahashi, T.; Yamada, O.

    1981-01-01

    Cadmium boracite single crystals at high temperatures ( 300 C) were found to exhibit a reversible electric field-induced transition between a highly insulative and a conductive state. The switching threshold is smaller than a few volts for an electrode spacing of a few tenth of a millimeter corresponding to an electric field of 100 to 1000 V/cm. This is much smaller than the dielectric break-down field for an insulator such as boracite. The insulative state reappears after voltage removal. A pulse technique revealed two different types of switching. Unstable switching occurs when the pulse voltage slightly exceeds the switching threshold and is characterized by a pre-switching delay and also a residual current after voltage pulse removal. A stable type of switching occurs when the voltage becomes sufficiently high. Possible device applications of this switching phenomenon are discussed.

  7. Realization of Multi-Stable Ground States in a Nematic Liquid Crystal by Surface and Electric Field Modification

    NASA Astrophysics Data System (ADS)

    Gwag, Jin Seog; Kim, Young-Ki; Lee, Chang Hoon; Kim, Jae-Hoon

    2015-06-01

    Owing to the significant price drop of liquid crystal displays (LCDs) and the efforts to save natural resources, LCDs are even replacing paper to display static images such as price tags and advertising boards. Because of a growing market demand on such devices, the LCD that can be of numerous surface alignments of directors as its ground state, the so-called multi-stable LCD, comes into the limelight due to the great potential for low power consumption. However, the multi-stable LCD with industrial feasibility has not yet been successfully performed. In this paper, we propose a simple and novel configuration for the multi-stable LCD. We demonstrate experimentally and theoretically that a battery of stable surface alignments can be achieved by the field-induced surface dragging effect on an aligning layer with a weak surface anchoring. The simplicity and stability of the proposed system suggest that it is suitable for the multi-stable LCDs to display static images with low power consumption and thus opens applications in various fields.

  8. Realization of Multi-Stable Ground States in a Nematic Liquid Crystal by Surface and Electric Field Modification

    PubMed Central

    Gwag, Jin Seog; Kim, Young-Ki; Lee, Chang Hoon; Kim, Jae-Hoon

    2015-01-01

    Owing to the significant price drop of liquid crystal displays (LCDs) and the efforts to save natural resources, LCDs are even replacing paper to display static images such as price tags and advertising boards. Because of a growing market demand on such devices, the LCD that can be of numerous surface alignments of directors as its ground state, the so-called multi-stable LCD, comes into the limelight due to the great potential for low power consumption. However, the multi-stable LCD with industrial feasibility has not yet been successfully performed. In this paper, we propose a simple and novel configuration for the multi-stable LCD. We demonstrate experimentally and theoretically that a battery of stable surface alignments can be achieved by the field-induced surface dragging effect on an aligning layer with a weak surface anchoring. The simplicity and stability of the proposed system suggest that it is suitable for the multi-stable LCDs to display static images with low power consumption and thus opens applications in various fields. PMID:26100597

  9. Realization of Multi-Stable Ground States in a Nematic Liquid Crystal by Surface and Electric Field Modification.

    PubMed

    Gwag, Jin Seog; Kim, Young-Ki; Lee, Chang Hoon; Kim, Jae-Hoon

    2015-01-01

    Owing to the significant price drop of liquid crystal displays (LCDs) and the efforts to save natural resources, LCDs are even replacing paper to display static images such as price tags and advertising boards. Because of a growing market demand on such devices, the LCD that can be of numerous surface alignments of directors as its ground state, the so-called multi-stable LCD, comes into the limelight due to the great potential for low power consumption. However, the multi-stable LCD with industrial feasibility has not yet been successfully performed. In this paper, we propose a simple and novel configuration for the multi-stable LCD. We demonstrate experimentally and theoretically that a battery of stable surface alignments can be achieved by the field-induced surface dragging effect on an aligning layer with a weak surface anchoring. The simplicity and stability of the proposed system suggest that it is suitable for the multi-stable LCDs to display static images with low power consumption and thus opens applications in various fields. PMID:26100597

  10. Electric-field-induced switchable dark conglomerate phases in a bent-core liquid crystal exhibiting reverse columnar phases.

    PubMed

    Deepa, G B; Radhika, S; Sadashiva, B K; Pratibha, R

    2013-06-01

    Electric-field-induced transitions into switchable dark conglomerate (DC) phases from two types of reverse columnar mesophases have been observed in the bent-core (BC) compound 2,7-naphthylene bis[4-(3-methyl-4-n-tetradecyloxybenzoyloxy)] benzoate. Optical and x-ray studies show that the higher temperature columnar phase corresponds to the orthogonal B(1rev) phase, whereas the lower temperature columnar phase is a variant of the B(1revtilt) phase. As the layer fragments in this phase are modulated in order to relieve the steric hindrance caused by an anticlinic tilting in adjacent blocks, it has been named B(1revtiltM). The shape of the chiral domains are different in the DC phases viz. DC-B(1rev) and DC-B(1revtiltM) obtained by applying the electric field in the B(1rev) and B(1revtiltM) phases, respectively. While the chiral domains in the DC-B(1rev) phase appear similar to those observed in other DC phases, the shape of the domains in the DC-B(1revtiltM) phase appear to have some similarity to the domains in the banana leaf texture in the B(1revtiltM) phase implying that the detailed structure in this DC phase may be different. Optical observations, electro-optics, and dielectric studies show that the DC-B(1rev) and DC-B(1revtiltM) phases are both switchable and possess a local SmC(S)P(F) type of structure. As the temperature is decreased the switching behavior changes from ferroelectric to antiferroelectric. The temperature at which this changeover starts occurring coincides with the temperature at which the layer modulation occurs to overcome anticlinic tilt and the B(1rev) to B(1revtiltM) phase transition takes place without the application of the electric field. The change in switching behavior is attributed to a transformation into flat layers with the SmC(A)P(A) type of structure as also evidenced by the nucleation of bright regions alongside the chiral domains.

  11. Electrically silent magnetic fields.

    PubMed Central

    Roth, B J; Wikswo, J P

    1986-01-01

    There has been a significant controversy over the past decade regarding the relative information content of bioelectric and biomagnetic signals. In this paper we present a new, theoretical example of an electrically-silent magnetic field, based on a bidomain model of a cylindrical strand of tissue generalized to include off-diagonal components in the conductivity tensors. The physical interpretation of the off-diagonal components is explained, and analytic expressions for the electrical potential and the magnetic field are found. These expressions show that information not obtainable from electrical potential measurements can be obtained from measurements of the magnetic field in systems with conductivity tensors more complicated than those previously examined. PMID:3779008

  12. Domain evolution with electric field and delineation of extrinsic contributions in (K, Na, Li)(Nb, Ta, Sb)O3 single crystal

    PubMed Central

    Wang, Junjun; Zheng, Limei; Yang, Bin; Luo, Zhenlin; Lu, Xiaoyan; Liu, Gang; Zhang, Rui; Lv, Tianquan; Cao, Wenwu

    2015-01-01

    Extrinsic contributions play an important role in the functionalities of ferroelectric materials, while domain structure evolution is crucial for understanding the extrinsic dielectric and piezoelectric responses. In this work, domain configuration changes with an electric field applied along [001]C in the tetragonal (K, Na, Li)(Nb, Sb, Ta)O3 single crystal were studied by means of polarizing light microscopy. Results show that parts of the spontaneous polarizations in the (001)C plane are switched to [001]C direction, while others still stay in the (001)C plane due to high induced internal stresses. Single domain state cannot be achieved even under a high electric field. After being poled along [001]C, the volume fraction of domains with polarzations in the (001)C plane is still about 25.2%. The extrinsic contributions to the dielectric constant are 15.7% and 27.2% under the E field of 1 kV/cm and under 2 kV/cm, respectively, estimated by the Rayleigh analysis. PMID:26339071

  13. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  14. Emergence of periodic order in electric-field-driven planar nematic liquid crystals: an exclusive ac effect absent in static fields.

    PubMed

    Krishnamurthy, K S; Kumar, Pramoda

    2007-11-01

    We report, for a nematic liquid crystal with a low conductivity anisotropy, an ac field generated transition from a uniformly planar to a periodically modulated director configuration with the wave vector parallel to the initial director. Significantly, with unblocked electrodes, this instability is not excited by dc fields. Additionally, in very low frequency square wave fields, it occurs transiently after each polarity reversal, vanishing completely during field constancy. The time of occurrence of maximum distortion after polarity reversal decreases exponentially with voltage. The time dependence of optical phase change during transient distortion is nearly Gaussian. The pattern threshold Vc is linear in sqrt[f], f denoting the frequency; the critical wave number qc of the modulation scales nearly linearly as sqrt[f] to a peak at approximately 50 Hz before falling slightly thereafter. The observed Vc(f) and qc(f) characteristics differ from the predictions of the standard model (SM). The instability may be interpreted as a special case of the Carr-Helfrich distortion suppressed in static fields due to weak charge focusing and strong charge injection. Its transient nature in the low frequency regime is suggestive of the possible role of gradient flexoelectric effect in its occurrence. The study includes measurement of certain elastic and viscosity parameters relevant to the application of the SM. PMID:18233671

  15. Dielectric response of doped Bi12TiO20: Ru crystals in an alternating electric field

    NASA Astrophysics Data System (ADS)

    Avanesyan, V. T.; Paima, K. I.

    2016-08-01

    The results of examination of AC dependences of capacitance and dielectric loss tangent of sillenite Bi12TiO20 crystals doped with ruthenium on frequency are presented. Non-Debye dispersion of dielectric coefficients is found in the frequency interval of 5 × 102-105 Hz, and a resonance phenomenon is observed. Polarization processes in the studied samples are attributed to relaxators associated with metal-oxygen vacancies and structural elements incorporating 6 s 2 lone-pair electrons.

  16. On-line monitoring of the crystallization process: relationship between crystal size and electrical impedance spectra

    NASA Astrophysics Data System (ADS)

    Zhao, Yanlin; Yao, Jun; Wang, Mi

    2016-07-01

    On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance (C 2) and resistance (R 2) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process.

  17. Overview - Electric fields. [in magnetosphere

    NASA Technical Reports Server (NTRS)

    Cauffman, D. P.

    1979-01-01

    The electric fields session is designed to review progress in observation, theory, and modeling of magnetospheric electric fields, and to expose important new results. The present report comments on the state and prospects of electric field research, with particular emphasis on relevance to quantitative modeling of the magnetospheric processes. Attention is given to underlying theories and models. Modeling philosophy is discussed relative to explanatory models and representative models. Modeling of magnetospheric electric fields, while in its infancy, is developing rapidly on many fronts employing a variety of approaches. The general topic of magnetospheric electric fields is becoming of prime importance in understanding space plasmas.

  18. Effects of electric field on acoustic properties of 0.83Pb(Mg1/3Nb2/3) -0.17PbTiO3 single crystals studied by Brillouin light scattering

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyun; Ko, Jae-Hyeon; Kojima, Seiji

    2013-03-01

    Relaxor-based ferroelectric Pb[(Mg1/3Nb2/3)1-x Tix]O3 (PMN-xPT) single crystals have attracted great attention because of their exceptionally strong piezoelectric properties. This peculiar characteristic was attributed to the rotation of polarization directions and structural complexity. In this study, the phase transition behaviors of PMN-17PT single crystals have been investigated under an electric field applied along [001] by micro-Brillouin scattering. PMN-17PT single crystals were grown by the modified Bridgeman method. The two (001) surfaces were Au-coated to apply the electric field, and the coating was thin enough to allow the incident beam to transmit without much loss. The electric field of different values was applied to the sample along the [001] direction, and the Brillouin scattering spectrum was measured under both field-heating (FH) and field-cooling (FC) conditions. The electric field of 1kV/cm induced a new longitudinal acoustic (LA) mode component along with a broad Brillouin peak evolving continuously from the paraelectric phase during both FC and FH processes. This was attributed to the remnant polar nanoregions that were not aligned under the electric field due to quenched random fields. However, the splitting of the LA mode did not appear when the electric field was over 2kV/cm indicating a clear structural phase transition. This research was supported in part by the Marubun Research Promotion Foundation and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0010497).

  19. Magnetospheric electric fields and currents

    NASA Technical Reports Server (NTRS)

    Mauk, B. H.; Zanetti, L. J.

    1987-01-01

    The progress made in the years 1983-1986 in understanding the character and operation of magnetospheric electric fields and electric currents is discussed, with emphasis placed on the connection with the interior regions. Special attention is given to determinations of global electric-field configurations, measurements of the response of magnetospheric particle populations to the electric-field configurations, and observations of the magnetospheric currents at high altitude and during northward IMF. Global simulations of current distributions are discussed, and the sources of global electric fields and currents are examined. The topics discussed in the area of impulsive and small-scale phenomena include substorm current systems, impulsive electric fields and associated currents, and field-aligned electrodynamics. A key finding of these studies is that the electric fields and currents are interrelated and cannot be viewed as separate entities.

  20. Electrically induced tilt in achiral bent-core liquid crystals.

    PubMed

    Eremin, Alexey; Stern, Stephan; Stannarius, Ralf

    2008-12-12

    We report an electric-field-induced SmA-SmC transition in a liquid crystal formed by achiral bent molecules. The steric moment of such molecules is too small to spontaneously induce the phases characteristic to the bent-core mesogens. On the other hand, its contribution to the thermodynamical properties of the mesophases make it possible to induce tilt and polar order by the action of the external electric field. This effect is unique for bent mesogens and its physical nature differs from an electroclinic effect observed in the SmA* phase of chiral liquid crystals.

  1. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  2. Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal

    NASA Astrophysics Data System (ADS)

    Wahle, Markus; Kitzerow, Heinz-Siegfried

    2015-11-01

    We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue or red shifted depending on the frequency of the applied voltage.

  3. Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal

    SciTech Connect

    Wahle, Markus Kitzerow, Heinz-Siegfried

    2015-11-16

    We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue or red shifted depending on the frequency of the applied voltage.

  4. Electric field effect of relaxor ferroelectric (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals near morphotropic phase boundary composition probed by Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Aftabuzzaman, Md; Kojima, Seiji

    2016-07-01

    The relaxor ferroelectric (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (x = 0.30, PMN-30PT) single crystal was studied under the zero field and the externally applied dc electric field by using micro-Brillouin scattering and dielectric spectroscopies over a wide temperature range of 303-773 K. The noticeable thermal hysteresis of longitudinal acoustic (LA) shift (νB) was observed between zero field heating and zero field cooling processes. Under the electric field of 0.5 kV/cm along the [001] axis, the LA mode splitting was observed in νB due to the coexistence of ferroelectric macrodomain and nanodomain states caused by the random field, and in dielectric measurements the monoclinic (M) and tetragonal phases were appeared between rhombohedral and cubic phases. The LA mode splitting and M phase disappeared under the field of 1.0 kV/cm. The electric field dependence of LA velocity was studied at 304 K. The critical end point of the PMN-30PT single crystal was investigated.

  5. Temperature-induced and electric-field-induced phase transitions in rhombohedral Pb(In 1 /2Nb1 /2) O3-Pb(Mg 1 /3Nb2 /3)O3-PbTiO3 ternary single crystals

    NASA Astrophysics Data System (ADS)

    Wang, Yaojin; Wang, Zhiguang; Ge, Wenwei; Luo, Chengtao; Li, Jiefang; Viehland, D.; Chen, Jianwei; Luo, Haosu

    2014-10-01

    Temperature and electric field effects on rhombohedral (R ) ternary Pb(In 1 /2Nb1 /2) O3-Pb(Mg 1 /3Nb2 /3)O3-PbTiO3 (PIN-PMN-PT) ferroelectric single crystals were comprehensively studied by x-ray diffraction. We have focused on how the individual phase transitions as well as the phase transition sequences depend on thermal and electrical history. Electric field-temperature phase diagrams have been constructed under [001] field-cooling and field-heating conditions. As happens to the R phase of binary PMN-PT crystals [H. Cao, J. F. Li, D. Viehland, and G. Y. Xu, Phys. Rev. B 73, 184110 (2006), 10.1103/PhysRevB.73.184110], the R phase of the zero-field-cooled (ZFC) state is replaced by a monoclinic A (M A) phase in the field-cooled (FC) diagram. In particular, reciprocal-space mesh scans demonstrated that the M A phase was stable for crystals poled along the [001] crystallographic direction rather than the initial R phase of the ZFC state. Furthermore, an E -field-induced phase transformational sequence of R →M A→ tetragonal (T ) was observed at constant temperature, revealing a gradual increase in the c lattice parameter. These findings demonstrate that the ternary PIN-PMN-PT crystals exhibit common phase transition features with binary PMN-PT and Pb(Zn 1 /3Nb2 /3)O3-PbTiO3 (PZN-PT) ones for compositions in the low PT side of the morphotropic phase boundary.

  6. Tunable photonic Bloch oscillations in electrically modulated photonic crystals.

    PubMed

    Wang, Gang; Huang, Ji Ping; Yu, Kin Wah

    2008-10-01

    We exploit theoretically the occurrence and tunability of photonic Bloch oscillations (PBOs) in one-dimensional photonic crystals (PCs) containing nonlinear composites. Because of the enhanced third-order nonlinearity (Kerr-type nonlinearity) of composites, photons undergo oscillations inside tilted photonic bands, which are achieved by the application of graded external-pump electric fields on such PCs, varying along the direction perpendicular to the surface of layers. The tunability of PBOs (including amplitude and period) is readily achieved by changing the field gradient. With an appropriate graded pump ac or dc electric field, terahertz PBOs can appear and cover a terahertz band in an electromagnetic spectrum.

  7. Electric Field Effects in RUS Measurements

    SciTech Connect

    Darling, Timothy W; Ten Cate, James A; Allured, Bradley; Carpenter, Michael A

    2009-09-21

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  8. Electric Field Containerless Processing Technology

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Rhim, W. K.

    1985-01-01

    The objective of this task is to develop the science and technology base required to design and construct a high temperature electric field positioning module that could be used by materials scientists to conduct containerless science experiments in a low gravity environment. Containerless science modules that employ electric fields to position and manipulate samples offer several advantages over acoustic or electromagnetic systems. The electric field system will operate not only at atmospheric pressures but also in a vacuum, in contrast to the acoustic modules which can only operate in atmosphere where the acoustic forces are sufficient. The electric field technique puts minimum energy into the sample, whereas the electromagnetic system can deposit energy into the sample through eddy current heat as well as physical mixing in the sample. Two types of electric field modules have been constructed and tested to date. One employs a charged sample and uses electrostatic forces to position and control the sample. The second type of module induces electrical polarization of the sample and electric field gradients to position and control the sample.

  9. Effect of the bias electric field on the spectral distribution of the photodielectric effect in the Schottky-barrier structures based on the cadmium-zinc telluride crystals

    SciTech Connect

    Komar', V. K.; Puzikov, V. M.; Chugai, O. N. Nalivaiko, D. P.; Sulima, S. V.; Abashin, S. L.

    2007-06-15

    Spectral dependences of effective values of the real and imaginary parts of the low-frequency permittivity of the Cd{sub 1-x}Zn{sub x}Te crystals (x=0.12-0.16) with the Schottky barrier fabricated on the surface are measured. It is found that the boundary wavelengths of the characteristic portions of the measured dependences represented in the complex plane correspond to energies of photons, which cause the radical variations in the state of negatively charged and electrically neutral localized acceptor states. The variations in the energy spectrum of the localized states, which are determined by the magnitude and polarity of the electric bias applied to the Shottky barrier, are found.

  10. Introducing electric fields

    NASA Astrophysics Data System (ADS)

    Roche, John

    2016-09-01

    The clear introduction of basic concepts and definitions is crucial for teaching any topic in physics. I have always found it difficult to teach fields. While searching for better explanations I hit on an approach of reading foundational texts and electromagnetic textbooks in ten year lots, ranging from 1840 to the present. By combining this with modern techniques of textual interpretation I attempt to clarify three introductory concepts: how the field is defined; the principle of superposition and the role of the electrostatic field in a circuit.

  11. Revisiting the Corotation Electric Field

    NASA Astrophysics Data System (ADS)

    Rothwell, P. L.

    2001-05-01

    The rotation of the Earth's dipole magnetic field produces a corotation electric field in the nonrotating frame of reference. A quick calculation implies that this field might arise from the relative motion of an observer in the nonrotating frame and the motion of rotating magnetic field lines. However, upon applying Faraday's Law one finds that total time rate of change of the magnetic field as seen in the nonrotating frame is zero due to the azimuthal symmetry of the dipole. Therefore, classical EM theory(1) predicts a zero corotation electric field in the nonrotating frame for a vacuum. This conundrum has been traditionally treated in the following manner(2,3). 1) Start with a vacuum state with no conductors and plasma present. The transformation between E (the electric field in the nonrotating frame) and E' (the electric field in the rotating frame)implies that in the rotating frame E' is nonzero while E = 0. 2) In the presence of a thin conducting spherical shell (the ionosphere) polarization charges form in the shell due to the magnetic force on the electrons. A polarization electric field Ep is created such that in the idealized case the shell has a uniform electric potential. This Ep has a component along the magnetic field lines outside the shell. 3) Plasma will polarize along B, thus canceling the parallel component of Ep which allows the potential on the shell to be mapped along the magnetic field lines setting E' = 0. From the transformation equation E is now nonzero. This is the electric field required in the nonrotating frame for the plasma to corotate with the dipole. The presence of the corotation electric field is not a local result, but a nonlocal effect that requires the presence of an ionosphere and a conducting plasma. (1) W.K.H. Panofsky and M. Phillips, Classical Electricity and Magnetism, Addison-Wesley, 1956. (2) H. Alfven and C.-G. Falthammar, Cosmical Electrodynamics, 2nd ed., Oxford Press, 1963. (3) E.W.Hones and J.E.Bergeson, J. Geophys

  12. Analysis of the particle interactions in a two-dimensional-plasma dust crystal and the use of dust as a probe of the time-averaged presheath electric field.

    PubMed

    Hebner, G A; Riley, M E; Greenberg, K E

    2002-10-01

    A method for measuring the interactions of dust particles within a two-dimensional (2D) layer in a plasma is presented, along with the use of dust as a probe for determining plasma presheath electric fields. Particle interactions were directly determined from the lateral compression of two-dimensional plasma dust crystals confined in a parabolic potential well. The shape of the parabolic potential well was confirmed by observing trajectories of single particles falling within the well. Particle trajectories were in good agreement with values calculated using gas temperatures derived from laser-induced-fluorescence measurements of the argon metastable velocity distributions and assuming diffusive gas scattering. Measured particle separations combined with an equation of state for the crystal were used to derive values for the plasma screening length and the charge on the particles. Screening lengths and charges were measured for a range of plasma power, pressure, and particle diameter (mass). Analysis of the particle heights and charge were used to derive the time-averaged electric fields at the edge of the rf driven plasma sheath. Measured electric fields were between 5 and 22 V/cm. For smaller particle diameters, the ion wind force was comparable to the force of gravity. These measurements showed that the particles are confined to the bulk-plasma side of the classical Bohm point.

  13. THOR Electric Field Instrument - EFI

    NASA Astrophysics Data System (ADS)

    Khotyaintsev, Yuri; Bale, Stuart D.; Bonnell, John W.; Lindqvist, Per-Arne; Phal, Yamuna; Rothkaehl, Hanna; Soucek, Jan; Vaivads, Andris; Åhlen, Lennart

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Electric Field Instrument (EFI) will measure the vector electric field from 0 to 200 kHz. EFI consists of two sets of sensors: Spin-plane Double Probes (EFI-SDP) providing high sensitivity DC electric field in the spacecraft spin plane (2D), and the High-Frequency Antenna (EFI-HFA) providing 3D electric field at frequencies above ~1 kHz. EFI-SDP consists of 4 biased spherical probes extended on 50 m long wire booms, 90 degrees apart in the spin plane, giving a 100 m baseline for each of the two spin-plane electric field components. EFI-HFA consists of 6 x 1.25 m long monopoles, forming 3 dipolar antennas crossed at 90 degrees to each other. In addition to the sensors, EFI contains HFA and SDP pre-amplifiers, as well as bias electronics boards (BEBs) hosted in the man electronics box of the Field and Wave processor (FWP). As THOR spacecraft has a sun-pointing spin axis, EFI-SDP measures the electric field in the plane approximately orthogonal to the sun using long wire booms. The sun-pointing attitude greatly reduces errors due to wake effects and asymmetric photoelectron clouds, enabling the highly accurate in comparison to earlier missions ±0.1 mV/m near-DC electric field measurements. Interferometry using the electric field probes can be used to infer wavelengths and scale sizes at the smallest scales in the plasma. EFI also measures the floating potential of the satellite, which can be used to estimate the plasma density at very high time resolution (up to a few hundred Hz). The sun-pointing attitude greatly reduces changes in the illuminated area, and hence the associated spin-dependent errors. In combination with densities derived from the observed plasma frequency emission line, EFI monitors the plasma density from DC to a few hundred Hz. EFI measurements characterize electric field and density variations associated with kinetic scale plasma

  14. Electric fields and quantum wormholes

    NASA Astrophysics Data System (ADS)

    Engelhardt, Dalit; Freivogel, Ben; Iqbal, Nabil

    2015-09-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a "quantum wormhole." We demonstrate within low-energy effective field theory that there is a precise sense in which electric fields can also thread such quantum wormholes. We define a nonperturbative "wormhole susceptibility" that measures the ease of passing an electric field through any sort of wormhole. The susceptibility of a quantum wormhole is suppressed by powers of the U (1 ) gauge coupling relative to that for a classical wormhole but can be made numerically equal with a sufficiently large amount of entangled matter.

  15. Electric and Magnetic Field-Assisted Orientational Transitions in the Ensembles of Domains in a Nematic Liquid Crystal on the Polymer Surface

    PubMed Central

    Parshin, Alexander M.; Gunyakov, Vladimir A.; Zyryanov, Victor Y.; Shabanov, Vasily F.

    2014-01-01

    Using electro- and magneto-optical techniques, we investigated orientational transitions in the ensembles of domains in a nematic liquid crystal on the polycarbonate film surface under the conditions of competing surface forces that favor radial and uniform planar alignment of nematic molecules. Having analyzed field dependences of the intensity of light passed through a sample, we established the threshold character of the orientational effects, plotted the calculated intensity versus magnetic coherence length, and compared the latter with the equilibrium length that characterizes the balance of forces on the polymer surface. PMID:25279586

  16. The electric field alignment of ice particles in thunderstorms

    NASA Technical Reports Server (NTRS)

    Weinheimer, Andrew J.; Few, Arthur A.

    1987-01-01

    Electrical and aerodynamic torques on atmospheric ice particles are calculaed in order to assess the degree of alignment of these particles with the electric fields in thunderstorms. In such clouds fields of many tens of kilovolts per meter are commonly measured, and values of 100 to 200 kV/m are not rare. For E = 100 kV/m the calculations indicate that electric field alignment occurs for crystals with major dimensions up to maximum values in the range from 200 microns to 1 mm, depending upon crystal type. Columns are aligned more easily than platelike crystals, except for dendrites which, by virtue of their smaller assumed density, have smaller fall velocities thereby experiencing weaker aerodynamic torques. Thus a substantial degree of alignment is expected for E = 100 kV/m. For E = 10 kV/m only much smaller crystals will be aligned, probably only ones with major dimensions of less than 50 microns or so.

  17. A phase-field-crystal model for liquid crystals.

    PubMed

    Löwen, Hartmut

    2010-09-15

    On the basis of static and dynamical density functional theory, a phase-field-crystal model is derived which involves both the translational density and the orientational degree of ordering as well as a local director field. The model exhibits stable isotropic, nematic, smectic A, columnar, plastic-crystalline and orientationally ordered crystalline phases. As far as the dynamics is concerned, the translational density is a conserved order parameter while the orientational ordering is non-conserved. The derived phase-field-crystal model can serve for use in efficient numerical investigations of various nonequilibrium situations in liquid crystals.

  18. Solar to electrical conversion via liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Hiscock, T.; Warner, M.; Palffy-Muhoray, P.

    2011-05-01

    We have constructed a hypothetical charge pump which converts solar energy into DC electricity. The output is generated by cyclic changes in the capacitance of a circuit, which transfers charge from a low to a high voltage. The electric field across the capacitor must be of the order of 108Vm-1 to compete with efficiencies of photovoltaics. We have modeled the output using a liquid crystal elastomer as the working substance. Efficiencies of 1-4% are obtained, and are enhanced by careful choices in the capacitor geometries and the operating voltages of the charge pump.

  19. Phase-matched electric-field-induced second-harmonic generation in Xe-filled hollow-core photonic crystal fiber.

    PubMed

    Ménard, Jean-Michel; Russell, Philip St J

    2015-08-01

    Second-order nonlinearity is induced inside a Xe-filled hollow-core photonic crystal fiber (PCF) by applying an external dc field. The system uniquely allows the linear optical properties to be adjusted by changing the gas pressure, allowing for precise phase matching between the LP01 mode at 1064 nm and the LP02 mode at 532 nm. The dependence of the second-harmonic conversion efficiency on the gas pressure, launched pulse energy, and applied field agrees well with theory. The ultra-broadband guidance offered by anti-resonant reflecting hollow-core PCFs, for example, a kagomé PCF, offers many possibilities for generating light in traditionally difficult-to-access regions of the electromagnetic spectrum, such as the ultraviolet or the terahertz windows. The system can also be used for noninvasive measurements of the transmission loss in a hollow-core PCF over a broad spectrum, including the deep and vacuum UV regions.

  20. Microstickies agglomeration by electric field.

    PubMed

    Du, Xiaotang Tony; Hsieh, Jeffery S

    2016-01-01

    Microstickies deposits on both paper machine and paper products when it agglomerates under step change in ionic strength, pH, temperature and chemical additives. These stickies increase the down time of the paper mill and decrease the quality of paper. The key property of microstickies is its smaller size, which leads to low removal efficiency and difficulties in measurement. Thus the increase of microstickies size help improve both removal efficiency and reduce measurement difficulty. In this paper, a new agglomeration technology based on electric field was investigated. The electric treatment could also increase the size of stickies particles by around 100 times. The synergetic effect between electric field treatment and detacky chemicals/dispersants, including polyvinyl alcohol, poly(diallylmethylammonium chloride) and lignosulfonate, was also studied. PMID:27332828

  1. Magnetic Field Applications in Semiconductor Crystal Growth and Metallurgy

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan; Grugel, Richard; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The Traveling Magnetic Field (TMF) technique, recently proposed to control meridional flow in electrically conducting melts, is reviewed. In particular, the natural convection damping capability of this technique has been numerically demonstrated with the implication of significantly improving crystal quality. Advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, are discussed. Finally, results of experiments with mixing metallic alloys in long ampoules using TMF is presented

  2. Linear electric field mass spectrometry

    SciTech Connect

    McComas, D.J.; Nordholt, J.E.

    1991-03-29

    A mass spectrometer is described having a low weight and low power requirement, for use in space. It can be used to analyze the ionized particles in the region of the spacecraft on which it is mounted. High mass resolution measurements are made by timing ions moving through a gridless cylindrically sysmetric linear electric field.

  3. Linear electric field mass spectrometry

    DOEpatents

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  4. Linear electric field mass spectrometry

    DOEpatents

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  5. Electric field divertor plasma pump

    DOEpatents

    Schaffer, Michael J.

    1994-01-01

    An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable.

  6. Electric field divertor plasma pump

    DOEpatents

    Schaffer, M.J.

    1994-10-04

    An electric field plasma pump includes a toroidal ring bias electrode positioned near the divertor strike point of a poloidal divertor of a tokamak, or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix of the poloidal divertor contacts the ring electrode, which then also acts as a divertor plate. A plenum or other duct near the electrode includes an entrance aperture open to receive electrically-driven plasma. The electrode is insulated laterally with insulators, one of which is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode and a vacuum vessel wall, with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E [times] B/B[sup 2] drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable. 11 figs.

  7. Electric field-assisted biosorption.

    PubMed

    Riordan, C R; Bustard, M T; Hughes, P; Reid, C N; McHale, A P

    2004-03-01

    A bisorption process using electric fields to facilitate contact between a sorbate and non-living biomass is described. The latter is enclosed within a semi-permeable membrane together with an electrode. The counter electrode is placed in the sorbate solution and an established potential across the electrodes facilitates electrokinetic movement of the sorbate to the biosorbant material. PMID:15127798

  8. Apparatuses and methods for generating electric fields

    DOEpatents

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  9. Electric Field Assisted Assembly of Perpendicular Oriented NanorodSuperlattices

    SciTech Connect

    Ryan, Kevin M.; Mastroianni, Alex; Stancil, Kimani A.; Liu,Haitao; Alivisatos, Paul A.

    2006-04-10

    We observe the assembly of CdS nanorod superlattices by thecombination of a DC electric field and solvent evaporation. In eachelectric field (1 V/um) assisted assembly, CdS nanorods (5 x 30 nm)suspended initially in toluene were observed to align perpendicularly tothe substrate. Azimuthal alignment along the nanorod crystal faces andthe presence of stacking faults indicate that both 2D and 3D assemblieswere formed by a process of controlled super crystal growth.

  10. GROUNDWATER AND SOIL REMEDIATION USING ELECTRICAL FIELD

    EPA Science Inventory

    Enhancements of contaminants removal and degradation in low permeability soils by electrical fields are achieved by the processes of electrical heating, electrokinetics, and electrochemical reactions. Electrical heating increases soil temperature resulting in the increase of cont...

  11. DH(*) in chiral smectics under electric field.

    PubMed

    Meyer, C; Rabette, C; Gisse, P; Antonova, K; Dozov, I

    2016-07-01

    The behavior of double helices (DH(*) formed in the temperature interval N(*) -SmA(*) in compounds of non-chiral liquid crystals doped with chiral molecules was investigated. Two different systems presenting left-handed and right-handed chirality were studied. A statistics of the handedness of the DH(*) revealed a correlation with the mixture chirality, as predicted theoretically in C. Meyer, Yu. A. Nastishin, M. Kleman, Phys. Rev. E 82, 031704 (2010). By applying a gradually increasing AC electric field, one can observe the shrinking of the cylinder circumscribing the DH(*) . This shrink is accompanied by a reduction of the DH(*) 's pitch. This effect was similar to the one produced by the decrease of temperature in the absence of the field. PMID:27465656

  12. Electric field distribution of electron emitter surfaces

    NASA Astrophysics Data System (ADS)

    Tagawa, M.; Takenobu, S.; Ohmae, N.; Umeno, M.

    1987-03-01

    The electric field distribution of a tungsten field emitter surface and a LaB6 thermionic emitter surface has been studied. The computer simulation of electric field distribution on the emitter surface was carried out with a charge simulation method. The electric field distribution of the LaB6 thermionic emitter was experimentally evaluated by the Schottky plot. Two independent equations are necessary for obtaining local electric field and work function; the Fowler-Nordheim equation and the equation of total energy distribution of emitted electron being used to evaluate the electric field distribution of the tungsten field emitter. The experimental results agreed with the computer simulation.

  13. Pulsed electric field increases reproduction.

    PubMed

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated.

  14. Pulsed electric field increases reproduction.

    PubMed

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated. PMID:26651869

  15. Patchy particle packing under electric fields.

    PubMed

    Song, Pengcheng; Wang, Yufeng; Wang, Yu; Hollingsworth, Andrew D; Weck, Marcus; Pine, David J; Ward, Michael D

    2015-03-01

    Colloidal particles equipped with two, three, or four negatively charged patches, which endow the particles with 2-fold, 3-fold, or tetrahedral symmetries, form 1D chains, 2D layers, and 3D packings when polarized by an AC electric field. Two-patch particles, with two patches on opposite sides of the particle (2-fold symmetry) pack into the cmm plane group and 3D packings with I4mm space group symmetry, in contrast to uncharged spherical or ellipsoidal colloids that typically crystallize into a face-centered ABC layer packing. Three-patch particles (3-fold symmetry) form chains having a 21 screw axis symmetry, but these chains pair in a manner such that each individual chain has one-fold symmetry but the pair has 21 screw axis symmetry, in an arrangement that aligns the patches that would favor Coulombic interactions along the chain. Surprisingly, some chain pairs form unanticipated double-helix regions that result from mutual twisting of the chains about each other, illustrating a kind of polymorphism that may be associated with nucleation from short chain pairs. Larger 2D domains of the three-patch particles crystallize in the p6m plane group with alignment (with respect to the field) and packing densities that suggest random disorder in the domains, whereas four-patch particles form 2D domains in which close-packed rows are aligned with the field.

  16. Patchy particle packing under electric fields.

    PubMed

    Song, Pengcheng; Wang, Yufeng; Wang, Yu; Hollingsworth, Andrew D; Weck, Marcus; Pine, David J; Ward, Michael D

    2015-03-01

    Colloidal particles equipped with two, three, or four negatively charged patches, which endow the particles with 2-fold, 3-fold, or tetrahedral symmetries, form 1D chains, 2D layers, and 3D packings when polarized by an AC electric field. Two-patch particles, with two patches on opposite sides of the particle (2-fold symmetry) pack into the cmm plane group and 3D packings with I4mm space group symmetry, in contrast to uncharged spherical or ellipsoidal colloids that typically crystallize into a face-centered ABC layer packing. Three-patch particles (3-fold symmetry) form chains having a 21 screw axis symmetry, but these chains pair in a manner such that each individual chain has one-fold symmetry but the pair has 21 screw axis symmetry, in an arrangement that aligns the patches that would favor Coulombic interactions along the chain. Surprisingly, some chain pairs form unanticipated double-helix regions that result from mutual twisting of the chains about each other, illustrating a kind of polymorphism that may be associated with nucleation from short chain pairs. Larger 2D domains of the three-patch particles crystallize in the p6m plane group with alignment (with respect to the field) and packing densities that suggest random disorder in the domains, whereas four-patch particles form 2D domains in which close-packed rows are aligned with the field. PMID:25692316

  17. Contrasting students' understanding of electric field and electric force

    NASA Astrophysics Data System (ADS)

    Garza, Alejandro; Zavala, Genaro

    2013-01-01

    Students may have greater difficulties in understanding electric interactions because they have less day to day experience with them than with mechanics. There may also be differences in understanding of different electric concepts like electric force and field. This study presents the results of students' responses to two sequences of superposition principle isomorphic questions in which the only difference was that in one of the sequences, the electric force was used and in the other, the electric field. We administered one of the sequences to 249 students at a large private Mexican university after covering electrostatics in an Electricity and Magnetism class. The students' answers, reasoning and drawings were analyzed. We found that students who took the force sequence were better able to correctly answer the questions using the superposition principle than those students with the field sequence. The analysis of the students' reasoning and drawings helped us to examine their understanding of electric field and the use of electric field lines.

  18. Electrically tuned photoluminescence in large pitch cholesteric liquid crystal

    SciTech Connect

    Middha, Manju Kumar, Rishi Raina, K. K.

    2014-04-24

    Cholesteric liquid crystals are known as 1-D photonic band gap materials due to their periodic helical supramolecular structure and larger birefringence. Depending upon the helical twisted pitch length, they give the characteristic contrast due to selective Bragg reflections when viewed through the polarizing optical microscope and hence affect the electro-optic properties. So the optimization of chiral dopant concentration in nematic liquid crystal leads to control the transmission of polarized light through the microscope. Hence transmission based polarizing optical microscope is used for the characterization of helical pitch length in the optical texture. The unwinding of helical pitch was observed with the application of electric field which affects the intensity of photoluminescence.

  19. Electric Field Effect in Intrinsic Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Koyama, T.

    The electric field effect in intrinsic Josephson junction stacks (IJJ's) is investigated on the basis of the capacitively-coupled IJJ model. We clarify the current-voltage characteristics of the IJJ's in the presence of an external electric field. It is predicted that the IJJ's show a dynamical transition to the voltage state as the external electric field is increased.

  20. Electric Field Induced Interfacial Instabilities

    NASA Technical Reports Server (NTRS)

    Kusner, Robert E.; Min, Kyung Yang; Wu, Xiao-lun; Onuki, Akira

    1999-01-01

    The study of the interface in a charge-free, critical and near-critical binary fluid in the presence of an externally applied electric field is presented. At sufficiently large fields, the interface between the two phases of the binary fluid should become unstable and exhibit an undulation with a predefined wavelength on the order of the capillary length. As the critical point is approached, this wavelength is reduced, potentially approaching length-scales such as the correlation length or critical nucleation radius. At this point the critical properties of the system may be affected. In this paper, the flat interface of a marginally polar binary fluid mixture is stressed by a perpendicular alternating electric field and the resulting instability is characterized by the critical electric field E(sub c) and the pattern observed. The character of the surface dynamics at the onset of instability is found to be strongly dependent on the frequency f of the field applied. The plot of E(sub c) vs. f for a fixed temperature shows a sigmoidal shape, whose low and high frequency limits are well described by a power-law relationship, E(sub c) = epsilon(exp zeta) with zeta = 0.35 and zeta = 0.08, respectively. The low-limit exponent compares well with the value zeta = 4 for a system of conducting and non-conducting fluids. On the other hand, the high-limit exponent coincides with what was first predicted by Onuki. The instability manifests itself as the conducting phase penetrates the non-conducting phase. As the frequency increases, the shape of the pattern changes from an array of bifurcating strings to an array of column-like (or rod-like) protrusions, each of which spans the space between the plane interface and one of the electrodes. For an extremely high frequency, the disturbance quickly grows into a parabolic cone pointing toward the upper plate. As a result, the interface itself changes its shape from that of a plane to that of a high sloping pyramid.

  1. Electrical conductivity of Cs2CuCl4 crystals

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.

    2016-05-01

    The electrical conductivity of Cs2CuCl4 single crystals, synthesized by crystallization from aqueous solutions in the CsCl-CuCl2-H2O system, has been investigated. The temperature dependence of the electrical conductivity of crystals in a temperature range of 338-584 K exhibits no anomalies. The electrical transfer activation enthalpy is Δ H σ = 0.72 ± 0.05 eV and the conductivity is σ = 3 × 10-4 S/cm at 584 K. The most likely carriers in Cs2CuCl4 are Cs+ cations, which transfer electric charge according to the vacancy mechanism.

  2. Cell separation using electric fields

    NASA Technical Reports Server (NTRS)

    Mangano, Joseph (Inventor); Eppich, Henry (Inventor)

    2009-01-01

    The present invention involves methods and devices which enable discrete objects having a conducting inner core, surrounded by a dielectric membrane to be selectively inactivated by electric fields via irreversible breakdown of their dielectric membrane. One important application of the invention is in the selection, purification, and/or purging of desired or undesired biological cells from cell suspensions. According to the invention, electric fields can be utilized to selectively inactivate and render non-viable particular subpopulations of cells in a suspension, while not adversely affecting other desired subpopulations. According to the inventive methods, the cells can be selected on the basis of intrinsic or induced differences in a characteristic electroporation threshold, which can depend, for example, on a difference in cell size and/or critical dielectric membrane breakdown voltage. The invention enables effective cell separation without the need to employ undesirable exogenous agents, such as toxins or antibodies. The inventive method also enables relatively rapid cell separation involving a relatively low degree of trauma or modification to the selected, desired cells. The inventive method has a variety of potential applications in clinical medicine, research, etc., with two of the more important foreseeable applications being stem cell enrichment/isolation, and cancer cell purging.

  3. Cell separation using electric fields

    NASA Technical Reports Server (NTRS)

    Mangano, Joseph A. (Inventor); Eppich, Henry M. (Inventor)

    2003-01-01

    The present invention involves methods and devices which enable discrete objects having a conducting inner core, surrounded by a dielectric membrane to be selectively inactivated by electric fields via irreversible breakdown of their dielectric membrane. One important application of the invention is in the selection, purification, and/or purging of desired or undesired biological cells from cell suspensions. According to the invention, electric fields can be utilized to selectively inactivate and render non-viable particular subpopulations of cells in a suspension, while not adversely affecting other desired subpopulations. According to the inventive methods, the cells can be selected on the basis of intrinsic or induced differences in a characteristic electroporation threshold, which can depend, for example, on a difference in cell size and/or critical dielectric membrane breakdown voltage. The invention enables effective cell separation without the need to employ undesirable exogenous agents, such as toxins or antibodies. The inventive method also enables relatively rapid cell separation involving a relatively low degree of trauma or modification to the selected, desired cells. The inventive method has a variety of potential applications in clinical medicine, research, etc., with two of the more important foreseeable applications being stem cell enrichment/isolation, and cancer cell purging.

  4. Electric-field-controlled interface strain coupling and non-volatile resistance switching of La1-xBaxMnO3 thin films epitaxially grown on relaxor-based ferroelectric single crystals

    NASA Astrophysics Data System (ADS)

    Zheng, Ming; Zhu, Qiu-Xiang; Li, Xue-Yan; Yang, Ming-Min; Wang, Yu; Li, Xiao-Min; Shi, Xun; Luo, Hao-Su; Zheng, Ren-Kui

    2014-09-01

    We have fabricated magnetoelectric heterostructures by growing ferromagnetic La1-xBaxMnO3 (x = 0.2, 0.4) thin films on (001)-, (110)-, and (111)-oriented 0.31Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb1/2)O3-0.34PbTiO3 (PINT) ferroelectric single-crystal substrates. Upon poling along the [001], [110], or [111] crystal direction, the electric-field-induced non-180° domain switching gives rise to a decrease in the resistance and an enhancement of the metal-to-insulator transition temperature TC of the films. By taking advantage of the 180° ferroelectric domain switching, we identify that such changes in the resistance and TC are caused by domain switching-induced strain but not domain switching-induced accumulation or depletion of charge carriers at the interface. Further, we found that the domain switching-induced strain effects can be efficiently controlled by a magnetic field, mediated by the electronic phase separation. Moreover, we determined the evolution of the strength of the electronic phase separation against temperature and magnetic field by recording the strain-tunability of the resistance [(ΔR/R)strain] under magnetic fields. Additionally, opposing effects of domain switching-induced strain on ferromagnetism above and below 197 K for the La0.8Ba0.2MnO3 film and 150 K for the La0.6Ba0.4MnO3 film, respectively, were observed and explained by the magnetoelastic effect through adjusting the magnetic anisotropy. Finally, using the reversible ferroelastic domain switching of the PINT, we realized non-volatile resistance switching of the films at room temperature, implying potential applications of the magnetoelectric heterostructure in non-volatile memory devices.

