Science.gov

Sample records for crystal fiber grating

  1. Holographic polymer-dispersed liquid crystal Bragg grating integrated inside a solid core photonic crystal fiber.

    PubMed

    Zito, Gianluigi; Pissadakis, Stavros

    2013-09-01

    A polymer/liquid crystal-based fiber Bragg grating (PLC-FBG) is fabricated with visible two-beam holography by photo-induced modulation of a prepolymer/liquid crystal solution infiltrated into the hollow channels of a solid core photonic crystal fiber (PCF). The fabrication process and effects related to the photonic bandgap guidance into the infiltrated PCF, and characterization of the PLC-FBG, are discussed. Experimental data presented here demonstrate that the liquid crystal inclusions of the PLC-FBG lead to high thermal and bending sensitivities. The microscopic behavior of the polymer/liquid crystal phase separation inside the PCF capillaries is examined using scanning electron microscopy, and is discussed further. PMID:23988927

  2. Reversible photo-induced long-period fiber gratings in photonic liquid crystal fibers.

    PubMed

    Liou, Jia-hong; Chang, Tin-hao; Lin, Ta; Yu, Chin-ping

    2011-03-28

    A novel light-controllable long-period fiber grating (LPFG) is demonstrated by making use of a PCF infiltrated with a photoresponsive liquid crystal (LC) mixture consisting of nematic LC molecules and light-sensitive 4-methoxyazobenzene (4MAB). With the aid of the photo-induced isomerization of 4MAB, the refractive index of the LC mixture can be modulated and the periodic index perturbation along the fiber can be achieved by exposing the PCF to a blue laser through a mask. The resonance wavelength and dip depth of the LPFG can be controlled by using different blue-laser irradiation time, numbers of period, and 4MAB concentrations. In addition, the photo-induced LPFG is erasable under green-laser illumination. PMID:21451702

  3. On the influence of hexagonal lattice photonic crystal fiber parameters on femtosecond grating inscription

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, Tigran; Geernaert, Thomas; Berghmans, Francis; Thienpont, Hugo

    2012-04-01

    Photonic crystal fibers (PCFs) offer great design flexibility as their internal microstructure can be tailored to achieve a wide range of optical guiding properties adapted to many different applications. Fiber Bragg grating fabrication in such fibers is now extensively investigated to enable new fiber sensor and all-fiber laser applications. Grating writing in PCF is not necessarily straightforward. This is due, to a large extent, to the air hole microstructure in the fiber cladding that impedes the inscribing beam intensity to reach the fiber core in sufficient amounts. This issue is more pronounced for multi-photon absorption based grating inscription techniques, for which the intensity of the light reaching the core is crucial to induce the desired refractive index change. We performed a numerical study of transverse light propagation through the cladding to the core for various hexagonal lattice PCFs. A numerical tool based on commercial FDTD software was developed for that purpose. To assess the influence of the PCF microstructured cladding, we defined a figure of merit to quantify the amount of laser light reaching the core: the "transverse coupling efficiency" (TCE). We studied the influence of the hexagonal lattice parameters, in particular the air hole radius and pitch, on the energy reaching the core for various angular orientations of the fiber with respect to the impinging laser beam. We conducted this study for ultraviolet and infrared femtosecond laser sources. As a result we have identified favorable PCF lattice parameters and a fiber orientation that would allow efficient femtosecond grating inscription. We show that the microstructure of a PCF can not only have a limiting, but also a constructive influence on the laser energy reaching the core of the fiber and thus on the efficiency with which gratings can be inscribed.

  4. Internal strain monitoring in composite materials with embedded photonic crystal fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Geernaert, Thomas; Sulejmani, Sanne; Sonnenfeld, Camille; Chah, Karima; Luyckx, Geert; Lammens, Nicolas; Voet, Eli; Becker, Martin; Thienpont, Hugo; Berghmans, Francis

    2014-09-01

    The possibility of embedding optical fiber sensors inside carbon fiber reinforced polymer (CFRP) for structural health monitoring purposes has already been demonstrated previously. So far however, these sensors only allowed axial strain measurements because of their low sensitivity for strain in the direction perpendicular to the optical fiber's axis. The design flexibility provided by novel photonic crystal fiber (PCF) technology now allows developing dedicated fibers with substantially enhanced sensitivity to such transverse loads. We exploited that flexibility and we developed a PCF that, when equipped with a fiber Bragg grating (FBG), leads to a sensor that allows measuring transverse strains in reinforced composite materials, with an order of magnitude increase of the sensitivity over the state-of-the-art. In addition it allows shear strain sensing in adhesive bonds, which are used in composite repair patches. This is confirmed both with experiments and finite element simulations on such fibers embedded in CFRP coupons and adhesive bonds. Our sensor brings the achievable transverse strain measurement resolution close to a target value of 1 μstrain and could therefore play an important role for multi-dimensional strain sensing, not only in the domain of structural health monitoring, but also in the field of composite material production monitoring. Our results thereby illustrate the added value that PCFs have to offer for internal strain measurements inside composite materials and structures.

  5. Temperature-insensitivity gas pressure sensor based on inflated long period fiber grating inscribed in photonic crystal fiber.

    PubMed

    Zhong, Xiaoyong; Wang, Yiping; Liao, Changrui; Liu, Shen; Tang, Jian; Wang, Qiao

    2015-04-15

    We demonstrated an inflated long period fiber grating (I-LPFG) inscribed in a pure-silica photonic crystal fiber (PCF) for high-sensitivity gas pressure sensing applications. The I-LPFG was inscribed by use of the pressure-assisted CO2 laser beam-scanning technique to inflate periodically air holes of a PCF along the fiber axis. Such an I-LPFG with periodic inflations exhibits a very high gas pressure sensitivity of 1.68 nm/MPa, which is one order of magnitude higher than that, i.e., 0.12 nm/Mpa, of the LPFG without periodic inflations. Moreover, the I-LPFG has a very low temperature sensitivity of 3.1 pm/°C due to the pure silica material in the PCF so that the pressure measurement error, resulting from the cross-sensitivity between temperature and gas pressure, is less than 1.8 Kpa/°C in the case of no temperature compensation. So the I-LPFG could be used to develop a promising gas pressure sensor, and the achieved pressure measurement range is up to 10 MPa. PMID:25872075

  6. Phononic crystal diffraction gratings

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent

    2012-02-01

    When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.

  7. Fiber Grating Environmental Sensing System

    DOEpatents

    Schulz, Whitten L.; Udd, Eric

    2003-07-29

    Fiber grating environmental measurement systems are comprised of sensors that are configured to respond to changes in moisture or chemical content of the surrounding medium through the action of coatings and plates inducing strain that is measured. These sensors can also be used to monitor the interior of bonds for degradation due to aging, cracking, or chemical attack. Means to multiplex these sensors at high speed and with high sensitivity can be accomplished by using spectral filters placed to correspond to each fiber grating environmental sensor. By forming networks of spectral elements and using wavelength division multiplexing arrays of fiber grating sensors may be processed in a single fiber line allowing distributed high sensitivity, high bandwidth fiber optic grating environmental sensor systems to be realized.

  8. Theoretical analysis of novel fiber grating pair

    NASA Astrophysics Data System (ADS)

    Wang, Liao; Jia, Hongzhi; Fang, Liang; You, Bei

    2016-06-01

    A novel fiber grating pair that consists of a conventional long-period fiber grating and a fiber Bragg cladding grating (FBCG) is proposed. The FBCG is a new type of fiber grating in which refractive index modulation is formed in the cladding. Through the coupled-mode theory, we accurately calculate the coupling coefficients between modes supported in the fibers. And some other mode coupling features in the fiber cladding gratings are analyzed in detail. The calculation of the modes involved in this paper is based on a model of three-layer step-index fiber geometry. Then, we have investigated the sensitivity characteristics for variation of the modulation strengths of the fiber Bragg cladding gratings' resonance peaks and the long-period cladding gratings' (LPCGs) dual resonant peaks. Finally, the modulation strength sensitivity of the grating pair's three resonant peaks is demonstrated, and the results indicate that these grating pairs may find potential applications in optical fiber sensing.

  9. Dispersion optimization of photonic crystal fiber long-period gratings for a high-sensitivity refractive index sensing

    NASA Astrophysics Data System (ADS)

    Kanka, Jiri

    2011-05-01

    Photonic crystal fiber long-period gratings (PCF-LPGs) operating near the phase-matching turning point to achieve high sensitivity to the refractive index of gas and liquid analytes infiltrated into cladding air holes are designed by numerical optimization. The vectorial finite element method is employed for the modal analysis of an index-guiding PCF and the calculation of the phase matching curves. The geometrical parameters of PCF (pitch and diameter of air holes arranged in a periodic triangular array) are optimized by using the down-hill simplex technique to engineer the dispersion of modes coupled by a LPG to obtain the turning point in the phase-matching curve at a desired wavelength for a given analyte refractive index. The resonant wavelength is subsequently extremely sensitive to the analyte refractive index, however, its large shifts can be detected with a substantially reduced resolution because the resonance dip in the LPG transmission spectrum is very broad. On the other hand, the broad resonance provides a broadband operation of a PCF-LPG sensor and its high sensitivity to the refractive index can still be achieved by relying on changes in the coupling strength (and consequently in the transmission loss) rather than in the resonant wavelength of LPG. We consider coupling between the fundamental core mode and the first-order symmetric cladding mode. We also explore an alternative approach based on coupling between the fundamental core mode and the fundamental space-filling mode instead of the individual cladding mode. The PCF-LPG structure optimized for refractive-index sensing is also assessed for label-free biosensing.

  10. Fiber optic diffraction grating maker

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1991-01-01

    A compact and portable diffraction grating maker comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate.

  11. Fiber optic diffraction grating maker

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1991-05-21

    A compact and portable diffraction grating maker is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate. 4 figures.

  12. Optically tunable chirped fiber Bragg grating.

    PubMed

    Li, Zhen; Chen, Zhe; Hsiao, V K S; Tang, Jie-Yuan; Zhao, Fuli; Jiang, Shao-Ji

    2012-05-01

    This work presents an optically tunable chirped fiber Bragg grating (CFBG). The CFBG is obtained by a side-polished fiber Bragg grating (SPFBG) whose thickness of the residual cladding layer in the polished area (D(RC)) varies with position along the length of the grating, which is coated with a photoresponsive liquid crystal (LC) overlay. The reflection spectrum of the CFBG is tuned by refractive index (RI) modulation, which comes from the phase transition of the overlaid photoresponsive LC under ultraviolet (UV) light irradiation. The broadening in the reflection spectrum and corresponding shift in the central wavelength are observed with UV light irradiation density of 0.64mW/mm. During the phase transition of the photoresponsive LC, the RI increase of the overlaid LC leads to the change of the CFBG reflection spectrum and the change is reversible and repeatable. The optically tunable CFBGs have potential use in optical DWDM system and an all-fiber telecommunication system. PMID:22565706

  13. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings.

    PubMed

    Teng, Lei; Zhang, Hongying; Dong, Yongkang; Zhou, Dengwang; Jiang, Taofei; Gao, Wei; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi

    2016-09-15

    A temperature-compensated distributed hydrostatic pressure sensor based on Brillouin dynamic gratings (BDGs) is proposed and demonstrated experimentally for the first time, to the best of our knowledge. The principle is to measure the hydrostatic pressure induced birefringence changes through exciting and probing the BDGs in a thin-diameter pure silica polarization-maintaining photonic crystal fiber. The temperature cross-talk to the hydrostatic pressure sensing can be compensated through measuring the temperature-induced Brillouin frequency shift (BFS) changes using Brillouin optical time-domain analysis. A distributed measurement of hydrostatic pressure is demonstrated experimentally using a 4-m sensing fiber, which has a high sensitivity, with a maximum measurement error less than 0.03 MPa at a 20-cm spatial resolution.

  14. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings.

    PubMed

    Teng, Lei; Zhang, Hongying; Dong, Yongkang; Zhou, Dengwang; Jiang, Taofei; Gao, Wei; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi

    2016-09-15

    A temperature-compensated distributed hydrostatic pressure sensor based on Brillouin dynamic gratings (BDGs) is proposed and demonstrated experimentally for the first time, to the best of our knowledge. The principle is to measure the hydrostatic pressure induced birefringence changes through exciting and probing the BDGs in a thin-diameter pure silica polarization-maintaining photonic crystal fiber. The temperature cross-talk to the hydrostatic pressure sensing can be compensated through measuring the temperature-induced Brillouin frequency shift (BFS) changes using Brillouin optical time-domain analysis. A distributed measurement of hydrostatic pressure is demonstrated experimentally using a 4-m sensing fiber, which has a high sensitivity, with a maximum measurement error less than 0.03 MPa at a 20-cm spatial resolution. PMID:27628411

  15. Overview of fiber grating-based sensors

    NASA Astrophysics Data System (ADS)

    Meltz, Gerald

    1996-11-01

    Optical fiber sensor technology based on intra-core Bragg gratings has been used in a number of important application areas ranging from structural monitoring to chemical sensing. Practical and cost effective systems are not far in the future judging from advances in grating manufacture and sensor readout instrumentation. Fiber grating technology is not driven by its use in sensors but rather by valuable applications in dense, broadband WDM telecommunications. In this paper, we review the fundamentals of Bragg grating sensors and discuss various means for wavelength-shift demodulation, separation of temperature and strain responses and new directions that will offer additional capabilities.

  16. Cross-fiber Bragg grating transducer

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia (Inventor); Zheng, Jianli (Inventor); Lavarias, Arnel (Inventor)

    2000-01-01

    A transducer has been invented that uses specially-oriented gratings in waveguide a manner that allows the simultaneous measurement of physical phenomena (such as shear force, strain and temperature) in a single sensing element. The invention has a highly sensitive, linear response and also has directional sensitivity with regard to strain. The transducer has a waveguide with a longitudinal axis as well as two Bragg gratings. The transducer has a first Bragg grating associated with the waveguide that has an angular orientation .theta..sub.a relative to a perpendicular to the longitudinal axis such that 0.degree.<.theta..sub.a <.theta..sub.max. The second Bragg grating is associated with the waveguide in such a way that the angular orientation .theta..sub.b of the grating relative to a perpendicular to the longitudinal axis is (360.degree.-.theta..sub.max)<.theta..sub.b <360.degree.. The first Bragg grating can have a periodicity .LAMBDA..sub.a and the second Bragg grating can have a periodicity .LAMBDA..sub.b such that the periodicity .LAMBDA..sub.a of the first Bragg grating does not equal the periodicity .LAMBDA..sub.b of the second Bragg grating. The angle of the gratings can be such that .theta..sub.a =360.degree.-.theta..sub.b. The waveguide can assume a variety of configurations, including an optical fiber, a rectangular waveguide and a planar waveguide. The waveguide can be fabricated of a variety of materials, including silica and polymer material.

  17. Thermal annealing of tilted fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    González-Vila, Á.; Rodríguez-Cobo, L.; Mégret, P.; Caucheteur, C.; López-Higuera, J. M.

    2016-05-01

    We report a practical study of the thermal decay of cladding mode resonances in tilted fiber Bragg gratings, establishing an analogy with the "power law" evolution previously observed on uniform gratings. We examine how this process contributes to a great thermal stability, even improving it by means of a second cycle slightly increasing the annealing temperature. In addition, we show an improvement of the grating spectrum after annealing, with respect to the one just after inscription, which suggests the application of this method to be employed to improve saturation issues during the photo-inscription process.

  18. Fiber Bragg Grating Sensors for Harsh Environments

    PubMed Central

    Mihailov, Stephen J.

    2012-01-01

    Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on regeneration techniques and femtosecond infrared laser processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This paper will present a review of some of the more recent developments. PMID:22438744

  19. Fiber Bragg Grating Filter High Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Brass, Eric D.; Pencil, Eric (Technical Monitor)

    2001-01-01

    We present a scaled-down method for determining high temperatures using fiber-based Bragg gratings. Bragg gratings are distributed along the length of the optical fiber, and have high reflectivities whenever the optical wavelength is twice the grating spacing. These spatially distinct Bragg regions (located in the core of a fiber) are sensitive to local temperature changes. Since these fibers are silica-based they are easily affected by localized changes in temperature, which results in changes to both the grating spacing and the wavelength reflectivity. We exploit the shift in wavelength reflectivity to measure the change in the local temperature. Note that the Bragg region (sensing area) is some distance away from where the temperature is being measured. This is done so that we can measure temperatures that are much higher than the damage threshold of the fiber. We do this by affixing the fiber with the Bragg sensor to a material with a well-known coefficient of thermal expansion, and model the heat gradient from the region of interest to the actual sensor. The research described in this paper will culminate in a working device as well as be the second portion of a publication pending submission to Optics Letters.

  20. Cryogenic Fiber Optic Sensors Based on Fiber Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Swinehart, P. R.; Maklad, M.; Courts, S. S.

    2008-03-01

    Fiber optic sensing has many favorable characteristics—a single fiber can be used to multiplex multiple sensors along the length of the fiber, fiber optic sensing is immune to electromagnetic noise and is inherently safe for combustible liquids and atmospheres. Previously, fiber optic sensors based on fiber Bragg gratings (FBGs) have been demonstrated for cryogenic use for both temperature and strain sensing, but often little data is supplied as to the reproducibility or unit-to-unit uniformity of these sensors. Lake Shore Cryotronics has manufactured fiber optic cryogenic temperature sensors based on Bragg gratings using novel packaging techniques. The temperature response and reproducibility is reported from 80K to 480K for glass-packaged sensors, and a calibration for a high sensitivity, wide range zinc-packaged sensor is reported.

  1. Liquid crystal on subwavelength metal gratings

    NASA Astrophysics Data System (ADS)

    Palto, S. P.; Barnik, M. I.; Artemov, V. V.; Shtykov, N. M.; Geivandov, A. R.; Yudin, S. G.; Gorkunov, M. V.

    2015-06-01

    Optical and electrooptical properties of a system consisting of subwavelength metal gratings and nematic liquid crystal layer are studied. Aluminium gratings that also act as interdigitated electrodes are produced by focused ion beam lithography. It is found that a liquid crystal layer strongly influences both the resonance and light polarization properties characteristic of the gratings. Enhanced transmittance is observed not only for the TM-polarized light in the near infrared spectral range but also for the TE-polarized light in the visible range. Although the electrodes are separated by nanosized slits, and the electric field is strongly localized near the surface, a pronounced electrooptical effect is registered. The effect is explained in terms of local reorientation of liquid crystal molecules at the grating surface and propagation of the orientational deformation from the surface into the bulk of the liquid crystal layer.

  2. Liquid crystal on subwavelength metal gratings

    SciTech Connect

    Palto, S. P.; Barnik, M. I.; Artemov, V. V.; Shtykov, N. M.; Geivandov, A. R.; Yudin, S. G.; Gorkunov, M. V.

    2015-06-14

    Optical and electrooptical properties of a system consisting of subwavelength metal gratings and nematic liquid crystal layer are studied. Aluminium gratings that also act as interdigitated electrodes are produced by focused ion beam lithography. It is found that a liquid crystal layer strongly influences both the resonance and light polarization properties characteristic of the gratings. Enhanced transmittance is observed not only for the TM-polarized light in the near infrared spectral range but also for the TE-polarized light in the visible range. Although the electrodes are separated by nanosized slits, and the electric field is strongly localized near the surface, a pronounced electrooptical effect is registered. The effect is explained in terms of local reorientation of liquid crystal molecules at the grating surface and propagation of the orientational deformation from the surface into the bulk of the liquid crystal layer.

  3. Top-hat random fiber Bragg grating.

    PubMed

    Yin, Hongwei; Gbadebo, Adenowo; Turitsyna, Elena G

    2015-08-01

    We examined the possibility of using noise or pseudo-random variations of the refractive index in the design of fiber Bragg gratings (FBGs). We demonstrated theoretically and experimentally that top-hat FBGs may be designed and fabricated using this approach. The reflectivity of the fabricated top-hat FBG matches quite well with that of the designed one. PMID:26258365

  4. Fiber-bragg grating-loop ringdown method and apparatus

    DOEpatents

    Wang, Chuji

    2008-01-29

    A device comprising a fiber grating loop ringdown (FGLRD) system of analysis is disclosed. A fiber Bragg grating (FBG) or Long-Period grating (LPG) written in a section of single mode fused silica fiber is incorporated into a fiber loop. By utilizing the wing areas of the gratings' bandwidth as a wavelength dependent attenuator of the light transmission, a fiber grating loop ringdown concept is formed. One aspect of the present invention is temperature sensing, which has been demonstrated using the disclosed device. Temperature measurements in the areas of accuracy, stability, high temperature, and dynamic range are also described.

  5. Writing Bragg Gratings in Multicore Fibers.

    PubMed

    Lindley, Emma Y; Min, Seong-Sik; Leon-Saval, Sergio G; Cvetojevic, Nick; Lawrence, Jon; Ellis, Simon C; Bland-Hawthorn, Joss

    2016-01-01

    Fiber Bragg gratings in multicore fibers can be used as compact and robust filters in astronomical and other research and commercial applications. Strong suppression at a single wavelength requires that all cores have matching transmission profiles. These gratings cannot be inscribed using the same method as for single-core fibers because the curved surface of the cladding acts as a lens, focusing the incoming UV laser beam and causing variations in exposure between cores. Therefore we use an additional optical element to ensure that the beam shape does not change while passing through the cross-section of the multicore fiber. This consists of a glass capillary tube which has been polished flat on one side, which is then placed over the section of the fiber to be inscribed. The laser beam enters the fiber through the flat surface of the capillary tube and hence maintains its original dimensions. This paper demonstrates the improvements in core-to-core uniformity for a 7-core fiber using this method. The technique can be generalized to larger multicore fibers. PMID:27167576

  6. Sensing Features of Long Period Gratings in Hollow Core Fibers

    PubMed Central

    Iadicicco, Agostino; Campopiano, Stefania

    2015-01-01

    We report on the investigation of the sensing features of the Long-Period fiber Gratings (LPGs) fabricated in hollow core photonic crystal fibers (HC-PCFs) by the pressure assisted Electric Arc Discharge (EAD) technique. In particular, the characterization of the LPG in terms of shift in resonant wavelengths and changes in attenuation band depth to the environmental parameters: strain, temperature, curvature, refractive index and pressure is presented. The achieved results show that LPGs in HC-PCFs represent a novel high performance sensing platform for measurements of different physical parameters including strain, temperature and, especially, for measurements of environmental pressure. The pressure sensitivity enhancement is about four times greater if we compare LPGs in HC and standard fibers. Moreover, differently from LPGs in standard fibers, these LPGs realized in innovative fibers, i.e., the HC-PCFs, are not sensitive to surrounding refractive index. PMID:25855037

  7. Measuring Bragg gratings in multimode optical fibers.

    PubMed

    Schmid, Markus J; Müller, Mathias S

    2015-03-23

    Fiber Bragg gratings (FBG) in multimode optical fibers provide a means for cost-effictive devices resulting in simplified and robust optic sensor systems. Parasitic mode effects in optical components of the entire measurement system strongly influence the measured multi-resonance reflection spectrum. Using a mode transfer matrix formalism we can describe these complex mode coupling effects in multimode optical systems in more detail. We demonstrate the accordance of the theory by two experiments. With this formalism it is possible to understand and optimize mode effects in multimode fiber optic systems. PMID:25837146

  8. Fiber Bragg grating cryogenic temperature sensors

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjay; Mizunami, Toru; Yamao, Takashi; Shimomura, Teruo

    1996-09-01

    Temperature sensing to as low as 80 K was demonstrated with 1.55- mu m fiber Bragg gratings. The gratings were bonded on substrates to increase sensitivity, and a shift of the reflection wavelength was measured. The temperature sensitivity was 0.02 nm/K at 100 K when an aluminum substrate was used and 0.04 nm/K at 100 K when a poly(methyl methacrylate) substrate was used. These values are smaller than those at room temperature because of the nonlinearity of both the thermal expansion and the thermo-optic effect. Extension to the liquid helium temperature is also discussed.

  9. Simulation-guided design and fabrication of long-period gratings in photonic crystal fiber as refractive index transduction platform for multi-parameter sensing

    NASA Astrophysics Data System (ADS)

    He, Zonghu

    2011-12-01

    Fiber optic sensing technology based on conventional, all-solid optical fiber has been broadly used for chemical and biological sensing and detection. The advent of photonic crystal fiber (PCF) offers transformative opportunities due to its unique waveguiding and microstructural features. Incorporating long period gratings (LPG) in PCF has the potential to further catapult LPG-PCF based sensing technology in terms of greatly improved sensing capabilities and significantly expanded field of applications. This doctoral dissertation aims to synergistically integrate LPG and index guiding PCF as refractive index transduction platform to explore its potential for multi-parameter sensing and measurements. The phase matching conditions, core mode to cladding mode coupling, and power overlap were theoretically simulated to aid in the design and fabrication of the LPG-PCF platform using CO2 laser. For sensing of aqueous solutions, we developed a novel means of LPG fabrication while maintaining a steady liquid flow in the PCF air channels. This approach greatly improves the quality and reproducibility of the fabrication process. More importantly, it helps preserve the general resonance coupling condition when an aqueous analyte solution is probed. We have theoretically predicted and experimentally achieved a sensitivity of ˜10-7 refractive index unit using our fabricated LPG-PCF platform due to the strong overlap between the cladding mode evanescent field and the analyte within the PCF air channels. For label-free biosensing, we integrated the LPG-PCF with a home-build microfluidic flow cell that can be optically coupled with the sensing platform while allowing continuous flow of the reagents. As a result, we have demonstrated the ability to monitor a series of surface binding events in situ. Our LPG-PCF is able to consistently detect monolayer biomolecular binding events with a measured resonance wavelength shift of about 0.75 nm per nanometer thick layer formed. Overall

  10. Holographically generated twisted nematic liquid crystal gratings

    SciTech Connect

    Choi, Hyunhee; Wu, J.W.; Chang, Hye Jeong; Park, Byoungchoo

    2006-01-09

    A reflection holographic method is introduced to fabricate an electro-optically tunable twisted nematic (TN) liquid crystal (LC) grating, forgoing the geometrical drawing. The photoisomerization process occurring on the LC alignment layers of an LC cell in the reflection holographic configuration gives a control over the twist angle, and the grating spacing is determined by the slant angle of reflection holographic configuration. The resulting diffraction grating is in a structure of a reverse TN LC, permitting a polarization-independent diffraction efficiency. The electro-optic tunability of the diffraction efficiency is also demonstrated.

  11. Fiber Bragg grating based tunable sensitivity goniometer

    NASA Astrophysics Data System (ADS)

    Padma, Srivani; Umesh, Sharath; Pant, Shweta; Srinivas, Talabattula; Asokan, Sundarrajan

    2016-03-01

    Goniometer has found extensive usage in diverse applications, primary being medical field in which it is employed for obtaining the range of motion of joints during physical therapy. It is imperative to have a dynamic system to measure the range of motion which will aid for a progressive therapeutic treatment. Hence in the present study, a novel goniometer for real time dynamic angle measurement between two surfaces with the aid of a Fiber Bragg Grating sensor is proposed. The angular rotation between the two surfaces will be identified by the two arms of the Fiber Bragg Grating Goniometer (FBGG), which is translated to the rotation of the shaft which holds these arms together. A cantilever beam is fixed onto the base plate whose free end is connected to the rotating shaft. The rotating shaft will actuate a mechanism which will pull the free end of the cantilever resulting in strain variation over the cantilever beam. The strain variation on the cantilever beam is measured by the Fiber Bragg Grating sensor bonded over it. Further, the proposed FBGG facilitates tunable sensitivity by the discs of varying diameters on the rotating shaft. Tunable sensitivity of the FBGG is realised by the movement of these discs by varying circumferential arc lengths for the same angular movement, which will actuate the pull on the cantilever beam. As per the requirement of the application in terms of resolution and range of angular measurement, individual mode of sensitivity may be selected.

  12. Tailored draw tower fiber Bragg gratings for various sensing applications

    NASA Astrophysics Data System (ADS)

    Lindner, Eric; Mörbitz, Julia; Chojetzki, Christoph; Becker, Martin; Brückner, Sven; Schuster, Kay; Rothhardt, Manfred; Willsch, Reinhardt; Bartelt, H.

    2012-02-01

    The idea of fabricating fiber Bragg gratings during the drawing process of an optical fiber dates back almost 20 years. The application of a transverse holographic writing method on a fiber draw tower offers a promising solution for a highly effective Bragg grating production. Because of the high technology requirements it took more than 10 years to develop the method into a reliable process. The improvements in the technical development during the last five years enable today a cost efficient industrial production of draw tower grating (DTG®) arrays. In this paper we report about new possibilities of the improved process with respect to the grating type (type I gratings, type II gratings), the coating type (2ORMOCER®, metals) and the fiber diameter (125μm, 80μm and below). Furthermore, we present an example for the application of draw tower fiber Bragg gratings in sensing technologies for medical applications.

  13. Hydrogen loading to the optic fibers for fiber grating sensors

    NASA Astrophysics Data System (ADS)

    Xiao, Chun; Zhang, Wen-yu; Zhu, Yuan; Pan, Zhi-yong

    2014-12-01

    In this paper, fibers with different depths of hermetically coated carbon are hydrogen loaded and radiated, and it's found that too thick of carbon layer around fiber can't bring best radiation-resistant properties, because the thick carbon layer would make the entering of hydrogen difficult although it can help to stop the hydrogen escaping. We also research the duration of saturated hydrogen loading under the temperature of 60°C and 100°C respectively, and it's found that after 120h and 48h, the fibers' photo sensitivities tend to be flat. We also reload hydrogen into the fibers which have been loaded once, and these fibers are etched then, this help us to deep understand the mechanism of hydrogen loading for the fiber gratings.

  14. Theory of Fiber Optical Bragg Grating: Revisited

    NASA Technical Reports Server (NTRS)

    Tai, H.

    2003-01-01

    The reflected signature of an optical fiber Bragg grating is analyzed using the transfer function method. This approach is capable to cast all relevant quantities into proper places and provides a better physical understanding. The relationship between reflected signal, number of periods, index of refraction, and reflected wave phase is elucidated. The condition for which the maximum reflectivity is achieved is fully examined. We also have derived an expression to predict the reflectivity minima accurately when the reflected wave is detuned. Furthermore, using the segmented potential approach, this model can handle arbitrary index of refraction profiles and compare the strength of optical reflectivity of different profiles. The condition of a non-uniform grating is also addressed.

  15. Damage behaviors of fiber Bragg grating sensor in fabrication

    NASA Astrophysics Data System (ADS)

    Tang, Liqun; Sang, Dengfeng; Chen, Jinming; Yang, Bao; Liu, Yiping

    2008-11-01

    It is has been noted that for fiber Bragg grating sensor (FBGS), the tensile strengths of fiber Bragg grating sensors (FBGSs) were decreased after the gratings were written, which may reduce the sensor's measurement range obviously. In this paper, we focused on the damage behaviours of FBGS after fabrication experimentally. Firstly, the tensile tests were carried to measure the tensile strengths of naked optical fiber, decoated optical fiber and optical fiber with Bragg gratings to learn deduction of the tensile strength of optical fiber in the cases respectively. Further, the microscope photography was used to observe the surfaces of optical fiber with or without exposure of excimer laser. The main conclusion is that the UV pulse is the main contribution to reduce the strength remarkably, and the mechanical decoating method also can induce the surface damage on the optical fiber.

  16. Magnetomechanically induced long period fiber gratings

    SciTech Connect

    Causado-Buelvas, Jesus D.; Gomez-Cardona, Nelson D.; Torres, Pedro

    2008-04-15

    In this work, we report a simple, flexible method to create long period fiber gratings mechanically by controlling the repulsion/attraction force between two magnets that pressing a plate with a periodic array of small glass cylinders to a short length of optical fiber. Via the photoelastic effect, the pressure points induce the required periodic refractive index modulation to create the LPFG. We found that the induced device exhibits spectral characteristics similar to those of other types of LPFG. As the optical properties of LPFGs are directly related to the nature of the applied perturbations, we show, to our knowledge for the frrst time, how is the evolution of birefringence effects in mechanically induced LPFGs.

  17. Simultaneous demodulation of polarization mode coupling and fiber Bragg grating within a polarization maintaining fiber

    NASA Astrophysics Data System (ADS)

    Zhao, Yanshuang; Liu, Yanlei; Zhang, Jianzhong; Yang, Jun; Canning, John; Peng, G. D.; Chen, Yujin; Yuan, Libo

    2015-09-01

    We propose a simultaneous demodulation scheme of polarization mode coupling and fiber Bragg grating in a polarization maintaining fiber based on a white light interferometer. A polarization maintaining fiber with two inscribed fiber Bragg gratings is used to demonstrate the feasibility.

  18. Wavelength demodulation of fiber grating sensors using hybrid optical bistability

    NASA Astrophysics Data System (ADS)

    Lv, Guohui; Ou, Jinping; Wang, Huiying; Jiang, Xu; Shang, Shaohua

    2007-07-01

    In this article, a novel approach for demodulation of fiber grating sensors with high resolution is proposed based on a hybrid fiber optical bistablity device (OBD). This OBD is consisted of a FFP ring-cavity laser, fiber Bragg grating (FBG) and a certain optoelectronic feedback circuit. The optical bistability can be realized through alternative the center wavelength of the tunable fiber laser when the output power of the laser is fixed. The Bragg wavelength of sensing grating is determined by the switching on voltage of OBD.

  19. Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure.

    PubMed

    Caldas, Paulo; Jorge, Pedro A S; Rego, Gaspar; Frazão, Orlando; Santos, José Luís; Ferreira, Luís Alberto; Araújo, Francisco

    2011-06-10

    In this work an all-optical hot-wire flowmeter based on a silver coated fiber combining a long period grating and a fiber Bragg grating (FBG) structure is proposed. Light from a pump laser at 1480  nm propagating down the fiber is coupled by the long period grating into the fiber cladding and is absorbed by the silver coating deposited on the fiber surface over the Bragg grating structure. This absorption acts like a hot wire raising the fiber temperature locally, which is effectively detected by the FBG resonance shift. The temperature increase depends on the flow speed of the surrounding air, which has the effect of cooling the fiber. It is demonstrated that the Bragg wavelength shift can be related to the flow speed. A flow speed resolution of 0.08  m/s is achieved using this new configuration. PMID:21673779

  20. Trends and future of fiber Bragg grating sensing technologies: tailored draw tower gratings (DTGs)

    NASA Astrophysics Data System (ADS)

    Lindner, E.; Hartung, A.; Hoh, D.; Chojetzki, C.; Schuster, K.; Bierlich, J.; Rothhardt, M.

    2014-05-01

    Today fiber Bragg gratings are commonly used in sensing technology as well as in telecommunications. Numerous requirements must be satisfied for their application as a sensor such as the number of sensors per system, the measurement resolution and repeatability, the sensor reusability as well as the sensor costs. In addition current challenges need to be met in the near future for sensing fibers to keep and extend their marketability such as the suitability for sterilization, hydrogen darkening or the separation of strain and temperature (or pressure and temperature). In this contribution we will give an outlook about trends and future of the fiber Bragg gratings in sensing technologies. Specifically, we will discuss how the use of draw tower grating technology enables the production of tailored Bragg grating sensing fibers, and we will present a method of separating strain and temperature by the use of a single Bragg grating only, avoiding the need for additional sensors to realize the commonly applied temperature compensation.

  1. Fiber optical Bragg grating sensors embedded in CFRP wires

    NASA Astrophysics Data System (ADS)

    Nellen, Philipp M.; Frank, Andreas; Broennimann, Rolf; Meier, Urs; Sennhauser, Urs J.

    1999-05-01

    Based on the example application of Emmenbridge, a newly built steel-concrete-composite bridge in Switzerland with 47 m long built-in carbon fiber reinforced polymer (CFRP) prestressing cables, we will present and analyze the process chain leading to a reliable surveillance of modern civil engineering structures with embedded fiber optical Bragg gratings. This consists first in the embedding of optical fibers and in-fiber Bragg gratings in long CFRP wires in an industrial environment, including fiber optical monitoring of the curing process. Then, various qualifying tests were done: annealing experiments for determining optical lifetime of the Bragg gratings used, dynamic and static tensile tests for estimating their mechanical lifetime under operation, push-out experiments to check adhesion of fiber/coating/matrix interfaces, and performance tests to determine strain and temperature sensitivity of the embedded Bragg gratings. Finally, the prestressing cables were equipped with the CFRP sensor wires and built into the bridge.

  2. Transverse strain measurements using fiber optic grating based sensors

    NASA Technical Reports Server (NTRS)

    Udd, Eric (Inventor)

    1998-01-01

    A system and method to sense the application of transverse stress to an optical fiber which includes a light source that producing a relatively wide spectrum light beam. The light beam is reflected or transmitted off of an optical grating in the core of an optical fiber that is transversely stressed either directly or by the exposure to pressure when the fiber is bifringent so that the optical fiber responds to the pressure to transversely stress its core. When transversely stressed, the optical grating produces a reflection or transmission from the light beam that has two peaks or minimums in its frequency spectrum whose spacing and/or spread are indicative of the forces applied to the fiber. One or more detectors sense the reflection or transmissions from the optical grating to produce an output representative of the applied force. Multiple optical gratings and detectors may be employed to simultaneously measure temperature or the forces at different locations along the fiber.

  3. Response of fiber Bragg gratings to longitudinal ultrasonic waves.

    PubMed

    Minardo, Aldo; Cusano, Andrea; Bernini, Romeo; Zeni, Luigi; Giordano, Michele

    2005-02-01

    In the last years, fiber optic sensors have been widely exploited for several sensing applications, including static and dynamic strain measurements up to acoustic detection. Among these, fiber Bragg grating sensors have been indicated as the ideal candidate for practical structural health monitoring in light of their unique advantages over conventional sensing devices. Although this class of sensors has been successfully tested for static and low-frequency measurements, the identification of sensor performances for high-frequency detection, including acoustic emission and ultrasonic investigations, is required. To this aim, the analysis of feasibilty on the use of fiber Bragg grating sensors as ultrasonic detectors has been carried out. In particular, the response of fiber Bragg gratings subjected to the longitudinal ultrasonic (US) field has been theoretically and numerically investigated. Ultrasonic field interaction has been modeled, taking into account the direct deformation of the grating pitch combined with changes in local refractive index due to the elasto-optic effect. Numerical results, obtained for both uniform and Gaussian-apodized fiber Bragg gratings, show that the grating spectrum is strongly influenced by the US field in terms of shape and central wavelength. In particular, a key parameter affecting the grating response is the ratio between the US wavelength and the grating length. Normal operation characterized by changes in wavelength of undistorted Bragg peak is possible only for US wavelengths longer than the grating length. For US wavelengths approaching the grating length, the wavelength change is accompanied by subpeaks formation and main peak amplitude modulation. This effect can be attributed to the nonuniformity of the US perturbation along the grating length. At very high US frequencies, the grating is not sensitive any longer. The results of this analysis provide useful tools for the design of grating-based ultrasound sensors for

  4. Thermal activation of regenerated fiber Bragg grating in few mode fibers

    NASA Astrophysics Data System (ADS)

    Lai, Man-Hong; Gunawardena, Dinusha S.; Lim, Kok-Sing; Machavaram, Venkata R.; Lee, Say-Hoe; Chong, Wu-Yi; Lee, Yen-Sian; Ahmad, Harith

    2016-03-01

    This work demonstrated for the first time, the thermal regeneration of two and four modes graded index fiber Bragg gratings using high temperature tube furnace. During the regeneration process, the seed grating is erased and a new grating with lower index contrast is formed. The thermal calibration shows that the temperature sensitivity of regenerated grating is slightly higher for fiber with larger core. On the other hand, the regeneration temperature is lower for fiber with smaller core. The temperature sustainability up to 900 °C is observed for the produced regenerated gratings in few mode fibers.

  5. A novel fabrication of fiber Bragg grating in hollow-core fiber with HPDLCs

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-Hao; Choi, Wing-Kit; Wang, Lon A.

    2015-02-01

    An electrically controllable fiber Bragg grating (FBG) for working in the communication band is demonstrated by utilizing holographic polymer-dispersed liquid crystal (HPDLCs). PDLC is infiltrated in hollow-core fibers which are about 2μm and 5μm by means of capillarity. For the purpose of periodically separating polymer and liquid crystal to form an FBG, a two-beam interference system based on an argon laser (wavelength: 364nm) is used. To reduce coupling loss, we directly connect single-mode fibers (SMFs) to input and output ports. A maximum transmission loss dip of approximately 5-dB band rejection is obtained. After the cladding diameter is etched by buffered oxide etchant (BOE) solution to 12μm and a 150V external voltage is applied, a dip shift by ~ 15nm is measured

  6. Periodic waves in fiber Bragg gratings

    SciTech Connect

    Chow, K. W.; Merhasin, Ilya M.; Malomed, Boris A.; Nakkeeran, K.; Senthilnathan, K.; Wai, P. K. A.

    2008-02-15

    We construct two families of exact periodic solutions to the standard model of fiber Bragg grating (FBG) with Kerr nonlinearity. The solutions are named ''sn'' and ''cn'' waves, according to the elliptic functions used in their analytical representation. The sn wave exists only inside the FBG's spectral bandgap, while waves of the cn type may only exist at negative frequencies ({omega}<0), both inside and outside the bandgap. In the long-wave limit, the sn and cn families recover, respectively, the ordinary gap solitons, and (unstable) antidark and dark solitons. Stability of the periodic solutions is checked by direct numerical simulations and, in the case of the sn family, also through the calculation of instability growth rates for small perturbations. Although, rigorously speaking, all periodic solutions are unstable, a subfamily of practically stable sn waves, with a sufficiently large spatial period and {omega}>0, is identified. However, the sn waves with {omega}<0, as well as all cn solutions, are strongly unstable.

  7. Review of High-Speed Fiber Optic Grating Sensors Systems

    SciTech Connect

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  8. Chirped fiber gratings fabricated on curved fibers using uniform phase mask

    NASA Astrophysics Data System (ADS)

    Li, Bin; Liu, Yan; Tan, Zhongwei; Xu, Ou; Lu, Shaohua; Jian, Shuisheng

    2006-09-01

    We fabricated linearly chirped fiber gratings by using uniform phase mask instead of chirped mask. The chirp of the grating is realized by precisely setting the distance between the fiber and the phase mask at every point of the fiber. In experiments we derived linearly chirped fiber grating which has dispersion -1102ps/nm, time delay ripple is 17ps. And also the asymmetry high order apodization method is used successfully to reduce the time delay ripple. The experiment results consistent with the simulation results. We can fabricate gratings with different chirp extent use one uniform phase mask conveniently by only changing the curve function of the fiber.

  9. High speed demodulation systems for fiber optic grating sensors

    NASA Technical Reports Server (NTRS)

    Udd, Eric (Inventor); Weisshaar, Andreas (Inventor)

    2002-01-01

    Fiber optic grating sensor demodulation systems are described that offer high speed and multiplexing options for both single and multiple parameter fiber optic grating sensors. To attain very high speeds for single parameter fiber grating sensors ratio techniques are used that allow a series of sensors to be placed in a single fiber while retaining high speed capability. These methods can be extended to multiparameter fiber grating sensors. Optimization of speeds can be obtained by minimizing the number of spectral peaks that must be processed and it is shown that two or three spectral peak measurements may in specific multiparameter applications offer comparable or better performance than processing four spectral peaks. Combining the ratio methods with minimization of peak measurements allows very high speed measurement of such important environmental effects as transverse strain and pressure.

  10. High Speed Measurements using Fiber-optic Bragg Grating Sensors

    SciTech Connect

    Benterou, J J; May, C A; Udd, E; Mihailov, S J; Lu, P

    2011-03-26

    Fiber grating sensors may be used to monitor high-speed events that include catastrophic failure of structures, ultrasonic testing and detonations. This paper provides insights into the utility of fiber grating sensors to measure structural changes under extreme conditions. An emphasis is placed on situations where there is a structural discontinuity. Embedded chirped fiber Bragg grating (CFBG) sensors can track the very high-speed progress of detonation waves (6-9 km/sec) inside energetic materials. This paper discusses diagnostic instrumentation and analysis techniques used to measure these high-speed events.

  11. Fabrication of Fiber Optic Grating Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Wang, Ying (Inventor); Sharma, Anup (Inventor); Grant, Joseph (Inventor)

    2005-01-01

    An apparatus and method for forming a Bragg grating on an optical fiber using a phase mask to diffract a beam of coherent energy and a lens combined with a pair of mirrors to produce two symmetrical virtual point sources of coherent energy in the plane of the optical fiber. The two virtual light sources produce an interference pattern along the optical fiber. In a further embodiment, the period of the pattern and therefore the Bragg wavelength grating applied to the fiber is varied with the position of the optical fiber relative the lens.

  12. Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings.

    PubMed

    Antipov, Sergei; Ams, Martin; Williams, Robert J; Magi, Eric; Withford, Michael J; Fuerbach, Alexander

    2016-01-11

    We compare and contrast novel techniques for the fabrication of chirped broadband fiber Bragg gratings by ultrafast laser inscription. These methods enable the inscription of gratings with flexible period profiles and thus tailored reflection and dispersion characteristics in non-photosensitive optical fibers. Up to 19.5 cm long chirped gratings with a spectral bandwidth of up to 30 nm were fabricated and the grating dispersion was characterized. A maximum group delay of almost 2 ns was obtained for linearly chirped gratings with either normal or anomalous group velocity dispersion, demonstrating the potential for using these gratings for dispersion compensation. Coupling to cladding modes was reduced by careful design of the inscribed modification features. PMID:26832235

  13. Dynamic fiber Bragg grating sensing method

    NASA Astrophysics Data System (ADS)

    Ho, Siu Chun Michael; Ren, Liang; Li, Hongnan; Song, Gangbing

    2016-02-01

    The measurement of high frequency vibrations is important in many scientific and engineering problems. This paper presents a novel, cost effective method using fiber optic fiber Bragg gratings (FBGs) for the measurement of high frequency vibrations. The method uses wavelength matched FBG sensors, with the first sensor acting as a transmission filter and the second sensor acting as the sensing portion. Energy fluctuations in the reflection spectrum of the second FBG due to wavelength mismatch between the sensors are captured by a photodiode. An in-depth analysis of the optical circuit is provided to predict the behavior of the method as well as identify ways to optimize the method. Simple demonstrations of the method were performed with the FBG sensing system installed on a piezoelectric transducer and on a wind turbine blade. Vibrations were measured with sampling frequencies up to 1 MHz for demonstrative purposes. The sensing method can be multiplexed for use with multiple sensors, and with care, can be retrofitted to work with FBG sensors already installed on a structure.

  14. Amplitude-squeezed fiber-Bragg-grating solitons

    SciTech Connect

    Lee, R.-K.; Lai Yinchieh

    2004-02-01

    Quantum fluctuations of optical fiber-Bragg-grating solitons are investigated numerically by the back-propagation method. It is found that the band-gap effects of the grating act as a nonlinear filter and cause the soliton to be amplitude squeezed. The squeezing ratio saturates after a certain grating length and the optimal squeezing ratio occurs when the pulse energy is slightly above the fundamental soliton energy.

  15. Applications of distributed fiber Bragg grating sensors in civil engineering

    NASA Astrophysics Data System (ADS)

    Nellen, Philipp M.; Broennimann, Rolf; Sennhauser, Urs J.; Askins, Charles G.; Putnam, Martin A.

    1995-09-01

    We report on civil engineering applications of wavelength multiplexed optical-fiber Bragg grating arrays produced directly on the draw tower for testing and surveying advanced structures and material like carbon fiber reinforced concrete elements and prestressing tendons. We equipped a 6 m X 0.9 m X 0.5 m concrete cantilever beam reinforced with carbon fiber lamellas with fiber Bragg grating sensors. Static and dynamic strain levels up to 1500 micrometers /m were measured with a Michelson interferometer used as Fourier spectrometer with resolutions of about 10 micrometers /m for all sensors. Comparative measurements with electrical resistance strain gauges were in good agreement with the fiber optic results. We used the fiber sensors in two different arrangements: some Bragg grating array elements measured the local strain while others were configured in an extensometric way to measure moderate strain over 0.1-1 m.

  16. Research of double matched fiber optic grating demodulation system

    NASA Astrophysics Data System (ADS)

    Zhao, Limin; Ma, Yuling; Wang, Meng

    2008-12-01

    In this paper, a design of demodulation system applied to Fiber Bragg Grating sensor will be illustrated. This system is based on the principle of Fiber Bragg Grating strain sensing; therefore this applied system has the following characteristics: high sensitivity, high precision, low cost and so on. Demodulation system bases on the traditional matching method, and uses the two matched Fiber Bragg Grating parallel mode. Just because of this, it improves on a certain extent compared with the traditional one. The two Fiber Bragg Gratings are pasted on Hollow Aluminum Cantilever respectively so as to realize the high precision and the large scale strain demodulation. This paper proves the following theory through the academic analyses and experimentation, that is: pasting Fiber Bragg Grating on Hollow Aluminum Cantilever can improve the response sensitivity. During the process of matching, increasing the load on the Hollow Aluminum Cantilever, when the qualities of load cannot beyond the limited quality, there is a good linearity relation between the change of load's quality and the change of wavelength. The limited quality comes from the experimentation. The experimentation proves that the structure of two matched Fiber Bragg Grating parallel can increase the range of strain which can be measured largely, and at the same time this structure can solve double-value problem which exists in the ordinary matching method. The strain sense signal through the two parallel demodulation Fiber Bragg Gratings into data processing circuit. The single chip processes the data from the data processing circuit and works out the strain which is detected by Fiber Bragg Grating sensor.

  17. Research of fiber Bragg grating geophone based on cantilever beam

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Chen, Shao-hua; Tao, Guo; Lu, Gui-wu; Zhao, Kun

    2009-07-01

    Along with the development of seismic exploration, the demand of frequency, dynamic range, precision and resolution ration is increased. However, the traditional geophone has disadvantages of narrower bandwidth, lower dynamic range and resolution, and cannot meet the new needs of seismic exploration. Geophone technology is a choke point, which constrains the development of petroleum prospecting in recent years. Fiber Bragg Grating seism demodulation technology is the newest kind of seism demodulation technology. The sensing probe of the Fiber Bragg Grating geophone is made up of Fiber Bragg Gating. The information which it collects is embodied by wavelength. The modulation-demodulation is accomplished by Fiber Bragg Gating geophone directly. In this paper, we design different size Fiber Bragg Grating geophones based on the transmission properties of Fiber Bragg Grating and cantilever beam method. Beryllium bronze and stainless steel are chosen as the elastic beam and shell materials, respectively. The parameters such as response function and sensitivity are given theoretically. In addition, we have simulated the transmission characteristics of Fiber Bragg Grating geophone by virtue of finite element analysis. The influences of wavelength, mass block, fiber length on the characteristics of geophones are discussed in detail, and finally the appropriate structural parameters are presented.

  18. Fiber optic security seal including plural Bragg gratings

    DOEpatents

    Forman, Peter R.

    1994-01-01

    An optical security system enables the integrity of a container seal to be remotely interrogated. A plurality of Bragg gratings is written holographically into the core of at least one optical fiber placed about the container seal, where each Bragg grating has a predetermined location and a known frequency for reflecting incident light. A time domain reflectometer is provided with a variable frequency light output that corresponds to the reflecting frequencies of the Bragg gratings to output a signal that is functionally related to the location and reflecting frequency of each of the Bragg gratings.

  19. Fiber optic security seal including plural Bragg gratings

    DOEpatents

    Forman, P.R.

    1994-09-27

    An optical security system enables the integrity of a container seal to be remotely interrogated. A plurality of Bragg gratings is written holographically into the core of at least one optical fiber placed about the container seal, where each Bragg grating has a predetermined location and a known frequency for reflecting incident light. A time domain reflectometer is provided with a variable frequency light output that corresponds to the reflecting frequencies of the Bragg gratings to output a signal that is functionally related to the location and reflecting frequency of each of the Bragg gratings. 2 figs.

  20. A High Resolution Fiber Bragg Grating Resonator Strain Sensing System

    NASA Astrophysics Data System (ADS)

    Allsop, T.; Sugden, K.; Bennion, I.; Neal, R.; Malvern, A.

    A strain sensing system is demonstrated, consisting of a fiber Bragg grating resonator as the strain-sensing element. Signal encoding and decoding is achieved by a synthetic heterodyne technique. A strain accuracy of ±0.426 μɛwas attained; a value comparable to that of the classical fiber Fabry Perot (FFP) sensor and higher than conventional Bragg grating strain sensing schemes. This sensing element does not suffer from fabrication problems like the FFP sensor and the interrogation problems of the conventional Bragg grating sensor.

  1. Feasibility of Fiber Bragg Grating and Long-Period Fiber Grating Sensors under Different Environmental Conditions

    PubMed Central

    Wang, Jian-Neng; Tang, Jaw-Luen

    2010-01-01

    This paper presents the feasibility of utilizing fiber Bragg grating (FBG) and long-period fiber grating (LPFG) sensors for nondestructive evaluation (NDE) of infrastructures using Portland cement concretes and asphalt mixtures for temperature, strain, and liquid-level monitoring. The use of hybrid FBG and LPFG sensors is aimed at utilizing the advantages of two kinds of fiber grating to implement NDE for monitoring strains or displacements, temperatures, and water-levels of infrastructures such as bridges, pavements, or reservoirs for under different environmental conditions. Temperature fluctuation and stability tests were examined using FBG and LPFG sensors bonded on the surface of asphalt and concrete specimens. Random walk coefficient (RWC) and bias stability (BS) were used for the first time to indicate the stability performance of fiber grating sensors. The random walk coefficients of temperature variations between FBG (or LPFG) sensor and a thermocouple were found in the range of −0.7499 °C/ h to −1.3548 °C/ h. In addition, the bias stability for temperature variations, during the fluctuation and stability tests with FBG (or LPFG) sensors were within the range of 0.01 °C/h with a 15–18 h time cluster to 0.09 °C/h with a 3–4 h time cluster. This shows that the performance of FBG or LPFG sensors is comparable with that of conventional high-resolution thermocouple sensors under rugged conditions. The strain measurement for infrastructure materials was conducted using a packaged FBG sensor bonded on the surface of an asphalt specimen under indirect tensile loading conditions. A finite element modeling (FEM) was applied to compare experimental results of indirect tensile FBG strain measurements. For a comparative analysis between experiment and simulation, the FEM numerical results agreed with those from FBG strain measurements. The results of the liquid-level sensing tests show the LPFG-based sensor could discriminate five stationary liquid

  2. Performance Evaluation of Fiber Bragg Gratings at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Juergens, Jeffrey; Adamovsky, Grigory; Floyd, Bertram

    2004-01-01

    The development of integrated fiber optic sensors for smart propulsion systems demands that the sensors be able to perform in extreme environments. In order to use fiber optic sensors effectively in an extreme environment one must have a thorough understanding of the sensor s limits and how it responds under various environmental conditions. The sensor evaluation currently involves examining the performance of fiber Bragg gratings at elevated temperatures. Fiber Bragg gratings (FBG) are periodic variations of the refractive index of an optical fiber. These periodic variations allow the FBG to act as an embedded optical filter passing the majority of light propagating through a fiber while reflecting back a narrow band of the incident light. The peak reflected wavelength of the FBG is known as the Bragg wavelength. Since the period and width of the refractive index variation in the fiber determines the wavelengths that are transmitted and reflected by the grating, any force acting on the fiber that alters the physical structure of the grating will change what wavelengths are transmitted and what wavelengths are reflected by the grating. Both thermal and mechanical forces acting on the grating will alter its physical characteristics allowing the FBG sensor to detect both temperature variations and physical stresses, strain, placed upon it. This ability to sense multiple physical forces makes the FBG a versatile sensor. This paper reports on test results of the performance of FBGs at elevated temperatures. The gratings looked at thus far have been either embedded in polymer matrix materials or freestanding with the primary focus of this paper being on the freestanding FBGs. Throughout the evaluation process, various parameters of the FBGs performance were monitored and recorded. These parameters include the peak Bragg wavelength, the power of the Bragg wavelength, and total power returned by the FBG. Several test samples were subjected to identical test conditions to

  3. Magneto-Optic Field Coupling in Optical Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Carman, Gregory P. (Inventor); Mohanchandra, Panduranga K. (Inventor); Emmons, Michael C. (Inventor); Richards, William Lance (Inventor)

    2016-01-01

    The invention is a magneto-optic coupled magnetic sensor that comprises a standard optical fiber Bragg grating system. The system includes an optical fiber with at least one Bragg grating therein. The optical fiber has at least an inner core and a cladding that surrounds the inner core. The optical fiber is part of an optical system that includes an interrogation device that provides a light wave through the optical fiber and a system to determine the change in the index of refraction of the optical fiber. The cladding of the optical fiber comprises at least a portion of which is made up of ferromagnetic particles so that the ferromagnetic particles are subject to the light wave provided by the interrogation system. When a magnetic field is present, the ferromagnetic particles change the optical properties of the sensor directly.

  4. Fiber optic Bragg grating sensors embedded in GFRP rockbolts

    NASA Astrophysics Data System (ADS)

    Frank, Andreas; Nellen, Philipp M.; Broennimann, Rolf; Sennhauser, Urs J.

    1999-05-01

    Rockbolt anchors for tunnel or mine roofs are key elements during construction and operation. We report on the fabrication of glass fiber reinforced polymer (GFRP) rockbolts with embedded fiber optical Bragg grating sensors and their first field application in a test tunnel. Optical fibers and in-fiber Bragg grating sensors were embedded in GFRP rockbolts during a continuously ongoing pultrusion process on an industrial production machine. Depending on their outer diameter the rods equipped with fiber sensors serve as measuring rockbolts or as extensometric sensors for the motion of boulders in the tunnel roof. The adhesion and force transfer of different fiber coatings were tested by push-out experiments. By temperature and strain cycle tests the performance of the rockbolt sensors was evaluated. We will present these results and the measurements made during a first installation of fiber optical rockbolt sensors in a tunnel.

