Crystal-field analysis of U3+ ions in K2LaX5 (X=Cl, Br or I) single crystals
NASA Astrophysics Data System (ADS)
Karbowiak, M.; Edelstein, N.; Gajek, Z.; Drożdżyński, J.
1998-11-01
An analysis of low temperature absorption spectra of U3+ ions doped in K2LaX5 (X=Cl, Br or I) single crystals is reported. The energy levels of the U3+ ion in the single crystals were assigned and fitted to a semiempirical Hamiltonian representing the combined atomic and crystal-field interactions at the Cs symmetry site. An analysis of the nephelauxetic effect and crystal-field splittings in the series of compounds is also reported.
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Leslie, F. W.
2004-01-01
The effect of convection during the crystallization of proteins is not very well understood. In a gravitational field, convection is caused by crystal sedimentation and by solutal buoyancy induced flow and these can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, we develop the analysis for magnetic flow control and test the predictions using analog experiments. Specifically, experiments on solutal convection in a paramagnetic fluid were conducted in a strong magnetic field gradient using a dilute solution of Manganese Chloride. The observed flows indicate that the magnetic field can completely counter the settling effects of gravity locally and are consistent with the theoretical predictions presented. This phenomenon suggests that magnetic fields may be useful in mimicking the microgravity environment of space for some crystal growth ana biological applications where fluid convection is undesirable.
Kaminska, A; Ma, C-G; Brik, M G; Kozanecki, A; Boćkowski, M; Alves, E; Suchocki, A
2012-03-07
The results of high-pressure low-temperature optical measurements in a diamond-anvil cell of bulk gallium nitride crystals implanted with ytterbium are reported in combination with crystal field calculations of the Yb(3+) energy levels. Crystal field analysis of splitting of the (2)F(7/2) and (2)F(5/2) states has been performed, with the aim of assigning all features of the experimental luminescence spectra. A thorough analysis of the pressure behavior of the Yb(3+) luminescence lines in GaN allowed the determination of the ambient-pressure positions and pressure dependence of the Yb(3+) energy levels in the trigonal crystal field as well as the pressure-induced changes of the spin-orbit coupling coefficient.
2006-10-01
F. Bliss, Gerald W. Iseler and Piotr Becla, "Combining static and rotating magnetic fields during modified vertical Bridgman crystal growth ," AIAA...Wang and Nancy Ma, "Semiconductor crystal growth by the vertical Bridgman process with rotating magnetic fields," ASME Journal of Heat Transfer...2005. 15. Stephen J. LaPointe, Nancy Ma and Donald W. Mueller, Jr., " Growth of binary alloyed semiconductor crystals by the vertical Bridgman
NASA Astrophysics Data System (ADS)
Lonberg, Franklin; Fraden, Seth; Hurd, Alan J.; Meyer, Robert E.
1984-05-01
Field-induced reorientations of liquid crystals, far from equilibrium, produce spatially periodic responses. The wavelength selected maximizes response speed. A detailed analysis of the effect in a novel geometry is presented, along with a discussion of its general importance in polymerlike liquid crystals.
Samlan, C T; Viswanathan, Nirmal K
2018-01-31
Electric-field applied perpendicular to the direction of propagation of paraxial beam through an optical crystal dynamically modifies the spin-orbit interaction (SOI), leading to the demonstration of controllable spin-Hall effect of light (SHEL). The electro- and piezo-optic effects of the crystal modifies the radially symmetric spatial variation in the fast-axis orientation of the crystal, resulting in a complex pattern with different topologies due to the symmetry-breaking effect of the applied field. This introduces spatially-varying Pancharatnam-Berry type geometric phase on to the paraxial beam of light, leading to the observation of SHEL in addition to the spin-to-vortex conversion. A wave-vector resolved conoscopic Mueller matrix measurement and analysis provides a first glimpse of the SHEL in the biaxial crystal, identified via the appearance of weak circular birefringence. The emergence of field-controllable fast-axis orientation of the crystal and the resulting SHEL provides a new degree of freedom for affecting and controlling the spin and orbital angular momentum of photons to unravel the rich underlying physics of optical crystals and aid in the development of active photonic spin-Hall devices.
Electric-field-induced motion of colloid particles in smectic liquid crystals
NASA Astrophysics Data System (ADS)
Jakli, Antal
2005-03-01
We present the first observations of DC electric-field-induced rotational and translational motion of finite particles in liquid crystals. The electro-rotation is basically identical to the well known Quincke rotation, which triggers the translational motion at higher fields. From the electric field dependence of the angular velocity of the rotation we obtain the viscosity of the liquid crystals. The analysis of the translational motion in smectic liquid crystals indicates elastic responses near the threshold for translation. At increasing fields the speed of the particles is increasing and at sufficiently high speeds the flow of the smectic A and smectic C liquid crystal around the beads become purely viscous. Colloid particles in smectic materials maybe considered as model systems for understanding motion of proteins in cell membranes.
Growth and characterization of diammonium copper disulphate hexahydrate single crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siva Sankari, R.; Perumal, Rajesh Narayana, E-mail: r.shankarisai@gmail.com
2014-03-01
Graphical abstract: Diammonium copper disulphate hexahydrate (DACS) is one of the most promising inorganic dielectric crystals with exceptional mechanical properties. Good quality crystals of DACS were grown by using solution method in a period of 30 days. The grown crystals were subjected to single crystal X-ray diffraction analysis in order to establish their crystalline nature. Thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis were performed for the crystal. Several solid state physical parameters have been determined for the grown crystals. The dielectric constant and the dielectric loss and AC conductivity of the grown crystal were studied as a functionmore » of frequency and temperature has been calculated and plotted. - Highlights: • Diammonium copper disulphate is grown for the first time and CCDC number obtained. • Thermal analysis is done to see the stability range of the crystals. • Band gap and UV cut off wavelength of the crystal are determined to be 2.4 eV and 472.86 nm, respectively. • Dielectric constant, dielectric loss and AC conductivity are plotted as a function of applied field. - Abstract: Diammonium copper disulphate hexahydrate is one of the most promising inorganic crystals with exceptional dielectric properties. A good quality crystal was harvested in a 30-day period using solution growth method. The grown crystal was subjected to various characterization techniques like single crystal X-ray diffraction analysis, thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis. Unit cell dimensions of the grown crystal have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Thermal stability of the samples was checked by TG/DTA studies. Band gap of the crystal was calculated. The dielectric constant and dielectric loss were studied as a function of frequency of the applied field. AC conductivity was plotted as a function of temperature.« less
NASA Astrophysics Data System (ADS)
Xuan, Weidong; Lan, Jian; Liu, Huan; Li, Chuanjun; Wang, Jiang; Ren, Weili; Zhong, Yunbo; Li, Xi; Ren, Zhongming
2017-08-01
High magnetic fields are widely used to improve the microstructure and properties of materials during the solidification process. During the preparation of single-crystal turbine blades, the microstructure of the superalloy is the main factor that determines its mechanical properties. In this work, the effects of a high magnetic field on the microstructure of Ni-based single-crystal superalloys PWA1483 and CMSX-4 during directional solidification were investigated experimentally. The results showed that the magnetic field modified the primary dendrite arm spacing, γ' phase size, and microsegregation of the superalloys. In addition, the size and volume fractions of γ/ γ' eutectic and the microporosity were decreased in a high magnetic field. Analysis of variance (ANOVA) results showed that the effect of a high magnetic field on the microstructure during directional solidification was significant ( p < 0.05). Based on both experimental results and theoretical analysis, the modification of microstructure was attributed to thermoelectric magnetic convection occurring in the interdendritic regions under a high magnetic field. The present work provides a new method to optimize the microstructure of Ni-based single-crystal superalloy blades by applying a high magnetic field.
Crystal field parameters and energy levels scheme of trivalent chromium doped BSO
NASA Astrophysics Data System (ADS)
Petkova, P.; Andreici, E.-L.; Avram, N. M.
2014-11-01
The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.
Crystal field parameters and energy levels scheme of trivalent chromium doped BSO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petkova, P.; Andreici, E.-L.; Avram, N. M., E-mail: n1m2marva@yahoo.com
The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of themore » crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.« less
NASA Astrophysics Data System (ADS)
Kumagai, Takayuki; Yoshida, Hiroyuki; Ozaki, Masanori
2017-04-01
The electric-field-induced switching behavior of a polymer microplate is investigated. A microplate fabricated with a photopolymerizable dual-frequency liquid crystal was surrounded by an unpolymerized photopolymerizable dual-frequency liquid crystal in the isotropic phase. As an electric field was applied along the plane of the microplate, the microplate switched to set its interior molecular orientation to be either parallel or perpendicular to the field, depending on the frequency. Analysis of the rotational behavior, as well as numerical calculations, showed that the surrounding unpolymerized photopolymerizable dual-frequency liquid crystal infiltrated into the microplate, which enhanced the dielectric properties of the microplate. To the best of our knowledge, this is the first report of an enhanced dual-frequency dielectric response of a polymer microplate induced by liquid crystal infiltration.
NASA Astrophysics Data System (ADS)
Samlan, C. T.; Naik, Dinesh N.; Viswanathan, Nirmal K.
2016-09-01
Discovered in 1813, the conoscopic interference pattern observed due to light propagating through a crystal, kept between crossed polarizers, shows isochromates and isogyres, respectively containing information about the dynamic and geometric phase acquired by the beam. We propose and demonstrate a closed-fringe Fourier analysis method to disentangle the isogyres from the isochromates, leading us to the azimuthally varying geometric phase and its manifestation as isogyres. This azimuthally varying geometric phase is shown to be the underlying mechanism for the spin-to-orbital angular momentum conversion observed in a diverging optical field propagating through a z-cut uniaxial crystal. We extend the formalism to study the optical activity mediated uniaxial-to-biaxial transformation due to a weak transverse electric field applied across the crystal. Closely associated with the phase and polarization singularities of the optical field, the formalism enables us to understand crystal optics in a new way, paving the way to anticipate several emerging phenomena.
Samlan, C T; Naik, Dinesh N; Viswanathan, Nirmal K
2016-09-14
Discovered in 1813, the conoscopic interference pattern observed due to light propagating through a crystal, kept between crossed polarizers, shows isochromates and isogyres, respectively containing information about the dynamic and geometric phase acquired by the beam. We propose and demonstrate a closed-fringe Fourier analysis method to disentangle the isogyres from the isochromates, leading us to the azimuthally varying geometric phase and its manifestation as isogyres. This azimuthally varying geometric phase is shown to be the underlying mechanism for the spin-to-orbital angular momentum conversion observed in a diverging optical field propagating through a z-cut uniaxial crystal. We extend the formalism to study the optical activity mediated uniaxial-to-biaxial transformation due to a weak transverse electric field applied across the crystal. Closely associated with the phase and polarization singularities of the optical field, the formalism enables us to understand crystal optics in a new way, paving the way to anticipate several emerging phenomena.
Absorption spectra analysis of hydrated uranium(III) complex chlorides
NASA Astrophysics Data System (ADS)
Karbowiak, M.; Gajek, Z.; Drożdżyński, J.
2000-11-01
Absorption spectra of powdered samples of hydrated uranium(III) complex chlorides of the formulas NH 4UCl 4 · 4H 2O and CsUCl 4 · 3H 2O have been recorded at 4.2 K in the 4000-26 000 cm -1 range. The analysis of the spectra enabled the determination of crystal-field parameters and assignment of 83 and 77 crystal-field levels for the tetrahydrate and trihydrate, respectively. The energies of the levels were computed by applying a simplified angular overlap model as well as a semiempirical Hamiltonian representing the combined atomic and crystal-field interactions. Ab initio calculations have enabled the application of a simplified parameterization and the determination of the starting values of the AOM parameters. The received results have proved that the AOM approach can quite well predict both the structure of the ground multiplet and the positions of the crystal-field levels in the 17 000-25 000 cm -1 range, usually obscured by strong f-d bands.
Theory and simulation of buoyancy-driven convection around growing protein crystals in microgravity.
Carotenuto, L; Cartwright, J H E; Castagnolo, D; Garcia Ruiz, J M; Otalora, F
2002-01-01
We present an order-of-magnitude analysis of the Navier-Stokes equations in a time-dependent, incompressible and Boussinesq formulation. The hypothesis employed of two different length scales allows one to determine the different flow regimes on the basis of the geometrical and thermodynamical parameters alone, without solving the Navier-Stokes equations. The order-of-magnitude analysis is then applied to the field of protein crystallization, and to the flow field around a crystal, where the driving forces are solutal buoyancy-driven convection, from density dependence on species concentration, and sedimentation caused by the different densities of the crystal and the protein solution. The main result of this paper is to provide predictions of the conditions in which a crystal is growing in a convective regime, rather than in the ideal diffusive state, even under the typical microgravity conditions of space platforms.
Optical and chemical analysis of iron in Luna 20 plagioclase.
NASA Technical Reports Server (NTRS)
Bell, P. M.; Mao, H. K.
1973-01-01
Review of analytical data on the iron content of Luna 20 anorthitic plagioclase, obtained by a highly sensitive technique for measuring polarized absorption related to crystal-field splittings and by automated electron microprobe analysis of oriented single crystals. The iron content is found to range from a few hundredths to a few tenths of a weight per cent from crystal to crystal. The optical and chemical properties of the iron appear to be caused by postcrystallization migration and exsolution. Postcrystallization effects may obscure evidence of the original oxidation state and iron concentration of these crystals.
A drunken search in crystallization space.
Fazio, Vincent J; Peat, Thomas S; Newman, Janet
2014-10-01
The REMARK280 field of the Protein Data Bank is the richest open source of successful crystallization information. The REMARK280 field is optional and currently uncurated, so significant effort needs to be applied to extract reliable data. There are well over 15 000 crystallization conditions available commercially from 12 different vendors. After putting the PDB crystallization information and the commercial cocktail data into a consistent format, these data are used to extract information about the overlap between the two sets of crystallization conditions. An estimation is made as to which commercially available conditions are most appropriate for producing well diffracting crystals by looking at which commercial conditions are found unchanged (or almost unchanged) in the PDB. Further analyses include which commercial kits are the most appropriate for shotgun or more traditional approaches to crystallization screening. This analysis suggests that almost 40% of the crystallization conditions found currently in the PDB are identical or very similar to a commercial condition.
Growth and characterization of unidirectional benzil single crystal for photonic applications
NASA Astrophysics Data System (ADS)
Saranraj, A.; Thirupathy, J.; Dhas, S. Sahaya Jude; Jose, M.; Vinitha, G.; Dhas, S. A. Martin Britto
2018-06-01
Organic nonlinear optical benzil single crystal of fine quality with the dimensions of 168 × 14 mm2 was successfully grown in (100) plane from saturated solution by unidirectional SR method. The structural identity of the grown crystal was confirmed by powder XRD. High-resolution X-ray diffraction analysis indicates the crystalline perfection of the grown benzil crystal. The optical analysis was carried out by UV-visible spectroscopy which shows that the benzil crystal's cut off wavelength is 437 nm. The dielectric constant and dielectric loss of benzil crystal are found to be very much depending upon temperature and frequency. Ferroelectric nature of grown crystal was identified by P- E hysteresis analysis and to find the values of spontaneous polarization and coercive field. The laser damage threshold energy was studied with the help of Nd:YAG laser. The presence of third harmonic generation was identified by z-scan techniques.
NASA Astrophysics Data System (ADS)
Rudowicz, Czesław; Gnutek, Paweł; Açıkgöz, Muhammed
2015-08-01
In this study, the crystal field analysis for Cr3+ and Mn2+ ions doped into yttrium aluminum borate YAl3(BO3)4, for short YAB, crystal has been carried out to complement earlier study of the zero-field splitting (ZFS) parameters (ZFSPs). This analysis utilizes data on the distortion models obtained from analysis of the ZFSPs obtained experimentally by EMR for Cr3+ and Mn2+ ions at the Y3+ and Al3+ sites in YAB. This approach enables to verify and enhance reliability of the ZFSP modeling based on superposition model (SPM) analysis and the distortion models predicted previously. Subsequently, modeling of the crystal field parameters (CFPs) based on SPM analysis is carried out for Cr3+ and Mn2+ ions located at possible cation sites in YAB. The SPM predicted CFP values serve as input for the Crystal Field Analysis (CFA) package to calculate the CF energy levels. The predicted physical ZFS of the ground spin state, i.e. the 4A2 state for Cr3+ ion and the 6S state Mn2+ ions, enable calculation of the theoretical ZFSP values, D and D & (a-F), respectively, using the microscopic spin Hamiltonian (MSH) module in the CFA package. In this way, data on the distortions around the Cr3+ centers in YAB (and to a certain extent also for Mn2+ centers) obtained using the ZFSP data from EMR measurements may be correlated with data on the CF energy levels measured by optical spectroscopy. This modeling approach uncovers certain incompatibilities in the existing data for Cr3+:YAB, which call for reanalysis of the previous assignments of the energy levels observed in optical spectra and more accurate experimental data.
Analysis of Electric Field Propagation in Anisotropically Absorbing and Reflecting Waveplates
NASA Astrophysics Data System (ADS)
Carnio, B. N.; Elezzabi, A. Y.
2018-04-01
Analytical expressions are derived for half-wave plates (HWPs) and quarter-wave plates (QWPs) based on uniaxial crystals. This general analysis describes the behavior of anisotropically absorbing and reflecting waveplates across the electromagnetic spectrum, which allows for correction to the commonly used equations determined assuming isotropic absorptions and reflections. This analysis is crucial to the design and implementation of HWPs and QWPs in the terahertz regime, where uniaxial crystals used for waveplates are highly birefringent and anisotropically absorbing. The derived HWP equations describe the rotation of linearly polarized light by an arbitrary angle, whereas the QWP analysis focuses on manipulating a linearly polarized electric field to obtain any ellipticity. The HWP and QWP losses are characterized by determining equations for the total electric field magnitude transmitted through these phase-retarding elements.
High breakdown electric field in β-Ga2O3/graphene vertical barristor heterostructure
NASA Astrophysics Data System (ADS)
Yan, Xiaodong; Esqueda, Ivan S.; Ma, Jiahui; Tice, Jesse; Wang, Han
2018-01-01
In this work, we study the high critical breakdown field in β-Ga2O3 perpendicular to its (100) crystal plane using a β-Ga2O3/graphene vertical heterostructure. Measurements indicate a record breakdown field of 5.2 MV/cm perpendicular to the (100) plane that is significantly larger than the previously reported values on lateral β-Ga2O3 field-effect-transistors (FETs). This result is compared with the critical field typically measured within the (100) crystal plane, and the observed anisotropy is explained through a combined theoretical and experimental analysis.
Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields
NASA Astrophysics Data System (ADS)
Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa
2002-11-01
An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. Once the basic understanding is obtained, the study will focus on testing the hypothesis on proteins of pyruvate dehydrogenase complex (PDC), proteins E1 and E3. Obtaining high crystal quality of these proteins is of great importance to structural biologists since their structures need to be determined. Specific goals for the investigation are: 1. To develop an understanding of convection control in diamagnetic fluids with concentration gradients through experimentation and numerical modeling. Specifically solutal buoyancy driven convection due to crystal growth will be considered. 2. To develop predictive measures for successful crystallization in a magnetic field using analyses and numerical modeling for use in future protein crystal growth experiments. This will establish criteria that can be used to estimate the efficacy of magnetic field flow damping on crystallization of candidate proteins. 3. To demonstrate the understanding of convection damping by high magnetic fields to a class of proteins that is of interest and whose structure is as yet not determined. 4. To compare quantitatively, the quality of the grown crystals with and without a magnetic field. X-ray diffraction techniques will be used for the comparative studies. In a preliminary set of experiments, we studied crystal dissolution effects in a 5 Tesla magnet available at NASA Marshall Space Flight Center (MSFC). Using a Schlieren setup, a 1mm crystal of Alum (Aluminum-Potassium Sulfate) was introduced in a 75% saturated solution and the resulting dissolution plume was observed. The experiment was conducted both in the presence and absence of a magnetic field gradient. The magnet produces a gradient field of approx. 1 Tesla2/cm. Image analysis of the recorded images indicated an enhanced plume velocity that was of the order of the measurement limit. For this experiment, both the gradient and gravity fields are in the same direction resulting in an enhanced effective gravity that tends to accelerate the observed plume velocity. While the results are not conclusive, pending further tests, it clearly points out the inadequacy of the MSFC magnet for conducting protein crystallization experiments and the need for a stronger magnet. In spacebased experiments, however, where the gravitational effects are small, only a weak magnetic field will be required to control or mitigate the effects of convective contamination.
Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields
NASA Technical Reports Server (NTRS)
Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa
2002-01-01
An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. Once the basic understanding is obtained, the study will focus on testing the hypothesis on proteins of pyruvate dehydrogenase complex (PDC), proteins E1 and E3. Obtaining high crystal quality of these proteins is of great importance to structural biologists since their structures need to be determined. Specific goals for the investigation are: 1. To develop an understanding of convection control in diamagnetic fluids with concentration gradients through experimentation and numerical modeling. Specifically solutal buoyancy driven convection due to crystal growth will be considered. 2. To develop predictive measures for successful crystallization in a magnetic field using analyses and numerical modeling for use in future protein crystal growth experiments. This will establish criteria that can be used to estimate the efficacy of magnetic field flow damping on crystallization of candidate proteins. 3. To demonstrate the understanding of convection damping by high magnetic fields to a class of proteins that is of interest and whose structure is as yet not determined. 4. To compare quantitatively, the quality of the grown crystals with and without a magnetic field. X-ray diffraction techniques will be used for the comparative studies. In a preliminary set of experiments, we studied crystal dissolution effects in a 5 Tesla magnet available at NASA Marshall Space Flight Center (MSFC). Using a Schlieren setup, a 1mm crystal of Alum (Aluminum-Potassium Sulfate) was introduced in a 75% saturated solution and the resulting dissolution plume was observed. The experiment was conducted both in the presence and absence of a magnetic field gradient. The magnet produces a gradient field of approx. 1 Tesla2/cm. Image analysis of the recorded images indicated an enhanced plume velocity that was of the order of the measurement limit. For this experiment, both the gradient and gravity fields are in the same direction resulting in an enhanced effective gravity that tends to accelerate the observed plume velocity. While the results are not conclusive, pending further tests, it clearly points out the inadequacy of the MSFC magnet for conducting protein crystallization experiments and the need for a stronger magnet. In spacebased experiments, however, where the gravitational effects are small, only a weak magnetic field will be required to control or mitigate the effects of convective contamination.
A drunken search in crystallization space
Fazio, Vincent J.; Peat, Thomas S.; Newman, Janet
2014-01-01
The REMARK280 field of the Protein Data Bank is the richest open source of successful crystallization information. The REMARK280 field is optional and currently uncurated, so significant effort needs to be applied to extract reliable data. There are well over 15 000 crystallization conditions available commercially from 12 different vendors. After putting the PDB crystallization information and the commercial cocktail data into a consistent format, these data are used to extract information about the overlap between the two sets of crystallization conditions. An estimation is made as to which commercially available conditions are most appropriate for producing well diffracting crystals by looking at which commercial conditions are found unchanged (or almost unchanged) in the PDB. Further analyses include which commercial kits are the most appropriate for shotgun or more traditional approaches to crystallization screening. This analysis suggests that almost 40% of the crystallization conditions found currently in the PDB are identical or very similar to a commercial condition. PMID:25286930
Using Strong Magnetic Fields to Control Solutal Convection
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Leslie, F. W.
2003-01-01
An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in microgravity , we have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. The paper will report on the experimental results using paramagnetic salts and solutions in magnetic fields and compare them to analytical predictions.
NASA Astrophysics Data System (ADS)
Daggolu, Parthiv; Ryu, Jae Woo; Galyukov, Alex; Kondratyev, Alexey
2016-10-01
With the use of 300 mm silicon wafers for industrial semiconductor device manufacturing, the Czochralski (Cz) crystal growth process has to be optimized to achieve higher quality and productivity. Numerical studies based on 2D global thermal models combined with 3D simulation of melt convection are widely used today to save time and money in the process development. Melt convection in large scale Cz Si growth is controlled by a CUSP or transversal magnetic field (MF) to suppress the melt turbulence. MF can be optimized to meet necessary characteristics of the growing crystal, in terms of point defects, as MF affects the melt/crystal interface geometry and allows adjustment of the pulling rate. Among the different knobs associated with the CUSP magnetic field, the nature of its configuration, going from symmetric to asymmetric, is also reported to be an important tool for the control of crystallization front. Using a 3D unsteady model of the CGSim software, we have studied these effects and compared with several experimental results. In addition, physical mechanisms behind these observations are explored through a detailed modeling analysis of the effect of an asymmetric CUSP MF on convection features governing the heat transport in the silicon melt.
Bruno, Andrew E.; Ruby, Amanda M.; Luft, Joseph R.; Grant, Thomas D.; Seetharaman, Jayaraman; Montelione, Gaetano T.; Hunt, John F.; Snell, Edward H.
2014-01-01
Many bioscience fields employ high-throughput methods to screen multiple biochemical conditions. The analysis of these becomes tedious without a degree of automation. Crystallization, a rate limiting step in biological X-ray crystallography, is one of these fields. Screening of multiple potential crystallization conditions (cocktails) is the most effective method of probing a proteins phase diagram and guiding crystallization but the interpretation of results can be time-consuming. To aid this empirical approach a cocktail distance coefficient was developed to quantitatively compare macromolecule crystallization conditions and outcome. These coefficients were evaluated against an existing similarity metric developed for crystallization, the C6 metric, using both virtual crystallization screens and by comparison of two related 1,536-cocktail high-throughput crystallization screens. Hierarchical clustering was employed to visualize one of these screens and the crystallization results from an exopolyphosphatase-related protein from Bacteroides fragilis, (BfR192) overlaid on this clustering. This demonstrated a strong correlation between certain chemically related clusters and crystal lead conditions. While this analysis was not used to guide the initial crystallization optimization, it led to the re-evaluation of unexplained peaks in the electron density map of the protein and to the insertion and correct placement of sodium, potassium and phosphate atoms in the structure. With these in place, the resulting structure of the putative active site demonstrated features consistent with active sites of other phosphatases which are involved in binding the phosphoryl moieties of nucleotide triphosphates. The new distance coefficient, CDcoeff, appears to be robust in this application, and coupled with hierarchical clustering and the overlay of crystallization outcome, reveals information of biological relevance. While tested with a single example the potential applications related to crystallography appear promising and the distance coefficient, clustering, and hierarchal visualization of results undoubtedly have applications in wider fields. PMID:24971458
NASA Astrophysics Data System (ADS)
Ushakov, A. A.; Chizhov, P. A.; Bukin, V. V.; Garnov, S. V.; Savel'ev, A. B.
2018-05-01
Two 2D techniques for visualising the field of pulsed THz radiation ('shadow' and 'interferometric'), which are based on the linear electro-optical effect with application of a ZnTe detector crystal 1 × 1 cm in size, are compared. The noise level and dynamic range for the aforementioned techniques are analysed and their applicability limits are discussed.
Mechanical and electro-optical properties of unconventional liquid crystal systems
NASA Astrophysics Data System (ADS)
Liao, Guangxun
Four types of unconventional liquid crystal systems - amphotropic glycolipids; novel bent-core liquid crystals, bent-core liquid crystal and glycolipid mixtures, and colloidal crystal-liquid crystal systems - were studied and characterized by polarizing microscopy, electrical current, digital scanning calorimetry, and dielectric spectroscopy. Thermotropic properties of glycolipids show a number of unusual properties, most notably high (60-120) relative dielectric constants mainly proportional to the number of polar sugar heads. The relaxation of this dielectric mode is found to be governed by the hydrogen bonding between sugar heads. Studies on novel bent-core liquid crystals reveal a new optically isotropic ferroelectric phase, molecular chirality-induced polarity, and transitions between molecular chirality and polarity driven phases. Mixtures of several bent-core substances with nematic, polar SmA and SmC phases, and a simple amphiphilic sugar lipid with SmA mesophase found to obey the well known miscibility rules, i.e. the sugar lipid mixes best with the polar SmA bent-core material. In addition, the chiral sugar lipid was found to induce tilt to the non-tilted polar SmA phase, which represents a new direction among the chirality--polarity--tilt relations. The effects of the surface properties and electric fields were studied on various colloid particles--and liquid crystal systems. It is found that the surface properties (hydrophobicity, roughness, rubbing) of the substrates are important in determining the size and symmetry of colloidal crystals. The director field of the liquid crystal infiltrated in the colloid crystals can be rendered both random and uniform along one of the crystallographic axis. We present the first observations of DC electric-field-induced rotational and translational motion of finite particles in liquid crystals. The electrorotation is essentially identical to the well - known Quincke rotation, which in liquid crystals triggers an additional translational motion at higher fields. Analysis of the electro-rotation and translations provides new ways to probe local rheological properties of liquid crystals.
On the elastic–plastic decomposition of crystal deformation at the atomic scale
Stukowski, Alexander; Arsenlis, A.
2012-03-02
Given two snapshots of an atomistic system, taken at different stages of the deformation process, one can compute the incremental deformation gradient field, F, as defined by continuum mechanics theory, from the displacements of atoms. However, such a kinematic analysis of the total deformation does not reveal the respective contributions of elastic and plastic deformation. We develop a practical technique to perform the multiplicative decomposition of the deformation field, F = F eF p, into elastic and plastic parts for the case of crystalline materials. The described computational analysis method can be used to quantify plastic deformation in a materialmore » due to crystal slip-based mechanisms in molecular dynamics and molecular statics simulations. The knowledge of the plastic deformation field, F p, and its variation with time can provide insight into the number, motion and localization of relevant crystal defects such as dislocations. As a result, the computed elastic field, F e, provides information about inhomogeneous lattice strains and lattice rotations induced by the presence of defects.« less
Electrorotation of colloidal particles in liquid crystals
NASA Astrophysics Data System (ADS)
Liao, G.; Smalyukh, I. I.; Kelly, J. R.; Lavrentovich, O. D.; Jákli, A.
2005-09-01
We present the first observations of dc electric-field-induced rotational motion of finite particles in liquid crystals. We show that the electrorotation is essentially identical to the well-known Quincke rotation, which in liquid crystals triggers an additional translational motion at higher fields. In the smectic phase the translational motion is confined to the two-dimensional geometry of smectic layers, in contrast to the isotropic and nematic phases, where the particles can move in all three dimensions. We demonstrate that by a proper analysis of the electrorotation, one can determine the in-plane viscosity of smectic liquid crystals. This method needs only a small amount of material, does not require uniform alignment over large areas, and enables probing rheological properties locally.
Countering Solutal Buoyant Convection with High Magnetic Fields
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Leslie, F. W.
2002-01-01
An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemist, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitant, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in microgravity, we have been able to dramatically effect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. The paper will report on the current status of the investigation and discuss results from the experimental and modeling efforts.
Zhou, Ji; He, Zhihong; Ma, Yu; Dong, Shikui
2014-09-20
This paper discusses Gaussian laser transmission in double-refraction crystal whose incident light wavelength is within its absorption wave band. Two scenarios for coupled radiation and heat conduction are considered: one is provided with an applied external electric field, the other is not. A circular heat source with a Gaussian energy distribution is introduced to present the crystal's light-absorption process. The electromagnetic field frequency domain analysis equation and energy equation are solved to simulate the phenomenon by using the finite element method. It focuses on the influence of different values such as wavelength, incident light intensity, heat transfer coefficient, ambient temperature, crystal thickness, and applied electric field strength. The results show that the refraction index of polarized light increases with the increase of crystal temperature. It decreases as the strength of the applied electric field increases if it is positive. The mechanism of electrical modulation for the thermo-optical effect is used to keep the polarized light's index of refraction constant in our simulation. The quantitative relation between thermal boundary condition and strength of applied electric field during electrical modulation is determined. Numerical results indicate a possible approach to removing adverse thermal effects such as depolarization and wavefront distortion, which are caused by thermal deposition during linear laser absorption.
Resonant spin tunneling in randomly oriented nanospheres of Mn 12 acetate
Lendínez, S.; Zarzuela, R.; Tejada, J.; ...
2015-01-06
We report measurements and theoretical analysis of resonant spin tunneling in randomly oriented nanospheres of a molecular magnet. Amorphous nanospheres of Mn₁₂ acetate have been fabricated and characterized by chemical, infrared, TEM, X-ray, and magnetic methods. Magnetic measurements have revealed sharp tunneling peaks in the field derivative of the magnetization that occur at the typical resonant field values for the Mn₁₂ acetate crystal in the field parallel to the easy axis.Theoretical analysis is provided that explains these observations. We argue that resonant spin tunneling in a molecular magnet can be established in a powder sample, without the need for amore » single crystal and without aligning the easy magnetization axes of the molecules. This is confirmed by re-analyzing the old data on a powdered sample of non-oriented micron-size crystals of Mn₁₂ acetate. In conclusion, our findings can greatly simplify the selection of candidates for quantum spin tunneling among newly synthesized molecular magnets.« less
Resonant spin tunneling in randomly oriented nanospheres of Mn 12 acetate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lendínez, S.; Zarzuela, R.; Tejada, J.
We report measurements and theoretical analysis of resonant spin tunneling in randomly oriented nanospheres of a molecular magnet. Amorphous nanospheres of Mn₁₂ acetate have been fabricated and characterized by chemical, infrared, TEM, X-ray, and magnetic methods. Magnetic measurements have revealed sharp tunneling peaks in the field derivative of the magnetization that occur at the typical resonant field values for the Mn₁₂ acetate crystal in the field parallel to the easy axis.Theoretical analysis is provided that explains these observations. We argue that resonant spin tunneling in a molecular magnet can be established in a powder sample, without the need for amore » single crystal and without aligning the easy magnetization axes of the molecules. This is confirmed by re-analyzing the old data on a powdered sample of non-oriented micron-size crystals of Mn₁₂ acetate. In conclusion, our findings can greatly simplify the selection of candidates for quantum spin tunneling among newly synthesized molecular magnets.« less
Structural and magnetic investigations of single-crystalline neodymium zirconate pyrochlore Nd2Zr2O7
NASA Astrophysics Data System (ADS)
Hatnean, M. Ciomaga; Lees, M. R.; Petrenko, O. A.; Keeble, D. S.; Balakrishnan, G.; Gutmann, M. J.; Klekovkina, V. V.; Malkin, B. Z.
2015-05-01
We report structural and magnetic properties studies of large high-quality single crystals of the frustrated magnet Nd2Zr2O7 . Powder x-ray diffraction analysis confirms that Nd2Zr2O7 adopts the pyrochlore structure. Room-temperature x-ray diffraction and time-of-flight neutron-scattering experiments show that the crystals are stoichiometric in composition with no measurable site disorder. The temperature dependence of the magnetic susceptibility shows no magnetic ordering at temperatures down to 0.5 K. Fits to the magnetic susceptibility data using a Curie-Weiss law reveal a ferromagnetic coupling between the Nd moments. Magnetization versus field measurements show a local Ising anisotropy along the <111 > axes of the Nd3 + ions in the ground state. Specific heat versus temperature measurements in zero applied magnetic field indicate the presence of a thermal anomaly below T ˜7 K, but no evidence of magnetic ordering is observed down to 0.5 K. The experimental temperature dependence of the single-crystal bulk dc susceptibility and isothermal magnetization are analyzed using crystal field theory and the crystal field parameters and exchange coupling constants determined.
Effect of surface tension anisotropy on cellular morphologies
NASA Technical Reports Server (NTRS)
Mcfadden, G. B.; Coriell, S. R.; Sekerka, R. F.
1988-01-01
A three-dimensional weakly nonlinear analysis for conditions near the onset of instability at the crystal-melt interface was carried out to second order, taking into account the effects of latent heat generation and surface-tension anisotropy of the crystal-melt interface; particular consideration was given to the growth of a cubic crystal in the 001-, 011-, and 111-line directions. Numerical calculations by McFadden et al. (1987), performed for an aluminum-chromium alloy with the assumption of a linear temperature field and an isotropic surface tension, showed that only hexagonal nodes (and not hexagonal cells) occurred near the onset of instability. The results of the present analysis indicate that the nonlinear temperature field (which occurs when thermal conductivities of the crystal and the melt are different and/or the latent heat effects are not negligible) can modify this result and, for certain alloys and processing conditions, can cause the occurrence of hexagonal cells near the onset of instability.
Crystal field analysis of the energy level structure of Cs2NaAlF6:Cr3+
NASA Astrophysics Data System (ADS)
Rudowicz, C.; Brik, M. G.; Avram, N. M.; Yeung, Y. Y.; Gnutek, P.
2006-06-01
An analysis of the energy level structure of Cr3+ ions in Cs2NaAlF6 crystal is performed using the exchange charge model (ECM) together with the crystal field analysis/microscopic spin Hamiltonian (CFA/MSH) computer package. Utilizing the crystal structure data, our approach enables modelling of the crystal field parameters (CFPs) and thus the energy level structure for Cr3+ ions at the two crystallographically inequivalent sites in Cs2NaAlF6. Using the ECM initial adjustment procedure, the CFPs are calculated in the crystallographic axis system centred at the Cr3+ ion at each site. Additionally the CFPs are also calculated using the superposition model (SPM). The ECM and SPM predicted CFP values match very well. Consideration of the symmetry aspects for the so-obtained CFP datasets reveals that the latter axis system matches the symmetry-adapted axis system related directly to the six Cr-F bonds well. Using the ECM predicted CFPs as an input for the CFA/MSH package, the complete energy level schemes are calculated for Cr3+ ions at the two sites. Comparison of the theoretical results with the experimental spectroscopic data yields satisfactory agreement. Our results confirm that the actual symmetry at both impurity sites I and II in the Cs2NaAlF6:Cr3+ system is trigonal D3d. The ECM predicted CFPs may be used as the initial (starting) parameters for simulations and fittings of the energy levels for Cr3+ ions in structurally similar hosts.
NASA Astrophysics Data System (ADS)
Yeckel, Andrew; de Almeida, Valmor F.; Derby, Jeffrey J.
2000-01-01
We present results from simulations of transient acceleration (g-jitter) in both axial and transverse directions in a simplified prototype of a vertical Bridgman crystal growth system. We also present results on the effects of applying a steady magnetic field in axial or transverse directions to damp the flow. In most cases application of a magnetic field suppresses flow oscillations, but for transverse jitter at intermediate frequencies, flow oscillations grow larger. .
Magnetic Control of Convection during Protein Crystallization
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Leslie, F. W.
2004-01-01
An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular Crystals for diffraction analyses has been the central focus for bio-chemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and Sedimentation as is achieved in "microgravity", we have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, f o d o n of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with counteracts on for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility force counteract terrestrial gravity. The genera1 objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. The paper will report on the experimental results using paramagentic salts and solutions in magnetic fields and compare them to analyticalprctions.
Oxidation and crystal field effects in uranium
NASA Astrophysics Data System (ADS)
Tobin, J. G.; Yu, S.-W.; Booth, C. H.; Tyliszczak, T.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Nordlund, D.; Weng, T.-C.; Bagus, P. S.
2015-07-01
An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (U O2) , uranium trioxide (U O3) , and uranium tetrafluoride (U F4) . A discussion of the role of nonspherical perturbations, i.e., crystal or ligand field effects, will be presented.
Three-dimensional modelling of thermal stress in floating zone silicon crystal growth
NASA Astrophysics Data System (ADS)
Plate, Matiss; Krauze, Armands; Virbulis, Jānis
2018-05-01
During the growth of large diameter silicon single crystals with the industrial floating zone method, undesirable level of thermal stress in the crystal is easily reached due to the inhomogeneous expansion as the crystal cools down. Shapes of the phase boundaries, temperature field and elastic material properties determine the thermal stress distribution in the solid mono crystalline silicon during cylindrical growth. Excessive stress can lead to fracture, generation of dislocations and altered distribution of intrinsic point defects. Although appearance of ridges on the crystal surface is the decisive factor of a dislocation-free growth, the influence of these ridges on the stress field is not completely clear. Here we present the results of thermal stress analysis for 4” and 5” diameter crystals using a quasi-stationary three dimensional mathematical model including the material anisotropy and the presence of experimentally observed ridges which cannot be addressed with axis-symmetric models. The ridge has a local but relatively strong influence on thermal stress therefore its relation to the origin of fracture is hypothesized. In addition, thermal stresses at the crystal rim are found to increase for a particular position of the crystal radiation reflector.
Study of Fluid Flow Control In Protein Crystallization Using Strong Magnetic Fields
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Leslie, F.; Ciszak, E.; Curreri, Peter A. (Technical Monitor)
2002-01-01
An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in 'microgravity', researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. Once the basic understanding is obtained, the study will focus on testing the hypothesis on proteins of pyruvate dehydrogenase complex (PDC), proteins E1 and E3. Obtaining high crystal quality of these proteins is of great importance to structural biologists since their structures need to be determined.
Dynamic and magneto-optic properties of bent-core liquid crystals
NASA Astrophysics Data System (ADS)
Salili, Seyyed Muhammad
In this work, we describe dynamic behavior of free-standing bent-core liquid crystal filaments under dilative and axial compressive stresses in the B7 phase. We found that such filaments demonstrate very complex structures depending on the filament's temperature relative to the isotropic phase, initial filament thickness, and velocity at which the filament is pulled or compressed. We also present our experimental methods, results and analysis of the rupture and recoil properties of several bent-core liquid crystal filaments, anticipating that they may serve as a model system for complex biological fibers. After that, we systematically describe rheological measurements for dimeric liquid crystal compounds. We studied the shear-induced alignment properties, measured the viscoelastic properties as a function of temperature, shear rate, stress and frequency, and compared the results with the rheological properties of conventional chiral nematic and smectic phases. Then we present results of chiral nematic liquid crystals composed of flexible dimer molecules subject to large DC magnetic fields between 0 and 31T. We observe that these fields lead to selective reflection of light depending on temperature and magnetic field. The band of reflected wavelengths can be tuned from ultraviolet to beyond the IR-C band. A similar effect induced by electric fields has been presented previously, and was explained by a field-induced oblique-heliconical director deformation in accordance with early theoretical predictions. Finally, we report an unprecedented magnetic field-induced shifts of the isotropic-nematic phase transition temperature observed in liquid crystal dimers where two rigid linear mesogens are linked by flexible chains of either even- or odd-numbered hydrocarbon groups. This effect is explained in terms of quenching of the thermal fluctuations and decrease of the average bend angle of molecules in the odd-numbered dimers.
Field-Effects in Large Axial Ratio Liquid Crystals
NASA Astrophysics Data System (ADS)
Lonberg, Franklin J.
This paper consists of an introduction and four chapters, the abstracts of which are presented below. Chapter 2. The subject of this chapter is the dynamic periodic structures which are observed in the twist Frederiks transition. It is found that, for fields above a material dependent level, a transient periodic distortion is observed. The wave vector is parallel to the unperturbed director and increases with increasing field. A theoretical model and experimental data are presented. Chapter 3. The subject of this chapter is the discovery of a new equilibrium structure in the splay Frederiks transition. Experimental observation has shown that the imposition of a field, just above the critical strength, produces a periodic distortion in the polymer liquid crystal PBG. This periodic state is not dynamic in origin but it is a true ground state. An analysis of the energy of a liquid crystal, in the splay Frederiks transition geometry, shows that in materials with K(,1)/K(,3) > 3.3 the periodic distortion will have a lower critical field than the uniform distortion. Chapter 4. The subject of this chapter is the dynamics of the bend Frederiks transition in large axial ratio nematics. Experimental evidence is presented to show that there is a distortion mode which occurs at field greater than 2H(,c), which is very fast and does not grow exponentially. An analysis of the equations of motion shows that a mode with wave length half that of the static equilibrium mode will have these properties. Chapter 5. The bend Frederiks transition is use to show that the bend and splay elastic constants are linear in concentration in PBG. Interpretation of this result is made in connection with models of the elastic energy in liquid crystal made of semi-flexible partiles.
Luminescence and Excitation Spectra of U 3+ doped RbY 2 Cl 7 Single Crystals
Karbowiak, M.; Murdoch, K.; Drożdżyński, J.; ...
1996-08-01
Uranium(3+) doped single crystals of RbY 2 Cl 7 with a uranium concentration of 0.05% and 0.2% were grown by the Bridgman-Stockbarger method using RbU 2 Cl 7 as the doping substance. Polished plates of ca. 5 mm in diameter were used for measurements of luminescence and excitation spectra. And since the U 3+ ions occupy two somewhat different site symmetries, a splitting of all observed f-f bands was observed. Furthermore, the analysis of the spectra enabled definitively an assignment of 22 crystal field bands for both site symmetries as well as the total crystal field splitting of the groundmore » level, equal to 473 cm -1 and 567 cm -1 for the first and second site symmetry, respectively.« less
Nanosecond liquid crystalline optical modulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borshch, Volodymyr; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.
2016-07-26
An optical modulator includes a liquid crystal cell containing liquid crystal material having liquid crystal molecules oriented along a quiescent director direction in the unbiased state, and a voltage source configured to apply an electric field to the liquid crystal material wherein the direction of the applied electric field does not cause the quiescent director direction to change. An optical source is arranged to transmit light through or reflect light off the liquid crystal cell with the light passing through the liquid crystal material at an angle effective to undergo phase retardation in response to the voltage source applying themore » electric field. The liquid crystal material may have negative dielectric anisotropy, and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is transverse to the quiescent director direction. Alternatively, the liquid crystal material may have positive dielectric anisotropy and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is parallel with the quiescent director direction.« less
NASA Astrophysics Data System (ADS)
Cecily Mary Glory, D.; Sambathkumar, K.; Madivanane, R.; Velmurugan, G.; Gayathri, R.; Nithiyanantham, S.; Venkatachalapathy, M.; Rajkamal, N.
2018-07-01
Experimental and computational study of molecular structure, vibrational and UV-spectral analysis of Hydrazine (1, 3- Dinitrophenyl) (HDP) derivatives. The crystal was grown by slow cooling method and the crystalline perfection of single crystals was evaluated by high resolution X-ray diffractometry (HRXRD) using a multicrystal X-ray diffractometer. Fluorescence, FT-IR and FT-Raman spectra of HDP crystal were recorded. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) followed by scaled quantum force field methodology (SQMFF). NMR studies have confirmed respectively the crystal structure and functional groups of the grown crystal. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) result complements the experimental findings. The calculated MESP, UV, HOMO-LUMO energies show that charge transfer done within the molecule. And various thermodynamic parameters are studied. Fukui determines the local reactive site of electrophilic, nucleophilic, descriptor.
Investigation of domain walls in PPLN by confocal raman microscopy and PCA analysis
NASA Astrophysics Data System (ADS)
Shur, Vladimir Ya.; Zelenovskiy, Pavel; Bourson, Patrice
2017-07-01
Confocal Raman microscopy (CRM) is a powerful tool for investigation of ferroelectric domains. Mechanical stresses and electric fields existed in the vicinity of neutral and charged domain walls modify frequency, intensity and width of spectral lines [1], thus allowing to visualize micro- and nanodomain structures both at the surface and in the bulk of the crystal [2,3]. Stresses and fields are naturally coupled in ferroelectrics due to inverse piezoelectric effect and hardly can be separated in Raman spectra. PCA is a powerful statistical method for analysis of large data matrix providing a set of orthogonal variables, called principal components (PCs). PCA is widely used for classification of experimental data, for example, in crystallization experiments, for detection of small amounts of components in solid mixtures etc. [4,5]. In Raman spectroscopy PCA was applied for analysis of phase transitions and provided critical pressure with good accuracy [6]. In the present work we for the first time applied Principal Component Analysis (PCA) method for analysis of Raman spectra measured in periodically poled lithium niobate (PPLN). We found that principal components demonstrate different sensitivity to mechanical stresses and electric fields in the vicinity of the domain walls. This allowed us to separately visualize spatial distribution of fields and electric fields at the surface and in the bulk of PPLN.
Atahan-Evrenk, Sule; Aspuru-Guzik, Alán
2014-01-01
The theoretical prediction and characterization of the solid-state structure of organic semiconductors has tremendous potential for the discovery of new high performance materials. To date, the theoretical analysis mostly relied on the availability of crystal structures obtained through X-ray diffraction. However, the theoretical prediction of the crystal structures of organic semiconductor molecules remains a challenge. This review highlights some of the recent advances in the determination of structure-property relationships of the known organic semiconductor single-crystals and summarizes a few available studies on the prediction of the crystal structures of p-type organic semiconductors for transistor applications.
Improved ferroelectric and pyroelectric parameters in iminodiacetic acid doped TGS crystal
NASA Astrophysics Data System (ADS)
Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S. M.
2010-01-01
Single crystals of Iminodiacetic acid (HN(CH 2COOH) 2) doped Triglycine sulphate (IDATGS) has been grown from aqueous solution at constant temperature by slow evaporation technique. The concentration of the dopant in the TGS solution was 2 mol%. The X-ray diffraction analysis indicates that there is significant change in the lattice parameters compared to pure TGS crystal. The IDATGS crystal has larger transition temperature and observed higher and uniform figure of merit over most part of the ferroelectric phase. These crystals also exhibit higher internal bias field and micro-hardness number compared to pure TGS. Therefore IDATGS may be a potential material for IR detectors.
Fluid flow analysis and vertical gradient freeze crystal growth in a travelling magnetic field
NASA Astrophysics Data System (ADS)
Lantzsch, R.; Grants, I.; Galindo, V.; Patzold, O.; Gerbeth, G.; Stelter, M.; Croll, A.
2006-12-01
In bulk crystal growth of semiconductors the concept of remote flow control by means of alternating magnetic fields has attracted considerable interest (see, e.g., te{1,2,3,4,5,6}). In this way the melt flow can be tailored for growth under optimised conditions to improve the crystal properties and/or the growth yield. A promising option is to apply an axially travelling magnetic wave to the melt (Travelling Magnetic Field - TMF). It introduces a mainly axial Lorentz force, which leads to meridional flow patterns. In recent numerical studies te{3}, te{6} the TMF has been recognised to be a versatile and efficient tool to control the heat and mass transport in the melt. For the Vertical Bridgman/Vertical Gradient Freeze (VB/VGF) growth, the beneficial effect of an adequately adjusted TMF-induced flow was clearly demonstrated in te{6} in terms of the reduction of thermal shear stress at the solid-liquid interface. In this paper, we present experimental and numerical results on the TMF driven convection in an isothermal model fluid as well as first VGF-TMF crystal growth experiments. The model investigations are focused on the transition from laminar to instationary flow conditions that should be avoided in crystal growth applications. The VGF experiments were aimed at growing Ga doped germanium single crystals under the influence of the travelling field in a newly developed VGF-TMF equipment. Figs 4, Refs 10.
NASA Astrophysics Data System (ADS)
Đorđević, Vesna; Brik, Mikhail G.; Srivastava, Alok M.; Medić, Mina; Vulić, Predrag; Glais, Estelle; Viana, Bruno; Dramićanin, Miroslav D.
2017-12-01
Herein, the synthesis, structural and crystal field analysis and optical spectroscopy of Mn4+ doped metal titanates ATiO3 (A = Ca, Mg) are presented. Materials of desired phase were prepared by molten salt assisted sol-gel method in the powder form. Crystallographic data of samples were obtained by refinement of X-ray diffraction measurements. From experimental excitation and emission spectra and structural data, crystal field parameters and energy levels of Mn4+ in CaTiO3 and MgTiO3 were calculated by the exchange charge model of crystal-field theory. It is found that crystalline field strength is lower (Dq = 1831 cm-1) in the rhombohedral Ilmenite MgTiO3 structure due to the relatively longer average Mn4+sbnd O2- bond distance (2.059 Å), and higher (Dq = 2017 cm-1) in orthorhombic CaTiO3 which possess shorter average Mn4+sbnd O2- bond distance (1.956 Å). Spectral positions of the Mn4+2Eg → 4A2g transition maxima is 709 nm in MgTiO3 and 717 nm in CaTiO3 respectively in good agreement with calculated values.
A structural analysis of small vapor-deposited 'multiply twinned' gold particles
NASA Technical Reports Server (NTRS)
Yang, C. Y.; Heinemann, K.; Yacaman, M. J.; Poppa, H.
1979-01-01
High resolution selected zone dark field, Bragg reflection imaging and weak beam dark field techniques of transmission electron microscopy were used to determine the structure of small gold particles vapor deposited on NaCl substrates. Attention was focused on the analysis of those particles in the 50-150 A range that have pentagonal or hexagonal bright field profiles. These particles have been previously described as multiply twinned crystallites composed of face-centered cubic tetrahedra. The experimental evidence of the present studies can be interpreted on the assumption that the particle structure is a regular icosahedron or decahedron for the hexagonal or the pentagonal particles respectively. The icosahedron is a multiply twinned rhombohedral crystal and the decahedron is a multiply twinned body-centered orthorhombic crystal, each of which constitutes a slight distortion from the face-centered cubic structure.
NASA Technical Reports Server (NTRS)
Carlson, Frederick
1990-01-01
The objective of this theoretical research effort was to improve the understanding of the growth of Pb(x)Sn(1-x)Te and especially how crystal quality could be improved utilizing the microgravity environment of space. All theoretical growths are done using the vertical Bridgman method. It is believed that improved single crystal yields can be achieved by systematically identifying and studying system parameters both theoretically and experimentally. A computational model was developed to study and eventually optimize the growth process. The model is primarily concerned with the prediction of the thermal field, although mass transfer in the melt and the state of stress in the crystal were of considerable interest. The evolution is presented of the computer simulation and some of the important results obtained. Diffusion controlled growth was first studied since it represented a relatively simple, but nontheless realistic situation. In fact, results from this analysis prompted a study of the triple junction region where the melt, crystal, and ampoule wall meet. Since microgravity applications were sought because of the low level of fluid movement, the effect of gravitational field strength on the thermal and concentration field was also of interest. A study of the strength of coriolis acceleration on the growth process during space flight was deemed necessary since it would surely produce asymmetries in the flow field if strong enough. Finally, thermosolutal convection in a steady microgravity field for thermally stable conditions and both stable and unstable solutal conditions was simulated.
Research on soundproof properties of cylindrical shells of generalized phononic crystals
NASA Astrophysics Data System (ADS)
Liu, Ru; Shu, Haisheng; Wang, Xingguo
2017-04-01
Based on the previous studies, the concept of generalized phononic crystals (GPCs) is further introduced into the cylindrical shell structures in this paper. And a type of cylindrical shells of generalized phononic crystals (CS-GPCs) is constructed, the structural field and acoustic-structural coupled field of the composite cylindrical shells are examined respectively. For the structural field, the transfer matrix method of mechanical state vector is adopted to build the transfer matrix of radial waves propagating from inside to outside. For the acoustic-structural coupled field, the expressions of the acoustic transmission/reflection coefficients and the sound insulation of acoustic waves with the excitation of center line sound source are set up. And the acoustic transmission coefficient and the frequency response of sound insulation in this mode were numerical calculated. Furthermore, the theoretical analysis results are verified by using the method of combining the numerical calculation and finite element simulation. Finally, the effects of inner and outer fluid parameters on the transmission/reflection coefficients of CS-GPCs are analyzed in detail.
Applications of the diffraction and interference of light and electronic waves
NASA Astrophysics Data System (ADS)
Bahrim, Cristian; Lanning, Robert
2010-10-01
As part of a NSF sponsored program, called STAIRSTEP, at Lamar University we work on improving the basic knowledge of our physics majors in topics with broader impact in various areas of science and engineering [1]. The purpose is to facilitate a deeper understanding of some fundamental concepts in the field of optics through hands-on experience [2]. We choose to study the interference/diffraction of light and matter waves, because of its fundamental importance in physics with many applications. We target multiple goals in our field of study such as to understand the formation of electronic waves (wave packets) and their interaction with atoms in crystals (electron diffraction); the Fourier analysis of light with applications in spectroscopy, etc. We can show that a crystal lattice Fourier transforms the sinusoidal waves associated to free electrons fired toward the crystal. Our studies led to a simple and instructive recipe for discovering the arrangement of atoms in crystals from the analysis of the diffraction patterns produced by radiation or by electrons transmitted through crystals. [1] Doerschuk P. et al., 39th ASEE/IEEE Frontiers in Education Conference, San Antonio 2009, M3F-1. [2] Bahrim C, Innovation 2006 -- World Innovations in Engineering Education and Research, Chapter 17, iNEER Innovation Series, ISBN 0-9741252-5-3.
Lukens, Wayne W.; Speldrich, Manfred; Yang, Ping; ...
2016-05-31
The electronic structures of 4f 3/5f 3 Cp" 3M and Cp" 3M·alkylisocyanide complexes, where Cp" is 1,3-bis-(trimethylsilyl)cyclopentadienyl, are explored with a focus on the splitting of the f-orbitals, which provides information about the strengths of the metal–ligand interactions. While the f-orbital splitting in many lanthanide complexes has been reported in detail, experimental determination of the f-orbital splitting in actinide complexes remains rare in systems other than halide and oxide compounds, since the experimental approach, crystal field analysis, is generally significantly more difficult for actinide complexes than for lanthanide complexes. In this study, a set of analogous neodymium(III) and uranium(III) tris-cyclopentadienylmore » complexes and their isocyanide adducts was characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility. The crystal field model was parameterized by combined fitting of EPR and susceptibility data, yielding an accurate description of f-orbital splitting. The isocyanide derivatives were also studied using density functional theory, resulting in f-orbital splitting that is consistent with crystal field fitting, and by multi-reference wavefunction calculations that support the electronic structure analysis derived from the crystal-field calculations. The results highlight that the 5f-orbitals, but not the 4f-orbitals, are significantly involved in bonding to the isocyanide ligands. The main interaction between isocyanide ligand and the metal center is a σ-bond, with additional 5f to π* donation for the uranium complexes. As a result, while interaction with the isocyanide π*-orbitals lowers the energies of the 5f xz2 and 5f yz2-orbitals, spin–orbit coupling greatly reduces the population of 5f xz2 and 5f yz2 in the ground state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gujarati, Vivek P., E-mail: vivekgujarati@gmail.com; Deshpande, M. P., E-mail: vishwadeshpande@yahoo.co.in; Patel, Kamakshi R.
2016-05-06
Semi-organic crystals of Glycine Potassium Nitrate (GPN) with potential applications in Non linear optics (NLO) were grown using slow evaporation technique. Glycine and Potassium Nitrate were taken in three different concentration ratios of 3:1, 2:1 and 1:1 respectively. We checked the solubility of the material in distilled water at different temperatures and could observe the growth of crystals in 7 weeks time. Purity of the grown crystals was confirmed by Energy Dispersive X-ray Analysis (EDAX) and CHN analysis. GSN Powder X-ray diffraction pattern was recorded to confirm the crystalline nature. To confirm the applications of grown crystals in opto-electronics field,more » UV-Vis-NIR study was carried out. Dielectric properties of the samples were studied in between the frequency range 1Hz to 100 KHz.« less
NASA Technical Reports Server (NTRS)
Brown, R. A.
1986-01-01
This research program focuses on analysis of the transport mechanisms in solidification processes, especially one of interest to the Microgravity Sciences and Applications Program of NASA. Research during the last year has focused on analysis of the dynamics of the floating zone process for growth of small-scale crystals, on studies of the effect of applied magnetic fields on convection and solute segregation in directional solidification, and on the dynamics of microscopic cell formation in two-dimensional solidification of binary alloys. Significant findings are given.
Reformulation of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics
2015-03-01
interest include metals, ceramics , minerals, and energetic materials . Accurate, efficient, stable, and thermodynamically consistent models for...Clayton JD. Phase field theory and analysis of pressure-shear induced amorphization and failure in boron carbide ceramic . AIMS Materials Science. 2014;1...of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics by JD Clayton Weapons and Materials Research Directorate, ARL
Focusing of light by polymer-dispersed liquid-crystal films with nanosized droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loiko, V. A., E-mail: loiko@dragon.bas-net.by; Konkolovich, A. V.
2006-12-15
An analysis is presented of polarization-independent electrically tunable light focusing by polymerdispersed liquid-crystal films with nanosized liquid-crystal droplets. Polymer-dispersed liquid-crystal films with axially symmetric distributions of liquid-crystal droplet concentration and layers with axially symmetric thickness profiles are considered. The paraxial, Rayleigh, and Rayleigh-Gans approximations, as well as the Foldy-Twersky equation, are used to examine the dependence of focal length on lens geometry, droplet size, concentration of nematic liquid-crystal droplets, and applied field. The tunable focusing ranges are evaluated for both lens types considered in the study. Dependence of the transmittance of polymer-dispersed liquid-crystal film on its characteristics is analyzed. Themore » results obtained are compared with those available from the literature.« less
Angular overlap model analysis of the D 2d crystal field effect in uranium (4+) compounds
NASA Astrophysics Data System (ADS)
Gajek, Z.; Hubert, S.; Krupa, J. C.
1988-12-01
Recent interpretations of the D 2d crystal field of U 4+ in β-ThCl 4, α, β-ThBr 4, ThSiO 4 and UCl 4 are discussed in terms of the simplified one-, two- and three-parameter versions of the Angular Overlap Model which are shown to be a handy tool in a trial interpretation of the effect. The variation of the CF parameters with a small D 2 distortion of the coordination is well reproduced by the model.
