Sample records for crystal field approximation

  1. Atomic density functional and diagram of structures in the phase field crystal model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ankudinov, V. E., E-mail: vladimir@ankudinov.org; Galenko, P. K.; Kropotin, N. V.

    2016-02-15

    The phase field crystal model provides a continual description of the atomic density over the diffusion time of reactions. We consider a homogeneous structure (liquid) and a perfect periodic crystal, which are constructed from the one-mode approximation of the phase field crystal model. A diagram of 2D structures is constructed from the analytic solutions of the model using atomic density functionals. The diagram predicts equilibrium atomic configurations for transitions from the metastable state and includes the domains of existence of homogeneous, triangular, and striped structures corresponding to a liquid, a body-centered cubic crystal, and a longitudinal cross section of cylindricalmore » tubes. The method developed here is employed for constructing the diagram for the homogeneous liquid phase and the body-centered iron lattice. The expression for the free energy is derived analytically from density functional theory. The specific features of approximating the phase field crystal model are compared with the approximations and conclusions of the weak crystallization and 2D melting theories.« less

  2. Paramagnetic resonance and susceptibility of ilmenite, FeTiO3 crystal

    NASA Technical Reports Server (NTRS)

    Mcdonald, P. F.; Parasiris, A.; Pandey, R. K.; Gries, B. L.; Kirk, W. P.

    1991-01-01

    Large high-purity single crystals of FeTiO3 with ilmenite structure have been grown from a stoichiometric melt of Fe2O3 and TiO2 under an inert atmosphere using the modified Czochralski technique. Susceptibility and X-band paramagnetic resonance studies have been performed. Susceptibility measurements indicate a Neel temperature of about 59 K. The paramagnetic resonance spectrum for magnetic field perpendicular to the crystal c axis consists of a portion of a single, very intense approximately Lorentzian absorption line with its peak at about 600 G and half width at half maximum almost 1200 G. The absorption extends to zero magnetic field. For magnetic field approximately parallel to the c axis, the paramagnetic absorption is much smaller and may be considered a superposition of two approximately Lorentzian line shapes. The magnetic resonance measurements indicate a weak temperature dependence and large angular anisotropy.

  3. The diagram of phase-field crystal structures: an influence of model parameters in a two-mode approximation

    NASA Astrophysics Data System (ADS)

    Ankudinov, V.; Galenko, P. K.

    2017-04-01

    Effect of phase-field crystal model (PFC-model) parameters on the structure diagram is analyzed. The PFC-model is taken in a two-mode approximation and the construction of structure diagram follows from the free energy minimization and Maxwell thermodynamic rule. The diagram of structure’s coexistence for three dimensional crystal structures [Body-Centered-Cubic (BCC), Face-Centered-Cubic (FCC) and homogeneous structures] are constructed. An influence of the model parameters, including the stability parameters, are discussed. A question about the structure diagram construction using the two-mode PFC-model with the application to real materials is established.

  4. A molecular-field approximation for quantum crystals. Ph.D. Thesis; [considering ground state properties

    NASA Technical Reports Server (NTRS)

    Danilowicz, R.

    1973-01-01

    Ground-state properties of quantum crystals have received considerable attention from both theorists and experimentalists. The theoretical results have varied widely with the Monte Carlo calculations being the most successful. The molecular field approximation yields ground-state properties which agree closely with the Monte Carlo results. This approach evaluates the dynamical behavior of each pair of molecules in the molecular field of the other N-2 molecules. In addition to predicting ground-state properties that agree well with experiment, this approach yields data on the relative importance of interactions of different nearest neighbor pairs.

  5. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores.

    PubMed

    Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R

    2010-07-14

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.

  6. Anisotropic Laminar Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2006-01-01

    The design, fabrication, and testing of a flexible, laminar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d33 piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d33 estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  7. Anisotropic Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2004-01-01

    The design, fabrication, and testing of a flexible, planar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d(sub 33) piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d(sub 33) estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  8. Spectroscopic studies and crystal-field analyses of Am{sup 3+}: LiYF{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavellec, R.; Hubert, S.; Simoni, E.

    1997-03-01

    Fluorescence and laser selective excitation spectroscopy have been used to investigate the electronic energy level structure of the actinide Am{sup 3+} (5{line_integral}{sup 6}) in LiYF{sub 4}. From the analysis of the fluorescence in the visible and infrared spectra obtained at 10K, 29 crystal-field levels have been assigned in the D{sub 2d} approximation. Zeeman splitting observation permits one to index some doubly degenerated {Gamma}{sub 5} levels. The phenomenological crystal-field parameters have been calculated in the D{sub 2d} approximation. A least-square adjustment yields a mean error of 38 cm{sup {minus}1} with the following values (in cm{sup {minus}1}) of the B{sub q}{sup k}more » parameters: B{sub O}{sup 2} = 473, B{sub 0}{sup 4} = -1776, B{sub 4}{sup 4}=2253, B{sub 0}{sup 6} = 80, and B{sub 4}{sup 6} = -2222.« less

  9. Origin of Quantum Criticality in Yb-Al-Au Approximant Crystal and Quasicrystal

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinji; Miyake, Kazumasa

    2016-06-01

    To get insight into the mechanism of emergence of unconventional quantum criticality observed in quasicrystal Yb15Al34Au51, the approximant crystal Yb14Al35Au51 is analyzed theoretically. By constructing a minimal model for the approximant crystal, the heavy quasiparticle band is shown to emerge near the Fermi level because of strong correlation of 4f electrons at Yb. We find that charge-transfer mode between 4f electron at Yb on the 3rd shell and 3p electron at Al on the 4th shell in Tsai-type cluster is considerably enhanced with almost flat momentum dependence. The mode-coupling theory shows that magnetic as well as valence susceptibility exhibits χ ˜ T-0.5 for zero-field limit and is expressed as a single scaling function of the ratio of temperature to magnetic field T/B over four decades even in the approximant crystal when some condition is satisfied by varying parameters, e.g., by applying pressure. The key origin is clarified to be due to strong locality of the critical Yb-valence fluctuation and small Brillouin zone reflecting the large unit cell, giving rise to the extremely-small characteristic energy scale. This also gives a natural explanation for the quantum criticality in the quasicrystal corresponding to the infinite limit of the unit-cell size.

  10. Approximate analytic expression for the Skyrmions crystal

    NASA Astrophysics Data System (ADS)

    Grandi, Nicolás; Sturla, Mauricio

    2018-01-01

    We find approximate solutions for the two-dimensional nonlinear Σ-model with Dzyalioshinkii-Moriya term, representing magnetic Skyrmions. They are built in an analytic form, by pasting different approximate solutions found in different regions of space. We verify that our construction reproduces the phenomenology known from numerical solutions and Monte Carlo simulations, giving rise to a Skyrmion lattice at an intermediate range of magnetic field, flanked by spiral and spin-polarized phases for low and high magnetic fields, respectively.

  11. Crystal-field splittings in rare-earth-based hard magnets: An ab initio approach

    NASA Astrophysics Data System (ADS)

    Delange, Pascal; Biermann, Silke; Miyake, Takashi; Pourovskii, Leonid

    2017-10-01

    We apply the first-principles density functional theory + dynamical mean-field theory framework to evaluate the crystal-field splitting on rare-earth sites in hard magnetic intermetallics. An atomic (Hubbard-I) approximation is employed for local correlations on the rare-earth 4 f shell and self-consistency in the charge density is implemented. We reduce the density functional theory self-interaction contribution to the crystal-field splitting by properly averaging the 4 f charge density before recalculating the one-electron Kohn-Sham potential. Our approach is shown to reproduce the experimental crystal-field splitting in the prototypical rare-earth hard magnet SmCo5. Applying it to R Fe12 and R Fe12X hard magnets (R =Nd , Sm and X =N , Li), we obtain in particular a large positive value of the crystal-field parameter A20〈r2〉 in NdFe12N resulting in a strong out-of-plane anisotropy observed experimentally. The sign of A20〈r2〉 is predicted to be reversed by substituting N with Li, leading to a strong out-of-plane anisotropy in SmFe12Li . We discuss the origin of this strong impact of N and Li interstitials on the crystal-field splitting on rare-earth sites.

  12. Synthesis, anisotropy, and superconducting properties of LiFeAs single crystal

    NASA Astrophysics Data System (ADS)

    Song, Yoo Jang; Ghim, Jin Soo; Min, Byeong Hun; Kwon, Yong Seung; Jung, Myung Hwa; Rhyee, Jong-Soo

    2010-05-01

    A LiFeAs single crystal with Tconset˜19.7 K was grown in a sealed tungsten crucible using the Bridgeman method. The electrical resistivity experiments revealed a ratio of room temperature to residual resistivity of approximately 46 and 18 for the in-plane and out-of plane directions, respectively. The estimated anisotropic resistivity, γρ=ρc/ρab, was approximately 3.3 at Tconset. The upper critical fields had large Hc2∥ab and Hc2∥c values of 83.4 T and 72.5 T, respectively, and an anisotropy ratio is γH=Hc2∥ab/Hc2∥c˜1.15. The high upper critical field value and small anisotropy highlight the potential use of LiFeAs in a variety of applications. The calculated critical current density (Jc) from the M-H loop is approximately 103 A/cm2

  13. Photoelectron emission from LiF surfaces by ultrashort electromagnetic pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acuna, M. A.; Gravielle, M. S.; Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

    2011-03-15

    Energy- and angle-resolved electron emission spectra produced by incidence of ultrashort electromagnetic pulses on a LiF(001) surface are studied by employing a distorted-wave method named the crystal surface-Volkov (CSV) approximation. The theory makes use of the Volkov phase to describe the action of the external electric field on the emitted electron, while the electron-surface interaction is represented within the tight-binding model. The CSV approach is applied to investigate the effects introduced by the crystal lattice when the electric field is oriented parallel to the surface plane. These effects are essentially governed by the vector potential of the external field, whilemore » the influence of the crystal orientation was found to be negligible.« less

  14. Progress in linear optics, non-linear optics and surface alignment of liquid crystals

    NASA Astrophysics Data System (ADS)

    Ong, H. L.; Meyer, R. B.; Hurd, A. J.; Karn, A. J.; Arakelian, S. M.; Shen, Y. R.; Sanda, P. N.; Dove, D. B.; Jansen, S. A.; Hoffmann, R.

    We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition.

  15. Assembling a ring-shaped crystal in a microfabricated surface ion trap

    DOE PAGES

    Stick, Daniel Lynn; Tabakov, Boyan; Benito, Francisco; ...

    2015-09-01

    We report on experiments with a microfabricated surface trap designed for confining a chain of ions in a ring. Uniform ion separation over most of the ring is achieved with a rotationally symmetric design and by measuring and suppressing undesired electric fields. After reducing stray fields, the ions are confined primarily by a radio-frequency pseudopotential and their mutual Coulomb repulsion. As a result, approximately 400 40Ca + ions with an average separation of 9 μm comprise the ion crystal.

  16. Assembling a ring-shaped crystal in a microfabricated surface ion trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stick, Daniel Lynn; Tabakov, Boyan; Benito, Francisco

    We report on experiments with a microfabricated surface trap designed for confining a chain of ions in a ring. Uniform ion separation over most of the ring is achieved with a rotationally symmetric design and by measuring and suppressing undesired electric fields. After reducing stray fields, the ions are confined primarily by a radio-frequency pseudopotential and their mutual Coulomb repulsion. As a result, approximately 400 40Ca + ions with an average separation of 9 μm comprise the ion crystal.

  17. Seven-core neodymium-doped phosphate all-solid photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Wang, Longfei; He, Dongbing; Feng, Suya; Yu, Chunlei; Hu, Lili; Chen, Danping

    2016-01-01

    We demonstrate a single-mode seven-core Nd-doped phosphate photonic crystal fiber with all-solid structure with an effective mode field diameter of 108 μm. The multicore fiber is first theoretically investigated through the finite-difference time-domain method. Then the in-phase mode is selected experimentally by a far-field mode-filtering method. The obtained in-phase mode has 7 mrad mode field divergences, which approximately agrees with the predicted 5.6 mrad in seven-core fiber. Output power of 15.5 W was extracted from a 25 cm fiber with slope efficiency of 57%.

  18. Paradoxes of the influence of small Ni impurity additions in a NaCl crystal on the kinetics of its magnetoplasticity

    NASA Astrophysics Data System (ADS)

    Alshits, V. I.; Darinskaya, E. V.; Koldaeva, M. V.; Petrzhik, E. A.