  5. Detuning in apodized point-by-point fiber Bragg gratings: insights into the grating morphology.

    PubMed

    Williams, Robert J; Krämer, Ria G; Nolte, Stefan; Withford, Michael J; Steel, M J

    2013-11-01

    Point-by-point (PbP) inscription of fiber Bragg gratings using femtosecond laser pulses is a versatile technique that is currently experiencing significant research interest for fiber laser and sensing applications. The recent demonstration of apodized gratings using this technique provides a new avenue of investigation into the nature of the refractive index perturbation induced by the PbP modifications, as apodized gratings are sensitive to variation in the average background index along the grating. In this work we compare experimental results for Gaussian- and sinc-apodized PbP gratings to a coupled-mode theory model, demonstrating that the refractive index perturbation induced by the PbP modifications has a negative contribution to the average background index which is small, despite the presence of strong reflective coupling. By employing Fourier analysis to a simplified model of an individual modification, we show that the presence of a densified shell around a central void can produce strong reflective coupling with near-zero change in the average background index. This result has important implications for the experimental implementation of apodized PbP gratings, which are of interest for a range of fiber laser and fiber sensing technologies. PMID:24216907

  6. Visible wavelength fiber Bragg gratings: thermal and strain sensitivities

    NASA Astrophysics Data System (ADS)

    Loren Inácio, Patrícia; Chiamenti, Ismael; Sualehe, Ivenso d. S. V.; Oliveira, Valmir; Kalinowski, Hypolito J.

    2016-05-01

    The thermal and deformation properties of fiber Bragg gratings (FBG) in the visible range were characterized for the first time in our knowledge. The FBG were written in silica single mode (cutoff in the visible and infrared range) and multimode fibers, using a phase-mask (460 nm period) illuminated by a 248 nm femtosecond laser.

  7. Security System Responsive to Optical Fiber Having Bragg Grating

    NASA Technical Reports Server (NTRS)

    Gary, Charles K. (Inventor); Ozcan, Meric (Inventor)

    1997-01-01

    An optically responsive electronic lock is disclosed comprising an optical fiber serving as a key and having Bragg gratings placed therein. Further, an identification system is disclosed which has the optical fiber serving as means for tagging and identifying an object. The key or tagged object is inserted into a respective receptacle and the Bragg gratings cause the optical fiber to reflect a predetermined frequency spectra pattern of incident light which is detected by a decoder and compared against a predetermined spectrum to determine if an electrical signal is generated to either operate the lock or light a display of an authentication panel.

  8. Grating lobes analysis based on blazed grating theory for liquid crystal optical-phased array

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Cui, Guolong; Kong, Lingjiang; Xiao, Feng; Liu, Xin; Zhang, Xiaoguang

    2013-09-01

    The grating lobes of the liquid crystal optical-phased array (LCOPA) based on blazed grating theory is studied. Using the Fraunhofer propagation principle, the analytical expressions of the far-field intensity distribution are derived. Subsequently, we can obtain both the locations and the intensities of the grating lobes. The derived analytical functions that provide an insight into single-slit diffraction and multislit interference effect on the grating lobes are discussed. Utilizing the conventional microwave-phased array technique, the intensities of the grating lobes and the main lobe are almost the same. Different from this, the derived analytical functions demonstrate that the intensities of the grating lobes are less than that of the main lobe. The computer simulations and experiments show that the proposed method can correctly estimate the locations and the intensities of the grating lobes for a LCOPA simultaneously.

  9. Fiber grating systems used to measure strain in cylindrical structures

    NASA Astrophysics Data System (ADS)

    Udd, Eric; Corona-Bittick, Kelli; Slattery, Kerry T.; Dorr, Donald J.; Crowe, C. Robert; Vandiver, Terry L.; Evans, Robert N.

    1997-07-01

    Fiber optic grating systems are described that have been used to measure strain in cylindrical structures. The applications of these systems to a composite utility pole and to a composite missile body are described. Composite utility poles have significant advantages with respect to wooden utility poles that include superior strength and uniformity; light weight for ease of deployment; the ability to be recycled, reducing hazardous waste associated with chemically treated wooden poles; and compatibility with embedded fiber optic sensors, allowing structural loads to be monitored. Tests conducted of fiber optic grating sensors in combination with an overcoupled coupler demodulation system to support structural testing of a 22-ft composite pole are reported. Monitoring strain in composite missile bodies has the potential to improve the quality of manufactured parts, support performance testing, and enhance safety during long periods of storage. Strain measurements made with fiber optic grating and electrical strain gauges are described.

  10. Fork gratings based on ferroelectric liquid crystals.

    PubMed

    Ma, Y; Wei, B Y; Shi, L Y; Srivastava, A K; Chigrinov, V G; Kwok, H-S; Hu, W; Lu, Y Q

    2016-03-21

    In this article, we disclose a fork grating (FG) based on the photo-aligned ferroelectric liquid crystal (FLC). The Digital Micro-mirror Device based system is used as a dynamic photomask to generated different holograms. Because of controlled anchoring energy, the photo alignment process offers optimal conditions for the multi-domain FLC alignment. Two different electro-optical modes namely DIFF/TRANS and DIFF/OFF switchable modes have been proposed where the diffraction can be switched either to no diffraction or to a completely black state, respectively. The FLC FG shows high diffraction efficiency and fast response time of 50µs that is relatively faster than existing technologies. Thus, the FLC FG may pave a good foundation toward optical vertices generation and manipulation that could find applications in a variety of devices. PMID:27136779

  11. Monolithic integrated optic fiber Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Songjian

    2010-04-01

    Fiber Bragg gratings (FBGs) are a mature sensing technology that has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. Fiber Bragg grating sensors can be use for a variety of measurements including strain, stress, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion distributed at multiple locations within the structure using a single fiber element. The most prominent advantages of FBGs are: small size and light weight, multiple FBG transducers on a single fiber, and immunity to radio frequency interference. A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating interrogation systems are typically bulky, heavy, and costly bench top instruments that are assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the need for a compact FBG interrogation system, this paper describes recent progress towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-TransceiverTM) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables the monolithic integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogators systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm small form factor (SFF) package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation.

  12. Femtosecond inscription of phase-shifted gratings by overlaid fiber Bragg gratings.

    PubMed

    Shamir, Avishay; Ishaaya, Amiel A

    2016-05-01

    Two slightly shifted gratings are inscribed, one over the other, in an SMF fiber with a femtosecond laser and a phase mask. The transmission spectrum of the complex structure is similar to that of a phase-shifted grating; yet, the fabrication process is fast and simple compared to standard methods. High-quality semi-phase-shifted gratings with -24  dB transmission loss and <100  pm transmission bandwidth are presented. Their application as highly narrow micro-resonators and notch filters seems feasible. PMID:27128063

  13. Ultrafast laser inscribed fiber Bragg gratings for sensing applications

    NASA Astrophysics Data System (ADS)

    Mihailov, Stephen J.

    2016-05-01

    Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on femtosecond infrared laser-material processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This tutorial paper will present a review of some of the more recent developments.

  14. Fabrication of long-period fiber gratings by twisting a standard single-mode fiber.

    PubMed

    Ivanov, Oleg V

    2005-12-15

    A new method of fabrication of long-period fiber gratings by twisting of a standard single-mode fiber at high temperature is presented. The method relies on the fact that there always exists some core-cladding eccentricity in the optical fiber. Therefore, when the fiber is twisted, its core follows a helicoidal path inside the cladding. The transmission spectrum of the helicoidal long-period fiber grating that is produced contains several dips that correspond to resonances with the fiber cladding modes. PMID:16389808

  15. Reannealed Fiber Bragg Gratings Demonstrated High Repeatability in Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Juergens, Jeffrey R.

    2004-01-01

    Fiber Bragg gratings (FBGs) are formed by periodic variations of the refractive index of an optical fiber. These periodic variations allow an FBG to act as an embedded optical filter, passing the majority of light propagating through a fiber while reflecting back a narrow band of the incident light. The peak reflected wavelength of the FBG is known as the Bragg wavelength. Since the period and width of the refractive index variation in the fiber determines the wavelengths that are transmitted and reflected by the grating, any force acting on the fiber that alters the physical structure of the grating will change the wavelengths that are transmitted and reflected by it. Both thermal and mechanical forces acting on the grating will alter its physical characteristics, allowing the FBG sensor to detect both the temperature variations and the physical stresses and strains placed upon it. This ability to sense multiple physical forces makes the FBG a versatile sensor. To assess the feasibility of using Bragg gratings as temperature sensors for propulsion applications, researchers at the NASA Glenn Research Center evaluated the performance of Bragg gratings at elevated temperatures for up to 300 C. For these purposes, commercially available polyimide-coated high-temperature gratings were used that were annealed by the manufacturer to 300 C. To assure the most thermally stable gratings at the operating temperatures, we reannealed the gratings to 400 C at a very slow rate for 12 to 24 hr until their reflected optical powers were stabilized. The reannealed gratings were then subjected to periodic thermal cycling from room temperature to 300 C, and their peak reflected wavelengths were monitored. The setup shown is used for reannealing and thermal cycling the FBGs. Signals from the photodetectors and the spectrum analyzer were fed into a computer equipped with LabVIEW software. The software synchronously monitored the oven/furnace temperature and the optical spectrum analyzer

  16. Photonic crystal fibers in biophotonics

    NASA Astrophysics Data System (ADS)

    Tuchin, Valery V.; Skibina, Julia S.; Malinin, Anton V.

    2011-12-01

    We observed recent experimental results in area of photonic crystal fibers appliance. Possibility of creation of fiberbased broadband light sources for high resolution optical coherence tomography is discussed. Using of femtosecond pulse laser allows for generation of optical radiation with large spectral width in highly nonlinear solid core photonic crystal fibers. Concept of exploitation of hollow core photonic crystal fibers in optical sensing is demonstrated. The use of photonic crystal fibers as "smart cuvette" gives rise to efficiency of modern optical biomedical analysis methods.

  17. Ultrashort pulse propagation in multiple-grating fiber structures.

    PubMed

    Chen, L R; Benjamin, S D; Smith, P W; Sipe, J E; Juma, S

    1997-03-15

    We propose a multiple-grating fiber structure that decomposes an ultrashort broadband optical pulse simultaneously in both wavelength and time. As an initial demonstration, we used a transform-limited 1-ps Gaussian pulse centered at 1.55 mu;m as the ultrashort broadband input into a three-grating fiber structure and generated three output pulses separated in wavelength and time with good correlation between experimental results and simulations. This device structure can be used to generate a multiwavelength train of pulses for use in wavelength-division-multiplexed systems or to implement frequency-domain encoding of coherent pulses for optical code-division multiple access.

  18. Demodulation System for Fiber Optic Bragg Grating Dynamic Pressure Sensing

    NASA Technical Reports Server (NTRS)

    Lekki, John D.; Adamovsky, Grigory; Floyd, Bertram

    2001-01-01

    Fiber optic Bragg gratings have been used for years to measure quasi-static phenomena. In aircraft engine applications there is a need to measure dynamic signals such as variable pressures. In order to monitor these pressures a detection system with broad dynamic range is needed. This paper describes an interferometric demodulator that was developed and optimized for this particular application. The signal to noise ratio was maximized through temporal coherence analysis. The demodulator was incorporated in a laboratory system that simulates conditions to be measured. Several pressure sensor configurations incorporating a fiber optic Bragg grating were also explored. The results of the experiments are reported in this paper.

  19. Spectral characteristics of draw-tower step-chirped fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Idrisov, Ravil F.; Varzhel, Sergey V.; Kulikov, Andrey V.; Meshkovskiy, Igor K.; Rothhardt, Manfred; Becker, Martin; Schuster, Kay; Bartelt, Hartmut

    2016-06-01

    This paper presents research results on the spectral properties of step-chirped fiber Bragg grating arrays written during the fiber drawing process into a birefringent optical fiber with an elliptical stress cladding. The dependences of resonance shift of the step-chirped fiber Bragg grating on bending, on applied tensile stress and on temperature have been investigated. A usage of such step-chirped fiber Bragg gratings in fiber-optic sensing elements creation has been considered.

  20. An optical fiber Bragg grating tactile sensor

    NASA Astrophysics Data System (ADS)

    Cowie, Barbara; Allsop, Thomas; Williams, John; Webb, David; Bennion, Ian; Fisher, Matthew

    2007-05-01

    Tactile sensors are needed for many emerging robotic and telepresence applications such as keyhole surgery and robot operation in unstructured environments. We have proposed and demonstrated a tactile sensor consisting of a fibre Bragg grating embedded in a polymer "finger". When the sensor is placed in contact with a surface and translated tangentially across it measurements on the changes in the reflectivity spectrum of the grating provide a measurement of the spatial distribution of forces perpendicular to the surface and thus, through the elasticity of the polymer material, to the surface roughness. Using a sensor fabricated from a Poly Siloxane polymer (Methyl Vinyl Silicone rubber) spherical cap 50 mm in diameter, 6 mm deep with an embedded 10 mm long Bragg grating we have characterised the first and second moment of the grating spectral response when scanned across triangular and semicircular periodic structures both with a modulation depth of 1 mm and a period of 2 mm. The results clearly distinguish the periodicity of the surface structure and the differences between the two different surface profiles. For the triangular structure a central wavelength modulation of 4 pm is observed and includes a fourth harmonic component, the spectral width is modulated by 25 pm. Although crude in comparison to human senses these results clearly shown the potential of such a sensor for tactile imaging and we expect that with further development in optimising both the grating and polymer "finger" properties a much increased sensitivity and spatial resolution is achievable.

  1. Optically tunable and rewritable diffraction grating with photoaligned liquid crystals.

    PubMed

    Sun, J; Srivastava, A K; Wang, L; Chigrinov, V G; Kwok, H S

    2013-07-01

    An optically tunable and rewritable liquid crystal (LC) diffraction grating cell has been revealed that consists of an optically active and an optically passive alignment layer. The grating profile is created by confining the LC director distribution in alternate planar and twisted alignment domains by means of photoalignment of the LCs. The proposed grating is optically tunable for diffractive and nondiffractive states with a small response time that depends on the exposure energy and LC parameters. In addition, the grating can be erased and rewritten for different diffracting characteristics. These optically tunable diffractive elements could find application in various photonic devices. PMID:23811922

  2. High frequency strain measurements with fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Koch, J.; Angelmahr, M.; Schade, W.

    2015-05-01

    In recent years fiber Bragg grating sensors gained interest in structural health monitoring and concepts for smart structures. They are small, lightweight, and immune to electromagnetic interference. Using multiplexing techniques, several sensors can be addressed by a single fiber. Therefore, well-established structures and materials in industrial applications can be easily equipped with fiber optical sensors with marginal influence on their mechanical properties. In return, critical components can be monitored in real-time, leading to reduced maintenance intervals and a great reduction of costs. Beside of generally condition monitoring, the localization of failures in a structure is a desired feature of the condition monitoring system. Detecting the acoustic emission of a sudden event, its place of origin can be determined by analyzing the delay time of distributed sensor signals. To achieve high localization accuracies for the detection of cracks, breaks, and impacts high sampling rates combined with the simultaneous interrogation of several fiber Bragg grating sensors are required. In this article a fiber Bragg grating interrogator for high frequency measurements up to the megahertz range is presented. The interrogator is based on a passive wavelength to intensity conversion applying arrayed waveguide gratings. Light power fluctuations are suppressed by a differential data evaluation, leading to a reduced signal-to-noise ratio and a low strain detection limit. The measurement system is used to detect, inter alia, wire breaks in steel wire ropes for dockside cranes.

  3. Self-heated fiber Bragg grating sensors for cryogenic environments

    NASA Astrophysics Data System (ADS)

    Chen, Tong; Swinehart, Philip R.; Maklad, Mokhtar S.; Buric, Michael P.; Chen, Kevin P.

    2010-04-01

    Cryogenic fuels are often considered as major energy alternatives to coal and petroleum based fuels. Safe and reliable sensor networks are required for on-demand, real-time fuel management in cryogenic environments. In this paper, a new sensor design is described that enhances the low-temperature performance of fiber sensors. FBGs inscribed in high attenuation fiber (HAF) are used to absorb in-fiber power light to raise the local sensor temperature in the cryogenic environment. When in-fiber power light is turned off, FBG sensors can serve as passive sensors to gauge temperature and stress in the cryogenic system. When the in-fiber power light is turned on, the heated sensors can be used to rapidly gauge fuel level and fuel leaks. In one example, a hydrogen gas sensor is demonstrated with a palladium-coated fiber Bragg grating (FBG). The low-temperature performance of the sensor was improved by heating the gratings as much as 200 K above the ambient temperature, and hydrogen concentration well below the 4% explosion limit was measured at 123K. In a second example, an array of four aluminum coated fiber Bragg gratings was used to measure liquid level in a cryogenic environment.

  4. Fiber Bragg gratings for low-temperature measurement.

    PubMed

    Filho, Elton Soares de Lima; Baiad, Mohamad Diaa; Gagné, Mathieu; Kashyap, Raman

    2014-11-01

    We demonstrate the use of fiber Bragg gratings (FBGs) as a monolithic temperature sensor from ambient to liquid nitrogen temperatures, without the use of any auxiliary embedding structure. The Bragg gratings, fabricated in three different types of fibers and characterized with a high density of points, confirm a nonlinear thermal sensitivity of the fibers. With a conventional interrogation scheme it is possible to have a resolution of 0.5 K for weak pure-silica-core FBGs and 0.25 K using both boron-doped and germanium-doped standard fibers at 77 K. We quantitatively show for the first time that the nonlinear thermal sensitivity of the FBG arises from the nonlinearity of both thermo-optic and thermal expansion coefficients, allowing consistent modeling of FBGs at low temperatures. PMID:25401912

  5. Round Robin for Optical Fiber Bragg Grating Metrology

    PubMed Central

    Rose, A. H.; Wang, C.-M.; Dyer, S. D.

    2000-01-01

    NIST has administered the first round robin of measurements for optical fiber Bragg gratings. We compared the measurement of center wavelength, bandwidth, isolation, minimum relative transmittance, and relative group delay among several grating types in two industry groups, telecommunications and sensors. We found that the state of fiber Bragg grating metrology needs improvement in most areas. Specifically, when tunable lasers are used a filter is needed to remove broadband emissions from the laser. The linear slope of relative group delay measurements is sensitive to drift and systematic bias in the rf-modulation technique. The center wavelength measurement had a range of about 27 pm in the sensors group and is not adequate to support long-term structural monitoring applications. PMID:27551640

  6. Experimental demonstration of a fiber Bragg grating accelerometer

    SciTech Connect

    Berkoff, T.A.; Kersey, A.D.

    1996-12-01

    The authors report a fiber Bragg grating transducer for the measurement of acceleration. Results obtained using interferometric wavelength-shift detection demonstrate a demodulated signal output range of 50-g rms with a minimum detectable signal of {approximately}1 mg/{radical}Hz.

  7. [INVITED] Tilted fiber grating mechanical and biochemical sensors

    NASA Astrophysics Data System (ADS)

    Guo, Tuan; Liu, Fu; Guan, Bai-Ou; Albert, Jacques

    2016-04-01

    The tilted fiber Bragg grating (TFBG) is a new kind of fiber-optic sensor that possesses all the advantages of well-established Bragg grating technology in addition to being able to excite cladding modes resonantly. This device opens up a multitude of opportunities for single-point sensing in hard-to-reach spaces with very controllable cross-sensitivities, absolute and relative measurements of various parameters, and an extreme sensitivity to materials external to the fiber without requiring the fiber to be etched or tapered. Over the past five years, our research group has been developing multimodal fiber-optic sensors based on TFBG in various shapes and forms, always keeping the device itself simple to fabricate and compatible with low-cost manufacturing. This paper presents a brief review of the principle, fabrication, characterization, and implementation of TFBGs, followed by our progress in TFBG sensors for mechanical and biochemical applications, including one-dimensional TFBG vibroscopes, accelerometers and micro-displacement sensors; two-dimensional TFBG vector vibroscopes and vector rotation sensors; reflective TFBG refractometers with in-fiber and fiber-to-fiber configurations; polarimetric and plasmonic TFBG biochemical sensors for in-situ detection of cell, protein and glucose.

  8. Wavelength switchable graphene Q-switched fiber laser with cascaded fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Wu, Man; Chen, Shuqing; Chen, Yu; Li, Ying

    2016-06-01

    We have demonstrated a wavelength switchable graphene Q-switched fiber laser with two cascaded fiber Bragg gratings. Stable Q-switching operation with central wavelength 1542.9 nm (1543.7 nm), repetition rate 28.4 kHz (22.58 kHz), and pulse duration 2.16 μs (2.65 μs) can be obtained by adjusting the intra-cavity birefringence. Moreover, stable dual-wavelength operation with wavelength spacing 0.8 nm can also be observed. The cascaded fiber gratings combined with the graphene saturable absorber provide a simple and feasible way to get versatile pulsed fiber laser.

  9. Strain Measurement Validation of Embedded Fiber Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Emmons, Michael C.; Karnani, Sunny; Trono, Stefano; Mohanchandra, Kotekar P.; Richards, W. Lance; Carman, Gregory P.

    2010-03-01

    This study investigates the influence of strain state distribution on the accuracy of embedded optical fiber Bragg gratings (FBGs) used as strain sensors. An optical fiber embedded parallel to adjacent structural fibers in a graphite epoxy quasi-isotropic [(90/ ±45/0)S]3 lay-up is evaluated with mechanical loading parallel to the fiber optic direction. Finite element analysis (FEA) is used to evaluate the fiber optic sensors' responses both in the far field and near field regions of the mechanical grips. Comparison between experimental fiber optic strains, strain gauges, and FEA provides good correlation in the far field with differences of less than 1%. However, in the near field region, some discrepancies are found and attributed to birefringence arising from complex strain states.

  10. Arrayed waveguide grating interrogator for fiber Bragg grating sensors: measurement and simulation.

    PubMed

    Koch, Jan; Angelmahr, Martin; Schade, Wolfgang

    2012-11-01

    A fiber Bragg grating (FBG) interrogation system based on an intensity demodulation and demultiplexing of an arrayed waveguide grating (AWG) module is examined in detail. The influence of the spectral line shape of the FBG on the signal obtained from the AWG device is discussed by accomplishing the measurement and simulation of the system. The simulation of the system helps to create quickly and precisely calibration functions for nonsymmetric, tilted, or nonapodized FBGs. Experiments show that even small sidebands of nonapodized FBGs have strong influences on the signal resulted by an AWG device with a Gaussian profile. PMID:23128724

  11. Arrayed waveguide grating interrogator for fiber Bragg grating sensors: measurement and simulation.

    PubMed

    Koch, Jan; Angelmahr, Martin; Schade, Wolfgang

    2012-11-01

    A fiber Bragg grating (FBG) interrogation system based on an intensity demodulation and demultiplexing of an arrayed waveguide grating (AWG) module is examined in detail. The influence of the spectral line shape of the FBG on the signal obtained from the AWG device is discussed by accomplishing the measurement and simulation of the system. The simulation of the system helps to create quickly and precisely calibration functions for nonsymmetric, tilted, or nonapodized FBGs. Experiments show that even small sidebands of nonapodized FBGs have strong influences on the signal resulted by an AWG device with a Gaussian profile.

  12. Distributed fiber Bragg grating sensors information fusion and decoupling

    NASA Astrophysics Data System (ADS)

    Chen, Xiyuan

    2005-02-01

    Optical fiber sensors can be used to measure many different parameters including strain, temperature, pressure, displacement, electrical field, refractive index, rotation, position and vibrations. Among a variety of fiber sensors, fiber Bragg grating (FBG) has numerous advantages over other optical fiber sensors. One of the major advantages of this type of sensors is attributed to wavelength-encoded information given by the Bragg grating. Since the wavelength is an absolute parameter, signal from FBG may be processed such that its information remains immune to power fluctuations along the optical path. This inherent characteristic makes the FBG sensors very attractive for application in harsh environment, and on-site measurements. But FBG sensors can measure temperature and strain simultaneously; it is necessary to decouple measurement information. In the present paper, A distributed fiber Bragg grating sensors measurement system that measures global deformations of large surface online-based FBG sensors is introduced. Short overview of the measurement principle and the signal processing realized and fusion method as well as the application of the sensor in the field of large surface will be presented. A new fusion method based on the federal Kalman filter to decouple information of the temperature and strain is proposed. The algorithm of optimum estimation fusion for distributed FBG systems based on the model of deformation of beam is studied. Simulation results and experimental results show algorithm of fusion and decoupling is an efficient method for improving performance of distributed FBG sensors system.

  13. Optical fiber random grating-based multiparameter sensor.

    PubMed

    Xu, Yanping; Lu, Ping; Gao, Song; Xiang, Dao; Lu, Ping; Mihailov, Stephen; Bao, Xiaoyi

    2015-12-01

    A novel multiparameter fiber-optic sensor based on a femtosecond laser micromachined random grating is proposed and demonstrated to realize simultaneous measurement of temperature, axial strain, and surrounding refractive index. A wavelength-division spectral cross-correlation algorithm is adopted to extract the phase variation induced spectral shift responding to different external disturbances. Sensitivities of 10.32 pm/°C, 1.24 pm/με, and -1520.6  pm/RIU were achieved for temperature, axial strain, and surrounding refractive index, respectively. The fiber random grating without phase mask fabrication and high physical strength is an excellent alternative aiming at simple and compact multifunctional fiber sensors. PMID:26625039

  14. Single-pulse coherent anti-Stokes Raman spectroscopy via fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Oh, Seung Ryeol; Park, Joo Hyun; Kwon, Won Sik; Kim, Jin Hwan; Kim, Kyung-Soo; Lee, Jae Yong; Kim, Soohyun

    2016-03-01

    Fiber Bragg grating is used in a variety of applications. In this study, we suggest compact, cost-effective coherent anti- Stokes Raman spectroscopy which is based on the pulse shaping methods via commercialized fiber Bragg grating. The experiment is performed incorporating a commercialized femtosecond pulse laser system (MICRA, Coherent) with a 100 mm length of 780-HP fiber which is inscribed 50 mm of Bragg grating. The pump laser for coherent anti-Stokes Raman spectroscopy has a bandwidth of 90 nm and central wavelength of 815 nm with a notch shaped at 785 nm. The positive chirped pulse is compensated by chirped mirror set. We compensate almost 14000 fs2 of positive group delay dispersion for the transform-limited pulse at the sample position. The pulse duration was 15 fs with average power of 50 mW, and showed an adequate notch shape. Finally, coherent anti-Stokes Raman signals are observed using a spectrometer (Jobin Yvon Triax320 and TE-cooled Andor Newton EMCCD). We obtained coherent anti-Stokes Raman signal of acetone sample which have Raman peak at the spectral finger-print region. In conclusion, the proposed method is more simple and cost-effective than the methods of previous research which use grating pairs and resonant photonic crystal slab. Furthermore, the proposed method can be used as endoscope application.

  15. Angle dependent Fiber Bragg grating inscription in microstructured polymer optical fibers.

    PubMed

    Bundalo, Ivan-Lazar; Nielsen, Kristian; Bang, Ole

    2015-02-01

    We report on an incidence angle influence on inscription of the Fiber Bragg Gratings in Polymethyl methacrylate (PMMA) microstructured polymer optical fibers. We have shown experimentally that there is a strong preference of certain angles, labeled ГK, over the other ones. Angles close to ГK showed fast start of inscription, rapid inscription and stronger gratings. We have also shown that gratings can be obtained at almost any angle but their quality will be lower if they are not around ГK angle. Our experimental results verify earlier numerical and experimental predictions of Marshall et al. PMID:25836222

  16. Applications of compound fiber Bragg grating structures in lightwave communications

    NASA Astrophysics Data System (ADS)

    Chen, Lawrence R.

    Photonic networks have been identified as one solution that can satisfy the growing demand for bandwidth due to increased Internet traffic and the information superhighway. New enabling photonic technologies will be required in order to successfully implement, operate, and manage these all-photonic networks. In this thesis, we develop fiber Bragg grating technology for realizing photonic components that can perform a wide variety of optical signal processing functions for aggressive network management and performance requirements. First, we show how to tailor the spectral response of chirped moiré fiber Bragg gratings so that they can be used as transmission passband filters. We have fabricated filters having near ideal filter response which will be useful for providing wavelength selectivity in wavelength-division-multiplexed and wavelength routing networks. Second, we demonstrate the first hybrid wavelength- encodingt/time-spreading optical code-division multiple- access system using chirped moiré fiber Bragg gratings for encoding/decoding. Limitations imposed by the electronic bottleneck due to optical-to-electrical and electrical-to-optical conversions are overcome since all encoding/decoding operations are performed all- optically. Third, we realize a simple and cost-effective means using serial fiber Bragg grating arrays for performing power equalization among different wavelength channels in an erbium-doped fiber amplifier module. Such a module will be critical for compensating the deleterious effects of gain nonuniformity and transients in wavelength-division- multiplexed or wavelength routing networks. Finally, we demonstrate two different actively mode- locked erbium-doped fiber lasers that simultaneously emit two wavelengths with stable room-temperature operation. Wavelength spacings of 1.8 nm and 0.7 nm have been achieved-the closest reported to date. These lasers will find applications in high-performance transmission systems seeking to exploit

  17. High resolution magnetostriction measurements in pulsed magnetic fields using fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Daou, Ramzy; Weickert, Franziska; Nicklas, Michael; Steglich, Frank; Haase, Ariane; Doerr, Mathias

    2010-03-01

    We report on a new high resolution apparatus for measuring magnetostriction suitable for use at cryogenic temperatures in pulsed high magnetic fields which we have developed at the Hochfeld-Magnetlabor Dresden. Optical fiber strain gauges based on fiber Bragg gratings are used to measure the strain in small (˜1 mm) samples. We describe the implementation of a fast measurement system capable of resolving strains in the order of 10-7 with a full bandwidth of 47 kHz, and demonstrate its use on single crystal samples of GdSb and GdSi.

  18. High-sensitivity strain sensor based on inflated long period fiber grating.

    PubMed

    Zhong, Xiaoyong; Wang, Yiping; Qu, Junle; Liao, Changrui; Liu, Shen; Tang, Jian; Wang, Qiao; Zhao, Jing; Yang, Kaiming; Li, Zhengyong

    2014-09-15

    We demonstrated a high-sensitivity strain sensor based on an inflated long period fiber grating (I-LPFG). The I-LPFG was inscribed, for the first time to the best of our knowledge, by use of the pressure-assisted CO(2) laser beam scanning technique to inflate periodically air holes of a photonic crystal fiber. Such periodic inflations enhanced the sensitivity of the LPFG-based strain sensor to -5.62 pm/με. After high temperature annealing, the I-LPFG achieved a good repeatability and stability of temperature response with a sensitivity of 11.92 pm/°C. PMID:26466298

  19. Modeling of spectral changes in bent fiber Bragg gratings.

    PubMed

    Zhang, Wei; Lei, Xiaohua; Chen, Weimin; Xu, Hengyi; Wang, Anbo

    2015-07-15

    To better apply fiber Bragg gratings (FBGs) to various bending required situations, good understanding of their bending characteristics is crucial. In this Letter, a theoretical model to describe the changes of spectral properties of an FBG against the bending radius is proposed. This model shows that all the bend-induced spectral changes, the shift of center wavelength, decrease of reflectivity, and reduction of bandwidth, may be explained by the decrease of the effective "dc" refractive index change spatially averaged over one grating period. Experimental results are in agreement with theoretical predictions and confirm the effectiveness of the proposed model. PMID:26176444

  20. Asymmetric dynamic phase holographic grating in nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Ren, Chang-Yu; Shi, Hong-Xin; Ai, Yan-Bao; Yin, Xiang-Bao; Wang, Feng; Ding, Hong-Wei

    2016-09-01

    A new scheme for recording a dynamic phase grating with an asymmetric profile in C60-doped homeotropically aligned nematic liquid crystal (NLC) was presented. An oblique incidence beam was used to record the thin asymmetric dynamic phase holographic grating. The diffraction efficiency we achieved is more than 40%, exceeding the theoretical limit for symmetric profile gratings. Both facts can be explained by assuming that a grating with an asymmetric saw-tooth profile is formed in the NLC. Finally, physical mechanism and mathematical model for characterizing the asymmetric phase holographic grating were presented, based on the photo-refractive-like (PR-like) effect. Project supported by the Science and Technology Programs of the Educational Committee of Heilongjiang Province, China (Grant No. 12541730) and the National Natural Science Foundation of China (Grant No. 61405057).

  1. Optomechanical behavior of embedded fiber Bragg grating strain sensors

    NASA Astrophysics Data System (ADS)

    Mastro, Stephen A.

    2005-11-01

    Fiber Bragg gratings (FBGs) can provide extremely sensitive strain measurements for various materials and structures. The main functionality of the Bragg grating is along the fiber's main axis, where changes in the grating's spacing can be converted into strain measurements. Previous work from a number of researchers has identified bifurcation and broadening of the Bragg signal under transverse loading. The work presented in this thesis highlights efforts to relate transverse loading to changes in index of refraction in the fiber core cross section, and then ultimately to predicted changes in Bragg signals. The background of FBGs, their application, manufacturing, and operation is outlined. In addition, background on the general concept of photoelasticity, the relationship of stress and index of refraction, in glass materials is presented. A theoretical analysis was performed for uncoated silica fiber to calculate the stresses within an optical fiber core under transverse loading. The transverse loading profile ranged from pure diametric point loading to a more distributed profile. The stresses calculated were translated into changes of index of refraction and FBG signal values. The analysis was then simulated utilizing a numerical model, calculating stress, change of index of refraction, and change in FBG signal with various transverse loading profiles. In addition to an uncoated fiber, a polymer coated fiber system was analyzed. The model was verified by performing a laboratory experiment where FBGs were loaded transversely and their signal monitored. A special loading rig was designed and fabricated to impart transverse loading to the fiber while monitoring the compression load and deflection of the loading plates. The laboratory experienced showed reasonable agreement with the numerical model. The data show that side loading of the FBG caused a bifurcation of the signal, and that this effect can be predicted by the theoretical model. The modeling work completed

  2. Effect of UV Absorption on Fabrication of Fiber-Optic Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wang, Ying; Sharma, Anup; Burdine, Robert (Technical Monitor)

    2000-01-01

    UV light is used to fabricate fiber-optic gratings also heats up the fiber due to absorption by either the fiber-buffer, fiber-cladding, doped with titania or a thin coating of paint. Significant enhancement in the rate of grating fabrication is observed due to UV light absorption.

  3. Photoscattering effect in supercontinuum-generating photonic crystal fiber

    PubMed Central

    Tu, H.; Marks, D. L.; Jiang, Z.; Boppart, S. A.

    2010-01-01

    A photosensitivity different from that responsible for fiber grating inscription is found in a supercontinuum-generating photonic crystal fiber transmitting intense 818 nm femtosecond pulses. This photosensitivity progressively generates a waveguide at the entrance of the fiber to scatter light of specific wavelengths and is termed as the photoscattering effect. This effect is linked to the ~800 nm photosensitivity in the microlithography of bulk silica glass. While the effect somewhat limits fiber-optic supercontinuum applications, it can be beneficial to produce new photonic devices. PMID:21350681

  4. Holographic liquid crystal polarization grating with Fabry-Perot structure.

    PubMed

    Sakamoto, Moritsugu; Yamaguchi, Haruki; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2016-03-15

    A holographic liquid crystal polarization grating with a Fabry-Perot structure was developed. Because of its resonant structure, the device offers high levels of control of the diffraction properties of incident-polarized light beams, depending on the resonance conditions. The diffracted light beams are emitted in both the reflection and transmission directions, and the device thus works as a multibranch polarization grating with double optical paths, unlike a conventional polarization grating. These device features were experimentally demonstrated and were also explained theoretically.

  5. Holographic liquid crystal polarization grating with Fabry-Perot structure.

    PubMed

    Sakamoto, Moritsugu; Yamaguchi, Haruki; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2016-03-15

    A holographic liquid crystal polarization grating with a Fabry-Perot structure was developed. Because of its resonant structure, the device offers high levels of control of the diffraction properties of incident-polarized light beams, depending on the resonance conditions. The diffracted light beams are emitted in both the reflection and transmission directions, and the device thus works as a multibranch polarization grating with double optical paths, unlike a conventional polarization grating. These device features were experimentally demonstrated and were also explained theoretically. PMID:26977643

  6. All-optically reconfigurable and tunable fiber surface grating for in-fiber devices: a wideband tunable filter.

    PubMed

    Yu, Jianhui; Han, Yuqi; Huang, Hankai; Li, Haozi; Hsiao, Vincent K S; Liu, Weiping; Tang, Jieyuan; Lu, Huihui; Zhang, Jun; Luo, Yunhan; Zhong, Yongchun; Zang, Zhigang; Chen, Zhe

    2014-03-10

    A fiber surface grating (FSG) formed from a photosensitive liquid crystal hybrid (PLCH) film overlaid on a side-polished fiber (SPF) is studied and has been experimentally shown to be able to function as an all-optically reconfigurable and tunable fiber device. The device is all-optically configured to be a short period fiber surface grating (SPFSG) when a phase mask is used, and then reconfigured to be a long period FSG (LPFSG) when an amplitude mask is used. Experimental results show that both the short and long period FSGs can function as an optically tunable band-rejection filter and have different performances with different pump power and different configured period of the FSG. When configured as a SPFSG, the device can achieve a high extinction ratio (ER) of 21.5dB and a wideband tunability of 31nm are achieved. When configured as a LPFSG, the device can achieve an even higher ER of 23.4dB and a wider tunable bandwidth of 60nm. Besides these tunable performances of the device, its full width at half maximum (FWHM) can also be optically tuned. The reconfigurability and tunability of the fiber device open up possibilities for other all-optically programmable and tunable fiber devices. PMID:24663932

  7. Fabrication and Characterization of Tilted Fiber Optic Bragg Grating Filters over Various Wavelengths

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Jackson, Kurt V.; Wang, Y.; Sharma, A.; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    Fiber Optic Bragg Grating taps are fabricated and characterized at various wavelengths using a modified Talbot interferometric technique. Gratings are fabricated by tilting the photosensitive fiber to angles up to 45 degrees w.r.t. the writing angle. Diffraction characteristics of the tilted grating is monitored in first and second orders.

  8. Fiber laser source/analyzer for Bragg grating sensor array interrogation

    SciTech Connect

    Ball, G.A.; Morey, W.W.; Cheo, P.K.

    1994-04-01

    This paper reports on the application of a calibrated, narrow-linewidth, single-frequency, continuously wavelength-tunable erbium fiber laser to the interrogation of a multipoint Bragg grating temperature sensor. The fiber laser was wavelength-tuned, through an array of three fiber Bragg grating sensors, to determine the temperature of each individual grating. The temperatures of the three gratings were measured as a function of grating Bragg wavelength. The minimum wavelength resolution, due to electro-mechanical repeatability, of the fiber laser source/analyzer was determined to be approximately 2.3 picometers. This corresponds to a frequency resolution of approximately 300 MHz. 10 refs.

  9. Nonpigtail optical coupling to embedded fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Qiu, Liang; Goossen, Keith W.; Heider, Dirk; O'Brien, Daniel J.; Wetzel, Eric D.

    2010-05-01

    In recent decades, optical fiber has proven useful for many sensor applications. Specifically, fiber Bragg grating (FBG) sensors have shown great utility for integrity management and environmental sensing of composite structures. One major drawback of FBG sensors, however, is the lack of a robust, nonpigtail technique for coupling to the embedded FBG sensor. In this paper, a novel method of free-space passive coupling of light into FBG sensors is described. An angled 45-deg mirror integrated directly into the fiber was used as an input coupling technique. We investigated the application of this approach to both single- and multimode glass fibers containing FBGs. For multimode FBGs, we studied the grating's uniformity across the fiber diameter and its effect on normal free-space coupling. In single-mode investigations, a novel method of coupling to the sensor via splicing a multimode fiber to a single-mode FBG (SMFBG) was developed. Finally, free-space coupling to an embedded SMFBG was employed to measure the tensile strain. Excellent agreement was found between the FBG and conventional electrical resistance strain gauges. We conclude that this coupling method might eliminate the need for pigtailing by providing a more robust coupling method for FBG sensors.

  10. Hydrostatic pressure sensor based on fiber Bragg grating written in single-ring suspended fiber

    NASA Astrophysics Data System (ADS)

    Htein, Lin; Liu, Zhengyong; Tam, Hwa-Yaw

    2016-05-01

    We present a novel optical fiber consisting of a suspended-fiber with core and cladding diameter of ~ 5 and 30 μm and a supporting ring with thickness of ~ 9 μm. The outer diameter of the fiber was 125 μm and a fiber Bragg grating (FBG) with a length of 1-mm was inscribed on it. Hydrostatic pressure was measured by monitoring the Bragg wavelength shifts of 9-mm long single-ring suspended fiber. Pressure sensitivity was measured to be -18.92 pm/MPa, which is about five times higher than FBG on standard single-mode fiber.

  11. High-power soliton fiber laser based on pulse width control with chirped fiber Bragg gratings

    SciTech Connect

    Fermann, M.E.; Sugden, K.; Bennion, I.

    1995-01-15

    Chirped fiber Bragg gratings control the pulse width and energy in Kerr mode-locked erbium fiber soliton lasers. We create high-energy pulses by providing large amounts of excessive negative dispersion, which increases the pulse width while keeping the nonlinearity of the cavity constant. With a chirped fiber grating of 3.4-ps{sup 2} dispersion, 3-ps pulses with an energy content higher than 1 nJ are generated at a repetition rate of 27 MHz. By controlling the polarization state in the cavity, we obtain a tuning range from 1.550 to 1.562 {mu}m.

  12. All-fiber passively mode-locked laser based on a chiral fiber grating.

    PubMed

    Du, Yueqing; Shu, Xuewen; Xu, Zuowei

    2016-01-15

    A novel passively mode-locked all-fiber laser using a chiral fiber grating as a polarization-selective element is demonstrated for the first time, to the best of our knowledge. The chiral fiber grating serves as a key component to form an artificial saturable absorber to realize mode locking through nonlinear polarization rotation in the cavity. The laser generates stable short pulses with energy of 0.34 nJ, a fundamental repetition rate of 3.27 MHz, and an FWHM bandwidth of 28 nm. We also show that harmonic mode-locked pulse trains of different orders can be obtained by increasing the pump power.

  13. Highly efficient dielectric gratings for high-power ultrafast femtosecond fiber laser systems

    NASA Astrophysics Data System (ADS)

    Clausnitzer, T.; Schreiber, Thomas; Roeser, Fabian; Limpert, Jens; Fuchs, H.-J.; Kley, Ernst-Bernhard; Tunnermann, Andreas

    2005-03-01

    Micromachining applications require high pulse energy (>1μJ) short pulse (<1ps) laser systems at high repetition rates. Rare-earth doped fibers are attractive to generate these target values by the amplification of ultrafast femtosecond seed sources. Two favored techniques have been used: the chirped pulse amplification (CPA) scheme where the pulses are stretched in the time domain to reduce nonlinearity in the amplifier stage and the parabolic pulse amplification scheme where the combined effect of nonlinearity, normal dispersion and gain in the fiber generate linearly chirped parabolic shaped pulses. Both approaches can be scaled to higher power by reducing the nonlinearity in the amplifiers. To achieve this, we discuss novel photonic crystal fiber designs which allow for larger single-mode core diameter and reduced absorption length and therefore reduced nonlinearity. The so generated high average power of >100 W at repetition rate up to several tens of MHz cannot be compressed by gold gratings to femtosecond pulse duration due to thermal heating. We focus on the development of dielectric gratings in fused silica which can handle this power levels due to their high damage threshold. Two kinds of gratings are discussed. Firstly, the transmission gratings with a period of 800 nm were designed to possess 96% diffraction efficiency over a spectral range from 1.03μm to 1.09μm. The fabrication of the rectangular groove profile was done using electron beam lithography and reactive ion beam etching into the fused silica substrate. The measured diffraction efficiency was 96.5% @ 1060nm. Secondly, dielectric reflection gratings, which consist of a dielectric grating on top of a high-reflective layerstack, can theoretically exhibit a diffraction efficiency of even higher than 99%. To achieve this we chose a period of 1060nm. The fabrication was done similar to the transmission gratings, though a HR-coated substrate had to be used instead of the simple fused substrate

  14. Torsion sensing characteristics of long period fiber gratings fabricated by femtosecond laser in optical fiber

    NASA Astrophysics Data System (ADS)

    Duan, Ji'an; Xie, Zheng; Wang, Cong; Zhou, Jianying; Li, Haitao; Luo, Zhi; Chu, Dongkai; Sun, Xiaoyan

    2016-09-01

    With the alignment of the fiber core systems containing dual-CCDs and high-precision electric displacement platform, twisted long period fiber gratings (T-LPFGs) were fabricated in two different twisted SMF-28 fibers by femtosecond laser. The torsion characteristics of the T-LPFGs were experimentally and theoretical investigated and demonstrated in this study. The achieved torsion sensitivity is 117.4 pm/(rad/m) in the torsion range -105-0 rad/m with a linearity of 0.9995. Experimental results show that compared with the ordinary long period fiber gratings, the resonance wavelength of the gratings presents an opposite symmetrical shift depending on the twisting direction after the applied torsion is removed. In addition, high sensitivity could be obtained, which is very suitable for the applications in the torsion sensor. These results are important for the design of new torsion sensors based on T-LPFGs fabricated by femtosecond laser.

  15. Optical high temperature sensor based on fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhang, Bowei

    The aim of this thesis is to fabricate a fiber Bragg grating (FBG) temperature sensor that is capable to measure temperatures in excess of 1100°C. For this purpose, two topics have been studied and investigated during this project. One of them is the development of a high temperature resistant molecular-water induced FBGs; and the other is to investigate the effect of microwave-irradiation on the hydrogen-loaded FBG. The molecular-water induced FBGs are different from the other types of FBG. In these devices the refractive index is modulated by the periodic changes of molecular-water concentration within the grating. The device was developed using thermal annealing technology based on hydrogen-load FBG. Thermal stability of these devices was studied by measuring the grating reflectivity from room temperature to 1000°C. The stability of the device was tested by examining the FBG reflectivity for a period of time at certain temperatures. The results show that these devices are extremely stable at temperatures in excess of 1000°C. The hydroxyl concentration in the grating has been also investigated during this thesis. Based on the knowledge of hydroxyl groups inside FBG, a microwave treatment was designed to increase the hydroxyl concentration in the FBG area. The results show that the molecular-water induced grating, which was fabricated using microwave radiated hydrogen-loaded FBI, are stable at temperatures above 1100°C.

  16. Electrically tunable holographic polymer templated blue phase liquid crystal grating

    NASA Astrophysics Data System (ADS)

    He, Zheng-Hong; Chen, Chao-Ping; Zhu, Ji-Liang; Yuan, Ya-Chao; Li, Yan; Hu, Wei; Li, Xiao; Li, Hong-Jing; Lu, Jian-Gang; Su, Yi-Kai

    2015-06-01

    In this paper, we demonstrate an alternative approach to fabricating an electrically tunable holographic polymer templated blue phase liquid crystal grating. This grating is obtained by preforming a polymer template comprised of periodic fringes, and then refilling it with a blue phase liquid crystal. Compared with conventional holographic polymer dispersed liquid crystal gratings, our grating can remarkably reduce its switching voltage from 200 V to 43 V while maintaining a sub-millisecond response time. The holographic polymer templated blue phase liquid crystal (HPTBPLC) grating is free from electrode patterning, thus leading to a lower cost and more flexible applications. Project supported by the National Basic Research Program of China (Grant No. 2013CB328804), the National Natural Science Foundation of China (Grant No. 61307028), the Funds from the Science and Technology Commission of Shanghai Municipality (Grant Nos. 11JC1405300, 13ZR1420000, and 14ZR1422300), and the Fundamental Research Funds for the Central Universities, China (Grant No. XDJK 2011C047).

  17. High speed fiber grating sensors for structural monitoring

    NASA Astrophysics Data System (ADS)

    Udd, Eric

    2014-06-01

    This paper provides an overview of selected applications of high speed structural monitoring using fiber grating sensors. Rapid and effective diagnostic capabilities are necessary to respond to changes in structural integrity that may affect safety. In the case of aerospace structures operating at high velocity rapid response has the potential to mitigate catastrophic failure. Similar safety issues apply to civil structures where timely decisions are critical to operations of bridges, dams and buildings. Rapid responses for oil and gas, medical and environmental monitoring applications are also highly important. A great deal of progress has been made in improving the quality and capabilities of high speed fiber grating sensor systems. Some of these systems will be discussed.

  18. Processing of Signals from Fiber Bragg Gratings Using Unbalanced Interferometers

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Juergens, Jeff; Floyd, Bertram

    2005-01-01

    Fiber Bragg gratings (FBG) have become preferred sensory structures in fiber optic sensing system. High sensitivity, embedability, and multiplexing capabilities make FBGs superior to other sensor configurations. The main feature of FBGs is that they respond in the wavelength domain with the wavelength of the returned signal as the indicator of the measured parameter. The wavelength is then converted to optical intensity by a photodetector to detect corresponding changes in intensity. This wavelength-to-intensity conversion is a crucial part in any FBG-based sensing system. Among the various types of wavelength-to-intensity converters, unbalanced interferometers are especially attractive because of their small weight and volume, lack of moving parts, easy integration, and good stability. In this paper we investigate the applicability of unbalanced interferometers to analyze signals reflected from Bragg gratings. Analytical and experimental data are presented.

  19. Distributed measurement of hydrostatic pressure based on Brillouin dynamic grating in polarization maintaining fibers.

    PubMed

    Kim, Yong Hyun; Kwon, Hong; Kim, Jeongjun; Song, Kwang Yong

    2016-09-19

    High-sensitivity distributed measurement of hydrostatic pressure is experimentally demonstrated by optical time-domain analysis of Brillouin dynamic grating (BDG) in polarization maintaining fibers (PMF's). The spectral shift of the BDG in four different types of PMF's are investigated under hydrostatic pressure variation from 14.5 psi (1 bar) to 884.7 psi (61 bar) with less than 2 m spatial resolution. The pressure sensitivity of BDG frequency is measured to be ‒1.69, + 0.65, + 0.78, and + 0.85 MHz/psi for a PM photonic crystal fiber (PM-PCF), two Bow-tie fibers, and a PANDA fiber, respectively, which is about 65 to 169 times larger than that of Brillouin frequency-based pressure sensing. PMID:27661881

  20. D-shaped fiber grating refractive index sensor induced by an ultrashort pulse laser.

    PubMed

    Liao, Changrui; Wang, Qiao; Xu, Lei; Liu, Shen; He, Jun; Zhao, Jing; Li, Zhengyong; Wang, Yiping

    2016-03-01

    The fabrication of fiber Bragg gratings was here demonstrated using ultrashort pulse laser point-by-point inscription. This is a very convenient means of creating fiber Bragg gratings with different grating periods and works by changing the translation speed of the fiber. The laser energy was first optimized in order to improve the spectral properties of the fiber gratings. Then, fiber Bragg gratings were formed into D-shaped fibers for use as refractive index sensors. A nonlinear relationship was observed between the Bragg wavelength and liquid refractive index, and a sensitivity of ∼30  nm/RIU was observed at 1.450. This shows that D-shaped fiber Bragg gratings might be used to develop promising biochemical sensors. PMID:26974608

  1. Fiber design and realization of point-by-point written fiber Bragg gratings in polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Stefani, Alessio; Stecher, Matthias; Town, Graham E.; Bang, Ole

    2012-04-01

    An increasing interest in making sensors based on fiber Bragg gratings (FBGs) written in polymer optical fibers (POFs) has been seen recently. Mostly microstructured POFs (mPOFs) have been chosen for this purpose because they are easier to fabricate compared, for example, to step index fibers and because they allow to tune the guiding parameters by modifying the microstructure. Now a days the only technique used to write gratings in such fibers is the phase mask technique with UV light illumination. Despite the good results that have been obtained, a limited flexibility on the grating design and the very long times required for the writing of FBGs raise some questions about the possibility of exporting POF FBGs and the sensors based on them from the laboratory bench to the mass production market. The possibility of arbitrary design of fiber Bragg gratings and the very short time required to write the gratings make the point-by-point grating writing technique very interesting and would appear to be able to fill this technological gap. On the other end this technique is hardly applicable for microstructured fibers because of the writing beam being scattered by the air-holes. We report on the design and realization of a microstructured polymer optical fiber made of PMMA for direct writing of FBGs. The fiber was designed specifically to avoid obstruction of the writing beam by air-holes. The realized fiber has been used to point-by-point write a 5 mm long fourth order FBG with a Bragg wavelength of 1518 nm. The grating was inspected under Differential Interferometric Contrast microscope and the reflection spectrum was measured. This is, to the best of our knowledge, the first FBGs written into a mPOF with the point-by-point technique and also the fastest ever written into a polymer optical fiber, with less than 2.5 seconds needed.

  2. Femtosecond-laser-inscribed sampled fiber Bragg grating with ultrahigh thermal stability.

    PubMed

    Zhang, Congzhe; Yang, Yuanhong; Wang, Chao; Liao, Changrui; Wang, Yiping

    2016-02-22

    We have successfully fabricated a series of sampled fiber Bragg gratings with easily adjustable sampling periods and duty cycles using an 800 nm femtosecond laser point-by-point inscription. The thermal stability of the fabricated fiber gratings was investigated using isochronal annealing tests, which indicated that the fiber gratings are capable of maintaining high reflectivity at temperatures of up to 1000°C for 8 h. This demonstrates the potential of the developed sampled fiber Bragg gratings for use in multi-wavelength fiber lasers and a variety of high temperature applications. PMID:26907050

  3. Electrically modulated transparent liquid crystal -optical grating projection.

    PubMed

    Buss, Thomas; Smith, Cameron L C; Kristensen, Anders

    2013-01-28

    A transparent, fully integrated electrically modulated projection technique is presented based on light guiding through a thin liquid crystal layer covering sub-wavelength gratings. The reported device operates at 10 V with response times of 4.5 ms. Analysis of the liquid crystal alignment shows that director-reorientation occurs over timescales on the order of 90 µs close to the grating surface. The technology is suitable for next generation heads-up-displays and reconfigurable multilayer photonic integrated circuits. PMID:23389166

  4. Fiber Bragg Gratings for High-Temperature Thermal Characterization

    SciTech Connect

    Stinson-Bagby, Kelly L.; Fielder, Robert S.

    2004-07-01

    Fiber Bragg grating (FBG) sensors were used as a characterization tool to study the SAFE-100 thermal simulator at the Nasa Marshal Space Flight Center. The motivation for this work was to support Nasa space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. Distributed high temperature measurements, up to 1150 deg. C, were made with FBG temperature sensors. Additionally, FBG strain measurements were taken at elevated temperatures to provide a strain profile of the core during operation. This paper will discuss the contribution of these measurements to meet the goals of Nasa Marshall Space Flight Center's Propulsion Research Center. (authors)

  5. 3D printed long period gratings for optical fibers.

    PubMed

    Iezzi, Victor Lambin; Boisvert, Jean-Sébastien; Loranger, Sébastien; Kashyap, Raman

    2016-04-15

    We demonstrate a simple technique for implementing long period grating (LPG) structures by the use of a 3D printer. This Letter shows a way of manipulating the mode coupling within an optical fiber by applying stress through an external 3D printed periodic structure. Different LPG lengths and periods have been studied, as well as the effect of the applied stress on the coupling efficiency from the fundamental mode to cladding modes. The technique is very simple, highly flexible, affordable, and easy to implement without the need of altering the optical fiber. This Letter is part of a growing line of interest in the use of 3D printers for optical applications.

  6. Graphene-controlled fiber Bragg grating and enabled optical bistability.

    PubMed

    Gan, Xuetao; Wang, Yadong; Zhang, Fanlu; Zhao, Chenyang; Jiang, Biqiang; Fang, Liang; Li, Dongying; Wu, Hao; Ren, Zhaoyu; Zhao, Jianlin

    2016-02-01

    We report a graphene-assisted all-optical control of a fiber Bragg grating (FBG), which enables in-fiber optical bistability and switching. With an optical pump, a micro-FBG wrapped by graphene evolves into chirped and phase-shifted FBGs, whose characteristic wavelengths and bandwidths could be controlled by the pump power. Optical bistability and multistability are achieved in the controlled FBG based on a shifted Bragg reflection or Fabry-Perot-type resonance, which allow the implementation of optical switching with an extinction ratio exceeding 20 dB and a response time in tens of milliseconds. PMID:26907434

  7. Polarization mode coupling and related effects in fiber Bragg grating inscribed in polarization maintaining fiber.

    PubMed

    Zhao, Yanshuang; Sun, Bo; Liu, Yanlei; Ren, Jing; Zhang, Jianzhong; Yang, Jun; Canning, John; Peng, G D; Yuan, Libo

    2016-01-11

    Polarization mode coupling (PMC) and related effects from writing fiber Bragg gratings in polarization maintaining fiber (FBGs-in-PMF) are observed experimentally for the first time by optical fiber coherence domain polarimetry (OCDP) using a broadband light source. PMC is another useful aspect of FBG-in-PMF besides Bragg wavelength and its possible potential is evaluated and discussed. A localized and long range temperature measurement based on the PMC and Bragg wavelength is given as an example. PMID:26832291

  8. Measurement of high-birefringent spun fiber parameters using short-length fiber Bragg gratings.

    PubMed

    Vasiliev, S A; Przhiyalkovsky, Ya V; Gnusin, P I; Medvedkov, O I; Dianov, E M

    2016-05-30

    Spectral polarization characteristics of short-length fiber Bragg gratings UV-written in a highly-birefringent spun-fiber have been investigated. Based on the analysis of the characteristics the technique for measuring the built-in linear phase birefringence as well as the spin period in this fiber type has been suggested. In this method the birefringence dispersion is excluded and therefore the built-in linear phase birefringence can be measured with an improved accuracy. PMID:27410060

  9. Thermally triggered fiber lasers based on secondary-type-In Bragg gratings.

    PubMed

    Feng, Fu-Rong; Ran, Yang; Liang, Yi-Zhi; Gao, Shuai; Feng, Yuan-Hua; Jin, Long; Guan, Bai-Ou

    2016-06-01

    The secondary-type-In grating formed in a small-core photosensitivity active fiber is discovered and investigated. Due to the different grating types, the transmission dip of a secondary grating structure chases and integrates with the type-In grating structure as the temperature increases, which strengthens the reflectivity of the grating. By use of these secondary-type-In gratings as Bragg reflectors, a thermally activated distributed Bragg reflector (DBR) fiber laser is proposed, which can be potentially used in high-temperature alarms and sensors. PMID:27244391

  10. Fiber-Optic Gratings for Lidar Measurements of Water Vapor

    NASA Technical Reports Server (NTRS)

    Vann, Leila B.; DeYoung, Russell J.