Characterising laser beams with liquid crystal displays
NASA Astrophysics Data System (ADS)
Dudley, Angela; Naidoo, Darryl; Forbes, Andrew
2016-02-01
We show how one can determine the various properties of light, from the modal content of laser beams to decoding the information stored in optical fields carrying orbital angular momentum, by performing a modal decomposition. Although the modal decomposition of light has been known for a long time, applied mostly to pattern recognition, we illustrate how this technique can be implemented with the use of liquid-crystal displays. We show experimentally how liquid crystal displays can be used to infer the intensity, phase, wavefront, Poynting vector, and orbital angular momentum density of unknown optical fields. This measurement technique makes use of a single spatial light modulator (liquid crystal display), a Fourier transforming lens and detector (CCD or photo-diode). Such a diagnostic tool is extremely relevant to the real-time analysis of solid-state and fibre laser systems as well as mode division multiplexing as an emerging technology in optical communication.
Band splitting in Cd3As2 measured by magnetotransport
NASA Astrophysics Data System (ADS)
Desrat, W.; Krishtopenko, S. S.; Piot, B. A.; Orlita, M.; Consejo, C.; Ruffenach, S.; Knap, W.; Nateprov, A.; Arushanov, E.; Teppe, F.
2018-06-01
Magnetotransport measurements have been performed on (112)-oriented bulk Cd3As2 samples with in situ rotation at low temperature. The frequency analysis of the Shubnikov-de Haas oscillations reveals two weakly separated frequencies arising from two Fermi ellipsoids. The angle dependence of these frequencies is fitted by an analytical expression that we derived for any magnetic field orientation. It is based on an 8 ×8 k .p model which includes the spin-orbit coupling, the crystal field splitting due to tetragonal distortion, and the additional band splitting occurring in noncentrosymmetric crystals. This band splitting is evaluated to a finite value of 30 meV, demonstrating the absence of inversion symmetry in our Cd3As2 crystal.
Ab Initio Crystal Field for Lanthanides.
Ungur, Liviu; Chibotaru, Liviu F
2017-03-13
An ab initio methodology for the first-principle derivation of crystal-field (CF) parameters for lanthanides is described. The methodology is applied to the analysis of CF parameters in [Tb(Pc) 2 ] - (Pc=phthalocyanine) and Dy 4 K 2 ([Dy 4 K 2 O(OtBu) 12 ]) complexes, and compared with often used approximate and model descriptions. It is found that the application of geometry symmetrization, and the use of electrostatic point-charge and phenomenological CF models, lead to unacceptably large deviations from predictions based on ab initio calculations for experimental geometry. It is shown how the predictions of standard CASSCF (Complete Active Space Self-Consistent Field) calculations (with 4f orbitals in the active space) can be systematically improved by including effects of dynamical electronic correlation (CASPT2 step) and by admixing electronic configurations of the 5d shell. This is exemplified for the well-studied Er-trensal complex (H 3 trensal=2,2',2"-tris(salicylideneimido)trimethylamine). The electrostatic contributions to CF parameters in this complex, calculated with true charge distributions in the ligands, yield less than half of the total CF splitting, thus pointing to the dominant role of covalent effects. This analysis allows the conclusion that ab initio crystal field is an essential tool for the decent description of lanthanides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Video-rate terahertz electric-field vector imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takai, Mayuko; Takeda, Masatoshi; Sasaki, Manabu
We present an experimental setup to dramatically reduce a measurement time for obtaining spatial distributions of terahertz electric-field (E-field) vectors. The method utilizes the electro-optic sampling, and we use a charge-coupled device to detect a spatial distribution of the probe beam polarization rotation by the E-field-induced Pockels effect in a 〈110〉-oriented ZnTe crystal. A quick rotation of the ZnTe crystal allows analyzing the terahertz E-field direction at each image position, and the terahertz E-field vector mapping at a fixed position of an optical delay line is achieved within 21 ms. Video-rate mapping of terahertz E-field vectors is likely to bemore » useful for achieving real-time sensing of terahertz vector beams, vector vortices, and surface topography. The method is also useful for a fast polarization analysis of terahertz beams.« less
Skab, Ihor; Vasylkiv, Yurij; Zapeka, Bohdan; Savaryn, Viktoriya; Vlokh, Rostyslav
2011-07-01
We present an analysis of the effect of torsion stresses on the spatial distribution of optical birefringence in crystals of different point symmetry groups. The symmetry requirements needed so that the optical beam carries dislocations of the phase front are evaluated for the case when the crystals are twisted and the beam closely corresponds to a plane wave. It is shown that the torsion stresses can produce screw-edge, pure screw, or pure edge dislocations of the phase front in the crystals belonging to cubic and trigonal systems. The conditions for appearance of canonical and noncanonical vortices in the conditions of crystal torsion are analyzed. © 2011 Optical Society of America
A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals
Mohamed, Mamdouh S.; Larson, Bennett C.; Tischler, Jonathan Z.; ...
2015-05-18
The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoreticalmore » analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kr ner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.« less
Ghorbani Moghaddam, Masoud; Achuthan, Ajit; Bednarcyk, Brett A; Arnold, Steven M; Pineda, Evan J
2016-05-04
A multiscale computational model is developed for determining the elasto-plastic behavior of polycrystal metals by employing a single crystal plasticity constitutive model that can capture the microstructural scale stress field on a finite element analysis (FEA) framework. The generalized method of cells (GMC) micromechanics model is used for homogenizing the local field quantities. At first, the stand-alone GMC is applied for studying simple material microstructures such as a repeating unit cell (RUC) containing single grain or two grains under uniaxial loading conditions. For verification, the results obtained by the stand-alone GMC are compared to those from an analogous FEA model incorporating the same single crystal plasticity constitutive model. This verification is then extended to samples containing tens to hundreds of grains. The results demonstrate that the GMC homogenization combined with the crystal plasticity constitutive framework is a promising approach for failure analysis of structures as it allows for properly predicting the von Mises stress in the entire RUC, in an average sense, as well as in the local microstructural level, i.e. , each individual grain. Two-three orders of saving in computational cost, at the expense of some accuracy in prediction, especially in the prediction of the components of local tensor field quantities and the quantities near the grain boundaries, was obtained with GMC. Finally, the capability of the developed multiscale model linking FEA and GMC to solve real-life-sized structures is demonstrated by successfully analyzing an engine disc component and determining the microstructural scale details of the field quantities.
Ghorbani Moghaddam, Masoud; Achuthan, Ajit; Bednarcyk, Brett A.; Arnold, Steven M.; Pineda, Evan J.
2016-01-01
A multiscale computational model is developed for determining the elasto-plastic behavior of polycrystal metals by employing a single crystal plasticity constitutive model that can capture the microstructural scale stress field on a finite element analysis (FEA) framework. The generalized method of cells (GMC) micromechanics model is used for homogenizing the local field quantities. At first, the stand-alone GMC is applied for studying simple material microstructures such as a repeating unit cell (RUC) containing single grain or two grains under uniaxial loading conditions. For verification, the results obtained by the stand-alone GMC are compared to those from an analogous FEA model incorporating the same single crystal plasticity constitutive model. This verification is then extended to samples containing tens to hundreds of grains. The results demonstrate that the GMC homogenization combined with the crystal plasticity constitutive framework is a promising approach for failure analysis of structures as it allows for properly predicting the von Mises stress in the entire RUC, in an average sense, as well as in the local microstructural level, i.e., each individual grain. Two–three orders of saving in computational cost, at the expense of some accuracy in prediction, especially in the prediction of the components of local tensor field quantities and the quantities near the grain boundaries, was obtained with GMC. Finally, the capability of the developed multiscale model linking FEA and GMC to solve real-life-sized structures is demonstrated by successfully analyzing an engine disc component and determining the microstructural scale details of the field quantities. PMID:28773458
Mathematical modeling of static layer crystallization for propellant grade hydrogen peroxide
NASA Astrophysics Data System (ADS)
Hao, Lin; Chen, Xinghua; Sun, Yaozhou; Liu, Yangyang; Li, Shuai; Zhang, Mengqian
2017-07-01
Hydrogen peroxide (H2O2) is an important raw material widely used in many fields. In this work a mathematical model of heat conduction with a moving boundary was proposed to study the melt crystallization process of hydrogen peroxide which was carried out outside a cylindrical crystallizer. Considering the effects of the temperature of the cooling fluid on the thermal conductivity of crude crystal, the model is an improvement of Guardani's research and can be solved by analytic iteration method. An experiment was designed to measure the thickness of crystal layer with time under different conditions. A series of analysis, including the effects of different refrigerant temperature on crystal growth rate, the effects of different cooling rates on crystal layer growth rate, the effects of crystallization temperature on heat transfer and the model's application scope were conducted based on the comparison between experimental results and simulation results of the model.
Effects of electric field on thermodynamics and ordering of a dipolar liquid
NASA Astrophysics Data System (ADS)
Johari, G. P.
2016-10-01
We propose that an electric field's role in changing the structural disorder may be investigated by comparing the field-induced entropy decrease, ΔES, against the pressure-induced and cooling-induced entropy decreases, ΔpS and ΔTS, respectively, for the same increase in the dielectric α-relaxation time, Δτα, or in the viscosity. If these three quantities are found to be the same, the change in the number of microstates, Δln Ω = ΔS/R, would be the same whether there is an electric field-induced dipole vector alignment, or not. The available data [S. Samanta and R. Richert, J. Chem. Phys. 142, 044504 (2015)] show that ΔES ≅ ΔpS, and ΔES ≅ ΔTS. We further argue that in the case of conformational disorder without hydrodynamics, as for a flexible molecule's orientationally disordered or plastic crystal, ΔTS would be more negative than ΔES for the same increase in Δτα. For cyclo-octanol plastic crystal, whose octyl-ring would lose some of its dielectrically inactive conformational degrees of freedom on cooling, ΔTS is five-times ΔES. Hence the entropy of such crystals may not be related to their τα, an aspect relevant to certain biopolymer crystals. We also mention other effects of E. The findings are relevant to a number of recent studies on the analysis of the effect of electric field on a liquid's properties. The method can be used to study the role of other entropy-altering variables in liquid crystals and ferromagnetic liquids.
NASA Astrophysics Data System (ADS)
Pan, Kok-Kwei
We have generalized the linked cluster expansion method to solve more many-body quantum systems, such as quantum spin systems with crystal-field potentials and the Hubbard model. The technique sums up all connected diagrams to a certain order of the perturbative Hamiltonian. The modified multiple-site Wick reduction theorem and the simple tau dependence of the standard basis operators have been used to facilitate the evaluation of the integration procedures in the perturbation expansion. Computational methods are developed to calculate all terms in the series expansion. As a first example, the perturbation series expansion of thermodynamic quantities of the single-band Hubbard model has been obtained using a linked cluster series expansion technique. We have made corrections to all previous results of several papers (up to fourth order). The behaviors of the three dimensional simple cubic and body-centered cubic systems have been discussed from the qualitative analysis of the perturbation series up to fourth order. We have also calculated the sixth-order perturbation series of this model. As a second example, we present the magnetic properties of spin-one Heisenberg model with arbitrary crystal-field potential using a linked cluster series expansion. The calculation of the thermodynamic properties using this method covers the whole range of temperature, in both magnetically ordered and disordered phases. The series for the susceptibility and magnetization have been obtained up to fourth order for this model. The method sums up all perturbation terms to certain order and estimates the result using a well -developed and highly successful extrapolation method (the standard ratio method). The dependence of critical temperature on the crystal-field potential and the magnetization as a function of temperature and crystal-field potential are shown. The critical behaviors at zero temperature are also shown. The range of the crystal-field potential for Ni(2+) compounds is roughly estimated based on this model using known experimental results.
Multi-Scale Computational Modeling of Two-Phased Metal Using GMC Method
NASA Technical Reports Server (NTRS)
Moghaddam, Masoud Ghorbani; Achuthan, A.; Bednacyk, B. A.; Arnold, S. M.; Pineda, E. J.
2014-01-01
A multi-scale computational model for determining plastic behavior in two-phased CMSX-4 Ni-based superalloys is developed on a finite element analysis (FEA) framework employing crystal plasticity constitutive model that can capture the microstructural scale stress field. The generalized method of cells (GMC) micromechanics model is used for homogenizing the local field quantities. At first, GMC as stand-alone is validated by analyzing a repeating unit cell (RUC) as a two-phased sample with 72.9% volume fraction of gamma'-precipitate in the gamma-matrix phase and comparing the results with those predicted by finite element analysis (FEA) models incorporating the same crystal plasticity constitutive model. The global stress-strain behavior and the local field quantity distributions predicted by GMC demonstrated good agreement with FEA. High computational saving, at the expense of some accuracy in the components of local tensor field quantities, was obtained with GMC. Finally, the capability of the developed multi-scale model linking FEA and GMC to solve real life sized structures is demonstrated by analyzing an engine disc component and determining the microstructural scale details of the field quantities.
Magnetic Control in Crystal Growth from a Melt
NASA Astrophysics Data System (ADS)
Huang, Yue
Control of bulk melt crystal growth techniques is desirable for producing semiconductors with the highest purity and ternary alloys with tunable electrical properties. Because these molten materials are electrically conducting, external magnetic fields are often employed to regulate the flow in the melt. However, complicated by the coupled flow, thermal, electromagnetic and chemical physics, such magnetic control is typically empirical or even an educated guess. Two magnetic flow control mechanisms: flow damping by steady magnetic fields, and flow stirring by alternating magnetic fields, are investigated numerically. Magnetic damping during optically-heated float-zone crystal growth is modeled using a spectral collocation method. The Marangoni convection at the free melt-gas interface is suppressed when exposed to a steady axial magnetic field, measured by the Hartmann number Ha. As a result, detrimental flow instabilities are suppressed, and an almost quiescent region forms in the interior, ideal for single crystal growth. Using normal mode linear stability analyses, dominant flow instabilities are determined in a range applicable to experiments (up to Ha = 300 for Pr = 0.02, and up to Ha = 500 for Pr = 0.001). The hydrodynamic nature of the instability for small Prandtl number Pr liquid bridges is confirmed by energy analyses. Magnetic stirring is modeled for melt crystal growth in an ampule exposed to a transverse rotating magnetic field. Decoupled from the flow field at small magnetic Reynolds number, the electromagnetic field is first solved via finite element analysis. The flow field is then solved using the spectral element method. At low to moderate AC frequencies (up to a few kHz), the electromagnetic body force is dominant in the azimuthal direction, which stirs a steady axisymmetric flow primarily in the azimuthal direction. A weaker secondary flow develops in the meridional plane. However, at high AC frequencies (on the order of 10 kHz and higher), only the flow within a skin depth is directly stirred due to the magnetic shielding effect. By regulating the flow in the melt, magnetic control can improve grown-crystal properties in new materials, and achieve economically viable growth rates for production of novel crystalline semiconductors.
An Overview of Hardware for Protein Crystallization in a Magnetic Field.
Yan, Er-Kai; Zhang, Chen-Yan; He, Jin; Yin, Da-Chuan
2016-11-16
Protein crystallization under a magnetic field is an interesting research topic because a magnetic field may provide a special environment to acquire improved quality protein crystals. Because high-quality protein crystals are very useful in high-resolution structure determination using diffraction techniques (X-ray, neutron, and electron diffraction), research using magnetic fields in protein crystallization has attracted substantial interest; some studies have been performed in the past two decades. In this research field, the hardware is especially essential for successful studies because the environment is special and the design and utilization of the research apparatus in such an environment requires special considerations related to the magnetic field. This paper reviews the hardware for protein crystallization (including the magnet systems and the apparatus designed for use in a magnetic field) and progress in this area. Future prospects in this field will also be discussed.
An Overview of Hardware for Protein Crystallization in a Magnetic Field
Yan, Er-Kai; Zhang, Chen-Yan; He, Jin; Yin, Da-Chuan
2016-01-01
Protein crystallization under a magnetic field is an interesting research topic because a magnetic field may provide a special environment to acquire improved quality protein crystals. Because high-quality protein crystals are very useful in high-resolution structure determination using diffraction techniques (X-ray, neutron, and electron diffraction), research using magnetic fields in protein crystallization has attracted substantial interest; some studies have been performed in the past two decades. In this research field, the hardware is especially essential for successful studies because the environment is special and the design and utilization of the research apparatus in such an environment requires special considerations related to the magnetic field. This paper reviews the hardware for protein crystallization (including the magnet systems and the apparatus designed for use in a magnetic field) and progress in this area. Future prospects in this field will also be discussed. PMID:27854318
Single crystal EPR determination of the quantum energy level structure for Fe8 molecular clusters
NASA Astrophysics Data System (ADS)
Maccagnano, S.; Hill, S.; Negusse, E.; Lussier, A.; Mola, M. M.; Achey, R.; Dalal, N. S.
2001-05-01
Using a high sensitivity resonance cavity technique,^1 we are able to obtain high field/frequency (up to 9 tesla/210 GHz) EPR spectra for oriented single crystals of [Fe_8O_2(OH)_12(tacn)_6]Br_8.9H_2O (or Fe8 for short). Extrapolating the frequency dependence of transitions to zero-field (for any orientation of the field) allows us to directly, and accurately (to within 0.5 percent), determine the first five zero-field splittings, which are in reasonable agreement with recent inelastic neutron studies.^2 The dependence of these splittings on the applied field strength, and its orientation with respect to the crystal, enables us to identify (to within 1^o) the easy, intermediate and hard magnetic axes. Subsequent analysis of EPR spectra for field parallel to the easy axis yields a value of for gz which is appreciably different from the value assumed in a recent high field EPR study by Barra et al.^3 ^1 M.M. Mola, S. Hill, P. Goy, and M. Gross, Rev. Sci. Inst. 71, 186 (2000). ^2 R. Caciuffo, G. Amoretti, R. Sessoli, A. Caneschi, and D. Gatteschi, Phys. Rev. Lett. 81, 4744 (1998). ^3 A. L. Barra, D. Gatteschi, and R. Sessoli, cond?mat/0002386 (Feb, 2000).
Effects of magnetic fields on dissolution of arthritis causing crystals
NASA Astrophysics Data System (ADS)
Takeuchi, Y.; Iwasaka, M.
2015-05-01
The number of gout patients has rapidly increased because of excess alcohol and salt intake. The agent responsible for gout is the monosodium urate (MSU) crystal. MSU crystals are found in blood and consist of uric acid and sodium. As a substitute for drug dosing or excessive water intake, physical stimulation by magnetic fields represents a new medical treatment for gout. In this study, we investigated the effects of a magnetic field on the dissolution of a MSU crystal suspension. The white MSU crystal suspension was dissolved in an alkaline solution. We measured the light transmission of the MSU crystal suspension by a transmitted light measuring system. The magnetic field was generated by a horizontal electromagnet (maximum field strength was 500 mT). The MSU crystal suspension that dissolved during the application of a magnetic field of 500 mT clearly had a higher dissolution rate when compared with the control sample. We postulate that the alkali solution promoted penetration upon diamagnetic rotation and this magnetic field orienting is because of the pronounced diamagnetic susceptibility anisotropy of the MSU crystal. The results indicate that magnetic fields represent an effective gout treatment approach.
Polytherm of the CO(NH2)2-KNO3-H2O phase diagram
NASA Astrophysics Data System (ADS)
Yulina, I. V.; Trunin, A. S.
2017-05-01
The crystallization polytherm of the ternary CO(NH2)2-KNO3-H2O system is plotted for the first time via visual polythermal analysis and calculating ternary eutonics characteristics from data on the boundary elements of two-component systems. The ternary eutonics modeling error does not exceed 3.5%. In addition to the crystallization fields of individual components, the field of the redox reaction that occurs in the system between potassium nitrate and carbamide is shown in the CO(NH2)2-KNO3-H2O diagram by a dashed outline.
Hu, Ming-Lie; Wang, Ching-Yue; Song, You-Jian; Li, Yan-Feng; Chai, Lu; Serebryannikov, Evgenii; Zheltikov, Aleksei
2006-02-06
We demonstrate an experimental technique that allows a mapping of vectorial nonlinear-optical processes in multimode photonic-crystal fibers (PCFs). Spatial and polarization modes of PCFs are selectively excited in this technique by varying the tilt angle of the input beam and rotating the polarization of the input field. Intensity spectra of the PCF output plotted as a function of the input field power and polarization then yield mode-resolved maps of nonlinear-optical interactions in multimode PCFs, facilitating the analysis and control of nonlinear-optical transformations of ultrashort laser pulses in such fibers.
Recent advances in merging photonic crystals and plasmonics for bioanalytical applications.
Liu, Bing; Monshat, Hosein; Gu, Zhongze; Lu, Meng; Zhao, Xiangwei
2018-05-29
Photonic crystals (PhCs) and plasmonic nanostructures offer the unprecedented capability to control the interaction of light and biomolecules at the nanoscale. Based on PhC and plasmonic phenomena, a variety of analytical techniques have been demonstrated and successfully implemented in many fields, such as biological sciences, clinical diagnosis, drug discovery, and environmental monitoring. During the past decades, PhC and plasmonic technologies have progressed in parallel with their pros and cons. The merging of photonic crystals with plasmonics will significantly improve biosensor performances and enlarge the linear detection range of analytical targets. Here, we review the state-of-the-art biosensors that combine PhC and plasmonic nanomaterials for quantitative analysis. The optical mechanisms of PhCs, plasmonic crystals, and metal nanoparticles (NPs) are presented, along with their integration and potential applications. By explaining the optical coupling of photonic crystals and plasmonics, the review manifests how PhC-plasmonic hybrid biosensors can achieve the advantages, including high sensitivity, low cost, and short assay time as well. The review also discusses the challenges and future opportunities in this fascinating field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starodumov, Ilya; Kropotin, Nikolai
2016-08-10
We investigate the three-dimensional mathematical model of crystal growth called PFC (Phase Field Crystal) in a hyperbolic modification. This model is also called the modified model PFC (originally PFC model is formulated in parabolic form) and allows to describe both slow and rapid crystallization processes on atomic length scales and on diffusive time scales. Modified PFC model is described by the differential equation in partial derivatives of the sixth order in space and second order in time. The solution of this equation is possible only by numerical methods. Previously, authors created the software package for the solution of the Phasemore » Field Crystal problem, based on the method of isogeometric analysis (IGA) and PetIGA program library. During further investigation it was found that the quality of the solution can strongly depends on the discretization parameters of a numerical method. In this report, we show the features that should be taken into account during constructing the computational grid for the numerical simulation.« less
The Effects of a Magnetic Field on the Crystallization of a Fluorozirconate Glass
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Lapointe, Michael R.; Jia, Zhiyong
2006-01-01
An axial magnetic field of 0.1T was applied to ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fibers during heating to the glass crystallization temperature. Scanning electron microscopy and x-ray diffraction were used to identify crystal phases. It was shown that fibers exposed to the magnetic field did not crystallize while fibers not exposed to the field did crystallize. A hypothesis based on magnetic work was proposed to explain the results and tested by measuring the magnetic susceptibilities of the glass and crystal.
NASA Astrophysics Data System (ADS)
Tavakoli, Mohammad Hossein; Renani, Elahe Kabiri; Honarmandnia, Mohtaram; Ezheiyan, Mahdi
2018-02-01
In this paper, a set of numerical simulations of fluid flow, temperature gradient, thermal stress and dislocation density for a Czochralski setup used to grow IR optical-grade Ge single crystal have been done for different stages of the growth process. A two-dimensional steady state finite element method has been applied for all calculations. The obtained numerical results reveal that the thermal field, thermal stress and dislocation structure are mainly dependent on the crystal height, heat radiation and gas flow in the growth system.
Lessons from high-throughput protein crystallization screening: 10 years of practical experience
JR, Luft; EH, Snell; GT, DeTitta
2011-01-01
Introduction X-ray crystallography provides the majority of our structural biological knowledge at a molecular level and in terms of pharmaceutical design is a valuable tool to accelerate discovery. It is the premier technique in the field, but its usefulness is significantly limited by the need to grow well-diffracting crystals. It is for this reason that high-throughput crystallization has become a key technology that has matured over the past 10 years through the field of structural genomics. Areas covered The authors describe their experiences in high-throughput crystallization screening in the context of structural genomics and the general biomedical community. They focus on the lessons learnt from the operation of a high-throughput crystallization screening laboratory, which to date has screened over 12,500 biological macromolecules. They also describe the approaches taken to maximize the success while minimizing the effort. Through this, the authors hope that the reader will gain an insight into the efficient design of a laboratory and protocols to accomplish high-throughput crystallization on a single-, multiuser-laboratory or industrial scale. Expert Opinion High-throughput crystallization screening is readily available but, despite the power of the crystallographic technique, getting crystals is still not a solved problem. High-throughput approaches can help when used skillfully; however, they still require human input in the detailed analysis and interpretation of results to be more successful. PMID:22646073
Simplifying the growth of hybrid single-crystals by using nanoparticle precursors: the case of AgI
NASA Astrophysics Data System (ADS)
Xu, Biao; Wang, Ruji; Wang, Xun
2012-03-01
We report the synthesis of a series of AAgmIn single-crystals within 24 h, at room temperature, utilizing AgI nanoparticles (NPs) as the precursor. The AgI NPs impart high reactivity under mild conditions and favor the growth kinetics. 0D, 1D and 2D iodoargentate crystals can be obtained. This work represents the first application of NPs in the field of organo-metal-halide crystals and will inspire the design of other AMmXn crystals.We report the synthesis of a series of AAgmIn single-crystals within 24 h, at room temperature, utilizing AgI nanoparticles (NPs) as the precursor. The AgI NPs impart high reactivity under mild conditions and favor the growth kinetics. 0D, 1D and 2D iodoargentate crystals can be obtained. This work represents the first application of NPs in the field of organo-metal-halide crystals and will inspire the design of other AMmXn crystals. Electronic supplementary information (ESI) available: XPS spectra of AgI NPs, schematic representation of the formation process of [Ag4I8]4- in 2, UV-Vis spectra of the DTMA-Ag-I clusters, analysis of force balance of a crystal at the interface between H2O and CH2Cl2 and crystal structure depiction of 1-4. CIF files of 1-4 are also provided. CCDC reference numbers 863848, 863849, 863850 and 863851. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30139c
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klyui, N. I.; Lozinskii, V. B., E-mail: lvb@isp.kiev.ua; Liptuga, A. I.
2017-03-15
The optical properties of semi-insulating GaAs crystals subjected to multienergy hydrogen-ion implantation and treatment in a high-frequency electromagnetic field are studied in the infrared spectral region. It is established that such combined treatment provides a means for substantially increasing the transmittance of GaAs crystals to values characteristic of crystals of high optical quality. On the basis of analysis of the infrared transmittance and reflectance data, Raman spectroscopy data, and atomic-force microscopy data on the surface morphology of the crystals, a physical model is proposed to interpret the effects experimentally observed in the crystals. The model takes into account the interactionmore » of radiation defects with the initial structural defects in the crystals as well as the effect of compensation of defect centers by hydrogen during high-frequency treatment.« less
Spectroscopic and crystal-field analysis of new Yb-doped laser materials
NASA Astrophysics Data System (ADS)
Haumesser, Paul-Henri; Gaumé, Romain; Viana, Bruno; Antic-Fidancev, Elisabeth; Vivien, Daniel
2001-06-01
Crystal-field effects are very important as far as laser performances of Yb-doped materials are concerned. In order to simplify the interpretation of low-temperature spectra, two tools derived from a careful examination of crystal-field interaction are presented. Both approaches are successfully applied in the case of new Yb-doped materials, namely Ca3Y2(BO3)4 (CYB), Ca3Gd2(BO3)4 (CaGB), Sr3Y(BO3)3 (SrYBO), Ba3Lu(BO3)3 (BLuB), Y2SiO5 (YSO), Ca2Al2SiO7 (CAS) and SrY4(SiO4)3O (SYS). The 2F7/2 splitting is particularly large in these materials and favourable to a quasi-three-level laser operating scheme. Calculations performed using the point charge electrostatic model for these compounds and using a consistent set of effective atomic charges confirm the experimental results. This should permit to use this model in a predictive approach.
Spectroscopic studies and crystal-field analyses of Am{sup 3+}: LiYF{sub 4}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavellec, R.; Hubert, S.; Simoni, E.
1997-03-01
Fluorescence and laser selective excitation spectroscopy have been used to investigate the electronic energy level structure of the actinide Am{sup 3+} (5{line_integral}{sup 6}) in LiYF{sub 4}. From the analysis of the fluorescence in the visible and infrared spectra obtained at 10K, 29 crystal-field levels have been assigned in the D{sub 2d} approximation. Zeeman splitting observation permits one to index some doubly degenerated {Gamma}{sub 5} levels. The phenomenological crystal-field parameters have been calculated in the D{sub 2d} approximation. A least-square adjustment yields a mean error of 38 cm{sup {minus}1} with the following values (in cm{sup {minus}1}) of the B{sub q}{sup k}more » parameters: B{sub O}{sup 2} = 473, B{sub 0}{sup 4} = -1776, B{sub 4}{sup 4}=2253, B{sub 0}{sup 6} = 80, and B{sub 4}{sup 6} = -2222.« less
NMR spectrum analysis for CrAs at ambient pressure
NASA Astrophysics Data System (ADS)
Kotegawa, H.; Nakahara, S.; Matsushima, K.; Tou, H.; Matsuoka, E.; Sugawara, H.; Harima, H.
2018-05-01
We report NMR spectrum analysis for CrAs, which was recently reported to be superconducting under pressure. The NMR spectrum obtained by the powdered single crystals shows a typical powder pattern reproduced by the electric field gradient (EFG) parameters and isotropic Knight shift, indicating anisotropy of Knight shift is not remarkable in CrAs. For the oriented sample, the spectrum can be understood by considering that the crystals are aligned for H ∥ b . The temperature dependence of Knight shift was successfully obtained from NMR spectrum with large nuclear quadrupole interaction.
Superposition model analysis of zero field splitting for Mn2+ in some host single crystals
NASA Astrophysics Data System (ADS)
Bansal, R. S.; Ahlawat, P.; Bharti, M.; Hooda, S. S.
2013-07-01
The Newman superposition model has been used to investigate the substitution of Mn2+ for Zn2+ site in ammonium tetra flurozincate dihydrate and for Co2+ site in cobalt ammonium phosphate hexahydrate and cobalt potassium phosphate hexahydrate single crystals. The calculated values of zero field splitting parameter b 2 0 at room temperature fit the experimental data with average intrinsic parameters overline{b}2 (F) = -0.0531 cm-1 for fluorine and overline{b}2 (O) = -0.0280 cm-1 for oxygen, taken t 2 = 7 for Mn2+ doped in ammonium tetra fluorozincate dihydrate single crystals. The values of overline{b}2 determined for Mn2+ doped in cobalt ammonium phosphate hexahydrate are -0.049 cm-1 for site I and -0.045 cm-1 for site II and in cobalt pottasium phosphate hexahydrate single crystals it is found to be overline{b}2 = -0.086 cm-1. We find close agreement between theoretical and experimental values of b 2 0.
NASA Astrophysics Data System (ADS)
Rathod, Kiran T.; Patel, I. B.
2017-05-01
In recent years, organometalic non linear optical (NLO) materials have attained immense appeal form researchers due to its range of technological applications in photonic field and optoelectronic technology. In present research work, novel semi organic NLO L-Valine Zinc Glycine Thiourea Sulfate crystals (VZGTS) with different morphologies were grown by gel method at ambient temperature. Presence and identification of functional groups were confirmed by FITR analysis. Spectroscopic studies were carried out for it. The UV-Vis spectroscopy is recorded for crystal. PL study stats that the crystal has insulating nature. Spectroscopic study shows that this crystal has good transparency in the case of fundamental wavelength of Nd : YAG laser. Second Harmonic Generation (SHG) efficiency was confirmed by Kurtz - Perry powder method. Results are discussed in the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jun; College of Physics and Electronic Engineering, Henan Normal University, 453007 Xinxiang, Henan; Zhang, Xiangdong, E-mail: zhangxd@bit.edu.cn
2015-09-28
Simultaneous negative refraction for both the fundamental frequency (FF) and second-harmonic (SH) fields in two-dimensional nonlinear photonic crystals have been found through both the physical analysis and exact numerical simulation. By combining such a property with the phase-matching condition and strong second-order susceptibility, we have designed a SH lens to realize focusing for both the FF and SH fields at the same time. Good-quality non-near field images for both FF and SH fields have been observed. The physical mechanism for such SH focusing phenomena has been disclosed, which is different from the backward SH generation as has been pointed outmore » in the previous investigations. In addition, the effect of absorption losses on the phenomena has also been discussed. Thus, potential applications of these phenomena to biphotonic microscopy technique are anticipated.« less
NASA Astrophysics Data System (ADS)
Lan, C. W.; Lee, I. F.; Yeh, B. C.
2003-07-01
Three-dimensional simulation, both pseudo-steady and time-dependent states, is carried out to illustrate the effects of magnetic fields on the flow and segregation in a vertical Bridgman crystal growth. With an axial magnetic field in a perfectly vertical growth, the calculated results are in good agreement with those obtained by a two-dimensional axisymmetric model. The asymptotic scaling of flow damping is also consistent with the boundary layer approximation regardless to the magnetic orientation. Radial and axial segregations are further discussed concluding that radial segregation could be severe if the flow damping is not adequate. Moreover, there is a regime of enhanced global dopant mixing due to the flow stretching by the axial field. Accordingly, the transversal field is more effective in pushing the growth to the diffusion-controlled limit and suppressing the asymmetric global flow due to ampule tilting.
Crystal-field effects in fluoride crystals for optical refrigeration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hehlen, Markus P
2010-01-01
The field of optical refrigeration of rare-earth-doped solids has recently seen an important breakthrough. The cooling of a YLiF{sub 4} (YLF) crystal doped with 5 mol% Yb3+ to 155 K by Seletskiy et al [NPhot] has surpassed the lowest temperatures ({approx}170 K for {approx}100 mW cooling capacity) that are practical with commercial multi-stage thermoelectric coolers (TEC) [Glaister]. This record performance has advanced laser cooling into an application relevant regime and has put first practical optical cryocoolers within reach. The result is also relevant from a material perspective since for the first time, an Yb3+-doped crystal has outperformed an Yb3+-doped glass.more » The record temperature of 208 K was held by the Yb3+-doped fluorozirconate glass ZBLAN. Advanced purification and glass fabrication methods currently under development are expected to also advance ZBLAN:Yb3+ to sub-TEC temperatures. However, recent achievements with YLF:Yb3+ illustrate that crystalline materials may have two potentially game-changing advantajes over glassy materials. First, the crystalline environment reduces the inhomogeneous broadening of the Yb3+ electronic transitions as compared to a glassy matrix. The respective sharpening of the crystal-field transitions increases the peak absorption cross section at the laser excitation wavelength and allows for more efficient pumping of the Yb3+ ions, particularly at low temperatures. Second, many detrimental impurities present in the starting materials tend to be excluded from the crystal during its slow growth process, in contrast to a glass where all impurities present in the starting materials are included in the glass when it is formed by temperature quenching a melt. The ultra high purity required for laser cooling materials [PRB] therefore may be easier to realize in crystals than in glasses. Laser cooling occurs by laser excitation of a rare-earth ion followed by anti-Stokes luminescence. Each such laser-cooling cycle extracts thermal energy from the solid and carries it away as high-entropy light, thereby cooling the material. In the ideal case, the respective laser-cooling power is given by the pump wavelength ({lambda}{sub p}), the mean fluorescence wavelength ({bar {lambda}}{sub L}), and the absorption coefficient (a{sub r}) of the pumped transition. These quantities are solely determined by crystal field interactions. On one hand, a large crystal-field splitting offers a favorably large difference of {lambda}{sub p} - {bar {lambda}}{sub L} and thus a high cooling efficiency {eta}{sub cool} = ({lambda}{sub p} - {bar {lambda}}{sub L})/{bar {lambda}}{sub L}. On the other hand, a small crystal-field splitting offers a high thermal population (n{sub i}) of the initial state of the pumped transition, giving a high pump absorption coefficient and thus high laser cooling power, particularly at low temperatures. A quantitative description of crystal-field interactions is therefore critical to the understanding and optimization of optical refrigeration. In the case of Yb3+ as the laser cooling ion, however, development of a crystal-field model is met with substantial difficulties. First, Yb3+ has only two 4/multiplets, {sup 2}F{sub 7/2} and {sup 2}F{sub 5/2}, which lead to at most 7 crystal-field levels. This makes it difficult, and in some cases impossible, to evaluate the crystal-field Hamiltonian, which has at least 4 parameters for any Yb3+ point symmety lower than cubic. Second, {sup 2}F{sub 7/2}{leftrightarrow}{sup 2}F{sub 5/2} transitions exhibit an exceptionally strong electron-phonon coupling compared to 4f transitions of other rare earths. This makes it difficult to distinguish electronic from vibronic transitions in the absorption and luminescence spectra and to reliably identify the crystal-field levels. Yb3+ crystal-field splittings reported in the literature should thus generally be viewed with caution. This paper explores the effects of crystal-field interactions on the laser cooling performance of Yb3+-doped fluoride crystals. It is shown that the total crystal-field splitting of the {sup 2}F{sub 7/2} and {sup 2}F{sub 5/2} multiplets of Yb3+ can be estimated from crystal-field splittings of other rare-earth-doped fluoride crystals. This approach takes advantage of an extensive body of experimental work from which Yb3+ doped fluoride crystals with favorable laser cooling properties might be identified. Section 2 reviews the crystal-field splitting of the 4f electronic states and introduces the crystal-field strength as a means to predict the total crystal-field splitting of the {sup 2}F{sub 7/2} and {sup 2}F{sub 5/2} multiplets. Section 3 illustrates the effect of the total {sup 2}F{sub 7/2} crystal field splitting on the laser cooling power. Finally, Section 4 compiles literature data on crystal-field splittings in fluoride crystals from which the {sup 2}F{sub 7/2} splitting is predicted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pareja-Rivera, Carina; Cuéllar-Cruz, Mayra; Esturau-Escofet, Nuria
Here, in this contribution we use nonconventional methods that help to increase the success rate of a protein crystal growth, and consequently of structural projects using X-ray diffraction techniques. In order to achieve this purpose, this contribution presents new approaches involving more sophisticated techniques of protein crystallization, not just for growing protein crystals of different sizes by using electric fields, but also for controlling crystal size and orientation. Also, this latter was possible through the use of magnetic fields that allow to obtain protein crystals suitable for both high-resolution X-ray and neutron diffraction crystallography where big crystals are required. Thismore » contribution discusses some pros, cons and realities of the role of electromagnetic fields in protein crystallization research, and their effect on protein crystal contacts. Additionally, we discuss the importance of room and low temperatures during data collection. Finally, we also discuss the effect of applying a rather strong magnetic field of 16.5 T, for shorts and long periods of time, on protein crystal growth, and on the 3D structure of two model proteins.« less
Pareja-Rivera, Carina; Cuéllar-Cruz, Mayra; Esturau-Escofet, Nuria; ...
2016-12-05
Here, in this contribution we use nonconventional methods that help to increase the success rate of a protein crystal growth, and consequently of structural projects using X-ray diffraction techniques. In order to achieve this purpose, this contribution presents new approaches involving more sophisticated techniques of protein crystallization, not just for growing protein crystals of different sizes by using electric fields, but also for controlling crystal size and orientation. Also, this latter was possible through the use of magnetic fields that allow to obtain protein crystals suitable for both high-resolution X-ray and neutron diffraction crystallography where big crystals are required. Thismore » contribution discusses some pros, cons and realities of the role of electromagnetic fields in protein crystallization research, and their effect on protein crystal contacts. Additionally, we discuss the importance of room and low temperatures during data collection. Finally, we also discuss the effect of applying a rather strong magnetic field of 16.5 T, for shorts and long periods of time, on protein crystal growth, and on the 3D structure of two model proteins.« less
NASA Technical Reports Server (NTRS)
2001-01-01
Advanced finite element models are used to study three-dimensional, time-dependent flow and segregation in crystal growth systems. In this image of a prototypical model for melt and crystal growth, pathlines at one instant in time are shown for the flow of heated liquid silicon in a cylindrical container. The container is subjected to g-jitter disturbances along the vertical axis. A transverse magnetic field is applied to control them. Such computations are extremely powerful for understanding melt growth in microgravity where g-jitter drives buoyant flows. The simulation is part of the Theoretical Analysis of 3D, Transient Convection and Segregation in Microgravity Bridgman Crystal Growth investigation by Dr. Jeffrey J. Derby of the University of Mirnesota, Minneapolis.
Choi, Jong-Ha; Niketić, Svetozar R; Djordjević, Ivana; Clegg, William; Harrington, Ross W
2012-05-01
The crystal structure of [Cr(edda)(acac)] (edda = ethylediamine-N,N'-diacetate; acac = acetylacetonato) has been determined by a single crystal X-ray diffraction study at 150 K. The chromium ion is in a distorted octahedral environment coordinated by two N and two O atoms of chelating edda and two O atoms of acac, resulting in s-cis configuration. The complex crystallizes in the space group P2(1)/c of the monoclinic system in a cell of dimensions a = 10.2588(9), b = 15.801(3), c = 8.7015(11) Å, β =101.201(9)° and Z = 4. The mean Cr-N(edda), Cr-O(edda) and Cr-O(acac) bond distances are 2.0829(14), 1.9678(11) and 1.9477(11) Å while the angles O-Cr-O of edda and O-Cr-O of acac are 171.47(5) and 92.72(5)°, respectively. The crystal structure is stabilized by N-H···O hydrogen bonds linking [Cr(edda)(acac)] molecules in distinct linear strands. The visible electronic and IR spectroscopic properties are also discussed. An improved, physically more realistic force field, Vibrationally Optimized Force Field (VOFF), capable of reproducing structural and vibrational properties of [Cr(edda)(acac)] was developed and its transferability demonstrated on selected chromium(III) complexes with similar ligands.
Wu, M.; Xin, Houlin L.; Wang, J. O.; ...
2018-04-24
Synchrotron-based L 2,3-edge absorption spectra show strong sensitivities to the local electronic structure and chemical environment. However, detailed physical information cannot be extracted easily without computational aids. Here in this study using the experimental Ti L 2,3-edges absorption spectrum of SrTiO 3as a fingerprint and considering full multiplet effects, calculations yield different energy parameters characterizing local ground state properties. The peak splitting and intensity ratios of the L 3 and L 2 set of peaks are carefully analyzed quantitatively, giving rise to a small hybridization energy around 1.2 eV, and the different hybridization energy values reported in the literature aremore » further addressed. Finally, absorption spectra with different linearly polarized photons under various tetragonal crystal fields are investigated, revealing a non-linear orbital–lattice interaction, and a theoretical guidance for material engineering of SrTiO 3-based thin films and heterostructures is offered. Finally, detailed analysis of spectrum shifts with different tetragonal crystal fields suggests that the e g crystal field splitting is a necessary parameter for a thorough analysis of the spectra, even though it is not relevant for the ground state properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, M.; Xin, Houlin L.; Wang, J. O.
Synchrotron-based L 2,3-edge absorption spectra show strong sensitivities to the local electronic structure and chemical environment. However, detailed physical information cannot be extracted easily without computational aids. Here in this study using the experimental Ti L 2,3-edges absorption spectrum of SrTiO 3as a fingerprint and considering full multiplet effects, calculations yield different energy parameters characterizing local ground state properties. The peak splitting and intensity ratios of the L 3 and L 2 set of peaks are carefully analyzed quantitatively, giving rise to a small hybridization energy around 1.2 eV, and the different hybridization energy values reported in the literature aremore » further addressed. Finally, absorption spectra with different linearly polarized photons under various tetragonal crystal fields are investigated, revealing a non-linear orbital–lattice interaction, and a theoretical guidance for material engineering of SrTiO 3-based thin films and heterostructures is offered. Finally, detailed analysis of spectrum shifts with different tetragonal crystal fields suggests that the e g crystal field splitting is a necessary parameter for a thorough analysis of the spectra, even though it is not relevant for the ground state properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghavan, C.M.; Sankar, R.; Mohan Kumar, R.
2008-02-05
Effect of amino acids (L-leucine and isoleucine) doping on the growth aspects and ferroelectric properties of triglycine sulphate crystals has been studied. Pure and doped crystals were grown from aqueous solution by low temperature solution growth technique. The cell parameter values were found to significantly vary for doped crystals. Fourier transform infrared analysis confirmed the presence of functional groups in the grown crystal. Morphology study reveals that amino acid doping induces faster growth rate along b-direction leading to a wide b-plane and hence suitable for pyroelectric detector applications. Ferroelectric domain structure has been studied by atomic force microscopy and hysteresismore » measurements reveal an increase of coercive field due to the formation of single domain pattern.« less
Altan, Irem; Charbonneau, Patrick; Snell, Edward H.
2016-01-01
Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed. PMID:26792536
Dark Field Microscopy for Analytical Laboratory Courses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augspurger, Ashley E; Stender, Anthony S; Marchuk, Kyle
2014-06-10
An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also observe and measure individual crystal growth during a replacement reaction between copper and silver nitrate. The experiment allows for quantitative, qualitative, and image data analyses for undergraduate students.
Kahl, Johannes; Busscher, Nicolaas; Mergardt, Gaby; Mäder, Paul; Torp, Torfinn; Ploeger, Angelika
2015-01-01
There is a need for authentication tools in order to verify the existing certification system. Recently, markers for analytical authentication of organic products were evaluated. Herein, crystallization with additives was described as an interesting fingerprint approach which needs further evidence, based on a standardized method and well-documented sample origin. The fingerprint of wheat cultivars from a controlled field trial is generated from structure analysis variables of crystal patterns. Method performance was tested on factors such as crystallization chamber, day of experiment and region of interest of the patterns. Two different organic treatments and two different treatments of the non-organic regime can be grouped together in each of three consecutive seasons. When the k-nearest-neighbor classification method was applied, approximately 84% of Runal samples and 95% of Titlis samples were classified correctly into organic and non-organic origin using cross-validation. Crystallization with additive offers an interesting complementary fingerprint method for organic wheat samples. When the method is applied to winter wheat from the DOK trial, organic and non-organic treated samples can be differentiated significantly based on pattern recognition. Therefore crystallization with additives seems to be a promising tool in organic wheat authentication. © 2014 Society of Chemical Industry.
Single crystals of metal solid solutions: A study
NASA Technical Reports Server (NTRS)
Miller, J. F.; Gelles, S. H.
1975-01-01
Report describes growth of silver-alloy crystals under widely varying conditions of growth rate, temperature gradient, and magnetic field. Role of gravitation and convection on crystal substructure is analyzed, as well as influence of magnetic fields applied during crystallization.
Structural, optical and field emission properties of urchin-shaped ZnO nanostructures.
Al-Heniti, Saleh; Umar, Ahmad
2013-01-01
In this work, well-crystallized urchin-shaped ZnO structures were synthesized on silicon substrate by simple non-catalytic thermal evaporation process by using metallic zinc powder in the presence of oxygen as source materials for zinc and oxygen, respectively. The synthesized ZnO structures were characterized in detail in terms of their morphological, structural, optical and field emission properties. The detailed morphological investigations revealed that the synthesized structures possess urchin-shape and grown in high-density over the substrate surface. The detailed structural and optical characterizations revealed that the synthesized urchin-shaped ZnO structures are well-crystallized and exhibiting good optical properties. The field emission analysis for urchin-shaped ZnO structures exhibits a turn-on field of 4.6 V/microm. The emission current density reached to 0.056 mA/cm2 at an applied electrical field of 6.4 V/microm and shows no saturation. The calculated field enhancement factor 'beta', from the F-N plot, was found to be approximately 2.2 x 10(3).
NASA Technical Reports Server (NTRS)
Anderson, James G.
2004-01-01
Given both the powerful diagnostic importance of the condensed phases of water for dynamics and the impact of phase changes in water on the radiation field, the accurate, in situ observation of total water is of central importance to CRYSTAL-FACE. This is clear both from the defined scientific objectives of the NRA and from developments in the coupled fields of stratosphere/troposphere exchange, cirrus cloud formation/removal and mechanisms for the distribution of water vapor in the middle/upper troposphere. Accordingly, we were funded under NASA Grant NAG5-115487 to perform the following tasks for the CRYSTAL-FACE mission that took place in Key West, Florida, during July 2001: 1) Prepare the Total Water instrument for integration into the WB57F and test flights scheduled for Spring 2002. 2) Calibrate and prepare the Total Water instrument for the Summer 2002 CRYSTAL-FACE science flights based in Jacksonville, Florida. 3) Provide both science and engineering support for the above-mentioned efforts. 4) Analyze and interpret the CRYSTAL-FACE data in collaboration with the other mission scientists. 5) Attend the proposed science workshop in Spring 2003. 6) Publish the data and analysis in peer-reviewed journals.
Kinetic transition in the order-disorder transformation at a solid/liquid interface
NASA Astrophysics Data System (ADS)
Galenko, P. K.; Nizovtseva, I. G.; Reuther, K.; Rettenmayr, M.
2018-01-01
Phase-field analysis for the kinetic transition in an ordered crystal structure growing from an undercooled liquid is carried out. The results are interpreted on the basis of analytical and numerical solutions of equations describing the dynamics of the phase field, the long-range order parameter as well as the atomic diffusion within the crystal/liquid interface and in the bulk crystal. As an example, the growth of a binary A50B50 crystal is described, and critical undercoolings at characteristic changes of growth velocity and the long-range order parameter are defined. For rapidly growing crystals, analogies and qualitative differences are found in comparison with known non-equilibrium effects, particularly solute trapping and disorder trapping. The results and model predictions are compared qualitatively with results of the theory of kinetic phase transitions (Chernov 1968 Sov. Phys. JETP 26, 1182-1190) and with experimental data obtained for rapid dendritic solidification of congruently melting alloy with order-disorder transition (Hartmann et al. 2009 Europhys. Lett. 87, 40007 (doi:10.1209/0295-5075/87/40007)). This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
Electrical characteristics of organic perylene single-crystal-based field-effect transistors
NASA Astrophysics Data System (ADS)
Lee, Jin-Woo; Kang, Han-Saem; Kim, Min-Ki; Kim, Kihyun; Cho, Mi-Yeon; Kwon, Young-Wan; Joo, Jinsoo; Kim, Jae-Il; Hong, Chang-Seop
2007-12-01
We report on the fabrication of organic field-effect transistors (OFETs) using perylene single crystal as the active material and their electrical characteristics. Perylene single crystals were directly grown from perylene powder in a furnace using a relatively short growth time of 1-3 h. The crystalline structure of the perylene single crystals was characterized by means of a single-crystal x-ray diffractometer. In order to place the perylene single crystal onto the Au electrodes of the field-effect transistor, a polymethlymethacrylate thin layer was spin-coated on top of the crystal surface. The OFETs fabricated using the perylene single crystal showed a typical p-type operating mode. The field-effect mobility of the perylene crystal based OFETs was measured to be ˜9.62×10-4 cm2/V s at room temperature. The anisotropy of the mobility implying the existence of different mobilities when applying currents in different directions was observed for the OFETs, and the existence of traps in the perylene crystal was found through the measurements of the temperature-dependent mobility at various operating drain voltages.
NASA Astrophysics Data System (ADS)
Sheibani, Hamdi
2002-01-01
Liquid Phase Electroepitaxy (LPEE) and is a relatively new, promising technique for producing high quality, thick compound semiconductors and their alloys. The main objectives are to reduce the adverse effect of natural convection and to determine the optimum growth conditions for reproducible desired crystals for the optoelectronic and electronic device industry. Among the available techniques for suppressing the adverse effect of natural convection, the application of an external magnetic field seems the most feasible one. The research work in this dissertation consists of two parts. The first part is focused on the design and development of a state of the art LPEE facility with a novel crucible design, that can produce bulk crystals of quality higher than those achieved by the existing LPEE system. A growth procedure was developed to take advantage of this novel crucible design. The research of the growth of InGaAs single crystals presented in this thesis will be a basis for the future LPEE growth of other important material and is an ideal vehicle for the development of a ternary crystal growth process. The second part of the research program is the experimental study of the LPEE growth process of high quality bulk single crystals of binary/ternary semiconductors under applied magnetic field. The compositional uniformity of grown crystals was measured by Electron Probe Micro-analysis (EPMA) and X-ray microanalysis. The state-of-the-art LPEE system developed at University of Victoria, because of its novel design features, has achieved a growth rate of about 4.5 mm/day (with the application of an external fixed magnetic field of 4.5 KGauss and 3 A/cm2 electric current density), and a growth rate of about 11 mm/day (with 4.5 KGauss magnetic field and 7 A/cm2 electric current density). This achievement is simply a breakthrough in LPEE, making this growth technique absolutely a bulk growth technique and putting it in competition with other bulk growth techniques. The growth rates achieved can even be higher for higher electric current and magnetic field intensities. (Abstract shortened by UMI.)
Solute boundary layer on a rotating crystal
NASA Astrophysics Data System (ADS)
Povinelli, Michelle L.; Korpela, Seppo A.; Chait, Arnon
1994-11-01
A perturbation analysis has been carried out for the solutal boundary layer next to a rotating crystal. Our aim is to extend the classical results of Burton, Prim and Slicher [1] in order to obtain higher order terms in asymptotic expansions for the concentration field and boundary-layer thickness. Expressions for the effective segregation coefficient are directly obtained from the concentration solution in the two limits that correspond to weak and strong rotation.
Three-dimensional magnetophotonic crystals based on artificial opals
NASA Astrophysics Data System (ADS)
Baryshev, A. V.; Kodama, T.; Nishimura, K.; Uchida, H.; Inoue, M.
2004-06-01
We fabricated and experimentally investigated three-dimensional magnetophotonic crystals (3D MPCs) based on artificial opals. Opal samples with three-dimensional dielectric lattices were impregnated with different types of magnetic material. Magnetic and structural properties of 3D MPCs were studied by field emission scanning electron microscopy, x-ray diffraction analysis, and vibrating sample magnetometer. We have shown that magnetic materials synthesized in voids of opal lattices and the composites obtained have typical magnetic properties.
Frustrated ground state in the metallic Ising antiferromagnet Nd2Ni2In
NASA Astrophysics Data System (ADS)
Sala, G.; Mašková, S.; Stone, M. B.
2017-10-01
We used inelastic neutron scattering measurements to examine the intermetallic Ising antiferromagnet Nd2Ni2In . The dynamical structure factor displays a spectrum with multiple crystal field excitations. These crystal field excitations consist of a set of four transitions covering a range of energies between 4 and 80 meV. The spectrum is very sensitive to the temperature, and we observed a softening and a shift in the energies above the transition temperature of the system. The analysis of the crystalline electric field scheme confirms the Ising nature of the spins and their orientation as proposed by previous studies. We characterized Nd2Ni2In as a large moment intermetallic antiferromagnet with the potential to support a geometrically frustrated Shastry-Sutherland lattice.
Halder, Sukanya; Bhattacharyya, Dhananjay
2012-10-04
Internal loops within RNA duplex regions are formed by single or tandem basepairing mismatches with flanking canonical Watson-Crick basepairs on both sides. They are the most common motif observed in RNA secondary structures and play integral functional and structural roles. In this report, we have studied the structural features of 1 × 1, 2 × 2, and 3 × 3 internal loops using all-atom molecular dynamics (MD) simulation technique with explicit solvent model. As MD simulation is intricately dependent on the choice of force-field and these are often rather approximate, we have used both the most popular force-fields for nucleic acids-CHARMM27 and AMBER94-for a comparative analysis. We find that tandem noncanonical basepairs forming 2 × 2 and 3 × 3 internal loops are considerably more stable than the single mismatches forming 1 × 1 internal loops, irrespective of the force field. We have also analyzed crystal structure database to study the conservation of these helical fragments in the corresponding sets of RNA structures. We observe that the nature of stability in MD simulations mimic their fluctuating natures in crystal data sets also, probably indicating reliable natures of both the force fields to reproduce experimental results. We also notice significant structural changes in the wobble G:U basepairs present in these double helical stretches, leading to a biphasic stability for these wobble pairs to release the deformational strains introduced by internal loops within duplex regions.
NASA Technical Reports Server (NTRS)
Wheeler, A. A.; Mcfadden, G. B.; Coriell, S. R.; Hurle, D. T. J.
1990-01-01
The effect of a constant electric current on the crystal-melt interface morphology during directional solidification at constant velocity of a binary alloy is considered. A linear temperature field is assumed, and thermoelectric effects and Joule heating are neglected; electromigration and differing electrical conductivities of crystal and melt are taken into account. A two-dimensional weakly nonlinear analysis is carried out to third order in the interface amplitude, resulting in a cubic amplitude equation that describes whether the bifurcation from the planar state is supercritical or subcritical. For wavelengths corresponding to the most dangerous mode of linear theory, the demarcation between supercritical and subcritical behavior is calculated as a function of processing conditions and material parameters. The bifurcation behavior is a sensitive function of the magnitude and direction of the electric current and of the electrical conductivity ratio.
Primary Phase Field of the Pb-Doped 2223 High-Tc Superconductor in the (Bi, Pb)-Sr-Ca-Cu-O System
Wong-Ng, W.; Cook, L. P.; Kearsley, A.; Greenwood, W.
1999-01-01
Both liquidus and subsolidus phase equilibrium data are of central importance for applications of high temperature superconductors in the (Bi, Pb)-Sr-Ca-Cu-O system, including material synthesis, melt processing and single crystal growth. The subsolidus equilibria of the 110 K high-Tc Pb-doped 2223 ([Bi, Pb], Sr, Ca, Cu) phase and the location of the primary phase field (crystallization field) have been determined in this study. For the quantitative determination of liquidus data, a wicking technique was developed to capture the melt for quantitative microchemical analysis. A total of 29 five-phase volumes that include the 2223 phase as a component was obtained. The initial melt compositions of these volumes range from a mole fraction of 7.3 % to 28.0 % for Bi, 11.3 % to 27.8 % for Sr, 1.2 % to 19.4 % for Pb, 9.8 % to 30.8 % for Ca, and 17.1 % to 47.0 % for Cu. Based on these data, the crystallization field for the 2223 phase was constructed using the convex hull technique. A section of this “volume” was obtained by holding two components of the composition at the median value, allowing projection on the other three axes to show the extent of the field.
Self-Aligned Growth of Organic Semiconductor Single Crystals by Electric Field.
Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro
2016-01-19
We proposed a novel but facile method for growing organic semiconductor single-crystals via solvent vapor annealing (SVA) under electric field. In the conventional SVA growth process, nuclei of crystals appeared anywhere on the substrate and their crystallographic axes were randomly distributed. We applied electric field during the SVA growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) on the SiO2/Si substrate on which a pair of electrodes had been deposited beforehand. Real-time observation of the SVA process revealed that rodlike single crystals grew with their long axes parallel to the electric field and bridged the prepatterned electrodes. As a result, C8-BTBT crystals automatically formed a field effect transistor (FET) structure and the mobility reached 1.9 cm(2)/(V s). Electric-field-assisted SVA proved a promising method for constructing high-mobility single-crystal FETs at the desired position by a low-cost solution process.
Interplay between spin-orbit coupling and crystal-field effect in topological insulators
NASA Astrophysics Data System (ADS)
Lee, Hyungjun; Yazyev, Oleg V.
2015-07-01
Band inversion, one of the key signatures of time-reversal invariant topological insulators (TIs), arises mostly due to the spin-orbit (SO) coupling. Here, based on ab initio density-functional calculations, we report a theoretical investigation of the SO-driven band inversion in isostructural bismuth and antimony chalcogenide TIs from the viewpoint of its interplay with the crystal-field effect. We calculate the SO-induced energy shift of states in the top valence and bottom conduction manifolds and reproduce this behavior using a simple one-atom model adjusted to incorporate the crystal-field effect. The crystal-field splitting is shown to compete with the SO coupling, that is, stronger crystal-field splitting leads to weaker SO band shift. We further show how both these effects can be controlled by changing the chemical composition, whereas the crystal-field splitting can be tuned by means of uniaxial strain. These results provide a practical guidance to the rational design of novel TIs as well as to controlling the properties of existing materials.
Preliminary Work in Obtaining Site-Directed Mutants of Hen Egg White Lysozyme
NASA Technical Reports Server (NTRS)
Holmes, Leonard D.