  5. Electric-field-controlled interface strain coupling and non-volatile resistance switching of La{sub 1-x}Ba{sub x}MnO₃ thin films epitaxially grown on relaxor-based ferroelectric single crystals

    SciTech Connect

    Zheng, Ming; Zhu, Qiu-Xiang; Li, Xue-Yan; Yang, Ming-Min; Li, Xiao-Min; Shi, Xun; Luo, Hao-Su; Zheng, Ren-Kui; Wang, Yu

    2014-09-21

    We have fabricated magnetoelectric heterostructures by growing ferromagnetic La{sub 1-x}Ba{sub x}MnO₃ (x=0.2, 0.4) thin films on (001)-, (110)-, and (111)-oriented 0.31Pb(In{sub 1/2}Nb{sub 1/2})O₃-0.35Pb(Mg{sub 1/3}Nb{sub 1/2})O₃-0.34PbTiO₃ (PINT) ferroelectric single-crystal substrates. Upon poling along the [001], [110], or [111] crystal direction, the electric-field-induced non-180° domain switching gives rise to a decrease in the resistance and an enhancement of the metal-to-insulator transition temperature TC of the films. By taking advantage of the 180° ferroelectric domain switching, we identify that such changes in the resistance and TC are caused by domain switching-induced strain but not domain switching-induced accumulation or depletion of charge carriers at the interface. Further, we found that the domain switching-induced strain effects can be efficiently controlled by a magnetic field, mediated by the electronic phase separation. Moreover, we determined the evolution of the strength of the electronic phase separation against temperature and magnetic field by recording the strain-tunability of the resistance [(ΔR/R){sub strain}] under magnetic fields. Additionally, opposing effects of domain switching-induced strain on ferromagnetism above and below 197 K for the La₀.₈Ba₀.₂MnO₃ film and 150 K for the La₀.₆Ba₀.₄MnO₃ film, respectively, were observed and explained by the magnetoelastic effect through adjusting the magnetic anisotropy. Finally, using the reversible ferroelastic domain switching of the PINT, we realized non-volatile resistance switching of the films at room temperature, implying potential applications of the magnetoelectric heterostructure in non-volatile memory devices.

  6. Electric Field Induced Interfacial Instabilities

    NASA Technical Reports Server (NTRS)

    Kusner, Robert E.; Min, Kyung Yang; Wu, Xiao-Lun; Onuki, Akira

    1996-01-01

    The study of the interface in a charge-free, nonpolar, critical and near-critical binary fluid in the presence of an externally applied electric field is presented. At sufficiently large fields, the interface between the two phases of the binary fluid should become unstable and exhibit an undulation with a predefined wavelength on the order of the capillary length. As the critical point is approached, this wavelength is reduced, potentially approaching length-scales such as the correlation length or critical nucleation radius. At this point the critical properties of the system may be affected. In zero gravity, the interface is unstable at all long wavelengths in the presence of a field applied across it. It is conjectured that this will cause the binary fluid to break up into domains small enough to be outside the instability condition. The resulting pattern formation, and the effects on the critical properties as the domains approach the correlation length are of acute interest. With direct observation, laser light scattering, and interferometry, the phenomena can be probed to gain further understanding of interfacial instabilities and the pattern formation which results, and dimensional crossover in critical systems as the critical fluctuations in a particular direction are suppressed by external forces.

  7. Phase-Field-Crystal Model for Electromigration in Metal Interconnects

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Bevan, Kirk H.; Provatas, Nikolas

    2016-10-01

    We propose an atomistic model of electromigration (EM) in metals based on a recently developed phase-field-crystal (PFC) technique. By coupling the PFC model's atomic density field with an applied electric field through the EM effective charge parameter, EM is successfully captured on diffusive time scales. Our framework reproduces the well-established EM phenomena known as Black's equation and the Blech effect, and also naturally captures commonly observed phenomena such as void nucleation and migration in bulk crystals. A resistivity dipole field arising from electron scattering on void surfaces is shown to contribute significantly to void migration velocity. With an intrinsic time scale set by atomic diffusion rather than atomic oscillations or hopping events, as in conventional atomistic methods, our theoretical approach makes it possible to investigate EM-induced circuit failure at atomic spatial resolution and experimentally relevant time scales.

  8. Advanced materials and device technology for photonic electric field sensors

    NASA Astrophysics Data System (ADS)

    Toney, James E.; Stenger, Vincent E.; Kingsley, Stuart A.; Pollick, Andrea; Sriram, Sri; Taylor, Edward

    2012-10-01

    Photonic methods for electric field sensing have been demonstrated across the electromagnetic spectrum from near-DC to millimeter waves, and at field strengths from microvolts-per-meter to megavolts-per-meter. The advantages of the photonic approach include a high degree of electrical isolation, wide bandwidth, minimum perturbation of the incident field, and the ability to operate in harsh environments. Aerospace applications of this technology span a wide range of frequencies and field strengths. They include, at the high-frequency/high-field end, measurement of high-power electromagnetic pulses, and at the low-frequency/low-field end, in-flight monitoring of electrophysiological signals. The demands of these applications continue to spur the development of novel materials and device structures to achieve increased sensitivity, wider bandwidth, and greater high-field measurement capability. This paper will discuss several new directions in photonic electric field sensing technology for defense applications. The first is the use of crystal ion slicing to prepare high-quality, single-crystal electro-optic thin films on low-dielectricconstant, RF-friendly substrates. The second is the use of two-dimensional photonic crystal structures to enhance the electro-optic response through slow-light propagation effects. The third is the use of ferroelectric relaxor materials with extremely high electro-optic coefficients.

  9. Pair-production in inhomogeneous electric fields

    SciTech Connect

    Xue Shesheng

    2008-01-03

    This is a preliminary study on the rate of electron-positron pair production in spatially inhomogeneous electric fields. We study the rate in the Sauter field and compare it to the rate in the homogeneous field.

  10. Dynamic response of polar nanoregions under an electric field in a paraelectric KTa0.61Nb0.39O3 single crystal near the para-ferroelectric phase boundary

    NASA Astrophysics Data System (ADS)

    Tian, Hao; Yao, Bo; Wang, Lei; Tan, Peng; Meng, Xiangda; Shi, Guang; Zhou, Zhongxiang

    2015-09-01

    The dynamic response of polar nanoregions under an AC electric field was investigated by measuring the frequency dependence of the quadratic electro-optic (QEO) effect in a paraelectric KTa0.61Nb0.39O3 single crystal near the para-ferroelectric phase boundary (0 °C < T-Tc < 13 °C). The QEO coefficient R11 - R12 reached values as large as 5.96 × 10-15 m2/V2 at low frequency (500 Hz) and gradually decreased to a nearly stable value as the frequency increased to 300 kHz. Furthermore, a distortion of the QEO effect was observed at low frequency and gradually disappeared as R11 - R12 tended towards stability. The giant QEO effect in the KTa0.61Nb0.39O3 crystal was attributed to the dynamic rearrangement of polar nanoregions and its anomalous distortion can be explained by considering the asymmetric distribution of polar nanoregions.

  11. Dynamic response of polar nanoregions under an electric field in a paraelectric KTa0.61Nb0.39O3 single crystal near the para-ferroelectric phase boundary.

    PubMed

    Tian, Hao; Yao, Bo; Wang, Lei; Tan, Peng; Meng, Xiangda; Shi, Guang; Zhou, Zhongxiang

    2015-09-03

    The dynamic response of polar nanoregions under an AC electric field was investigated by measuring the frequency dependence of the quadratic electro-optic (QEO) effect in a paraelectric KTa0.61Nb0.39O3 single crystal near the para-ferroelectric phase boundary (0 °C < T-Tc < 13 °C). The QEO coefficient R11 - R12 reached values as large as 5.96 × 10(-15) m(2)/V(2) at low frequency (500 Hz) and gradually decreased to a nearly stable value as the frequency increased to 300 kHz. Furthermore, a distortion of the QEO effect was observed at low frequency and gradually disappeared as R11 - R12 tended towards stability. The giant QEO effect in the KTa0.61Nb0.39O3 crystal was attributed to the dynamic rearrangement of polar nanoregions and its anomalous distortion can be explained by considering the asymmetric distribution of polar nanoregions.

  12. Dynamic response of polar nanoregions under an electric field in a paraelectric KTa0.61Nb0.39O3 single crystal near the para-ferroelectric phase boundary

    PubMed Central

    Tian, Hao; Yao, Bo; Wang, Lei; Tan, Peng; Meng, Xiangda; Shi, Guang; Zhou, Zhongxiang

    2015-01-01

    The dynamic response of polar nanoregions under an AC electric field was investigated by measuring the frequency dependence of the quadratic electro-optic (QEO) effect in a paraelectric KTa0.61Nb0.39O3 single crystal near the para-ferroelectric phase boundary (0 °C < T-Tc < 13 °C). The QEO coefficient R11 − R12 reached values as large as 5.96 × 10−15 m2/V2 at low frequency (500 Hz) and gradually decreased to a nearly stable value as the frequency increased to 300 kHz. Furthermore, a distortion of the QEO effect was observed at low frequency and gradually disappeared as R11 − R12 tended towards stability. The giant QEO effect in the KTa0.61Nb0.39O3 crystal was attributed to the dynamic rearrangement of polar nanoregions and its anomalous distortion can be explained by considering the asymmetric distribution of polar nanoregions. PMID:26334181

  13. Electrically tunable refractive index in the dark conglomerate phase of a bent-core liquid crystal

    NASA Astrophysics Data System (ADS)

    Nagaraj, M.; Görtz, V.; Goodby, J. W.; Gleeson, H. F.

    2014-01-01

    Here we report an electrically tunable refractive index observed in an isotropic liquid crystal phase known as the dark conglomerate (DC) phase. This unusual change in the refractive index which has not been reported before in the DC phase of other bent-core liquid crystals occurs because of a series of electric-field-driven transformations that take place in the DC phase of the studied bent-core liquid crystal. These transformations give rise to a decrease in the refractive index of the system, when an electric field is applied across the device, and no change in the birefringence is seen during such behavior. The electro-optic phenomenon is described in detail and the possibility of exploiting this for a number of liquid crystal based device applications is discussed.

  14. Electric Dipole Moment Experiment Systematic from Electric Field Discharge Current

    NASA Astrophysics Data System (ADS)

    Feinberg, B.; Gould, Harvey

    2014-09-01

    A magnetic field, in the direction of the electric field and synchronous with the electric field reversal, will mimic an EDM signal. One might expect a discharge across the electric field plates to produce magnetic fields with only small or vanishing components parallel to the electric field, minimizing its systematic effect. Our experimental model, using simulated discharge currents, found otherwise: the discharge current may be at an angle to the normal, and thus generate a normal magnetic field. Comparison of data from the experimental model with the results from calculations will be presented, along with estimates of the time-averaged normal magnetic field seen by atoms in an electron EDM experiment using a fountain of laser-cooled francium, as a function of discharge current.

  15. Electric Mars: The first survey of Martian parallel electric fields.

    NASA Astrophysics Data System (ADS)

    Collinson, G.; Mitchell, D. L.; Glocer, A.; Grebowsky, J. M.; Peterson, W. K.; Connerney, J. E. P.; Andersson, L.; Espley, J. R.; Mazelle, C. X.; Savaud, J. A.; Fedorov, A.; Ma, Y.; Bougher, S. W.; Lillis, R. J.; Ergun, R. E.; Jakosky, B. M.

    2015-12-01

    We present the results of the first survey of parallel electric fields at Mars, using electron measurements from the MAVEN Solar Wind Electron Analyzer (SWEA), and the Magnetometer (MAG). We discuss three fields: (1) The first upper limit on the strength of the "Polar Wind" ambipolar electric field; (2) The "trans-terminator" field, a newly discovered electric force accelerating ions on closed field lines from day to nightside, and (3) possible signatures of very high strength electrostatic mirroring during the passage of a Coronal Mass Ejection.

  16. Charged Hadron Properties in Background Electric Fields

    SciTech Connect

    William Detmold, Brian C. Tiburzi, Andre Walker-Loud

    2010-02-01

    We report on a lattice calculation demonstrating a novel new method to extract the electric polarizability of charged pseudo-scalar mesons by analyzing two point correlation functions computed in classical background electric fields.

  17. Electric double layer of anisotropic dielectric colloids under electric fields

    NASA Astrophysics Data System (ADS)

    Han, M.; Wu, H.; Luijten, E.

    2016-07-01

    Anisotropic colloidal particles constitute an important class of building blocks for self-assembly directed by electrical fields. The aggregation of these building blocks is driven by induced dipole moments, which arise from an interplay between dielectric effects and the electric double layer. For particles that are anisotropic in shape, charge distribution, and dielectric properties, calculation of the electric double layer requires coupling of the ionic dynamics to a Poisson solver. We apply recently proposed methods to solve this problem for experimentally employed colloids in static and time-dependent electric fields. This allows us to predict the effects of field strength and frequency on the colloidal properties.

  18. Electrical response of liquid crystal cells doped with multi-walled carbon nanotubes.

    PubMed

    García-García, Amanda; Vergaz, Ricardo; Algorri, José Francisco; Quintana, Xabier; Otón, José Manuel

    2015-01-01

    The inclusion of nanoparticles modifies a number of fundamental properties of many materials. Doping of nanoparticles in self-organized materials such as liquid crystals may be of interest for the reciprocal interaction between the matrix and the nanoparticles. Elongated nanoparticles and nanotubes can be aligned and reoriented by the liquid crystal, inducing noticeable changes in their optical and electrical properties. In this work, cells of liquid crystal doped with high aspect ratio multi-walled carbon nanotubes have been prepared, and their characteristic impedance has been studied at different frequencies and excitation voltages. The results demonstrate alterations in the anisotropic conductivity of the samples with the applied electric field, which can be followed by monitoring the impedance evolution with the excitation voltage. Results are consistent with a possible electric contact between the coated substrates of the LC cell caused by the reorientation of the nanotubes. The reversibility of the doped system upon removal of the electric field is quite low.

  19. Electrical response of liquid crystal cells doped with multi-walled carbon nanotubes.

    PubMed

    García-García, Amanda; Vergaz, Ricardo; Algorri, José Francisco; Quintana, Xabier; Otón, José Manuel

    2015-01-01

    The inclusion of nanoparticles modifies a number of fundamental properties of many materials. Doping of nanoparticles in self-organized materials such as liquid crystals may be of interest for the reciprocal interaction between the matrix and the nanoparticles. Elongated nanoparticles and nanotubes can be aligned and reoriented by the liquid crystal, inducing noticeable changes in their optical and electrical properties. In this work, cells of liquid crystal doped with high aspect ratio multi-walled carbon nanotubes have been prepared, and their characteristic impedance has been studied at different frequencies and excitation voltages. The results demonstrate alterations in the anisotropic conductivity of the samples with the applied electric field, which can be followed by monitoring the impedance evolution with the excitation voltage. Results are consistent with a possible electric contact between the coated substrates of the LC cell caused by the reorientation of the nanotubes. The reversibility of the doped system upon removal of the electric field is quite low. PMID:25821679

  20. Electric Field Analysis of Breast Tumor Cells

    PubMed Central

    Sree, V. Gowri; Udayakumar, K.; Sundararajan, R.

    2011-01-01

    An attractive alternative treatment for malignant tumors that are refractive to conventional therapies, such as surgery, radiation, and chemotherapy, is electrical-pulse-mediated drug delivery. Electric field distribution of tissue/tumor is important for effective treatment of tissues. This paper deals with the electric field distribution study of a tissue model using MAXWELL 3D Simulator. Our results indicate that tumor tissue had lower electric field strength compared to normal cells, which makes them susceptible to electrical-pulse-mediated drug delivery. This difference could be due to the altered properties of tumor cells compared to normal cells, and our results corroborate this. PMID:22295214

  1. Entanglement generation by electric field background

    SciTech Connect

    Ebadi, Zahra Mirza, Behrouz

    2014-12-15

    The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fermionic modes with respect to different parameters.

  2. Crystal fields in UO2 - revisited

    SciTech Connect

    Nakotte, Heinz; Rajatram, R; Mcqueeney, R J; Lander, G H; Robinson, R A

    2009-01-01

    We performed inelastic neutron scattering (INS) in order to re-investigate the crystal-field ground state and the level splitting in UO{sub 2}. Previous INS studies on UO{sub 2} by Amorelli et al. [Physical Review B 15, 1989, 1856] uncovered four excitations at low temperatures in the 150-180 meV range. Considering the dipole-allowed transitions, only three of these transitions could be explained by the published crystal-field model. Our INS results on a different UO{sub 2} sample revealed that the unaccounted peak at about 180 meV is a spurious one, and thus not intrinsic to UO{sub 2}. In good agreement with Amoretti's results, we corroborated that the ground-state of UO{sub 2} is the {Lambda}{sub 5} triplet, and we computed that the fourth- and six-order crystal field parameters are V{sub 4} = -116 meV and V{sub 6} = 26 meV, respectively. We also studied the INS response of the non-magnetic U{sub 0.4}Th{sub 0.6}O{sub 2}. The splitting for this thorium-doped compound is similar to the one of UO{sub 2}, which orders antiferromagnetically at low temperatures. Therefore, we can conclude that magnetic interactions only weakly perturb the energy level splitting, which is dominated by strong crystal fields.

  3. Internal static electric and magnetic field at the copper cite in a single crystal of the electron-doped high-Tc superconductor Pr1.85Ce0.15CuO4 -y

    NASA Astrophysics Data System (ADS)

    Wu, Guoqing; Zamborszky, F.; Reyes, A. P.; Kuhns, P. L.; Greene, R. L.; Clark, W. G.

    2014-12-01

    We report 63 ,65Cu -NMR spectroscopy and Knight shift measurements on a single crystal of the electron-doped high-Tc superconductor Pr1.85Ce0.15CuO4 -y with an applied magnetic field (H ) up to 26.42 T. A very small NQR frequency is obtained with the observation of the spectrum, which shows an extremely wide continuous distribution of it that becomes significantly narrower below 20 K at H ∥c where the superconductivity is completely suppressed, indicating a significant change in the charge distribution at the Cu site, while the corresponding change at H ⊥c is negligible when the superconductivity is present or not fully suppressed. The Knight shift and central linewidth are proportional to the applied magnetic field with a high anisotropy. We find that the magnitude of the internal static magnetic field at the copper is dominated by the anisotropic Cu2 + 3 d orbital contributions, while its weak temperature dependence is mainly determined by the isotropic contact hyperfine coupling to the paramagnetic Pr3 + spins, which also gives rise to the full distribution of the internal static magnetic field at the copper for H ⊥c . This internal static electric and magnetic field environment at the copper is very different from that in the hole-doped cuprates, and may provide new insight into the understanding of high-Tc superconductivity. Other experimental techniques are needed to verify whether the observed significant narrowing of the charge distribution at the Cu site with H ∥c is caused by the charge ordering [E. H. da Silva Neto et al., Science (to be published, 2014)] or a new type of charge modulation.

  4. Electric field soundings through thunderstorms

    NASA Technical Reports Server (NTRS)

    Marshall, Thomas C.; Rust, W. D.

    1991-01-01

    Twelve balloon soundings of the electric field in thunderstorms are reported. The maximum magnitude of E in the storms averaged 96 +/-28 kV/m, with the largest being 146 kV/m. The maximum was usually observed between vertically adjacent regions of opposite charge. Using a 1D approximation to Gauss' law, four to ten charge regions in the storms are inferred. The magnitude of the density in the charge regions varied between 0.2 and 13 nC/cu m. The vertical extent of the charge regions ranged from 130 to 2100 m. None of the present 12 storms had charge distributions that fit the long-accepted model of Simpson et al. (1937, 1941) of a lower positive charge, a main negative charge, and an upper positive charge. In addition to regions similar to the Simpson model, the present storms had screening layers at the upper and lower cloud boundaries and extra charge regions, usually in the lower part of the cloud.

  5. Electric fields in the ionosphere

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.

    1975-01-01

    F-region drift velocities, measured by incoherent-scatter radar were analyzed in terms of diurnal, seasonal, magnetic activity, and solar cycle effects. A comprehensive electric field model was developed that includes the effects of the E and F-region dynamos, magnetospheric sources, and ionospheric conductivities, for both the local and conjugate regions. The E-region dynamo dominates during the day but at night the F-region and convection are more important. This model provides much better agreement with observations of the F-region drifts than previous models. Results indicate that larger magnitudes occur at night, and that daily variation is dominated by the diurnal mode. Seasonal variations in conductivities and thermospheric winds indicate a reversal in direction in the early morning during winter from south to northward. On magnetic perturbed days and the drifts deviate rather strongly from the quiet days average, especially around 13 L.T. for the northward and 18 L.T. for the westward component.

  6. Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Zheng, Chen; Jing, Zhang; Yongxin, Wang; Yanli, Lu

    2016-03-01

    By employing the phase-field-crystal models, the atomic crystallization process of hexagonal and square crystals is investigated with the emphasis on the growth mechanism and morphological change. A unified regime describing the crystallization behavior of both crystals is obtained with the thermodynamic driving force varying. By increasing the driving force, both crystals (in the steady-state) transform from a faceted polygon to an apex-bulged polygon, and then into a symmetric dendrite. For the faceted polygon, the interface advances by a layer-by-layer (LL) mode while for the apex-bulged polygonal and the dendritic crystals, it first adopts the LL mode and then transits into the multi-layer (ML) mode in the later stage. In particular, a shift of the nucleation sites from the face center to the area around the crystal tips is detected in the early growth stage of both crystals and is rationalized in terms of the relation between the crystal size and the driving force distribution. Finally, a parameter characterizing the complex shape change of square crystal is introduced. Project supported by the National Natural Science Foundation of China (Grant Nos. 54175378, 51474176, and 51274167), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7261), and the Doctoral Foundation Program of Ministry of China (Grant No. 20136102120021).

  7. Video-rate terahertz electric-field vector imaging

    SciTech Connect

    Takai, Mayuko; Takeda, Masatoshi; Sasaki, Manabu; Tachizaki, Takehiro; Yasumatsu, Naoya; Watanabe, Shinichi

    2014-10-13

    We present an experimental setup to dramatically reduce a measurement time for obtaining spatial distributions of terahertz electric-field (E-field) vectors. The method utilizes the electro-optic sampling, and we use a charge-coupled device to detect a spatial distribution of the probe beam polarization rotation by the E-field-induced Pockels effect in a 〈110〉-oriented ZnTe crystal. A quick rotation of the ZnTe crystal allows analyzing the terahertz E-field direction at each image position, and the terahertz E-field vector mapping at a fixed position of an optical delay line is achieved within 21 ms. Video-rate mapping of terahertz E-field vectors is likely to be useful for achieving real-time sensing of terahertz vector beams, vector vortices, and surface topography. The method is also useful for a fast polarization analysis of terahertz beams.

  8. Simulation of electrically controlled nematic liquid crystal Rochon prism

    NASA Astrophysics Data System (ADS)

    Buczkowska, M.; Derfel, G.

    2016-09-01

    Operation of an electrically controlled beam steering device based on Rochon prism made by use of nematic liquid crystal is modelled numerically. Deflection angles and angular distribution of light intensity in the deflected beam are calculated. Dynamics of the device is studied. Advantage of application of dual frequency nematic liquid crystal is demonstrated. Role of flexoelectric properties of the nematic is analyzed.

  9. Electric field controlled columnar and planar patterning of cholesteric colloids.

    PubMed

    D'Adamo, G; Marenduzzo, D; Micheletti, C; Orlandini, E

    2015-05-01

    We study how dispersions of colloidal particles in a cholesteric liquid crystal behave under a time-dependent electric field. By controlling the amplitude and shape of the applied field wave, we show that the system can be reproducibly driven out of equilibrium through different kinetic pathways and navigated through a glassylike free energy landscape encompassing many competing metastable equilibria. Such states range from simple Saturn rings to complex structures featuring amorphous defect networks, or stacks of disclination loops. A nonequilibrium electric field can also trigger the alignment of particles into columnar arrays, through defect-mediated force impulses, or their repositioning within a plane. Our results are promising in terms of providing new avenues towards controlled patterning and self-assembly of soft colloid-liquid crystal composite materials. PMID:25978263

  10. Directing Soft Matter in Water Using Electric Fields.

    PubMed

    van der Asdonk, Pim; Kragt, Stijn; Kouwer, Paul H J

    2016-06-29

    Directing the spatial organization of functional supramolecular and polymeric materials at larger length scales is essential for many biological and molecular optoelectronic applications. Although the application of electrical fields is one of the most powerful approaches to induce spatial control, it is rarely applied experimentally in aqueous solutions, since the low susceptibility of soft and biological materials requires the use of high fields, which leads to parasitic heating and electrochemical degradation. In this work, we demonstrate that we can apply electric fields when we use a mineral liquid crystal as a responsive template. Besides aligning and positioning functional soft matter, we show that the concentration of the liquid crystal template controls the morphology of the assembly. As our setup is very easy to operate and our approach lacks specific molecular interactions, we believe it will be applicable for a wide range of (aqueous) materials. PMID:27269124

  11. Electric field controlled columnar and planar patterning of cholesteric colloids.

    PubMed

    D'Adamo, G; Marenduzzo, D; Micheletti, C; Orlandini, E

    2015-05-01

    We study how dispersions of colloidal particles in a cholesteric liquid crystal behave under a time-dependent electric field. By controlling the amplitude and shape of the applied field wave, we show that the system can be reproducibly driven out of equilibrium through different kinetic pathways and navigated through a glassylike free energy landscape encompassing many competing metastable equilibria. Such states range from simple Saturn rings to complex structures featuring amorphous defect networks, or stacks of disclination loops. A nonequilibrium electric field can also trigger the alignment of particles into columnar arrays, through defect-mediated force impulses, or their repositioning within a plane. Our results are promising in terms of providing new avenues towards controlled patterning and self-assembly of soft colloid-liquid crystal composite materials.

  12. The peculiar electrical response of liquid crystal-carbon nanotube systems as seen by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    García-García, A.; Vergaz, R.; Algorri, J. F.; Geday, M. A.; Otón, J. M.

    2015-09-01

    Conductive nanoparticles, especially elongated ones such as carbon nanotubes, dramatically modify the electrical behavior of liquid crystal cells. These nanoparticles are known to reorient with liquid crystals in electric fields, causing significant variations of conductivity at minute concentrations of tens or hundreds ppm. The above notwithstanding, impedance spectroscopy of doped cells in the frequency range customarily employed by liquid crystal devices, 100 Hz-10 kHz, shows a relatively simple resistor/capacitor response where the components of the cell can be univocally assigned to single components of the electrical equivalent circuit. However, widening the frequency range up to 1 MHz or beyond reveals a complex behavior that cannot be explained with the same simple EEC. Moreover, the system impedance varies with the application of electric fields, their effect remaining after removing the field. Carbon nanotubes are reoriented together with liquid crystal reorientation when applying voltage, but barely reoriented back upon liquid crystal relaxation once the voltage is removed. Results demonstrate a remarkable variation in the impedance of the dielectric blend formed by liquid crystal and carbon nanotubes, the irreversible orientation of the carbon nanotubes and possible permanent contacts between electrodes.

  13. Manipulating Flames with AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Bishop, Kyle

    2013-11-01

    Time-oscillating electric fields applied to plasmas present in flames create steady flows of gas capable of shaping, directing, enhancing, or even extinguishing flames. Interestingly, electric winds induced by AC electric fields can be stronger that those due to static fields of comparable magnitude. Furthermore, unlike static fields, the electric force due to AC fields is localized near the surface of the flame. Consequently, the AC response depends only on the local field at the surface of the flame - not on the position of the electrodes used to generate the field. These results suggest that oscillating electric fields can be used to manipulate and control combustion processes at a distance. To characterize and explain these effects, we investigate a simple experimental system comprising a laminar methane-air flame positioned between two parallel-plate electrodes. We quantify both the electric and hydrodynamic response of the flame as a function of frequency and magnitude of the applied field. A theoretical model shows how steady gas flows emerge from the time-averaged electrical force due to the field-induced motion of ions generated within the flame and by their disappearance by recombination. These results provide useful insights into the application of AC fields to direct combustion processes.

  14. Electrically controlled light scattering from thermoreversible liquid-crystal gels

    NASA Astrophysics Data System (ADS)

    Janssen, Rob H. C.; Stümpflen, Volker; Broer, Dirk J.; Bastiaansen, Cees W. M.; Tervoort, Theo A.; Smith, Paul

    2000-07-01

    Thermoreversible gels of the liquid-crystal LC-E7 with 1,3:2,4-Di-O-benzylidene-D-sorbitol (DBS) form white light-scattering films that are reversibly switchable to a clear state by ac electric fields. The light scattering by the gelled films is an intrinsic material property that originates in the phase diagram of the system displaying a monotectic-type equilibrium ("mesotectic") among a liquid, a solid, and a mesophase at extremely low concentrations of DBS. Electro-optical characteristics and demonstrated viscoelastic behavior of the films produced indicate the applicability of DBS/LC-E7 in large area scattering-based flat panel displays and projection systems.

  15. Consistent Hydrodynamics for Phase Field Crystals.

    PubMed

    Heinonen, V; Achim, C V; Kosterlitz, J M; Ying, See-Chen; Lowengrub, J; Ala-Nissila, T

    2016-01-15

    We use the amplitude expansion in the phase field crystal framework to formulate an approach where the fields describing the microscopic structure of the material are coupled to a hydrodynamic velocity field. The model is shown to reduce to the well-known macroscopic theories in appropriate limits, including compressible Navier-Stokes and wave equations. Moreover, we show that the dynamics proposed allows for long wavelength phonon modes and demonstrate the theory numerically showing that the elastic excitations in the system are relaxed through phonon emission. PMID:26824543

  16. Parallel electric fields from ionospheric winds

    NASA Technical Reports Server (NTRS)

    Nakada, M. P.

    1987-01-01

    The possible production of electric fields parallel to the magnetic field by dynamo winds in the E region is examined, using a jet stream wind model. Current return paths through the F region above the stream are examined as well as return paths through the conjugate ionosphere. The Wulf geometry with horizontal winds moving in opposite directions one above the other is also examined. Parallel electric fields are found to depend strongly on the width of current sheets at the edges of the jet stream. If these are narrow enough, appreciable parallel electric fields are produced.

  17. Controlling Growth Orientation of Phthalocyanine Films by Electrical Fields

    NASA Technical Reports Server (NTRS)

    Zhu, S.; Banks, C. E.; Frazier, D. O.; Ila, D.; Muntele, I.; Penn, B. G.; Sharma, A.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Organic Phthalocyanine films have many applications ranging from data storage to various non-linear optical devices whose quality is affected by the growth orientation of Phthalocyanine films. Due to the structural and electrical properties of Phthalocyanine molecules, the film growth orientation depends strongly on the substrate surface states. In this presentation, an electrical field up to 4000 V/cm is introduced during film growth. The Phthalocyanine films are synthesized on quartz substrates using thermal evaporation. An intermediate layer is deposited on some substrates for introducing the electrical field. Scanning electron microscopy, x-ray diffraction, and Fourier transform infrared spectroscopy are used for measuring surface morphology, film structure, and optical properties, respectively. The comparison of Phthalocyanine films grown with and without the electrical field reveals different morphology, film density, and growth orientation, which eventually change optical properties of these films. These results suggest that the growth method in the electrical field can be used to synthesized Phthalocyanine films with a preferred crystal orientation as well as propose an interaction mechanism between the substrate surface and the depositing molecules. The details of growth conditions and of the growth model of how the Phthalocyanine molecules grow in the electrical field will be discussed.

  18. Horizontal electric fields from lightning return strokes

    NASA Technical Reports Server (NTRS)

    Thomson, E. M.; Medelius, P. J.; Rubinstein, M.; Uman, M. A.; Johnson, J.

    1988-01-01

    An experiment to measure simultaneously the wideband horizontal and vertical electric fields from lightning return strokes is described. Typical wave shapes of the measured horizontal and vertical fields are presented, and the horizontal fields are characterized. The measured horizontal fields are compared with calculated horizontal fields obtained by applying the wavetilt formula to the vertical fields. The limitations and sources of error in the measurement technique are discussed.

  19. Nanomechanical electric and electromagnetic field sensor

    SciTech Connect

    Datskos, Panagiotis George; Lavrik, Nickolay

    2015-03-24

    The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.

  20. Influence of a weak magnetic field on microplasticity of silicon crystals

    NASA Astrophysics Data System (ADS)

    Makara, V. A.; Steblenko, L. P.; Plyushchai, I. V.; Kurylyuk, A. N.; Kalinichenko, D. V.; Krit, A. N.; Naumenko, S. N.

    2014-08-01

    The possibility of magnetic ordering at dangling bonds in dislocation cores has been investigated theoretically. It has been experimentally shown that magnetic ordering in dislocations affects the spin-dependent effects occurring in dislocation crystals of silicon. It has been found that preliminary magnetic treatment of silicon crystals in a weak magnetic field leads to the suppression of the electroplastic effect induced in silicon crystals excited by an electric current. It has been assumed that a change in the microplasticity under the combined action of a magnetic field and an electric current is caused by a weakening of spin-dependent recombination at dislocation dangling bonds.

  1. Interaction Between Flames and Electric Fields Studied

    NASA Technical Reports Server (NTRS)

    Yuan, Zeng-Guang; Hegde, Uday

    2003-01-01

    The interaction between flames and electric fields has long been an interesting research subject that has theoretical importance as well as practical significance. Many of the reactions in a flame follow an ionic pathway: that is, positive and negative ions are formed during the intermediate steps of the reaction. When an external electric field is applied, the ions move according to the electric force (the Coulomb force) exerted on them. The motion of the ions modifies the chemistry because the reacting species are altered, it changes the velocity field of the flame, and it alters the electric field distribution. As a result, the flame will change its shape and location to meet all thermal, chemical, and electrical constraints. In normal gravity, the strong buoyant effect often makes the flame multidimensional and, thus, hinders the detailed study of the problem.

  2. Electric fields in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Holzworth, Robert H.

    1987-01-01

    Middle atmospheric electrodynamics is characterized by discussing the present understanding of the background electrical conductivity and the sources for electric fields and currents within the medium. Results of recent research that contradicts the historical view of the region are presented. Of principal interest to the present direction of the field is the attempt to quantize the low and high altitude electric generators such as thunderstorms or ionospheric convection. It is noted that the many-fold increase in available electric parameter data from within the middle atmosphere has been a great stimulus to recent research; however, these measurements have tended to raise more questions than they give answers.

  3. Molecular dynamics in high electric fields

    NASA Astrophysics Data System (ADS)

    Apostol, M.; Cune, L. C.

    2016-06-01

    Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called "dipolons"); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.

  4. Estimating of pulsed electric fields using optical measurements.

    SciTech Connect

    Flanagan, Timothy McGuire; Chantler, Gary.

    2013-09-01

    We performed optical electric field measurements ion nanosecond time scales using the electrooptic crystal beta barium borate (BBO). Tests were based on a preliminary bench top design intended to be a proofofprinciple stepping stone towards a modulardesign optical Efield diagnostic that has no metal in the interrogated environment. The long term goal is to field a modular version of the diagnostic in experiments on large scale xray source facilities, or similarly harsh environments.

  5. Electric field replaces gravity in laboratory

    NASA Astrophysics Data System (ADS)

    Gorgolewski, S.

    For several years experiments in physical laboratories and in the fitotron have shown that one can replace gravitational field with electrical fields for plants. First obvious experiments in strong electrical fields in the MV/m regi on show that any materials and living plants respond immediately to Coulomb forces. Such fields are found in nature during thunderstorms. One has to be very careful in handling such strong fields for safety reasons. The fair weather global electrical field is about 20,000 times weaker. The coulomb forces are proportional to the square of the field strength and are thus 400 milion times weaker for a field of the order of 100 V/m.Yet it was found that some plants respond to such "weak" fields. We must remember that the electrical field is a factor of 10 38 times stronger than gravitational interaction. In plants we have dissociated in water mineral salts and the ions are subject to such ernormous forces. It was shown and published that the positive charges in the air in fields of the order of 3kV/m enhance lettuce growth by a factor of four relative to fields about 30 times weaker (100V/m). Reversal of the field polarity reverses the direction of plant growth and retards the plant's growth. Such fields overpower the gravitropism in the laboratory. More so horizontal electrical field is othogonal to gravity, now the fields do not see each other. Lettuce now growth horizontally ignoring the gravitational field. We can thus select the plants whose electrotropism even in the laboratory overwhelms gravity. This is important for the long space flights that we must grow vegetarian food for the crew. The successful harvesting of wheat in orbit does not contradict our experimental findings because wheat is not electrotropic like all plants from the grass family. The results of fitotron experiments with kV/m electrical fields are richly illustrated with colour digital photographs. We also subjected the candle flame to very strong horizontal

  6. Electrically tunable liquid-crystal wave plate using quadripolar electrode configuration and transparent conductive polymer layers.

    PubMed

    Fraval, Nicolas; Joffre, Pascal; Formont, Stéphane; Chazelas, Jean

    2009-10-01

    We present the realization of an electrically tunable wave plate, which uses a nematic liquid-crystal (LC) phase retarder that allows fast and continuous control of the polarization state. This device is built using a quadripolar electrode design and transparent conductive polymer layers in order to obtain a uniform electric field distribution in the interelectrode area. With this realization, we obtain a high degree of control of the orientation of the electric field and, consequently, of the LC director. Indeed, this modulator outperforms classical bipolar LC cells in both optical path variation (>4 microm) and LC rotation speed (0.4 degrees/micros). PMID:19798369

  7. Dipole relaxation in an electric field

    NASA Astrophysics Data System (ADS)

    Neumann, Richard M.

    1980-07-01

    From Boltzmann's equation, S=k lnΩ, an expression for the orientational entropy, S of a rigid rod (electric dipole) is derived. The free energy of the dipole in an electric field is then calculated as a function of both the dipole's average orientation and the field strength. Application of the equilibrium criterion to the free energy yields the field dependence of the entropy of the dipole. Irreversible thermodynamics is used to derive the general form of the equation of motion of the dipole's average orientation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium.

  8. Electric field of streamers propagating along dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Trienekens, Dirk; Nijdam, Sander; Kroesen, Gerrit; Christen, Thomas; Ebert, Ute

    2015-09-01

    In electric power devices for high voltage, the interface between solid and gaseous insulation is usually the most critical part with respect to electric discharges that may lead to breakdown. For a better understanding of the underlying fundamental physics of these discharges, we investigate the streamer propagation along dielectric surfaces, with focus on the streamer electric fields and surface charges deposited on the dielectric material. In particular, we constructed a setup that enables us to study the electric field of the streamer in situ. A positive high voltage pulse is generated using a push-pull switch and supplied to a needle close to a birefringent BSO (Bismuth Silicon Oxide) crystal, along which the streamers can then propagate. Using a power LED and polarizing optics, we are able to visualize via the Pockels effect the electric field caused by the discharge. With this, we are able to quantitatively study streamer electric fields with good temporal and spatial resolution, and can estimate lifetimes of the deposited charges.

  9. Collapse of DNA under Alternating Electric Fields

    PubMed Central

    Zhou, Chunda; Riehn, Robert

    2016-01-01

    Recent studies have shown that double-stranded DNA can collapse in presence of a strong electric field. Here we provide an in-depth study of the collapse of DNA under weak confinement in microchannels as a function of buffer strength, driving frequency, applied electric field strength, and molecule size. We find that the critical electric field at which DNA molecules collapse (10s of kV/cm) is strongly dependent on driving frequency dependent (100 … 800 Hz) and molecular size (20 … 160 kbp), and weakly dependent on the ionic strength (8 … 60 mM). We argue that an apparent stretching at very high electric fields is an artifact of the finite frame time of video microscopy. PACS numbers: 87.14.gk, 36.20.Ey, 82.35.Lr, 82.35.Rs PMID:26274209

  10. Collapse of DNA under alternating electric fields

    NASA Astrophysics Data System (ADS)

    Zhou, Chunda; Riehn, Robert

    2015-07-01

    Recent studies have shown that double-stranded DNA can collapse in the presence of a strong electric field. Here we provide an in-depth study of the collapse of DNA under weak confinement in microchannels as a function of buffer strength, driving frequency, applied electric-field strength, and molecule size. We find that the critical electric field at which DNA molecules collapse (tens of kV/m) is strongly dependent on driving frequency (100-800 Hz) and molecular size (20-160 kbp), and weakly dependent on the ionic strength (8-60 mM). We argue that an apparent stretching at very high electric fields is an artifact of the finite frame time of video microscopy.

  11. Turbulent electric fields in the nightside magnetosphere

    NASA Astrophysics Data System (ADS)

    Maynard, N. C.; Heppner, J. P.; Aggson, T. L.

    1982-03-01

    Electric field measurements from the long-wire double-probe instrument (baseline of 179 m) on ISEE 1 have shown the magnetospheric electric field on auroral L shells to be extremely turbulent during periods of magnetic activity. During intense activity these turbulent electric fields can penetrate to very low L values. The variational component of the electric field is typically larger than the DC value. Measurements are presented at frequencies up to 14 Hz. Magnitudes of over 40 m V/m (zero to peak) have been observed with spectral power levels in the 1-10 Hz range greater than m squareV/sq m Hz. The spectral shape of the most intense events was generally flatter than that predicted by two-dimensional hydromagnetic cascading of energy, which argues that the source of this turbulence must be driving the plasma near these frequencies. This in turn suggests that the instability is in the low-energy plasma.

  12. Electric field induced hydrogenation of silicene.

    PubMed

    Wu, Weichang; Ao, Zhimin; Wang, Tao; Li, Changming; Li, Sean

    2014-08-21

    An alternative approach for hydrogenation of silicene is proposed through applying an external electric field in order to reduce the reaction energy barrier based on density functional theory calculations. It is found that a positive perpendicular electric field F can act as a catalyst to reduce the energy barrier of H2 dissociative adsorption on silicene, which facilitates the hydrogenation of silicene. In addition, it is found that the barrier decreases as F increases, and when F is above 0.05 a.u. (1 a.u. = 5.14 × 10(11) V m(-1)), the barrier is quite low and hydrogenation of silicene can take place efficiently at room temperature. The catalytic effect of the electric field on hydrogenation of silicene is induced by the redistribution of atomic charge under the electric field, which would change the chemical activity of silicene significantly.

  13. Evolution of dielectric and optical properties in PbIn1/2Nb1/2O3-PbMg1/3Nb2/3O3-PbTiO3 single crystals in an electric field

    NASA Astrophysics Data System (ADS)

    Kamzina, L. S.; Luo, H.

    2013-10-01

    A study is reported of various modes of dc electric field application (0 < E < 3 kV/cm) on structural phase transformations and behavior of the phase boundary in [001]-oriented 30PbIn1/2Nb1/2O3-37PbMg1/3Nb2/3O3-33PbTiO3 single crystals located close to the morphotropic phase boundary. Dielectric methods of investigation have been complemented for the first time with optical methods. It has been found that the number, symmetry, and stability of the phases formed in the field depend on the actual mode of field application. The E- T phase diagrams have been constructed for different field application modes. It has been shown that phase diagrams obtained for the same crystal are different for different field application modes.

  14. Electromagnetic Field Effects in Semiconductor Crystal Growth

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S.

    1996-01-01

    This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed.

  15. Electric/magnetic field sensor

    DOEpatents

    Schill, Jr., Robert A.; Popek, Marc [Las Vegas, NV

    2009-01-27

    A UNLV novel electric/magnetic dot sensor includes a loop of conductor having two ends to the loop, a first end and a second end; the first end of the conductor seamlessly secured to a first conductor within a first sheath; the second end of the conductor seamlessly secured to a second conductor within a second sheath; and the first sheath and the second sheath positioned adjacent each other. The UNLV novel sensor can be made by removing outer layers in a segment of coaxial cable, leaving a continuous link of essentially uncovered conductor between two coaxial cable legs.

  16. Oxidation and crystal field effects in uranium

    NASA Astrophysics Data System (ADS)

    Tobin, J. G.; Yu, S.-W.; Booth, C. H.; Tyliszczak, T.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Nordlund, D.; Weng, T.-C.; Bagus, P. S.

    2015-07-01

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (U O2) , uranium trioxide (U O3) , and uranium tetrafluoride (U F4) . A discussion of the role of nonspherical perturbations, i.e., crystal or ligand field effects, will be presented.

  17. Oxidation and crystal field effects in uranium

    SciTech Connect

    Tobin, J. G.; Booth, C. H.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Weng, T. -C.; Yu, S. W.; Bagus, P. S.; Tyliszczak, T.; Nordlund, D.

    2015-07-06

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO2), uranium trioxide (UO3), and uranium tetrafluoride (UF4). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.

  18. Electric field measurements with stratospheric balloons

    NASA Technical Reports Server (NTRS)

    Iversen, I. B.