    2016-01-01

    A comparative study of magnetoplasticity in two types of NaCl crystals differing in impurity content only by a small Ni addition (0.06 ppm) in one of them, NaCl(Ni), has been carried out. Two methods of sample magnetic exposure were used: in a constant field B = 0-0.6 T and in crossed fields in the EPR scheme—the Earth's field B Earth (50 μT) and a variable pumping field tilde B( ˜ 1 μ T) at frequencies ν 1 MHz. In the experiments in the EPR scheme, the change of the field orientation from tilde B bot B_{Earth} to . {tilde B} |B_{Earth} led to almost complete suppression of the effect in the NaCl(Ni) crystals and reduced only slightly (approximately by 20%) the height of the resonance peak of dislocation mean paths in the crystals without Ni, with the amplitude of the mean paths in NaCl(Ni) in the orientation tilde B bot B_{Earth} having been appreciably lower than that in NaCl. In contrast, upon exposure to a constant magnetic field, a more intense effect was observed in the crystal with Ni. The threshold pumping field amplitude tilde B, below which the effect is absent under resonance conditions, for the NaCl(Ni) crystals turned out to be a factor of 5 smaller than that for NaCl, while the thresholds of a constant magnetic field coincide for both types of crystals. All these differences are discussed in detail and interpreted.

  19. European Scientific Notes. Volume 35. Number 1.

    DTIC Science & Technology

    1981-01-31

    thermotropic polymers, primar- formed smectic phases. She also studied ily with aromatic polyesters. Dr. R.W. the orientation of liquid crystal ...booster synchrotron and Linac are switched studies of crystals where a very good off and the electrons are allowed to approximation to a point source...compounds in the temperature Cr in a MgO host crystal in magnetic range of 1 to 25 K and as a function of fields up to 2*S T at temperatures between

  20. Self-consistent-field KKR-CPA calculations in the atomic-sphere approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, P.P. Gonis, A.; de Fontaine, D.

    1991-12-03

    We present a formulation of the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) for the treatment of substitutionally disordered alloys within the KKR atomic-sphere approximations (ASA). This KKR-ASA-CPA represents the first step toward the implementation of a full cell potential CPA, and combines the accuracy of the KKR-CPA method with the flexibility of treating complex crystal structures. The accuracy of this approach has been tested by comparing the self-consistent-field (SCF) KKR-ASA-CPA calculations of Cu-Pd alloys with experimental results and previous SCF-KKR-CPA calculations.

  1. Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator.

    PubMed

    Wülbern, Jan Hendrik; Petrov, Alexander; Eich, Manfred

    2009-01-05

    We present a novel concept of a compact, ultra fast electro-optic modulator, based on photonic crystal resonator structures that can be realized in two dimensional photonic crystal slabs of silicon as core material employing a nonlinear optical polymer as infiltration and cladding material. The novel concept is to combine a photonic crystal heterostructure cavity with a slotted defect waveguide. The photonic crystal lattice can be used as a distributed electrode for the application of a modulation signal. An electrical contact is hence provided while the optical wave is kept isolated from the lossy metal electrodes. Thereby, well known disadvantages of segmented electrode designs such as excessive scattering are avoided. The optical field enhancement in the slotted region increases the nonlinear interaction with an external electric field resulting in an envisaged switching voltage of approximately 1 V at modulation speeds up to 100 GHz.

  2. Deterministic Bragg Coherent Diffraction Imaging.

    PubMed

    Pavlov, Konstantin M; Punegov, Vasily I; Morgan, Kaye S; Schmalz, Gerd; Paganin, David M

    2017-04-25

    A deterministic variant of Bragg Coherent Diffraction Imaging is introduced in its kinematical approximation, for X-ray scattering from an imperfect crystal whose imperfections span no more than half of the volume of the crystal. This approach provides a unique analytical reconstruction of the object's structure factor and displacement fields from the 3D diffracted intensity distribution centred around any particular reciprocal lattice vector. The simple closed-form reconstruction algorithm, which requires only one multiplication and one Fourier transformation, is not restricted by assumptions of smallness of the displacement field. The algorithm performs well in simulations incorporating a variety of conditions, including both realistic levels of noise and departures from ideality in the reference (i.e. imperfection-free) part of the crystal.

  3. Pseudo-transient heat transfer in vertical Bridgman crystal growth of semi-transparent materials

    NASA Astrophysics Data System (ADS)

    Barvinschi, F.; Nicoara, I.; Santailler, J. L.; Duffar, T.

    1998-11-01

    The temperature distribution and the solid-liquid interface shape during semi-transparent crystal growth have been studied by modelling a vertical Bridgman technique, using a pseudo-transient approximation in an ideal configuration. The heat transfer equation and the boundary conditions have been solved by the finite-element method. It has been pointed out that the optical absorption coefficients of the liquid and solid phases have a major effect on the thermal field, especially on the shape and location of the crystallization interface.

  4. Controlling Chain Conformations of High-k Fluoropolymer Dielectrics to Enhance Charge Mobilities in Rubrene Single-Crystal Field-Effect Transistors.

    PubMed

    Adhikari, Jwala M; Gadinski, Matthew R; Li, Qi; Sun, Kaige G; Reyes-Martinez, Marcos A; Iagodkine, Elissei; Briseno, Alejandro L; Jackson, Thomas N; Wang, Qing; Gomez, Enrique D

    2016-12-01

    A novel photopatternable high-k fluoropolymer, poly(vinylidene fluoride-bromotrifluoroethylene) P(VDF-BTFE), with a dielectric constant (k) between 8 and 11 is demonstrated in thin-film transistors. Crosslinking P(VDF-BTFE) reduces energetic disorder at the dielectric-semiconductor interface by controlling the chain conformations of P(VDF-BTFE), thereby leading to approximately a threefold enhancement in the charge mobility of rubrene single-crystal field-effect transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Phenomenological crystal-field model of the magnetic and thermal properties of the Kondo-like system UCu2Si2

    NASA Astrophysics Data System (ADS)

    Troć, R.; Gajek, Z.; Pikul, A.; Misiorek, H.; Colineau, E.; Wastin, F.

    2013-07-01

    The transport properties described previously [Troć , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.85.224434 85, 224434 (2012)] as well as the magnetic and thermal properties presented in this paper, observed for single-crystalline UCu2Si2, are discussed by assuming a dual (localized-itinerant) scenario. The electronic states of the localized 5f electrons in UCu2Si2 are constructed using the effective Hamiltonian known for ionic systems, allowing us to treat the Coulomb, spin-orbital, and crystal-field interactions on equal footing. The space of parameters has been restricted in the initial steps with the aid of the angular overlap model approximation. The final crystal-field parameters, obtained from the refined steps of calculations, are relatively large (in absolute values), which we attribute to the hybridization characteristic of the metallic systems on the verge of localization. The proposed crystal-field model reproduces correctly with satisfactory accuracy the magnetic and thermal properties of UCu2Si2 in agreement also with the transport properties reported previously. Considerable crystal-field splitting of the ground multiplet of 2760 K is responsible for a large anisotropy in the magnetic behavior, observed in the whole temperature range explored.

  6. Model of Anisotropic Magnetization of In(1-x)Mn(x)S: Comparison to Experiment

    NASA Astrophysics Data System (ADS)

    Garner, J.; Franzese, G.; Byrd, Ashlee; Pekarek, T. M.; Miotkowski, I.; Ramdas, A. K.

    2004-03-01

    Calculations of and experimental results for the anisotropic magnetization of the new III-VI dilute magnetic semiconductor, In(1-x)Mn(x)S, are presented. The model Hamiltonian incorporates the interaction of the incomplete shell of Mn 3d-electrons with the crystal lattice within the point-ion approximation. Other terms in the Hamiltonian include the Zeeman interaction, the spin-orbit and the spin-spin terms. It is assumed the Mn atoms do not interact with each other (this is the singlet model, which is appropriate when x is small, here 2%). The temperature- and field- dependent magnetization is found from the energy eigenvalues of the Hamiltonian matrix, which was expressed in terms of an uncoupled angular momentum basis set. Magnetization versus temperature results are found for several field values, B, pointing along various directions relative to the underlying dilute magnetic semiconductor crystal lattice. In addition, the magnetization versus field is computed for several fixed temperatures and for various B-field directions and magnitudes. Overall, the agreement of this simple model with the experimental data is very good except at low temperatures (< 20 K) and high fields (> a few Tesla). It would be useful for quantitative comparison purposes to have optical absorption data in order to better fix the crystal potential parameters that are input parameters in the theory. In addition, the model could be improved by going beyond the point-ion approximation to better model the covalent bonds in the crystal.* Supported by UNF Research Grants, Research Corporation Award, CC4845, NSF Grant Nos. DMR-03-05653, DMR-01-02699, and ECS-01-29853 and Donors of the American Chemical Society Petroleum Research Fund PRF#40209-B5M, and a Purdue Univ. Academic Reimbursement Grant.

  7. Focusing of light by polymer-dispersed liquid-crystal films with nanosized droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loiko, V. A., E-mail: loiko@dragon.bas-net.by; Konkolovich, A. V.

    2006-12-15

    An analysis is presented of polarization-independent electrically tunable light focusing by polymerdispersed liquid-crystal films with nanosized liquid-crystal droplets. Polymer-dispersed liquid-crystal films with axially symmetric distributions of liquid-crystal droplet concentration and layers with axially symmetric thickness profiles are considered. The paraxial, Rayleigh, and Rayleigh-Gans approximations, as well as the Foldy-Twersky equation, are used to examine the dependence of focal length on lens geometry, droplet size, concentration of nematic liquid-crystal droplets, and applied field. The tunable focusing ranges are evaluated for both lens types considered in the study. Dependence of the transmittance of polymer-dispersed liquid-crystal film on its characteristics is analyzed. Themore » results obtained are compared with those available from the literature.« less

  8. Studies of the g factors of the ground 4A2 and the first excited 2E state of Cr 3+ ions in emerald

    NASA Astrophysics Data System (ADS)

    Wei, Qun; Guo, Li-Xin; Yang, Zi-Yuan; Wei, Bing

    2011-09-01

    By using complete diagonalization method, the zero-field splitting and g factors of the ground 4A2 and the first excited 2E states of Cr 3+ ions in emerald are calculated. The theoretical results are in good agreement with the experimental data. The dependencies of the g factors on the crystal field parameters, including Dq, v, and v', have been studied. It is shown that, the g factors of the ground state varied with the crystal field parameters approximately in a linear way, but the g factors of the first excited state varied nonlinearly with these parameters.

  9. Influence of topological transitions in a quantizing magnetic field and anisotropy of current carrier scattering by acoustic phonons on the longitudinal electrical conductivity of layered crystals with open fermi surfaces

    NASA Astrophysics Data System (ADS)

    Gorskii, P. V.

    2011-03-01

    It is demonstrated that the dependence of Fermi's energy on the magnetic field causes a set of the Shubnikov - de Haas (SDH) oscillation frequencies to change, and their relative contribution to the total longitudinal conductivity of layered crystals depends on whether the scattering of current carriers is isotropic or anisotropic. Owing to the topological transition in a strong magnetic field, Fermi's surface (FS) is transformed from open into closed one and is compressed in the magnetic field direction. Therefore, in an ultraquantum limit, disregarding the Dingle factor, the longitudinal electrical conductivity of the layered crystal tends to zero as a reciprocal square of the magnetic field for the isotropic scattering and as a reciprocal cube of the magnetic field for the anisotropic scattering. All calculations are performed in the approximation of relaxation time considered to be constant versus the quantum numbers for the isotropic scattering and proportional to the longitudinal velocity of current carriers for the anisotropic scattering.

  10. Effects of Ultrasonic Parameters on the Crystallization Behavior of Virgin Coconut Oil.

    PubMed

    Wu, Linhe; Cao, Jun; Bai, Xinpeng; Chen, Haiming; Zhang, Yuxiang; Wu, Qian

    2016-12-01

    Crystallization behavior of virgin coconut oil (VCO) in the absence and presence of ultrasonic treatment under a temperature gradient field was investigated. The effects of ultrasonic parameters on the crystallization behavior of VCO were studied by differential scanning calorimetry, ultraviolet/visible spectrophotometry and polarized light microscopy. The thermal effect of the ultrasonic treatment was also increased at higher power levels. Therefore, the optimal power level was determined at approximately 36 W. Induction time reduced evidently and the crystallization rate was accelerated under ultrasonic treatment at crystallization temperature (T c ) above 15°C. However, no significant difference in induction time was noted at 13°C. The result of morphological studies showed that the growth mechanism of crystals was significantly changed. Meanwhile, smaller and uniform crystals were produced by the ultrasonic treatment. This study shows a novel technique to accelerate the crystallization rate and alter the growth mechanism of VCO crystals.

  11. One-dimensional dielectric bi-periodic photonic structures based on ternary photonic crystals

    NASA Astrophysics Data System (ADS)

    Dadoenkova, Nataliya N.; Dadoenkova, Yuliya S.; Panyaev, Ivan S.; Sannikov, Dmitry G.; Lyubchanskii, Igor L.