1996-01-01
Protein crystal growth studies are recognized as a critical endeavor in the field of molecular biotechnology. The scientific applications of this field include the understanding of how enzymes function and the accumulation of accurate information of atomic structures, a key factor in the process of rational drug design. NASA has committed substantial investment and resources to the field of protein crystal growth and has conducted many microgravity protein crystal growth experiments aboard shuttle flights. Crystals grown in space tend to be larger, denser and have a more perfect habit and geometry. These improved properties gained in the microgravity environment of space result largely from the reduction of solutal convection, and the elimination of sedimentation at the growing crystal surface. Shuttle experiments have yielded many large, high quality crystals that are suitable for high resolution X-ray diffraction analysis. Examples of biologically important macromolecules which have been successfully crystallized during shuttle missions include: lysozyme, isocitrate lyase, gamma-interferon, insulin, human serum albumin and canavalin. Numerous other examples are also available. In addition to obtaining high quality crystals, investigators are also interested in learning the mechanisms by which the growth events take place. Crystallization experiments indicate that for the enzyme HEWL, measured growth rates do not follow mathematical models for 2D nucleation and dislocation-led growth of tetragonal protein crystals. As has been suggested by the laboratory of Marc L. Pusey, a possible explanation for the disagreement between observation and data is that HEWL tetraconal crystals form by aggregated units of lysozyme in supersaturated solutions. Surface measurement data was shown to fit very well with a model using an octamer unit cell as the growth unit. According to this model, the aggregation pathway and subsequent crystal growth is described by: monomer < ------ > dimer < ------- > tetramer < ------ > octamer < ------ > higher order. It is believed that multimer aggregation of lysozyme occurs by interaction at specific binding sites on the surface of the protein crystals. If the presence of discrete binding sites and the aggregation hypothesis is true, then it follows that the alteration of the binding site(s) should have significant effect on the measurements obtained during growth experiments. Site-directed mutagenesis allows the specific alteration of proteins by replacement, deletion or addition of specific amino acid residues. This report outlines the approach for this strategy and the progress made thus far toward that end.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koldaeva, M. V., E-mail: mkoldaeva@ns.crys.ras.ru; Turskaya, T. N.; Zakalyukin, R. M.
2009-11-15
The influence of a magnetic field on the microhardness of potassium acid phthalate has been studied for different magnetic inductions, exposure times, sample orientations in a magnetic field, and impurity compositions of the crystals. It was shown that the magnetic field effect is multiply repeated on the (010) face after relaxation. The influence of magnetic treatment on ammonium, rubidium, thallium, and cesium acid phthalate crystals is analyzed. The reasons for the observed changes in the crystal microhardness in the magnetic field are discussed.
X-ray chemical analyzer for field applications
Gamba, Otto O. M.
1977-01-01
A self-supporting portable field multichannel X-ray chemical analyzer system comprising a lightweight, flexibly connected, remotely locatable, radioisotope-excited sensing probe utilizing a cryogenically-cooled solid state semi-conductor crystal detector for fast in situ non-destructive, qualitative and quantitative analysis of elements in solid, powder, liquid or slurried form, utilizing an X-ray energy dispersive spectrometry technique.
The Content of Educational Psychology: An Analysis of Top Ranked Journals from 2003 through 2007
ERIC Educational Resources Information Center
Nolen, Amanda L.
2009-01-01
Educational psychology as a field of study has encountered a lack of distinction by overlapping with other fields of study or disciplines. Consequently, educational psychology continues to have difficulty claiming jurisdiction over bodies of research knowledge and has been encroached upon by other more crystallized disciplines. The purpose of this…
NASA Astrophysics Data System (ADS)
Prakasam, Mythili; Viraphong, Oudomsack; Teulé-Gay, Lionel; Decourt, Rodolphe; Veber, Philippe; Víllora, Encarnación G.; Shimamura, Kiyoshi
2011-03-01
Cd1-xMnxTe (x=0.1, 0.3, 0.5, 0.7 and 0.9) (CMT) single crystals were grown by the vertical Bridgman method. The optical studies reveal that with the increase in Mn concentration, the band gap values increase, which is attributed to s, p-d exchange interaction between the band carriers and Mn ions. Faraday rotation angle of the grown CMT (x=0.5) crystals were measured at the following wavelengths: 825, 1060 and 1575 nm. It was inferred that CMT exhibit larger Faraday effect (3-6 times larger than terbium-gallium garnet (TGG) currently used for optical isolators) making it as an efficient material for optical isolator at longer wavelengths. Field-cooled and zero field-cooled magnetizations of CMT were measured as a function of temperature and magnetic field. The spin-glass like behavior of CMT and their tendency to decrease in magnitude with increasing Mn concentration have been analyzed. The metal contacts on the Cd1-xMnxTe (x=0.1, 0.5, 0.7 and 0.9) crystals have been made with various metals and metal alloys to establish the ohmic contact. The detector characteristics of CMT have been tested using γ-rays with 511 keV (22 Na) and 59.5 keV (241 Am).
Crystal field effects in the intermetallic R Ni3Ga9 (R =Tb , Dy, Ho, and Er) compounds
NASA Astrophysics Data System (ADS)
Silva, L. S.; Mercena, S. G.; Garcia, D. J.; Bittar, E. M.; Jesus, C. B. R.; Pagliuso, P. G.; Lora-Serrano, R.; Meneses, C. T.; Duque, J. G. S.
2017-04-01
In this paper, we report temperature-dependent magnetic susceptibility, electrical resistivity, and heat-capacity experiments in the family of intermetallic compounds R Ni3Ga9 (R = Tb, Dy, Ho, and Er). Single-crystalline samples were grown using Ga self-flux method. These materials crystallize in a trigonal ErNi3Al9 -type structure with space group R 32 . They all order antiferromagnetically with TN<20 K . The anisotropic magnetic susceptibility presents large values of the ratio χeasy/χhard indicating strong crystalline electric-field (CEF) effects. The evolution of the crystal-field scheme for each R was analyzed in detail by using a spin model including anisotropic nearest-neighbor Ruderman-Kittel-Kasuya-Yosida interaction and the trigonal CEF Hamiltonian. Our analysis allows one to understand the distinct direction of the ordered moments along the series—the Tb-, Dy-, and Ho-based compounds have the ordered magnetic moments in the easy ab plane and the Er sample magnetization easy axis is along the c ̂ direction.
Charge-Transfer Analysis of 2p3d Resonant Inelastic X-ray Scattering of Cobalt Sulfide and Halides
2017-01-01
We show that with 2p3d resonant inelastic X-ray scattering (RIXS) we can accurately determine the charge-transfer parameters of CoF2, CoCl2, CoBr2, and CoS. The 160 meV resolution RIXS results are compared with charge-transfer multiplet calculations. The improved resolution and the direct observation of the crystal field and charge-transfer excitations allow the determination of more accurate parameters than could be derived from X-ray absorption and X-ray photoemission, both limited in resolution by their lifetime broadening. We derive the crystal field and charge-transfer parameters of the Co2+ ions, which provides the nature of the ground state of the Co2+ ions with respect to symmetry and hybridization. In addition, the increased spectral resolution allows the more accurate determination of the atomic Slater integrals. The results show that the crystal field energy decreases with increasing ligand covalency. The L2 edge RIXS spectra show that the intensity of the (Coster–Kronig induced) nonresonant X-ray emission is a measure of ligand covalency. PMID:29170686
NASA Astrophysics Data System (ADS)
Král, Robert; Nitsch, Karel
2015-10-01
Influence of growth conditions, i.e. temperature gradient in the furnace and the pulling rate, on the position and the shape of the crystal/melt interface during vertical Bridgman growth was studied. The position and the shape of the crystal/melt interface are a key factor for describing the final quality of growing crystal. Following two methods for characterization of its position and shape were used: (i) direct observation and (ii) direct temperature field measurement during simulated vertical Bridgman growth. As a model compound a lead chloride is used. Three different ampoule positions in two different temperature gradients in the furnace and two experimental arrangements - stationary (0 mm/h pulling rate) and dynamic (3 mm/h pulling rate) were analyzed. Obtained temperature data were projected as 2D planar cut under radial symmetry and denoted as isolevels. Their further conversion by linear approximation into isotherms allowed detail analysis of heat conditions in the system during simulated growth by comparison of isotherms 500 °C (m.p. of lead chloride) at different growth conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koizumi, H.; Uda, S.; Fujiwara, K.
X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.
In-situ Optical Waveguides for Monitoring and Modifying Protein Crystal Growth
NASA Technical Reports Server (NTRS)
Gibson, Ursula; Osterberg, Ulf
2004-01-01
The use of electric fields in the growth of protein crystals was investigated, both theoretically and experimentally. We used dc, ac and optical fields to change the spatial distribution of proteins. Dc fields had only local effects, due to the conductivity of the growth solution. We found that for low frequency fields, movement of the buffer and salt ions dominated, and that for high frequency ac fields, &electrophoretic effects could be useful for relocating growing protein crystals. The most promising result was that for optical fields, a large gradient in the field could be used to capture a crystal, and observe growth in-situ. This concept could be developed into an experimental setup compatible with automated x-ray diffraction measurements in microgravity.
NASA Astrophysics Data System (ADS)
Hayata, K.; Yanagawa, K.; Koshiba, M.
1990-12-01
A mode field analysis is presented of the second-harmonic electromagnetic wave that radiates from a nonlinear core bounded by a dielectric cladding. With this analysis the ultimate performance of the organic crystal-cored single-mode optical fiber waveguide as a guided-wave frequency doubler is evaluated through the solution of nonlinear parametric equations derived from Maxwell's equations under some assumptions. As a phase-matching scheme, a Cerenkov approach is considered because of advantages in actual device applications, in which the phase matching is achievable between the fundamental guided LP01 mode and the second-harmonic radiation (leaky) mode. Calculated results for organic cores made of benzil, 4-(N,N-dimethyl-amino)-3-acetamidonitrobenzen, 2-methyl-4-nitroaniline, and 4'-nitrobenzilidene-3-acetoamino-4-metxianiline provide useful data for designing an efficient fiber-optic wavelength converter utilizing nonlinear parametric processes. A detailed comparison is made between results for infinite and finite cladding thicknesses.
Direct numerical simulations of magmatic differentiation at the microscopic scale
NASA Astrophysics Data System (ADS)
Sethian, J.; Suckale, J.; Elkins-Tanton, L. T.
2010-12-01
A key question in the context of magmatic differentiation and fractional crystallization is the ability of crystals to decouple from the ambient fluid and sink or rise. Field data indicates a complex spectrum of behavior ranging from rapid sedimentation to continued entrainment. Theoretical and laboratory studies paint a similarly rich picture. The goal of this study is to provide a detailed numerical assessment of the competing effects of sedimentation and entrainment at the scale of individual crystals. The decision to simulate magmatic differentiation at the grain scale comes at the price of not being able to simultaneously solve for the convective velocity field at the macroscopic scale, but has the crucial advantage of enabling us to fully resolve the dynamics of the systems from first principles without requiring any simplifying assumptions. The numerical approach used in this study is a customized computational methodology developed specifically for simulations of solid-fluid coupling in geophysical systems. The algorithm relies on a two-step projection scheme: In the first step, we solve the multiple-phase Navier-Stokes or Stokes equation in both domains. In the second step, we project the velocity field in the solid domain onto a rigid-body motion by enforcing that the deformation tensor in the respective domain is zero. This procedure is also used to enforce the no-slip boundary-condition on the solid-fluid interface. We have extensively validated and benchmarked the method. Our preliminary results indicate that, not unexpectedly, the competing effects of sedimentation and entrainment depend sensitively on the size distribution of the crystals, the aspect ratio of individual crystals and the vigor of the ambient flow field. We provide a detailed scaling analysis and quantify our results in terms of the relevant non-dimensional numbers.
Realization of all-optical switch and diode via Raman gain process using a Kerr field
NASA Astrophysics Data System (ADS)
Abbas, Muqaddar; Qamar, Sajid; Qamar, Shahid
2016-08-01
The idea of optical photonic crystal, which is generated using two counter-propagating fields, is revisited to study gain-assisted all-optical switch and diode using Kerr field. Two counter-propagating fields with relative detuning Δ ν generate standing-wave field pattern which interacts with a four-level atomic system. The standing-wave field pattern acts like a static photonic crystal for Δ ν =0 , however, it behaves as a moving photonic crystal for Δ ν \
Computational crystallization.
Altan, Irem; Charbonneau, Patrick; Snell, Edward H
2016-07-15
Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Arivuselvi, R.; Babu, P. Ramesh
2018-03-01
Borates family crystals were plays vital role in the field of non linear optics (NLO) due to needs of wide range of applications. In this report, NLO crystals (potassium penta borate tetra hydrate (KB5H8O12) are grown by slow evaporation method at room temperature (28° C) and studied their physical properties. The harvested single crystals are transparent with the dimension of 12 × 10 × 6 mm3 and colourless. X-ray diffraction of single crystals reveals that the grown crystal belongs to orthorhombic system with non-centrosymmetric space group Pba2. All the absorbed functional groups are present in the order of inorganic compounds expect 1688 cm-1 because of water (Osbnd H sbnd O blending) molecule present in the pristine. Crystals show transparent in the entire visible region with 5.9 eV optical band gap and also it shows excellence in both second and third order nonlinear optical properties. Crystals can withstand upto 154 °C without any phase changes which is observed using thermal (TGA/DTA) analysis.
CRYSTAL: The Cirrus Regional Study of Tropical Anvils and Layers
NASA Technical Reports Server (NTRS)
Delnore, Victor E.; Cox, Stephen K.; Curran, Robert J.
1999-01-01
CRYSTAL the Cirrus Regional Study of Tropical Anvils and Layers is part of the ongoing series of field experiments to study clouds and their impact on world weather and climate, and will attempt to improve the application of cloud effects in global climate models. CRYSTAL is being planned as two parts: a limited CRYSTAL field campaign in 2001 to examine towering clouds and anvil genesis over the Everglades of Florida, and the main CRYSTAL field campaign in the summer of 2003 in the Tropical Western Pacific. The latter is timed to take advantage of several cloud measurement satellites that will be operational at that time. This paper discusses some of the issues to be addressed in CRYSTAL, gives a brief description of the research plan, and describes its relationship to other important field experiments.
Hot Views on Cold Crystals: The Application of Thermal Imaging in Cryo-crystallography
NASA Technical Reports Server (NTRS)
Snell, E. H.; vanderWoerd, M. J.; Deacon, A.
2003-01-01
In the past we have used thermal imaging techniques to visualize the cryocooling processes of macromolecular crystals. From these images it was clear that a cold wave progresses through a crystal starting at the face closest to the origin of the cold stream and ending at the point furthest away. During these studies we used large volume crystals, which were clearly distinguished from the loop holding them. These large crystals, originally grown for neutron diffraction studies, were chosen deliberately to enhance the imaging. As an extension to this work, we present used thermal imaging to study small crystals, held in a cryo-loop, in the presence of vitrified mother liquor. The different infrared transmission and reflectance properties of the crystal in comparison to the mother liquor surrounding it are thought to be the parameter that produces the contrast that makes the crystal visible. An application of this technology may be the determination of the exact location of small crystals in a cryo-loop. Data from initial tests in support of application development was recorded for lysozyme crystals and for bFGF/dna complex crystals, which were cryo-cooled and imaged in large loops, both with visible light and with infrared radiation. The crystals were clearly distinguished from the vitrified solution in the infrared spectrum, while in the case of the bFGF/dna complex the illumination had to be carefully manipulated to make the crystal visible in the visible spectrum. These results suggest that the thermal imaging may be more sensitive than visual imaging for automated location of small crystals. However, further work on small crystals robotically mounted at SSRL did not clearly visualize those crystals. The depth of field of the camera proved to be limiting and a different cooling geometry was used, compared to the previous, successful experiments. Analysis to exploit multiple images to improve depth of field and experimental work to understand cooling geometry effects is ongoing. These results will be presented along with advantages and disadvantages of the technique and a discussion of how it might be applied.
Hot Views on Cold Crystals: The Application of Thermal Imaging in Cryocrystallography
NASA Technical Reports Server (NTRS)
Snell, Eddie H.
2003-01-01
In the past we have used thermal imaging techniques to visualize the cryocooling processes of macromolecular crystals. From these images it was clear that a cold wave progresses through a crystal starting at the face closest to the origin of the cold stream and ending at the point furthest away. During these studies we used large volume crystals, which were clearly distinguished from the loop holding them. These large crystals, originally grown for neutron diffraction studies, were chosen deliberately to enhance the imaging. As an extension to this work, we used thermal imaging to study small crystals, held in a cryo- loop, in the presence of vitrified mother liquor. The different infrared transmission and reflectance properties of the crystal in comparison to the mother liquor surrounding it are thought to be the parameter that produces the contrast that makes the crystal visible. An application of this technology may be the determination of the exact location of small crystals in a cryo-loop. Data from initial tests in support of application development was recorded for lysozyme crystals and for bFGF/dna complex crystals, which were cryo-cooled and imaged in large loops, both with visible light and with infrared radiation. The crystals were clearly distinguished from the vitrified solution in the infrared spectrum, while in the case of the bFGF/dna complex the illumination had to be carefully manipulated to make the crystal visible in the visible spectrum. These results suggest that the thermal imaging may be more sensitive than visual imaging for automated location of small crystals. However, further work on small crystals robotically mounted at SSRL did not clearly visualize those crystals. The depth of field of the camera proved to be limiting and a different cooling geometry was used, compared to the previous, successful experiments. Analysis to exploit multiple images to improve depth of field and experimental work to understand cooling geometry effects is ongoing. These results will be presented along with advantages and disadvantages of the technique and a discussion of how it might be applied .
Ganbaatar, Narangerel; Imai, Kanae; Yano, Taka-Aki; Hara, Masahiko
2017-01-01
Surface force analysis with atomic force microscope (AFM) in which a single amino acid residue was mounted on the tip apex of AFM probe was carried out for the first time at the molecular level on titanium dioxide (TiO 2 ) as a representative mineral surface for prebiotic chemical evolution reactions. The force analyses on surfaces with three different crystal orientations revealed that the TiO 2 (110) surface has unique characteristics for adsorbing glycine molecules showing different features compared to those on TiO 2 (001) and (100). To examine this difference, we investigated thermal desorption spectroscopy (TDS) and the interaction between the PEG cross-linker and the three TiO 2 surfaces. Our data suggest that the different single crystal surfaces would provide different chemical evolution field for amino acid molecules.
Pofelski, A; Woo, S Y; Le, B H; Liu, X; Zhao, S; Mi, Z; Löffler, S; Botton, G A
2018-04-01
A strain characterization technique based on Moiré interferometry in a scanning transmission electron microscope (STEM) and geometrical phase analysis (GPA) method is demonstrated. The deformation field is first captured in a single STEM Moiré hologram composed of multiple sets of periodic fringes (Moiré patterns) generated from the interference between the periodic scanning grating, fixing the positions of the electron probe on the sample, and the crystal structure. Applying basic principles from sampling theory, the Moiré patterns arrangement is then simulated using a STEM electron micrograph reference to convert the experimental STEM Moiré hologram into information related to the crystal lattice periodicities. The GPA method is finally applied to extract the 2D relative strain and rotation fields. The STEM Moiré interferometry enables the local information to be de-magnified to a large length scale, comparable to what can be achieved in dark-field electron holography. The STEM Moiré GPA method thus extends the conventional high-resolution STEM GPA capabilities by providing comparable quantitative 2D strain mapping with a larger field of view (up to a few microns). Copyright © 2017 Elsevier B.V. All rights reserved.
Screened dipolar interactions in some molecular crystals
NASA Astrophysics Data System (ADS)
Munn, R. W.; Hurst, M.
1990-10-01
Screened dipole energies and dipole electric fields are calculated for the crystals of HCN, meta- and para-nitroaniline, the nonlinear optical compounds POM, MAP and DAN, meta-dinitrobenzene, and acetanilide. Only para-nitroaniline is centrosymmetric, but all the crystals have significant negative dipole energies (of the order of -20 kJ mol -1) except for POM and metadinitrobenzene, where they are positive but small in magnitude. Local dipole fields are of the order of 10 GV m -1. The results assume that surface charge annuls any macroscopic dipole field. It is speculated that the observed preponderance of centrosymmetric crystals of polar molecules may reflect a favourable dipole energy in the initial crystal nucleus rather than the macroscopic crystal.
Davidson, James R.; Lassahn, Gordon D.
2001-01-01
A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. In crystals that introduce a phase differential attributable to temperature, a compensating crystal is provided to cancel the effect of temperature on the phase differential of the input beam. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.
Phase transformations and phase equilibria in the Co–Sn–Ti system in the crystallization interval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fartushna, Iu.; Bulanova, M.; National Technical University of Ukraine, Kiev Polytechnical Institute, Kiev
2016-12-15
The Co–Sn–Ti system was studied in the crystallization interval (below ~50 at% Sn) by the methods of Scanning Electron Microscopy, microprobe analysis, Differential Thermal Analysis, X-ray diffraction. The liquidus and solidus projections and the melting diagram were constructed. Only Co{sub 2}TiSn(τ1) ternary compound (Heusler phase-L1{sub 2}) was found in equilibria with the liquid in the concentration interval studied. Taking into account our recent data, the liquidus projection is characterized by the fields of primary crystallization of (βTi), (Co), binary-based phases Ti{sub 3}Sn, Ti{sub 2}Sn, Ti{sub 5}Sn{sub 3}, Ti{sub 6}Sn{sub 5}, Ti{sub 2}Co, TiCo, TiCo{sub 2} (c), TiCo{sub 2} (h), TiCo{submore » 3}, βCo{sub 3}Sn{sub 2}, CoSn and ternary τ1. The solidus projection is characterized by thirteen three-phase fields, which result from invariant four-phase equilibria, five are of eutectic type (E) and eight of transition type (U) and the existence of one more region Ti{sub 2}Sn{sub 3}+βCoSn{sub 3}+(Sn) in the solidus projection is discussed. - Graphical abstract: Liquidus projection of the Ti–Ð ÐŽÐ Ñ• –Sn system. Fields of crystallization, isotherms and monovariant lines. - Highlights: • The Ti–Co–Sn system is first studied in the composition range up to 50% of Sn. • Liquidus and solidus projections, melting diagram and reaction scheme are constructed. • One ternary compound form in the studied temperature interval: (Co{sub 2}TiSn(τ1)).« less
Electronegativity, charge transfer, crystal field strength, and the point charge model revisited.
Tanner, Peter A; Ning, Lixin
2013-02-21
Although the optical spectra of LnCl(6)(3-) systems are complex, only two crystal field parameters, B(40) and B(60), are required to model the J-multiplet crystal field splittings in octahedral symmetry. It is found that these parameters exhibit R(-5) and R(-7) dependence, respectively, upon the ionic radius Ln(3+)(VI), but not upon the Ln-Cl distance. More generally, the crystal field strengths of LnX(6) systems (X = Br, Cl, F, O) exhibit linear relationships with ligand electronegativity, charge transfer energy, and fractional ionic character of the Ln-X bond.
Atomic density functional and diagram of structures in the phase field crystal model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ankudinov, V. E., E-mail: vladimir@ankudinov.org; Galenko, P. K.; Kropotin, N. V.
2016-02-15
The phase field crystal model provides a continual description of the atomic density over the diffusion time of reactions. We consider a homogeneous structure (liquid) and a perfect periodic crystal, which are constructed from the one-mode approximation of the phase field crystal model. A diagram of 2D structures is constructed from the analytic solutions of the model using atomic density functionals. The diagram predicts equilibrium atomic configurations for transitions from the metastable state and includes the domains of existence of homogeneous, triangular, and striped structures corresponding to a liquid, a body-centered cubic crystal, and a longitudinal cross section of cylindricalmore » tubes. The method developed here is employed for constructing the diagram for the homogeneous liquid phase and the body-centered iron lattice. The expression for the free energy is derived analytically from density functional theory. The specific features of approximating the phase field crystal model are compared with the approximations and conclusions of the weak crystallization and 2D melting theories.« less
Crystallinity of the epitaxial heterojunction of C60 on single crystal pentacene
NASA Astrophysics Data System (ADS)
Tsuruta, Ryohei; Mizuno, Yuta; Hosokai, Takuya; Koganezawa, Tomoyuki; Ishii, Hisao; Nakayama, Yasuo
2017-06-01
The structure of pn heterojunctions is an important subject in the field of organic semiconductor devices. In this work, the crystallinity of an epitaxial pn heterojunction of C60 on single crystal pentacene is investigated by non-contact mode atomic force microscopy and high-resolution grazing incidence x-ray diffraction. Analysis shows that the C60 molecules assemble into grains consisting of single crystallites on the pentacene single crystal surface. The in-plane mean crystallite size exceeds 0.1 μm, which is at least five time larger than the size of crystallites deposited onto polycrystalline pentacene thin films grown on SiO2. The results indicate that improvement in the crystal quality of the underlying molecular substrate leads to drastic promotion of the crystallinity at the organic semiconductor heterojunction.
Defect-mediated phonon dynamics in TaS2 and WSe2
Cremons, Daniel R.; Plemmons, Dayne A.; Flannigan, David J.
2017-01-01
We report correlative crystallographic and morphological studies of defect-dependent phonon dynamics in single flakes of 1T-TaS2 and 2H-WSe2 using selected-area diffraction and bright-field imaging in an ultrafast electron microscope. In both materials, we observe in-plane speed-of-sound acoustic-phonon wave trains, the dynamics of which (i.e., emergence, propagation, and interference) are strongly dependent upon discrete interfacial features (e.g., vacuum/crystal and crystal/crystal interfaces). In TaS2, we observe cross-propagating in-plane acoustic-phonon wave trains of differing frequencies that undergo coherent interference approximately 200 ps after initial emergence from distinct interfacial regions. With ultrafast bright-field imaging, the properties of the interfering wave trains are observed to correspond to the beat frequency of the individual oscillations, while intensity oscillations of Bragg spots generated from selected areas within the region of interest match well with the real-space dynamics. In WSe2, distinct acoustic-phonon dynamics are observed emanating and propagating away from structurally dissimilar morphological discontinuities (vacuum/crystal interface and crystal terrace), and results of ultrafast selected-area diffraction reveal thickness-dependent phonon frequencies. The overall observed dynamics are well-described using finite element analysis and time-dependent linear-elastic continuum mechanics. PMID:28503630
Hot Stuff? Thermal Imaging Applied to Cryocrystallography
NASA Technical Reports Server (NTRS)
Snell, E. H.
2004-01-01
In the past we have used thermal imaging techniques to visualize the cryocooling processes of macromolecular crystals. From these images it was clear that a cold wave progresses through a crystal starting at the face closest to the origin of the cold stream and ending at the point furthest away. During these studies we used large volume crystals, which were clearly distinguished fiom the loop holding them. These large crystals, originally grown for neutron diffiaction studies, were chosen deliberately to enhance the imaging. As an extension to this work, we present used thermal imaging to study small crystals, held in a cryo-loop, in the presence of vitrified mother liquor. The different d a r e d transmission and reflectance properties of the crystal in comparison to the mother liquor surrounding it are thought to be the parameter that produces the contrast that makes the crystal visible. An application of this technology may be the determination of the exact location of small crystals in a cryo-loop. Data fkom initial tests in support of application development was recorded for lysozyme crystals and for bFGF/dna complex crystals, which were cryocooled and imaged in large loops, both with visible light mad with h i k e d rdi&tion. The crystals were clearly distinguished from the vitrified solution in the infiared spectrum, while in the case of the bFGF/dna complex the illumination had to be carefully manipulated to make the crystal visible in the visible spectrum. These results suggest that the thermal imaging may be more sensitive than visual imaging for automated location of small crystals. However, further work on small crystals robotically mounted at SSRL did not clearly visualize those crystals. The depth of field of the camera proved to be limiting and a different cooling geometry was used, compared to the previous, successful experiments. Analysis to exploit multiple images to improve depth of field and experimental work to understand cooling geometry effects is ongoing. These results will be presented along with advantages and disadvantages of the technique and a discussion of how it might be applied.
Global mean-field phase diagram of the spin-1 Ising ferromagnet in a random crystal field
NASA Astrophysics Data System (ADS)
Borelli, M. E. S.; Carneiro, C. E. I.
1996-02-01
We study the phase diagram of the mean-field spin-1 Ising ferromagnet in a uniform magnetic field H and a random crystal field Δi, with probability distribution P( Δi) = pδ( Δi - Δ) + (1 - p) δ( Δi). We analyse the effects of randomness on the first-order surfaces of the Δ- T- H phase diagram for different values of the concentration p and show how these surfaces are affected by the dilution of the crystal field.
Host Materials for Transition-Metal Ions
1989-09-01
Spectra of 3d Transition Elements in KMgF3 Crystal, Soy. Phys. Solid State 19 (1977), 340. 21. H . Onuki , F. Sugawara, M. Hirano, and Y. Yamaguchi...on Cs2SnBr 6 .... h ............. 84 13.2 Crystal-Field Components, Anm, for Sn (Oh) Site .............. 814 13.3 Experimental Parameters...A.M VSg Kleef, Y. N. .3oshi, and R. P. Srivastava, Analysis of’ Cd V: I.--4Ida-id’ 5p Transitions, Physica 114IC (1982), 105. 15. H . Benschop, Y. N
Stability of Magnetically-Suppressed Solutal Convection In Protein Crystal Growth
NASA Technical Reports Server (NTRS)
Leslie, F. W.; Ramachandran, N.
2005-01-01
The effect of convection during the crystallization of proteins is not very well understood. In a gravitational field, convection is caused by crystal sedimentation and by solutal buoyancy induced flow and these can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, a theory is presented on the stability of solutal convection of a magnetized fluid in the presence of a magnetic field. The requirements for stability are developed and compared to experiments performed within the bore of a superconducting magnet. The theoretical predictions are in good agreement with the experiments and show solutal convection can be stabilized if the surrounding fluid has larger magnetic susceptibility and the magnetic field has a specific structure. Discussion on the application of the technique to protein crystallization is also provided.
Kim, Jaekyun; Kang, Jingu; Cho, Sangho; Yoo, Byungwook; Kim, Yong-Hoon; Park, Sung Kyu
2014-11-01
High-performance microrod single crystal organic transistors based on a p-type 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) semiconductor are fabricated and the effects of grain boundaries on the carrier transport have been investigated. The spin-coating of C8-BTBT and subsequent solvent vapor annealing process enabled the formation of organic single crystals with high aspect ratio in the range of 10 - 20. It was found that the organic field-effect transistors (OFETs) based on these single crystals yield a field-effect mobility and an on/off current ratio of 8.04 cm2/Vs and > 10(5), respectively. However, single crystal OFETs with a kink, in which two single crystals are fused together, exhibited a noticeable drop of field-effect mobility, and we claim that this phenomenon results from the carrier scattering at the grain boundary.
GROWTH AND CHARACTERIZATION OF SINGLE CRYSTALS OF RARE EARTH COMPOUNDS.
SINGLE CRYSTALS, CRYSTAL GROWTH), (*CRYSTAL GROWTH, SINGLE CRYSTALS), (*RARE EARTH COMPOUNDS, SINGLE CRYSTALS), EPITAXIAL GROWTH, SODIUM COMPOUNDS, CHLORIDES, VAPOR PLATING, ELECTROSTATIC FIELDS, ENERGY, ATOMIC PROPERTIES , BONDING
Molding resonant energy transfer by colloidal crystal: Dexter transfer and electroluminescence
NASA Astrophysics Data System (ADS)
González-Urbina, Luis; Kolaric, Branko; Libaers, Wim; Clays, Koen
2010-05-01
Building photonic crystals by combination of colloidal ordering and metal sputtering we were able to construct a system sensitive to an electrical field. In corresponding crystals we embedded the Dexter pair (Ir(ppy3) and BAlq) and investigated the influence of the band gap on the resonant energy transfer when the system is excited by light and by an electric field respectively. Our investigations extend applications of photonic crystals into the field of electroluminescence and LED technologies.
Yi, H T; Chen, Y; Czelen, K; Podzorov, V
2011-12-22
A novel vacuum lamination approach to fabrication of high-performance single-crystal organic field-effect transistors has been developed. The non-destructive nature of this method allows a direct comparison of field-effect mobilities achieved with various gate dielectrics using the same single-crystal sample. The method also allows gating delicate systems, such as n -type crystals and SAM-coated surfaces, without perturbation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jeong, Ja Hoon; Kang, In Seok
2000-09-01
Effects of the operating conditions on the crystal-melt interface shape are analytically investigated for the Czochralski process of the oxide single crystals. The ideas, which were used for the silicon single-crystal growth by Jeong et al. (J. Crystal Growth 177 (1997) 157), are extended to the oxide single-crystal growth problem by considering the internal radiation in the crystal phase and the melt phase heat transfer with the high Prandtl number. The interface shape is approximated in the simplest form as a quadratic function of radial position and an expression for the deviation from the flat interface shape is derived as a function of operating conditions. The radiative heat transfer rate between the interface and the ambient is computed by calculating the view factors for the curved interface shape with the assumption that the crystal phase is completely transparent. For the melt phase, the well-known results from the thermal boundary layer analysis are applied for the asymptotic case of high Prandtl number based on the idea that the flow field near the crystal-melt interface can be modeled as either a uniaxial or a biaxial flow. Through this work, essential information on the interface shape deformation and the effects of operating conditions are brought out for the oxide single-crystal growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atari, N.A.; Svensson, G.K.
1986-05-01
A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF/sub 2/:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +- 2 ..mu..m (1sigma) corresponding to 16 +- 1 line pair/mm measured at themore » 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +- 4 ..mu..m (1sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atari, N.A.; Svensson, G.K.
1986-05-01
A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF2:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +/- 2 microns (1 sigma) corresponding to 16 +/- 1 line pairs/mm measured at themore » 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +/- 4 microns (1 sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields.« less
Microgravity sciences application visiting scientist program
NASA Technical Reports Server (NTRS)
1994-01-01
Contract NAS8-38785, Microgravity Experimental and Theoretical Research, is a project involving a large number of individual research programs related to: determination of the structure of human serum albumin and other biomedically important proteins; analysis of thermodynamic properties of various proteins and models of protein nucleation; development of experimental techniques for the growth of protein crystals in space; study of the physics of electrical double layers in the mechanics of liquid interfaces; computational analysis of vapor crystal growth processes in microgravity; analysis of the influence of magnetic fields in damping residual flows in directional solidification processes; crystal growth and characterization of II-VI semiconductor alloys; and production of thin films for nonlinear optics. It is not intended that the programs will be necessarily limited to this set at any one time. The visiting scientists accomplishing these programs shall serve on-site at MSFC to take advantage of existing laboratory facilities and the daily opportunities for technical communications with various senior scientists.
Hybrid excitations due to crystal field, spin-orbit coupling, and spin waves in LiFePO4
NASA Astrophysics Data System (ADS)
Yiu, Yuen; Le, Manh Duc; Toft-Peterson, Rasmus; Ehlers, Georg; McQueeney, Robert J.; Vaknin, David
2017-03-01
We report on the spin waves and crystal field excitations in single crystal LiFePO4 by inelastic neutron scattering over a wide range of temperatures, below and above the antiferromagnetic transition of this system. In particular, we find extra excitations below TN=50 K that are nearly dispersionless and are most intense around magnetic zone centers. We show that these excitations correspond to transitions between thermally occupied excited states of Fe2 + due to splitting of the S =2 levels that arise from the crystal field and spin-orbit interactions. These excitations are further amplified by the highly distorted nature of the oxygen octahedron surrounding the iron atoms. Above TN, magnetic fluctuations are observed up to at least 720 K, with an additional inelastic excitation around 4 meV, which we attribute to single-ion effects, as its intensity weakens slightly at 720 K compared to 100 K, which is consistent with the calculated cross sections using a single-ion model. Our theoretical analysis, using the MF-RPA model, provides both detailed spectra of the Fe d shell and estimates of the average ordered magnetic moment and TN. By applying the MF-RPA model to a number of existing spin-wave results from other Li M PO4 (M =Mn , Co, and Ni), we are able to obtain reasonable predictions for the moment sizes and transition temperatures.
NASA Astrophysics Data System (ADS)
Ma, N.; Walker, J. S.
2000-01-01
This paper presents a model for the unsteady transport of a dopant during the vertical Bridgman crystal growth process with a planar crystal-melt interface and with an axial magnetic field, and investigates the effects of varying different process variables on the crystal composition. The convective mass transport due to the buoyant convection in the melt produces nonuniformities in the concentration in both the melt and the crystal. The convective mass transport plays an important role for all magnetic field strengths considered. Diffusive mass transport begins to dominate for a magnetic flux density of 4 T and a fast growth rate, producing crystals which have an axial variation of the radially averaged crystal composition approaching that of the diffusion-controlled limit. Dopant distributions for several different combinations of process parameters are presented.
NASA Astrophysics Data System (ADS)
Praetorius, Simon; Voigt, Axel; Wittkowski, Raphael; Löwen, Hartmut
2018-05-01
Two-dimensional crystals on curved manifolds exhibit nontrivial defect structures. Here we consider "active crystals" on a sphere, which are composed of self-propelled colloidal particles. Our work is based on a phase-field-crystal-type model that involves a density and a polarization field on the sphere. Depending on the strength of the self-propulsion, three different types of crystals are found: a static crystal, a self-spinning "vortex-vortex" crystal containing two vortical poles of the local velocity, and a self-translating "source-sink" crystal with a source pole where crystallization occurs and a sink pole where the active crystal melts. These different crystalline states as well as their defects are studied theoretically here and can in principle be confirmed in experiments.
Hot Views on Cold Crystals: The Application of Thermal Imaging in Cryocrystallography
NASA Technical Reports Server (NTRS)
Snell, Eddie
2003-01-01
We have used thermal imaging techniques to visualize the cryocooling processes of macromolecular crystals. Cryocooling is a common technique used for structural data collection to reduce radiation damage in intense X-ray beams and decrease the thermal motion of the atoms. From the thermal images it was clear that during cryocooling a cold wave progresses through a crystal starting at the face closest to the origin of the cold stream and ending at the point furthest away. As an extension to this work, we used thermal imaging to study small crystals, held in a cryo-loop, in the presence of vitrified mother liquor. The different infrared transmission and reflectance properties of the crystal in comparison to the mother liquor surrounding it are thought to be the parameter that produces the contrast that makes the crystal visible. An application of this technology may be the determination of the exact location of small crystals in a cryo-loop for automated structural genomics studies. Data from initial tests in support of application development was recorded for lysozyme crystals and for bFGF/dna complex crystals, which were cryocooled and imaged in large loops, both with visible light and with infrared radiation. The crystals were clearly distinguished from the vitrified solution in the infrared spectrum, while in the case of the bFGF/dna complex the illumination had to be carefully manipulated to make the crystal visible in the visible spectrum. These results suggest that the thermal imaging may be more sensitive than visual imaging for automated location of small crystals. However, further work on small crystals robotically mounted at SSRL did not clearly visualize those crystals. The depth of field of the camera proved to be limiting and a different cooling geometry was used, compared to the previous, successful experiments. Analysis to exploit multiple images to improve depth of field and experimental work to understand cooling geometry effects is ongoing. These results will be presented along with advantages and disadvantages of the technique and a discussion of how it might be applied.
Two-stage magnetic orientation of uric acid crystals as gout initiators
NASA Astrophysics Data System (ADS)
Takeuchi, Y.; Miyashita, Y.; Mizukawa, Y.; Iwasaka, M.
2014-01-01
The present study focuses on the magnetic behavior of uric acid crystals, which are responsible for gout. Under a sub-Tesla (T)-level magnetic field, rotational motion of the crystals, which were caused by diamagnetic torque, was observed. We used horizontal magnetic fields with a maximum magnitude of 500 mT generated by an electromagnet to observe the magnetic orientation of the uric acid microcrystals by a microscope. The uric acid crystals showed a perpendicular magnetic field orientation with a minimum threshold of 130 mT. We speculate that the distinct diamagnetic anisotropy in the uric acid crystals resulted in their rotational responses.
Maximizing Macromolecule Crystal Size for Neutron Diffraction Experiments
NASA Technical Reports Server (NTRS)
Judge, R. A.; Kephart, R.; Leardi, R.; Myles, D. A.; Snell, E. H.; vanderWoerd, M.; Curreri, Peter A. (Technical Monitor)
2002-01-01
A challenge in neutron diffraction experiments is growing large (greater than 1 cu mm) macromolecule crystals. In taking up this challenge we have used statistical experiment design techniques to quickly identify crystallization conditions under which the largest crystals grow. These techniques provide the maximum information for minimal experimental effort, allowing optimal screening of crystallization variables in a simple experimental matrix, using the minimum amount of sample. Analysis of the results quickly tells the investigator what conditions are the most important for the crystallization. These can then be used to maximize the crystallization results in terms of reducing crystal numbers and providing large crystals of suitable habit. We have used these techniques to grow large crystals of Glucose isomerase. Glucose isomerase is an industrial enzyme used extensively in the food industry for the conversion of glucose to fructose. The aim of this study is the elucidation of the enzymatic mechanism at the molecular level. The accurate determination of hydrogen positions, which is critical for this, is a requirement that neutron diffraction is uniquely suited for. Preliminary neutron diffraction experiments with these crystals conducted at the Institute Laue-Langevin (Grenoble, France) reveal diffraction to beyond 2.5 angstrom. Macromolecular crystal growth is a process involving many parameters, and statistical experimental design is naturally suited to this field. These techniques are sample independent and provide an experimental strategy to maximize crystal volume and habit for neutron diffraction studies.
Domain and phase change contributions to response in high strain piezoelectric actuators
NASA Astrophysics Data System (ADS)
Cross, L. Eric
2000-09-01
Current solid state actuators are briefly compared to traditional actuator technologies to highlight the major need for enhanced strain capability. For the ferroelectric piezoelectric polycrystal ceramics, the balance of evidence suggests a large entrinsic contribution to the field induced strain from ferroelectric-ferroelastic domain wall motion. Here-to-fore the intrinsic single domain contribution has been derived indirectly from phenomenological analysis. Now, new evidence of a stable monoclinic phase at compositions very close to the MPB suggest that the previous assessment will need to be revised. Actuator behavior in the new lead zinc niobate-lead titanate (PZN:PT) single crystal shows most unusual anisotropic behavior. For 111 oriented field poled crystals in the rhombohedral phase normal low induced strain is observed. For 001 field poled crystals however massive (0.6%) quasi-linear anhysteritic strain can be induced. Since the 001 oriented field in the rhombohedral phase can not drive ferroelastic domain walls it is suggested that the strain must be intrinsic. The suggestion is that it is due to an induced monoclinic phase in which the Ps vector tilts under increasing field up to more than 20° from 111, before the vector switches to the tetragonal 001 direction. Such a polarization rotation mechanism has also been suggested by Fu and Cohen. Calculations of induced single domain strain using measured electrostriction constants agree well with observed behavior. Recent measurements by Park et al. and Wada et al. on single crystal BaTiO3 show strongly enhanced piezoelectricity at temperatures near the ferroelectric phase transitions. Of particular relevance is the inverse experiment forcing the tetragonal over to the rhombohedral phase with high 111 oriented field. From this result it is suggested that both cubic and dodecahedral mirrors participate in the reorientation through orthorhombic to the rhombohedral state giving rise to different value of the induced d33 at different field levels.
Zalden, Peter; Shu, Michael J.; Chen, Frank; ...
2016-08-05
Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag 4In 3Sb 67Te 26. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales—faster than crystals can nucleate. As a result, this supports purely electronic models of thresholdmore » switching and reveals potential applications as an ultrafast electronic switch.« less
Mössbauer study of Brazilian soapstone
NASA Astrophysics Data System (ADS)
Gonçalves, M. A.; de Jesus Filho, M. F.; Garg, V. K.
1991-11-01
Steatite mineral rocks, soapstone, have been studied by X-ray diffraction, optical microscopic analysis (modal analysis), electron probe micro analysis and Mössbauer spectroscopy for characterization, mineral percentages and chemical composition. Mössbauer spectra show both, magnetic interactions corresponding to magnetite and doublets corresponding to talc. chlorite, dolomite and tremolite. The temperature dependence of the quadrupole splitting in dolomite has been explained in terms of crystal field interaction.
NASA Astrophysics Data System (ADS)
Chidan Kumar, C. S.; Balachandran, V.; Fun, Hoong-Kun; Chandraju, Siddegowda; Quah, Ching Kheng
2015-11-01
A new chalcone derivative, (2E)-3-(2-chloro-4-fluorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one (a) was synthesized and single crystals were grown by slow evaporation technique. The FT-Raman and FT-IR spectra of the sample were recorded in the region 3500-100 cm-1 and 4000-400 cm-1 respectively. The spectra were interpreted with the aid of normal coordinate analysis, following structure optimizations and force field calculations based on B3LYP/6-31G (d) level of theory. Normal coordinate calculations were performed using the DFT force field corrected by a recommended set of scaling factors yielding fairly good agreement between the observed and calculated wavenumbers. The total electron density and molecular electrostatic potential surfaces of the molecule were constructed using B3LYP/6-31G (d) method to display electrostatic potential (electron + nuclei) distribution, molecular shape, size, and dipole moments of the molecule. HOMO and LUMO energies were also calculated. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Global and local reactivity descriptors and dipole moment (μ), static polarizability (α), first order hyperpolarizability (β) and optical gap (ΔE) were also calculated to study the NLO property of our title compound.
NASA Technical Reports Server (NTRS)
Johnson, F.; Garmestani, H.; Chu, S.-Y.; McHenry, M. E.; Laughlin, D. E.
2004-01-01
Very high magnetic field annealing is shown to affect the magnetic anisotropy in FeCo-base nanocrystalline soft ferromagnetic alloys. Alloys of composition Fe(44.5)Co(44.5)Zr(7)B(4) were prepared by melt spinning into amorphous ribbons, then wound to form toroidal bobbin cores. One set of cores was crystallized in a zero field at 600 deg. C for 1 h, then, field annealed at 17 tesla (T) at 480 deg. C for 1 h. Another set was crystallized in a 17-T field at 480 deg. C for 1 h. Field orientation was transverse to the magnetic path of the toroidal cores. An induced anisotropy is indicated by a sheared hysteresis loop. Sensitive torque magnetometry measurements with a Si cantilever sensor indicated a strong, uniaxial, longitudinal easy axis in the zero-field-crystallized sample. The source is most likely magnetoelastic anisotropy, caused by the residual stress from nanocrystallization and the nonzero magnetostriction coefficient for this material. The magnetostrictive coefficient lambda(5) is measured to be 36 ppm by a strain gage technique. Field annealing reduces the magnitude of the induced anisotropy. Core loss measurements were made in the zero-field-crystallized, zero-field-crystallized- than-field-annealed, and field-crystallized states. Core loss is reduced 30%-50% (depending on frequency) by field annealing. X-ray diffraction reveals no evidence of crystalline texture or orientation that would cause the induced anisotropy. Diffusional pair ordering is thought to be the cause of the induced anisotropy. However, reannealing the samples in the absence of a magnetic field at 480 deg. C does not completely remove the induced anisotropy.
Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R
2010-07-14
The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.
Air-stable n-type semiconductor: core-perfluoroalkylated perylene bisimides.
Li, Yan; Tan, Lin; Wang, Zhaohui; Qian, Hualei; Shi, Yubai; Hu, Wenping
2008-02-21
A series of core-perfluoroalkylated perylene bisimides (PBIs) have been efficiently synthesized by copper-mediated perfluoroalkylation of dibrominated PBIs. Their aromatic cores are highly twisted due to the steric encumbrance in the bay regions as revealed by single-crystal X-ray analysis. The organic field-effect transistors (OFETs) incorporating these new n-type semiconductors show remarkable air-stability and good field effect mobility.
Crystal-field splittings in rare-earth-based hard magnets: An ab initio approach
NASA Astrophysics Data System (ADS)
Delange, Pascal; Biermann, Silke; Miyake, Takashi; Pourovskii, Leonid
2017-10-01
We apply the first-principles density functional theory + dynamical mean-field theory framework to evaluate the crystal-field splitting on rare-earth sites in hard magnetic intermetallics. An atomic (Hubbard-I) approximation is employed for local correlations on the rare-earth 4 f shell and self-consistency in the charge density is implemented. We reduce the density functional theory self-interaction contribution to the crystal-field splitting by properly averaging the 4 f charge density before recalculating the one-electron Kohn-Sham potential. Our approach is shown to reproduce the experimental crystal-field splitting in the prototypical rare-earth hard magnet SmCo5. Applying it to R Fe12 and R Fe12X hard magnets (R =Nd , Sm and X =N , Li), we obtain in particular a large positive value of the crystal-field parameter A20〈r2〉 in NdFe12N resulting in a strong out-of-plane anisotropy observed experimentally. The sign of A20〈r2〉 is predicted to be reversed by substituting N with Li, leading to a strong out-of-plane anisotropy in SmFe12Li . We discuss the origin of this strong impact of N and Li interstitials on the crystal-field splitting on rare-earth sites.
Huang, Yuanyuan; Zhu, Lipeng; Zhao, Qiyi; Guo, Yaohui; Ren, Zhaoyu; Bai, Jintao; Xu, Xinlong
2017-02-08
Surface optical rectification was observed from the layered semiconductor molybdenum disulfide (MoS 2 ) crystal via terahertz (THz) time-domain surface emission spectroscopy under linearly polarized femtosecond laser excitation. The radiated THz amplitude of MoS 2 has a linear dependence on ever-increasing pump fluence and thus quadratic with the pump electric field, which discriminates from the surface Dember field induced THz radiation in InAs and the transient photocurrent-induced THz generation in graphite. Theoretical analysis based on space symmetry of MoS 2 crystal suggests that the underlying mechanism of THz radiation is surface optical rectification under the reflection configuration. This is consistent with the experimental results according to the radiated THz amplitude dependences on azimuthal and incident polarization angles. We also demonstrated the damage threshold of MoS 2 due to microscopic bond breaking under the femtosecond laser irradiation, which can be monitored via THz time-domain emission spectroscopy and Raman spectroscopy.
2001-01-24
Advanced finite element models are used to study three-dimensional, time-dependent flow and segregation in crystal growth systems. In this image of a prototypical model for melt and crystal growth, pathlines at one instant in time are shown for the flow of heated liquid silicon in a cylindrical container. The container is subjected to g-jitter disturbances along the vertical axis. A transverse magnetic field is applied to control them. Such computations are extremely powerful for understanding melt growth in microgravity where g-jitter drives buoyant flows. The simulation is part of the Theoretical Analysis of 3D, Transient Convection and Segregation in Microgravity Bridgman Crystal Growth investigation by Dr. Jeffrey J. Derby of the University of Mirnesota, Minneapolis.
Three-dimensional Bragg coherent diffraction imaging of an extended ZnO crystal.
Huang, Xiaojing; Harder, Ross; Leake, Steven; Clark, Jesse; Robinson, Ian
2012-08-01
A complex three-dimensional quantitative image of an extended zinc oxide (ZnO) crystal has been obtained using Bragg coherent diffraction imaging integrated with ptychography. By scanning a 2.5 µm-long arm of a ZnO tetrapod across a 1.3 µm X-ray beam with fine step sizes while measuring a three-dimensional diffraction pattern at each scan spot, the three-dimensional electron density and projected displacement field of the entire crystal were recovered. The simultaneously reconstructed complex wavefront of the illumination combined with its coherence properties determined by a partial coherence analysis implemented in the reconstruction process provide a comprehensive characterization of the incident X-ray beam.
Optical solitons in nematic liquid crystals: model with saturation effects
NASA Astrophysics Data System (ADS)
Borgna, Juan Pablo; Panayotaros, Panayotis; Rial, Diego; de la Vega, Constanza Sánchez F.
2018-04-01
We study a 2D system that couples a Schrödinger evolution equation to a nonlinear elliptic equation and models the propagation of a laser beam in a nematic liquid crystal. The nonlinear elliptic equation describes the response of the director angle to the laser beam electric field. We obtain results on well-posedness and solitary wave solutions of this system, generalizing results for a well-studied simpler system with a linear elliptic equation for the director field. The analysis of the nonlinear elliptic problem shows the existence of an isolated global branch of solutions with director angles that remain bounded for arbitrary electric field. The results on the director equation are also used to show local and global existence, as well as decay for initial conditions with sufficiently small L 2-norm. For sufficiently large L 2-norm we show the existence of energy minimizing optical solitons with radial, positive and monotone profiles.
NASA Astrophysics Data System (ADS)
Arregui, C.; Ramiro, J. B.; Alcázar, A.; Méndez, A.; Muñoz-Martínez, J. F.; Carrascosa, M.
2015-05-01
This paper describes the dielectrophoretic potential created by the evanescent electric field acting on a particle near a photovoltaic crystalsurface depending on the crystal cut. This electric field is obtained from the steady state solution of the Kukhtarev equations for thephotovoltaic effect, where the diffusion term has been disregarded. First, the space charge field generated by a small, square, light spotwhere d << l (being d a side of the square and l the crystal thickness) is studied. The surface charge density generated in both geometriesis calculated and compared as their relation determines the different properties of the dielectrophoretic potential for both cuts. The shapeof the dielectrophoretic potential is obtained and compared for several distances to the sample. Afterwards other light patterns are studiedby the superposition of square spots, and the resulting trapping profiles are analysed. Finally the surface charge densities and trappingprofiles for different d/l relations are studied.
NASA Astrophysics Data System (ADS)
Tomimatsu, Toru; Takigawa, Ryo
2018-06-01
Owing to its high spatial resolution, near-field spectroscopy is a useful method for sensing the stress in a narrow region of submicron order. Here, on the basis of the highly resolved images obtained by near-field luminescence spectroscopy, we propose a statistical method of analyzing grain anisotropy-induced stress in polycrystalline Al2O3. We focus on two characteristics of a spectra: the intensity ratio and peak shift of luminescence of two lines (R1 and R2) from Al2O3 to discuss crystal orientation and stress, respectively. By incorporating the concept of the crystal misorientation parameter using intensity ratio, an apparent correlation between the magnitude of stress and the misorientation is found. This correlation analysis provides an important insight for the investigation of local thermal stress in Al2O3.
NASA Astrophysics Data System (ADS)
Alshits, V. I.; Darinskaya, E. V.; Koldaeva, M. V.; Petrzhik, E. A.
2016-01-01
A comparative study of magnetoplasticity in two types of NaCl crystals differing in impurity content only by a small Ni addition (0.06 ppm) in one of them, NaCl(Ni), has been carried out. Two methods of sample magnetic exposure were used: in a constant field B = 0-0.6 T and in crossed fields in the EPR scheme—the Earth's field B Earth (50 μT) and a variable pumping field tilde B( ˜ 1 μ T) at frequencies ν 1 MHz. In the experiments in the EPR scheme, the change of the field orientation from tilde B bot B_{Earth} to . {tilde B} |B_{Earth} led to almost complete suppression of the effect in the NaCl(Ni) crystals and reduced only slightly (approximately by 20%) the height of the resonance peak of dislocation mean paths in the crystals without Ni, with the amplitude of the mean paths in NaCl(Ni) in the orientation tilde B bot B_{Earth} having been appreciably lower than that in NaCl. In contrast, upon exposure to a constant magnetic field, a more intense effect was observed in the crystal with Ni. The threshold pumping field amplitude tilde B, below which the effect is absent under resonance conditions, for the NaCl(Ni) crystals turned out to be a factor of 5 smaller than that for NaCl, while the thresholds of a constant magnetic field coincide for both types of crystals. All these differences are discussed in detail and interpreted.
Color changing plasmonic surfaces utilizing liquid crystal (Conference Presentation)
NASA Astrophysics Data System (ADS)
Franklin, Daniel; Wu, Shin-Tson; Chanda, Debashis
2016-09-01
Plasmonic structural color has recently garnered significant interest as an alternative to the organic dyes standard in print media and liquid crystal displays. These nanostructured metallic systems can produce diffraction limited images, be made polarization dependent, and exhibit resistance to color bleaching. Perhaps even more advantageous, their optical characteristics can also be tuned, post-fabrication, by altering the surrounding media's refractive index parallel to the local plasmonic fields. A common material with which to achieve this is liquid crystal. By reorienting the liquid crystal molecules through external electric fields, the optical resonances of the plasmonic filters can be dynamically controlled. Demonstrations of this phenomenon, however, have been limited to modest shifts in plasmon resonance. Here, we report a liquid crystal-plasmonic system with an enhanced tuning range through the use of a shallow array of nano-wells and high birefringent liquid crystal. The continuous metallic nanostructure maximizes the overlap between plasmonic fields and liquid crystal while also allowing full reorientation of the liquid crystal upon an applied electric field. Sweeping over structural dimensions and voltages results in a color palette for these dynamic reflective pixels that can further be exploited to create color tunable images. These advances make plasmonic-liquid crystal systems more attractive candidates for filter, display, and other tunable optical technologies.
Rigorous analysis of an electric-field-driven liquid crystal lens for 3D displays
NASA Astrophysics Data System (ADS)
Kim, Bong-Sik; Lee, Seung-Chul; Park, Woo-Sang
2014-08-01
We numerically analyzed the optical performance of an electric field driven liquid crystal (ELC) lens adopted for 3-dimensional liquid crystal displays (3D-LCDs) through rigorous ray tracing. For the calculation, we first obtain the director distribution profile of the liquid crystals by using the Erickson-Leslie motional equation; then, we calculate the transmission of light through the ELC lens by using the extended Jones matrix method. The simulation was carried out for a 9view 3D-LCD with a diagonal of 17.1 inches, where the ELC lens was slanted to achieve natural stereoscopic images. The results show that each view exists separately according to the viewing position at an optimum viewing distance of 80 cm. In addition, our simulation results provide a quantitative explanation for the ghost or blurred images between views observed from a 3D-LCD with an ELC lens. The numerical simulations are also shown to be in good agreement with the experimental results. The present simulation method is expected to provide optimum design conditions for obtaining natural 3D images by rigorously analyzing the optical functionalities of an ELC lens.
NASA Astrophysics Data System (ADS)
Zhang, Zhang; Chen, Jianwei; Xu, Jialin; Li, Xiaobing; Luo, Haosu
2017-12-01
The temperature and electric-field induced phase transition behavior and dielectric, piezoelectric, and ferroelectric properties of [001]-oriented 0.23Pb(In1/2Nb1/2)O3-0.47Pb(Mg1/3Nb2/3)O3-0.3PbTiO3-Mn (PIMNT-Mn) single crystals were investigated. Dielectric performance analysis and temperature-dependent Raman spectra show three apparent ferroelectric phase transition temperatures around 120 °C(TR-M),145 °C(TM-T), and 170 °C(TT-C), respectively. In addition, the temperature dependence of the relative Raman intensities of Lorentzian peaks indicates the poled PIMNT-Mn single crystals exhibit rhombohedral(R) → monoclinic(M) → tetragonal(T) → cubic(C) phase transition path. The electrical properties of the PIMNT-Mn single crystals such as the longitudinal electrostrictive coefficient (Q), the converse piezoelectric constant (d33), and the maximum strain value (Smax%) have changed abnormally around the phase transition temperatures (TR-M and TM-T).
Probing the magnetic ground state of single crystalline Ce3TiSb5
NASA Astrophysics Data System (ADS)
Matin, M.; Kulkarni, R.; Thamizhavel, A.; Dhar, S. K.; Provino, A.; Manfrinetti, P.
2017-04-01
Motivated by the report of superconductivity in R3TiSb5 (R = La and Ce) and possibly Nd3TiSb5 at ∼4 K, we grew single crystals of La3TiSb5 and Ce3TiSb5 by the high-temperature solution method using Sn as a flux. While in both compounds we observed a superconducting transition at 3.7 K for resistivity and low-field magnetization, our data conclusively show that it arose from residual Sn flux present in the single crystals. In particular, the heat capacity data do not present any of the anomalies expected from a bulk superconducting transition. The anisotropic magnetic properties of Ce3TiSb5, crystallizing in a hexagonal P63/mcm structure, were studied in detail. We find that the Ce ions in Ce3TiSb5 form a Kondo lattice and exhibited antiferromagnetic ordering at 5.5 K with a reduced moment and a moderately normalized Sommerfeld coefficient of 598 mJ/mol K2. The characteristic single-ion Kondo energy scale was found to be ∼8 K. The magnetization data were subjected to a crystal electric field (CEF) analysis. The experimentally observed Schottky peak in the 4f-electron heat capacity of Ce3TiSb5 was reproduced fairly well by the energy levels derived from the CEF analysis.
NASA Astrophysics Data System (ADS)
Ackerman, Paul J.; Smalyukh, Ivan I.
2017-01-01
Topological solitons are knots in continuous physical fields classified by nonzero Hopf index values. Despite arising in theories that span many branches of physics, from elementary particles to condensed matter and cosmology, they remain experimentally elusive and poorly understood. We introduce a method of experimental and numerical analysis of such localized structures in liquid crystals that, similar to the mathematical Hopf maps, relates all points of the medium's order parameter space to their closed-loop preimages within the three-dimensional solitons. We uncover a surprisingly large diversity of naturally occurring and laser-generated topologically nontrivial solitons with differently knotted nematic fields, which previously have not been realized in theories and experiments alike. We discuss the implications of the liquid crystal's nonpolar nature on the knot soliton topology and how the medium's chirality, confinement, and elastic anisotropy help to overcome the constraints of the Hobart-Derrick theorem, yielding static three-dimensional solitons without or with additional defects. Our findings will establish chiral nematics as a model system for experimental exploration of topological solitons and may impinge on understanding of such nonsingular field configurations in other branches of physics, as well as may lead to technological applications.
NASA Astrophysics Data System (ADS)
Hamed, A. E.; Kassem, M. E.; El-Wahidy, E. F.; El-Abshehy, M. A.