    1989-01-01

    Electric fields and currents in the middle atmosphere are important elements of the modern picture of this region. Balloon instruments, reaching the level of the stratosphere, were used extensively for the experimental work. The research has shown good progress, both in the MAP period and in the years before and after. The knowledge was increased about, e.g., the upper atmosphere potential, the electric properties of the medium itself and about the coupling with magnetospheric (ionospheric) fields and currents. Also various measurements have brought about a discussion of the possible existence of hitherto unknown sources. Throughout the MAP period the work on a possible definition of an electric index has continued.

  19. Method of bonding single crystal quartz by field-assisted bonding

    DOEpatents

    Curlee, Richard M.; Tuthill, Clinton D.; Watkins, Randall D.

    1991-01-01

    The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals.

  20. Method of bonding single crystal quartz by field-assisted bonding

    DOEpatents

    Curlee, R.M.; Tuthill, C.D.; Watkins, R.D.

    1991-04-23

    The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals. 2 figures.

  1. Electric field induced spin-polarized current

    DOEpatents

    Murakami, Shuichi; Nagaosa, Naoto; Zhang, Shoucheng

    2006-05-02

    A device and a method for generating an electric-field-induced spin current are disclosed. A highly spin-polarized electric current is generated using a semiconductor structure and an applied electric field across the semiconductor structure. The semiconductor structure can be a hole-doped semiconductor having finite or zero bandgap or an undoped semiconductor of zero bandgap. In one embodiment, a device for injecting spin-polarized current into a current output terminal includes a semiconductor structure including first and second electrodes, along a first axis, receiving an applied electric field and a third electrode, along a direction perpendicular to the first axis, providing the spin-polarized current. The semiconductor structure includes a semiconductor material whose spin orbit coupling energy is greater than room temperature (300 Kelvin) times the Boltzmann constant. In one embodiment, the semiconductor structure is a hole-doped semiconductor structure, such as a p-type GaAs semiconductor layer.

  2. Biological effects of electric fields: EPRI's role

    SciTech Connect

    Kavet, R.

    1982-07-01

    Since 1973 the Electric Power Research Institute (EPRI) has supported research to evaluate the biological effects which may result from exposure to electric fields produced by AC overhead transmission lines; more recently, EPRI has also begun DC research. Through 1981 EPRI will have expended $8.7M on these efforts. Ongoing AC projects are studying a variety of lifeforms exposed to electric fields; these include humans, miniature swine, rats, honeybees, chick embryos, and crops. The status of these projects is discussed. The DC program has not as yet produced data. These studies will add to the current data base so as to enable a more complete assessment of health risks which may be associated with exposure to electric fields at power frequencies.

  3. Stability of Spherical Vesicles in Electric Fields

    PubMed Central

    2010-01-01

    The stability of spherical vesicles in alternating (ac) electric fields is studied theoretically for asymmetric conductivity conditions across their membranes. The vesicle deformation is obtained from a balance between the curvature elastic energies and the work done by the Maxwell stresses. The present theory describes and clarifies the mechanisms for the four types of morphological transitions observed experimentally on vesicles exposed to ac fields in the frequency range from 500 to 2 × 107 Hz. The displacement currents across the membranes redirect the electric fields toward the membrane normal to accumulate electric charges by the Maxwell−Wagner mechanism. These accumulated electric charges provide the underlying molecular mechanism for the morphological transitions of vesicles as observed on the micrometer scale. PMID:20575588

  4. Rotationally Vibrating Electric-Field Mill

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    2008-01-01

    A proposed instrument for measuring a static electric field would be based partly on a conventional rotating-split-cylinder or rotating-split-sphere electric-field mill. However, the design of the proposed instrument would overcome the difficulty, encountered in conventional rotational field mills, of transferring measurement signals and power via either electrical or fiber-optic rotary couplings that must be aligned and installed in conjunction with rotary bearings. Instead of being made to rotate in one direction at a steady speed as in a conventional rotational field mill, a split-cylinder or split-sphere electrode assembly in the proposed instrument would be set into rotational vibration like that of a metronome. The rotational vibration, synchronized with appropriate rapid electronic switching of electrical connections between electric-current-measuring circuitry and the split-cylinder or split-sphere electrodes, would result in an electrical measurement effect equivalent to that of a conventional rotational field mill. A version of the proposed instrument is described.

  5. Electrically controlled relaxation at twist deformation of a dual-frequency nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Vasil'Ev, V. N.; Konshina, E. A.; Fedorov, M. A.; Amosova, L. P.

    2010-06-01

    The relaxation of a dual-frequency liquid crystal at the twist effect and the influence of the external electrical circuit parameters on the relaxation process in the case of a large initial inclination angle (44) of the director are studied. It is found that oscillation arising at the trailing edge of the modulator’s electro-optic response considerably increases the time of relaxation due to the action of a high-frequency electric field. The influence of the electric field on the relaxation time is stronger, the thinner the liquid crystal layer. It is experimentally shown that the duration of the interval between the removal of low-frequency voltage from and the application of high-frequency voltage to the modulator affects the relaxation time.

  6. Computer Simulation of Electric Field Lines.

    ERIC Educational Resources Information Center

    Kirkup, L.

    1985-01-01

    Describes a computer program which plots electric field line plots. Includes program listing, sample diagrams produced on a BBC model B microcomputer (which could be produced on other microcomputers by modifying the program), and a discussion of the properties of field lines. (JN)

  7. Magnetoexciton in nanotube under external electric field

    NASA Astrophysics Data System (ADS)

    Garcia Russi, L. F.; Paredes Gutiérrez, H.; Santos, Y. F.; Mikhailov, I. D.

    2016-08-01

    We study the Aharonov-Bohm oscillation of the energy levels of an electron-hole pair confined in a narrow nanotube in the presence of the magnetic field applied along the symmetry axis. We show that the electric field applied at the same direction makes the oscillation more pronounced.

  8. Electric field measurements from Halley, Antarctica

    NASA Astrophysics Data System (ADS)

    Nicoll, Keri; Harrison, R. Giles

    2016-04-01

    Antarctica is a unique location for the study of atmospheric electricity. Not only is it one of the most pollutant free places on Earth, but its proximity to the south magnetic pole means that it is an ideal location to study the effects of solar variability on the atmospheric electric field. This is due to the reduced shielding effect of the geomagnetic field at the poles which leads to a greater flux of incoming Galactic Cosmic Rays (GCRs) as well as an increased probability of energetic particle precipitation from SEPs and relativistic electrons. To investigate such effects, two electric field mills of different design were installed at the British Antarctic Survey Halley base in February 2015 (75. 58 degrees south, 26.66 degrees west). Halley is situated on the Brunt Ice Shelf in the south east of the Weddell Sea and has snow cover all year round. Preliminary analysis has focused on selection of fair weather criteria using wind speed and visibility measurements which are vital to assess the effects of falling snow, blowing snow and freezing fog on the electric field measurements. When the effects of such adverse weather conditions are removed clear evidence of the characteristic Carnegie Curve diurnal cycle exists in the Halley electric field measurements (with a mean value of 50V/m and showing a 40% peak to peak variation in comparison to the 34% variation in the Carnegie data). Since the Carnegie Curve represents the variation in thunderstorm activity across the Earth, its presence in the Halley data confirms the presence of the global atmospheric electric circuit signal at Halley. The work presented here will discuss the details of the Halley electric field dataset, including the variability in the fair weather measurements, with a particular focus on magnetic field fluctuations.

  9. Electric polarization observed in single crystals of multiferroic Lu2MnCoO6

    NASA Astrophysics Data System (ADS)

    Chikara, S.; Singleton, J.; Bowlan, J.; Yarotski, D. A.; Lee, N.; Choi, H. Y.; Choi, Y. J.; Zapf, V. S.

    2016-05-01

    We report electric polarization and magnetization measurements in single crystals of double perovskite Lu2Mn Co O6 using pulsed magnetic fields and optical second harmonic generation in dc magnetic fields. We observe well-resolved magnetic field-induced changes in the electric polarization in single crystals and thereby resolve the question about whether multiferroic behavior is intrinsic to these materials or is an extrinsic feature of polycrystals. We find electric polarization along the crystalline b axis, that is suppressed by applying a magnetic fields along the c axis, and advance a model for the origin of magnetoelectric coupling. We furthermore map the phase diagram using both capacitance and electric polarization to identify regions of ordering and regions of magnetoelectric hysteresis. This compound is a rare example of coupled hysteretic behavior in the magnetic and electric properties. The ferromagneticlike magnetic hysteresis loop that couples to hysteretic electric polarization can be attributed not to ordinary ferromagnetic domains, but to the rich physics of magnetic frustration of Ising-like spins in the axial next-nearest-neighbor interaction model.

  10. Stratospheric electric field measurements with transmediterranean balloons

    NASA Astrophysics Data System (ADS)

    de La Morena, B. A.; Alberca, L. F.; Curto, J. J.; Holzworth, R. H.

    1993-01-01

    The horizontal component of the stratospheric electric field was measured using a balloon in the ODISEA Campaign of Transmediterranean Balloon Program. The balloon flew between Trapani (Sicily) and El Arenosillo (Huelva, Spain) along the 39 deg N parallel at a height between 34 and 24 km. The high values found for the field on fair-weather and its quasi-turbulent variation, both in amplitude and direction, are difficult to explain with the classical electric field source. A new source, first described by Holzworth (1989), is considered as possibly causing them.

  11. The manipulation of magnetic coercive field and orientation of magnetic anisotropy via electric fields

    NASA Astrophysics Data System (ADS)

    Xiang, Jun-Sen; Ye, Jun; Yang, Yun-Long; Xie, Yong; Li, Wei; Chen, Zi-Yu

    2016-08-01

    We report the effects of the electric field on the magnetic coercive field (H c) and uniaxial magnetic anisotropy (UMA) orientation of polycrystalline Ni film grown on an unpoled (0 1 1) [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3] x (PMN-PT) single crystal substrate. Under various electric fields, normalized magnetic hysteresis loops of Ni films change in width; this represents the change of coercive field (ΔH c). Loop shapes are found to depend on the angle between the magnetic field and the sample, where changes in the shape reveal a small rotation of UMA. All these changes show that the magnetic properties vary periodically with a periodic electric field, by strain-mediated magnetoelectric coupling in the Ni/Ag/PMN-PT/Ag heterostructure. The poled PMN-PT produces strains under electric fields in the range of  -4.2 kV cm-1  ⩽  E  ⩽  4.2 kV cm-1, then transfers it to Ni films resulting in changes to its H c and UMA. The curves of the in-plane H c and strain, at two mutually orthogonal directions, represent butterfly patterns versus the applied electric field. In addition, the changes observed in both the H c and strain show asymmetric features in two orthogonal directions, which results in a small rotation angle of the UMA of Ni as the electric field decreases. The effective manipulation of magnitude and orientation of magnetic anisotropy via electric fields in ferromagnetic/ferroelectric (FM/FE) heterostructures is an important step towards controlling the magnetic tunnel junctions.

  12. The manipulation of magnetic coercive field and orientation of magnetic anisotropy via electric fields

    NASA Astrophysics Data System (ADS)

    Xiang, Jun-Sen; Ye, Jun; Yang, Yun-Long; Xie, Yong; Li, Wei; Chen, Zi-Yu

    2016-08-01

    We report the effects of the electric field on the magnetic coercive field (H c) and uniaxial magnetic anisotropy (UMA) orientation of polycrystalline Ni film grown on an unpoled (0 1 1) [Pb(Mg1/3Nb2/3)O3](1‑x)–[PbTiO3] x (PMN-PT) single crystal substrate. Under various electric fields, normalized magnetic hysteresis loops of Ni films change in width; this represents the change of coercive field (ΔH c). Loop shapes are found to depend on the angle between the magnetic field and the sample, where changes in the shape reveal a small rotation of UMA. All these changes show that the magnetic properties vary periodically with a periodic electric field, by strain-mediated magnetoelectric coupling in the Ni/Ag/PMN-PT/Ag heterostructure. The poled PMN-PT produces strains under electric fields in the range of  ‑4.2 kV cm‑1  ⩽  E  ⩽  4.2 kV cm‑1, then transfers it to Ni films resulting in changes to its H c and UMA. The curves of the in-plane H c and strain, at two mutually orthogonal directions, represent butterfly patterns versus the applied electric field. In addition, the changes observed in both the H c and strain show asymmetric features in two orthogonal directions, which results in a small rotation angle of the UMA of Ni as the electric field decreases. The effective manipulation of magnitude and orientation of magnetic anisotropy via electric fields in ferromagnetic/ferroelectric (FM/FE) heterostructures is an important step towards controlling the magnetic tunnel junctions.

  13. Equatorial electric fields: a numerical model

    SciTech Connect

    Bonelli, E.

    1985-01-01

    Tidal winds in the ionospheric F region cause polarization charges to build up by blowing the ions perpendicular to the geomagnetic field. The intensity of the electric field so created is inversely related to the E-region Pedersen conductivity. The reason for this is that the E region can short-out F region electric fields through currents flowing along the magnetic field lines. The E region also has a dynamo of its own, whose electric fields map into the F region through the magnetic field lines. The total electric field in the F region due to both these dynamos causes a plasma drift, affecting the interaction between neutrals and ions, and this closes the cycle. The problem just stated is dealt with in a model similar to that of Heelis et al. (1974). The author's model is a step closer to self-consistency than the latter, since the F region is allowed to move in accordance with the calculated vertical plasma drift. In the F region, the electron density is assumed to be a simple Chapman layer and the neutral density and temperature are obtained from Jacchia (1977). The E region is treated as a thin layer, for which the conductivities are height integrated. In his calculations, the author studies the effects on the plasma drift of individual parameters such as the Pedersen conductivity of the F region, the phase of the (1,2) tide in the E region, the motion of the F-peak, etc.

  14. Chemical shift and electric field gradient tensors for the amide and carboxyl hydrogens in the model peptide N-acetyl-D,L-valine. Single-crystal deuterium NMR study.

    SciTech Connect

    Gerald, R. E., II; Bernhard, T.; Haeberlen, U.; Rendell, J.; Opella, S.; Chemical Engineering

    1993-01-01

    Solid-state NMR spectroscopy is well established as a method for describing molecular structure with resolution on the atomic scale. Many of the NMR observables result from anisotropic interactions between the nuclear spin and its environment. These observables can be described by second-rank tensors. For example, the eigenvalues of the traceless symmetric part of the hydrogen chemical shift (CS) tensor provide information about the strength of inter- or intramolecular hydrogen bonding. On the other hand, the eigenvectors of the deuterium electric field gradient (EFG) tensor give deuteron/proton bond directions with an accuracy rivalled only by neutron diffraction. In this paper the authors report structural information of this type for the amide and carboxyl hydrogen sites in a single crystal of the model peptide N-acetyl-D,L-valine (NAV). They use deuterium NMR to infer both the EFG and CS tensors at the amide and carboxyl hydrogen sites in NAV. Advantages of this technique over multiple-pulse proton NMR are that it works in the presence of {sup 14}N spins which are very hard to decouple from protons and that additional information in form of the EFG tensors can be derived. The change in the CS and EFG tensors upon exchange of a deuteron for a proton (the isotope effect) is anticipated to be very small; the effect on the CS tensors is certainly smaller than the experimental errors. NAV has served as a model peptide before in a variety of NMR studies, including those concerned with developing solid-state NMR spectroscopy as a method for determining the structure of proteins. NMR experiments on peptide or protein samples which are oriented in at least one dimension can provide important information about the three-dimensional structure of the peptide or the protein. In order to interpret the NMR data in terms of the structure of the polypeptide, the relationship of the CS and EFG tensors to the local symmetry elements of an amino acide, e.g., the peptide plane, is

  15. Behavior in Electric Fields of Simple Biological Membranes

    NASA Astrophysics Data System (ADS)

    Honciuc, Maria; Slavnicu, Elena

    The latest studies in biophysics and biochemistry have revealed the major role that liquid crystals (LC) and related phenomena play in biological processes. To account for a number of membrane mechanisms in view of the theoretical model developed by S. J. Singer, studies were carried out on mixtures of fatty acids (arachidic, lauric, butyric) and cholesterol in different weight percentages. Such mixtures may help one understand some mechanisms on which the operation of biological membranes relies. To this end, the way these mixtures behave in an electric field was studied. Electric measurements were conducted from which the average time of electric relaxation (τ) and average electric permittivity (ɛr) were determined. Depending on cholesterol percentage, changes by more than one order of magnitude were found to occur in the electric relaxation time. The ratio between the various fatty acid components did not influence the average time τ in any significant manner. By contrast, the relative electric permittivity ɛr was seen to decrease by at least one order of magnitude with raising the cholesterol percentage. The electric properties of such systems essentially depend on changing the amount of cholesterol in the system.

  16. Microwave electric field sensing with Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Stack, Daniel T.; Kunz, Paul D.; Meyer, David H.; Solmeyer, Neal

    2016-05-01

    Atoms form the basis of precise measurement for many quantities (time, acceleration, rotation, magnetic field, etc.). Measurements of microwave frequency electric fields by traditional methods (i.e. engineered antennas) have limited sensitivity and can be difficult to calibrate properly. Highly-excited (Rydberg) neutral atoms have very large electric-dipole moments and many dipole allowed transitions in the range of 1 - 500 GHz. It is possible to sensitively probe the electric field in this range using the combination of two quantum interference phenomena: electromagnetically induced transparency and the Autler-Townes effect. This technique allows for very sensitive field amplitude, polarization, and sub-wavelength imaging measurements. These quantities can be extracted by measuring properties of a probe laser beam as it passes through a warm rubidium vapor cell. Thus far, Rydberg microwave electrometry has relied upon the absorption of the probe laser. We report on our use of polarization rotation, which corresponds to the real part of the susceptibility, for measuring the properties of microwave frequency electric fields. Our simulations show that when a magnetic field is present and directed along the optical propagation direction a polarization rotation signal exists and can be used for microwave electrometry. One central advantage in using the polarization rotation signal rather than the absorption signal is that common mode laser noise is naturally eliminated leading to a potentially dramatic increase in signal-to-noise ratio.

  17. Electric field induced deformation of sessile drops

    NASA Astrophysics Data System (ADS)

    Corson, Lindsey; Tsakonas, Costas; Duffy, Brian; Mottram, Nigel; Brown, Carl; Wilson, Stephen

    2014-11-01

    The ability to control the shape of a drop with the application of an electric field has been exploited for many technological applications including measuring surface tension, producing an optical display device, and optimising the optical properties of microlenses. In this work we consider, both theoretically and experimentally, the deformation of pinned sessile drops with contact angles close to either 0° or 90° resting on the lower substrate inside a parallel plate capacitor due to an A.C. electric field. Using both asymptotic and numerical approaches we obtain predictive equations for the static and dynamic drop shape deformations as functions of the key experimental parameters (drop size, capacitor plate separation, electric field magnitude and contact angle). The asymptotic results agree well with the experimental results for a range of liquids. We gratefully acknowledge the financial support of EPSRC via research Grants EP/J009865 and EP/J009873.

  18. Electric field controlled emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1995-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  19. Electric field controlled emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1995-01-31

    A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figs.

  20. Microfluidic Screening of Electric Fields for Electroporation

    NASA Astrophysics Data System (ADS)

    Garcia, Paulo A.; Ge, Zhifei; Moran, Jeffrey L.; Buie, Cullen R.

    2016-02-01

    Electroporation is commonly used to deliver molecules such as drugs, proteins, and/or DNA into cells, but the mechanism remains poorly understood. In this work a rapid microfluidic assay was developed to determine the critical electric field threshold required for inducing bacterial electroporation. The microfluidic device was designed to have a bilaterally converging channel to amplify the electric field to magnitudes sufficient to induce electroporation. The bacterial cells are introduced into the channel in the presence of SYTOX®, which fluorescently labels cells with compromised membranes. Upon delivery of an electric pulse, the cells fluoresce due to transmembrane influx of SYTOX® after disruption of the cell membranes. We calculate the critical electric field by capturing the location within the channel of the increase in fluorescence intensity after electroporation. Bacterial strains with industrial and therapeutic relevance such as Escherichia coli BL21 (3.65 ± 0.09 kV/cm), Corynebacterium glutamicum (5.20 ± 0.20 kV/cm), and Mycobacterium smegmatis (5.56 ± 0.08 kV/cm) have been successfully characterized. Determining the critical electric field for electroporation facilitates the development of electroporation protocols that minimize Joule heating and maximize cell viability. This assay will ultimately enable the genetic transformation of bacteria and archaea considered intractable and difficult-to-transfect, while facilitating fundamental genetic studies on numerous diverse microbes.

  1. Microfluidic Screening of Electric Fields for Electroporation

    PubMed Central

    Garcia, Paulo A.; Ge, Zhifei; Moran, Jeffrey L.; Buie, Cullen R.

    2016-01-01

    Electroporation is commonly used to deliver molecules such as drugs, proteins, and/or DNA into cells, but the mechanism remains poorly understood. In this work a rapid microfluidic assay was developed to determine the critical electric field threshold required for inducing bacterial electroporation. The microfluidic device was designed to have a bilaterally converging channel to amplify the electric field to magnitudes sufficient to induce electroporation. The bacterial cells are introduced into the channel in the presence of SYTOX®, which fluorescently labels cells with compromised membranes. Upon delivery of an electric pulse, the cells fluoresce due to transmembrane influx of SYTOX® after disruption of the cell membranes. We calculate the critical electric field by capturing the location within the channel of the increase in fluorescence intensity after electroporation. Bacterial strains with industrial and therapeutic relevance such as Escherichia coli BL21 (3.65 ± 0.09 kV/cm), Corynebacterium glutamicum (5.20 ± 0.20 kV/cm), and Mycobacterium smegmatis (5.56 ± 0.08 kV/cm) have been successfully characterized. Determining the critical electric field for electroporation facilitates the development of electroporation protocols that minimize Joule heating and maximize cell viability. This assay will ultimately enable the genetic transformation of bacteria and archaea considered intractable and difficult-to-transfect, while facilitating fundamental genetic studies on numerous diverse microbes. PMID:26893024

  2. Modeling of Nanoparticle-Mediated Electric Field Enhancement Inside Biological Cells Exposed to AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Tiwari, Pawan K.; Kang, Sung Kil; Kim, Gon Jun; Choi, Jun; Mohamed, A.-A. H.; Lee, Jae Koo

    2009-08-01

    We present in this article the effect of alternating electric field at kilohertz (kHz) and megahertz (MHz) frequencies on the biological cells in presence and absence of nanoparticles. The induced electric field strength distribution in the region around cell membrane and nucleus envelope display different behavior at kHz and MHz frequencies. The attachment of gold nanoparticles (GNPs), especially gold nanowires around the surface of nucleus induce enhanced electric field strengths. The induced field strengths are dependent on the length of nanowire and create varying field regions when the length of nanowire is increased from 2 to 4 µm. The varying nanowire length increased the induced field strengths inside nucleoplasm and region adjacent to the nucleus in the cytoplasm. We investigated a process of electrostatic disruption of nucleus membrane when the induced electric field strength across the nucleus exceeds its tensile strength.

  3. Electric Field Quantitative Measurement System and Method

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  4. Field-aligned currents and large scale magnetospheric electric fields

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1980-01-01

    D'Angelo's model of polar cap electric fields (1977) was used to visualize how high-latitude field-aligned currents are driven by the solar wind generator. The region 1 and region 2 currents of Iijima and Potemra (1976) and the cusp field-aligned currents of Wilhjelm et al. (1978) and McDiarmid et al. (1978) are apparently driven by different generators, although in both cases the solar wind is their ultimate source.

  5. Electrically modulated transparent liquid crystal -optical grating projection.

    PubMed

    Buss, Thomas; Smith, Cameron L C; Kristensen, Anders

    2013-01-28

    A transparent, fully integrated electrically modulated projection technique is presented based on light guiding through a thin liquid crystal layer covering sub-wavelength gratings. The reported device operates at 10 V with response times of 4.5 ms. Analysis of the liquid crystal alignment shows that director-reorientation occurs over timescales on the order of 90 µs close to the grating surface. The technology is suitable for next generation heads-up-displays and reconfigurable multilayer photonic integrated circuits. PMID:23389166

  6. Electro-optic sensors dedicated to noninvasive electric field characterization

    NASA Astrophysics Data System (ADS)

    Warzecha, A.; Bernier, M.; Gaborit, G.; Duvillaret, L.; Lasserre, J.-L.

    2009-06-01

    This paper describes non-invasive electro-optic sensors devoted to simultaneous electric field and temperature measurements. Based on Poeckel's effect, these sensors consist in non-centrosymmetric crystals for which an electricfield induces a modification of their refractive indices [1]. Such modification can also be induced by a drift of the crystal temperature [2]. After explanation of the principle, we will illustrate some applications (high power microwave characterization, bioelectromagnetism, electric field mapping of high voltage devices) for which electro-optic sensors give excellent performances. These sensors perform vectorial E-field measurement (modulus and phase of each E-field components) with both high spatial and temporal resolutions. As they are pigtailed, long distance remote sensing is then allowed. They are also non-invasive due to their fully dielectric design. However, their sensitivity remains quite low for electromagnetic compatibility and their size remains too important for bioelectromagnetism studies in Petry dishes for example. So, two ways of improvement are pursued. The first one consists in using Fabry-Perot microcavities based on LiNbO3 optical waveguide to dramatically reduce sensors size. The second one consists in an optical processing (optical carrier rejection) of the laser probe beam to increase the sensor sensitivity for high frequency measurements. We will present first results concerning these improvements and also results that have been performed in free space with a fully automated setup in both frequency and time domains.

  7. Novel Electric Nucleation Technique for Growing Large Single Crystal in Space

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.

    1999-01-01

    We present, herein, an electrical model for growing crystals without a seed which might not be free of defects and thereby still hinder the growth of a perfect crystal in space. The system is designed to confine nucleation to a single site automatically in an under saturated solution to avoid multiple nucleation. The technique is based on the effect of electrostriction, which is the tendency of a material to become more compressed in the presence of an electric field. The system is designed to create an electrical potential well between two hyperboloid electrodes with applied voltage at low frequency. The induced potential well between the electrodes oscillates at low frequency and attracts the solute and condenses it into the region of maximum field intensity. The alternating voltage prevents molecules with intrinsic charge from being attracted to the electrodes. The continuous presence of the electric field during the duration of the experiment, provides a continuous migration of the molecules toward the trapping site. This will eliminate the creation of a depletion region around the nucleation center and will enhance the crystal growth rate. Aside from the above mentioned advantages, the system is compact, safe to operate, and inexpensive to build.

  8. Electric fields and double layers in plasmas

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-01-01

    Various mechanisms for driving double layers in plasmas are briefly described, including applied potential drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are discussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and the currents through them undergo slow oscillations which are determined by the ion transit time across an effective length of the system in which double layers form. It is shown that a localized potential dip forms at the low potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion, whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient magnetic field by contact potentials is also discussed. Two different situations were considered; in one, a low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces. In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also discussed when the current sheet thickness is varied. Finally, the generation of electric fields and double layers in an expanding plasma is discussed.

  9. Airborne biological particles and electric fields

    NASA Astrophysics Data System (ADS)

    Benninghoff, William S.; Benninghoff, Anne S.

    1982-01-01

    In November and December 1977 at McMurdo Station in Antarctica we investigated the kinds, numbers, and deposition of airborne particles larger than 2 μm while measuring electric field gradient at 2.5 m above the ground. Elementary collecting devices were used: Staplex Hi-Volume and Roto-rod samplers, Tauber (static sedimentation) traps, petrolatum-coated microscope slides, and snow (melted and filtered). The electric fields were measured by a rotating dipole (Stanford Radioscience Laboratory field mill number 2). During periods of blowing snow and dust the electric field gradient was + 500 to + 2500 V/m, and Tauber traps with grounded covers collected 2 or more times as much snow and dust as the ones with ungrounded covers. During falling snow the electric field gradient was -1000 to -1500 V/m, and the ungrounded traps collected almost twice as much snow and dust as those grounded. These observations suggest that under the prevailing weather conditions in polar regions the probable net effect is deposition of greater quantities of dust, including diaspores and minute organisms, on wet, grounded surfaces. This hypothesis needs examination for its use in explanation of biological distribution patterns.

  10. Parallel electric fields from ionospheric winds

    SciTech Connect

    Nakada, M.P. )

    1987-10-01

    The possible production of electric fields parallel to the magnetic field by dynamo winds in the E region is examined, using a jet stream wind model. Current return paths through the F region above the stream are examined as well as return paths through the conjugate ionosphere. The Wulf geometry with horizontal winds moving in opposite directions one above the other is also examined. Parallel electric fields are found to depend strongly on the width of current sheets at the edges of the jet stream. If these are narrow enough, appreciable parallel electric fields are produced. These appear to be sufficient to heat the electrons which reduces the conductivity and produces further increases in parallel electric fields and temperatures. Calculations indicate that high enough temperatures for optical emission can be produced in less than 0.3 s. Some properties of auroras that might be produced by dynamo winds are examined; one property is a time delay in brightening at higher and lower altitudes.

  11. Electric field stimulated growth of Zn whiskers

    NASA Astrophysics Data System (ADS)

    Niraula, D.; McCulloch, J.; Warrell, G. R.; Irving, R.; Karpov, V. G.; Shvydka, Diana

    2016-07-01

    We have investigated the impact of strong (˜104 V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  12. DC Electric Fields at the Magnetopause

    NASA Astrophysics Data System (ADS)

    Laakso, H. E.; Escoubet, C. P.; Masson, A.

    2014-12-01

    In order to understand the transfer of energy, momentum and mass through the magnetopause one needs to know several plasma and field parameters including the DC electric field which is known to be challenging to measure in tenuous plasma regions, e.g. in the inner side of the magnetopause where the density drops below 1/cc. However, each of the Cluster spacecraft carries five different experiments that can provide information about DC electric fields, i.e. double probe antenna (EFW) and electron drift meter (EDI) as well as electron and ion spectrometers (PEACE, CIS-HIA, CIS-CODIF). Each technique is very different and has its own strengths and limitations. Therefore it is important to compare all available measurements before making a judgement on DC electric field variation at the magnetopause; note that only very rarely all five measurements are available at the same time. Although the full-resolution observations in the Cluster archive are calibrated, they can still contain various errors. However, when two experiments show the same field, it is quite likely that this is the right field because the different measurements are based on so complimentary techniques and the field varies so much when the spacecraft moves from the magnetosheath through the magnetopause into the magnetosphere, or vice versa. In this presentation we present several cases of the magnetopause crossings and how the different measurements agree and disagree around the magnetopause region.

  13. Crystal Phase- and Orientation-Dependent Electrical Transport Properties of InAs Nanowires.

    PubMed

    Fu, Mengqi; Tang, Zhiqiang; Li, Xing; Ning, Zhiyuan; Pan, Dong; Zhao, Jianhua; Wei, Xianlong; Chen, Qing

    2016-04-13

    We report a systematic study on the correlation of the electrical transport properties with the crystal phase and orientation of single-crystal InAs nanowires (NWs) grown by molecular-beam epitaxy. A new method is developed to allow the same InAs NW to be used for both the electrical measurements and transmission electron microscopy characterization. We find both the crystal phase, wurtzite (WZ) or zinc-blende (ZB), and the orientation of the InAs NWs remarkably affect the electronic properties of the field-effect transistors based on these NWs, such as the threshold voltage (VT), ON-OFF ratio, subthreshold swing (SS) and effective barrier height at the off-state (ΦOFF). The SS increases while VT, ON-OFF ratio, and ΦOFF decrease one by one in the sequence of WZ ⟨0001⟩, ZB ⟨131⟩, ZB ⟨332⟩, ZB ⟨121⟩, and ZB ⟨011⟩. The WZ InAs NWs have obvious smaller field-effect mobility, conductivities, and electron concentration at VBG = 0 V than the ZB InAs NWs, while these parameters are not sensitive to the orientation of the ZB InAs NWs. We also find the diameter ranging from 12 to 33 nm shows much less effect than the crystal phase and orientation on the electrical transport properties of the InAs NWs. The good ohmic contact between InAs NWs and metal remains regardless of the variation of the crystal phase and orientation through temperature-dependent measurements. Our work deepens the understanding of the structure-dependent electrical transport properties of InAs NWs and provides a potential way to tailor the device properties by controlling the crystal phase and orientation of the NWs.

  14. Crystal Phase- and Orientation-Dependent Electrical Transport Properties of InAs Nanowires.

    PubMed

    Fu, Mengqi; Tang, Zhiqiang; Li, Xing; Ning, Zhiyuan; Pan, Dong; Zhao, Jianhua; Wei, Xianlong; Chen, Qing

    2016-04-13

    We report a systematic study on the correlation of the electrical transport properties with the crystal phase and orientation of single-crystal InAs nanowires (NWs) grown by molecular-beam epitaxy. A new method is developed to allow the same InAs NW to be used for both the electrical measurements and transmission electron microscopy characterization. We find both the crystal phase, wurtzite (WZ) or zinc-blende (ZB), and the orientation of the InAs NWs remarkably affect the electronic properties of the field-effect transistors based on these NWs, such as the threshold voltage (VT), ON-OFF ratio, subthreshold swing (SS) and effective barrier height at the off-state (ΦOFF). The SS increases while VT, ON-OFF ratio, and ΦOFF decrease one by one in the sequence of WZ ⟨0001⟩, ZB ⟨131⟩, ZB ⟨332⟩, ZB ⟨121⟩, and ZB ⟨011⟩. The WZ InAs NWs have obvious smaller field-effect mobility, conductivities, and electron concentration at VBG = 0 V than the ZB InAs NWs, while these parameters are not sensitive to the orientation of the ZB InAs NWs. We also find the diameter ranging from 12 to 33 nm shows much less effect than the crystal phase and orientation on the electrical transport properties of the InAs NWs. The good ohmic contact between InAs NWs and metal remains regardless of the variation of the crystal phase and orientation through temperature-dependent measurements. Our work deepens the understanding of the structure-dependent electrical transport properties of InAs NWs and provides a potential way to tailor the device properties by controlling the crystal phase and orientation of the NWs. PMID:27002386

  15. Large-scale electric fields in post-flare loops

    NASA Technical Reports Server (NTRS)

    Hinata, Satoshi

    1987-01-01

    As the electrical conductivity along the magnetic field in the solar atmosphere is large, parallel electric fields have been neglected in most investigations. The importance of such fields is demonstrated for post-flare loops, and a model for them is introduced which takes into account the effect of parallel electric fields. The electric field calculated from the model is consistent with the electric field observed by Foukal et al. (1983).

  16. Critical electric field strengths of onion tissues treated by pulsed electric fields.

    PubMed

    Asavasanti, Suvaluk; Ersus, Seda; Ristenpart, William; Stroeve, Pieter; Barrett, Diane M

    2010-09-01

    The impact of pulsed electric fields (PEF) on cellular integrity and texture of Ranchero and Sabroso onions (Allium cepa L.) was investigated. Electrical properties, ion leakage rate, texture, and amount of enzymatically formed pyruvate were measured before and after PEF treatment for a range of applied field strengths and number of pulses. Critical electric field strengths or thresholds (E(c)) necessary to initiate membrane rupture were different because dissimilar properties were measured. Measurement of electrical characteristics was the most sensitive method and was used to detect the early stage of plasma membrane breakdown, while pyruvate formation by the enzyme alliinase was used to identify tonoplast membrane breakdown. Our results for 100-μs pulses indicate that breakdown of the plasma membrane occurs above E(c)= 67 V/cm for 10 pulses, but breakdown of the tonoplast membrane is above either E(c)= 200 V/cm for 10 pulses or 133 V/cm for 100 pulses. This disparity in field strength suggests there may be 2 critical electrical field strengths: a lower field strength for plasma membrane breakdown and a higher field strength for tonoplast membrane breakdown. Both critical electric field strengths depended on the number of pulses applied. Application of a single pulse at an electric field up to 333 V/cm had no observable effect on any measured properties, while significant differences were observed for n≥10. The minimum electric field strength required to cause a measurable property change decreased with the number of pulses. The results also suggest that PEF treatment may be more efficient if a higher electric field strength is applied for a fewer pulses.

  17. Melt Motion Due to Peltier Marking During Bridgman Crystal Growth with an Axial Magnetic Field

    NASA Technical Reports Server (NTRS)

    Sellers, C. C.; Walker, John S.; Szofran, Frank R.; Motakef, Shariar

    2000-01-01

    This paper treats a liquid-metal flow inside an electrically insulating cylinder with electrically conducting solids above and below the liquid region. There is a uniform axial magnetic field, and there is an electric current through the liquid and both solids. Since the lower liquid-solid interface is concave into the solid and since the liquid is a better electrical conductor than the adjacent solid, the electric current is locally concentrated near the centerline. The return to a uniform current distribution involves a radial electric current which interacts with the axial magnetic field to drive an azimuthal flow. The axial variation of the centrifugal force due to the azimuthal velocity drives a meridional circulation with radial and axial velocities. This problem models the effects of Peltier marking during the vertical Bridgman growth of semiconductor crystals with an externally applied magnetic field, where the meridional circulation due to the Peltier Current may produce important mixing in the molten semiconductor.

  18. Health of workers exposed to electric fields.

    PubMed

    Broadbent, D E; Broadbent, M H; Male, J C; Jones, M R

    1985-02-01

    The results of health questionnaire interviews with 390 electrical power transmission and distribution workers, together with long term estimates of their exposure to 50 Hz electric fields, and short term measurements of the actual exposure for 287 of them are reported. Twenty eight workers received measurable exposures, averaging about 30 kVm-1h over the two week measurement period. Estimated exposure rates were considerably greater, but showed fair correlation with the measurements. Although the general level of health was higher than we have found in manual workers in other industries, there were significant differences in the health measures between different categories of job, different parts of the country, and in association with factors such as overtime, working alone, or frequently changing shift. After allowing for the effects of job and location, however, we found no significant correlations of health with either measured or estimated exposure to electric fields. PMID:3970875

  19. Nonthermal processing by radio frequency electric fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radio frequency electric fields (RFEF) processing is relatively new and has been shown to inactivate bacteria in apple juice, orange juice and apple cider at moderately low temperatures. Key equipment components of the process include a radio frequency power supply and a treatment chamber that is ca...

  20. Electrical control of silicon photonic crystal cavity by graphene.

    PubMed

    Majumdar, Arka; Kim, Jonghwan; Vuckovic, Jelena; Wang, Feng

    2013-02-13

    The efficient conversion of an electrical signal to an optical signal in nanophotonics enables solid state integration of electronics and photonics. The combination of graphene with photonic crystals is promising for electro-optic modulation. In this paper, we demonstrate that by electrostatic gating a single layer of graphene on top of a photonic crystal cavity, the cavity resonance can be changed significantly. A ~2 nm change in the cavity resonance line width and almost 400% (6 dB) change in resonance reflectivity is observed. In addition, our analysis shows that a graphene-photonic crystal device can potentially be useful for a high speed and low power absorptive and refractive modulator, while maintaining a small physical footprint.

  1. Electrical Freedericksz transitions in nematic liquid crystals containing ferroelectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Cîrtoaje, Cristina; Petrescu, Emil; Stoian, Victor

    2015-03-01

    A new theoretical approach was elaborated to explain the contradictions reported in many papers about the electric threshold for Freedericksz transition in nematic liquid crystal (NLC) with ferroparticles additives. The free energy density of the mixture was estimated and the contributions of the interaction energy of NLC molecules with ferroparticles surface were calculated. Experimental results for 5CB-BaTiO3 mixture are given.

  2. Temperature dependence of liquid crystals electrical response by impedance analysis

    NASA Astrophysics Data System (ADS)

    Torres, J. C.; Gaona, N.; Pérez, I.; Urruchi, V.; Pena, J. M. S.

    2007-05-01

    Liquid crystals are a growing technology bringing solutions for a number of applications in high performance displays featuring video-rate, color and high resolution images, and in prototypes of photonic devices. Electrooptic response of antiferroelectric liquid crystals (AFLC) might be superior to nematic liquid crystals that are been customarily employed nowadays. AFLC show reduced time response being promising candidates for portable multimedia devices, optical routing applications, among others. In this work, temperature and frequency dependence of impedance measurements, in passive devices of commercial antiferroelectric liquid crystals, has been studied. Measurements of the temperature dependence of optical transmission have been obtained. 1Hz triangular waveforms with different amplitude have been applied to the devices to carry out such characterization. Simultaneous measurements of optical transmission and electrical impedance have been performed. Specific addressing schemes have been tested in order to obtain the optimum electrooptical performance. Display blanking takes place when a saturation pulse is applied. Results achieved show that increasing temperature shifts the dynamic range of the analogue grayscale towards lower voltages. Impedance analysis of these devices upon switching has been performed as well. Temperature and frequency dependence of the impedance measurements have been characterized. Negative phase responses show there is a combined capacitive and resistive behavior. As the frequency increases the capacitive effect grows. Magnitude shows a linear decrease on a log-log frequency scale. As temperature increases, phase profile becomes slight more complex. New capacitive effects are suggested in a model of the electric response of AFLC cells at low frequencies.

  3. Swarm Equatorial Electric Field Inversion Chain

    NASA Astrophysics Data System (ADS)

    Alken, Patrick; Maus, Stefan; Vigneron, Pierre; Sirol, Olivier; Hulot, Gauthier

    2014-05-01

    The day-time eastward equatorial electric field (EEF) in the ionospheric E-region plays a crucial role in equatorial ionospheric dynamics. It is responsible for driving the equatorial electrojet (EEJ) current system, equatorial vertical ion drifts, and the equatorial ionization anomaly (EIA). Due to its importance, there is much interest in accurately measuring and modeling the EEF for both climatological and near real-time studies. The Swarm satellite mission offers a unique opportunity to estimate the equatorial electric field from measurements of the geomagnetic field. Due to the near-polar orbits of each satellite, the on-board magnetometers record a full profile in latitude of the ionospheric current signatures at satellite altitude. These latitudinal magnetic profiles are then modeled using a first principles approach with empirical climatological inputs specifying the state of the ionosphere, in order to recover the EEF. We will present preliminary estimates of the EEF using the first Swarm geomagnetic field measurements, and compare them with independently measured electric fields from the JULIA ground-based radar in Peru.

  4. Field-aligned currents and ionospheric electric fields

    NASA Technical Reports Server (NTRS)

    Yasuhara, F.; Akasofu, S.-I.

    1977-01-01

    It is shown that the observed distribution of the ionospheric electric field can be deduced from an equation combining Ohm's law with the current continuity equation by using the 'observed' distribution of field-aligned currents as the boundary condition for two models of the ionosphere. The first model has one conductive annular ring representing the quiet-time auroral precipitation belt; the second has two conductive annular rings that simulate the discrete and diffuse auroral regions. An analysis is performed to determine how well the electric-field distribution can be reproduced. The results indicate that the first model reproduces the Sq(p)-type distribution, the second model reproduces reasonably well a substorm-type potential and ionospheric current patterns together with the Harang discontinuity, and that the distribution of field-aligned currents is the same for both models.

  5. Electrical response of liquid crystal cells doped with multi-walled carbon nanotubes

    PubMed Central

    García-García, Amanda; Vergaz, Ricardo; Algorri, José Francisco; Quintana, Xabier

    2015-01-01

    Summary The inclusion of nanoparticles modifies a number of fundamental properties of many materials. Doping of nanoparticles in self-organized materials such as liquid crystals may be of interest for the reciprocal interaction between the matrix and the nanoparticles. Elongated nanoparticles and nanotubes can be aligned and reoriented by the liquid crystal, inducing noticeable changes in their optical and electrical properties. In this work, cells of liquid crystal doped with high aspect ratio multi-walled carbon nanotubes have been prepared, and their characteristic impedance has been studied at different frequencies and excitation voltages. The results demonstrate alterations in the anisotropic conductivity of the samples with the applied electric field, which can be followed by monitoring the impedance evolution with the excitation voltage. Results are consistent with a possible electric contact between the coated substrates of the LC cell caused by the reorientation of the nanotubes. The reversibility of the doped system upon removal of the electric field is quite low. PMID:25821679

  6. Tikekar superdense stars in electric fields

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Maharaj, S. D.

    2007-04-01

    We present exact solutions to the Einstein-Maxwell system of equations with a specified form of the electric field intensity by assuming that the hypersurface {t=constant} are spheroidal. The solution of the Einstein-Maxwell system is reduced to a recurrence relation with variable rational coefficients which can be solved in general using mathematical induction. New classes of solutions of linearly independent functions are obtained by restricting the spheroidal parameter K and the electric field intensity parameter α. Consequently, it is possible to find exact solutions in terms of elementary functions, namely, polynomials and algebraic functions. Our result contains models found previously including the superdense Tikekar neutron star model [J. Math. Phys. 31, 2454 (1990)] when K=-7 and α=0. Our class of charged spheroidal models generalize the uncharged isotropic Maharaj and Leach solutions [J. Math. Phys. 37, 430 (1996)]. In particular, we find an explicit relationship directly relating the spheroidal parameter K to the electromagnetic field.

  7. Electric fields in Scanning Electron Microscopy simulations

    NASA Astrophysics Data System (ADS)

    Arat, K. T.; Bolten, J.; Klimpel, T.; Unal, N.

    2016-03-01

    The electric field distribution and charging effects in Scanning Electron Microscopy (SEM) were studied by extending a Monte-Carlo based SEM simulator by a fast and accurate multigrid (MG) based 3D electric field solver. The main focus is on enabling short simulation times with maintaining sufficient accuracy, so that SEM simulation can be used in practical applications. The implementation demonstrates a gain in computation speed, when compared to a Gauss-Seidel based reference solver is roughly factor of 40, with negligible differences in the result (~10-6 𝑉). In addition, the simulations were compared with experimental SEM measurements using also complex 3D sample, showing that i) the modelling of e-fields improves the simulation accuracy, and ii) multigrid method provide a significant benefit in terms of simulation time.