    2018-01-01

    We investigate the transmittivity spectra, fields, and energy distribution of the electromagnetic eigenwaves propagating in a one-dimensional (1D) dielectric photonic crystal [(TiO2/SiO2)NAl2O3]M with two periods formed by unit cells TiO2/SiO2 and (TiO2/SiO2)NAl2O3. Spectra of TE- and TM-modes depend on the geometric parameters of the structure and undergo modifications with the change in the period numbers, layer thicknesses, and incidence angle. Special attention is paid to the applicability of the hybrid effective medium approximation comprising the long-wave approximation and two-dimensional (2 × 2) transfer matrix method. We demonstrate spectral peculiarities of the bi-periodic structure and also show the differences between the band gap spectra of the bi-periodic and ternary 1D dielectric photonic crystals. The presented photonic crystal structure can find its applications in optoelectronics and nanophotonics areas as omnidirectional reflectors, optical ultra-narrow bandpass filters, and antireflection coatings.

  12. A new effective correlation mean-field theory for the ferromagnetic spin-1 Blume-Capel model in a transverse crystal field

    NASA Astrophysics Data System (ADS)

    Roberto Viana, J.; Rodriguez Salmon, Octavio D.; Neto, Minos A.; Carvalho, Diego C.

    2018-02-01

    A new approximation technique is developed so as to study the quantum ferromagnetic spin-1 Blume-Capel model in the presence of a transverse crystal field in the square lattice. Our proposal consists of approaching the spin system by considering islands of finite clusters whose frontiers are surrounded by noninteracting spins that are treated by the effective-field theory. The resulting phase diagram is qualitatively correct, in contrast to most effective-field treatments, in which the first-order line exhibits spurious behavior by not being perpendicular to the anisotropy axis at low-temperatures. The effect of the transverse anisotropy is also verified by the presence of quantum phase transitions. The possibility of using larger sizes constitutes an advantage to other approaches where the implementation of larger sizes is computationally costly.

  13. Three-dimensional analysis of flow and segregation in vertical Bridgman crystal growth under axial and transversal magnetic fields

    NASA Astrophysics Data System (ADS)

    Lan, C. W.; Lee, I. F.; Yeh, B. C.

    2003-07-01

    Three-dimensional simulation, both pseudo-steady and time-dependent states, is carried out to illustrate the effects of magnetic fields on the flow and segregation in a vertical Bridgman crystal growth. With an axial magnetic field in a perfectly vertical growth, the calculated results are in good agreement with those obtained by a two-dimensional axisymmetric model. The asymptotic scaling of flow damping is also consistent with the boundary layer approximation regardless to the magnetic orientation. Radial and axial segregations are further discussed concluding that radial segregation could be severe if the flow damping is not adequate. Moreover, there is a regime of enhanced global dopant mixing due to the flow stretching by the axial field. Accordingly, the transversal field is more effective in pushing the growth to the diffusion-controlled limit and suppressing the asymmetric global flow due to ampule tilting.

  14. Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions.

    PubMed

    Reichardt, J; Hess, M; Macke, A

    2000-04-20

    Multiple-scattering correction factors for cirrus particle extinction coefficients measured with Raman and high spectral resolution lidars are calculated with a radiative-transfer model. Cirrus particle-ensemble phase functions are computed from single-crystal phase functions derived in a geometrical-optics approximation. Seven crystal types are considered. In cirrus clouds with height-independent particle extinction coefficients the general pattern of the multiple-scattering parameters has a steep onset at cloud base with values of 0.5-0.7 followed by a gradual and monotonic decrease to 0.1-0.2 at cloud top. The larger the scattering particles are, the more gradual is the rate of decrease. Multiple-scattering parameters of complex crystals and of imperfect hexagonal columns and plates can be well approximated by those of projected-area equivalent ice spheres, whereas perfect hexagonal crystals show values as much as 70% higher than those of spheres. The dependencies of the multiple-scattering parameters on cirrus particle spectrum, base height, and geometric depth and on the lidar parameters laser wavelength and receiver field of view, are discussed, and a set of multiple-scattering parameter profiles for the correction of extinction measurements in homogeneous cirrus is provided.

  15. Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity.

    PubMed

    Chan, Jasper; Eichenfield, Matt; Camacho, Ryan; Painter, Oskar

    2009-03-02

    Design of a doubly-clamped beam structure capable of localizing mechanical and optical energy at the nanoscale is presented. The optical design is based upon photonic crystal concepts in which patterning of a nanoscale-cross-section beam can result in strong optical localization to an effective optical mode volume of 0.2 cubic wavelengths ( (lambdac)(3)). By placing two identical nanobeams within the near field of each other, strong optomechanical coupling can be realized for differential motion between the beams. Current designs for thin film silicon nitride beams at a wavelength of lambda?= 1.5 microm indicate that such structures can simultaneously realize an optical Q-factor of 7x10(6), motional mass m(u) approximately 40 picograms, mechanical mode frequency Omega(M)/2pi approximately 170 MHz, and an optomechanical coupling factor (g(OM) identical with domega(c)/dx = omega(c)/L(OM)) with effective length L(OM) approximately lambda= 1.5 microm.

  16. Experimental study of strong nonlinear-optics effects in liquid crystals

    NASA Astrophysics Data System (ADS)

    Darbin, S. D.; Arakelyan, S. M.; Cheung, M. M.; Shen, Y. R.

    1984-07-01

    Nonlinear optical effects that arise in nematic liquid crystals as a result of a change in the index of refraction induced by a laser field are considered. Since the resultant nonlinearity is extremely high, the approximation of perturbation theory cannot be used in calculations. However, the change in refractive index results mainly in phase advance as waves propagate through a thin film of liquid crystal, while the change of intensity is significant. Moreover, if there is no change in polarization of the pumping field, calculations are relatively simple. An investigation is made of the propagation of a cross sectionally bounded laser beam through a homeotropically oriented liquid crystal, giving rise to spatial phase modulation of emission. When the intensity of the laser beam exceeds a certain value, a system of aberation rings is observed in the output radiation. Effects of dynamic self-diffraction accompanying degenerate four-wave mixing when a change in refractive index is induced in a homeotropic liquid crystal film, and optical bistability in a nonlinear Fabry-Perot optical cavity, as well as generation of a self-oscillatory state in such a resonator are discussed.

  17. A series approximation model for optical light transport and output intensity field distribution in large aspect ratio cylindrical scintillation crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobias, Benjamin John

    A series approximation has been derived for the transport of optical photons within a cylindrically symmetric light pipe and applied to the task of evaluating both the origin and angular distribution of light reaching the output plane. This analytic expression finds particular utility in first-pass photonic design applications since it may be evaluated at a very modest computational cost and is readily parameterized for relevant design constraints. It has been applied toward quantitative exploration of various scintillation crystal preparations and their impact on both quantum efficiency and noise, reproducing sensible dependencies and providing physical justification for certain gamma ray cameramore » design choices.« less

  18. Crystal electric field excitations in the quasicrystal approximant TbCd6 studied by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Das, Pinaki; Lory, P.-F.; Flint, R.; Kong, T.; Hiroto, T.; Bud'ko, S. L.; Canfield, P. C.; de Boissieu, M.; Kreyssig, A.; Goldman, A. I.

    2017-02-01

    We have performed inelastic neutron scattering measurements on powder samples of the quasicrystal approximant, TbCd6, grown using isotopically enriched 112Cd. Both quasielastic scattering and distinct inelastic excitations were observed below 3 meV. The intensity of the quasielastic scattering measured in the paramagnetic phase diverges as TN˜22 K is approached from above. The inelastic excitations, and their evolution with temperature, are well characterized by the leading term, B20O20 , of the crystal electric field (CEF) level scheme for local pentagonal symmetry for the rare-earth ions [S. Jazbec et al., Phys. Rev. B 93, 054208 (2016), 10.1103/PhysRevB.93.054208] indicating that the Tb moment is directed primarily along the unique local pseudofivefold axis of the Tsai-type clusters. We also find good agreement between the inverse susceptibility determined from magnetization measurements using a magnetically diluted Tb0.05Y0.95Cd6 sample and that calculated using the CEF level scheme determined from the neutron measurements.

  19. Quantum Effects at a Proton Relaxation at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Kalytka, V. A.; Korovkin, M. V.

    2016-11-01

    Quantum effects during migratory polarization in multi-well crystals (including multi-well silicates and crystalline hydrates) are investigated in a variable electric field at low temperatures by direct quantum-mechanical calculations. Based on analytical solution of the quantum Liouville kinetic equation in the linear approximation for the polarizing field, the non-stationary density matrix is calculated for an ensemble of non-interacting protons moving in the field of one-dimensional multi-well crystal potential relief of rectangular shape. An expression for the complex dielectric constant convenient for a comparison with experiment and calculation of relaxer parameters is derived using the nonequilibrium polarization density matrix. The density matrix apparatus can be used for analytical investigation of the quantum mechanism of spontaneous polarization of a ferroelectric material (KDP and DKDP).

  20. Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials.

    PubMed

    Rodriguez, Alejandro W; Ilic, Ognjen; Bermel, Peter; Celanovic, Ivan; Joannopoulos, John D; Soljačić, Marin; Johnson, Steven G

    2011-09-09

    We demonstrate the possibility of achieving enhanced frequency-selective near-field radiative heat transfer between patterned (photonic-crystal) slabs at designable frequencies and separations, exploiting a general numerical approach for computing heat transfer in arbitrary geometries and materials based on the finite-difference time-domain method. Our simulations reveal a tradeoff between selectivity and near-field enhancement as the slab-slab separation decreases, with the patterned heat transfer eventually reducing to the unpatterned result multiplied by a fill factor (described by a standard proximity approximation). We also find that heat transfer can be further enhanced at selective frequencies when the slabs are brought into a glide-symmetric configuration, a consequence of the degeneracies associated with the nonsymmorphic symmetry group.

  1. Dynamic global model of oxide Czochralski process with weighing control

    NASA Astrophysics Data System (ADS)

    Mamedov, V. M.; Vasiliev, M. G.; Yuferev, V. S.

    2011-03-01

    A dynamic model of oxide Czochralski growth with weighing control has been developed for the first time. A time-dependent approach is used for the calculation of temperature fields in different parts of a crystallization set-up and convection patterns in a melt, while internal radiation in crystal is considered in a quasi-steady approximation. A special algorithm is developed for the calculation of displacement of a triple point and simulation of a crystal surface formation. To calculate variations in the heat generation, a model of weighing control with a commonly used PID regulator is applied. As an example, simulation of the growth process of gallium-gadolinium garnet (GGG) crystals starting from the stage of seeding is performed.

  2. Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition.

    PubMed

    Seo, Min-Kyo; Kang, Ju-Hyung; Kim, Myung-Ki; Ahn, Byeong-Hyeon; Kim, Ju-Young; Jeong, Kwang-Yong; Park, Hong-Gyu; Lee, Yong-Hee

    2009-04-13

    A wavelength-scale cavity is generated by printing a carbonaceous nano-block on a photonic-crystal waveguide. The nanometer-size carbonaceous block is grown at a pre-determined region by the electron-beam-induced deposition method. The wavelength-scale photonic-crystal cavity operates as a single mode laser, near 1550 nm with threshold of approximately 100 microW at room temperature. Finite-difference time-domain computations show that a high-quality-factor cavity mode is defined around the nano-block with resonant wavelength slightly longer than the dispersion-edge of the photonic-crystal waveguide. Measured near-field images exhibit photon distribution well-localized in the proximity of the printed nano-block. Linearly-polarized emission along the vertical direction is also observed.

  3. Field-induced refractive index variation in the dark conglomerate phase for polarization-independent switchable liquid crystal lenses.

    PubMed

    Milton, H E; Nagaraj, M; Kaur, S; Jones, J C; Morgan, P B; Gleeson, H F

    2014-11-01

    Liquid crystal lenses are an emerging technology that can provide variable focal power in response to applied voltage. Many designs for liquid-crystal-based lenses are polarization dependent, so that 50% of light is not focused as required, making polarization-independent technologies very attractive. Recently, the dark conglomerate (DC) phase, which is an optically isotropic liquid crystalline state, has been shown to exhibit a large change in refractive index in response to an applied electric field (Δn=0.04). This paper describes computational modeling of the electrostatic solutions for two different types of 100 μm diameter liquid crystal lenses, which include the DC phase, demonstrating that it shows great potential for efficient isotropic optical switching in lenses. A feature of the field dependence of the refractive index change in the DC phase is that it is approximately linear in a certain range, leading to the prediction of excellent optical quality for driving fields in this regime. Interestingly, a simulated microlens is shown to exhibit two modes of operation: a positive lens based upon a uniform bulk change in refractive index at high voltages, and a negative lens resulting from the induction of a gradient index effect at intermediate voltages.