    2006-01-01

    Narrow-band filters in the form of phase-shifted Fabry-Perot Bragg gratings incorporated into optical fibers are being developed for differential-absorption lidar (DIAL) instruments used to measure concentrations of atmospheric water vapor. The basic idea is to measure the relative amounts of pulsed laser light scattered from the atmosphere at two nearly equal wavelengths, one of which coincides with an absorption spectral peak of water molecules and the other corresponding to no water vapor absorption. As part of the DIAL measurement process, the scattered light is made to pass through a filter on the way to a photodetector. Omitting other details of DIAL for the sake of brevity, what is required of the filter is to provide a stop band that: Surrounds the water-vapor spectral absorption peaks at a wavelength of 946 nm, Has a spectral width of at least a couple of nanometers, Contains a pass band preferably no wider than necessary to accommodate the 946.0003-nm-wavelength water vapor absorption peak [which has 8.47 pm full width at half maximum (FWHM)], and Contains another pass band at the slightly shorter wavelength of 945.9 nm, where there is scattering of light from aerosol particles but no absorption by water molecules. Whereas filters used heretofore in DIAL have had bandwidths of =300 pm, recent progress in the art of fiber-optic Bragg-grating filters has made it feasible to reduce bandwidths to less than or equal to 20 pm and thereby to reduce background noise. Another benefit of substituting fiber-optic Bragg-grating filters for those now in use would be significant reductions in the weights of DIAL instruments. Yet another advantage of fiber-optic Bragg-grating filters is that their transmission spectra can be shifted to longer wavelengths by heating or stretching: hence, it is envisioned that future DIAL instruments would contain devices for fine adjustment of transmission wavelengths through stretching or heating of fiber-optic Bragg-grating filters

  11. Fiber Bragg grating sensors: a market overview

    NASA Astrophysics Data System (ADS)

    Méndez, A.

    2007-07-01

    Over the last few years, optical fiber sensors have seen increased acceptance and widespread use. Among the multitude of sensor types, FBG based sensors, more than any other particular sensor type, have become widely known and popular. Given their intrinsic capability to measure a multitude of parameters such as strain, temperature, pressure, chemical and biological agents - and many others - coupled with their flexibility of design to be used as single point or multi-point sensing arrays and their relative low cost, make of FBGs ideal devices to be adopted for a multitude of different sensing applications and implemented in different fields and industries. However, some technical hurdles and market barriers need to be overcome in order for this technology - and fiber sensors in general - to gain more commercial momentum and achieve faster market growth such as the need for industry standards on FBGs and FBG-based sensors, adequate packaging designs, as well as training and education of prospective customers and end-users.

  12. System Construction for the Measurement of Bragg Grating Characteristics in Optical Fibers

    NASA Technical Reports Server (NTRS)

    West, Douglas P.

    1995-01-01

    Bragg gratings are used to measure strain in optical fibers. To measure strain they are sometimes used as a smart structure. They must be characterized after they are written to determine their spectral response. This paper deals with the test setup to characterize Bragg grating spectral responses.Bragg gratings are a photo-induced phenomena in optical fibers. The gratings can be used to measure strain by measuring the shift in wavelength. They placed the fibers into a smart structure to measure the stress and strain produced on support columns placed in bridges. As the cable is subjected to strain the grating causes a shift to a longer wavelength if the fiber is stretched and a shift to a shorter wavelength shift if the fiber is compacted. Our applications involve using the fibers to measure stress and strain on airborne systems. There are many ways to write Bragg gratings into optical fibers. Our focus is on side writing the grating. Our capabilities are limited in the production rate of the gratings. The Bragg grating is written into a fiber and becomes a permanent fixture. We are writing the grating to be centered at 1300 nm because that is the standard phase mask wavelength.

  13. Improved Phase-Mask Fabrication of Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Wang, Ying; Sharma, Anup

    2004-01-01

    An improved method of fabrication of Bragg gratings in optical fibers combines the best features of two prior methods: one that involves the use of a phase mask and one that involves interference between the two coherent laser beams. The improved method affords flexibility for tailoring Bragg wavelengths and bandwidths over wide ranges. A Bragg grating in an optical fiber is a periodic longitudinal variation in the index of refraction of the fiber core. The spatial period (Bragg wavelength) is chosen to obtain enhanced reflection of light of a given wavelength that would otherwise propagate relatively unimpeded along the core. Optionally, the spatial period of the index modulation can be made to vary gradually along the grating (such a grating is said to be chirped ) in order to obtain enhanced reflection across a wavelength band, the width of which is determined by the difference between the maximum and minimum Bragg wavelengths. In the present method as in both prior methods, a Bragg grating is formed by exposing an optical fiber to an ultraviolet-light interference field. The Bragg grating coincides with the pattern of exposure of the fiber core to ultraviolet light; in other words, the Bragg grating coincides with the interference fringes. Hence, the problem of tailoring the Bragg wavelength and bandwidth is largely one of tailoring the interference pattern and the placement of the fiber in the interference pattern. In the prior two-beam interferometric method, a single laser beam is split into two beams, which are subsequently recombined to produce an interference pattern at the location of an optical fiber. In the prior phase-mask method, a phase mask is used to diffract a laser beam mainly into two first orders, the interference between which creates the pattern to which an optical fiber is exposed. The prior two-beam interferometric method offers the advantage that the period of the interference pattern can be adjusted to produce gratings over a wide range

  14. Interrogating adhesion using fiber Bragg grating sensing technology

    NASA Astrophysics Data System (ADS)

    Rasberry, Roger D.; Rohr, Garth D.; Miller, William K.; Udd, Eric; Blach, Noah T.; Davis, Ryan A.; Olson, Walter R.; Calkins, David; Roach, Allen R.; Walsh, David S.; McElhanon, James R.

    2015-05-01

    The assurance of the integrity of adhesive bonding at substrate interfaces is paramount to the longevity and sustainability of encapsulated components. Unfortunately, it is often difficult to non-destructively evaluate these materials to determine the adequacy of bonding after manufacturing and then later in service. A particularly difficult problem in this regard is the reliable detection/monitoring of regions of weak bonding that may result from poor adhesion or poor cohesive strength, or degradation in service. One promising and perhaps less explored avenue we have recently begun to investigate for this purpose centers on the use of (chirped) fiber Bragg grating sensing technology. In this scenario, a grating is patterned into a fiber optic such that a (broadband) spectral reflectance is observed. The sensor is highly sensitive to local and uniform changes across the length of the grating. Initial efforts to evaluate this approach for measuring adhesive bonding defects at substrate interfaces are discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Mechanically induced long period fiber gratings on single mode tapered optical fiber for structure sensing applications

    NASA Astrophysics Data System (ADS)

    Pulido-Navarro, María. G.; Marrujo-García, Sigifredo; Álvarez-Chávez, José A.; Velázquez-González, Jesús S.; Martínez-Piñón, Fernando; Escamilla-Ambrosio, Ponciano J.

    2015-08-01

    The modal characteristics of tapered single mode optical fibers and its strain sensing characteristics by using mechanically induced long period fiber gratings are presented in this work. Both Long Period Fiber Gratings (LPFG) and fiber tapers are fiber devices that couple light from the core fiber into the fiber cladding modes. The mechanical LPFG is made up of two plates, one flat and the other grooved. For this experiment the grooved plate was done on an acrylic slab with the help of a computer numerical control machine. The manufacturing of the tapered fiber is accomplished by applying heat using an oxygen-propane flame burner and stretching the fiber, which protective coating has been removed. Then, a polymer-tube-package is added in order to make the sensor sufficiently stiff for the tests. The mechanical induced LPFG is accomplished by putting the tapered fiber in between the two plates, so the taper acquires the form of the grooved plate slots. Using a laser beam the transmission spectrum showed a large peak transmission attenuation of around -20 dB. The resultant attenuation peak wavelength in the transmission spectrum shifts with changes in tension showing a strain sensitivity of 2pm/μɛ. This reveals an improvement on the sensitivity for structure monitoring applications compared with the use of a standard optical fiber. In addition to the experimental work, the supporting theory and numerical simulation analysis are also included.

  16. Draw tower fiber Bragg gratings and their use in sensing technology

    NASA Astrophysics Data System (ADS)

    Lindner, E.; Mörbitz, J.; Chojetzki, C.; Becker, M.; Brückner, S.; Schuster, K.; Rothhardt, M.; Bartelt, H.

    2011-06-01

    The idea of fabricating fiber Bragg gratings already during the drawing of a fiber dates back almost 20 years. The application of a transverse holographic writing method on a draw tower offers a promising solution for a highly effective Bragg grating production. Because of the high technology requirements it took more than 10 years to develop the method into a reliable process. During the last five years the improvements in the technical development enables cost effective industrial production of draw tower gratings (1DTG®). In this paper we report about new possibilities of the improved process with respect to the grating type (type I gratings, type II gratings), the coating type (2ORMOCER®, metals) and the fiber type and diameter (125μm, 80μm and below). Furthermore, we present examples for the application of draw tower fiber Bragg gratings in sensing technologies for medical applications.

  17. Orientation-Dependent Displacement Sensor Using an Inner Cladding Fiber Bragg Grating.

    PubMed

    Yang, Tingting; Qiao, Xueguang; Rong, Qiangzhou; Bao, Weijia

    2016-01-01

    An orientation-dependent displacement sensor based on grating inscription over a fiber core and inner cladding has been demonstrated. The device comprises a short piece of multi-cladding fiber sandwiched between two standard single-mode fibers (SMFs). The grating structure is fabricated by a femtosecond laser side-illumination technique. Two well-defined resonances are achieved by the downstream both core and cladding fiber Bragg gratings (FBGs). The cladding resonance presents fiber bending dependence, together with a strong orientation dependence because of asymmetrical distribution of the "cladding" FBG along the fiber cross-section. PMID:27626427

  18. Orientation-Dependent Displacement Sensor Using an Inner Cladding Fiber Bragg Grating

    PubMed Central

    Yang, Tingting; Qiao, Xueguang; Rong, Qiangzhou; Bao, Weijia

    2016-01-01

    An orientation-dependent displacement sensor based on grating inscription over a fiber core and inner cladding has been demonstrated. The device comprises a short piece of multi-cladding fiber sandwiched between two standard single-mode fibers (SMFs). The grating structure is fabricated by a femtosecond laser side-illumination technique. Two well-defined resonances are achieved by the downstream both core and cladding fiber Bragg gratings (FBGs). The cladding resonance presents fiber bending dependence, together with a strong orientation dependence because of asymmetrical distribution of the “cladding” FBG along the fiber cross-section. PMID:27626427

  19. Pressure Effects on the Temperature Sensitivity of Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou

    2012-01-01

    A 3-dimensional physical model was developed to relate the wavelength shifts resulting from temperature changes of fiber Bragg gratings (FBGs) to the thermal expansion coefficients, Young s moduli of optical fibers, and thicknesses of coating polymers. Using this model the Bragg wavelength shifts were calculated and compared with the measured wavelength shifts of FBGs with various coating thickness for a finite temperature range. There was a discrepancy between the calculated and measured wavelength shifts. This was attributed to the refractive index change of the fiber core by the thermally induced radial pressure. To further investigate the pressure effects, a small diametric load was applied to a FBG and Bragg wavelength shifts were measured over a temperature range of 4.2 to 300K.

  20. All-optical low noise fiber Bragg grating microphone.

    PubMed

    Bandutunga, Chathura P; Fleddermann, Roland; Gray, Malcolm B; Close, John D; Chow, Jong H

    2016-07-20

    We present an all-fiber design for a microphone using a fiber Bragg grating Fabry-Perot resonator attached to a diaphragm transducer. We analytically model and verify the fiber-diaphragm mechanical interaction, using the Hänsch-Couillaud readout technique to provide necessary sensitivity. We achieved a noise-equivalent strain sensitivity of 7.1×10-12  ϵ/Hz, which corresponds to a sound pressure of 74  μPa/Hz at 1 kHz limited by laser frequency noise and yielding a signal-to-noise ratio of 47±2  dB with a 1 Pa drive at 1 kHz, in close agreement with modeled results. PMID:27463906

  1. Characterization of temperature-dependent birefringence in polarization maintaining fibers based on Brillouin dynamic gratings

    NASA Astrophysics Data System (ADS)

    Kim, Yong Hyun; Song, Kwang Yong

    2015-07-01

    Temperature dependence of birefringence in various types of polarization-maintaining fibers (PMF's) is rigorously investigated by the spectral analysis of Brillouin dynamic grating (BDG). PANDA, Bowtie, and PM photonic crystal fibers are tested in the temperature range of -30 to 150 ºC, where nonlinear temperature dependence is quantified for each fiber to an accuracy of ±7.6 × 10-8. It is observed that the amount of deviation from the linearity varies according to the structural parameters of the PMF's and the existence of acrylate jacket. Experimental confirmation of the validity of the BDG-based birefringence measurement is also presented in comparison to the periodic lateral force method.

  2. A dual-wavelength erbium-doped fiber laser based on fiber grating pair

    NASA Astrophysics Data System (ADS)

    Sun, Hongwei; Wang, Tianshu; Jia, Qingsong; Zhang, Peng; Jiang, Huilin

    2014-12-01

    A dual-wavelength linear cavity erbium-doped fiber (EDF) laser based on a fiber grating pair is demonstrated experimentally. A circulator, a 980nm/1550nm wavelength division multiplexing (WDM) coupler, a 1×2 coupler, a polarization controller, a 6m long erbium-doped fiber and a fiber grating pair for wavelength interval of 0.3nm are included in the structure. A circulator connected at two ports as reflecting mirror structure. A 980nm pump source pump an erbium-doped fiber with a length of 6m consist of an erbium doped fiber amplifier. Through adjusting the state of the polarization controller, the transmission characteristic of cavity is changed. In both polarization and wavelength, the feedback from the fiber grating pair results in the laser operating on two longitudinal modes that are separated. The birefringence induced by the fiber grating pair is beneficial to diversify the polarization states of different wavelength in the erbium-doped fiber. So it is enhanced the polarization hole burning effect. This polarization hole burning effect greatly reduced the wavelength competition. Then, it was possible to achieve stable dual-wavelength. It turns out the structure generated the stable dual-wavelength with the 0.3nm wavelength interval and the output power is 0.13dBm in the end. The whole system have a simple and compact structure, it can work stably and laid a foundation for microwave/millimeter wave generator. It has a good application performance in the future for scientific research and daily life.

  3. Strain measurements on concrete beam and carbon fiber cable with distributed optical fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Nellen, Philipp M.; Bronnimann, Rolf; Sennhauser, Urs J.; Askins, Charles G.; Putnam, Martin A.

    1996-09-01

    We report on civil engineering applications of wavelength multiplexed optical fiber Bragg grating arrays directly produced on the draw tower for testing and surveying advanced structures and materials such as carbon fiber reinforced concrete elements and prestressing cables. We equipped a 6 by 0.9 by 0.5 m concrete beam, which was reinforced with carbon fiber reinforced epoxy laminates, and a 7-m long prestressing carbon fiber cable made of seven twisted strands, with optical fiber Bragg grating sensors. Static strains up to 8000 micrometers/m and dynamic strains up to 1200 micrometers/m were measured with a Michelson interferometer used as Fourier spectrometer with a resolution of about 10 micrometers/m for all sensors. Comparative measurements with electrical resistance strain gauges were in good agreement with the fiber optical results. We installed the fiber sensors in two different arrangements: some Bragg grating array elements measured local strain while others were applied in an extensometric configuration to measure moderate strain over a base length of 0.1 to 1 m.

  4. Optical generation of tunable microwave and millimeter waves by using asymmetric fiber Bragg grating Fabry-Perot cavity fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Cong; Wang, Meng; Li, Qi; Huang, Kaiqiang; Chen, Haiyan

    2014-10-01

    In this presentation, we propose and experimentally demonstrate a novel optical generation of microwave and millimeter wave signals by using asymmetric fiber Bragg grating Fabry-Perot cavity fiber laser, dual-wavelength emission can be achieved with wavelength separation of 0.68nm corresponding to the millimeter wave signal at 85GHz. By appropriately adjusting the operation temperature of intracavity fiber Bragg grating, the frequency of millimeter wave signal generated can be tunable. Our experimental results demonstrate the new concept of optical generation of microwave and millimeter wave signals by using asymmetric fiber Bragg grating Fabry-Perot cavity dual-wavelength fiber laser and the technical feasibility.

  5. Liquid crystal gratings based on alternate TN and PA photoalignment.

    PubMed

    Hu, Wei; Srivastava, Abhishek; Xu, Fei; Sun, Jia-Tong; Lin, Xiao-Wen; Cui, Hong-Qing; Chigrinov, Vladimir; Lu, Yan-Qing

    2012-02-27

    A diffraction grating is proposed by periodically defining the liquid-crystal director distribution to form alternate parallel aligned and twist nematic regions in a cell placed between two crossed polarizers. Based on the combined phase and amplitude modulation, both 1D and 2D tunable gratings are demonstrated. Low voltage ON/OFF switching of 1st order diffracted light with extinction ratio over 80 is achieved within a small voltage interval of 0.15 Vrms. Unique four-state feature of the cell is obtained and their applications in optical logic devices are discussed. PMID:22418345

  6. Fiber-optic Doppler velocimeter based on a dual-polarization fiber grating laser

    NASA Astrophysics Data System (ADS)

    Kuang, Zeyuang; Cheng, Linghao; Liang, Yizhi; Liang, Hao; Guan, Bai-Ou

    2015-07-01

    A fiber-optic Doppler velocimeter based on a dual-polarization fiber grating laser is demonstrated. The fiber grating laser produces two orthogonally polarized laser outputs with their frequency difference proportional to the intra-cavity birefringence. When the laser outputs are reflected from a moving targets, the laser frequencies will be shifted due to the Doppler effect. It shows that the frequency difference between the beat note of the laser outputs and the beat note of the reflected lasers is proportional to the velocity. The proposed fiber-optic Doppler velocimeter shows a high sensitivity of 0.64 MHz/m/s and is capable of measurement of wide range of velocity.

  7. Fiber ring laser incorporating a pair of rotary long-period fiber gratings for torsion measurement

    NASA Astrophysics Data System (ADS)

    Shi, Leilei; Zhu, Tao; Chen, Fangyuan; Chiang, Kinseng; Rao, Yunjiang

    2012-02-01

    We demonstrate a fiber ring laser for high-resolution torsion measurement, where the laser cavity consists of a Mach-Zehnder interferometer (MZI) formed with a pair of long-period fiber gratings written in a twisted single-mode fiber (SMF) by a CO2 laser. The emitting wavelength of the laser provides a measure of the rate of the torsion applied to the grating pair, while the direction of the wavelength shift indicates the sense direction of the applied torsion. The narrow linewidth and the large side-mode suppression ratio of the laser can provide a much more precise measurement of torsion, compared with passive fiber-optic torsion sensors. The torsion sensitivity achieved is 0.084 nm/(rad/m) in the torsion range +/-100 rad/m, which corresponds to a torsion resolution of 0.12 rad/m, assuming a wavelength resolution of 10 pm for a typical optical spectrum analyzer.

  8. Visible high-speed optical transmission over photonic crystal fiber.

    PubMed

    Kurokawa, K; Ieda, K; Tajima, K; Nakajima, K; Shiraki, K; Sankawa, I

    2007-01-22

    We demonstrated high-speed transmission at visible wavelengths over a 1 km photonic crystal fiber (PCF). We achieved a 1 Gbit/s transmission at 783 nm by using the direct modulation of a cost-effective Fabry-Perot laser diode (FP-LD). By employing the external modulation of the longitudinally single-mode grating-stabilized LD, we obtained the first penalty free 10 Gbit/s transmission at 780 nm. PMID:19532256

  9. Polymer optical fiber grating as water activity sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Webb, David J.

    2014-05-01

    Controlling the water content within a product has long been required in the chemical processing, agriculture, food storage, paper manufacturing, semiconductor, pharmaceutical and fuel industries. The limitations of water content measurement as an indicator of safety and quality are attributed to differences in the strength with which water associates with other components in the product. Water activity indicates how tightly water is "bound," structurally or chemically, in products. Water absorption introduces changes in the volume and refractive index of poly(methyl methacrylate) PMMA. Therefore for a grating made in PMMA based optical fiber, its wavelength is an indicator of water absorption and PMMA thus can be used as a water activity sensor. In this work we have investigated the performance of a PMMA based optical fiber grating as a water activity sensor in sugar solution, saline solution and Jet A-1 aviation fuel. Samples of sugar solution with sugar concentration from 0 to 8%, saline solution with concentration from 0 to 22%, and dried (10ppm), ambient (39ppm) and wet (68ppm) aviation fuels were used in experiments. The corresponding water activities are measured as 1.0 to 0.99 for sugar solution, 1.0 to 0.86 for saline solution, and 0.15, 0.57 and 1.0 for the aviation fuel samples. The water content in the measured samples ranges from 100% (pure water) to 10 ppm (dried aviation fuel). The PMMA based optical fiber grating exhibits good sensitivity and consistent response, and Bragg wavelength shifts as large as 3.4 nm when the sensor is transferred from dry fuel to wet fuel.

  10. Thermal Evaluation of Fiber Bragg Gratings at Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Juergens, Jeffrey; Adamovsky, Grigory; Bhatt, Ramakrishna; Morscher, Gregory; Floyd, Bertram

    2005-01-01

    The development of integrated fiber optic sensors for use in aerospace health monitoring systems demands that the sensors be able to perform in extreme environments. In order to use fiber optic sensors effectively in an extreme environment one must have a thorough understanding of the sensor's capabilities, limitations, and performance under extreme environmental conditions. This paper reports on our current sensor evaluation examining the performance of freestanding fiber Bragg gratings (FBG) at extreme temperatures. While the ability of FBGs to survive at extreme temperatures has been established, their performance and long term survivability is not well documented. At extreme temperatures the grating structure would be expected to dissipate, degrading the sensors performance and eventually ceasing to return a detectable signal. The fiber jacket will dissipate leaving a brittle, unprotected fiber. For FBGs to be used in aerospace systems their performance and limitations need to be thoroughly understood at extreme temperatures. As the limits of the FBGs performance are pushed the long term survivability and performance of the sensor comes into question. We will not only examine the ability of FBGs to survive extreme temperatures but also look at their performance during many thermal cycles. This paper reports on test results of the performance of thermal cycling commercially available FBGs, at temperatures up to 1000 C, seen in aerospace applications. Additionally this paper will report on the performance of commercially available FBGs held at 1000 C for hundreds of hours. Throughout the evaluation process, various parameters of the FBGs performance were monitored and recorded. Several test samples were subjected to identical test conditions to allow for statistical analysis of the data. Test procedures, calibrations, referencing techniques, performance data, and interpretations and explanations of results are presented in the paper along with directions for

  11. Real time interrogation technique for fiber Bragg grating enhanced fiber loop ringdown sensors array.

    PubMed

    Zhang, Yunlong; Li, Ruoming; Shi, Yuechun; Zhang, Jintao; Chen, Xiangfei; Liu, Shengchun

    2015-06-01

    A novel fiber Bragg grating aided fiber loop ringdown (FLRD) sensor array and the wavelength-time multiplexing based interrogation technique for the FLRD sensors array are proposed. The interrogation frequency of the system is formulated and the interrelationships among the parameters of the system are analyzed. To validate the performance of the proposed system, a five elements array is experimentally demonstrated, and the system shows the capability of real time monitoring every FLRD element with interrogation frequency of 125.5 Hz.

  12. Highly polarized all-fiber thulium laser with femtosecond-laser-written fiber Bragg gratings.

    PubMed

    Willis, Christina C C; McKee, Erik; Böswetter, Pascal; Sincore, Alex; Thomas, Jens; Voigtländer, Christian; Krämer, Ria G; Bradford, Joshua D; Shah, Lawrence; Nolte, Stefan; Tünnermann, Andreas; Richardson, Martin

    2013-05-01

    We demonstrate and characterize a highly linearly polarized (18.8 dB) narrow spectral emission (<80 pm) from an all-fiber Tm laser utilizing femtosecond-laser-written fiber Bragg gratings. Thermally-dependent anisotropic birefringence is observed in the FBG transmission, the effects of which enable both the generation and elimination of highly linearly polarized output. To our knowledge, this is the first detailed study of such thermal anisotropic birefringence in femtosecond-written FBGs.

  13. Temperature sensing of micron scale polymer fibers using fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Zhang, Y.; Mulle, M.; Lubineau, G.

    2015-08-01

    Highly conductive polymer fibers are key components in the design of multifunctional textiles. Measuring the voltage/temperature relationships of these fibers is very challenging due to their very small diameters, making it impossible to rely on classical temperature sensing techniques. These fibers are also so fragile that they cannot withstand any perturbation from external measurement systems. We propose here, a non-contact temperature measurement technique based on fiber Bragg gratings (FBGs). The heat exchange is carefully controlled between the probed fibers and the sensing FBG by promoting radiation and convective heat transfer rather than conduction, which is known to be poorly controlled. We demonstrate our technique on a highly conductive Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS)-based fiber. A non-phenomenological model of the sensing system based on meaningful physical parameters is validated towards experimental observations. The technique reliably measures the temperature of the polymer fibers when subjected to electrical loading.

  14. Refractive index sensitivity of long-period fiber gratings written in thinned cladding fiber by CO2 laser

    NASA Astrophysics Data System (ADS)

    Zhao, Yunhe; Liu, Yunqi; Guo, Qiang; Wang, Tingyun

    2014-05-01

    We demonstrate the fabrication of the long-period fiber gratings (LPFGs) in the thinned cladding fiber (TCF) using CO2 laser. The sensing response of the gratings to surrounding refractive index has been investigated experimentally. The LPFGs written in the TCF could be used as the high sensitive refractive index sensors.

  15. Dynamic gate algorithm for multimode fiber Bragg grating sensor systems.

    PubMed

    Ganziy, D; Jespersen, O; Woyessa, G; Rose, B; Bang, O

    2015-06-20

    We propose a novel dynamic gate algorithm (DGA) for precise and accurate peak detection. The algorithm uses a threshold-determined detection window and center of gravity algorithm with bias compensation. We analyze the wavelength fit resolution of the DGA for different values of the signal-to-noise ratio and different peak shapes. Our simulations and experiments demonstrate that the DGA method is fast and robust with better stability and accuracy than conventional algorithms. This makes it very attractive for future implementation in sensing systems, especially based on multimode fiber Bragg gratings. PMID:26193010

  16. Development of pulse laser processing for mounting fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-01

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  17. Development of pulse laser processing for mounting fiber Bragg grating

    SciTech Connect

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-11

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  18. Liquid crystal gratings from nematic to blue phase

    NASA Astrophysics Data System (ADS)

    Lu, Yan-qing; Hu, Wei; Lin, Xiao-wen; Srivastava, Abhishek; Chigrinov, Vladimir G.

    2012-10-01

    Some of our recent progress on liquid crystal (LC) gratings, from nematic to blue phase, is reviewed in this invited talk. The first kind of grating is fabricated by periodically adjusting the LC directors to form alternate micro phase retarders and polarization rotators in a cell placed between crossed polarizers. The second one is demonstrated by means of photoalignment technique with alternate orthogonal homogeneously-aligned domains. To improve the response time of the gratings, several approaches are also proposed by using dual-frequency addressed nematic LC, ferroelectric LC and blue phase LC, which shows great performance including high transmittance, polarization independency and submillisecond response. At last, to obtain other controllable LC microstructures rather than simple 1D/2D gratings, we develop a micro-lithography system with a digital micro-mirror device as dynamic mask forms. It may instantly generate arbitrary micro-images on photoalignment layers and further guides the LC molecule orientations. Besides normal phase gratings, more complex patterns such as quasicrystal structures are demonstrated. Some new applications such as tunable multiport optical switching and vector beam generations are expected.

  19. Using a Fiber Loop and Fiber Bragg Grating as a Fiber Optic Sensor to Simultaneously Measure Temperature and Displacement

    PubMed Central

    Chang, Yao-Tang; Yen, Chih-Ta; Wu, Yue-Shiun; Cheng, Hsu-Chih

    2013-01-01

    This study integrated a fiber loop manufactured by using commercial fiber (SMF-28, Corning) and a fiber Bragg grating (FBG) to form a fiber optic sensor that could simultaneously measure displacement and temperature. The fiber loop was placed in a thermoelectric cooling module with FBG affixed to the module, and, consequently, the center wavelength displacement of FBG was limited by only the effects of temperature change. Displacement and temperature were determined by measuring changes in the transmission of optical power and shifts in Bragg wavelength. This study provides a simple and economical method to measure displacement and temperature simultaneously. PMID:23681094

  20. A highly sensitive fiber Bragg grating diaphragm pressure transducer

    NASA Astrophysics Data System (ADS)

    Allwood, Gary; Wild, Graham; Lubansky, Alex; Hinckley, Steven

    2015-10-01

    In this work, a novel diaphragm based pressure transducer with high sensitivity is described, including the physical design structure, in-depth analysis of optical response to changes in pressure, and a discussion of practical implementation and limitations. A flat circular rubber membrane bonded to a cylinder forms the body of the transducer. A fiber Bragg grating bonded to the center of the diaphragm structure enables the fractional change in pressure to be determined by analyzing the change in Bragg wavelength of the reflected spectra. Extensive evaluation of the physical properties and optical characteristics of the transducer has been performed through experimentation, and modeling using small deformation theory. The results show the transducer has a sensitivity of 0.116 nm/kPa, across a range of 15 kPa. Ultra-low cost interrogation of the optical signal was achieved through the use of an optically mismatched Bragg grating acting as an edge filter to convert the spectral change into an intensity change. A numerical model of the intensity based interrogation was implemented in order to validate the experimental results. Utilizing this interrogation technique and housing both the sensing and reference Bragg gratings within the main body of the transducer means it is effectively temperature insensitive and easily connected to electronic systems.

  1. Remote (250 km) Fiber Bragg Grating Multiplexing System

    PubMed Central

    Fernandez-Vallejo, Montserrat; Rota-Rodrigo, Sergio; Lopez-Amo, Manuel

    2011-01-01

    We propose and demonstrate two ultra-long range fiber Bragg grating (FBG) sensor interrogation systems. In the first approach four FBGs are located 200 km from the monitoring station and a signal to noise ratio of 20 dB is obtained. The second improved version is able to detect the four multiplexed FBGs placed 250 km away, offering a signal to noise ratio of 6–8 dB. Consequently, this last system represents the longest range FBG sensor system reported so far that includes fiber sensor multiplexing capability. Both simple systems are based on a wavelength swept laser to scan the reflection spectra of the FBGs, and they are composed by two identical-lengths optical paths: the first one intended to launch the amplified laser signal by means of Raman amplification and the other one is employed to guide the reflection signal to the reception system. PMID:22164101

  2. Remote (250 km) fiber Bragg grating multiplexing system.

    PubMed

    Fernandez-Vallejo, Montserrat; Rota-Rodrigo, Sergio; Lopez-Amo, Manuel

    2011-01-01

    We propose and demonstrate two ultra-long range fiber Bragg grating (FBG) sensor interrogation systems. In the first approach four FBGs are located 200 km from the monitoring station and a signal to noise ratio of 20 dB is obtained. The second improved version is able to detect the four multiplexed FBGs placed 250 km away, offering a signal to noise ratio of 6-8 dB. Consequently, this last system represents the longest range FBG sensor system reported so far that includes fiber sensor multiplexing capability. Both simple systems are based on a wavelength swept laser to scan the reflection spectra of the FBGs, and they are composed by two identical-lengths optical paths: the first one intended to launch the amplified laser signal by means of Raman amplification and the other one is employed to guide the reflection signal to the reception system. PMID:22164101

  3. Open pit slope deformation monitoring by fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Xu, Guoquan; Xiong, Daiyu; Duan, Yun; Cao, Xiaoshuang

    2015-01-01

    With microstrain resolution and the capability to sample at rates of 2000 Hz or higher, fiber Bragg grating (FBG) strain sensor offers exciting new possibilities for in situ deformation monitoring induced by blasting load in an open pit slope. Here, we are developing a new technology for measuring deformation in real time on the microstrain in an open pit slope during the blasting. A fiber optically instrumented rock mass strain sensor measured strain at 100-cm intervals along a two anchor rock bolt grouted in the slope intact rock mass. In field testing, a number of transient signals have been observed, which in some cases were large enough to trigger rapid sampling. The combination of short- and long-term observation offers new insight into the slope stability and blasting cumulative effects. Therefore, FBG sensors are a useful tool for measuring in situ strain in intact rock masses.

  4. 3D printed long period gratings for optical fibers.

    PubMed

    Iezzi, Victor Lambin; Boisvert, Jean-Sébastien; Loranger, Sébastien; Kashyap, Raman

    2016-04-15

    We demonstrate a simple technique for implementing long period grating (LPG) structures by the use of a 3D printer. This Letter shows a way of manipulating the mode coupling within an optical fiber by applying stress through an external 3D printed periodic structure. Different LPG lengths and periods have been studied, as well as the effect of the applied stress on the coupling efficiency from the fundamental mode to cladding modes. The technique is very simple, highly flexible, affordable, and easy to implement without the need of altering the optical fiber. This Letter is part of a growing line of interest in the use of 3D printers for optical applications. PMID:27082365

  5. A Magnetostrictive Composite-Fiber Bragg Grating Sensor

    PubMed Central

    Quintero, Sully M. M.; Braga, Arthur M. B.; Weber, Hans I.; Bruno, Antonio C.; Araújo, Jefferson F. D. F.

    2010-01-01

    This paper presents a light and compact optical fiber Bragg Grating sensor for DC and AC magnetic field measurements. The fiber is coated by a thick layer of a magnetostrictive composite consisting of particles of Terfenol-D dispersed in a polymeric matrix. Among the different compositions for the coating that were tested, the best magnetostrictive response was obtained using an epoxy resin as binder and a 30% volume fraction of Terfenol-D particles with sizes ranging from 212 to 300 μm. The effect of a compressive preload in the sensor was also investigated. The achieved resolution was 0.4 mT without a preload or 0.3 mT with a compressive pre-stress of 8.6 MPa. The sensor was tested at magnetic fields of up to 750 mT under static conditions. Dynamic measurements were conducted with a magnetic unbalanced four-pole rotor. PMID:22163644

  6. Low-cost interrogator for fiber-optic interferometers and fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Gong, Jianmin; Li, Zhengying; Wang, Anbo

    2010-11-01

    We report a low-cost interrogator for fiber-optic interferometric and Bragg grating sensors. The interrogator is based on a compact optical path scanner which is made by splicing a hollow fiber to a single mode fiber and by sealing a segment of air and a segment of thermally expanded liquid inside the hollow fiber. The facets between the fiber-air interface and the air-liquid interface reflect the light from the single mode fiber back, and the optical path difference between the two facets can be controlled by changing the temperature of the liquid. When the compact optical path scanner is place inside a white light interferometer together with a sensing fiber-optic Fabry-Perot interferometer, the optical path difference of the sensing interferometer can be decoded as the optical path difference of the scanner when the interference signal gets maximum. The decoding accuracy of such an interferometer interrogation system was measured to be 14 nm over a range of 40 μm. The compact optical path scanner can also be used to form a wavelength meter, which can be applied to decode the Bragg wavelength of a fiber Bragg grating sensor. A decoding accuracy of 3.5 pm was obtained.

  7. Superposition of fiber Bragg and LPG gratings for embedded strain measurement

    NASA Astrophysics Data System (ADS)

    Guyard, Romain; Leduc, Dominique; Lecieux, Yann; Lupi, Cyril

    2016-11-01

    When a fiber Bragg grating strain sensor is embedded inside a structure, the interaction of the sensor with the host material can lead to spurious results if the radial strain is neglected. In this article, we use numerical simulations to show that the axial and radial strains can be simultaneously measured with a single fiber in which a Bragg grating and a long-period grating are superimposed. Moreover, we present an optimal architecture of the sensor. xml:lang="fr"

  8. Structurally embedded fiber Bragg gratings: civil engineering applications

    NASA Astrophysics Data System (ADS)

    Nellen, Philipp M.; Broennimann, Rolf; Frank, Andreas; Mauron, Pascal; Sennhauser, Urs J.

    1999-12-01

    In civil engineering it is of interest to monitor long-term performance of structures made of new lightweight materials like glass or carbon fiber reinforced polymers (GFRP/CFRP). In contrast to surface applied optical fiber sensors, embedded sensors are expected to be better protected against rough handling and harsh environmental conditions. We report on two recently done fiber optical sensor applications in civil engineering. Both include structurally embedded fiber Bragg grating (BG) arrays but have different demands with respect to their operation. For the first application fiber BGs were embedded in GFRP rockbolts of 3 - 5 m in length either of 3, 8, or 22 mm diameter. The sensor equipped rockbolts are made for distributed measurements of boulder motion during tunnel construction and operation and should withstand strain up to 1.6%. Rockbolt sensors were field tested in a tunnel near Sargans in Switzerland. For a second application fiber BGs were embedded in CFRP wires of 5 mm diameter used for the pre- stressing cables of a 56 m long bridge near Lucerne in Switzerland. The permanent load on the cable corresponds to 0.8% strain. Due to the embedded sensors, strain decay inside the cable anchoring heads could be measured for the first time during loading and operation of the cables. For both applications mechanical and thermal loading tests were performed to assess the function of these new elements. Also, temperature and strain sensitivity were calibrated. Reliability studies with respect to stress transfer, fiber mechanical failure, and wavelength shift caused by thermal BG decay as well as monitoring results of both applications are presented.

  9. Fiber optic anemometer based on metal infiltrated microstructured optical fiber inscribed with Bragg grating

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Gao, Shaorui; Liu, Zhengyong; Zhang, A. Ping; Shen, Yonghang; Tam, Hwayaw

    2015-09-01

    An all-fiber optical anemometer with high light-heat conversion efficiency by using an in-house microstructured optical fiber Bragg grating (MOFBG) is presented. Low-molten-temperature BiSnIn alloy was successfully infiltrated into 11- cm length of a six-hole microstructured optical fiber which was inscribed with a fibre Bragg grating (FBG) centered at ~848 nm. Light launched into the MOFBG was strongly absorbed by the metal to generate heat, while the FBG was utilized to monitor temperature change due to surrounding wind speed. The sensitivity of the laser-heated MOFBG anemometer was measured to be ~0.1 nm/(m/s) for wind speed ranged from 0.5 m/s to 2 m/s. The efficiency of the anemometer, defined as effective sensitivity per pump power, is 8.7 nm/(m/s*W).

  10. High Temperature Optical Fiber Sensor Based on Compact Fattened Long-Period Fiber Gratings

    PubMed Central

    Mata-Chávez, Ruth I.; Martínez-Rios, Alejandro; Estudillo-Ayala, Julián M.; Vargas-Rodríguez, Everardo; Rojas-Laguna, Roberto; Hernández-García, Juan C.; Guzmán-Chávez, Ana D.; Claudio-González, David; Huerta-Mascotte, Eduardo

    2013-01-01

    A compact high temperature fiber sensor where the sensor head consists of a short fattened long period fiber grating (F-LPFG) of at least 2 mm in length and background loss of −5 dBm is reported. On purpose two different F-LPFGs were used to measure temperature variations, taking advantage of their broad spectrum and the slope characteristics of the erbium light source. This approach affected the spectrum gain as the linear band shifting took place. The measured sensitivity of the long period fiber gratings were about 72 pm/°C in a range from 25 to 500 °C. Here, the temperature rate of the experiment was 0.17 °C/s and the temperature response time was within 3 s. Moreover, temperature changes were detected with an InGaAs photodetector, where a sensitivity of 0.05 mV/°C was achieved. PMID:23459386

  11. Strain Sharing Assessment in Woven Fiber Reinforced Concrete Beams Using Fiber Bragg Grating Sensors.

    PubMed

    Montanini, Roberto; Recupero, Antonino; De Domenico, Fabrizio; Freni, Fabrizio

    2016-09-22

    Embedded fiber Bragg grating sensors have been extensively used worldwide for health monitoring of smart structures. In civil engineering, they provide a powerful method for monitoring the performance of composite reinforcements used for concrete structure rehabilitation and retrofitting. This paper discusses the problem of investigating the strain transfer mechanism in composite strengthened concrete beams subjected to three-point bending tests. Fiber Bragg grating sensors were embedded both in the concrete tensioned surface and in the woven fiber reinforcement. It has been shown that, if interface decoupling occurs, strain in the concrete can be up to 3.8 times higher than that developed in the reinforcement. A zero friction slipping model was developed which fitted very well the experimental data.

  12. Strain Sharing Assessment in Woven Fiber Reinforced Concrete Beams Using Fiber Bragg Grating Sensors.

    PubMed

    Montanini, Roberto; Recupero, Antonino; De Domenico, Fabrizio; Freni, Fabrizio

    2016-01-01

    Embedded fiber Bragg grating sensors have been extensively used worldwide for health monitoring of smart structures. In civil engineering, they provide a powerful method for monitoring the performance of composite reinforcements used for concrete structure rehabilitation and retrofitting. This paper discusses the problem of investigating the strain transfer mechanism in composite strengthened concrete beams subjected to three-point bending tests. Fiber Bragg grating sensors were embedded both in the concrete tensioned surface and in the woven fiber reinforcement. It has been shown that, if interface decoupling occurs, strain in the concrete can be up to 3.8 times higher than that developed in the reinforcement. A zero friction slipping model was developed which fitted very well the experimental data. PMID:27669251

  13. Application of a photonic crystal fiber LPG for vibration monitoring

    NASA Astrophysics Data System (ADS)

    Nascimento, I. M.; Chesini, G.; Sousa, Marco; Osório, Jonas H.; Baptista, J. M.; Cordeiro, Cristiano M. B.; Jorge, Pedro A. S.

    2013-05-01

    A fiber optic sensor based on a long-period grating (LPG) inscribed in a photonic crystal fiber is investigated for vibration sensing for structural monitoring applications. In this paper, preliminary results are shown demonstrating the sensor ability to detect vibration induced in a test structure. The sensor frequency response when attached to a loudspeaker-acrylic plate stimulation system (tested in the range from 40 Hz to 2.5 kHz) is analyzed using an intensity based scheme with a tunable laser. An alternative interrogation scheme, where the vibration signal is retrieved from a spectral scan, is also demonstrated and analyzed showing promising characteristics for structural health monitoring.

  14. All-optical fiber anemometer based on laser heated fiber Bragg gratings.

    PubMed

    Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Cho, L H; Lu, Chao

    2011-05-23

    A fiber-optic anemometer based on fiber Bragg gratings (FBGs) is presented. A short section of cobalt-doped fiber was utilized to make a fiber-based "hot wire" for wind speed measurement. Fiber Bragg gratings (FBGs) were fabricated in the cobalt-doped fiber using 193 nm laser pulses to serve as localized temperature sensors. A miniature all-optical fiber anemometer is constructed by using two FBGs to determine the dynamic thermal equilibrium between the laser heating and air flow cooling through monitoring the FBGs' central wavelengths. It was demonstrated that the sensitivity of the sensor can be adjusted through the power of pump laser or the coating on the FBG. Experimental results reveal that the proposed FBG-based anemometer exhibits very good performance for wind speed measurement. The resolution of the FBG-based anemometer is about 0.012 m/s for wind speed range between 2.0 m/s and 8.0 m/s.

  15. Crystal fibers for high power lasers

    NASA Astrophysics Data System (ADS)

    Kim, W.; Florea, C.; Gibson, D.; Peele, J.; Askins, C.; Shaw, B.; Bowman, S.; O'Connor, S.; Bayya, S.; Aggarwal, I.; Sanghera, J. S.

    2013-02-01

    In this paper, we present our recent progress in developing single crystal fibers for high power single frequency fiber lasers. The optical, spectral and morphological properties as well as the loss and gain measured from these crystal fibers drawn by Laser Heated Pedestal Growth (LHPG) system are also discussed. Results on application of various cladding materials on the crystal core and the methods of fiber end-face polishing are also presented.

  16. Amplitude of the dynamic phase gratings in saturable Er-doped fibers

    NASA Astrophysics Data System (ADS)

    Stepanov, S.; Plata Sánchez, M.

    2011-03-01

    Dynamic population gratings recorded via local saturation of optical absorption/gain in rare-earth (Er, Yb) doped fibers demonstrate contributions of the amplitude and phase components. Quantitative comparison of the experimentally observed amplitude grating efficiency with that evaluated from spatially uniform saturation of the fiber optical absorption usually shows a significant discrepancy. The grating amplitude proves to be significantly weaker than its theoretical evaluation. The first results on quantitative comparison of the recorded phase grating amplitudes with spatially uniform photo-induced refractive index change in Er-doped fibers at three essentially different wavelengths (1485, 1526, and 1568 nm) are reported. As for the amplitude grating component, the experimentally observed phase grating amplitude is inferior to its theoretical evaluation; this discrepancy is spectrally dependent and is also significantly reduced in the short-wavelength region 1480-1490 nm on the Er3+ ion absorption.

  17. Direct writing of fiber optic components in photonic crystal fibers and other specialty fibers

    NASA Astrophysics Data System (ADS)

    Fernandes, Luis Andre; Sezerman, Omur; Best, Garland; Ng, Mi Li; Kane, Saidou

    2016-04-01

    Femtosecond direct laser writing has recently shown great potential for the fabrication of complex integrated devices in the cladding of optical fibers. Such devices have the advantage of requiring no bulk optical components and no breaks in the fiber path, thus reducing the need for complicated alignment, eliminating contamination, and increasing stability. This technology has already found applications using combinations of Bragg gratings, interferometers, and couplers for the fabrication of optical filters, sensors, and power monitors. The femtosecond laser writing method produces a local modification of refractive index through non-linear absorption of the ultrafast laser pulses inside the dielectric material of both the core and cladding of the fiber. However, fiber geometries that incorporate air or hollow structures, such as photonic crystal fibers (PCFs), still present a challenge since the index modification regions created by the writing process cannot be generated in the hollow regions of the fiber. In this work, the femtosecond laser method is used together with a pre-modification method that consists of partially collapsing the hollow holes using an electrical arc discharge. The partial collapse of the photonic band gap structure provides a path for femtosecond laser written waveguides to couple light from the core to the edge of the fiber for in-line power monitoring. This novel approach is expected to have applications in other specialty fibers such as suspended core fibers and can open the way for the integration of complex devices and facilitate miniaturization of optical circuits to take advantage of the particular characteristics of the PCFs.

  18. Temperature sensing on tapered single mode fiber using mechanically induced long period fiber gratings

    NASA Astrophysics Data System (ADS)

    Marrujo-García, Sigifredo; Velázquez-González, Jesús Salvador; Pulido-Navarro, María. Guadalupe; González-Ocaña, Ernesto; Mújica-Ascencio, Saúl; Martínez-Piñón, Fernando

    2015-09-01

    The modeling of a temperature optical fiber sensor is proposed and experimentally demonstrated in this work. The suggested structure to obtain the sensing temperature characteristics is by the use of a mechanically induced Long Period Fiber Grating (LPFG) on a tapered single mode optical fiber. A biconical fiber optic taper is made by applying heat using an oxygen-propane flame burner while stretching the single mode fiber (SMF) whose coating has been removed. The resulting geometry of the device is important to analyze the coupling between the core mode to the cladding modes, and this will determine whether the optical taper is adiabatic or non-adiabatic. On the other hand, the mechanical LPFG is made up of two plates, one grooved and other flat, the grooved plate was done on an acrylic slab with the help of a computerized numerical control machine (CNC). In addition to the experimental work, the supporting theory is also included.

  19. Demodulation of a fiber Bragg grating strain sensor by a multiwavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Cong, Shan; Sun, Yunxu; Zhao, Yuxi; Pan, Lifeng

    2012-04-01

    A fiber Bragg grating (FBG) sensors system utilizing a multi-wavelength erbium-doped fiber lasers (EDFL) with frequency shifter is proposed. The system is one fiber laser cavity with two FBG sensors as its filters. One is for strain sensing, and the other one is for temperature compensation. A frequency shifter is used to suppress the mode competition to lase two wavelengths that correspond with FBGs. The wavelength shift of the EDFL represents the sensing quantity, which is demodulated by Fiber Fabry-Perot (FFP) filter. The sensor's response to strain is measured by experiment. Because of exploiting the dual-wavelength fiber laser with a frequency shifter forming the feedback as the light source, many advantages of this system are achieved, especially high signal-to-noise ratio, high detected power, and low power consuming comparing with conventional FBG sensor system utilizing broadband light as the light source. What's more, this structure is also easy to combine with FBG array.

  20. Demodulation of a fiber Bragg grating strain sensor by a multiwavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Cong, Shan; Sun, Yunxu; Zhao, Yuxi; Pan, Lifeng

    2011-11-01

    A fiber Bragg grating (FBG) sensors system utilizing a multi-wavelength erbium-doped fiber lasers (EDFL) with frequency shifter is proposed. The system is one fiber laser cavity with two FBG sensors as its filters. One is for strain sensing, and the other one is for temperature compensation. A frequency shifter is used to suppress the mode competition to lase two wavelengths that correspond with FBGs. The wavelength shift of the EDFL represents the sensing quantity, which is demodulated by Fiber Fabry-Perot (FFP) filter. The sensor's response to strain is measured by experiment. Because of exploiting the dual-wavelength fiber laser with a frequency shifter forming the feedback as the light source, many advantages of this system are achieved, especially high signal-to-noise ratio, high detected power, and low power consuming comparing with conventional FBG sensor system utilizing broadband light as the light source. What's more, this structure is also easy to combine with FBG array.

  1. Mechanically induced long period fiber gratings in Er3+ fiber for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Pulido-Navarro, M. G.; Alvarez-Chavez, J. A.; Ceballos-Herrera, D. E.; Escamilla-Ambrosio, P. J.

    2013-09-01

    This work presents preliminary results on wavelength sensitivity due to mechanically induced long period fiber grating (LPFG) on both standard single-mode and Er-doped fibers. The work presents and compares results for both types of fibers under different torsion conditions. In order to apply the torsion one of the fiber ends is fixed while torsion is applied on the other end. A LPFG whose period is 503μm is used to press on the fiber after the torsion, this will allow for micro curvatures to be formed on the fiber, which will in turn generate a periodical index perturbation on it. Here, it was noted that the rejection band shifts to shorter wavelengths for Er-doped fibers. It was detected that for torsion of 6 turns applied to 10cm doped fiber the wavelength peaks can shift up to 25nm, which is longer than similar results reported on standard fibers. Therefore, by using Er-doped fibers this technique will give more sensitive and accurate results on the real conditions of the structure under study. These results can be employed for sensing applications, especially for small to medium size structures, being these structures mechanical, civil or aeronautical. Theoretical calculations and simulations are employed for experimental results validation.

  2. Fiber Bragg Grating Temperature Sensor for Defence and Industrial Applications

    NASA Astrophysics Data System (ADS)

    Gebru, Haftay Abadi; Padhy, B. B.

    2011-10-01

    This paper presents the design and development of fiber Bragg grating (FBG) temperature sensor suitable for naval applications like temperature monitoring of onboard ships. The Bragg gratings used here have a reflection Bragg wavelength of 1550 nm and are inscribed by phase mask technique using ultraviolet (UV) laser beam at 255.3 nm. The high-resolution temperature sensor has been designed and developed based on the principle of converting the strain to temperature. This is achieved by using bimetallic configuration. Here lead and tungsten metals are used. The expansion of lead is concentrated on the Bragg grating, thus imparting strain on it. The wavelength shift with change of temperature is recorded with optical spectrum analyzer. The minimum temperature that could be measured accurately by the sensor with repeatability is of the order of 10-2. We have achieved thermal sensitivity of 46 pm/°C and 72 pm/°C for sensor lengths (length of the metallic strips) of 60 mm and 100 mm respectively. The thermal sensitivity achieved is approximately 3.5 times and 5.5 times that of bare FBG with thermal sensitivity of 13 pm/°C for the respective sensor lengths. This type of sensor can play vital role in defence and industrial applications like monitoring fresh water/lubricating oil temperatures of machinery in onboard ships, temperature monitoring of airframe of the aircraft, aircraft engine control system sensors, temperature measurement of hot gases from propellant combustion to protect the rocket motor casing, monitoring and control of temperature of copper bars of the power generators etc.

  3. Sensing delamination in epoxy encapsulant systems with fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Jones, Brad H.; Rohr, Garth D.; Kaczmarowski, Amy K.

    2016-05-01

    Fiber Bragg gratings (FBGs) are well-suited for embedded sensing of interfacial phenomena in materials systems, due to the sensitivity of their spectral response to locally non-uniform strain fields. Over the last 15 years, FBGs have been successfully employed to sense delamination at interfaces, with a clear emphasis on planar events induced by transverse cracks in fiber-reinforced plastic laminates. We have built upon this work by utilizing FBGs to detect circular delamination events at the interface between epoxy films and alumina substrates. Two different delamination processes are examined, based on stress relief induced by indentation of the epoxy film or by cooling to low temperature. We have characterized the spectral response pre- and post-delamination for both simple and chirped FBGs as a function of delamination size. We show that delamination is readily detected by the evolution of a non-uniform strain distribution along the fiber axis that persists after the stressing condition is removed. These residual strain distributions differ substantially between the delamination processes, with indentation and cooling producing predominantly tensile and compressive strain, respectively, that are well-captured by Gaussian profiles. More importantly, we observe a strong correlation between spectrally-derived measurements, such as spectral widths, and delamination size. Our results further highlight the unique capabilities of FBGs as diagnostic tools for sensing delamination in materials systems.

  4. Microstructured optical fiber Bragg grating sensor for DNA detection

    NASA Astrophysics Data System (ADS)

    Candiani, A.; Giannetti, S.; Sozzi, M.; Coscelli, E.; Poli, F.; Cucinotta, A.; Bertucci, A.; Corradini, R.; Konstantaki, M.; Margulis, W.; Pissadakis, S.; Selleri, S.

    2013-03-01

    In this work the inner surface of a microstructured optical fiber, where a Bragg grating was previously inscribed, has been functionalized using peptide nucleic acid probe targeting a DNA sequence of the cystic fibrosis disease. The solution of DNA molecules, matched with the PNA probes, has been infiltrated inside the fiber capillaries and hybridization has been realized according to the Watson - Crick Model. In order to achieve signal amplification, oligonucleotide-functionalized gold nanoparticles were then infiltrated and used to form a sandwich-like system. Experimental measurements show a clear wavelength shift of the reflected high order mode for a 100 nM DNA solution. Several experiments have been carried out on the same fiber using the identical concentration, showing the same modulation and proving a good reproducibility of the results, suggesting the possibility of the reuse of the sensor. Measurements have been also made using a 100 nM mis-matched DNA solution, containing a single nucleotide polymorphism, demonstrating the high selectivity of the sensor.

  5. Opto-acoustic behavior of coated fiber Bragg gratings.

    PubMed

    Moccia, Massimo; Pisco, Marco; Cutolo, Antonello; Galdi, Vincenzo; Bevilacqua, Pierantonio; Cusano, Andrea

    2011-09-26

    In this paper, we present the study of the acousto-optic behavior of underwater-acoustic sensors constituted by fiber Bragg gratings (FBGs) coated by ring-shaped overlays. Via full-wave numerical simulations, we study the complex opto-acousto-mechanical interaction among an incident acoustic wave traveling in water, the optical fiber surrounded by the ring shaped coating, and the FBG inscribed the fiber, focusing on the frequency range 0.5-30 kHz of interest for SONAR applications. Our results fully characterize the mechanical behavior of an acoustically driven coated FBG, and highlight the key role played by the coating in enhancing significantly its sensitivity by comparison with a standard uncoated configuration. Furthermore, the hydrophone sensitivity spectrum exhibits characteristic resonances, which strongly improve the sensitivity with respect to its background (i.e., away from resonances) level. Via a three-dimensional modal analysis, we verify that the composite cylindrical structure of the sensor acts as an acoustic resonator tuned at the frequencies of its longitudinal vibration modes. In order to evaluate the sensor performance, we also carry out a comprehensive parametric analysis by varying the geometrical and mechanical properties of the coating, whose results also provide a useful design tool for performance optimization and/or tailoring for specific SONAR applications. Finally, a preliminary validation of the proposed numerical analysis has been carried out through experimental data obtained using polymeric coated FBGs sensors revealing a good agreement and prediction capability.

  6. Enhancement of detection accuracy of fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Zeh, Thomas; Schweizer, Hans; Meixner, Andreas; Purde, Andreas; Koch, Alexander W.

    2004-06-01

    Over the course of the last few years, several readout techniques for fiber Bragg grating (FBG) sensors have been proposed. However, all of them suffer from specific restrictions concerning response speed, accuracy, sensor multiplexibility and cost. In the past, it was often assumed that diffraction grating spectrometers were suitable only for FBG applications with modest resolution. The achievable pixel resolution is nowadays in the range of several tens of pm. For FBG sensors with typical temperature coefficients of 5 pm/K and strain coefficients of 0.7 pm/μɛ this resolution is not sufficient for the majority of applications. We present a discussion on different methods for the subpixel registration of FBG spectra and we introduce a novel detection algorithm: the linear phase operator technique (LPO). Even under extreme noisy conditions LPO ensures a significant resolution enhancement by a factor of three compared to conventional algorithms and is shown to be very efficient in its implementation. The efficiencies of several conventional algorithms and LPO is compared by simulations and by means of a test bench. With slight efforts LPO is adaptable to further applications like spectrometer based Fabry-Perot sensors and other sensors with CCD detectors.