1995-03-01
The temperature dependence of specific heat at constant pressure, Cp(T), has been measured for lithium sodium sulphate, LiNaSo4 crystals, at different ?-radiation doses and external bias electric field (Eb), in the temperature range 300-900 K. A nonlinear dependence of transition temperature, T1 and a remarkable change in the thermodynamic parameters, were obtained as the effect of both electric field and ?-radiation. The effect of ?-radiation doses on the phase transition in LiNaSO4 crystals was explained as due to an internal bias field, Eb, originating from the interaction of polar defects with the order parameter of the host lattice. The internal bias field effect on the behaviour of Cp(T) in LiNaSO4 crystals was similar to that of the external electric field (E).
In vivo crystallography at X-ray free-electron lasers: the next generation of structural biology?
Gallat, François-Xavier; Matsugaki, Naohiro; Coussens, Nathan P; Yagi, Koichiro J; Boudes, Marion; Higashi, Tetsuya; Tsuji, Daisuke; Tatano, Yutaka; Suzuki, Mamoru; Mizohata, Eiichi; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Park, Jaehyun; Song, Changyong; Hatsui, Takaki; Yabashi, Makina; Nango, Eriko; Itoh, Kohji; Coulibaly, Fasséli; Tobe, Stephen; Ramaswamy, S; Stay, Barbara; Iwata, So; Chavas, Leonard M G
2014-07-17
The serendipitous discovery of the spontaneous growth of protein crystals inside cells has opened the field of crystallography to chemically unmodified samples directly available from their natural environment. On the one hand, through in vivo crystallography, protocols for protein crystal preparation can be highly simplified, although the technique suffers from difficulties in sampling, particularly in the extraction of the crystals from the cells partly due to their small sizes. On the other hand, the extremely intense X-ray pulses emerging from X-ray free-electron laser (XFEL) sources, along with the appearance of serial femtosecond crystallography (SFX) is a milestone for radiation damage-free protein structural studies but requires micrometre-size crystals. The combination of SFX with in vivo crystallography has the potential to boost the applicability of these techniques, eventually bringing the field to the point where in vitro sample manipulations will no longer be required, and direct imaging of the crystals from within the cells will be achievable. To fully appreciate the diverse aspects of sample characterization, handling and analysis, SFX experiments at the Japanese SPring-8 angstrom compact free-electron laser were scheduled on various types of in vivo grown crystals. The first experiments have demonstrated the feasibility of the approach and suggest that future in vivo crystallography applications at XFELs will be another alternative to nano-crystallography. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Anisotropic Laminar Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.
2006-01-01
The design, fabrication, and testing of a flexible, laminar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d33 piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d33 estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.
Anisotropic Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.
2004-01-01
The design, fabrication, and testing of a flexible, planar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d(sub 33) piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d(sub 33) estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.
Optofluidic-Tunable Color Filters And Spectroscopy Based On Liquid-Crystal Microflows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuennet, J. G.; Vasdekis, Andreas E.; Psaltis, D.
The integration of color filters with microfluidics has attracted substantial attention in recent years, for on-chip absorption, fluorescence, or Raman analysis. We describe such tunable filters based on the micro-flow of liquid crystals. The filter operation is based on the wavelength dependent liquid crystal birefringence that can be tuned by modifying the flow velocity field in the microchannel. The latter is possible both temporally and spatially by varying the inlet pressure and the channel geometry respectively. We explored the use of these optofluidic filters for on-chip absorption spectroscopy; by integrating the distance dependent color filter with a dye-filled micro-channel, themore » absorption spectrum of a dye could be measured. Liquid crystal microflows simplify substantially the optofluidic integration, actuation and tuning of color filters for lab-on-a-chip spectroscopic applications.« less
Variability of the resulting microdeformation field in the Zn1 - x V x Se crystals (0.01 ≤ x ≤ 0.10)
NASA Astrophysics Data System (ADS)
Maksimov, V. I.; Maksimova, E. N.; Surkova, T. P.
2018-01-01
A detailed neutronographic study of the bulk ZnSe crystals doped with vanadium up to the content commensurate with the solubility limit in a semiconductor matrix has been carried out for the first time at room temperature. The data that characterize nonuniformly-deformed states based on the cubic structural modification of the II-VI compounds are obtained. A simplified analysis of the broadening patterns of the diffraction profiles of main Bragg reflexes of the studied crystals shows that the resulting deformation covers macroscopic volumes, and the distribution of vanadium ions in the given cases may significantly deviate from the uniform distribution over volume. Relative to the initial cubic lattice, dominating trends towards symmetry changes preceding the phase stratification in the ZnSe crystals heavily doped with vanadium are revealed.
Field induced heliconical structure of cholesteric liquid crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavrentovich, Oleg D.; Shiyanovsii, Sergij V.; Xiang, Jie
A diffraction grating comprises a liquid crystal (LC) cell configured to apply an electric field through a cholesteric LC material that induces the cholesteric LC material into a heliconical state with an oblique helicoid director. The applied electric field produces diffracted light from the cholesteric LC material within the visible, infrared or ultraviolet. The axis of the heliconical state is in the plane of the liquid crystal cell or perpendicular to the plane, depending on the application. A color tuning device operates with a similar heliconical state liquid crystal material but with the heliconical director axis oriented perpendicular to themore » plane of the cell. A power generator varies the strength of the applied electric field to adjust the wavelength of light reflected from the cholesteric liquid crystal material within the visible, infrared or ultraviolet.« less
NASA Technical Reports Server (NTRS)
Ma, Nancy
2003-01-01
Alloyed semiconductor crystals, such as germanium-silicon (GeSi) and various II-VI alloyed crystals, are extremely important for optoelectronic devices. Currently, high-quality crystals of GeSi and of II-VI alloys can be grown by epitaxial processes, but the time required to grow a certain amount of single crystal is roughly 1,000 times longer than the time required for Bridgman growth from a melt. Recent rapid advances in optoelectronics have led to a great demand for more and larger crystals with fewer dislocations and other microdefects and with more uniform and controllable compositions. Currently, alloyed crystals grown by bulk methods have unacceptable levels of segregation in the composition of the crystal. Alloyed crystals are being grown by the Bridgman process in space in order to develop successful bulk-growth methods, with the hope that the technology will be equally successful on earth. Unfortunately some crystals grown in space still have unacceptable segregation, for example, due to residual accelerations. The application of a weak magnetic field during crystal growth in space may eliminate the undesirable segregation. Understanding and improving the bulk growth of alloyed semiconductors in microgravity is critically important. The purpose of this grant to to develop models of the unsteady species transport during the bulk growth of alloyed semiconductor crystals in the presence of a magnetic field in microgravity. The research supports experiments being conducted in the High Magnetic Field Solidification Facility at Marshall Space Flight Center (MSFC) and future experiments on the International Space Station.
Tereshina, I S; Kostyuchenko, N V; Tereshina-Chitrova, E A; Skourski, Y; Doerr, M; Pelevin, I A; Zvezdin, A K; Paukov, M; Havela, L; Drulis, H
2018-02-26
Rare-earth (R)-iron alloys are a backbone of permanent magnets. Recent increase in price of rare earths has pushed the industry to seek ways to reduce the R-content in the hard magnetic materials. For this reason strong magnets with the ThMn 12 type of structure came into focus. Functional properties of R(Fe,T) 12 (T-element stabilizes the structure) compounds or their interstitially modified derivatives, R(Fe,T) 12 -X (X is an atom of hydrogen or nitrogen) are determined by the crystal-electric-field (CEF) and exchange interaction (EI) parameters. We have calculated the parameters using high-field magnetization data. We choose the ferrimagnetic Tm-containing compounds, which are most sensitive to magnetic field and demonstrate that TmFe 11 Ti-H reaches the ferromagnetic state in the magnetic field of 52 T. Knowledge of exact CEF and EI parameters and their variation in the compounds modified by the interstitial atoms is a cornerstone of the quest for hard magnetic materials with low rare-earth content.
Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials.
Zalden, Peter; Shu, Michael J; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi-Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W; Wong, H-S Philip; Sher, Meng-Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M
2016-08-05
Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag_{4}In_{3}Sb_{67}Te_{26}. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales-faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.
NASA Astrophysics Data System (ADS)
Jayaprakash, P.; Sangeetha, P.; Kumari, C. Rathika Thaya; Caroline, M. Lydia
2017-08-01
A nonlinear optical bulk single crystal of L-methionine admixtured D-mandelic acid (LMDMA) has been grown by slow solvent evaporation technique using water as solvent at ambient temperature. The crystallized LMDMA single crystal subjected to single crystal X-ray diffraction study confirmed monoclinic system with the acentric space group P21. The FTIR analysis gives information about the modes of vibration in the various functional groups present in LMDMA. The UV-visible spectral analysis assessed the optical quality and linear optical properties such as extinction coefficient, reflectance, refractive index and from which optical conductivity and electric susceptibility were also evaluated. The frequency doubling efficiency was observed using Kurtz Perry powder technique. A multiple shot laser was utilized to evaluate the laser damage threshold energy of the crystal. Discrete thermodynamic properties were carried out by TG-DTA studies. The hardness, Meyer's index, yield strength, elastic stiffness constant, Knoop hardness, fracture toughness and brittleness index were analyzed using Vickers microhardness tester. Layer growth pattern and the surface defect were examined by chemical etching studies using optical microscope. Fluorescence emission spectrum was recorded and lifetime was also studied. The electric field response of crystal was investigated from the dielectric studies at various temperatures at different frequencies. The third-order nonlinear optical response in LMDMA has been investigated using Z-scan technique with He-Ne laser at 632.8 nm and nonlinear parameters such as refractive index (n2), absorption coefficient (β) and susceptibility (χ3) investigated extensively for they are in optical phase conjucation, high-speed optical switches and optical dielectric devices.
Strain Analysis of Stretched Tourmaline Crystals Using ImageJ, Microsoft Excel and PowerPoint
NASA Astrophysics Data System (ADS)
Bosbyshell, H.
2012-12-01
This poster describes an undergraduate structural geology lab exercise utilizing the Mohr's circle diagram for finite strain, constructed using measurements obtained from stretched tourmaline crystals. A small building housing HVAC equipment at the south end of West Chester University's Recitation Hall (itself made of serpentinite) is constructed of early-Cambrian Chickies Quartzite. Stretched tourmaline crystals, with segments joined by fibrous quartz, are visible on many surfaces (presumably originally bedding). While the original orientation of any stone is unknown, these rocks provide an opportunity for a short field exercise during a two-hour lab period and a great base for conducting strain analysis. It is always fun to ask how many in the class have ever noticed the tourmaline (few have). Students take photos using their cell phones or cameras. Since strain is a ratio the absolute size of the tourmaline crystals is immaterial. Nonetheless, this is a good opportunity to remind students of the importance of including a scale in their photographs. The photos are opened in ImageJ and the line tool is used to determine the original and final lengths of selected crystals. Students calculate strain parameters using Microsoft Excel. Then, we use Adobe Illustrator or the drafting capabilities of Microsoft PowerPoint 2010 to follow Ramsay and Huber's techniques using a Mohr's circle construction to determine the finite strain ellipse. If a stretching direction can be estimated, elongation of two crystals is all that is required to determine the strain ratio. If no stretching direction is apparent, three crystals are required for a more complicated analysis that allows for determination of the stretching direction, as well as the strain ratio.
Nonlinear Phase Field Theory for Fracture and Twinning with Analysis of Simple Shear
2015-09-01
elasticity; crystal; shear deformation 1. Introduction Cleavage fracture and deformation twinning are two fundamental inelastic deformation mechanisms that...stress [2,3]. Both of these anisotropic mechanisms involve deformation on specific planes (the cleavage plane for fracture or the habit plane for...be the first phase field theory accounting for both fracture and deformation twinning wherein each mechanism is repre- sented by a distinct-order
2016-09-12
AFRL-RX-WP-JA-2017-0209 TWO BEAM ENERGY EXCHANGE IN HYBRID LIQUID CRYSTAL CELLS WITH PHOTOREFRACTIVE FIELD CONTROLLED BOUNDARY...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the... CRYSTAL CELLS WITH PHOTOREFRACTIVE FIELD CONTROLLED BOUNDARY CONDITIONS (POSTPRINT) 5a. CONTRACT NUMBER FA8650-16-D-5402-0001 5b. GRANT
2016-05-27
often discussed in the field of thermosetting materials, crystal engineering1-4 plays a key role in facilitating the successful utilization of these...not to alter the desirable properties of the polymerized networks. Fortunately, the field of crystal engineering provides examples where even very...Chickos and Acree.26 For molecular modeling, methods ranging from atomistic simulations with semi-empirical force fields to density functional
Liquid crystal 'blue phases' with a wide temperature range.
Coles, Harry J; Pivnenko, Mikhail N
2005-08-18
Liquid crystal 'blue phases' are highly fluid self-assembled three-dimensional cubic defect structures that exist over narrow temperature ranges in highly chiral liquid crystals. The characteristic period of these defects is of the order of the wavelength of visible light, and they give rise to vivid specular reflections that are controllable with external fields. Blue phases may be considered as examples of tuneable photonic crystals with many potential applications. The disadvantage of these materials, as predicted theoretically and proved experimentally, is that they have limited thermal stability: they exist over a small temperature range (0.5-2 degrees C) between isotropic and chiral nematic (N*) thermotropic phases, which limits their practical applicability. Here we report a generic family of liquid crystals that demonstrate an unusually broad body-centred cubic phase (BP I*) from 60 degrees C down to 16 degrees C. We prove this with optical texture analysis, selective reflection spectroscopy, Kössel diagrams and differential scanning calorimetry, and show, using a simple polarizer-free electro-optic cell, that the reflected colour is switched reversibly in applied electric fields over a wide colour range in typically 10 ms. We propose that the unusual behaviour of these blue phase materials is due to their dimeric molecular structure and their very high flexoelectric coefficients. This in turn sets out new theoretical challenges and potentially opens up new photonic applications.
Imaging local electric fields produced upon synchrotron X-ray exposure
Dettmar, Christopher M.; Newman, Justin A.; Toth, Scott J.; ...
2014-12-31
Electron–hole separation following hard X-ray absorption during diffraction analysis of soft materials under cryogenic conditions produces substantial local electric fields visualizable by second harmonic generation (SHG) microscopy. Monte Carlo simulations of X-ray photoelectron trajectories suggest the formation of substantial local electric fields in the regions adjacent to those exposed to X-rays, indicating a possible electric-field–induced SHG (EFISH) mechanism for generating the observed signal. In studies of amorphous vitreous solvents, analysis of the SHG spatial profiles following X-ray microbeam exposure was consistent with an EFISH mechanism. Within protein crystals, exposure to 12-keV (1.033-Å) X-rays resulted in increased SHG in the regionmore » extending ~3 μm beyond the borders of the X-ray beam. Moderate X-ray exposures typical of those used for crystal centering by raster scanning through an X-ray beam were sufficient to produce static electric fields easily detectable by SHG. The X-ray–induced SHG activity was observed with no measurable loss for longer than 2 wk while maintained under cryogenic conditions, but disappeared if annealed to room temperature for a few seconds. In conclusion, these results provide direct experimental observables capable of validating simulations of X-ray–induced damage within soft materials. Additionally, X-ray–induced local fields may potentially impact diffraction resolution through localized piezoelectric distortions of the lattice.« less
Origin of the magnetoelectric effect in the Cs2FeCl5.D2O compound
NASA Astrophysics Data System (ADS)
Fabelo, Oscar; Rodríguez-Velamazán, J. Alberto; Canadillas-Delgado, Laura; Mazzuca, Lidia; Campo, Javier; Millán, Ángel; Chapon, Laurent C.; Rodríguez-Carvajal, Juan
2017-09-01
Cs2FeCl5.D2O has been identified as a linear magnetoelectric material, although the correlation of this property with the magnetic structures of this compound has not been adequately studied. We have used single-crystal and powder neutron diffraction to obtain detailed information about its nuclear and magnetic structures. From the nuclear structure analysis, we describe the occurrence of a phase transition related to the reorganization of the [FeCl5.D2O] -2 ions and the Cs+ counterion. The magnetic structure was determined at zero magnetic field at 1.8 K using single-crystal diffraction and its temperature evolution was recorded using powder diffraction. The symmetry analysis of the magnetic structure is compatible with the occurrence of the magnetoelectric effect. Moreover, the evolution of the magnetic structure as a function of the external magnetic field has also been studied. The reorientation of the magnetic moments under applied external field along the easy axis (b axis at low temperature) is compatible with the occurrence of a spin-flop transition. The application of a magnetic field below TN compels the magnetic moments to flip from the b axis to the a c plane (with a small induced component along the b axis), for a critical magnetic field of ca. 1.2 T.
Improving the Quality of Protein Crystals Using Stirring Crystallization
NASA Astrophysics Data System (ADS)
Adachi, Hiroaki; Matsumura, Hiroyoshi; Niino, Ai; Takano, Kazufumi; Kinoshita, Takayoshi; Warizaya, Masaichi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo
2004-04-01
Recent reports state that a high magnetic field improves the crystal quality of bovine adenosine deaminase (ADA) with an inhibitor [Kinoshita et al.: Acta Cryst. D59 (2003) 1333]. In this paper, we examine the effect of stirring solution on ADA crystallization using a vapor-diffusion technique with rotary and figure-eight motion shakers. The probability of obtaining high-quality crystals is increased with stirring in a figure-eight pattern. Furthermore, rotary stirring greatly increased the probability of obtaining high-quality crystals, however, nucleation time was also increased. The crystal structure with the inhibitor was determined at a high resolution using a crystal obtained from a stirred solution. These results indicate that stirring with simple equipment is as useful as the high magnetic field technique for protein crystallization.
Lim, Kwang Soo; Baldoví, José J; Jiang, ShangDa; Koo, Bong Ho; Kang, Dong Won; Lee, Woo Ram; Koh, Eui Kwan; Gaita-Ariño, Alejandro; Coronado, Eugenio; Slota, Michael; Bogani, Lapo; Hong, Chang Seop
2017-05-01
Controlling the coordination sphere of lanthanoid complexes is a challenging critical step toward controlling their relaxation properties. Here we present the synthesis of hexacoordinated dysprosium single-molecule magnets, where tripodal ligands achieve a near-perfect octahedral coordination. We perform a complete experimental and theoretical investigation of their magnetic properties, including a full single-crystal magnetic anisotropy analysis. The combination of electrostatic and crystal-field computational tools (SIMPRE and CONDON codes) allows us to explain the static behavior of these systems in detail.
NASA Astrophysics Data System (ADS)
Hofmann, D. W. M.; Kuleshova, L. N.
2018-05-01
Modern force fields are accurate enough to describe thermal effects in molecular crystals. Here, we have extended our earlier approach to discrete force fields for various temperatures to a force field with a continuous function. For the parametrisation of the force field, we used data mining on experimental structures with the temperature as an additional descriptor. The obtained force field can be used to minimise energy at a finite temperature and for molecular dynamics with zero-K potentials. The applicability of the method has been demonstrated for the prediction of crystal density, temperature density gradients and transition temperature.
A Navier-Stokes phase-field crystal model for colloidal suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Praetorius, Simon, E-mail: simon.praetorius@tu-dresden.de; Voigt, Axel, E-mail: axel.voigt@tu-dresden.de
2015-04-21
We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.
A Navier-Stokes phase-field crystal model for colloidal suspensions.
Praetorius, Simon; Voigt, Axel
2015-04-21
We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.
Magneto-optical properties of biogenic photonic crystals in algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwasaka, M., E-mail: iwasaka-m@umin.ac.jp; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi 332-0012 Saitama; Mizukawa, Y.
In the present study, the effects of strong static magnetic fields on the structural colors of the cell covering crystals on a microalgae, coccolithophore, were investigated. The coccolithophore, Emiliania huxleyi, generates a precise assembly of calcite crystals called coccoliths by biomineralization. The coccoliths attached to the cells exhibited structural colors under side light illumination, and the colors underwent dynamic transitions when the magnetic fields were changed between 0 T and 5 T, probably due to diamagnetically induced changes of their inclination under the magnetic fields. The specific light-scattering property of individual coccoliths separated from the cells was also observed. Light scattering frommore » a condensed suspension of coccoliths drastically decreased when magnetic fields of more than 4 T were applied parallel to the direction of observation. The magnetically aligned cell-covering crystals of the coccolithophores exhibited the properties of both a photonic crystal and a minimum micromirror.« less
Optical coherence of 166Er:7LiYF4 crystal below 1 K
NASA Astrophysics Data System (ADS)
Kukharchyk, N.; Sholokhov, D.; Morozov, O.; Korableva, S. L.; Kalachev, A. A.; Bushev, P. A.
2018-02-01
We explore optical coherence and spin dynamics of an isotopically purified 166Er:7LiYF4 crystal below 1 K and at weak magnetic fields < 0.3T. Crystals were grown in our lab and demonstrate narrow inhomogeneous optical broadening down to 16 MHz. Solid-state atomic ensembles with such narrow linewidths are very attractive for implementing of off-resonant Raman quantum memory and for the interfacing of superconducting quantum circuits and telecom C-band optical photons. Both applications require a low magnetic field of ∼10 mT. However, at conventional experimental temperatures T > 1.5 K, optical coherence of Er:LYF crystal attains ≃ 10 μ {{s}} time scale only at strong magnetic fields above 1.5 T. In the present work, we demonstrate that the deep freezing of Er:LYF crystal below 1 K results in the increase of optical coherence time to ≃ 100 μ {{s}} at weak fields.
NASA Astrophysics Data System (ADS)
Fung, Carmen Kar Man; Xi, Ning; Lou, Jianyong; Lai, King Wai Chiu; Chen, Hongzhi
2010-10-01
We report high sensitivity carbon nanotube (CNT) based middle wave infrared (MWIR) sensors with a two-dimensional photonic crystal waveguide. MWIR sensors are of great importance in a variety of current military applications including ballistic missile defense, surveillance and target detection. Unlike other existing MWIR sensing materials, CNTs exhibit low noise level and can be used as new nano sensing materials for MWIR detection where cryogenic cooling is not required. However, the quantum efficiency of the CNT based infrared sensor is still limited by the small sensing area and low incoming electric field. Here, a photonic nanostructure is used as a resonant cavity for boosting the electric field intensity at the position of the CNT sensing element. A two-dimensional photonic crystal with periodic holes in a polymer thin film is fabricated and a resonant cavity is formed by removing holes from the array of the photonic crystal. Based on the design of the photonic crystal topologies, we theoretically study the electric field distribution to predict the resonant behavior of the structure. Numerical simulations reveal the field is enhanced and almost fully confined to the defect region of the photonic crystal. To verify the electric field enhancement effect, experiments are also performed to measure the photocurrent response of the sensor with and without the photonic crystal resonant cavity. Experimental results show that the photocurrent increases ~3 times after adding the photonic crystal resonant cavity.
Site selectivity on chalcogen atoms in superconducting La(O,F)BiSSe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Masashi, E-mail: Tanaka.Masashi@nims.go.jp; Matsushita, Yoshitaka; Fujioka, Masaya
2015-03-16
Single crystals of La(O,F)BiSSe were grown by using a CsCl flux method. Single crystal X-ray structural analysis reveals that the crystal structure is isostructural to the BiS{sub 2}- or BiSe{sub 2}-based compounds crystallizing with space group P4/nmm (lattice parameters a = 4.1110(2) Å, c = 13.6010(7) Å). However, the S atoms are selectively occupied at the apical site of the Bi-SSe pyramids in the superconducting layer. The single crystals show a superconducting transition at around 4.2 K in the magnetic susceptibility and resistivity measurements. The superconducting anisotropic parameter is determined to be 34–35 from its upper critical magnetic field. The anisotropy is in the same range withmore » that of other members of the La(O,F)BiCh{sub 2} (Ch = S, Se) family under ambient pressure.« less
Characterization of a plasma photonic crystal using a multi-fluid plasma model
NASA Astrophysics Data System (ADS)
Thomas, W. R.; Shumlak, U.; Wang, B.; Righetti, F.; Cappelli, M. A.; Miller, S. T.
2017-10-01
Plasma photonic crystals have the potential to significantly expand the capabilities of current microwave filtering and switching technologies by providing high speed (μs) control of energy band-gap/pass characteristics in the GHz through low THz range. While photonic crystals consisting of dielectric, semiconductor, and metallic matrices have seen thousands of articles published over the last several decades, plasma-based photonic crystals remain a relatively unexplored field. Numerical modeling efforts so far have largely used the standard methods of analysis for photonic crystals (the Plane Wave Expansion Method, Finite Difference Time Domain, and ANSYS finite element electromagnetic code HFSS), none of which capture nonlinear plasma-radiation interactions. In this study, a 5N-moment multi-fluid plasma model is implemented using University of Washington's WARPXM finite element multi-physics code. A two-dimensional plasma-vacuum photonic crystal is simulated and its behavior is characterized through the generation of dispersion diagrams and transmission spectra. These results are compared with theory, experimental data, and ANSYS HFSS simulation results. This research is supported by a Grant from United States Air Force Office of Scientific Research.
NASA Astrophysics Data System (ADS)
Zhang, Yibo; Lee, Seung Yoon; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan
2016-03-01
Gout and pseudogout are forms of crystal arthropathy caused by monosodium urate (MSU) and calcium pyrophosphate dehydrate (CPPD) crystals in the joint, respectively, that can result in painful joints. Detecting the unique-shaped, birefringent MSU/CPPD crystals in a synovial fluid sample using a compensated polarizing microscope has been the gold-standard for diagnosis since the 1960's. However, this can be time-consuming and inaccurate, especially if there are only few crystals in the fluid. The high-cost and bulkiness of conventional microscopes can also be limiting for point-of-care diagnosis. Lens-free on-chip microscopy based on digital holography routinely achieves high-throughput and high-resolution imaging in a cost-effective and field-portable design. Here we demonstrate, for the first time, polarized lens-free on-chip imaging of MSU and CPPD crystals over a wide field-of-view (FOV ~ 20.5 mm2, i.e., <20-fold larger compared a typical 20X objective-lens FOV) for point-of-care diagnostics of gout and pseudogout. Circularly polarizer partially-coherent light is used to illuminate the synovial fluid sample on a glass slide, after which a quarter-wave-plate and an angle-mismatched linear polarizer are used to analyze the transmitted light. Two lens-free holograms of the MSU/CPPD sample are taken, with the sample rotated by 90°, to rule out any non-birefringent objects within the specimen. A phase-recovery algorithm is also used to improve the reconstruction quality, and digital pseudo-coloring is utilized to match the color and contrast of the lens-free image to that of a gold-standard microscope image to ease the examination by a rheumatologist or a laboratory technician, and to facilitate computerized analysis.
Hybrid excitations due to crystal field, spin-orbit coupling, and spin waves in LiFePO 4
Yiu, Yuen; Le, Manh Duc; Toft-Peterson, Rasmus; ...
2017-03-09
Here, we report on the spin waves and crystal field excitations in single crystal LiFePO 4 by inelastic neutron scattering over a wide range of temperatures, below and above the antiferromagnetic transition of this system. In particular, we find extra excitations below T N = 50 K that are nearly dispersionless and are most intense around magnetic zone centers. Furthermore, we show that these excitations correspond to transitions between thermally occupied excited states of Fe 2 + due to splitting of the S = 2 levels that arise from the crystal field and spin-orbit interactions. These excitations are further amplifiedmore » by the highly distorted nature of the oxygen octahedron surrounding the iron atoms. Above T N , magnetic fluctuations are observed up to at least 720 K, with an additional inelastic excitation around 4 meV, which we attribute to single-ion effects, as its intensity weakens slightly at 720 K compared to 100 K, which is consistent with the calculated cross sections using a single-ion model. This theoretical analysis, using the MF-RPA model, provides both detailed spectra of the Fe d shell and estimates of the average ordered magnetic moment and T N . By applying the MF-RPA model to a number of existing spin-wave results from other Li M PO 4 ( M = Mn , Co, and Ni), we are able to obtain reasonable predictions for the moment sizes and transition temperatures.« less
NASA Astrophysics Data System (ADS)
Gnutek, P.; Y Yang, Z.; Rudowicz, C.
2009-11-01
The local structure and the spin Hamiltonian (SH) parameters, including the zero-field-splitting (ZFS) parameters D and (a+2F/3), and the Zeeman g factors g_{\\parallel } and g_{\\perp } , are theoretically investigated for the FeK3+-OI2- center in KTaO3 crystal. The microscopic SH (MSH) parameters are modeled within the framework of the crystal field (CF) theory employing the CF analysis (CFA) package, which also incorporates the MSH modules. Our approach takes into account the spin-orbit interaction as well as the spin-spin and spin-other-orbit interactions omitted in previous studies. The superposition model (SPM) calculations are carried out to provide input CF parameters for the CFA/MSH package. The combined SPM-CFA/MSH approach is used to consider various structural models for the FeK3+-OI2- defect center in KTaO3. This modeling reveals that the off-center displacement of the Fe3+ ions, Δ1(Fe3+), combined with an inward relaxation of the nearest oxygen ligands, Δ2(O2-), and the existence of the interstitial oxygen OI2- give rise to a strong tetragonal crystal field. This finding may explain the large ZFS experimentally observed for the FeK3+-OI2- center in KTaO3. Matching the theoretical MSH predictions with the available structural data as well as electron magnetic resonance (EMR) and optical spectroscopy data enables predicting reasonable ranges of values of Δ1(Fe3+) and Δ2(O2-) as well as the possible location of OI2- ligands around Fe3+ ions in KTaO3. The defect structure model obtained using the SPM-CFA/MSH approach reproduces very well the ranges of the experimental SH parameters D, g_{\\parallel } and g_{\\perp } and importantly yields not only the correct magnitude of D but also the sign, unlike previous studies. More reliable predictions may be achieved when experimental data on (a+2F/3) and/or crystal field energy levels become available. Comparison of our results with those arising from alternative models existing in the literature indicates considerable advantages of our method and presumably higher reliability of our predictions.
AOM reconciling of crystal field parameters for UCl 3, UBr 3, UI 3 series
NASA Astrophysics Data System (ADS)
Gajek, Z.; Mulak, J.
1990-07-01
Available inelastic neutron scattering interpretations of crystal field effect in the uranium trihalides have been verified in terms of Angular Overlap Model. For UCl 3 a good reconciling of both INS and optical interpretations of crystal field effect has been obtained. On the contrary, the parameterizations for UBr 3 and UI 3 were found to be highly artificial and suggestion is given to experimentalists to reinterpret their INS spectra.
Yago, Tomoaki; Link, Gerhard; Kothe, Gerd; Lin, Tien-Sung
2007-09-21
Pulsed electron nuclear double resonance (ENDOR) using a modified Davies-type [Phys. Lett. 47A, 1 (1974)] sequence is employed to study the hyperfine (HF) structure of the photoexcited triplet state of pentacene dispersed in protonated and deuterated p-terphenyl single crystals. The strong electron spin polarization and long phase memory time of triplet pentacene enable us to perform the ENDOR measurements on the S=1 spin system at room temperature. Proton HF tensor elements and spin density values of triplet pentacene are extracted from a detailed angular-dependent study in which the orientation of the magnetic field is varied systematically in two different pentacene planes. Analysis reveals that the pentacene molecule is no longer planar in the p-terphenyl host lattice. The distortion is more pronounced in the deuterated crystal where the unit cell dimensions are slightly smaller than those of the protonated crystal.
Mikhailov, A M; Smirnova, E A; Tsuprun, V L; Tagunova, I V; Vainshtein, B K; Linkova, E V; Komissarov, A A; Siprashvili, Z Z; Mironov, A S
1992-03-01
Uridine phosphorylase (UPH) from Escherichia coli K-12 has been purified to near homogeneity from a strain harbouring the udp gene, encoding UPH, on a multicopy plasmid. UPH was purified to electrophoretic homogeneity with the specific activity 230 units/mg with a recovery of 80%, yielding 120 mg of enzyme from 3g cells. Crystals of enzyme suitable for X-ray diffraction analysis were obtained in a preparative ultracentrifuge. The packing of the molecules in the crystals may be described by the space group P2(1)2(1)2(1) with the unit cell constants a = 90.4; b = 128.8; c = 136.8 A. There is one molecule per asymmetric unit, Vm = 2.4. These crystals diffract to at least 2.5-2.7 A resolution. The hexameric structure of UPH was directly demonstrated by electron microscopy study and image processing.
Synthesis and structural characterization of bulk Sb2Te3 single crystal
NASA Astrophysics Data System (ADS)
Sultana, Rabia; Gahtori, Bhasker; Meena, R. S.; Awana, V. P. S.
2018-05-01
We report the growth and characterization of bulk Sb2Te3 single crystal synthesized by the self flux method via solid state reaction route from high temperature melt (850˚C) and slow cooling (2˚C/hour) of constituent elements. The single crystal X-ray diffraction pattern showed the 00l alignment and the high crystalline nature of the resultant sample. The rietveld fitted room temperature powder XRD revealed the phase purity and rhombohedral structure of the synthesized crystal. The formation and analysis of unit cell structure further verified the rhombohedral structure composed of three quintuple layers stacked one over the other. The SEM image showed the layered directional growth of the synthesized crystal carried out using the ZEISS-EVOMA-10 scanning electron microscope The electrical resistivity measurement was carried out using the conventional four-probe method on a quantum design Physical Property Measurement System (PPMS). The temperature dependent electrical resistivity plot for studied Sb2Te3 single crystal depicts metallic behaviour in the absence of any applied magnetic field. The synthesis as well as the structural characterization of as grown Sb2Te3 single crystal is reported and discussed in the present letter.
Space-time crystals of trapped ions.
Li, Tongcang; Gong, Zhe-Xuan; Yin, Zhang-Qi; Quan, H T; Yin, Xiaobo; Zhang, Peng; Duan, L-M; Zhang, Xiang
2012-10-19
Spontaneous symmetry breaking can lead to the formation of time crystals, as well as spatial crystals. Here we propose a space-time crystal of trapped ions and a method to realize it experimentally by confining ions in a ring-shaped trapping potential with a static magnetic field. The ions spontaneously form a spatial ring crystal due to Coulomb repulsion. This ion crystal can rotate persistently at the lowest quantum energy state in magnetic fields with fractional fluxes. The persistent rotation of trapped ions produces the temporal order, leading to the formation of a space-time crystal. We show that these space-time crystals are robust for direct experimental observation. We also study the effects of finite temperatures on the persistent rotation. The proposed space-time crystals of trapped ions provide a new dimension for exploring many-body physics and emerging properties of matter.
Study of crystal-field interaction in magnetic frustrated lead pyrochlore Gd2Pb2O7
NASA Astrophysics Data System (ADS)
Swarnakar, D.; Jana, Y. M.
2018-05-01
A fine tuning between the crystal field and the molecular field to adopt unique ground state in frustrated magnetic R2M2O7 pyrochlores structures is made by the variation of chemical pressure at R-site caused by substitution of nonmagnetic cation of M-site. Existence of larger cation at M-site increases the lattice parameter or nearest-neighbor bond distance between magnetic R-spins, and causes subtle changes to the local oxygen environment surrounding each R-ion, thereby reduces the chemical pressure at R-site which leads to a dramatic change in the crystal-field and molecular field. To investigate the effect of chemical pressure, the experimental results of powder magnetic susceptibility and isothermal magnetization of the frustrated compound Gd2Pb2O7 containing largest cation, e.g. lead (Pb), at M4+-sites were simulated and analyzed employing a D3d crystal-field (CF) and anisotropic molecular field at R-sites in the self- consistent mean-field approach. The second-ordered axial parameter B20 and total CF splitting of the ground multiplet Gd-ion in Gd2Pb2O7 are 477 cm-1 and 4.8 cm-1 respectively which are the lowest among their isomorphous counterparts, implying reduced effect of the crystal-field at Gd site in Gd2Pb2O7.
Study on the temperature field of large-sized sapphire single crystal furnace
NASA Astrophysics Data System (ADS)
Zhai, J. P.; Jiang, J. W.; Liu, K. G.; Peng, X. B.; Jian, D. L.; Li, I. L.
2018-01-01
In this paper, the temperature field of large-sized (120kg, 200kg and 300kg grade) sapphire single crystal furnace was simulated. By keeping the crucible diameter ratio and the insulation system unchanged, the power consumption, axial and radial temperature gradient, solid-liquid surface shape, stress distribution and melt flow were studied. The simulation results showed that with the increase of the single crystal furnace size, the power consumption increased, the temperature field insulation effect became worse, the growth stress value increased and the stress concentration phenomenon occurred. To solve these problems, the middle and bottom insulation system should be enhanced during designing the large-sized sapphire single crystal furnace. The appropriate radial and axial temperature gradient was favorable to reduce the crystal stress and prevent the occurrence of cracking. Expanding the interface between the seed and crystal was propitious to avoid the stress accumulation phenomenon.
NASA Astrophysics Data System (ADS)
Glushkova, Anastasia V.; Poimanova, Elena Yu.; Bruevich, Vladimir V.; Luponosov, Yuriy N.; Ponomarenko, Sergei A.; Paraschuk, Dmitry Yu.
2017-08-01
Thiophene-phenylene co-oligomers (TPCO) single crystals are promising materials for organic light-emitting devices, e.g., light-emitting transistors (OLETs), due to their ability to combine high luminescence and efficient charge transport. However, optical confinement in platy single crystals strongly decreases light emission from their top surface degrading the device performance. To avoid optical waveguiding, single crystals thinner than 100 nm would be beneficial. Herein, we report on solution-processed ultrathin single crystals of TPCO and study their charge transport properties. As materials we used 1,4-bis(5'-hexyl-2,2'-bithiophene-5-yl)benzene (DH-TTPTT) and 1,4-bis(5'-decyl-2,2'-bithiophene-5-yl)benzene (DD-TTPTT). The ultrathin single crystals were studied by optical polarization, atomic-force, and transmission electron microscopies, and as active layers in organic field effect transistors (OFET). The OFET hole mobility was increased tenfold for the oligomer with longer alkyl substituents (DD-TTPTT) reaching 0.2 cm2/Vs. Our studies of crystal growth indicate that if the substrate is wetted, it has no significant effect on the crystal growth. We conclude that solution-processed ultrathin TPCO single crystals are a promising platform for organic optoelectronic field-effect devices.
Magnetic assembly of nonmagnetic particles into photonic crystal structures.
He, Le; Hu, Yongxing; Kim, Hyoki; Ge, Jianping; Kwon, Sunghoon; Yin, Yadong
2010-11-10
We report the rapid formation of photonic crystal structures by assembly of uniform nonmagnetic colloidal particles in ferrofluids using external magnetic fields. Magnetic manipulation of nonmagnetic particles with size down to a few hundred nanometers, suitable building blocks for producing photonic crystals with band gaps located in the visible regime, has been difficult due to their weak magnetic dipole moment. Increasing the dipole moment of magnetic holes has been limited by the instability of ferrofluids toward aggregation at high concentration or under strong magnetic field. By taking advantage of the superior stability of highly surface-charged magnetite nanocrystal-based ferrofluids, in this paper we have been able to successfully assemble 185 nm nonmagnetic polymer beads into photonic crystal structures, from 1D chains to 3D assemblies as determined by the interplay of magnetic dipole force and packing force. In a strong magnetic field with large field gradient, 3D photonic crystals with high reflectance (83%) in the visible range can be rapidly produced within several minutes, making this general strategy promising for fast creation of large-area photonic crystals using nonmagnetic particles as building blocks.
NASA Technical Reports Server (NTRS)
Ramachandran Narayanan; Mazuruk, Konstantin
1998-01-01
The use of a rotating magnetic field for stirring metallic melts has been a commonly adopted practice for a fairly long period. The elegance of the technique stems from its non-intrusive nature and the intense stirring it can produce in an electrically conducting medium. A further application of the method in recent times has been in the area of crystal growth from melts (e.g. germanium). The latter experiments have been mainly research oriented in order to understand the basic physics of the process and to establish norms for optimizing such a technique for the commercial production of crystals. When adapted for crystal growth applications, the rotating magnetic field is used to induce a slow flow or rotation in the melt which in effect significantly curtails temperature field oscillations in the melt. These oscillations are known to cause dopant striations and thereby inhomogeneities in the grown crystal that essentially degrades the crystal quality. The applied field strength is typically of the order of milli-Teslas with a frequency range between 50-400 Hz. In this investigation, we report findings from experiments that explore the feasibility of applying a rotating magnetic field to aqueous salt solutions, that are characterized by conductivities that are several orders of magnitude smaller than semi-conductor melts. The aim is to study the induced magnetic field and consequently the induced flow in such in application. Detailed flow field description obtained through non-intrusive particle displacement tracking will be reported along with an analytical assessment of the results. It is anticipated that the obtained results will facilitate in establishing a parameter range over which the technique can be applied to obtain a desired flow field distribution. This method can find applicability in the growth of crystals from aqueous solutions and give an experimenter another controllable parameter towards improving the quality of the grown crystal.
Electromagnetic Field Effects in Semiconductor Crystal Growth
NASA Technical Reports Server (NTRS)
Dulikravich, George S.
1996-01-01
This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed.
Nucleated Poly(L-lactic acid) with N, N‧-oxalyl bis(benzoic acid) dihydrazide
NASA Astrophysics Data System (ADS)
Tian, Liang-Liang; Cai, Yan-Hua
2018-04-01
One of the major challenges in the field of Poly(L-lactic acid) (PLLA) is the enhancement of crystallization. In the present work, the evaluation of the influence of N, N‧-oxalyl bis(benzoic acid) dihydrazide (TBOD), as a novel organic nucleating agent, on the non-isothermal crystallization, melting behavior, and thermal stability of PLLA was performed using differential scanning calorimeter and thermogravimetric analysis. Non-isothermal crystallization measurement revealed that TBOD had an excellent accelerating effect for the crystallization of PLLA in cooling, and upon the addition of 3 wt% TBOD, PLLA exhibited the highest onset crystallization temperature and the crystallization peak temperature, as well as the largest non-isothermal crystallization enthalpy. In particular, when the TBOD concentration was 1 wt% ∼ 3 wt%, the onset crystallization temperatures were higher than the theoretical ceiling temperature of crystallization, thoroughly demonstrating the powerful crystallization promoting ability of TBOD. Additionally, the non-isothermal crystallization behavior of PLLA/TBOD depended on the TBOD concentration, cooling rate as well as the final melting temperature. The melting behavior of PLLA/TBOD after non-isothermal crystallization further confirmed the effect of TBOD on the crystallization process and crystal structure of PLLA, and the appearance of the double melting peaks during melting stages was attribute to the melting-recrystallization. For melting behavior after isothermal crystallization, the crystallization temperature and crystallization time significantly affected the melting behavior of PLLA/TBOD. The addition of TBOD could not change the thermal decomposition profile of the PLLA, but the thermal stability did not regularly decrease with increasing of TBOD concentration, indicating that there might exist intermolecular interaction between PLLA and TBOD.
The use of magnetic fields in vertical Bridgman/Gradient Freeze-type crystal growth
NASA Astrophysics Data System (ADS)
Pätzold, Olf; Niemietz, Kathrin; Lantzsch, Ronny; Galindo, Vladimir; Grants, Ilmars; Bellmann, Martin; Gerbeth, Gunter
2013-03-01
This paper outlines advanced vertical Bridgman/Gradient Freeze techniques with flow control using magnetic fields developed for the growth of semiconductor crystals. Low-temperature flow modelling, as well as laboratory-scaled crystal growth under the influence of rotating, travelling, and static magnetic fields are presented. Experimental and numerical flow modelling demonstrate the potential of the magnetic fields to establish a well-defined flow for tailoring heat and mass transfer in the melt during growth. The results of the growth experiments are discussed with a focus on the influence of a rotating field on the segregation of dopants, the influence of a travelling field on the temperature field and thermal stresses, and the potential of rotating and static fields for a stabilization of the melt flow.
Process for Encapsulating Protein Crystals
NASA Technical Reports Server (NTRS)
Morrison, Dennis R.; Mosier, Benjamin
2003-01-01
A process for growing protein crystals encapsulated within membranes has been invented. This process begins with the encapsulation of a nearly saturated aqueous protein solution inside semipermeable membranes to form microcapsules. The encapsulation is effected by use of special formulations of a dissolved protein and a surfactant in an aqueous first liquid phase, which is placed into contact with a second, immiscible liquid phase that contains one or more polymers that are insoluble in the first phase. The second phase becomes formed into the semipermeable membranes that surround microglobules of the first phase, thereby forming the microcapsules. Once formed, the microcapsules are then dehydrated osmotically by exposure to a concentrated salt or polymer solution. The dehydration forms supersaturated solutions inside the microcapsules, thereby enabling nucleation and growth of protein crystals inside the microcapsules. By suitable formulation of the polymer or salt solution and of other physical and chemical parameters, one can control the rate of transport of water out of the microcapsules through the membranes and thereby create physicochemical conditions that favor the growth, within each microcapsule, of one or a few large crystals suitable for analysis by x-ray diffraction. The membrane polymer can be formulated to consist of low-molecular-weight molecules that do not interfere with the x-ray diffraction analysis of the encapsulated crystals. During dehydration, an electrostatic field can be applied to exert additional control over the rate of dehydration. This protein-crystal-encapsulation process is expected to constitute the basis of protein-growth experiments to be performed on the space shuttle and the International Space Station. As envisioned, the experiments would involve the exposure of immiscible liquids to each other in sequences of steps under microgravitational conditions. The experiments are expected to contribute to knowledge of the precise conditions under which protein crystals form. By enhancing the ability to grow crystals suitable for x-ray diffraction analysis, this knowledge can be expected to benefit not only the space program but also medicine and the pharmaceutical industry.
Wide-view transflective liquid crystal display for mobile applications
NASA Astrophysics Data System (ADS)
Kim, Hyang Yul; Ge, Zhibing; Wu, Shin-Tson; Lee, Seung Hee
2007-12-01
A high optical efficiency and wide-view transflective liquid crystal display based on fringe-field switching structure is proposed. The transmissive part has a homogenous liquid crystal (LC) alignment and is driven by a fringe electric field, which exhibits excellent electro-optic characteristics. The reflective part has a hybrid LC alignment with quarter-wave phase retardation and is also driven by a fringe electric field. Consequently, the transmissive and reflective parts have similar gamma curves.
NASA Astrophysics Data System (ADS)
Su, P.; Ma, C.-G.; Brik, M. G.; Srivastava, A. M.
2018-05-01
In this paper, a brief retrospective review of the main developments in crystal field theory is provided. We have examined how different crystal field models are applied to solve the problems that arise in the spectroscopy of optically active ions. Attention is focused on the joint application of crystal field and density functional theory (DFT) based models, which takes advantages of strong features of both individual approaches and allows for obtaining a complementary picture of the electronic properties of a doped crystal with impurity energy levels superimposed onto the host band structure.
Broadband continuous-variable entanglement source using a chirped poling nonlinear crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J. S.; Sun, L.; Yu, X. Q.
2010-01-15
Aperiodically poled nonlinear crystal can be used as a broadband continuous-variable entanglement source and has strong stability under perturbations. We study the conversion dynamics of the sum-frequency generation and the quantum correlation of the two pump fields in a chirped-structure nonlinear crystal using the quantum stochastic method. The results show that there exists a frequency window for the pumps where two optical fields can perform efficient upconversion. The two pump fields are demonstrated to be entangled in the window and the chirped-structure crystal can be used as a continuous-variable entanglement source with a broad response bandwidth.
Radiation of X-Rays Using Uniaxially Polarized LiNbO3 Single Crystal
NASA Astrophysics Data System (ADS)
Fukao, Shinji; Nakanishi, Yoshikazu; Mizoguchi, Tadahiro; Ito, Yoshiaki; Nakamura, Toru; Yoshikado, Shinzo
2009-03-01
X-rays are radiated due to the bremsstrahlung caused by the collision of electrons with a metal target placed opposite the negative electric surface of a crystal by changing the temperature of a LiNbO3 single crystal uniaxially polarized in the c-axis direction. It is suggested that both electric field intensity and electron density determine the intensity of X-ray radiation. Electrons are supplied by the ionization of residual gas in space, field emission from a case inside which a crystal is located, considered to be due to the high electric-field intensity formed by the surface charges on the crystal, and an external electron source, such as a thermionic source. In a high vacuum, it was found that the electrons supplied by electric-field emission mainly contribute to the radiation of X-rays. It was found that the integrated intensity of X-rays can be maximized by supplying electrons both external and by electric-field emission. Furthermore, the integrated intensity of the X-rays is stable for many repeated temperature changes.
Method of bonding single crystal quartz by field-assisted bonding
Curlee, R.M.; Tuthill, C.D.; Watkins, R.D.
1991-04-23
The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals. 2 figures.
Method of bonding single crystal quartz by field-assisted bonding
Curlee, Richard M.; Tuthill, Clinton D.; Watkins, Randall D.
1991-01-01
The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahle, Markus, E-mail: markus.wahle@uni-paderborn.de; Kitzerow, Heinz-Siegfried
2015-11-16
We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue ormore » red shifted depending on the frequency of the applied voltage.« less
Spin-Orbit Qubits of Rare-Earth-Metal Ions in Axially Symmetric Crystal Fields
NASA Astrophysics Data System (ADS)
Bertaina, S.; Shim, J. H.; Gambarelli, S.; Malkin, B. Z.; Barbara, B.
2009-11-01
Contrary to the well-known spin qubits, rare-earth-metal qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground state which nutates (for several μs) and the Rabi frequency ΩR is anisotropic. Here, we present a study of the variations of ΩR(H→0) with the magnitude and direction of the static magnetic field H→0 for the odd Er167 isotope in a single crystal CaWO4:Er3+. The hyperfine interactions split the ΩR(H→0) curve into eight different curves which are fitted numerically and described analytically. These “spin-orbit qubits” should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.
Spin-orbit qubits of rare-earth-metal ions in axially symmetric crystal fields.
Bertaina, S; Shim, J H; Gambarelli, S; Malkin, B Z; Barbara, B
2009-11-27
Contrary to the well-known spin qubits, rare-earth-metal qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground state which nutates (for several micros) and the Rabi frequency Omega(R) is anisotropic. Here, we present a study of the variations of Omega(R)(H(0)) with the magnitude and direction of the static magnetic field H(0) for the odd 167Er isotope in a single crystal CaWO(4):Er(3+). The hyperfine interactions split the Omega(R)(H(0)) curve into eight different curves which are fitted numerically and described analytically. These "spin-orbit qubits" should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.
Thermodynamics around the first-order ferromagnetic phase transition of Fe2P single crystals
NASA Astrophysics Data System (ADS)
Hudl, M.; Campanini, D.; Caron, L.; Höglin, V.; Sahlberg, M.; Nordblad, P.; Rydh, A.
2014-10-01
The specific heat and thermodynamics of Fe2P single crystals around the first-order paramagnetic to ferromagnetic (FM) phase transition at TC≃217 K are empirically investigated. The magnitude and direction of the magnetic field relative to the crystal axes govern the derived H -T phase diagram. Strikingly different phase contours are obtained for fields applied parallel and perpendicular to the c axis of the crystal. In parallel fields, the FM state is stabilized, while in perpendicular fields the phase transition is split into two sections, with an intermediate FM phase where there is no spontaneous magnetization along the c axis. The zero-field transition displays a textbook example of a first-order transition with different phase stability limits on heating and cooling. The results have special significance since Fe2P is the parent material to a family of compounds with outstanding magnetocaloric properties.
Role of Er3+ concentration in high-resolution spectra of BaY2 F8 single crystals
NASA Astrophysics Data System (ADS)
Baraldi, A.; Capelletti, R.; Mazzera, M.; Ponzoni, A.; Amoretti, G.; Magnani, N.; Toncelli, A.; Tonelli, M.
2005-08-01
Fourier transform absorption spectroscopy with a resolution as fine as 0.02cm-1 was applied to Er3+ -doped monoclinic BaY2F8 laser crystals in a wide wave number range (500-24000cm-1) and in the temperature range 9-300 K. The careful analysis of the complex narrow line spectra induced by Er3+ allowed us to determine with high accuracy the crystal field splitting of the fundamental I15/24 and of the excited I13/24 , I11/24 , I9/24 , F9/24 , S3/24 , H11/22 , F7/24 , F5/24 , and F3/24 manifolds. On the basis of the experimental data, the crystal-field parameters were determined and Newman’s superposition model was applied: in this way a slight displacement of Er3+ with respect to the Y3+ position was foreseen. The Judd-Ofelt parameters were evaluated: the lifetime values deduced from them were compared to the experimental ones and discussed. The effects caused by increasing Er3+ concentrations (0.5%, 2%, 12%, and 20% atomic fraction) were studied in detail. The new lines, the line broadening, and the line-shape changes were explained in terms of Er3+-Er3+ interaction.
Numerical Optimization of the Thermal Field in Bridgman Detached Growth
NASA Technical Reports Server (NTRS)
Stelian, C.; Volz, M. P.; Derby, J. J.
2009-01-01
The global modeling of the thermal field in two vertical Bridgman-like crystal growth configurations, has been performed to get optimal thermal conditions for a successful detached growth of Ge and CdTe crystals. These computations are performed using the CrysMAS code and expand upon our previous analysis [1] that propose a new mechanism involving the thermal field and meniscus position to explain stable conditions for dewetted Bridgman growth. The analysis of the vertical Bridgman configuration with two heaters, used by Palosz et al. for the detached growth of Ge, shows, consistent with their results, that the large wetting angle of germanium on boron nitride surfaces was an important factor to promote a successful detached growth. Our computations predict that by initiating growth much higher into the hot zone of the furnace, the thermal conditions will be favorable for continued detachment even for systems that did not exhibit high contact angles. The computations performed for a vertical gradient freeze configuration with three heaters representative of that used for the detached growth of CdTe, show favorable thermal conditions for dewetting during the entirely growth run described. Improved thermal conditions are also predicted for coated silica crucibles when the solid-liquid interface advances higher into the hot zone during the solidification process. The second set of experiments on CdTe growth described elsewhere has shown the reattachment of the crystal to the crucible after few centimeters of dewetted growth. The thermal modeling of this configuration shows a second solidification front appearing at the top of the sample and approaching the middle line across the third heater. In these conditions, the crystal grows detached from the bottom, but will be attached to the crucible in the upper part because of the solidification without gap in this region. The solidification with two interfaces can be avoided when the top of the sample is positioned below the middle position of the third furnace.
Spectroscopic properties of K 5Li 2UF 10
NASA Astrophysics Data System (ADS)
Karbowiak, M.; Gajek, Z.; Drożdżyński, J.
2005-04-01
A new uranium (III) fluoro-complex of the formula K 5Li 2UF 10 has been synthesised and characterised by X-ray powder diffraction and electronic absorption spectra measurements. The compound crystallises in the orthorhombic system, space group Pnma, with a = 20.723, b = 7.809, c = 6.932 Å, V = 1121.89 Å 3, Z = 4 and is isostructural with its K 5Li 2NdF 10 and K 5Li 2LaF 10 analogous. The absorption spectrum of a polycrystalline sample of K 5Li 2UF 10 was recorded at 4.2 K in the 3500-45,000 cm -1 range and is discussed. The observed crystal-field levels were assigned and fitted to parameters of the simplified angular overlap model (AOM) and next to those of a semi-empirical Hamiltonian, which was representing the combined atomic and one-electron crystal-field interactions. The starting values of the AOM parameters were obtained from ab initio calculations. The analysis of the spectra enabled the assignment of 71 crystal-field levels of U 3+ with a relatively small r.m.s. deviation of 37 cm -1. The total splitting of 714 cm -1 was calculated for the 4I 9/2 ground multiplet.
Optical spectroscopy of lanthanide ions in ZnO-TeO2 glasses.
Rolli, R; Wachtler, K; Wachtler, M; Bettinelli, M; Speghini, A; Ajò, D
2001-09-01
Zinc tellurite glasses of compositions 19ZnO-80TeO2-1Ln2O3 with Ln = Eu, Er, Nd and Tm were prepared by melt quenching. The absorption spectra were measured and from the experimental oscillator strengths of the f-->f transitions the Judd-Ofelt parameters ohm(lambda) were obtained. The values of the ohm(lambda) parameters are in the range usually observed for oxide glasses. For Nd3+ and Er3+, luminescence spectra in the near infrared were measured and the stimulated emission cross sections sigma(p) were evaluated for some laser transitions. The high values of sigma(p), especially for Nd3+, make them possible candidates for optical applications. Fluorescence line narrowing (FLN) spectra of the Eu3+ doped glass were measured at 20 K, and the energies of the Stark components of the 7F1 and 7F2 states were obtained. A crystal field analysis was carried out assuming a C2v site symmetry. The behaviour of the crystal field ratios B22/B20 and B44/B40 agrees reasonably well with the values calculated using the geometric model proposed by Brecher and Riseberg. The crystal field strength at the Eu3+ sites appears to be very low compared to other oxide glasses.
NASA Astrophysics Data System (ADS)
Asano, Takanori; Takaishi, Riichiro; Oda, Minoru; Sakuma, Kiwamu; Saitoh, Masumi; Tanaka, Hiroki
2018-04-01
We visualize the grain structures for individual nanosized thin film transistors (TFTs), which are electrically characterized, with an improved data processing technique for the dark-field image reconstruction of nanobeam electron diffraction maps. Our individual crystal analysis gives the one-to-one correspondence of TFTs with different grain boundary structures, such as random and coherent boundaries, to the characteristic degradations of ON-current and threshold voltage. Furthermore, the local crystalline uniformity inside a single grain is detected as the difference in diffraction intensity distribution.
Silva, R S; de Melo, P B; Omena, L; Nunes, A M; da Silva, M G A; Meneghetti, M R; de Oliveira, I N
2017-12-01
The present study is devoted to the investigation of the nonlinear optical properties of a smectic liquid crystal doped with gold nanorods. Using the Z-scan technique, we investigate the changes in the optical birefringence of a homeotropic sample upon laser exposure, considering the configurations of normal and oblique incidence. Our results reveal that the birefringence variations may be governed by distinct physical mechanisms, depending on the relative angle between the far-field director and the wave vector of the excitation laser beam. In particular, we observe that the position dependence of the far-field transmittance exhibits different behaviors as the incidence angle is changed, indicating that distortions in the beam wavefront may be associated with the thermal lens phenomenon or an optically induced reorientation of the nematic director. The temperature dependence of the nonlinear refractive and absorptive coefficients is investigated close to the smectic-A-nematic phase transition. A detailed analysis of the interplay between smectic order and plasmon resonance is performed, thus unveiling the capability of plasmonic liquid crystal to be used in optical devices.
NASA Astrophysics Data System (ADS)
Silva, R. S.; de Melo, P. B.; Omena, L.; Nunes, A. M.; da Silva, M. G. A.; Meneghetti, M. R.; de Oliveira, I. N.
2017-12-01
The present study is devoted to the investigation of the nonlinear optical properties of a smectic liquid crystal doped with gold nanorods. Using the Z -scan technique, we investigate the changes in the optical birefringence of a homeotropic sample upon laser exposure, considering the configurations of normal and oblique incidence. Our results reveal that the birefringence variations may be governed by distinct physical mechanisms, depending on the relative angle between the far-field director and the wave vector of the excitation laser beam. In particular, we observe that the position dependence of the far-field transmittance exhibits different behaviors as the incidence angle is changed, indicating that distortions in the beam wavefront may be associated with the thermal lens phenomenon or an optically induced reorientation of the nematic director. The temperature dependence of the nonlinear refractive and absorptive coefficients is investigated close to the smectic-A -nematic phase transition. A detailed analysis of the interplay between smectic order and plasmon resonance is performed, thus unveiling the capability of plasmonic liquid crystal to be used in optical devices.
Phase-field study of grain boundary tracking behavior in crack-seal microstructures
NASA Astrophysics Data System (ADS)
Ankit, Kumar; Nestler, Britta; Selzer, Michael; Reichardt, Mathias
2013-12-01
In order to address the growth of crystals in veins, a multiphase-field model is used to capture the dynamics of crystals precipitating from a super-saturated solution. To gain a detailed understanding of the polycrystal growth phenomena in veins, we investigate the influence of various boundary conditions on crystal growth. In particular, we analyze the formation of vein microstructures resulting from the free growth of crystals as well as crack-sealing processes. We define the crystal symmetry by considering the anisotropy in surface energy to simulate crystals with flat facets and sharp corners. The resulting growth competition of crystals with different orientations is studied to deduce a consistent orientation selection rule in the free-growth regime. Using crack-sealing simulations, we correlate the grain boundary tracking behavior depending on the relative rate of crack opening, opening trajectory, initial grain size, and wall roughness. Further, we illustrate how these parameters induce the microstructural transition between blocky (crystals growing anisotropically) to fibrous morphology (isotropic) and formation of grain boundaries. The phase-field simulations of crystals in the free-growth regime (in 2D and 3D) indicate that the growth or consumption of a crystal is dependent on the orientation difference with neighboring crystals. The crack-sealing simulation results (in 2D and 3D) reveal that crystals grow isotropically and grain boundaries track the opening trajectory if the wall roughness is high, opening increments are small, and crystals touch the wall before the next crack increment starts. Further, we find that within the complete crack-seal regime, anisotropy in surface energy results in the formation of curved/oscillating grain boundaries (instead of straight) when the crack-opening velocity is increased and wall roughness is not sufficiently high. Additionally, the overall capability of phase-field method to simulate large-scale polycrystal growth in veins (in 3D) is demonstrated enumerating the main advantages of adopting the novel approach.