  4. A Magnetoresistive Heat Switch for the Continuous ADR

    NASA Technical Reports Server (NTRS)

    Canavan, E. R.; Dipirro, M. J.; Jackson, M.; Panek, J.; Shirron, P. J.; Tuttle, J. G.; Krebs, C. (Technical Monitor)

    2001-01-01

    In compensated elemental metals at low temperature, a several Tesla field can suppress electronic heat conduction so thoroughly that heat is effectively carried by phonons alone. In approximately one mm diameter single crystal samples with impurity concentrations low enough that electron conduction is limited by surface scattering, the ratio of zerofield to high-field thermal conductivity can exceed ten thousand. We have used this phenomenon to build a compact, solid-state heat switch with no moving parts and no enclosed fluids. The time scale for switching states is limited by time scale for charging the magnet that supplies the controlling field. Our design and fabrication techniques overcome the difficulties associated with manufacturing and assembling parts from single crystal tungsten. A clear disadvantage of the magnetoresistive switch is the mass and complexity of the magnet system for the controlling field. We have discovered a technique of minimizing this mass and complexity, applicable to the continuous adiabatic demagnetization refrigerator.

  5. Structural, optical and field emission properties of urchin-shaped ZnO nanostructures.

    PubMed

    Al-Heniti, Saleh; Umar, Ahmad

    2013-01-01

    In this work, well-crystallized urchin-shaped ZnO structures were synthesized on silicon substrate by simple non-catalytic thermal evaporation process by using metallic zinc powder in the presence of oxygen as source materials for zinc and oxygen, respectively. The synthesized ZnO structures were characterized in detail in terms of their morphological, structural, optical and field emission properties. The detailed morphological investigations revealed that the synthesized structures possess urchin-shape and grown in high-density over the substrate surface. The detailed structural and optical characterizations revealed that the synthesized urchin-shaped ZnO structures are well-crystallized and exhibiting good optical properties. The field emission analysis for urchin-shaped ZnO structures exhibits a turn-on field of 4.6 V/microm. The emission current density reached to 0.056 mA/cm2 at an applied electrical field of 6.4 V/microm and shows no saturation. The calculated field enhancement factor 'beta', from the F-N plot, was found to be approximately 2.2 x 10(3).

  6. Testing the Ginzburg-Landau approximation for three-flavor crystalline color superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannarelli, Massimo; Sharma, Rishi; Rajagopal, Krishna

    2006-06-01

    It is an open challenge to analyze the crystalline color superconducting phases that may arise in cold dense, but not asymptotically dense, three-flavor quark matter. At present the only approximation within which it seems possible to compare the free energies of the myriad possible crystal structures is the Ginzburg-Landau approximation. Here, we test this approximation on a particularly simple 'crystal' structure in which there are only two condensates {approx}{delta}exp(iq{sub 2}{center_dot}r) and {approx}{delta}exp(iq{sub 3}{center_dot}r) whose position-space dependence is that of two plane waves with wave vectors q{sub 2} and q{sub 3} at arbitrary angles. For this case, we are able tomore » solve the mean-field gap equation without making a Ginzburg-Landau approximation. We find that the Ginzburg-Landau approximation works in the {delta}{yields}0 limit as expected, find that it correctly predicts that {delta} decreases with increasing angle between q{sub 2} and q{sub 3} meaning that the phase with q{sub 2} parallel q{sub 3} has the lowest free energy, and find that the Ginzburg-Landau approximation is conservative in the sense that it underestimates {delta} at all values of the angle between q{sub 2} and q{sub 3}.« less

  7. Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2.

    PubMed

    Dong, J K; Zhou, S Y; Guan, T Y; Zhang, H; Dai, Y F; Qiu, X; Wang, X F; He, Y; Chen, X H; Li, S Y

    2010-02-26

    The in-plane resistivity rho and thermal conductivity kappa of the FeAs-based superconductor KFe2As2 single crystal were measured down to 50 mK. We observe non-Fermi-liquid behavior rho(T) approximately T{1.5} at H{c{2}}=5 T, and the development of a Fermi liquid state with rho(T) approximately T{2} when further increasing the field. This suggests a field-induced quantum critical point, occurring at the superconducting upper critical field H{c{2}}. In zero field, there is a large residual linear term kappa{0}/T, and the field dependence of kappa_{0}/T mimics that in d-wave cuprate superconductors. This indicates that the superconducting gaps in KFe2As2 have nodes, likely d-wave symmetry. Such a nodal superconductivity is attributed to the antiferromagnetic spin fluctuations near the quantum critical point.

  8. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2006-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  9. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2007-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  10. Characterization of the electro-optic effect in styrylpyridinium cyanine dye thin-film crystals by an ac modulation method

    NASA Astrophysics Data System (ADS)

    Yoshimura, Tetsuzo

    1987-09-01

    The electro-optic effect in styrylpyridinium cyanine dye (SPCD) thin-film crystals is characterized by a newly developed ac modulation method that is effective in characterizing thin-film materials of small area. SPCD thin-film crystals 3-10 μm thick were grown from a methanol solution of SPCD. The crystal shows strong dichroism and anisotropy of refractive index, indicating that molecular dipole moments align along a definite direction (z axis). When an electric field is applied along the z axis, SPCD thin-film crystals show a large figure of merit of electro-optic phase retardation of 6.5×10-10 m/V, which is 5 times as large as in LiNbO3 crystal, 2 times that in 2-methyl-4-nitroaniline (MNA) crystal, and is the largest ever reported in organic solids. The electro-optic coefficient r33 of SPCD crystals is estimated to be approximately 4.3×10-10 m/V, which is 6 times larger than that of an MNA crystal. This value is consistent with that expected from second-harmonic generation measurements.

  11. Simultaneously discrete biomineralization of magnetite and tellurium nanocrystals in magnetotactic bacteria.

    PubMed

    Tanaka, Masayoshi; Arakaki, Atsushi; Staniland, Sarah S; Matsunaga, Tadashi

    2010-08-01

    Magnetotactic bacteria synthesize intracellular magnetosomes comprising membrane-enveloped magnetite crystals within the cell which can be manipulated by a magnetic field. Here, we report the first example of tellurium uptake and crystallization within a magnetotactic bacterial strain, Magnetospirillum magneticum AMB-1. These bacteria independently crystallize tellurium and magnetite within the cell. This is also highly significant as tellurite (TeO(3)(2-)), an oxyanion of tellurium, is harmful to both prokaryotes and eukaryotes. Additionally, due to its increasing use in high-technology products, tellurium is very precious and commercially desirable. The use of microorganisms to recover such molecules from polluted water has been considered as a promising bioremediation technique. However, cell recovery is a bottleneck in the development of this approach. Recently, using the magnetic property of magnetotactic bacteria and a cell surface modification technology, the magnetic recovery of Cd(2+) adsorbed onto the cell surface was reported. Crystallization within the cell enables approximately 70 times more bioaccumulation of the pollutant per cell than cell surface adsorption, while utilizing successful recovery with a magnetic field. This fascinating dual crystallization of magnetite and tellurium by magnetotactic bacteria presents an ideal system for both bioremediation and magnetic recovery of tellurite.

  12. Simultaneously Discrete Biomineralization of Magnetite and Tellurium Nanocrystals in Magnetotactic Bacteria▿

    PubMed Central

    Tanaka, Masayoshi; Arakaki, Atsushi; Staniland, Sarah S.; Matsunaga, Tadashi

    2010-01-01

    Magnetotactic bacteria synthesize intracellular magnetosomes comprising membrane-enveloped magnetite crystals within the cell which can be manipulated by a magnetic field. Here, we report the first example of tellurium uptake and crystallization within a magnetotactic bacterial strain, Magnetospirillum magneticum AMB-1. These bacteria independently crystallize tellurium and magnetite within the cell. This is also highly significant as tellurite (TeO32−), an oxyanion of tellurium, is harmful to both prokaryotes and eukaryotes. Additionally, due to its increasing use in high-technology products, tellurium is very precious and commercially desirable. The use of microorganisms to recover such molecules from polluted water has been considered as a promising bioremediation technique. However, cell recovery is a bottleneck in the development of this approach. Recently, using the magnetic property of magnetotactic bacteria and a cell surface modification technology, the magnetic recovery of Cd2+ adsorbed onto the cell surface was reported. Crystallization within the cell enables approximately 70 times more bioaccumulation of the pollutant per cell than cell surface adsorption, while utilizing successful recovery with a magnetic field. This fascinating dual crystallization of magnetite and tellurium by magnetotactic bacteria presents an ideal system for both bioremediation and magnetic recovery of tellurite. PMID:20581185

  13. Tight-binding calculation of radiation loss in photonic crystal CROW.

    PubMed

    Ma, Jing; Martínez, Luis Javier; Fan, Shanhui; Povinelli, Michelle L

    2013-01-28

    The tight binding approximation (TBA) is used to relate the intrinsic, radiation loss of a coupled resonator optical waveguide (CROW) to that of a single constituent resonator within a light cone picture. We verify the validity of the TBA via direct, full-field simulation of CROWs based on the L2 photonic crystal cavity. The TBA predicts that the quality factor of the CROW increases with that of the isolated cavity. Moreover, our results provide a method to design CROWs with low intrinsic loss across the entire waveguide band.

  14. Differentiation of organic and non-organic winter wheat cultivars from a controlled field trial by crystallization patterns.

    PubMed

    Kahl, Johannes; Busscher, Nicolaas; Mergardt, Gaby; Mäder, Paul; Torp, Torfinn; Ploeger, Angelika

    2015-01-01

    There is a need for authentication tools in order to verify the existing certification system. Recently, markers for analytical authentication of organic products were evaluated. Herein, crystallization with additives was described as an interesting fingerprint approach which needs further evidence, based on a standardized method and well-documented sample origin. The fingerprint of wheat cultivars from a controlled field trial is generated from structure analysis variables of crystal patterns. Method performance was tested on factors such as crystallization chamber, day of experiment and region of interest of the patterns. Two different organic treatments and two different treatments of the non-organic regime can be grouped together in each of three consecutive seasons. When the k-nearest-neighbor classification method was applied, approximately 84% of Runal samples and 95% of Titlis samples were classified correctly into organic and non-organic origin using cross-validation. Crystallization with additive offers an interesting complementary fingerprint method for organic wheat samples. When the method is applied to winter wheat from the DOK trial, organic and non-organic treated samples can be differentiated significantly based on pattern recognition. Therefore crystallization with additives seems to be a promising tool in organic wheat authentication. © 2014 Society of Chemical Industry.

  15. Origin of the OH vibrational blue shift in the LiOH crystal.

    PubMed

    Hermansson, Kersti; Gajewski, Grzegorz; Mitev, Pavlin D

    2008-12-25

    The O-H vibrational frequency in crystalline hydroxides is either upshifted or downshifted by its crystalline surroundings. In the LiOH crystal, the experimental gas-to-solid O-H frequency upshift ("blue shift") is approximately +115 cm(-1). Here plane-wave DFT calculations for the isotope-isolated LiOH crystal have been performed and we discuss the origin of the OH frequency upshift, and the nature of the OH group and the interlayer interactions. We find that (1) the vibrational frequency upshift originates from interactions within the LiOH layer; this OH upshift is slightly lessened by the interlayer interactions; (2) the interlayer O-H - - - H-O interaction is largely electrostatic in character (but there is no hydrogen bonding); (3) the gas-to-solid vibrational shift for OH in LiOH(s) and its subsystems qualitatively adheres to a parabola-like "frequency vs electric field strength" correlation curve, which has a maximum for a positive electric field, akin to the correlation curve earlier found in the literature for an isolated OH(-) ion in an electric field.

  16. In-situ temperature field measurements and direct observation of crystal/melt at vertical Bridgman growth of lead chloride under stationary and dynamic arrangement

    NASA Astrophysics Data System (ADS)

    Král, Robert; Nitsch, Karel

    2015-10-01

    Influence of growth conditions, i.e. temperature gradient in the furnace and the pulling rate, on the position and the shape of the crystal/melt interface during vertical Bridgman growth was studied. The position and the shape of the crystal/melt interface are a key factor for describing the final quality of growing crystal. Following two methods for characterization of its position and shape were used: (i) direct observation and (ii) direct temperature field measurement during simulated vertical Bridgman growth. As a model compound a lead chloride is used. Three different ampoule positions in two different temperature gradients in the furnace and two experimental arrangements - stationary (0 mm/h pulling rate) and dynamic (3 mm/h pulling rate) were analyzed. Obtained temperature data were projected as 2D planar cut under radial symmetry and denoted as isolevels. Their further conversion by linear approximation into isotherms allowed detail analysis of heat conditions in the system during simulated growth by comparison of isotherms 500 °C (m.p. of lead chloride) at different growth conditions.

  17. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armas-Perez, Julio C.; Londono-Hurtado, Alejandro; Guzman, Orlando

    2015-07-27

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystalmore » droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.« less

  18. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armas-Pérez, Julio C.; Londono-Hurtado, Alejandro; Guzmán, Orlando

    2015-07-28

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystalmore » droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.« less

  19. A general approach to the electronic spin relaxation of Gd(III) complexes in solutions. Monte Carlo simulations beyond the Redfield limit

    NASA Astrophysics Data System (ADS)

    Rast, S.; Fries, P. H.; Belorizky, E.; Borel, A.; Helm, L.; Merbach, A. E.