  8. Influence of electric field on cellular migration

    NASA Astrophysics Data System (ADS)

    Guido, Isabella; Bodenschatz, Eberhard

    Cells have the ability to detect continuous current electric fields (EFs) and respond to them with a directed migratory movement. Dictyostelium discoideum (D.d.) cells, a key model organism for the study of eukaryotic chemotaxis, orient and migrate toward the cathode under the influence of an EF. The underlying sensing mechanism and whether it is shared by the chemotactic response pathway remains unknown. Whereas genes and proteins that mediate the electric sensing as well as that define the migration direction have been previously investigated in D.d. cells, a deeper knowledge about the cellular kinematic effects caused by the EF is still lacking. Here we show that besides triggering a directional bias the electric field influences the cellular kinematics by accelerating the movement of cells along their path. We found that the migratory velocity of the cells in an EF increases linearly with the exposure time. Through the analysis of the PI3K and Phg2 distribution in the cytosol and of the cellular adherence to the substrate we aim at elucidating whereas this speed up effect in the electric field is due to either a molecular signalling or the interaction with the substrate. This work is part of the MaxSynBio Consortium which is jointly funded by the Federal Ministry of Education and Research of Germany and the Max Planck Society.

  9. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm

    PubMed Central

    Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei

    2015-01-01

    The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection. PMID:26507680

  10. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm

    NASA Astrophysics Data System (ADS)

    Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei

    2015-10-01

    The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection.

  11. Lunar Electric Fields: Observations and Implications

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Delory, G. T.; Stubbs, T. J.; Farrell, W. M.; Vondrak, R. R.

    2006-12-01

    Alhough the Moon is typically thought of as having a relatively dormant environment, it is in fact very electrically active. The lunar surface, not protected by any substantial atmosphere, is directly exposed to solar UV and X-rays as well as solar wind plasma and energetic particles. This creates a complex electrodynamic environment, with the surface typically charging positive in sunlight and negative in shadow, and surface potentials varying over orders of magnitude in response to changing solar illumination and plasma conditions. Observations from the Apollo era and theoretical considerations strongly suggest that surface charging also drives dust electrification and horizontal and vertical dust transport. We present a survey of the lunar electric field environment, utilizing both newly interpreted Lunar Prospector (LP) orbital observations and older Apollo surface observations, and comparing to theoretical predictions. We focus in particular on time periods when the most significant surface charging was observed by LP - namely plasmasheet crossings (when the Moon is in the Earth's magnetosphere) and space weather events. During these time periods, kV-scale potentials are observed, and enhanced surface electric fields can be expected to drive significant horizontal and vertical dust transport. Both dust and electric fields can have serious effects on habitability and operation of machinery, so understanding the coupled dust-plasma-electric field system around the Moon is critically important for planning exploration efforts, in situ resource utilization, and scientific observations on the lunar surface. Furthermore, from a pure science perspective, this represents an excellent opportunity to study fundamental surface-plasma interactions.

  12. Deuterium NMR investigations of field-induced director alignment in nematic liquid crystals.

    PubMed

    Sugimura, Akihiko; Luckhurst, Geoffrey R

    2016-05-01

    There have been many investigations of the alignment of nematic liquid crystals by either a magnetic and/or an electric field. The basic features of the important hydrodynamic processes for low molar mass nematics have been characterized for the systems in their equilibrium and non-equilibrium states. These have been created using electric and magnetic fields to align the director and deuterium nuclear magnetic resonance ((2)H NMR) spectroscopy has been used to explore this alignment. Theoretical models based on continuum theory have been developed to complement the experiments and found to describe successfully the static and the dynamic phenomena observed. Such macroscopic behaviour has been investigated with (2)H NMR spectroscopy, in which an electric field in addition to the magnetic field of the spectrometer is used to rotate the director and produce a non-equilibrium state. This powerful technique has proved to be especially valuable for the investigation of nematic liquid crystals. Since the quadrupolar splitting for deuterons observed in the liquid crystal phase is determined by the angle between the director and the magnetic field, time-resolved and time-averaged (2)H NMR spectroscopies can be employed to investigate the dynamic director alignment process in a thin nematic film following the application or removal of an electric field. In this article, we describe some seminal studies to illustrate the field-induced static and dynamic director alignment for low molar mass nematics.

  13. Temperature and electric-field induced phase transitions, and full tensor properties of [011]C-poled domain-engineered tetragonal 0.63Pb(Mg1/3Nb2/3)-0.37PbTiO3 single crystals

    PubMed Central

    Zheng, Limei; Jing, Yujia; Lu, Xiaoyan; Wang, Ruixue; Liu, Gang; Lü, Weiming; Zhang, Rui; Cao, Wenwu

    2016-01-01

    The phase-transition sequence of 0.67Pb(Mg1/3Nb2/3)−0.37PbTiO3 (PMN-0.37PT) single crystals driven by the electric (E) field and temperature is comprehensively studied. Based on the strain-E field loop, polarization-E field loop, and the evolution of domain configurations, the E field along the [011]C induced phase transitions have been confirmed to be as follows: tetragonal (T) → monoclinic (MC) → single domain orthorhombic (O) phase. As the E field decreases, the induced O phase cannot be maintained and transformed to the MC phase, then to the coexistence state of MC and T phases. In addition, the complete sets of dielectric, piezoelectric, and elastic constants for the [011]C-poled domain-engineered PMN-0.37PT single crystal were measured at room temperature, which show high longitudinal dielectric, piezoelectric, and electromechanical properties (ε33T=10 661, d33 = 1052 pC/N, and k33 = 0.766). Our results revealed that the MC phase plays an important role in the high electromechanical properties of this domain-engineered single crystal. The temperature dependence of the domain configuration revealed that the volume fraction of the MC phase decreases with temperature accompanied by the reduction of ε33T, d31, and k31 due to the substantially smaller intrinsic properties of the T phase. PMID:27642645

  14. Temperature and electric-field induced phase transitions, and full tensor properties of [011]C-poled domain-engineered tetragonal 0.63Pb(Mg1/3Nb2/3)-0.37PbTiO3 single crystals

    PubMed Central

    Zheng, Limei; Jing, Yujia; Lu, Xiaoyan; Wang, Ruixue; Liu, Gang; Lü, Weiming; Zhang, Rui; Cao, Wenwu

    2016-01-01

    The phase-transition sequence of 0.67Pb(Mg1/3Nb2/3)−0.37PbTiO3 (PMN-0.37PT) single crystals driven by the electric (E) field and temperature is comprehensively studied. Based on the strain-E field loop, polarization-E field loop, and the evolution of domain configurations, the E field along the [011]C induced phase transitions have been confirmed to be as follows: tetragonal (T) → monoclinic (MC) → single domain orthorhombic (O) phase. As the E field decreases, the induced O phase cannot be maintained and transformed to the MC phase, then to the coexistence state of MC and T phases. In addition, the complete sets of dielectric, piezoelectric, and elastic constants for the [011]C-poled domain-engineered PMN-0.37PT single crystal were measured at room temperature, which show high longitudinal dielectric, piezoelectric, and electromechanical properties (ε33T=10 661, d33 = 1052 pC/N, and k33 = 0.766). Our results revealed that the MC phase plays an important role in the high electromechanical properties of this domain-engineered single crystal. The temperature dependence of the domain configuration revealed that the volume fraction of the MC phase decreases with temperature accompanied by the reduction of ε33T, d31, and k31 due to the substantially smaller intrinsic properties of the T phase.

  15. Temperature and electric-field induced phase transitions, and full tensor properties of [011] C-poled domain-engineered tetragonal 0 .63 Pb (M g1 /3N b2 /3) -0 .37 PbTi O3 single crystals

    NASA Astrophysics Data System (ADS)

    Zheng, Limei; Jing, Yujia; Lu, Xiaoyan; Wang, Ruixue; Liu, Gang; Lü, Weiming; Zhang, Rui; Cao, Wenwu

    2016-03-01

    The phase-transition sequence of 0.67 Pb (M g1 /3N b2 /3)- 0.37 PbTi O3 (PMN-0.37PT) single crystals driven by the electric (E ) field and temperature is comprehensively studied. Based on the strain-E field loop, polarization-E field loop, and the evolution of domain configurations, the E field along the [011] C induced phase transitions have been confirmed to be as follows: tetragonal (T ) → monoclinic (MC)→ single domain orthorhombic (O ) phase. As the E field decreases, the induced O phase cannot be maintained and transformed to the MC phase, then to the coexistence state of MC and T phases. In addition, the complete sets of dielectric, piezoelectric, and elastic constants for the [011] C-poled domain-engineered PMN-0.37PT single crystal were measured at room temperature, which show high longitudinal dielectric, piezoelectric, and electromechanical properties (ɛ33T=10 661 ,d33=1052 pC /N , and k33= 0.766 ). Our results revealed that the MC phase plays an important role in the high electromechanical properties of this domain-engineered single crystal. The temperature dependence of the domain configuration revealed that the volume fraction of the MC phase decreases with temperature accompanied by the reduction of ɛ33T,d31, and k31 due to the substantially smaller intrinsic properties of the T phase.

  16. Cholesteric elastomers in external mechanical and electric fields.

    PubMed

    Menzel, Andreas M; Brand, Helmut R

    2007-01-01

    In our studies, we focus on the reaction of cholesteric side-chain liquid single-crystal elastomers (SCLSCEs) to static external mechanical and electric fields. By means of linearized continuum theory, different geometries are investigated: The mechanical forces are oriented in a direction either parallel or perpendicular to the axis of the cholesteric helix such that they lead to a compression or dilation of the elastomer. Whereas only a homogeneous deformation of the system is found for the parallel case, perpendicularly applied mechanical forces cause either twisting or untwisting of the cholesteric helix. This predominantly depends on the direction in which the director of the cholesteric phase is anchored at the boundaries of the elastomer, and on the sign of a material parameter that describes how deformations of the elastomer couple to the relative rotations between the elastomer and the director. It is also this material parameter that leads to an anisotropy of the mechanical reaction of the system to compression and dilation, due to the liquid crystalline order. The effect of an external electric field is studied when applied parallel to the helix axis of a perfect electric insulator. Here an instability arises at a threshold value of the field amplitude, where the latter results from a competition between the effects of the external electric field on the one hand and the influences of the boundaries of the system, the cholesteric order, and the coupling between the director and the polymer network on the other hand. The instability is either homogeneous in space in the directions perpendicular to the external electric field and includes homogeneous shearing, or, for certain values of the material parameters, there arise undulations of the elastomer and the director orientation perpendicular to the direction of the external electric field at onset. This describes a qualitatively new phenomenon not observed in cholesteric systems yet, as these undulations

  17. Cholesteric elastomers in external mechanical and electric fields.

    PubMed

    Menzel, Andreas M; Brand, Helmut R

    2007-01-01

    In our studies, we focus on the reaction of cholesteric side-chain liquid single-crystal elastomers (SCLSCEs) to static external mechanical and electric fields. By means of linearized continuum theory, different geometries are investigated: The mechanical forces are oriented in a direction either parallel or perpendicular to the axis of the cholesteric helix such that they lead to a compression or dilation of the elastomer. Whereas only a homogeneous deformation of the system is found for the parallel case, perpendicularly applied mechanical forces cause either twisting or untwisting of the cholesteric helix. This predominantly depends on the direction in which the director of the cholesteric phase is anchored at the boundaries of the elastomer, and on the sign of a material parameter that describes how deformations of the elastomer couple to the relative rotations between the elastomer and the director. It is also this material parameter that leads to an anisotropy of the mechanical reaction of the system to compression and dilation, due to the liquid crystalline order. The effect of an external electric field is studied when applied parallel to the helix axis of a perfect electric insulator. Here an instability arises at a threshold value of the field amplitude, where the latter results from a competition between the effects of the external electric field on the one hand and the influences of the boundaries of the system, the cholesteric order, and the coupling between the director and the polymer network on the other hand. The instability is either homogeneous in space in the directions perpendicular to the external electric field and includes homogeneous shearing, or, for certain values of the material parameters, there arise undulations of the elastomer and the director orientation perpendicular to the direction of the external electric field at onset. This describes a qualitatively new phenomenon not observed in cholesteric systems yet, as these undulations

  18. Electric field effect in ultrathin black phosphorus

    SciTech Connect

    Koenig, Steven P.; Schmidt, Hennrik; Doganov, Rostislav A.; Castro Neto, A. H.; Özyilmaz, Barbaros

    2014-03-10

    Black phosphorus exhibits a layered structure similar to graphene, allowing mechanical exfoliation of ultrathin single crystals. Here, we demonstrate few-layer black phosphorus field effect devices on Si/SiO{sub 2} and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration. We find room-temperature mobilities of up to 300 cm{sup 2}/Vs and drain current modulation of over 10{sup 3}. At low temperatures, the on-off ratio exceeds 10{sup 5}, and the device exhibits both electron and hole conduction. Using atomic force microscopy, we observe significant surface roughening of thin black phosphorus crystals over the course of 1 h after exfoliation.

  19. Conically shaped drops in electric fields

    NASA Astrophysics Data System (ADS)

    Stone, Howard A.; Brenner, Michael P.; Lister, John R.

    1996-11-01

    When an electric field is applied to a dielectric liquid containing a suspended immiscible fluid drop, the drop deforms into a prolate ellipsoidal shape. Above a critical field strength the drop develops conical ends, as first observed by Zeleny [Phys. Rev. 10, 1 (1917)] and Wilson & Taylor [Proc. Camb. Phil. Soc. 22, 728 (1925)] for, respectively, the case of conducting drops and soap films in air. The case of two dielectric liquids was studied recently using a slender drop approximation by Li, Halsey & Lobkovsky [Europhys. Lett 27, 575 (1994)]. In this presentation we further develop the slender body approximation to obtain coupled ordinary differential equations for the electric field and the drop shape. Analytical formulae are derived which approximately give the cone angle as a function of the dielectric constant ratio between the two fluids, and the minimum applied electric field at which conical tips first form as a function of the dielectric constant ratio. Finally, drops shapes are calculated numerically and compared with the common prolate shape assumption.

  20. Lightning Location Using Electric Field Change Meters

    NASA Astrophysics Data System (ADS)

    Bitzer, P. M.; Christian, H.; Burchfield, J.

    2010-12-01

    Briefly introduced last year, the Huntsville Alabama Field Change Array (HAFCA) is a collection of electric field change meters deployed in and around Huntsville. Armed with accurate GPS timing, the array is able to sample electric field changes due to lightning strokes simultaneously at several locations. For the first time, different components of the lightning flash can be located in three dimensions using only electric field change records. In particular, this research will show spacetime locations throughout entire lightning strokes, from preliminary breakdown pulses to the return stroke and later processes that may be related to charge neutralization. To find the spacetime locations, standard time of arrival methods will be used: finding the parameters that best fit the model using the Marquardt method. However, we will also discuss using Markov Chain Monte Carlo methods which yield a better estimation of errors. With this information, we will discuss selected cases from the array to date. In particular, we will discuss the inter-comparison of HAFCA with two other well known lightning location arrays, NLDN and NALMA. Specifically, we will explore the relationship between the first LMA pulse in a lightning stroke and the locations of preliminary breakdown pulses and the implications on lightning initiation. Further, the return stroke locations will be shown to agree reasonably well with NLDN locations. We will also locate compact intracloud discharges (CIDs) and compare with NLDN locations.

  1. Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials.

    PubMed

    Zalden, Peter; Shu, Michael J; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi-Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W; Wong, H-S Philip; Sher, Meng-Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M

    2016-08-01

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag_{4}In_{3}Sb_{67}Te_{26}. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales-faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch. PMID:27541475

  2. Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials

    NASA Astrophysics Data System (ADS)

    Zalden, Peter; Shu, Michael J.; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi-Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W.; Wong, H.-S. Philip; Sher, Meng-Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M.

    2016-08-01

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag4In3Sb67Te26 . Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales—faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.

  3. Method of electric field flow fractionation wherein the polarity of the electric field is periodically reversed

    DOEpatents

    Stevens, Fred J.

    1992-01-01

    A novel method of electric field flow fractionation for separating solute molecules from a carrier solution is disclosed. The method of the invention utilizes an electric field that is periodically reversed in polarity, in a time-dependent, wave-like manner. The parameters of the waveform, including amplitude, frequency and wave shape may be varied to optimize separation of solute species. The waveform may further include discontinuities to enhance separation.

  4. Phase diagrams of mixtures of a polymer and a cholesteric liquid crystal under an external field.

    PubMed

    Matsuyama, Akihiko

    2014-11-14

    We present a mean field theory to describe phase behaviors in mixtures of a polymer and a cholesteric liquid crystal under an external magnetic or electric field. Taking into account a chiral coupling between a polymer and a liquid crystal under the external field, we examine twist-untwist phase transitions and phase separations in the mixtures. It is found that a cholesteric-nematic phase transition can be induced by not only the external field but also concentration and temperature. Depending on the strength of the external field, we predict cholesteric-paranematic (Ch+pN), nematic-paranematic (N+pN), cholesteric-nematic (Ch+N) phase separations, etc., on the temperature-concentration plane. We also discuss mixtures of a non-chiral nematic liquid crystal and a chiral dopant. PMID:25399158

  5. Phase diagrams of mixtures of a polymer and a cholesteric liquid crystal under an external field

    SciTech Connect

    Matsuyama, Akihiko

    2014-11-14

    We present a mean field theory to describe phase behaviors in mixtures of a polymer and a cholesteric liquid crystal under an external magnetic or electric field. Taking into account a chiral coupling between a polymer and a liquid crystal under the external field, we examine twist-untwist phase transitions and phase separations in the mixtures. It is found that a cholesteric-nematic phase transition can be induced by not only the external field but also concentration and temperature. Depending on the strength of the external field, we predict cholesteric-paranematic (Ch+pN), nematic-paranematic (N+pN), cholesteric-nematic (Ch+N) phase separations, etc., on the temperature-concentration plane. We also discuss mixtures of a non-chiral nematic liquid crystal and a chiral dopant.

  6. High electrical field effects on cell membranes.

    PubMed

    Pliquett, U; Joshi, R P; Sridhara, V; Schoenbach, K H

    2007-05-01

    Electrical charging of lipid membranes causes electroporation with sharp membrane conductance increases. Several recent observations, especially at very high field strength, are not compatible with the simple electroporation picture. Here we present several relevant experiments on cell electrical responses to very high external voltages. We hypothesize that, not only are aqueous pores created within the lipid membranes, but that nanoscale membrane fragmentation occurs, possibly with micelle formation. This effect would produce conductivity increases beyond simple electroporation and display a relatively fast turn-off with external voltage. In addition, material loss can be expected at the anode side of cells, in agreement with published experimental reports at high fields. Our hypothesis is qualitatively supported by molecular dynamics simulations. Finally, such cellular responses might temporarily inactivate voltage-gated and ion-pump activity, while not necessarily causing cell death. This hypothesis also supports observations on electrofusion.

  7. Parametric excitation of magnetization by electric field

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jin; Lee, Han Kyu; Verba, Roman; Katine, Jordan; Tiberkevich, Vasil; Slavin, Andrei; Barsukov, Igor; Krivorotov, Ilya

    Manipulation of magnetization by electric field is of primary importance for development of low-power spintronic devices. We present the first experimental demonstration of parametric generation of magnetic oscillations by electric field. We realize the parametric generation in CoFeB/MgO/SAF nanoscale magnetic tunnel junctions (MTJs). The magnetization of the free layer is perpendicular to the sample plane while the magnetizations of the synthetic antiferromagnet (SAF) lie in the plane. We apply microwave voltage to the MTJ at 2 f, where f is the ferromagnetic resonance frequency of the free layer. In this configuration, the oscillations can only be driven parametrically via voltage-controlled magnetic anisotropy (VCMA) whereby electric field across the MgO barrier modulates the free layer anisotropy. The parametrically driven oscillations are detected via microwave voltage from the MTJ near f and show resonant character, observed only in a narrow range of drive frequencies near 2 f. The excitation also exhibits a well-pronounced threshold drive voltage of approximately 0.1 Volts. Our work demonstrates a low threshold for parametric excitation of magnetization by VCMA that holds promise for the development of energy-efficient nanoscale spin wave devices.

  8. Spin generation by strong inhomogeneous electric fields

    NASA Astrophysics Data System (ADS)

    Finkler, Ilya; Engel, Hans-Andreas; Rashba, Emmanuel; Halperin, Bertrand

    2007-03-01

    Motivated by recent experiments [1], we propose a model with extrinsic spin-orbit interaction, where an inhomogeneous electric field E in the x-y plane can give rise, through nonlinear effects, to a spin polarization with non-zero sz, away from the sample boundaries. The field E induces a spin current js^z= z x(αjc+βE), where jc=σE is the charge current, and the two terms represent,respectively, the skew scattering and side-jump contributions. [2]. The coefficients α and β are assumed to be E- independent, but conductivity σ is field dependent. We find the spin density sz by solving the equation for spin diffusion and relaxation with a source term ∇.js^z. For sufficiently low fields, jc is linear in E, and the source term vanishes, implying that sz=0 away from the edges. However, for large fields, σ varies with E. Solving the diffusion equation in a T-shaped geometry, where the electric current propagates along the main channel, we find spin accumulation near the entrance of the side channel, similar to experimental findings [1]. Also, we present a toy model where spin accumulation away from the boundary results from a nonlinear and anisotropic conductivity. [1] V. Sih, et al, Phys. Rev. Lett. 97, 096605 (2006). [2] H.-A. Engel, B.I. Halperin, E.I.Rashba, Phys. Rev. Lett. 95, 166605 (2005).

  9. Electrically tunable holographic polymer templated blue phase liquid crystal grating

    NASA Astrophysics Data System (ADS)

    He, Zheng-Hong; Chen, Chao-Ping; Zhu, Ji-Liang; Yuan, Ya-Chao; Li, Yan; Hu, Wei; Li, Xiao; Li, Hong-Jing; Lu, Jian-Gang; Su, Yi-Kai

    2015-06-01

    In this paper, we demonstrate an alternative approach to fabricating an electrically tunable holographic polymer templated blue phase liquid crystal grating. This grating is obtained by preforming a polymer template comprised of periodic fringes, and then refilling it with a blue phase liquid crystal. Compared with conventional holographic polymer dispersed liquid crystal gratings, our grating can remarkably reduce its switching voltage from 200 V to 43 V while maintaining a sub-millisecond response time. The holographic polymer templated blue phase liquid crystal (HPTBPLC) grating is free from electrode patterning, thus leading to a lower cost and more flexible applications. Project supported by the National Basic Research Program of China (Grant No. 2013CB328804), the National Natural Science Foundation of China (Grant No. 61307028), the Funds from the Science and Technology Commission of Shanghai Municipality (Grant Nos. 11JC1405300, 13ZR1420000, and 14ZR1422300), and the Fundamental Research Funds for the Central Universities, China (Grant No. XDJK 2011C047).

  10. Effects of magnetic fields on dissolution of arthritis causing crystals

    NASA Astrophysics Data System (ADS)

    Takeuchi, Y.; Iwasaka, M.

    2015-05-01

    The number of gout patients has rapidly increased because of excess alcohol and salt intake. The agent responsible for gout is the monosodium urate (MSU) crystal. MSU crystals are found in blood and consist of uric acid and sodium. As a substitute for drug dosing or excessive water intake, physical stimulation by magnetic fields represents a new medical treatment for gout. In this study, we investigated the effects of a magnetic field on the dissolution of a MSU crystal suspension. The white MSU crystal suspension was dissolved in an alkaline solution. We measured the light transmission of the MSU crystal suspension by a transmitted light measuring system. The magnetic field was generated by a horizontal electromagnet (maximum field strength was 500 mT). The MSU crystal suspension that dissolved during the application of a magnetic field of 500 mT clearly had a higher dissolution rate when compared with the control sample. We postulate that the alkali solution promoted penetration upon diamagnetic rotation and this magnetic field orienting is because of the pronounced diamagnetic susceptibility anisotropy of the MSU crystal. The results indicate that magnetic fields represent an effective gout treatment approach.

  11. Deformation analysis of vesicles in an alternating-current electric field.

    PubMed

    Tang, Yu-Gang; Liu, Ying; Feng, Xi-Qiao

    2014-08-01

    In this paper the shape equation for axisymmetric vesicles subjected to an ac electric field is derived on the basis of the liquid-crystal model. The equilibrium morphology of a lipid vesicle is determined by the minimization of its free energy in coupled mechanical and ac electric fields. Besides elastic bending, the effects of the osmotic pressure difference, surface tension, Maxwell pressure, and flexoelectric and dielectric properties of phospholipid membrane as well are taken into account. The influences of elastic bending, osmotic pressure difference, and surface tension on the frequency-dependent behavior of a vesicle membrane in an ac electric field are examined. The singularity of the ac electric field is also investigated. Our theoretical results of vesicle deformation agree well with previous experimental and numerical results. The present study provides insights into the physical mechanisms underpinning the frequency-dependent morphological evolution of vesicles in the electric and mechanical fields. PMID:25215760

  12. Deformation analysis of vesicles in an alternating-current electric field.

    PubMed

    Tang, Yu-Gang; Liu, Ying; Feng, Xi-Qiao

    2014-08-01

    In this paper the shape equation for axisymmetric vesicles subjected to an ac electric field is derived on the basis of the liquid-crystal model. The equilibrium morphology of a lipid vesicle is determined by the minimization of its free energy in coupled mechanical and ac electric fields. Besides elastic bending, the effects of the osmotic pressure difference, surface tension, Maxwell pressure, and flexoelectric and dielectric properties of phospholipid membrane as well are taken into account. The influences of elastic bending, osmotic pressure difference, and surface tension on the frequency-dependent behavior of a vesicle membrane in an ac electric field are examined. The singularity of the ac electric field is also investigated. Our theoretical results of vesicle deformation agree well with previous experimental and numerical results. The present study provides insights into the physical mechanisms underpinning the frequency-dependent morphological evolution of vesicles in the electric and mechanical fields.

  13. Pressure and electric field effects on piezoelectric responses of KNbO3

    SciTech Connect

    Liang, Linyun; Li, Yulan; Xue, Fei; Chen , L.Q.

    2012-09-18

    The dielectric and piezoelectric properties of a KNbO3 single crystal under applied hydrostatic pressure and positive bias electric field are investigated using phenomenological Landau-Ginzburg-Devonshire (LGD) thermodynamic theory. It is shown that the hydrostatic pressure effect on the dielectric and piezoelectric properties is similar to temperature, suggesting a common underlying mechanism for the piezoelectric anisotropy and its enhancement. The stable phase diagram of KNbO3 as a function of temperature and positive bias electric field is constructed. The maximum piezoelectric coefficient d33o* varying with temperature and electric field is calculated.

  14. Electric field detection of coherent synchrotron radiation in a storage ring generated using laser bunch slicing

    SciTech Connect

    Katayama, I.; Shimosato, H.; Bito, M.; Furusawa, K.; Adachi, M.; Zen, H.; Kimura, S.; Katoh, M.; Shimada, M.; Yamamoto, N.; Hosaka, M.; Ashida, M.

    2012-03-12

    The electric field of coherent synchrotron radiation (CSR) generated by laser bunch slicing in a storage ring has been detected by an electro-optic sampling method. The gate pulses for sampling are sent through a large-mode-area photonic-crystal fiber. The observed electric field profile of the CSR is in good agreement with the spectrum of the CSR observed using Fourier transform far-infrared spectrometry, indicating good phase stability in the CSR. The longitudinal density profiles of electrons modulated by laser pulses were evaluated from the electric field profile.

  15. Electrically tunable lens based on a dual-frequency nematic liquid crystal.

    PubMed

    Pishnyak, Oleg; Sato, Susumu; Lavrentovich, Oleg D

    2006-07-01

    We report on an electrically controlled liquid-crystal-based variable optical lens filled with a dual-frequency nematic material. The lens design employs a hole-patterned electrode structure in a flat nematic cell. In order to decrease the lens switching time we maximize the dielectric torque by using a dual-frequency nematic material that is aligned at an angle approximately 45 degrees with respect to the bounding plates by obliquely deposited SiO(x), and by using an overdrive scheme of electrical switching. Depending on the frequency of the applied field, the director realigns either toward the homeotropic state (perpendicular to the substrates) or toward the planar state (parallel to the substrates), which allows one to control not only the absolute value of the focal length but also its sign. Optical performance of the liquid-crystal lens is close to that of an ideal thin lens.

  16. Electrically tunable lens based on a dual-frequency nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Pishnyak, Oleg; Sato, Susumu; Lavrentovich, Oleg D.

    2006-07-01

    We report on an electrically controlled liquid-crystal-based variable optical lens filled with a dual-frequency nematic material. The lens design employs a hole-patterned electrode structure in a flat nematic cell. In order to decrease the lens switching time we maximize the dielectric torque by using a dual-frequency nematic material that is aligned at an angle approximately 45° with respect to the bounding plates by obliquely deposited SiOx, and by using an overdrive scheme of electrical switching. Depending on the frequency of the applied field, the director realigns either toward the homeotropic state (perpendicular to the substrates) or toward the planar state (parallel to the substrates), which allows one to control not only the absolute value of the focal length but also its sign. Optical performance of the liquid-crystal lens is close to that of an ideal thin lens.

  17. Electrically tunable lens based on a dual-frequency nematic liquid crystal.

    PubMed

    Pishnyak, Oleg; Sato, Susumu; Lavrentovich, Oleg D

    2006-07-01

    We report on an electrically controlled liquid-crystal-based variable optical lens filled with a dual-frequency nematic material. The lens design employs a hole-patterned electrode structure in a flat nematic cell. In order to decrease the lens switching time we maximize the dielectric torque by using a dual-frequency nematic material that is aligned at an angle approximately 45 degrees with respect to the bounding plates by obliquely deposited SiO(x), and by using an overdrive scheme of electrical switching. Depending on the frequency of the applied field, the director realigns either toward the homeotropic state (perpendicular to the substrates) or toward the planar state (parallel to the substrates), which allows one to control not only the absolute value of the focal length but also its sign. Optical performance of the liquid-crystal lens is close to that of an ideal thin lens. PMID:16799668

  18. Electrically controlled polarized photoluminescence of CdSe/ZnS nanorods embedded in a liquid crystal template

    NASA Astrophysics Data System (ADS)

    Mukhina, M. V.; Danilov, V. V.; Orlova, A. O.; Fedorov, M. V.; Artemyev, M. V.; Baranov, A. V.

    2012-08-01

    A novel homogeneous composite material, consisting of luminescent CdSe/ZnS quantum nanorods, embedded in the nematic liquid crystal 5CB, has been prepared. Liquid crystal cells and free-standing stretched polymer films incorporating this composite material were characterized using polarized micro-photoluminescence and electro-optical measurements under an applied electric field. A liquid crystal induced, macroscopic orientation of the nanorods in a thin layer of the material has been demonstrated. A conventional liquid crystal cell, filled with this composite, exhibits 40% modulation of the nanorod’s photoluminescence intensity when subjected to an external electric field. These results indicate that quantum nanorods may have practical applications in photonic devices.

  19. Theory of Electric Polarization Induced by Inhomogeneity in Crystals

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Shi, Junren; Clougherty, Dennis; Niu, Qian

    2008-03-01

    We develop a general theory of electric polarization induced by inhomogeneity in crystals. We show that contributions to polarization can be classified in powers of the gradient of the order parameter. The zeroth order contribution reduces to the well-known result obtained by King-Smith and Vanderbilt for uniform systems. The first order contribution, when expressed in a two- point formula, takes the Chern-Simons 3-form of the vector potentials derived from the Bloch wave functions. Using the relation between polarization and charge density, we demonstrate our formula by studying charge fractionalization in a two-dimensional dimer model recently proposed.

  20. Multidirectional colloidal assembly in concurrent electric and magnetic fields.

    PubMed

    Bharti, Bhuvnesh; Kogler, Florian; Hall, Carol K; Klapp, Sabine H L; Velev, Orlin D

    2016-10-01

    Dipolar interactions between nano- and micron sized colloids lead to their assembly into domains with well-defined local order. The particles with a single dipole induced by an external field assemble into linear chains and clusters. However, to achieve the formation of multidirectionally organized nano- or microassemblies with tunable physical characteristics, more sophisticated interaction tools are needed. Here we demonstrate that such complex interactions can be introduced in the form of two independent, non-interacting dipoles (double-dipoles) within a microparticle. We show how this can be achieved by the simultaneous application of alternating current (AC)-electric field and uniform magnetic field to dispersions of superparamagnetic microspheres. Depending on their timing and intensity, concurrent electric and magnetic fields lead to the formation of bidirectional particle chains, colloidal networks, and discrete crystals. We investigate the mechanistic details of the assembly process, and identify and classify the non-equilibrium states formed. The morphologies of different experimental states are in excellent correlation with our theoretical predictions based on Brownian dynamics simulations combined with a structural analysis based on local energy parameters. This novel methodology of introducing and interpreting double-dipolar particle interactions may assist in the assembly of colloidal coatings, dynamically reconfigurable particle networks, and bidirectional active structures.

  1. Multidirectional colloidal assembly in concurrent electric and magnetic fields.

    PubMed

    Bharti, Bhuvnesh; Kogler, Florian; Hall, Carol K; Klapp, Sabine H L; Velev, Orlin D

    2016-10-01

    Dipolar interactions between nano- and micron sized colloids lead to their assembly into domains with well-defined local order. The particles with a single dipole induced by an external field assemble into linear chains and clusters. However, to achieve the formation of multidirectionally organized nano- or microassemblies with tunable physical characteristics, more sophisticated interaction tools are needed. Here we demonstrate that such complex interactions can be introduced in the form of two independent, non-interacting dipoles (double-dipoles) within a microparticle. We show how this can be achieved by the simultaneous application of alternating current (AC)-electric field and uniform magnetic field to dispersions of superparamagnetic microspheres. Depending on their timing and intensity, concurrent electric and magnetic fields lead to the formation of bidirectional particle chains, colloidal networks, and discrete crystals. We investigate the mechanistic details of the assembly process, and identify and classify the non-equilibrium states formed. The morphologies of different experimental states are in excellent correlation with our theoretical predictions based on Brownian dynamics simulations combined with a structural analysis based on local energy parameters. This novel methodology of introducing and interpreting double-dipolar particle interactions may assist in the assembly of colloidal coatings, dynamically reconfigurable particle networks, and bidirectional active structures. PMID:27537850

  2. Biofouling prevention with pulsed electric fields

    SciTech Connect

    Abou-Ghazala, A.; Schoenbach, K.H.

    2000-02-01

    Temporary immobilization of aquatic nuisance species through application of short electric pulses has been explored as a method to prevent biofouling in cooling water systems where untreated lake, river, or sea water is used. In laboratory experiments, electrical pulses with amplitudes on the order of kilovolts/centimeter and submicrosecond duration were found to be most effective in stunning time in a temporal range from minutes to hours. The temporary immobilization is assumed to be caused by reversible membrane breakdown. This assumption is supported by results of measurements of the energy required for stunning. Based on the data obtained in laboratory experiments, field experiments in a tidal water environment have been performed. The flow velocity was such that the residence time of the aquatic nuisance species in the system was approximately half a minute. The results showed that the pulsed electric field method provides full protection against biofouling when pulses of 0.77 {micro}s width and 6 kV/cm amplitude are applied to the water at the inlet of such a cooling water system. Even at amplitudes of 1 kV/cm, the protection is still in the 90% range, at an energy expenditure of 1 kWh for the treatment of 60,000 gallons of water.

  3. Electrical Grounding - a Field for Geophysicists and Electrical Engineers Partnership

    NASA Astrophysics Data System (ADS)

    Freire, P. F.; Pane, E.; Guaraldo, N.

    2012-12-01

    , layered stratified or showing lateral variations, ranging down to several tens of kilometers deep, reaching the crust-mantle interface (typically with the order of 30-40 km). This work aims to analyze the constraints of the current soil models being used for grounding electrodes design, and suggests the need of a soil modeling methodology compatible with large grounding systems. Concerning the aspects related to soil modeling, electrical engineers need to get aware of geophysics resources, such as: - geophysical techniques for soil electrical resistivity prospection (down to about 15 kilometers deep); and - techniques for converting field measured data, from many different geophysical techniques, into adequate soil models for grounding grid simulation. It is also important to equalize the basic knowledge for the professionals that are working together for the specific purpose of soil modeling for electrical grounding studies. The authors have experienced the situation of electrical engineers working with geophysicists, but it was not clear for the latter the effective need of the electrical engineers, and for the engineers it was unknown the available geophysical resources, and also, what to do convert the large amount of soil resistivity data into a reliable soil model.

  4. Giant strain and electric-field-induced phase transition in lead-free (Na0.5Bi0.5)TiO3-BaTiO3-(K0.5Na0.5)NbO3 single crystal

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Zhao, Xiangyong; Wang, Yaojin; Zhang, Haiwu; Deng, Hao; Li, Xiaobing; Jiang, Xingan; Jiang, Xiangping; Luo, Haosu

    2016-01-01

    A lead-free single crystal 0.92(Na0.5Bi0.5)TiO3-0.06BaTiO3-0.02(K0.5Na0.5)NbO3 (NBT-6BT-2KNN) with dimension of Φ35 mm × 10 mm is grown by a precisely controlled top seeded solution growth method. The <001> oriented single crystals have excellent piezoelectric properties with a giant strain of 0.83% at 28 kV/cm. Application of an electric-field ≥14 kV/cm leads to a phase transition from pseudocubic to coexistence of tetragonal and pseudocubic. A strong ferroelectric domain texture occurs during the phase transition. Furthermore, the variation of tetragonal phase fraction agrees well with the macroscopic strain curve, demonstrating that the induced tetragonal phase plays a critical role in the high strain property.

  5. Electro-optical field sensor using single total internal reflection in electro-optical crystals

    NASA Astrophysics Data System (ADS)

    Kijima, K.; Abe, O.; Shimizu, A.; Nakamura, T.; Kono, H.; Hagihara, S.; Torikai, E.; Hori, H.

    2015-08-01

    A novel electro-optical radio frequency field sensor with simple structure and high sensitivity is realized using single total internal reflection in electro-optical crystals. Without employing any waveguide structures, the minimum detectable electric field strength of the total internal reflection electro-optical-sensor is estimated to 86.52 dB μV/m (21.18 mV/m) at a resolution band width of 100 Hz for a short interaction length.

  6. Electric field and temperature-induced phase transition in Mn-doped Na1/2Bi1/2TiO3-5.0 at.%BaTiO3 single crystals investigated by micro-Raman scattering

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Zhang, Haiwu; Deng, Hao; Huang, Ting; Li, Xiaobing; Zhao, Xiangyong; Hu, Zhigao; Wang, Dong; Luo, Haosu

    2014-04-01

    A micro-Raman scattering technique was used to investigate the electric-field and temperature dependent phase stability of Mn-doped Na1/2Bi1/2TiO3-5.0at. %BaTiO3 single crystal. The Ti-O mode was found to exhibit a slight shift at a low electric field (E = 10 kV/cm) and splitting at higher electric field (E ≥ 30 kV/cm), ascribed to field-induced local distortion and phase transition, respectively. The temperature-dependent Raman scattering was also measured over a wide range of 150-800 K to study the phase stability of poled samples. A new Raman mode at about 200 cm-1 and an anomaly in intensity of the Ti-O modes were detected at 390 K, indicating a ferroelectric to antiferroelectric phase transition. The frequency shift of TiO6 octahedral modes implied a transition to a paraelectric state at 550 K. Furthermore, the Ti-O and TiO6 octahedral modes were found to be sustained in the high-temperature paraelectric state.

  7. Field-induced phase transitions in chiral smectic liquid crystals studied by the constant current method

    NASA Astrophysics Data System (ADS)

    H, Dhaouadi; R, Zgueb; O, Riahi; F, Trabelsi; T, Othman

    2016-05-01

    In ferroelectric liquid crystals, phase transitions can be induced by an electric field. The current constant method allows these transition to be quickly localized and thus the (E,T) phase diagram of the studied product can be obtained. In this work, we make a slight modification to the measurement principles based on this method. This modification allows the characteristic parameters of ferroelectric liquid crystal to be quantitatively measured. The use of a current square signal highlights a phenomenon of ferroelectric hysteresis with remnant polarization at null field, which points out an effect of memory in this compound.

  8. Simple circuit to improve electric field homogeneity in contour-clamped homogeneous electric field chambers.

    PubMed

    Herrera, José A; Canino, Carlos A; López-Cánovas, Lilia; Gigato, Regnar; Riverón, Ana Maria

    2003-04-01

    We redesigned contour-clamped homogeneous electric field (CHEF) circuitry to eliminate crossover distortion, to set identical potentials at electrodes of each equipotential pair and to drive pairs with transistors in emitter follower stages. An equipotential pair comprised the two electrodes set at the same potential to provide electric field homogeneity inside of the hexagonal array. The new circuitry consisted of two identical circuits, each having a resistor ladder, diodes and transistors. Both circuits were interconnected by diodes that controlled the current flow to electrodes when the array was energized in the 'A' or 'B' direction of the electric field. The total number of transistors was two-thirds of the total number of electrodes. Average voltage deviation from potentials expected at electrodes to achieve a homogeneous electric field was 0.06 V, whereas 0.44 V was obtained with another circuit that used transistors in push-pull stages. The new voltage clamp unit is cheap, generated homogeneous electric field, and gave reproducible and undistorted DNA band patterns.

  9. Simple circuit to improve electric field homogeneity in contour-clamped homogeneous electric field chambers.

    PubMed

    Herrera, José A; Canino, Carlos A; López-Cánovas, Lilia; Gigato, Regnar; Riverón, Ana Maria

    2003-04-01

    We redesigned contour-clamped homogeneous electric field (CHEF) circuitry to eliminate crossover distortion, to set identical potentials at electrodes of each equipotential pair and to drive pairs with transistors in emitter follower stages. An equipotential pair comprised the two electrodes set at the same potential to provide electric field homogeneity inside of the hexagonal array. The new circuitry consisted of two identical circuits, each having a resistor ladder, diodes and transistors. Both circuits were interconnected by diodes that controlled the current flow to electrodes when the array was energized in the 'A' or 'B' direction of the electric field. The total number of transistors was two-thirds of the total number of electrodes. Average voltage deviation from potentials expected at electrodes to achieve a homogeneous electric field was 0.06 V, whereas 0.44 V was obtained with another circuit that used transistors in push-pull stages. The new voltage clamp unit is cheap, generated homogeneous electric field, and gave reproducible and undistorted DNA band patterns. PMID:12707904

  10. Rocket borne instrument to measure electric fields inside electrified clouds

    NASA Technical Reports Server (NTRS)

    Ruhnke, L. H.

    1973-01-01

    Simple electric field measuring system is mounted on small rocket and consists of two voltage probes, one extending from nose and other on tail fin. Electric field through which rocket passes is determined by potential difference between probes.

  11. Comparative study of the exciton states in CdSe/ZnS core-shell quantum dots under applied electric fields with and without permanent electric dipole moment

    NASA Astrophysics Data System (ADS)

    Cristea, M.

    2016-04-01

    Due to its non-centrosymmetric wurtzite crystal structure, the CdSe dot presents a permanent electric dipole moment. In this paper we study the effect of an electric applied field on the emission wavelength of a CdSe/ZnS core-shell quantum dot with a permanent electric dipole. The electron and hole single-particle energy and wave function in the presence of an electric dipole are obtained in the effective-mass and parabolic-band approximation for various electric field strengths. The Schrödinger equation was solved by use of the finite element method. The exciton binding energy is calculated in the first-order perturbation theory and the optical emission wavelengths are found and compared to the experimental values. We find that the photoluminescence emission can be tuned by varying the electric dipole size, the electric field strength and by an appropriate orientation between the permanent dipole moment and applied electric field.

  12. Convection electric fields and polar thermospheric winds.

    NASA Technical Reports Server (NTRS)

    Fedder, J. A.; Banks, P. M.

    1972-01-01

    Use of the qualitative ideas of convection electric fields over the earth's polar regions to demonstrate the importance of ion drag in establishing a thermospheric wind system. Recent measurements indicate that uniform electric fields of 10 to 40 mV/m are a regular feature of the polar-cap ionosphere. Calculations of the neutral thermospheric wind, using these measured fields in a simple ionospheric model, have been made. The time scale for motion of the neutral gas ranges from less than 1 hour at F-region heights to about 2 hours in the dynamo region of the ionosphere. It has been found that the viscosity of the atmosphere is important in determining the winds in the dynamo region. Results are given that show ion-temperature enhancements of hundreds of degrees that are due to ion-neutral frictional effects. In addition, the total deposition rate of convection energy in the polar thermosphere is shown to be of the same order of magnitude as that due to absorption of solar EUV radiation. The implications of these results for the dynamics and energetics of the thermosphere are discussed.

  13. On electric fields produced by steady currents

    NASA Astrophysics Data System (ADS)

    Zapolsky, Harold S.

    1988-12-01

    It is well known that an electric (as well as a magnetic) field exists in a reference frame moving relative to a dc circuit that appears to be electrically neutral in its own rest frame. The source of this field is customarily treated as a continuous charge density, which appears in the moving frame as a consequence of the fact that charge and current densities are separate components of a four-vector, which become mixed under the operation of a Lorentz transformation. It is possible to analyze this situation in a different way, by considering the superposed Lienard-Wiechert fields of a large number of moving point charges in the limit that their spacing becomes infinitesimal. While this analysis is not as simple as the standard one, it does expose some interesting physics that is masked by the standard treatment. It is also a useful approach in resolving a paradox that appears to occur when charge and current densities are treated as static objects.