  7. Time-dependent variation of fiber Bragg grating reflectivity in PMMA-based polymer optical fibers.

    PubMed

    Sáez-Rodríguez, D; Nielsen, K; Bang, O; Webb, D J

    2015-04-01

    In this Letter, we investigate the effects of viscoelasticity on both the strength and resonance wavelength of two fiber Bragg gratings (FBGs) inscribed in microstructured polymer optical fiber (mPOF) made of undoped PMMA. Both FBGs were inscribed under a strain of 1% in order to increase the material photosensitivity. After the inscription, the strain was released, and the FBGs spectra were monitored. We initially observed a decrease of the reflection down to zero after which it began to increase. After that, strain tests were carried out to confirm the results, and finally the gratings were monitored for a further 120 days, with a stable reflection response being observed beyond 50 days. PMID:25831363

  8. Fiber-coupled, Littrow-grating cavity displacement sensor.

    PubMed

    Allen, Graham; Sun, Ke-Xun; Byer, Robert

    2010-04-15

    We have demonstrated a compact, optical-fiber-fed, optical displacement sensor utilizing a Littrow-mounted diffraction grating to form a low-finesse Fabry-Perot cavity. Length changes of the cavity are read out via the Pound-Drever-Hall rf modulation technique at 925 MHz. The sensor has a nominal working distance of 2 cm and a total dynamic range of 160 nm. The displacement noise floor was less than 3x10(-10) m/sqrt[Hz] above 10(-2) Hz, limited by the frequency drift of the reference laser. A frequency-stabilized laser would reduce the noise floor to below 10(-12) m/sqrt[Hz]. The use of a 925 MHz modulation frequency demonstrates high-precision readout of a low-finesse compact resonant cavity.

  9. Safety monitoring of rail transit by fiber grating sensors

    NASA Astrophysics Data System (ADS)

    Xu, Xiaomei; Li, Xuejin; Deng, Yuanlong; Liu, Xiaoqing; Yu, Yongqin; Zhou, Huasheng

    2013-12-01

    The subway is a representative form of the rail transit, and its catenary suspension system is a very important aspect to the safety of the whole system. The safety monitoring of the subway catenary suspension system is studied in this paper. A demonstrate model is set up in the laboratory, and some fiber Bragg grating (FBG) sensors including strain sensors and displacement sensors were utilized in the demonstrate system. It is shown that the used sensors could indicate the safety information of the system effectively. Especially, the designed displacement sensor that is packaged by athermal technique can abandon the influence of the environment temperature in a certain degree. Its engineering applicability is greatly improved.

  10. A film pressure sensor based on optical fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhang, Zhichun; Deng, Gang; Dai, Yongbo; Liu, Yanju; Leng, Jinsong

    2010-03-01

    The measurement of pressure is essential for the design and flying controlling of aircraft. In order to measure the surface pressures of the aircraft, the common pressure tube method and Pressure sensitive paint measurement method have their own disadvantages, and are not applicable to all aircraft structures and real time pressure monitoring. In this paper, a novel thin film pressure sensor based on Fiber Bragg Grating (FBG) is proposed, using FBG measuring the tangential strain of the disk sensing film. Theoretical circle strain of the disk sensing film of the pressure sensor under pressure and temperature variation are analyzed, and the linear relationship between FBG center wavelength shift and pressure, temperature variation is gotten. The pressure and temperature calibration experiments prove the theoretical analysis. But the calibration sensing parameters are small than the calculating ones, which is caused by the constraint of optical fibre to the thin sensing film.

  11. Dynamic and static strain gauge using superimposed fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Ma, Y. C.; Yang, Y. H.; Li, J. M.; Yang, M. W.; Tang, J.; Liang, T.

    2012-10-01

    This paper demonstrates a simple and fast interrogation method for the dynamic and/or static strain gauge using a reflection spectrum from two superimposed fiber Bragg gratings (FBGs). The superimposed FBGs are designed to decrease nonequidistant space of generated a sensing pulse train in a time domain during dynamic strain gauge. By combining centroid finding with smooth filtering methods, both the interrogation speed and accuracy are improved. A four times increase in the interrogation speed of dynamic strain, by generating a 2 kHz optical sensing pulse train from a 500 Hz scanning frequency, is demonstrated experimentally. The interrogation uncertainty and total harmonic distortion characterization of superimposed FBGs are tested and less than 4 pm standard deviation is obtained.

  12. CCD fiber Bragg grating sensor demodulation system based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Ning, T. G.; Pei, L.; Li, J.; Wen, X. D.; Li, Z. X.

    2010-11-01

    A CCD fiber Bragg grating sensor demodulation system based on FPGA is proposed. The system is divided into three units: spectral imaging unit, signal detection unit and signal acquisition and processing unit. The spectral imaging unit uses reflective imaging system, which has few aberration, small size, simple structure and low cost. In the signal detection unit, information of spectrum are accessed by CCD detector, the measurement of spectral line is converted into the measurement of the pixel position of spot, multi point can be simultaneously measured, so the system's reusability, stability and reliability are improved. In the signal acquisition and processing unit, drive circuit and signal acquisition and processing circuit are designed by programmable logic device FPGA, fully use of programmable and high real-time features, simplified system design, improved the system's real-time monitoring capabilities and demodulation speed.

  13. Magnetic Field Measurements Based on Terfenol Coated Photonic Crystal Fibers

    PubMed Central

    Quintero, Sully M. M.; Martelli, Cicero; Braga, Arthur M. B.; Valente, Luiz C. G.; Kato, Carla C.

    2011-01-01

    A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT) over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field. PMID:22247655

  14. Magnetic field measurements based on Terfenol coated photonic crystal fibers.

    PubMed

    Quintero, Sully M M; Martelli, Cicero; Braga, Arthur M B; Valente, Luiz C G; Kato, Carla C

    2011-01-01

    A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT) over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field.

  15. Fiber Bragg gratings in the radiation environment: Change under the influence of radiolytic hydrogen

    SciTech Connect

    Butov, Oleg V. Golant, Konstantin M.; Shevtsov, Igor' A.; Fedorov, Artem N.

    2015-08-21

    The change of the transmission spectra of fiber Bragg gratings written in the optical fibers, whose silica cores are doped with either germanium or nitrogen, is studied experimentally under the influence of gamma-radiation. The transmission spectra in the neighborhood of the resonance (Bragg) wavelengths were regularly recorded “in-situ” in the course of irradiation during 24 days. For this purpose, uncoated gratings were placed in a pool near the spent fuel rods of a nuclear reactor. The fibers with the gratings written in them were in immediate contact with water. The estimated total absorbed radiation dose of the fibers is approximately 5 MGy. Molecular hydrogen, which is produced by radiolysis of water and penetrates into the core of silica fiber, is found to interact with the defects of Ge-doped silica induced by gamma-radiation, thereby causing a strong impact on the parameters of the spectrum of the Bragg gratings. On the contrary, in the case of gratings inscribed in N-doped silica fibers, the hydrogen molecules interact with defects induced in the course of laser UV exposure during the grating writing only. The possible subsequent formation of additional defects in N-doped silica under the influence of gamma-radiation has no substantial impact on the transmission spectra of Bragg gratings, which remained stable. The obtained results suggest that a small amount of molecular hydrogen resided in the fiber core is the main source of radiation instability of Ge-doped fiber Bragg grating sensors in radiation environments. These hydrogen molecules can remain in the Bragg gratings, in particular, after the inscription process in the hydrogen-loaded fibers.

  16. Fiber Bragg gratings in the radiation environment: Change under the influence of radiolytic hydrogen

    NASA Astrophysics Data System (ADS)

    Butov, Oleg V.; Golant, Konstantin M.; Shevtsov, Igor'A.; Fedorov, Artem N.

    2015-08-01

    The change of the transmission spectra of fiber Bragg gratings written in the optical fibers, whose silica cores are doped with either germanium or nitrogen, is studied experimentally under the influence of gamma-radiation. The transmission spectra in the neighborhood of the resonance (Bragg) wavelengths were regularly recorded "in-situ" in the course of irradiation during 24 days. For this purpose, uncoated gratings were placed in a pool near the spent fuel rods of a nuclear reactor. The fibers with the gratings written in them were in immediate contact with water. The estimated total absorbed radiation dose of the fibers is approximately 5 MGy. Molecular hydrogen, which is produced by radiolysis of water and penetrates into the core of silica fiber, is found to interact with the defects of Ge-doped silica induced by gamma-radiation, thereby causing a strong impact on the parameters of the spectrum of the Bragg gratings. On the contrary, in the case of gratings inscribed in N-doped silica fibers, the hydrogen molecules interact with defects induced in the course of laser UV exposure during the grating writing only. The possible subsequent formation of additional defects in N-doped silica under the influence of gamma-radiation has no substantial impact on the transmission spectra of Bragg gratings, which remained stable. The obtained results suggest that a small amount of molecular hydrogen resided in the fiber core is the main source of radiation instability of Ge-doped fiber Bragg grating sensors in radiation environments. These hydrogen molecules can remain in the Bragg gratings, in particular, after the inscription process in the hydrogen-loaded fibers.

  17. Waveform reconstruction for an ultrasonic fiber Bragg grating sensor demodulated by an erbium fiber laser.

    PubMed

    Wu, Qi; Okabe, Yoji

    2015-02-01

    Fiber Bragg grating (FBG) demodulated by an erbium fiber laser (EFL) has been used for ultrasonic detection recently. However, due to the inherent relaxation oscillation (RO) of the EFL, the detected ultrasonic signals have large deformations, especially in the low-frequency range. We proposed a novel data processing method to reconstruct an actual ultrasonic waveform. The noise spectrum was smoothed first; the actual ultrasonic spectrum was then obtained by deconvolution in order to mitigate the influence of the RO of the EFL. We proved by experiment that this waveform reconstruction method has high precision, and demonstrated that the FBG sensor demodulated by the EFL will have large practical applications in nondestructive testing.

  18. Intensity-modulated optical fiber sensors based on chirped-fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Dong, Xinyong

    2011-09-01

    Intensity-modulated fiber Bragg grating (FBG) sensors, compared with normal wavelength-encoding FBG sensors, can reduce the cost of sensor system significantly by using cost-efficient optical power detection devices, instead of expensive wavelength measurement instruments. Chirped-FBG (CFBG) based intensity-modulated sensors show potential applications in various sensing areas due to their many advantages, including inherent independence of temperature, high measurement speed, and low cost, in addition to the merits of all fiber-optic sensors. This paper theoretically studies the sensing principle of CFBG-based intensity-modulated sensors and briefly reviews their recent progress in measurement of displacement, acceleration, and tilt angle.

  19. All-fiber amplifier similariton laser based on a fiber Bragg grating filter.

    PubMed

    Olivier, Michel; Gagnon, Mathieu; Duval, Simon; Bernier, Martin; Piché, Michel

    2015-12-01

    This article presents, for the first time to our knowledge, an all-fiber amplifier similariton laser based on a fiber Bragg grating filter. The laser emits 2.9 nJ pulses at a wavelength of 1554 nm with a repetition rate of 31 MHz. The dechirped pulses have a duration of 89 fs. The characteristic features of the pulse profile and spectrum along with the dynamics of the laser are highlighted in representative simulations. These simulations also address the effect of the filter shape and detuning with respect to the gain spectral peak. PMID:26625073

  20. kW-level narrow linewidth fiber amplifier seeded by a fiber Bragg grating based oscillator.

    PubMed

    Hao, Jinping; Zhao, Hong; Zhang, Dayong; Zhang, Liming; Zhang, Kun

    2015-05-20

    This paper demonstrates an all-fiber narrow linewidth amplifier with a seed based on narrow linewidth fiber Bragg gratings (FBGs). The fiber amplifier achieves a narrow bandwidth output of 823 W, with an opto-optic efficiency of 84.5%. The pair of FBGs in the seed configuration helps to assure a narrow linewidth of the laser as 0.08 nm. In the laser profile, we introduce a cladding stripper with a sectional structure, which realizes high pump power leakage with high efficiency. The paper also discusses the impact of seed linewidth and fiber length on the SBS threshold in a narrow bandwidth laser. Based on this analysis, we discovered ways to inhibit SBS onset and scale power output. PMID:26192524

  1. Strain fiber sensor based on beat frequency with chirped fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Zhang, Haojie; Wen, Quan; Chen, Longfei; Wang, Fang; Liu, Yufang; Yu, Kun

    2016-07-01

    We propose a strain fiber sensor that is interrogated via longitudinal mode beat frequency with a linear chirped fiber Bragg grating (CFBG). Unlike conventional sensors, in the proposed sensor, the CFBG is used to convert wavelength changes into resonant cavity length changes. Further, the beat frequency stability of the fiber laser is fully utilized to significantly improve measurement accuracy. Consequently, because cavity changes account for 5.1% of the total cavity length, the measurement accuracy can be as large as 7.06×10-7 ɛ-i.e., approximately five times greater than the accuracy obtained by stretching the resonant cavity fiber. The maximum experimental strain error range is ±14.5 μɛ.

  2. Strain sensitivity control of fiber Bragg grating structures with fused tapers.

    PubMed

    Frazão, Orlando; Silva, Susana F O; Guerreiro, Ariel; Santos, José L; Ferreira, Luis A; Araújo, Francisco M

    2007-12-20

    We report on the analysis and experimental validation of the strain sensitivity dependences of a fiber Bragg grating written in standard optical fiber when combined with fused tapers. By controlling the difference between the cross sections of the fused taper and the Bragg grating, the strain sensitivity of the Bragg wavelength can be changed by acting on the gauge length. The strain sensing characteristics of an interferometric structure formed by fabricating a fused taper in the middle of a fiber Bragg grating are also reported. PMID:18091967

  3. Fiber-optic spectroscopic rotational Raman lidar with visible wavelength fiber Bragg grating for atmospheric temperature measurement

    NASA Astrophysics Data System (ADS)

    Li, Shichun; Hua, Dengxin; Wang, Yufeng; Gao, Fei; Yan, Qing; Shi, Xiaojing

    2015-03-01

    A fiber-optic spectroscopic rotational Raman lidar is demonstrated with the visible wavelength fiber Bragg grating technique for profiling the atmospheric temperature. Two-channel pure rotational Raman optical signals are extracted from lidar echo signals by two sets of visible wavelength fiber Bragg gratings. The rejection-type of fiber Bragg grating in visible region is successfully fabricated through the zero-order nulled phase mask. Its most significant parameter, out-of-band rejection, for fiber-optic spectroscopic system is tested to ensure the spectral purity of rotational Raman channel. A temperature profile up to a 0.7-km height is obtained by pure rotational Raman lidar with 300-mJ laser pulse energy, and a 250-mm telescope. Preliminary results of observations show that this fiber-optic spectroscopic scheme with high mechanical stability has >70-dB suppression to elastic backscattering in lidar echo signals.

  4. Switchable multiwavelength erbium doped fiber laser based on a nonlinear optical loop mirror incorporating multiple fiber Bragg gratings.

    PubMed

    Tran, Thi Van Anh; Lee, Kwanil; Lee, Sang Bae; Han, Young-Geun

    2008-02-01

    We propose and experimentally demonstrate a switchable multiwavelength erbium doped fiber laser based on a highly nonlinear dispersion shifted fiber and multiple fiber Bragg gratings. A nonlinear optical loop mirror based on a highly nonlinear dispersion shifted fiber is implemented in the ring laser cavity to stabilize the multiwavelength output at room temperature. Multiple fiber Bragg gratings with the wavelength spacing of 0.8 nm are connected with an arrayed waveguide grating to establish a multichannel filter. The high quality of the multiwavelength output with a high extinction ratio of ~60 dB and high output flatness of ~0.5 dB is realized. The nonlinear polarization rotation based on the nonlinear optical loop mirror can provide the switching performance of the proposed multiwavelength fiber laser. The lasing wavelength can be switched individually by controlling the polarization controller and the cavity loss.

  5. An Optical Fiber Lateral Displacement Measurement Method and Experiments Based on Reflective Grating Panel

    PubMed Central

    Li, Yuhe; Guan, Kaisen; Hu, Zhaohui; Chen, Yanxiang

    2016-01-01

    An optical fiber sensing method based on a reflective grating panel is demonstrated for lateral displacement measurement. The reflective panel is a homemade grating with a periodic variation of its refractive index, which is used to modulate the reflected light intensity. The system structure and operation principle are illustrated in detail. The intensity calculation and simulation of the optical path are carried out to theoretically analyze the measurement performance. A distinctive fiber optic grating ruler with a special fiber optic measuring probe and reflective grating panel is set up. Experiments with different grating pitches are conducted, and long-distance measurements are executed to accomplish the functions of counting optical signals, subdivision, and discerning direction. Experimental results show that the proposed measurement method can be used to detect lateral displacement, especially for applications in working environments with high temperatures. PMID:27271624

  6. An Optical Fiber Lateral Displacement Measurement Method and Experiments Based on Reflective Grating Panel.

    PubMed

    Li, Yuhe; Guan, Kaisen; Hu, Zhaohui; Chen, Yanxiang

    2016-01-01

    An optical fiber sensing method based on a reflective grating panel is demonstrated for lateral displacement measurement. The reflective panel is a homemade grating with a periodic variation of its refractive index, which is used to modulate the reflected light intensity. The system structure and operation principle are illustrated in detail. The intensity calculation and simulation of the optical path are carried out to theoretically analyze the measurement performance. A distinctive fiber optic grating ruler with a special fiber optic measuring probe and reflective grating panel is set up. Experiments with different grating pitches are conducted, and long-distance measurements are executed to accomplish the functions of counting optical signals, subdivision, and discerning direction. Experimental results show that the proposed measurement method can be used to detect lateral displacement, especially for applications in working environments with high temperatures. PMID:27271624

  7. Experiences with fiber optic Bragg grating sensors in civil engineering

    NASA Astrophysics Data System (ADS)

    Brownjohn, James M. W.; Moyo, Pilate; Wang, Yong; Tjin, Chuan S.; Lim, Tuan-Kay

    2001-06-01

    Initially developed for applications in the aerospace industry, fiber-optic Bragg grating sensors (FBG) have attracted attention in the civil engineering community. The interest in FBG sensors has been motivated by the potential advantages they can offer over existing sensing technologies. They are, immune to electromagnetic interference, small in size and can be easier to install than traditional electrical resistance strain gauges. They can also be multiplexed, that is, a single fiber may have more than one change. Although field test of FBG sensors have been reported in literature, there is a dearth of information on their installation procedures, their precision in quantifying strains of concrete structures, and robustness requirements for embedment in concrete structures. In particular the harsh environment during the construction of concrete structures is a great challenge in the installation of these fragile sensors. The paper reports on our experiences with FBG sensors in concrete structures. FBG sensor have been sued to quantify strain, temperature and to capture vibration signals. Th result of these studies indicate that, if properly installed, FBG sensors can survive the sever conditions associated with the embedment process and yield accurate measurements of strains and vibration response, so it is possible to benefit from their potential advantages.

  8. A Fiber Bragg Grating Sensing Based Triaxial Vibration Sensor.

    PubMed

    Li, Tianliang; Tan, Yuegang; Liu, Yi; Qu, Yongzhi; Liu, Mingyao; Zhou, Zude

    2015-01-01

    A fiber Bragg grating (FBG) sensing based triaxial vibration sensor has been presented in this paper. The optical fiber is directly employed as elastomer, and the triaxial vibration of a measured body can be obtained by two pairs of FBGs. A model of a triaxial vibration sensor as well as decoupling principles of triaxial vibration and experimental analyses are proposed. Experimental results show that: sensitivities of 86.9 pm/g, 971.8 pm/g and 154.7 pm/g for each orthogonal sensitive direction with linearity are separately 3.64%, 1.50% and 3.01%. The flat frequency ranges reside in 20-200 Hz, 3-20 Hz and 4-50 Hz, respectively; in addition, the resonant frequencies are separately 700 Hz, 40 Hz and 110 Hz in the x/y/z direction. When the sensor is excited in a single direction vibration, the outputs of sensor in the other two directions are consistent with the outputs in the non-working state. Therefore, it is effectively demonstrated that it can be used for three-dimensional vibration measurement. PMID:26393616

  9. A Fiber Bragg Grating Sensing Based Triaxial Vibration Sensor

    PubMed Central

    Li, Tianliang; Tan, Yuegang; Liu, Yi; Qu, Yongzhi; Liu, Mingyao; Zhou, Zude

    2015-01-01

    A fiber Bragg grating (FBG) sensing based triaxial vibration sensor has been presented in this paper. The optical fiber is directly employed as elastomer, and the triaxial vibration of a measured body can be obtained by two pairs of FBGs. A model of a triaxial vibration sensor as well as decoupling principles of triaxial vibration and experimental analyses are proposed. Experimental results show that: sensitivities of 86.9 pm/g, 971.8 pm/g and 154.7 pm/g for each orthogonal sensitive direction with linearity are separately 3.64%, 1.50% and 3.01%. The flat frequency ranges reside in 20–200 Hz, 3–20 Hz and 4–50 Hz, respectively; in addition, the resonant frequencies are separately 700 Hz, 40 Hz and 110 Hz in the x/y/z direction. When the sensor is excited in a single direction vibration, the outputs of sensor in the other two directions are consistent with the outputs in the non-working state. Therefore, it is effectively demonstrated that it can be used for three-dimensional vibration measurement. PMID:26393616

  10. Small biomolecule immunosensing with plasmonic optical fiber grating sensor.

    PubMed

    Ribaut, Clotilde; Voisin, Valérie; Malachovská, Viera; Dubois, Valentin; Mégret, Patrice; Wattiez, Ruddy; Caucheteur, Christophe

    2016-03-15

    This study reports on the development of a surface plasmon resonance (SPR) optical fiber biosensor based on tilted fiber Bragg grating technology for direct detection of small biomarkers of interest for lung cancer diagnosis. Since SPR principle relies on the refractive index modifications to sensitively detect mass changes at the gold coated surface, we have proposed here a comparative study in relation to the target size. Two cytokeratin 7 (CK7) samples with a molecular weight ranging from 78 kDa to 2.6 kDa, respectively CK7 full protein and CK7 peptide, have been used for label-free monitoring. This work has first consisted in the elaboration and the characterization of a robust and reproducible bioreceptor, based on antibody/antigen cross-linking. Immobilized antibodies were then utilized as binding agents to investigate the sensitivity of the biosensor towards the two CK7 antigens. Results have highlighted a very good sensitivity of the biosensor response for both samples diluted in phosphate buffer with a higher limit of detection for the larger CK7 full protein. The most groundbreaking nature of this study relies on the detection of small biomolecule CK7 peptides in buffer and in the presence of complex media such as serum, achieving a limit of detection of 0.4 nM. PMID:26432194

  11. A Fiber Bragg Grating Sensing Based Triaxial Vibration Sensor.

    PubMed

    Li, Tianliang; Tan, Yuegang; Liu, Yi; Qu, Yongzhi; Liu, Mingyao; Zhou, Zude

    2015-09-18

    A fiber Bragg grating (FBG) sensing based triaxial vibration sensor has been presented in this paper. The optical fiber is directly employed as elastomer, and the triaxial vibration of a measured body can be obtained by two pairs of FBGs. A model of a triaxial vibration sensor as well as decoupling principles of triaxial vibration and experimental analyses are proposed. Experimental results show that: sensitivities of 86.9 pm/g, 971.8 pm/g and 154.7 pm/g for each orthogonal sensitive direction with linearity are separately 3.64%, 1.50% and 3.01%. The flat frequency ranges reside in 20-200 Hz, 3-20 Hz and 4-50 Hz, respectively; in addition, the resonant frequencies are separately 700 Hz, 40 Hz and 110 Hz in the x/y/z direction. When the sensor is excited in a single direction vibration, the outputs of sensor in the other two directions are consistent with the outputs in the non-working state. Therefore, it is effectively demonstrated that it can be used for three-dimensional vibration measurement.

  12. Microwave photonic integrator based on a multichannel fiber Bragg grating.

    PubMed

    Zhang, Jiejun; Yao, Jianping

    2016-01-15

    We propose and experimentally demonstrate a microwave photonic integrator based on a multichannel fiber Bragg grating (FBG) working in conjunction with a dispersion compensating fiber (DCF) to provide a step group delay response with no in-channel dispersion-related distortion. The multichannel FBG is designed based on the spectral Talbot effect, which provides a large group delay dispersion (GDD) within each channel. A step group delay response can then be achieved by cascading the multichannel FBG with a DCF having a GDD opposite the in-channel GDD. An optical comb, with each comb line located at the center of each channel of the FBG, is modulated by a microwave signal to be integrated. At the output of the DCF, multiple time-delayed replicas of the optical signal, with equal time delay spacing are obtained and are detected and summed at a photodetector (PD). The entire operation is equivalent to the integration of the input microwave signal. For a multichannel FBG with an in-channel GDD of 730 ps/nm and a DCF with an opposite GDD, an integrator with a bandwidth of 2.9 GHz and an integration time of 7 ns is demonstrated. PMID:26766692

  13. Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor.

    PubMed

    Guo, Hong; Guo, Junpeng

    2015-01-15

    Using nanofabricated hybrid metal-dielectric nanohole array photonic crystal gratings, a hybrid plasmonic optical resonance spectrometer biosensor is demonstrated. The new spectrometer sensor technique measures plasmonic optical resonance from the first-order diffraction rather than via the traditional method of measuring optical resonance from transmission. The resonance spectra measured with the new spectrometer technique are compared with the spectra measured using a commercial optical spectrometer. It is shown that the new optical resonance spectrometer can be used to measure plasmonic optical resonance that otherwise cannot be measured with a regular optical spectrometer. PMID:25679856

  14. Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor.

    PubMed

    Guo, Hong; Guo, Junpeng

    2015-01-15

    Using nanofabricated hybrid metal-dielectric nanohole array photonic crystal gratings, a hybrid plasmonic optical resonance spectrometer biosensor is demonstrated. The new spectrometer sensor technique measures plasmonic optical resonance from the first-order diffraction rather than via the traditional method of measuring optical resonance from transmission. The resonance spectra measured with the new spectrometer technique are compared with the spectra measured using a commercial optical spectrometer. It is shown that the new optical resonance spectrometer can be used to measure plasmonic optical resonance that otherwise cannot be measured with a regular optical spectrometer.

  15. System Grows Single-Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Westfall, Leonard; Sayir, Ali; Penn, Wayne

    1994-01-01

    Award-winning Melt Modulation(TM) system produces single or multiple fibers of any variety of single-crystal materials in continuous or discrete lengths. Developed specifically to produce research quantities of fibers for strong, lightweight composite materials that withstand high temperatures in aerospace applications. Also used to grow such single-crystal materials as high-temperature superconductors and fiber-optic materials. Modifications enable system to apply conformal coats to fibers as they are being grown, producing fibers for greater number of composites in which coatings provide thermal and chemical compatibility between fiber and matrix materials.

  16. Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating.

    PubMed

    He, Xiaoying; Liu, Zhi-bo; Wang, D N

    2012-06-15

    We demonstrate a wavelength-tunable, passively mode-locked erbium-doped fiber laser based on graphene and chirped fiber Bragg grating. The saturable absorber used to enable passive mode-locking in the fiber laser is a section of microfiber covered by graphene film, which allows light-graphene interaction via the evanescent field of the microfiber. The wavelength of the laser can be continuously tuned by adjusting the chirped fiber Bragg grating, while maintaining mode-locking stability. Such a system has high potential in tuning the mode-locked laser pulses across a wide wavelength range.

  17. Propagation of quasisolitons in a fiber Bragg grating written in a slow saturable fiber amplifier

    SciTech Connect

    Shapira, Yuval P.; Horowitz, Moshe

    2011-05-15

    We show, by using numerical simulations, that quasisolitons can propagate over a long distance in a fiber Bragg grating that is written in a slow saturable fiber amplifier, such as an erbium-doped fiber amplifier. During the pulse propagation, the front end of the pulse experiences a net gain while the rear end of pulse is attenuated due to the combination of gain saturation and loss. However, the pulse profile almost does not change after propagating over a length of 5 m that is approximately 2500 times larger than the spatial pulse width. The pulse amplitude has an approximately hyperbolic secant profile. We develop a reduced model by using a multiscale analysis to study solitary-wave propagation when nonlinearity and gain are small. When gain saturation also becomes small we find analytically a new family of solitary-wave hyperbolic-secant solutions that approximately solve the reduced model. The solitary waves propagate slightly faster than Bragg solitons that propagate in fiber Bragg gratings without gain and loss.

  18. Superfluorescent fiber source achieving multisignal power equalization in distributed fiber Bragg grating sensing

    NASA Astrophysics Data System (ADS)

    Liu, Ying-Gang; Jia, Zhen-An; Qiao, Xue-Guang; Wang, Hong-Liang; Zhang, Wei; Xu, Shi-Chao

    2011-12-01

    In order to achieve multisignal power equalization in a quasidistributed fiber Bragg grating (FBG) sensing system, an erbium-doped fiber (EDF) superfluorescent source with high flatness and broadband spectrum is presented using a three-stage double-pump configuration. The spectral protrusions in the vicinity of 1532 and 1570 nm are flattened, which is achieved by designing a gain flattening filter with a long-period grating. The result shows that the flatness of the output spectrum covering the C and L band, from 1526.52 to 1607.87 nm, is less than 0.76 dBm. The 3 dB bandwidth is 75.68 nm, and the output power of 13.11 mW is achieved in the C and L band. By using the fiber amplified spontaneous emission (ASE) source in FBG sensing system for decreasing multisignals peak power variation, the standard deviation of multisignals peak power is decreased to 1.00 dBm. In a multiplexed FBG sensing system, the high flattening fiber ASE source is beneficial to long-distance transmission, amplification, recognition, and demodulation of FBG sensing signals.

  19. Fiber Bragg Grating (FBG) sensors as flatness and mechanical stretching sensors

    NASA Astrophysics Data System (ADS)

    Abbaneo, D.; Abbas, M.; Abbrescia, M.; Abdelalim, A. A.; Abi Akl, M.; Aboamer, O.; Acosta, D.; Ahmad, A.; Ahmed, W.; Ahmed, W.; Aleksandrov, A.; Aly, R.; Altieri, P.; Asawatangtrakuldee, C.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barashko, V.; Barria, P.; Bencze, G.; Beni, N.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Braghieri, A.; Braibant, S.; Buontempo, S.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F. R.; Celik, A.; Choi, M.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Conde Garcia, A.; Czellar, S.; Dabrowski, M. M.; De Lentdecker, G.; De Oliveira, R.; De Robertis, G.; Dildick, S.; Dorney, B.; Elmetenawee, W.; Endroczi, G.; Errico, F.; Fenyvesi, A.; Ferry, S.; Furic, I.; Giacomelli, P.; Gilmore, J.; Golovtsov, V.; Guiducci, L.; Guilloux, F.; Gutierrez, A.; Hadjiiska, R. M.; Hassan, A.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Iaydjiev, P.; Jeng, Y. G.; Kamon, T.; Karchin, P.; Korytov, A.; Krutelyov, S.; Kumar, A.; Kim, H.; Lee, J.; Lenzi, T.; Litov, L.; Loddo, F.; Madorsky, A.; Maerschalk, T.; Maggi, M.; Magnani, A.; Mal, P. K.; Mandal, K.; Marchioro, A.; Marinov, A.; Masod, R.; Majumdar, N.; Merlin, J. A.; Mitselmakher, G.; Mohanty, A. K.; Mohamed, S.; Mohapatra, A.; Molnar, J.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L. M.; Paolucci, P.; Park, I.; Passeggio, G.; Passamonti, L.; Pavlov, B.; Philipps, B.; Piccolo, D.; Pierluigi, D.; Postema, H.; Puig Baranac, A.; Radi, A.; Radogna, R.; Raffone, G.; Ranieri, A.; Rashevski, G.; Riccardi, C.; Rodozov, M.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Russo, A.; Ryu, G.; Ryu, M. S.; Safonov, A.; Salva, S.; Saviano, G.; Sharma, A.; Sharma, A.; Sharma, R.; Shah, A. H.; Shopova, M.; Sturdy, J.; Sultanov, G.; Swain, S. K.; Szillasi, Z.; Talvitie, J.; Tatarinov, A.; Tuuva, T.; Tytgat, M.; Vai, I.; Van Stenis, M.; Venditti, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Volkov, S.; Vorobyev, A.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.

    2016-07-01

    A novel approach which uses Fiber Bragg Grating (FBG) sensors has been utilized to assess and monitor the flatness of Gaseous Electron Multipliers (GEM) foils. The setup layout and preliminary results are presented.

  20. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  1. Tunable fiber Bragg grating ring lasers using macro fiber composite actuators

    NASA Astrophysics Data System (ADS)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-10-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley's optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from -500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG's holds promise for enhanced tunability in future research.

  2. All-fiber supercontinuum source based on a mode-locked ytterbium laser with dispersion compensation by linearly chirped Bragg grating.

    PubMed

    Kivistö, S; Herda, R; Okhotnikov, O G

    2008-01-01

    We demonstrate an all-fiber picosecond soliton laser with dispersion management performed by a chirped Bragg grating that generates ~1.6 ps pulses representing the shortest pulsewidth reported to date using this technology. The large anomalous dispersion provided by the grating allows building of a long-length cavity laser with an extremely low fundamental repetition rate of 2.6 MHz. This source allows us to use an original approach for producing energetic pulses that after boosting in a medium power core-pumped amplifier produce an octave-spanning supercontinuum radiation in a nonlinear photonic crystal fiber.

  3. Environmentally stable high-power soliton fiber lasers that use chirped fiber Bragg gratings

    SciTech Connect

    Fermann, M.E.; Sugden, K.; Bennion, I.

    1995-08-01

    Environmentally stable high-power erbium fiber soliton lasers are constructed by Kerr or carrier-type mode locking. We obtain high-energy pulses by using relatively short fiber lengths and providing large amounts of negative dispersion with chirped fiber Bragg gratings. The pulse energies and widths generated with both types of soliton laser are found to scale with the square root of the cavity dispersion. Kerr mode locking requires pulses with an approximately three times higher nonlinear phase shift in the cavity than carrier mode locking, which leads to the generation of slightly shorter pulses with as much as seven times higher pulse energies at the mode-locking threshold. {copyright} {ital 1995} {ital Optical} {ital Society} {ital of} {ital America}.

  4. Refractive index measurement based on fiber Bragg grating connected with a multimode fiber core

    NASA Astrophysics Data System (ADS)

    Shao, Min; Qiao, Xueguang; Jiasurname, Zhenan; Fusurname, Haiwei; Liu, Yinggang; Li, Huidong; Zhao, Xue

    2015-09-01

    A novel fiber refractive index sensor based on a fiber-Bragg grating (FBG) connected with a section of multimode fiber core (MMFC) is proposed and demonstrated. The MMFC excites high-order modes to form modal interference, and the core mode reflected by the FBG is sensitive to the surrounding refractive index (SRI) for the power of the core mode within MMFC is dependent on SRI. Measuring the reflective power variation of the core mode could realize the refractive index (RI) detection. Experimental results show that the core mode of FBG has a linear response to RI with enhanced sensitivity of 193.55 dB/RIU in the RI range of 1.3350-1.4042 RIU. The temperature effect of the sensor is also discussed.

  5. Temperature-independent gas refractometer based on an S-taper fiber tailored fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Shao, Zhihua; Qiao, Xueguang; Bao, Weijia; Rong, Qiangzhou

    2016-09-01

    A fiber Bragg grating (FBG)-based gas refractometer is proposed and demonstrated experimentally. The configuration consists of a short section of S-type taper incorporated in the upstream of a FBG. The S-taper is capable to couple the core mode to cladding modes into the downstream single mode fiber (SMF), and the low-order cladding modes can be reflected back to the fiber core via the FBG. Because of the recoupling efficiency depending on surrounding refractive index (SRI), the reflection power of the device presents high response to gas RI change with the sensitivity of 172.7 dB/RIU. This power-referenced RI measurement and wavelength-referenced temperature measurement have been achieved via selective cladding modes monitoring.

  6. Fiber optic liquid level monitoring system using microstructured polymer fiber Bragg grating array sensors: performance analysis

    NASA Astrophysics Data System (ADS)

    Marques, C. A. F.; Pospori, A.; Sáez-Rodríguez, D.; Nielsen, K.; Bang, O.; Webb, D. J.

    2015-09-01

    A highly sensitive liquid level monitoring system based on microstructured polymer optical fiber Bragg grating (mPOFBG) array sensors is reported for the first time. The configuration is based on five mPOFBGs inscribed in the same fiber in the 850 nm spectral region, showing the potential to interrogate liquid level by measuring the strain induced in each mPOFBG embedded in a silicone rubber (SR) diaphragm, which deforms due to hydrostatic pressure variations. The sensor exhibits a highly linear response over the sensing range, a good repeatability, and a high resolution. The sensitivity of the sensor is found to be 98 pm/cm of water, enhanced by more than a factor of 9 when compared to an equivalent sensor based on a silica fiber around 1550 nm. The temperature sensitivity is studied and a multi-sensor arrangement proposed, which has the potential to provide level readings independent of temperature and the liquid density.

  7. Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating.

    PubMed

    Zhang, Zuxing; Mou, Chengbo; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin; Turitsyn, Sergei

    2013-11-18

    We demonstrate generation of sub-100 fs pulses at 1.5 µm in a mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating element. The laser features a genuine all-fiber configuration. Based on the unique polarization properties of the 45°-tilted fiber grating, we managed to produce sub-100 fs laser pulses through proper dispersion management. To the best of our knowledge, this is the shortest pulse generated from mode-locked lasers with fiber gratings. The output pulse has an average power of 8 mW, with a repetition rate of 47.8 MHz and pulse energy of 1.68 nJ. The performance of laser also matches well the theoretical simulations.

  8. [Research on Temperature Detection System Based on Improved Fiber Bragg Grating].

    PubMed

    Yu, Li-xia; Qin, Li

    2016-01-01

    Traditional temperature detection system based on Fiber Bragg Grating is suitable for large-scale, real-time multi-point temperature detection field. But its stability of temperature response is poor, shift amount of Bragg grating center wavelength is poor linearity with temperature variation. In order to improve the stability for system and temperature detection accuracy of the system, an improved temperature detection system based on Fiber Bragg Grating was designed. The method of dual fiber parallel acquisition for temperature data was used on the same point, and then center wavelength data was differentially processed. It was realized that the random errors of the system were effectively real-time eliminated in the process temperature. The function relationships of center wavelength shift amount of Fiber Bragg Grating and temperature variation was derived in this mode, and the new structure of the probes for Fiber Bragg Grating was designed. In the experiments, measurement data of Improved temperature detection system based on Fiber Bragg Grating was compared with the data of traditional system. Experimental results show that temperature measurement accuracy of improved system was up to 0.5 degrees C, and its accuracy has been improved compared to conventional systems. Meanwhile, the measurement error was significantly better than traditional systems. It proved that the design can improve the stability of temperature detection for the system. PMID:27228783

  9. Influence of pre-annealing on the thermal regeneration of fiber Bragg gratings in standard optical fibers.

    PubMed

    Holmberg, Patrik; Laurell, Fredrik; Fokine, Michael

    2015-10-19

    A detailed study of the dynamics during thermal regeneration of fiber Bragg gratings, written in hydrogen-loaded standard single-mode fibers using a ns pulsed 213 nm UV laser, is reported. Isothermal pre-annealing performed in the range 85 °C to 1100 °C, with subsequent grating regeneration at 1100 °C, resulted in a maximum refractive index modulation, Δn(m) ~1.4⋅10(-4), for gratings pre-annealed near 900 °C while a minimum value of Δn(m) ~2⋅10(-5) was achieved irrespective of pre-annealing temperature. This optimum denote an inflection point between opposing thermally triggered processes, which we ascribe to the reaction-diffusion mechanism of molecular water and hydroxyl species in silica. The results shed new light on the mechanisms underlying thermal grating regeneration in optical fibers. PMID:26480412

  10. Liquid crystal orientation control in photonic liquid crystal fibers

    NASA Astrophysics Data System (ADS)

    Chychlowski, M. S.; Nowinowski-Kruszelnicki, E.; Woliński, T. R.

    2011-05-01

    Similarly to liquid crystal displays technology in photonic liquid crystal fibers (PLCFs) a molecular orientation control is a crucial issue that influences proper operation of PLCF-based devices. The paper presents two distinct configurations: planar and radial escaped orientation of the LC molecules inside capillaries as well as methods of their application to photonic liquid crystal fibers. Possibilities of LC orientation control influence both: attenuation and transmitting spectra of the PLCF The orienting method is based on creation of an additional orienting layer on the inner surface of the capillary or air hole of the photonic liquid crystal fiber. Aligning materials used in the experiment are commercially available polyimides SE1211 and SE130 which induce liquid crystal homeotropic and planar anchoring conditions. The orienting layer increase an order parameter of the liquid crystal improving propagation properties and stability of photonic liquid crystal fiber-based devices.

  11. Variable wavefront tuning with a SLM for tailored femtosecond fiber Bragg grating inscription.

    PubMed

    Voigtländer, Christian; Krämer, Ria G; Goebel, Thorsten A; Richter, Daniel; Nolte, Stefan

    2016-01-01

    We report on the inscription of fiber Bragg gratings using femtosecond laser pulses and the phase-mask technique. The wavefront of the inscription laser is variably tuned with a spatial light modulator (SLM). By applying Fresnel lenses with different focal lengths, the period of the fiber Bragg gratings could be shifted. A linear change of the grating period for a FBG inscribed with a third-order deformed wavefront and a quadratic-period behavior for a fourth-order wavefront could be verified experimentally for the first time. PMID:26696147

  12. Type IIa Bragg grating based ultra-short DBR fiber laser with high temperature resistance.

    PubMed

    Ran, Yang; Feng, Fu-Rong; Liang, Yi-Zhi; Jin, Long; Guan, Bai-Ou

    2015-12-15

    We report on the fabrication of a thermally resistant ultra-short distributed Bragg reflector (DBR) fiber laser based on the photo inscription of two wavelength-matched type IIa gratings in a thin-core Er-doped fiber. With continuous UV exposure, each Bragg reflector initially grows as a type I grating, followed by decay in strength, and then re-grows as a type IIa grating with enhanced thermal resistance. The DBR laser, with an entire length of 13 mm, can stably operate at 600°C with single longitude mode, which provides potential applications in high temperature environments. PMID:26670491

  13. Tunable Fabry-Perot filter in cobalt doped fiber formed by optically heated fiber Bragg gratings pair

    NASA Astrophysics Data System (ADS)

    Li, Ying; Zhou, Bin; Zhang, Liang; He, Sailing

    2015-06-01

    In this paper, a tunable fiber Fabry-Perot (F-P) filter by all-optical heating is proposed. Two high reflective fiber Bragg gratings (FBG) fabricated in cobalt doped single mode fiber form the F-P cavity. The cobalt-doped fiber used here is an active fiber, and it transforms optical power from a control laser into heat effectively due to the nonradiative processes. The generated heat raises the refraction index of the fiber and enlarges the F-P cavity's length, realizing the all-optical tuning characteristics. By adjusting the power of the control laser, the resonant wavelength of our proposed fiber F-P filter can be high precisely controlled. The cavity length of the filter is carefully designed to make sure the longitude mode spacing is comparable to the grating bandwidth, making it single mode operating.

  14. A fiber-compatible spectrally encoded imaging system using a 45° tilted fiber grating

    NASA Astrophysics Data System (ADS)

    Wang, Guoqing; Wang, Chao; Yan, Zhijun; Zhang, Lin

    2016-04-01

    We propose and demonstrate, for the first time to our best knowledge, the use of a 45° tilted fiber grating (TFG) as an infiber lateral diffraction element in an efficient and fiber-compatible spectrally encoded imaging (SEI) system. Under proper polarization control, the TFG has significantly enhanced diffraction efficiency (93.5%) due to strong tilted reflection. Our conceptually new fiber-topics-based design eliminates the need for bulky and lossy free-space diffraction gratings, significantly reduces the volume and cost of the imaging system, improves energy efficiency, and increases system stability. As a proof-of-principle experiment, we use the proposed system to perform an one dimensional (1D) line scan imaging of a customer-designed three-slot sample and the results show that the constructed image matches well with the actual sample. The angular dispersion of the 45° TFG is measured to be 0.054°/nm and the lateral resolution of the SEI system is measured to be 28 μm in our experiment.

  15. Fabrication of Extremely Short Length Fiber Bragg Gratings for Sensor Applications

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Rogowski, Robert S.; Tedjojuwono, Ken K.

    2002-01-01

    A new technique and a physical model for writing extremely short length Bragg gratings in optical fibers have been developed. The model describes the effects of diffraction on the spatial spectra and therefore, the wavelength spectra of the Bragg gratings. Using an interferometric technique and a variable aperture, short gratings of various lengths and center wavelengths were written in optical fibers. By selecting the related parameters, the Bragg gratings with typical length of several hundred microns and bandwidth of several nanometers can be obtained. These short gratings can be apodized with selected diffraction patterns and hence their broadband spectra have a well-defined bell shape. They are suitable for use as miniaturized distributed strain sensors, which have broad applications to aerospace research and industry as well.

  16. Simultaneous Temperature and Strain Sensing for Cryogenic Applications Using Dual-Wavelength Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Prosser, William H.

    2003-01-01

    A new technique has been developed for sensing both temperature and strain simultaneously by using dual-wavelength fiber-optic Bragg gratings. Two Bragg gratings with different wavelengths were inscribed at the same location in an optical fiber to form a sensor. By measuring the wavelength shifts that resulted from the fiber being subjected to different temperatures and strains, the wavelength-dependent thermo-optic coefficients and photoelastic coefficients of the fiber were determined. This enables the simultaneous measurement of temperature and strain. In this study, measurements were made over the temperature range from room temperature down to about 10 K, addressing much of the low temperature range of cryogenic tanks. A structure transition of the optical fiber during the temperature change was found. This transition caused splitting of the waveforms characterizing the Bragg gratings, and the determination of wavelength shifts was consequently complicated. The effectiveness and sensitivities of these measurements in different temperature ranges are also discussed.

  17. Elliptical-core two mode fiber sensors and devices incorporating photoinduced refractive index gratings

    NASA Technical Reports Server (NTRS)

    Greene, Jonathan A.; Miller, Mark S.; Starr, Suzanne E.; Fogg, Brian R.; Murphy, Kent A.; Claus, Richard O.; Vengsarkar, Ashish M.

    1991-01-01

    Results of experiments performed using germanium-doped, elliptical core, two-mode optical fibers whose sensitivity to strain was spatially varied through the use of chirped, refractive-index gratings permanently induced into the core using Argon-ion laser light are presented. This type of distributed sensor falls into the class of eighted-fiber sensors which, through a variety of means, weight the strain sensitivity of a fiber according to a specified spatial profile. We describe results of a weighted-fiber vibration mode filter which successfully enhances the particular vibration mode whose spatial profile corresponds to the profile of the grating chirp. We report on the high temperature survivability of such grating-based sensors and discuss the possibility of multiplexing more than one sensor within a single fiber.

  18. [The refractive index sensing characteristics of polarization maintaining microstructured optical fiber chirped grating].

    PubMed

    Guo, Xuan; Bi, Wei-Hong; Liu, Feng

    2013-01-01

    The refractive index sensing characteristics of the polarization maintaining (PM) microstructured optical fiber (MOF) chirped grating was systematically investigated based on finite element method (FEM) and transfer matrix method (TMM). The chirp Bragg grating reflection spectrum was numerically analyzed with the fiber air holes injected with different refractive index medium, and the relation between the reflection spectrum area and the analyte refractive index is discussed here. The analysis results show that when the analyte refractive index increases, the reflection spectrum area will be reduced; and the detection demodulation is simplified with the light intensity demodulation. Moreover, the dependence of the reflection spectrum on the center big holes size, the chirp coefficient and the site function was studied. Since two polarization modes respond similarly to the outside perturbation, the fiber possesses high stability. The results provide the theoretical basis for the application of PM-MOF grating in the optical fiber refractive index sensor and the optical fiber label-free biosensing. PMID:23586270

  19. Bent long-period fiber gratings for sensor applications

    NASA Astrophysics Data System (ADS)

    Chen, Zhihao; Chiang, Kin Seng; Ng, Mei N.; Chan, Yuen Ming; Ke, Hong

    1999-11-01

    The transmission characteristics of bent long-period fiber gratings (LPFGs) and their applications as sensors are studied experimentally. We demonstrate that, by bending a LPFG, two major rejection bands in the wavelength region of interest can be produced, whose relative strength can be controlled by the amount of bending. The wavelength separation between the two bands increases linearly with the lateral displacement of the bent LPFG and a linear tuning range over 40 nm is demonstrated. All these characteristics show no significant polarization dependence. We also find that, by mounting a bent LPFG on a proper material, the thermally induced bending effect can enhance or cancel the direct thermal effect. With this technique, we obtain temperature sensitivities of 0.01 nm/degrees C and -0.35 nm/degrees C, which are, respectively, about 1/5 and 7 times of that of a straight bare LPFG. A temperature-insensitive LPFG-based sensor for the measurement of the concentration of NaCl in water is demonstrated with a sensitivity of -0.35nm/molarity by keeping the temperature sensitivity at 0.01 nm/degrees C from 15 to 70 degrees C. By using the same technique, a strain sensitivity of -49nm/percent (epsilon) is obtained, which is about 15 times of that of a straight bare LPFG.

  20. Noncontact respiration-monitoring system using fiber grating sensor

    NASA Astrophysics Data System (ADS)

    Sato, Isao; Nakajima, Masato

    2004-10-01

    In this research, the new non-contact breathing motion monitoring system using Fiber Grating 3-dimension Sensor is used to measure the respiratory movement of the chest and the abdomen and the shape of the human body simultaneously. Respiratory trouble during sleep brings about various kinds of diseases. Particularly, Sleep Apnea Syndrome (SAS), which restricts respiration during sleep, has been in the spotlight in recent years. However, present equipment for analyzing the blessing motion requires attaching various sensors on the patient's body. This system adopted two CCD cameras to measure the movements of projected infrared bright spots on the patient's body which measure the body form, breathing motion of the chest and breathing motion of the abdomen in detail. Since the equipment does not contact the patient's body, the patient feels incompatibility, and there is no necessity to worry about the equipment coming off. Sleep Apnea Syndrome is classified into three types by their respiratory pattern-Obstructive, Central and Mixed SAS based on the characteristic. This paper reports the method of diagnosing SAS automatically. It is thought that this method will be helpful not only for the diagnosis of SAS but also for the diagnosis of other kinds of complicated respiratory disease.

  1. Comparison of damage measures based on fiber Bragg grating spectra

    NASA Astrophysics Data System (ADS)

    Park, Chun; Peters, Kara

    2012-02-01

    We compare the performance of four different damage measures based on the full spectral response of fiber Bragg grating (FBG) sensors: spectral bandwidth, number of peaks, cross-correlation coefficient and fractal dimension. These damage measures provide a rapid indication of the extent of damage near the FBG sensor. Each damage measure is applied to data simulating the response of a FBG to a pure strain gradient and experimental data from FBG sensors embedded in a laminate subjected to multiple impacts. The cross-correlation coefficient and number of peaks did not perform well for the experimental data. The spectral bandwidth presented a low sensitivity to noise and a high sensitivity to rapidly increasing strain fields, whereas the fractal dimension was more sensitive to more gradually changing strain fields. Ultimately, the best strategy would be to fuse the results of the spectral bandwidth and fractal dimension damage measures to incorporate the strengths of each approach. At the same time, this study highlighted the challenges in using such spectral data from FBG sensors embedded in structural materials, primarily due to the variability in response between sensors exposed to the same damage states.

  2. Implementation of interrogation systems for fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Varghese P, Benjamin; Kumar R, Dinesh; Raju, Mittu; Madhusoodanan, K. N.

    2013-09-01

    The development of two simple methods for wavelength-optical intensity modulation techniques for fiber Bragg grating (FBG) sensors is presented. The performance is evaluated by measuring the strain and temperature. The first method consists of a narrow band source, an optical circulator, an FBG, and a power meter. The source and Bragg reflected signal from the FBG need to be matched to get linear results with good power levels. The source spectral power levels are very critical in this study. The power reflected from a matched reference FBG is fed into the measuring FBG in the second method. Since the FBGs are matched, the entire power is reflected back initially. During the measurement, the change in the measurand causes the reflected power from the sensing FBG to vary. A costly high resolution spectrum analyzer is required only during the characterization of the FBG and source. The performances of two interrogators are compared by measuring the strain and temperature. In the second method, the strain measurements can be made insensitive to the temperature variation by selecting a source with a flat spectrum at the measurement range. Highlights of these methods are the portability, cost effectiveness and better resolution.

  3. Investigation on Thermal-Induced Decay of Fiber Bragg Grating

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Ding, Pinyi; Liu, Li

    2015-06-01

    A fiber Bragg grating (FBG), with advantages such as high anti-interference ability, a simple structure, and multiplexing, is widely used as a core component in numerous applications to monitor adverse environments of high temperature and air pressure. When FBGs are exposed to these extreme conditions, especially high temperature, performance decay may occur, bringing serious impact on the stability and reliability of the instruments. Therefore, it is necessary to make a detailed analysis on the mechanism of the thermal-induced decay of a FBG. One commonly used theory is proposed by Erdogn, which is based on a power function and aging curve method. However, these empirical equations are limited in application because only one single type of FBG can be analyzed this way. This paper focuses on the mechanism of a FBG, and presents a detailed analysis on the theory of the thermal-induced decay of a FBG using the electron dipole mode. Theoretical relationships between reflectivity and time or temperature were obtained, and a corresponding thermal-induced decay testing system was designed. The experimental and theoretical reflectivity decline under different temperatures of and are plotted, and the curves of reduction derived from the theoretical model fit the experimental data well. Thus, this model can be applied to predict the performance decay of FBGs at high temperature.

  4. A non-contact fiber Bragg grating vibration sensor.

    PubMed

    Li, Tianliang; Tan, Yuegang; Wei, Li; Zhou, Zude; Zheng, Kai; Guo, Yongxing

    2014-01-01

    A non-contact vibration sensor based on fiber Bragg grating (FBG) sensing has been proposed and studied in this paper. The principle of the sensor as well as simulation and experimental analyses are introduced. When the distance between the movable head and the measured shaft changed, the diaphragm deformed under magnetic coupling of the permanent magnet on the measured magnetic shaft. As a result, the center wavelength of the FBG connected to the diaphragm changed, based on which the vibration displacement of the rotating shaft could be obtained. Experimental results show that the resonant frequency of the sensor is about 1500 Hz and the working band ranges within 0-1300 Hz, which is consistent with the simulation analysis result; the sensitivity is -1.694 pm/μm and the linearity is 2.92% within a range of 2-2.4 mm. It can be used to conduct non-contact measurement on the vibration of the rotating shaft system.

  5. Enhanced strain and temperature sensing by reduced graphene oxide coated etched fiber Bragg gratings.

    PubMed

    S, Sridevi; Vasu, K S; Asokan, S; Sood, A K

    2016-06-01

    This Letter reports on an etched fiber Bragg grating (eFBG) sensor coated with reduced graphene oxide (RGO) having enhanced sensitivity for physical parameters such as strain and temperature. The synergetic effect of the changes in grating pitch and refractive index of RGO with change in temperature or strain enhances the shift in Bragg wavelength (λB). The RGO-coated eFBG sensors exhibit a strain sensitivity of 5.5 pm/μϵ (∼5 times that of bare fiber Bragg gratings) and temperature sensitivity of 33 pm/°C (∼3 times that of bare fiber Bragg gratings). The resolutions of ∼1  μϵ and ∼0.3°C have been obtained for strain and temperature respectively, using RGO-coated eFBG sensors. PMID:27244425

  6. Enhanced strain and temperature sensing by reduced graphene oxide coated etched fiber Bragg gratings.

    PubMed

    S, Sridevi; Vasu, K S; Asokan, S; Sood, A K

    2016-06-01

    This Letter reports on an etched fiber Bragg grating (eFBG) sensor coated with reduced graphene oxide (RGO) having enhanced sensitivity for physical parameters such as strain and temperature. The synergetic effect of the changes in grating pitch and refractive index of RGO with change in temperature or strain enhances the shift in Bragg wavelength (λB). The RGO-coated eFBG sensors exhibit a strain sensitivity of 5.5 pm/μϵ (∼5 times that of bare fiber Bragg gratings) and temperature sensitivity of 33 pm/°C (∼3 times that of bare fiber Bragg gratings). The resolutions of ∼1  μϵ and ∼0.3°C have been obtained for strain and temperature respectively, using RGO-coated eFBG sensors.

  7. Erbium doped tellurite photonic crystal optical fiber

    NASA Astrophysics Data System (ADS)

    Osorio, Sergio P.; Fernandez, Enver; Rodriguez, Eugenio; Cesar, Carlos L.; Barbosa, Luiz C.

    2005-04-01

    In this work we present the fabrication of tellurite glass photonic crystal fiber doped with a very large erbium concentration. Tellurite glasses are important hosts for rare earth ions due to its very high solubility, which allows up to 10,000 ppm Er3+ concentrations. The photonic crystal optical fibers and tellurite glasses can be, therefore, combined in an efficient way to produce doped fibers for large bandwidth optical amplifiers. The preform was made of a 10 mm external diameter tellurite tube filled with an array of non-periodic tellurite capillaries and an erbium-doped telluride rod that constitute the fiber core. The preform was drawn in a Heathway Drawing Tower, producing fibers with diameters between 120 - 140 μm. We show optical microscope photography of the fiber"s transverse section. The ASE spectra obtained with a spectra analyzer show a red shift as the length of the optical fiber increases.

  8. Dynamic Landslide Deformation Monitoring with Fiber Bragg Grating Sensors

    NASA Astrophysics Data System (ADS)

    Moore, J. R.; Gischig, V.; Button, E.; Loew, S.