    2001-10-01

    The time correlation functions of the electronic spin components of a metal ion without orbital degeneracy in solution are computed. The approach is based on the numerical solution of the time-dependent Schrödinger equation for a stochastic perturbing Hamiltonian which is simulated by a Monte Carlo algorithm using discrete time steps. The perturbing Hamiltonian is quite general, including the superposition of both the static mean crystal field contribution in the molecular frame and the usual transient ligand field term. The Hamiltonian of the static crystal field can involve the terms of all orders, which are invariant under the local group of the average geometry of the complex. In the laboratory frame, the random rotation of the complex is the only source of modulation of this Hamiltonian, whereas an additional Ornstein-Uhlenbeck process is needed to describe the time fluctuations of the Hamiltonian of the transient crystal field. A numerical procedure for computing the electronic paramagnetic resonance (EPR) spectra is proposed and discussed. For the [Gd(H2O)8]3+ octa-aqua ion and the [Gd(DOTA)(H2O)]- complex [DOTA=1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclo dodecane] in water, the predictions of the Redfield relaxation theory are compared with those of the Monte Carlo approach. The Redfield approximation is shown to be accurate for all temperatures and for electronic resonance frequencies at and above X-band, justifying the previous interpretations of EPR spectra. At lower frequencies the transverse and longitudinal relaxation functions derived from the Redfield approximation display significantly faster decays than the corresponding simulated functions. The practical interest of this simulation approach is underlined.

  20. Dispersion Relations for Proton Relaxation in Solid Dielectrics

    NASA Astrophysics Data System (ADS)

    Kalytka, V. A.; Korovkin, M. V.

    2017-04-01

    Frequency-temperature spectra of the complex permittivity are studied for proton semiconductors and dielectrics using the methods of a quasi-classical kinetic theory of dielectric relaxation (the Boltzmann kinetic theory) in the linear approximation with respect to the polarizing field in the radio frequency range at temperatures T = 50-450 K. The effect of the quantum transitions of protons on the Debye dispersion relations is taken into account for crystals with hydrogen bonds (HBC) at low temperatures (50-100 K). The diffusion coefficients and the mobilities under electrical transfer of protons in the HBCs are constructed at high temperatures (100-350 K) in a non-linear approximation with respect to the polarizing field.

  1. Light scattering by a nematic liquid crystal droplet: Wentzel–Kramers–Brillouin approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loiko, V. A., E-mail: loiko@dragon.bas-net.by; Konkolovich, A. V.; Miskevich, A. A.

    2016-01-15

    Light scattering by an optically anisotropic liquid crystal (LC) droplet of a nematic in an isotropic polymer matrix is considered in the Wentzel–Kramers–Brillouin (WKB) approximation. General relations are obtained for elements of the amplitude matrix of light scattering by a droplet of arbitrary shape and for the structure of the director field. Analytic expressions for the amplitude matrices are derived for spherical LC droplets with a uniformly oriented structure of local optical axes for strictly forward and strictly backward scattering. The efficiency factors of extinction and backward scattering for a spherical nonabsorbing LC droplet depending on the LC optical anisotropy,more » refractive index of the polymer, illumination conditions, and orientation of the optical axis of the droplet are analyzed. Verification of the obtained solutions has been performed.« less

  2. Small-angle light scattering symmetry breaking in polymer-dispersed liquid crystal films with inhomogeneous electrically controlled interface anchoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loiko, V. A., E-mail: loiko@ifanbel.bas-net.by; Konkolovich, A. V.; Zyryanov, V. Ya.

    2017-03-15

    We have described the method of analyzing and reporting on the results of calculation of the small-angle structure of radiation scattered by a polymer-dispersed liquid crystal film with electrically controlled interfacial anchoring. The method is based on the interference approximation of the wave scattering theory and the hard disk model. Scattering from an individual liquid crystal droplet has been described using the anomalous diffraction approximation extended to the case of droplets with uniform and nonuniform interface anchoring at the droplet–polymer boundary. The director field structure in an individual droplet is determined from the solution of the problem of minimizing themore » volume density of the free energy. The electrooptical effect of symmetry breaking in the angular distribution of scattered radiation has been analyzed. This effect means that the intensities of radiation scattered within angles +θ{sub s} and–θ{sub s} relative to the direction of illumination in the scattering plane can be different. The effect is of the interference origin and is associated with asymmetry of the phase shift of the wavefront of an incident wave from individual parts of the droplet, which appears due to asymmetry of the director field structure in the droplet, caused by nonuniform anchoring of liquid crystal molecules with the polymer on its surface. This effect is analyzed in the case of normal illumination of the film depending on the interfacial anchoring at the liquid crystal–polymer interface, the orientation of the optical axes of droplets, their concentration, sizes, anisometry, and polydispersity.« less

  3. Nucleation of protein crystals under the influence of solution shear flow.

    PubMed

    Penkova, Anita; Pan, Weichun; Hodjaoglu, Feyzim; Vekilov, Peter G

    2006-09-01

    Several recent theories and simulations have predicted that shear flow could enhance, or, conversely, suppress the nucleation of crystals from solution. Such modulations would offer a pathway for nucleation control and provide a novel explanation for numerous mysteries in nucleation research. For experimental tests of the effects of shear flow on protein crystal nucleation, we found that if a protein solution droplet of approximately 5 microL (2-3 mm diameter at base) is held on a hydrophobic substrate in an enclosed environment and in a quasi-uniform constant electric field of 2 to 6 kV cm(-1), a rotational flow with a maximum rate at the droplet top of approximately 10 microm s(-1) is induced. The shear rate varies from 10(-3) to 10(-1) s(-1). The likely mechanism of the rotational flow involves adsorption of the protein and amphiphylic buffer molecules on the air-water interface and their redistribution in the electric field, leading to nonuniform surface tension of the droplet and surface tension-driven flow. Observations of the number of nucleated crystals in 24- and 72-h experiments with the proteins ferritin, apoferritin, and lysozyme revealed that the crystals are typically nucleated at a certain radius of the droplet, that is, at a preferred shear rate. Variations of the rotational flow velocity resulted in suppression or enhancement of the total number of nucleated crystals of ferritin and apoferritin, while all solution flow rates were found to enhance lysozyme crystal nucleation. These observations show that shear flow may strongly affect nucleation, and that for some systems, an optimal flow velocity, leading to fastest nucleation, exists. Comparison with the predictions of theories and simulations suggest that the formation of ordered nuclei in a "normal" protein solution cannot be affected by such low shear rates. We conclude that the flow acts by helping or suppressing the formation of ordered nuclei within mesoscopic metastable dense liquid clusters. Such clusters were recently shown to exist in protein solutions and to constitute the first step in the nucleation mechanism of many protein and nonproteinsystems.

  4. Defect-mediated phonon dynamics in TaS2 and WSe2

    PubMed Central

    Cremons, Daniel R.; Plemmons, Dayne A.; Flannigan, David J.

    2017-01-01

    We report correlative crystallographic and morphological studies of defect-dependent phonon dynamics in single flakes of 1T-TaS2 and 2H-WSe2 using selected-area diffraction and bright-field imaging in an ultrafast electron microscope. In both materials, we observe in-plane speed-of-sound acoustic-phonon wave trains, the dynamics of which (i.e., emergence, propagation, and interference) are strongly dependent upon discrete interfacial features (e.g., vacuum/crystal and crystal/crystal interfaces). In TaS2, we observe cross-propagating in-plane acoustic-phonon wave trains of differing frequencies that undergo coherent interference approximately 200 ps after initial emergence from distinct interfacial regions. With ultrafast bright-field imaging, the properties of the interfering wave trains are observed to correspond to the beat frequency of the individual oscillations, while intensity oscillations of Bragg spots generated from selected areas within the region of interest match well with the real-space dynamics. In WSe2, distinct acoustic-phonon dynamics are observed emanating and propagating away from structurally dissimilar morphological discontinuities (vacuum/crystal interface and crystal terrace), and results of ultrafast selected-area diffraction reveal thickness-dependent phonon frequencies. The overall observed dynamics are well-described using finite element analysis and time-dependent linear-elastic continuum mechanics. PMID:28503630

  5. The effect of an infinite plane-wave approximation on calculations for second-harmonic generation in a one-dimensional nonlinear crystal

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Zhao, Li-Ming

    2012-05-01

    In this paper, the second-harmonic generation (SHG) in a one-dimensional nonlinear crystal that is embedded in air is investigated. Previously, the identical configuration was studied in Li Z. Y. et al., Phys. Rev. B, 60 (1999) 10644, without the use of the slowly varying amplitude approximation (SVAA), but by adopting the infinite plane-wave approximation (PWA), despite the fact that this approximation is not quite applicable to such a system. We calculate the SHG conversion efficiency without a PWA, and compare the results with those from the quoted reference. The investigation reveals that conversion efficiencies of SHG as calculated by the two methods appear to exhibit significant differences, and that the SHG may be modulated by the field of a fundamental wave (FW). The ratio between SHG conversion efficiencies as produced by the two methods shows a periodic variation, and this oscillatory behavior is fully consistent with the variation in transmittance of the FW. Quasi-phase matching (QPM) is also studied, and we find that the location of the peak for SHG conversion efficiency deviates from Δd=0, which differs from the conventional QPM results.

  6. Analytical studies on the crystal melt interface shape in the Czochralski process for oxide single crystals

    NASA Astrophysics Data System (ADS)

    Jeong, Ja Hoon; Kang, In Seok

    2000-09-01

    Effects of the operating conditions on the crystal-melt interface shape are analytically investigated for the Czochralski process of the oxide single crystals. The ideas, which were used for the silicon single-crystal growth by Jeong et al. (J. Crystal Growth 177 (1997) 157), are extended to the oxide single-crystal growth problem by considering the internal radiation in the crystal phase and the melt phase heat transfer with the high Prandtl number. The interface shape is approximated in the simplest form as a quadratic function of radial position and an expression for the deviation from the flat interface shape is derived as a function of operating conditions. The radiative heat transfer rate between the interface and the ambient is computed by calculating the view factors for the curved interface shape with the assumption that the crystal phase is completely transparent. For the melt phase, the well-known results from the thermal boundary layer analysis are applied for the asymptotic case of high Prandtl number based on the idea that the flow field near the crystal-melt interface can be modeled as either a uniaxial or a biaxial flow. Through this work, essential information on the interface shape deformation and the effects of operating conditions are brought out for the oxide single-crystal growth.

  7. Ab Initio Crystal Field for Lanthanides.

    PubMed

    Ungur, Liviu; Chibotaru, Liviu F

    2017-03-13

    An ab initio methodology for the first-principle derivation of crystal-field (CF) parameters for lanthanides is described. The methodology is applied to the analysis of CF parameters in [Tb(Pc) 2 ] - (Pc=phthalocyanine) and Dy 4 K 2 ([Dy 4 K 2 O(OtBu) 12 ]) complexes, and compared with often used approximate and model descriptions. It is found that the application of geometry symmetrization, and the use of electrostatic point-charge and phenomenological CF models, lead to unacceptably large deviations from predictions based on ab initio calculations for experimental geometry. It is shown how the predictions of standard CASSCF (Complete Active Space Self-Consistent Field) calculations (with 4f orbitals in the active space) can be systematically improved by including effects of dynamical electronic correlation (CASPT2 step) and by admixing electronic configurations of the 5d shell. This is exemplified for the well-studied Er-trensal complex (H 3 trensal=2,2',2"-tris(salicylideneimido)trimethylamine). The electrostatic contributions to CF parameters in this complex, calculated with true charge distributions in the ligands, yield less than half of the total CF splitting, thus pointing to the dominant role of covalent effects. This analysis allows the conclusion that ab initio crystal field is an essential tool for the decent description of lanthanides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Quantum model of a hysteresis in a single-domain magnetically soft ferromagnetic

    NASA Astrophysics Data System (ADS)

    Ignatiev, V. K.; Lebedev, N. G.; Orlov, A. A.

    2018-01-01

    A quantum model of a single-domain magnetically soft ferromagnetic is proposed. The α-Fe crystal in a state of the saturation magnetization and a variable magnetic field is considered as a sample. The method of an effective Hamiltonian, including the operators of the Zeeman energy, the spin-orbit interaction and the interaction with the crystal field, is used in the model. An expansion of trial single-electron wave function in a series in small parameter of the spin-orbit interaction is suggested to account for the magnetic anisotropy. Within the framework of the Heisenberg representation, the nonlinear equations of motion for the magnetization and the orbital moment of single domain are obtained. Parameters of the modelling Hamiltonian are found from a comparison with experimental data on the magnetic anisotropy of iron. A phenomenological term of the magnetic friction is introduced into equation of the magnetization motion. Nonlinear equations are solved numerically by the Runge-Kutta method. A dependence of the single domain magnetization on magnetic field intensity has a characteristic form of a hysteresis loop which parameters are quantitatively coordinated with experimental data of researches of magnetic properties of nanoparticles of iron and iron oxide. The method is extended for modelling the magnetization dynamics of multi-domain ferromagnetic in the approximation of a strong crystal field.