  14. Hydrogel Actuation by Electric Field Driven Effects

    NASA Astrophysics Data System (ADS)

    Morales, Daniel Humphrey

    Hydrogels are networks of crosslinked, hydrophilic polymers capable of absorbing and releasing large amounts of water while maintaining their structural integrity. Polyelectrolyte hydrogels are a subset of hydrogels that contain ionizable moieties, which render the network sensitive to the pH and the ionic strength of the media and provide mobile counterions, which impart conductivity. These networks are part of a class of "smart" material systems that can sense and adjust their shape in response to the external environment. Hence, the ability to program and modulate hydrogel shape change has great potential for novel biomaterial and soft robotics applications. We utilized electric field driven effects to manipulate the interaction of ions within polyelectrolyte hydrogels in order to induce controlled deformation and patterning. Additionally, electric fields can be used to promote the interactions of separate gel networks, as modular components, and particle assemblies within gel networks to develop new types of soft composite systems. First, we present and analyze a walking gel actuator comprised of cationic and anionic gel legs attached by electric field-promoted polyion complexation. We characterize the electro-osmotic response of the hydrogels as a function of charge density and external salt concentration. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices in aqueous solutions. An 'ionoprinting' technique is presented with the capability to topographically structure and actuate hydrated gels in two and three dimensions by locally patterning ions induced by electric fields. The bound charges change the local mechanical properties of the gel to induce relief patterns and evoke localized stress, causing rapid folding in air. The ionically patterned hydrogels exhibit programmable temporal and spatial shape transitions which can be tuned by the duration and/or strength of

  15. Radial-Electric-Field Piezoelectric Diaphragm Pumps

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.; Working, Dennis C.; Mossi, Karla; Castro, Nicholas D.; Mane, Pooma

    2009-01-01

    In a recently invented class of piezoelectric diaphragm pumps, the electrode patterns on the piezoelectric diaphragms are configured so that the electric fields in the diaphragms have symmetrical radial (along-the-surface) components in addition to through-the-thickness components. Previously, it was accepted in the piezoelectric-transducer art that in order to produce the out-of-plane bending displacement of a diaphragm needed for pumping, one must make the electric field asymmetrical through the thickness, typically by means of electrodes placed on only one side of the piezoelectric material. In the present invention, electrodes are placed on both sides and patterned so as to produce substantial radial as well as through-the-thickness components. Moreover, unlike in the prior art, the electric field can be symmetrical through the thickness. Tests have shown in a given diaphragm that an electrode configuration according to this invention produces more displacement than does a conventional one-sided electrode pattern. The invention admits of numerous variations characterized by various degrees of complexity. Figure 1 is a simplified depiction of a basic version. As in other piezoelectric diaphragm pumps of similar basic design, the prime mover is a piezoelectric diaphragm. Application of a suitable voltage to the electrodes on the diaphragm causes it to undergo out-of-plane bending. The bending displacement pushes a fluid out of, or pulls the fluid into, a chamber bounded partly by the diaphragm. Also as in other diaphragm pumps in general, check valves ensure that the fluid flows only in through one port and only out through another port.

  16. Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Palto, S. P.; Barnik, M. I.; Geivandov, A. R.; Kasyanova, I. V.; Palto, V. S.

    2015-09-01

    Transmission of planar layers of cholesteric liquid crystals is studied in pulsed electric fields perpendicular to the helix axis at normal incidence of both linearly polarized and unpolarized light. Spectral and light polarization properties of the primary photonic band and the field-induced bands up to fourth order of Bragg selective reflection are studied in detail. In our experiments we have achieved an electric field strength several times higher than the theoretical values corresponding to the critical field of full helix unwinding. However, the experiments show that despite the high strength of the electric field applied the helix does not unwind, but strongly deforms, keeping its initial spatial period. Strong helix deformation results in distinct spectral band splitting, as well as very high field-induced selective reflectance that can be applied in lasers and other optoelectronic devices. Peculiarities of inducing and splitting the bands are discussed in terms of the scattering coefficient approach. All observed effects are confirmed by numerical simulations. The simulations also show that liquid crystal surface anchoring is not the factor that prevents the helix unwinding. Thus, the currently acknowledged concept of continuous helix unwinding in the electric field should be reconsidered.

  17. Rashba coupling amplification by a staggered crystal field

    PubMed Central

    Santos-Cottin, David; Casula, Michele; Lantz, Gabriel; Klein, Yannick; Petaccia, Luca; Le Fèvre, Patrick; Bertran, François; Papalazarou, Evangelos; Marsi, Marino; Gauzzi, Andrea

    2016-01-01

    There has been increasing interest in materials where relativistic effects induce non-trivial electronic states with promise for spintronics applications. One example is the splitting of bands with opposite spin chirality produced by the Rashba spin-orbit coupling in asymmetric potentials. Sizable splittings have been hitherto obtained using either heavy elements, where this coupling is intrinsically strong, or large surface electric fields. Here by means of angular resolved photoemission spectroscopy and first-principles calculations, we give evidence of a large Rashba coupling of 0.25 eV Å, leading to a remarkable band splitting up to 0.15 eV with hidden spin-chiral polarization in centrosymmetric BaNiS2. This is explained by a huge staggered crystal field of 1.4 V Å−1, produced by a gliding plane symmetry, that breaks inversion symmetry at the Ni site. This unexpected result in the absence of heavy elements demonstrates an effective mechanism of Rashba coupling amplification that may foster spin-orbit band engineering. PMID:27089869

  18. Pigtailed electro-optic probes for vectorial electric field mapping

    NASA Astrophysics Data System (ADS)

    Warzecha, Adriana; Gaborit, Gwenaël; Ruaro, Mickael; Duvillaret, Lionel; Lassere, Jean-Louis

    2010-04-01

    Electro-optic measurement (EO) constitutes an efficient technique to characterize electrical (E) fields : indeed, the Pockel's effect properties (linear modification of refractive indices of some non-centrosymetric crystals induced by the E-field)1 leads to a vectorial measurement. Thus, it allows to map the E-field vector and its transient evolution, either in free space or inside guiding structures. Pigtailed EO sensors are naturally becoming a reliable and consistent mean of characterization for many applications, e.g. high power microwaves (HPM), electromagnetic interference (EMI), on chip diagnostic, bio-electromagnetism (e.g. influence of mobile phones on the human body). Even if these non-invasive sensors provide a greater temporal and spatial resolution (femtosecond and sub-millimeter, respectively) than commonly used sensors (antennas, bolometers), it remains temperature dependant and quite low sensitive. EO probes are based on the modification of a laser beam (either its polarization, phase or amplitude) crossing an EO crystal. We demonstrate here the last developments and improvements for EO probes as well as for whole EO setups, exploiting polarization state or amplitude modulation. The sensor is constituted by a polarization maintaining (PM) fiber carrying the beam to the crystal and taking it back once modulated, gradient index lense(s) managing the shape of the beam, half or quarter wave plate controlling the input and output polarizations and a crystal (either anisotropic: LiTaO3, LiNb03, DAST, KTP or isotropic : ZnTe, InP) converting the E-field into a modulation. Our probes are fully dielectric and cylindrically shaped (length ~ 1 cm and diameter ~ 2-3 mm). The setup is made of a 1.5 μm DFB laser, some photodiodes (low and high speed) added with a polarization state analyser arrangement in case of EO probes based on polarization state modulation scheme. The measurement bench is fully automated and compensate/measure the temperature deviation

  19. Effect of mechanical deformation on the electrical properties of organic single crystals

    NASA Astrophysics Data System (ADS)

    Reyes-Martinez, Marcos; Crosby, Alfred; Briseno, Alejandro

    2014-03-01

    Despite efforts in the flexible electronics field, relatively little research quantified the effects of mechanical strain on the electrical properties of organic single crystals (OSCs) and their device performance in deformed geometries. Single crystals of organic semiconductors are ideal systems for the elucidation of these effects without having to account for imperfections, grain boundaries and other defects. The aim of this presentation is to bring new understanding of the effects of mechanical strain in charge transport phenomena on OSCs. First, the existence of a piezoresistive effect in rubrene crystals is demonstrated and experimentally quantified by the application of in-plane strain along its [010] axis. A piezoresistive coefficient approximately 50 is determined. Second, the effect of local mechanical deformation on the conductive channel is investigated in rubrene single-crystal field-effect transistors. A wrinkling instability is used as a technique to apply local strains of different magnitudes to the conducting channel of field-effect transistors. All devices maintain excellent transistor behavior, and small, reversible changes in performance are observed during wrinkling. This work provides useful knowledge for the effective application of organic semiconductors in strain intensive applications such as pressure sensors, electronic skins and strained-channel organic transistors.

  20. Electric field induced Lyman-α emission of a hydrogen beam for electric field measurements

    SciTech Connect

    Chérigier-Kovacic, L. Doveil, F.; Ström, P.; Lejeune, A.

    2015-06-15

    Electric field induced Lyman-α emission is a new way of measuring weak electric fields in vacuum and in a plasma. It is based on the emission of Lyman-α radiation (121.6 nm) by a low-energy metastable H atom beam due to Stark-quenching of the 2s level induced by the field. In this paper, we describe the technique in detail. Test measurements have been performed in vacuum between two plates polarized at a controlled voltage. The intensity of emitted radiation, proportional to the square of the field modulus, has been recorded by a lock-in technique, which gives an excellent signal to noise ratio. These measurements provide an in situ calibration that can be used to obtain the absolute value of the electric field. A diagnostic of this type can help to address a long standing challenge in plasma physics, namely, the problem of measuring electric fields without disturbing the equilibrium of the system that is being studied.

  1. Two studies of colloidal interactions: electric polarizability and protein crystallization. Final report

    SciTech Connect

    Fraden, Seth; Hu, Yue

    2001-08-06

    (I)Electric polarizability. During this grant period, the focus was on five topics concerning electric field effects on colloids. The first topic focuses on electric interactions between charged colloids in the absence of external fields, and the remaining four deal with colloids in the presence of external fields. The topics are (1) calculation of the effect of confinement on the pair-potential between like-charged colloids, (2) experimental determination of the interparticle potential under the conditions of dielectric polarization, (3) measurement of the evolution of structure of ER fluids, (4) synthesis of novel colloids designed for ER studies, and (5) computer modeling of polarization of surface charge. (II) Protein crystallization. Studies of the phase behavior of mixtures of proteins and polymers were initiated. The motivation was to test recent theories that suggested that optimal conditions for protein crystallization could be obtained using such mixtures. Combined light scattering measurements of the virial coefficients and determination of the phase diagram of protein/polymer mixtures revealed that the theoretical picture needs to be substantially modified.

  2. Impact of electric fields on honey bees

    SciTech Connect

    Bindokas, V.P.

    1985-01-01

    Biological effects in honey bee colonies under a 765-kV, 60-Hz transmission line (electric (E) field = 7 kV/m) were confirmed using controlled dosimetry and treatment reversal to replicate findings within the same season. Hives in the same environment but shielded from E field are normal, suggesting effects are caused by interaction of E field with the hive. Bees flying through the ambient E field are not demonstrably affected. Different thresholds and severity of effects were found in colonies exposed to 7, 5.5, 4.1, 1.8, and 0.65 to 0.85 kV/m at incremental distances from the line. Most colonies exposed at 7 kV/m failed in 8 weeks and failed to overwinter at greater than or equal to4.1 kV/m. Data suggest the limit of a biological effects corridor lies between 15 and 27 m (4.1 and 1.8 kV/m) beyond the outer phase of the transmission line. Mechanisms to explain colony disturbance fall into two categories, direct perception of enhanced in-hive E fields, and perception of shock from induced currents. The same effects induced in colonies with total-hive E-field exposure can be reproduced with shock or E-field exposure of worker bees in extended hive entranceways (= porches). Full-scale experiments demonstrate bee exposure to E fields including 100 kV/m under moisture-free conditions within a non-conductive porch causes no detectable effect on colony behavior. Exposure of bees on a conductive (e.g. wet) substrate produces been disturbance, increased mortality, abnormal propolization, and possible impairment of colony growth. Thresholds for effects caused by step-potential-induced currents are: 275-350 nA - disturbance of single bees; 600 nA - onset of abnormal propolization; and 900 nA - sting.

  3. Electric field control of Skyrmions in magnetic nanodisks

    NASA Astrophysics Data System (ADS)

    Nakatani, Y.; Hayashi, M.; Kanai, S.; Fukami, S.; Ohno, H.

    2016-04-01

    The control of magnetic Skyrmions confined in a nanometer scale disk using electric field pulses is studied by micromagnetic simulation. A stable Skyrmion can be created and annihilated by an electric field pulse depending on the polarity of the electric field. Moreover, the core direction of the Skyrmion can be switched using the same electric field pulses. Such creation and annihilation of Skyrmions, and its core switching do not require any magnetic field and precise control of the pulse length. This unconventional manipulation of magnetic texture using electric field pulses allows a robust way of controlling magnetic Skyrmions in nanodiscs, a path toward building ultralow power memory devices.

  4. Perturbative treatment of lattice dynamics in finite electric fields

    NASA Astrophysics Data System (ADS)

    Wang, Xinjie; Souza, Ivo; Vanderbilt, David

    2004-03-01

    The methods of density-functional perturbation theory have been shown to be very powerful for realistic calculations of lattice-vibrational, dielectric, elastic, and other response properties of crystals.(S. Baroni et al.), Rev. Mod. Phys. 73, 515 (2001). Recently, a total-energy method for insulators in nonzero electric fields has been proposed.(I. Souza, J. Íñiguez, and D. Vanderbilt, Phys. Rev. Lett. 89), 117602 (2002). However, the perturbative computation of response properties under a dc bias field has not previously been addressed. Here, perturbation theory is applied to a variational total-energy functional in the presence of a static, homogeneous electric field. An analytic expression is derived for the second derivative with respect to the phonon perturbation using the 2n+1 theorem. The expression is variational with respect to the first-order Bloch-like states, and can be minimized using standard conjugate-gradients methods. We implement the method in the ABINIT code and perform illustrative calculations of the interatomic force constant matrix of III-V semiconductors.

  5. Electric field effects on droplet burning

    NASA Astrophysics Data System (ADS)

    Patyal, Advitya; Kyritsis, Dimitrios; Matalon, Moshe

    2015-11-01

    The effects of an externally applied electric field are studied on the burning characteristics of a spherically symmetric fuel drop including the structure, mass burning rate and extinction characteristics of the diffusion flame. A reduced three-step chemical kinetic mechanism that reflects the chemi-ionization process for general hydrocarbon fuels has been proposed to capture the production and destruction of ions inside the flame zone. Due to the imposed symmetry, the effect of the ionic wind is simply to modify the pressure field. Our study thus focuses exclusively on the effects of Ohmic heating and kinetic effects on the burning process. Two distinguished limits of weak and strong field are identified, highlighting the relative strength of the internal charge barrier compared to the externally applied field, and numerically simulated. For both limits, significantly different charged species distributions are observed. An increase in the mass burning rate is noticed with increasing field in either limit with negligible change in the flame temperature. Increasing external voltages pushes the flame away from the droplet and causes a strengthening of the flame with a reduction in the extinction Damkhöler number.

  6. Soil Identification using Field Electrical Resistivity Method

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Rosli, S.; Chitral, W. D.; Fauziah, A.; Azhar, A. T. S.; Aziman, M.; Ismail, B.

    2015-06-01

    Geotechnical site investigation with particular reference to soil identification was important in civil engineering works since it reports the soil condition in order to relate the design and construction of the proposed works. In the past, electrical resistivity method (ERM) has widely being used in soil characterization but experienced several black boxes which related to its results and interpretations. Hence, this study performed a field electrical resistivity method (ERM) using ABEM SAS (4000) at two different types of soils (Gravelly SAND and Silty SAND) in order to discover the behavior of electrical resistivity values (ERV) with type of soils studied. Soil basic physical properties was determine thru density (p), moisture content (w) and particle size distribution (d) in order to verify the ERV obtained from each type of soil investigated. It was found that the ERV of Gravelly SAND (278 Ωm & 285 Ωm) was slightly higher than SiltySAND (223 Ωm & 199 Ωm) due to the uncertainties nature of soils. This finding has showed that the results obtained from ERM need to be interpreted based on strong supported findings such as using direct test from soil laboratory data. Furthermore, this study was able to prove that the ERM can be established as an alternative tool in soil identification provided it was being verified thru other relevance information such as using geotechnical properties.

  7. Assembly of LIGA using Electric Fields

    SciTech Connect

    FEDDEMA, JOHN T.; WARNE, LARRY K.; JOHNSON, WILLIAM A.; OGDEN, ALLISON J.; ARMOUR, DAVID L.

    2002-04-01

    The goal of this project was to develop a device that uses electric fields to grasp and possibly levitate LIGA parts. This non-contact form of grasping would solve many of the problems associated with grasping parts that are only a few microns in dimensions. Scaling laws show that for parts this size, electrostatic and electromagnetic forces are dominant over gravitational forces. This is why micro-parts often stick to mechanical tweezers. If these forces can be controlled under feedback control, the parts could be levitated, possibly even rotated in air. In this project, we designed, fabricated, and tested several grippers that use electrostatic and electromagnetic fields to grasp and release metal LIGA parts. The eventual use of this tool will be to assemble metal and non-metal LIGA parts into small electromechanical systems.

  8. Electric fields and double layers in plasmas

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-01-01

    Various mechanisms for driving double layers (DLs) in plasmas are described, including applied potential drops, currents, contact potentials, and plasma expansions. Somne dynamic features of the DLs are discussed; and it is demonstrated that DLs and the currents through them undergo slow oscillations, determined by the ion transit time across an effective length of the system in which the DLs form. It is shown that a localized potential dip forms at the low potential end of a DL, which interrupts the electron current through it according to the Langmuir criterion whenever the ion flux into the DL is disrupted. Also considered is the generation of electric fields perpendicular to the ambient magnetic field by contact potentials.

  9. Dielectric fluid in inhomogeneous pulsed electric field.

    PubMed

    Shneider, M N; Pekker, M

    2013-04-01

    We consider the dynamics of a compressible fluid under the influence of electrostrictive ponderomotive forces in strong inhomogeneous nonstationary electric fields. It is shown that if the fronts of the voltage rise at a sharp, needlelike electrode are rather steep (less than or about nanoseconds), the region of negative pressure arises, which can reach values at which the fluid loses its continuity with the formation of cavitation ruptures. If the voltage on the electrode is not large enough or the front is flatter, the cavitation in the liquid does not occur. However, a sudden shutdown of the field results in a reverse flow of liquid from the electrode, which leads to appearance of negative pressure, and, possibly, cavitation.

  10. Polymer crystallization in a temperature gradient field with controlled crystal growth rate

    NASA Technical Reports Server (NTRS)

    Hansen, D.; Taskar, A. N.; Casale, O.

    1971-01-01

    A method is described for studying the influence of a temperature gradient on the crystallization of quiescent polymer melts. The apparatus used consists of two brass plates with embedded electrical resistance heaters and cooling coils. The crystallizations experiments were conducted by placing polymer specimens between the paltes, and manually adjusting heaters and cooling fluids for temperature control. Linear polyethylene, isotactic polyprophylene, and a high density polyethylene were used. It is concluded that the role of a temperature gradient in producing oriented crystallization is in producing conditions which lead the spherulitic growth pattern to proceed primarily in one direction. Steep gradients diminish the penetration of supercooling and favors oriented growth.

  11. The impact of space electric field research on atmospheric studies

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.

    1974-01-01

    Space measurements of electric fields have provided instrumentation for measuring atmospheric parameters and a better basis for understanding the electrical coupling between the magnetosphere and the atmosphere. Applications of an incoherent scatter radar (developed for ionospheric electric field research) to the measurement of atmospheric winds and turbulence and of Langmuir double probes (also developed for space research) for measurement of atmospheric electric fields are described. The increased knowledge of magnetospheric electric fields has focused attention on the electrical coupling between the magnetosphere and the atmosphere with conclusions that should considerably modify previous physical concepts in both domains.

  12. Distributed feedback lasing from electrically tunable dye-doped polymer-liquid crystal transmission gratings

    NASA Astrophysics Data System (ADS)

    Sakhno, O. V.; Gritsai, Y.; Stumpe, J.

    2014-11-01

    In the present work we report low-threshold distributed feedback (DFB) lasing from electrically tunable holographic polymer-liquid crystal transmission gratings of POLIPHEM type doped with pyrromethene 567. Due to their uniform droplet-free micro-morphology, the POLIPHEM gratings possess high diffraction efficiency and excellent optical quality. Second-order lasing with a threshold of ~0.8 µJ/pulse and a bandwidth of ~1 nm was achieved under the excitation of a frequency-doubled Nd:YAG laser operating at 532 nm. The laser emission wavelength was tuned from 572-625 nm by varying the grating period. Application of an electric field switches off or tunes the lasing intensity. An electrically-induced blue-shift of the output laser emission was observed.

  13. Muon-Spin Rotation in Multiferroic Cu3Mo2O9 under Electric Fields

    NASA Astrophysics Data System (ADS)

    Kuroe, Haruhiko; Kuwahara, Hideki; Sekine, Tomoyuki; Watanabe, Isao; Raselli, Andrea-Raeto; Elender, Matthias; Biswas, Pabitra Kumar; Hase, Masashi; Oka, Kunihiko; Ito, Toshimitsu; Eisaki, Hiroshi

    It has been demonstrated that the muon spin rotation measurements under electric field give helpful information about the electrically induced magnetism, e.g., the cross correlation effects in multiferroic materials. We have developed an electric-field application system up to 500V for the Dolly spectrometer at the Paul Scherrer Institute. We report the electric-field effects on the μSR spectrum in the multiferroic material Cu3Mo2O9, where a slightly canted antiferromagnetic long-range order appears together with the ferroelectricity below 8K. In the muon-spin rotation spectrum at 1.5K, two kinds of the internal magnetic fields are clearly observed as a beating oscillation. The muon-spin spectrum depends on the electric fields along the c axis of the crystal along which the spontaneous electric polarization appears. From the fitting of the spectra in time and frequency domains, it is shown that the observation of the electric-field dependence on the muon-spin spectra clearly indicates a change of the internal magnetic fields induced by the application of the external electric fields. We propose a model with one muon-stopping site which explains the observed spectra qualitatively. This model is based on the magnetic excitations in Cu3Mo2O9 obtained from the inelastic neutron-scattering experiments.

  14. Extracting Nucleon Magnetic Moments and Electric Polarizabilities from Lattice QCD in Background Electric Fields

    SciTech Connect

    William Detmold; Tiburzi, Brian C.; Walker-Loud, Andre

    2010-03-01

    Nucleon properties are investigated in background electric fields. As the magnetic moments of baryons affect their relativistic propagation in constant electric fields, electric polarizabilities cannot be determined without knowledge of magnetic moments. We devise combinations of baryon two-point functions in external electric fields to isolate both observables. Using an ensemble of anisotropic gauge configurations with dynamical clover fermions, we demonstrate how magnetic moments and electric polarizabilities can be determined from lattice QCD simulations in background electric fields. We obtain results for both the neutron and proton. Our study is currently limited to electrically neutral sea quarks.

  15. Optically and electrically controlled circularly polarized emission from cholesteric liquid crystal materials doped with semiconductor quantum dots.

    PubMed

    Bobrovsky, Alexey; Mochalov, Konstantin; Oleinikov, Vladimir; Sukhanova, Alyona; Prudnikau, Anatol; Artemyev, Mikhail; Shibaev, Valery; Nabiev, Igor

    2012-12-01

    Novel types of electro- and photoactive quantum dot-doped cholesteric materials have been engineered. UV-irradiation or electric field application allows one to control the degree of circular polarization and intensity of fluorescence emission by prepared quantum dot-doped liquid crystal films. PMID:22972420

  16. A Gravitational Experiment Involving Inhomogeneous Electric Fields

    SciTech Connect

    Datta, T.; Yin Ming; Vargas, Jose

    2004-02-04

    Unification of gravitation with other forms of interactions, particularly with electromagnetism, will have tremendous impacts on technology and our understanding of nature. The economic impact of such an achievement will also be unprecedented and far more extensive than the impact experienced in the past century due to the unification of electricity with magnetism and optics. Theoretical unification of gravitation with electromagnetism using classical differential geometry has been pursued since the late nineteen twenties, when Einstein and Cartan used teleparallelism for the task. Recently, Vargas and Torr have followed the same line of research with more powerful mathematics in a more general geometric framework, which allows for the presence of other interactions. Their approach also uses Kaehler generalization of Cartan's exterior calculus, which constitutes a language appropriate for both classical and quantum physics. Given the compelling nature of teleparallelism (path-independent equality of vectors at a distance) and the problems still existing with energy-momentum in general relativity, it is important to seek experimental evidence for such expectations. Such experimental programs are likely to provide quantitative guidance to the further development of current and future theories. We too, have undertaken an experimental search for potential electrically induced gravitational (EIG) effects. This presentation describes some of the practical concerns that relates to our investigation of electrical influences on laboratory size test masses. Preliminary results, appear to indicate a correlation between the application of a spatially inhomogeneous electric field and the appearance of an additional force on the test mass. If confirmed, the presence of such a force will be consistent with the predictions of Vargas-Torr. More importantly, proven results will shed new light and clearer understanding of the interactions between gravitational and electromagnetic

  17. A Gravitational Experiment Involving Inhomogeneous Electric Fields

    NASA Astrophysics Data System (ADS)

    Datta, T.; Yin, Ming; Vargas, Jose

    2004-02-01

    Unification of gravitation with other forms of interactions, particularly with electromagnetism, will have tremendous impacts on technology and our understanding of nature. The economic impact of such an achievement will also be unprecedented and far more extensive than the impact experienced in the past century due to the unification of electricity with magnetism and optics. Theoretical unification of gravitation with electromagnetism using classical differential geometry has been pursued since the late nineteen twenties, when Einstein and Cartan used teleparallelism for the task. Recently, Vargas and Torr have followed the same line of research with more powerful mathematics in a more general geometric framework, which allows for the presence of other interactions. Their approach also uses Kähler generalization of Cartan's exterior calculus, which constitutes a language appropriate for both classical and quantum physics. Given the compelling nature of teleparallelism (path-independent equality of vectors at a distance) and the problems still existing with energy-momentum in general relativity, it is important to seek experimental evidence for such expectations. Such experimental programs are likely to provide quantitative guidance to the further development of current and future theories. We too, have undertaken an experimental search for potential electrically induced gravitational (EIG) effects. This presentation describes some of the practical concerns that relates to our investigation of electrical influences on laboratory size test masses. Preliminary results, appear to indicate a correlation between the application of a spatially inhomogeneous electric field and the appearance of an additional force on the test mass. If confirmed, the presence of such a force will be consistent with the predictions of Vargas-Torr. More importantly, proven results will shed new light and clearer understanding of the interactions between gravitational and electromagnetic

  18. Anisotropic stark effect and electric-field noise suppression for phosphorus donor qubits in silicon.

    PubMed

    Sigillito, A J; Tyryshkin, A M; Lyon, S A

    2015-05-29

    We report the use of novel, capacitively terminated coplanar waveguide resonators to measure the quadratic Stark shift of phosphorus donor qubits in Si. We confirm that valley repopulation leads to an anisotropic spin-orbit Stark shift depending on electric and magnetic field orientations relative to the Si crystal. By measuring the linear Stark effect, we estimate the effective electric field due to strain in our samples. We show that in the presence of this strain, electric-field sources of decoherence can be non-negligible. Using our measured values for the Stark shift, we predict magnetic fields for which the spin-orbit Stark effect cancels the hyperfine Stark effect, suppressing decoherence from electric-field noise. We discuss the limitations of these noise-suppression points due to random distributions of strain and propose a method for overcoming them. PMID:26066457

  19. Anisotropic stark effect and electric-field noise suppression for phosphorus donor qubits in silicon.

    PubMed

    Sigillito, A J; Tyryshkin, A M; Lyon, S A

    2015-05-29

    We report the use of novel, capacitively terminated coplanar waveguide resonators to measure the quadratic Stark shift of phosphorus donor qubits in Si. We confirm that valley repopulation leads to an anisotropic spin-orbit Stark shift depending on electric and magnetic field orientations relative to the Si crystal. By measuring the linear Stark effect, we estimate the effective electric field due to strain in our samples. We show that in the presence of this strain, electric-field sources of decoherence can be non-negligible. Using our measured values for the Stark shift, we predict magnetic fields for which the spin-orbit Stark effect cancels the hyperfine Stark effect, suppressing decoherence from electric-field noise. We discuss the limitations of these noise-suppression points due to random distributions of strain and propose a method for overcoming them.

  20. Inhibition of brain tumor cell proliferation by alternating electric fields

    SciTech Connect

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi E-mail: radioyoon@korea.ac.kr; Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun E-mail: radioyoon@korea.ac.kr; Koh, Eui Kwan

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  1. Saturation of the Electric Field Transmitted to the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James A.

    2010-01-01

    We reexamined the processes leading to saturation of the electric field, transmitted into the Earth's ionosphere from the solar wind, incorporating features of the coupled system previously ignored. We took into account that the electric field is transmitted into the ionosphere through a region of open field lines, and that the ionospheric conductivity in the polar cap and auroral zone may be different. Penetration of the electric field into the magnetosphere is linked with the generation of the Alfven wave, going out from the ionosphere into the solar wind and being coupled with the field-aligned currents at the boundary of the open field limes. The electric field of the outgoing Alfven wave reduces the original electric field and provides the saturation effect in the electric field and currents during strong geomagnetic disturbances, associated with increasing ionospheric conductivity. The electric field and field-aligned currents of this Alfven wave are dependent on the ionospheric and solar wind parameters and may significantly affect the electric field and field-aligned currents, generated in the polar ionosphere. Estimating the magnitude of the saturation effect in the electric field and field-aligned currents allows us to improve the correlation between solar wind parameters and resulting disturbances in the Earth's magnetosphere.

  2. Nonlinear response of electric fields at a neutral point

    NASA Astrophysics Data System (ADS)

    Berkovsky, Mikhail; Dufty, James W.; Calisti, Annette; Stamm, Roland; Talin, Bernard

    1995-05-01

    The complex dynamics of electric fields at a neutral point in a plasma is studied via a model of noninteracting ``quasiparticles.'' The simplicity of the model allows the reduction of the many-body problem to an effective single-particle analysis-all properties of interest can be reduced to quadratures. Still, the final calculations to extract a quantitative or even qualitative understanding of the field dynamics can be difficult. Attention here is focused on the dynamics of the conditional electric field: the field value at time t for a given initial value of the field. In addition to the relevant linear response function (electric field time correlation function), this property provides the complete nonlinear response of the electric field to arbitrary initial field perturbations. The static properties (distribution of electric fields and field time derivatives) and the electric field time correlation function have been known for some time for this model. We compare these results and the present result for the conditional electric field with molecular dynamics simulations including interactions. The comparisons suggest that the model provides a quantitative representation of electric field dynamics in real plasmas, except at strong coupling. The exact theoretical results are compared also with those obtained by modeling the electric field as a stochastic variable obeying a kangaroo process. The latter can be constructed to yield both the exact stationary distribution and the exact electric field time correlation function. However, we find that the conditional field is never well approximated by this process. An alternative representation of the joint distribution for electric fields, consistent with the exact stationary distribution, field correlation function, and conditional electric field, is suggested.

  3. What Are Electric and Magnetic Fields? (EMF)

    MedlinePlus

    ... Puzzles Riddles Songs Activities Be a Scientist Coloring Science ... Electricity is an essential part of our lives. Electricity powers all sorts of things around us, from computers to refrigerators Use of electric power is something ...

  4. Thermoelectric Magnetohydrodynamic Flow During Crystal Growth with a Moderate or Weak Magnetic Field

    NASA Technical Reports Server (NTRS)

    Khine, Y. Y.; Walker, John S.; Szofran, Frank R.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    This paper treats a steady, axisymmetric melt motion in a cylindrical ampoule with a uniform, axial magnetic field and with an electric current due to a radial temperature variation along the crystal-melt interface, where the values of the absolute thermoelectric power for the crystal and melt are different. The radial component of the thermoelectric current in the melt produces an azimuthal body force, and the axial variation of the centrifugal force due to the azimuthal motion drives a meridional circulation with radial and axial velocities. For moderate magnetic field strengths, the azimuthal velocity and magnetic field produce a radial induced electric field which partially cancels the Seebeck electromotive force in the melt, so that the thermoelectric current and the melt motion are coupled. For weak magnetic fields, the thermoelectric current is decoupled from the melt motion, which is an ordinary hydrodynamic flow driven by a known azimuthal body force. The results show how the flow varies with the strength of the magnetic field and with the magnitude of the temperature variation along the crystal-melt interface. They also define the parameter ranges for which the simpler weak-field decoupled analysis gives accurate predictions.

  5. Introduction to power-frequency electric and magnetic fields.

    PubMed Central

    Kaune, W T

    1993-01-01

    This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conducting bodies such as living organisms. The current density vector is used to describe the distribution of current within a body. The surface of the human body is an excellent shield for power-frequency electric fields, but power-frequency magnetic fields penetrate without significant attenuation; the electric fields induced inside the body by either exposure are comparable in magnitude. Electric fields induced inside a human by most environmental electric and magnetic fields appear to be small in magnitude compared to levels naturally occurring in living tissues. Detection of such fields thus would seem to require the existence of unknown biological mechanisms. Complete characterization of a power-frequency field requires measurement of the magnitudes and electrical phases of the fundamental and harmonic amplitudes of its three vector components. Most available instrumentation measures only a small subset, or some weighted average, of these quantities. Hand-held survey meters have been used widely to measure power-frequency electric and magnetic fields. Automated data-acquisition systems have come into use more recently to make electric- and magnetic-field recordings, covering periods of hours to days, in residences and other environments.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8206045

  6. Fringing field suppression for liquid crystal gratings using equivalent capacitance configuration

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Xia, Jun; Zhang, Xiaobing; Xie, Yi; Kang, Mingwu; Zhang, Qiuzhi

    2014-10-01

    A liquid crystal grating with high spatial frequency and equivalent capacitance configuration is proposed, where two layers of periodical ground electrodes are interlaced and aligned with the addressing electrodes. The equivalent capacitance configuration can reduce the fringing field effect efficiently owing to the generated electric field resisting the fringing field and redistributing the equivalent voltage exerting on the liquid crystal layer. The phase modulation depth and far-field diffraction patterns both for conventional and novel configurations were simulated. The results show that phase modulation is greatly enhanced and the maximum diffraction efficiency for a sinusoidal phase grating is 33.86%, which indicates that the equivalent capacitance configuration provides a good solution for suppressing the fringing field effect.

  7. Electrical conduction in nanodomains in congruent lithium tantalate single crystal

    SciTech Connect

    Cho, Yasuo

    2014-01-27

    The electrical current flow behavior was investigated for nanodomains formed in a thin congruent lithium tantalate (LiTaO{sub 3}) single-crystal plate. When the nanodomains were relatively large, with diameters of about 100 nm, current flow was detected along the domain wall. However, when they were about 40 nm or smaller, the current flowed through the entire nanodomain. Schottky-like rectifying behavior was observed. Unlike the case of LiNbO{sub 3}, optical illumination was not required for current conduction in LiTaO{sub 3}. A clear temperature dependence of the current was found indicating that the conduction mechanism for nanodomains in LiTaO{sub 3} may involve thermally activated carrier hopping.

  8. Fabrication of artificial opals by electric-field-assisted vertical deposition.

    PubMed

    Napolskii, Kirill S; Sapoletova, Nina A; Gorozhankin, Dmitriy F; Eliseev, Andrey A; Chernyshov, Dmitry Yu; Byelov, Dmytro V; Grigoryeva, Natalia A; Mistonov, Alexander A; Bouwman, Wim G; Kvashnina, Kristina O; Lukashin, Alexey V; Snigirev, Anatoly A; Vassilieva, Alexandra V; Grigoriev, Sergey V; Petukhov, Andrei V

    2010-02-16

    We present a new technique for large-scale fabrication of colloidal crystals with controllable quality and thickness. The method is based on vertical deposition in the presence of a DC electric field normal to the conducting substrate. The crystal structure and quality are quantitatively characterized by microradian X-ray diffraction, scanning electron microscopy, and optical reflectometry. Attraction between the charged colloidal spheres and the substrate promotes growth of thicker crystalline films, while the best-quality crystals are formed in the presence of repulsion. Highly ordered thick crystalline layers with a small amount of stacking faults and a low mosaic spread can be obtained by optimizing the growth conditions.

  9. Liquid methanol under a static electric field

    SciTech Connect

    Cassone, Giuseppe; Giaquinta, Paolo V.; Saija, Franz; Saitta, A. Marco

    2015-02-07

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm{sup −1}) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  10. Electrical integrity of oxides in a radiation field

    SciTech Connect

    Zinkle, S.J.; Kinoshita, C.

    1996-04-01

    In the absence of an applied electric field, irradiation generally produces a decrease in the permanent (beam-off) electrical conductivity of ceramic insulators. However, in the past 6 years several research groups have reported a phenomenon known as radiation induced electrical degradation (RIED), which produces significant permanent increases in the electrical conductivity of ceramic insulators irradiated with an applied electric field. RIED has been reported to occur at temperatures between 420 and 800 K with applied electric fields as low as 20 V/mm.

  11. Ambipolar Electric Double Layer Transistors Using Organic Single Crystals

    NASA Astrophysics Data System (ADS)

    Takenobu, Taishi; Wen, Di; Shimotani, Hidekazu; Ono, Shimpei; Iwasa, Yoshihiro

    2011-03-01

    Among organic devices, ambipolar transistors are very unique device, in which both electrons and holes are equally mobile and we are able to observe light emission through the recombination of them. Progress in the applications of such light-emitting transistors (LETs) based on organic single crystals has provided possibilities in developing organic laser. However, in these LETs, the current density is still low for lasing, and, therefore, a different device structure is necessary to overcome this issue. Here we show the first demonstration of organic ambipolar electric double layer transistors (EDLTs), in which the gate dielectric is not a conventional insulator but an electrolyte. The peculiar merit of EDLT is extremely high conductivity due to the huge capacitance of the EDL formed at the organic/electrolyte interfaces. Consequently, we can increase current density. In this study, we used rubrene single crystal and ion-gel as the active material and electrolyte, respectively. These present results will provide a prospect for further development in LET operation.

  12. Optical switch based on the electrically controlled liquid crystal interface.

    PubMed

    Komar, Andrei A; Tolstik, Alexei L; Melnikova, Elena A; Muravsky, Alexander A

    2015-06-01

    The peculiarities of the linearly polarized light beam reflection at the interface within the bulk of a nematic liquid crystal (NLC) cell with different orientations of the director are analyzed. Two methods to create the interface are considered. Combination of the planar and homeotropic orientations of the NLC director is realized by means of a spatially structured electrode under the applied voltage. In-plane patterned azimuthal alignment of the NLC director is created by the patterned rubbing alignment technique. All possible orthogonal orientations of the LC director are considered; the configurations for realization of total internal reflection are determined. The revealed relationship between the propagation of optical beams in a liquid crystal material and polarization of laser radiation has enabled realization of the spatial separation for the orthogonally polarized light beams at the interface between two regions of NLC with different director orientations (domains). Owing to variations in the applied voltage and, hence, in the refractive index gradient, the light beam propagation directions may be controlled electrically. PMID:26192675

  13. Electropumping of water with rotating electric fields

    NASA Astrophysics Data System (ADS)

    De Luca, Sergio; Todd, B. D.; Hansen, J. S.; Daivis, Peter J.

    2013-04-01

    Pumping of fluids confined to nanometer dimension spaces is a technically challenging yet vitally important technological application with far reaching consequences for lab-on-a-chip devices, biomimetic nanoscale reactors, nanoscale filtration devices and the like. All current pumping mechanisms require some sort of direct intrusion into the nanofluidic system, and involve mechanical or electronic components. In this paper, we present the first nonequilibrium molecular dynamics results to demonstrate that non-intrusive electropumping of liquid water on the nanoscale can be performed by subtly exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum of the fluid. By selectively tuning the degree of hydrophobicity of the solid walls one can generate a net unidirectional flow. Our results for the linear streaming and angular velocities of the confined water are in general agreement with the extended hydrodynamical theory for this process, though also suggest refinements to the theory are required. These numerical experiments confirm that this new concept for pumping of polar nanofluids can be employed under laboratory conditions, opening up significant new technological possibilities.

  14. Enhancement of air filtration using electric fields.

    PubMed

    Nelson, G O; Bergman, W; Miller, H H; Taylor, R D; Richards, C P; Biermann, A H

    1978-06-01

    Although polarized electrostatic air filters are efficient air filtrating devices, their main disadvantages are difficulty in collecting conductive particles or in operating at relative humidities above 70%. We describe here a new filter design that eliminates these problems. A nonconductive media, normally a glass fiber mat, is placed between two insulated conductive screens. As the voltage across the screens is increased, the penetration of particles decreases exponentially. Increasing the electric field from 0 to 10 kV/cm will decrease the mass penetration from 60% to less than 10% of a polydispersed 0.8 micrometer ammd(sigma g = 2.0) sodium chloride aerosol. The experimental effects of face velocity, particle charge and size, packing density, fiber size, and screen insulation mirror the theoretical effects of these variables on particle penetration. PMID:685827

  15. Controlled deposition or organic semiconductor single crystals and its application in field-effect transistors

    NASA Astrophysics Data System (ADS)

    Liu, Shuhong

    The search for low-cost, large area, flexible devices has led to a remarkable increase in the research and development of organic semiconductors. Single-crystal organic field-effect transistors (OFETs) are ideal device structures for studying fundamental science associated with charge transport in organic materials and have demonstrated high mobility and outstanding electrical characteristics. For example, an exceptionally high carrier mobility of 20 cm2/Vs has been demonstrated for rubrene single crystal field effect transistors. However, it remains a technical challenge to integrate single-crystal devices into practical electronic applications. A key difficulty is that organic single-crystal devices are usually fabricated one device at a time by handpicking a single crystal and placing it onto the device substrate. This makes it impossible to mass-produce at high density with reasonable throughput. Therefore, there is a great need for a high-throughput method for depositing large arrays of organic semiconductor single crystals directly onto device structures. In this dissertation, I develop several approaches towards realizing this goal. The first approach is a solution-processing technique, which relies on solvent wetting and de-wetting on substrates with patterned wettability to selectively direct the deposition or removal of organic crystals. The assembly of different organic crystals over centimeter-squared areas on Au, SiO 2 and flexible plastic substrates is demonstrated. By designing line features on the substrate, alignment of needle-like crystals is also achieved. As a demonstration of the potential application of this approach, arrays of organic single crystal FETs are fabricated by patterning organic single crystals directly onto and between transistor source and drain electrodes. Besides organic single crystals, this self-assembly strategy is also applicable for patterning other objects such as metallic nanowires. In the second technique, organic

  16. Electric and magnetic characterization of NbSe 2 single crystals: Anisotropic superconducting fluctuations above TC

    NASA Astrophysics Data System (ADS)

    Soto, F.; Berger, H.; Cabo, L.; Carballeira, C.; Mosqueira, J.; Pavuna, D.; Toimil, P.; Vidal, F.

    2007-09-01

    Electric and magnetic characterization of NbSe 2 single crystals is first presented in detail. Then, some preliminary measurements of the fluctuation-diamagnetism (FD) above the transition temperature TC are presented. The moderate uniaxial anisotropy of this compound allowed us to observe the fluctuation effects for magnetic fields H applied in the two main crystallographic orientations. The superconducting parameters resulting from the characterization suggest that it is possible to do a reliable analysis of the FD in terms of the Ginzburg-Landau (GL) theory.

  17. Electrodynamics—molecular dynamics simulations of the stability of Cu nanotips under high electric field

    NASA Astrophysics Data System (ADS)

    Veske, Mihkel; Parviainen, Stefan; Zadin, Vahur; Aabloo, Alvo; Djurabekova, Flyura

    2016-06-01

    The shape memory effect and pseudoelasticity in Cu nanowires represent a possible pair of mechanisms that prevents high aspect ratio nanosized field electron emitters from being stable at room temperature and permits their growth under high electric field. By utilizing hybrid electrodynamics-molecular dynamics simulations, we show that a global electric field of 1 GV m-1 or more significantly increases the stability and critical temperature of spontaneous reorientation of nanosized  <100>  Cu field emitters. We also show that in the studied tips the stabilizing effect of an external applied electric field is an order of magnitude greater than the destabilization caused by the field emission current. We detect the critical temperature of spontaneous reorientation using a tool that spots changes in crystal structure. The method is compatible with techniques that consider the change in potential energy, has a wider range of applicability and allows different stages in the reorientation processes to be pinpointed.

  18. Difficulties in Learning the Concept of Electric Field.

    ERIC Educational Resources Information Center

    Furio, C.; Guisasola, J.