A simple proof of orientability in colored group field theory.
Caravelli, Francesco
2012-01-01
Group field theory is an emerging field at the boundary between Quantum Gravity, Statistical Mechanics and Quantum Field Theory and provides a path integral for the gluing of n-simplices. Colored group field theory has been introduced in order to improve the renormalizability of the theory and associates colors to the faces of the simplices. The theory of crystallizations is instead a field at the boundary between graph theory and combinatorial topology and deals with n-simplices as colored graphs. Several techniques have been introduced in order to study the topology of the pseudo-manifold associated to the colored graph. Although of the similarity between colored group field theory and the theory of crystallizations, the connection between the two fields has never been made explicit. In this short note we use results from the theory of crystallizations to prove that color in group field theories guarantees orientability of the piecewise linear pseudo-manifolds associated to each graph generated perturbatively. Colored group field theories generate orientable pseudo-manifolds. The origin of orientability is the presence of two interaction vertices in the action of colored group field theories. In order to obtain the result, we made the connection between the theory of crystallizations and colored group field theory.
Effective potentials in nonlinear polycrystals and quadrature formulae
NASA Astrophysics Data System (ADS)
Michel, Jean-Claude; Suquet, Pierre
2017-08-01
This study presents a family of estimates for effective potentials in nonlinear polycrystals. Noting that these potentials are given as averages, several quadrature formulae are investigated to express these integrals of nonlinear functions of local fields in terms of the moments of these fields. Two of these quadrature formulae reduce to known schemes, including a recent proposition (Ponte Castañeda 2015 Proc. R. Soc. A 471, 20150665 (doi:10.1098/rspa.2015.0665)) obtained by completely different means. Other formulae are also reviewed that make use of statistical information on the fields beyond their first and second moments. These quadrature formulae are applied to the estimation of effective potentials in polycrystals governed by two potentials, by means of a reduced-order model proposed by the authors (non-uniform transformation field analysis). It is shown how the quadrature formulae improve on the tangent second-order approximation in porous crystals at high stress triaxiality. It is found that, in order to retrieve a satisfactory accuracy for highly nonlinear porous crystals under high stress triaxiality, a quadrature formula of higher order is required.
Effective potentials in nonlinear polycrystals and quadrature formulae.
Michel, Jean-Claude; Suquet, Pierre
2017-08-01
This study presents a family of estimates for effective potentials in nonlinear polycrystals. Noting that these potentials are given as averages, several quadrature formulae are investigated to express these integrals of nonlinear functions of local fields in terms of the moments of these fields. Two of these quadrature formulae reduce to known schemes, including a recent proposition (Ponte Castañeda 2015 Proc. R. Soc. A 471 , 20150665 (doi:10.1098/rspa.2015.0665)) obtained by completely different means. Other formulae are also reviewed that make use of statistical information on the fields beyond their first and second moments. These quadrature formulae are applied to the estimation of effective potentials in polycrystals governed by two potentials, by means of a reduced-order model proposed by the authors (non-uniform transformation field analysis). It is shown how the quadrature formulae improve on the tangent second-order approximation in porous crystals at high stress triaxiality. It is found that, in order to retrieve a satisfactory accuracy for highly nonlinear porous crystals under high stress triaxiality, a quadrature formula of higher order is required.
NASA Astrophysics Data System (ADS)
Boso, Brian; Lang, George; Reed, Christopher A.
1983-03-01
Mössbauer spectra of a polycrystalline form of the six-coordinate high-spin ferrous compound (meso-tetraphenylporphinato) bis(tetrahydrofuran) iron (II) have been recorded over a range of temperatures (4.2-195 K) and magnetic fields (0-6.0 T). Analysis of the spectra using a phenomenological model of the internal magnetic field and using an S=2 spin Hamiltonian, where applicable, yield the sign of Vzz negative, η=0.4, D=6.0 cm-1, E/D=0.1, and Ã*/g*N βN =(-7.2, -7.2, and -24.3 T). These results suggest that the iron experiences an octahedral crystal field, trigonally distorted in the (1, 1, 1) direction, producing a prolate orbital dz2 as the ground state. Crystal field calculations confirm this interpretation by reproducing the spin Hamiltonian parameters listed above. The calculation predicts an orbital doublet 1667 cm-1 above the ground state. Comparisons with deoxyheme proteins and their synthetic analogs suggest some common gross features of the orbital state and structure-related trends in the character of the ground quintet.
Impact of Heterogeneity and Lattice Bond Strength on DNA Triangle Crystal Growth.
Stahl, Evi; Praetorius, Florian; de Oliveira Mann, Carina C; Hopfner, Karl-Peter; Dietz, Hendrik
2016-09-07
One key goal of DNA nanotechnology is the bottom-up construction of macroscopic crystalline materials. Beyond applications in fields such as photonics or plasmonics, DNA-based crystal matrices could possibly facilitate the diffraction-based structural analysis of guest molecules. Seeman and co-workers reported in 2009 the first designed crystal matrices based on a 38 kDa DNA triangle that was composed of seven chains. The crystal lattice was stabilized, unprecedentedly, by Watson-Crick base pairing. However, 3D crystallization of larger designed DNA objects that include more chains such as DNA origami remains an unsolved problem. Larger objects would offer more degrees of freedom and design options with respect to tailoring lattice geometry and for positioning other objects within a crystal lattice. The greater rigidity of multilayer DNA origami could also positively influence the diffractive properties of crystals composed of such particles. Here, we rationally explore the role of heterogeneity and Watson-Crick interaction strengths in crystal growth using 40 variants of the original DNA triangle as model multichain objects. Crystal growth of the triangle was remarkably robust despite massive chemical, geometrical, and thermodynamical sample heterogeneity that we introduced, but the crystal growth sensitively depended on the sequences of base pairs next to the Watson-Crick sticky ends of the triangle. Our results point to weak lattice interactions and high concentrations as decisive factors for achieving productive crystallization, while sample heterogeneity and impurities played a minor role.
Synthesis, crystal growth, characterization and theoretical studies of 4-aminobenzophenonium picrate
NASA Astrophysics Data System (ADS)
Aditya Prasad, A.; Muthu, K.; Rajasekar, M.; Meenatchi, V.; Meenakshisundaram, S. P.
2015-01-01
Single crystals of 4-aminobenzophenonium picrate (4ABPP) were grown by slow evaporation of a mixed solvent system methanol-acetone (1:1,v/v) containing equimolar quantities of picric acid and 4-aminobenzophenone. The proton and carbon signals are confirmed by nuclear magnetic resonance spectroscopy. The various functional groups present in the molecule are identified by FT-IR analysis. Optimized geometry, first-order molecular hyperpolarizability (β), polarizability (α), bond length, bond angles and excited state energy from theoretical UV were derived by Hartree-Fock calculations. The complete assignment of the vibrational modes for 4-aminobenzophenonium picrate was performed by the scaled quantum mechanics force field (SQMFF) methodology using potential energy distribution. Natural bond orbital (NBO) calculations were employed to study the stabilities arising from charge delocalization and intermolecular interactions of 4ABPP. The atomic charge distributions of the various atoms present in 4ABPP are obtained by Mulliken charge population analysis. The as-grown crystal is further characterized by thermal and optical absorbance studies.
Magneto- to electroactive transmutation of spin waves in ErMnO3.
Chaix, L; de Brion, S; Petit, S; Ballou, R; Regnault, L-P; Ollivier, J; Brubach, J-B; Roy, P; Debray, J; Lejay, P; Cano, A; Ressouche, E; Simonet, V
2014-04-04
The low-energy dynamical properties of the multiferroic hexagonal perovskite ErMnO3 have been studied by inelastic neutron scattering as well as terahertz and far infrared spectroscopies on a synchrotron source. From these complementary techniques, we have determined the magnon and crystal field spectra and identified a zone center magnon excitable only by the electric field of an electromagnetic wave. Using a comparison with the isostructural YMnO3 compound and crystal field calculations, we propose that this dynamical magnetoelectric process is due to the hybridization of a magnon with an electroactive crystal field transition.
NASA Astrophysics Data System (ADS)
Mašlejová, Anna; Boča, Roman; Dlháň, L.'ubor; Herchel, Radovan
2004-05-01
The zero-field splitting in nickel(II) complexes was modeled by considering all relevant operators (electron repulsion, crystal-field, spin-orbit coupling, orbital-Zeeman, and spin-Zeeman) in the complete basis set spanned by d n-atomic terms. D-values between weak and strong crystal field limits were evaluated from the crystal-field multiplets as well as using the spin Hamiltonian formalism. Importance of the anisotropic orbital reduction factors is discussed and exemplified by D/hc=-22 cm-1 as subtracted from magnetic data for [Ni(imidazole) 4(acetate) 2] complex.
Microscopic study of crystal growth in cryopreservation agent solutions and water.
Tao, Le-Ren; Hua, Tse-Chao
2002-10-01
Ice formation inside or outside cells during cryopreservation is evidently the main factor of cryoinjury to cells. In the study described here a high voltage DC electric field and a cryomicroscopic stage were used to test DMSO and NaCl solutions under electric field strengths ranging from 83 kV/m to 320 kV/m. Dendritic ice crystals became asymmetric when the electric field was activated. This change in the ice crystal shape was more pronounced in the ionic NaCl solution. In addition, ice growth of distilled water without an electric field was tested under different cooling rates.
NASA Astrophysics Data System (ADS)
Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan
2016-06-01
Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings.
Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan
2016-01-01
Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings. PMID:27356625
NASA Astrophysics Data System (ADS)
Dul'kin, E.; Kojima, S.; Roth, M.
2018-01-01
[001] oriented Sr0.75Ba0.25Nb2O6 uniaxial relaxor ferroelectric crystals have been studied by acoustic emission in the temperature range of 20÷200 °C and under an external electric field up to 1 kV/cm. Under the application of an electric field the temperature of a dielectric maximum exhibits a nontrivial behavior: it remains constant at first, secondly steep decreases down to some threshold field, and thirdly starts to increase as a field enhances, whereas the same temperature of a dielectric maximum under a bias electric field to [100] oriented Sr0.75Ba0.25Nb2O6 crystals exhibits a smoothed minimum before the start to increase as a field enhances (E. Dul'kin et al., J. Appl. Phys. 110, 044106 (2011)). Such a difference of electric field effects in c- and a-cut crystals is discussed from the viewpoint of random-bond-random-field model of relaxor ferroelectrics. By the comparison between experimental and theoretical data, a dipole moment of the PNR was estimated to be 0.1 (C cm).
Er Effect of Low Molecular Liquid Crystal on One-Sided Patterned Electrodes
NASA Astrophysics Data System (ADS)
Kikuchi, Takehito; Inoue, Akio; Furusho, Junji; Kawamuki, Ryohei
Several kinds of ER fluids (ERF) have been developed and have been applied to some mechatronics devices and processing technologies. In many conventional applications of ERFs, these devices consist of bilateral electrodes to apply electric field in ERF. However, the electric field of several kV/mm may be necessary to generate an ER effect sufficiently for practical purposes. The gap between a pair of electrodes should be, therefore, maintained narrowly and exactly for fears of short-circuit. At the same time, this electrode system also requires an interconnection on driving parts. To improve these disadvantages, we proposed "one-sided patterned electrode" (OSPE) systems in previous works. In this report, we confirmed the flow characteristics of low molecular liquid crystal (LMLC) on OSPE. Next, we also confirmed the different characteristics depending on the pattern type. Depending on results of electro-static analysis, we conclude that such a difference may results from the directors of LC molecules derived by electric field.
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Volz, M. P.
1996-01-01
A unique growth cell was designed in which crossed electric and magnetic fields could be separately or simultaneously applied during semiconductor crystal growth. A thermocouple was inserted into an InSb melt inside the growth cell to examine the temperature response of the fluid to applied electromagnetic fields. A static magnetic field suppressed time-dependent convection when a destabilizing thermal field was applied. The simultaneous application of electric and magnetic fields resulted in forced convection in the melt. The InSb ingots grown in the cell were polycrystalline. An InGaSb crystal, 0.5 cm in diameter and 23-cm long, was grown without electromagnetic fields applied. The axial composition results indicated that complete mixing in the melt occurred for this large aspect ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chizhov, P A; Ushakov, A A; Bukin, V V
2015-05-31
We propose a scheme for measuring the spatial distribution of the THz pulse electric field strength in an electro-optic crystal using optical interferometry. The resulting images of the field distribution from a test source with a spherical wave front are presented. (extreme light fields and their applications)
Wide-field-of-view nanoscale Bragg liquid crystal polarization gratings
NASA Astrophysics Data System (ADS)
Xiang, Xiao; Kim, Jihwan; Escuti, Michael J.
2018-02-01
Here, we demonstrate a liquid crystal (LC) polymer Bragg polarization grating (PG) with large angular band- width and high efficiency in transmission-mode for 532 nm wavelength and 400 nm period. The field-of-view (FOV ) is increased significantly while preserving high diffraction efficiency by realizing a monolithic grating comprising two different slants. Using rigorous coupled-wave analysis simulation, we identified a structure with 48° FOV and 70% average first-order efficiency. We then experimentally fabricated and characterized the grating with a photo-aligned LC polymer network, also known as reactive mesogens. We measured 40° FOV and nearly 80% average diffraction efficiency. With this broadened and fairly uniform angular response, this wide FOV Bragg PG is a compelling option for large deflection-angle applications, including near-eye display in augmented reality systems, waveguide based illumination, and beam steering.
Fatigue effect in ferroelectric crystals: Growth of the frozen domains
NASA Astrophysics Data System (ADS)
Shur, V. Ya.; Akhmatkhanov, A. R.; Baturin, I. S.
2012-06-01
The model of the fatigue effect during cyclic switching caused by growth of the frozen domain area with charged domain walls has been proposed. It was claimed on the basis of the previous experimental results that for switching in increasing field the frozen domain area started to grow at the given sub-threshold field value and stopped at the threshold field. The influence of the shape and frequency of the field pulses used for cyclic switching has been considered. The uniaxial ferroelectric stoichiometric lithium tantalate single crystals produced by vapor transport equilibration with record low value of coercive field have been chosen as a model material for experimental verification of the model. The formation of the charged domain walls as a result of cyclic switching has been revealed by analysis of the domain images obtained by optical and Raman confocal microscopy. It has been shown that the fatigue degree is equal to the fraction of the frozen domain area. The experimental dependence of the switched charge on the cycle number has been successfully fitted by modified Kolmogorov-Avrami formula. The experimentally observed frequency independence of fatigue profile for rectangular pulses and frequency dependence for triangular pulses has been explained by proposed model.
NASA Astrophysics Data System (ADS)
Stevens, K. M.; Krim, J.
2015-03-01
We present here a quartz crystal microbalance study of two-phase gold nickel alloys whose internal granular properties are probed by exposure to a fluctuating external magnetic field. The work is motivated by prior studies demonstrating that granular two-phase materials exhibited lower friction and wear than solid solution alloys with identical compositions. In particular, we report a ``flexing'' effect which appears when an external magnetic field is applied, and is manifested as a decrease in the magnitude of oscillation amplitude that is synchronized with the applied field; the effect is not seen on the complimentary solid solution samples. The effect is consistent with internal interfacial friction between nickel and gold grains, indicating a degree of freedom which may decrease friction even in the absence of an external magnetic field. This is supported through analysis of energy dissipation in the system, using the Butterworth-Van Dyke equivalent circuit model. Data and interpretation are also presented that rule out alternate explanations such as giant magnetoresistance and/or other resistive phenomenon within the film. Funding provided by NSF DMR0805204. Thanks to L. Pan for sample preparation.
NASA Astrophysics Data System (ADS)
Chen, Yongzhou; Zhang, Yong; Song, Xiaozhen; Shen, Ziqin; Zhang, Tianyuan
2018-05-01
Ferroelectric glass-ceramics, with a basic composition 90 wt.% (Ba0.65Sr0.35)TiO3-10 wt.% (B2O3-nSiO2) (n = 0.5, 1, 3, 5) were synthesized by the sol-gel method and their phase development and dielectric properties were investigated by differential thermal analysis, x-ray diffraction, field emission scanning electron microscopy, dielectric temperature curves and impedance spectroscopy. From the differential thermal analysis, glass transition and crystallization behavior can be observed. From the x-ray diffraction study, two crystalline phases (Ba,Sr)TiO3 and Ba2TiSi2O8 were formed over the entire composition range of the glass-ceramics. In addition, the main crystal phase has undergone a transformation from (Ba,Sr)TiO3 to Ba2TiSi2O8 with the increase of n. A typical structure in which the crystal phase was surrounded by a glassy matrix has been observed in the scanning electron microscope images. As a result of temperature dependent dielectric property measurements, the dielectric constant increased obviously with the increase of n from 0.5 to 1. Further increasing n led to a reduction of the dielectric constant, which is in coincidence with the variation of the intensity of (Ba,Sr)TiO3 phase with n. According to the impedance spectroscopy analysis and the activation energy calculation, the relaxation peak in both Z″ and M″ data should be attributed to the crystal-glass interface, and the change of conduction mechanism with the increase of SiO2/B2O3 ratio may be attributed to the corresponding transition of the main crystal phase.
Strongly coupled colloidal plasmas
NASA Astrophysics Data System (ADS)
Thomas, Hubertus M.; Morfill, Gregor E.; Konopka, Uwe; Rothermel, Hermann; Zuzic, Milenko
1998-11-01
The research of strongly coupled effects in colloidal plasmas started a few years ago with the discovery of the Coulomb crystallization of micron-sized particles in a plasma. The particles are charged negatively to a few thousands of electron charges due to the flux of electrons and ions from the plasma and then react via their Coulomb-potentials. The Coulomb coupling parameter Γ - which is the ratio of the Coulomb energy between two neighboring particles to their thermal energy - could be much larger than the critical value of 172 (calculated for an one-component-plasma). That means that Coulomb-crystallization can be achieved easily. Such systems, which reach equilibrium very rapidly and can be easily tuned between their ordered and disordered states, are ideally suited for investigating the processes underlying the solid-to-liquid phase transition. Furthermore, the strongly coupled collidal plasma can be excited externally and the response can be studied in great detail dynamically. Gravity plays an important role for the production and stability of plasma crystals. In laboratory plasmas gravity has to be balanced out by the electrostatic field in the sheath of the electrodes of the experimental apparatus. Thus, in the vertical direction only monolayer crystals or crystals with a few lattice layers can be formed. This restricts the analysis to processes in 2-dimensional or ``2 1/2-dimensional'' crystals (e.g. the physics of monolayers, nano-crystals or grain boundaries). Under zero gravity larger (volume) systems are possible and the field of plasma crystal research can be extended to include the physics of 3-dimensional systems. We performed the worldwide first experiments under zero-g conditions on parabolic flights and two sounding rockets. During these experiments the behaviour of dust particles in a rf-discharge under zero-g conditions was investigated. Very interesting experiments were performed, which are possible only under low gravity conditions.
NASA Technical Reports Server (NTRS)
Khanna, R. K.; Zhao, Guizhi
1986-01-01
The infrared absorption spectra of thin crystalline films of sulfur dioxide at 90 K are reported in the 2700 to 450/cm region. The observed multiplicity of the spectral features in the regions of fundamentals is attributed to factor group splittings of the modes in a biaxial crystal lattice and the naturally present minor S-34, S-36, and O-18 isotopic species. Complex refractive indices determined by an iterative Kramers-Kronig analysis of the extinction data, and absolute band strengths derived from them, are also reported in this region.
NASA Astrophysics Data System (ADS)
Jiao, Yanjing; Cheng, Wang; Deng, Qiang; Yang, Huan; Wen, Hai-Hu
2018-02-01
Measurements on magnetization and relaxation have been carried out on an optimally doped Ba1-xKxBiO3+δ single crystal with Tc = 31.3 K. Detailed analysis is undertaken on the data. Both the dynamical relaxation and conventional relaxation have been measured leading to the self-consistent determination of the magnetization relaxation rate. It is found that the data are well described by the collective pinning model leading to the glassy exponent of about μ ≈ 1.64-1.68 with the magnetic fields of 1 and 3 T. The analysis based on Maley's method combining with the conventional relaxation data allows us to determine the current dependent activation energy U which yields a μ value of about 1.23-1.29 for the magnetic fields of 1 and 3 T. The second magnetization peaks appear in wide temperature region from 2 K to 24 K. The separation between the second peak field and the irreversibility field becomes narrow when temperature is increased. When the two fields are close to each other, we find that the second peak evolves into a step-like transition of magnetization. Finally, we present a vortex phase diagram and demonstrate that the vortex dynamics in Ba1-xKxBiO3 can be used as a model system for studying the collective vortex pining.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhi-fang; Jiang, Hai-tao, E-mail: davies2000@163.com, E-mail: jiang-haitao@tongji.edu.cn; Li, Yun-hui
2013-11-11
The Fano-type interference effect is studied in the heterostructure composed of an epsilon-near-zero (ENZ) material and a truncated photonic crystal for transverse magnetic polarized light. In the Fano-type interference effect, the ENZ material provides narrow reflection pathway and the photonic crystal provides broadband reflection pathway. The boundary condition across the ENZ interface and the confinement effect provided by the photonic crystal can enhance the electric fields in the ENZ material greatly. The field enhancements, together with the asymmetric property of Fano-type spectrum, possess potential applications for significantly lowering the threshold of nonlinear processes such as optical switching and bistability.
Phase-field-crystal model for ordered crystals
NASA Astrophysics Data System (ADS)
Alster, Eli; Elder, K. R.; Hoyt, Jeffrey J.; Voorhees, Peter W.
2017-02-01
We describe a general method to model multicomponent ordered crystals using the phase-field-crystal (PFC) formalism. As a test case, a generic B2 compound is investigated. We are able to produce a line of either first-order or second-order order-disorder phase transitions, features that have not been incorporated in existing PFC approaches. Further, it is found that the only elastic constant for B2 that depends on ordering is C11. This B2 model is then used to study antiphase boundaries (APBs). The APBs are shown to reproduce classical mean-field results. Dynamical simulations of ordering across small-angle grain boundaries predict that dislocation cores pin the evolution of APBs.
Magnetic Field Suppression of Flow in Semiconductor Melt
NASA Technical Reports Server (NTRS)
Fedoseyev, A. I.; Kansa, E. J.; Marin, C.; Volz, M. P.; Ostrogorsky, A. G.
2000-01-01
One of the most promising approaches for the reduction of convection during the crystal growth of conductive melts (semiconductor crystals) is the application of magnetic fields. Current technology allows the experimentation with very intense static fields (up to 80 KGauss) for which nearly convection free results are expected from simple scaling analysis in stabilized systems (vertical Bridgman method with axial magnetic field). However, controversial experimental results were obtained. The computational methods are, therefore, a fundamental tool in the understanding of the phenomena accounting during the solidification of semiconductor materials. Moreover, effects like the bending of the isomagnetic lines, different aspect ratios and misalignments between the direction of the gravity and magnetic field vectors can not be analyzed with analytical methods. The earliest numerical results showed controversial conclusions and are not able to explain the experimental results. Although the generated flows are extremely low, the computational task is a complicated because of the thin boundary layers. That is one of the reasons for the discrepancy in the results that numerical studies reported. Modeling of these magnetically damped crystal growth experiments requires advanced numerical methods. We used, for comparison, three different approaches to obtain the solution of the problem of thermal convection flows: (1) Spectral method in spectral superelement implementation, (2) Finite element method with regularization for boundary layers, (3) Multiquadric method, a novel method with global radial basis functions, that is proven to have exponential convergence. The results obtained by these three methods are presented for a wide region of Rayleigh and Hartman numbers. Comparison and discussion of accuracy, efficiency, reliability and agreement with experimental results will be presented as well.
Chan, Eric J; Neumann, Marcus A
2018-04-10
We have performed a comparison of the experimental thermal diffuse scattering (TDS) from crystalline Aspirin (form I) to that calculated from molecular dynamics (MD) simulations based on a variety of general force fields and a tailor-made force field (TMFF). A comparison is also made with Monte Carlo (MC) simulations which use a "harmonic network" approach to describe the intermolecular interactions. These comparisons were based on the hypothesis that TDS could be a useful experimental data in validation of such simulation parameter sets, especially when calculations of dynamical properties (e.g., thermodynamic free energies) from molecular crystals are concerned. Currently such a validation of force field parameters against experimental data is often limited to calculation of specific physical properties, e.g., absolute lattice energies usually at 0 K or heat capacity measurements. TDS harvested from in-house or synchrotron experiments comprises highly detailed structural information representative of the dynamical motions of the crystal lattice. Thus, TDS is a well-suited experimental data-driven means of cross validating theoretical approaches targeted at understanding dynamical properties of crystals. We found from the results of our investigation that the TMFF and COMPASS (from the commercial software "Materials Studio") parameter sets gave the best agreement with experiment. From our homologous MC simulation analysis we are able to show that force constants associated with the molecular torsion angles are likely to be a strong contributing factor for the apparent reason why these aforementioned force fields performed better.
Tailor-made force fields for crystal-structure prediction.
Neumann, Marcus A
2008-08-14
A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom.
An overview of pharmaceutical cocrystals as intellectual property.
Trask, Andrew V
2007-01-01
This review article focuses on the interaction among certain scientific, legal, and regulatory aspects of pharmaceutical crystal forms. The article offers an analysis of pharmaceutical cocrystals as patentable inventions by drawing upon recent scientific developments in the field. Several potential commercial advantages of pharmaceutical cocrystals are highlighted, and a number of recent court decisions involving salient issues are summarized. The article provides an outlook on how the developing field of cocrystallization may impact the pharmaceutical intellectual property landscape.
NASA Technical Reports Server (NTRS)
Freund, Friedemann; Freund, Minoru M.; Batllo, Francois
1993-01-01
The electrical conductivity sigma of MgO single crystals shows a sharp increase at 500-800 C, in particular of sigma surface, generally attributed to surface contamination. Charge Distribution Analysis (CDA), a new technique providing information on fundamental properties that was previously unavailable, allows for the determination of surface charges, their sign and associated internal electric field. Data on 99.99% purity, arc-fusion grown MgO crystals show that mobile charge carriers start to appear in the bulk of the MgO crystals between 200 and 400 C when sigma (measured by conventional techniques) is in t he 10(exp -14) to 10(exp -16) /omega/cm range. Above 500 C, as sigma increases to 10(exp -6) to 10(exp -7)/omega/cm, more charges appear giving rise to a strong positive surface charge supported by a strong internal field. This indicates that charges are generated in the bulk and diffuse to the surface by an internally controlled process. On the basis of their positive sign they are identified as holes (defect electrons). Because of the low cation content of these very pure MgO crystals, theses holes cannnot be associated with transition metal impurties. Instead, they are associated with the O(2-) sublattice, e.g. consist of O(-) states or positive holes. This conclusion is supported by magnetic susceptibility data showing the appearance of 1000 +/- 500 ppm paramagnetic species between 200-500 C. The magnetic data are consistent with strongly coupled, diamagnetic O(-) pairs below 200-500 C, chemically equivalent to peroxy anions, O2(2-), and probably associated with cation vacancies in the MgO matrix. The formation of O2(2-) in arc-fusion grown MgO crystals is very unexpected because of the highly reducing growth conditions. Their presence implies an internal redox reaction involving dissolved 'water' by which OH(-) pairs convert to O2(2-) plus H2 molecules. This redox conversion is supported by mass spectroscopic measurements of the H2 release from highly OH(-)-doped, finely divided MgO and by wet-chemical analysis of its oxidant concentration.
Mech, Agnieszka; Gajek, Zbigniew; Karbowiak, Mirosław; Rudowicz, Czesław
2008-09-24
Optical absorption measurements of Nd(3+) ions in single crystals of [Nd(hfa)(4)(H(2)O)](N(C(2)H(5))(4)) (hfa = hexafluoroacetyloacetonate), denoted Nd(hfa) for short, have been carried out at 4.2 and 298 K. This compound crystallizes in the monoclinic system (space group P 2(1)/n). Each Nd ion is coordinated to eight oxygen atoms that originate from the hexafluoroacetylacetonate ligands and one oxygen atom from the water molecule. A total of 85 experimental crystal-field (CF) energy levels arising from the Nd(3+) (4f(3)) electronic configuration were identified in the optical spectra and assigned. A three-step CF analysis was carried out in terms of a parametric Hamiltonian for the actual C(1) symmetry at the Nd(3+) ion sites. In the first step, a total of 27 CF parameters (CFPs) in the Wybourne notation B(kq), admissible by group theory, were determined in a preliminary fitting constrained by the angular overlap model predictions. The resulting CFP set was reduced to 24 specific independent CFPs using appropriate standardization transformations. Optimizations of the second-rank CFPs and extended scanning of the parameter space were employed in the second step to improve reliability of the CFP sets, which is rather a difficult task in the case of no site symmetry. Finally, seven free-ion parameters and 24 CFPs were freely varied, yielding an rms deviation between the calculated energy levels and the 85 observed ones of 11.1 cm(-1). Our approach also allows prediction of the energy levels of Nd(3+) ions that are hidden in the spectral range overlapping with strong ligand absorption, which is essential for understanding the inter-ionic energy transfer. The orientation of the axis system associated with the fitted CF parameters w.r.t. the crystallographic axes is established. The procedure adopted in our calculations may be considered as a general framework for analysis of CF levels of lanthanide ions at low (triclinic) symmetry sites.
NASA Astrophysics Data System (ADS)
Mech, Agnieszka; Gajek, Zbigniew; Karbowiak, Mirosław; Rudowicz, Czesław
2008-09-01
Optical absorption measurements of Nd3+ ions in single crystals of [Nd(hfa)4(H2O)](N(C2H5)4) (hfa = hexafluoroacetyloacetonate), denoted Nd(hfa) for short, have been carried out at 4.2 and 298 K. This compound crystallizes in the monoclinic system (space group P 21/n). Each Nd ion is coordinated to eight oxygen atoms that originate from the hexafluoroacetylacetonate ligands and one oxygen atom from the water molecule. A total of 85 experimental crystal-field (CF) energy levels arising from the Nd3+ (4f3) electronic configuration were identified in the optical spectra and assigned. A three-step CF analysis was carried out in terms of a parametric Hamiltonian for the actual C1 symmetry at the Nd3+ ion sites. In the first step, a total of 27 CF parameters (CFPs) in the Wybourne notation Bkq, admissible by group theory, were determined in a preliminary fitting constrained by the angular overlap model predictions. The resulting CFP set was reduced to 24 specific independent CFPs using appropriate standardization transformations. Optimizations of the second-rank CFPs and extended scanning of the parameter space were employed in the second step to improve reliability of the CFP sets, which is rather a difficult task in the case of no site symmetry. Finally, seven free-ion parameters and 24 CFPs were freely varied, yielding an rms deviation between the calculated energy levels and the 85 observed ones of 11.1 cm-1. Our approach also allows prediction of the energy levels of Nd3+ ions that are hidden in the spectral range overlapping with strong ligand absorption, which is essential for understanding the inter-ionic energy transfer. The orientation of the axis system associated with the fitted CF parameters w.r.t. the crystallographic axes is established. The procedure adopted in our calculations may be considered as a general framework for analysis of CF levels of lanthanide ions at low (triclinic) symmetry sites.
Probing periodic potential of crystals via strong-field re-scattering
NASA Astrophysics Data System (ADS)
You, Yong Sing; Cunningham, Eric; Reis, David A.; Ghimire, Shambhu
2018-06-01
Strong-field ionization and re-scattering phenomena have been used to image angstrom-scale structures of isolated molecules in the gas phase. These methods typically make use of the anisotropic response of the participating molecular orbital. Recently, an anisotropic strong-field response has also been observed in high-order harmonic generation (HHG) from bulk crystals (2016 Nat. Phys. 13 345). In a (100) cut magnesium oxide crystal, extreme ultraviolet high-harmonics are found to depend strongly on the crystal structure and inter-atomic bonding. Here, we extend these measurements to other two important crystal orientations: (111) and (110). We find that HHG from these orientations is also strongly anisotropic. The underlying dynamics is understood using a real-space picture, where high-harmonics are produced via coherent collision of strong-field driven electrons from the atomic sites, including from the nearest neighbor atoms. We find that harmonic efficiency is enhanced when semi-classical electron trajectories connect to the concentrated valence charge distribution regions around the atomic cores. Similarly, the efficiency is suppressed when the trajectories miss the atomic cores. These results further support the real-space picture of HHG with implications for retrieving the periodic potential of the crystal, if not the wavefunctions in three-dimensions.
NASA Astrophysics Data System (ADS)
Zaim, N.; Zaim, A.; Kerouad, M.
2017-02-01
In this work, the magnetic behavior of the cylindrical nanowire, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms is studied in the presence of a random crystal field interaction. Based on Metropolis algorithm, the Monte Carlo simulation has been used to investigate the effects of the concentration of the random crystal field p, the crystal field D and the shell exchange interaction Js on the phase diagrams and the hysteresis behavior of the system. Some characteristic behaviors have been found, such as the first and second-order phase transitions joined by tricritical point for appropriate values of the system parameters, triple and isolated critical points can be also found. Depending on the Hamiltonian parameters, single, double and para hysteresis regions are explicitly determined.
Zeng, Lunwu; Xu, Jin; Wang, Chengen; Zhang, Jianhua; Zhao, Yuting; Zeng, Jing; Song, Runxia
2017-12-07
When space (time) translation symmetry is spontaneously broken, the space crystal (time crystal) forms; when permittivity and permeability periodically vary with space (time), the photonic crystal (photonic time crystal) forms. We proposed the concept of photonic time crystal and rewritten the Maxwell's equations. Utilizing Finite Difference Time Domain (FDTD) method, we simulated electromagnetic wave propagation in photonic time crystal and photonic space-time crystal, the simulation results show that more intensive scatter fields can obtained in photonic time crystal and photonic space-time crystal.
Patterning technology for solution-processed organic crystal field-effect transistors
Li, Yun; Sun, Huabin; Shi, Yi; Tsukagoshi, Kazuhito
2014-01-01
Organic field-effect transistors (OFETs) are fundamental building blocks for various state-of-the-art electronic devices. Solution-processed organic crystals are appreciable materials for these applications because they facilitate large-scale, low-cost fabrication of devices with high performance. Patterning organic crystal transistors into well-defined geometric features is necessary to develop these crystals into practical semiconductors. This review provides an update on recentdevelopment in patterning technology for solution-processed organic crystals and their applications in field-effect transistors. Typical demonstrations are discussed and examined. In particular, our latest research progress on the spin-coating technique from mixture solutions is presented as a promising method to efficiently produce large organic semiconducting crystals on various substrates for high-performance OFETs. This solution-based process also has other excellent advantages, such as phase separation for self-assembled interfaces via one-step spin-coating, self-flattening of rough interfaces, and in situ purification that eliminates the impurity influences. Furthermore, recommendations for future perspectives are presented, and key issues for further development are discussed. PMID:27877656
NASA Astrophysics Data System (ADS)
Sıdır, Yadigar Gülseven; Sıdır, İsa; Demiray, Ferhat
2017-06-01
The optical absorption and steady-state fluorescence spectra of 4-heptyloxybenzoic acid (4hoba), 4-octyloxybenzoic acid (4ooba) and 4-nonyloxybenzoic acid (4noba) liquid crystals have been measured in a series of different polarity organic solvents. The ground state (μg) and excited state (μe) dipole moments of the monomeric and dimeric 4-alkyloxybenzoic acid liquid crystals have been obtained by means of different solvatochromic shift methods. HOMO-LUMO gaps (HLG) and dipole moments have been tuned by applying external electric (EF) field on monomer, dimer and Au substituted monomer and dimer liquid crystal structures. By applying external electric field, Au substituted monomer liquid crystals display semiconductor character, while Au substituted dimer liquid crystals gain metallic character under E = 0.04 V/Å. Eventuated specific and non-specific interactions between solvent and solute in solvent medium have been expounded by using LSER (Linear Solvation Energy Relationships).
Electro-optic high voltage sensor
Davidson, James R.; Seifert, Gary D.
2002-01-01
A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.
Tunable liquid microlens array driven by pyroelectric effect: full interferometric characterization
NASA Astrophysics Data System (ADS)
Miccio, Lisa; Grilli, Simonetta; Vespini, Veronica; Ferraro, Pietro
2008-09-01
Liquid lenses with adjustable focal length are of great interest in the field of microfluidic devices. They are, usually, realized by electrowetting effect after electrodes patterning on a hydrofobic substrate. Applications are possible in many fields ranging from commercial products such as digital cameras to biological cell sorting. We realized an open array of liquid lenses with adjustable focal length without electrode patterning. We used a z-cut Lithium Niobate crystal (LN) as substrate and few microliters of an oily substance to obtain the droplets array. The spontaneous polarization of LN crystals is reversed by the electric field poling process, thus enabling the realization of periodically poled LN (PPLN) crystals. The substrate consists of a two-dimensional square array of reversed domains with a period around 200 μm. Each domain presents an hexagonal geometry due to the crystal structure. PPLN is first covered by a thin and homogeneous layer of the above mentioned liquid and therefore its temperature is changed by means of a digitally controlled hot plate. During heating and cooling process there is a rearrangement of the liquid layer until it reaches the final topography. Lenses formation is due to the superficial tension changing at the liquid-solid interface by means of the pyroelectric effect. Such effect allows to create a two-dimensional lens pattern of tunable focal length without electrodes. The temporal evolution of both shape and focal length lenses are quantitatively measured by Digital Holographic Microscopy. Array imaging properties and quantitative analysis of the lenses features and aberrations are presented.
Crystal Field in Rare-Earth Complexes: From Electrostatics to Bonding.
Alessandri, Riccardo; Zulfikri, Habiburrahman; Autschbach, Jochen; Bolvin, Hélène
2018-04-11
The flexibility of first-principles (ab initio) calculations with the SO-CASSCF (complete active space self-consistent field theory with a treatment of the spin-orbit (SO) coupling by state interaction) method is used to quantify the electrostatic and covalent contributions to crystal field parameters. Two types of systems are chosen for illustration: 1) The ionic and experimentally well-characterized PrCl 3 crystal; this study permits a revisitation of the partition of contributions proposed in the early days of crystal field theory; and 2) a series of sandwich molecules [Ln(η n -C n H n ) 2 ] q , with Ln=Dy, Ho, Er, and Tm and n=5, 6, and 8, in which the interaction between Ln III and the aromatic ligands is more difficult to describe within an electrostatic approach. It is shown that a model with three layers of charges reproduces the electrostatic field generated by the ligands and that the covalency plays a qualitative role. The one-electron character of crystal field theory is discussed and shown to be valuable, although it is not completely quantitative. This permits a reduction of the many-electron problem to a discussion of the energy of the seven 4f orbitals. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Space-Time Crystals of Trapped Ions
2012-10-15
Spontaneous symmetry breaking can lead to the formation of time crystals, as well as spatial crystals. Here we propose a space- time crystal of...fields with fractional fluxes. The persistent rotation of trapped ions produces the temporal order, leading to the formation of a space- time crystal . We
High field (up to 140 kOe) angle dependent magneto transport of Bi2Te3 single crystals
NASA Astrophysics Data System (ADS)
Sultana, Rabia; Maheshwari, P. K.; Tiwari, Brajesh; Awana, V. P. S.
2018-01-01
We report the angle dependent high field (up to 140 kOe) magneto transport of Bi2Te3 single crystals, a well-known topological insulator. The crystals were grown from melt of constituent elements via solid state reaction route by self-flux method. Details of crystal growth along with their brief characterisation up to 5 Tesla applied field was reported by some of us recently (Sultana et al 2017 J. Magn. Magn. Mater. 428 213). The angle dependence of the magneto-resistance (MR) of Bi2Te3 follows the cos (θ) function i.e., MR is responsive, when the applied field is perpendicular (tilt angle θ = 0° and/or 180°) to the transport current. The low field (±10 kOe) MR showed the signatures of weak anti localisation character with typical ν-type cusp near origin at 5 K. Further, the MR is linear right up to highest applied field of 140 kOe. The large positive MR are observed up to high temperatures and are above 250% and 150% at 140 kOe in perpendicular fields at 50 K and 100 K respectively. Heat capacity C P(T) measurements revealed the value of Debye temperature (ѲD) to be 135 K. Angle resolved photoemission spectroscopy data clearly showed that the bulk Bi2Te3 single crystal consists of a single Dirac cone.
Single crystal growth by gel technique and characterization of lithium hydrogen tartrate
NASA Astrophysics Data System (ADS)
Ahmad, Nazir; Ahmad, M. M.; Kotru, P. N.
2015-02-01
Single crystal growth of lithium hydrogen tartrate by gel encapsulation technique is reported. Dependence of crystal count on gel density, gel pH, reactant concentration and temperature are studied and the optimum conditions for these crystals are worked out. The stoichiometric composition of the grown crystals is determined using EDAX/AES and CH analysis. The grown crystals are characterized by X-ray diffraction, FTIR and Uv-Visible spectroscopy. It is established that crystal falls under orthorhombic system and space group P222 with the cell parameters as: a=10.971 Å, b=13.125 Å and c=5.101 Å; α=90.5o, β=γ=90°. The morphology of the crystals as revealed by SEM is illustrated. Crystallite size, micro strain, dislocation density and distortion parameters are calculated from the powder XRD results of the crystal. UV-vis spectroscopy shows indirect allowed transition with an optical band gap of 4.83 eV. The crystals are also shown to have high transmittance in the entire visible region. Dependence of dielectric constant, dielectric loss and conductivity on frequency of the applied ac field is analyzed. The frequency-dependent real part of the complex ac conductivity is found to follow the universal dielectric response: σac (ω) ωs. The trend in the variation of frequency exponent with frequency corroborates the fact that correlated barrier hopping is the dominant charge-transport mechanism in the present system.
Reverse-mode microdroplet liquid crystal display
NASA Astrophysics Data System (ADS)
Ma, Yao-Dong; Wu, Bao Gang; Xu, Gang
1990-04-01
This paper presents the production of the a reverse-mode microdroplet liquid crystal (RMLC) light shutter display. In this unit, the display is formed by a thin polymer film with dispersed liquid crystal microdroplets. The display is light transmissive in the absence of an applied electrical field. The display is converted to a non-transmissive state (i.e. absorbing or scattering) when an electrical field is applied. The "off' and "on" state. of this display are thus exactly opposite to that encountered in "normal-mode" microdroplet liquid crystal display devices such as polymer dispersed liquid crystals (PDLC)15 or Nematic Curvilinear Aligned Phase (NCAP)6. The Reverse Mode Microdroplet Liquid Crystal is obtained by modification of the surface energy of the polymer which encases liquid crystals via reaction of a dopant incorporated inside of the microdroplet during the droplet formation within the inside polymer layer. The liquid crystal used in RMLC is of negative dielectric anisotropy.
NASA Astrophysics Data System (ADS)
Takeya, J.; Goldmann, C.; Haas, S.; Pernstich, K. P.; Ketterer, B.; Batlogg, B.
2003-11-01
A method has been developed to inject mobile charges at the surface of organic molecular crystals, and the dc transport of field-induced holes has been measured at the surface of pentacene single crystals. To minimize damage to the soft and fragile surface, the crystals are attached to a prefabricated substrate which incorporates a gate dielectric (SiO2) and four probe pads. The surface mobility of the pentacene crystals ranges from 0.1 to 0.5 cm2/V s and is nearly temperature independent above ˜150 K, while it becomes thermally activated at lower temperatures when the induced charges become localized. Ruling out the influence of electric contacts and crystal grain boundaries, the results contribute to the microscopic understanding of trapping and detrapping mechanisms in organic molecular crystals.
Kertész, Krisztián; Bálint, Zsolt; Vértesy, Zofia; Márk, Géza I; Lousse, Virginie; Vigneron, Jean Pol; Rassart, Marie; Biró, László P
2006-08-01
Photonic-crystal-type nanostructures occurring in the scales of the butterfly Cyanophrys remus were investigated by optical and electron microscopy (scanning and transmission electron microscopy), reflectance measurements (specular, integrated, and goniometric), by fast Fourier transform analysis of micrographs, by modeling, and by numerical simulation of the measured reflectance data. By evaluating the collected data in a cross-correlated way, we show that the metallic blue dorsal coloration originates from scales which individually are photonic single crystals of 50 x 120 microm2 , while the matt pea-green coloration of the ventral side arises from the cumulative effect of randomly arranged, bright photonic crystallites (blue, green, and yellow) with typical diameters in the 3-10-mum range. Both structures are based on a very moderate refractive index contrast between air and chitin. Using a bleached specimen in which the pigment has decayed with time, we investigated the role of pigment in photonic-crystal material in the process of color generation. The possible biologic utility of the metallic blue (single-crystal) and dull green (polycrystal) textures both achieved with photonic crystals are briefly discussed. Potential applications in the field of colorants, flat panel displays, smart textiles, and smart papers are surveyed.
Formation of nanotwin networks during high-temperature crystallization of amorphous germanium
Sandoval, Luis; Reina, Celia; Marian, Jaime
2015-11-26
Germanium is an extremely important material used for numerous functional applications in many fields of nanotechnology. In this paper, we study the crystallization of amorphous Ge using atomistic simulations of critical nano-metric nuclei at high temperatures. We find that crystallization occurs by the recurrent transfer of atoms via a diffusive process from the amorphous phase into suitably-oriented crystalline layers. We accompany our simulations with a comprehensive thermodynamic and kinetic analysis of the growth process, which explains the energy balance and the interfacial growth velocities governing grain growth. For the <111> crystallographic orientation, we find a degenerate atomic rearrangement process, withmore » two zero-energy modes corresponding to a perfect crystalline structure and the formation of a Σ3 twin boundary. Continued growth in this direction results in the development a twin network, in contrast with all other growth orientations, where the crystal grows defect-free. This particular mechanism of crystallization from amorphous phases is also observed during solid-phase epitaxial growth of <111> semiconductor crystals, where growth is restrained to one dimension. Lastly, we calculate the equivalent X-ray diffraction pattern of the obtained nanotwin networks, providing grounds for experimental validation.« less
Melt Flow before Crystal Seeding in Cz Si Growth with Transversal MF
NASA Astrophysics Data System (ADS)
Iizuka, Masaya; Mukaiyama, Yuji; Demina, S. E.; Kalaev, V. V.
2017-06-01
Industrial Cz growth of Si crystal of 300 mm and higher diameter usually requires DC magnetic fields (MFs) to suppress turbulence in the melt. We present 3D unsteady analysis of melt turbulent convection in an industrial Cz system coupled with the effect of the transversal MF for different argon gas flow rates for the stage before crystal seeding. We have performed detailed 2D axisymmetric modeling of global heat transfer in the whole Cz furnace. Radiative heat fluxes obtained in 2D modeling have been used in detailed 3D steady and unsteady modeling of crystallization zone. LES method is applied as a predictive approach for modeling of turbulent flow of silicon melt. We have obtained flow structure and temperature distribution in the melt, which were different from previously reported data. We have observed a well-fixed dark spike which includes low temperature melt area on the melt free surface in MF cases. These results indicates that MF and argon flow rate conditions are important to achieve stable positioning of the dark spike on the melt free surface for optimized crystal seeding without uncontrollable meltdown and single crystal structure loss.
Formation of Nanotwin Networks during High-Temperature Crystallization of Amorphous Germanium
Sandoval, Luis; Reina, Celia; Marian, Jaime
2015-01-01
Germanium is an extremely important material used for numerous functional applications in many fields of nanotechnology. In this paper, we study the crystallization of amorphous Ge using atomistic simulations of critical nano-metric nuclei at high temperatures. We find that crystallization occurs by the recurrent transfer of atoms via a diffusive process from the amorphous phase into suitably-oriented crystalline layers. We accompany our simulations with a comprehensive thermodynamic and kinetic analysis of the growth process, which explains the energy balance and the interfacial growth velocities governing grain growth. For the 〈111〉 crystallographic orientation, we find a degenerate atomic rearrangement process, with two zero-energy modes corresponding to a perfect crystalline structure and the formation of a Σ3 twin boundary. Continued growth in this direction results in the development a twin network, in contrast with all other growth orientations, where the crystal grows defect-free. This particular mechanism of crystallization from amorphous phases is also observed during solid-phase epitaxial growth of 〈111〉 semiconductor crystals, where growth is restrained to one dimension. We calculate the equivalent X-ray diffraction pattern of the obtained nanotwin networks, providing grounds for experimental validation. PMID:26607496
The effect of growth temperature on the irreversibility line of MPMG YBCO bulk with Y2O3 layer
NASA Astrophysics Data System (ADS)
Kurnaz, Sedat; Çakır, Bakiye; Aydıner, Alev
2017-07-01
In this study, three kinds of YBCO samples which are named Y1040, Y1050 and Y1060 were fabricated by Melt-Powder-Melt-Growth (MPMG) method without a seed crystal. Samples seem to be single crystal. The compacted powders were located on a crucible with a buffer layer of Y2O3 to avoid liquid to spread on the furnace plate and also to support crystal growth. YBCO samples were investigated by magnetoresistivity (ρ-T) and magnetization (M-T) measurements in dc magnetic fields (parallel to c-axis) up to 5 T. Irreversibility fields (Hirr) and upper critical fields (Hc2) were obtained using 10% and 90% criteria of the normal state resistivity value from ρ-T curves. M-T measurements were carried out using the zero field cooling (ZFC) and field cooling (FC) processes to get irreversible temperature (Tirr). Fitting of the irreversibility line results to giant flux creep and vortex glass models were discussed. The results were found to be consistent with the results of the samples fabricated using a seed crystal. At the fabrication of MPMG YBCO, optimized temperature for crystal growth was determined to be around 1050-1060 °C.
Influence of initial seed distribution on the pattern formation of the phase field crystals
NASA Astrophysics Data System (ADS)
Starodumov, Ilya; Galenko, Peter; Kropotin, Nikolai; Alexandrov, Dmitri V.
2017-11-01
The process of crystal growth can be expressed as a transition of atomic structure to a finally stable state or to a metastable state. In the Phase Field Crystal Model (PFC-model) these states are described by regular distributions of the atomic density. Getting the system into any metastable condition may be caused by the peculiarities of the computational domain, initial and boundary conditions. However, an important factor in the formation of the crystal structure can be the initial disturbance. In the report we show how different types of initial disturbance can change the finally stable state of crystal structure in equilibrium.
Construction of crystal structure prototype database: methods and applications.
Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming
2017-04-26
Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.
The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals
Mudd, G. W.; Molas, M. R.; Chen, X.; Zólyomi, V.; Nogajewski, K.; Kudrynskyi, Z. R.; Kovalyuk, Z. D.; Yusa, G.; Makarovsky, O.; Eaves, L.; Potemski, M.; Fal’ko, V. I.; Patanè, A.
2016-01-01
The electronic band structure of van der Waals (vdW) layered crystals has properties that depend on the composition, thickness and stacking of the component layers. Here we use density functional theory and high field magneto-optics to investigate the metal chalcogenide InSe, a recent addition to the family of vdW layered crystals, which transforms from a direct to an indirect band gap semiconductor as the number of layers is reduced. We investigate this direct-to-indirect bandgap crossover, demonstrate a highly tuneable optical response from the near infrared to the visible spectrum with decreasing layer thickness down to 2 layers, and report quantum dot-like optical emissions distributed over a wide range of energy. Our analysis also indicates that electron and exciton effective masses are weakly dependent on the layer thickness and are significantly smaller than in other vdW crystals. These properties are unprecedented within the large family of vdW crystals and demonstrate the potential of InSe for electronic and photonic technologies. PMID:28008964
The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals.
Mudd, G W; Molas, M R; Chen, X; Zólyomi, V; Nogajewski, K; Kudrynskyi, Z R; Kovalyuk, Z D; Yusa, G; Makarovsky, O; Eaves, L; Potemski, M; Fal'ko, V I; Patanè, A
2016-12-23
The electronic band structure of van der Waals (vdW) layered crystals has properties that depend on the composition, thickness and stacking of the component layers. Here we use density functional theory and high field magneto-optics to investigate the metal chalcogenide InSe, a recent addition to the family of vdW layered crystals, which transforms from a direct to an indirect band gap semiconductor as the number of layers is reduced. We investigate this direct-to-indirect bandgap crossover, demonstrate a highly tuneable optical response from the near infrared to the visible spectrum with decreasing layer thickness down to 2 layers, and report quantum dot-like optical emissions distributed over a wide range of energy. Our analysis also indicates that electron and exciton effective masses are weakly dependent on the layer thickness and are significantly smaller than in other vdW crystals. These properties are unprecedented within the large family of vdW crystals and demonstrate the potential of InSe for electronic and photonic technologies.
NASA Astrophysics Data System (ADS)
Fernández, R.; Gallego, S.; Márquez, A.; Francés, J.; Martínez, F. J.; Pascual, I.; Beléndez, A.
2018-02-01
Holographic polymer dispersed liquid crystals (HPDLCs) are the result of the optimization of the photopolymer fabrication techniques. They are made by recording in a photopolymerization induced phase separation process (PIPS) in which the liquid crystal molecules diffuse to dark zones in the diffraction grating originated. Thanks to the addition of liquid crystal molecules to the composition, this material has a dynamic behavior by reorientation of the liquid crystal molecules applying an electrical field. In this sense, it is possible to use this material to make dynamic devices. In this work, we study the behavior of this material working in low frequencies with different spatial periods of blazed gratings, a sharp profile whose recording is possible thanks to the addition of a Holoeye LCoS-Pluto spatial light modulator with a resolution of 1920 × 1080 pixels (HD) and a pixel size of 8 × 8 μm2. This device allows us to have an accurate and dynamic control of the phase and amplitude of the recording beam.
NASA Astrophysics Data System (ADS)
Juliet sheela, K.; Krishnan, S. Radha; Shanmugam, V. M.; Subramanian, P.
2018-04-01
Electron paramagnetic resonance (EPR) studies have been investigated at X-band microwave frequency on Cu2+ ion incorporated into the single crystal of potassium succinate-succinic acid (KSSA) at room temperature. The angular variation of the EPR spectra has shown two magnetically in-equivalent Cu2+ sites in the KSSA single crystal system. The spin Hamiltonian parameters g and A are determined which reveals that the site I and site II occupied in rhombic and axial local field symmetry around the impurity ion. Among the two paramagnetic impurity ions, sites one occupies at substituitional position in the place of monovalent cation (K+) in the crystal whereas the other enters in its lattice interstitially by the correlation of EPR and crystal structure data. From the calculated principle values gxx, gyy, gzz and Axx, Ayy, Azz of both the sites, the admixture coefficients and molecular orbital coefficients were evaluated which gives the information of ground state wave function and types of bonding of impurity ions with the ligands.
Construction of crystal structure prototype database: methods and applications
NASA Astrophysics Data System (ADS)
Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming
2017-04-01
Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.
Continuous diffraction of molecules and disordered molecular crystals
Yefanov, Oleksandr M.; Ayyer, Kartik; White, Thomas A.; Barty, Anton; Morgan, Andrew; Mariani, Valerio; Oberthuer, Dominik; Pande, Kanupriya
2017-01-01
The intensities of far-field diffraction patterns of orientationally aligned molecules obey Wilson statistics, whether those molecules are in isolation (giving rise to a continuous diffraction pattern) or arranged in a crystal (giving rise to Bragg peaks). Ensembles of molecules in several orientations, but uncorrelated in position, give rise to the incoherent sum of the diffraction from those objects, modifying the statistics in a similar way as crystal twinning modifies the distribution of Bragg intensities. This situation arises in the continuous diffraction of laser-aligned molecules or translationally disordered molecular crystals. This paper develops the analysis of the intensity statistics of such continuous diffraction to obtain parameters such as scaling, beam coherence and the number of contributing independent object orientations. When measured, continuous molecular diffraction is generally weak and accompanied by a background that far exceeds the strength of the signal. Instead of just relying upon the smallest measured intensities or their mean value to guide the subtraction of the background, it is shown how all measured values can be utilized to estimate the background, noise and signal, by employing a modified ‘noisy Wilson’ distribution that explicitly includes the background. Parameters relating to the background and signal quantities can be estimated from the moments of the measured intensities. The analysis method is demonstrated on previously published continuous diffraction data measured from crystals of photosystem II [Ayyer et al. (2016 ▸), Nature, 530, 202–206]. PMID:28808434
An Apparatus for Growth of Small Crystals From Solutions.
ERIC Educational Resources Information Center
Mitrovic, Mico M.
1995-01-01
Describes an apparatus for crystal growth that was designed to study growth kinetics of small crystals from solutions and to obtain crystals of various substances. Describes the use of the apparatus in laboratory practical experiments in the field of crystal growth physics within the course "Solid State Physics". (JRH)
Signal Analysis Van Hardware Operation General Description. Volume 1.
1981-12-01
safety and the prevention of equip- ment malfunction in high RF energy fields, a shielded enclosure was installed within the semitrailer shell. This...Clock B can be prgram -selected to operate at one of seven clock rates, one of five crystal-controlled frequencies (1 MHz, 100 kHz, 10 kHz, or 100 Hz
75 FR 32749 - Information Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-09
... provisions of the Paperwork Reduction Act (44 U.S.C. Chapter 35). A shortened comment period of one week is... response rates require a 2 month field period, and analysis and summary of data requires a month time... Comprehensive Review Working Group, Crystal Mall 2, 1801 S. Bell St., Suite 409, Arlington, VA; or call (703...
Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts
NASA Technical Reports Server (NTRS)
Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda
2004-01-01
Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves considerable post-processing work. For these reasons it is very advantageous to develop analytical solution schemes for subsurface stresses, whenever possible.
Spectroscopic analysis of electron trapping levels in pentacene field-effect transistors
NASA Astrophysics Data System (ADS)
Park, Chang Bum
2014-08-01
Electron trapping phenomena have been investigated with respect to the energy levels of localized trap states and bias-induced device instability effects in pentacene field-effect transistors. The mechanism of the photoinduced threshold voltage shift (ΔVT) is presented by providing a ΔVT model governed by the electron trapping. The trap-and-release behaviour functionalized by photo-irradiation also shows that the trap state for electrons is associated with the energy levels in different positions in the forbidden gap of pentacene. Spectroscopic analysis identifies two kinds of electron trap states distributed above and below the energy of 2.5 eV in the band gap of the pentacene crystal. The study of photocurrent spectra shows the specific trap levels of electrons in energy space that play a substantial role in causing device instability. The shallow and deep trapping states are distributed at two centroidal energy levels of ˜1.8 and ˜2.67 eV in the pentacene band gap. Moreover, we present a systematic energy profile of electron trap states in the pentacene crystal for the first time.
NASA Astrophysics Data System (ADS)
Král, Robert
2012-12-01
Suitable conditions for growth of high quality single crystals of ternary alkali lead halides prepared by a Bridgman method were explored using direct observation of a crystal/melt interface when pulling an ampoule out of a furnace, deliberated striations' induction and measurement of a temperature field in the filled ampoule in the vertical Bridgman arrangement, as model compounds lead chloride and ternary rubidium lead bromide were used. By direct observation only position of the crystal/melt interface was markedly determined, while by induced striations both the position and the shape of the interface were visualized but their contrast had to be intensified by adding admixtures. Performed temperature measurements in the filled ampoule brought both a view of temperature field in the 3D radial symmetry and basic data for comparison of a real temperature field with those obtained by projected modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukao, Shinji; Nakanishi, Yoshikazu; Mizoguchi, Tadahiro
X-rays are radiated due to the bremsstrahlung caused by the collision of electrons with a metal target placed opposite the negative electric surface of a crystal by changing the temperature of a LiNbO{sub 3} single crystal uniaxially polarized in the c-axis direction. It is suggested that both electric field intensity and electron density determine the intensity of X-ray radiation. Electrons are supplied by the ionization of residual gas in space, field emission from a case inside which a crystal is located, considered to be due to the high electric-field intensity formed by the surface charges on the crystal, and anmore » external electron source, such as a thermionic source. In a high vacuum, it was found that the electrons supplied by electric-field emission mainly contribute to the radiation of X-rays. It was found that the integrated intensity of X-rays can be maximized by supplying electrons both external and by electric-field emission. Furthermore, the integrated intensity of the X-rays is stable for many repeated temperature changes.« less
King, James Claude
1976-01-13
The disclosure is directed to a method for processing quartz used in fabricating crystal resonators such that transient frequency change of resonators exposed to pulse irradiation is virtually eliminated. The method involves heating the crystal quartz in a hydrogen-free atmosphere while simultaneously applying an electric field in the Z-axis direction of the crystal. The electric field is maintained during the cool-down phase of the process.