  9. Properties of magnetized Coulomb crystals of ions with polarizable electron background

    NASA Astrophysics Data System (ADS)

    Kozhberov, A. A.

    2018-06-01

    We have studied phonon and thermodynamic properties of a body-centered cubic (bcc) Coulomb crystal of ions with weakly polarized electron background in a uniform magnetic field B. At B = 0, the difference between phonon moments calculated using the Thomas-Fermi (TF) and random phase approximations is always less than 1% and for description of phonon properties of a crystal, TF formalism was used. This formalism was successfully applied to investigate thermodynamic properties of magnetized Coulomb crystals. It was shown that the influence of the polarization of the electron background is significant only at κ TF a > 0.1 and T ≪ T p ( 1 + h2 ) - 1 / 2 , where κTF is the Thomas-Fermi wavenumber, a is the ion sphere radius, T p ≡ ℏ ω p is the ion plasma temperature, h ≡ ω B / ω p , ωB is the ion cyclotron frequency, and ωp is the ion plasma frequency.

  10. Planetoid core crystallisation and fractionation - Evidence from the Agpalilik mass of the Cape York iron meteorite shower

    NASA Astrophysics Data System (ADS)

    Esbensen, K. H.; Buchwald, V. F.

    1982-09-01

    Metallographic and chemical study of the Agpalik mass of the Cape York iron meteorite shower reveals evidence of the mode of crystallization and fractionation of key elements consistent with a dendritic solidification of at least part of the once fully molten parent body's metallic core. Chemical gradients of Ir and Au are assessed across an 85 cm section that is inferred to be perpendicular to the parent body's gravitational field, and are interpreted as representing a dendritic growth mode. The characteristic elongated and orientated sulfide nodules found in Agpalik signify trapped liquid of the latest stages of crystallization. Detailed mineralogical and chemical characterization of the Agpalik liquid-solid transformation products allow modelling of the entire crystallization history commencing with dendritic metal precipitation through an ultimate troilite-taenite-Cu eutectic, representing a crystallization range spanning approximately 1350-700 C.

  11. Neutron spectroscopic study of crystalline electric field excitations in stoichiometric and lightly stuffed Yb 2 Ti 2 O 7

    DOE PAGES

    Gaudet, J.; Maharaj, D. D.; Sala, G.; ...

    2015-10-27

    Time-of-flight neutron spectroscopy has been used to determine the crystalline electric field Hamiltonian, eigenvalues and eigenvectors appropriate to the J=7/2 Yb 3+ ion in the candidate quantum spin ice pyrochlore magnet Yb 2Ti 2O 7. The precise ground state of this exotic, geometrically frustrated magnet is known to be sensitive to weak disorder associated with the growth of single crystals from the melt. Such materials display weak “stuffing,” wherein a small proportion, approximately 2%, of the nonmagnetic Ti 4+ sites are occupied by excess Yb 3+. We have carried out neutron spectroscopic measurements on a stoichiometric powder sample of Ybmore » 2Ti 2O 7, as well as a crushed single crystal with weak stuffing and an approximate composition of Yb 2+xTi 2–xO 7+y with x = 0.046. All samples display three crystalline electric field transitions out of the ground state, and the ground state doublet itself is identified as primarily composed of m J = ±1/2, as expected. However, stuffing at low temperatures in Yb 2+xTi 2–xO 7+y induces a similar finite crystalline electric field lifetime as is induced in stoichiometric Yb 2Ti 2O 7 by elevated temperature. In conclusion, an extended strain field exists about each local “stuffed” site, which produces a distribution of random crystalline electric field environments in the lightly stuffed Yb 2+xTi 2–xO 7+y, in addition to producing a small fraction of Yb ions in defective environments with grossly different crystalline electric field eigenvalues and eigenvectors.« less

  12. Insight into the biological effects of acupuncture points by X-ray absorption fine structure.

    PubMed

    Liu, Chenglin; Liu, Qinghua; Zhang, Dongming; Liu, Wei; Yan, Xiaohui; Zhang, Xinyi; Oyanagi, Hiroyuki; Pan, Zhiyun; Hu, Fengchun; Wei, Shiqiang

    2018-06-02

    Exploration of the biological effects of transition metal ions in acupuncture points is essential to clarify the functional mechanism of acupuncture treatment. Here we show that in the SP6 acupuncture point (Sanyinjiao) the Fe ions are in a high-spin state of approximately t 2g 4.5 e g 1.5 in an Fe-N(O) octahedral crystal field. The Fe K-edge synchrotron radiation X-ray absorption fine structure results reveal that the Fe-N and Fe-O bond lengths in the SP6 acupuncture point are 2.05 and 2.13 Å, respectively, and are 0.05-0.10 Å longer than those in the surrounding tissue. The distorted atomic structure reduces the octahedral symmetry and weakens the crystal field around the Fe ions by approximately 0.3 eV, leading to the high-spin configuration of the Fe ions, which is favorable for strengthening the magnetotransport and oxygen transportation properties in the acupuncture point by the enhanced spin coherence. This finding might provide some insight into the microscopic effect of the atomic and electronic interactions of transition metal ions in the acupuncture point. Graphical Abstract ᅟ.

  13. Effects of crystalline electronic field and onsite interorbital interaction in Yb-based quasicrystal and approximant crystal.

    PubMed

    Watanabe, Shinji; Miyake, Kazumasa

    2018-05-10

    To get an insight into a new type of quantum critical phenomena recently discovered in the quasicrystal Yb 15 Al 34 Au 51 and approximant crystal (AC) Yb 14 Al 35 Au 51 under pressure, we discuss the property of the crystalline electronic field (CEF) at Yb in the AC and show that uneven CEF levels at each Yb site can appear because of the Al/Au mixed sites. Then we construct the minimal model for the electronic state on the AC by introducing the onsite Coulomb repulsion between the 4f and 5d orbitals at Yb. Numerical calculations for the ground state shows that the lattice constant dependence of the Yb valence well explains the recent measurement done by systematic substitution of elements of Al and Au in the quasicrystal and AC, where the quasicrystal Yb 15 Al 34 Au 51 is just located at the point from where the Yb-valence starts to change drastically. Our calculation convincingly demonstrates that this is indeed the evidence that this material is just located at the quantum critical point of the Yb-valence transition.

  14. Effects of crystalline electronic field and onsite interorbital interaction in Yb-based quasicrystal and approximant crystal

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinji; Miyake, Kazumasa

    2018-05-01

    To get an insight into a new type of quantum critical phenomena recently discovered in the quasicrystal Yb15Al34Au51 and approximant crystal (AC) Yb14Al35Au51 under pressure, we discuss the property of the crystalline electronic field (CEF) at Yb in the AC and show that uneven CEF levels at each Yb site can appear because of the Al/Au mixed sites. Then we construct the minimal model for the electronic state on the AC by introducing the onsite Coulomb repulsion between the 4f and 5d orbitals at Yb. Numerical calculations for the ground state shows that the lattice constant dependence of the Yb valence well explains the recent measurement done by systematic substitution of elements of Al and Au in the quasicrystal and AC, where the quasicrystal Yb15Al34Au51 is just located at the point from where the Yb-valence starts to change drastically. Our calculation convincingly demonstrates that this is indeed the evidence that this material is just located at the quantum critical point of the Yb-valence transition.

  15. Synthesis of full Poincaré beams by means of uniaxial crystals

    NASA Astrophysics Data System (ADS)

    Piquero, G.; Monroy, L.; Santarsiero, M.; Alonzo, M.; de Sande, J. C. G.

    2018-06-01

    A simple optical system is proposed to generate full-Poincaré beams (FPBs), i.e. beams presenting all possible states of (total) polarization across their transverse section. The method consists in focusing a uniformly polarized laser beam onto a uniaxial crystal having its optic axis parallel to the propagation axis of the impinging beam. A simple approximated model is used to obtain the analytical expression of the beam polarization at the output of the crystal. The output beam is then proved to be a FPB. By changing the polarization state of the input field, full-Poincaré beams are still obtained, but presenting different distributions of the polarization state across the beam section. Experimental results are reported, showing an excellent agreement with the theoretical predictions.

  16. High-resolution scanning Hall probe microscopy

    NASA Astrophysics Data System (ADS)

    Hallen, Hans D.; Hess, H. F.; Chang, A. M.; Pfeiffer, Loren N.; West, Kenneth W.; Mitzi, David B.

    1993-06-01

    A high resolution scanning Hall probe microscope is used to spatially resolve vortices in high temperature superconducting Bi2Sr2CaCu2O8+(delta) crystals. We observe a partially ordered vortex lattice at several different applied magnetic fields and temperatures. At higher temperatures, a limited amount of vortex re-arrangement is observed, but most vortices remain fixed for periods long compared to the imaging time of several hours even at temperatures as high as 75 degree(s)K (the superconducting transition temperature for these crystals is approximately 84 degree(s)K). A measure of these local magnetic penetration depth can be obtained from a fit to the surface field of several neighboring vortices, and has been measured as a function of temperature. In particular, we have measured the zero temperature penetration depth and found it to be 275 +/- 40 nm.

  17. Multipole induced splitting of metal-cage vibrations in crystalline endohedral D2d-M2@C84 dimetallofullerenes.

    PubMed

    Krause, M; Popov, V N; Inakuma, M; Tagmatarchis, N; Shinohara, H; Georgi, P; Dunsch, L; Kuzmany, H

    2004-01-22

    Metal-carbon cage vibrations of crystalline endohedral D2d-M2@C84 (M=Sc,Y,Dy) dimetallofullerenes were analyzed by temperature dependent Raman scattering and a dynamical force field model. Three groups of metal-carbon cage modes were found at energies of 35-200 cm(-1) and assigned to metal-cage stretching and deformation vibrations. They exhibit a textbook example for the splitting of molecular vibrations in a crystal field. Induced dipole-dipole and quadrupole-quadrupole interactions account quantitatively for the observed mode splitting. Based on the metal-cage vibrational structure it is demonstrated that D2d-Y2@C84 dimetallofullerene retains a monoclinic crystal structure up to 550 K and undergoes a transition from a disordered to an ordered orientational state at a temperature of approximately 150 K.

  18. Invariant patterns in crystal lattices: Implications for protein folding algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HART,WILLIAM E.; ISTRAIL,SORIN

    2000-06-01

    Crystal lattices are infinite periodic graphs that occur naturally in a variety of geometries and which are of fundamental importance in polymer science. Discrete models of protein folding use crystal lattices to define the space of protein conformations. Because various crystal lattices provide discretizations of the same physical phenomenon, it is reasonable to expect that there will exist invariants across lattices related to fundamental properties of the protein folding process. This paper considers whether performance-guaranteed approximability is such an invariant for HP lattice models. The authors define a master approximation algorithm that has provable performance guarantees provided that a specificmore » sublattice exists within a given lattice. They describe a broad class of crystal lattices that are approximable, which further suggests that approximability is a general property of HP lattice models.« less

  19. Beam control of high-power broad-area photonic crystal lasers using ladderlike groove structure

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Lijie; Shu, Shili; Tian, Sicong; Lu, Zefeng; Hou, Guanyu; Lu, Huanyu; Tong, Cunzhu; Wang, Lijun

    2017-06-01

    The high-power broad-area (BA) photonic bandgap crystal (PBC) diode laser is promising as a high-brightness laser source, however, it suffers from poor lateral beam quality owing to the intrinsic drawback of BA lasers. In this paper, a ladderlike groove structure (LLGS) was proposed to improve both the lateral beam quality and emission power of BA PBC lasers. An approximately 15.4% improvement in output power and 25.2% decrease in the lateral beam parameter product (BPP) were realized and the underlying mechanism was discussed. On the basis of the one-dimensional PBC epitaxial structure, a stable vertical far field was demonstrated.

  20. Feasibility demonstration for hydrogen chloride detection using a chemisorption technique and a quartz crystal microbalance

    NASA Technical Reports Server (NTRS)

    Jex, D. W.; Workman, G. L.

    1975-01-01

    A method of measuring concentrations of hydrogen chloride between 1 part per billion and 10 parts per million at standard temperature and pressure is presented. The feasibility of a low-cost device incorporating a chemisorption technique coupled with a quartz crystal microbalance was demonstrated in the field at the Viking B launch using a Titan-Centaur vehicle from Kennedy Space Center on August 20, 1975. Hydrogen chloride is a product of solid rocket combustion. The concentration level of hydrogen chloride for this particular launch was measured as approximately 0.2 parts per million at 4 km from the launch site.

  1. Excitonic effects in dense media: breakdown of intrinsic optical bistability

    NASA Astrophysics Data System (ADS)

    Yudson, V. I.; Reineker, P.