    1998-01-01

    Analyzes students' main difficulties in learning the concept of electric field. Briefly describes the main conceptual profiles within which electric interactions can be interpreted and concludes that most students have difficulty using the idea of electric field. Contains 28 references. (DDR)

  19. Layer-dependent modulation of tungsten disulfide photoluminescence by lateral electric fields.

    PubMed

    He, Zhengyu; Sheng, Yuewen; Rong, Youmin; Lee, Gun-Do; Li, Ju; Warner, Jamie H

    2015-03-24

    Large single-crystal domains of WS2 are grown by chemical vapor deposition, and their photoluminescent properties under a lateral electric field are studied. We demonstrate that monolayer and bilayer WS2 have opposite responses to lateral electric fields, with WS2 photoluminescence (PL) substantially reduced in monolayer and increased in bilayers with increasing lateral electric field strength. Temperature-dependent PL measurements are also undertaken and show behavior distinctly different than that of the lateral electric field effects, ruling out heating as the cause of the PL changes. The PL variation in both monolayer and bilayer WS2 is attributed to the transfer of photoexcited electrons from one conduction band extremum to another, modifying the resultant recombination pathways. This effect is observed in 2D transition metal dichalcogenides due to their large exciton binding energy and small energy difference between the two conduction band extrema.

  20. Electric field effect on optical harmonic generation at the exciton resonances in GaAs

    NASA Astrophysics Data System (ADS)

    Brunne, D.; Lafrentz, M.; Pavlov, V. V.; Pisarev, R. V.; Rodina, A. V.; Yakovlev, D. R.; Bayer, M.

    2015-08-01

    An electric field applied to a semiconductor reduces its crystal symmetry and modifies its electronic structure which is expected to result in changes of the linear and nonlinear response to optical excitation. In GaAs, we observe experimentally strong electric field effects on the optical second (SHG) and third (THG) harmonic generation. The SHG signal for the laser-light k vector parallel to the [001] crystal axis is symmetry forbidden in the electric-dipole approximation, but can be induced by an applied electric field in the vicinity of the 1 s exciton energy. Surprisingly, the THG signal, which is allowed in this geometry, is considerably reduced by the electric field. We develop a theory which provides good agreement with the experimental data. In particular, it shows that the optical nonlinearities for the 1 s exciton resonance are modified in an electric field by the Stark effect, which mixes the 1 s and 2 p exciton states of opposite parity. This mixing acts in opposite way on the SHG and THG processes, as it leads to the appearance of forbidden SHG in (001)-oriented GaAs and decreases the crystallographic THG.

  1. Rubrene crystal field-effect mobility modulation via conducting channel wrinkling

    NASA Astrophysics Data System (ADS)

    Reyes-Martinez, Marcos A.; Crosby, Alfred J.; Briseno, Alejandro L.

    2015-05-01

    With the impending surge of flexible organic electronic technologies, it has become essential to understand how mechanical deformation affects the electrical performance of organic thin-film devices. Organic single crystals are ideal for the systematic study of strain effects on electrical properties without being concerned about grain boundaries and other defects. Here we investigate how the deformation affects the field-effect mobility of single crystals of the benchmark semiconductor rubrene. The wrinkling instability is used to apply local strains of different magnitudes along the conducting channel in field-effect transistors. We discover that the mobility changes as dictated by the net strain at the dielectric/semiconductor interface. We propose a model based on the plate bending theory to quantify the net strain in wrinkled transistors and predict the change in mobility. These contributions represent a significant step forward in structure-function relationships in organic semiconductors, critical for the development of the next generation of flexible electronic devices.

  2. Partial Dissolution of Charge Order Phase Observed in β-(BEDT-TTF)2PF6 Single Crystal Field Effect Transistor.

    PubMed

    Sakai, Masatoshi; Moritoshi, Norifumi; Kuniyoshi, Shigekazu; Yamauchi, Hiroshi; Kudo, Kazuhiro; Masu, Hyuma

    2016-04-01

    The effect of an applied gate electric field on the charge-order phase in β-(BEDT-TTF)2PF6 single-crystal field-effect transistor structure was observed at around room temperature by technical improvement with respect to sample preparation and electrical measurements. A relatively slight but systematic increase of the electrical conductance induced by the applied gate electric field and its temperature dependence was observed at around the metal-insulator transition temperature (TMI). The temperature dependence of the modulated electrical conductance demonstrated that TMI was shifted toward the lower side by application of a gate electric field, which corresponds to partial dissolution of the charge-order phase. The thickness of the partially dissolved charge order region was estimated to be several score times larger than the charge accumulation region. PMID:27451615

  3. Role of random electric fields in relaxors

    PubMed Central

    Phelan, Daniel; Stock, Christopher; Rodriguez-Rivera, Jose A.; Chi, Songxue; Leão, Juscelino; Long, Xifa; Xie, Yujuan; Bokov, Alexei A.; Ye, Zuo-Guang; Ganesh, Panchapakesan; Gehring, Peter M.

    2014-01-01

    PbZr1–xTixO3 (PZT) and Pb(Mg1/3Nb2/3)1–xTixO3 (PMN-xPT) are complex lead-oxide perovskites that display exceptional piezoelectric properties for pseudorhombohedral compositions near a tetragonal phase boundary. In PZT these compositions are ferroelectrics, but in PMN-xPT they are relaxors because the dielectric permittivity is frequency dependent and exhibits non-Arrhenius behavior. We show that the nanoscale structure unique to PMN-xPT and other lead-oxide perovskite relaxors is absent in PZT and correlates with a greater than 100% enhancement of the longitudinal piezoelectric coefficient in PMN-xPT relative to that in PZT. By comparing dielectric, structural, lattice dynamical, and piezoelectric measurements on PZT and PMN-xPT, two nearly identical compounds that represent weak and strong random electric field limits, we show that quenched (static) random fields establish the relaxor phase and identify the order parameter. PMID:24449912

  4. The Influence of Electric Field and Confinement on Cell Motility

    PubMed Central

    Huang, Yu-Ja; Samorajski, Justin; Kreimer, Rachel; Searson, Peter C.

    2013-01-01

    The ability of cells to sense and respond to endogenous electric fields is important in processes such as wound healing, development, and nerve regeneration. In cell culture, many epithelial and endothelial cell types respond to an electric field of magnitude similar to endogenous electric fields by moving preferentially either parallel or antiparallel to the field vector, a process known as galvanotaxis. Here we report on the influence of dc electric field and confinement on the motility of fibroblast cells using a chip-based platform. From analysis of cell paths we show that the influence of electric field on motility is much more complex than simply imposing a directional bias towards the cathode or anode. The cell velocity, directedness, as well as the parallel and perpendicular components of the segments along the cell path are dependent on the magnitude of the electric field. Forces in the directions perpendicular and parallel to the electric field are in competition with one another in a voltage-dependent manner, which ultimately govern the trajectories of the cells in the presence of an electric field. To further investigate the effects of cell reorientation in the presence of a field, cells are confined within microchannels to physically prohibit the alignment seen in 2D environment. Interestingly, we found that confinement results in an increase in cell velocity both in the absence and presence of an electric field compared to migration in 2D. PMID:23555674

  5. The influence of electric field and confinement on cell motility.

    PubMed

    Huang, Yu-Ja; Samorajski, Justin; Kreimer, Rachel; Searson, Peter C

    2013-01-01

    The ability of cells to sense and respond to endogenous electric fields is important in processes such as wound healing, development, and nerve regeneration. In cell culture, many epithelial and endothelial cell types respond to an electric field of magnitude similar to endogenous electric fields by moving preferentially either parallel or antiparallel to the field vector, a process known as galvanotaxis. Here we report on the influence of dc electric field and confinement on the motility of fibroblast cells using a chip-based platform. From analysis of cell paths we show that the influence of electric field on motility is much more complex than simply imposing a directional bias towards the cathode or anode. The cell velocity, directedness, as well as the parallel and perpendicular components of the segments along the cell path are dependent on the magnitude of the electric field. Forces in the directions perpendicular and parallel to the electric field are in competition with one another in a voltage-dependent manner, which ultimately govern the trajectories of the cells in the presence of an electric field. To further investigate the effects of cell reorientation in the presence of a field, cells are confined within microchannels to physically prohibit the alignment seen in 2D environment. Interestingly, we found that confinement results in an increase in cell velocity both in the absence and presence of an electric field compared to migration in 2D.

  6. The electrical conductivity of the strongly defective HgCr2Se4 single crystals

    NASA Astrophysics Data System (ADS)

    Gron, T.; Duda, H.; Krajewski, A.; Kusz, J.; Warczewski, J.; Nikiforov, K. G.

    The effect of vacancies on the electrical conductivity in HgCr2 Se-4 spinels is considered. For this purpose the X-ray studies, the electrical conductivity and the thermopower measurements and the calculation of the vacancy model were used. The above investigations showed that: 1) the single crystals under study are p-type semiconductors, 2) the as grown and vacuum annealed single crystals exhibit Arrhenius plot of the electrical conductivity, 3) the copper doping single crystals reveal the jump of the electrical conductivity near Curie temperature, and 4) the strong defectiveness of the spinel structure makes the magnon excitations impossible below the Curie temperature.

  7. Stability enhancement of an electrically tunable colloidal photonic crystal using modified electrodes with a large electrochemical potential window

    SciTech Connect

    Shim, HongShik; Gyun Shin, Chang; Heo, Chul-Joon; Jeon, Seog-Jin; Jin, Haishun; Woo Kim, Jung; Jin, YongWan; Lee, SangYoon; Gyu Han, Moon E-mail: jinklee@snu.ac.kr; Lim, Joohyun; Lee, Jin-Kyu E-mail: jinklee@snu.ac.kr

    2014-02-03

    The color tuning behavior and switching stability of an electrically tunable colloidal photonic crystal system were studied with particular focus on the electrochemical aspects. Photonic color tuning of the colloidal arrays composed of monodisperse particles dispersed in water was achieved using external electric field through lattice constant manipulation. However, the number of effective color tuning cycle was limited due to generation of unwanted ions by electrolysis of the water medium during electrical switching. By introducing larger electrochemical potential window electrodes, such as conductive diamond-like carbon or boron-doped diamond, the switching stability was appreciably enhanced through reducing the number of ions generated.

  8. Influence of the thickness of a crystal on the electrical characteristics of Cd(Zn)Te detectors

    SciTech Connect

    Sklyarchuk, V.; Fochuk, p.; Rarenko, I.; Zakharuk, Z.; Sklyarchuk, O. F.; Bolotnikov, A. E.; James, R. B.

    2015-08-01

    We studied the electrical characteristics of Cd(Zn)Te detectors with rectifying contacts and varying thicknesses, and established that their geometrical dimensions affect the measured electrical properties. We found that the maximum value of the operating-bias voltage and the electric field in the detector for acceptable values of the dark current can be achieved when the crystal has an optimum thickness. This finding is due to the combined effect of generation-recombination in the space-charge region and space-charge limited currents (SCLC).

  9. Production of plasma with variable, radial electric fields

    NASA Technical Reports Server (NTRS)

    Kustom, B.; Merlino, R. L.; Dangelo, N.

    1984-01-01

    A device is described suitable for plasma wave experiments requiring relatively large, variable, radial electric fields perpendicular to a static magnetic field. By separately adjusting the potentials of two independent, coaxial discharge plasmas, the authors produced plasmas with a radial electric field E sub r less than approximately 5 V/cm.

  10. Flow-Driven Cell Migration under External Electric Fields

    NASA Astrophysics Data System (ADS)

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2015-12-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and they can migrate toward a cathode or an anode, depending on the cell type. In this Letter, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent.

  11. Ferroelectric switching of electrically commanded alignment layers for liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Drevenšek-Olenik, I.; Kunstelj, K.; Koncilija, J.; Komitov, L.

    2006-10-01

    Optical second harmonic generation (SHG) was used to probe the structural and dynamic properties of electrically commanded alignment layers for liquid crystal displays. The layers were 200nm thick and were made of siloxane-based side chain ferroelectric liquid crystal polymer (FLCP). The effect of an external dc electric field in the range of 0-2V/μm on the SHG signal was probed in an empty sandwich cell and in a cell filled with an isotropic liquid (hexadecane). In both cases the nonlinear induced polarization shows characteristics of the "V-shaped" switching, which is associated with a relatively minor reorientational perturbation of the film. This signifies a presence of domain structure, which is strongly pinned to the substrates. The values of switching times deduced from the SHG response are two orders of magnitude larger from the values obtained by optical birefringence measurements. This observation suggests that in the top surface layer of the FLCP, which is mainly responsible for the birefringence and also for the so-called electrically commanded surface effect, the reorientation of the polymer side chains takes place much faster than in the regions close to the substrate.

  12. High electric field deuterium ion sources for neutron generators

    NASA Astrophysics Data System (ADS)

    Reichenbach, Birk

    Active interrogation systems for highly enriched uranium require improved fieldable neutron sources. The target technology for deuterium-tritium neutron generators is well understood and the most significant improvement can be achieved by improving the deuterium ion source through increased output and, in some cases, lifetime of the ion source. We are developing a new approach to a deuterium ion sources based upon the field desorption/evaporation of deuterium from the surfaces of metal tips. Electrostatic field desorption (EFD) desorbs previously adsorbed deuterium as ions under the influence of high electric fields (several V/A), without removing tip material. Single etched wire tip experiments have been performed and have shown that this is difficult but can be achieved with molybdenum and tungsten tips. Electrostatic field evaporation (EFE) evaporates ultra thin deuterated titanium films as ions. It has been shown that several 10s of atomic layers can be removed within a few nanoseconds from etched tungsten tips. In the course of these studies titanium deposition and deuteration methods were studied and new detection methods developed. Space charge effects resulting from the large ion currents were identified to be the most likely cause of some unusual ion emission characteristics. In addition, on W < 110 > oriented substrates a surprising body-centered cubic crystal structure of the titanium film was found and studied. The ion currents required for neutron generator applications can be achieved by microfabrication of metal tip arrays. Field desorption studies of microfabricated field emitter tip arrays have been conducted for the first time. Maximum fields of 3 V/A have been applied to the array tip surfaces to date, although fields of ˜ 2 V/A to ˜ 2.5 V/A are more typical. Desorption of atomic deuterium ions has been observed at fields of roughly 2 V/A at room temperature. The desorption of common surface adsorbates, such as hydrogen, carbon, water, and

  13. An electrically tunable plenoptic camera using a liquid crystal microlens array

    SciTech Connect

    Lei, Yu; Tong, Qing; Zhang, Xinyu; Sang, Hongshi; Ji, An; Xie, Changsheng

    2015-05-15

    Plenoptic cameras generally employ a microlens array positioned between the main lens and the image sensor to capture the three-dimensional target radiation in the visible range. Because the focal length of common refractive or diffractive microlenses is fixed, the depth of field (DOF) is limited so as to restrict their imaging capability. In this paper, we propose a new plenoptic camera using a liquid crystal microlens array (LCMLA) with electrically tunable focal length. The developed LCMLA is fabricated by traditional photolithography and standard microelectronic techniques, and then, its focusing performance is experimentally presented. The fabricated LCMLA is directly integrated with an image sensor to construct a prototyped LCMLA-based plenoptic camera for acquiring raw radiation of targets. Our experiments demonstrate that the focused region of the LCMLA-based plenoptic camera can be shifted efficiently through electrically tuning the LCMLA used, which is equivalent to the extension of the DOF.

  14. Long-range orientational order, local-field anisotropy, and mean molecular polarizability in liquid crystals

    SciTech Connect

    Aver'yanov, E. M.

    2009-01-15

    The problems on the relation of the mean effective molecular polarizability {gamma}-bar to the long-range orientational order of molecules (the optical anisotropy of the medium) in uniaxial and biaxial liquid crystals, the local anisotropy on mesoscopic scales, and the anisotropy of the Lorentz tensor L and the local-field tensor f are formulated and solved. It is demonstrated that the presence of the long-range orientational order of molecules in liquid crystals imposes limitations from below on the molecular polarizability {gamma}-bar, which differs for uniaxial and biaxial liquid crystals. The relation between the local anisotropy and the molecular polarizability {gamma}-bar is investigated for calamitic and discotic uniaxial liquid crystals consisting of lath- and disk-shaped molecules. These liquid crystals with identical macroscopic symmetry differ in the local anisotropy and the relationships between the components L{sub parallel} < L{sub perpendicular} , f{sub parallel} < f{sub perpendicular} (calamitic) and L{sub parallel} > L{sub perpendicular} , f{sub parallel} > f{sub perpendicular} (discotic) for an electric field oriented parallel and perpendicular to the director. The limitations from below and above on the molecular polarizability {gamma}-bar due to the anisotropy of the tensors L and f are established for liquid crystals of both types. These limitations indicate that the molecular polarizability {gamma}-bar depends on the phase state and the temperature. The factors responsible for the nonphysical consequences of the local-field models based on the approximation {gamma}-bar = const are revealed. The theoretical inferences are confirmed by the experimental data for a number of calamitic nematic liquid crystals with different values of birefringence and the discotic liquid crystal Col{sub ho}.

  15. Measurements of the vertical atmospheric electric field and of the electrical conductivity with stratospheric balloons

    NASA Technical Reports Server (NTRS)

    Iversen, I. B.; Madsen, M. M.; Dangelo, N.

    1985-01-01

    Measurements of the atmospheric (vertical) electric field with balloons in the stratosphere are reported. The atmospheric electrical conductivity is also measured and the current density inferred. The average vertical current shows the expected variation with universal time and is also seen to be influenced by external (magnetospheric) electric fields.

  16. Electric field induced bacterial flocculation of Enteroaggregative Escherichia coli 042

    SciTech Connect

    Kumar, Aloke; Mortensen, Ninell P; Mukherjee, Partha P; Retterer, Scott T; Doktycz, Mitchel John

    2011-01-01

    A response of the aggregation dynamics of enteroaggregative Escherichia coli under low magnitude steady and oscillating electric fields is presented. The presence of uniform electric fields hampered microbial adhesion and biofilm formation on a transverse glass surface, but instead promoted the formation of flocs. Extremely heterogeneous distribution of live and dead cells was observed among the flocs. Moreover, floc formation was largely observed to be independent of the frequency of alternating electric fields.

  17. Migration-induced field-stabilized polar phase in strontium titanate single crystals at room temperature

    NASA Astrophysics Data System (ADS)

    Hanzig, Juliane; Zschornak, Matthias; Hanzig, Florian; Mehner, Erik; Stöcker, Hartmut; Abendroth, Barbara; Röder, Christian; Talkenberger, Andreas; Schreiber, Gerhard; Rafaja, David; Gemming, Sibylle; Meyer, Dirk C.

    2013-07-01

    Local reversible structural changes in SrTiO3 single crystals in an external electric field are induced by oxygen redistribution. We present in situ x-ray diffraction measurements during and immediately after electroformation. Several reflections are monitored and show an elongation of the cubic unit cell of strontium titanate. Raman investigations verify that the expansion of the unit cell involves a transition from the centrosymmetric to a lower symmetry phase. During a complete formation cycle, including the hold time of the electric field and relaxation time without field, two different dynamics are observed for the reversible transitions from cubic symmetry to tetragonal distortion: a slow one during the increase of the lattice constant in field direction and a fast one after switching off the electric field. Based on the experimental data, we propose the formation of a polar strontium titanate unit cell at room temperature stabilized by the electric field, which is referred to as migration-induced field-stabilized polar phase.

  18. Electric field measurements at subcritical, oblique bow shock crossings

    NASA Technical Reports Server (NTRS)

    Wygant, J. R.; Bensadoun, M.; Mozer, F. S.

    1987-01-01

    ISEE-1 electric field measurements at three oblique, subcritical dispersive bow shock crossings are presented. The potential drops across the shock due to the large spatial scale normal component of the electric field were found to vary between 340 and 520 V. The measurements provide the first observations in a space plasma of the oscillations in the normal component of the electric field connected with the whistler precursor phase standing at a collisionless shock. Intense, rapidly varying electric fields with peak amplitudes ranging up to 100 mV/m were observed at the magnetic ramp of the shock in the high time resolution data.

  19. Spectral studies of the sources of ionospheric electric fields

    NASA Technical Reports Server (NTRS)

    Earle, G. D.; Kelley, M. C.

    1987-01-01

    Spectral analyses (applying the Fourier analysis methods) were performed on three incoherent scatter radar data sets (obtained at Jicamarca, Peru; Chatanika, Alaska; and Arecibo, Puerto Rico) with the aim of investigating the origin of ionospheric electric fields in the frequency range of 0.01-2 cycles/h. In quiet times, atmospheric gravity waves appeared to be the most likely source of the ionospheric electric field. This hypothesis was tested by a direct simultaneous comparison of measurements of gravity waves in the mesosphere and of electric fields in the thermosphere during very quiet conditions. The results indicated that a gravity wave source is a plausible candidate for the electric field fluctuations.

  20. Linear electric field time-of-flight ion mass spectrometer

    DOEpatents

    Funsten, Herbert O.; Feldman, William C.

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  1. Electric field driven torque in ATP synthase.

    PubMed

    Miller, John H; Rajapakshe, Kimal I; Infante, Hans L; Claycomb, James R

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring. PMID:24040370

  2. Electric Field Driven Torque in ATP Synthase

    PubMed Central

    Miller, John H.; Rajapakshe, Kimal I.; Infante, Hans L.; Claycomb, James R.

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring. PMID:24040370

  3. Acanthamoeba Migration in an Electric Field

    PubMed Central

    Rudell, Jolene Chang; Gao, Jing; Sun, Yuxin; Sun, Yaohui; Chodosh, James; Schwab, Ivan; Zhao, Min

    2013-01-01

    Purpose. We investigated the in vitro response of Acanthamoeba trophozoites to electric fields (EFs). Methods. Acanthamoeba castellanii were exposed to varying strengths of an EF. During EF exposure, cell migration was monitored using an inverted microscope equipped with a CCD camera and the SimplePCI 5.3 imaging system to capture time-lapse images. The migration of A. castellanii trophozoites was analyzed and quantified with ImageJ software. For analysis of cell migration in a three-dimensional culture system, Acanthamoeba trophozoites were cultured in agar, exposed to an EF, digitally video recorded, and analyzed at various Z focal planes. Results. Acanthamoeba trophozoites move at random in the absence of an EF, but move directionally in response to an EF. Directedness in the absence of an EF is 0.08 ± 0.01, while in 1200 mV/mm EF, directedness is significantly higher at −0.65 ± 0.01 (P < 0.001). We find that the trophozoite migration response is voltage-dependent, with higher directionality with higher voltage application. Acanthamoeba move directionally in a three-dimensional (3D) agar system as well when exposed to an EF. Conclusions. Acanthamoeba trophozoites move directionally in response to an EF in a two-dimensional and 3D culture system. Acanthamoeba trophozoite migration is also voltage-dependent, with increased directionality with increasing voltage. This may provide new treatment modalities for Acanthamoeba keratitis. PMID:23716626

  4. Electric field driven torque in ATP synthase.

    PubMed

    Miller, John H; Rajapakshe, Kimal I; Infante, Hans L; Claycomb, James R

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring.

  5. Pulsed electric field assisted assembly of polyaniline.

    PubMed

    Kumar, Arun; Kazmer, David O; Barry, Carol M F; Mead, Joey L

    2012-08-24

    Assembling conducting polyaniline (PANi) on pre-patterned nano-structures by a high rate, commercially viable route offers an opportunity for manufacturing devices with nanoscale features. In this work we report for the first time the use of pulsed electric field to assist electrophoresis for the assembly of conducting polyaniline on gold nanowire interdigitated templates. This technique offers dynamic control over heat build-up, which has been a main drawback in the DC electrophoresis and AC dielectrophoresis as well as the main cause of nanowire template damage. The use of this technique allowed higher voltages to be applied, resulting in shorter assembly times (e.g., 17.4 s, assembly resolution of 100 nm). Moreover, the area coverage increases with the increase in number of pulses. A similar trend was observed with the deposition height and the increase in deposition height followed a linear trend with a correlation coefficient of 0.95. When the experimental mass deposited was compared with Hamaker's theoretical model, the two were found to be very close. The pre-patterned templates with PANi deposition were subsequently used to transfer the nanoscale assembled PANi from the rigid templates to thermoplastic polyurethane using the thermoforming process.

  6. Measuring electric fields from surface contaminants with neutral atoms

    SciTech Connect

    Obrecht, J. M.; Wild, R. J.; Cornell, E. A.

    2007-06-15

    In this paper we demonstrate a technique of utilizing magnetically trapped neutral {sup 87}Rb atoms to measure the magnitude and direction of stray electric fields emanating from surface contaminants. We apply an alternating external electric field that adds to (or subtracts from) the stray field in such a way as to resonantly drive the trapped atoms into a mechanical dipole oscillation. The growth rate of the oscillation's amplitude provides information about the magnitude and sign of the stray field gradient. Using this measurement technique, we are able to reconstruct the vector electric field produced by surface contaminants. In addition, we can accurately measure the electric fields generated from adsorbed atoms purposely placed onto the surface and account for their systematic effects, which can plague a precision surface-force measurement. We show that baking the substrate can reduce the electric fields emanating from adsorbate and that the mechanism for reduction is likely surface diffusion, not desorption.

  7. Surface electric fields for North America during historical geomagnetic storms

    USGS Publications Warehouse

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  8. Surface electric fields for North America during historical geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Wei, Lisa H.; Homeier, Nicole; Gannon, Jennifer L.

    2013-08-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 "Quebec" storm and the 2003 "Halloween" storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  9. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Schweizer, M.; Cobb, S. D.; Walker, J. S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). The RMF has a marked affect on the interface shape, changing it from concave to nearly flat. The onset of time-dependent flow instabilities occurs when the critical magnetic Taylor number is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The critical magnetic Taylor number is a sensitive function of the aspect ratio and, as the crystal grows under a constant applied magnetic field, the induced striations change from nonperiodic to periodic, undergo a period-doubling transition, and then cease to exist. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.

  10. Electric fields can control the transport of water in carbon nanotubes

    PubMed Central

    Ritos, Konstantinos; Borg, Matthew K.; Mottram, Nigel J.

    2016-01-01

    The properties of water confined inside nanotubes are of considerable scientific and technological interest. We use molecular dynamics to investigate the structure and average orientation of water flowing within a carbon nanotube. We find that water exhibits biaxial paranematic liquid crystal ordering both within the nanotube and close to its ends. This preferred molecular ordering is enhanced when an axial electric field is applied, affecting the water flow rate through the nanotube. A spatially patterned electric field can minimize nanotube entrance effects and significantly increase the flow rate. PMID:26712640

  11. Effect of enantiomeric excess on the smectic-C* phases under electric field

    NASA Astrophysics Data System (ADS)

    Chemingui, M.; Soltani, T.; Marcerou, J. P.; Othman, T.

    2016-03-01

    A series of enantiomeric mixtures of 4-(1-methylheptyloxycarbonyl) phenol 4'-octyloxybiphenyl-4-carbonate (MHPOBC) is reported to understand the structures and stability conditions of emerging liquid crystal phases. The mesomorphic properties are studied by microscopic observation, electro-optic and dielectric measurements. The electric field-concentration (E-x) phase diagram for each phase at constant temperature is constructed. The complete electric field-temperature (E-T) phase diagrams for several enantiomeric mixtures of the antiferroelectric MHPOBC are established. These phase diagrams show the influence of optical purity on the phase stability and the unwinding threshold.

  12. Electric Field Cancellation on Quartz by Rb Adsorbate-Induced Negative Electron Affinity

    NASA Astrophysics Data System (ADS)

    Sedlacek, J. A.; Kim, E.; Rittenhouse, S. T.; Weck, P. F.; Sadeghpour, H. R.; Shaffer, J. P.

    2016-04-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results will be important for integrating Rydberg atoms into hybrid quantum systems, as fundamental probes of atom-surface interactions, and for studies of 2D electron gases bound to surfaces.

  13. Electric Field Cancellation on Quartz by Rb Adsorbate-Induced Negative Electron Affinity.

    PubMed

    Sedlacek, J A; Kim, E; Rittenhouse, S T; Weck, P F; Sadeghpour, H R; Shaffer, J P

    2016-04-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results will be important for integrating Rydberg atoms into hybrid quantum systems, as fundamental probes of atom-surface interactions, and for studies of 2D electron gases bound to surfaces. PMID:27081976

  14. Tailor-made force fields for crystal-structure prediction.

    PubMed

    Neumann, Marcus A

    2008-08-14

    A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom.

  15. Tailor-made force fields for crystal-structure prediction.

    PubMed

    Neumann, Marcus A

    2008-08-14

    A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom. PMID:18642947

  16. An Experimental Study of the Effects of A Rotating Magnetic Field on Electrically Conducting Aqueous Solutions

    NASA Technical Reports Server (NTRS)

    Ramachandran Narayanan; Mazuruk, Konstantin

    1998-01-01

    The use of a rotating magnetic field for stirring metallic melts has been a commonly adopted practice for a fairly long period. The elegance of the technique stems from its non-intrusive nature and the intense stirring it can produce in an electrically conducting medium. A further application of the method in recent times has been in the area of crystal growth from melts (e.g. germanium). The latter experiments have been mainly research oriented in order to understand the basic physics of the process and to establish norms for optimizing such a technique for the commercial production of crystals. When adapted for crystal growth applications, the rotating magnetic field is used to induce a slow flow or rotation in the melt which in effect significantly curtails temperature field oscillations in the melt. These oscillations are known to cause dopant striations and thereby inhomogeneities in the grown crystal that essentially degrades the crystal quality. The applied field strength is typically of the order of milli-Teslas with a frequency range between 50-400 Hz. In this investigation, we report findings from experiments that explore the feasibility of applying a rotating magnetic field to aqueous salt solutions, that are characterized by conductivities that are several orders of magnitude smaller than semi-conductor melts. The aim is to study the induced magnetic field and consequently the induced flow in such in application. Detailed flow field description obtained through non-intrusive particle displacement tracking will be reported along with an analytical assessment of the results. It is anticipated that the obtained results will facilitate in establishing a parameter range over which the technique can be applied to obtain a desired flow field distribution. This method can find applicability in the growth of crystals from aqueous solutions and give an experimenter another controllable parameter towards improving the quality of the grown crystal.

  17. Birefringence of the antiferromagnetic crystals linear in a magnetic field

    NASA Astrophysics Data System (ADS)

    Eremenko, V. V.; Kharchenko, N. F.; Beliy, L. I.; Tutakina, O. P.

    1980-01-01

    The new linear magneto-optical effect-birefringence-of a linear polarized light which is directly proportional to the magnetic field strength has been observed. This effect is permitted in crystals which allow piezo-magnetic properties. One was studied in antiferromagnet CoF 2 and CoCO 3 for the longitudinal geometry of an experiment.

  18. Membrane molecule reorientation in an electric field recorded by attenuated total reflection Fourier-transform infrared spectroscopy.

    PubMed

    Le Saux, A; Ruysschaert, J M; Goormaghtigh, E

    2001-01-01

    Electric fields play an important role in the physiological function of macromolecules. Much is known about the role that electric fields play in biological systems, but membrane molecule structure and orientation induced by electric fields remain essentially unknown. In this paper, we present a polarized attenuated total reflection (ATR) experiment we designed to study the effect of electric fields on membrane molecule structure and orientation by Fourier-transform infrared (FTIR) spectroscopy. Two germanium crystals used as the internal reflection element for ATR-FTIR experiments were coated with a thin layer of polystyrene as insulator and used as electrodes to apply an electric field on an oriented stack of membranes made of dioleylphosphatidylcholine (DOPC) and melittin. This experimental set up allowed us for the first time to show fully reversible orientational changes in the lipid headgroups specifically induced by the electric potential difference.

  19. Membrane molecule reorientation in an electric field recorded by attenuated total reflection Fourier-transform infrared spectroscopy.

    PubMed Central

    Le Saux, A; Ruysschaert, J M; Goormaghtigh, E

    2001-01-01

    Electric fields play an important role in the physiological function of macromolecules. Much is known about the role that electric fields play in biological systems, but membrane molecule structure and orientation induced by electric fields remain essentially unknown. In this paper, we present a polarized attenuated total reflection (ATR) experiment we designed to study the effect of electric fields on membrane molecule structure and orientation by Fourier-transform infrared (FTIR) spectroscopy. Two germanium crystals used as the internal reflection element for ATR-FTIR experiments were coated with a thin layer of polystyrene as insulator and used as electrodes to apply an electric field on an oriented stack of membranes made of dioleylphosphatidylcholine (DOPC) and melittin. This experimental set up allowed us for the first time to show fully reversible orientational changes in the lipid headgroups specifically induced by the electric potential difference. PMID:11159405

  20. Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field.

    PubMed

    Li, Chunwei; Tian, Xiubo

    2016-08-01

    The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process was simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process.

  1. Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field

    NASA Astrophysics Data System (ADS)

    Li, Chunwei; Tian, Xiubo

    2016-08-01

    The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process was simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process.

  2. Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field.

    PubMed

    Li, Chunwei; Tian, Xiubo

    2016-08-01

    The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process was simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process. PMID:27587123

  3. Measurement of electric fields and estimation of dielectric susceptibility

    NASA Astrophysics Data System (ADS)

    Nogi, Yasuyuki; Suzuki, Kiyomitsu; Ohkuma, Yasunori

    2013-05-01

    We describe a method of measuring the spatial structures of electric fields produced by charge distributions such as those on strip electrodes, small disk electrodes, and long double-plate electrodes. An electric-field sensor with high sensitivity to ac fields is fabricated for the measurement using a thin copper sheet. The reliability of the sensor is confirmed using a parallel-plate capacitor. The electric fields are oscillated at a frequency of 300 kHz to operate the electric-field sensor successfully. The structures of the measured fields coincide well with those of theoretical fields derived from Coulomb's law. When a dielectric is inserted in an electric field, polarization charges appear on the surface of the dielectric and modify the electric field in empty space. We measure the modified field and confirm the well-known linear relation between the polarization of a dielectric and the electric field. Dielectric susceptibilities are estimated from the linear relation for four types of dielectric.

  4. Response of water to electric fields at temperatures below the glass transition: A molecular dynamics analysis

    NASA Astrophysics Data System (ADS)

    Hu, Xiaohu; Elghobashi-Meinhardt, Nadia; Gembris, Daniel; Smith, Jeremy C.

    2011-10-01

    The electric field dependence of the structure and dynamics of water at 77 K, i.e., below the glass transition temperature (136 K), is investigated using molecular dynamics simulations. Transitions are found at two critical field strengths, denoted E1 and E2. The transition around E1≈ 3.5 V/nm is characterized by the onset of significant structural disorder, a rapid increase in the orientational polarization, and a maximum in the dynamical fluctuations. At E2≈ 40 V/nm, the system crystallizes in discrete steps into a body-centered-cubic unit cell that minimizes the potential energy by simultaneous superpolarization of the water molecular dipoles and maximization of the intermolecular hydrogen bonds. The stepwise and discontinuous increase of the orientational polarization with the increasing electric field indicates that the dipole relaxation in the electric field is highly cooperative.

  5. Response of water to electric fields at temperatures below the glass transition: A molecular dynamics analysis

    SciTech Connect

    Hu, Xiaohu; Elghobashi-Meinhardt, Nadia; Gembris, Daniel; Smith, Jeremy C

    2011-01-01

    The electric field dependence of the structure and dynamics of water at 77 K, i.e., below the glass transition temperature (136 K), is investigated using molecular dynamics simulations. Transitions are found at two critical field strengths, denoted E1 and E2. The transition around E1 3.5 V/nm is characterized by the onset of significant structural disorder, a rapid increase in the orientational polarization, and a maximum in the dynamical fluctuations. At E2 40 V/nm, the system crystallizes in discrete steps into a body-centered-cubic unit cell that minimizes the potential energy by simultaneous superpolarization of the water molecular dipoles and maximization of the intermolecular hydrogen bonds. The stepwise and discontinuous increase of the orientational polarization with the increasing electric field indicates that the dipole relaxation in the electric field is highly cooperative.

  6. High-frequency electric field measurement using a toroidal antenna

    DOEpatents

    Lee, Ki Ha

    2002-01-01

    A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.

  7. Role of electrical field in quantum Hall effect of graphene

    NASA Astrophysics Data System (ADS)

    Luo, Ji

    2013-01-01

    The ballistic motion of carriers of graphene in an orthogonal electromagnetic field is investigated to explain quantum Hall effect of graphene under experimental conditions. With the electrical field, all electronic eigen-states have the same expectation value of the velocity operator, or classically, all carriers move in cycloid-like curves with the same average velocity. This velocity is the origin of the Hall conductance and its magnitude is just appropriate so that the quantized Hall conductance is exactly independent of the external field. Electrical field changes each Landau level into a bundle of energies. Hall conductance plateaus occur in small fields as bundle gaps exist and are destroyed in intermediate fields as bundles overlap. As the electrical field tends to the critical point, all bundles have the same width, and bundle gaps increase to infinity rapidly. As a result, saturation of the Hall conductance may be observed. Electrical field thus demonstrates nonlinear effects on the Hall conductance.

  8. Temperature modulation of electric fields in biological matter.

    PubMed

    Daniels, Charlotte S; Rubinsky, Boris

    2011-01-01

    Pulsed electric fields (PEF) have become an important minimally invasive surgical technology for various applications including genetic engineering, electrochemotherapy and tissue ablation. This study explores the hypothesis that temperature dependent electrical parameters of tissue can be used to modulate the outcome of PEF protocols, providing a new means for controlling and optimizing this minimally invasive surgical procedure. This study investigates two different applications of cooling temperatures applied during PEF. The first case utilizes an electrode which simultaneously delivers pulsed electric fields and cooling temperatures. The subsequent results demonstrate that changes in electrical properties due to temperature produced by this configuration can substantially magnify and confine the electric fields in the cooled regions while almost eliminating electric fields in surrounding regions. This method can be used to increase precision in the PEF procedure, and eliminate muscle contractions and damage to adjacent tissues. The second configuration considered introduces a third probe that is not electrically active and only applies cooling boundary conditions. This second study demonstrates that in this probe configuration the temperature induced changes in electrical properties of tissue substantially reduce the electric fields in the cooled regions. This novel treatment can potentially be used to protect sensitive tissues from the effect of the PEF. Perhaps the most important conclusion of this investigation is that temperature is a powerful and accessible mechanism to modulate and control electric fields in biological tissues and can therefore be used to optimize and control PEF treatments.

  9. Inner Magnetospheric Electric Fields Derived from IMAGE EUV

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Adrian, M. L.

    2007-01-01

    The local and global patterns of plasmaspheric plasma transport reflect the influence of electric fields imposed by all sources in the inner magnetosphere. Image sequences of thermal plasma G:istribution obtained from the IMAGE Mission Extreme Ultraviolet Imager can be used to derive plasma motions and, using a magnetic field model, the corresponding electric fields. These motions and fields directly reflect the dynamic coupling of injected plasmasheet plasma and the ionosphere, in addition to solar wind and atmospheric drivers. What is being learned about the morphology of inner magnetospheric electric fields during storm and quite conditions from this new empirical tool will be presented and discussed.

  10. Simultaneous electric-field measurements on nearby balloons.

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.

    1972-01-01

    Electric-field payloads were flown simultaneously on two balloons from Great Whale River, Canada, on September 21, 1971, to provide data at two points in the upper atmosphere that differed in altitude by more than one atmospheric density scale height and in horizontal position by 30-140 km. The altitude dependences in the two sets of data prove conclusively that the vertical electric field at balloon altitudes stems from fair-weather atmospheric electricity sources and that the horizontal fields are mapped down ionospheric fields, since the weather-associated horizontal fields were smaller than 2 mV/m.

  11. Magnetic and electric field alignments of cellulose chains for electro-active paper actuator

    NASA Astrophysics Data System (ADS)

    Yun, Sungryul; Chen, Yi; Lee, Sang Woo; Kim, Jaehwan; Kim, Heung Soo

    2008-03-01

    To improve the piezoelectricity of cellulose electro-active paper (EAPap), electrical field and magnetic field alignments were investigated. EAPap is made with cellulose by dissolving cotton pulp and regenerating cellulose with aligned cellulose fibers. EAPap made with cellulose has piezoelectric property due to its structural crystallinity. Noncentro-symmetric crystal structure of EAPap, which is mostly cellulose II, can exhibit piezoelectricity. However, EAPap has ordered crystal parts as well as disordered parts of cellulose. Thus, well alignment of cellulose chains in EAPap is important to improve its piezoelectricity. In this paper, uniaxial alignments of cellulose chains were investigated by applying electric field and magnetic field. As exposing different fields to EAPap samples, the changed characteristics were analyzed by X-Ray diffractometer (XRD) and Scanning electron microscopy (SEM). Finally, the piezoelectricity of EAPap samples was evaluated by comparing their piezoelectric charge constant [d 31]. As increasing applied electric field up to 40V/mm, d 31 value was gradually improved due to increased cellulose crystallinity as well as alignment of cellulose chains. Also the alignment of cellulose chains was improved with increasing the exposing time to magnetic field (5.3T) and well alignment was achieved by exposing EAPap sample on the magnetic field for 180min.

  12. Reflective liquid crystal light valve with hybrid field effect mode

    NASA Technical Reports Server (NTRS)

    Boswell, Donald D. (Inventor); Grinberg, Jan (Inventor); Jacobson, Alexander D. (Inventor); Myer, Gary D. (Inventor)

    1977-01-01

    There is disclosed a high performance reflective mode liquid crystal light valve suitable for general image processing and projection and particularly suited for application to real-time coherent optical data processing. A preferred example of the device uses a CdS photoconductor, a CdTe light absorbing layer, a dielectric mirror, and a liquid crystal layer sandwiched between indium-tin-oxide transparent electrodes deposited on optical quality glass flats. The non-coherent light image is directed onto the photoconductor; this reduces the impedance of the photoconductor, thereby switching the AC voltage that is impressed across the electrodes onto the liquid crystal to activate the device. The liquid crystal is operated in a hybrid field effect mode. It utilizes the twisted nematic effect to create a dark off-state (voltage off the liquid crystal) and the optical birefringence effect to create the bright on-state. The liquid crystal thus modulates the polarization of the coherent read-out or projection light responsively to the non-coherent image. An analyzer is used to create an intensity modulated output beam.

  13. Exposure assessment for power frequency electric and magnetic fields.

    PubMed

    Bracken, T D

    1993-04-01

    Over the past decade considerable data have been collected on electric and magnetic fields in occupational environments. These data have taken the form of area measurements, source characterizations, and personal exposure measurements. Occupational EMF levels are highly variable in space and time. Exposures associated with these fields exhibit similar large variations during a day, between days, and between individuals within a group. The distribution of exposure measures is skewed over several decades with only a few values occurring at the maximum field levels. The skewness of exposure measures implies that large sample sizes may be required for assessments and that multiple statistical descriptors are preferred to describe individual and group exposures. Except for the relatively few occupational settings where high voltage sources are prevalent, electric fields encountered in the workplace are probably similar to residential exposures. Consequently, high electric field exposures are essentially limited to utility environments and occupations. Within the electric utility industry, it is definitely possible to identify occupations with high electric field exposures relative to those of office workers or other groups. The highly exposed utility occupations are linemen, substation operators, and utility electricians. The distribution of electric field exposures in the utility worker population is very skewed even within a given occupation. As with electric fields, magnetic fields in the workplace appear to be comparable with residential levels, unless a clearly defined high-current source is present. Since high-current sources are more prevalent than high-voltage sources, environments with relatively high magnetic field exposures encompass a more diverse set of occupations than do those with high electric fields. Within the electric utility industry, it is possible to identify occupational environments with high magnetic field exposure relative to the office

  14. Electric and magnetic fields measured during a sudden impulse

    NASA Technical Reports Server (NTRS)

    Schutz, S.; Adams, G. J.; Mozer, F. S.

    1974-01-01

    The electric field in the ionosphere and the magnetic field at the earth's surface in the mid-latitude region were both measured during a sudden impulse. Ionospheric conductivities deduced from this data were consistent with expectations, thus suggesting that the fluctuations in the magnetic field at the earth's surface were caused by overhead ionospheric currents that were driven by an electric field associated with the sudden impulse.

  15. Middle atmospheric electric fields over thunderstorms

    NASA Technical Reports Server (NTRS)

    Holzworth, Robert H.

    1992-01-01

    This grant has supported a variety of investigations all having to do with the external electrodynamics of thunderstorms. The grant was a continuation of work begun while the PI was at the Aerospace Corporation (under NASA Grant NAS6-3109) and the general line of investigation continues today under NASA Grants NAG5-685 and NAG6-111. This report will briefly identify the subject areas of the research and associated results. The period actually covered by the grant NAG5-604 included the following analysis and flights: (1) analysis of five successful balloon flights in 1980 and 1981 (under the predecessor NASA grant) in the stratosphere over thunderstorms; (2) development and flight of the Hy-wire tethered balloon system for direct measurement of the atmospheric potential to 250 kV (this involved multiple tethered balloon flight periods from 1981 through 1986 from several locations including Wallops Island, VA, Poker Flat and Ft. Greely, AK and Holloman AFB, NM.); (3) balloon flights in the stratosphere over thunderstorms to measure vector electric fields and associated parameters in 1986 (2 flights), 1987 (4 flights), and 1988 (2 flights); and (4) rocket-borne optical lightning flash detectors on two rocket flights (1987 and 1988) (the same detector design that was used for the balloon flights listed under #3). In summary this grant supported 8 stratospheric zero-pressure balloon flights, tethered aerostat flights every year between 1982-1985, instruments on 2 rockets, and analysis of data from 6 stratospheric flights in 1980/81.

  16. Dipole Relaxation in an Electric Field.

    ERIC Educational Resources Information Center

    Neumann, Richard M.