Switching plastic crystals of colloidal rods with electric fields
Liu, Bing; Besseling, Thijs H.; Hermes, Michiel; Demirörs, Ahmet F.; Imhof, Arnout; van Blaaderen, Alfons
2014-01-01
When a crystal melts into a liquid both long-ranged positional and orientational order are lost, and long-time translational and rotational self-diffusion appear. Sometimes, these properties do not change at once, but in stages, allowing states of matter such as liquid crystals or plastic crystals with unique combinations of properties. Plastic crystals/glasses are characterized by long-ranged positional order/frozen-in-disorder but short-ranged orientational order, which is dynamic. Here we show by quantitative three-dimensional studies that charged rod-like colloidal particles form three-dimensional plastic crystals and glasses if their repulsions extend significantly beyond their length. These plastic phases can be reversibly switched to full crystals by an electric field. These new phases provide insight into the role of rotations in phase behaviour and could be useful for photonic applications. PMID:24446033
Switching plastic crystals of colloidal rods with electric fields
NASA Astrophysics Data System (ADS)
Liu, Bing; Besseling, Thijs H.; Hermes, Michiel; Demirörs, Ahmet F.; Imhof, Arnout; van Blaaderen, Alfons
2014-01-01
When a crystal melts into a liquid both long-ranged positional and orientational order are lost, and long-time translational and rotational self-diffusion appear. Sometimes, these properties do not change at once, but in stages, allowing states of matter such as liquid crystals or plastic crystals with unique combinations of properties. Plastic crystals/glasses are characterized by long-ranged positional order/frozen-in-disorder but short-ranged orientational order, which is dynamic. Here we show by quantitative three-dimensional studies that charged rod-like colloidal particles form three-dimensional plastic crystals and glasses if their repulsions extend significantly beyond their length. These plastic phases can be reversibly switched to full crystals by an electric field. These new phases provide insight into the role of rotations in phase behaviour and could be useful for photonic applications.
Solution-processed, Self-organized Organic Single Crystal Arrays with Controlled Crystal Orientation
Kumatani, Akichika; Liu, Chuan; Li, Yun; Darmawan, Peter; Takimiya, Kazuo; Minari, Takeo; Tsukagoshi, Kazuhito
2012-01-01
A facile solution process for the fabrication of organic single crystal semiconductor devices which meets the demand for low-cost and large-area fabrication of high performance electronic devices is demonstrated. In this paper, we develop a bottom-up method which enables direct formation of organic semiconductor single crystals at selected locations with desired orientations. Here oriented growth of one-dimensional organic crystals is achieved by using self-assembly of organic molecules as the driving force to align these crystals in patterned regions. Based upon the self-organized organic single crystals, we fabricate organic field effect transistor arrays which exhibit an average field-effect mobility of 1.1 cm2V−1s−1. This method can be carried out under ambient atmosphere at room temperature, thus particularly promising for production of future plastic electronics. PMID:22563523
Polymer dispersed nematic liquid crystal for large area displays and light valves
NASA Astrophysics Data System (ADS)
Drzaic, Paul S.
1986-09-01
A new electro-optical material based on nematic liquid crystal dispersed in a polymer matrix has recently been introduced by Fergason. This technology (termed NCAP, for nematic curvilinear aligned phase) is suitable for making very large area (thousands of square centimeter) light valves and displays. The device consists of micron size droplets of liquid crystal dispersed in and surrounded by a polymer film. Light passing through the film in the absence of an applied field is strongly forward scattered, giving a milky, translucent film. Application of an electric field across the liquid crystal/polymer film places the film in a highly transparent state. Pleochroic dyes may be employed in the system in order to achieve controllable light absorption as well as scattering. Microscopically, it is shown that the liquid-crystal director lies preferentially parallel to the polymer wall, leading to a bipolar-like configuration of the liquid-crystal directors within the droplet. The symmetry axes of the droplets are randomly oriented in the unpowered, scattering state, but align parallel to the field in the powered, transparent state. The electric field required to reorient a given droplet varies inversely with the diameter of that droplet, and it is shown that the macroscopic electro-optical properties of the film can be modeled if the distribution of liquid-crystal droplet sizes is known.
Tunable two-dimensional photonic crystals using liquid crystal infiltration
NASA Astrophysics Data System (ADS)
Leonard, S. W.; Mondia, J. P.; van Driel, H. M.; Toader, O.; John, S.; Busch, K.; Birner, A.; Gösele, U.; Lehmann, V.
2000-01-01
The photonic band gap of a two-dimensional photonic crystal is continuously tuned using the temperature dependent refractive index of a liquid crystal. Liquid crystal E7 was infiltrated into the air pores of a macroporous silicon photonic crystal with a triangular lattice pitch of 1.58 μm and a band gap wavelength range of 3.3-5.7 μm. After infiltration, the band gap for the H polarized field shifted dramatically to 4.4-6.0 μm while that of the E-polarized field collapsed. As the sample was heated to the nematic-isotropic phase transition temperature of the liquid crystal (59 °C), the short-wavelength band edge of the H gap shifted by as much as 70 nm while the long-wavelength edge was constant within experimental error. Band structure calculations incorporating the temperature dependence of the liquid crystal birefringence can account for our results and also point to an escaped-radial alignment of the liquid crystal in the nematic phase.
A sensor for vector electric field measurements through a nonlinear anisotropic optical crystal
NASA Astrophysics Data System (ADS)
Barbieri, Luca; Gondola, Marco; Potenza, Marco; Villa, Andrea; Malgesini, Roberto
2017-11-01
Electrical applications require the development of electric field sensors that can reproduce vector electric field waveforms with a very large spectral width ranging from 50 Hz to at least 70 MHz. This makes it possible to measure both the normal operation modes of electrical components and abnormal behaviors such as the corona emission and partial discharges. In this work, we aim to develop a fully dielectric sensor capable of measuring two components of the electric field using a wide class of optical crystals including anisotropic ones, whereas most of the efforts in this field have been devoted to isotropic crystals. We report the results of the measurements performed at 50 Hz and with a lightning impulse, to validate the sensor.
NASA Astrophysics Data System (ADS)
Gui-Li, Zheng; Hui, Zhang; Wen-Jiang, Ye; Zhi-Dong, Zhang; Hong-Wei, Song; Li, Xuan
2016-03-01
Based on the experimental phenomena of flexoelectric response at defect sites in nematic inversion walls conducted by Kumar et al., we gave the theoretical analysis using the Frank elastic theory. When a direct-current electric field normal to the plane of the substrate is applied to the parallel aligned nematic liquid crystal cell with weak anchoring, the rotation of ±1 defects in the narrow inversion walls can be exhibited. The free energy of liquid crystal molecules around the +1 and -1 defect sites in the nematic inversion walls under the electric field was formulated and the electric-field-driven structural changes at the defect site characterized by polar and azimuthal angles of the local director were simulated. The results reveal that the deviation of azimuthal angle induced by flexoelectric effect are consistent with the switching of extinction brushes at the +1 and -1 defects obtained in the experiment conducted by Kumar et al. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374087, 11274088, and 11304074), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2014202123 and A2016202282), the Research Project of Hebei Education Department, China (Grant Nos. QN2014130 and QN2015260), and the Key Subject Construction Project of Hebei Province University, China.
Dislocation dynamics and crystal plasticity in the phase-field crystal model
NASA Astrophysics Data System (ADS)
Skaugen, Audun; Angheluta, Luiza; Viñals, Jorge
2018-02-01
A phase-field model of a crystalline material is introduced to develop the necessary theoretical framework to study plastic flow due to dislocation motion. We first obtain the elastic stress from the phase-field crystal free energy under weak distortion and show that it obeys the stress-strain relation of linear elasticity. We focus next on dislocations in a two-dimensional hexagonal lattice. They are composite topological defects in the weakly nonlinear amplitude equation expansion of the phase field, with topological charges given by the standard Burgers vector. This allows us to introduce a formal relation between the dislocation velocity and the evolution of the slowly varying amplitudes of the phase field. Standard dissipative dynamics of the phase-field crystal model is shown to determine the velocity of the dislocations. When the amplitude expansion is valid and under additional simplifications, we find that the dislocation velocity is determined by the Peach-Koehler force. As an application, we compute the defect velocity for a dislocation dipole in two setups, pure glide and pure climb, and compare it with the analytical predictions.
Three-color crystal digital PCR.
Madic, J; Zocevic, A; Senlis, V; Fradet, E; Andre, B; Muller, S; Dangla, R; Droniou, M E
2016-12-01
Digital PCR is an exciting new field for molecular analysis, allowing unprecedented precision in the quantification of nucleic acids, as well as the fine discrimination of rare molecular events in complex samples. We here present a novel technology for digital PCR, Crystal Digital PCR™, which relies on the use of a single chip to partition samples into 2D droplet arrays, which are then subjected to thermal cycling and finally read using a three-color fluorescence scanning device. This novel technology thus allows three-color multiplexing, which entails a different approach to data analysis. In the present publication, we present this innovative workflow, which is both fast and user-friendly, and discuss associated data analysis issue, such as fluorescence spillover compensation and data representation. Lastly, we also present proof-of-concept of this three-color detection system, using a quadriplex assay for the detection of EGFR mutations L858R, L861Q and T790M.
NASA Astrophysics Data System (ADS)
Schmitt, Axel; Klitzke, Malte; Gerdes, Axel; Ludwig, Thomas; Schäfer, Christof
2017-04-01
Zircon megacrysts (approx. 0.5-6 mm in diameter) from the Quaternary West and East Eifel volcanic fields, Germany, occur as euhedral crystals in porous K-spar rich plutonic ejecta clasts, and as partially resorbed xenocrysts in tephrite lava. Their relation to the host volcanic rocks has remained contentious because the dominantly basanitic to phonolitic magma compositions in the Eifel are typically zircon undersaturated. We carried out a detailed microanalytical study of zircon megacrysts from seven locations (Emmelberg and Rockeskyll in the West Eifel; Bellerberg, Laacher See, Mendig, Rieden, and Wehr in the East Eifel). Crystals were embedded in epoxy, sectioned to expose interiors through grinding with abrasives, diamond-polished, and mapped by optical microscopy, backscattered electron, and cathodoluminescence imaging. Subsequently, isotope-specific analysis using secondary ionization mass spectrometry (SIMS) and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) was carried out placing 100 correlated spots on 20 selected crystals. Concordant U-Th disequilibrium and U-Pb ages determined by SIMS are between ca. 430 ka (Rieden) and 170 ka (Mendig) and indicate that the megacryst zircons crystallized almost always briefly before eruption. A significant gap between zircon megacryst crystallization (ca. 230 ka) and eruption (ca. 45 ka) ages was only detected for the Emmelberg location. SIMS trace element abundances (e.g., rare earth elements) vary by orders-of-magnitude and correlate with domain boundaries visible in cathodoluminescence; trace element patterns match those reported for zircon from syenitic origins. Isotopic compositions are homogeneous within individual crystals, but show some heterogeneity between different crystals from the same locality. Average isotopic values (δ18O SMOW = +5.3±0.6 ‰ by SIMS; present-day ɛHf = +1.7±2.5 ‰ by LA-ICP-MS; 1 standard deviation), however, are consistent with source magmas being dominantly mantle-derived. The porous structure and relatively small grain size of the host enclaves suggests that they originated from subvolcanic intrusions. Moreover, the preservation of zircon in hot, zircon undersaturated magmas requires brief residence times. Zircon megacrysts thus appear to have crystallized in highly differentiated magmas or nearly solidified intrusions from which crystals or rock aggregates were incorporated into more primitive magmas en route to surface. This implies that chemical signatures of apparently primitive magmas in basaltic volcanic fields can be modified by interaction with evolved melts that differentiated prior to eruption, mostly within an interval less than the ca. 10-25 ka uncertainty range of the radiometric ages.
Liquid-Crystal-Enabled Active Plasmonics: A Review
Si, Guangyuan; Zhao, Yanhui; Leong, Eunice Sok Ping; Liu, Yan Jun
2014-01-01
Liquid crystals are a promising candidate for development of active plasmonics due to their large birefringence, low driving threshold, and versatile driving methods. We review recent progress on the interdisciplinary research field of liquid crystal based plasmonics. The research scope of this field is to build the next generation of reconfigurable plasmonic devices by combining liquid crystals with plasmonic nanostructures. Various active plasmonic devices, such as switches, modulators, color filters, absorbers, have been demonstrated. This review is structured to cover active plasmonic devices from two aspects: functionalities and driven methods. We hope this review would provide basic knowledge for a new researcher to get familiar with the field, and serve as a reference for experienced researchers to keep up the current research trends. PMID:28788515
Rate limits in silicon sheet growth - The connections between vertical and horizontal methods
NASA Technical Reports Server (NTRS)
Thomas, Paul D.; Brown, Robert A.
1987-01-01
Meniscus-defined techniques for the growth of thin silicon sheets fall into two categories: vertical and horizontal growth. The interactions of the temperature field and the crystal shape are analyzed for both methods using two-dimensional finite-element models which include heat transfer and capillarity. Heat transfer in vertical growth systems is dominated by conduction in the melt and the crystal, with almost flat melt/crystal interfaces that are perpendicular to the direction of growth. The high axial temperature gradients characteristic of vertical growth lead to high thermal stresses. The maximum growth rate is also limited by capillarity which can restrict the conduction of heat from the melt into the crystal. In horizontal growth the melt/crystal interface stretches across the surface of the melt pool many times the crystal thickness, and low growth rates are achievable with careful temperature control. With a moderate axial temperature gradient in the sheet a substantial portion of the latent heat conducts along the sheet and the surface of the melt pool becomes supercooled, leading to dendritic growth. The thermal supercooling is surpressed by lowering the axial gradient in the crystal; this configuration is the most desirable for the growth of high quality crystals. An expression derived from scaling analysis relating the growth rate and the crucible temperature is shown to be reliable for horizontal growth.
Using Magnetic Field Gradients to Simulate Variable Gravity in Fluids and Materials Experiments
NASA Technical Reports Server (NTRS)
Ramachandran, Narayanan
2006-01-01
Fluid flow due to a gravitational field is caused by sedimentation, thermal buoyancy, or solutal buoyancy induced convection. During crystal growth, for example, these flows are undesirable and can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, a theory is presented on the stability of solutal convection of a magnetized fluid(weak1y paramagnetic) in the presence of a magnetic field. The requirements for stability are developed and compared to experiments performed within the bore of a superconducting magnet. The theoretical predictions are in good agreement with the experiments. Extension of the technique can also be applied to study artificial gravity requirements for long duration exploration missions. Discussion of this application with preliminary experiments and application of the technique to crystal growth will be provided.
Physical modelling of Czochralski crystal growth in horizontal magnetic field
NASA Astrophysics Data System (ADS)
Grants, Ilmārs; Pal, Josef; Gerbeth, Gunter
2017-07-01
This study addresses experimentally the heat transfer, the temperature azimuthal non-uniformity and the onset of oscillations in a low temperature physical model of a medium-sized Czochralski crystal growth process with a strong horizontal magnetic field (HMF). It is observed that under certain conditions the integral heat flux may decrease with increasing magnetic field strength at the same time as the flow velocity increases. The azimuthal non-uniformity of the temperature field in the melt near the crystal model rim is only little influenced by its rotation rate outside of a narrow range where the centrifugal force balances the buoyant one. The flow oscillation onset has been observed for two values of the HMF strength. Conditions of this onset are little influenced by the crystal rotation. The critical temperature difference of the oscillation onset considerably exceeds that of the Rayleigh-Bénard (RB) cell in a strong HMF.
Organic field-effect transistors using single crystals.
Hasegawa, Tatsuo; Takeya, Jun
2009-04-01
Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm 2 Vs -1 , achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.
Organic field-effect transistors using single crystals
Hasegawa, Tatsuo; Takeya, Jun
2009-01-01
Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for ‘plastic electronics’. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20–40 cm2 Vs−1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps. PMID:27877287
Laser induced fluorescence of BaS: Sm phosphor and energy level splitting of Sm 3+ ion
NASA Astrophysics Data System (ADS)
Thomas, Reethamma; Nampoori, V. P. N.
1990-03-01
Fluorescence of BaS: Sm phosphor has been studied using a pulsed Nitrogen laser (337.1 nm) as the excitation source. The spectrum consists of a broad band in the region 540-660nm superposed by the characteristic Sm 3+ lines. Energy level splitting pattern of Sm 3+ due to crystal field effects has been calculated and relevent field parameters are evaluated. Analysis shows that Sm 3+ takes up Ba 2+ substitutional sites.
Synthesis of Polycrystalline CdSiP2 in a Gradient Temperature Field
NASA Astrophysics Data System (ADS)
Bereznaya, S. A.; Korotchenko, Z. V.; Kurasova, A. S.; Sarkisov, S. Yu.; Sarkisov, Yu. S.; Chernyshov, A. I.; Korolkov, I. V.; Kuchumov, B. M.; Saprykin, A. I.; Atuchin, V. V.
2018-05-01
A procedure for the synthesis of a CdSiP2 compound from the initial elementary components in a gradient thermal field has been developed. The phase and chemical composition of the synthesized and recrystallized material is confirmed by the data of X-ray diffraction analysis and scanning electron microscopy with an energy-dispersive system. The polycrystalline material obtained by the developed method will be used to grow bulk nonlinear optical CdSiP2 crystals.
Crystallization screening: the influence of history on current practice.
Luft, Joseph R; Newman, Janet; Snell, Edward H
2014-07-01
While crystallization historically predates crystallography, it is a critical step for the crystallographic process. The rich history of crystallization and how that history influences current practices is described. The tremendous impact of crystallization screens on the field is discussed.
NASA Astrophysics Data System (ADS)
Hermann, Regina; Uhlemann, Margitta; Wendrock, Horst; Gerbeth, Gunter; Büchner, Bernd
2011-03-01
The aim of this work is growth and characterisation of Ti55Nb45 (wt%) single crystals by floating-zone single crystal growth of intermetallic compounds using two-phase radio-frequency (RF) electromagnetic heating. Thereby, the process and, in particular, the flow field in the molten zone is influenced by additional magnetic fields. The growth of massive intermetallic single crystals is very often unsuccessful due to an unfavourable solid-liquid interface geometry enclosing concave fringes. It is generally known that the crystallization process stability is enhanced if the crystallization interface is convex. For this, a tailored magnetic two-phase stirrer system has been developed, which enables a controlled influence on the melt ranging from intensive inwards to outwards flows. Since Ti is favourably light, strong and biocompatible, it is one of the few materials that naturally match the requirements for implantation in the human body. Therefore, the magnetic system was applied to crystal growth of Ti alloys. The grown crystals were oriented and cut to cubes with the desired crystallographic orientations [1 0 0] and [1 0 1] normally on a plane. The electron backscatter diffraction (EBSD) technique was applied to clearly determine crystal orientation and to localize grain boundaries. The formation of oxidic nanotubes on Ti surfaces in dependence of the grain orientation was investigated, performed electrochemically by anodic oxidation from fluoride containing electrolyte.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, S St.; Argento, D; Stewart, R
Purpose: The University of Washington Medical Center offers neutron therapy for the palliative and definitive treatment of selected cancers. In vivo field verification has the potential to improve the safe and effective delivery of neutron therapy. We propose a portal imaging method that relies on the creation of positron emitting isotopes (11C and 15O) through (n, 2n) reactions with a PMMA plate placed below the patient. After field delivery, the plate is retrieved from the vault and imaged using a reader that detects annihilation photons. The spatial pattern of activity produced in the PMMA plate provides information to reconstruct themore » neutron fluence map needed to confirm treatment delivery. Methods: We used MCNP to simulate the accumulation of 11C activity in a slab of PMMA 2 mm thick, and GATE was used to simulate the sensitivity and spatial resolution of a prototype imaging system. BGO crystal thicknesses of 1 cm, 2 cm and 3 cm were simulated with detector separations of 2 cm. Crystal pitches of 2 mm and 4 mm were evaluated. Back-projection of the events was used to create a planar image. The spatial resolution was taken to be the FWHM of the reconstructed point source image. Results: The system sensitivity for a point source in the center of the field of view was found to range from 58% for 1 cm thick BGO with 2 mm crystal pitch to 74% for the 3 cm thick BGO crystals with 4 mm crystal pitch. The spatial resolution at the center of the field of view was found to be 1.5 mm for the system with 2 mm crystal pitch and 2.8 mm for the system with the 4 mm crystal pitch. Conclusion: BGO crystals with 4 mm crystal pitch and 3 cm length would offer the best sensitivity reader.« less
NASA Astrophysics Data System (ADS)
Chikashige, T.; Iwasaka, M.
2018-05-01
In this study, a new method was investigated to form light-reflecting dots at the micrometer scale using the magnetic orientations of biogenic guanine crystals obtained from fish skin and scales. The crystal platelets, possessing average dimensions of 5 μm×20 μm×100 nm, were dispersed in water and observed during exposure to vertical magnetic fields up to 5 T. The magnetic field direction was parallel to Earth's gravity, and allowed the narrowest edges of the crystals to be observed at the micrometer scale for the first time. The magnetic orientation process was initiated under conditions where the crystal platelets in water were laid on a glass substrate or where the platelets had random orientations. In the former case, the crystal platelets followed a two-stage magnetic orientation process where, in the first step, the platelet widths were aligned in the magnetic field direction. The second step required rotation of the ˜20-μm-long plates with respect to the Earth's gravity, where application of a 5 T magnetic field enabled their orientation. Real-time images of the magnetically aligning platelets provided new evidence that the crystal platelets also emitted reflected light from a very narrow window at two crystal planes (i.e., (0 1 ¯ 2 ¯ ) and (0 1 ¯ 2 )). In the latter case with random platelet orientation, spatially-condensed light-reflecting dots appeared while the guanine crystal platelets were floating and maintaining their orientation. The technique developed for controlling light-reflecting microscale objects in an aqueous medium can be applied to produce a type of microfluidic optical tool.
NASA Astrophysics Data System (ADS)
Luo, Laihui; Dietze, Matthias; Solterbeck, Claus-Henning; Luo, Haosu; Es-Souni, Mohammed
2013-12-01
Single crystals based on solid solutions of lead-magnesium-niobate (PMN) and lead titanate (PT) have emerged as highly promising multifunctional systems combining piezoelectric, pyroelectric, and electro-optic properties that surpass by far those of the best known lead-zirkonium-titanate ceramics. In this paper we present new findings on how the phase transition temperature and the dielectric and ferroelectric properties can be tuned depending on crystal composition, orientation, and thermoelectrical treatment. Mn-doped and pure 0.72PbMg1/3Nb2/3O3-0.28PbTiO3 (0.72PMN-0.28PT) single crystals with ⟨111⟩ and ⟨001⟩ orientations were investigated. A special attention was devoted to field cooling (FC), i.e., cooling under electric field from different temperatures. The results illustrate different findings that were not reported before: the Curie temperature, i.e., ferroelectric-paraelectric transition temperature, is enhanced after field cooling of the Mn-doped, ⟨001⟩-oriented crystal while such a shift is not observed in the ⟨111⟩-oriented and the non-doped crystals. In addition, substantial polarization suppression occurs in the Mn-doped crystals upon FC from high temperature regardless of orientation. Based on piezoforce microscopy of the domain structure that shows suppression of domain growth following field cooling from 200 °C, we propose a mechanism for polarization suppression based on domain pinning by charged defects. The practical importance of our results lies in showing the opportunity offered by a proper choice of crystal composition and poling conditions for tuning the functional properties of PMN-PT single crystals for a specific application. This should contribute to the understanding of their properties towards advanced sensor and transducers devices.
Characterization of iron-doped lithium niobate for holographic storage applications
NASA Technical Reports Server (NTRS)
Shah, R. R.; Kim, D. M.; Rabson, T. A.; Tittel, F. K.
1976-01-01
A comprehensive characterization of chemical and holographic properties of eight systematically chosen Fe:LiNbO3 crystals is performed in order to determine optimum performance of the crystals in holographic storage and display applications. The discussion covers determination of Fe(2+) and Fe(3+) ion concentrations in Fe:LiNbO3 system from optical absorption and EPR measurements; establishment of the relation between the photorefractive sensitivity of Fe(2+) and Fe(3+) concentrations; study of the spectral dependence, the effect of oxygen annealing, and of other impurities on the photorefractive sensitivity; analysis of the diffraction efficiency curves for different crystals and corresponding sensitivities with the dynamic theory of hologram formation; and determination of the bulk photovoltaic fields as a function of Fe(2+) concentrations. In addition to the absolute Fe(2+) concentration, the relative concentrations of Fe(2+) and Fe(3+) ions are also important in determining the photorefractive sensitivity. There exists an optimal set of crystal characteristics for which the photorefractive sensitivity is most favorable.
NASA Astrophysics Data System (ADS)
Zhuo, Fangping; Li, Qiang; Yan, Qingfeng; Zhang, Yiling; Wu, Hong-Hui; Xi, Xiaoqing; Chu, Xiangcheng; Cao, Wenwu
2017-10-01
Temperature induced phase transitions and electrocaloric effect (ECE) of (Pb,La)(Zr,Sn,Ti)O3 (PLZST) single crystals have been comprehensively studied. Based on the in situ evolution of domain structures and dielectric properties of the PLZST crystals, the phase transitions during heating are in the sequence of orthorhombic antiferroelectric → rhombohedral ferroelectric → cubic paraelectric. Coexistence of the negative and positive ECEs has been achieved in the PLZST single crystals. A negative ECE value of -1.26 °C and enhanced electrocaloric strength of -0.21 K mm/kV near the Curie temperature have been obtained. A modified Landau model gives a satisfactory description of the experimentally observed unusual ECE. Moreover, a temperature-electric field phase diagram is also established based on theoretical analysis. Our results will help people understand better the electrocaloric family, particularly on the negative and/or positive effect in antiferroelectrics and ferroelectrics.
Suppressing molecular vibrations in organic semiconductors by inducing strain
Kubo, Takayoshi; Häusermann, Roger; Tsurumi, Junto; Soeda, Junshi; Okada, Yugo; Yamashita, Yu; Akamatsu, Norihisa; Shishido, Atsushi; Mitsui, Chikahiko; Okamoto, Toshihiro; Yanagisawa, Susumu; Matsui, Hiroyuki; Takeya, Jun
2016-01-01
Organic molecular semiconductors are solution processable, enabling the growth of large-area single-crystal semiconductors. Improving the performance of organic semiconductor devices by increasing the charge mobility is an ongoing quest, which calls for novel molecular and material design, and improved processing conditions. Here we show a method to increase the charge mobility in organic single-crystal field-effect transistors, by taking advantage of the inherent softness of organic semiconductors. We compress the crystal lattice uniaxially by bending the flexible devices, leading to an improved charge transport. The mobility increases from 9.7 to 16.5 cm2 V−1 s−1 by 70% under 3% strain. In-depth analysis indicates that compressing the crystal structure directly restricts the vibration of the molecules, thus suppresses dynamic disorder, a unique mechanism in organic semiconductors. Since strain can be easily induced during the fabrication process, we expect our method to be exploited to build high-performance organic devices. PMID:27040501
Suppressing molecular vibrations in organic semiconductors by inducing strain.
Kubo, Takayoshi; Häusermann, Roger; Tsurumi, Junto; Soeda, Junshi; Okada, Yugo; Yamashita, Yu; Akamatsu, Norihisa; Shishido, Atsushi; Mitsui, Chikahiko; Okamoto, Toshihiro; Yanagisawa, Susumu; Matsui, Hiroyuki; Takeya, Jun
2016-04-04
Organic molecular semiconductors are solution processable, enabling the growth of large-area single-crystal semiconductors. Improving the performance of organic semiconductor devices by increasing the charge mobility is an ongoing quest, which calls for novel molecular and material design, and improved processing conditions. Here we show a method to increase the charge mobility in organic single-crystal field-effect transistors, by taking advantage of the inherent softness of organic semiconductors. We compress the crystal lattice uniaxially by bending the flexible devices, leading to an improved charge transport. The mobility increases from 9.7 to 16.5 cm(2) V(-1) s(-1) by 70% under 3% strain. In-depth analysis indicates that compressing the crystal structure directly restricts the vibration of the molecules, thus suppresses dynamic disorder, a unique mechanism in organic semiconductors. Since strain can be easily induced during the fabrication process, we expect our method to be exploited to build high-performance organic devices.
NASA Astrophysics Data System (ADS)
Xie, Zhiqing; Su, Xin; Ding, Hanqin; Li, Hongyi
2018-06-01
Nonlinear optical materials have attracted worldwide attention owing to their wide range of applications, specially in the laser field. Phosphates with noncentrosymmetric structures are potential candidates for novel ultraviolet (UV)-NLO materials, because they usually display short UV cut-off edges. In this work, a polyphosphate, the LiZnP3O9 polyphosphate crystals were grown through spontaneous crystallization from high-temperature melts. It crystallizes in the orthorhombic space group P212121 with unit cell parameters a = 8.330(3) Å, b = 8.520(3) Å, c = 8.635(3) Å, and Z = 4. In the structure, all the P atoms are coordinated by four oxygen atoms forming the [PO4] tetrahedra and further connected to generate a zig-zag [PO3]∞ anionic framework. Thermal analysis, IR spectroscopy, UV-vis-NIR diffuse reflectance spectrum and powder second harmonic generation measurements are performed. In addition, the first-principles calculation was employed for better understanding the structure-property relationships of LiZnP3O9.
Magnetostriction of Hexagonal HoMnO3 and YMnO3 Single Crystals
NASA Astrophysics Data System (ADS)
Pavlovskii, N. S.; Dubrovskii, A. A.; Nikitin, S. E.; Semenov, S. V.; Terent'ev, K. Yu.; Shaikhutdinov, K. A.
2018-03-01
We report on the magnetostriction of hexagonal HoMnO3 and YMnO3 single crystals in a wide range of applied magnetic fields (up to H = 14 T) at all possible combinations of the mutual orientations of magnetic field H and magnetostriction Δ L/L. The measured Δ L/L( H, T) data agree well with the magnetic phase diagram of the HoMnO3 single crystal reported previously by other authors. It is shown that the nonmonotonic behavior of magnetostriction of the HoMnO3 crystal is caused by the Ho3+ ion; the magnetic moment of the Mn3+ ion parallel to the hexagonal crystal axis. The anomalies established from the magnetostriction measurements of HoMnO3 are consistent with the phase diagram of these compounds. For the isostructural YMnO3 single crystal with a nonmagnetic rare-earth ion, the Δ L/L( H, T) dependences are described well by a conventional quadratic law in a wide temperature range (4-100 K). In addition, the magnetostriction effect is qualitatively estimated with regard to the effect of the crystal electric field on the holmium ion.
High purith low defect FZ silicon
NASA Technical Reports Server (NTRS)
Kimura, H.; Robertson, G.
1985-01-01
The most common intrinsic defects in dislocation-free float zone (FZ) silicon crystals are the A- and B-type swirl defects. The mechanisms of their formation and annihilation have been extensively studied. Another type of defect in dislocation-free FZ crystals is referred to as a D-type defect. Concentrations of these defects can be minimized by optimizing the growth conditions, and the residual swirls can be reduced by the post-growth extrinsic gettering process. Czochralski (Cz) silicon wafers are known to exhibit higher resistance to slip and warpage due to thermal stress than do FZ wafers. The Cz crystals containing dislocations are more resistant to dislocation movement than dislocated FZ crystals because of the locking of dislocations by oxygen atoms present in the Cz crystals. Recently a transverse magnetic field was applied during the FZ growth of extrinsic silicon. Resultant flow patterns, as revealed by striation etching and spreading resistance in Ga-doped silicon crystals, indicate strong effects of the transverse magnetic field on the circulation within the melt. At fields of 5500 gauss, the fluid flow in the melt volume is so altered as to affect the morphology of the growing crystal.
Eliminating Crystals in Non-Oxide Optical Fiber Preforms and Optical Fibers
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; LaPointe, Michael R.
2012-01-01
Non ]oxide fiber optics such as heavy metal fluoride and chalcogenide glasses are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. The addition of rare earths such as erbium, enable these materials to be used as fiber laser and amplifiers. Some of these glasses however are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. Previously two research teams found that microgravity suppressed crystallization in heavy metal fluoride glasses. Looking for a less expensive method to suppress crystallization, ground based research was performed utilizing an axial magnetic field. The experiments revealed identical results to those obtained via microgravity processing. This research then led to a patented process for eliminating crystals in optical fiber preforms and the resulting optical fibers. In this paper, the microgravity results will be reviewed as well as patents and papers relating to the use of magnetic fields in various material and glass processing applications. Finally our patent to eliminate crystals in non ]oxide glasses utilizing a magnetic field will be detailed.
Unconventional Magnetic Domain Structure in the Ferromagnetic Phase of MnP Single Crystals
NASA Astrophysics Data System (ADS)
Koyama, Tsukasa; Yano, Shin-ichiro; Togawa, Yoshihiko; Kousaka, Yusuke; Mori, Shigeo; Inoue, Katsuya; Kishine, Jun-ichiro; Akimitsu, Jun
2012-04-01
We have studied ferromagnetic (FM) structures in the FM phase of MnP single crystals by low-temperature Lorentz transmission electron microscopy and small-angle electron diffraction analysis. In Lorentz Fresnel micrographs, striped FM domain structures were observed at an external magnetic field less than 10 Oe in specimens with the ab-plane in their plane. From real- and reciprocal-space analyses, it was clearly identified that striped FM domains oriented to the c-axis appear with Bloch-type domain walls in the b-direction and order regularly along the a-axis with a constant separation less than 100 nm. Moreover, the magnetic chirality reverses in alternate FM domain walls. These specific spin configuration of striped FM domains will affect the magnetic phase transition from the FM phase to the proper screw spiral phase at low temperature or to the FAN phase in magnetic fields in MnP.
Optimization of Pockels electric field in transverse modulated optical voltage sensor
NASA Astrophysics Data System (ADS)
Huang, Yifan; Xu, Qifeng; Chen, Kun-Long; Zhou, Jie
2018-05-01
This paper investigates the possibilities of optimizing the Pockels electric field in a transverse modulated optical voltage sensor with a spherical electrode structure. The simulations show that due to the edge effect and the electric field concentrations and distortions, the electric field distributions in the crystal are non-uniform. In this case, a tiny variation in the light path leads to an integral error of more than 0.5%. Moreover, a 2D model cannot effectively represent the edge effect, so a 3D model is employed to optimize the electric field distributions. Furthermore, a new method to attach a quartz crystal to the electro-optic crystal along the electric field direction is proposed to improve the non-uniformity of the electric field. The integral error is reduced therefore from 0.5% to 0.015% and less. The proposed method is simple, practical and effective, and it has been validated by numerical simulations and experimental tests.
Crystallization of Nanocomposite Glasses Made by the SSG Process
1993-01-12
thermogravimetric analysis (TGA). The role of glass structure and composition in the thermochemical stability will be discussed. 37 II. EXPERIMENTAL PROCEDLRES The...applications in the materials field. tion and r-plot analysis of this porous nanocomposite showed Because of the nanoscale mixing of inorganic and organic a... nanoparticles in There is a need for substrates with very low relative permit- magnetic recording media can lead to smaller storage units tivitv 1ɛ) in %ery
Petrology and Physics of Magma Ocean Crystallization
NASA Technical Reports Server (NTRS)
Elkins-Tanton, Linda T.; Parmentier, E. M.; Hess, P. C.
2003-01-01
Early Mars is thought to have been melted significantly by the conversion of kinetic energy to heat during accretion of planetesimals. The processes of solidification of a magma ocean determine initial planetary compositional differentiation and the stability of the resulting mantle density profile. The stability and compositional heterogeneity of the mantle have significance for magmatic source regions, convective instability, and magnetic field generation. Significant progress on the dynamical problem of magma ocean crystallization has been made by a number of workers. The work done under the 2003 MFRP grant further explored the implications of early physical processes on compositional heterogeneity in Mars. Our goals were to connect early physical processes in Mars evolution with the present planet's most ancient observable characteristics, including the early, strong magnetic field, the crustal dichotomy, and the compositional characteristics of the SNC meteorite's source regions as well as their formation as isotopically distinct compositions early in Mars's evolution. We had already established a possible relationship between the major element compositions of SNC meteorite sources and processes of Martian magma ocean crystallization and overturn, and under this grant extended the analysis to the crucial trace element and isotopic SNC signatures. This study then demonstrated the ability to create and end the magnetic field through magma ocean cumulate overturn and subsequent cooling, as well as the feasibility of creating a compositionally- and volumetrically-consistent crustal dichotomy through mode-1 overturn and simultaneous adiabatic melting.
Crystallization of Calcium Carbonate in a Large Scale Field Study
NASA Astrophysics Data System (ADS)
Ueckert, Martina; Wismeth, Carina; Baumann, Thomas
2017-04-01
The long term efficiency of geothermal facilities and aquifer thermal energy storage in the carbonaceous Malm aquifer in the Bavarian Molasse Basin is seriously affected by precipitations of carbonates. This is mainly caused by pressure and temperature changes leading to oversaturation during production. Crystallization starts with polymorphic nuclei of calcium carbonate and is often described as diffusion-reaction controlled. Here, calcite crystallization is favoured by high concentration gradients while aragonite crystallization is occurring at high reaction rates. The factors affecting the crystallization processes have been described for simplified, well controlled laboratory experiments, the knowledge about the behaviour in more complex natural systems is still limited. The crystallization process of the polymorphic forms of calcium carbonate were investigated during a heat storage test at our test site in the eastern part of the Bavarian Molasse Basin. Complementary laboratory experiments in an autoclave were run. Both, field and laboratory experiments were conducted with carbonaceous tap water. Within the laboratory experiments additionally ultra pure water was used. To avoid precipitations of the tap water, a calculated amount of {CO_2} was added prior to heating the water from 45 - 110°C (laboratory) resp. 65 - 110°C (field). A total water volume of 0.5 L (laboratory) resp. 1 L (field) was immediately sampled and filtrated through 10 - 0.1
Crystallization screening: the influence of history on current practice
Luft, Joseph R.; Newman, Janet; Snell, Edward H.
2014-01-01
While crystallization historically predates crystallography, it is a critical step for the crystallographic process. The rich history of crystallization and how that history influences current practices is described. The tremendous impact of crystallization screens on the field is discussed. PMID:25005076
Magnetic properties of GdMnO3 nanoparticles embedded in mesoporous silica
NASA Astrophysics Data System (ADS)
Tajiri, Takayuki; Mito, Masaki; Deguchi, Hiroyuki; Kohno, Atsushi
2018-05-01
Perovskite manganite GdMnO3 nanoparticles were synthesized using mesoporous silica as a template, and their magnetic properties and crystal structure were investigated. Powder X-ray diffraction data indicated successful synthesis of the GdMnO3 nanoparticles, with mean particle sizes of 13.9 and 20.9 nm. The lattice constants for the nanoparticles were slightly different from those for the bulk material and varied with the particle size. The magnetic transition temperatures for the nanoparticles were higher than those of the bulk crystal. The synthesized GdMnO3 nanoparticles exhibited superparamagnetic behaviors: The blocking temperature, coercive field, and transition temperature depended on the particle size. Magnetic measurements and crystal structure analysis suggest that the changes in the magnetic properties for GdMnO3 nanoparticles can be attributed to the modulation of the crystallographic structure.
NASA Astrophysics Data System (ADS)
Bordage, Amélie; Rossano, Stéphanie; Horn, Adolf Heinrich; Fuchs, Yves
2012-06-01
X-ray absorption spectroscopy measurements at the Cr K-edge of a trichroic crystal of alexandrite BeAl2O4:Cr3+ for different orientations of the crystal with respect to the polarization and direction of the x-ray incident beam have been performed. Analysis of the experimental spectra with the help of first-principles calculations of x-ray absorption spectra allowed us to estimate the proportion of chromium Cr3+ cations among the two different octahedral sites of the alexandrite structure (70% in the Cs site-30% in the Ci site). The methodology presented in this work opens up new possibilities in the field of mineralogy for the study of complex minerals containing several sites potentially occupied by several transition elements or for solid solutions.
NASA Astrophysics Data System (ADS)
Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue
2012-05-01
The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission.
Molecular reorientation of a nematic liquid crystal by thermal expansion
Kim, Young-Ki; Senyuk, Bohdan; Lavrentovich, Oleg D.
2012-01-01
A unique feature of nematic liquid crystals is orientational order of molecules that can be controlled by electromagnetic fields, surface modifications and pressure gradients. Here we demonstrate a new effect in which the orientation of nematic liquid crystal molecules is altered by thermal expansion. Thermal expansion (or contraction) causes the nematic liquid crystal to flow; the flow imposes a realigning torque on the nematic liquid crystal molecules and the optic axis. The optical and mechanical responses activated by a simple temperature change can be used in sensing, photonics, microfluidic, optofluidic and lab-on-a-chip applications as they do not require externally imposed gradients of temperature, pressure, surface realignment, nor electromagnetic fields. The effect has important ramifications for the current search of the biaxial nematic phase as the optical features of thermally induced structural changes in the uniaxial nematic liquid crystal mimic the features expected of the biaxial nematic liquid crystal. PMID:23072803
NASA Astrophysics Data System (ADS)
Liu, Hongliang; Zhang, Xin; Li, Yuancheng; Xiao, Yixin; Zhang, Wei; Zhang, Jiu-Xing
2018-04-01
The femtosecond laser direct writing method has been used to fabricate the single crystal lanthanum hexaboride (LaB6) field-emission tip arrays (FEAs). The morphologies, structure phase, and field emission of the single crystal LaB6 FEAs are systematically studied. The nanostructures on the surface of tips with the LaB6 phase were formed, resulting in favor of improving field emission, particularly for samples with the nanohill shaped bulges having the size of about 100 nm. The produced single crystal LaB6 FEAs have a uniform structure and a controllable curvature radius of about 0.5-3.0 μm. The FEAs with a curvature radius of about 0.5 μm as field emitters have the best field emission performance, which the field emission turns on and the threshold electric fields are as low as 2.2 and 3.8 V/μm with an emission current of 1.0 A/cm2 at 8.0 V/μm, and the emission current exhibits high stability. These indicate that the processed LaB6 FEAs have a good prospect applied in vacuum microelectronic devices and the simple femtosecond laser direct writing method could lead to an approach for the development of electron sources.
Crystal growth of Bi{sub 2}Te{sub 3} and noble cleaved (0001) surface properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atuchin, V.V., E-mail: atuchin@thermo.isp.nsc.ru; Functional Electronics Laboratory, Tomsk State University, Tomsk 634050; Golyashov, V.A.
2016-04-15
A high quality Bi{sub 2}Te{sub 3} crystal has been grown by Bridgman method with the use of rotating heat field. The phase purity and bulk structural quality of the crystal have been verified by XRD analysis and rocking curve observation. The atomically smooth Bi{sub 2}Te{sub 3}(0001) surface with an excellent crystallographic quality is formed by cleavage in the air. The chemical and microstructural properties of the surface have been evaluated with RHEED, AFM, STM, SE and XPS. The Bi{sub 2}Te{sub 3}(0001) cleaved surface is formed by atomically smooth terraces with the height of the elemental step of ~1.04±0.1 nm, asmore » estimated by AFM. There is no surface oxidation process detected over a month keeping in the air at normal conditions, as shown by comparative core level photoelectron spectroscopy. - Graphical abstract: A high quality Bi{sub 2}Te{sub 3} crystal has been grown by Bridgman method with the use of rotating heat field and the Bi{sub 2}Te{sub 3}(0001) cleaved surface has been evaluated with RHEED, AFM, STM, SE and XPS. - Highlights: • High-quality Bi{sub 2}Te{sub 3} crystal of 10 mm in diameter and 50 mm long have been grown. • The high-purity cleaved Bi{sub 2}Te{sub 3}(0001) surface has been evaluated by RHEED, AFM, STM and XPS methods. • The Bi{sub 2}Te{sub 3} surface covered by atomically smooth (0001) terraces is chemically stable for a long time.« less
NASA Astrophysics Data System (ADS)
Gatteschi, Dante; Zanchini, Claudia; Kahn, Olivier; Pei, Yu
1989-08-01
Single-crystal EPR spectra of the heterobimetallic alternating double-chain compound MnCu(obp) (H 2O) 3·H 2O (obp=oxamido bis (N,N'-propionato)) were recorded in the 300-20 K range. Analysis of the spectra indicate a substantially dipolar-determined linewidth with enhancement of the secular term of the second moment due to spin diffusion effects. The anisotropic shifts in the resonance field observed in low-temperature spectra revealed that interchain interactions are relevant in determining the preferred spin orientations.
NASA Astrophysics Data System (ADS)
Gönül, İlyas; Ay, Burak; Karaca, Serkan; Şahin, Onur; Serin, Selahattin
2018-03-01
In the present study, we describe the synthesis and characterization of two tridentate N2O donor ligands, namely, (E)-2-(((2-(diethylamino)ethyl)imino)methyl)-6-methoxyphenol (HL1) and (E)-2-(((2-(diethylamino)ethyl)imino)methyl)-6-ethoxyphenol (HL2), and their copper(II) complexes, [Cu(L1)(CH3COO)] (1), [Cu(L2)(CH3COO)] (2). They have been synthesized under conventional methods and characterized by elemental analysis, FTIR, 1H and 13C NMR, ICP-OES, TGA and GC/MS analysis. For the morphological analysis field emission scanning electron microscopy (FESEM) was used. The geometry of the copper(II) complexes was determined by single crystal X-ray diffraction analysis. The copper(II) ions are in distorted square-pyramidal coordination environments. Complexes crystallize in monoclinic space group, P21/c. The electrical conductivity and luminescence properties of 1-2 have been investigated.
Increasing the switching speed of liquid crystal devices with magnetic nanorods
NASA Astrophysics Data System (ADS)
Garbovskiy, Yu.; Baptist, J. R.; Thompson, J.; Hunter, T.; Lim, J. H.; Gi Min, Seong; Wiley, J. B.; Malkinski, L. M.; Glushchenko, A.; Celinski, Z.
2012-10-01
Liquid crystal (LC)/magnetic nanorods colloids were fabricated and tested using a magneto-optical setup. These thermotropic ferronematics do not show any signs of macroscopic aggregation, exhibit enhanced magnetic sensitivity, and faster time response in the simultaneous presence of crossed electric and magnetic fields. Magnetic nanorods increase an effective magnetic anisotropy of the colloid and decrease magnetic Freedericksz threshold. Applying a magnetic field along the direction perpendicular to the applied electric field leads to a decrease of the time OFF by a factor of 6 for pure liquid crystals, and by a factor of 9—for ferronematics.
Field alignment of bent-core smectic liquid crystals for analog optical phase modulation
NASA Astrophysics Data System (ADS)
Shen, Y.; Goodhew, L.; Shao, R.; Moran, M.; Korblova, E.; Walba, D. M.; Clark, N. A.; Maclennan, J. E.; Rudquist, P.
2015-05-01
A general method for aligning bent-core smectic liquid crystal materials is described. Alternating electric fields between interdigitated electrodes patterned on one cell surface create torques on the liquid crystal that result in uniform "bookshelf" orientation of the smectic layers. The aligned cell can then be driven in the conventional way by applying an electric field between all of the stripe electrodes connected together and a monolithic electrode on the other cell surface. Fast, analog, optical phase-only modulation is demonstrated in a device containing a polar, bent-core SmAPF material aligned using this technique.
Tercjak, Agnieszka; Mondragon, Iñaki
2008-10-07
Meso/nanostructured thermoresponsive thermosetting materials based on an epoxy resin modified with two different molecular weight amphiphilic poly(styrene- block-ethylene oxide) block copolymers (PSEO) and a low molecular weight liquid crystal, 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC), were investigated. A strong influence of the addition of PSEO on the morphology generated in HOBC--(diglicydyl ether of bisphenol A epoxy resin/ m-xylylenediamine) was detected, especially in the case of the addition of PSEO block copolymers with a higher PEO-block content and a lower molecular weight. The morphologies generated in the ternary systems also influenced the thermoresponsive behavior of the HOBC separated phase provoked by applying an external field, such as a temperature gradient and an electrical field. Thermal analysis of the investigated materials allowed for a better understanding of the relationships between generated morphology/thermo-optical properties/PSEO:HOBC ratio, and HOBC content. Controlling the relationship between the morphology and thermoresponsive behavior in micro/nanostructured thermosetting materials based on a 4'-(hexyloxy)-4-biphenylcarbonitrile liquid crystal allows the development of materials which can find application in thermo- and in some cases electroresponsive devices, with a high contrast ratio between transparent and opaque states.
Ab-initio studies of the electronic and optical properties of Al2O3:Ti3+ laser crystals
NASA Astrophysics Data System (ADS)
Brik, M. G.
2018-03-01
The structural and electronic properties of pure and Ti3+-doped α-Al2O3 were calculated in the present paper by using the first-principles methods. Special attention has been paid to the location of the Ti3+ states (3d1 electron configuration) in the band gap; the lowest 3d states are at about 4.78 eV above the top of the valence band. The crystal field strength 10Dq at the Ti3+ site was estimated from the density of states diagrams to be about 17,700 cm-1. The structural optimization of the unit cell was also performed at elevated hydrostatic pressure in the range from 0 to 25 GPa. By application of the Murnaghan equation to the obtained results, the bulk modulus of α-Al2O3 was estimated to be 225.69 GPa. In addition, from the analysis of the Ti3+3d density of states the distance dependence of the crystal field strength was found to be described by the following function: 10Dq=61.744/R4.671, where R is expressed in Å and 10Dq in eV.
NASA Astrophysics Data System (ADS)
Troć, R.; Gajek, Z.; Pikul, A.; Misiorek, H.; Colineau, E.; Wastin, F.
2013-07-01
The transport properties described previously [Troć , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.85.224434 85, 224434 (2012)] as well as the magnetic and thermal properties presented in this paper, observed for single-crystalline UCu2Si2, are discussed by assuming a dual (localized-itinerant) scenario. The electronic states of the localized 5f electrons in UCu2Si2 are constructed using the effective Hamiltonian known for ionic systems, allowing us to treat the Coulomb, spin-orbital, and crystal-field interactions on equal footing. The space of parameters has been restricted in the initial steps with the aid of the angular overlap model approximation. The final crystal-field parameters, obtained from the refined steps of calculations, are relatively large (in absolute values), which we attribute to the hybridization characteristic of the metallic systems on the verge of localization. The proposed crystal-field model reproduces correctly with satisfactory accuracy the magnetic and thermal properties of UCu2Si2 in agreement also with the transport properties reported previously. Considerable crystal-field splitting of the ground multiplet of 2760 K is responsible for a large anisotropy in the magnetic behavior, observed in the whole temperature range explored.
Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers
Ihli, Johannes; Clark, Jesse N.; Côté, Alexander S.; ...
2016-06-15
Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. In this study, we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO 3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generatedmore » in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. In conclusion, this work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates.« less
Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers
Ihli, Johannes; Clark, Jesse N.; Côté, Alexander S.; Kim, Yi-Yeoun; Schenk, Anna S.; Kulak, Alexander N.; Comyn, Timothy P.; Chammas, Oliver; Harder, Ross J.; Duffy, Dorothy M.; Robinson, Ian K.; Meldrum, Fiona C.
2016-01-01
Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. Here we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generated in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. This work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates. PMID:27302863
Investigation of TbMn2O5 by polarized neutron diffraction
NASA Astrophysics Data System (ADS)
Zobkalo, I. A.; Gavrilov, S. V.; Sazonov, A.; Hutanu, V.
2018-05-01
In order to make a new approach to the elucidation of the microscopic mechanisms of multiferroicity in the RMn2O5 family, experiments with different methods of polarized neutrons scattering were performed on a TbMn2O5 single crystal. We employed three different techniques of polarized neutron diffraction without the analysis after scattering, the XYZ-polarization analysis, and technique of spherical neutron polarimetry (SNP). Measurements with SNP were undertaken both with and without external electric field. A characteristic difference in the population of ‘right’ and ‘left’ helix domains in all magnetically ordered phases of TbMn2O5, was observed. This difference can be controlled by an external electric field in the field-cooled mode. The analysis of the results gives an evidence that antisymmetric Dzyaloshinsky-Moria exchange is effective in all the magnetic phases in TbMn2O5.
Investigation of TbMn2O5 by polarized neutron diffraction.
Zobkalo, I A; Gavrilov, S V; Sazonov, A; Hutanu, V
2018-05-23
In order to make a new approach to the elucidation of the microscopic mechanisms of multiferroicity in the RMn 2 O 5 family, experiments with different methods of polarized neutrons scattering were performed on a TbMn 2 O 5 single crystal. We employed three different techniques of polarized neutron diffraction without the analysis after scattering, the XYZ-polarization analysis, and technique of spherical neutron polarimetry (SNP). Measurements with SNP were undertaken both with and without external electric field. A characteristic difference in the population of 'right' and 'left' helix domains in all magnetically ordered phases of TbMn 2 O 5 , was observed. This difference can be controlled by an external electric field in the field-cooled mode. The analysis of the results gives an evidence that antisymmetric Dzyaloshinsky-Moria exchange is effective in all the magnetic phases in TbMn 2 O 5 .
Characteristics of a liquid-crystal-filled composite lattice terahertz bandgap fiber
NASA Astrophysics Data System (ADS)
Bai, Jinjun; Ge, Meilan; Wang, Shasha; Yang, Yanan; Li, Yong; Chang, Shengjiang
2018-07-01
A new type of terahertz fiber is presented based on composite lattice photonic crystal bandgap. The cladding is filled selectively with the nematic liquid crystal 5CB which is sensitive to the electric field. The terahertz wave can be modulated by using the electric field to control the orientation of liquid crystal molecules. The plane wave expansion method and the finite element method are employed to theoretically analyze bandgap characteristics, polarization characteristics, energy fraction and material absorption loss. The results show that this fiber structure can be used as tunable terahertz polarization controller.
A Geochemical Investigation of Volcanic Rocks from the San Rafael Volcanic Field, Utah
NASA Astrophysics Data System (ADS)
Koebli, D. J.; Germa, A.; Connor, C.; Atlas, Z. D.
2016-12-01
A Geochemical Investigation of Volcanic Rocks from the San Rafael Volcanic Field, Utah Authors: Danielle Koebli, Dr. Aurelie Germa, Dr. Zackary Atlas, Dr. Charles Connor The San Rafael Volcanic Field (SRVF), Utah, is a 4Ma volcanic field located in the northwestern section of the Colorado Plateau. Alkaline magmas intruded into Jurassic sandstones , known as the Carmel, Entrada, Curtis and Summerville sandstone formations, and formed comagmatic dikes, sills and conduits that became uniquely well exposed as country rocks were eroded. The two rock types that formed from the melts are shonkinite (45.88 wt% SiO2) and syenite (50.84wt% SiO2); with dikes being predominantly shonkinite and sills exhibiting vertical alternation of shonkinite and syenite, a result of liquid immiscibility. The aim of this study is to determine magma temperatures, and mineral compositions which will be used for determining physical conditions for magma crystallization. Research is being conducted using an Electron Probe Micro Analyzer (EPMA) for single crystal analysis, and data were plotted using PINGU software through VHub cyberinfrastructure. EPMA data supports hydrated magma theories due to the large amounts of biotite and hornblende mixed in with olivine, feldspar and pyroxene. The data is also indicative of a calcium-rich magma which is further supported by the amount of pyroxene and plagioclase in the sample. Moreover, there are trace amounts orthoclase, quartz and k-feldspar due to sandstone inclusions from the magma intruding into the country rocks. The olivine crystals present in the samples are all chemically similar, having high Mg (Fo80-Fo90), which, coupled with a lower Fe content indicate a hotter magma. Comparison of mineral and whole-rock compositions using MELTs program will allow us to calculate magma viscosity and density so that the physical conditions for magma crystallization can be determined.
Massey, Michael S; Ippolito, James A; Davis, Jessica G; Sheffield, Ron E
2010-02-01
Phosphorus (P) recovery and re-use will become increasingly important for water quality protection and sustainable nutrient cycling as environmental regulations become stricter and global P reserves decline. The objective of this study was to examine and characterize several magnesium phosphates recovered from actual wastewater under field conditions. Three types of particles were examined including crystalline magnesium ammonium phosphate hexahydrate (struvite) recovered from dairy wastewater, crystalline magnesium ammonium phosphate hydrate (dittmarite) recovered from a food processing facility, and a heterogeneous product also recovered from dairy wastewater. The particles were analyzed using "wet" chemical techniques, powder X-ray diffraction (XRD), and scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy (SEM-EDS). The struvite crystals had regular and consistent shape, size, and structure, and SEM-EDS analysis clearly showed the struvite crystals as a surface precipitate on calcium phosphate seed material. In contrast, the dittmarite crystals showed no evidence of seed material, and were not regular in size or shape. The XRD analysis identified no crystalline magnesium phosphates in the heterogeneous product and indicated the presence of sand particles. However, magnesium phosphate precipitates on calcium phosphate seed material were observed in this product under SEM-EDS examination. These substantial variations in the macroscopic and microscopic characteristics of magnesium phosphates recovered under field conditions could affect their potential for beneficial re-use and underscore the need to develop recovery processes that result in a uniform, consistent product.
Zhao, Xin; Ciovati, G.; Bieler, T. R.
2010-12-15
The performance of superconducting radio-frequency (SRF) resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots”) were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD), and optical microscopy. Pits with clearly discernible crystal facets were observed in both “hotspot” and “coldspot” specimens. The pits were found in-grain, at bicrystal boundaries, and on tricrystal junctions. They are interpreted as etch pits induced bymore » crystal defects (e.g. dislocations). All coldspots examined had a qualitatively lower density of etch pits or relatively smooth tricrystal boundary junctions. EBSD mapping revealed the crystal orientation surrounding the pits. Locations with high pit density are correlated with higher mean values of the local average misorientation angle distributions, indicating a higher geometrically necessary dislocation content. In addition, a survey of the samples by energy dispersive x-ray analysis did not show any significant contamination of the samples’ surface. In conclusion, the local magnetic field enhancement produced by the sharp-edge features observed on the samples is not sufficient to explain the observed degradation of the cavity quality factor, which starts at peak surface magnetic field as low as 20 mT.« less
Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaoyang; Frisbie, Daniel
2017-03-31
The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering.
Enhanced moments of Eu in single crystals of the metallic helical antiferromagnet EuCo2 -yAs2
NASA Astrophysics Data System (ADS)
Sangeetha, N. S.; Anand, V. K.; Cuervo-Reyes, Eduardo; Smetana, V.; Mudring, A.-V.; Johnston, D. C.
2018-04-01
The compound EuCo2 -yAs2 with the tetragonal ThCr2Si2 structure is known to contain Eu+2 ions with spin S =7/2 that order below a temperature TN≈47 K into an antiferromagnetic (AFM) proper helical structure with the ordered moments aligned in the tetragonal a b plane, perpendicular to the helix axis along the c axis, with no contribution from the Co atoms. Here we carry out a detailed investigation of the properties of single crystals. We consistently find about 5% vacancies on the Co site from energy-dispersive x-ray analysis and x-ray diffraction refinements. Enhanced ordered and effective moments of the Eu spins are found in most of our crystals. Electronic structure calculations indicate that the enhanced moments arise from polarization of the d bands, as occurs in ferromagnetic Gd metal. Electrical resistivity measurements indicate metallic behavior. The low-field in-plane magnetic susceptibilities χa b(T
Mohanan, Sharika; Srivastava, Atul
2014-04-10
The present work is concerned with the development and application of a novel fringe analysis technique based on the principles of the windowed-Fourier-transform (WFT) for the determination of temperature and concentration fields from interferometric images for a range of heat and mass transfer applications. Based on the extent of the noise level associated with the experimental data, the technique has been coupled with two different phase unwrapping methods: the Itoh algorithm and the quality guided phase unwrapping technique for phase extraction. In order to generate the experimental data, a range of experiments have been carried out which include cooling of a vertical flat plate in free convection conditions, combustion of mono-propellant flames, and growth of organic as well as inorganic crystals from their aqueous solutions. The flat plate and combustion experiments are modeled as heat transfer applications wherein the interest is to determine the whole-field temperature distribution. Aqueous-solution-based crystal growth experiments are performed to simulate the mass transfer phenomena and the interest is to determine the two-dimensional solute concentration field around the growing crystal. A Mach-Zehnder interferometer has been employed to record the path-integrated quantity of interest (temperature and/or concentration) in the form of interferometric images in the experiments. The potential of the WFT method has also been demonstrated on numerically simulated phase data for varying noise levels, and the accuracy in phase extraction have been quantified in terms of the root mean square errors. Three levels of noise, i.e., 0%, 10%, and 20% have been considered. Results of the present study show that the WFT technique allows an accurate extraction of phase values that can subsequently be converted into two-dimensional temperature and/or concentration distribution fields. Moreover, since WFT is a local processing technique, speckle patterns and the inherent noise in the interferometric data do not affect the resultant phase values. Brief comparisons of the accuracy of the WFT with other standard techniques such as conventional Fourier-filtering methods are also presented.