    2009-12-01

    Fiber optic (FO) strain sensors are a promising new technology for in-situ landslide monitoring. General performance advantages include high resolution, fast sampling rate, and insensitivity to electrical disturbances. Here we describe a new FO monitoring system based on long-gage fiber Bragg grating sensors installed at the Randa Rockslide Laboratory in southern Switzerland. We highlight the advantages and disadvantages of the system, describe relevant first results, and compare FO data to that from traditional instruments already installed on site. The Randa rock slope has been the subject of intensive research since its failure in 1991. Around 5 million cubic meters of rock remains unstable today, moving at rates up to 20 mm / year. Traditional in-situ monitoring techniques have been employed to understand the mechanics and driving forces of the currently unstable rock mass, however these investigations are limited by the resolution and low sampling rate of the sensors. The new FO monitoring system has micro-strain resolution and offers the capability to detect sub-micrometer scale deformations in both triggered-dynamic and continuous measurements. Two types of sensors have been installed: fully-embedded borehole sensors encased in grout at depths of 38, 40, and 68 m, and surface extensometers spanning active tension cracks. Dynamic measurements are triggered by sensor deformation and recorded at 100 Hz, while continuous measurements are logged every 5 minutes. Since installation in August 2008, the FO monitoring system has been operational 90% of the time. Time series deformation data show movement rates consistent with previous borehole extensometer surveys. Accelerated displacements following installation are likely related to long-term curing and dewatering of the grout. A number of interesting transients have been recorded, which in some cases were large enough to trigger rapid sampling. The combination of short- and long-term observation offers new

  9. Dynamic fiber Bragg grating strain sensor using a wavelength-locked tunable fiber ring laser

    NASA Astrophysics Data System (ADS)

    Zhu, Yinian; Krishnaswamy, Sridhar

    2012-04-01

    The interrogation systems based on fiber-optic sensors are very attractive for the practical applications in structural health monitoring owing to a number of advantages of optical fiber elements over their electronic counterparts. Among the fiber-optic sensors, the fiber Bragg gratings (FBGs) have their own unique features to be widely used for detection of acoustic emission. We have developed a dynamic strain sensing system by using a tunable single longitudinal mode Erbium-doped fiber ring laser to be locked to the middle-reflection wavelength of the FBG as the demodulation technique. A proportional-integral-derivative device continuously controls the laser wavelength that is kept at the FBG middle-reflection wavelength, thus stabilizing the operating point against quasi-static perturbation, while the high frequency dynamic strain shifts the FBG reflection profile. The reflected power varies in proportion to the applied strain which can be derived directly from AC photocurrent of the reflected signal. We have designed and assembled a fourchannel demodulator system for simultaneous high frequency dynamic strain sensing.

  10. Experimental demonstration of nonlinear pulse propagation in a fiber Bragg grating written in a fiber amplifier.

    PubMed

    Shapira, Y P; Smulakovsky, V; Horowitz, M

    2016-01-01

    We study experimentally nonlinear propagation of sub-nanosecond optical pulses in a fiber Bragg grating written in a Ytterbium-doped fiber amplifier (YD-FBG). The magnitude and the sign of group velocity dispersion (GVD) in YD-FBG can be controlled by adjusting the fiber tension. In the case of anomalous GVD, pulse breakup was observed due to modulation instability. However, for the same input pulse power in the normal GVD regime, the output pulse duration was increased, and pulse breakup was not observed. The deterioration of pulse spectrum due to Raman and four-wave mixing effect was also reduced in the normal GVD regime. Since GVD in YD-FBG is six orders of magnitude higher than in standard fibers, the advantages of normal GVD in fiber amplifiers that were demonstrated in previous works for femtosecond and picosecond pulses can be exploited for amplifying sub-nanosecond pulses. The experimental results are in good agreement with numerical simulations. We have also demonstrated a gain coefficient enhancement by a factor of 1.7 due to slow-light propagation in the YD-FBG. PMID:26696144

  11. THUNDER Piezoelectric Actuators as a Method of Stretch-Tuning an Optical Fiber Grating

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Fox, Robert L.; Froggatt, Mark E.; Childers, Brooks A.

    2000-01-01

    A method of stretching optical fiber holds interest for measuring strain in smart structures where the physical displacement may be used to tune optical fiber lasers. A small, light weight, low power tunable fiber laser is ideal for demodulating strain in optical fiber Bragg gratings attached to smart structures such as the re-usable launch vehicle that is being developed by NASA. A method is presented for stretching optical fibers using the THUNDER piezoelectric actuators invented at NASA Langley Research Center. THUNDER actuators use a piezoelectric layer bonded to a metal backing to enable the actuators to produce displacements larger than the unbonded piezoelectric material. The shift in reflected optical wavelength resulting from stretching the fiber Bragg grating is presented. Means of adapting THUNDER actuators for stretching optical fibers is discussed, including ferrules, ferrule clamp blocks, and plastic hinges made with stereo lithography.

  12. THUNDER piezoelectric actuators as a method of stretch-tuning an optical fiber grating

    NASA Astrophysics Data System (ADS)

    Allison, Sidney G.; Fox, Robert L.; Froggatt, Mark E.; Childers, Brooks A.

    2000-06-01

    A method of stretching optical fiber holds interest for measuring strain in smart structures where the physical displacement may be used to tune optical fiber lasers. A small, lightweight, low power tunable fiber laser is ideal for demodulating strain in optical fiber Bragg gratings attached to smart structures such as the re-usable launch vehicle that is begin developed by NASA. A method is presented for stretching optical fibers using the THUNDER piezoelectric actuators invented at NASA Langley Research Center. THUNDER actuators use a piezoelectric layer bonded to a metal backing to enable the actuators to produce displacements larger than the unbonded piezoelectric material. The shift in reflected optical wavelength resulting from stretching the fiber Bragg grating is presented. Means of adapting THUNDER actuators for stretching optical fibers is discussed, including ferrules, ferrule clamp blocks, and plastic hinges made with stereo lithography.

  13. Holographically formed, acoustically switchable gratings based on polymer-dispersed liquid crystals.

    PubMed

    Liu, Yan Jun; Lu, Mengqian; Ding, Xiaoyun; Leong, Eunice S P; Lin, Sz-Chin Steven; Shi, Jinjie; Teng, Jing Hua; Wang, Lin; Bunning, Timothy J; Huang, Tony Jun

    2013-08-01

    We report holographic polymer-dispersed liquid crystal (H-PDLC) gratings driven by surface acoustic waves (SAWs). Our experiments show that upon applying SAWs, the H-PDLC grating exhibited switchable properties: The diffraction of the H-PDLC grating decreased, whereas the transmission increased. This acoustically switchable behavior is due to the acoustic streaming-induced realignment of liquid crystals as well as absorption-resulted thermal diffusion. Such SAW-driven H-PDLC gratings are potentially useful in many photonic applications, such as optical switches, spatial light modulators, and switchable add/drop filters. PMID:22909448

  14. Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide

    NASA Astrophysics Data System (ADS)

    Wang, Youqing; Shen, Changyu; Lou, Weimin; Shentu, Fengying; Zhong, Chuan; Dong, Xinyong; Tong, Limin

    2016-07-01

    A fiber optic relative humidity (RH) sensor based on the tilted fiber Bragg grating (TFBG) coated with graphene oxide (GO) film was presented. Amplitudes of the cladding mode resonances of the TFGB varies with the water sorption and desorption processes of the GO film, because of the strong interactions between the excited backward propagating cladding modes and the GO film. By detecting the transmission intensity changes of the cladding mode resonant dips at the wavelength of 1557 nm, the maximum sensitivity of 0.129 dB/%RH with a linear correlation coefficient of 99% under the RH range of 10-80% was obtained. The Bragg mode of TFBG can be used as power or wavelength references, since it is inherently insensitive to RH changes. In addition, the proposed humidity sensor shows a good performance in repeatability and stability.

  15. Gas refractometer based on an S-taper fiber tailored fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Shao, Zhihua; Bao, Weijia; Qiao, Xueguang; Rong, Qiangzhou

    2015-09-01

    A fiber Bragg grating (FBG)-based gas refractometer is proposed and demonstrated experimentally. The configuration consists of a short section of S-type taper followed with a FBG. The S-taper is capable to couple the core mode to cladding modes into the downstream SMF, and the low-order cladding modes can be reflected back to the fiber core via the FBG, in which the recoupling efficiency is highly dependent on surrounding refractive index (RI) of liquid and gas. Experimental results show that some recoupled cladding modes show high sensitivities to surround RI. This power-referenced RI measurement and wavelength-referenced temperature measurement have been achieved via selective cladding modes monitoring.

  16. Waveform reconstruction for an ultrasonic fiber Bragg grating sensor demodulated by an erbium fiber laser.

    PubMed

    Wu, Qi; Okabe, Yoji

    2015-02-01

    Fiber Bragg grating (FBG) demodulated by an erbium fiber laser (EFL) has been used for ultrasonic detection recently. However, due to the inherent relaxation oscillation (RO) of the EFL, the detected ultrasonic signals have large deformations, especially in the low-frequency range. We proposed a novel data processing method to reconstruct an actual ultrasonic waveform. The noise spectrum was smoothed first; the actual ultrasonic spectrum was then obtained by deconvolution in order to mitigate the influence of the RO of the EFL. We proved by experiment that this waveform reconstruction method has high precision, and demonstrated that the FBG sensor demodulated by the EFL will have large practical applications in nondestructive testing. PMID:25967776

  17. Fabrication of fiber Bragg gratings in embedded-core hollow optical fiber

    NASA Astrophysics Data System (ADS)

    Mao, Guopei; Sun, Bo; Yuan, Tingting; Zhong, Xing; Shi, Jinhui; Guan, Chunying; Yuan, Libo

    2015-07-01

    A novel Bragg fiber grating (FBG) in an embedded-core hollow optical fiber (ECHOF) has been proposed and experimentally demonstrated. The high-quality FBG fabricated with phase-mask technique by using 248 nm ultraviolet laser, has a resonant wavelength of ~943.1 nm and a dip of ~24.2 dB. Subsequently, the dependences of the resonant peak on the temperature and the axial strain were studied. Experimental results show that the temperature and axial stain sensitivity are 6.5 pm/°С and 1.1 pm/μɛ, respectively. In addition, a 0.03 nm shift of the transmission dip can be obtained when the polarization state changes from X polarization to Y polarization.

  18. Cognitive fiber Bragg grating sensors system based on fiber Fabry-Perot tunable filter technology

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Wang, Pengfei; Zou, Jilin; Xie, Jing; Cui, Hong-Liang

    2011-05-01

    The wavelength demodulation based on a Fiber Fabry-Pérot Tunable Filter (FFP-TF) is a common method for multiplexing Fiber Bragg Grating (FBG) sensors. But this method cannot be used to detect high frequency signals due to the limitation by the highest scanning rate that the FFP-TF can achieve. To overcome this disadvantage, in this paper we present a scheme of cognitive sensors network based on FFP-TF technology. By perceiving the sensing environment, system can automatically switch into monitoring signals in two modes to obtain better measurement results: multi measurement points, low frequency (<1 KHz) signal, and few measurement points but high frequency (~50 KHz) signals. This cognitive sensors network can be realized in current technology and satisfy current most industrial requirements.

  19. Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating

    NASA Astrophysics Data System (ADS)

    Rao, Y. J.; Zhu, T.; Mo, Q. J.

    2006-10-01

    A high sensitivity fiber-optic torsion sensor, which can measure twist rate and determine twist direction simultaneously based on a novel ultra-long-period fiber grating (ULPFG) with a period of up to several millimeters, is proposed and demonstrated. Such an ULPFG is fabricated by using the high-frequency CO 2 Laser pulses exposure technique. The unique torsion characteristics of the ULPFG are simply analyzed by using the mode coupling theory and the birefringence effect. The experimental results show that the high order resonant wavelengths of the ULPFG have higher torsion sensitivities, which is several times higher than that of the normal LPFG. In addition, an intensity-type demodulation approach used to realize real-time torsion measurement is proposed and demonstrated based on the edge filtering effect of the ULPFG.

  20. Spectrally-Narrowed Emissions from Organic Crystals Having a One-Dimensional Grating on Their Surface.

    PubMed

    Yamamoto, Hiroyuki; Obara, Keiji; Higashihara, Shohei; Obama, Yuki; Yamao, Takeshi; Hotta, Shu

    2016-04-01

    We have succeeded in directly engraving one-dimensional diffraction gratings on the surface of organic semiconducting oligomer crystals by using focused ion beam (FIB) lithography and laser ablation (LA) methods. The FIB method enabled us to shape the gratings with varying periods down to ~150 nm. With the LA method a large-area grating with a ~500-nm period was readily accessible. All the above crystals indicated spectrally-narrowed emission (SNE) lines even in the case of shallow groove depths ~2-4 nm. In particular, we definitively observed the SNE pertinent to the first-order diffraction with the crystal having the diffraction grating of a 148.3-nm average period. The present results indicate utility of the built-in gratings that can directly be fabricated on the surface of the crystals.

  1. Spectrally-Narrowed Emissions from Organic Crystals Having a One-Dimensional Grating on Their Surface.

    PubMed

    Yamamoto, Hiroyuki; Obara, Keiji; Higashihara, Shohei; Obama, Yuki; Yamao, Takeshi; Hotta, Shu

    2016-04-01

    We have succeeded in directly engraving one-dimensional diffraction gratings on the surface of organic semiconducting oligomer crystals by using focused ion beam (FIB) lithography and laser ablation (LA) methods. The FIB method enabled us to shape the gratings with varying periods down to ~150 nm. With the LA method a large-area grating with a ~500-nm period was readily accessible. All the above crystals indicated spectrally-narrowed emission (SNE) lines even in the case of shallow groove depths ~2-4 nm. In particular, we definitively observed the SNE pertinent to the first-order diffraction with the crystal having the diffraction grating of a 148.3-nm average period. The present results indicate utility of the built-in gratings that can directly be fabricated on the surface of the crystals. PMID:27451623

  2. Dynamic interrogator for elastic wave sensing using Fabry Perot filters based on fiber Bragg gratings.

    PubMed

    Harish, Achar V; Varghese, Bibin; Rao, Babu; Balasubramaniam, Krishnan; Srinivasan, Balaji

    2015-07-01

    Use of in-fiber Fabry-Perot (FP) filters based on fiber Bragg gratings as both sensor as well as an interrogator for enhancing the detection limit of elastic wave sensing is investigated in this paper. The sensitivity of such a demodulation scheme depends on the spectral discrimination of the sensor and interrogator gratings. Simulations have shown that the use of in-fiber FP filters with high finesse provide better performance in terms of sensitivity compared to the demodulation using fiber Bragg gratings. Based on these results, a dynamic interrogator capable of sensing acoustic waves with amplitude of less than 1 micro-strain over frequencies of 10 kHz to several 100 kHz has been implemented. Frequency response of the fiber Bragg gratings in the given experimental setup has been compared to that of the conventional piezo sensors demonstrating that fiber Bragg gratings can be used over a relatively broad frequency range. Dynamic interrogator has been packaged in a compact box without any degradation in its performance.

  3. Dynamic interrogator for elastic wave sensing using Fabry Perot filters based on fiber Bragg gratings.

    PubMed

    Harish, Achar V; Varghese, Bibin; Rao, Babu; Balasubramaniam, Krishnan; Srinivasan, Balaji

    2015-07-01

    Use of in-fiber Fabry-Perot (FP) filters based on fiber Bragg gratings as both sensor as well as an interrogator for enhancing the detection limit of elastic wave sensing is investigated in this paper. The sensitivity of such a demodulation scheme depends on the spectral discrimination of the sensor and interrogator gratings. Simulations have shown that the use of in-fiber FP filters with high finesse provide better performance in terms of sensitivity compared to the demodulation using fiber Bragg gratings. Based on these results, a dynamic interrogator capable of sensing acoustic waves with amplitude of less than 1 micro-strain over frequencies of 10 kHz to several 100 kHz has been implemented. Frequency response of the fiber Bragg gratings in the given experimental setup has been compared to that of the conventional piezo sensors demonstrating that fiber Bragg gratings can be used over a relatively broad frequency range. Dynamic interrogator has been packaged in a compact box without any degradation in its performance. PMID:25783780

  4. Monitoring of reinforced composites processed by microwave radiation using fiber-Bragg gratings

    NASA Astrophysics Data System (ADS)

    Barrera, David; Roig, Inma; Sales, Salvador; Emmerich, Rudolf

    2014-05-01

    The use of microwave radiation for curing carbon-fiber reinforced polymer materials (CFRP) can solve the nonhomogeneous heating problems when using conventional techniques based on the use of catalysts and can reduce the processing times. Optical fiber sensors have well-known advantages for Fiber Reinforced Composites (FRC) monitoring. In this paper fiber Bragg gratings (FBGs) are used for online monitoring of the residual stress and distortions produced during the microwave curing process. The CFRP samples are composed by layers of unidirectional carbon fibers and epoxy resin. The results show a very different behavior between the direction of carbon fibers and the perpendicular direction. Results are compared with the conventional processing technique.

  5. In-Situ Continuous Detonation Velocity Measurements Using Fiber-optic Bragg Grating Sensors

    SciTech Connect

    Benterou, J; Udd, E; Wilkins, P; Roeske, F; Roos, E; Jackson, D

    2007-07-25

    In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation and detonation research requires continuous measurement of low order detonation velocities as the detonation runs up to full order detonation for a given density and initiation pressure pulse. A novel detector of detonation velocity is presented using a 125 micron diameter optical fiber with an integral chirped fiber Bragg grating as an intrinsic sensor. This fiber is embedded in the explosive under study and interrogated during detonation as the fiber Bragg grating scatters light back along the fiber to a photodiode, producing a return signal dependant on the convolution integral of the grating reflection bandpass, the ASE intensity profile and the photodetector response curve. Detonation velocity is measured as the decrease in reflected light exiting the fiber as the grating is consumed when the detonation reaction zone proceeds along the fiber sensor axis. This small fiber probe causes minimal perturbation to the detonation wave and can measure detonation velocities along path lengths tens of millimeters long. Experimental details of the associated equipment and preliminary data in the form of continuous detonation velocity records within nitromethane and PBX-9502 are presented.

  6. First Single-Crystal Mullite Fibers

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Ceramic-matrix composites strengthened by suitable fiber additions are being developed for high-temperature use, particularly for aerospace applications. New oxide-based fibers, such as mullite, are particularly desirable because of their resistance to high-temperature oxidative environments. Mullite is a candidate material in both fiber and matrix form. The primary objective of this work was to determine the growth characteristics of single-crystal mullite fibers produced by the laser-heated floating zone method. Directionally solidified fibers with nominal mullite compositions of 3Al2O3 2SiO2 were grown by the laser-heated floating zone method at the NASA Lewis Research Center. SEM analysis revealed that the single-crystal fibers grown in this study were strongly faceted and that the facets act as critical flaws, limiting fiber strength. The average fiber tensile strength is 1.15 GPa at room temperature. The mullite fibers exhibit superior strength retention (80 percent of their room temperature tensile strength at 1450 C). Examined by transmission electron microscopy, these mullite single crystals are free of dislocations, low-angle boundaries, and voids. In addition, they show a high degree of oxygen vacancy ordering. High-resolution digital images from an optical microscope furnish evidence of the formation of a liquid-liquid miscibility gap during crystal growth. These images represent the first experimental evidence of liquid immiscibility for these compositions and temperatures. Continuing investigation with controlled seeding of mullite single crystals is planned.

  7. Bent tilted fiber Bragg gratings for temperature-independent vibration sensing in vehicles

    NASA Astrophysics Data System (ADS)

    Ivanov, Alexei; Albert, Jacques

    2007-09-01

    Fiber grating based techniques have proven themselves as low cost, small size and low weight solutions for sensing strain and/or temperature in various applications, including structural health monitoring of aircrafts, ships and other man-made structures. However, normal fiber gratings are sensitive to both strain and temperature in a manner that is impossible to distinguish from the sensor response. Methods devised to circumvent this problem rely on combinations of gratings with different sensitivity to these two perturbations. Simultaneous measurements on two gratings then provide the necessary information to decode strain and temperature values but this requires special grating configurations and packaging to maximize the differential sensitivity. We will present experimental results of an alternative approach where we use a single very weakly tilted fiber Bragg grating (TFBG), to achieve the same effect. The grating couples light from the fundamental mode guided in the core to a large number of cladding modes, depending on the wavelength of interrogation. We propose and demonstrate a novel configuration in which many high order cladding mode resonances are removed by bonding the TFBG in a pre-bent state on a metal plate. After bonding, only a few low order mode resonances are left and occupy less than 5 nm of bandwidth (thereby allowing multiplexing). These resonances all have the same temperature sensitivity but very different behavior when the plate vibrates, bends or stretches statically. Differential measurements of the resonance power levels and shifts then provide valuable information about the mechanical state of the sensor.

  8. Vibration sensor based on highly birefringent Bragg gratings written in standard optical fiber by a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Chah, Karima; Bueno, Antonio; Kinet, Damien; Caucheteur, Christophe; Chluda, Cédric; Mégret, Patrice; Wuilpart, Marc

    2014-05-01

    We present a vibration sensor based on highly birefringent fiber Bragg gratings written in standard single mode optical fiber and realized with UV femtosecond pulses. This vibration sensor takes advantage of the stress-induced phase shift between the two orthogonally polarized fiber eigenmodes which induces intensity distribution changes in the two fiber Bragg grating reflection modes. The gratings are inscribed with the femtosecond line by line technique and have a birefringence value of 6 10-4. We demonstrate that theses gratings are temperature birefringence insensitive and ideal for vibration measurements.

  9. Investigation of Structural Properties of Carbon-Epoxy Composites Using Fiber-Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Grant, J.; Kaul, R.; Taylor, S.; Jackson, K.; Sharma, A.; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    Fiber Bragg-gratings are embedded in carbon-epoxy laminates as well as bonded on the surface of cylindrical structures fabricated out of such composites. Structural properties of such composites is investigated. The measurements include stress-strain relation in laminates and Poisson's ratio in several specimens with varying orientation of the optical fiber Bragg-sensor with respect to the carbon fiber in an epoxy matrix. Additionally, Bragg gratings are bonded on the surface of cylinders fabricated out of carbon-epoxy composites and longitudinal and hoop strain on the surface is measured.

  10. Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds.

    PubMed

    Oliveira, Ricardo; Bilro, Lúcia; Nogueira, Rogério

    2015-04-20

    We report the inscription of a Bragg grating in an undoped polymethylmethacrylate based microstructured fiber in a time record. The fiber has been irradiated with a 248 nm ultraviolet radiation, through the phase mask technique using low fluence and low repetition rate. The experimental conditions were chosen to modify the core refractive index of the fiber at the incubation regime and avoiding polymer ablation. The peak reflection of the Bragg grating was centered in the infrared region with 20 dB reflection and 0.16 nm bandwidth. These spectral properties are well attractive for sensors and communications applications. PMID:25969060

  11. Automation for the manufacturing of fiber Bragg grating arrays enables new applications

    NASA Astrophysics Data System (ADS)

    Lefebvre, P.; Vincelette, A.; Beaulieu, C.; Ficocelli, P.

    2005-11-01

    The manufacturing process has a huge impact on the characteristics of the all optical fiber sensors array. By automating the manufacturing of fiber Bragg gratings, FBG arrays with much larger count of sensing points, stronger mechanical strength, tighter optical parameters tolerances and enhanced reliability are produced in a cost effective manner. Such fiber Bragg grating arrays are now commercially available with both acrylate or polyimide coating widening the range of applications for FBG sensors to larger scale of services for strain and temperature in a distributed configuration.

  12. Noise in adaptive interferometric fiber sensor based on population dynamic grating in erbium-doped fiber.

    PubMed

    Stepanov, Serguei; Sánchez, Marcos Plata; Hernández, Eliseo Hernández

    2016-09-10

    Experimental investigations of the main noise sources that limit the sensitivity of the adaptive interferometric all-fiber sensors operating in the communication wavelength region are reported. Adaptive properties (i.e., the autostabilization of an optimal operation point of the interferometer) are enabled by the dynamic population grating recorded in a segment of the erbium-doped fiber (EDF) at milliwatt-scale cw power in the 1480-1560 nm spectral range. The utilized symmetric Sagnac configuration with low light internal reflections ensures reduced sensitivity of the sensor to phase noise of the laser, while intensity noise is reduced to an insignificant level by the balanced detection scheme. It is shown that the fluorescence from the erbium ions, excited by the counterpropagating waves recording the grating, increases the noise level from the fundamental shot noise approximately by a factor of 2-3 only. It is also shown that conventional communication distributed feedback (DFB) semiconductor lasers with megahertz linewidth are not suitable for high-sensitivity applications of such sensors. Because of inevitable backreflections from the output terminal devices (photodiodes, insulators, circulator), the above-mentioned fundamental noise level is increased by 2 orders of magnitude due to high phase noise of the DFB laser. PMID:27661369

  13. Noise in adaptive interferometric fiber sensor based on population dynamic grating in erbium-doped fiber.

    PubMed

    Stepanov, Serguei; Sánchez, Marcos Plata; Hernández, Eliseo Hernández

    2016-09-10

    Experimental investigations of the main noise sources that limit the sensitivity of the adaptive interferometric all-fiber sensors operating in the communication wavelength region are reported. Adaptive properties (i.e., the autostabilization of an optimal operation point of the interferometer) are enabled by the dynamic population grating recorded in a segment of the erbium-doped fiber (EDF) at milliwatt-scale cw power in the 1480-1560 nm spectral range. The utilized symmetric Sagnac configuration with low light internal reflections ensures reduced sensitivity of the sensor to phase noise of the laser, while intensity noise is reduced to an insignificant level by the balanced detection scheme. It is shown that the fluorescence from the erbium ions, excited by the counterpropagating waves recording the grating, increases the noise level from the fundamental shot noise approximately by a factor of 2-3 only. It is also shown that conventional communication distributed feedback (DFB) semiconductor lasers with megahertz linewidth are not suitable for high-sensitivity applications of such sensors. Because of inevitable backreflections from the output terminal devices (photodiodes, insulators, circulator), the above-mentioned fundamental noise level is increased by 2 orders of magnitude due to high phase noise of the DFB laser.

  14. Modeling and testing of static pressure within an optical fiber cable spool using distributed fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Ma, Chengju; Ren, Liyong; Qu, Enshi; Tang, Feng; Liang, Quan

    2012-11-01

    Based on the force analysis, we establish a theoretical model to study the static pressure distribution of the fiber cable spool for the fiber optic guided missile (FOG-M). Simulations indicate that for each fiber layer in the fiber cable spool, the applied static pressure on it asymptotically converges as the number of fiber layers increases. Using the distributed fiber Bragg grating (FBG) sensing technique, the static pressure of fiber cable layers in the spool on the cable winding device was measured. Experiments show that the Bragg wavelength of FBG in every layer varies very quickly at the beginning and then becomes gently as the subsequent fiber cable was twisted onto the spool layer by layer. Theoretical simulations agree qualitatively with experimental results. This technology provides us a real-time method to monitor the pressure within the fiber cable layer during the cable winding process.

  15. Merged vector gratings recorded in a photocrosslinkable polymer liquid crystal film for polarimetry

    SciTech Connect

    Sasaki, Tomoyuki Wada, Takumi; Noda, Kohei; Ono, Hiroshi; Kawatsuki, Nobuhiro

    2014-01-14

    A merged vector grating, which is holographically fabricated in an anisotropic medium by irradiation with interference light with intensity modulation and polarization modulation, was designed to detect the polarization of light. The merged vector grating is recorded by the interference of two elliptically polarized beams with equal intensities, parallel azimuths, equal ellipticities, and different directions of rotation. We clarified theoretically that the Stokes parameters of the incident light beam are described by the diffraction efficiency of the merged vector grating. Also, to apply this property to formation of a polarimeter without any moving parts or mechanisms, two merged vector gratings with different grating vectors were recorded in a photocrosslinkable polymer liquid crystal film by angle-multiplexed holography. By investigation of the diffraction properties of the gratings obtained, we demonstrated the applicability of the merged vector gratings for use in polarimetry.

  16. Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Hailiang; Wu, Zhifang; Shum, Perry Ping; Wang, Ruoxu; Quyen Dinh, Xuan; Fu, Songnian; Tong, Weijun; Tang, Ming

    2016-08-01

    We present the fabrication of fiber Bragg gratings (FBGs) in a trench-assisted heterogeneous multicore fiber (MCF). Two obviously different Bragg reflection peaks are obtained due to the slight difference of refractive indices between the center core and the outer cores. To investigate the reflections of the two FBGs simultaneously, only a segment of multimode fiber is inserted between the lead-in single mode fiber and the MCF. The experimental results confirm that the curvature sensitivity of the FBG in the outer core is a sinusoidal function of the bending orientation angle. The maximum linear curvature sensitivity is about 0.128 nm/m‑1. The cross sensitivity to temperature or externally applied axial strain can be eliminated by discriminating the different responses of FBGs inscribed in outer cores and the center core. Thus this MCF with FBGs can be utilized as a directional bending sensor. Moreover, the proposed sensor offers several advantages, such as low cost and flexibility in fabrication.

  17. Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Hailiang; Wu, Zhifang; Shum, Perry Ping; Wang, Ruoxu; Quyen Dinh, Xuan; Fu, Songnian; Tong, Weijun; Tang, Ming

    2016-08-01

    We present the fabrication of fiber Bragg gratings (FBGs) in a trench-assisted heterogeneous multicore fiber (MCF). Two obviously different Bragg reflection peaks are obtained due to the slight difference of refractive indices between the center core and the outer cores. To investigate the reflections of the two FBGs simultaneously, only a segment of multimode fiber is inserted between the lead-in single mode fiber and the MCF. The experimental results confirm that the curvature sensitivity of the FBG in the outer core is a sinusoidal function of the bending orientation angle. The maximum linear curvature sensitivity is about 0.128 nm/m-1. The cross sensitivity to temperature or externally applied axial strain can be eliminated by discriminating the different responses of FBGs inscribed in outer cores and the center core. Thus this MCF with FBGs can be utilized as a directional bending sensor. Moreover, the proposed sensor offers several advantages, such as low cost and flexibility in fabrication.

  18. Multiplex and simultaneous measurement of displacement and temperature using tapered fiber and fiber Bragg grating

    SciTech Connect

    Ji Chongke; Zhao Chunliu; Kang Juan; Dong Xinyong; Jin Shangzhong

    2012-05-15

    A simple method to work out the multiplexing of tapered fiber based sensors is proposed and demonstrated. By cascading a tapered fiber with a fiber Bragg grating (FBG), the sensor head is provided with a wavelength identification, different FBGs provide the sensor heads with different reflective peaks and they can be distinguished in optical spectrum. By compositing several such sensor heads with a multi-channel beam splitter, a star-style topological structure sensor for multipoint sensing is achieved. At the same time, the output intensity at the peak wavelength is sensitive to one external physical parameter applied on the related FBG-cascaded tapered fiber and the central wavelength of the peak is only sensitive to temperature, so that that parameter and temperature can be measured simultaneously. A sensor for dual-point measurement of the displacement and temperature simultaneously is experimentally demonstrated by using a 2 x 2 coupler in this paper. Experiment results show that the sensor works well and the largest sensitivities reach to 0.11 dB/{mu}m for displacement in the range of 0-400 {mu}m, and {approx}0.0097 nm/ deg. C for temperature between 20 deg. C and 70 deg. C.

  19. Effect of femtosecond photo-treatment on inscription of fiber Bragg gratings.

    PubMed

    Shamir, Avishay; Ishaaya, Amiel A

    2016-02-15

    Pre- and post-treatment of optical fibers is typically used to improve the fiber Bragg grating (FBG) fabrication process. Here, we investigate experimentally the effects of femtosecond photo-treatment on the ability to inscribe and erase FBGs in standard, non-sensitized, silica SMF fibers. We observe "immunity" to inscription after applying a suitable pre-treatment to the fiber and full "erasure" of the FGB after applying a suitable post-treatment. We characterize the required photo-treatment parameters and compare to FBG inscription on an untreated fiber. We believe that pre/post-photo-treatment of the fibers with fs pulses may have practical advantages such as modifying standard grating structures or observing ultrafast transient effects more clearly. PMID:26872183

  20. Investigation of refractive index sensing based on Fano resonance in fiber Bragg grating ring resonators.

    PubMed

    Campanella, Carlo Edoardo; De Leonardis, Francesco; Mastronardi, Lorenzo; Malara, Pietro; Gagliardi, Gianluca; Passaro, Vittorio M N

    2015-06-01

    In this paper we theoretically investigate a ring resonant cavity obtained by closing on itself a π-shifted fiber Bragg grating, to be used for refractive index sensing applications. Differently from a conventional π-shifted fiber Bragg grating, the spectral structure of this cavity is characterized by an asymmetric splitting doublet composed by a right side resonance having an asymmetric Fano profile and a left side resonance having a symmetric Lorentzian profile. The right side resonance shows a narrower and sharper peak than all the other kinds of resonance achievable with both conventional ring resonators and π-shifted fiber Bragg gratings. A reduction of the resonant linewidth with respect to a conventional π-shifted Fiber Bragg grating and a fiber ring resonator, having the same physical parameters, is theoretically proved, achieving up to five orders of magnitude improvement with respect to the usual ring resonator. Due to these resonance features, the π-shifted Bragg grating ring resonator results suitable for RI sensing applications requiring extremely narrow resonances for high resolution measurements. In particular, by assuming a refractive index sensing to detect the presence of sugar in water, the sensor can show a theoretical resolution better than 10-9 RIU. PMID:26072795

  1. Using Dual-wavelength Fiber Bragg Gratings for Temperature and Strain Sensing at Cryogenic Temperature

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Prosser, William H.; Rogowski, Robert S.; DeHaven, Stanton L.

    2003-01-01

    By using dual-wavelength fiber-optic Bragg gratings, a new technique has been developed for sensing both temperature and strain simultaneously in cryogenic temperature range. Two Bragg gratings with different wavelengths were inscribed at the same location in an optical fiber to form a dual-wavelength sensor. By measuring the wavelength shifts that resulted from the fiber being subjected to different temperatures and strains, the wavelength-dependent thermo-optic coefficients and photoelastic coefficients of the fiber were determined. These coefficients were used to construct the elements of the K matrix, which enables to determine inversely the strain and temperature changes by measuring the wavelength shifts of the dual-wavelength Bragg grating. In this study, measurements were made over the temperature range from room temperature down to about 10 K, addressing much of the low temperature range of cryogenic tanks. A structure transition of the optical fiber during the temperature change was found from about 70 K to 140 K. This transition caused splitting of the waveforms characterizing the Bragg gratings, and the determination of wavelength shifts was consequently complicated. Several alternatives are proposed to resolve this problem. The effectiveness and sensitivities of these measurements in different temperature ranges are discussed. The separation of two wavelengths for the dual-wavelength Bragg grating has been widened to increase the sensitivities of measurement; however, this separation can still be covered in the scanning range from single scanning laser.

  2. Fiber Grating Coupled Light Source Capable of Tunable, Single Frequency Operation

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A. (Inventor); Duerksen, Gary L. (Inventor)

    2001-01-01

    Fiber Bragg grating coupled light sources can achieve tunable single-frequency (single axial and lateral spatial mode) operation by correcting for a quadratic phase variation in the lateral dimension using an aperture stop. The output of a quasi-monochromatic light source such as a Fabry Perot laser diode is astigmatic. As a consequence of the astigmatism, coupling geometries that accommodate the transverse numerical aperture of the laser are defocused in the lateral dimension, even for apsherical optics. The mismatch produces the quadratic phase variation in the feedback along the lateral axis at the facet of the laser that excites lateral modes of higher order than the TM(sub 00). Because the instability entails excitation of higher order lateral submodes, single frequency operation also is accomplished by using fiber Bragg gratings whose bandwidth is narrower than the submode spacing. This technique is particularly pertinent to the use of lensed fiber gratings in lieu of discrete coupling optics. Stable device operation requires overall phase match between the fed-back signal and the laser output. The fiber Bragg grating acts as a phase-preserving mirror when the Bragg condition is met precisely. The phase-match condition is maintained throughout the fiber tuning range by matching the Fabry-Perot axial mode wavelength to the passband center wavelength of the Bragg grating.

  3. Imaging of various optical fiber Bragg gratings using differential interference contrast microscopy: analysis and comparison.

    PubMed

    Rollinson, Claire M; Wade, Scott A; Baxter, Greg W; Collins, Stephen F

    2016-02-01

    Differential interference contrast images of various optical fibers and optical fiber Bragg gratings (FBGs), written with the phase mask technique, are presented to provide information about the resultant refractive index variations present in each case. Use of different fiber types using two distinct phase masks producing four Type I FBGs and a Type In FBG allowed similarities and differences in these FBG images due to variations in the Talbot diffraction patterns produced to be studied. PMID:26836080

  4. Analysis of transmission mode of a matched fiber Bragg grating interrogation scheme.

    PubMed

    Wade, Scott A; Attard, Daniel P; Stoddart, Paul R

    2010-08-20

    A detailed investigation has been undertaken into the transmission mode of the matched fiber Bragg grating interrogation scheme with respect to its use in optical fiber sensor applications. Analytical and numerical models of the scheme have been developed. Experimental studies presented include the effect of the spectral characteristics of the gratings on system performance, results of strain and compression calibrations, a scheme to correct for intensity fluctuations, and the correction of temperature-induced shifts by collocating sensor and reference gratings. The results are in good agreement with a simplified model of the transmission mode. The analysis provides quantitative relationships between key sensor design parameters, such as sensitivity and measurement range as a function of grating bandwidth. PMID:20733619

  5. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop.

    PubMed

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-07-29

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems.

  6. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop

    PubMed Central

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-01-01

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems. PMID:26230700

  7. Grapefruit photonic crystal fiber sensor for gas sensing application

    NASA Astrophysics Data System (ADS)

    Tao, Chuanyi; Wei, Heming; Zhu, Yinian; Krishnaswamy, Sridhar

    2016-05-01

    Use of long period gratings (LPGs) formed in grapefruit photonic crystal fiber (PCF) with thin-film overlay coated on the inner surface of air holes for gas sensing is demonstrated. The finite-element method was used to numerically simulate the grapefruit PCF-LPG modal coupling characteristics and resonance spectral response with respect to the refractive index of thin-film inside the holey region. A gas analyte-induced index variation of the thin-film immobilized on the inner surface of the holey region of the fiber can be observed by a shift of the resonance wavelength. As an example, we demonstrate a 2,4-dinitrotoluene (DNT) sensor using grapefruit PCF-LPGs. The sensor exhibits a wavelength blue-shift of ˜820 pm as a result of exposure to DNT vapor with a vapor pressure of 411 ppbv at 25°C, and a sensitivity of 2 pm ppbv-1 can be achieved.

  8. Photorefractive Bragg gratings in nematic liquid crystals aligned by a magnetic field

    SciTech Connect

    Wiederrecht, G.P.; Wasielewski, M.R. |

    1999-06-01

    Photorefractive Bragg gratings are observed in low-molar-mass nematic liquid crystals doped with electron donor and acceptor molecules. This is accomplished by alignment of the nematic liquid crystals in a 0.3 T magnetic field, which produces thicker homeotropic aligned samples than traditional surfactant techniques. Grating fringe spacings as low as 3.7 {mu}m are achieved with 176-{mu}m-thick samples, producing grating {ital Q} values of 33. Up to this point, low molar mass nematic liquid crystals have exhibited photorefractive gratings with Q{le}1. Asymmetric two-beam coupling and photoconductivity experiments are performed to verify the photorefractive origin of the gratings. {copyright} {ital 1999 American Institute of Physics.}

  9. Theoretical and experimental investigation of fiber Bragg gratings with different lengths for ultrasonic detection

    NASA Astrophysics Data System (ADS)

    Yu, Zhouzhou; Jiang, Qi; Zhang, Hao; Wang, Junjie

    2016-06-01

    In this paper, the response of fiber Bragg gratings (FBGs) subjected to the ultrasonic wave has been theoretically and experimentally investigated. Although FBG sensors have been widely used in the ultrasonic detection for practical structural health monitoring, the relationship between the grating length and ultrasonic frequency is not yet to be obtained. To address this problem, an ultrasound detection system based on FBGs is designed and the response sensitivity of different lengths gratings are detected. Experimental results indicate that the grating with 3 mm length has a higher sensitivity when detecting high frequency ultrasonic wave, and the amplitude can be up to 0.6 mV. The 10 mm length grating has better detection sensitivity for low frequency ultrasonic wave and the amplitude is 0.8 mV. The results of this analysis provide useful tools for high sensitivity ultrasound detection in damage detection systems.

  10. Development of Interpretation Algorithm for Optical Fiber Bragg Grating Sensors for Composite Structures

    NASA Astrophysics Data System (ADS)

    Peters, Kara

    2002-12-01

    Increasingly, optical fiber sensors, and in particular Bragg grating sensors, are being used in aerospace structures due to their immunity to electrical noise and the ability to multiplex hundreds of sensors into a single optical fiber. This significantly reduces the cost per sensor as the number of fiber connections and demodulation systems required is also reduced. The primary objective of this project is to study the effects of mounting issues such as adhesion, surface roughness, and high strain gradients on the interpretation of the measured strain. This is performed through comparison with electrical strain gage benchmark data. The long-term goal is to integrate such optical fiber Bragg grating sensors into a structural integrity monitoring system for the 2nd Generation Reusable Launch Vehicle. Previously, researchers at NASA Langley instrumented a composite wingbox with both optical fiber Bragg grating sensors and electrical strain gages during laboratory load-to-failure testing. A considerable amount of data was collected during these tests. For this project, data from two of the sensing optical fibers (each containing 800 Bragg grating sensors) were analyzed in detail. The first fiber studied was mounted in a straight line on the upper surface of the wingbox far from any structural irregularities. The results from these sensors showed a relatively large amount of noise compared to the electrical strain gages, but measured the same averaged strain curve. It was shown that the noise could be varied through the choice of input parameters in the data interpretation algorithm. Based upon the assumption that the strain remains constant along the gage length (a valid assumption for this fiber as confirmed by the measured grating spectra) this noise was significantly reduced. The second fiber was mounted on the lower surface of the wingbox in a pattern that circled surface cutouts and ran close to sites of impact damage, induced before the loading tests. As

  11. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 2; Chemical Sensing Using Optical Fibers with Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-01-01

    Part 1 of this two part series described the fabrication and calibration of Bragg gratings written into a single mode optical fiber for use in strain and temperature monitoring. Part 2 of the series describes the use of identical fibers and additional multimode fibers, both with and without Bragg gratings, to perform near infrared spectroscopy. The demodulation system being developed at NASA Langley Research Center currently requires the use of a single mode optical fiber. Attempts to use this single mode fiber for spectroscopic analysis are problematic given its small core diameter, resulting in low signal intensity. Nonetheless, we have conducted a preliminary investigation using a single mode fiber in conjunction with an infrared spectrometer to obtain spectra of a high-performance epoxy resin system. Spectra were obtained using single mode fibers that contained Bragg gratings; however, the peaks of interest were barely discernible above the noise. The goal of this research is to provide a multipurpose sensor in a single optical fiber capable of measuring a variety of chemical and physical properties.

  12. Anomalous bending effect in photonic crystal fibers

    PubMed Central

    Tu, Haohua; Jiang, Zhi; Marks, Daniel. L.; Boppart, Stephen A.

    2010-01-01

    An unexpected transmission loss up to 50% occurs to intense femtosecond pulses propagating along an endlessly single-mode photonic crystal fiber over a length of 1 m. A specific leaky-fiber mode gains amplification along the fiber at the expense of the fundamental fiber mode through stimulated four-wave mixing and Raman scattering, leading to this transmission loss. Bending near the fiber entrance dissipates the propagating seed of this leaky mode, preventing the leaky mode amplification and therefore enhancing the transmission of these pulses. PMID:18542666

  13. Practical considerations for a four-channel multiplexed Bragg grating fiber sensor system

    NASA Astrophysics Data System (ADS)

    Alavie, A. Tino; Ohn, Myo M.; Glennie, Derek J.; Karr, Shawn E.; Maaskant, Robert; Fishbein, G.; Lee, R.; Huang, Shang Yuan; Measures, Raymond M.

    1994-02-01

    A multichannel Bragg grating fiber laser demodulation system capable of interrogating four or more Bragg grating sensors for strain and temperature monitoring has been designed and developed. System configuration and various practical considerations for a field deployable system are discussed. Preliminary data indicates a dynamic strain range in excess of 5000 (mu) (epsilon) at a resolution of 1 (mu) (epsilon) . Both the strain dynamic range and resolution are easily modified.

  14. Dynamic index modulation mechanism in polarization-maintained fiber Bragg gratings induced by transverse acoustic waves.

    PubMed

    Miao, Ren; Zhang, Wei; Feng, Xue; Zhao, Jianhui; Liu, Xiaoming

    2009-08-20

    A novel index modulation mechanism of polarization-maintained fiber Bragg gratings based on the microbend of stress members induced by a transverse acoustic wave is proposed and investigated experimentally. The index modulation leads to a series of ghost gratings with specific polarization, whose wavelengths can be tuned by the acoustic wave frequency and whose intensities depend on the vibration direction of the transverse acoustic wave. Our method provides a novel way to achieve polarization-dependent narrowband acousto-optic tunable filters.

  15. Long period gratings based frequency selective interrogation of micro-resonators along the same fiber

    NASA Astrophysics Data System (ADS)

    Farnesi, D.; Chiavaioli, F.; Baldini, F.; Cosi, F.; Righini, G. C.; Soria, S.; Trono, C.; Nunzi Conti, G.

    2016-03-01

    A novel optical fiber coupler to whispering gallery mode (WGM) micro-resonators, which allows frequency selective addressing of different micro-resonators along the same fiber, is proposed. The coupling unit is based on a pair of identical long period fiber gratings (LPGs) and a thick adiabatic taper (>15 μm in waist) in between, where evanescent coupling from cladding modes to WGMs takes place. This robust unit can be replicated more times along the same fiber, simply cascading LPGs with different bands. Independent addressing of two different resonators along the same fiber is demonstrated.

  16. High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal.

    PubMed

    Yan, Jin; Li, Yan; Wu, Shin-Tson

    2011-04-15

    We demonstrate a tunable phase grating using a polymer-stabilized blue phase liquid crystal. Because of the electric-field-induced rectangularlike phase profile, a high diffraction efficiency of 40% is achieved. Moreover, this device shows submillisecond response time. The proposed tunable phase grating holds great potential for photonics and display applications. PMID:21499371

  17. Fabrication of liquid crystal gratings based on photoalignment technology

    NASA Astrophysics Data System (ADS)

    Lu, Yan-Qing; Hu, Wei; Srivastava, Abhishek; Chigrinov, Vladimir G.

    2013-03-01

    A serial of LC gratings are fabricated mainly based on photoalignment, which include (1) Nematic LC grating with alternating 90° twisted nematic (TN) regions and homogeneous alignment (PA). Both 1D and 2D diffraction gratings are demonstrated by periodic photoalignment of sulfonic azo-dye (SD1) films with a linearly polarized light beam. (2) A polarization independent of 1D/2D LC gratings with alternate orthogonal homogeneously aligned regions. No polarizer is employed. (3) A polarizer-free submillisecond response grating employing dual-frequency LC (DFLC) together with patterned hybrid aligned nematic (HAN) structures. To obtain instantly controllable LC microstructures rather than simple gratings, a digital micro-mirror device (DMD) based a micro-lithography system is developed. It may generate arbitrary micro-images on photoalignment layers. Besides normal phase gratings, more complex 2D patterns including quasicrystal structure are demonstrated, which give us more freedom to develop microstructured LC based photonic devices.

  18. Femtosecond direct-writing of low-loss fiber Bragg gratings using a continuous core-scanning technique.

    PubMed

    Williams, Robert J; Krämer, Ria G; Nolte, Stefan; Withford, Michael J

    2013-06-01

    We report the inscription of low-loss fiber Bragg gratings using focused femtosecond (fs) pulses and a continuous core-scanning technique. This direct-write technique produces high-fidelity Type I-IR gratings that share the inherent advantages of other direct-write methods, such as the point-by-point (PbP) method, for which the grating period is a free parameter. However, here we demonstrate an order of magnitude improvement in scattering loss compared to PbP gratings, to a level comparable with that of phase-mask-based fs inscription. A first-order grating was inscribed in standard telecommunications fiber with -49 dB transmission at the Bragg wavelength and 0.1 dB broadband scattering loss. Potential application of these gratings to large-mode-area fibers and chirped grating fabrication are highlighted.

  19. Influence of photo-inscription conditions on the radiation-response of fiber Bragg gratings.

    PubMed

    Morana, Adriana; Girard, Sylvain; Marin, Emmanuel; Lancry, Matthieu; Marcandella, Claude; Paillet, Philippe; Lablonde, Laurent; Robin, Thierry; Williams, Robert J; Withford, Michael J; Boukenter, Aziz; Ouerdane, Youcef

    2015-04-01

    We compared the sensitivity to X-rays of several fiber Bragg gratings (FBGs) written in the standard telecommunication fiber Corning SMF28 with different techniques. Standard gratings were manufactured with phase-mask and UV lasers, continuum wave (cw) at 244 nm or pulsed in the nanosecond domain at 248 nm, in a pre-hydrogenated fiber. Others gratings were written by exposures to a femtosecond IR-laser (800 nm), with both phase-mask and point by point techniques. The response of these FBGs was studied under X-rays at room temperature and 100°C, by highlighting their similarities and differences. Independently of the inscription technique, the two types of fs-FBGs have showed no big difference up to 1 MGy(SiO(2)) dose. A discussion on the causes of the radiation-induced peak change is also reported. PMID:25968704

  20. Stimulated Brillouin scattering in ultra-long distributed feedback Bragg gratings in standard optical fiber.

    PubMed

    Loranger, Sébastien; Lambin-Iezzi, Victor; Wahbeh, Mamoun; Kashyap, Raman

    2016-04-15

    Distributed feedback (DFB) fiber Bragg gratings (FBG) are widely used as narrow-band filters and single-mode cavities for lasers. Recently, a nonlinear generation has been shown in 10-20 cm DFB gratings in a highly nonlinear fiber. First, we show in this Letter a novel fabrication technique of ultra-long DFBs in a standard fiber (SMF-28). Second, we demonstrate nonlinear generation in such gratings. A particular inscription technique was used to fabricate all-in-phase ultra-long FBG and to implement reproducible phase shift to form a DFB mode. We demonstrate stimulated Brillouin scattering (SBS) emission from this DFB mode and characterize the resulting laser. It seems that such a SBS based DFB laser stabilizes a pump's jittering and reduces its linewidth. PMID:27082348

  1. Fiber-optical grating sensors for wind turbine blades: a review

    NASA Astrophysics Data System (ADS)

    Glavind, Lars; Olesen, Ib Svend; Skipper, Bjarne Funch; Kristensen, Martin

    2013-03-01

    With the rapid growth of wind turbines and focus on maintenance costs structural measurements are becoming essential. Fiber-optical sensors have physical properties that make them suitable for embedding in wind turbine blades, such as small size and immunity to electrical interferences. Fiber-optical grating sensors can be utilized to provide important information regarding strain, temperature, and curvature of the blades, which can be applied in condition-monitoring to detect fatigue failure and furthermore for optimization of the production from the wind turbine. We provide an overview of the current status and a discussion on research and implementation of fiber Bragg gratings and long-period gratings in wind turbine blade sensors.

  2. Determination of the nonlinear refractive index of multimode silica fiber with a dual-line ultra-short pulse laser source by using the induced grating autocorrelation technique.

    PubMed

    Traore, Aboubakar; Lalanne, Elaine; Johnson, Anthony M

    2015-06-29

    We measured, within 6% accuracy, the nonlinear refractive index (n2) of 10 meter long multimode silica fiber of 17μm core diameter, using a modified induced grating autocorrelation technique (IGA). This measurement technique, based on time-delayed two beam coupling in a photorefractive crystal has been used to accurately measure n2 in short lengths of single mode fibers. For the first time to our knowledge, IGA is used to measure n2 of multimode fiber with a passively modelocked Nd:YVO4 laser operating with a dual-line near 1342 nm. PMID:26191721

  3. Simple system for evaluating retardation of liquid crystal cells using grating type liquid crystal polarization splitters

    NASA Astrophysics Data System (ADS)

    Honma, Michinori; Nose, Toshiaki

    2016-04-01

    We propose a unique optical system for measuring the retardation of birefringent films using a pair of liquid crystal (LC) gratings; that is, the examined birefringent films are inserted between two LC gratings. Because the LC grating functions as a polarization beam splitter for circularly polarized light, the proposed system is optically equivalent to the measurement system using a pair of two circular polarizers. First, the polarization splitting performance of the LC grating is discussed. It is found that a sufficiently high voltage (such that the retardation is less than a half wavelength) has to be applied for the almost pure circularly polarized diffracted light. Next, the measurement of the retardation of a homogeneous LC cell as an examined birefringent film was demonstrated using the proposed method. The proposed method is revealed to have the same measurement performance as that of the conventional method using a pair of linear polarizers and has an advantage that there is no need for the optic axis of the test birefringent specimen to be set at a specific angle.

  4. Power-compensated displacement sensing based on single mode-multimode fiber Bragg grating structure

    NASA Astrophysics Data System (ADS)

    Sun, An; Wu, Zhishen; Huang, Huang

    2013-01-01

    In this paper, power-compensated displacement sensing is proposed and investigated experimentally based on single mode-multimode fiber Bragg grating (FBG) structure, which is fabricated by a single mode fiber and an FBG written on 105/125 μm graded-index multimode fiber (MMF). Experimental results verify that the reflected peak power of multiple wavelengths in single mode-multimode fiber Bragg grating structure shows different response to displacement induced bending of transmitting multimode fiber as the result of multimode interference (MMI). By employing different bending responses between multiple wavelengths of multimode FBG, ratiometric detection based high sensitive displacement measurement can be achieved, which provides a simple and practical method for displacement sensing and meanwhile a potential solution for multi-parameter measurement.

  5. Distributed light delivery and detection via single optical fiber and tilted grating

    NASA Astrophysics Data System (ADS)

    Pashaie, Ramin

    2014-03-01

    A passive fiber-optic-based device is designed and analyzed, capable of delivering and detecting light separately or simultaneously at discrete points of interest along the optical axis of a fiber. This goal is achieved by implementation of multiple finite-length tilted gratings inside the core of a single-mode fiber. Each grating is tuned to function as a leaky electromagnetic resonator that resonates at particular wavelength and partially radiates the optical power to the medium surrounding the fiber. First, the basic element of such radiators is theoretically analyzed and a sequence of justifiable approximations are presented to measure the characteristic parameters of the system. Next, a set of equations are developed to provide a logical procedure for the design. This device has several potential applications in the field of fiber optic sensors. Few practical examples of such applications, particularly for optical stimulation of cells and fluorescence signal recording in sensitive tissues including the brain, are studied.

  6. Performance of a single reflective grating-based fiber optic accelerometer

    NASA Astrophysics Data System (ADS)

    Lee, Yeon-Gwan; Kim, Dae-Hyun; Kim, Chun-Gon

    2012-04-01

    This paper presents a single reflective grating-based fiber optic accelerometer that can monitor the low-frequency acceleration of civil engineering structures. A simpler sensor structure was realized by employing a single reflective grating panel and two optical fibers as transceivers rather than the moiré fringe fiber optic accelerometer, which is composed of two gratings and four optical fibers. The simplified layout contributes to resolving the issues of space restraints during installation and complex cabling problems in transmission of fiber optic accelerometers. The measured oscillated displacement and sinusoidal acceleration from the proposed fiber optic sensor demonstrated good agreement with those of a commercial laser displacement sensor and an accelerometer without electromagnetic interference. The developed fiber optic accelerometer can be used in frequency ranges below 4 Hz within a 5% error margin and high sensitivity of 33.33 rad G-1. Furthermore, in comparison with the conventional transmission fiber optic accelerometer design, the proposed scheme's cable design is simplified by 50%.

  7. Gelator-doped liquid-crystal phase grating with multistable and dynamic modes

    SciTech Connect

    Lin, Hui-Chi Yang, Meng-Ru; Tsai, Sheng-Feng; Yan, Shih-Chiang

    2014-01-06

    We demonstrate a gelator-doped nematic liquid-crystal (LC) phase grating, which can be operated in both the multistable mode and the dynamic mode. Thermoreversible association and dissociation of the gelator molecules can vary and fix the multistable diffraction efficiencies of the gratings. A voltage (V) can also be applied to modulate dynamically the diffraction efficiencies of the grating, which behaves as a conventional LC grating. Experimental results show that the variations of the diffraction efficiencies in the multistable and dynamic modes are similar. The maximum diffraction efficiency is approximately 30% at V = 2 V.

  8. Magnetic field sensor based on fiber Bragg grating with a spiral microgroove ablated by femtosecond laser.

    PubMed

    Dai, Yutang; Yang, Minghong; Xu, Gang; Yuan, Yinquan

    2013-07-15

    A novel magnetic field sensor based on Terfenol-D coated fiber Bragg grating with spiral microstructure was proposed and demonstrated. Through a specially-designed holder, the spiral microstructure was ablated into the fiber Bragg grating (FBG) cladding by femtosecond laser. Due to the spiral microstructure, the sensitivity of FBG coated with magnetostrictive film was enhanced greatly. When the spiral pitch is 50 μm and microgroove depth is 13.5 μm, the sensitivity of the magnetic field sensor is roughly 5 times higher than that of non-microstructured standard FBG. The response to magnetic field is reversible, and could be applicable for magnetic field detection.

  9. Linear FBG interrogation with a wavelength-swept fiber laser and a volume phase grating spectrometer

    NASA Astrophysics Data System (ADS)

    Kim, Hyunjin; Song, Minho

    2011-05-01

    We propose a novel FBG (fiber Bragg grating) sensor system that uses a tunable wavelength laser and a volume phase grating spectrometer. The effect of nonlinear wavelength scanning and uneven power profile of the fiber laser, which substantially degrades the measurement accuracy, is minimized by using a spectrometer demodulation. The constructed sensor system showed linear output according to the Bragg wavelength variation, and showed much higher signal-to-noise ratio compared to the conventional spectrometer demodulation which used much dimmer broadband light sources.

  10. In-fiber Fabry-Perot refractometer assisted by a long-period grating.

    PubMed

    Mosquera, L; Sáez-Rodriguez, D; Cruz, J L; Andrés, M V

    2010-02-15

    We present an optical fiber refractometer based on a Fabry-Perot interferometer defined by two fiber Bragg gratings and an intracavity long-period grating that makes the light confined in the resonator interact with the surrounding medium. The external refractive index is monitored by the resonant frequencies of the Fabry-Perot interferometer, which can be measured either in transmission or in reflection. In this first experiment, wavelength shifts measured with a resolution of 0.1 pm have allowed one to establish a refractive index detection limit of 2.1x10(-5).