    1980-01-01

    Derives an expression for the orientational entropy of a rigid rod (electric dipole) from Boltzmann's equation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium. (Author/GS)

  17. Reception and learning of electric fields in bees

    PubMed Central

    Greggers, Uwe; Koch, Gesche; Schmidt, Viola; Dürr, Aron; Floriou-Servou, Amalia; Piepenbrock, David; Göpfert, Martin C.; Menzel, Randolf

    2013-01-01

    Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are moved or rubbed together. We report that bees emit constant and modulated electric fields when flying, landing, walking and during the waggle dance. The electric fields emitted by dancing bees consist of low- and high-frequency components. Both components induce passive antennal movements in stationary bees according to Coulomb's law. Bees learn both the constant and the modulated electric field components in the context of appetitive proboscis extension response conditioning. Using this paradigm, we identify mechanoreceptors in both joints of the antennae as sensors. Other mechanoreceptors on the bee body are potentially involved but are less sensitive. Using laser vibrometry, we show that the electrically charged flagellum is moved by constant and modulated electric fields and more strongly so if sound and electric fields interact. Recordings from axons of the Johnston organ document its sensitivity to electric field stimuli. Our analyses identify electric fields emanating from the surface charge of bees as stimuli for mechanoreceptors, and as biologically relevant stimuli, which may play a role in social communication. PMID:23536603

  18. Reception and learning of electric fields in bees.

    PubMed

    Greggers, Uwe; Koch, Gesche; Schmidt, Viola; Dürr, Aron; Floriou-Servou, Amalia; Piepenbrock, David; Göpfert, Martin C; Menzel, Randolf

    2013-05-22

    Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are moved or rubbed together. We report that bees emit constant and modulated electric fields when flying, landing, walking and during the waggle dance. The electric fields emitted by dancing bees consist of low- and high-frequency components. Both components induce passive antennal movements in stationary bees according to Coulomb's law. Bees learn both the constant and the modulated electric field components in the context of appetitive proboscis extension response conditioning. Using this paradigm, we identify mechanoreceptors in both joints of the antennae as sensors. Other mechanoreceptors on the bee body are potentially involved but are less sensitive. Using laser vibrometry, we show that the electrically charged flagellum is moved by constant and modulated electric fields and more strongly so if sound and electric fields interact. Recordings from axons of the Johnston organ document its sensitivity to electric field stimuli. Our analyses identify electric fields emanating from the surface charge of bees as stimuli for mechanoreceptors, and as biologically relevant stimuli, which may play a role in social communication.

  19. Internal Electric-Field-Lines Distribution in Cdznte Detectors Measured Using X-ray Mapping

    SciTech Connect

    Bolotnikov, A.; Camarda, C; Cui, Y; Hossain, A; Yang, G; Yao, H; James, R

    2009-01-01

    The ideal operation of CdZnTe devices entails having a uniformly distributed internal electric field. Such uniformity especially is critical for thick long-drift-length detectors, such as large-volume CPG and 3-D multi-pixel devices. Using a high-spatial resolution X-ray mapping technique, we investigated the distribution of the electric field in real devices. Our measurements demonstrate that in thin detectors, < 5 mm, the electric field-lines tend to bend away from the side surfaces (i.e., a focusing effect). In thick detectors, > 1 cm, with a large aspect ratio (thickness-to-width ratio), we observed two effects: the electric field lines bending away from or towards the side surfaces, which we called, respectively, the focusing field-line distribution and the defocusing field-line distribution. In addition to these large-scale variations, the field-line distributions were locally perturbed by the presence of extended defects and residual strains existing inside the crystals. We present our data clearly demonstrating the non-uniformity of the internal electric field.

  20. Rocket borne instrument to measure electric fields inside electrified clouds

    NASA Technical Reports Server (NTRS)

    Ruhnke, L. H. (Inventor)

    1973-01-01

    An apparatus for measuring the electric field in the atmosphere which includes a pair of sensors carried on a rocket for sensing the voltages in the atmosphere being measured is described. One of the sensors is an elongated probe with a fine point which causes a corona current to be produced as it passes through the electric field. An electric circuit is coupled between the probe and the other sensor and includes a high ohm resistor which linearizes the relationship between the corona current and the electric field being measured. A relaxation oscillator and transmitter are provided for generating and transmitting an electric signal having a frequency corresponding to the magnitude of the electric field.

  1. Lunar electric fields, surface potential and associated plasma sheaths

    NASA Technical Reports Server (NTRS)

    Freeman, J. W.; Ibrahim, M.

    1975-01-01

    A review is given of studies of the electric-field environment of the moon. Surface electric potentials are reported for the dayside and terminator regions, electron and ion densities in the plasma sheath adjacent to each surface-potential regime are evaluated, and the corresponding Debye lengths are estimated. The electric fields, which are approximated by the surface potential over the Debye length, are shown to be at least three orders of magnitude higher than the pervasive solar-wind electric field and to be confined to within a few tens of meters of the lunar surface.

  2. Fetal exposure to low frequency electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Cech, R.; Leitgeb, N.; Pediaditis, M.

    2007-02-01

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary.

  3. Antihydrogen atom in external electric and magnetic fields

    SciTech Connect

    Labzowsky, L.; Sharipov, V.

    2005-01-01

    A theoretical comparison of the behavior of the antihydrogen (H) and hydrogen (H) atoms in external electric and magnetic fields is made. It is shown that observable differences arise in the spectroscopic properties of H and H atoms in parallel electric and magnetic fields of the order of 475 V/cm and 0.12 T, respectively.

  4. Effects of Radial Electric Fields on ICRF Waves

    SciTech Connect

    C.K. Phillips; J.C. Hosea; M. Ono; J.R. Wilson

    2001-06-18

    Equilibrium considerations infer that large localized radial electric fields are associated with internal transport barrier structures in tokamaks and other toroidal magnetic confinement configurations. In this paper, the effects of an equilibrium electric field on fast magnetosonic wave propagation are considered in the context of a cold plasma model.

  5. High School Students' Representations and Understandings of Electric Fields

    ERIC Educational Resources Information Center

    Cao, Ying; Brizuela, Bárbara M.

    2016-01-01

    This study investigates the representations and understandings of electric fields expressed by Chinese high school students 15 to 16 years old who have not received high school level physics instruction. The physics education research literature has reported students' conceptions of electric fields post-instruction as indicated by students'…

  6. TOPICAL REVIEW: Organic field-effect transistors using single crystals

    NASA Astrophysics Data System (ADS)

    Hasegawa, Tatsuo; Takeya, Jun

    2009-04-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm2 Vs-1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  7. Dependence of image flicker on dielectric anisotropy of liquid crystal in a fringe field switching liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Oh, Seung-Won; Baek, Jong-Min; Kim, Jung-Wook; Yoon, Tae-Hoon

    2016-09-01

    Two types of image flicker, which are caused by the flexoelectric effect of liquid crystals (LCs), are observed when a fringe-field switching (FFS) LC cell is driven by a low frequency electric field. Static image flicker, observed because of the transmittance difference between neighboring frames, has been reported previously. On the other hand, research on dynamic image flicker has been minimal until now. Dynamic image flicker is noticeable because of the brief transmittance drop when the sign of the applied voltage is reversed. We investigated the dependence of the image flicker in an FFS LC cell on dielectric anisotropy of the LCs in terms of both the static and dynamic flicker. Experimental results show that small dielectric anisotropy of the LC can help suppress not only the static but also dynamic flicker for positive LCs. We found that both the static and dynamic flicker in negative LCs is less evident than in positive LCs.

  8. Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix.

    PubMed

    Yu, Ji Hoon; Chen, Hung-Shan; Chen, Po-Ju; Song, Ki Hoon; Noh, Seong Cheol; Lee, Jae Myeong; Ren, Hongwen; Lin, Yi-Hsin; Lee, Seung Hee

    2015-06-29

    Electrically tunable focusing microlens arrays based on polarization independent optical phase of nano liquid crystal droplets dispersed in polymer matrix are demonstrated. Such an optical medium is optically isotropic which is so-called an optically isotropic liquid crystals (OILC). We not only discuss the optical theory of OILC, but also demonstrate polarization independent optical phase modulation based on the OILC. The experimental results and analytical discussion show that the optical phase of OILC microlens arrays results from mainly orientational birefringence which is much larger than the electric-field-induced birefringence (or Kerr effect). The response time of OILC microlens arrays is fast~5.3ms and the tunable focal length ranges from 3.4 mm to 3.8 mm. The potential applications are light field imaging systems, 3D integrating imaging systems and devices for augment reality.

  9. Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix.

    PubMed

    Yu, Ji Hoon; Chen, Hung-Shan; Chen, Po-Ju; Song, Ki Hoon; Noh, Seong Cheol; Lee, Jae Myeong; Ren, Hongwen; Lin, Yi-Hsin; Lee, Seung Hee

    2015-06-29

    Electrically tunable focusing microlens arrays based on polarization independent optical phase of nano liquid crystal droplets dispersed in polymer matrix are demonstrated. Such an optical medium is optically isotropic which is so-called an optically isotropic liquid crystals (OILC). We not only discuss the optical theory of OILC, but also demonstrate polarization independent optical phase modulation based on the OILC. The experimental results and analytical discussion show that the optical phase of OILC microlens arrays results from mainly orientational birefringence which is much larger than the electric-field-induced birefringence (or Kerr effect). The response time of OILC microlens arrays is fast~5.3ms and the tunable focal length ranges from 3.4 mm to 3.8 mm. The potential applications are light field imaging systems, 3D integrating imaging systems and devices for augment reality. PMID:26191743

  10. Far-field coupling in nanobeam photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Rousseau, Ian; Sánchez-Arribas, Irene; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas

    2016-05-01

    We optimized the far-field emission pattern of one-dimensional photonic crystal nanobeams by modulating the nanobeam width, forming a sidewall Bragg cross-grating far-field coupler. By setting the period of the cross-grating to twice the photonic crystal period, we showed using three-dimensional finite-difference time-domain simulations that the intensity extracted to the far-field could be improved by more than three orders of magnitude compared to the unmodified ideal cavity geometry. We then experimentally studied the evolution of the quality factor and far-field intensity as a function of cross-grating coupler amplitude. High quality factor (>4000) blue (λ = 455 nm) nanobeam photonic crystals were fabricated out of GaN thin films on silicon incorporating a single InGaN quantum well gain medium. Micro-photoluminescence spectroscopy of sets of twelve identical nanobeams revealed a nine-fold average increase in integrated far-field emission intensity and no change in average quality factor for the optimized structure compared to the unmodulated reference. These results are useful for research environments and future nanophotonic light-emitting applications where vertical in- and out-coupling of light to nanocavities is required.

  11. Lower Atmospheric Electric Field due to Cloud Charge Distribution

    NASA Astrophysics Data System (ADS)

    Paul, Suman; Haldar, Dilip kumar; Sundar De, Syam; Ghosh, Abhijit; Hazra, Pranab; Bandyopadhyay, Bijoy

    2016-07-01

    The distributions of electric charge in the electrified clouds introduce important effects in the ionosphere and into the region between the ionosphere and the Earth. The electrical properties of the medium are changed greatly between thundercloud altitudes and the magnetosphere. A model for the penetration of DC thundercloud electric field between the Earth's upper and lower atmosphere has been presented here. The model deals with the electromagnetic responses of the atmosphere simulated through Maxwell's equations together with a time-varying source charge distribution. The modified ellipsoidal-Gaussian profile has been taken for the charge distribution of the electrified cloud. The conductivity profile of the medium is taken to be isotropic below 70 km height and anisotropic above 70 km. The Earth's surface is considered to be perfectly conducting. A general form of equation representing the thundercloud electric field component is deduced. In spite of assumptions for axial symmetry of thundercloud charge distribution considered in the model, the results are obtained giving the electric field variation in the upper atmosphere. The vertical component of the electric field would relate the global electric circuit while the radial component showed the electrical coupling between the lower atmosphere and the ionized Earth's environment. The variations of the values of field components for different heights as well as Maxwell's current have been evaluated. Coupling between the troposphere and the ionosphere is critically dependent on the height variations of electrical conductivity. Field-aligned electron density irregularities in the ionosphere may be investigated through the present analyses.

  12. Imaging local electric fields produced upon synchrotron X-ray exposure.

    PubMed

    Dettmar, Christopher M; Newman, Justin A; Toth, Scott J; Becker, Michael; Fischetti, Robert F; Simpson, Garth J

    2015-01-20

    Electron-hole separation following hard X-ray absorption during diffraction analysis of soft materials under cryogenic conditions produces substantial local electric fields visualizable by second harmonic generation (SHG) microscopy. Monte Carlo simulations of X-ray photoelectron trajectories suggest the formation of substantial local electric fields in the regions adjacent to those exposed to X-rays, indicating a possible electric-field-induced SHG (EFISH) mechanism for generating the observed signal. In studies of amorphous vitreous solvents, analysis of the SHG spatial profiles following X-ray microbeam exposure was consistent with an EFISH mechanism. Within protein crystals, exposure to 12-keV (1.033-Å) X-rays resulted in increased SHG in the region extending ∼ 3 μm beyond the borders of the X-ray beam. Moderate X-ray exposures typical of those used for crystal centering by raster scanning through an X-ray beam were sufficient to produce static electric fields easily detectable by SHG. The X-ray-induced SHG activity was observed with no measurable loss for longer than 2 wk while maintained under cryogenic conditions, but disappeared if annealed to room temperature for a few seconds. These results provide direct experimental observables capable of validating simulations of X-ray-induced damage within soft materials. In addition, X-ray-induced local fields may potentially impact diffraction resolution through localized piezoelectric distortions of the lattice. PMID:25552555

  13. Electrostatic-elastoplastic simulations of copper surface under high electric fields

    NASA Astrophysics Data System (ADS)

    Zadin, V.; Pohjonen, A.; Aabloo, A.; Nordlund, K.; Djurabekova, F.

    2014-10-01

    Maximizing the performance of modern linear accelerators working with high gradient electromagnetic fields depends to a large extent on ability to control breakdown rates near metal surfaces in the accelerating structures. Nanoscale voids, presumably forming in the surface layers of metals during the technological processing, can be responsible for the onset of the growth of a surface protrusion. We use finite element simulations to study the evolution of annealed copper, single crystal copper and stainless steel surfaces that contain a void under high electric fields. We use a fully coupled electrostatic-elastoplastic model in the steady state. Gradually increasing the value of an external electric field, we analyze the relationship of surface failure and depth of the void for the chosen materials with different elastoplastic properties. According to our results, the stainless steel and single crystal copper surfaces demonstrate the formation of well-defined protrusions, when the external electric field reaches a certain critical value. Among the three materials, annealed copper surface starts yielding at the lowest electric fields due to the lowest Young's modulus and yield stress. However, it produces the smallest protrusions due to a significant strain hardening characteristic for this material.

  14. Imaging local electric fields produced upon synchrotron X-ray exposure.

    PubMed

    Dettmar, Christopher M; Newman, Justin A; Toth, Scott J; Becker, Michael; Fischetti, Robert F; Simpson, Garth J

    2015-01-20

    Electron-hole separation following hard X-ray absorption during diffraction analysis of soft materials under cryogenic conditions produces substantial local electric fields visualizable by second harmonic generation (SHG) microscopy. Monte Carlo simulations of X-ray photoelectron trajectories suggest the formation of substantial local electric fields in the regions adjacent to those exposed to X-rays, indicating a possible electric-field-induced SHG (EFISH) mechanism for generating the observed signal. In studies of amorphous vitreous solvents, analysis of the SHG spatial profiles following X-ray microbeam exposure was consistent with an EFISH mechanism. Within protein crystals, exposure to 12-keV (1.033-Å) X-rays resulted in increased SHG in the region extending ∼ 3 μm beyond the borders of the X-ray beam. Moderate X-ray exposures typical of those used for crystal centering by raster scanning through an X-ray beam were sufficient to produce static electric fields easily detectable by SHG. The X-ray-induced SHG activity was observed with no measurable loss for longer than 2 wk while maintained under cryogenic conditions, but disappeared if annealed to room temperature for a few seconds. These results provide direct experimental observables capable of validating simulations of X-ray-induced damage within soft materials. In addition, X-ray-induced local fields may potentially impact diffraction resolution through localized piezoelectric distortions of the lattice.

  15. Characteristics of DC electric fields in transient plasma sheet events

    NASA Astrophysics Data System (ADS)

    Laakso, H. E.; Escoubet, C. P.; Masson, A.

    2015-12-01

    We take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer on the four Cluster spacecraft. The calibrated observations of the three spectrometers are used to determine the proton and electron velocity moments. The velocity moments can be used to estimate the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. As the measurement techniques are so different, it is quite plausible that when two different measurements yield the same DC electric field, it is the correct field. All five measurements of the DC electric field are usually not simultaneously available, especially on Cluster 2 where CODIF and HIA are not operational, or on Cluster 4 where EDI is off. In this presentation we investigate DC electric field in various transient plasma sheet events such as dipolarization events and BBF's and how the five measurements agree or disagree. There are plenty of important issues that are considered, e.g., (1) what kind of DC electric fields exist in such events and what are their spatial scales, (2) do electrons and ions perform ExB drift motions in these events, and (3) how well the instruments have been calibrated.

  16. First-Principle Perturbative Computation of Phonon Properties of Insulators in Finite Electric Fields

    NASA Astrophysics Data System (ADS)

    Wang, Xinjie

    2005-03-01

    The methods of density-functional perturbation theory have been shown to provide a powerful tool for realistic calculations of lattice-vibrational, dielectric, elastic, and other response properties of crystals.ootnotetextS. Baroni et al., Rev. Mod. Phys. 73, 515 (2001). Recently, a total-energy method for insulators in nonzero electric fields was proposed.ootnotetextI. Souza, J. 'Iñiguez, and D. Vanderbilt, Phys. Rev. Lett. 89, 117602 (2002). However, the perturbative computation of phonon properties under a dc bias field has not previously been addressed. Here, we start from a variational total-energy functional with a field coupling term that represents the effect of the electric field on the crystal. The linear response of the field-polarized Bloch functions is obtained by minimizing the second-order derivative of the total-energy functional. Due to the presence of the electric field, the field-polarized Bloch functions at each k-point in the Brillouin zone are weakly coupled to those at the neighboring k-points. We implement the method in the ABINIT code and perform illustrative calculations of the phonon frequencies for III-V semicondutors.

  17. Thermal Evaporation versus Spin-Coating: Electrical Performance in Columnar Liquid Crystal OLEDs.

    PubMed

    Eccher, Juliana; Zajaczkowski, Wojciech; Faria, Gregório C; Bock, Harald; von Seggern, Heinz; Pisula, Wojciech; Bechtold, Ivan H

    2015-08-01

    The electrical responses of a columnar liquid crystal (a diimidodiester derivative of benzo[ghi]perylene) deposited either by spin-coating or by thermal evaporation into a typical OLED device are compared. For the spin-coated film, homeotropic alignment was induced by thermal annealing, which enhanced the charge carrier mobility significantly. For the evaporated films, homeotropic alignment could not be obtained by annealing. However, a degree of rectification higher than 3 orders of magnitude was achieved, even without annealing, with an electrical response similar to the response of the aligned spin-coated film. A trap-limited space-charge-limited current model was used to extract the charge carrier mobility directly from the current-voltage curves. Grazing incidence wide-angle X-ray scattering confirmed the homeotropic alignment of the annealed spin-coated film, whereas the columns are mostly oriented parallel to the surface in the evaporated case. In a field-effect transistor with bottom-gate bottom-contact geometry, the evaporated film exhibited a typical behavior of an n-type transistor. The degree of intermolecular order is thereby strongly dependent on the deposition method where vacuum deposition leads to a higher order. This higher order, however, impedes reorientation by annealing of the evaporated film but leads to improved charge transport between the electrodes even without homeotropic alignment of columnar liquid crystal.

  18. Thermal Evaporation versus Spin-Coating: Electrical Performance in Columnar Liquid Crystal OLEDs.

    PubMed

    Eccher, Juliana; Zajaczkowski, Wojciech; Faria, Gregório C; Bock, Harald; von Seggern, Heinz; Pisula, Wojciech; Bechtold, Ivan H

    2015-08-01

    The electrical responses of a columnar liquid crystal (a diimidodiester derivative of benzo[ghi]perylene) deposited either by spin-coating or by thermal evaporation into a typical OLED device are compared. For the spin-coated film, homeotropic alignment was induced by thermal annealing, which enhanced the charge carrier mobility significantly. For the evaporated films, homeotropic alignment could not be obtained by annealing. However, a degree of rectification higher than 3 orders of magnitude was achieved, even without annealing, with an electrical response similar to the response of the aligned spin-coated film. A trap-limited space-charge-limited current model was used to extract the charge carrier mobility directly from the current-voltage curves. Grazing incidence wide-angle X-ray scattering confirmed the homeotropic alignment of the annealed spin-coated film, whereas the columns are mostly oriented parallel to the surface in the evaporated case. In a field-effect transistor with bottom-gate bottom-contact geometry, the evaporated film exhibited a typical behavior of an n-type transistor. The degree of intermolecular order is thereby strongly dependent on the deposition method where vacuum deposition leads to a higher order. This higher order, however, impedes reorientation by annealing of the evaporated film but leads to improved charge transport between the electrodes even without homeotropic alignment of columnar liquid crystal. PMID:26168313

  19. Mechanical tension and electrical conductivity of liquid crystal filaments

    NASA Astrophysics Data System (ADS)

    Kress, Oliver H.

    During the NSF funded IRES internship at the Otto-von-Geuricke Univeristy in Magdeburg, Germany, I studied the optical properties and mechanical behavior in the form of line tension of bent-core liquid crystal fiber bundles and verified previously published tension values and temperature dependent behavior. Then, carbon nanotubes were added and it as found that the tension in the fibers decreased by a factor of two instead of increasing as was hoped. A new device for pulling fibers and measuring tension by deflection due to the adhesion of glass beads was built at the LCI. The device was meant to improve upon the device used at O.v.G. Improvements included a smaller heating chamber with better insulation, temperature control, large viewing windows, more stable mounting interface, easier disassembly and the option to quickly modify the device in order to perform a variety of other experiments such as observing behavior due to acoustic driving (based on previous literature), observing optical behavior under a polarizing microscope and introducing probes to measure the electrical properties of fibers. The platform remains modular and makes the addition of new components for carrying out new experiments very simple and straightforward. The addition of carbon nanotubes has scattered results regarding the modulation of fiber tension. It seems that the addition of CNTs to BLC1571 may slightly be decreasing tension while the addition to BLC1688 may be increasing it. In both mesogens, 10wt% CNT yielded the highest tension value above the theoretical surface tension contribution. A reversal of temperature dependence was observed for fibers containing CNT; their tension increased with temperature instead of decreased. A driving rod attached to a speaker was used to acoustically drive a filament of pure BLC1571 in an attempt to replicate the tension values in a different way. The movement of the fiber and the driving rod were captured using a high-speed camera and MATLAB code

  20. Microneedle array for measuring wound generated electric fields.

    PubMed

    Mukerjee, E V; Isseroff, R R; Nuccitelli, R; Collins, S D; Smith, R L

    2006-01-01

    A microneedle array has been fabricated and applied to the measurement of transdermal skin potentials in human subjects. Potential changes were recorded in the vicinity of superficial wounds, confirming the generation of a lateral electric field in human skin. The measured electric field decays with distance from the wound edge, and is directed towards the wound. The measurement of endogenous fields in skin is a prelude to the study of the therapeutic efficacy of applied electric fields to chronic non-healing wounds. PMID:17947077

  1. Electric field-mediated processing of polymer blend solutions

    NASA Technical Reports Server (NTRS)

    Wnek, G. E.; Krause, S.

    1993-01-01

    Multiphase polymer blends in which the minor phases are oriented in a desired direction may demonstrate unique optical, electrical, and mechanical properties. While morphology development in shear fields was studied extensively, little work has focused on effects of electric fields on phase structure. The use of electric fields for blend morphology modulation with particular attention given to solvent casting of blends in d.c. fields was explored. Both homopolymer blends (average phase sizes of several microns) and diblock copolymer/homopolymer blends (average phase sizes of hundreds of Angstroms) were investigated. Summarized are important observations and conclusions.

  2. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna

    DOE PAGESBeta

    Caselli, Niccolò; La China, Federico; Bao, Wei; Riboli, Francesco; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H.; Pagliano, Francesco; Fiore, Andrea; Schuck, P. James; et al

    2015-06-05

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magneticmore » intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. In conclusion, by exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.« less

  3. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna

    SciTech Connect

    Caselli, Niccolò; La China, Federico; Bao, Wei; Riboli, Francesco; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H.; Pagliano, Francesco; Fiore, Andrea; Schuck, P. James; Cabrini, Stefano; Weber-Bargioni, Alexander; Gurioli, Massimo; Intonti, Francesca

    2015-06-05

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magnetic intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. In conclusion, by exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.

  4. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna

    PubMed Central

    Caselli, Niccolò; La China, Federico; Bao, Wei; Riboli, Francesco; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H.; Pagliano, Francesco; Fiore, Andrea; Schuck, P. James; Cabrini, Stefano; Weber-Bargioni, Alexander; Gurioli, Massimo; Intonti, Francesca

    2015-01-01

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magnetic intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. By exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions. PMID:26045401

  5. Photorefractive gain in GaAs under a dc electric field

    NASA Technical Reports Server (NTRS)

    Liu, Duncan T. H.; Cheng, Li-Jen; Rau, Mann-Fu; Wang, Faa-Ching

    1988-01-01

    This paper reports on the first observation of a photorefractive gain coefficient as high as 2.6/cm in the undoped liquid-encapsulated Czochralski-grown GaAs crystals at 1.06 microns under a dc electric field of 13 kV/cm without using the moving grating technique.The absorption coefficient of the crystals used is 1.3/cm, showing that a net gain has been achieved. This measured gain coefficient is close to the predicted theoretical value.

  6. A dipole probe for electric field measurements in the LVPD

    NASA Astrophysics Data System (ADS)

    Srivastava, P. K.; Awasthi, L. M.; Ravi, G.; Kumar, Sunil; Mattoo, S. K.

    2016-01-01

    This paper describes the design, construction, and calibration of an electric dipole probe and demonstrates its capability by presenting results on the measurement of electric field excited by a ring electrode in the Large Volume Plasma Device (LVPD). It measures the electric field in vacuum and plasma conditions in a frequency range lying between 1-10 \\text{MHz} . The results show that it measures electric field ≥slant 2 mV cm-1 for frequency ≤slant 10 \\text{MHz} . The developed dipole probe works on the principle of amplitude modulation. The probe signal is transmitted through a carrier of 418 MHz, a much higher frequency than the available sources of noise present in the surrounding environment. The amplitude modulation concept of signal transmission is used to make the measurement; it is qualitatively better and less corrupted as it is not affected by the errors introduced by ac pickups. The probe is capable of measuring a variety of electric fields, namely (1) space charge field, (2) time varying field, (3) inductive field and (4) a mixed field containing both space charge and inductive fields. This makes it a useful tool for measuring electric fields in laboratory plasma devices.

  7. Electric-field-induced rotation of Brownian metal nanowires.

    PubMed

    Arcenegui, Juan J; García-Sánchez, Pablo; Morgan, Hywel; Ramos, Antonio

    2013-09-01

    We describe the physical mechanism responsible for the rotation of Brownian metal nanowires suspended in an electrolyte exposed to a rotating electric field. The electric field interacts with the induced charge in the electrical double layer at the metal-electrolyte interface, causing rotation due to the torque on the induced dipole and to the induced-charge electro-osmotic flow around the particle. Experiments demonstrate that the primary driving mechanism is the former of these two. Our analysis contrasts with previous work describing the electrical manipulation of metallic particles with electric fields, which neglected the electrical double layer. Theoretical values for the rotation speed are calculated and good agreement with experiments is found.

  8. Bridging the terahertz near-field and far-field observations of liquid crystal based metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ge, Shijun; Chen, Zhaoxian; Hu, Wei; Lu, Yanqing

    2016-09-01

    Metamaterial-based absorbers play a significant role in applications ranging from energy harvesting and thermal emitters to sensors and imaging devices. The middle dielectric layer of conventional metamaterial absorbers has always been solid. Researchers could not detect the near field distribution in this layer or utilize it effectively. Here, we use anisotropic liquid crystal as the dielectric layer to realize electrically fast tunable terahertz metamaterial absorbers. We demonstrate strong, position-dependent terahertz near-field enhancement with sub-wavelength resolution inside the metamaterial absorber. We measure the terahertz far-field absorption as the driving voltage increases. By combining experimental results with liquid crystal simulations, we verify the near-field distribution in the middle layer indirectly and bridge the near-field and far-field observations. Our work opens new opportunities for creating high-performance, fast, tunable, terahertz metamaterial devices that can be applied in biological imaging and sensing. Project supported by the National Basic Research Program of China (Grant No. 2012CB921803), the National Natural Science Foundation of China (Grants Nos. 61225026, 61490714, 11304151, and 61435008), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20150845 and 15KJB140004), the Open Foundation Project of National Laboratory of Solid State Microstructures, China (Grant No. M28003), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China.

  9. Bridging the terahertz near-field and far-field observations of liquid crystal based metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ge, Shijun; Chen, Zhaoxian; Hu, Wei; Lu, Yanqing

    2016-09-01

    Metamaterial-based absorbers play a significant role in applications ranging from energy harvesting and thermal emitters to sensors and imaging devices. The middle dielectric layer of conventional metamaterial absorbers has always been solid. Researchers could not detect the near field distribution in this layer or utilize it effectively. Here, we use anisotropic liquid crystal as the dielectric layer to realize electrically fast tunable terahertz metamaterial absorbers. We demonstrate strong, position-dependent terahertz near-field enhancement with sub-wavelength resolution inside the metamaterial absorber. We measure the terahertz far-field absorption as the driving voltage increases. By combining experimental results with liquid crystal simulations, we verify the near-field distribution in the middle layer indirectly and bridge the near-field and far-field observations. Our work opens new opportunities for creating high-performance, fast, tunable, terahertz metamaterial devices that can be applied in biological imaging and sensing. Project supported by the National Basic Research Program of China (Grant No. 2012CB921803), the National Natural Science Foundation of China (Grants Nos. 61225026, 61490714, 11304151, and 61435008), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20150845 and 15KJB140004), the Open Foundation Project of National Laboratory of Solid State Microstructures, China (Grant No. M28003), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China.

  10. Effects of an Electric Field on White Sharks: In Situ Testing of an Electric Deterrent

    PubMed Central

    Huveneers, Charlie; Rogers, Paul J.; Semmens, Jayson M.; Beckmann, Crystal; Kock, Alison A.; Page, Brad; Goldsworthy, Simon D.

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, <1 nVcm–1, using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks. PMID:23658766

  11. Effects of an electric field on white sharks: in situ testing of an electric deterrent.

    PubMed

    Huveneers, Charlie; Rogers, Paul J; Semmens, Jayson M; Beckmann, Crystal; Kock, Alison A; Page, Brad; Goldsworthy, Simon D

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, <1 nV cm(-1), using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks. PMID:23658766

  12. Effects of an electric field on white sharks: in situ testing of an electric deterrent.

    PubMed

    Huveneers, Charlie; Rogers, Paul J; Semmens, Jayson M; Beckmann, Crystal; Kock, Alison A; Page, Brad; Goldsworthy, Simon D

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, <1 nV cm(-1), using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks.

  13. Ion adsorption and its influence on direct current electric field induced deformations of flexoelectric nematic layers

    NASA Astrophysics Data System (ADS)

    Derfel, Grzegorz; Buczkowska, Mariola

    2011-07-01

    The influence of ion adsorption on the behavior of the nematic liquid crystal layers is studied numerically. The homeotropic flexoelectric layer subjected to the dc electric field is considered. Selective adsorption of positive ions is assumed. The analysis is based on the free energy formalism for ion adsorption. The distributions of director orientation angle, electric potential, and ion concentrations are calculated by numerical resolving of suitable torques equations and Poisson equation. The threshold voltages for the deformations are also determined. It was shown that adsorption affects the distributions of both cations and anions. Sufficiently large number of adsorbed ions leads to spontaneous deformation arising without any threshold if the total number of ions creates sufficiently strong electric field with significant field gradients in the neighborhood of electrodes. The spontaneous deformations are favored by strong flexoelectricity, large thickness, large ion concentrations, weak anchoring, and large adsorption energy.

  14. Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell.

    PubMed

    Zyryanov, Victor Ya; Myslivets, Sergey A; Gunyakov, Vladimir A; Parshin, Alexander M; Arkhipkin, Vasily G; Shabanov, Vasily F; Lee, Wei

    2010-01-18

    Light transmission spectrum of a multilayer photonic crystal with a central liquid-crystal defect layer placed between crossed polarizers has been studied. Transmittance was varied due to the magnetically induced reorientation of the nematic director from homeotropic to planar alignment. Two notable effects were observed for this scheme: the spectral shift of defect modes corresponding to the extraordinary light wave and its superposition with the ordinary one. As a result, the optical cell allows controlling the intensity of interfering defect modes by applied magnetic field. PMID:20173953

  15. Crystal field and magnetic properties of ErH3

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) times 10 to the minus 6 Weber m/kg Tesla. The saturation moment is 3.84 + or - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is of the order of 160 to 180 K.

  16. Beyond Orientation: The Impact of Electric Fields on Block Copolymers

    SciTech Connect

    Liedel, Clemens; Boker, A.; Pester, Christian; Ruppel, Markus A; Urban, Volker S

    2012-01-01

    Since the first report on electric field-induced alignment of block copolymers (BCPs) in 1991, electric fields have been shown not only to direct the orientation of BCP nanostructures in bulk, solution, and thin films, but also to reversibly induce order-order transitions, affect the order-disorder transition temperature, and control morphologies' dimensions with nanometer precision. Theoretical and experimental results of the past years in this very interesting field of research are summarized and future perspectives are outlined.

  17. Electric Field-Mediated Processing of Polymers. Appendix 1

    NASA Technical Reports Server (NTRS)

    Wnek, G. E.; Bowlin, G. L.; Haas, T. W.

    2000-01-01

    Significant opportunities exist for the processing of polymers (homopolymers and blends) using electric fields. We suggest that a broad range of properties can be achieved using a relatively small number of polymers, with electric fields providing the ability to tailor properties via the control of shape, morphology, and orientation. Specific attention is given to electrospinning, but we note that electroaerosol formation and field-modulated film casting represent additional processing options.

  18. Electric field in 3D gravity with torsion

    SciTech Connect

    Blagojevic, M.; Cvetkovic, B.

    2008-08-15

    It is shown that in static and spherically symmetric configurations of the system of Maxwell field coupled to 3D gravity with torsion, at least one of the Maxwell field components has to vanish. Restricting our attention to the electric sector of the theory, we find an interesting exact solution, corresponding to the azimuthal electric field. Its geometric structure is to a large extent influenced by the values of two different central charges, associated to the asymptotic AdS structure of spacetime.

  19. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields

    PubMed Central

    Sutton, Gregory P.; Clarke, Dominic; Morley, Erica L.; Robert, Daniel

    2016-01-01

    Bumblebees (Bombus terrestris) use information from surrounding electric fields to make foraging decisions. Electroreception in air, a nonconductive medium, is a recently discovered sensory capacity of insects, yet the sensory mechanisms remain elusive. Here, we investigate two putative electric field sensors: antennae and mechanosensory hairs. Examining their mechanical and neural response, we show that electric fields cause deflections in both antennae and hairs. Hairs respond with a greater median velocity, displacement, and angular displacement than antennae. Extracellular recordings from the antennae do not show any electrophysiological correlates to these mechanical deflections. In contrast, hair deflections in response to an electric field elicited neural activity. Mechanical deflections of both hairs and antennae increase with the electric charge carried by the bumblebee. From this evidence, we conclude that sensory hairs are a site of electroreception in the bumblebee. PMID:27247399

  20. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields.

    PubMed

    Sutton, Gregory P; Clarke, Dominic; Morley, Erica L; Robert, Daniel

    2016-06-28

    Bumblebees (Bombus terrestris) use information from surrounding electric fields to make foraging decisions. Electroreception in air, a nonconductive medium, is a recently discovered sensory capacity of insects, yet the sensory mechanisms remain elusive. Here, we investigate two putative electric field sensors: antennae and mechanosensory hairs. Examining their mechanical and neural response, we show that electric fields cause deflections in both antennae and hairs. Hairs respond with a greater median velocity, displacement, and angular displacement than antennae. Extracellular recordings from the antennae do not show any electrophysiological correlates to these mechanical deflections. In contrast, hair deflections in response to an electric field elicited neural activity. Mechanical deflections of both hairs and antennae increase with the electric charge carried by the bumblebee. From this evidence, we conclude that sensory hairs are a site of electroreception in the bumblebee.

  1. Electric toothbrushes induce electric current in fixed dental appliances by creating magnetic fields.

    PubMed

    Kameda, Takashi; Ohkuma, Kazuo; Ishii, Nozomu; Sano, Natsuki; Ogura, Hideo; Terada, Kazuto

    2012-01-01

    Magnetic fields can represent a health problem, especially low frequency electromagnetic fields sometimes induced by electric current in metallic objects worn or used in or on the body (as opposed to high frequency electromagnetic fields that produce heat). Electric toothbrushes are widely used because of their convenience, but the electric motors that power them may produce electromagnetic waves. In this study, we showed that electric toothbrushes generate low frequency (1-2000 Hz) magnetic fields and induce electric current in dental appliances (e. g. orthodontic and prosthetic appliances and dental implants). Current induced by electric toothbrushes might be dependent on the quantity and types of metals used, and the shape of the appliances. Furthermore, these induced currents in dental appliances could impact upon human oral health, producing pain and discomfort.

  2. Electric field prediction for a human body-electric machine system.

    PubMed

    Ioannides, Maria G; Papadopoulos, Peter J; Dimitropoulou, Eugenia

    2004-01-01

    A system consisting of an electric machine and a human body is studied and the resulting electric field is predicted. A 3-phase induction machine operating at full load is modeled considering its geometry, windings, and materials. A human model is also constructed approximating its geometry and the electric properties of tissues. Using the finite element technique the electric field distribution in the human body is determined for a distance of 1 and 5 m from the machine and its effects are studied. Particularly, electric field potential variations are determined at specific points inside the human body and for these points the electric field intensity is computed and compared to the limit values for exposure according to international standards.

  3. Internal Electric Field Investigations of a Cadmium Zinc Telluride Detector Using Synchrotron X-ray Mapping and Pockels Effect Measurements

    SciTech Connect

    Yang, G.; Bolotnikov, A; Camarda, G; Cui, Y; Hossain, A; Yao, H; James, R

    2009-01-01

    Cadmium zinc telluride (CZT) has remained a major focus of research due to its promising application as a room-temperature nuclear radiation detector material. Among the several parameters that substantially affect the detectors' performance, an important one is the distribution of the internal electric field. Brookhaven National Laboratory (BNL) employed synchrotron x-ray microscale mapping and measurements of the Pockels effect to investigate the distribution of the internal electric field in a CZT strip detector. Direct evidence that dislocations can distort the internal electric field of the detector was obtained. Furthermore, it was found that 'star' defects in the CZT crystal, possibly ascribed to dislocation loop punching, cause charge trapping.

  4. Imaging local electric fields produced upon synchrotron X-ray exposure

    PubMed Central

    Dettmar, Christopher M.; Newman, Justin A.; Toth, Scott J.; Becker, Michael; Fischetti, Robert F.; Simpson, Garth J.

    2015-01-01

    Electron–hole separation following hard X-ray absorption during diffraction analysis of soft materials under cryogenic conditions produces substantial local electric fields visualizable by second harmonic generation (SHG) microscopy. Monte Carlo simulations of X-ray photoelectron trajectories suggest the formation of substantial local electric fields in the regions adjacent to those exposed to X-rays, indicating a possible electric-field–induced SHG (EFISH) mechanism for generating the observed signal. In studies of amorphous vitreous solvents, analysis of the SHG spatial profiles following X-ray microbeam exposure was consistent with an EFISH mechanism. Within protein crystals, exposure to 12-keV (1.033-Å) X-rays resulted in increased SHG in the region extending ∼3 μm beyond the borders of the X-ray beam. Moderate X-ray exposures typical of those used for crystal centering by raster scanning through an X-ray beam were sufficient to produce static electric fields easily detectable by SHG. The X-ray–induced SHG activity was observed with no measurable loss for longer than 2 wk while maintained under cryogenic conditions, but disappeared if annealed to room temperature for a few seconds. These results provide direct experimental observables capable of validating simulations of X-ray–induced damage within soft materials. In addition, X-ray–induced local fields may potentially impact diffraction resolution through localized piezoelectric distortions of the lattice. PMID:25552555

  5. The hydrogen atom in plasmas with an external electric field

    SciTech Connect

    Bahar, M. K.; Soylu, A.

    2014-09-15

    We numerically solve the Schrödinger equation, using a more general exponential cosine screened Coulomb (MGECSC) potential with an electric field, in order to investigate the screening and weak external electric field effects on the hydrogen atom in plasmas. The MGECSC potential is examined for four different cases, corresponding to different screening parameters of the potential and the external electric field. The influences of the different screening parameters and the weak external electric field on the energy eigenvalues are determined by solving the corresponding equations using the asymptotic iteration method (AIM). It is found that the corresponding energy values shift when a weak external electric field is applied to the hydrogen atom in a plasma. This study shows that a more general exponential cosine screened Coulomb potential allows the influence of an applied, weak, external electric field on the hydrogen atom to be investigated in detail, for both Debye and quantum plasmas simultaneously. This suggests that such a potential would be useful in modeling similar effects in other applications of plasma physics, and that AIM is an appropriate method for solving the Schrödinger equation, the solution of which becomes more complex due to the use of the MGECSC potential with an applied external electric field.

  6. Pulsed zero field NMR of solids and liquid crystals

    SciTech Connect

    Thayer, A.M.

    1987-02-01

    This work describes the development and applications to solids and liquid crystals of zero field nuclear magnetic resonance (NMR) experiments with pulsed dc magnetic fields. Zero field NMR experiments are one approach for obtaining high resolution spectra of amorphous and polycrystalline materials which normally (in high field) display broad featureless spectra. The behavior of the spin system can be coherently manipulated and probed in zero field with dc magnetic field pulses which are employed in a similar manner to radiofrequency pulses in high field NMR experiments. Nematic phases of liquid crystalline systems are studied in order to observe the effects of the removal of an applied magnetic field on sample alignment and molecular order parameters. In nematic phases with positive and negative magnetic susceptibility anisotropies, a comparison between the forms of the spin interactions in high and low fields is made. High resolution zero field NMR spectra of unaligned smectic samples are also obtained and reflect the symmetry of the liquid crystalline environment. These experiments are a sensitive measure of the motionally induced asymmetry in biaxial phases. Homonuclear and heteronuclear solute spin systems are compared in the nematic and smectic phases. Nonaxially symmetric dipolar couplings are reported for several systems. The effects of residual fields in the presence of a non-zero asymmetry parameter are discussed theoretically and presented experimentally. Computer programs for simulations of these and other experimental results are also reported. 179 refs., 75 figs.

  7. Magnetic Field Measurements Based on Terfenol Coated Photonic Crystal Fibers

    PubMed Central

    Quintero, Sully M. M.; Martelli, Cicero; Braga, Arthur M. B.; Valente, Luiz C. G.; Kato, Carla C.

    2011-01-01

    A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT) over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field. PMID:22247655

  8. Magnetic field measurements based on Terfenol coated photonic crystal fibers.

    PubMed

    Quintero, Sully M M; Martelli, Cicero; Braga, Arthur M B; Valente, Luiz C G; Kato, Carla C

    2011-01-01

    A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT) over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field.

  9. Electron electric-dipole-moment experiment using electric-field quantized slow cesium atoms

    SciTech Connect

    Amini, Jason M.; Munger, Charles T. Jr.; Gould, Harvey

    2007-06-15

    A proof-of-principle electron electric-dipole-moment (e-EDM) experiment using slow cesium atoms, nulled magnetic fields, and electric-field quantization has been performed. With the ambient magnetic fields seen by the atoms reduced to less than 200 pT, an electric field of 6 MV/m lifts the degeneracy between states of unequal |m{sub F}| and, along with the low ({approx_equal}3 m/s) velocity, suppresses the systematic effect from the motional magnetic field. The low velocity and small residual magnetic field have made it possible to induce transitions between states and to perform state preparation, analysis, and detection in regions free of applied static magnetic and electric fields. This experiment demonstrates techniques that may be used to improve the e-EDM limit by two orders of magnitude, but it is not in itself a sensitive e-EDM search, mostly due to limitations of the laser system.

  10. Low-frequency electromagnetic field in a Wigner crystal

    SciTech Connect

    Stupka, Anton

    2013-03-15

    Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.

  11. Generation of strong electric fields in an ice film capacitor

    NASA Astrophysics Data System (ADS)

    Shin, Sunghwan; Kim, Youngsoon; Moon, Eui-seong; Lee, Du Hyeong; Kang, Hani; Kang, Heon

    2013-08-01

    We present a capacitor-type device that can generate strong electrostatic field in condensed phase. The device comprises an ice film grown on a cold metal substrate in vacuum, and the film is charged by trapping Cs+ ions on the ice surface with thermodynamic surface energy. Electric field within the charged film was monitored through measuring the film voltage using a Kelvin work function probe and the vibrational Stark effect of acetonitrile using IR spectroscopy. These measurements show that the electric field can be increased to ˜4 × 108 V m-1, higher than that achievable by conventional metal plate capacitors. In addition, the present device may provide several advantages in studying the effects of electric field on molecules in condensed phase, such as the ability to control the sample composition and structure at molecular scale and the spectroscopic monitoring of the sample under electric field.