    1994-12-01

    The steady-state nonlinear response to optical excitation is studied for a thin layer containing “two-level-atoms” (TLA). For a high density of TLAs their dipole-dipole interaction and finite excitonic bandwidth effects become important. We demonstrate that the commonly used local-field approximation ignoring excitonic band effects breaks down. Considering a system of ordered TLAs corresponding to Frenkel excitons in molecular crystals we show that excitonic effects cause an instability of spatially uniform solutions and decrease drastically the existence range of the intrinsic optical bistability of a layer. The possibility of “fast instability”, developing with an increment large in comparison with relaxation rates and the Rabi frequency, also raises the question whether the local field approximation still holds for the description of transient optical phenomena in dense media.

  2. Excitonic effects in dense media: breakdown of intrinsic optical bistability

    NASA Astrophysics Data System (ADS)

    Yudson, V. I.; Reineker, P.

    The steady-state nonlinear response to optical excitation is studied for a thin layer containing “two-level-atoms” (TLA). For a high density of TLAs their dipole-dipole interaction and finite excitonic bandwidth effects become important. We demonstrate that the commonly used local-field approximation ignoring excitonic band effects breaks down. Considering a system of ordered TLAs corresponding to Frenkel excitons in molecular crystals we show that excitonic effects cause an instability of spatially uniform solutions and decrease drastically the existence range of the intrinsic optical bistability of a layer. The possibility of “fast instability”, developing with an increment large in comparison with relaxation rates and the Rabi frequency, also raises the question whether the local field approximation still holds for the description of transient optical phenomena in dense media.

  3. Generalized Kubo formulas for the transport properties of incommensurate 2D atomic heterostructures

    NASA Astrophysics Data System (ADS)

    Cancès, Eric; Cazeaux, Paul; Luskin, Mitchell

    2017-06-01

    We give an exact formulation for the transport coefficients of incommensurate two-dimensional atomic multilayer systems in the tight-binding approximation. This formulation is based upon the C* algebra framework introduced by Bellissard and collaborators [Coherent and Dissipative Transport in Aperiodic Solids, Lecture Notes in Physics (Springer, 2003), Vol. 597, pp. 413-486 and J. Math. Phys. 35(10), 5373-5451 (1994)] to study aperiodic solids (disordered crystals, quasicrystals, and amorphous materials), notably in the presence of magnetic fields (quantum Hall effect). We also present numerical approximations and test our methods on a one-dimensional incommensurate bilayer system.

  4. Vortex lattice structures in YNi{sub 2}B{sub 2}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yethiraj, M.; Paul, D.M.; Tomy, C.V.

    The authors observe a flux lattice with square symmetry in the superconductor YNi{sub 2}B{sub 2}C when the applied field is parallel to the c-axis of the crystal. A square lattice observed previously in the isostructural magnetic analog ErNi{sub 2}B{sub 2}C was attributed to the interaction between magnetic order in that system and the flux lattice. Since the Y-based compound does not order magnetically, it is clear that the structure of the flux lattice is unrelated to magnetic order. In fact, they show that the flux lines have a square cross-section when the applied field is parallel to the c-axis ofmore » the crystal, since the measured penetration depth along the 100 crystal direction is larger than the penetration depth along the 110 by approximately 60%. This is the likely reason for the square symmetry of the lattice. Although they find considerable disorder in the arrangement of the flux lines at 2.5T, no melting of the vortex lattice was observed.« less

  5. Vortex lattice structures in YNi{sub 2}B{sub 2}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yethiraj, M.; Paul, D.M.; Tomy, C.V.

    We observe a flux lattice with square symmetry in the superconductor YNi{sub 2}B{sub 2}C when the applied field is parallel to the c-axis of the crystal. A square lattice observed previously in the isostructural magnetic analog ErNi{sub 2}B{sub 2}C was attributed to the interaction between magnetic order in that system and the flux lattice. Since the Y-based compound does not order magnetically, it is clear that the structure of the flux lattice is unrelated to magnetic order. In fact, we show that the flux lines have a square cross-section when the applied field is parallel to the c-axis of themore » crystal, since the measured penetration depth along the 110 crystal direction is smaller than the penetration depth along the 100 by approximately 30%. This causes the square symmetry of the lattice. Although we find considerable disorder in the arrangement of the flux lines at 2.5T, no melting of the vortex lattice was observed.« less

  6. Effective potentials in nonlinear polycrystals and quadrature formulae

    NASA Astrophysics Data System (ADS)

    Michel, Jean-Claude; Suquet, Pierre

    2017-08-01

    This study presents a family of estimates for effective potentials in nonlinear polycrystals. Noting that these potentials are given as averages, several quadrature formulae are investigated to express these integrals of nonlinear functions of local fields in terms of the moments of these fields. Two of these quadrature formulae reduce to known schemes, including a recent proposition (Ponte Castañeda 2015 Proc. R. Soc. A 471, 20150665 (doi:10.1098/rspa.2015.0665)) obtained by completely different means. Other formulae are also reviewed that make use of statistical information on the fields beyond their first and second moments. These quadrature formulae are applied to the estimation of effective potentials in polycrystals governed by two potentials, by means of a reduced-order model proposed by the authors (non-uniform transformation field analysis). It is shown how the quadrature formulae improve on the tangent second-order approximation in porous crystals at high stress triaxiality. It is found that, in order to retrieve a satisfactory accuracy for highly nonlinear porous crystals under high stress triaxiality, a quadrature formula of higher order is required.

  7. Effective potentials in nonlinear polycrystals and quadrature formulae.

    PubMed

    Michel, Jean-Claude; Suquet, Pierre

    2017-08-01

    This study presents a family of estimates for effective potentials in nonlinear polycrystals. Noting that these potentials are given as averages, several quadrature formulae are investigated to express these integrals of nonlinear functions of local fields in terms of the moments of these fields. Two of these quadrature formulae reduce to known schemes, including a recent proposition (Ponte Castañeda 2015 Proc. R. Soc. A 471 , 20150665 (doi:10.1098/rspa.2015.0665)) obtained by completely different means. Other formulae are also reviewed that make use of statistical information on the fields beyond their first and second moments. These quadrature formulae are applied to the estimation of effective potentials in polycrystals governed by two potentials, by means of a reduced-order model proposed by the authors (non-uniform transformation field analysis). It is shown how the quadrature formulae improve on the tangent second-order approximation in porous crystals at high stress triaxiality. It is found that, in order to retrieve a satisfactory accuracy for highly nonlinear porous crystals under high stress triaxiality, a quadrature formula of higher order is required.

  8. Role of cationic size in the optical properties of the LiCl crystal surface: theoretical study.

    PubMed

    Abdel Halim, Wael Salah; Abdullah, Noha; Abdel-Aal, Safaa; Shalabi, A S

    2012-06-01

    The size of the cations (either Ca(2+), Sr(2+), Ga(+), or Au(+)) at the F(A1)-type color centers on the (100) surface of LiCl crystal plays an important role in the optical properties of this surface. In this work, double-well potentials at this surface were investigated using ab initio quantum mechanical methods. Quantum clusters were embedded in simulated Coulomb fields that closely approximate the Madelung fields of the host surface, and the ions that were the nearest neighbors to the F(A1) site were allowed to relax to equilibrium. The calculated Stokes-shifted optical transition bands, optical-optical conversion efficiency, and relaxed excited states of the defect-containing surface, as well as the orientational destruction of the color centers, recording sensitivity, exciton (energy) transfer, and the Glasner-Tompkins empirical relation were all found to be sensitive to the size of the dopant cation.

  9. Loss for photoemission versus gain for Auger: Direct experimental evidence of crystal-field splitting and charge transfer in photoelectron spectroscopy

    DOE PAGES

    Woicik, J. C.; Weiland, C.; Rumaiz, A. K.

    2015-05-29

    Here, we find a 5 eV satellite in the Ti1s photoelectron spectrum of the transition-metal oxide SrTiO 3. This satellite appears in addition to the well-studied 13 eV structure that is typically associated with the Ti2p core line. We give direct experimental evidence that the presence of two satellites is due to the crystal-field splitting of the metal 3d orbitals. They originate from ligand 2pt 2g → metal3dt 2g and ligand 2pe g → metal 3de g monopole charge-transfer excitations within the sudden approximation of quantum mechanics. This assignment is made by the energetics of the resonant and high-energy thresholdmore » behaviors of the TiK–L 2L 3 Auger decay that follows Ti1s photoionization.« less

  10. Liquid-crystal-based switchable polarizers for sensor protection.

    PubMed

    Wu, C S; Wu, S T

    1995-11-01

    Linear polarizers are generally employed in conjunction with advanced liquid-crystal filters for the protection of human eyes and optical sensors. For detection sensitivity under a no-threat condition to be maximized, the polarizer should remain in a clear state with a minimum insertion loss. When threats are present, it should be quickly switched to function as a linear polarizer with a high extinction ratio. Two types of switchable polarizer for sensor protection are demonstrated. The polarization conversion type exhibits a high optical efficiency in its clear state, a high extinction ratio in the linear polarizer state, and a fast switching speed, except that its field of view is limited to approximately ±10°. In contrast, an improved switchable dichroic polarizer functions effectively over a much wider field of view. However, its extinction ratio and optical efficiency in its clear state are lower than those of the polarization conversion type.

  11. Liquid-crystal-based switchable polarizers for sensor protection

    NASA Astrophysics Data System (ADS)

    Wu, Chiung-Sheng; Wu, Shin-Tson

    1995-11-01

    Linear polarizers are generally employed in conjunction with advanced liquid-crystal filters for the protection of human eyes and optical sensors. For detection sensitivity under a no-threat condition to be maximized, the polarizer should remain in a clear state with a minimum insertion loss. When threats are present, it should be quickly switched to function as a linear polarizer with a high extinction ratio. Two types of switchable polarizer for sensor protection are demonstrated. The polarization conversion type exhibits a high optical efficiency in its clear state, a high extinction ratio in the linear polarizer state, and a fast switching speed, except that its field of view is limited to approximately +/-10 deg In contrast, an improved switchable dichroic polarizer functions effectively over a much wider field of view. However, its extinction ratio and optical efficiency in its clear state are lower than those of the polarization conversion type.

  12. Determination of the Temperature Dependence of Heat Capacity for Some Molecular Crystals of Nitro Compounds

    NASA Astrophysics Data System (ADS)

    Kovalev, Yu. M.; Kuropatenko, V. F.

    2018-05-01

    An analysis of the existing approximations used for describing the dependence of heat capacity at a constant volume on the temperature of a molecular crystal has been carried out. It is shown that the considered Debye and Einstein approximations do not enable one to adequately describe the dependence of heat capacity at a constant volume on the temperature of the molecular crystals of nitro compounds. This inference requires the development of special approximations that would describe both low-frequency and high-frequency parts of the vibrational spectra of molecular crystals. This work presents a universal dependence allowing one to describe the dependence of heat capacity at a constant volume on temperature for a number of molecular crystals of nitro compounds.

  13. Theoretical research of the spin-Hamiltonian parameters for two rhombic W5+ centers in KTiOPO4 (KTP) crystal through a two-mechanism model

    NASA Astrophysics Data System (ADS)

    Mei, Yang; Chen, Bo-Wei; Wei, Chen-Fu; Zheng, Wen-Chen

    2016-09-01

    The high-order perturbation formulas based on the two-mechanism model are employed to calculate the spin-Hamiltonian parameters (g factors gi and hyperfine structure constants Ai, where i=x, y, z) for two approximately rhombic W5+ centers in KTiOPO4 (KTP) crystal. In the model, both the widely-applied crystal-field (CF) mechanism concerning the interactions of CF excited states with the ground state and the generally-neglected charge-transfer (CT) mechanism concerning the interactions of CT excited states with the ground state are included. The calculated results agree with the experimental values, and the signs of constants Ai are suggested. The calculations indicate that (i) for the high valence state dn ions in crystals, the contributions to spin-Hamiltonian parameters should take into account both the CF and CT mechanisms and (ii) the large g-shifts |Δgi | (=|gi-ge |, where ge≈ 2.0023) for W5+ centers in crystals are due to the large spin-orbit parameter of free W5+ ion.

  14. Single Mode Air-Clad Single Crystal Sapphire Optical Fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Cary; Homa, Dan; Yu, Zhihao

    The observation of single mode propagation in an air-clad single crystal sapphire optical fiber at wavelengths at and above 783 nm is presented for the first time. A high-temperature wet acid etching method was used to reduce the diameter of a 10 cm length of commercially-sourced sapphire fiber from 125 micrometers to 6.5 micrometers, and far-field imaging provided modal information at intervals as the fiber diameter decreased. Modal volume was shown to decrease with decreasing diameter, and single mode behavior was observed at the minimum diameter achieved. While weakly-guiding approximations are generally inaccurate for low modal volume optical fiber withmore » high core-cladding refractive index disparity, consistency between these approximations and experimental results was observed when the effective numerical aperture was measured and substituted for the theoretical numerical aperture in weakly-guiding approximation calculations. With the demonstration of very low modal volume in sapphire at fiber diameters much larger than anticipated by legacy calculations, the resolution of sapphire fiber distributed sensors may be increased and other sensing schemes requiring very low modal volume, such as fiber Bragg gratings, may be realized in extreme environment applications.« less

  15. Single Mode Air-Clad Single Crystal Sapphire Optical Fiber

    DOE PAGES

    Hill, Cary; Homa, Dan; Yu, Zhihao; ...