  11. Proof of Concept of Impact Detection in Composites Using Fiber Bragg Grating Arrays

    PubMed Central

    Gomez, Javier; Jorge, Iagoba; Durana, Gaizka; Arrue, Jon; Zubia, Joseba; Aranguren, Gerardo; Montero, Ander; López, Ion

    2013-01-01

    Impact detection in aeronautical structures allows predicting their future reliability and performance. An impact can produce microscopic fissures that could evolve into fractures or even the total collapse of the structure, so it is important to know the location and severity of each impact. For this purpose, optical fibers with Bragg gratings are used to analyze each impact and the vibrations generated by them. In this paper it is proven that optical fibers with Bragg gratings can be used to detect impacts, and also that a high-frequency interrogator is necessary to collect valuable information about the impacts. The use of two interrogators constitutes the main novelty of this paper. PMID:24021969

  12. In-fiber Fabry-Perot refractometer assisted by a long-period grating.

    PubMed

    Mosquera, L; Sáez-Rodriguez, D; Cruz, J L; Andrés, M V

    2010-02-15

    We present an optical fiber refractometer based on a Fabry-Perot interferometer defined by two fiber Bragg gratings and an intracavity long-period grating that makes the light confined in the resonator interact with the surrounding medium. The external refractive index is monitored by the resonant frequencies of the Fabry-Perot interferometer, which can be measured either in transmission or in reflection. In this first experiment, wavelength shifts measured with a resolution of 0.1 pm have allowed one to establish a refractive index detection limit of 2.1x10(-5). PMID:20160835

  13. Reflectivity of transient Bragg reflection gratings in fiber laser with laser-wavelength self-sweeping.

    PubMed

    Peterka, P; Honzátko, P; Koška, P; Todorov, F; Aubrecht, J; Podrazký, O; Kašík, I

    2014-12-01

    We present a method for the estimation of the reflection spectra of transient gratings in rare-earth doped fiber lasers having a self-sweeping of laser wavelength. We show that high reflectivities of several tens of percent can be achieved. An example of this is demonstrated through the use of an experimental Yb-doped Fabry-Perot fiber laser. The gratings' spectra are highly asymmetric due to the apodization of the refractive index modulation. The importance of the self-sweeping regime for triggering self-Q-switched laser instabilities is discussed. PMID:25606932

  14. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation.

    PubMed

    Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong

    2015-07-09

    An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity.

  15. All-fiber 10 MHz acousto-optic modulator of a fiber Bragg grating at 1060 nm wavelength.

    PubMed

    Silva, Ricardo E; Tiess, Tobias; Becker, Martin; Eschrich, Tina; Rothhardt, Manfred; Jäger, Matthias; Pohl, Alexandre A P; Bartelt, Hartmut

    2015-10-01

    Acousto-optic modulation of a 1 cm fiber Bragg grating at 10.9 MHz frequency and 1065 nm wavelength is demonstrated for the first time. A special modulator design is employed to acoustically induce a dynamic radial long period grating which couples power of the fundamental mode to the higher-order modes supported by the Bragg grating. A modulated reflection band with a depth of 16 dB and 320 pm bandwidth has been achieved. The results indicate a higher modulation frequency compared to previous studies using flexural acoustic waves. In addition, the reduction of the grating length and the modulator size points to compact and faster acousto-optic modulators. PMID:26480112

  16. Novel methods for simultaneous strain and temperature measurements with optical fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Frank, Andreas; Nellen, Philipp M.; Sennhauser, Urs J.

    1999-12-01

    We report on feasibility studies of two new approaches for simultaneous strain and temperature measurements with optical fiber Bragg gratings. In sensor applications fiber Bragg gratings cannot be thermally isolated. Therefore temperature has to be compensated or measured simultaneously with the measurand of interest. In strain sensing this is often done by measuring the wavelength response of a second Bragg grating attached to an unstrained sample specimen and comparing its response to response of the strained sample. This method is very accurate. However, often it is not possible or difficult to have unstrained samples, e.g., in rockbolt anchors with embedded fiber Bragg gratings. We propose two new simultaneous measurement concepts and compare them to known concepts. The first investigated method uses the different sensitivities to strain and temperature of the main peak of a Bragg grating in transmission compared to the back-reflected cladding modes. We will present first results of simultaneous strain and temperature measurements over a range from 2 degrees Celsius to 95 degrees Celsius up to 3500 micrometer/m in strain. This method leads to a combined resolution in temperature and strain of 4 degrees Celsius and 35 micrometer, respectively. The second method is based on two low reflectivity gratings. They are in close vicinity to each other in the fiber. Both have a small refractive index modulation of about 2 (DOT) 10-4, but one was homogeneously post-illuminated and has an increased mean refractive index. We will present first results indicating that the additional UV-illumination changes temperature- and strain-sensitivity of the post-illuminated Bragg grating slightly.

  17. Fiber Bragg grating writing technique for multimode optical fibers providing stimulation of few-mode effects in measurement systems

    NASA Astrophysics Data System (ADS)

    Bourdine, Anton V.; Vasilets, Alexander A.; Burdin, Vladimir A.; Morozov, Oleg G.; Nureev, Ilnur I.; Kuznetzov, Artem A.; Faskhutdinov, Lenar M.; Kafarova, Anastasia M.; Minaeva, Alina Y.; Sevruk, Nikita L.

    2016-03-01

    This work is concerned with fiber Bragg grating (FBG) writing technique developed for graded-index multimode optical fibers applied in measurement systems based on a few-mode effects. We present some results of experimental approbation of proposed technique with Bragg wavelength 1310 and 1550 nm on samples of graded-index multimode optical fibers 50/125 of both new-generations Cat. OM2+/OM3 and old Cat. OM2 with preliminary measured refractive index profiles. While the first group fibers of Cat. OM2+/OM3 was characterized by almost ideal smooth graded refractive index profile and some fiber profile samples of this group contains thin central peak, the second fiber group profiles of Cat. OM2 differ by great central core defects representing dip or thick peak. Results of described FBG spectral response measurements under excitation of laser pigtailed by single-mode fiber are represented.

  18. Single- and two-phase flow characterization using optical fiber bragg gratings.

    PubMed

    Baroncini, Virgínia H V; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E M

    2015-01-01

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications. PMID:25789494

  19. Single- and Two-Phase Flow Characterization Using Optical Fiber Bragg Gratings

    PubMed Central

    Baroncini, Virgínia H.V.; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E.M.

    2015-01-01

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications. PMID:25789494

  20. Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides

    NASA Astrophysics Data System (ADS)

    Favreau, Julien; Durantin, Cédric; Fédéli, Jean-Marc; Boutami, Salim; Duan, Guang-Hua

    2016-03-01

    Silicon photonics has taken great importance owing to the applications in optical communications, ranging from short reach to long haul. Originally dedicated to telecom wavelengths, silicon photonics is heading toward circuits handling with a broader spectrum, especially in the short and mid-infrared (MIR) range. This trend is due to potential applications in chemical sensing, spectroscopy and defense in the 2-10 μm range. We previously reported the development of a MIR photonic platform based on buried SiGe/Si waveguide with propagation losses between 1 and 2 dB/cm. However the low index contrast of the platform makes the design of efficient grating couplers very challenging. In order to achieve a high fiber-to-chip efficiency, we propose a novel grating coupler structure, in which the grating is locally suspended in air. The grating has been designed with a FDTD software. To achieve high efficiency, suspended structure thicknesses have been jointly optimized with the grating parameters, namely the fill factor, the period and the grating etch depth. Using the Efficient Global Optimization (EGO) method we obtained a configuration where the fiber-to-waveguide efficiency is above 57 %. Moreover the optical transition between the suspended and the buried SiGe waveguide has been carefully designed by using an Eigenmode Expansion software. Transition efficiency as high as 86 % is achieved.

  1. Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor.

    PubMed

    Zhang, Wei; Webb, David; Peng, Gangding

    2012-04-15

    We demonstrate an intrinsic biochemical concentration sensor based on a polymer optical fiber Bragg grating. The water content absorbed by the polymer fiber from a surrounding solution depends on the concentration of the solution because of the osmotic effect. The variation of water content in the fiber causes a change in the fiber dimensions and a variation in refractive index and, therefore, a shift in the Bragg wavelength. Saline solutions with concentration from 0% to 22% were used to demonstrate the sensing principle, resulting in a total wavelength shift of 0.9 nm, allowing high-resolution concentration measurements to be realized.

  2. Spectral interference fringes in chirped large-mode-area fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Poozesh, Reza; Madanipour, Khosro; Vatani, Vahid

    2016-09-01

    Spectral interference fringes were experimentally observed in chirped large mode area fiber Bragg grating (CFBG) in the overlapping region of the reflected spectrum of fiber modes by a high resolution spectrometer. It was demonstrated that the interference is due to optical path difference of the reflected modes in slight chirped FBGs. By assuming chirped fiber Bragg gratings as a Fabry-Perot (FP) cavity, free spectral range (FSR) of FP was calculated 0.08 nm which is matched with measurement very well. Furthermore, the experiments show that axial tension and temperature changes of the CFBG do not have observable effects on the magnitude of FSR, however coiling of the fiber deceases spectral interference fringe amplitude without sensible effect on FSR magnitude. The results of this work can be utilized in bending sensors.

  3. Sensitivity of Bragg gratings in birefringent optical fiber to transverse compression between conforming materials.

    PubMed

    Dennison, Christopher R; Wild, Peter M

    2010-04-20

    A theoretical and experimental investigation of the transverse load sensitivity of Bragg gratings in birefringent fibers to conforming contact is presented. A plane elasticity model is used to predict the contact dimensions between a conforming material and optical fiber and the principal stresses, indicating birefringence, created as a result of this contact. The transverse load sensitivity of commercially available birefringent fiber is experimentally measured for two cases of conforming contact. Theoretical and experimental results show that birefringent optical fiber can be used to make modulus-independent measurements of contact load. Therefore, Bragg gratings could be applied to conforming contact load measurements while avoiding some of the complications associated with existing contact sensors: specifically, the necessity to precalibrate by using materials with mechanical properties identical to those found in situ.

  4. Tapered and linearly chirped fiber Bragg gratings with co-directional and counter-directional resultant chirps

    NASA Astrophysics Data System (ADS)

    Osuch, Tomasz

    2016-05-01

    A method of spectral width tailoring of tapered fiber Bragg gratings is theoretically analyzed and experimentally verified. This concept is based on inscription grating structures in which synthesis of chirps comes from both taper profile and a linearly chirped phase mask used for grating inscription. It is shown that under UV exposure and depending on the orientation of the optical fiber taper relative to the variable-pitch phase mask, tapered and linearly chirped fiber Bragg gratings (TCFBG) with resultant co-directional or counter-directional chirps are achieved. Thus, both effects, those of reduction and enhancement of the grating chirp, as well as their influence on the grating spectral response, are presented. In particular, using the above approach TCFBG with significantly narrowed spectral width are shown. Moreover, fused tapered chirped FBG with relatively large waist diameter are shown having broad spectrum, something that prior to now was not attainable using previously developed techniques.

  5. Fiber optic Bragg grating sensor network installed in a concrete road bridge

    NASA Astrophysics Data System (ADS)

    Maaskant, Robert; Alavie, A. Tino; Measures, Raymond M.; Ohn, Myo M.; Karr, Shawn E.; Glennie, Derek J.; Wade, C.; Tadros, Gamil; Rizkalla, Sami

    1994-05-01

    The installation of a fiber optic Bragg grating strain sensor network in a new road bridge is described. These sensors are attached to prestressing tendons embedded in prefabricated concrete girders. Three types of prestressing tendons are being monitored: conventional steel strand and two types of carbon fibers reinforced plastic tendons. Sensor durability issues are reviewed and the installation is described. Initial measurements indicate that the sensors are operational and provide some early comparison of tendon performance.

  6. Simplified sensor design for temperature-strain discrimination using fiber Bragg gratings embedded in laminated composites

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cobo, L.; Marques, A. T.; Lopez-Higuera, J. M.; Santos, J. L.; Frazão, O.

    2013-05-01

    Several easy-to-manufacture designs based on a pair of Fiber Bragg Gratings structure embedded in Carbon Fiber Reinforced Plastic (CFRP) have been explored. These smart composites can be used for strain and temperature discrimination. A Finite Elements Analysis and Matlab software were used to study the mechanical responses and its optical behaviors. The results exhibited different sensitivity and using a matrix method it is possible to compensate the thermal drift in a real application keeping a simple manufacture process.

  7. Time division multiplexing of 106 weak fiber Bragg gratings using a ring cavity configuration

    NASA Astrophysics Data System (ADS)

    Wang, Zhi; Wen, Hongqiao; Luo, Zhihui; Dai, Yutang

    2016-06-01

    A time division multiplexing of 106 weak fibers Bragg gratings (FBGs) based on a ring resonant-cavity is demonstrated. A semiconductor optical amplifier is connected in the cavity to function as an amplifier as well as a switch. The 106 weak FBGs are written along a SMF-28 fiber in serial with peak reflectivity of about -30 dB and equal separations of 5 m. The crosstalk and spectral distortion are investigated through both theoretical analysis and experiments.

  8. Q-switched all-fiber laser based on magnetostriction modulation of a Bragg grating.

    PubMed

    Pérez-Millán, P; Díez, A; Andrés, M; Zalvidea, D; Duchowicz, R

    2005-06-27

    We report an actively Q-switched all-fiber laser based on magnetostriction modulation of a Bragg grating. The laser employs a pair of Bragg gratings as reflective mirrors, one of which is bonded to a magnetostrictive element. Lengthening of the magnetostrictive element when a magnetic field is applied shifts the Bragg wavelength of the grating, allowing control of the Q-factor of the cavity and, thus, performing active Q-switching. The magnetostrictive modulator is small, compact and requires less than 300 mW electrical drive power. Using erbium-doped fiber and a maximum pump power of 120 mW, Q-switch pulses of more than 1 W peak power were obtained, with a pulse repetition rate that can be continuously varied from 1 Hz to 125 kHz. PMID:19498492

  9. Asymmetric mode coupling in arc-induced long-period fiber gratings

    NASA Astrophysics Data System (ADS)

    Martinez-Rios, A.; Torres-Gomez, I.; Anzueto-Sanchez, G.; Selvas-Aguilar, R.; Duran-Ramirez, V. M.; Guerrero-Viramontes, J. A.; Toral-Acosta, D.; Salceda Delgado, G.; Castillo-Guzman, A.

    2016-04-01

    An extensive experimental study of the transverse modal field characteristics of mircrobend arc-induced long-period fiber gratings is presented. A wavelength scanning of the near-field intensity pattern inside each loss band in the transmission spectrum, shows a clear asymmetry in the transverse intensity distribution resulting from the fabrication method. This asymmetry reflects as a 10.7 dB difference in the notch depths for two orthogonal polarizations. Though a one year study, it was found that that environmental conditions during fabrication strongly affects the gratings characteristics. The best performance was obtained during the autumn season, where microbend arc-induced long-period fiber gratings produce wavelength filters with short lengths (between 10 and 30 periods for depths in excess of 20 dB) and the insertion loss may be as low as 0.12 dB.

  10. [INVITED] A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Xie, Zhenwei; Zhang, Mile; Cui, Hailin; He, Jingsuo; Feng, Shengfei; Wang, Xinke; Sun, Wenfeng; Ye, Jiasheng; Han, Peng; Zhang, Yan

    2016-04-01

    A miniaturized optical fiber microphone (OFM) is created by fabricating a concentric nanorings grating and microsprings structured half spherical diaphragm on the end facet of a single-mode fiber (SMF). The diaphragm is fabricated via the method of two-photon 3D lithography. The thin nanorings grating patterned diaphragm is actually a resonant grating-waveguide. It exhibits high reflectivity when resonance is excited. A microlens is fabricated at the core of the fiber, which is used to diverge the output light to make it be normally incident onto the diaphragm, then reflected back to the fiber. The intensities of the reflected back light will be changed if the resonant conditions of the resonant grating-waveguide are broken due to the sound pressure induced geometrical changes of the configuration. This makes such device be an acoustic sensor. The microsprings are designed to improve the sensitivity to the sound pressure. Acoustic inspections show that this OFM can detect the weak sound in air with frequency band from 400 to 2000 Hz.

  11. A grating-less, fiber-based oscillator that generates 25 nJ pulses

    SciTech Connect

    An, J; Kim, D; Dawson, J W; Messerly, M J; Barty, C J

    2006-12-28

    We report a passively mode-locked fiber-based oscillator that has no internal dispersion-compensating gratings. This design, the first of its kind, produces 25 nJ pulses at 80 MHz with the pulses compressible to 150 fs. The pulses appear to be self-similar and initial data imply that their energy is further scalable.

  12. Health monitoring of an Oregon historical bridge with fiber grating strain sensors

    NASA Astrophysics Data System (ADS)

    Seim, John M.; Udd, Eric; Schulz, Whitten L.; Laylor, Harold M.

    1999-05-01

    Twenty-eight fiber-grating sensors were used to instrument two reinforced concrete beams that were externally strengthened with composites on the historic Horsetail Falls Bridge in the Columbia River Gorge. Sensor assemblies were placed in the beams and mounted on the outside of the composite to provide performance data.

  13. Prediction of Composite Pressure Vessel Failure Location using Fiber Bragg Grating Sensors

    NASA Technical Reports Server (NTRS)

    Kreger, Steven T.; Taylor, F. Tad; Ortyl, Nicholas E.; Grant, Joseph

    2006-01-01

    Ten composite pressure vessels were instrumented with fiber Bragg grating sensors in order to assess the strain levels of the vessel under various loading conditions. This paper and presentation will discuss the testing methodology, the test results, compare the testing results to the analytical model, and present a possible methodology for predicting the failure location and strain level of composite pressure vessels.

  14. A packaged, low-cost, robust optical fiber strain sensor based on small cladding fiber sandwiched within periodic polymer grating.

    PubMed

    Chiang, Chia-Chin; Li, Chein-Hsing

    2014-06-01

    In the present study, a novel packaged long-period fiber grating (PLPFG) strain sensor is first presented. The MEMS process was utilized to fabricate the packaged optical fiber strain sensor. The sensor structure consisted of etched optical fiber sandwiched between two layers of thick photoresist SU-8 3050 and then packaged with poly (dimethylsiloxane) (PDMS) polymer material to construct the PLPFG strain sensor. The PDMS packaging material was used to prevent the glue effect, wherein glue flows into the LPFG structure and reduces coupling strength, in the surface bonding process. Because the fiber grating was packaged with PDMS material, it was effectively protected and made robust. The resonance attenuation dip of PLPFG grows when it is loading. This study explored the size effect of the grating period and fiber diameter of PLPFG via tensile testing. The experimental results found that the best strain sensitivity of the PLPFG strain sensor was -0.0342 dB/με, and that an R2 value of 0.963 was reached.

  15. Optics in Microstructured and Photonic Crystal Fibers

    NASA Astrophysics Data System (ADS)

    Knight, J. C.

    2008-10-01

    The development of optical fibers with two-dimensional patterns of air holes running down their length has reinvigorated research in the field of fiber optics. It has greatly—and fundamentally—broadened the range of specialty optical fibers, by demonstrating that optical fibers can be more "special" than previously thought. Fibers with air cores have made it possible to deliver energetic femtosecond-scale optical pulses, transform limited, as solitons, using single-mode fiber. Other fibers with anomalous dispersion at visible wavelengths have spawned a new generation of single-mode optical supercontinuum sources, spanning visible and near-infrared wavelengths and based on compact pump sources. A third example is in the field of fiber lasers, where the use of photonic crystal fiber concepts has led to a new hybrid laser technology, in which the very high numerical aperture available sing air holes have enabled fibers so short they are more naturally held straight than bent. This paper describes some of the basic physics and technology behind these developments, illustrated with some of the impressive demonstrations of the past 18 months.

  16. Impact of index change saturation on the growth behavior of higher-order type I ultrafast induced fiber Bragg gratings

    SciTech Connect

    Smelser, Christopher W.; Mihailov, Stephen J.; Grobnic, Dan

    2008-05-15

    Ultrafast infrared induced fiber Bragg gratings in a hydrogen-loaded SMF-28 fiber are shown to exhibit complex and, what we believe to be, novel spectral evolutions. It is believed that the induced grating peak profile in the fiber is nonsinusoidal as a result of the nonlinear absorption required to modify the material. Rouard's method is used to show that the observed spectral evolution is a consequence of the saturation of the nonsinusoidal index change profile.

  17. A switchable dual-wavelength fiber laser based on asymmetric fiber Bragg grating Fabry-Perot cavity with a SESAM

    NASA Astrophysics Data System (ADS)

    Huang, Kaiqiang; Li, Qi; Chen, Haiyan

    2016-04-01

    A switchable dual-wavelength fiber laser with an asymmetric fiber Bragg grating (FBG)-Fabry-Perot (FP) cavity based a semiconductor saturable absorber mirror (SESAM) is proposed and experimentally demonstrated. The proof of concept device consists of a FGB laser with an asymmetric FBG-FP cavity, a SESAM as mode loss modulator, and a intracavity FBG as wavelength selector by changing its operation temperature. The results demonstrate the new concept of dual-wavelength fiber laser based SESAM with asymmetric FBG-FP cavity and the technical feasibility.

  18. Fiber grating compression of giant-chirped nanosecond pulses from an ultra-long nanotube mode-locked fiber laser.

    PubMed

    Woodward, R I; Kelleher, E J R; Runcorn, T H; Loranger, S; Popa, D; Wittwer, V J; Ferrari, A C; Popov, S V; Kashyap, R; Taylor, J R

    2015-02-01

    We demonstrate that the giant chirp of coherent, nanosecond pulses generated in an 846 m long, all-normal dispersion, nanotube mode-locked fiber laser can be compensated using a chirped fiber Bragg grating compressor. Linear compression to 11 ps is reported, corresponding to an extreme compression factor of ∼100. Experimental results are supported by numerical modeling, which is also used to probe the limits of this technique. Our results unequivocally conclude that ultra-long cavity fiber lasers can support stable dissipative soliton attractors and highlight the design simplicity for pulse-energy scaling through cavity elongation.

  19. Sub-milliwatt sub-millisecond recording of population gratings in ytterbium-doped optical fibers at 976 nm

    NASA Astrophysics Data System (ADS)

    García Casillas, Daniel; Stepanov, Serguei

    2011-04-01

    We report effective formation of population gratings in ytterbium-doped fibers by coherent light at 976 nm, i.e. at the wavelength that is typically utilized for optical pumping of these fibers. The dynamic gratings need sub-mW cw laser power to be recorded and have comparable amplitude (absorption) and phase (refractive index) components. Given the spontaneous relaxation time of a Yb3+ meta-stable level of ~ 0.8 ms, the grating formation time proved also to be in the sub-ms region with the phase grating component significantly slower than the amplitude one.

  20. Fabrication of long period fiber gratings by electric arc for strain sensing applications

    NASA Astrophysics Data System (ADS)

    Pulido-Navarro, María. Guadalupe; Álvarez-Chávez, José Alfredo; Escamilla-Ambrosio, Ponciano Jorge

    2014-10-01

    Lately, there has been a huge demand for smart structures. In particular the interest has growth in those structures able to detect deterioration conditions and possible failure. Failure prevention requires an appropriate monitoring and maintenance system. Currently, there are available several types of sensors capable of detecting problems in structures, among them, sensors based on optical fibers have been proposed as they represent a non-invasive technique. Some optical fiber sensors are based on Bragg gratings. A grating is a periodical index perturbation of the fiber core which is most commonly achieved through UV radiation. Another technique used to fabricate the gratings, which has not been studied extensively, is electric arc. Therefore, in this work we propose the use of this technique to fabricate fiber optical sensors based on Long Period Fiber Gratings (LPFG). Manufacturing LPFG through electric arc has the advantage of being quite flexible, inexpensive, present very high temperature stability and can be applied to any type of optical fiber. LPFG with a period of 500 microns and 20 mm of length were fabricated through electric arc on standard monomode fibers with the help of a fusion machine and its spectrum was observed by an Optical Spectrum Analyzer (OSA). This type of LPFG is tunable by changing the fabrication parameters of the electric arc which in turns will vary its sensitivity to measure strain on structures when it is used as a sensor. Also, in this paper a theoretical and analytical examination of arc induced LPFG is presented. Mathematical analysis and simulation of the sensor based on LPFG were carried out using the software MATLAB.

  1. Sensitivity of contact-free fiber Bragg grating sensor to ultrasonic Lamb wave

    NASA Astrophysics Data System (ADS)

    Wee, Junghyun; Hackney, Drew; Peters, Kara; Wells, Brian; Bradford, Philip

    2016-04-01

    Networks of fiber Bragg grating (FBG) sensors can serve as structural health monitoring (SHM) systems for large-scale structures based on the collection of ultrasonic waves. The demodulation of structural Lamb waves requires a high signal-to-noise ratio because Lamb waves have a low amplitude. This paper investigates the signal transfer between Lamb waves propagating in an aluminum plate collected by an optical fiber containing a FBG. The fiber is bonded to the plate at locations away from the FBG. The Lamb waves are converted into longitudinal and flexural traveling waves propagating along the optical fiber, which are then transmitted to the Bragg grating. The signal wave amplitude is measured for different distances between the bond location and the Bragg grating. Bonding the optical fiber away from the FBG location and closer to the signal source produces a significant increase in signal amplitude, here measured to be 5.1 times that of bonding the Bragg grating itself. The arrival time of the different measured wave coupling paths are also calculated theoretically, verifying the source of the measured signals. The effect of the bond length to Lamb wavelength ratio is investigated, showing a peak response as the bond length is reduced compared to the wavelength. This study demonstrates that coupling Lamb waves into guided traveling waves in an optical fiber away from the FBG increases the signal-to-noise ratio of Lamb wave detection, as compared to direct transfer of the Lamb wave to the optical fiber at the location of the FBG.

  2. Fully continuous liquid crystal diffraction grating with alternating semi-circular alignment by imprinting.

    PubMed

    Kim, Jiyoon; Na, Jun-Hee; Lee, Sin-Doo

    2012-01-30

    We demonstrate a fully continuous liquid crystal (LC) grating device with the alternating semi-circular alignment which exhibits the switching effect between the diffraction orders independent of the thickness of the LC cell. The continuous phase modulation in the LC grating with the rotational symmetry was achieved on a micro-imprinted surface where the semi-circular alignment of the LC was spontaneously produced. Our LC grating device in the hybrid geometry exhibited the perfect continuity of the phase retardation and the switchable diffraction with the diffraction efficiency of 44% at ±1st orders as a function of an applied voltage. It was found that the symmetry of the input polarization direction with respect to the grating patterns results in the interchange between two symmetric grating configurations. PMID:22330540

  3. Liquid-crystal phase grating based on in-plane switching.

    PubMed

    Fujieda, I

    2001-12-01

    A simple phase grating is constructed by insertion of a liquid-crystal layer between two glass plates, upon one of which a pair of transparent interdigitated electrodes is formed. With a bias application, liquid-crystal molecules align themselves along the electric field lines, which are substantially parallel to the glass plates. By controlling the degree of this in-plane switching for the liquid-crystal molecules, one can generate various phase-shift distributions for the light passing through the device. The grating characteristics are altered accordingly. Versatile design and ease of fabrication are potential advantages of this device for some future applications. PMID:18364930

  4. A switchable circular polarizer based on zenithal bistable liquid crystal gratings

    NASA Astrophysics Data System (ADS)

    Zografopoulos, Dimitrios C.; Isić, Goran; Kriezis, Emmanouil E.; Beccherelli, Romeo

    2016-05-01

    A switchable circular polarizer for infrared telecom wavelengths based on zenithal bistable liquid crystal gratings is designed and investigated by employing the finite-element method for the study of full-wave light propagation and a tensorial formulation for the liquid crystal orientation. The handedness of the output circular polarization can be selected by switching between the two stable states of the liquid-crystal grating. Analysis of the spectral dependence and the tolerance of the polarizer’s performance with respect to deviations from the optimized geometry reveals the robustness of its polarizing properties, which stems from the non-resonant nature of its operation.

  5. Crystallization analysis for fiber/polymer composites

    NASA Astrophysics Data System (ADS)

    Raimo, Maria

    2016-05-01

    The peculiar nucleation behavior of low thermal conductivity polymer matrixes and the particular morphologies around fibers found in several composites, invalidate some assumptions invoked in the general description of the solidification kinetics of polycrystalline substances. The model of solidification universally adopted for polycrystalline substances, originally developed for metals, needs to be adapted also to account for large differences between polymers and fibers in thermoplastic composites. The extension of the classical phase transitions theory to fiber/polymer composites, in view of their specific thermal properties, allows to achieve reliable information on crystallization behavior and microstructure inside composites.

  6. Chalcogenide glass hollow core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Désévédavy, Frédéric; Renversez, Gilles; Troles, Johann; Houizot, Patrick; Brilland, Laurent; Vasilief, Ion; Coulombier, Quentin; Traynor, Nicholas; Smektala, Frédéric; Adam, Jean-Luc

    2010-09-01

    We report the first hollow core photonic crystal fibers (HC PCF) in chalcogenide glass. To design the required HC PCF profiles for such high index glass, we use both band diagram analysis to define the required photonic bandgap and numerical simulations of finite size HC PCFs to compute the guiding losses. The material losses have also been taken into account to compute the overall losses of the HC PCF profiles. These fibers were fabricated by the stack and draw technique from TeAsSe (TAS) glass. The fibers we drew in this work are composed of six rings of holes and regular microstructures. Two profiles are presented, one is known as a kagome lattice and the other one corresponds to a triangular lattice. Geometrical parameters are compared to the expected parameters obtained by computation. Applications of such fibers include power delivery or fiber sensors among others.

  7. Fiber Bragg grating sensing of detonation and shock experiments at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Rodriguez, G.; Sandberg, R. L.; Jackson, S. I.; Dattelbaum, D. M.; Vincent, S. W.; McCulloch, Q.; Martinez, R. M.; Gilbertson, S. M.; Udd, E.

    2013-05-01

    An all optical-fiber-based approach to measuring high explosive detonation front position and velocity is described. By measuring total light return using an incoherent light source reflected from a fiber Bragg grating sensor in contact with the explosive, dynamic mapping of the detonation front position and velocity versus time is obtained. We demonstrate two calibration procedures and provide several examples of detonation front measurements: PBX 9502 cylindrical rate stick, radial detonation front in PBX 9501, and PBX 9501 detonation along a curved meridian line. In the cylindrical rate stick measurement, excellent agreement with complementary diagnostics (electrical pins and streak camera imaging) is achieved, demonstrating accuracy in the detonation front velocity to below the 0.3% level when compared to the results from the pin data. In a similar approach, we use embedded fiber grating sensors for dynamic pressure measurements to test the feasibility of these sensors for high pressure shock wave research in gas gun driven flyer plate impact experiments. By applying well-controlled steady shock wave pressure profiles to soft materials such as PMMA, we study the dynamic pressure response of embedded fiber Bragg gratings to extract pressure amplitude of the shock wave. Comparison of the fiber sensor results is then made with traditional methods (velocimetry and electro-magnetic particle velocity gauges) to gauge the accuracy of the approach.

  8. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.

    PubMed

    Saleh, Amr A E; Sheikhoelislami, Sassan; Gastelum, Steven; Dionne, Jennifer A

    2016-09-01

    Subwavelength plasmonic apertures have been foundational for direct optical manipulation of nanoscale specimens including sub-100 nm polymeric beads, metallic nanoparticles and proteins. While most plasmonic traps result in two-dimensional localization, three-dimensional manipulation has been demonstrated by integrating a plasmonic aperture on an optical fiber tip. However, such 3D traps are usually inefficient since the optical mode of the fiber and the subwavelength aperture only weakly couple. In this paper we design more efficient optical-fiber-based plasmonic tweezers combining a coaxial plasmonic aperture with a plasmonic grating coupler at the fiber tip facet. Using full-field finite difference time domain analysis, we optimize the grating design for both gold and silver fiber-based coaxial tweezers such that the optical transmission through the apertures is maximized. With the optimized grating, we show that the maximum transmission efficiency increases from 2.5% to 19.6% and from 1.48% to 16.7% for the gold and silver structures respectively. To evaluate their performance as optical tweezers, we calculate the optical forces and the corresponding trapping potential on dielectric particles interacting with the apertures. We demonstrate that the enahncement in the transmission translates into an equivalent increase in the optical forces. Consequently, the optical power required to achieve stable optical trapping is significantly reduced allowing for efficient localization and 3D manipulation of sub-30 nm dielectric particles. PMID:27607663

  9. Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser.

    PubMed

    He, Jun; Wang, Yiping; Liao, Changrui; Wang, Qiaoni; Yang, Kaiming; Sun, Bing; Yin, Guolu; Liu, Shen; Zhou, Jiangtao; Zhao, Jing

    2015-05-01

    We demonstrate a highly birefringent phase-shifted fiber Bragg grating (PS-FBG) inscribed in H2-free fiber with a near-infrared femtosecond Gaussian laser beam and uniform phase mask. The PS-FBG was fabricated from an ordinary fiber Bragg grating (FBG) in a case in which overexposure was applied. The spectral evolution from FBG to FS-FBG was observed experimentally with a decrease in transmission loss at dip wavelength, blueshift of the dip wavelength, decrease in the cladding mode loss, and an increase in the insertion loss. A high birefringence was demonstrated experimentally with the existence of PS-FBG only in TM polarization. The formation of the PS-FBG may be due to a negative index change induced by the higher intensity in the center of the Gaussian laser beam. PMID:25927770

  10. Damage evaluation and analysis of composite pressure vessels using fiber Bragg gratings to determine structural health

    NASA Astrophysics Data System (ADS)

    Kunzler, Marley; Udd, Eric; Kreger, Stephen; Johnson, Mont; Henrie, Vaughn

    2005-05-01

    With the augmented use of high performance composite materials in critical structures, it has become increasingly important for 'smart' systems to monitor these materials and provide rapid evaluation. Using fiber Bragg gratings embedded into the weave structure of carbon fiber epoxy composites allow the capability to monitor these composites during manufacture, cure, general aging, and damage. Fiber optic sensors allow greater insight into damage progression and can be used to verify analytical models. This paper emphasizes the results of recent work in which multiple arrays of Bragg gratings were wound into composite vessels and monitored while the part was damaged. Based on the response of these sensors, algorithms were developed to identify the location of damage impacts. Results were verified against eddy current and ultrasonic NDE methods.

  11. Vibration measurement and mode analysis on concrete structures with embedded fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Tjin, Chuan S.; Moyo, Pilate; Zheng, Xiahua; Brownjohn, James M. W.

    2001-08-01

    This paper reports our work on the applications of fiber Bragg grating-based strain sensors for the vibration tests and mode analysis on concrete structures. The arrayed fiber grating strain sensors, which were wavelength-division-multiplexed along the fibers, were attached onto the reinforced bars (rebars) before concrete was poured in to form a 5.5m long, 0.3m wide, 0.15m deep reinforced concrete beam. The embedded sensors will provide quasi-distributed real-time dynamic strain information along the length of the beam. For verification with the FBG strain sensors, some electrical accelerometers were also placed on the top surface of the concrete beam. All the data from FBG sensors and electrical accelerometers were recorded and analyzed by a computer. In the experiments, a hammer and an electrical shaker were used to excite the structure. The experimental results obtained with the FBG sensors show good consistency with the theoretical analysis.

  12. Highly efficient spectrally encoded imaging using a 45° tilted fiber grating.

    PubMed

    Wang, Guoqing; Wang, Chao; Yan, Zhijun; Zhang, Lin

    2016-06-01

    A novel highly efficient, fiber-compatible spectrally encoded imaging (SEI) system using a 45° tilted fiber grating (TFG) is proposed and experimentally demonstrated for the first time, to the best of our knowledge. The TFG serves as an in-fiber lateral diffraction element, eliminating the need for bulky and lossy free-space diffraction gratings in conventional SEI systems. Under proper polarization control, due to the strong tilted reflection, the 45° TFG offers a diffraction efficiency as high as 93.5%. Our new design significantly reduces the volume of the SEI system and improves energy efficiency and system stability. As a proof-of-principle experiment, spectrally encoded imaging of a customer-designed sample (9.6  mm×3.0  mm) using the TFG-based system is demonstrated. The lateral resolution of the SEI system is measured to be 42 μm in our experiment.

  13. Phase population gratings recorded in ytterbium doped fiber at 1064 nm

    NASA Astrophysics Data System (ADS)

    Stepanov, Serguei; Plata Sánchez, Marcos

    2011-09-01

    For the first time, the experimental results on spatially uniform photo-induced refractive index changes Δn induced in ytterbium-doped optical fiber at the wavelength λ= 1064 nm were obtained and directly compared with the efficiency of the transient two-wave mixing (TWM) via phase population grating. It is shown that the TWM efficiency is in a reasonably good accordance with the theoretical evaluation based on the Dn measurements. Similar correspondence was also observed for a significantly weaker spatially uniform saturation of the fiber optical absorption and the TWM efficiency via absorption type population gratings. In contrast to similar data obtained earlier for erbium doped fibers, this allows us to assume that spatial diffusion of the excited state among Yb3+ is significantly less efficient than among Er3+ ions.

  14. Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing.

    PubMed

    Li, Jie; Wang, Hao; Sun, Li-Peng; Huang, Yunyun; Jin, Long; Guan, Bai-Ou

    2014-12-29

    We demonstrate the evolution of the Bragg gratings inscribed in Panda fibers with chemical etching. The resonance wavelengths can blueshift with cladding reduction similar to the conventional counterparts. But the wavelength separation between the two polarizations is co-determined by the stress and the asymmetric shape effects. The fast and slow axes of the fiber can be reversed with each other and zero birefringence can be achieved by chemical etching the structure. When the stress-applying parts of the fiber are removed, the finalizing grating can be exploited for the temperature-independent refractive index sensing, since the modes corresponding to the two polarizations exhibit the dissimilar responses to the external refractive index change but the same response to temperature. Our device is featured with easy achievement, spectral controllability, and relative robustness. PMID:25607160

  15. Highly efficient spectrally encoded imaging using a 45° tilted fiber grating.

    PubMed

    Wang, Guoqing; Wang, Chao; Yan, Zhijun; Zhang, Lin

    2016-06-01

    A novel highly efficient, fiber-compatible spectrally encoded imaging (SEI) system using a 45° tilted fiber grating (TFG) is proposed and experimentally demonstrated for the first time, to the best of our knowledge. The TFG serves as an in-fiber lateral diffraction element, eliminating the need for bulky and lossy free-space diffraction gratings in conventional SEI systems. Under proper polarization control, due to the strong tilted reflection, the 45° TFG offers a diffraction efficiency as high as 93.5%. Our new design significantly reduces the volume of the SEI system and improves energy efficiency and system stability. As a proof-of-principle experiment, spectrally encoded imaging of a customer-designed sample (9.6  mm×3.0  mm) using the TFG-based system is demonstrated. The lateral resolution of the SEI system is measured to be 42 μm in our experiment. PMID:27244373

  16. Beam-splitter switches based on zenithal bistable liquid-crystal gratings

    NASA Astrophysics Data System (ADS)

    Zografopoulos, Dimitrios C.; Beccherelli, Romeo; Kriezis, Emmanouil E.

    2014-10-01

    The tunable optical diffractive properties of zenithal bistable nematic liquid-crystal gratings are theoretically investigated. The liquid-crystal orientation is rigorously solved via a tensorial formulation of the Landau-de Gennes theory and the optical transmission properties of the gratings are investigated via full-wave finite-element frequency-domain simulations. It is demonstrated that by proper design the two stable states of the grating can provide nondiffracting and diffracting operation, the latter with equal power splitting among different diffraction orders. An electro-optic switching mechanism, based on dual-frequency nematic materials, and its temporal dynamics are further discussed. Such gratings provide a solution towards tunable beam-steering and beam-splitting components with extremely low power consumption.

  17. Beam-splitter switches based on zenithal bistable liquid-crystal gratings.

    PubMed

    Zografopoulos, Dimitrios C; Beccherelli, Romeo; Kriezis, Emmanouil E

    2014-10-01

    The tunable optical diffractive properties of zenithal bistable nematic liquid-crystal gratings are theoretically investigated. The liquid-crystal orientation is rigorously solved via a tensorial formulation of the Landau-de Gennes theory and the optical transmission properties of the gratings are investigated via full-wave finite-element frequency-domain simulations. It is demonstrated that by proper design the two stable states of the grating can provide nondiffracting and diffracting operation, the latter with equal power splitting among different diffraction orders. An electro-optic switching mechanism, based on dual-frequency nematic materials, and its temporal dynamics are further discussed. Such gratings provide a solution towards tunable beam-steering and beam-splitting components with extremely low power consumption.

  18. Beam-splitter switches based on zenithal bistable liquid-crystal gratings.

    PubMed

    Zografopoulos, Dimitrios C; Beccherelli, Romeo; Kriezis, Emmanouil E

    2014-10-01

    The tunable optical diffractive properties of zenithal bistable nematic liquid-crystal gratings are theoretically investigated. The liquid-crystal orientation is rigorously solved via a tensorial formulation of the Landau-de Gennes theory and the optical transmission properties of the gratings are investigated via full-wave finite-element frequency-domain simulations. It is demonstrated that by proper design the two stable states of the grating can provide nondiffracting and diffracting operation, the latter with equal power splitting among different diffraction orders. An electro-optic switching mechanism, based on dual-frequency nematic materials, and its temporal dynamics are further discussed. Such gratings provide a solution towards tunable beam-steering and beam-splitting components with extremely low power consumption. PMID:25375511

  19. Novel polyimide coated fiber Bragg grating sensing network for relative humidity measurements.

    PubMed

    Bai, Wei; Yang, Minghong; Dai, Jixiang; Yu, Haihu; Wang, Gaopeng; Qi, Chongjie

    2016-02-22

    A novel relative humidity (RH) sensing network based on ultra-weak fiber Bragg gratings (FBGs) is proposed and demonstrated. Experiment is demonstrated on a 5 serial ultra-weak FBGs sensing network chopped from a fiber array with 1124 FBGs. Experimental results show that the corresponding RH sensitivity varies from 1.134 to 1.832 pm/%RH when ambient environmental RH changes from 23.8%RH to 83.4%RH. The low-reflectance FBGs and time-division multiplexing (TDM) technology makes it possible to multiplex thousands of RH sensors in single optical fiber. PMID:26906986

  20. Novel polyimide coated fiber Bragg grating sensing network for relative humidity measurements.

    PubMed

    Bai, Wei; Yang, Minghong; Dai, Jixiang; Yu, Haihu; Wang, Gaopeng; Qi, Chongjie

    2016-02-22

    A novel relative humidity (RH) sensing network based on ultra-weak fiber Bragg gratings (FBGs) is proposed and demonstrated. Experiment is demonstrated on a 5 serial ultra-weak FBGs sensing network chopped from a fiber array with 1124 FBGs. Experimental results show that the corresponding RH sensitivity varies from 1.134 to 1.832 pm/%RH when ambient environmental RH changes from 23.8%RH to 83.4%RH. The low-reflectance FBGs and time-division multiplexing (TDM) technology makes it possible to multiplex thousands of RH sensors in single optical fiber.

  1. Bidirectional Wavelength Reconfigurable Module Based on Tunable Fiber Bragg Grating and Remote Pump Amplifier

    NASA Astrophysics Data System (ADS)

    Yu, Yi-Lin; Liaw, Shien-Kuei; Skaljo, Edvin; Le Minh, Hoa; Ghassemlooy, Zabih

    2014-09-01

    This article presents a novel bidirectional wavelength reconfigurable optical network utilizing a remotely pumped erbium-doped fiber amplifier and tunable fiber Bragg gratings. The system is experimentally demonstrated at a 10-Gb/s per channel over 20-km fiber span that verifies the metro-network range system performance. The achieved power penalty is less than 1 dB when compared to the back-to-back transmission link. An example of practical application where the proposed module is used as an add/drop multiplexer and a remote node in the bidirectional wavelength division multiplexing passive optical network system is described.

  2. Genetic algorithm for the inverse problem in synthesis of fiber gratings

    NASA Astrophysics Data System (ADS)

    Skaar, Johannes; Risvik, Knut M.

    1998-06-01

    A new method for synthesis of fiber gratings with advanced characteristic is proposed. The method is based on an optimizing genetic algorithm, and facilitates the task of weighting the different requirements to the filter spectrum. A classical problem in applied physics and engineering fields is the inverse problem. An example of such a problem is to determine a fiber grating index modulation profile corresponding to a given reflection spectrum. This is not a trivial problem, and a variety of synthesis algorithms has been proposed. For weak gratings, the synthesis problem of fiber gratings reduces to an inverse Fourier transform of the reflection coefficient. This is known as the first-order Born approximation, and applies only for gratings for which the reflectivity is small. Another solution to this problem was found by Song and Shin, who solved the coupled Gel'fand- Levitan-Marchenko (GLM) integral equations that appear in the inverse scattering theory of quantum mechanics. Their method is exact, but is restricted to reflection coefficients that can be expressed as a rational function. An iterative solution to the GLM equations was found by Peral et. al., yielding smoother coupling coefficients that the exact method. The algorithm is converging relatively fast, and gives satisfying results even for high reflectivity gratings. However, when specifying ideal, unachievable filter responses, it is desirable to have a weighting mechanisms, which makes it easier to weight the different requirements. For example, when synthesizing an optical bandpass filter, one may be interested in weighting linear phase more than sharp peaks. because the dispersion may be a more critical parameter. The iterative GLM method does not support such a mechanism in a satisfactory way.

  3. Simultaneous measurement of strain, temperature and refractive index based on multimode interference, fiber tapering and fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Oliveira, Ricardo; Osório, Jonas H.; Aristilde, Stenio; Bilro, Lúcia; Nogueira, Rogerio N.; Cordeiro, Cristiano M. B.

    2016-07-01

    We report the development of an optical fiber sensor capable of simultaneously measuring strain, temperature and refractive index. The sensor is based on the combination of two fiber Bragg gratings written in a standard single-mode fiber, one in an untapered region and another in a tapered region, spliced to a no-core fiber. The possibility of simultaneously measuring three parameters relies on the different sensitivity responses of each part of the sensor. The results have shown the possibility of measuring three parameters simultaneously with a resolution of 3.77 με, 1.36 °C and 5  ×  10‑4, respectively for strain, temperature and refractive index. On top of the multiparameter ability, the simple production and combination of all the parts involved on this optical-fiber-based sensor is an attractive feature for several sensing applications.

  4. Recovering strain readings from chirping fiber Bragg gratings in composite overwrapped pressure vessels

    NASA Astrophysics Data System (ADS)

    Strutner, Scott M.; Pena, Frank; Piazza, Anthony; Parker, Allen R.; Richards, W. Lance; Carman, Gregory P.

    2014-04-01

    This study reports on signal recovery of optical fiber Bragg gratings embedded in a carbon fiber composite overwrapped pressure vessel's (COPV) structure which have become chirped due to microcracks. COPVs are commonly used for the storage of high pressure liquids and gases. They utilize a thin metal liner to seal in contents, with a composite overwrap to strengthen the vessel with minimal additional mass. A COPV was instrumented with an array of surface mounted and embedded fiber Bragg gratings (FBGs) for structural health monitoring (SHM) via strain sensing of the material. FBGs have been studied as strain sensors for the last couple decades. Many of the embedded FBGs reflected a multi-peak, chirped response which was not able to be interpreted well by the current monitoring algorithm. Literature and this study found that the chirping correlated with microcracks. As loading increases, so does the number of chirped FBGs and microcracks. This study uses optical frequency domain reflectometry (OFDR) to demultiplex the array of FBGs, and then sub- divide individual FBGs. When a FBG is sub-divided using OFDR, the gratings' strain along its length is recovered. The sub-divided chirped FBGs have strain gradients along their length from microcracks. Applying this to all chirped gratings, nearly the entirety of the embedded sensors' readings can be recovered into a series of single peak responses, which show very large local strains throughout the structure. This study reports on this success in recovering embedded FBGs signal, and the strain gradient from microcracks.

  5. Development of In-Fiber Reflective Bragg Gratings as Shear Stress Monitors in Aerodynamic Facilities

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Sprinkle, Danny R.; Singh, Jag J.

    1998-01-01

    Bragg gratings centered at nominal wavelengths of 1290 nm and 1300 run were inscribed in a 9/125 microns germano-silicate optical fiber, using continuous wave frequency doubled Ar+ laser radiation at 244 nm. Such gratings have been used extensively as temperature and strain monitors in smart structures. They have, however, never been used for measuring aerodynamic shear stresses. As a test of their sensitivity as shear stress monitors, a Bragg fiber attached to a metal plate was subjected to laminar flows in a glass pipe. An easily measurable large flow-induced wavelength shift (Delta Lambda(sub B)) was observed in the Bragg reflected wavelength. Thereafter, the grating was calibrated by making one time, simultaneous measurements of Delta Lambda(sub B) and the coefficient of skin friction (C(sub f)) with a skin friction balance, as a function of flow rates in a subsonic wind tunnel. Onset of fan-induced transition in the tunnel flow provided a unique flow rate for correlating Delta Lambda(sub B) and (C(sub f) values needed for computing effective modulus of rigidity (N(sub eff)) of the fiber attached to the metal plate. This value Of N(sub eff) is expected to remain constant throughout the elastic stress range expected during the Bragg grating aerodynamic tests. It has been used for calculating the value of Cf at various tunnel speeds, on the basis of measured values of Bragg wavelength shifts at those speeds.

  6. [Spectral analysis of fiber bragg grating modulated by double long period grating and its application in smart structure monitoring].

    PubMed

    Lu, Ji-Yun; Liang, Da-Kai; Zhang, Xiao-Li; Zhu, Zhu

    2009-12-01

    Spectrum of fiber bragg grating (FBG) sensor modulated by double long period grating (LPFG) is proposed in the paper. Double LPFG consists of two LPFGS whose center wavelengths are the same and reflection spectrum of FBG sensor is located in linear range of double LPFG transmission spectrum. Based on spectral analysis of FBG and double LPFG, reflection spectrum of FBG modulated by double LPFG is obtained and studied by use of band-hider filter characteristics for double LPFG. An FBG sensor is attached on the surface of thin steel beam, which is strained by bending, and the center wavelength of FBG sensor will shift. The spectral peak of FBG sensor modulated by double LPFG is changed correspondingly, and the spectral change will lead to variation in exit light intensity from double LPFG. Experiment demonstrates that the relation of filtering light intensity from double LPFG monitored by optical power meter to center wavelength change of FBG sensor is linear and the minimum strain of material (steel beam) detected by the modulation and demodulation system is 1.05 microepsilon. This solution is used in impact monitoring of optical fibre smart structure, and FBG sensor is applied for impulse response signal monitoring induced by low-velocity impact, when impact pendulum is loaded to carbon fiber-reinforced plastics (CFP). The acquired impact response signal and fast Fourier transform of the signal detected by FBG sensor agree with the measurement results of eddy current displacement meter attached to the FBG sensor. From the results, the present method using FBG sensor is found to be effective for monitoring the impact. The research provides a practical reference in dynamic monitoring of optical fiber smart structure field. PMID:20210187

  7. Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals.

    PubMed

    Chen, Kuo-Ping; Ye, Shi-Cheng; Yang, Chi-Yin; Yang, Zong-Han; Lee, Wei; Sun, Mao-Guo

    2016-07-25

    Planar photonics using metasurfaces is of great interest because a metasurface can control the flow of light beyond that attainable with natural materials. The resonance wavelength of a binary-grating metasurface is adjustable by changing the width and thickness of the nanostructure. We propose a novel combination of nematic liquid crystals and a binary-grating metasurface with which the diffraction efficiency can be controlled by adjusting the applied voltage. PMID:27464134

  8. Influence of piezoelectric effect on photorefractive gratings in electro-optic crystals

    NASA Astrophysics Data System (ADS)

    Shandarov, S.

    1992-07-01

    The general equations applicable to the description of different photorefractive effects in electro-optic crystals, taking into account their piezoelectric properties, have been considered in this paper. The photorefractive gratings formed by plane light waves slowly changing in time in boundless piezoelectric media have been analyzed in detail. The influence of piezoelectric properties of the crytals on the effective static dielectric constant at different orientations of the photorefractive grating vector has also been considered.

  9. Electro-optical characteristics of holographic polymer dispersed liquid crystal gratings doped with nanosilver.

    PubMed

    Zhang, Menghua; Zheng, Jihong; Gui, Kun; Wang, Kangni; Guo, Caihong; Wei, Xiaopeng; Zhuang, Songlin

    2013-11-01

    We report on the synthesis and characteristics of a holographic polymer dispersed liquid crystal (H-PDLC) switchable grating based on nano-Ag particles. The influence of doping different concentrations of nano-Ag on the diffraction efficiency, driving voltage, and response time of the H-PDLC grating is investigated. The best grating characteristics were achieved with 0.05% nano-Ag doping. Calculated and experimental results reveal that the improvement of the characteristics is likely due to the surface plasmon effect of nano-Ag. PMID:24216639

  10. Switchable beam steering with zenithal bistable liquid-crystal blazed gratings.

    PubMed

    Zografopoulos, Dimitrios C; Kriezis, Emmanouil E

    2014-10-15

    Switchable beam steerers based on zenithal bistable liquid crystal (LC) gratings are designed and theoretically investigated. The nematic orientation profiles and the optical transmittance properties of the gratings are rigorously calculated, respectively, via a tensorial formulation of the Landau-de Gennes theory and the full-wave finite-element-method. By proper design of the grating geometry, beam steering with high diffraction efficiency is demonstrated between the two stable LC states. The tolerance of the device performance with respect to material parameters is assessed, evidencing spectral operation windows of more than 50 nm in the visible for a beam steering efficiency higher than 90%. PMID:25361099

  11. Modeling and Observations of Phase-Mask Trapezoidal Profiles with Grating-Fiber Image Reproduction

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Lindesay, James V.; Lee, Hyung R.; Ndlela, Zolili U.; Thompso, Erica J.

    2000-01-01

    We report on an investigation of the trapezoidal design and fabrication defects in phase masks used to produce Bragg reflection gratings in optical fibers. We used a direct visualization technique to examine the nonuniformity of the interference patterns generated by several phase masks. Fringe patterns from the phase masks are compared with the analogous patterns resulting from two-beam interference. Atomic force microscope imaging of the actual phase gratings that give rise to anomalous fringe patterns is used to determine input parameters for a general theoretical model. Phase masks with pitches of 0.566 and 1.059 microns are modeled and investigated.

  12. Accuracy improvement in peak positioning of spectrally distorted fiber Bragg grating sensors by Gaussian curve fitting

    SciTech Connect

    Lee, Hyun-Wook; Park, Hyoung-Jun; Lee, June-Ho; Song, Minho

    2007-04-20

    To improve measurement accuracy of spectrally distorted fiber Bragg grating temperature sensors, reflection profiles were curve fitted to Gaussian shapes, of which center positions were transformed into temperature information.By applying the Gaussian curve-fitting algorithm in a tunable bandpass filter demodulation scheme,{approx}0.3 deg. C temperature resolution was obtained with a severely distorted grating sensor, which was much better than that obtained using the highest peak search algorithm. A binary search was also used to retrieve the optimal fitting curves with the least amount of processing time.

  13. Optimal demodulation of wavelength shifts in a fiber Bragg grating sensor using an adaptive two wave mixing photorefractive interferometer

    NASA Astrophysics Data System (ADS)

    Balogun, Oluwaseyi; Kirikera, Goutham R.; Krishnaswamy, Sridhar

    2008-03-01

    Recent work by our research group on the dynamic demodulation of strain-induced wavelength shifts in fiber Bragg grating (FBG) sensors show that these sensors are suitable for the detection of high frequency ultrasonic waves produced by impact loading. A FBG sensor is incorporated into an optical detection system that uses a broadband tunable laser source in the C-band, a two wave-mixing photorefractive interferometer, and a high-speed photodetector. When an ultrasonic wave interacts with the FBG sensor, the wavelength of the reflected light in the fiber is dynamically shifted due to strain-induced perturbation of the index of refraction and/or the period of the grating in the fiber. The wavelength shift is converted into an intensity change by splitting the light into signal and pump beams and interfering the beams in an InP:Fe photorefractive crystal (PRC). The resulting intensity change is measured by a photodetector. The two-wave mixing (TWM) photorefractive interferometer allows for several FBG sensors to be wavelength multiplexed in one PRC and it also actively compensates for low frequency signal drifts associated with unwanted room vibrations and temperature excursions. In this work, we present preliminary experimental results on the detection of impact signals using a low power (1 mW) TWM PRC based demodulation system. The response time of the PRC is optimized by focusing the signal and pump beams into the crystal allowing for adaptivity of the demodulation system to quasi-static strains or temperature drifts. The TWM intensity gain of the system is optimized for efficient wavelength demodulation through resonant enhancement of the space charge electric field formed in the PRC. The low power demodulation system would facilitate significant reduction in the overall cost of the system.

  14. High resolution interrogation system for fiber Bragg grating (FBG) sensor application using radio frequency spectrum analyser

    NASA Astrophysics Data System (ADS)

    Muhammad, F. D.; Zulkifli, M. Z.; Harun, S. W.; Ahmad, H.

    2013-05-01

    In this paper, we propose a fiber Bragg grating (FBG) interrogation system for high resolution sensor application based on radio frequency (RF) generation technique by beating a single longitudinal mode (SLM) fiber ring laser with an external tunable laser source (TLS). The external TLS provides a constant wavelength (CW), functioning as the reference signal for the frequency beating technique. The TLS used has a constant output power and wavelength over time. The sensor signal is provided by the reflected wavelength of a typical fiber Bragg grating (FBG) in the SLM fiber ring laser, which consists of a 1 m long highly doped Erbium doped fiber as the gain medium. The key to ensure the SLM laser oscillation is the role of graphene as saturable absorber which is opposed to the commonly used unpumped erbiumdoped fiber and this consequently contributes to the simple and short cavity design of our proposed system. The signal from the SLM fiber ring laser, which is generated by the FBG in response to external changes, such as temperature, strain, air humidity and air movement, is heterodyned with the CW signal from the TLS at a 6 GHz photodetector using a 3-dB fused coupler to generate the frequency beating. This proposed system is experimentally demonstrated as a temperature sensor and the results shows that the frequency response of the system towards the changes in temperature is about 1.3 GHz/°C, taking into account the resolution bandwidth of 3 MHz of the radio frequency spectrum analyzer (RFSA).