  12. Galvanotactic behavior of Tetrahymena pyriformis under electric fields

    NASA Astrophysics Data System (ADS)

    Kim, Dal Hyung; Kim, Paul Seung Soo; Lee, Kyoungwoo; Kim, JinSeok; Kim, Min Jun

    2013-12-01

    Tetrahymena pyriformis, a eukaryotic ciliate, swims toward a cathode in straight or cross-shaped microchannels under an applied electric field, a behavioral response called cathodal galvanotaxis. In straight channel experiments, a one-dimensional electric field was applied, and the galvanotactic swimming behavior of Tetrahymena pyriformis was observed and described in detail while the polarity of this field is switched. In most individual cases, the cell would immediately switch its direction toward the cathode; however, exceptional cases have been observed where cells exhibit a turning delay or do not turn after a polarity switch. In cross-channel experiments, feedback control using vision-based tracking was used to steer a cell in the microchannel intersection using a two-dimensional electric field generated by four electrodes placed at four ends of the cross channel. The motivation for this work is to study the swimming behavior of Tetrahymena pyriformis as a microrobot under the control of electric fields.

  13. Electric field induced selective disordering in lamellar block copolymers.

    PubMed

    Ruppel, Markus; Pester, Christian W; Langner, Karol M; Sevink, Geert J A; Schoberth, Heiko G; Schmidt, Kristin; Urban, Volker S; Mays, Jimmy W; Böker, Alexander

    2013-05-28

    External electric fields align nanostructured block copolymers by either rotation of grains or nucleation and growth depending on how strongly the chemically distinct block copolymer components are segregated. In close vicinity to the order-disorder transition, theory and simulations suggest a third mechanism: selective disordering. We present a time-resolved small-angle X-ray scattering study that demonstrates how an electric field can indeed selectively disintegrate ill-aligned lamellae in a lyotropic block copolymer solution, while lamellae with interfaces oriented parallel to the applied field prevail. The present study adds an additional mechanism to the experimentally corroborated suite of mechanistic pathways, by which nanostructured block copolymers can align with an electric field. Our results further unveil the benefit of electric field assisted annealing for mitigating orientational disorder and topological defects in block copolymer mesophases, both in close vicinity to the order-disorder transition and well below it. PMID:23573901

  14. Molecular-scale measurements of electric fields at electrochemical interfaces.

    SciTech Connect

    Hayden, Carl C.; Farrow, Roger L.

    2011-01-01

    Spatially resolved measurements of electric fields at electrochemical interfaces would be a critical step toward further understanding and modeling the detailed structure of electric double layers. The goal of this project was to perform proof-of-principle experiments to demonstrate the use of field-sensitive dyes for optical measurements of fields in electrochemical systems. A confocal microscope was developed that provides sensitive detection of the lifetime and high resolution spectra of excited fluorescence for dyes tethered to electrically conductive surfaces. Excited state lifetimes for the dyes were measured and found to be relatively unquenched when linked to indium tin oxide, but strongly quenched on gold surfaces. However, our fluorescence detection is sufficiently sensitive to measure spectra of submonolayer dye coatings even when the fluorescence was strongly quenched. Further work to create dye labeled interfaces on flat, uniform and durable substrates is necessary to make electric field measurements at interfaces using field sensitive dyes.

  15. Electrically tunable optical bistability based on one-dimensional photonic crystals with nonlinear nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Moslemi, F.; Jamshidi-Ghaleh, K.

    2016-03-01

    A one-dimensional photonic crystal structure with a nonlinear metal-dielectric nanocomposite defect layer is proposed to control the optical bistability (OB) of the transmitted wave by tuning the externally applied dc electric field. Using the transfer matrix method for dielectric layers and solving the Helmholtz nonlinear equation in the nonlinear composite layer, the linear transmittance spectrum and the nonlinear transmission curve are illustrated graphically for different applied fields. A field-dependent defect mode is observed in the linear transmittance spectrum. Consequently, the OB switch-up and -down thresholds can be manipulated via the applied field intensity. Due to the field dependence of composite layer refractive index, the physical response of the observation is the dynamical shifting of the defect mode. Moreover, it is shown that the volume fraction, shape, and type of the embedded nanoparticles as well as the kind of the dielectric host have large influences on the OB threshold. The proposed structure has significant potential applications in optical integrated devices.

  16. Electric field of atmospheric pressure plasma jet impinging upon a surface and electrical properties of the jet source

    NASA Astrophysics Data System (ADS)

    Sobota, Ana; Guaitella, Olivier; Garcia Caurel, Enric; Rousseau, Antoine

    2013-09-01

    We report on experimentally obtained values of the electric field magnitude of an atmospheric pressure plasma jet impinging upon a dielectric surface. The results were obtained using Pockels technique, on a BSO crystal. The electric field is a function of the gas flow and the area over which the discharge spreads on the dielectric surface. A coaxial configuration of the plasma jet was used, driven by 30 kHz sine voltage, in He flowing at 100-900 SCCM. In this geometry we found 2 modes of operation, a low-power mode stable at one plasma bullet emitted per period and the unstable high-power mode featuring additional micro-discharges. In addition to the electric field measured in the low-power mode, electrical characterization of the jet source will be presented, together with the manner in which properties of the setup can influence the jet and vice versa. The distinction will be made between the plasma jet in room atmosphere and the plasma jet interacting with a dielectric surface.

  17. Order by virtual crystal field fluctuations in pyrochlore XY antiferromagnets

    NASA Astrophysics Data System (ADS)

    Rau, Jeffrey G.; Petit, Sylvain; Gingras, Michel J. P.

    2016-05-01

    Conclusive evidence of order by disorder is scarce in real materials. Perhaps one of the strongest cases presented has been for the pyrochlore XY antiferromagnet Er2Ti2O7 , with the ground state selection proceeding by order by disorder induced through the effects of quantum fluctuations. This identification assumes the smallness of the effect of virtual crystal field fluctuations that could provide an alternative route to picking the ground state. Here we show that this order by virtual crystal field fluctuations is not only significant, but competitive with the effects of quantum fluctuations. Further, we argue that higher-multipolar interactions that are generically present in rare-earth magnets can dramatically enhance this effect. From a simplified bilinear-biquadratic model of these multipolar interactions, we show how the virtual crystal field fluctuations manifest in Er2Ti2O7 using a combination of strong-coupling perturbation theory and the random-phase approximation. We find that the experimentally observed ψ2 state is indeed selected and the experimentally measured excitation gap can be reproduced when the bilinear and biquadratic couplings are comparable while maintaining agreement with the entire experimental spin-wave excitation spectrum. Finally, we comment on possible tests of this scenario and discuss implications for other order-by-disorder candidates in rare-earth magnets.

  18. [Mechanism of ablation with nanosecond pulsed electric field].

    PubMed

    Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen

    2015-11-01

    Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation. PMID:26822052

  19. Effective action of QED in electric field backgrounds

    SciTech Connect

    Kim, Sang Pyo; Lee, Hyun Kyu; Yoon, Yongsung

    2008-11-15

    We use the evolution operator method to find the one-loop effective action of scalar and spinor QED in electric field backgrounds in terms of the Bogoliubov coefficient between the ingoing and the outgoing vacua. We obtain the exact one-loop effective action for a Sauter-type electric field, E{sub 0}sech{sup 2}(t/{tau}), and show that the imaginary part correctly yields the vacuum persistence. The renormalized effective action shows the general relation between the vacuum persistence and the total mean number of created pairs for the constant and the Sauter-type electric field.

  20. Giant and tunable electric field enhancement in the terahertz regime.

    PubMed

    Lu, Xiaoyuan; Wan, Rengang; Wang, Guoxi; Zhang, Tongyi; Zhang, Wenfu

    2014-11-01

    A novel array of slits design combining the nano-slit grating and dielectric-metal is proposed to obtain giant and tunable electric field enhancement in the terahertz regime. The maximum amplitude of electric field is more than 6000 times larger than that of the incident electric field. It is found that the enhancement depends primarily on the stripe and nano-slits width of grating, as well as the thickness of spacer layer. This property is particularly beneficial for the realization of ultra-sensitive nanoparticles detection and nonlinear optics in the terahertz range, such as the second harmonic generation (SHG).

  1. Semiconductor Crystal Growth in Static and Rotating Magnetic fields

    NASA Technical Reports Server (NTRS)

    Volz, Martin

    2004-01-01

    Magnetic fields have been applied during the growth of bulk semiconductor crystals to control the convective flow behavior of the melt. A static magnetic field established Lorentz forces which tend to reduce the convective intensity in the melt. At sufficiently high magnetic field strengths, a boundary layer is established ahead of the solid-liquid interface where mass transport is dominated by diffusion. This can have a significant effect on segregation behavior and can eliminate striations in grown crystals resulting from convective instabilities. Experiments on dilute (Ge:Ga) and solid solution (Ge-Si) semiconductor systems show a transition from a completely mixed convective state to a diffusion-controlled state between 0 and 5 Tesla. In HgCdTe, radial segregation approached the diffusion limited regime and the curvature of the solid-liquid interface was reduced by a factor of 3 during growth in magnetic fields in excess of 0.5 Tesla. Convection can also be controlled during growth at reduced gravitational levels. However, the direction of the residual steady-state acceleration vector can compromise this effect if it cannot be controlled. A magnetic field in reduced gravity can suppress disturbances caused by residual transverse accelerations and by random non-steady accelerations. Indeed, a joint program between NASA and the NHMFL resulted in the construction of a prototype spaceflight magnet for crystal growth applications. An alternative to the suppression of convection by static magnetic fields and reduced gravity is the imposition of controlled steady flow generated by rotating magnetic fields (RMF)'s. The potential benefits of an RMF include homogenization of the melt temperature and concentration distribution, and control of the solid-liquid interface shape. Adjusting the strength and frequency of the applied magnetic field allows tailoring of the resultant flow field. A limitation of RMF's is that they introduce deleterious instabilities above a

  2. Crystallization of insulin and lysozyme under reduced convection condition in a large gradient magnetic field

    NASA Astrophysics Data System (ADS)

    Yin, D. C.; Wakayama, N. I.; Fujiwara, M.; Harata, K.; Xue, X. P.; Fu, Z. X.; Zhang, S. W.; Shang, P.; Tanimoto, Y.

    The crystallization of protein from solution is governed by the process of transport phenomenon Any reason affecting the process of solute transport will impose effects on the crystallization process thus further affects the crystal quality Recent advancement in superconducting magnet technology makes it possible to provide a low cost long-time durable low effective gravity environment for the control of convection which is similar to the environment in the space As an ideal means to damp natural convection in a non-conductive solution on the Earth it may find applications in the field of protein crystallization In this presentation the authors investigated the crystallization of orthorhombic lysozyme crystals tetragonal lysozyme crystals and insulin crystals in a large gradient magnetic field Three effective gravity levels were used milli-gravity around 0G normal gravity 1G and hypergravity 1 8G Comparisons of the crystal quality obtained inside and outside the magnetic field showed that both the magnetic field and the effective gravity could affect the crystal quality But the effect also depends on the crystal and protein type For lysozyme crystals in tetragonal form the magnetic field and effective gravity showed no obvious effect on the quality whereas for the crystals in orthorhombic form both the magnetic field and effective gravity improved the crystal quality For insulin crystal which is highly symmetrical magnetic field and effective gravity showed no strong effect on the crystal quality It is well known that

  3. Membrane tubulation from giant lipid vesicles in alternating electric fields.

    PubMed

    Antonova, K; Vitkova, V; Meyer, C

    2016-01-01

    We report on the formation of tubular membrane protrusions from giant unilamellar vesicles in alternating electric fields. The construction of the experimental chamber permitted the application of external AC fields with strength of dozens of V/mm and kHz frequency during relatively long time periods (several minutes). Besides the vesicle electrodeformation from quasispherical to prolate ellipsoidal shape, the formation of long tubular membrane protrusions with length of up to several vesicle diameters, arising from the vesicular surface in the field direction, was registered and analyzed. The threshold electric field at which the electro-induced protrusions appeared was lower than the field strengths inducing membrane electroporation. PMID:26871107

  4. The source of the electric field in the nightside magnetosphere

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    In the open magnetosphere model magnetic field lines from the polar caps connect to the interplanetary magnetic field and conduct an electric field from interplanetary space to the polar ionosphere. By examining the magnetic flux involved it is concluded that only slightly more than half of the magnetic flux in the polar caps belongs to open field lines and that such field lines enter or leave the magnetosphere through narrow elongated windows stretching the tail. These window regions are identified with the tail's boundary region and shift their position with changes in the interplanetary magnetic field, in particular when a change of interplanetary magnetic sector occurs. The circuit providing electric current in the magnetopause and the plasma sheet is extended across those windows; thus energy is drained from the interplanetary electric field and an electric potential drop is produced across the plasma sheet. The polar cap receives its electric field from interplanetary space on the day side from open magnetic field lines and on the night side from closed field lines leading to the plasma sheet. The theory described provides improved understanding of magnetic flux bookkeeping, of the origin of Birkeland currents, and of the boundary layer of the geomagnetic tail.

  5. Electrically controllable liquid crystal random lasers below the Fréedericksz transition threshold.

    PubMed

    Lee, Chia-Rong; Lin, Jia-De; Huang, Bo-Yuang; Lin, Shih-Hung; Mo, Ting-Shan; Huang, Shuan-Yu; Kuo, Chie-Tong; Yeh, Hui-Chen

    2011-01-31

    This investigation elucidates for the first time electrically controllable random lasers below the threshold voltage in dye-doped liquid crystal (DDLC) cells with and without adding an azo-dye. Experimental results show that the lasing intensities and the energy thresholds of the random lasers can be decreased and increased, respectively, by increasing the applied voltage below the Fréedericksz transition threshold. The below-threshold-electric-controllability of the random lasers is attributable to the effective decrease of the spatial fluctuation of the orientational order and thus of the dielectric tensor of LCs by increasing the electric-field-aligned order of LCs below the threshold, thereby increasing the diffusion constant and decreasing the scattering strength of the fluorescence photons in their recurrent multiple scattering. This can result in the decrease in the lasing intensity of the random lasers and the increase in their energy thresholds. Furthermore, the addition of an azo-dye in DDLC cell can induce the range of the working voltage below the threshold for the control of the random laser to reduce.

  6. Electro-optic switching in iron oxide nanoparticle embedded paramagnetic chiral liquid crystal via magneto-electric coupling

    SciTech Connect

    Goel, Puja; Arora, Manju; Biradar, Ashok M.

    2014-03-28

    The variation in optical texture, electro-optic, and dielectric properties of iron oxide nanoparticles (NPs) embedded ferroelectric liquid crystal (FLC) with respect to change in temperature and electrical bias conditions are demonstrated in the current investigations. Improvement in spontaneous polarization and response time in nanocomposites has been attributed to magneto-electric (ME) coupling resulting from the strong interaction among the ferromagnetic nanoparticle's exchange field (due to unpaired e{sup −}) and the field of liquid crystal molecular director. Electron paramagnetic resonance spectrum of FLC material gives a broad resonance signal with superimposed components indicating the presence of a source of spin. This paramagnetic behavior of host FLC material had been a major factor in strengthening the guest host interaction by giving an additional possibility of (a) spin-spin interaction and (b) interactions between magnetic-dipole and electric-dipole moments (ME effects) in the composite materials. Furthermore, the phenomenon of dielectric and static memory effect in these composites are also observed which yet again confirms the coupling of magnetic NP's field with FLC's director orientation. We therefore believe that such advanced soft materials holding the optical and electrical properties of conventional LCs with the magnetic and electronic properties of ferromagnetic nanoparticles are going to play a key role in the development of futuristic multifunctional optical devices.

  7. Vertically-Aligned Single-Crystal Nanocone Arrays: Controlled Fabrication and Enhanced Field Emission.

    PubMed

    Duan, Jing Lai; Lei, Dang Yuan; Chen, Fei; Lau, Shu Ping; Milne, William I; Toimil-Molares, M E; Trautmann, Christina; Liu, Jie

    2016-01-13

    Metal nanostructures with conical shape, vertical alignment, large ratio of cone height and curvature radius at the apex, controlled cone angle, and single-crystal structure are ideal candidates for enhancing field electron-emission efficiency with additional merits, such as good mechanical and thermal stability. However, fabrication of such nanostructures possessing all these features is challenging. Here, we report on the controlled fabrication of large scale, vertically aligned, and mechanically self-supported single-crystal Cu nanocones with controlled cone angle and enhanced field emission. The Cu nanocones were fabricated by ion-track templates in combination with electrochemical deposition. Their cone angle is controlled in the range from 0.3° to 6.2° by asymmetrically selective etching of the ion tracks and the minimum tip curvature diameter reaches down to 6 nm. The field emission measurements show that the turn-on electric field of the Cu nanocone field emitters can be as low as 1.9 V/μm at current density of 10 μA/cm(2) (a record low value for Cu nanostructures, to the best of our knowledge). The maximum field enhancement factor we measured was as large as 6068, indicating that the Cu nanocones are promising candidates for field emission applications.

  8. Vertical Electric Field Measurements with Copper Plates by Sounding Balloon

    NASA Astrophysics Data System (ADS)

    Wen, Shao-Chun; Chiu, Cheng-Hsiu; Bing-Chih Chen, Alfred; Hsu, Rue-Ron; Su, Han-Tzong

    2015-04-01

    The vertical electric field plays an important role in driving the circulation of the global electric circuit, and crucial to the formation of the transient luminous events (TLEs). The in-situ measurement of the electric field in the upper atmosphere, especially from cloud top to the bottom of the ionosphere is very challenging but essential. Limited by the flight vehicle, the measurements of the electric field in and above cloud, especiall thundercloud, is rare up to now. A light-weight electric field meter was developed independently and sent to 30 km height by small meteorological balloons successfully. Other than the existing long-spaced, spherical probe design, an improved electric field meter has been built and tested carefully. A new circuit with ultra high input impedance and a high voltage amplifier is implemented to reduce the AC noise induced by the voltage divider. Two copper plates are used to replace the double spherical probes which is spaced by a long fiberglass boom. The in-lab calibration and tests show that this new model is superior to the existing design and very sensitive to the variation of the DC electric field. In this poster, the design and the in-lab tests will be presented, and preliminary results of the flight experiments are also discussed.

  9. Formation of Organized Protein Thin Films with External Electric Field.

    PubMed

    Ferreira, Cecília Fabiana da G; Camargo, Paulo C; Benelli, Elaine M

    2015-10-01

    The effect of an external electric field on the formation of protein GlnB-Hs films and on its buffer solution on siliconized glass slides has been analyzed by current versus electric field curves and atomic force microscopy (AFM). The Herbaspirillum seropedicae GlnB protein (GlnB-Hs) is a globular, soluble homotrimer (36 kDa) with its 3-D structure previously determined. Concentrations of 10 nM native denatured GlnB-Hs protein were deposited on siliconized glass slides under ambient conditions. Immediately after solution deposition a maximum electric field of 30 kV/m was applied with rates of 3 V/s. The measured currents were surface currents and were analyzed as transport current. Electric current started to flow only after a minimum electric field (critical value) for the systems analyzed. The AFM images showed films with a high degree of directional organization only when the proteins were present in the solution. These results showed that the applied electric field favored directional organization of the protein GlnB-Hs films and may contribute to understand the formation of protein films under applied electric fields.

  10. Effect of Te Inclusions on Internal Electric Field of CdMnTe Gamma-Ray Detectors

    SciTech Connect

    Babalola, O.S.; Bolotnikov, A.; Egarievwe, S.; Hossain, A.; Burger, A.; James, R.

    2009-08-02

    We studied two separate as-grown CdMnTe crystals by Infrared (IR) microscopy and Pockels effect imaging, and then developed an algorithm to analyze and visualize the electric field within the crystals’ bulk. In one of the two crystals the size and distribution of inclusions within the bulk promised to be more favorable in terms of efficiency as a detector crystal. However, the Te inclusions were arranged in characteristic ‘planes’. Pockels imaging revealed an accumulation of charges in the region of these planes. We demonstrated that the planes induced stress within the bulk of the crystal that accumulated charges, thereby causing non-uniformity of the internal electric field and degrading the detector’s performance.

  11. Synthesis of zirconium oxynitride in air under DC electric fields

    NASA Astrophysics Data System (ADS)

    Morisaki, Nobuhiro; Yoshida, Hidehiro; Matsui, Koji; Tokunaga, Tomoharu; Sasaki, Katsuhiro; Yamamoto, Takahisa

    2016-08-01

    We synthesized zirconium oxynitride from yttria-stabilized zirconia (YSZ) in air by applying DC electric fields that produced a controlled electric current in the specimen. When YSZ was heated under an applied DC electric field, the electric current of the specimen steeply increased at a critical temperature, called a flash event, during flash sintering. By keeping the electric current of the specimen constant during the flash event and then holding the specimen at the critical temperature, YSZ was transformed into zirconium oxynitride under the optimal conditions of 50 V/cm, 500 mA, and 1000 °C. We confirmed that zirconium oxynitride formed using high-resolution transmission electron microscopy, electron energy-loss spectroscopy, and energy-dispersive spectrometry. To convert oxides to nitrides, reducing conditions are necessary to form excess oxygen vacancies. Our technique produced the strong reducing conditions necessary to form nitrides from the oxides by delivering a controlled electric current to the specimen.

  12. Nonstandard electroconvection with Hopf bifurcation in a nematic liquid crystal with negative electric anisotropies.

    PubMed

    Tóth-Katona, Tibor; Cauquil-Vergnes, Aude; Eber, Nándor; Buka, Agnes

    2007-06-01

    Electric-field-driven pattern formation has been investigated in a nematic liquid crystal with negative dielectric and conductivity anisotropies. Despite the fact that the standard Carr-Helfrich theory predicts no hydrodynamic instability for such compound, experiments reveal convection patterns which we call nonstandard electroconvection (ns-EC). In this work, we characterize the ns-EC patterns by measuring the frequency, thickness, and temperature dependence of the threshold voltage, wave number, roll orientation, etc., and compare them with the standard-EC (s-EC) characteristics. For the first time, we report traveling rolls in ns-EC, and we give the dependence of the Hopf frequency on the driving frequency, temperature, and sample thickness. Finally, we discuss possible sources for the existence of these patterns.

  13. Flexo- and piezo-electric polarization of smectic layers in ferroelectric and antiferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Kuczyński, W.; Hoffmann, J.; Dardas, D.; Nowicka, K.; Bielejewska, N.

    2015-11-01

    In this paper, we report on how flexoelectric and piezoelectric polarization components can be determined by a method based on simultaneous studies of dielectric and electrooptic properties of the chiral smectic liquid crystal in the regime of weak electric fields. As a rule, the measurements of spontaneous polarization are performed using switching experiments. The polarization measured in this way is not complete—it contains the piezoelectric component only. However, the knowledge of the entire local polarization of a single smectic layer is of great importance—it is necessary for correct determination of some material parameters, for instance elastic constants. Our experiments performed in a helical smectic mixture demonstrated that flexoelectric contribution to the local spontaneous polarization is significant in both ferroelectric and antiferroelectric phases. In the antiferroelectric phase, the flexoelectric polarization is less due to higher helical pitch.

  14. The effect of pulse energy on the removal form of silicon crystal in electrical discharge machining

    NASA Astrophysics Data System (ADS)

    Mingbo, Qiu; Zongjun, Tian; Ye, Tian; Lida, Shen; Haoran, Chen; Hao, Ding

    2016-09-01

    A single-pulse discharge system for semiconductors was designed and produced. Single-pulse discharge experiments with single-crystal silicon were conducted, and the morphology of the electric erosion pit under different discharge energy levels was observed. Three removal forms, namely, heat removal, stress removal, and secondary crushing in electrical discharge machining (EDM) of single-crystal silicon, were discovered, and the mechanisms of semiconductor discharge processing were described. Finally, the role of different removal forms in single-crystal silicon EDM was explained and verified.

  15. Relativistic Néel-order fields induced by electrical current in antiferromagnets.

    PubMed

    Železný, J; Gao, H; Výborný, K; Zemen, J; Mašek, J; Manchon, Aurélien; Wunderlich, J; Sinova, Jairo; Jungwirth, T

    2014-10-10

    We predict that a lateral electrical current in antiferromagnets can induce nonequilibrium Néel-order fields, i.e., fields whose sign alternates between the spin sublattices, which can trigger ultrafast spin-axis reorientation. Based on microscopic transport theory calculations we identify staggered current-induced fields analogous to the intraband and to the intrinsic interband spin-orbit fields previously reported in ferromagnets with a broken inversion-symmetry crystal. To illustrate their rich physics and utility, we consider bulk Mn(2)Au with the two spin sublattices forming inversion partners, and a 2D square-lattice antiferromagnet with broken structural inversion symmetry modeled by a Rashba spin-orbit coupling. We propose an antiferromagnetic memory device with electrical writing and reading.

  16. Two-dimensional assemblies of nematic colloids in homeotropic cells and their response to electric fields.

    PubMed

    Tamura, Yuta; Kimura, Yasuyuki

    2016-08-10

    Micrometer-sized colloidal particles dispersed in nematic liquid crystals interact with each other through anisotropic interactions induced by orientational deformation of the nematic field. In the case of so-called dipole nematic colloids, their interaction is of the dipole-dipole type. Two-dimensional, non-close-packed colloidal assemblies having various characteristics were fabricated using optical tweezers by exploiting the attraction between anti-parallel dipole nematic colloids in homeotropically aligned nematic cells. Structures comprising polygons, squares, and tetrahedra were built using equal-sized particles, and hexagonal structures were built using particles of two sizes. As the nematic field is sensitive to electric fields, the response of the fabricated assemblies toward an alternating electric field was also studied. All assemblies exhibited homogeneous reversible shrinkage, and their shrinkage rates were dependent on the structure. The maximum shrinkage rate in the linear dimension of the assemblies was over 20% at 5 Vrms for a hexagon comprising tetrahedral units. PMID:27453568

  17. Phase-field-crystal model for fcc ordering.

    PubMed

    Wu, Kuo-An; Adland, Ari; Karma, Alain

    2010-06-01

    We develop and analyze a two-mode phase-field-crystal model to describe fcc ordering. The model is formulated by coupling two different sets of crystal density waves corresponding to <111> and <200> reciprocal lattice vectors, which are chosen to form triads so as to produce a simple free-energy landscape with coexistence of crystal and liquid phases. The feasibility of the approach is demonstrated with numerical examples of polycrystalline and (111) twin growth. We use a two-mode amplitude expansion to characterize analytically the free-energy landscape of the model, identifying parameter ranges where fcc is stable or metastable with respect to bcc. In addition, we derive analytical expressions for the elastic constants for both fcc and bcc. Those expressions show that a nonvanishing amplitude of [200] density waves is essential to obtain mechanically stable fcc crystals with a nonvanishing tetragonal shear modulus (C11-C12)/2. We determine the model parameters for specific materials by fitting the peak liquid structure factor properties and solid-density wave amplitudes following the approach developed for bcc [K.-A. Wu and A. Karma, Phys. Rev. B 76, 184107 (2007)]. This procedure yields reasonable predictions of elastic constants for both bcc Fe and fcc Ni using input parameters from molecular dynamics simulations. The application of the model to two-dimensional square lattices is also briefly examined.

  18. Subsurface Stress Fields In Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik C.; Duke, Greg; Battista, Gilda; Swanson, Greg

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is , presented, for evaluating the subsurface stresses in the elastic half-space, using a complex potential method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis. Effects of crystal orientation on stress response and fatigue life are examined.

  19. Structure and Morphology of Phthalocyanine Films Grown in Electrical Fields by Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Banks, Curtis E.; Frazier, Donald O.; Penn, Benjamin; Abdeldayem, Hossin; Hicks, Roslin

    1999-01-01

    Phthalocyanine is a very stable organic material in the atmosphere and has been used in numerous applications, such as optical switching and optical storage devices. Although this material has already been discovered for several decades and has had extensive studies conducted on it, many properties still need to be better understood, for example, the mechanisms of forming different solid phases and of changing film morphology by external forces. Phthalocyanine has two preferred solid phases (alpha and beta phases) for which the crystal structures, surface morphology and optical properties are different. In order to investigate these phenomena and the relationship among them, phthalocyanine films have been synthesized by vapor deposition on quartz substrates with and without an external electrical field. Some substrates were coated with a very thin gold film for the electrical field. These films have been characterized using x-ray diffraction, scanning electron microscopy, Fourier transfer infrared spectroscopy, and Z-scan technique. The films have excellent chemical and thermal stability. However, the surface of these films grown without the electrical field shows flower-like morphology. When films are deposited under an electrical field (approximately 3000 V/cm), an aligned structure is revealed on the surface. A comparison of the structure, morphology, optical properties, and the growth mechanism for these films with and without an electrical field will be discussed.

  20. Insurance for electric and magnetic field litigation: Are you covered

    SciTech Connect

    Anderson, E.R.; Stewart, C.A. III

    1993-04-01

    Electrical power generating companies, power transmission companies and large generators and users of electrical power recently felt the sting of a second shock. The first shock came when lawsuits were first filed against companies in the electrical power industry claiming real or imagined damages from electrical and magnetic fields ([open quotes]EMFs[close quotes]). The new and second shock is potentially more devastating because it comes from the [open quotes]safe hands[close quotes] of the insurance industry. Standard-form comprehensive general liability ([open quotes]CGL[close quotes]) insurance policies purchased by nearly every company in the electrical power industry for generations are supposed to cover EMF bodily injury and property damage claims. Not so, say the lawyers for the most prominent insurance company selling insurance coverage to electric utilities, Associated Electric Gas Insurance Services, Ltd. ([open quotes]AEGIS[close quotes]).

  1. ENHANCEMENT OF METHANE CONVERSION USING ELECTRIC FIELDS

    SciTech Connect

    Richard G. Mallinson; Lance L. Lobban

    2000-05-01

    This report summarizes the conditions and results of this multifaceted program. Detailed experimental descriptions and results and discussion can be found in the publications cited in the Appendix. The goal of this project is the development of novel, economical, processes for the conversion of natural gas to more valuable projects such as synthesis gas or direct conversion to methanol, ethylene and other organic oxygenates or higher hydrocarbons. The methodologies of the project are to investigate and develop low temperature electric discharges and electric discharge-enhanced catalysis for carrying out these conversions. With the electric discharge-enhanced conversion, the operating temperatures are expected to be far below those currently required for such processes as oxidative coupling, thereby allowing for a higher degree of catalytic selectivity while maintaining high activity. In the case of low temperature discharges, the conversion is carried out at ambient temperature, trading high temperature thermal energy for electric energy as the driving force for conversion. The low operating temperatures remove thermodynamic constraints on the product distribution due to the non-equilibrium nature of the low temperature plasma. This also removes the requirements of large thermal masses that need very large-scale operation to maximize efficiency that is the characteristic of current technologies, including high temperature plasma processes. This potentially allows much smaller scale processes to be efficient. Additionally, a gas conversion process that is electrically driven provides an internal use for excess power generated by proposed Fischer Tropsch gas-to-liquids processes and can increase their internal thermal efficiency and reduce capital costs. This project has studied three primary types of low temperature plasma reactor and operating conditions. The organization of this program is shown schematically in the report. Typical small scale laboratory reactor

  2. An auroral effect on the fair weather electric field

    NASA Technical Reports Server (NTRS)

    Hale, L. C.; Croskey, C. L.

    1979-01-01

    Evidence is presented for coupling between the upper and lower atmosphere by means of the shorting out of the vertical mesospheric electric field by auroral radiation, which causes a transfer of mesospheric potential to the lower atmosphere. Measurements were made by an electric field antenna which was part of a parachute-borne payload, launched by rocket from near Fairbanks, Alaska. Data obtained from quiet time observations indicate the normal low altitude electric field pattern, with a greater field at high altitudes, while observations at disturbed times show a small field at high altitudes and a greater field at low altitudes. Means for observing this effect at lower latitudes are also suggested. While the data obtained support the proposed mechanism, it is noted that other mechanisms, such as direct modulation by large amounts of solar cosmic rays and aurorally produced charge separation, may also be important.

  3. Electric field measurements during the Condor critical velocity experiment

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Pfaff, R. F.; Haerendel, G.

    1986-01-01

    The instrumentation of the Condor critical velocity Ba experiment (Wescott et al., 1986) for the measurements of the energetic particles and the electric field associated with a Ba explosion is described. The Ba explosion created a complex electric field pulse detected in situ by a single-axis double electric-field probe on a separate spacecraft. The measurements provide evidence of several important links in the critical-velocity chain, and are consistent with two hypotheses. The first hypothesis involves the creation of large polarization electric field due to charge separation; the second hypothesis implies a polarization of the beam by currents flowing across it. The chain of physical processes inferred from the observations is in agreement with most theories for the Alfven process.

  4. Rocket probe electric field measurements in PMSE and NLC regions

    NASA Astrophysics Data System (ADS)

    Bekkeng, J. K.; Pedersen, A.; Moen, J.

    2003-08-01

    Complex AC and DC electric fields are known to be associated with polar mesospheric summer echo (PMSE) density irregularities and noctilucent cloud (NLC) layers. A two-channel prototype electric field instrument based on the double probe technique was developed to measure electric fields on-board a MIDAS (Middle atmosphere Investigation of Dynamics And Structure) sounding rocket. The instrument measures electric field variations up to 4 kHz, with 8 bit resolution. The payload was launched on 2 July 2002 from Andøya Rocket Range (69°N, 16°E) in Norway, in the presence of a PMSE radar backscatter layer located between 82 and 85 km height. The AC measurements in the PMSE region are characterized by spiky waveforms with amplitudes of a few mV/m, and the AC variations were also present in the height region 81-82 km, i.e. below the PMSE and NLC layers.

  5. Communication: Control of chemical reactions using electric field gradients.

    PubMed

    Deshmukh, Shivaraj D; Tsori, Yoav

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  6. Enhanced Fair-Weather Electric Fields Soon After Sunrise

    NASA Technical Reports Server (NTRS)

    Marshall, T. C.; Rust, W. D.; Stolzenburg, M.; Roeder, W.; Krehbiel, P. R.

    1999-01-01

    The typical fair weather electric field at the ground is between -100 and -300 V/m. At the NASA Kennedy Space Center and US Air Force Cape Canaveral Air Station (KSC) the electric field at the ground sometimes reaches -400 to -1200 V/m within an hour or two after sunrise on days that otherwise seem to be fair weather. We refer to the enhanced negative electric fields as the "sunrise enhancement." To investigate the sunrise enhancement at KSC we measured the electric field (E) in the first few hundred meters above the ground before and during several sunrise enhancements. From these E soundings we can infer the presence of charge layers and determine their thickness and charge density.

  7. Controlling flow direction in nanochannels by electric field strength

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhao, Tianshou; Li, Zhigang

    2015-08-01

    Molecular dynamics simulations are conducted to study the flow behavior of CsF solutions in nanochannels under external electric fields E . It is found that the channel surface energy greatly affects the flow behavior. In channels of high surface energy, water molecules, on average, move in the same direction as that of the electric field regardless of the strength of E . In low surface energy channels, however, water transports in the opposite direction to the electric field at weak E and the flow direction is changed when E becomes sufficiently large. The direction change of water flow is attributed to the coupled effects of different water-ion interactions, inhomogeneous water viscosity, and ion distribution changes caused by the electric field. The flow direction change observed in this work may be employed for flow control in complex micro- or nanofluidic systems.

  8. Communication: Control of chemical reactions using electric field gradients

    NASA Astrophysics Data System (ADS)

    Deshmukh, Shivaraj D.; Tsori, Yoav

    2016-05-01

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  9. Electrically controllable plasmonic enhanced coherent random lasing from dye-doped nematic liquid crystals containing Au nanoparticles.

    PubMed

    Wang, Lei; Wan, Yuan; Shi, Lijie; Zhong, Haizheng; Deng, Luogen

    2016-08-01

    An electrically controllable plasmonic enhanced coherent random lasing from the dye-doped nematic liquid crystal containing Au nanoparticles is demonstrated. To achieve the optimal control of the RL properties, the polarization of the pump light should be parallel to the rubbing direction of the cells. The lasing output intensity is direction-dependent and the substantial output distributes in an angle range of 0°~30° deviating from the direction of the pump stripe. The coherent feedback associated with the coherent random lasing mainly originates from the cooperative effect of the enhanced localized electric field in the vicinity of Au nanoparticles and the multiple scattering caused by the fluctuations of the liquid crystal director and local dielectric tensor. PMID:27505729

  10. Field-aligned Electric Field and Currents in the Polar cap

    NASA Astrophysics Data System (ADS)

    Wing, S.; Fairfield, D. H.; Johnson, J.; Ohtani, S.

    2015-12-01

    The Johns Hopkins University Applied Physics Laboratory open-field line particle precipitation model (APL-OPM) model predicts downward field-aligned electric field to maintain charge quasi-neutrality. Previous studies confirmed the existence of such electric fields. However, the present study shows that upward field-aligned electric field can be found within upward field-aligned current (FAC) region. In the upward FAC region, upward electric field that accelerates electron downward is seen with the occurrence rates of 82%-96%. In contrast, the occurrence rates in the downward FAC regions are 3%-11%. Polar rain electrons located in the upward FAC region adjacent to closed field lines often show a ramping up of energy with increasing latitude before reaching a plateau. This plateau may be attributed to the magnetosheath electrons that progressively have higher anti-sunward velocity and lower density with increasing distance from the subsolar point before they asymptotically reach the solar wind values.

  11. On the field-aligned electric field in the polar cap

    NASA Astrophysics Data System (ADS)

    Wing, Simon; Fairfield, Donald H.; Johnson, Jay R.; Ohtani, Shin-I.

    2015-07-01

    The Johns Hopkins University Applied Physics Laboratory open-field line particle precipitation model predicts downward field-aligned electric field to maintain charge quasi-neutrality. Previous studies confirmed the existence of such electric fields. However, the present study shows that upward field-aligned electric field can be found within upward field-aligned current (FAC) region. In the upward FAC region, upward electric field that accelerates electron downward is seen with the occurrence rates of 82%-96%. In contrast, the occurrence rates in the downward FAC regions are 3%-11%. Polar rain electrons located in the upward FAC region adjacent to closed field lines often show a ramping up of energy with increasing latitude before reaching a plateau. This plateau may be attributed to the magnetosheath electrons that progressively have higher antisunward velocity and lower density with increasing distance from the subsolar point before they asymptotically reach the solar wind values.

  12. Dispersion of Electric-Field-Induced Faraday Effect in Magnetoelectric Cr2O3

    NASA Astrophysics Data System (ADS)

    Wang, Junlei; Binek, Christian

    2016-03-01

    The frequency dependence of the electric-field-induced magneto-optical Faraday effect is investigated in the magnetoelectric antiferromagnet chromia. Two electrically induced Faraday signals superimpose in proportion to the linear magnetoelectric susceptibility α and the antiferromagnetic order parameter η . The relative strength of these contributions is determined by the frequency of the probing light and can be tuned between extreme characteristics following the temperature dependence of α or η . The frequency dependence is analyzed in terms of electric dipole transitions of perturbed Cr3 + crystal-field states. The results allow us to measure voltage-controlled selection, isothermal switching, and temperature dependence of η in a tabletop setup. The voltage-specific Faraday rotation is independent of the sample thickness, making the method scalable and versatile down to the limit of dielectric breakdown.

  13. A New Electric Field in Asymmetric Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Malakit, K.; Shay, M. A.; Cassak, P.; Ruffolo, D. J.

    2013-12-01

    Magnetic reconnection is an important plasma process that drives the dynamics of the plasma in the magnetosphere and plays a crucial role in the interaction between magnetospheric and magnetosheath plasma. It has been shown that when a reconnection occurs in a collisionless plasma, it exhibits the Hall electric field, an in-plane electric field structure pointing toward the X-line. In this work, we show that when the reconnection has asymmetric inflow conditions such as the reconnection at the day-side magnetopause, a new in-plane electric field structure can exist. This electric field points away from the X-line and is distinct from the known Hall electric field. We argue that the origin of the electric field is associated with the physics of finite Larmor radius. A theory and predictions of the electric field properties are presented and backed up by results from fully kinetic particle-in-cell simulations of asymmetric reconnection with various inflow conditions. Under normal day-side reconnection inflow conditions, the electric field is expected to occur on the magnetospheric side of the X-line pointing Earthward. Hence, it has a potential to be used as a signature for satellites, such as the upcoming Magnetospheric Multi-Scale (MMS) mission, to locate the reconnection sites at the day-side magnetopause. This research was supported by the postdoctoral research sponsorship of Mahidol University (KM), NSF grants ATM-0645271 - Career Award (MAS) and AGS-0953463 (PAC), NASA grants NNX08A083G - MMS IDS, NNX11AD69G, and NNX13AD72G (MAS) and NNX10AN08A (PAC), and the Thailand Research Fund (DR).

  14. Effects Of Electric Field On Hydrocarbon-Fueled Flames

    NASA Technical Reports Server (NTRS)

    Yuan, Z.-G.; Hegde, U.

    2003-01-01

    It has been observed that flames are susceptible to electric fields that are much weaker than the breakdown field strength of the flame gases. When an external electric field is imposed on a flame, the ions generated in the flame reaction zone drift in the direction of the electric forces exerted on them. The moving ions collide with the neutral species and change the velocity distribution in the affected region. This is often referred to as ionic wind effect. In addition, the removal of ions from the flame reaction zone can alter the chemical reaction pathway of the flame. On the other hand, the presence of space charges carried by moving ions affects the electric field distribution. As a result, the flame often changes its shape, location and color once an external electric field is applied. The interplay between the flame movement and the change of electric field makes it difficult to determine the flame location for a given configuration of electrodes and fuel source. In normal gravity, the buoyancy-induced flow often complicates the problem and hinders detailed study of the interaction between the flame and the electric field. In this work, the microgravity environment established at the 2.2 Second Drop Tower at the NASA Glenn Research Center is utilized to effectively remove the buoyant acceleration. The interaction between the flame and the electric field is studied in a one-dimensional domain. A specially designed electrode makes flame current measurements possible; thus, the mobility of ions, ion density, and ionic wind effect can be evaluated.

  15. Positioning and stretching of actin filaments by electric fields

    NASA Astrophysics Data System (ADS)

    Wigge, Christoph; Hinssen, Horst; Reiss, Günter; Herth, Simone

    2010-06-01

    The alignment of biological filaments on surfaces offers a high potential for controllable geometries in lab-on-a-chip-structures and micrototal analysis systems. Actin is a polar filamentous protein with a diameter of 7-8 nm that can be manipulated with strong electric fields. It is demonstrated that with the use of microelectrodes or nanoelectrodes and electric fields of 20 kV/m single actin filaments can be manipulated, stretched, and positioned between gold electrodes.

  16. Ionizing gas breakdown waves in strong electric fields.

    NASA Technical Reports Server (NTRS)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  17. Electric field in media with power-law spatial dispersion

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2016-04-01

    In this paper, we consider electric fields in media with power-law spatial dispersion (PLSD). Spatial dispersion means that the absolute permittivity of the media depends on the wave vector. Power-law type of this dispersion is described by derivatives and integrals of non-integer orders. We consider electric fields of point charge and dipole in media with PLSD, infinite charged wire, uniformly charged disk, capacitance of spherical capacitor and multipole expansion for PLSD-media.

  18. Electric and magnetic fields near AM broadcast towers. Final report

    SciTech Connect

    Mantiply, E.; Cleveland, R.F.

    1991-07-01

    The purpose of the study was to obtain actual measurement data in the close-in near field of representative AM broadcast antennas and compare the data to values predicted by a Numerical Electromagnetic Code (NEC) model. Measurements of electric and magnetic fields were made along several radial directions at distances from 1 to 100m from the transmitting towers of eight AM broadcast stations. These stations operated at various frequencies, electrical heights, and power outputs.

  19. Biological electric fields and rate equations for biophotons.

    PubMed

    Alvermann, M; Srivastava, Y N; Swain, J; Widom, A

    2015-04-01

    Biophoton intensities depend upon the squared modulus of the electric field. Hence, we first make some general estimates about the inherent electric fields within various biosystems. Generally, these intensities do not follow a simple exponential decay law. After a brief discussion on the inapplicability of a linear rate equation that leads to strict exponential decay, we study other, nonlinear rate equations that have been successfully used for biosystems along with their physical origins when available.

  20. Effects of high external electric fields on protein conformation

    NASA Astrophysics Data System (ADS)

    Pompa, Pier Paolo; Bramanti, Alessandro; Maruccio, Giuseppe; del Mercato, Loretta Laureana; Chiuri, Rocco; Cingolani, Roberto; Rinaldi, Ross

    2005-06-01

    Resistance of biomolecules to high electric fields is a main concern for nanobioelectronics/nanobiosensing applications, and it is also a relevant issue from a fundamental perspective, to understand the dielectric properties and structural dynamics of proteins. In nanoscale devices, biomolecules may experience electric fields as high as 107 V/m in order to elicit charge transport/transfer. Understanding the effects of such fields on their structural integrity is thus crucial to assess the reliability of biomolecular devices. In this study, we show experimental evidence for the retention of native-like fold pattern by proteins embedded in high electric fields. We have tested the metalloprotein azurin, deposited onto SiO2 substrates in air with proper electrode configuration, by applying high static electric fields (up to 106-107 V/m). The effects on the conformational properties of protein molecules have been determined by means of intrinsic fluorescence measurements. Experimental results indicate that no significant field-induced conformational alteration occurs. This behavior is also discussed and supported by theoretical predictions of the intrinsic intra-protein electric fields. As the general features of such inner fields are not peculiar of azurin, the conclusions presented here should have general validity.