Magnetic Field Applications in Semiconductor Crystal Growth and Metallurgy
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Ramachandran, Narayanan; Grugel, Richard; Curreri, Peter A. (Technical Monitor)
2002-01-01
The Traveling Magnetic Field (TMF) technique, recently proposed to control meridional flow in electrically conducting melts, is reviewed. In particular, the natural convection damping capability of this technique has been numerically demonstrated with the implication of significantly improving crystal quality. Advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, are discussed. Finally, results of experiments with mixing metallic alloys in long ampoules using TMF is presented
Exchange field effect in the crystal-field ground state of Ce M Al 4 Si 2
Chen, K.; Strigari, F.; Sundermann, M.; ...
2016-09-06
The crystal-field ground-state wave functions of the tetragonal, magnetically ordering Kondo lattice materials CeMAl 4Si 2 (M = Rh, Ir, and Pt) are determined in this paper with low-temperature linearly polarized soft-x-ray absorption spectroscopy, and estimates for the crystal-field splittings are given from the temperature evolution of the linear dichroism. Values for the dominant exchange field in the magnetically ordered phases can be obtained from fitting the influence of magnetic order on the linear dichroism. The direction of the required exchange field is || c for the antiferromagnetic Rh and Ir compounds, with the corresponding strength of the order ofmore » λ ex ≈ 6 meV (65 K). Finally and furthermore, the presence of Kondo screening in the Rh and Ir compound is demonstrated on the basis of the absorption due to f 0 in the initial state.« less
Ferromagnetic Switching of Knotted Vector Fields in Liquid Crystal Colloids.
Zhang, Qiaoxuan; Ackerman, Paul J; Liu, Qingkun; Smalyukh, Ivan I
2015-08-28
We experimentally realize polydomain and monodomain chiral ferromagnetic liquid crystal colloids that exhibit solitonic and knotted vector field configurations. Formed by dispersions of ferromagnetic nanoplatelets in chiral nematic liquid crystals, these colloidal ferromagnets exhibit spontaneous long-range alignment of magnetic dipole moments of individual platelets, giving rise to a continuum of the magnetization field M(r). Competing effects of surface confinement and chirality prompt spontaneous formation and enable the optical generation of localized twisted solitonic structures with double-twist tubes and torus knots of M(r), which exhibit a strong sensitivity to the direction of weak magnetic fields ∼1 mT. Numerical modeling, implemented through free energy minimization to arrive at a field-dependent three-dimensional M(r), shows a good agreement with experiments and provides insights into the torus knot topology of observed field configurations and the corresponding physical underpinnings.
Crystal field and magnetic properties
NASA Technical Reports Server (NTRS)
Flood, D. J.
1977-01-01
Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.
Kosc, Tanya Z [Rochester, NY; Marshall, Kenneth L [Rochester, NY; Jacobs, Stephen D [Pittsford, NY
2006-05-09
Optical devices utilizing flakes (also called platelets) suspended in a host fluid have optical characteristics, such as reflective properties, which are angular dependent in response to an AC field. The reflectivity may be Bragg-like, and the characteristics are obtained through the use of flakes of liquid crystal material, such as polymer liquid crystal (PLC) materials including polymer cholesteric liquid crystal (PCLC) and polymer nematic liquid crystal (PNLC) material or birefringent polymers (BP). The host fluid may be propylene carbonate, poly(ethylene glycol) or other fluids or fluid mixtures having fluid conductivity to support conductivity in the flake/host system. AC field dependent rotation of 90.degree. can be obtained at rates and field intensities dependent upon the frequency and magnitude of the AC field. The devices are useful in providing displays, polarizers, filters, spatial light modulators and wherever switchable polarizing, reflecting, and transmission properties are desired.
NASA Astrophysics Data System (ADS)
Chang, Jiarui; Wang, Zhen; Tang, Xiaoliang; Tian, Fucheng; Ye, Ke; Li, Liangbin
2018-02-01
We have designed and constructed a portable extruder with a rotatable mandrel, which can be employed to study the multi-dimensional flow field (MDFF) induced crystallization of polymer combined with in situ wide angle x-ray scattering (WAXS). With the piston driving the melt sample to flow along the channel, a direct axial shear field is achieved. At the same time, the central mandrel keeps rotating under a stable speed, providing the sample with an additional circumferential shear field. By presetting different proportions of the two shear fields, namely, axial and circumferential, various flow states of the sample can be obtained, which makes it capable of investigating the effects of MDFF on polymer crystallization. We have performed an in situ WAXS experiment of MDFF induced crystallization of isotactic polypropylene based on the portable extruder at the beam line BL16B in Shanghai Synchrotron Radiation Facility. The rheological and structural information is collected simultaneously, which manifests the viability of the portable extruder on regulating MDFF and can provide guidance for polymer processing.
NASA Astrophysics Data System (ADS)
Yen, Y. T.; Hu, Rongwei; Petrovic, C.; Yeh, K. W.; Wu, M. K.; Wei, J. Y. T.
2012-02-01
We report on cryomagnetic point-contact Andreev reflection spectroscopy performed on single crystals of superconducting FeTe1-xSx and FeTe1-xSex. The samples are cleaved in-situ and the measurements are carried out at temperatures down to 4.2K and in a field up to 9T. At base temperature and zero field, we observe a cone-shaped hump at lower voltages in the conductance spectra with no dips at zero bias and a linear background at higher voltages. The spectral evolution of gap size, zero-bias conductance, and excess spectral area are analyzed as a function of temperature and field. Further spectral analysis is carried out using theoretical models of conductance spectra in multiband superconductors [1,2] and of gap symmetry in Fe-based superconductors [3]. The role of interstitial iron is also considered, by comparison with atomically-resolved scanning tunneling spectroscopy data.[4pt] [1] V. Lukic and E.J. Nicol, PRB 76, 144508 (2007) [2] A. Golubov et al., PRL 103, 077003 (2009) [3] P.J. Hirschfeld et al., RPP 74, 124508 (2011)
Optical properties of Mn 2+ in KCaF 3 single crystal
NASA Astrophysics Data System (ADS)
Mazurak, Z.; Ratuszna, A.; Daniel, Ph.
1999-02-01
It is known that the spectroscopic properties of 3d impurities in crystals are very sensitive to the environment of the ion and can be changed considerably by using different matrices. The crystal structure of KCaF 3 has been previously determined by the Rietveld profile method. At room temperature, KCa 1- xMn xF 3 ( x<0.1) crystallizes in monoclinic C2 h ( B2 1/ m) symmetry. The local geometries around Mn 2+ in this crystals, in their ground and excited states, are the primary properties that govern the spectroscopic behavior of these systems, which enjoy of fundamental and technological interest. The present work reports the absorption and luminescence spectra of the Mn 2+-doped KCaF 3 (fluoroperovskite). The luminescence spectra recorded over a range of temperatures are dominated by wide bands, corresponding to the 4T 1(G)→ 6A 1(G), Mn 2+ transition. The lifetime ( τ= f( T)) of the first excited state 4T 1(G) was measured as a function of temperature. The lifetime of the Mn 2+ emission, in this crystal have been found to be temperature independent ( τ<7 μs). The absorption and emission spectra of Mn 2+ (3d 5) in KCaF 3 are analyzed using a C4 crystal-field hamiltonian. The calculated energy levels are in good agreement with those obtained experimentally. The resulting crystal-field parameters Bnm are a good representation of the crystal-field interactions of Mn 2+ in KCaF 3.
Dislocation Mobility and Anomalous Shear Modulus Effect in ^4He Crystals
NASA Astrophysics Data System (ADS)
Malmi-Kakkada, Abdul N.; Valls, Oriol T.; Dasgupta, Chandan
2017-02-01
We calculate the dislocation glide mobility in solid ^4He within a model that assumes the existence of a superfluid field associated with dislocation lines. Prompted by the results of this mobility calculation, we study within this model the role that such a superfluid field may play in the motion of the dislocation line when a stress is applied to the crystal. To do this, we relate the damping of dislocation motion, calculated in the presence of the assumed superfluid field, to the shear modulus of the crystal. As the temperature increases, we find that a sharp drop in the shear modulus will occur at the temperature where the superfluid field disappears. We compare the drop in shear modulus of the crystal arising from the temperature dependence of the damping contribution due to the superfluid field, to the experimental observation of the same phenomena in solid ^4He and find quantitative agreement. Our results indicate that such a superfluid field plays an important role in dislocation pinning in a clean solid ^4He at low temperatures and in this regime may provide an alternative source for the unusual elastic phenomena observed in solid ^4He.
Far-field coupling in nanobeam photonic crystal cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousseau, Ian, E-mail: ian.rousseau@epfl.ch; Sánchez-Arribas, Irene; Carlin, Jean-François
2016-05-16
We optimized the far-field emission pattern of one-dimensional photonic crystal nanobeams by modulating the nanobeam width, forming a sidewall Bragg cross-grating far-field coupler. By setting the period of the cross-grating to twice the photonic crystal period, we showed using three-dimensional finite-difference time-domain simulations that the intensity extracted to the far-field could be improved by more than three orders of magnitude compared to the unmodified ideal cavity geometry. We then experimentally studied the evolution of the quality factor and far-field intensity as a function of cross-grating coupler amplitude. High quality factor (>4000) blue (λ = 455 nm) nanobeam photonic crystals were fabricated out ofmore » GaN thin films on silicon incorporating a single InGaN quantum well gain medium. Micro-photoluminescence spectroscopy of sets of twelve identical nanobeams revealed a nine-fold average increase in integrated far-field emission intensity and no change in average quality factor for the optimized structure compared to the unmodulated reference. These results are useful for research environments and future nanophotonic light-emitting applications where vertical in- and out-coupling of light to nanocavities is required.« less
2014-07-01
adjusting the magnitude of the electric field. 15. SUBJECT TERMS liquid crystals , liquid- crystal devices, Bragg reflectors, optical properties, chiral ...160.3710) Liquid crystals ; (230.3720) Liquid- crystal devices; (230.1480) Bragg reflectors; (160.4760) Optical properties; (160.1585) Chiral media...White, and T. J. Bunning, “Local optical spectra and texture for chiral nematic liquid crystals in cells with interdigitated electrodes,” Mol
Seidler, Tomasz; Stadnicka, Katarzyna; Champagne, Benoît
2013-09-21
In this paper it is shown that modest calculations combining first principles evaluations of the molecular properties with electrostatic interaction schemes to account for the crystal environment effects are reliable for predicting and interpreting the experimentally measured electric linear and second-order nonlinear optical susceptibilities of molecular crystals within the experimental error bars. This is illustrated by considering two molecular crystals, namely: 2-methyl-4-nitroaniline and 4-(N,N-dimethylamino)-3-acetamidonitrobenzene. Three types of surrounding effects should be accounted for (i) the polarization due to the surrounding molecules, described here by static electric fields originating from their electric dipoles or charge distributions, (ii) the intermolecular interactions, which affect the geometry and particularly the molecular conformation, and (iii) the screening of the external electric field by the constitutive molecules. This study further highlights the role of electron correlation on the linear and nonlinear responses of molecular crystals and the challenge of describing frequency dispersion.
Rushford, Michael C.
1990-02-06
In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.
Rushford, Michael C.
1990-01-01
In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.
NASA Technical Reports Server (NTRS)
Griffin, P. R.; Motakef, S.
1989-01-01
Consideration is given to the influence of temporal variations in the magnitude of gravity on natural convection during unidirectional solidification of semiconductors. It is shown that the response time to step changes in g at low Rayleigh numbers is controlled by the momentum diffusive time scale. At higher Rayleigh numbers, the response time to increases in g is reduced because of inertial effects. The degree of perturbation of flow fields by transients in the gravitational acceleration on the Space Shuttle and the Space Station is determined. The analysis is used to derive the requirements for crystal growth experiments conducted on low duration low-g vehicles. Also, the effectiveness of sounding rockets and KC-135 aircraft for microgravity experiments is examined.
Design of a multistep phase mask for high-energy THz pulse generation in ZnTe crystal
NASA Astrophysics Data System (ADS)
Avetisyan, Yuri H.; Makaryan, Armen; Tadevosyan, Vahe
2017-08-01
A new scheme for generating high-energy terahertz (THz) pulses by optical rectification of tilted pulse front (TPF) femtosecond laser pulses in ZnTe crystal is proposed and analyzed. The TPF laser pulses are originated due to propagation through a multistep phase mask (MSPM) attached to the entrance surface of the nonlinear crystal. Similar to the case of contacting optical grating the necessity of the imaging optics is avoided. In addition, introduction of large amounts of angular dispersion is also eliminated. The operation principle is based on the fact that the MSPM splits a single input beam into many smaller time-delayed "beamlets", which together form a discretely TPF in the nonlinear crystal. The dimensions of the mask's steps required for high-energy THz-pulse generation in ZnTe and widely used lithium niobate (LN) crystals are calculated. The optimal number of steps is estimated taking into account individual beamlet's spatial broadening and problems related to the mask fabrication. The THz field in no pump depletion approximation is analytically calculated using radiating antenna model. The analysis shows that application of ZnTe crystal allows obtaining higher THz-pulse energy than that of LN crystal, especially when long-wavelength pump sources are used. The proposed method is a promising way to develop high-energy, monolithic, and alignment-free THzpulse source.
NASA Astrophysics Data System (ADS)
Yang, Jian; Zhang, Jianqiang; Sasaki, Yasushi; Ostrovski, Oleg; Zhang, Chen; Cai, Dexiang; Kashiwaya, Yoshiaki
2016-08-01
In this study, the crystallization behavior and heat transfer of CaO-SiO2-Na2O-B2O3-TiO2-Al2O3-MgO-Li2O fluorine-free mold fluxes with different Na2O contents (5 to 11 mass pct) were studied using single/double hot thermocouple technique (SHTT/DHTT) and infrared emitter technique (IET), respectively. Continuous cooling transformation (CCT) and time-temperature transformation (TTT) diagrams constructed using SHTT showed that crystallization temperature increased and incubation time shortened with the increase of Na2O concentration, indicating an enhanced crystallization tendency. The crystallization process of mold fluxes in the temperature field simulating the casting condition was also investigated using DHTT. X-ray diffraction (XRD) analysis of the quenched mold fluxes showed that the dominant phase changed from CaSiO3 to Ca11Si4B2O22 with the increasing concentration of Na2O. The heat transfer examined by IET showed that the increase of Na2O concentration reduced the responding heat flux when Na2O was lower than 9 mass pct but the further increase of Na2O to 11 mass pct enhanced the heat flux. The correlation between crystallinity and heat transfer was discussed in terms of crystallization tendency and crystal morphology.
Oh, Seung-Won; Park, Jun-Hee; Lee, Ji-Hoon; Yoon, Tae-Hoon
2015-09-07
Recently, low-frequency driving of liquid crystal display (LCD) panels to minimize power consumption has drawn much attention. In the case in which an LCD panel is driven by a fringe-field at a low frequency, the image flickering phenomenon occurs when the sign of the applied electric field is reversed. We investigated image flickering induced by the flexoelectric effect in a fringe-field switching (FFS) liquid crystal cell in terms of the transmittance difference between frames and the ripple phenomenon. Experimental results show that image flicker due to transmittance difference can be eliminated completely and that the ripple phenomena can be reduced significantly by applying a bipolar voltage wave to the FFS cell.
Sahrai, Mostafa; Abbasabadi, Majid
2018-01-20
We discuss the light pulse propagation in a one-dimensional photonic crystal doped by graphene quantum dots in a defect layer. The graphene quantum dots behave as a three-level quantum system and are driven by three coherent laser fields. It is shown that the group velocity of the transmitted and reflected pulses can be switched from subluminal to superluminal light propagation by adjusting the relative phase of the applied fields. Furthermore, it is found that by proper choice of the phase difference between applied fields, the weak probe field amplification is achieved through a one-dimensional photonic crystal. In this way, the result is simultaneous subluminal transmission and reflection.
Zeng, Min; Or, Siu Wing; Chan, Helen Lai Wa
2010-10-01
A sandwich composite consisting of one layer of ferromagnetic shape memory Ni-Mn-Ga crystal plate bonded between two layers of piezoelectric PVDF polymer film was fabricated, and its magnetic field-induced strain (MFIS) and magnetoelectric (ME) effects were investigated, together with a monolithic Ni-Mn-Ga crystal, as functions of magnetic fields and mechanical load. The load-free dc- and ac-MFISs were 0.35 and 0.05% in the composite, and 5.6 and 0.3% in the monolithic crystal, respectively. The relatively smaller load-free MFISs in the composite than the monolithic crystal resulted from the clamping of martensitic twin-boundary motion in the Ni-Mn-Ga plate by the PVDF films. The largest ME coefficient (α(E)) was 0.58 V/cm·Oe at a magnetic bias field (H(Bias)) of 8.35 kOe under load-free condition. The mechanism of the ME effect originated from the mechanically mediated MFIS effect in the Ni-Mn-Ga plate and piezoelectric effect in the PVDF films. The measured α(E)-H(Bias) responses under different loads showed good agreement with the model prediction.
NASA Astrophysics Data System (ADS)
Gnutek, P.; Açıkgöz, M.; Rudowicz, C.
2015-01-01
Three approaches are employed to study magnetostructural correlations for the 3d8(3A2 state) ions at orthorhombic sites in crystals: (i) the higher-order perturbation theory (PT) of the microscopic spin Hamiltonian (MSH) parameters, (ii) the crystal field (CF) analysis (CFA) within all 3d8 states combined with the superposition model (SPM) calculations of CF parameters, and (iii) the second-order PT of MSH parameters. A comparative study is carried out to assess the merit of each modeling approach. These approaches enable predictions of the orthorhombic zero-field splitting parameters (ZFSPs) for the 3d8 ions at orthorhombic sites. Hence, correlation of the magnetic and spectroscopic properties with the structural ones may be considered. The approach (i) and (iii) take into account only the spin-orbit coupling (SOC) and a limited set of low lying states. Analysis of the expressions used in the approach (i) reveals discrepancies concerning: the sign of the SOC parameter, the cubic crystal field parameter Dq, the energy levels sequence, and numerical errors, which diminish its reliability. The distinction between the first- and second-kind orthorhombic symmetry is also elucidated. The approaches (i)-(iii) are applied for Ni2+ (S=1) ions in the Haldane gap systems Y2BaNiO5 and Nd2BaNiO5. The contributions to the ZFSPs due to the spin-spin and spin-other-orbit interactions considered using the approach (ii) are found nearly insignificant as compared with the dominant SOC ones. The results indicate that the approach (i)-corrected and (iii) may be employed only as an approximation. The approach (ii) together with the SPM/CFP modeling appear to be preferable and more reliable tools to study magnetostructural correlations and thus spectroscopic and magnetic properties of the 3d8(3A2 state) ions at orthorhombic sites in crystals.
Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.
Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua
2018-03-07
Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Fei; Wan, Xiangang; Phelan, Daniel
ZrCuSi 2-type CePd 1-xBi 2 crystals were obtained from excess Bi flux. Magnetic susceptibility measurements reveal that CePd 1-xBi 2 is a highly anisotropic antiferromagnet with transition temperature at 6 K, and a magnetic-field-induced metamagnetic transition at 5 T. An enhanced Sommerfeld coefficient of γ of 0.199 J-mol-Ce -1K -2 obtained from specific heat measurements suggests a moderate Kondo effect in CePd 1-xBi 2. In addition to the antiferromagnetic peak the resistivity curve shows a shoulder-like behavior which could be attributed to the presence of Kondo effect and crystal-electric-field effects in this compound. Magnetoresistance and Hall effect measurements suggest anmore » interplay between Kondo and crystal-electric-field effects which reconstructs the Fermi surface topology of CePd 1-xBi 2 around 75 K. Electronic structure calculations reveal the Pd vacancies are important to the magnetic structure and enhance the crystal-electric-field effects which quench the orbital moment of Ce at low temperatures.« less
NASA Astrophysics Data System (ADS)
Braukmann, D.; Popov, V. P.; Glaser, E. R.; Kennedy, T. A.; Bayer, M.; Debus, J.
2018-03-01
We study the linear polarization properties of the photoluminescence of ensembles of neutral and negatively charged nitrogen vacancies and neutral vacancies in diamond crystals as a function of their symmetry and their response to strong external magnetic fields. The linear polarization degree, which exceeds 10% at room temperature, and rotation of the polarization plane of their zero-phonon lines significantly depend on the crystal rotation around specific axes demonstrating anisotropic angular evolutions. The sign of the polarization plane rotation is changed periodically through the crystal rotation, which indicates a switching between electron excited states of orthogonal linear polarizations. At external magnetic fields of up to 10 T, the angular dependencies of the linear polarization degree experience a remarkable phase shift. Moreover, the rotation of the linear polarization plane increases linearly with rising magnetic field at 6 K and room temperature, for the negatively charged nitrogen vacancies, which is attributed to magneto-optical Faraday rotation.
NASA Astrophysics Data System (ADS)
Yao, Jianjun; Cao, Hu; Ge, Wenwei; Li, Jiefang; Viehland, D.
2009-08-01
We report the finding of a monoclinic MB phase in Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 single crystals. High precision x-ray diffraction investigations of [110] field cooled crystals have shown a transformation sequence of cubic(C)→tetragonal(T)→orthorhombic(O)→monoclinic(MB), which is different from that previously reported [A.-E. Renault et al., J. Appl. Phys. 97, 044105 (2005)]. Beginning in the zero-field-cooled condition at 383 K, a rhombohedral (R)→MB→O sequence was observed with increasing field. Coexisting MB and O phases were then found upon removal of field, which fully transformed to MB on cooling to room temperature.
NASA Astrophysics Data System (ADS)
Tyu, N. S.; Ekhilevsky, S. G.
1992-07-01
For the perfect molecular crystals the equations of the local field method (LFM) with the account of spatial dispersion are formulated. They are used to derive the expression for the crystal polarizability tensor. For the first time within the framework of this method the formula for the gyrotropy tensor of an arbitrary optically active molecular crystal is obtained. This formula is analog of well known relationships of Lorentz-Lorenz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamba, S.; Goian, V.; Savinov, M.
2010-05-15
We prepared multiferroic Y-type hexaferrite Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}Fe{sub 12}O{sub 22} ceramics and compared their magnetic and dielectric properties with single crystal. Magnetic susceptibility and microwave resonance measurement revealed magnetic phase transition at T{sub C}=312 K, similar as in single crystal. Ferroelectric (FE) phase can be induced by external magnetic field in all investigated samples and the phase diagram in ceramics qualitatively resembles that of the single crystal. The range of magnetic fields, where the FE phase is induced, broadens after annealing of single crystal. Ceramics quenched after sintering exhibit several orders of magnitude lower conductivity than the single crystal.more » Heavily damped magnetic resonance was discovered in terahertz spectra at 10 K and its frequency softens below 5 GHz near T{sub C}. Number and symmetry of observed infrared (IR) and Raman active phonons correspond to paraelectric phase with D{sub 3d}{sup 5} hexagonal structure. No evidence for a structural phase transition was found in the IR and Raman spectra on cooling (in zero magnetic field) or in the room-temperature IR spectra with external static magnetic field up to 0.3 T.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sankari, R. Siva, E-mail: sivasankari.sh@act.edu.in; Perumal, Rajesh Narayana
2014-04-24
Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.
Serrano, María Dolores; Cascales, Concepción; Han, Xiumei; Zaldo, Carlos; Jezowski, Andrzej; Stachowiak, Piotr; Ter-Gabrielyan, Nikolay; Fromzel, Viktor; Dubinskii, Mark
2013-01-01
Undoped and Er-doped NaY(WO4)2 disordered single crystals have been grown by the Czochralski technique. The specific heat and thermal conductivity (κ) of these crystals have been characterized from T = 4 K to 700 K and 360 K, respectively. It is shown that κ exhibits anisotropy characteristic of single crystals as well as a κ(T) behavior observed in glasses, with a saturation mean free phonon path of 3.6 Å and 4.5 Å for propagation along a and c crystal axes, respectively. The relative energy positions and irreducible representations of Stark Er3+ levels up to 4G7/2 multiplet have been determined by the combination of experimental low (<10 K) temperature optical absorption and photoluminescence measurements and simulations with a single-electron Hamiltonian including both free-ion and crystal field interactions. Absorption, emission and gain cross sections of the 4I13/2↔4I15/2 laser related transition have been determined at 77 K. The 4I13/2 Er3+ lifetime (τ) was measured in the temperature range of 77–300 K, and was found to change from τ (77K) ≈ 4.5 ms to τ (300K) ≈ 3.5 ms. Laser operation is demonstrated at 77 K and 300 K by resonantly pumping the 4I13/2 multiplet at λ≈1500 nm with a broadband (FWHM≈20 nm) diode laser source perfectly matching the 77 K crystal 4I15/2 → 4I13/2 absorption profile. At 77 K as much as 5.5 W of output power were obtained in π-polarized configuration with a slope efficiency versus absorbed pump power of 57%, the free running laser wavelength in air was λ≈1611 nm with the laser output bandwidth of 3.5 nm. The laser emission was tunable over 30.7 nm, from 1590.7 nm to 1621.4 nm, for the same π-polarized configuration. PMID:23555664
Three-Dimensional Stress Fields and Slip Systems for Single Crystal Superalloy Notched Specimens
NASA Technical Reports Server (NTRS)
Magnan, Shannon M.; Throckmorton, David (Technical Monitor)
2002-01-01
Single crystal superalloys have become increasingly popular for turbine blade and vane applications due to their high strength, and creep and fatigue resistance at elevated temperatures. The crystallographic orientation of a single crystal material greatly affects its material properties, including elastic modulus, shear modulus, and ductility. These directional properties, along with the type of loading and temperature, dictate an anisotropic response in the yield strength, creep resistance, creep rupture ductility, fatigue resistance, etc. A significant amount of research has been conducted to determine the material properties in the <001> orientation, yet the material properties deviating from the <001> orientation have not been assessed for all cases. Based on the desired application and design criteria, a crystal orientation is selected to yield the maximum properties. Currently, single crystal manufacturing is able to control the primary crystallographic orientation within 15 of the target orientation, which is an acceptable deviation to meet both performance and cost guidelines; the secondary orientation is rarely specified. A common experiment is the standard load-controlled tensile test, in which specimens with different orientations can be loaded to observe the material response. The deformation behavior of single-crystal materials under tension and compression is known to be a function of not only material orientation, but also of varying microdeformation (i.e. dislocation) mechanisms. The underlying dislocation motion causes deformation via slip, and affects the activation of specific slip systems based on load and orientation. The slip can be analyzed by observing the visible traces left on the surface of the specimen from the slip activity within the single crystal material. The goal of this thesis was to predict the slip systems activated in three-dimensional stress fields of a notched tensile specimen, as a function of crystal orientation, using finite element analysis without addressing microstructural deformation mechanisms that govern their activation. Out of three orientations tested, the specimen with a [110] load orientation and a [001] growth direction had the lowest maximum resolved shear stress; this specimen orientation appears to be the best design candidate for a tensile application.
Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field
NASA Technical Reports Server (NTRS)
Volz, M. P.; Schweizer, M.; Cobb, S. D.; Walker, J. S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)
2002-01-01
A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). The RMF has a marked affect on the interface shape, changing it from concave to nearly flat. The onset of time-dependent flow instabilities occurs when the critical magnetic Taylor number is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The critical magnetic Taylor number is a sensitive function of the aspect ratio and, as the crystal grows under a constant applied magnetic field, the induced striations change from nonperiodic to periodic, undergo a period-doubling transition, and then cease to exist. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.
Experimental study of the rotational magnetocaloric effect in KTm(MoO4)2
NASA Astrophysics Data System (ADS)
Tarasenko, Róbert; Tkáč, Vladimír; Orendáčová, Alžbeta; Orendáč, Martin; Feher, Alexander
2018-06-01
An experimental study is presented of the rotational magnetocaloric effect in a KTm(MoO4)2 single crystal at temperatures above 2 K associated with the rotation of a single crystal between the magnetic easy and hard axis in constant magnetic fields up to 5 T. The magnetocaloric properties of KTm(MoO4)2 single crystals are investigated by isothermal magnetization measurements. The maximal rotational entropy change -ΔSR ≈ 9.8 J/(kgK) is achieved at 10 K in a magnetic field of 5 T. The adiabatic rotation of a single crystal in a field of 5 T at an initial temperature of 4.2 K causes cooling of the sample down to 0.5 K, which indicates an interesting possibility of using this material for cooling processes at low temperatures.
NASA Technical Reports Server (NTRS)
Fryburg, G. C.; Gelerinter, E.
1972-01-01
Using vanadyl acetylacetonate (VAAC) as a paramagnetic probe, the molecular ordering in two smectic-A liquid crystals that do not display nematic phases were studied. Reproducible alinement was attained by slow cooling throughout the isotropic smectic-A transition in dc magnetic fields of 1.1 and 2.15 teslas. The degree of order attained is small for a smectic-A liquid crystal. Measurements were made of the variation of the average hyperfine splitting of the alined samples as a function of orientation relative to the dc magnetic field of the spectrometer. This functional dependence is in agreement with the theoretical prediction except where the viscosity of the liquid crystal becomes large enough to slow the tumbling of the VAAC, as indicated by asymmetry in the end lines of the spectrum.
Fluid mechanics in crystal growth - The 1982 Freeman scholar lecture
NASA Technical Reports Server (NTRS)
Ostrach, S.
1983-01-01
An attempt is made to unify the current state of knowledge in crystal growth techniques and fluid mechanics. After identifying important fluid dynamic problems for such representative crystal growth processes as closed tube vapor transport, open reactor vapor deposition, and the Czochralski and floating zone melt growth techniques, research results obtained to date are presented. It is noted that the major effort to date has been directed to the description of the nature and extent of bulk transport under realistic conditions, where bulk flow determines the heat and solute transport which strongly influence the temperature and concentration fields in the vicinity of the growth interface. Proper treatment of near field, or interface, problems cannot be given until the far field, or global flow, involved in a given crystal growth technique has been adequately described.
Solitons induced by alternating electric fields in surface-stabilized ferroelectric liquid crystals
NASA Astrophysics Data System (ADS)
Jeżewski, W.; Kuczyński, W.; Hoffmann, J.
2011-04-01
Propagation of solitary waves activated in thin ferroelectric liquid crystal cells under external, sinusoidally alternating electric fields is investigated using the electro-optic technique. It is shown that solitons give contributions only to the loss component of the response spectrum, within rather narrow ranges of frequencies and in sufficiently strong fields. The limit frequency, at which the amplitude of the velocity of the solitary waves is greatest, is found to be related to material constants of liquid crystals. Measuring this threshold frequency provides the capability to determine the elastic constant of surface stabilized liquid crystalline materials in the bookshelf or chevron layer geometries.
NASA Astrophysics Data System (ADS)
H, Dhaouadi; R, Zgueb; O, Riahi; F, Trabelsi; T, Othman
2016-05-01
In ferroelectric liquid crystals, phase transitions can be induced by an electric field. The current constant method allows these transition to be quickly localized and thus the (E,T) phase diagram of the studied product can be obtained. In this work, we make a slight modification to the measurement principles based on this method. This modification allows the characteristic parameters of ferroelectric liquid crystal to be quantitatively measured. The use of a current square signal highlights a phenomenon of ferroelectric hysteresis with remnant polarization at null field, which points out an effect of memory in this compound.
Electro-optic high voltage sensor
Davidson, James R.; Seifert, Gary D.
2003-09-16
A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.
Tilt Grain Boundary Topology Induced by Substrate Topography.
Yu, Henry; Gupta, Nitant; Hu, Zhili; Wang, Kai; Srijanto, Bernadeta R; Xiao, Kai; Geohegan, David B; Yakobson, Boris I
2017-09-26
Synthesis of two-dimensional (2D) crystals is a topic of great current interest, since their chemical makeup, electronic, mechanical, catalytic, and optical properties are so diverse. A universal challenge, however, is the generally random formation of defects caused by various growth factors on flat surfaces. Here we show through theoretical analysis and experimental demonstration that nonplanar, curved-topography substrates permit the intentional and controllable creation of topological defects within 2D materials. We augment a common phase-field method by adding a geometric phase to track the crystal misorientation on a curved surface and to detect the formation of grain boundaries, especially when a growing monocrystal "catches its own tail" on a nontrivial topographical feature. It is specifically illustrated by simulated growth of a trigonal symmetry crystal on a conical-planar substrate, to match the experimental synthesis of WS 2 on silicon template, with satisfactory and in some cases remarkable agreement of theory predictions and experimental evidence.
A numerical study of transient heat and mass transfer in crystal growth
NASA Technical Reports Server (NTRS)
Han, Samuel Bang-Moo
1987-01-01
A numerical analysis of transient heat and solute transport across a rectangular cavity is performed. Five nonlinear partial differential equations which govern the conservation of mass, momentum, energy and solute concentration related to crystal growth in solution, are simultaneously integrated by a numerical method based on the SIMPLE algorithm. Numerical results showed that the flow, temperature and solute fields are dependent on thermal and solutal Grashoff number, Prandtl number, Schmidt number and aspect ratio. The average Nusselt and Sherwood numbers evaluated at the center of the cavity decrease markedly when the solutal buoyancy force acts in the opposite direction to the thermal buoyancy force. When the solutal and thermal buoyancy forces act in the same direction, however, Sherwood number increases significantly and yet Nusselt number decreases. Overall effects of convection on the crystal growth are seen to be an enhancement of growth rate as expected but with highly nonuniform spatial growth variations.
Hu, Lei; Xie, Kang; Hu, Zhijia; Mao, Qiuping; Xia, Jiangying; Jiang, Haiming; Zhang, Junxi; Wen, Jianxiang; Chen, Jingjing
2018-04-02
Trapping light within cavities or waveguides in photonic crystals is an effective technology in modern integrated optics. Traditionally, cavities rely on total internal reflection or a photonic bandgap to achieve field confinement. Recent investigations have examined new localized modes that occur at a Dirac frequency that is beyond any complete photonic bandgap. We design Al 2 O 3 dielectric cylinders placed on a triangular lattice in air, and change the central rod size to form a photonic crystal microcavity. It is predicted that waves can be localized at the Dirac frequency in this device without photonic bandgaps or total internal reflections. We perform a theoretical analysis of this new wave localization and verify it experimentally. This work paves the way for exploring localized defect modes at the Dirac point in the visible and infrared bands, with potential applicability to new optical devices.
DOUBLE ENDOR with a linearly and a circularly polarized radiofrequency field
NASA Astrophysics Data System (ADS)
Schweiger, A.; Rudin, M.; Forrer, J.; Günthard, Hs. H.
The combination of the two spectroscopical techniques, DOUBLE ENDOR and ENDOR with a circularly polarized radiofrequency field (CP-ENDOR), is described. with this new method, termed by the acronym CP-DOUBLE ENDOR, the selective induction of transitions of different types of nuclei and of different paramagnetic species allows a drastic reduction of the number of observed ENDOR lines. With this technique, analysis of hitherto not interpretable ENDOR spectra is often made possible. The experimental setup of the CP-DOUBLE ENDOR spectrometer is described. The advantage of using circularly polarized rf fields in DOUBLE ENDOR spectroscopy is illustrated by two applications on transition metal complexes in single crystals.
Characterization of a bent Laue double-crystal beam-expanding monochromator
Martinson, Mercedes; Samadi, Nazanin; Shi, Xianbo; ...
2017-10-19
A bent Laue double-crystal monochromator system has been designed for vertically expanding the X-ray beam at the Canadian Light Source's BioMedical Imaging and Therapy beamlines. Expansion by a factor of 12 has been achieved without deteriorating the transverse coherence of the beam, allowing phase-based imaging techniques to be performed with high flux and a large field of view. However, preliminary studies revealed a lack of uniformity in the beam, presumed to be caused by imperfect bending of the silicon crystal wafers used in the system. Results from finite-element analysis of the system predicted that the second crystal would be mostmore » severely affected and has been shown experimentally. It has been determined that the majority of the distortion occurs in the second crystal and is likely caused by an imperfection in the surface of the bending frame. Here, measurements were then taken to characterize the bending of the crystal using both mechanical and diffraction techniques. In particular, two techniques commonly used to map dislocations in crystal structures have been adapted to map local curvature of the bent crystals. One of these, a variation of Berg–Berrett topography, has been used to quantify the diffraction effects caused by the distortion of the crystal wafer. This technique produces a global mapping of the deviation of the diffraction angle relative to a perfect cylinder. Finally, this information is critical for improving bending and measuring tolerances of imperfections by correlating this mapping to areas of missing intensity in the beam.« less
Characterization of a bent Laue double-crystal beam-expanding monochromator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinson, Mercedes; Samadi, Nazanin; Shi, Xianbo
A bent Laue double-crystal monochromator system has been designed for vertically expanding the X-ray beam at the Canadian Light Source's BioMedical Imaging and Therapy beamlines. Expansion by a factor of 12 has been achieved without deteriorating the transverse coherence of the beam, allowing phase-based imaging techniques to be performed with high flux and a large field of view. However, preliminary studies revealed a lack of uniformity in the beam, presumed to be caused by imperfect bending of the silicon crystal wafers used in the system. Results from finite-element analysis of the system predicted that the second crystal would be mostmore » severely affected and has been shown experimentally. It has been determined that the majority of the distortion occurs in the second crystal and is likely caused by an imperfection in the surface of the bending frame. Here, measurements were then taken to characterize the bending of the crystal using both mechanical and diffraction techniques. In particular, two techniques commonly used to map dislocations in crystal structures have been adapted to map local curvature of the bent crystals. One of these, a variation of Berg–Berrett topography, has been used to quantify the diffraction effects caused by the distortion of the crystal wafer. This technique produces a global mapping of the deviation of the diffraction angle relative to a perfect cylinder. Finally, this information is critical for improving bending and measuring tolerances of imperfections by correlating this mapping to areas of missing intensity in the beam.« less
NASA Astrophysics Data System (ADS)
Sabanskis, A.; Virbulis, J.
2018-05-01
Mathematical modelling is employed to numerically analyse the dynamics of the Czochralski (CZ) silicon single crystal growth. The model is axisymmetric, its thermal part describes heat transfer by conduction and thermal radiation, and allows to predict the time-dependent shape of the crystal-melt interface. Besides the thermal field, the point defect dynamics is modelled using the finite element method. The considered process consists of cone growth and cylindrical phases, including a short period of a reduced crystal pull rate, and a power jump to avoid large diameter changes. The influence of the thermal stresses on the point defects is also investigated.
NASA Astrophysics Data System (ADS)
Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Jiao, Yang; Guan, Jing; Fu, Gang
2017-10-01
As one kind of prominent laser crystal, Nd:Y3Ga5O12 (Nd:YGG) crystal has outstanding performance on laser excitation at multi-wavelength which have shown promising applications in optical communication field. In addition, Nd:YGG crystal has potential applications in medical field due to its ability of emit the laser at 1110 nm. Optical waveguide structure with high quality could improve the efficiency of laser emission. In this work, we fabricated the optical planar waveguide on Nd:YGG crystal by medium mass ion implantation which was convinced an effective method to realize a waveguide structure with superior optical properties. The sample is implanted by C ions at energy of 5.0 MeV with the fluence of 1 × 1015 ions/cm2. We researched the optical propagation properties in the Nd:YGG waveguide by end-face coupling and prism coupling method. The Nd ions fluorescent properties are obtained by a confocal micro-luminescence measurement. The fluorescent properties of Nd ions obtained good reservation after C ion implantation. Our work has reference value for the application of Nd:YGG crystal in the field of optical communication.
Fabrication of large binary colloidal crystals with a NaCl structure
Vermolen, E. C. M.; Kuijk, A.; Filion, L. C.; Hermes, M.; Thijssen, J. H. J.; Dijkstra, M.; van Blaaderen, A.
2009-01-01
Binary colloidal crystals offer great potential for tuning material properties for applications in, for example, photonics, semiconductors and spintronics, because they allow the positioning of particles with quite different characteristics on one lattice. For micrometer-sized colloids, it is believed that gravity and slow crystallization rates hinder the formation of high-quality binary crystals. Here, we present methods for growing binary colloidal crystals with a NaCl structure from relatively heavy, hard-sphere-like, micrometer-sized silica particles by exploring the following external fields: electric, gravitational, and dielectrophoretic fields and a structured surface (colloidal epitaxy). Our simulations show that the free-energy difference between the NaCl and NiAs structures, which differ in their stacking of the hexagonal planes of the larger spheres, is very small (≈0.002 kBT). However, we demonstrate that the fcc stacking of the large spheres, which is crucial for obtaining the pure NaCl structure, can be favored by using a combination of the above-mentioned external fields. In this way, we have successfully fabricated large, 3D, oriented single crystals having a NaCl structure without stacking disorder. PMID:19805259
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davaasuren, Bambar; Dashjav, Enkhtsetseg; Kreiner, Guido
The carboferrates RE{sub 15}[Fe{sub 8}C{sub 25}] (RE=Dy, Ho) were prepared from mixtures of the elements by arc-melting followed with subsequent annealing at 1373 K. The crystal structures were determined from single crystal X-ray diffraction data and revealed an isotypic relationship to Er{sub 15}[Fe{sub 8}C{sub 25}] (hP48, P321). The main feature of the crystal structure is given by Fe{sub 6} cluster units characterized by covalent Fe–Fe bonding interactions. {sup 57}Fe Mössbauer spectra of Dy{sub 15}[Fe{sub 8}C{sub 25}] were fitted by three subspectra with relative spectral weights of about 3:3:2 which is in general agreement with the crystal structure. Below 50 K,more » an onset of magnetic hyperfine fields at the three iron sites is observed which is supposed to be caused by dipolar fields arising from neighboring, slowly relaxing Dy magnetic moments. - Graphical abstract: Fe{sub 6}-cluster in the crystal structure of RE{sub 15}[Fe{sub 8}C{sub 25}], RE=Dy, Ho. - Highlights: • New carboferrates RE{sub 15}[Fe{sub 8}C{sub 25}] with RE=Dy, Ho have been synthesized. • The crystal structures were refined using single crystal X-ray data. • An orientational relationship between Fe{sub 6}-clusters and Fe in γ-Fe is outlined. • {sup 57}Fe Mössbauer spectra are in agreement with structural data from X-rays. • Magnetic hyperfine fields below 50 K are explained by dipolar fields from Dy atoms.« less
Characterization of photonic colloidal crystals in real and reciprocal space
NASA Astrophysics Data System (ADS)
Thijssen, J. H. J.
2007-05-01
In this thesis, we present experimental work on the characterization of photonic colloidal crystals in real and reciprocal space. Photonic crystals are structures in which the refractive index varies periodically in space on the length scale of the wavelength of light. Self-assembly of colloidal particles is a promising route towards three-dimensional (3-D) photonic crystals. However, fabrication of photonic band-gap materials remains challenging, so calculations that predict their optical properties are indispensable. Our photonic band-structure calculations on binary Laves phases have led to a proposed route towards photonic colloidal crystals with a band gap in the visible region. Furthermore, contrary to results in literature, we found that there is no photonic band gap for inverse BCT crystals. Finally, optical spectra of colloidal crystals were analyzed using band-structure calculations. Self-assembled photonic crystals are fabricated in multiple steps. Each of these steps can significantly affect the 3-D structure of the resulting crystal. X-rays are an excellent probe of the internal structure of photonic crystals, even if the refractive-index contrast is large. In Chapter 3, we demonstrate that an angular resolution of 0.002 mrad is achievable at a third-generation synchrotron using compound refractive optics. As a result, the position and the width of Bragg reflections in 2D diffraction patterns can be resolved, even for lattice spacings larger than a micrometer (corresponding to approximately 0.1 mrad). X-ray diffraction patterns and electron-microscopy images are used in Chapter 4 to determine the orientation of hexagonal layers in convective-assembly colloidal crystals. Quantitative analysis revealed that, in our samples, the layers were not exactly hexagonal and the stacking sequence was that of face-centered cubic (FCC) crystals, though stacking faults may have been present. In Chapter 5, binary colloidal crystals of organic spheres (polystyrene, PMMA) and/or inorganic spheres (silica) are introduced as promising templates for strongly photonic crystals. To prevent melting of the template, we used atomic layer deposition (ALD) to infiltrate polystyrene and PMMA templates with alumina, after which chemical vapor deposition (CVD) was used to further enhance the refractive-index contrast. Binary colloidal crystals of silica spheres can be infiltrated by CVD directly, but they often have a layer of colloidal fluid on top. Preliminary etching experiments demonstrated that it may be possible to etch silica templates with plasmas or with adhesive tape. As described in Chapter 6, sedimentation of colloidal silica spheres in an external, high-frequency electric field lead to mm-scale BCT crystals with up to 25 layers. In addition, electric fields were used as an external control to switch between BCT and close-packed (CP) crystal structures within seconds. We also developed two procedures to invert BCT crystals without loss of structure - colloidal particles were immobilized by diffusion-polymerization or photo-induced polymerization of the surrounding solvent. Some BCT crystals were even infiltrated with silicon using CVD. We demonstrate in Chapter 7 that X-ray diffraction can be used to determine the 3-D structure of such photonic colloidal crystals at the various stages of their fabrication. Excellent agreement was found with confocal and electron-microscopy images.
NASA Astrophysics Data System (ADS)
Guilhem, Yoann; Basseville, Stéphanie; Curtit, François; Stéphan, Jean-Michel; Cailletaud, Georges
2018-06-01
This paper is dedicated to the study of the influence of surface roughness on local stress and strain fields in polycrystalline aggregates. Finite element computations are performed with a crystal plasticity model on a 316L stainless steel polycrystalline material element with different roughness states on its free surface. The subsequent analysis of the plastic strain localization patterns shows that surface roughness strongly affects the plastic strain localization induced by crystallography. Nevertheless, this effect mainly takes place at the surface and vanishes under the first layer of grains, which implies the existence of a critical perturbed depth. A statistical analysis based on the plastic strain distribution obtained for different roughness levels provides a simple rule to define the size of the affected zone depending on the rough surface parameters.
Quartz Crystal Microbalance: Aerosol Viscoelastic Measurement Calibration and Subsiquent H2O Uptake
NASA Astrophysics Data System (ADS)
Farland, D. R., Jr.; Gilles, M. K.; Harder, T.; Weis, J.; Mueller, S.
2015-12-01
Aerosol particles exposed to various atmospheric relative humidity (RH) levels exhibit hygroscopic properties which are not fully understood. Water adsorption or diffusion depends on particle viscosity in semi-solid to liquid states. This relationship between particle viscosity as a function of RH and the corresponding hygroscopic behavioral response is the purpose of this study. However, reliable techniques for viscosity quantification have been limited. A Quartz Crystal Microbalance with Dissipation (QCM-D) was used for viscosity measurements and to determine phase changes. Prior to studies on field samples, microscope immersion/viscosity standard oils, salt crystals, sugars and alpha-pinene secondary organic aerosol (SOA) surrogates are used for viscosity, RH calibrations, water uptake and phase change measurements. RH was controlled by flowing N2 gas saturated with H2O for RH's between 0-75% RH. For higher RH values, (75-100% RH range) saturated salt solutions were flowed over a gore membrane to protect the QCM sensor from direct contact with the solutions. The viscosity calibration constructed via QTools fitting software illustrates the limitations as well as the ranges of reliability of the QCM viscosity measurements. Deliquescing salt crystals of differing deliquescence relative humidity's (DRH), sugars and alpha-pinene SOA's provided insight into the detection of various phase change behaviors. Water uptake experiments performed on alpha-pinene SOA and sucrose sugar yielded significantly different frequency and dissipation responses than the deliquescing salts. Future work will apply these experimental methods and analysis on aerosol particles collected during the GoAmazon field campaign.
Influence of computational domain size on the pattern formation of the phase field crystals
NASA Astrophysics Data System (ADS)
Starodumov, Ilya; Galenko, Peter; Alexandrov, Dmitri; Kropotin, Nikolai
2017-04-01
Modeling of crystallization process by the phase field crystal method (PFC) represents one of the important directions of modern computational materials science. This method makes it possible to research the formation of stable or metastable crystal structures. In this paper, we study the effect of computational domain size on the crystal pattern formation obtained as a result of computer simulation by the PFC method. In the current report, we show that if the size of a computational domain is changed, the result of modeling may be a structure in metastable phase instead of pure stable state. The authors present a possible theoretical justification for the observed effect and provide explanations on the possible modification of the PFC method to account for this phenomenon.
NASA Astrophysics Data System (ADS)
Starovoytov, Oleg; Hooper, Justin; Borodin, Oleg; Smith, Grant
2010-03-01
Atomistic polarizable force field has been developed for a number of azide anion containing ionic liquids and crystals. Hybrid Molecular Dynamics/Monte Carlo (MD/MC) simulations were performed on methylguanazinium azide and 1-(2-butynyl)-3-methyl-imidazolium azide crystals, while 1-butyl-2,3-dimethylimidazolium azide and 1-amino-3-methyl-1,2,3-triazolium azide ionic liquids were investigated using MD simulations. Crystal cell parameters and crystal structures of 1-(2-butynyl)-3-methyl-imidazolium azide were found in good agreement with X-ray experimental data. Density and ion transport of 1-butyl-2,3-dimethylimidazolium azide predicted from MD simulations were in good agreement with experiments. Details of the ionic liquid structure and relaxation mechanism will be discussed.
Hsu, David F C; Freese, David L; Reynolds, Paul D; Innes, Derek R; Levin, Craig S
2018-04-01
We are developing a 1-mm 3 resolution, high-sensitivity positron emission tomography (PET) system for loco-regional cancer imaging. The completed system will comprise two cm detector panels and contain 4 608 position sensitive avalanche photodiodes (PSAPDs) coupled to arrays of mm 3 LYSO crystal elements for a total of 294 912 crystal elements. For the first time, this paper summarizes the design and reports the performance of a significant portion of the final clinical PET system, comprising 1 536 PSAPDs, 98 304 crystal elements, and an active field-of-view (FOV) of cm. The sub-system performance parameters, such as energy, time, and spatial resolutions are predictive of the performance of the final system due to the modular design. Analysis of the multiplexed crystal flood histograms shows 84% of the crystal elements have>99% crystal identification accuracy. The 511 keV photopeak energy resolution was 11.34±0.06% full-width half maximum (FWHM), and coincidence timing resolution was 13.92 ± 0.01 ns FWHM at 511 keV. The spatial resolution was measured using maximum likelihood expectation maximization reconstruction of a grid of point sources suspended in warm background. The averaged resolution over the central 6 cm of the FOV is 1.01 ± 0.13 mm in the X-direction, 1.84 ± 0.20 mm in the Y-direction, and 0.84 ± 0.11 mm in the Z-direction. Quantitative analysis of acquired micro-Derenzo phantom images shows better than 1.2 mm resolution at the center of the FOV, with subsequent resolution degradation in the y-direction toward the edge of the FOV caused by limited angle tomography effects.
Teaching Avalanche Safety Courses: Instructional Techniques and Field Exercises.
ERIC Educational Resources Information Center
Watters, Ron
This paper discusses course structure, teaching techniques, and field exercises for enhancing winter travelers' avalanche knowledge and skills. In two class sessions, the course typically consists of a historical perspective; a section on snow physics (clouds, types of snow crystals, effects of riming, identification of precipitated snow crystals,…
Broken symmetry phase transition in solid p-H 2, o-D 2 and HD: crystal field effects
NASA Astrophysics Data System (ADS)
Freiman, Yu. A.; Hemley, R. J.; Jezowski, A.; Tretyak, S. M.
1999-04-01
We report the effect of the crystal field (CF) on the broken symmetry phase transition (BSP) in solid parahydrogen, orthodeuterium, and hydrogen deuteride. The CF was calculated taking into account a distortion from the ideal HCP structure. We find that, in addition to the molecular field generated by the coupling terms in the intermolecular potential, the Hamiltonian of the system contains a crystal-field term, originating from single-molecular terms in the intermolecular potential. Ignoring the CF is the main cause of the systematic underestimation of the transition pressure, characteristic of published theories of the BSP transition. The distortion of the lattice that gives rise to the negative CF in response to the applied pressure is in accord with the general Le Chatelier-Braun principle.
Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates
Shuai, M.; Klittnick, A.; Shen, Y.; Smith, G. P.; Tuchband, M. R.; Zhu, C.; Petschek, R. G.; Mertelj, A.; Lisjak, D.; Čopič, M.; Maclennan, J. E.; Glaser, M. A.; Clark, N. A.
2016-01-01
Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. Its zero-field magnetization produces distinctive magnetic self-interaction effects, including liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth's magnetic field. PMID:26817823
Fatriansyah, Jaka Fajar; Orihara, Hiroshi
2013-07-01
We investigate the dynamical properties of monodomain nematic liquid crystals under shear flow and magnetic fields on the basis of the Ericksen-Leslie theory. Stable and unstable states appear depending on the magnetic field and the shear rate. The trajectory of the unstable state shows tumbling motion. The phase diagram of these states is plotted as a function of the three components of the magnetic field at a constant shear rate. The phase diagram changes depending on the viscous properties of different types of nematic liquid crystals. In this nonequilibrium steady state, we calculate the correlation function of director fluctuations and the response function, and discuss the nonequilibrium fluctuations and the modified fluctuation-dissipation relation in connection with nonconservative forces due to shear flow.
Specific features of thermal and magnetic properties of Yb B50 at low temperatures
NASA Astrophysics Data System (ADS)
Novikov, V. V.; Zhemoedov, N. A.; Matovnikov, A. V.; Mitroshenkov, N. V.; Popova, E. A.; Tolstosheev, A. K.; Malkin, B. Z.; Bud'ko, S. L.
2018-05-01
Heat capacity, thermal expansion, and magnetization of ytterbium boride Yb B50 were studied at temperatures 0.6-300 K, 5-300 K, and 2-300 K, respectively. We revealed two smooth peaks at about 4.0 and 60 K in the temperature dependence of the heat capacity. A comparison with the heat capacity of the diamagnetic isostructural boride Lu B50 shows that these anomalies can be attributed to excitations in the ytterbium sublattice (Schottky anomalies). A scheme for splitting of the ground
New grafted ferrite particles/liquid crystal composite under magnetic field
NASA Astrophysics Data System (ADS)
Manaila Maximean, D.
2018-04-01
A new colloidal composite formed by specially synthesized dimethylphenyl ferrite particles and a nematic liquid crystal (LC) is presented. By applying a small magnetic field during polarizing optical microscopy observations, it was found that the magnetic moment of the synthesized ferrite is perpendicular to the director of the LC. The optical transmission of laser light across the ferronematic was investigated under magnetic field. The critical magnetic field corresponding to the Freedericksz transition was obtained and discussed according to the Burylov and Raikher theory.
Synthesis and properties of Rb2GeF6:Mn4+ red-emitting phosphors
NASA Astrophysics Data System (ADS)
Sakurai, Shono; Nakamura, Toshihiro; Adachi, Sadao
2018-02-01
Rb2GeF6:Mn4+ red-emitting phosphors were synthesized by coprecipitation and their structural and optical properties were investigated by laser microscopy observation, X-ray diffraction (XRD) analysis, photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and PL decay measurement. Single-crystalline ingots in the form of a hexagonal pyramid were prepared with a basal plane diameter of ˜2 mm. The XRD analysis suggested that Rb2GeF6 crystallizes in the hexagonal structure (C6v4 = P63mc) with a = 0.5955 nm and c = 0.9672 nm. The phosphor exhibited the strong Mn4+-related zero-phonon line (ZPL) emission peak typically observed in host crystals with piezoelectrically active lattices such as a hexagonal lattice. The quantum efficiencies of the bulk ingot and powdered samples were 87 and 74%, respectively, with nearly the same luminescence decay time of ˜6 ms. The exact ZPL energies and related crystal-field and Racah parameters were obtained from the PL and PLE spectra by Franck-Condon analysis. Temperature-dependent PL intensities were analyzed from T = 20 to 500 K using a thermal quenching model by considering Bose-Einstein phonon statistics. A comparative discussion on the phosphor properties of Rb2GeF6:Mn4+ and Rb2MF6:Mn4+ with M = Si and Ti was also given.
Macromolecular crystallization in microgravity generated by a superconducting magnet.
Wakayama, N I; Yin, D C; Harata, K; Kiyoshi, T; Fujiwara, M; Tanimoto, Y
2006-09-01
About 30% of the protein crystals grown in space yield better X-ray diffraction data than the best crystals grown on the earth. The microgravity environments provided by the application of an upward magnetic force constitute excellent candidates for simulating the microgravity conditions in space. Here, we describe a method to control effective gravity and formation of protein crystals in various levels of effective gravity. Since 2002, the stable and long-time durable microgravity generated by a convenient type of superconducting magnet has been available for protein crystal growth. For the first time, protein crystals, orthorhombic lysozyme, were grown at microgravity on the earth, and it was proved that this microgravity improved the crystal quality effectively and reproducibly. The present method always accompanies a strong magnetic field, and the magnetic field itself seems to improve crystal quality. Microgravity is not always effective for improving crystal quality. When we applied this microgravity to the formation of cubic porcine insulin and tetragonal lysozyme crystals, we observed no dependence of effective gravity on crystal quality. Thus, this kind of test will be useful for selecting promising proteins prior to the space experiments. Finally, the microgravity generated by the magnet is compared with that in space, considering the cost, the quality of microgravity, experimental convenience, etc., and the future use of this microgravity for macromolecular crystal growth is discussed.
Coté, Gary G; Gibernau, Marc
2012-07-01
Many flowers are pollinated by potentially hungry insects, yet flowers also contain gametes and embryos which must be protected from predation. Microscopic calcium oxalate crystals in plant tissues have been proposed to protect against herbivory. Aroids, which have an unusual diversity of such crystals, also exhibit diverse pollination strategies. Many species have pollinators that do not feed while visiting the flowers, while other species, especially those pollinated by beetles, offer sterile staminodia as food rewards. We examined flowers of 21 aroid species with various pollination strategies to test the hypothesis that crystals protect vital gametes and embryos while allowing consumption of food bribes. Aroid inflorescences collected from the field or from greenhouse material were sectioned, cleared, and examined by bright field and polarization microscopy. All species examined, regardless of pollination strategy, arrayed crystals around unshed pollen and ovules. Less vital tissues, such as odoriferous appendages, had few crystals. Staminodia offered as food to beetle pollinators, however, differed greatly between species in their crystal contents. Some had minimal crystals; some had crystals in patterns suggesting they limit beetle feeding; still others had abundant crystals in no obvious pattern. The results are consistent with crystals protecting against insect predation of gametes and embryos. However, the role of crystals in food-bribe staminodia is unclear. They may limit and direct feeding by beetles in some species, while in others they might have no protective role.
Transient dynamics in cavity electromagnetically induced transparency with ion Coulomb crystals
NASA Astrophysics Data System (ADS)
Albert, Magnus; Dantan, Aurélien; Drewsen, Michael
2018-03-01
We experimentally investigate the transient dynamics of an optical cavity field interacting with large ion Coulomb crystals in a situation of electromagnetically induced transparency (EIT). EIT is achieved by injecting a probe field at the single photon level and a more intense control field with opposite circular polarization into the same mode of an optical cavity to couple Zeeman substates of a metastable level in ? ions. The EIT interaction dynamics are investigated both in the frequency-domain - by measuring the probe field steady state reflectivity spectrum - and in the time-domain - by measuring the progressive buildup of transparency. The experimental results are observed to be in excellent agreement with theoretical predictions taking into account the inhomogeneity of the control field in the interaction volume, and confirm the high degree of control on light-matter interaction that can be achieved with ion Coulomb crystals in optical cavities.
Single-Frequency Nd:YAG Ring Lasers with Corner Cube Prism
NASA Astrophysics Data System (ADS)
Wu, Ke-Ying; Yang, Su-Hui; Zhao, Chang-Ming; Wei, Guang-Hui
2000-10-01
We put forward another form of the non-planar ring lasers, in which the corner cube prism is the key element and the Nd:YAG crystal is used as a Porro prism to enclose the ring resonator. The phase shift due to the total internal reflections of the three differently orientated reflection planes of the corner cube prism, Faraday rotation in the Nd:YAG crystal placed in a magnetic field and the different output coupling in S and P polarization form an optical diode and enforce the single-frequency generating power. A round trip analysis of the polarization properties of the resonator is made by the evaluation of Jones matrix.
Giant increase in critical current density of K xFe 2-ySe₂ single crystals
Lei, Hechang; Petrovic, C.
2011-12-28
The critical current density Jabc of K xFe 2-ySe₂ single crystals can be enhanced by more than one order of magnitude, up to ~2.1×10⁴ A/cm² by the post annealing and quenching technique. A scaling analysis reveals the universal behavior of the normalized pinning force as a function of the reduced field for all temperatures, indicating the presence of a single vortex pinning mechanism. The main pinning sources are three-dimensional (3D) point-like normal cores. The dominant vortex interaction with pinning centers is via spatial variations in critical temperature T c (“δT c pinning”).
Dual gauge field theory of quantum liquid crystals in three dimensions
NASA Astrophysics Data System (ADS)
Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; Zaanen, Jan
2017-10-01
The dislocation-mediated quantum melting of solids into quantum liquid crystals is extended from two to three spatial dimensions, using a generalization of boson-vortex or Abelian-Higgs duality. Dislocations are now Burgers-vector-valued strings that trace out worldsheets in space-time while the phonons of the solid dualize into two-form (Kalb-Ramond) gauge fields. We propose an effective dual Higgs potential that allows for restoring translational symmetry in either one, two, or three directions, leading to the quantum analogues of columnar, smectic, or nematic liquid crystals. In these phases, transverse phonons turn into gapped, propagating modes, while compressional stress remains massless. Rotational Goldstone modes emerge whenever translational symmetry is restored. We also consider the effective electromagnetic response of electrically charged quantum liquid crystals, and find among other things that as a hard principle only two out of the possible three rotational Goldstone modes are observable using propagating electromagnetic fields.