  15. Analysis of temperature and strain sensitivity of fiber Bragg gratings written in dual-mode highly birefringent microstructured fibers

    NASA Astrophysics Data System (ADS)

    Tenderenda, T.; Murawski, M.; Szymanski, M.; Becker, M.; Rothhardt, M.; Bartelt, H.; Mergo, P.; Poturaj, K.; Makara, M.; Skorupski, K.; Marc, P.; Jaroszewicz, L. R.; Nasilowski, T.

    2013-05-01

    Fiber Bragg gratings (FBG) are one of the most successful fiber optic technologies with very interesting perspectives for application in fiber optic sensing. It has been already reported that the possibility of its fabrication in novel microstructured fibers (MSF), creating a unique 3D structure, can significantly improve their performance and sensing properties. In this paper we present the results of FBG inscription in a dual-mode highly birefringent (HB) MSF with enhanced polarimetric strain sensitivity of the second order mode, as its mode maxima are closer to the cladding air-holes, where the strain distribution during fiber elongation is the highest. We perform an analysis and comparison of the FBG reflection and transmission characteristics, showing the effects of power coupling to cladding radiation modes. Furthermore we present the results of temperature and longitudinal strain sensitivities of the particular modes visible in the grating reflection spectrum followed by conclusions with reference to our previously reported results of polarimetric strain and temperature measurements of a similar fiber design.

  16. Software Development to Assist in the Processing and Analysis of Data Obtained Using Fiber Bragg Grating Interrogation Systems

    NASA Technical Reports Server (NTRS)

    Hicks, Rebecca

    2009-01-01

    A fiber Bragg grating is a portion of a core of a fiber optic strand that has been treated to affect the way light travels through the strand. Light within a certain narrow range of wavelengths will be reflected along the fiber by the grating, while light outside that range will pass through the grating mostly undisturbed. Since the range of wavelengths that can penetrate the grating depends on the grating itself as well as temperature and mechanical strain, fiber Bragg gratings can be used as temperature and strain sensors. This capability, along with the light-weight nature of the fiber optic strands in which the gratings reside, make fiber optic sensors an ideal candidate for flight testing and monitoring in which temperature and wing strain are factors. The purpose of this project is to research the availability of software capable of processing massive amounts of data in both real-time and post-flight settings, and to produce software segments that can be integrated to assist in the task as well.

  17. Single Crystal Sapphire Optical Fiber Sensor Instrumentation

    SciTech Connect

    Anbo Wang; Russell May; Gary R. Pickrell

    2000-10-28

    The goal of this 30 month program is to develop reliable accurate temperature sensors based on single crystal sapphire materials that can withstand the temperatures and corrosive agents present within the gasifier environment. The research for this reporting period has been segregated into two parallel paths--corrosion resistance measurements for single crystal sapphire fibers and investigation of single crystal sapphire sensor configurations. The ultimate goal of this phase one segment is to design, develop and demonstrate on a laboratory scale a suitable temperature measurement device that can be field tested in phase two of the program.

  18. Photonic crystal fiber based chloride chemical sensors for corrosion monitoring

    NASA Astrophysics Data System (ADS)

    Wei, Heming; Tao, Chuanyi; Krishnaswamy, Sridhar

    2016-04-01

    Corrosion of steel is one of the most important durability issues in reinforced concrete (RC) structures because aggressive ions such as chloride ions permeate concrete and corrode steel, consequently accelerating the destruction of structures, especially in marine environments. There are many practical methods for corrosion monitoring in RC structures, mostly focusing on electrochemical-based sensors for monitoring the chloride ion which is thought as one of the most important factors resulting in steel corrosion. In this work, we report a fiber-optic chloride chemical sensor based on long period gratings inscribed in a photonic crystal fiber (PCF) with a chloride sensitive thin film. Numerical simulation is performed to determine the characteristics and resonance spectral response versus the refractive indices of the analyte solution flowing through into the holes in the PCF. The effective refractive index of the cladding mode of the LPGs changes with variations of the analyte solution concentration, resulting in a shift of the resonance wavelength, hence providing the sensor signal. This fiber-optic chemical sensor has a fast response, is easy to prepare and is not susceptible to electromagnetic environment, and can therefore be of use for structural health monitoring of RC structures subjected to such aggressive environments.

  19. The characterization of the double fiber Bragg gratings fiber ring laser and its applications in a real time fiber sensing system

    NASA Astrophysics Data System (ADS)

    Ko, C. L.; Yang, C. Y.; Huang, K. R.; Shih, Ming Chang

    2008-09-01

    We demonstrate a fiber sensing system by using a fiber resonator which is formed by two fiber Bragg gratings. It is able to measure real time strain and stress directly by the variation of the intensity of the output power due to the modulation in the fiber resonator. It shows that recording of the strain variation can be achieved as high as 2K Hz. The frequency response, signal noise ratio, and maximum range of the sensing system are studied with various reflectivity of the FBG, and the coupling ratios of the couplers used in the system.

  20. Active Q-switching of a fiber laser using a modulated fiber Fabry-Perot filter and a fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Martínez Manuel, Rodolfo; Kaboko, J. J. M.; Shlyagin, M. G.

    2016-02-01

    We propose and demonstrate a simple and robust actively Q-switched erbium-doped fiber ring cavity laser. The Q-switching is based on dynamic spectral overlapping of two filters, namely a fiber Bragg grating-based filter and a fiber Fabry-Perot tunable filter. Using 3.5 m of erbium-doped fiber and a pump power of only 60 mW, Q-switched pulses with a peak power of 9.7 W and a pulse duration of 500 ns were obtained. A pulse repetition rate can be continuously varied from a single shot to a few KHz.

  1. Fiber optic sensors for health monitoring of morphing airframes: I. Bragg grating strain and temperature sensor

    NASA Astrophysics Data System (ADS)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-04-01

    Fiber optic sensors are being developed for health monitoring of future aircraft. Aircraft health monitoring involves the use of strain, temperature, vibration and chemical sensors to infer integrity of the aircraft structure. Part 1 of this two part series describes sensors that will measure load and temperature signatures of these structures. In some cases a single fiber may be used for measuring these parameters. Part 2 will describe techniques for using optical fibers to monitor composite cure in real time during manufacture and to monitor in-service integrity of composite structures using a single fiber optic sensor capable of measuring multiple chemical and physical parameters. The facilities for fabricating optical fiber and associated sensors and the methods of demodulating Bragg gratings for strain measurement will be described.

  2. Refractive index sensitivity of nano-film coated long-period fiber gratings.

    PubMed

    Zou, Fang; Liu, Yunqi; Deng, Chuanlu; Dong, Yanhua; Zhu, Shan; Wang, Tingyun

    2015-01-26

    We demonstrate the fabrication of long-period fiber gratings (LPFGs) coated with high index nano-film using the atomic layer deposition (ALD) technology. Higher index sensitivity can be achieved in the transition region of the coated LPFGs. For the LPFG coated by nano-film with a thickness of 100 nm, the high index sensitivity of 3000 nm/RIU and the expanded index sensitive range are obtained. The grating contrast of the over-coupled LPFGs and conventional LPFGs are measured and the over-coupled gratings are found to have a higher contrast in the transition region. The cladding modes transition is observed experimentally with increasing surrounding index using an infrared camera. The theoretical model of the hybrid modes in four-layer cylindrical waveguide is proposed for numerical simulation. The experimental results are well consistent with theoretical analysis.

  3. Fiber optic hydrogen sensor based on an etched Bragg grating coated with palladium.

    PubMed

    Coelho, L; de Almeida, J M M M; Santos, J L; Viegas, D

    2015-12-10

    A study of a sensor for hydrogen (H2) detection based on fiber Bragg gratings coated with palladium (Pd) with self-temperature compensation is presented. The cladding around the gratings was reduced down to 50 μm diameter by a chemical etching process. One of the gratings was left uncoated, and the other was coated with 150 nm of Pd. It was observed that palladium hydride has unstable behavior in environments with high humidity level. A simple solution to overcome this problem based on a Teflon tape is presented. The sensing device studied was able to respond to H2 concentrations in the range 0%-1% v/v at room temperature and atmospheric pressure, achieving sensitivities larger than 20 pm/% v/v. Considering H2 concentrations in nitrogen up to 1%, the performance of the sensing head was characterized for different thicknesses of Pd coating ranging from 50 to 200 nm.

  4. Fiber optic hydrogen sensor based on an etched Bragg grating coated with palladium.

    PubMed

    Coelho, L; de Almeida, J M M M; Santos, J L; Viegas, D

    2015-12-10

    A study of a sensor for hydrogen (H2) detection based on fiber Bragg gratings coated with palladium (Pd) with self-temperature compensation is presented. The cladding around the gratings was reduced down to 50 μm diameter by a chemical etching process. One of the gratings was left uncoated, and the other was coated with 150 nm of Pd. It was observed that palladium hydride has unstable behavior in environments with high humidity level. A simple solution to overcome this problem based on a Teflon tape is presented. The sensing device studied was able to respond to H2 concentrations in the range 0%-1% v/v at room temperature and atmospheric pressure, achieving sensitivities larger than 20 pm/% v/v. Considering H2 concentrations in nitrogen up to 1%, the performance of the sensing head was characterized for different thicknesses of Pd coating ranging from 50 to 200 nm. PMID:26836856

  5. Research and theoretical analysis of new fiber Bragg grating sensor demodulation system

    NASA Astrophysics Data System (ADS)

    Li, Yaocheng; Wang, Hai-tong; Wang, Ping

    2015-02-01

    In order to measure high-precision and large scale sensing signal and solve two-values question in signal detecting of strain sensor, we design a new kind of FBG matching demodulation system based on fiber Bragg grating matching demodulation principle. Through paralleling connection two groups of grating-matching whose center wavelength equal to sensing grating's, and then analyzing reflectance spectrum, we could get the relationship of strain and optical power detected by photoelectric detector. Then we can set up the theoretical model and complete system simulation. The simulation results show that the scheme is feasible. The scheme not only can solve the problem of double values and can simultaneously detect the positive and negative strain. The sensor measurement range can be up to952ue.

  6. Detection, Evaluation, and Optimization of Optical Signals Generated by Fiber Optic Bragg Gratings Under Dynamic Excitations

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Lekki, John; Lock, James A.

    2002-01-01

    The dynamic response of a fiber optic Bragg grating to mechanical vibrations is examined both theoretically and experimentally. The theoretical expressions describing the consequences of changes in the grating's reflection spectrum are derived for partially coherent beams in an interferometer. The analysis is given in terms of the dominant wavelength, optical bandwidth, and optical path difference of the interfering signals. Changes in the reflection spectrum caused by a periodic stretching and compression of the grating were experimentally measured using an unbalanced Michelson interferometer, a Michelson interferometer with a non-zero optical path difference. The interferometer's sensitivity to changes in dominant wavelength of the interfering beams was measured as a function of interferometer unbalance and was compared to theoretical predictions. The theoretical analysis enables the user to determine the optimum performance for an unbalanced interferometer.

  7. Low-noise Brillouin random fiber laser with a random grating-based resonator.

    PubMed

    Xu, Yanping; Gao, Song; Lu, Ping; Mihailov, Stephen; Chen, Liang; Bao, Xiaoyi

    2016-07-15

    A novel Brillouin random fiber laser (BRFL) with the random grating-based Fabry-Perot (FP) resonator is proposed and demonstrated. Significantly enhanced random feedback from the femtosecond laser-fabricated random grating overwhelms the Rayleigh backscattering, which leads to efficient Brillouin gain for the lasing modes and reduced lasing threshold. Compared to the intensity and frequency noises of the Rayleigh feedback resonator, those of the proposed random laser are effectively suppressed due to the reduced resonating modes and mode competition resulting from the random grating-formed filters. Using the heterodyne technique, the linewidth of the coherent random lasing spike is measured to be ∼45.8  Hz. PMID:27420494

  8. Submicron diameter single crystal sapphire optical fiber

    SciTech Connect

    Hill, Cary; Homa, Daniel; Liu, Bo; Yu, Zhihao; Wang, Anbo; Pickrell, Gary

    2014-10-02

    In this work, a submicron-diameter single crystal sapphire optical fiber was demonstrated via wet acid etching at elevated temperatures. Etch rates on the order 2.3 µm/hr were achievable with a 3:1 molar ratio sulfuric-phosphoric acid solution maintained at a temperature of 343°C. A sapphire fiber with an approximate diameter of 800 nm was successfully fabricated from a commercially available fiber with an original diameter of 50 µm. The simple and controllable etching technique provides a feasible approach to the fabrication of unique waveguide structures via traditional silica masking techniques. The ability to tailor the geometry of sapphire optical fibers is the first step in achieving optical and sensing performance on par with its fused silica counterpart.

  9. Submicron diameter single crystal sapphire optical fiber

    DOE PAGES

    Hill, Cary; Homa, Daniel; Liu, Bo; Yu, Zhihao; Wang, Anbo; Pickrell, Gary

    2014-10-02

    In this work, a submicron-diameter single crystal sapphire optical fiber was demonstrated via wet acid etching at elevated temperatures. Etch rates on the order 2.3 µm/hr were achievable with a 3:1 molar ratio sulfuric-phosphoric acid solution maintained at a temperature of 343°C. A sapphire fiber with an approximate diameter of 800 nm was successfully fabricated from a commercially available fiber with an original diameter of 50 µm. The simple and controllable etching technique provides a feasible approach to the fabrication of unique waveguide structures via traditional silica masking techniques. The ability to tailor the geometry of sapphire optical fibers ismore » the first step in achieving optical and sensing performance on par with its fused silica counterpart.« less

  10. Large anomalous-dispersion mode-locked fiber laser based on a chirped fiber Bragg grating pair

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Yan, Yaxi; Hu, Chengzhi; Wu, Bo; Shen, Yonghang

    2016-10-01

    A carbon-nanotube mode-locked erbium fiber laser with large net anomalous dispersion is presented. A chirped fiber Bragg grating (CFBG) pair is incorporated to increase the net-cavity anomalous dispersion and soliton splitting threshold. Self-started mode-locked laser produces stable pulses with repetition rate of 9.26 MHz. Laser spectrum is centered at ~1560 nm with 3 dB bandwidth of 0.43 nm. The typical output pulse energy and duration is 0.21 nJ and 8.05 ps, respectively.

  11. Novel fiber Bragg grating fabrication method by high-precision shutter control

    NASA Astrophysics Data System (ADS)

    Liu, Yisi; Gu, Claire; Pan, J. J.; Dong, Liang; Zhou, Feng Q.

    2003-10-01

    Fiber Bragg grating (FBG) is an important element in many applications including filters and dispersion compensators in fiber communication systems. With recently developed inverse scattering algorithm, FBGs with desired reflection spectrum and/or dispersion properties can now be designed. However, most of these designs require arbitrary grating amplitude and phase control. Previously, fabrication of such FBGs relies on the accurate control of the temporal variation of the intensity pattern using a piezo electric translation stage. The precision of this fabrication method is limited by the noise in the control voltage, which is usually larger than 1%. The distortion in piezo response also affects the performance. In this paper, we develop and demonstrate a novel writing technique for arbitrary FBG fabrication. Our technique is based on a translate-and-write configuration. The incorporation of a precisely controlled shutter allows the apodization and phase of the FBG to be continuously changed at each grating line. The shutter error mainly results from the control signal's timing jitter, which is normally lower than 0.1%. Using this writing technique, we demonstrate a Hamming apodized grating with 20mm length, -22 dB minimum transmission, and < -25 dB reflection side lobe suppression. Furthermore, phase-shift in a grating can be fabricated by a simple delay in the control signal. We also demonstrate FBGs with π, π/2, 3π/2 phase-shifts, respectively. Our experimental results are in excellent agreement with theoretical predictions. To show the capability to fabricate a FBG with arbitrary structure, we demonstrate a 35 mm long zero dispersion grating.

  12. Investigation of Carbon-Polymer Structures with Embedded Fiber-Optic Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Kaul, R.; Taylor, S.; Myers, G.; Sharma, A.

    2003-01-01

    Several Bragg-grating sensors fabricated within the same optical fiber are buried within multiple-ply carbon-epoxy planar and cylindrical structures. Effect of different orientation of fiber-sensors with respect to carbon fibers in the composite structure is investigated. This is done for both fabric and uni-tape material samples. Response of planar structures to axial and transverse strain up to 1 millistrain is investigated with distributed Bragg-grating sensors. Material properties like Young's Modulus and Poisson ratio is measured. A comparison is made between response measured by sensors in different ply-layers and those bonded on the surface. The results from buried fiber- sensors do not completely agree with surface bonded conventional strain gauges. A plausible explanation is given for observed differences. The planar structures are subjected to impacts with energies up to 10 ft-lb. Effect of this impact on the material stiffness is also investigated with buried fiber-optic Bragg sensors. The strain response of such optical sensors is also measured for cylindrical carbon-epoxy composite structures. The sensors are buried within the walls of the cylinder as well as surface bonded in both the axial as well as hoop directions. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 1500 psi. This is done at both room temperature as well as cryogenic temperatures. The recorded response is compared with that from a conventional strain gauge.

  13. Optical Sensing using Fiber Bragg Gratings for Monitoring Structural Damage in Composite Over-Wrapped Vessels

    NASA Technical Reports Server (NTRS)

    Grant, Joseph

    2005-01-01

    Composite Over-Wrap Vessels are widely used in the aerospace community. They are made of thin-walled bottles that are over wrapped with high strength fibers embedded in a matrix material. There is a strong drive to reduce the weight of space borne vehicles and thus pushes designers to adopt COPVs that are over wrapped with graphite fibers embedded in its epoxy matrix. Unfortunately, this same fiber-matrix configuration is more susceptible to impact damage than others and to make matters worse; there is a regime where impacts that damage the over wrap leave no visible scar on the COPV surface. In this paper FBG sensors are presented as a means of monitoring and detecting these types of damage. The FBG sensors are surface mounted to the COPVs and optically interrogated to explore the structural properties of these composite pressure vessels. These gratings optically inscribed into the core of a single mode fiber are used as a tool to monitor the stress strain relation in the composite matrix. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 4500 psi. A Fiber Optic Demodulation System built by Blue Road Research, is used for interrogation of the Bragg gratings.

  14. Electrically tunable fiber-integrated Yb-doped laser covering 74 nm based on a fiber Bragg grating array

    NASA Astrophysics Data System (ADS)

    Tiess, T.; Rothhardt, M.; Chojetzki, C.; Jäger, M.; Bartelt, H.

    2015-03-01

    Fiber lasers provide the foundation to combine an excellent beam quality in single mode operation with a robust and highly efficient design. Based on fiber-integrated configurations, they are employed in many different applications ranging from industry over research to medical technology. However, there is lots of potential to approach even new fields of applications e.g. in spectroscopy based on tunable systems with an adjustable emission wavelength. We present a novel tuning concept for pulsed fiber-integrated laser systems using an array of fiber Bragg gratings (FBGs) as discrete spectral filter. Based on stacking many standard FBGs, the bandwidth and filter properties are easy to scale by increasing the number of gratings allowing huge tuning ranges as well as tailored tuning characteristics. In this work, we demonstrate the potential of this electrically controlled tuning concept. Using an Ytterbium (Yb)-doped fiber laser, we investigate the general tuning characteristics. With variable pulse durations in the nanosecond regime, we demonstrate high signal contrast (~45 dB), excellent wavelength stability and narrow linewidth (<15 GHz). In order to highlight the great spectral freedom, a tuning range of 74 nm in the Yb band is realized which, to the best of our knowledge, is the largest bandwidth reported based on a monolithic filter design.

  15. Temperature-Independent Fiber Inclinometer Based on Orthogonally Polarized Modes Coupling Using a Polarization-Maintaining Fiber Bragg Grating

    PubMed Central

    Su, Dan; Qiao, Xueguang; Yang, Hangzhou; Rong, Qiangzhou; Bai, Zhengyuan; Wang, Yupeng; Feng, Zhongyao

    2014-01-01

    A reflection fiber inclinometer is proposed and experimentally demonstrated based on two linearly polarized (LP) modes coupling. The configuration consists of a section of polarization-maintaining fiber (PMF) containing a fiber Bragg grating (FBG) splicing with single mode fiber (SMF). Bending the PMF in the upstream of FBG can induce an additional birefringence of PMF, which results in the intensity changes of two LP modes owing to orthogonal polarization coupling. The experimental results represent that the device shows different bending responses at the angle range from 0° to 40°and from 64° to 88°, respectively. Moreover, the temperature change just shifts the wavelengths of LP modes reflected and does not influence their intensities, which effectively avoid the temperature cross-sensitivity and make it a good candidate for measuring inclinometer and temperature simultaneously. PMID:25379814

  16. Liquid level and temperature sensor based on an asymmetrical fiber Mach-Zehnder interferometer combined with a fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Li, Chao; Ning, Tigang; Zhang, Chan; Wen, Xiaodong; Li, Jing; Zhang, Chuanbiao

    2016-08-01

    A fiber optic sensor capable of simultaneous measurement of liquid level and temperature is proposed and demonstrated. The sensor is formed by the integration of an asymmetrical fiber Mach-Zehnder interferometer (aFMZI) with a fiber Bragg grating (FBG). The aFMZI was realized by concatenating a fiber taper and a lateral-shifted junction. By using the temperature sensing property of FBG, the liquid level sensor with dynamic temperature compensation can be achieved. For 10 pm wavelength resolution, a resolution of 0.15 cm in liquid level and 1.01 °C in temperature can be achieved. The prototype has the advantages of low fabrication cost and temperature compensated, which are desirable features in liquid level measurement.

  17. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors.

    PubMed

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio; Markos, Christos; Nielsen, Kristian; Rasmussen, Henrik K; Bang, Ole

    2016-01-25

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured POFs. PMID:26832507

  18. Dynamics recording of holographic gratings in a photochromic crystal of calcium fluoride

    NASA Astrophysics Data System (ADS)

    Borisov, Vladimir N.; Barausova, Ekaterina V.; Veniaminov, Andrey V.; Andervaks, Alexandr E.; Shcheulin, Alexandr S.; Ryskin, Alexandr I.

    2016-08-01

    Dynamics of diffraction efficiency was monitored during recording a holographic grating in additively coloured CaF2 photochromic crystal at 180-200°C. Reciprocity failure revealed in the study was attributed to diffusion playing the crucial role in grating formation: recording at larger laser power goes faster but requires more energy. The efficiency of a recorded hologram is found to depend on the temperature; maximum diffraction is measured at the temperature far below that of recording, supposedly because of dramatic distortions suffered by the crystal along with exposure.

  19. Switchable diffraction gratings based on inversion of the dielectric anisotropy in nematic liquid crystals

    SciTech Connect

    Kang, S. W.; Sprunt, S.; Chien, L. C.

    2001-06-11

    A switchable liquid crystal diffraction grating, responsive to both the frequency and magnitude of an applied voltage, is demonstrated. The grating is based on polymer stabilization of modulated states of the liquid crystal optic axis induced at frequencies near a sign inversion of the dielectric anisotropy. In a particular case of frequency-based switching, 70% of the transmitted intensity of a 633 nm laser beam can be shifted into or out of a {+-}12{degree} forward arc by changing the frequency of an applied voltage between 10 and 16 kHz at a fixed amplitude of 27 V. {copyright} 2001 American Institute of Physics.

  20. Numerical analysis of double chirp effect in tapered and linearly chirped fiber Bragg gratings.

    PubMed

    Markowski, Konrad; Jedrzejewski, Kazimierz; Osuch, Tomasz

    2016-06-10

    In this paper, a theoretical analysis of recently developed tapered chirped fiber Bragg gratings (TCFBG) written in co-directional and counter-directional configurations is presented. In particular, the effects of the synthesis of chirps resulting from both a fused taper profile and a linearly chirped fringe pattern of the induced refractive index changes within the fiber core are extensively examined. For this purpose, a numerical model based on the transfer matrix method (TMM) and the coupled mode theory (CMT) was developed for such a grating. The impact of TCFBG parameters, such as grating length and steepness of the taper transition, as well as the effect of the fringe pattern chirp rate on the spectral properties of the resulting gratings, are presented. Results show that, by using the appropriate design process, TCFBGs with reduced or enhanced resulting chirp, and thus with widely tailored spectral responses, can be easily achieved. In turn, it reveals a great potential application of such structures. The presented numerical approach provides an excellent tool for TCFBG design. PMID:27409005

  1. Experimental study of steel welded joints localization with using fiber Bragg grating strain sensor

    NASA Astrophysics Data System (ADS)

    Harasim, Damian

    2015-12-01

    Optical sensing systems has a not weakening research and development in recent years. Because of its unique properties of being unsusceptible to electromagnetic interference, having wide range of operational temperature and having extreme small physical dimensions, optical fiber sensors has increasing acceptance. Fiber Bragg Gratings (FBG) is the most frequently used type of optical sensor types because of its huge multiplexing potential and potentiality of being embedded into composite material (e.g. in structural health monitoring) or attached into measured structure. Embedding or attaching FBG into an inhomogeneous environment, spectral characteristic of the sensing grating do not retain full symmetry, which is due to related differences in the distribution of the axial stress of the grating. When periodicity of the grating is constant, the peak of FBG reflection spectrum should be narrow and sharp. An inhomogeneous axial strain distribution will cause a distorsion in measured transmission or reflection spectrum. This paper shows an distorsions in FBG reflection spectrum measured from sensor attached on surface with welded joint. The sensor strain-to-wavelength shift processing characteristics obtained for homogeneous and welded steel samples were compared.

  2. Parametric study of the reflective periodic grating for in-plane displacement measurement using optical fibers.

    PubMed

    Lee, Yeon-Gwan; Kim, Dae-Hyun; Kim, Chun-Gon

    2012-01-01

    This paper presents a technique for a simple sensing principle that can be used for the measurement of displacement. The proposed sensor head is composed of a reflective grating panel and an optical fiber as a transceiver. The simplified layout contributes to resolving the issues of space restraints during installation and complex cabling problems in transmission fiber optic sensors. In order to verify the effectiveness of the proposed technique, it is important to obtain the sinusoidal signal reflected from the grating for reasonable phase tracking. In the numerical analysis, a real wave based optical beam model is proposed for the extraction of predicted signal according to the grating width and ratio of reflection bar width to spacing. The grating pattern design to obtain a sine wave reflected sensor signal was determined within an R-square value of 0.98 after sine curve fitting analysis. Consequently, the proposed sensor principle achieved the in-plane displacement measurement with a maximum accuracy error of 5.34 μm. PMID:22666030

  3. Strain measurement during stress rupture of composite over-wrapped pressure vessel with fiber Bragg gratings sensors

    NASA Astrophysics Data System (ADS)

    Banks, Curtis E.; Grant, Joseph; Russell, Sam; Arnett, Shawn

    2008-03-01

    Fiber optic Bragg gratings were used to measure strain fields during Stress Rupture (SSM) test of Kevlar Composite Over-Wrapped Pressure Vessels (COPVs). The sensors were embedded under the over-wrapped attached to the liner released from the Kevlar and attached to the Kevlar released from the liner. Additional sensors (foil gages and fiber bragg gratings) were surface mounted on the COPV liner.

  4. Strain Measurement during Stress Rupture of Composite Over-Wrapped Pressure Vessel with Fiber Bragg Gratings Sensors

    NASA Technical Reports Server (NTRS)

    Banks, Curtis E.; Grant, Joseph; Russell, Sam; Arnett, Shawn

    2008-01-01

    Fiber optic Bragg gratings were used to measure strain fields during Stress Rupture (SSM) test of Kevlar Composite Over-Wrapped Pressure Vessels (COPV). The sensors were embedded under the over-wrapped attached to the liner released from the Kevlar and attached to the Kevlar released from the liner. Additional sensors (foil gages and fiber bragg gratings) were surface mounted on the COPY liner.

  5. Off-axis ultraviolet-written fiber Bragg gratings for directional bending measurements.

    PubMed

    Feng, Dingyi; Qiao, Xueguang; Albert, Jacques

    2016-03-15

    Off-axis fiber Bragg gratings are inscribed by ultraviolet irradiation limited to expose only a portion of the fiber core cross section. The coupling to cladding modes is significantly increased, and the amplitude of the cladding mode resonances becomes sensitive to bending in magnitude and direction. Sensitivities ranging from +1.17  dB/m(-1) to -1.25  dB/m(-1) were obtained for bending in different directions relative to the offset direction of the grating, for curvatures from 0 to 1.1  m(-1), a range ideal for the shape sensing of large structures. The bending sensor response is also shown to be independent of temperature and the surrounding refractive index. PMID:26977669

  6. Temporal thermal response of Type II-IR fiber Bragg gratings

    SciTech Connect

    Liao Changrui; Wang Dongning; Li Yuhua; Sun Tong; Grattan, Kenneth T. V.

    2009-06-01

    We use the phase mask method to investigate both experimentally and theoretically the temporal thermal response of Type II-IR fiber Bragg gratings inscribed by a femtosecond laser. A fast testing system is developed to measure the thermal response time by means of periodic CO2 laser irradiation, which creates a rapid temperature change environment. The temporal thermal response is found to be independent of the heat power and the heat direction, although the grating produced destroys the axial symmetry of the fiber. The measured values of the temporal thermal response are {approx}230 ms for heating and {approx}275 ms for cooling, which different from the simulation results obtained from a lumped system equation. The causes of such differences are investigated in detail.

  7. Intensity-modulated relative humidity sensing with polyvinyl alcohol coating and optical fiber gratings.

    PubMed

    Yang, Jingyi; Dong, Xinyong; Ni, Kai; Chan, Chi Chu; Shun, Perry Ping

    2015-04-01

    A relative humidity (RH) sensor in reflection mode is proposed and experimentally demonstrated by using a polyvinyl alcohol (PVA)-coated tilted-fiber Bragg grating (TFBG) cascaded by a reflection-band-matched chirped-fiber Bragg grating (CFBG). The sensing principle is based on the RH-dependent refractive index of the PVA coating, which modulates the transmission function of the TFBG. The CFBG is properly designed to reflect a broadband of light spectrally suited at the cladding mode resonance region of the TFBG, thus the reflected optical signal passes through and is modulated by the TFBG again. As a result, RH measurements with enhanced sensitivity of ∼1.80  μW/%RH are realized and demodulated in the range from 20% RH to 85% RH. PMID:25967167

  8. Soil water evaporation measurement of lysimeter based on fiber Bragg grating sensor

    NASA Astrophysics Data System (ADS)

    Yan, Kejun; Liu, Jun; Miao, Liping; Bai, Li; Zhong, Wenting

    2013-10-01

    A lysimeter weighing system based on fiber Bragg grating (FBG) sensor for measuring the soil water evaporation was presented in this paper. By the use of three mechanical levers and balance weight, the weight loaded on the FBG sensor was reduced K times (here, K was the ratio of levers). So the amount of water change in the soil container of tons can be weighted. A two-hole cantilever was selected as the elastomer structure of FBG weighing sensor, and an optimum design was carried on using the finite element method to meet the small-scaled design requirements. Using the matching fiber Bragg grating demodulation method based on LabVIEW, the demodulation system was easy to be implemented. Then the FBG center wavelength drift was converted into a time interval, and the weight can be obtained automatically through measuring the interval by computer. Preliminary experiment showed that this weighing system has the ability of measuring soil water evaporation accurately.

  9. Application of genetic algorithm in quasi-static fiber grating wavelength demodulation technology

    NASA Astrophysics Data System (ADS)

    Teng, Feng-Cheng; Yin, Wen-Wen; Wu, Fei; Li, Zhi-Quang; Wu, Ti-Hua

    2007-07-01

    A modified genetic algorithm (GA) has been proposed, which was used to wavelength demodulation in quasi-static fiber grating sensing system. The modification method of GA has been introduced and the relevant mathematical model has been established. The objective function and individual fitness evaluation strategy interrelated with GA are also established. The influence of population size, chromosome size, generations, crossover probability and mutation probability on the GA has been analyzed, and the optimal parameters of modified GA have been obtained. The simulations and experiments, show that the modified GA can be applied to quasi-static fiber grating sensing system, and the wavelength demodulation precision is equal to or less than 3 pm.

  10. Post-Impact Fatigue Damage Monitoring Using Fiber Bragg Grating Sensors

    PubMed Central

    Shin, Chow-Shing; Liaw, Shien-Kuei; Yang, Shi-Wei

    2014-01-01

    It has been shown that impact damage to composite materials can be revealed by embedded Fiber Bragg Gratings (FBG) as a broadening and splitting of the latter's characteristic narrow peak reflected spectrum. The current work further subjected the impact damaged composite to cyclic loading and found that the FBG spectrum gradually submerged into a rise of background intensity as internal damages progressed. By skipping the impact, directing the impact to positions away from the FBG and examining the extracted fibers, we concluded that the above change is not a result of deterioration/damage of the sensor. It is caused solely by the damages initiated in the composite by the impact and aggravated by fatigue loading. Evolution of the grating spectrum may therefore be used to monitor qualitatively the development of the incurred damages. PMID:24594609

  11. Varied-line-spacing switchable holographic grating using polymer-dispersed liquid crystal.

    PubMed

    Wang, Kangni; Zheng, Jihong; Lu, Feiyue; Gao, Hui; Palanisamy, Aswin; Zhuang, Songlin

    2016-06-20

    A varied-line-spacing switchable holographic grating is demonstrated through a changeable interference pattern recorded in polymer-dispersed liquid crystal. The pattern is generated by the interference between one plane wave and another cylindrical wave. The line spacing and the period of grating can be controlled by varying the distance between the cylindrical lens and the grating sample and by changing the exposure angle between the two beams. Experimental period measurements and calculations show good agreement with the theoretical results. High diffraction efficiency of more than 80% for the middle period of the grating has been achieved under appropriate exposure time of 120 s and intensity of 19.1  mW/cm2. In addition, the diffraction can be switched on and off by virtue of the external driving voltage of approximately 120 V. The grating also possesses a fast response with a rise time of 300 μs and a fall time of 750 μs. This grating, which can change the period in the grating structure to allow switchable diffraction of transmitted light, shows great potential application for diffractive optics. PMID:27409124

  12. Dispersion characteristics of fiber Bragg gratings with Gaussian self apodization made with a femtosecond laser in heavily doped Erbium and Ytterbium fibers

    NASA Astrophysics Data System (ADS)

    Walker, Robert B.; Grobnic, Dan; Lu, Ping; Mihailov, Stephen J.; Smelser, Christopher W.

    2007-06-01

    Short fiber lasers are increasingly studied due to their applications in communications and sensing1. These lasers require high concentrations of Erbium (Er) and Ytterbium (Yb) that are not compatible with the presence of Germanium (Ge) in the fiber core2. In stark contrast with more conventional fabrication methods, ultrafast lasers now allow for grating inscription within fibers having no Ge doping 3. Normally for short gratings the reflected signal dispersion is small and relatively harmless to the operation of long cavities. As cavity length decreases however the signal will tend to travel more and more within the gratings, interacting with them proportionately more often. Hence a thorough understanding of the grating dispersion characteristics becomes even more important. As a result of their physical differences, the characteristics of ultrafast gratings can vary substantially from those produced using more conventional fabrication methods, and it is unknown whether these factors in combination with a high dopant concentration will significantly affect the dispersion properties of such gratings. In this study, Bragg gratings made with infrared (IR) femtosecond radiation and a first order phase mask were inscribed in fibers heavily doped with Er and Yb as well as a pure silica core fiber. Subsequent measurements of the power spectra, group delay and group delay ripple (GDR) are reported herein.

  13. Theory and characteristics of holographic polymer dispersed liquid crystal transmission grating with scaffolding morphology.

    PubMed

    Huang, Wenbin; Liu, Yonggang; Diao, Zhihui; Yang, Chengliang; Yao, Lishuang; Ma, Ji; Xuan, Li

    2012-06-20

    We have performed a detailed characterization of the optical properties of a holographic polymer dispersed liquid crystal (LC) transmission grating with polymer scaffolding morphology, which was fabricated with conventional high-functionality acrylate monomer under low curing intensity. Temporal evolution of the grating formation was investigated, and the amount of phase-separated LC was determined by birefringence investigation. A grating model combined with anisotropic coupled-wave theory yielded good agreement with experimental data without any fitting parameter. The results in this study demonstrate the non droplet scaffolding morphology grating is characterized by a high degree of phase separation (70%), high anisotropy, low scattering loss (<6%), and high diffraction efficiency (95%). PMID:22722275

  14. Twisted nematic liquid crystal polarization grating with the handedness conservation of a circularly polarized state.

    PubMed

    Honma, Michinori; Nose, Toshiaki

    2012-07-30

    We propose a liquid crystal (LC) polarization grating that conserves the polarization state of incident light, wherein the variation range of the twist angle is 2π. The design scheme for theoretically 100% diffraction efficiency of the first-diffraction order is derived, and a prototype LC grating is evaluated. Under zero voltage, the fabricated LC grating exhibits high efficiency of the first-order diffraction, validating the proposed design scheme. The high efficiency of the second-order diffraction can also be achieved under a high voltage so that the LC director in the midplane is vertical to the substrate plane. The circular polarization sense of the second-order diffraction is identical to that of the incident light as in the case of the first-order diffraction. This grating functions as a beam deflector, steering the input beam in three different directions (zeroth-, first-, and second-order diffractions) by adjusting the applied voltage. PMID:23038396

  15. Distributed Sensing of Carbon-Epoxy Composites and Filament Wound Pressure Vessels Using Fiber-Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Grant, J.; Kaul, R.; Taylor, S.; Myer, G.; Jackson, K.; Osei, A.; Sharma, A.

    2003-01-01

    Multiple Fiber Bragg-gratings are embedded in carbon-epoxy laminates as well as in composite wound pressure vessel. Structural properties of such composites are investigated. The measurements include stress-strain relation in laminates and Poisson's ratio in several specimens with varying orientation of the optical fiber Bragg-sensor with respect to the carbon fiber in an epoxy matrix. Additionally, fiber Bragg gratings are bonded on the surface of these laminates and cylinders fabricated out of carbon-epoxy composites and multiple points are monitored and compared for strain measurements at several locations.

  16. Optimized split-step method for modeling nonlinear pulse propagation in fiber Bragg gratings

    SciTech Connect

    Toroker, Zeev; Horowitz, Moshe

    2008-03-15

    We present an optimized split-step method for solving nonlinear coupled-mode equations that model wave propagation in nonlinear fiber Bragg gratings. By separately controlling the spatial and the temporal step size of the solution, we could significantly decrease the run time duration without significantly affecting the result accuracy. The accuracy of the method and the dependence of the error on the algorithm parameters are studied in several examples. Physical considerations are given to determine the required resolution.

  17. High-strain fiber bragg gratings for structural fatigue testing of military aircraft

    NASA Astrophysics Data System (ADS)

    Davis, Claire; Tejedor, Silvia; Grabovac, Ivan; Kopczyk, James; Nuyens, Travis

    2012-09-01

    This paper reports on an experimental program of work which investigates the reliability, durability, and packaging of fiber Bragg gratings (FBGs) for application as distributed strain sensors during structural fatigue testing of military platforms. The influence of the FBG fabrication process on sensor reliability is investigated. In addition, methodologies for broad-area packaging and surface-mounting of FBG sensing arrays to defense platforms are developed and tested.

  18. The biosensor based on fiber Bragg grating to determine the composition of the fuel and biofuel

    NASA Astrophysics Data System (ADS)

    Sadykov, I. R.; Morozov, O. G.; Sadeev, T. S.

    2011-12-01

    The aim of this paper is to examine the refractometric method of determining the octane number of gasoline and the presence of organic compounds in biological fuels. A feature of this method is p-shifted etched fiber Bragg grating as the sensing element utilization, which is characterized by a narrow bandwidth. The advantage of this method is the detection of changes in the refractive index at the level of 1,3×10-5.

  19. The biosensor based on fiber Bragg grating to determine the composition of the fuel and biofuel

    NASA Astrophysics Data System (ADS)

    Sadykov, I. R.; Morozov, O. G.; Sadeev, T. S.

    2012-01-01

    The aim of this paper is to examine the refractometric method of determining the octane number of gasoline and the presence of organic compounds in biological fuels. A feature of this method is p-shifted etched fiber Bragg grating as the sensing element utilization, which is characterized by a narrow bandwidth. The advantage of this method is the detection of changes in the refractive index at the level of 1,3×10-5.

  20. In-line fiber Bragg grating sensors for steel corrosion detection

    NASA Astrophysics Data System (ADS)

    Deng, Fodan; Huang, Ying; Azarmi, Fardad

    2016-04-01

    A corrosion monitoring system for steel using Fiber Bragg grating (FBG) sensors is proposed. FBG sensors were protected by hypodermic tubes and a layer of adhesive. The increase in volume caused by the presence of corrosion product introduces strain that can be monitored by FBG sensors. Experimental results showed a positive correlation between the strain and corrosion product, and the change in central wavelength has the potential to serve as an indicator for material weight loss due to corrosion.

  1. Interrogation system for a fiber-Bragg-grating strain sensor for automotive applications

    NASA Astrophysics Data System (ADS)

    Falciai, Riccardo; Vannini, Andrea

    2001-09-01

    In this paper a derivative spectrometer, utilizing an FFP tunable filter for the wavelength shift detection and an electronic device for the signal processing, was realized and tested for data acquisition and elaboration from a fiber-Bragg-grating strain sensor system for automotive applications. The result of measurements carried out both under static and dynamic conditions have been compared with those performed with a strain gauge.

  2. Long period gratings written in fluorine-doped fibers by electric arc discharge technique

    NASA Astrophysics Data System (ADS)

    Ranjan, Rajeev; Esposito, Flavio; Iadicicco, Agostino; Stǎncǎlie, Andrei; Sporea, Dan; Campopiano, Stefania

    2016-05-01

    In this work, we present long period gratings (LPGs) in two different Fluorine-doped fibers realized by electric arc discharge (EAD) technique. Firstly, we optimized the EAD fabrication procedure for standard Ge-doped fibers where we are able to fabricate relatively short LPGs with deep attenuation bands (up to 32 dB) and trivial power losses. Successively, for the first time to the best of our knowledge, we produced LPGs in F-doped fibers with maximum attenuation band depths in range 25-30 dB and trivial power losses. We also investigated the sensitivity of LPGs fabricated in such F-doped fibers, with surrounding refractive index (SRI) and temperature changes, and compared the results with those of LPGs fabricated in standard fiber. We found that SRI response of LPGs in F-doped fibers is significantly higher than in standard fiber and it strongly depends on the type of F-doped fiber considered, whereas they exhibit a slightly lower sensitivity to temperature compared to LPGs in standard fiber.

  3. Long period grating in multicore optical fiber: an ultra-sensitive vector bending sensor for low curvatures.

    PubMed

    Saffari, Pouneh; Allsop, Thomas; Adebayo, Adedotum; Webb, David; Haynes, Roger; Roth, Martin M

    2014-06-15

    Long period grating was UV inscribed into a multicore fiber consisting of 120 single mode cores. The multicore fiber that hosts the grating was fusion spliced into a single mode fiber at both ends. The splice creates a taper transition between the two types of fiber that produces a nonadiabatic mode evolution; this results in the illumination of all the modes in the multicore fiber. The spectral characteristics of this fiber device as a function of curvature were investigated. The device yielded a significant spectral sensitivity as high as 1.23  nm/m(-1) and 3.57  dB/m(-1) to the ultra-low curvature values from 0 to 1  m(-1). This fiber device can also distinguish the orientation of curvature experienced by the fiber as the long period grating attenuation bands producing either a blue or red wavelength shift. The finite element method (FEM) model was used to investigate the modal behavior in multicore fiber and to predict the phase-matching curves of the long period grating inscribed into multicore fiber. PMID:24978523

  4. Experimental results of antigliadin antibodies detection using long period fiber grating

    NASA Astrophysics Data System (ADS)

    Corres, J. M.; Matias, I. R.; Goicoechea, J.; Arregui, F. J.; Viegas, D.; Araújo, F. M.; Santos, J. L.

    2008-04-01

    In this work a new nano-biofilm is proposed for the detection of celiac disease (CD). A long-period fiber grating (LPFG) is used as a transducer and the surface of the fiber is coated with a precursor layer of SiO2-nanospheres using the electrostatic self-assembly technique (ESA). This layer has been designed in order to create a substrate of high porosity where the gliadins could be deposited. Under the presence of specific antibodies antigliadin antibodies (AGA) the refractive index of the overlay changes giving a detectable shift in the resonance wavelength of the LPFG. Concentrations as low as 5 ppm were detected.

  5. Fiber Bragg grating sensors for steel wire monitoring in real-time

    NASA Astrophysics Data System (ADS)

    Koch, Jan; Angelmahr, Martin; Schade, Wolfgang

    2014-05-01

    Steel wires are widely applied in industrial applications - in most cases as critical components fulfilling high safety requirements in harsh environments (e.g. dockside cranes). In this paper a technique for real-time monitoring of steel ropes applying optical strain sensors based on fiber Bragg gratings is presented. The optical sensors are integrated within the wire strand and replace the core. The strain transmission from the outer wires to the sensors is assured by the mechanical coupling between the optical fiber and the strand. The actual strain load and rope vibrations in the kilohertz range can be determined in real-time.

  6. Design and optimization of fundamental mode filters based on long-period fiber gratings

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Yang; Wei, Jin; Sheng, Yong; Ren, Nai-Fei

    2016-07-01

    A segment of long-period fiber grating (LPFG) that can selectively filter the fundamental mode in the few-mode optical fiber is proposed. By applying an appropriate chosen surrounding material and an apodized configuration of LPFG, high fundamental mode loss and low high-order core mode loss can be achieved simultaneously. In addition, we propose a method of cascading LPFGs with different periods to expand the bandwidth of the mode filter. Numerical simulation shows that the operating bandwidth of the cascade structure can be as large as 23 nm even if the refractive index of the surrounding liquid varies with the environment temperature.

  7. High resolution and wide scale fiber Bragg grating sensor interrogation system

    NASA Astrophysics Data System (ADS)

    Ma, Youchun; Wang, Changjiang; Yang, Yuanhong; Yan, Shubin; Li, Jinming

    2013-09-01

    This paper demonstrates a high resolution and wide scale fiber Bragg grating sensor interrogation system based on fiber Fabry-Perot tunable filter (FFP-TF) and Fabry-Perot ITU filter (FPIF). By automatic control of the driving voltage of the FFP-TF, the wavelength of the laser can be tracked to the -3dB reflectivity spectrum of the FBG. Using FPIF as the reference channel, the measurement resolution of the system is improved by wiping out the nonlinearity of the FFP-TF. A high resolution of better than 2pm within wide strain measurement range was verified by experiments.

  8. Research on pressure tactile sensing technology based on fiber Bragg grating array

    NASA Astrophysics Data System (ADS)

    Song, Jinxue; Jiang, Qi; Huang, Yuanyang; Li, Yibin; Jia, Yuxi; Rong, Xuewen; Song, Rui; Liu, Hongbin

    2015-09-01

    A pressure tactile sensor based on the fiber Bragg grating (FBG) array is introduced in this paper, and the numerical simulation of its elastic body was implemented by finite element software (ANSYS). On the basis of simulation, fiber Bragg grating strings were implanted in flexible silicone to realize the sensor fabrication process, and a testing system was built. A series of calibration tests were done via the high precision universal press machine. The tactile sensor array perceived external pressure, which is demodulated by the fiber grating demodulation instrument, and three-dimension pictures were programmed to display visually the position and size. At the same time, a dynamic contact experiment of the sensor was conducted for simulating robot encountering other objects in the unknown environment. The experimental results show that the sensor has good linearity, repeatability, and has the good effect of dynamic response, and its pressure sensitivity was 0.03 nm/N. In addition, the sensor also has advantages of anti-electromagnetic interference, good flexibility, simple structure, low cost and so on, which is expected to be used in the wearable artificial skin in the future.

  9. A personal review of 25 years of fiber grating sensor development

    NASA Astrophysics Data System (ADS)

    Udd, Eric

    2013-06-01

    Early efforts developing smart structures started with strain sensors based on interferometeric techniques. It immediately became apparent that structural engineers were used to dealing with conventional electrical strain gages and thermocouples with much shorter gage lengths. The fiber grating offered a competitive solution for the measurement of strain and temperature with the advantages of electrical isolation and improved ruggedness. The principal draw back was cost. So early applications involved high value projects where the unique capabilities of the technology offered superior performance. One area of particular interest involved the usage of fiber gratings to sensor more than one parameter simultaneously. Multi-dimensional strain and the measurement of pressure and temperature were two key examples of multi-parameter sensing. In parallel efforts were conducted to operate at high speed. Early examples in aerospace and civil structures were at speeds in the range of 10 kHz. Ballistic work later dictated increasing speeds to 5 MHz. Much more recent work with burn, deflagration and detonation has involved measurements from more than 100 MHz to multiple GHz. This paper provides a personal history of some of these developments and how fiber grating sensor technology is moving into the future.

  10. Error analysis and measurement uncertainty for a fiber grating strain-temperature sensor.

    PubMed

    Tang, Jaw-Luen; Wang, Jian-Neng

    2010-01-01

    A fiber grating sensor capable of distinguishing between temperature and strain, using a reference and a dual-wavelength fiber Bragg grating, is presented. Error analysis and measurement uncertainty for this sensor are studied theoretically and experimentally. The measured root mean squared errors for temperature T and strain ε were estimated to be 0.13 °C and 6 με, respectively. The maximum errors for temperature and strain were calculated as 0.00155 T + 2.90 × 10(-6) ε and 3.59 × 10(-5) ε + 0.01887 T, respectively. Using the estimation of expanded uncertainty at 95% confidence level with a coverage factor of k = 2.205, temperature and strain measurement uncertainties were evaluated as 2.60 °C and 32.05 με, respectively. For the first time, to our knowledge, we have demonstrated the feasibility of estimating the measurement uncertainty for simultaneous strain-temperature sensing with such a fiber grating sensor.

  11. Comparison of recoated fiber Bragg grating sensors under tension on a steel coupon

    NASA Astrophysics Data System (ADS)

    Rivera, E.; Thomson, D. J.; Mufti, A. A.

    2005-05-01

    One of the key elements in a structural health monitoring system is the sensing element and data acquisition system. One type of fiber optic sensor used to measure strain is the fiber Bragg grating. Bragg gratings are fabricated using different methods. One method involves placing a mask pattern over the optical fiber and projecting UV light through it to change the refractive index of the core. However, before the grating is written into the core of the fibre, the outer fibre coatings must be stripped away either mechanically or chemically. Fibre Bragg gratings are then recoated after the grating has been written to maintain the strength and flexibility of the fibre by protecting the exposed glass from damage. Acrylate and polyimide are two types of recoat material typically used on fibre Bragg grating sensors. This work is a controlled comparison of polyimide and acrylate recoated fibres for Bragg grating strain sensors. The comparison was carried out using a tension test coupon with recoated FBG and electrical strain gauges bonded to its surface. The tension test specimen was made of cold rolled steel and was designed according to ASTM A30-97a standard. The dimensions were chosen such that three fibre optic sensors and a strain gauge can be attached on each side. The load was applied in 40 μɛ steps until the strain reached approximately 200 ´ɛ. The load was then incrementally decreased back to zero. FBG sensors from 2 manufacturers were compared. For the first manufacturer the Acrylate coated sensors required a gauge factor is 0.75 in order for electrical and FBG strain readings to agree. For Polyimide coated sensors, the appropriate gauge factor was very close to the theoretically predicted value of 0.8. Using these gauge factors, the error between the first manufacturers sensor readings and the strain gauges was well within +/-5´ɛ. On the other hand, the second manufacturers sensors did not perform nearly as well. Their readings were substantially lower

  12. Bragg grating-based fiber laser vibration sensing system with novel phase detection

    NASA Astrophysics Data System (ADS)

    Yang, Xiufeng; Chen, Zhihao; Teo, Ju Teng; Ng, Soon Huat

    2014-01-01

    We characterized the dynamic response of a Bragg grating-based fiber laser sensing system. The sensing system comprises of a narrow line width fiber laser based on π-phase-shifted fiber Bragg grating formed in an active fiber, an unbalanced fiber Michelson interferometer (FMI), which performs wavelength-to-phase mapping, and a phase detection algorithm, which acquires the phase change from the interferometric output signal. The novel phase detection algorithm is developed based on the combination of the two traditional phase generated carrier algorithms: differential-cross-multiplying and arctangent algorithms, and possesses the advantages of the two algorithms. The modulation depth fluctuation of the carrier does not affect the performance of the sensing system. A relatively high side mode suppression ratio of above 50 dB has been achieved within a wide range of carrier amplitude from 1.6 to 5.0 V which correspond to the modulation depth from 1.314 to 4.106 rad. The linearity is 99.082% for the relationship between the power spectral density (dBm/Hz) of the detected signal and the amplitude (mv) of the test signal. The unbalanced FMI is used to eliminate the polarization effect.

  13. All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings.

    PubMed

    Zhang, W L; Ma, R; Tang, C H; Rao, Y J; Zeng, X P; Yang, Z J; Wang, Z N; Gong, Y; Wang, Y S

    2015-07-01

    An all-optical method to control the lasing modes of Er-doped random fiber lasers (RFLs) is proposed and demonstrated. In the RFL, an Er-doped fiber (EDF) recoded with randomly separated fiber Bragg gratings (FBG) is used as the gain medium and randomly distributed reflectors, as well as the controllable element. By combining random feedback of the FBG array and Fresnel feedback of a cleaved fiber end, multi-mode coherent random lasing is obtained with a threshold of 14 mW and power efficiency of 14.4%. Moreover, a laterally-injected control light is used to induce local gain perturbation, providing additional gain for certain random resonance modes. As a result, active mode selection of the RFL is realized by changing locations of the laser cavity that is exposed to the control light. PMID:26125397

  14. Experimental researches of fiber Bragg gratings operating in a few-mode regime

    NASA Astrophysics Data System (ADS)

    Kafarova, Anastasia M.; Faskhutdinov, Lenar M.; Kuznetzov, Artem A.; Minaeva, Alina Y.; Sevruk, Nikita L.; Nureev, Ilnur I.; Vasilets, Alexander A.; Bourdine, Anton V.; Morozov, Oleg G.; Burdin, Vladimir A.

    2016-03-01

    This work presents results of experimental researches of fiber Bragg gratings (FBG) operating in a few-mode regime. We tested FBGs written on silica graded-index multimode fibers 50/125 Cat. OM2+/OM3 with Bragg wavelength 1550 nm by using them in a set of developed experimental schemes based on excitation of multimode fibers by corresponding laser sources. The researches were focused on analysis of both spectral and pulse responses under changing of selected mode mixing and power diffusion processes due to tension and/or stress local and distributed action to FBG or sensor fiber. Results of spectral and pulse response measurements at the output of schemes with installed described FBGs are represented.

  15. Fiber Bragg grating laser sensor with direct radio-frequency readout.

    PubMed

    Malara, P; Campanella, C E; Giorgini, A; Avino, S; Gagliardi, G

    2016-04-01

    A fiber Bragg grating (FBG)-coupled ring laser sensor is demonstrated. In the proposed configuration the interrogating source, the sensing head and the readout instrument are integrated in a single fiber-optic device. An FBG inserted within a bidirectional fiber ring couples the two counterpropagating modes of the cavity, generating a splitting of the resonant wavelengths proportional to the FBG reflectivity. When the cavity gain is brought beyond threshold, the two peaks of the split resonances simultaneously lase, leading to a beat note in the emission spectrum whose frequency tracks any small shift of the FBG reflectivity spectrum. Such a beat note can be simply monitored by a frequency counter, without the need for an optical spectrometer, allowing to significantly reduce size and costs of the sensor setup. The sensing performance compares well to the state-of-the-art thermo-mechanical fiber sensors. PMID:27192251

  16. High Purcell factor in fiber Bragg gratings utilizing the fundamental slow-light mode.

    PubMed

    Skolianos, George; Arora, Arushi; Bernier, Martin; Digonnet, Michel J F

    2015-08-01

    We demonstrate through numerical simulations that the slow-light resonances that exist in strong, apodized fiber Bragg gratings (FBGs) fabricated with femtosecond pulses in deuterium-loaded fibers can exhibit very large intensity enhancements and Purcell factors with the proper optimization of their length. This potential is illustrated with two saturated FBGs that are less than 5 mm long and have been annealed to reduce their internal loss. The first one exhibits the largest measured Purcell factor in an all-fiber device (38.7), and the second one exhibits the largest intensity enhancement (1525). These devices are anticipated to have significant applications in quantum-dot lasers, nonlinear fiber devices, and cavity quantum-electrodynamics experiments. PMID:26258327

  17. High Purcell factor in fiber Bragg gratings utilizing the fundamental slow-light mode.

    PubMed

    Skolianos, George; Arora, Arushi; Bernier, Martin; Digonnet, Michel J F

    2015-08-01

    We demonstrate through numerical simulations that the slow-light resonances that exist in strong, apodized fiber Bragg gratings (FBGs) fabricated with femtosecond pulses in deuterium-loaded fibers can exhibit very large intensity enhancements and Purcell factors with the proper optimization of their length. This potential is illustrated with two saturated FBGs that are less than 5 mm long and have been annealed to reduce their internal loss. The first one exhibits the largest measured Purcell factor in an all-fiber device (38.7), and the second one exhibits the largest intensity enhancement (1525). These devices are anticipated to have significant applications in quantum-dot lasers, nonlinear fiber devices, and cavity quantum-electrodynamics experiments.

  18. Femtosecond pulse-induced fiber Bragg gratings for in-core temperature measurement in optically pumped Yb-doped silica fibers

    NASA Astrophysics Data System (ADS)

    Leich, Martin; Fiebrandt, Julia; Schwuchow, Anka; Unger, Sonja; Jetschke, Sylvia; Bartelt, Hartmut

    2012-10-01

    We report on the in-core fiber temperature measurements in Yb2O3-doped aluminum silicate fibers during optical pumping using UV femtosecond-induced fiber Bragg gratings (FBGs). The FBG containing fiber samples show a different temperature behavior during pumping before and after thermal annealing, caused by absorption centers generated during grating inscription. These absorption centers can be removed completely by thermal annealing. In this way, remaining temperature rise during pumping due to the quantum defect of the Yb3+ ions is determined depending on the Yb concentration in the range 0.14-0.46 mol% and the pump wavelength.