NASA Technical Reports Server (NTRS)
Watring, D. A.; Gillies, D. C.; Lehoczky, S. L.; Szofran, F. R.; Alexander, H.
1996-01-01
In order to simulate the space environment for basic research into the crystal growth mechanism, Hg(0.8)Cd(0.2)Te crystals were grown by the vertical Bridgman-Stockbarger method in the presence of an applied axial magnetic field. The influence of convection, by magneto hydrodynamic damping, on mass transfer in the melt and segregation at the solid-liquid interface was investigated by measuring the axial and radial compositional variations in the grown samples. The reduction of convective mixing in the melt through the application of the magnetic field is found to have a large effect on radial segregation and interface morphology in the grown crystals. Direct comparisons are made with a Hg(0.8)Cd(0.2)Te crystal grown without field and also in the microgravity environment of space during the second United States Microgravity Payload Mission (USMP-2).
Electro-optic Modulation in Single-crystal Film of DAST Measured at 1.55 microns
NASA Astrophysics Data System (ADS)
Titus, Jitto; Swamy, Rajendra; Govindan Kutty, Srivatsa; Khatavkar, Sanchit; Thakur, Mrinal
2003-03-01
Exceptionally large electro-optic coefficient and high-speed modulation at 750 nm in DAST single-crystal film has been recently reported.[1] In this presentation, our measurement of electro-optic modulation in DAST single-crystal film at 1.55 microns will be discussed. The single-crystal film was prepared by the modified shear method. The modulation measurement was performed in the transverse configuration using the field-induced birefringence method. A semiconductor laser was used for this experiment. The light beam was propagated perpendicular to the film and the modulation was recorded for an ac field applied along the dipole axis on the film. About 6.5at a low field leading to a magnitude of the electro-optic coefficient (r11) of about 200 pm/V at 1.55 microns. 1. M. Thakur, A. Mishra, J. Titus and A.C. Ahyi, APL, 81 3738 (2002).
Nano-optical functionality based on local photoisomerization in photochromic single crystal
NASA Astrophysics Data System (ADS)
Nakagomi, Ryo; Uchiyama, Kazuharu; Kubota, Satoru; Hatano, Eri; Uchida, Kingo; Naruse, Makoto; Hori, Hirokazu
2018-01-01
Towards the construction of functional devices and systems using optical near-field processes, we demonstrate the multivalent features in the path-branching phenomena in a photochromic single crystal observed in optical phase change between colorless (1o) and blue-colored (1c) phases that transmits in subwavelength scale over a macroscopic spatial range associated with local mechanical distortions induced. To observe the near-field optical processes of transmission path branching, we have developed a top-to-bottom double-probe scanning near-field optical microscope capable of nanometer-scale correlation measurements by two individually position-controlled probes that face each other sandwiching the photochromic material. We have experimentally confirmed that a local near-field optical excitation applied to one side of the photochromic crystal by a probe tip resulted in characteristic structures of subwavelength scale around 100 nm or less that are observed by the other probe tip located on the opposite side. The structures are different from those resulting from far-field excitations that are quantitively evaluated by autocorrelations. The results suggest that the mechanical distortion caused by the local phase change in the photochromic crystal suppresses the phase change of the neighboring molecules. This new type of optical-near-field-induced local photoisomerization has the potential to allow the construction of functional devices with multivalent properties for natural intelligence.
NASA Astrophysics Data System (ADS)
Haellstig, Emil J.; Martin, Torleif; Stigwall, Johan; Sjoqvist, Lars; Lindgren, Mikael
2004-02-01
A commercial linear one-dimensional, 1x4096 pixels, zero-twist nematic liquid crystal spatial light modulator (SLM), giving more than 2π phase modulation at λ = 850 nm, was evaluated for beam steering applications. The large ratio (7:1) between the liquid crystal layer thickness and pixel width gives rise to voltage leakage and fringing fields between pixels. Due to the fringing fields the ideal calculated phase patterns cannot be perfectly realized by the device. Losses in high frequency components in the phase patterns were found to limit the maximum deflection angle. The inhomogeneous optical anisotropy of the SLM was determined by modelling of the liquid crystal director distribution within the electrode-pixel structure. The effects of the fringing fields on the amplitude and phase modulation were studied by full vector finite-difference time-domain simulations. It was found that the fringing fields also resulted in coupling into an unwanted polarization mode. Measurements of how this mode coupling affects the beam steering quality were carried out and the results compared with calculated results. A method to compensate for the fringing field effects is discussed and it is shown how the usable steering range of the SLM can be extended to +/- 2 degrees.
Dehydration process in NaCl solutions under various external electric fields
NASA Astrophysics Data System (ADS)
Kadota, Kazunori; Shimosaka, Atsuko; Shirakawa, Yoshiyuki; Hidaka, Jusuke
2007-06-01
Ionic motions at solid-liquid interface in supersaturated NaCl solutions have been investigated by molecular dynamics (MD) simulation for understanding crystal growth processes. The density profile in the vicinity of the interfaces between NaCl(100) and the supersaturated NaCl solution was calculated. Diffusion coefficients of water molecules in the solution were estimated as a function of distance from the crystal interface. It turned out that the structure and dynamics of the solution in the interfaces was different from those of bulk solution owing to electric fields depending on the surface charge. Therefore, the electric field was applied to the supersaturated solutions and dehydration phenomenon occurring in the process of the crystal growth was discussed. As the electric field increased, it was observed that the Na+ keeping strongly hydration structure broke out by the electric force. In supersaturated concentration, the solution structure is significantly different from that of dilution and has a complicated structure with hydration ions and clusters of NaCl. If the electric fields were applied to the solutions, the breakout of hydration structure was not affected with increasing the supersaturated ratio. This reason is that the cluster structures are destroyed by the electric force. The situation depends on the electric field or crystal surface structure.
Quartz Crystal Microbalance Electronic Interfacing Systems: A Review.
Alassi, Abdulrahman; Benammar, Mohieddine; Brett, Dan
2017-12-05
Quartz Crystal Microbalance (QCM) sensors are actively being implemented in various fields due to their compatibility with different operating conditions in gaseous/liquid mediums for a wide range of measurements. This trend has been matched by the parallel advancement in tailored electronic interfacing systems for QCM sensors. That is, selecting the appropriate electronic circuit is vital for accurate sensor measurements. Many techniques were developed over time to cover the expanding measurement requirements (e.g., accommodating highly-damping environments). This paper presents a comprehensive review of the various existing QCM electronic interfacing systems. Namely, impedance-based analysis, oscillators (conventional and lock-in based techniques), exponential decay methods and the emerging phase-mass based characterization. The aforementioned methods are discussed in detail and qualitatively compared in terms of their performance for various applications. In addition, some theoretical improvements and recommendations are introduced for adequate systems implementation. Finally, specific design considerations of high-temperature microbalance systems (e.g., GaPO₄ crystals (GCM) and Langasite crystals (LCM)) are introduced, while assessing their overall system performance, stability and quality compared to conventional low-temperature applications.
X-ray driven channeling acceleration in crystals and carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Young-Min; Still, Dean A.; Shiltsev, Vladimir
2013-12-01
Acceleration of particles channeling in a crystal by means of diffracted x-rays via Bormann anomalous transmission was conceived for heavy ions and muons by Tajima and Cavenago [Phys. Rev. Lett. 59, 1440 (1987)], which potentially offers an appreciably high field gradient on the order of GV/cm. The theoretical model of the high gradient acceleration has been studied in two kinds of atomic structure, crystals and carbon nanotubes (CNTs), with analytic calculations and electromagnetic eigenmode simulations. A range of acceleration gradients and cutoffs of the x-ray power (the lowest power limit to overcome the Bremsstrahlung radiation losses) are characterized in termsmore » of the lattice constants, unit cell sizes, and photon energies. The parametric analysis indicates that the required x-ray power can be reduced to an order of megawatt by replacing crystals with CNTs. Eventually, the equivalent dielectric approximation of a multi-wall nanotube shows that 250–810 MeV muons can be synchronously coupled with x-rays of 0.65–1.32 keV in the accelerating structure.« less
Quartz Crystal Microbalance Electronic Interfacing Systems: A Review
Benammar, Mohieddine; Brett, Dan
2017-01-01
Quartz Crystal Microbalance (QCM) sensors are actively being implemented in various fields due to their compatibility with different operating conditions in gaseous/liquid mediums for a wide range of measurements. This trend has been matched by the parallel advancement in tailored electronic interfacing systems for QCM sensors. That is, selecting the appropriate electronic circuit is vital for accurate sensor measurements. Many techniques were developed over time to cover the expanding measurement requirements (e.g., accommodating highly-damping environments). This paper presents a comprehensive review of the various existing QCM electronic interfacing systems. Namely, impedance-based analysis, oscillators (conventional and lock-in based techniques), exponential decay methods and the emerging phase-mass based characterization. The aforementioned methods are discussed in detail and qualitatively compared in terms of their performance for various applications. In addition, some theoretical improvements and recommendations are introduced for adequate systems implementation. Finally, specific design considerations of high-temperature microbalance systems (e.g., GaPO4 crystals (GCM) and Langasite crystals (LCM)) are introduced, while assessing their overall system performance, stability and quality compared to conventional low-temperature applications. PMID:29206212
NASA Astrophysics Data System (ADS)
Wu, C. N.; Tseng, C. C.; Lin, K. Y.; Cheng, C. K.; Yeh, S. L.; Fanchiang, Y. T.; Hong, M.; Kwo, J.
2018-05-01
High-quality single-crystal thulium iron garnet (TmIG) films of 10-30 nm thick were grown by off-axis sputtering at room temperature (RT) followed by post-annealing. X-ray photoelectron spectroscopy (XPS) was employed to determine the TmIG film composition to optimize the growth conditions, along with the aid of x-ray diffraction (XRD) structural analysis and atomic force microscope (AFM) for surface morphology. The optimized films exhibited perpendicular magnetic anisotropy (PMA) and the saturation magnetization at RT was ˜99 emu/cm3, close to the RT bulk value ˜110 emu/cm3 with a very low coercive field of ˜2.4 Oe. We extracted the H⊥ of 1734 Oe and the peak-to-peak linewidth ΔH of ferromagnetic resonance are only about 99 Oe, significantly lower than that of PLD grown TmIG film and bulk single crystals. The high-quality sputtered single-crystal TmIG films show great potential to be integrated with topological insulators or heavy metals with strong spin-orbit coupling for spintronic applications.
NASA Astrophysics Data System (ADS)
Gabdullin, N.; Khan, S. H.
2017-10-01
Magnetic shape memory effect exhibited by certain alloys at room temperature is known for almost 20 years. The most studied MSM alloys are Ni-Mn-Ga alloys which exhibit up to 12% magnetic field-induced strain (change in shape) depending on microstructure. A multibillion cycle operation without malfunction along with their “smart” properties make them very promising for application in electromagnetic (EM) actuators and sensors. However, considerable twinning stress of MSM crystals resulting in magneto-mechanical hysteresis decreases the efficiency and output force of MSM actuators. Whereas twinning stress of conventional MSM crystals has been significantly decreased over the years, novel crystals with Type II twin boundaries (TBs) possess even lower twinning stress. Unfortunately, the microstructure of MSM crystals with very low twinning stress tends to be unstable leading to their rapid crack growth. Whilst this phenomenon has been studied experimentally, the magnetic field distribution in anisotropic single twin-boundary MSM elements has not been considered yet. This paper analyses the magnetic field distribution in two-variant single twin-boundary MSM elements and discusses its effects on magnetic field-induced stress acting on the twin boundary.
Xin, Zhaowei; Wei, Dong; Xie, Xingwang; Chen, Mingce; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng
2018-02-19
Light-field imaging is a crucial and straightforward way of measuring and analyzing surrounding light worlds. In this paper, a dual-polarized light-field imaging micro-system based on a twisted nematic liquid-crystal microlens array (TN-LCMLA) for direct three-dimensional (3D) observation is fabricated and demonstrated. The prototyped camera has been constructed by integrating a TN-LCMLA with a common CMOS sensor array. By switching the working state of the TN-LCMLA, two orthogonally polarized light-field images can be remapped through the functioned imaging sensors. The imaging micro-system in conjunction with the electric-optical microstructure can be used to perform polarization and light-field imaging, simultaneously. Compared with conventional plenoptic cameras using liquid-crystal microlens array, the polarization-independent light-field images with a high image quality can be obtained in the arbitrary polarization state selected. We experimentally demonstrate characters including a relatively wide operation range in the manipulation of incident beams and the multiple imaging modes, such as conventional two-dimensional imaging, light-field imaging, and polarization imaging. Considering the obvious features of the TN-LCMLA, such as very low power consumption, providing multiple imaging modes mentioned, simple and low-cost manufacturing, the imaging micro-system integrated with this kind of liquid-crystal microstructure driven electrically presents the potential capability of directly observing a 3D object in typical scattering media.
Anisotropic physical properties of single-crystal U2Rh2Sn in high magnetic fields
NASA Astrophysics Data System (ADS)
Prokeš, K.; Gorbunov, D. I.; Reehuis, M.; Klemke, B.; Gukasov, A.; Uhlířová, K.; Fabrèges, X.; Skourski, Y.; Yokaichiya, F.; Hartwig, S.; Andreev, A. V.
2017-05-01
We report on the crystal and magnetic structures, magnetic, transport, and thermal properties of U2Rh2Sn single crystals studied in part in high magnetic fields up to 58 T. The material adopts a U3Si2 -related tetragonal crystal structure and orders antiferromagnetically below TN=25 K. The antiferromagnetic structure is characterized by a propagation vector k =(00 1/2 ) . The magnetism in U2Rh2Sn is found to be associated mainly with 5 f states. However, both unpolarized and polarized neutron experiments reveal at low temperatures in zero field non-negligible magnetic moments also on Rh sites. U moments of 0.50(2) μB are directed along the tetragonal axis while Rh moments of 0.06(4) μB form a noncollinear arrangement confined to the basal plane. The response to applied magnetic field is highly anisotropic. Above ˜15 K the easy magnetization direction is along the tetragonal axis. At lower temperatures, however, a stronger response is found perpendicular to the c axis. While for the a axis no magnetic phase transition is observed up to 58 T, for the field applied at 1.8 K along the tetragonal axis we observe above 22.5 T a field-polarized state. A magnetic phase diagram for the field applied along the c axis is presented.
Photonic liquid crystal fibers — a new challenge for fiber optics and liquid crystals photonics
NASA Astrophysics Data System (ADS)
Woliński, T. R.; Ertman, S.; Lesiak, P.; Domański, A. W.; Czapla, A.; Dąbrowski, R.; Nowinowski-Kruszelnicki, E.; Wójcik, J.
2006-12-01
The paper reviews and discusses the latest developments in the field of the photonic liquid crystal fibers that have occurred for the last three years in view of new challenges for both fiber optics and liquid crystal photonics. In particular, we present the latest experimental results on electrically induced birefringence in photonic liquid crystal fibers and discuss possibilities and directions of future developments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Rahul; Department of Mechanical Engineering, National University of Singapore, Singapore 119260; Lim, Leong-Chew
2011-04-01
This paper investigates the effects of electrically induced and direct tensile stress on the deformation and dielectric properties of Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}-(6-7)%PbTiO{sub 3} single crystals of [110]{sup L}x[001]{sup T} cut by using a unimorph sample and a four-point-bend (FPB) sample, respectively. The results show a dip in tip displacement for the unimorph sample at sufficiently high electric field parallel to the poling field direction and a sudden rise in capacitance for the FPB sample at sufficiently high tensile stress in the [110] crystal direction, respectively. These phenomena are attributed to the tensile stress induced rhombohedral-to-orthorhombic phase transition and associatedmore » depolarization events in the crystal. For the said crystal cut, the obtained tensile depoling stress is in the range of 15-20 MPa. The present work furthermore shows that the occurrence of tensile stress-induced depolarization is possible even when the direction of the applied electric field is parallel to the poling field direction, as in the unimorph sample examined.« less
Pinning mode of integer quantum Hall Wigner crystal of skyrmions
NASA Astrophysics Data System (ADS)
Zhu, Han; Sambandamurthy, G.; Chen, Y. P.; Jiang, P.-H.; Engel, L. W.; Tsui, D. C.; Pfeiffer, L. N.; West, K. W.
2009-03-01
Just away from integer Landau level (LL) filling factors ν, the dilute quasi-particles/holes at the partially filled LL form an integer-quantum-Hall Wigner crystal, which exhibits microwave pinning mode resonances [1]. Due to electron-electron interaction, it was predicted that the elementary excitation around ν= 1 is not a single spin flip, but a larger-scale spin texture, known as a skyrmion [2]. We have compared the pinning mode resonances [1] of integer quantum Hall Wigner crystals formed in the partly filled LL just away from ν= 1 and ν= 2, in the presence of an in-plane magnetic field. As an in-plane field is applied, the peak frequencies of the resonances near ν= 1 increase, while the peak frequencies below ν= 2 show neligible dependence on in-plane field. We interpret this observation as due to a skyrmion crystal phase around ν= 1 and a single-hole Wigner crystal phase below ν= 2. The in-plane field increases the Zeeman gap and causes shrinking of the skyrmion size toward single spin flips. [1] Yong P. Chen et al., Phys. Rev. Lett. 91, 016801 (2003). [2] S. L. Sondhi et al., Phys. Rev. B 47, 16 419 (1993); L. Brey et al., Phys. Rev. Lett. 75, 2562 (1995).
Luscher, Darby Jon; Mayeur, Jason Rhea; Mourad, Hashem Mohamed; ...
2015-08-05
Here, we have developed a multi-physics modeling approach that couples continuum dislocation transport, nonlinear thermoelasticity, crystal plasticity, and consistent internal stress and deformation fields to simulate the single-crystal response of materials under extreme dynamic conditions. Dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. Nonlinear thermoelasticity provides a thermodynamically consistent equation of state to relate stress (including pressure), temperature, energy densities, and dissipation. Crystal plasticity is coupled to dislocation transport via Orowan's expression where the constitutive description makes use of recent advances in dislocation velocity theories applicable under extreme loading conditions.more » The configuration of geometrically necessary dislocation density gives rise to an internal stress field that can either inhibit or accentuate the flow of dislocations. An internal strain field associated with the internal stress field contributes to the kinematic decomposition of the overall deformation. The paper describes each theoretical component of the framework, key aspects of the constitutive theory, and some details of a one-dimensional implementation. Results from single-crystal copper plate impact simulations are discussed in order to highlight the role of dislocation transport and pile-up in shock loading regimes. The main conclusions of the paper reinforce the utility of the modeling approach to shock problems.« less
NASA Astrophysics Data System (ADS)
Divya, R.; Nair, Lekshmi P.; Bijini, B. R.; Nair, C. M. K.; Gopakumar, N.; Babu, K. Rajendra
2017-12-01
Strontium cyanurate crystals with novel structure and unique optical property like mechanoluminescence have been grown by conventional gel method. Transparent crystals were obtained. The single crystal X-ray diffraction analysis reveals the exquisite structure of the grown crystal. The crystal is centrosymmetric and has a three dimensional polymeric structure. The powder X ray diffraction analysis confirms its crystalline nature. The functional groups present in the crystal were identified by Fourier transform infrared spectroscopy. Elemental analysis confirmed the composition of the complex. A study of thermal properties was done by thermo gravimetric analysis and differential thermal analysis. The optical properties like band gap, refractive index and extinction coefficient were evaluated from the UV visible spectral analysis. The etching study was done to reveal the dislocations in the crystal which in turn explains mechanoluminescence emission. The mechanoluminescence property exhibited by the crystal makes it suitable for stress sensing applications. Besides being a centrosymmetric crystal, it also exhibits NLO behavior. Dielectric properties were studied and theoretical calculations of Fermi energy, valence electron plasma energy, penn gap and polarisability have been done.
Advances in food crystallization.
Hartel, Richard W
2013-01-01
Crystals often play an important role in food product quality and shelf life. Controlling crystallization to obtain the desired crystal content, size distribution, shape, and polymorph is key to manufacturing products with desired functionality and shelf life. Technical developments in the field have improved the tools with which we study and characterize crystals in foods. These developments also help our understanding of the physico-chemical phenomena that govern crystallization and improve our ability to control it during processing and storage. In this review, some of the more important recent developments in measuring and controlling crystallization are discussed.
NASA Astrophysics Data System (ADS)
Chen, Zhaojiang; Li, Shiyang; Zhang, Yang; Cao, Wenwu
2017-05-01
Bipolar electric field induced degradation in [001]c poled Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-0.29PT) single crystals was investigated at megahertz frequencies. The electromechanical coupling factor kt, dielectric constant ɛr, dielectric loss D, and piezoelectric constant d33 were measured as a function of amplitude, frequency, and number of cycles of the applied electric field. Our results showed that samples degrade rapidly when the field amplitude is larger than a critical value due to the onset of domain switching. We define this critical value as the effective coercive field Ec at high frequencies, which increases drastically with frequency. We also demonstrate an effective counter-depoling method by using a dc bias, which could help the design of high field driven devices based on PMN-PT single crystals and operated at megahertz frequencies.
NASA Technical Reports Server (NTRS)
Sung, C.-M.; Singer, R. B.; Parkin, K. M.; Burns, R. G.; Osborne, M.
1977-01-01
Results are reported of Fe(++) crystal field spectral measurements for olivines and pyroxenes up to 400 C. The results are correlated with crystal structure data at elevated temperatures, and the validity of remote-sensed identifications of minerals on hot surfaces of the moon and Mercury is assessed. Two techniques were used to obtain spectra of minerals at elevated temperatures using a spectrophotometer. One employed a diamond cell assembly or a specially designed sample holder to measure polarized absorption spectra of heated single crystals. For the other technique, a sample holder was designed to attach to a diffuse reflectance accessory to produce reflectance spectra of heated powdered samples. Polarized absorption spectra of forsterite at 20-400 C are shown in a graph. Other graphs show the temperature dependence of Fe(++) crystal field bands in olivines, the diffuse reflectance spectra of olivine at 40-400 C, the polarization absorption spectra of orthopyroxene at 30-400 C, the diffuse reflectance spectra of pigeonite at 40-400 C, and unpolarized absorption spectra of lunar pyroxene from Apollo 15 rock 15058.
Aluicio-Sarduy, Eduardo; Callegari, Simone; Figueroa del Valle, Diana Gisell; Desii, Andrea; Kriegel, Ilka
2016-01-01
Summary An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches. PMID:27826514
Aluicio-Sarduy, Eduardo; Callegari, Simone; Figueroa Del Valle, Diana Gisell; Desii, Andrea; Kriegel, Ilka; Scotognella, Francesco
2016-01-01
An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches.
Phase-field-crystal study of solute trapping
NASA Astrophysics Data System (ADS)
Humadi, Harith; Hoyt, Jeffrey J.; Provatas, Nikolas
2013-02-01
In this study we have incorporated two time scales into the phase-field-crystal model of a binary alloy to explore different solute trapping properties as a function of crystal-melt interface velocity. With only diffusive dynamics, we demonstrate that the segregation coefficient, K as a function of velocity for a binary alloy is consistent with the model of Kaplan and Aziz where K approaches unity in the limit of infinite velocity. However, with the introduction of wavelike dynamics in both the density and concentration fields, the trapping follows the kinetics proposed by Sobolev [Phys. Lett. A10.1016/0375-9601(95)00084-G 199, 383 (1995)], where complete trapping occurs at a finite velocity.
Koizumi, H; Uda, S; Fujiwara, K; Nozawa, J
2011-07-05
The effect of an external ac electric field on the nucleation rate of hen egg white lysozyme crystals increased with an increase in the concentration of the precipitant used, which enabled the design of an electric double layer (EDL) formed at the inner surface of the drop in the oil. This is attributed to the thickness of the EDL controlled by the ionic strength of the precipitant used. Control of the EDL formed at the interface between the two phases is important to establishing this novel technique for the crystallization of proteins under the application of an external ac electric field. © 2011 American Chemical Society
Random crystal field effects on the integer and half-integer mixed-spin system
NASA Astrophysics Data System (ADS)
Yigit, Ali; Albayrak, Erhan
2018-05-01
In this work, we have focused on the random crystal field effects on the phase diagrams of the mixed spin-1 and spin-5/2 Ising system obtained by utilizing the exact recursion relations (ERR) on the Bethe lattice (BL). The distribution function P(Di) = pδ [Di - D(1 + α) ] +(1 - p) δ [Di - D(1 - α) ] is used to randomize the crystal field.The phase diagrams are found to exhibit second- and first-order phase transitions depending on the values of α, D and p. It is also observed that the model displays tricritical point, isolated point, critical end point and three compensation temperatures for suitable values of the system parameters.
NASA Astrophysics Data System (ADS)
Yannouleas, Constantine; Landman, Uzi
2017-10-01
A constructive theoretical platform for the description of quantum space-time crystals uncovers for N interacting and ring-confined rotating particles the existence of low-lying states with proper space-time crystal behavior. The construction of the corresponding many-body trial wave functions proceeds first via symmetry breaking at the mean-field level followed by symmetry restoration using projection techniques. The ensuing correlated many-body wave functions are stationary states and preserve the rotational symmetries, and at the same time they reflect the point-group symmetries of the mean-field crystals. This behavior results in the emergence of sequences of select magic angular momenta Lm. For angular-momenta away from the magic values, the trial functions vanish. Symmetry breaking beyond the mean-field level can be induced by superpositions of such good-Lm many-body stationary states. We show that superposing a pair of adjacent magic angular momenta states leads to formation of special broken-symmetry states exhibiting quantum space-time-crystal behavior. In particular, the corresponding particle densities rotate around the ring, showing undamped and nondispersed periodic crystalline evolution in both space and time. The experimental synthesis of such quantum space-time-crystal wave packets is predicted to be favored in the vicinity of ground-state energy crossings of the Aharonov-Bohm-type spectra accessed via an externally applied, natural or synthetic, magnetic field. These results are illustrated here for Coulomb-repelling fermionic ions and for a lump of contact-interaction attracting bosons.
Optical vector network analysis of ultranarrow transitions in 166Er3+ : 7LiYF4 crystal.
Kukharchyk, N; Sholokhov, D; Morozov, O; Korableva, S L; Cole, J H; Kalachev, A A; Bushev, P A
2018-02-15
We present optical vector network analysis (OVNA) of an isotopically purified Er166 3+ :LiYF 4 7 crystal. The OVNA method is based on generation and detection of a modulated optical sideband by using a radio-frequency vector network analyzer. This technique is widely used in the field of microwave photonics for the characterization of optical responses of optical devices such as filters and high-Q resonators. However, dense solid-state atomic ensembles induce a large phase shift on one of the optical sidebands that results in the appearance of extra features on the measured transmission response. We present a simple theoretical model that accurately describes the observed spectra and helps to reconstruct the absorption profile of a solid-state atomic ensemble as well as corresponding change of the refractive index in the vicinity of atomic resonances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Azhad U.; Ye, Dong Hye; Song, Zhengtian
Second harmonic generation (SHG) was integrated with Raman spectroscopy for the analysis of pharmaceutical materials. Particulate formulations of clopidogrel bisulfate were prepared in two crystal forms (Form I and Form II). Image analysis approaches enable automated identification of particles by bright field imaging, followed by classification by SHG. Quantitative SHG microscopy enabled discrimination of crystal form on a per particle basis with 99.95% confidence in a total measurement time of ~10 ms per particle. Complementary measurements by Raman and synchrotron XRD are in excellent agreement with the classifications made by SHG, with measurement times of ~1 min and several secondsmore » per particle, respectively. Coupling these capabilities with at-line monitoring may enable real-time feedback for reaction monitoring during pharmaceutical production to favor the more bioavailable but metastable Form I with limits of detection in the ppm regime.« less
NASA Astrophysics Data System (ADS)
Mirzaei, Masoud; Eshghi, Hossein; Akhlaghi Bagherjeri, Fateme; Mirzaei, Mahdi; Farhadipour, Abolghasem
2018-07-01
α-Aminophosphonates have been rarely explored in the field of crystal engineering. These organic molecules are capable of forming reliable and reproducible supramolecular synthons through non-covalent interactions that can be employed for designing high dimensional supramolecular architectures. Here, we systematically study the influence of conventional and unconventional hydrogen bonding interactions on the formation of these synthons and stability of the crystal packing. The theoretical studies were employed to further confirm the presence of these synthons by comparing the stabilization energies of the dimers and monomers. The dependence of the stability of NH⋯O hydrogen bonds to the aromatic substituents were investigated using NBO analysis. The most stable compound was determined by comparing the HOMO-LUMO energy gap of all compounds and compared with NBO analysis.
NASA Astrophysics Data System (ADS)
Rajkumar, R.; Praveen Kumar, P.
2018-05-01
Optical transparent crystal of piperazinium hydrogen phosphite monohydrate (PHPM) was grown by slow evaporation method. The grown crystal was characterized by single crystal X-ray diffraction analysis and the crystal belongs to monoclinic system. The functional groups present in PHPM crystal were confirmed by FTIR analysis. UV-Visible spectrum shows that the PHPM crystal is transparent in the visible region. The mechanical behavior of PHPM crystal was characterized by Vickers hardness test. Thermal stability of PHPM crystal was analyzed by thermogravimetric analysis. Dielectric studies were also carried out for the grown crystal. The third-order nonlinear parameters such as nonlinear refractive index and nonlinear absorption coefficient have been calculated using Z scan technique.
Advanced Protein Crystallization Facility (APCF)
NASA Technical Reports Server (NTRS)
1998-01-01
This section of the Life and Microgravity Spacelab (LMS) publication contains articles entitled: (1) Crystallization of EGFR-EGF; (2) Crystallization of Apocrustacyanin C1; (3) Crystallization and X-ray Analysis of 5S rRNA and the 5S rRNA Domain A; (4) Growth of Lysozyme Crystals at Low Nucleation Density; (5) Comparative Analysis of Aspartyl tRNA-synthetase and Thaumatin Crystals Grown on Earth and In Microgravity; (6) Lysosome Crystal Growth in the Advanced Protein Crystallization Facility Monitored via Mach-Zehnder Interferometry and CCD Video; (7) Analysis of Thaumatin Crystals Grown on Earth and in Microgravity; (8) Crystallization of the Nucleosome Core Particle; (9) Crystallization of Photosystem I; (10) Mechanism of Membrane Protein Crystal Growth: Bacteriorhodopsin-mixed Micelle Packing at the Consolution Boundary, Stabilized in Microgravity; (11) Crystallization in a Microgravity Environment of CcdB, a Protein Involved in the Control of Cell Death; and (12) Crystallization of Sulfolobus Solfataricus
NASA Astrophysics Data System (ADS)
Evans, D. R.; Saleh, M. A.; Allen, A. S.; Pottenger, T. P.; Bunning, T. J.; Guha, S.; Basun, S. A.; Cook, G.
2002-03-01
An instability on the order of 10 ns is observed while writing volume gratings in bulk crystals of iron-doped lithium niobate using contra-directional two-beam coupling along the c-axis. This instability is attributed to the quasi-breakdown of the uniform component of the photovoltaic field [1], which affects the uniform electric field formed inside the crystal causing a change in the refractive index through the electro-optic effect. A method to eliminate this instability by coating the z-surfaces of the crystal with a transparent conductive coating will be presented. [1] A. Krumins, Z. Chen, and T. Shiosaki, Opt. Comm. 117 (1995) 147-150.
Paria Sena, Robert; Babaryk, Artem A; Khainakov, Sergiy; Garcia-Granda, Santiago; Slobodyanik, Nikolay S; Van Tendeloo, Gustaaf; Abakumov, Artem M; Hadermann, Joke
2016-01-21
The crystal structure of the K6.4Nb28.2Ta8.1O94 pseudo-tetragonal tungsten bronze-type oxide was determined using a combination of X-ray powder diffraction, neutron diffraction and transmission electron microscopy techniques, including electron diffraction, high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), annular bright field STEM (ABF-STEM) and energy-dispersive X-ray compositional mapping (STEM-EDX). The compound crystallizes in the space group Pbam with unit cell parameters a = 37.468(9) Å, b = 12.493(3) Å, c = 3.95333(15) Å. The structure consists of corner sharing (Nb,Ta)O6 octahedra forming trigonal, tetragonal and pentagonal tunnels. All tetragonal tunnels are occupied by K(+) ions, while 1/3 of the pentagonal tunnels are preferentially occupied by Nb(5+)/Ta(5+) and 2/3 are occupied by K(+) in a regular pattern. A fractional substitution of K(+) in the pentagonal tunnels by Nb(5+)/Ta(5+) is suggested by the analysis of the HAADF-STEM images. In contrast to similar structures, such as K2Nb8O21, also parts of the trigonal tunnels are fractionally occupied by K(+) cations.
Liou, K N; Ou, Szu-Cheng; Takano, Yoshihide; Cetola, Jeffrey
2006-09-10
A satellite remote sensing methodology has been developed to retrieve 3D ice water content (IWC) and mean effective ice crystal size of cirrus clouds from satellite data on the basis of a combination of the conventional retrieval of cloud optical depth and particle size in a horizontal plane and a parameterization of the vertical cloud profile involving temperature from sounding and/or analysis. The inferred 3D cloud fields of IWC and mean effective ice crystal size associated with two impressive cirrus clouds that occurred in the vicinity of northern Oklahoma on 18 April 1997 and 9 March 2000, obtained from the Department of Energy's Atmospheric Radiation Measurement Program, have been validated against the ice crystal size distributions that were collected independently from collocated and coincident aircraft optical probe measurements. The 3D cloud results determined from satellite data have been applied to the simulation of cw laser energy propagation, and we show the significance of 3D cloud geometry and inhomogeneity and spherical atmosphere on the transmitted and backscattered laser powers. Finally, we demonstrate that the 3D cloud fields derived from satellite remote sensing can be used for the 3D laser transmission and backscattering model for tactical application.
NASA Astrophysics Data System (ADS)
Williams, Robert W.; Schlücker, Sebastian; Hudson, Bruce S.
2008-01-01
A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes.
NASA Astrophysics Data System (ADS)
Alonso, J. A.; Cascales, C.; García Casado, P.; Rasines, I.
1997-02-01
The crystal structure of the ordered perovskites Ba2(RSb)O6(R=Y, Ho) is refined from neutron powder diffraction data in the space groupFmoverline3m(No. 225),Z=4, with Ba at 8(c),Rat 4(b), Sb at 4(a), oxygen at 24(e), oxygen positional parameterx=0.2636(2) forR=Y and Ho, and unit cell dimensions ofa/Å=8.4240(3) and 8.4170(2) forR=Y and Ho, respectively. Bond-valence analysis explains how the highly covalent Sb-O bonds determine the overall structure of these perovskites in whichR-O and Ba-O bonds are under compressive and tensile stresses, respectively. The magnetic susceptibility of Ba2(HoSb)O6has been measured in the temperature range 2-350 K. From ana prioriestimation of the crystal-field parameters corresponding to the point site symmetry of the rare-earth,Oh, and using the wave functions associated with the energy levels obtained, the paramagnetic susceptibility and its evolution vs temperature is simulated according to the van Vleck formalism. The observed deviation from the Curie-Weiss behavior at low temperature, very well reproduced, reflects the splitting of the ground state of this cation under the influence of the crystal field.
Simulations of surface stress effects in nanoscale single crystals
NASA Astrophysics Data System (ADS)
Zadin, V.; Veske, M.; Vigonski, S.; Jansson, V.; Muszinsky, J.; Parviainen, S.; Aabloo, A.; Djurabekova, F.
2018-04-01
Onset of vacuum arcing near a metal surface is often associated with nanoscale asperities, which may dynamically appear due to different processes ongoing in the surface and subsurface layers in the presence of high electric fields. Thermally activated processes, as well as plastic deformation caused by tensile stress due to an applied electric field, are usually not accessible by atomistic simulations because of the long time needed for these processes to occur. On the other hand, finite element methods, able to describe the process of plastic deformations in materials at realistic stresses, do not include surface properties. The latter are particularly important for the problems where the surface plays crucial role in the studied process, as for instance, in the case of plastic deformations at a nanovoid. In the current study by means of molecular dynamics (MD) and finite element simulations we analyse the stress distribution in single crystal copper containing a nanovoid buried deep under the surface. We have developed a methodology to incorporate the surface effects into the solid mechanics framework by utilizing elastic properties of crystals, pre-calculated using MD simulations. The method leads to computationally efficient stress calculations and can be easily implemented in commercially available finite element software, making it an attractive analysis tool.
High pressure luminescence of Nd3+ in YAlO3 perovskite nanocrystals: A crystal-field analysis
NASA Astrophysics Data System (ADS)
Hernández-Rodríguez, Miguel A.; Muñoz-Santiuste, Juan E.; Lavín, Víctor; Lozano-Gorrín, Antonio D.; Rodríguez-Hernández, Plácida; Muñoz, Alfonso; Venkatramu, Vemula; Martín, Inocencio R.; Rodríguez-Mendoza, Ulises R.
2018-01-01
Pressure-induced energy blue- and red-shifts of the 4F3/2 → 4I9/2,11/2 near-infrared emission lines of Nd3+ ions in YAlO3 perovskite nano-particles have been measured from ambient conditions up to 29 GPa. Different positive and negative linear pressure coefficients have been calibrated for the emission lines and related to pressure-induced changes in the interactions between those Nd3+ ions and their twelve oxygen ligands at the yttrium site. Potentiality of the simple overlap model, combined with ab initio structural calculations, in the description of the effects of these interactions on the energy levels and luminescence properties of the optically active Nd3+ ion is emphasized. Simulations show how the energies of the 4f3 ground configuration and the barycenters of the multiplets increase with pressure, whereas the Coulomb interaction between f-electrons decreases and the crystal-field strength increases. All these effects combined explain the wavelength blue-shifts of some near-infrared emission lines of Nd3+ ions. Large pressure rates of various emission lines suggest that a YAlO3 perovskite nano-crystal can be a potential candidate for near-infrared optical pressure sensors.
NASA Astrophysics Data System (ADS)
Liou, K. N.; Ou, Szu-Cheng; Takano, Yoshihide; Cetola, Jeffrey
2006-09-01
A satellite remote sensing methodology has been developed to retrieve 3D ice water content (IWC) and mean effective ice crystal size of cirrus clouds from satellite data on the basis of a combination of the conventional retrieval of cloud optical depth and particle size in a horizontal plane and a parameterization of the vertical cloud profile involving temperature from sounding and/or analysis. The inferred 3D cloud fields of IWC and mean effective ice crystal size associated with two impressive cirrus clouds that occurred in the vicinity of northern Oklahoma on 18 April 1997 and 9 March 2000, obtained from the Department of Energy's Atmospheric Radiation Measurement Program, have been validated against the ice crystal size distributions that were collected independently from collocated and coincident aircraft optical probe measurements. The 3D cloud results determined from satellite data have been applied to the simulation of cw laser energy propagation, and we show the significance of 3D cloud geometry and inhomogeneity and spherical atmosphere on the transmitted and backscattered laser powers. Finally, we demonstrate that the 3D cloud fields derived from satellite remote sensing can be used for the 3D laser transmission and backscattering model for tactical application.
Tunability of soft phononic crystals through large deformation (Conference Presentation)
NASA Astrophysics Data System (ADS)
Bao, Ronghao; Chen, Weiqiu
2017-04-01
Phononic crystals (PCs) have attracted plenty of attention during the past two decades, and a lot of work has been devoted to the numerical, theoretical and experimental analysis of the band gaps of the PCs with 1D, 2D and 3D structures, respectively. The band gaps have been found to be related to the topology of the unit cell, filling ratio, contrast of the material properties between matrix and inclusion, and so on. However, they are fixed when the fabrication of corresponding devices is finished in most cases. Usually, biasing fields (e.g. initial stress, initial deformation, pre-existing electric field, external electric field and magnetic field, etc.) can be utilized to tailor the band gaps in flexible and reconfigurable ways. Recently, the instability-induced deformations triggered by external mechanical loadings have been found to be an effective and reversible way to tune the band gaps and the directionality of PCs made from soft materials, such as silicon and rubber. In this project, a novel design of PCs will be proposed, which consists of perforated plate with some individual beams fixed on the boundary of internal holes. When the external mechanical loading applied on the PCs reaches a threshold value, instability-induced buckling will be triggered and the internal beams might be in contact with each other, which will significantly alter the topology of PCs, and therefore effectively tune the band gaps of PCs. A systematical analysis will be carried out to study the influences on the tunability of PCs with different designs through finite element methods (FEM).
Subsequent to the PM2.5 FRM's 1997 promulgation, technicians at the CT Dept. of Env. Protection observed that the DOW 704 diffusion oil used in the method's WINS fractionator would occasionally crystallize during field use - particularly under wintertime conditions. While the f...
Analytical study of acoustically perturbed Brillouin active magnetized semiconductor plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Arun, E-mail: arunshuklaujn@gmail.com; Jat, K. L.
2015-07-31
An analytical study of acoustically perturbed Brillouin active magnetized semiconductor plasma has been reported. In the present analytical investigation, the lattice displacement, acousto-optical polarization, susceptibility, acousto-optical gain constant arising due to the induced nonlinear current density and acousto-optical process are deduced in an acoustically perturbed Brillouin active magnetized semiconductor plasma using the hydrodynamical model of plasma and coupled mode scheme. The influence of wave number and magnetic field has been explored. The analysis has been applied to centrosymmetric crystal. Numerical estimates are made for n-type InSb crystal duly irradiated by a frequency doubled 10.6 µm CO{sub 2} laser. It is foundmore » that lattice displacement, susceptibility and acousto-optical gain increase linearly with incident wave number and applied dc magnetic field, while decrease with scattering angle. The gain also increases with electric amplitude of incident laser beam. Results are found to be well in agreement with available literature.« less
Extremely Large Magnetoresistance in a Topological Semimetal Candidate Pyrite PtBi2
NASA Astrophysics Data System (ADS)
Gao, Wenshuai; Hao, Ningning; Zheng, Fa-Wei; Ning, Wei; Wu, Min; Zhu, Xiangde; Zheng, Guolin; Zhang, Jinglei; Lu, Jianwei; Zhang, Hongwei; Xi, Chuanying; Yang, Jiyong; Du, Haifeng; Zhang, Ping; Zhang, Yuheng; Tian, Mingliang
2017-06-01
While pyrite-type PtBi2 with a face-centered cubic structure has been predicted to be a three-dimensional (3D) Dirac semimetal, experimental study of its physical properties remains absent. Here we report the angular-dependent magnetoresistance measurements of a PtBi2 single crystal under high magnetic fields. We observed extremely large unsaturated magnetoresistance (XMR) up to (11.2 ×106)% at T =1.8 K in a magnetic field of 33 T, which is comparable to the previously reported Dirac materials, such as WTe2 , LaSb, and NbP. The crystals exhibit an ultrahigh mobility and significant Shubnikov-de Hass quantum oscillations with a nontrivial Berry phase. The analysis of Hall resistivity indicates that the XMR can be ascribed to the nearly compensated electron and hole. Our experimental results associated with the ab initio calculations suggest that pyrite PtBi2 is a topological semimetal candidate that might provide a platform for exploring topological materials with XMR in noble metal alloys.
Venkatramu, V; Babu, P; Jayasankar, C K
2006-02-01
The influence of glass composition on the fluorescence properties of Eu3+ ions doped borate and fluoroborate glasses modified with Li+, Zn2+ and Pb2+ cations have been investigated. The magnitude of splittings of 7F1 levels are analyzed using crystal-field (CF) analysis. The relative intensities of 5D0 --> 7F2 to 5D0 --> 7F1 transitions, crystal-field strength parameters and decay times of the 5D0 level have been determined and are found to be lower for Pb based glasses than those of Zn/Li based glasses. The lifetimes of 5D0 level are found to increase when borate glasses are modified with pure fluorides than with oxides and oxyfluorides. The fluorescence decay of 5D0 level fits perfect single exponential in the Eu3+:glass systems studied which indicates the absence of energy transfer between Eu3+ ions in these glasses.
Hollow-Core Photonic Band Gap Fibers for Particle Acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, Robert J.; Spencer, James E.; /SLAC
Photonic band gap (PBG) dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM) accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency pass-bands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies inmore » the band gap will only propagate near the defect. We describe the design of 2-D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially-made fibers, we perform a simulation analysis of the first prototype PBG fibers specifically designed to support speed-of-light TM modes.« less
Critical behavior of the spin-1 and spin-3/2 Baxter-Wu model in a crystal field.
Dias, D A; Xavier, J C; Plascak, J A
2017-01-01
The phase diagram and the critical behavior of the spin-1 and the spin-3/2 two-dimensional Baxter-Wu model in a crystal field are studied by conventional finite-size scaling and conformal invariance theory. The phase diagram of this model, for the spin-1 case, is qualitatively the same as those of the diluted 4-states Potts model and the spin-1 Blume-Capel model. However, for the present case, instead of a tricritical point one has a pentacritical point for a finite value of the crystal field, in disagreement with previous work based on finite-size calculations. On the other hand, for the spin-3/2 case, the phase diagram is much richer and can present, besides a pentacritical point, an additional multicritical end point. Our results also support that the universality class of the critical behavior of the spin-1 and spin-3/2 Baxter-Wu model in a crystal field is the same as the pure Baxter-Wu model, even at the multicritical points.
NASA Technical Reports Server (NTRS)
deGroh, H. C.; Li, K.; Li, B. Q.
2002-01-01
A 2-D finite element model is presented for the melt growth of single crystals in a microgravity environment with a superimposed DC magnetic field. The model is developed based on the deforming finite element methodology and is capable of predicting the phenomena of the steady and transient convective flows, heat transfer, solute distribution, and solid-liquid interface morphology associated with the melt growth of single crystals in microgravity with and without an applied magnetic field. Numerical simulations were carried out for a wide range of parameters including idealized microgravity conditions, the synthesized g-jitter and the real g-jitter data taken by on-board accelerometers during space flights. The results reveal that the time varying g-jitter disturbances, although small in magnitude, cause an appreciable convective flow in the liquid pool, which in turn produces detrimental effects during the space processing of single crystal growth. An applied magnetic field of appropriate strength, superimposed on microgravity, can be very effective in suppressing the deleterious effects resulting from the g-jitter disturbances.
NASA Astrophysics Data System (ADS)
Alzate-Cardona, J. D.; Sabogal-Suárez, D.; Restrepo-Parra, E.
2017-05-01
We have studied the magnetic properties of the mixed spin σ = ± 3/2, ± 1/2 and spin S = ± 5/2, ± 3/2, ± 1/2 Ising ferrimagnetic system in a graphene layer by means of Monte Carlo simulations. The effects of next-nearest neighbors exchange interactions and crystal field anisotropy on the critical and compensation behavior of the system have been investigated. The results show that, for a system with given values of the crystal field anisotropy and exchange interaction constants, a compensation point only exists if the values of the spins in the ground state are such that | S | > | σ | and Jσ is higher than a certain value Jσmin . It was shown that the relationship between Jσmin and JS is linear for a given value of the crystal field constant. The compensation and the critical temperature are very sensitive to the change of JS and Jσ, respectively, while the crystal field anisotropy affects both temperatures to a large extent.
Electrohydrodynamic Flows in Electrochemical Systems
NASA Technical Reports Server (NTRS)
Saville, D. A.
2005-01-01
Recent studies have established a new class of assembly processes with colloidal suspensions. Particles are driven together to form large crystalline structures in both dc and ac fields. The current work centers on this new class of flows in ac fields. In the research carried out under the current award, it was established that: (i) Small colloidal particles crystallize near an electrode due to electrohydrodynamic flows induced by an sinusoidally varying applied potential. (ii) These flows originate due to disturbances in the electrode polarization layer arising from the presence of the particles. Inasmuch as the charge and the field strength both scale on the applied field, the flows are proportional to the square of the applied voltage. (iii) Suspensions of two different sorts of particles can be crystallized and will form well-ordered binary crystals. (iv) At high frequencies the EHD flows die out. Thus, with a homogeneous system the particles become widely spaced due to dipolar repulsion. With a binary suspension, however, the particles may become attractive due to dipolar attraction arising from differences in electrokinetic dipoles. Consequently binary crystals form at both high and low frequencies.
Evaluation of the exchange interaction and crystal fields in a prototype Dy2 SMM
NASA Astrophysics Data System (ADS)
Zhang, Qing; Sarachik, Myriam; Baker, Michael; Chen, Yizhang; Kent, Andrew; Pineda, Eufemio; McInnes, Eric
In order to gain an understanding of the INS and magnetization data obtained for Dy2, the simplest member of a newly synthesized family of dysprosium-based molecular magnets, we report on calculations of the magnetic behavior of a Dy2 cluster with the formula [hqH2][Dy2(hq)4(NO3)3].MeOH. The molecular complex contains one high symmetry Dy(III) ion and one low symmetry Dy(III) ion. Our calculations suggest that exchange coupling between the two ions controls the behavior of the magnetization at low temperature, while the crystal field of the low symmetry Dy(III) ion controls the behavior at higher temperature. A point charge electrostatic model, based on crystallographic coordinates, provides a starting point for the determination of the crystal field. Parameters in these calculations are adjusted to provide best fits to inelastic neutron scattering data (INS) and low temperature magnetometry: the INS measurements access crystal field energies and low temperature magnetization probes the Dy-Dy exchange interaction. Work supported by ARO W911NF-13-1-1025 (CCNY) and NSF-DMR-1309202 (NYU).
Determination of structure and properties of molecular crystals from first principles.
Szalewicz, Krzysztof
2014-11-18
CONSPECTUS: Until recently, it had been impossible to predict structures of molecular crystals just from the knowledge of the chemical formula for the constituent molecule(s). A solution of this problem has been achieved using intermolecular force fields computed from first principles. These fields were developed by calculating interaction energies of molecular dimers and trimers using an ab initio method called symmetry-adapted perturbation theory (SAPT) based on density-functional theory (DFT) description of monomers [SAPT(DFT)]. For clusters containing up to a dozen or so atoms, interaction energies computed using SAPT(DFT) are comparable in accuracy to the results of the best wave function-based methods, whereas the former approach can be applied to systems an order of magnitude larger than the latter. In fact, for monomers with a couple dozen atoms, SAPT(DFT) is about equally time-consuming as the supermolecular DFT approach. To develop a force field, SAPT(DFT) calculations are performed for a large number of dimer and possibly also trimer configurations (grid points in intermolecular coordinates), and the interaction energies are then fitted by analytic functions. The resulting force fields can be used to determine crystal structures and properties by applying them in molecular packing, lattice energy minimization, and molecular dynamics calculations. In this way, some of the first successful determinations of crystal structures were achieved from first principles, with crystal densities and lattice parameters agreeing with experimental values to within about 1%. Crystal properties obtained using similar procedures but empirical force fields fitted to crystal data have typical errors of several percent due to low sensitivity of empirical fits to interactions beyond those of the nearest neighbors. The first-principles approach has additional advantages over the empirical approach for notional crystals and cocrystals since empirical force fields can only be extrapolated to such cases. As an alternative to applying SAPT(DFT) in crystal structure calculations, one can use supermolecular DFT interaction energies combined with scaled dispersion energies computed from simple atom-atom functions, that is, use the so-called DFT+D approach. Whereas the standard DFT methods fail for intermolecular interactions, DFT+D performs reasonably well since the dispersion correction is used not only to provide the missing dispersion contribution but also to fix other deficiencies of DFT. The latter cancellation of errors is unphysical and can be avoided by applying the so-called dispersionless density functional, dlDF. In this case, the dispersion energies are added without any scaling. The dlDF+D method is also one of the best performing DFT+D methods. The SAPT(DFT)-based approach has been applied so far only to crystals with rigid monomers. It can be extended to partly flexible monomers, that is, to monomers with only a few internal coordinates allowed to vary. However, the costs will increase relative to rigid monomer cases since the number of grid points increases exponentially with the number of dimensions. One way around this problem is to construct force fields with approximate couplings between inter- and intramonomer degrees of freedom. Another way is to calculate interaction energies (and possibly forces) "on the fly", i.e., in each step of lattice energy minimization procedure. Such an approach would be prohibitively expensive if it replaced analytic force fields at all stages of the crystal predictions procedure, but it can be used to optimize a few dozen candidate structures determined by other methods.
Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE
NASA Astrophysics Data System (ADS)
Cziczo, D. J.; Murphy, D. M.; Hudson, P. K.; Thomson, D. S.
2004-02-01
The first real-time, in situ, investigation of the chemical composition of the residue of cirrus ice crystals was performed during July 2002. This study was undertaken on a NASA WB-57F high-altitude research aircraft as part of CRYSTAL-FACE, a field campaign which sought to further our understanding of the relation of clouds, water vapor, and climate by characterizing, among other parameters, anvil cirrus formed about the Florida peninsula. A counter flow virtual impactor (CVI) was used to separate cirrus ice from the unactivated interstitial aerosol particles and evaporate condensed-phase water. Residual material, on a crystal-by-crystal basis, was subsequently analyzed using the NOAA Aeronomy Laboratory's Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Sampling was performed from 5 to 15 km altitude and from 12° to 28° north latitude within cirrus originating over land and ocean. Chemical composition measurements provided several important results. Sea salt was often incorporated into cirrus, consistent with homogeneous ice formation by aerosol particles from the marine boundary layer. Size measurements showed that large particles preferentially froze over smaller ones. Meteoritic material was found within ice crystals, indicative of a relation between stratospheric aerosol particles and tropospheric clouds. Mineral dust was the dominant residue observed in clouds formed during a dust transport event from the Sahara, consistent with a heterogeneous freezing mechanism. These results show that chemical composition and size are important determinants of which aerosol particles form cirrus ice crystals.
Geist, Brian; Ronningen, Reginald; Stolz, Andreas; Bollen, Georg; Kochergin, Vladimir
2015-04-01
Perspectives of terbium gallium garnet, Tb₃Ga₅O₁₂ (TGG), for the use of radiation-resistant high magnetic field sensing are studied. Long-term radiation stability of the TGG crystals was analyzed by comparing the optical and magneto-optical properties of a radiation-exposed TGG crystal (equivalent neutron dose 6.3×10¹³ n/cm²) to the properties of TGG control samples. Simulations were also performed to predict radiation damage mechanisms in the TGG crystal. Radiation-induced increase in the absorbance at shorter wavelengths was observed as well as a reduction in the Faraday effect while no degradation of magneto-optical effect was observed when at wavelengths above 600 nm. This suggests that TGG crystal would be a good candidate for use in magneto-optical radiation-resistant magnetic field sensors.
Determining ice water content from 2D crystal images in convective cloud systems
NASA Astrophysics Data System (ADS)
Leroy, Delphine; Coutris, Pierre; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter
2016-04-01
Cloud microphysical in-situ instrumentation measures bulk parameters like total water content (TWC) and/or derives particle size distributions (PSD) (utilizing optical spectrometers and optical array probes (OAP)). The goal of this work is to introduce a comprehensive methodology to compute TWC from OAP measurements, based on the dataset collected during recent HAIC (High Altitude Ice Crystals)/HIWC (High Ice Water Content) field campaigns. Indeed, the HAIC/HIWC field campaigns in Darwin (2014) and Cayenne (2015) provide a unique opportunity to explore the complex relationship between cloud particle mass and size in ice crystal environments. Numerous mesoscale convective systems (MCSs) were sampled with the French Falcon 20 research aircraft at different temperature levels from -10°C up to 50°C. The aircraft instrumentation included an IKP-2 (isokinetic probe) to get reliable measurements of TWC and the optical array probes 2D-S and PIP recording images over the entire ice crystal size range. Based on the known principle relating crystal mass and size with a power law (m=α•Dβ), Fontaine et al. (2014) performed extended 3D crystal simulations and thereby demonstrated that it is possible to estimate the value of the exponent β from OAP data, by analyzing the surface-size relationship for the 2D images as a function of time. Leroy et al. (2015) proposed an extended version of this method that produces estimates of β from the analysis of both the surface-size and perimeter-size relationships. Knowing the value of β, α then is deduced from the simultaneous IKP-2 TWC measurements for the entire HAIC/HIWC dataset. The statistical analysis of α and β values for the HAIC/HIWC dataset firstly shows that α is closely linked to β and that this link changes with temperature. From these trends, a generalized parameterization for α is proposed. Finally, the comparison with the initial IKP-2 measurements demonstrates that the method is able to predict TWC values larger than 0.3g/m3 with an error close to 20%. Fontaine, E., A. Schwarzenboeck, J. Delanoë, W. Wobrock, D. Leroy, R. Dupuy, C. Gourbeyre, and A. Protat, 2014: Constraining mass-diameter relations from hydrometeor images and cloud radar reflectivities in tropical continental and oceanic convective anvils. Atmos Chem Phys, 14, 11367-11392, doi:10.5194/acp-14-11367-2014. Leroy, D., E. Fontaine, A. Schwarzenboeck and J.W. Strapp : Ice Crystal Sizes in High Ice Water Content Clouds. Part 1: Mass-size Relationships Derived from Particle Images and TWC for Various Crystal Diameter Definitions and Impact on Median Mass Diameter. Submitted to Journal of Atmospheric and Oceanic Technology, 2015.
Dimensional effects on the magnetic domains in planar magnetophotonic crystal waveguides
NASA Astrophysics Data System (ADS)
Huang, Xiaoyue
2007-05-01
The application of photonic crystal technology in magneto-optic media can yield significant improvements in polarization rotation efficiency and optical switching capability and an overall reduction in magneto-optic device dimensions. Resonant photonic crystal structures in planar ferrimagnetic film waveguides are of interest because they may lead to the development of on-chip magneto-optical switches and isolators for photonic device integration. In the present work, two different methods for the fabrication of on-chip waveguide magnetophotonic crystals, through electron beam lithography and focused ion beam milling, are discussed and demonstrated. A high precision photonic measurement system was set up for testing and analysis of the waveguide devices. The results obtained show photonic band gaps with resonant transmission in the gap, and enhanced magneto-optic rotation efficiency. The character of waveguide modes therein, birefringence effects, and structural variation effects were studied extensively and are presented in this thesis. Planar magnetization control produced by manipulation of the magnetic shape anisotropy in the photonic crystal micro-cavity was demonstrated in this work. By introducing strip structures into the resonant cavity formed on magnetic garnet films with in-plane anisotropy, a bi-stable magnetic state and an enhanced magnetic field reversal mechanism were demonstrated. This effect was extensively studied through experimental and micromagnetic simulation analysis of the polarization rotation hysteresis. The results discussed herein show that domain closure loops between the strips limit the magnification of the coercivity in the resonant cavity and that these limitations can be overcome by the formation of isolated single-domain magnetic microstrips in the cavity.
Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates
Shuai, M.; Klittnick, A.; Shen, Y.; ...
2016-01-28
Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. We find Its zero-field magnetization produces distinctive magnetic self-interaction effects, includingmore » liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth’s magnetic field.« less
NASA Technical Reports Server (NTRS)
Duval, W. M. B.; Singh, N. B.; Glicksman, M. E.
1996-01-01
The local bifurcation of the flow field, during physical vapor transport for a parametric range of experimental interest, shows that its dynamical state ranges from steady to aperiodic. Comparison of computationally predicted velocity profiles with laser doppler velocimetry measurements shows reasonable agreement in both magnitude and planform. Correlation of experimentally measured crystal quality with the predicted dynamical state of the flow field shows a degradation of quality with an increase in Rayleigh number. The global bifurcation of the flow field corresponding to low crystal quality indicates the presence of a traveling wave for Ra = 1.09 x 10(exp 5). For this Rayleigh number threshold a chaotic transport state occurs. However, a microgravity environment for this case effectively stabilizes the flow to diffusive-advective and provides the setting to grow crystals with optimal quality.
A Cosserat crystal plasticity and phase field theory for grain boundary migration
NASA Astrophysics Data System (ADS)
Ask, Anna; Forest, Samuel; Appolaire, Benoit; Ammar, Kais; Salman, Oguz Umut
2018-06-01
The microstructure evolution due to thermomechanical treatment of metals can largely be described by viscoplastic deformation, nucleation and grain growth. These processes take place over different length and time scales which present significant challenges when formulating simulation models. In particular, no overall unified field framework exists to model concurrent viscoplastic deformation and recrystallization and grain growth in metal polycrystals. In this work a thermodynamically consistent diffuse interface framework incorporating crystal viscoplasticity and grain boundary migration is elaborated. The Kobayashi-Warren-Carter (KWC) phase field model is extended to incorporate the full mechanical coupling with material and lattice rotations and evolution of dislocation densities. The Cosserat crystal plasticity theory is shown to be the appropriate framework to formulate the coupling between phase field and mechanics with proper distinction between bulk and grain boundary behaviour.