  19. Current developments in fiber Bragg grating sensors and their applications

    NASA Astrophysics Data System (ADS)

    Annamdas, Venu Gopal Madhav; Yang, Yaowen; Liu, Hui

    2008-03-01

    Whatever may be the material used to build the engineering structures, they are bound to undergo damage at some point in their lifetime. The damage could develop because of continuous usage, degradation, environmental factors, earthquakes or man-made disasters. Structural health monitoring (SHM) has emerged as an important area that has attracted intensive research attention in the recent time. Smart materials like piezoceramics (e.g. lead zirconate titanate or PZT) and fibre optical sensors (FOSs) based effective SHM tools are rapidly developing. Especially, the FOSs offer great potential as monitoring sensors due to their small size, immunity to electromagnetic interference, robustness and survivability in harsh environment. Conventional FOSs use phase modulation techniques for sensing. In spite of the above advantages, they are dependent heavily on source intensity fluctuations and coupling loses. However the fibre Bragg grating (FBG) sensors developed from FOSs are immune to source intensity fluctuations, thus addressing some potential problems of the conventional FOSs. This paper presents a review on the current development of FBG based monitoring techniques and their applications.

  20. Fiber based photonic-crystal acoustic sensor

    NASA Astrophysics Data System (ADS)

    Kilic, Onur

    reflector embedded in a compliant silicon diaphragm placed at the tip of a single-mode fiber. Measurements in air indicate that this sensor has a relatively uniform frequency response up to at least 50 kHz, which is at least one order of magnitude higher than existing all-fiber acoustic sensors. This sensor was also shown to be able to detect pressures as low as 18 muPa/Hz 1/2. This limit is four orders of magnitude lower than in similar types of acoustic fiber sensors that are based on a deflectable diaphragm at the fiber end. This significant improvement is to a large extent due to the higher reflectivity of the reflectors, which is itself due to the use of a photonic crystal. Through a modification in the design, such a sensor can also be used in water. In addition to the high compliance of the diaphragm, the advantage for using the photonic-crystal slab is that the holes provide a venting channel for pressure equalization. As a result, the hydrophone can be employed in deep-sea applications without suffering from the high static pressure. Measurements in water over the range of 10 kHz-50 kHz show that this hydrophone has a minimum detectable pressure of only 10 muPa/Hz1/2, close to the ambient thermal-noise level. A model was developed to show that after optimization to ocean acoustics, the sensor has a theoretical minimum detectable pressure that follows the minimum ambient noise spectrum of the ocean in the bandwidth of 1 Hz-100 kHz. This makes this sensor extremely broadband compared to commercial fiber hydrophones, which are bulky and poorly responsive to frequencies above a few hundred Hz, since they require a long length of fiber. By placing several such sensors with different acoustic power ranges within a single sensor chip, this hydrophone is capable of exhibiting a dynamic range in the excess of 200 dB (1010).

  1. Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings

    NASA Astrophysics Data System (ADS)

    Shi, Leilei; Zhu, Tao; Fan, Yan-en; Chiang, Kin Seng; Rao, Yunjiang

    2011-10-01

    We experimentally demonstrate a fiber ring laser for high-resolution torsion measurement, where the laser cavity consists of a Mach-Zehnder interferometer formed with a pair of long-period fiber gratings written in a twisted single-mode fiber by a CO 2 laser. The emitting wavelength of the laser provides a measure of the rate of the torsion applied to the grating pair, while the direction of the wavelength shift indicates the sense of the applied torsion. The narrow linewidth and the large side-mode suppression ratio of the laser can provide a much more precise measurement of torsion, compared with passive fiber-optic torsion sensors. The torsion sensitivity achieved is 0.084 nm/(rad/m) in the torsion range ± 100 rad/m, which corresponds to a torsion resolution of 0.12 rad/m, assuming a wavelength resolution of 10 pm for a typical optical spectrum analyzer. The ultimate resolution of the sensor is limited by the linewidth of the laser and could be an order of magnitude higher.

  2. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation.

    PubMed

    Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong

    2015-01-01

    An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity. PMID:26184201

  3. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation

    PubMed Central

    Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong

    2015-01-01

    An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity. PMID:26184201

  4. Single-mode lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings

    NASA Astrophysics Data System (ADS)

    Huang, Wenbin; Liu, Quan; Xuan, Li; Chen, Linsen

    2014-12-01

    We demonstrate single-mode laser operation in dye-doped holographic polymer-dispersed liquid crystal (HPDLC) transmission gratings. The gratings are fabricated in cells made from specifically chosen glass substrates to decrease the refractive index difference between the waveguide core layer and cladding layer. The phase separation degree of liquid crystal after holographic recording is further optimized to confine only the lowest propagation mode in the device. The mode selection mechanism is explained under the framework of the waveguide distributed feedback (DFB) theory. The wavelength of single-mode lasing can be tuned between 620 and 660 nm by varying the grating period. Our results show the HPDLC technique could provide single-mode organic DFB lasers in a tunable, simple, and large-area manner.

  5. Fabrication of Fiber-Optic Tilted Bragg Grating Filter in 40 nm Range with A Single Phase Mask

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Wang, Y.; Sharma, A.; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    Fiber-optic Bragg grating filters are fabricated with a range of Bragg wavelength between 1296 and 1336 nm, using a single phase mask. 30 mW of continuous-wave light at 244 nm is used from a frequency-doubled argon-ion laser having an intracavity etalon. Gratings are fabricated by tilting the photosensitive fiber with respect to the phase mask up to an angle of 15 degrees. The variation of Bragg wavelength with the fiber-tilt is explained with a simple formula. High spatial coherence of 244 nm light makes it possible to displace the fiber as much as 6 mm in front of the phase mask and tilt the fiber by as much as 15 degrees. This results in nearly constant band-width and near 100% reflectively for all gratings throughout the 40 nm range.

  6. Femtosecond laser-inscribed fiber Bragg gratings for strain monitoring in power cables of offshore wind turbines.

    PubMed

    Burgmeier, Jörg; Schippers, Wolfgang; Emde, Nico; Funken, Peter; Schade, Wolfgang

    2011-05-01

    A fiber Bragg grating sensor system used for monitoring the effects of strain on the power cable of an offshore wind turbine is presented. The Bragg grating structure was inscribed into coated nonphotosensitive standard telecommunication fibers using an IR femtosecond laser and the point-by-point writing technique. Because of the presence of the protective coating of the fiber, the mechanical stability of the resultant sensor device is better than that of a sensor consisting of a bare fiber. A system containing this sensing element was to our knowledge for the first time successfully installed and tested in an offshore wind turbine prototype (REpower 6M, REpower Systems, AG, Germany) in February 2010, near Ellhöft (Germany). The fabrication process of the fiber Bragg gratings, measurement results of the online monitoring, and a comparison between the sensor signal and commonly used sensing techniques are presented.

  7. Simplified hollow-core photonic crystal fiber.

    PubMed

    Gérôme, Frédéric; Jamier, Raphaël; Auguste, Jean-Louis; Humbert, Georges; Blondy, Jean-Marc

    2010-04-15

    An original design of hollow-core photonic crystal fiber composed of a thin silica ring suspended in air by six silica struts is proposed. This structure can be viewed as a simplified Kagomé-lattice fiber reduced to one layer of air holes. By working on the core surround parameters, an efficient antiresonant air guiding was successfully demonstrated. Two large low-loss windows (visible/IR) were measured with a minimum attenuation less than 0.2 dB radicalm at yellow wavelengths, comparable with state-of-the-art designs. The curvature behavior was also studied, showing low bending loss sensitivity for the fundamental transmission band. These relevant features might open a new route to propose original hollow-core fiber designs while making their production simpler and faster than previously.

  8. Behavior of Bragg gratings, written in germanosilicate fibers, against [gamma]-ray exposure at low dose rate

    SciTech Connect

    Niay, P.; Bernage, P.; Douay, M.; Fertein, E.; Lahoreau, F. . Lab. de Dynamique Moleculaire et Photonique); Bayon, J.F.; Georges, T.; Monerie, M. ); Ferdinand, P.; Rougeault, S.; Cetier, P. )

    1994-11-01

    Bragg gratings have been written within four germanosilicate fibers either by a pulsed or by a continuous-wave exposure of each fiber to a coherent UV two-beam interference pattern. These gratings have been exposed under steady state conditions to [gamma]-ray doses as high as 10[sup 4] Grays. The dose rates ranged between 10 Gy/h and 1.3 [times] 10[sup 2] Gy/h. The transmission spectra of the fibers have been recorded during and after the [sup 60]Co irradiation, near the grating Bragg wavelengths. Whereas the induced loss reached 600 dB/km near 1.3 [mu]m, no significant change in the spectral characteristics of the gratings could be detected within the experimental accuracy, enabling their future use in a nuclear environment.

  9. Passive Spectroscopy Bolometers, Grating- And X-Ray Imaging Crystal Spectrometers

    SciTech Connect

    Bitter, M; Hill, K W; Scott, S; Paul, S; Ince-Cushmann, A; Reinke, M; Rice, J; Beiersdorfer, P; Gu, M F; Lee, S G; Broennimann, C; Eikenberry, E F

    2007-11-07

    This tutorial gives a brief introduction into passive spectroscopy and describes the working principles of bolometers, a high-resolution grating spectrometer, and a novel X-ray imaging crystal spectrometer, which is of particular interest for profile measurements of the ion temperature and plasma rotation velocity on ITER and future burning plasma experiments.

  10. Pipeline corrosion assessment using embedded Fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Huang, Ying; Galedari, Sahar Abuali; Azarmi, Fardad

    2015-04-01

    Corrosion is a leading cause of failure in metallic transmission pipelines. It significantly impacts the reliability and safety of metallic pipelines. An accurate assessment of corrosion status of the pipelines would contribute to timely pipeline maintenance and repair and extend the service life of the associated pipelines. To assess pipeline corrosion, various technologies have been investigated and the pipe-to-soil voltage potential measurement was commonly applied. However, remote and real-time corrosion assessment approaches are in urgent needs but yet achieved. Fiber optic sensors, especially, fiber Bragg gating (FBG) sensors, with unique advantages of real-time sensing, compactness, immune to EMI and moisture, capability of quasi-distributed sensing, and long life cycle, will be a perfect candidate for longterm pipeline corrosion assessment. In this study, FBG sensors are embedded inside pipeline external coating for corrosion monitoring of on-shore buried metallic transmission pipelines. Detail sensing principle, sensor calibration and embedment are introduced in this paper together with experimental corrosion evaluation testing ongoing. Upon validation, the developed sensing system could serve the purpose of corrosion monitoring to the numerous metallic pipelines across nation and would possibly reduce the pipeline corrosion induced tragedies.

  11. Characteristic analysis of two-mode fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Yan, Li; Hu, Guijun; Xiao, Jian; Chang, Yuxin; Bai, Song; Wang, Haiyan

    2014-12-01

    In this paper, the two-mode FBG is intensively studied in simulation and experiment. From the perspective of mode coupling, the coupling wavelength of the two-mode FBG is analyzed theoretically and the Bragg wavelength is calculated in simulation. Meanwhile, the variation of the two-mode FBG's reflection spectrum is simulated in different power ratios of the LP11 and LP01 modes. Then, a two-mode FBG is written on SMF-28e fiber by using the phase-mask technique and the two-mode FBG's reflection spectrum has been experimentally measured by adjusting the core-offset distance between the broadband light source's pigtail and the two-mode fiber which changes the power ratio of LP11 and LP01 modes. Eventually and most importantly, the mode characteristic of the two-mode FBG is studied, and the LP11 mode is successfully obtained by using an experimental system of a two-mode FBG combined with an optical circulator. The results show that the two-mode FBG has a good prospect for obtaining high-order mode and for application in mode division multiplexing/demultiplexing.

  12. Research on the demodulation techniques of long-period fiber gratings strain sensing with low cost

    NASA Astrophysics Data System (ADS)

    Wang, Qingwei; Liu, Yueming; Tian, Weijian; Feng, Guilan

    2012-10-01

    The working principle of LPFG(Long-Period Fiber Grating) is based on coupling effect between propagating core-mode and co-propagating cladding-modes. The effective refractive index of cladding-modes could be obviously influenced by the environmental changes resulting in LPFG more sensitive than FBG (Fiber Bragg Grating) in sensing areas, such as temperature, strain, concentration, bending and etc. LPFG should have more potential in the field of sensors compared with FBG. One of the challenges in using LPFG for environmental sensing is how to interrogate the signal from the LPFG transmission spectrum, due to the large spectral range of the resonant dip. Nowadays the application of LPFG is normally limited in signal interrogation of FBG as optical edge filter. The signal interrogation of LPFG itself needs further research. Presently research on signal interrogation of fiber grating focuses on wavelength interrogation. The aim of wavelength interrogation is to get the wavelength shift caused by environmental change. To solve these problems, a kind of strain sensing interrogation technique for LPFG with low-cost based on tunable FBGs has been developed. Comparing with the method using Fabry-Perot cavity, tunable FBGs can lower the cost with the guarantee of sensing precision. The cost is further lowered without using expensive optical instruments such as optical switch. The problem of temperature cross-sensitivity was solved by using reference gratings. An experiment was performed to demonstrate the interrogation system. And in the experiment, the sensing signal of LPFG applied 0-1300μɛ was successfully interrogated. The results of the interrogation system and OSA are similar.

  13. Fiber-laser-based, green-pumped, picosecond optical parametric oscillator using fan-out grating PPKTP.

    PubMed

    Chaitanya Kumar, S; Parsa, S; Ebrahim-Zadeh, M

    2016-01-01

    We report a stable, Yb-fiber-laser-based, green-pumped, picosecond optical parametric oscillator (OPO) for the near-infrared based on periodically poled potassium titanyl phosphate (PPKTP) nonlinear crystal, using fan-out grating design and operating near room temperature. The OPO is continuously tunable across 726-955 nm in the signal and 1201-1998 nm in the idler, resulting in a total signal plus idler wavelength coverage of 1026 nm by grating tuning at a fixed temperature. The device generates up to 580 mW of average power in the signal at 765 nm and 300 mW in the idler at 1338 nm, with an overall extraction efficiency of up to 52% and a pump depletion >76%. The extracted signal at 765 nm and idler at 1746 nm exhibit excellent passive power stability better than 0.5% and 0.8% rms, respectively, over 1 h with good beam quality in TEM00 mode profile. The output signal pulses have a Gaussian temporal duration of 13.2 ps, with a FWHM spectral bandwidth of 3.4 nm at 79.5 MHz repetition rate. Power scaling limitations of the OPO due to the material properties of PPKTP are studied.

  14. Fiber-laser-based, green-pumped, picosecond optical parametric oscillator using fan-out grating PPKTP.

    PubMed

    Chaitanya Kumar, S; Parsa, S; Ebrahim-Zadeh, M

    2016-01-01

    We report a stable, Yb-fiber-laser-based, green-pumped, picosecond optical parametric oscillator (OPO) for the near-infrared based on periodically poled potassium titanyl phosphate (PPKTP) nonlinear crystal, using fan-out grating design and operating near room temperature. The OPO is continuously tunable across 726-955 nm in the signal and 1201-1998 nm in the idler, resulting in a total signal plus idler wavelength coverage of 1026 nm by grating tuning at a fixed temperature. The device generates up to 580 mW of average power in the signal at 765 nm and 300 mW in the idler at 1338 nm, with an overall extraction efficiency of up to 52% and a pump depletion >76%. The extracted signal at 765 nm and idler at 1746 nm exhibit excellent passive power stability better than 0.5% and 0.8% rms, respectively, over 1 h with good beam quality in TEM00 mode profile. The output signal pulses have a Gaussian temporal duration of 13.2 ps, with a FWHM spectral bandwidth of 3.4 nm at 79.5 MHz repetition rate. Power scaling limitations of the OPO due to the material properties of PPKTP are studied. PMID:26696156

  15. Enhancing the humidity response time of polymer optical fiber Bragg grating by using laser micromachining.

    PubMed

    Chen, Xianfeng; Zhang, Wei; Liu, Chen; Hong, Yanhua; Webb, David J

    2015-10-01

    The humidity sensors constructed from polymer optical fiber Bragg gratings (POFBG) respond to the water content change in the fiber induced by varying environmental condition. The water content change is a diffusion process. Therefore the response time of the POFBG sensor strongly depends on the geometry and size of the fiber. In this work we investigate the use of laser micromachining of D-shaped and slotted structures to improve the response time of polymer fiber grating based humidity sensors. A significant improvement in the response time has been achieved in laser micromachined D-shaped POFBG humidity sensors. The slotted geometry allows water rapid access to the core region but this does not of itself improve response time due to the slow expansion of the bulk of the cladding. We show that by straining the slotted sensor, the expansion component can be removed resulting in the response time being determined only by the more rapid, water induced change in core refractive index. In this way the response time is reduced by a factor of 2.5. PMID:26480109

  16. Multi-channel monolithic integrated optic fiber Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Zongjian

    2011-09-01

    Fiber Bragg grating (FBG) is a mature sensing technology for the measurement of strain, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion. It has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. The most prominent advantages of FBG are: small size and light weight, distributed array of FBG transducers on a single fiber, and immunity to radio frequency interference. However, a major disadvantage of FBG technology is that conventional state-of-the-art FBG interrogation system is typically bulky, heavy, and costly bench top instruments that are typically assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the industrial need for a compact FBG interrogation system, this paper describes recent progress towards the development of miniature fiber Bragg grating sensor interrogator (FBG-Transceiver™) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables monolithic integration of all functionalities, both passive and active, of conventional bench top FBG sensor interrogator system, packaged in a miniaturized, low power operation, 2 cm×5 cm small form factor (SFF) package suitable for long-term structural health monitoring in applications where size, weight, and power are critical for operation.

  17. Cladding-mode obtained by core-offset structure and applied in fiber Bragg grating sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Xinpu; Peng, Wei; Liu, Yun; Li, Hong; Jing, Zhenguo; Yu, Qi; Zhou, Xinlei; Yao, Wenjuan; Wang, Yanjie; Liang, Yuzhang

    2011-12-01

    Comparing to core-modes of optical fibers, some cladding-modes are more sensitive to the surroundings which are very valuable to sensing application; recently, a novel type of FBG sensor with core-offset structure attracts more and more interests. Normally, the forward core-mode is not only reflected and coupled to the backward core mode by the Fiber Bragg Grating in the step-type photosensitive single mode fiber, but also coupled to the backward cladding-modes and the radiation modes, eventually they will leak or be absorbed by the high refraction index coating layer. These backward cladding-modes can also be used for sensing analysis. In this paper, we propose and develop a core-offset structure to obtain the backward core-mode and backward cladding-modes by using the wavelength shift of the backward core-mode and the power of the backward cladding-modes in Fiber Bragg Grating sensor, and the power of the backward cladding-modes are independent from temperature variation. We develop a mode coupling sensor model between the forward core-mode and the backward cladding-modes, and demonstrate two coupling methods in the core-offset structure experimentally. The sensor is fabricated and demonstrated for refractive index monitoring. Some specific works are under investigation now, more analysis and fabrication will be done to improve this cladding-mode based sensor design for applicable sensing technology.

  18. Long period fiber grating based sensor for the detection of triacylglycerides.

    PubMed

    Baliyan, Anjli; Sital, Shivani; Tiwari, Umesh; Gupta, Rani; Sharma, Enakshi K

    2016-05-15

    In this paper, stable, label free enzyme based sensor using long period fiber grating (LPG) is described for the detection of triacylglycerides. A stable covalent binding technique for lipase enzyme immobilization on an optical fiber is reported. An active and stable attachment of the functional group of the enzyme on the fiber surface is achieved using this method. Enzyme immobilization is confirmed by Scanning Electron Microscopy (SEM) and Raman Spectroscopy. The stability is confirmed by lipase p-nitrophenyl palmitate (PNP) assay. In contrast to widely used amperometric based biosensor, where a number of enzymes are required, only one enzyme, namely, lipase is required in our sensor. The sensor shows optimum response within one minute at a temperature of 37°C and pH of 7.4. The sensor is based on the shift in resonance wavelength of the LPG transmission spectrum due to the interaction of triacylglycerides with the enzyme. The biosensor is highly specific towards triacylglycerides and is unaffected by the presence of many other interfering substances in serum. Interaction between the bio-molecules and the long period grating surface is also modeled theoretically using a four layer model for the LPG fiber with the bio-recognition layer and the results obtained are consistent with experimentally obtained results. The sensor shows a high sensitivity of 0.5 nm/mM and a low detection limit of 17.71 mg/dl for the physiological range of triacylglycerides in human blood. PMID:26773373

  19. Effects of Coating and Diametric Load on Fiber Bragg Gratings as Cryogenic Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Wu, meng-Chou; Pater, Ruth H.; DeHaven, Stanton L.

    2008-01-01

    Cryogenic temperature sensing was demonstrated using pressurized fiber Bragg gratings (PFBGs) with polymer coating of various thicknesses. The PFBG was obtained by applying a small diametric load to a regular fiber Bragg grating (FBG). The Bragg wavelengths of FBGs and PFBG were measured at temperatures from 295 K to 4.2 K. The temperature sensitivities of the FBGs were increased by the polymer coating. A physical model was developed to relate the Bragg wavelength shifts to the thermal expansion coefficients, Young's moduli, and thicknesses of the coating polymers. When a diametric load of no more than 15 N was applied to a FBG, a pressure-induced transition occurred at 200 K during the cooling cycle. The pressure induced transition yielded PFBG temperature sensitivities three times greater than conventional FBGs for temperatures ranging from 80 to 200 K, and ten times greater than conventional fibers for temperatures below 80 K. PFBGs were found to produce an increased Bragg wavelength shift of 2.2 nm compared to conventional FBGs over the temperature range of 4.2 to 300 K. This effect was independent of coating thickness and attributed to the change of the fiber thermo-optic coefficient.

  20. Real-time damage assessment using fiber optic grating sensors

    NASA Astrophysics Data System (ADS)

    Calvert, Sean G.; Conte, Joel P.; Moaveni, Babak; Schulz, Whitten L.; de Callafon, Raymond

    2003-11-01

    Over the past few years Blue Road Research and the University of California at San Diego have been collaborating to develop a bridge health monitoring system using long gage length fiber optic strain sensors and modal analysis. Two programs supporting this effort have been funded by the National Science Foundation and from this work several papers have been published showing its strong progress1-5. In 2002, the Federal Highway Administration and Caltrans performed a full-scale test on some of the components that will be used for the planned I-5/Gilman Advanced technology Bridge in California, USA. As a part of this test Blue Road Research used its developmental system to validate the use of this damage detection technique and to compare the results with conventional modal analysis tools.

  1. Structural Health Monitoring with Fiber Bragg Grating and Piezo Arrays

    NASA Technical Reports Server (NTRS)

    Black, Richard J.; Faridian, Ferey; Moslehi, Behzad; Sotoudeh, Vahid

    2012-01-01

    Structural health monitoring (SHM) is one of the most important tools available for the maintenance, safety, and integrity of aerospace structural systems. Lightweight, electromagnetic-interference- immune, fiber-optic sensor-based SHM will play an increasing role in more secure air transportation systems. Manufacturers and maintenance personnel have pressing needs for significantly improving safety and reliability while providing for lower inspection and maintenance costs. Undetected or untreated damage may grow and lead to catastrophic structural failure. Damage can originate from the strain/stress history of the material, imperfections of domain boundaries in metals, delamination in multi-layer materials, or the impact of machine tools in the manufacturing process. Damage can likewise develop during service life from wear and tear, or under extraordinary circumstances such as with unusual forces, temperature cycling, or impact of flying objects. Monitoring and early detection are key to preventing a catastrophic failure of structures, especially when these are expected to perform near their limit conditions.

  2. Ultra-efficient liquid crystal projection displays: Polarizer-free displays using continuous polarization gratings

    NASA Astrophysics Data System (ADS)

    Komanduri, Ravi K.

    Liquid crystals constitute a distinct state of matter that possesses switchable anisotropic properties. These properties have enabled several electro-optic applications that are compact, and consume low power. The success of the Liquid Crystal Display industry over the past few decades is attributed to these advantages. As a result, today we find LCDs in a variety of consumer electronics including cell phones, flat-panel televisions, and projectors. Even though LCDs today are one of the most power efficient display devices, there is still room for improvement. Current LCD designs use polarizers that limit the maximum light efficiency to less than 50%. Due to this a family of polarization independent liquid crystal diffraction gratings has been investigated for projection systems. However the nature of the gratings investigated, and problems associated with their fabrication processes have limited the efficiencies of these elements to much less than those predicted by theory. In this work we mainly discuss one special class of Polarization Gratings (PGs) that has several compelling properties in this context. We develop a solid theoretical framework based on Elastic Continuum principles that reveals several interesting aspects of these devices. Based on this analysis, we lay out foundational design rules that were used to fabricate high quality Liquid Crystal Polarization Gratings (LCPGs) with properties close to those predicted in theory. We then develop new fabrication approaches for creating these gratings on virtually any type of reflective surface; leading to a polarizer free Liquid Crystal On Silicon (LCOS) based projection system that provides a brightness enhancement of nearly two when compared with standard approaches. We then identify and implement an even more revolutionary modulation scheme using polymer-PGs, that achieves the same high efficiency with any off-the-shelf LC microdisplay, and thus can be easily integrated into commercial LC projectors. Key

  3. Phase-shifted helical long-period grating-based temperature-insensitive optical fiber twist sensors

    NASA Astrophysics Data System (ADS)

    Gao, Ran; Zhu, Yinian; Krishnaswamy, Sridhar; Yi, Jiang

    2015-03-01

    In smart structure monitoring, twist angle is one of the most critical mechanical parameters for infrastructure deterioration. A compact temperature-insensitive optical fiber twist sensor based on multi-phase-shifted helical long period fiber grating has been proposed and experimentally demonstrated in this paper. A multi-phase-shifted helical long period fiber grating is fabricated with a multi-period rotation technology. A π / 2 and a 3π / 2 phase shift is introduced in the helical long period fiber grating by changing the period. The helical pitch can be effectively changed with a different twist rate, which is measured by calculating the wavelength difference between two phase shift peaks. Although the wavelength of the phase shift peak also shifts with a change of the temperature, the wavelength difference between two phase shift peaks is constant due to two fixed phase shifts in the helical long period fiber grating, which is extremely insensitive to temperature change for the multi-phase-shifted helical long period fiber grating. The experimental results show that a sensitivity of up to 1.959 nm/(rad/m) is achieved.

  4. Long period grating-based fiber coupler to whispering gallery mode resonators.

    PubMed

    Farnesi, D; Chiavaioli, F; Righini, G C; Soria, S; Trono, C; Jorge, P; Conti, G Nunzi

    2014-11-15

    We present a new method for coupling light to high-Q silica whispering gallery mode resonators (WGMs) that is based on long period fiber gratings (LPGs) written in silica fibers. An LPG allows selective excitation of high-order azimuthally symmetric cladding modes in a fiber. Coupling of these cladding modes to WGMs in silica resonators is possible when partial tapering of the fiber is also implemented in order to reduce the optical field size and increase its external evanescent portion. Importantly, the taper size is about one order of magnitude larger than that of a standard fiber taper coupler. The suggested approach is therefore much more robust and useful especially for practical applications. We demonstrate coupling to high-Q silica microspheres and microbubbles detecting the transmission dip at the fiber output when crossing a resonance. An additional feature of this approach is that by cascading LPGs with different periods, a wavelength selective addressing of different resonators along the same fiber is also possible. PMID:25490510

  5. Thulium-doped all-fiber mode-locked laser based on NPR and 45°-tilted fiber grating.

    PubMed

    Li, Jianfeng; Yan, Zhijun; Sun, Zhongyuan; Luo, Hongyu; He, Yulian; Li, Zhuo; Liu, Yong; Zhang, Lin

    2014-12-15

    A nonlinear polarization rotation based all-fiber passively mode-locked Tm³⁺-doped fiber laser is demonstrated by using a 45° tilted fiber grating (TFG) as an in-line polarizer. The 45° TFG centered at 2000 nm with polarization dependent loss (PDL) of >12 dB at 1850 nm~2150 nm range was UV inscribed for the first time in SM28 fiber using a 244 nm Ar⁺ continuous wave laser and a phase mask with 25 mm long uniform pitch and titled period pattern of 33.7° with respect to the fiber axis. Stable soliton pulses centered at 1992.7 nm with 2.02 nm FWHM bandwidth were produced at a repetition rate of 1.902 MHz with pulse duration of 2.2 ps and pulse energy of 74.6 pJ. As increased pump power, the laser also can operate at noise-like regime with 18.1 nm FWHM bandwidth and pulse energy of up to 250.1 nJ. Using the same 45° TFG, both stable soliton and noise-like mode-locking centered at ~1970 nm and ~2050 nm, were also achieved by shortening and extending the length of Tm³⁺-doped fiber, respectively, exhibiting advantages of broadband and low insertion loss at 2 µm band. PMID:25607051

  6. A 3D fiber probe based on orthogonal micro focal-length collimation and fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Cui, Jiwen; Li, Junying; Feng, Kunpeng; Tan, Jiubin; Zhang, Jian

    2016-07-01

    A 3D fiber probe is proposed for the precision measurement of micro parts with high aspect ratios. The probing system consists of two measuring systems: two mutually orthogonal micro focal-length collimation optical paths for the radial tactile probing measurement, and a matched fiber Bragg grating (FBG) pair interrogation system for the axial tactile probing measurement. The fiber probe consists of a fiber stylus and a probe tip, the fiber stylus works as a micro focal-length cylindrical lens, and the FBG inscribed in the fiber stylus works as a measuring FBG. The radial displacement of the probe tip is transformed into the centroid position shift of the two mutually orthogonal micro focal-length collimation optical paths; the axial displacement of the probe tip is transformed into the power ratio change of the matched FBG pair interrogation system. Experimental results indicate that the probe has a radial sensitivity of 71 pixel μm‑1 in both X and Y directions, and an axial sensitivity of 4.9% μm‑1 in Z direction; the probe can reach a radial resolution of 5 nm, and an axial resolution of 8 nm. The probe has a capability of decoupling the 3D tactility and it can be applied in the measurement of micro parts.

  7. Thulium-doped all-fiber mode-locked laser based on NPR and 45°-tilted fiber grating.

    PubMed

    Li, Jianfeng; Yan, Zhijun; Sun, Zhongyuan; Luo, Hongyu; He, Yulian; Li, Zhuo; Liu, Yong; Zhang, Lin

    2014-12-15

    A nonlinear polarization rotation based all-fiber passively mode-locked Tm³⁺-doped fiber laser is demonstrated by using a 45° tilted fiber grating (TFG) as an in-line polarizer. The 45° TFG centered at 2000 nm with polarization dependent loss (PDL) of >12 dB at 1850 nm~2150 nm range was UV inscribed for the first time in SM28 fiber using a 244 nm Ar⁺ continuous wave laser and a phase mask with 25 mm long uniform pitch and titled period pattern of 33.7° with respect to the fiber axis. Stable soliton pulses centered at 1992.7 nm with 2.02 nm FWHM bandwidth were produced at a repetition rate of 1.902 MHz with pulse duration of 2.2 ps and pulse energy of 74.6 pJ. As increased pump power, the laser also can operate at noise-like regime with 18.1 nm FWHM bandwidth and pulse energy of up to 250.1 nJ. Using the same 45° TFG, both stable soliton and noise-like mode-locking centered at ~1970 nm and ~2050 nm, were also achieved by shortening and extending the length of Tm³⁺-doped fiber, respectively, exhibiting advantages of broadband and low insertion loss at 2 µm band.

  8. High-sensitivity cryogenic temperature sensors using pressurized fiber Bragg gratings

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; DeHaven, Stanton L.

    2006-01-01

    Cryogenic temperature sensing was studied using a pressurized fiber Bragg grating (PFBG). The PFBG was obtained by simply applying a small diametric load to a regular fiber Bragg grating (FBG), which was coated with polyimide of a thickness of 11 micrometers. The Bragg wavelength of the PFBG was measured at temperatures from 295 to 4.2 K. A pressure-induced transition occurred at 200 K during the cooling cycle. As a result the temperature sensitivity of the PFBG was found to be nonlinear but reach 24 pm/K below 200 K, more than three times the regular FBG. For the temperature change from 80 K to 10 K, the PFBG has a total Bragg wavelength shift of about 470 pm, 10 times more than the regular FBG. From room temperature to liquid helium temperature the PFBG gives a total wavelength shift of 3.78 nm, compared to the FBG of 1.51 nm. The effect of the coating thickness on the temperature sensitivity of the gratings is also discussed.

  9. High-sensitivity Cryogenic Temperature Sensors using Pressurized Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; DeHaven, Stanton L.

    2006-01-01

    Cryogenic temperature sensing was studied using a pressurized fiber Bragg grating (PFBG). The PFBG was obtained by simply applying a small diametric load to a regular fiber Bragg grating (FBG), which was coated with polyimide of a thickness of 11 micrometers. The Bragg wavelength of the PFBG was measured at temperatures from 295 to 4.2 K. A pressure-induced transition occurred at 200 K during the cooling cycle. As a result the temperature sensitivity of the PFBG was found to be nonlinear but reach 24 pm/K below 200 K, more than three times the regular FBG. For the temperature change from 80 K to 10 K, the PFBG has a total Bragg wavelength shift of about 470 pm, 10 times more than the regular FBG. From room temperature to liquid helium temperature the PFBG gives a total wavelength shift of 3.78 nm, compared to the FBG of 1.51 nm. The effect of the coating thickness on the temperature sensitivity of the gratings is also discussed.

  10. Note: strain sensitivity comparison between fiber Bragg gratings inscribed on 125 and 80 micron cladding diameter fibers, case study on the solidification monitoring of a photo-curable resin.

    PubMed

    Maccioni, E; Morganti, M; Brandi, F

    2015-02-01

    The influence of fiber Bragg grating diameter when measuring strain is investigated and quantified. Two fiber Bragg gratings with bare cladding diameter of 125 μm and 80 μm are produced by excimer laser irradiation through a phase mask, and are used to simultaneously monitor the Bragg wavelength shift due to the strain produced by the solidification of a photo-curable resin during light exposure. It is found that the ratio of the measured strains in the two fiber Bragg gratings is close to the inverse ratio of the fiber's cladding diameter. These results represent a direct simultaneous comparison between 125 μm and 80 μm diameter fiber Bragg grating strain sensors, and demonstrate the feasibility of strain measurements in photo-curable resins using bare 80 μm cladding diameter fiber Bragg gratings with an increased sensitivity and spatial resolution compared with standard 125 μm diameter fiber Bragg gratings. PMID:25725899

  11. Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings.

    PubMed

    Feng, Dingyi; Zhou, Wenjun; Qiao, Xueguang; Albert, Jacques

    2015-01-01

    In this work, a compact fiber-optic 3D shape sensor consisting of two serially connected 2° tilted fiber Bragg gratings (TFBGs) is proposed, where the orientations of the grating planes of the two TFBGs are orthogonal. The measurement of the reflective transmission spectrum from the pair of TFBGs was implemented by Fresnel reflection of the cleaved fiber end. The two groups of cladding mode resonances in the reflection spectrum respond differentially to bending, which allows for the unique determination of the magnitude and orientation of the bend plane (i.e. with a ± 180 degree uncertainty). Bending responses ranging from -0.33 to + 0.21 dB/m(-1) (depending on orientation) are experimentally demonstrated with bending from 0 to 3.03 m(-1). In the third (axial) direction, the strain is obtained directly by the shift of the TFBG Bragg wavelengths with a sensitivity of 1.06 pm/με. PMID:26617191

  12. Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings

    PubMed Central

    Feng, Dingyi; Zhou, Wenjun; Qiao, Xueguang; Albert, Jacques

    2015-01-01

    In this work, a compact fiber-optic 3D shape sensor consisting of two serially connected 2° tilted fiber Bragg gratings (TFBGs) is proposed, where the orientations of the grating planes of the two TFBGs are orthogonal. The measurement of the reflective transmission spectrum from the pair of TFBGs was implemented by Fresnel reflection of the cleaved fiber end. The two groups of cladding mode resonances in the reflection spectrum respond differentially to bending, which allows for the unique determination of the magnitude and orientation of the bend plane (i.e. with a ± 180 degree uncertainty). Bending responses ranging from −0.33 to + 0.21 dB/m−1 (depending on orientation) are experimentally demonstrated with bending from 0 to 3.03 m−1. In the third (axial) direction, the strain is obtained directly by the shift of the TFBG Bragg wavelengths with a sensitivity of 1.06 pm/με. PMID:26617191

  13. The study of the thermal annealing of the Bragg gratings induced in the hydrogenated birefringent optical fiber with an elliptical stress cladding

    NASA Astrophysics Data System (ADS)

    Munko, A. S.; Varzhel', S. V.; Arkhipov, S. V.; Gribaev, A. I.; Konnov, K. A.; Belikin, M. N.

    2016-08-01

    In this work the comparative results on the dynamics of fiber Bragg gratings inscription in both the conventional and the subjected to hydrogenation birefringent optical fiber with elliptical stress cladding as well as in the same type of lightguide with the increased GeO2 concentration are presented. Also the research on the thermal impact on the fiber Bragg gratings written in the birefringent fiber with elliptical stress cladding has been carried out. The dependences of the fiber Bragg reflectance coefficient on the time of the thermal impact, obtained by annealing of the refractive index gratings, induced in the optical fibers with increased photorefractivity, are shown.

  14. Reliability and durability of fiber grating sensors in structural monitoring applications

    NASA Astrophysics Data System (ADS)

    Sennhauser, Urs J.; Broennimann, Rolf; Mauron, Pascal; Nellen, Philipp M.

    1997-09-01

    There is strong interest to develop fiber-optical sensing systems for long term surveillance and structural monitoring. Although many detection schemes have been proposed, industrial acceptance of optical fibers as validated replacement of other sensors is limited. Low cost manufacturability, reliability, and long term stability are very important for usability in concrete and composite material structures. Lifetime for major structures in civil engineering of 50 - 100 years are very demanding on the sensors and require accurate aging models and test data to demonstrate their reliability and durability. Acceleration factors of several orders of magnitude can be achieved under reasonable testing conditions depending on temperature, mechanical stress, humidity, chemical environment and activation energy of the damaging process. We report on accelerated aging tests and failure mechanisms of optical fibers and Bragg gratings at elevated temperature, humidity and mechanical stress. Aging behavior is discussed and results from field measurements of large civil structures are presented.

  15. Fiber Bragg grating Fabry-Perot cavity sensor based on pulse laser demodulation technique

    NASA Astrophysics Data System (ADS)

    Gao, Fangfang; Chen, Jianfeng; Liu, Yunqi; Wang, Tingyun

    2011-12-01

    We demonstrate a fiber laser sensing technique based on fiber Bragg grating Fabry-Perot (FBG-FP) cavity interrogated by pulsed laser, where short pulses generated from active mode-locked erbium-doped fiber ring laser and current modulated DFB laser are adopted. The modulated laser pulses launched into the FBG-FP cavity produce a group of reflected pulses. The optical loss in the cavity can be determined from the power ratio of the first two pulses reflected from the cavity. This technique does not require high reflectivity FBGs and is immune to the power fluctuation of the light source. Two short pulse laser sources were compared experimentally with each other on pulse width, pulse stability, pulse chirp and sensing efficiency.

  16. High-resolution fiber Bragg grating based transverse load sensor using microwave photonics filtering technique.

    PubMed

    Wang, Yiping; Wang, Ming; Xia, Wei; Ni, Xiaoqi

    2016-08-01

    In this paper, a new fiber Bragg grating (FBG) sensor exploiting microwave photonics filter technique for transverse load sensing is firstly proposed and experimentally demonstrated. A two-tap incoherent notch microwave photonics filter (MPF) based on a transverse loaded FBG, a polarization beam splitter (PBS), a tunable delay line (TDL) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the transverse load is studied. By detecting the resonance frequency shifts of the notch MPF, the transverse load can be determined. The theoretical and experimental results show that the proposed FBG sensor has a higher resolution than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 2.5 MHz/N for a sensing fiber with a length of 18mm. Moreover, the sensitivity can be easily adjusted. PMID:27505763

  17. Research on the fiber Bragg grating sensor for the shock stress measurement

    PubMed Central

    Deng, Xiangyang; Chen, Guanghua; Peng, Qixian; Li, Zeren; Meng, Jianhua; Liu, Jun

    2011-01-01

    A fiber Bragg grating (FBG) sensor with an unbalanced Mach-Zehnder fiber interferometer for the shock stress measurement is proposed and demonstrated. An analysis relationship between the shock stress and the central reflection wavelength shift of the FBG is firstly derived. In this sensor, the optical path difference of the unbalanced Mach-Zehnder fiber interferometer is ∼3.1 mm and the length of the FBG is 2 mm. An arctangent function reduction method, which can avoid sine function's insensitive zone where the shock stress measurement has a reduced accuracy, is presented. A shock stress measurement of water driven by one stage gun (up to 1.4 GPa), with good theoretical accuracy (∼10%), is launched. PMID:22047282

  18. Flat-Cladding Fiber Bragg Grating Sensors for Large Strain Amplitude Fatigue Tests

    PubMed Central

    Feng, Aihen; Chen, Daolun; Li, Cheng; Gu, Xijia

    2010-01-01

    We have successfully developed a flat-cladding fiber Bragg grating sensor for large cyclic strain amplitude tests of up to ±8,000 με. The increased contact area between the flat-cladding fiber and substrate, together with the application of a new bonding process, has significantly increased the bonding strength. In the push-pull fatigue tests of an aluminum alloy, the plastic strain amplitudes measured by three optical fiber sensors differ only by 0.43% at a cyclic strain amplitude of ±7,000 με and 1.9% at a cyclic strain amplitude of ±8,000 με. We also applied the sensor on an extruded magnesium alloy for evaluating the peculiar asymmetric hysteresis loops. The results obtained were in good agreement with those measured from the extensometer, a further validation of the sensor. PMID:22163621

  19. Thermal Characterization of a Simulated Fission Engine via Distributed Fiber Bragg Gratings

    SciTech Connect

    Duncan, Roger G.; Fielder, Robert S.; Seeley, Ryan J.; Kozikowski, Carrie L.; Raum, Matthew T.

    2005-02-06

    We report the use of distributed fiber Bragg gratings to monitor thermal conditions within a simulated nuclear reactor core located at the Early Flight Fission Test Facility of the NASA Marshall Space Flight Center. Distributed fiber-optic temperature measurements promise to add significant capability and advance the state-of-the-art in high-temperature sensing. For the work reported herein, seven probes were constructed with ten sensors each for a total of 70 sensor locations throughout the core. These discrete temperature sensors were monitored over a nine hour period while the test article was heated to over 700 deg. C and cooled to ambient through two operational cycles. The sensor density available permits a significantly elevated understanding of thermal effects within the simulated reactor. Fiber-optic sensor performance is shown to compare very favorably with co-located thermocouples where such co-location was feasible.

  20. Plasmonic nanoshell functionalized etched fiber Bragg gratings for highly sensitive refractive index measurements.

    PubMed

    Burgmeier, Jörg; Feizpour, Amin; Schade, Wolfgang; Reinhard, Björn M

    2015-02-15

    A novel fiber optical refractive index sensor based on gold nanoshells immobilized on the surface of an etched single-mode fiber including a Bragg grating is demonstrated. The nanoparticle coating induces refractive index dependent waveguide losses, because of the variation of the evanescently guided part of the light. Hence the amplitude of the Bragg reflection is highly sensitive to refractive index changes of the surrounding medium. The nanoshell functionalized fiber optical refractive index sensor works in reflectance mode, is suitable for chemical and biochemical sensing, and shows an intensity dependency of 4400% per refractive index unit in the refractive index range between 1.333 and 1.346. Furthermore, the physical length of the sensor is smaller than 3 mm with a diameter of 6 μm, and therefore offers the possibility of a localized refractive index measurement.

  1. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis.

    PubMed

    Tosi, Daniele

    2015-10-29

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding.

  2. High resolution grating-assisted surface plasmon resonance fiber optic aptasensor.

    PubMed

    Albert, Jacques; Lepinay, Sandrine; Caucheteur, Christophe; Derosa, Maria C

    2013-10-01

    A surface plasmon resonance biochemical sensor based on a tilted fiber Bragg grating imprinted in a single mode fiber core is demonstrated. A 30-50 nm thick gold coating on the cladding of the fiber provides the support for surface plasmon waves whose interaction with attached biomolecules is monitored at near infrared wavelengths near 1,550 nm. The transmission spectrum of the sensor provides a fine comb of narrowband resonances that overlap with the broader absorption of the surface plasmon and thus provide a unique tool to measure small shifts of the plasmon with high accuracy. The attachment on the gold surfaces of aptamers with specific affinities for proteins provides the required target-analyte system and is shown to be functional in the framework of our sensing device. The implementation of the sensor either as a stand-alone device or as part of a multi-sensor platform is also described.

  3. A Noncontact Force Sensor Based on a Fiber Bragg Grating and Its Application for Corrosion Measurement

    PubMed Central

    Pacheco, Clara J.; Bruno, Antonio C.

    2013-01-01

    A simple noncontact force sensor based on an optical fiber Bragg grating attached to a small magnet has been proposed and built. The sensor measures the force between the magnet and any ferromagnetic material placed within a few millimeters of the sensor. Maintaining the sensor at a constant standoff distance, material loss due to corrosion increases the distance between the magnet and the corroded surface, which decreases the magnetic force. This will decrease the strain in the optical fiber shifting the reflected Bragg wavelength. The measured shift for the optical fiber used was 1.36 nm per Newton. Models were developed to optimize the magnet geometry for a specific sensor standoff distance and for particular corrosion pit depths. The sensor was able to detect corrosion pits on a fuel storage tank bottom with depths in the sub-millimeter range. PMID:23995095

  4. Sensitivity Distribution Properties of a Phase-Shifted Fiber Bragg Grating Sensor to Ultrasonic Waves

    PubMed Central

    Wu, Qi; Okabe, Yoji; Saito, Kazuya; Yu, Fengming

    2014-01-01

    In this research, the sensitivity distribution properties of a phase-shifted fiber Bragg grating (PS-FBG) to ultrasonic waves were investigated employing the surface attachment method. A careful consideration was taken and examined by experimental results to explain that the distances and angles between the sensor and ultrasonic source influence not only the amplitudes, but also the initial phases, waveforms, and spectra of detected signals. Furthermore, factors, including the attachment method and the material's geometric dimensions, were also discussed. Although these results were obtained based on PS-FBG, they are also applicable to a normal FBG sensor or even an optical fiber sensor, due to the identical physical changes induced by ultrasonic waves in all three. Thus, these results are useful for applications of optical fiber sensors in non-destructive testing and structural health monitoring. PMID:24412903

  5. A noncontact force sensor based on a fiber Bragg grating and its application for corrosion measurement.

    PubMed

    Pacheco, Clara J; Bruno, Antonio C

    2013-01-01

    A simple noncontact force sensor based on an optical fiber Bragg grating attached to a small magnet has been proposed and built. The sensor measures the force between the magnet and any ferromagnetic material placed within a few millimeters of the sensor. Maintaining the sensor at a constant standoff distance, material loss due to corrosion increases the distance between the magnet and the corroded surface, which decreases the magnetic force. This will decrease the strain in the optical fiber shifting the reflected Bragg wavelength. The measured shift for the optical fiber used was 1.36 nm per Newton. Models were developed to optimize the magnet geometry for a specific sensor standoff distance and for particular corrosion pit depths. The sensor was able to detect corrosion pits on a fuel storage tank bottom with depths in the sub-millimeter range. PMID:23995095

  6. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis

    PubMed Central

    Tosi, Daniele

    2015-01-01

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding. PMID:26528975

  7. Femtosecond laser inscribed Bragg gratings in gold-coated fiber for space application

    NASA Astrophysics Data System (ADS)

    Wang, Qiaoni; Yang, Yuanhong; He, Jun; Wang, Yiping

    2015-09-01

    We reported a Bragg grating inscribed in gold-coated fiber (FBG) by NIR femtosecond laser (fs) for space application. Gold coating can shield the FBG from ultraviolet radiation and oxygen atom erosion. Cryogenic test, high temperature test, and gamma irradiation test were carried out. The reflectivity of the H2-free FBG remained stable at +/- 120 °C for 100 h or with 50.4 krad γ irradiation, and the central wavelength shifted within 5 pm and 1.6 pm respectively. Regeneration of the fs-FBG was observed in case the FBG was annealed at 800 °C for 5 h, and the remained 5% in reflectivity after 19 h. Such fs-FBGs inscribed in gold-coated fiber could be employed as high performance fiber sensors for space application.

  8. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis.

    PubMed

    Tosi, Daniele

    2015-01-01

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding. PMID:26528975

  9. A Fiber Bragg Grating Temperature Sensor for 2-400 K

    SciTech Connect

    Zaynetdinov, Madrakhim; See, Erich M.; Geist, Brian; Ciovati, Gianluigi; Robinson, Hans D.; Kochergin, Vladimir

    2015-03-01

    We demonstrate fiber optic, multiplexible temperature sensing using a fiber Bragg grating (FBG) with an operational range of 2-400 K, and a temperature resolution better than 10 mK for temperatures < 12 K. This represents a significant reduction in the lowest usable temperature as well as a significant increase in sensitivity at cryogenic temperatures compared with previously reported multiplexible solutions. This is accomplished by mounting the section of the fiber with a FBG on a polytetrafluoroethylene coupon, which has a non-negligible coefficient of thermal expansion down to < 4 K. The sensors exhibit a good stability over multiple temperature cycles and acceptable sensor-to-sensor repeatability. Possible applications for this sensor include distributed temperature sensing across superconducting elements and cryogenic temperature measurements in environments where electrical measurements are impractical or unsafe.

  10. Photonic crystals and Bragg gratings for the mid-IR and terahertz spectral ranges

    SciTech Connect

    Usikova, A. A. Il’inskaya, N. D.; Matveev, B. A.; Shubina, T. V.; Kop’ev, P. S.

    2013-12-15

    A method for the fabrication of 2D periodic structures by contact optical photolithography with image inversion is reported. The optical properties of photonic crystals and Bragg gratings for mid-IR and terahertz emitters are considered. The possibility of raising the integral emission intensity of light-emitting diodes for the mid-IR spectral range is demonstrated. The requirements to gratings for the output of terahertz emission generated by surface plasmons excited in layers of narrow-gap degenerate semiconductors with an accumulation layer are determined.

  11. Switchable gratings by spatially periodic alignment of liquid crystals via patterned photopolymerization.

    PubMed

    Zhou, Jian; Collard, David M; Srinivasarao, Mohan

    2006-03-01

    Spatially periodic patterning of the anchoring condition of a nematic liquid crystal (NLC) within a polymer matrix via a patterned photopolymerization affords a novel and facile method to prepare electrically switchable diffraction gratings. UV irradiation through a photomask of two comonomers, with opposite tendencies to align the NLC and also with different reactivity ratios, leads to definition of areas with either homeotropic or planar alignment of the NLC. Photopolymerization-induced diffusion of the monomers accounts for the spatial distribution of the concentration of these monomers. The resulting diffraction gratings are switchable under low electric fields and possess structural stability offered by the polymer matrix. PMID:16570428

  12. Polymer-stabilized blue-phase liquid crystal grating cured with interfered visible light.

    PubMed

    Yuan, Yachao; Li, Yan; Chen, Chao Ping; Liu, Shuxin; Rong, Na; Li, Weihuan; Li, Xiao; Zhou, Pengcheng; Lu, Jiangang; Liu, Ruili; Su, Yikai

    2015-07-27

    In this paper, we demonstrate a holographic polymer-stabilized blue-phase liquid crystal grating fabricated using a visible laser. As blue phase is stabilized by the interfered light, polymer-concentration gradient is achieved simultaneously. With the application of a uniform vertical electric field, periodic index distribution is obtained due to polymer-concentration gradient. The grating exhibits several attractive features such as polarization-independency, a broad temperature range, sub-millisecond response, simple fabrication, and low cost, thus holding great potential for photonics applications. PMID:26367659

  13. Effects of anisotropic diffractions on holographic polymer-dispersed liquid-crystal gratings.

    PubMed

    Ogiwara, Akifumi

    2011-02-01

    Volume gratings fabricated by interferometric exposure using composite materials composed of nematic liquid crystals (LC) and LC diacrylate monomers are discussed in the effects of diffraction properties on different grating formations, such as varying LC content ratios, film thicknesses, and the surface conditions composed of alignment layers and rubbing directions. Diffraction properties are experimentally investigated in the viewpoints of anisotropic diffraction and LC orientation. The polarization-azimuth dependence of diffraction efficiencies as functions of the incident polarization states shows the controllability of anisotropic diffractions based on the effects of different surface conditions. PMID:21283252

  14. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    NASA Astrophysics Data System (ADS)

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-02-01

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5×1019 n/cm2, and a maximum gamma dose of 2×103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125μm in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center.

  15. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    SciTech Connect

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-02-04

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5x1019 n/cm2, and a maximum gamma dose of 2x103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125{mu}m in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center.

  16. Enhanced spectral response of π-phase shifted fiber Bragg gratings in closed-loop configuration.

    PubMed

    Malara, P; Campanella, C E; De Leonardis, F; Giorgini, A; Avino, S; Passaro, V M N; Gagliardi, G

    2015-05-01

    The transmission spectrum of a ring resonator enclosing a π-phase shifted fiber Bragg grating (π-FBG) shows a spectral feature at the Bragg wavelength that is much sharper than resonance of the π-FBG alone, and that can be detected with a simple integrated cavity output technique. Hence, the resolution of any sensor based on the fitting of the π-FBG spectral profile can be largely improved by the proposed configuration at no additional fabrication costs and without altering the sensor robustness. A theoretical model shows that the resolution enhancement attainable in the proposed closed-loop geometry depends on the quality factor of the ring resonator. With a commercial grating in a medium-finesse ring, a spectral feature 12 times sharper than the π-FBG resonance is experimentally demonstrated. A larger enhancement is expected in a low-loss, polarization maintaining setup. PMID:25927801

  17. Behavior of femtosecond laser-induced eccentric fiber Bragg gratings at very high temperatures.

    PubMed

    Chikh-Bled, Hicham; Chah, Karima; González-Vila, Álvaro; Lasri, Boumediène; Caucheteur, Christophe

    2016-09-01

    In this work, eccentric Bragg gratings are photoinscribed in telecommunication-grade optical fibers. They are localized close to the core-cladding interface, yielding strong cladding mode resonance couplings and high photoinduced birefringence. Their transmitted amplitude spectrum is measured with polarized light while they are exposed to temperature changes up to 900°C. Despite the gratings' overall good thermal stability that confirms their robustness for high-temperature refractometry, we report an interesting polarization effect depending on both the cladding mode resonance family and mode order. While the core mode birefringence decreases with growing temperatures, certain cladding mode resonances show an increase in wavelength splitting between their orthogonally polarized components. This differential behavior is of high interest in developing high-resolution, multiparametric sensing platforms. PMID:27607969

  18. Wavelength interrogation of fiber Bragg grating sensors based on crossed optical Gaussian filters.

    PubMed

    Cheng, Rui; Xia, Li; Zhou, Jiaao; Liu, Deming

    2015-04-15

    Conventional intensity-modulated measurements require to be operated in linear range of filter or interferometric response to ensure a linear detection. Here, we present a wavelength interrogation system for fiber Bragg grating sensors where the linear transition is achieved with crossed Gaussian transmissions. This unique filtering characteristic makes the responses of the two branch detections follow Gaussian functions with the same parameters except for a delay. The substraction of these two delayed Gaussian responses (in dB) ultimately leads to a linear behavior, which is exploited for the sensor wavelength determination. Beside its flexibility and inherently power insensitivity, the proposal also shows a potential of a much wider operational range. Interrogation of a strain-tuned grating was accomplished, with a wide sensitivity tuning range from 2.56 to 8.7 dB/nm achieved.

  19. Detection of adulteration in virgin olive oil using a fiber optic long period grating based sensor

    NASA Astrophysics Data System (ADS)

    Libish, T. M.; Bobby, M. C.; Linesh, J.; Mathew, S.; Pradeep, C.; Nampoori, V. P. N.; Biswas, P.; Bandyopadhyay, S.; Dasgupta, K.; Radhakrishnan, P.

    2013-04-01

    A fiber optic sensing system for the detection of adulteration of virgin olive oil by less expensive sunflower oil is presented. The fundamental principle of detection is the sensitive dependence of the resonance peaks of a long period grating (LPG) on the changes in the refractive index of the environmental medium surrounding the cladding surface of the grating. The performance of the sensor has been tested by monitoring the amplitude changes of the attenuation bands of the LPG in response to variation of adulteration level. With good repeatability, the detection limit of adulteration is 4% and the sensor sensitivity is around 0.07 dB vol%-1 of adulterant in the measurement range. The developed sensor is user-friendly, reusable and allows instantaneous measurement of the amount of adulteration without involving any reagents.

  20. Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor.

    PubMed

    Woyessa, Getinet; Nielsen, Kristian; Stefani, Alessio; Markos, Christos; Bang, Ole

    2016-01-25

    The effect of humidity on annealing of poly (methyl methacrylate) (PMMA) based microstructured polymer optical fiber Bragg gratings (mPOFBGs) and the resulting humidity responsivity are investigated. Typically annealing of PMMA POFs is done in an oven without humidity control around 80°C and therefore at low humidity. We demonstrate that annealing at high humidity and high temperature improves the performances of mPOFBGs in terms of stability and sensitivity to humidity. PMMA POFBGs that are not annealed or annealed at low humidity level will have a low and highly temperature dependent sensitivity and a high hysteresis in the humidity response, in particular when operated at high temperature. PMMA mPOFBGs annealed at high humidity show higher and more linear humidity sensitivity with negligible hysteresis. We also report how annealing at high humidity can blue-shift the FBG wavelength more than 230 nm without loss in the grating strength. PMID:26832503