    2017-05-03

    The observation of single mode propagation in an air-clad single crystal sapphire optical fiber at wavelengths at and above 783 nm is presented for the first time. A high-temperature wet acid etching method was used to reduce the diameter of a 10 cm length of commercially-sourced sapphire fiber from 125 micrometers to 6.5 micrometers, and far-field imaging provided modal information at intervals as the fiber diameter decreased. Modal volume was shown to decrease with decreasing diameter, and single mode behavior was observed at the minimum diameter achieved. While weakly-guiding approximations are generally inaccurate for low modal volume optical fiber withmore » high core-cladding refractive index disparity, consistency between these approximations and experimental results was observed when the effective numerical aperture was measured and substituted for the theoretical numerical aperture in weakly-guiding approximation calculations. With the demonstration of very low modal volume in sapphire at fiber diameters much larger than anticipated by legacy calculations, the resolution of sapphire fiber distributed sensors may be increased and other sensing schemes requiring very low modal volume, such as fiber Bragg gratings, may be realized in extreme environment applications.« less

  16. Citrate, not phosphate, can dissolve calcium oxalate monohydrate crystals and detach these crystals from renal tubular cells.

    PubMed

    Chutipongtanate, Somchai; Chaiyarit, Sakdithep; Thongboonkerd, Visith

    2012-08-15

    Dissolution therapy of calcium oxalate monohydrate (COM) kidney stone disease has not yet been implemented due to a lack of well characterized COM dissolution agents. The present study therefore aimed to identify potential COM crystal dissolution compounds. COM crystals were treated with deionized water (negative control), 5 mM EDTA (positive control), 5 mM sodium citrate, or 5mM sodium phosphate. COM crystal dissolution activities of these compounds were evaluated by phase-contrast and video-assisted microscopic examinations, semi-quantitative analysis of crystal size, number and total mass, and spectrophotometric oxalate-dissolution assay. In addition, effects of these compounds on detachment of COM crystals, which adhered tightly onto renal tubular cell surface, were also investigated. The results showed that citrate, not phosphate, had a significant dissolution effect on COM crystals as demonstrated by significant reduction of crystal size (approximately 37% decrease), crystal number (approximately 53% decrease) and total crystal mass (approximately 72% decrease) compared to blank and negative controls. Spectrophotometric oxalate-dissolution assay successfully confirmed the COM crystal dissolution property of citrate. Moreover, citrate could detach up to 85% of the adherent COM crystals from renal tubular cell surface. These data indicate that citrate is better than phosphate for dissolution and detachment of COM crystals. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Polarization switching behavior of one-axis-oriented lead zirconate titanate films fabricated on metal oxide nanosheet layer

    NASA Astrophysics Data System (ADS)

    Uchida, Hiroshi; Ichinose, Daichi; Shiraishi, Takahisa; Shima, Hiromi; Kiguchi, Takanori; Akama, Akihiko; Nishida, Ken; Konno, Toyohiko J.; Funakubo, Hiroshi

    2017-10-01

    For the application of electronic devices using ferroelectric/piezoelectric components, one-axis-oriented tetragonal Pb(Zr0.40Ti0.60)O3 (PZT) films with thicknesses of up to 1 µm were fabricated with the aid of a Ca2Nb3O10 nanosheet (ns-CN) template for preferential crystal growth for evaluating their polarization switching behavior. The ns-CN template was supported on ubiquitous silicon (Si) wafer by a simple dip coating technique, followed by the repetitive chemical solution deposition (CSD) of PZT films. The PZT films were grown successfully with preferential crystal orientation of PZT(100) up to the thickness of 1020 nm. The (100)-oriented PZT film with ∼1 µm thickness exhibited unique polarization behavior of ferroelectric polarization, i.e., a marked increase in remanent polarization (P r) up to approximately 40 µC/cm2 induced by domain switching under high electric field, whereas the film with a lower thickness showed only a lower P r of approximately 11 µC/cm2 even under a high electric field. The ferroelectric property of the (100)-oriented PZT film after domain switching on ns-CN/Pt/Si can be comparable to those of (001)/(100)-oriented epitaxial PZT films.

  18. Competing magnetic ground states and their coupling to the crystal lattice in CuFe2Ge2

    NASA Astrophysics Data System (ADS)

    May, Andrew; Calder, Stuart; Parker, David; Sales, Brian; McGuire, Michael

    CuFe2Ge2 has been identified as a system with competing magnetic ground states that are strongly coupled to the crystal lattice and easily manipulated by temperature or applied magnetic field. Powder neutron diffraction data reveal the emergence of antiferromagnetic (AFM) order near TN = 175 K, as well as a transition into an incommensurate AFM spin structure below approximately 125 K. Together with refined moments of approximately 1 Bohr magneton per iron, the incommensurate structure supports an itinerant picture of magnetism in CuFe2Ge2, which is consistent with theoretical calculations. Bulk magnetization measurements suggest that the spin structures are easily manipulated with an applied field, which further demonstrates the near-degeneracy of different magnetic configurations. Interestingly, the thermal expansion is found to be very anisotropic, and the c lattice parameter has anomalous temperature dependence near TN. These results show that the ground state of CuFe2Ge2 is easily manipulated by external forces, making it a potential parent compound for a rich phase diagram of emergent phenomena. Research supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division and Scientific User Facilities Division.

  19. Determination of structure and properties of molecular crystals from first principles.

    PubMed

    Szalewicz, Krzysztof

    2014-11-18

    CONSPECTUS: Until recently, it had been impossible to predict structures of molecular crystals just from the knowledge of the chemical formula for the constituent molecule(s). A solution of this problem has been achieved using intermolecular force fields computed from first principles. These fields were developed by calculating interaction energies of molecular dimers and trimers using an ab initio method called symmetry-adapted perturbation theory (SAPT) based on density-functional theory (DFT) description of monomers [SAPT(DFT)]. For clusters containing up to a dozen or so atoms, interaction energies computed using SAPT(DFT) are comparable in accuracy to the results of the best wave function-based methods, whereas the former approach can be applied to systems an order of magnitude larger than the latter. In fact, for monomers with a couple dozen atoms, SAPT(DFT) is about equally time-consuming as the supermolecular DFT approach. To develop a force field, SAPT(DFT) calculations are performed for a large number of dimer and possibly also trimer configurations (grid points in intermolecular coordinates), and the interaction energies are then fitted by analytic functions. The resulting force fields can be used to determine crystal structures and properties by applying them in molecular packing, lattice energy minimization, and molecular dynamics calculations. In this way, some of the first successful determinations of crystal structures were achieved from first principles, with crystal densities and lattice parameters agreeing with experimental values to within about 1%. Crystal properties obtained using similar procedures but empirical force fields fitted to crystal data have typical errors of several percent due to low sensitivity of empirical fits to interactions beyond those of the nearest neighbors. The first-principles approach has additional advantages over the empirical approach for notional crystals and cocrystals since empirical force fields can only be extrapolated to such cases. As an alternative to applying SAPT(DFT) in crystal structure calculations, one can use supermolecular DFT interaction energies combined with scaled dispersion energies computed from simple atom-atom functions, that is, use the so-called DFT+D approach. Whereas the standard DFT methods fail for intermolecular interactions, DFT+D performs reasonably well since the dispersion correction is used not only to provide the missing dispersion contribution but also to fix other deficiencies of DFT. The latter cancellation of errors is unphysical and can be avoided by applying the so-called dispersionless density functional, dlDF. In this case, the dispersion energies are added without any scaling. The dlDF+D method is also one of the best performing DFT+D methods. The SAPT(DFT)-based approach has been applied so far only to crystals with rigid monomers. It can be extended to partly flexible monomers, that is, to monomers with only a few internal coordinates allowed to vary. However, the costs will increase relative to rigid monomer cases since the number of grid points increases exponentially with the number of dimensions. One way around this problem is to construct force fields with approximate couplings between inter- and intramonomer degrees of freedom. Another way is to calculate interaction energies (and possibly forces) "on the fly", i.e., in each step of lattice energy minimization procedure. Such an approach would be prohibitively expensive if it replaced analytic force fields at all stages of the crystal predictions procedure, but it can be used to optimize a few dozen candidate structures determined by other methods.

  20. Ground state of a confined Yukawa plasma including correlation effects

    NASA Astrophysics Data System (ADS)

    Henning, C.; Ludwig, P.; Filinov, A.; Piel, A.; Bonitz, M.

    2007-09-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically using the local density approximation (LDA). In particular, the radial density profile is computed. The results are compared with the recently obtained mean-field (MF) density profile [Henning , Phys. Rev. E 74, 056403 (2006)]. While the MF results are more accurate for weak screening, the LDA with correlations included yields the proper description for large screening. By comparison with first-principles simulations for three-dimensional spherical Yukawa crystals, we demonstrate that the two approximations complement each other. Together they accurately describe the density profile in the full range of screening parameters.

  1. Observation of hard X-rays from the Crab pulsar and A0535+26

    NASA Technical Reports Server (NTRS)

    Wu, M.; Dai, C.; Lu, Z.; Ma, Y.; Li, G.; Fan, Z.; Zhang, C.; Xu, C.; Zhang, X.; Gu, Y.

    1985-01-01

    The Crab pulsar PSR0531+21 was observed in a balloon flight from the Xianghe Balloon Station (China). Data were obtained in the range 20 to 200 keV with a poswish hard X-ray telescope which comprised a 150 sq cm primary crystal of 5 mm thick CsI(T1) which actively shielded the lower 2 pi steradians by a 5 cm thick NaI(T1) crystal. The scintillation pulses originating in CsI and NaI crystals are distinguished by pulse shape discrimination. The telescope has a field of view of approximately 4 deg H psi H pi determined by graded shield and collimator. The effective geometric area of the detector is 116 sq cm. It is noted that when folding a data flow on a long period interference from the data acquisition, transmission and recording system considerably affect the result.

  2. Transparency of the ab Planes of Bi2Sr2CaCu2O8+δ to Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kossler, W. J.; Dai, Y.; Petzinger, K. G.; Greer, A. J.; Williams, D. Ll.; Koster, E.; Harshman, D. R.; Mitzi, D. B.

    1998-01-01

    A sample composed of many Bi2Sr2CaCu2O8+δ single crystals was cooled to 2 K in a magnetic field of 100 G at 45° from the c axis. Muon-spin-rotation measurements were made for which the polarization was initially approximately in the ab plane. The time dependent polarization components along this initial direction and along the c axis were obtained. Cosine transforms of these and subsequent measurements were made. Upon removing the applied field, still at 2 K, only the c axis component of the field remained in the sample, thus providing microscopic evidence for extreme 2D behavior for the vortices even at this temperature.

  3. Devitrification studies of wollastonite-tricalcium phosphate eutectic glass.

    PubMed

    Magallanes-Perdomo, M; Pena, P; De Aza, P N; Carrodeguas, R G; Rodríguez, M A; Turrillas, X; De Aza, S; De Aza, A H

    2009-10-01

    The present paper describes and discusses the devitrification and crystallization process of wollastonite-tricalcium phosphate (W-TCP) eutectic glass. This process was studied in situ from room temperature up to 1375 degrees C, by neutron diffractometry in vacuum. The data obtained were combined and compared with those performed in ambient atmosphere by differential thermal analysis and with those of samples fired in air at selected temperatures, and then cooled down and subsequently studied by laboratory XRD and field emission scanning electron microscopy fitted with energy X-ray dispersive spectroscopy. The experimental evidence indicates that the devitrification of W-TCP eutectic glass begins at approximately 870 degrees C with the crystallization of a Ca-deficient apatite phase, followed by wollastonite-2M (CaSiO(3)) crystallization at approximately 1006 degrees C. At 1375 degrees C, the bio-glass-ceramic is composed of quasi-rounded colonies formed by a homogeneous mixture of pseudowollastonite (CaSiO(3)) and alpha-tricalcium phosphate (Ca(3)(PO(4))(2)). This microstructure corresponds to irregular eutectic structures. It was also found that it is possible to obtain from the eutectic composition of the wollastonite-tricalcium phosphate binary system a wide range of bio-glass-ceramics, with different crystalline phases present, through appropriate design of thermal treatments.

  4. Structural variations of single and tandem mismatches in RNA duplexes: a joint MD simulation and crystal structure database analysis.

    PubMed

    Halder, Sukanya; Bhattacharyya, Dhananjay

    2012-10-04

    Internal loops within RNA duplex regions are formed by single or tandem basepairing mismatches with flanking canonical Watson-Crick basepairs on both sides. They are the most common motif observed in RNA secondary structures and play integral functional and structural roles. In this report, we have studied the structural features of 1 × 1, 2 × 2, and 3 × 3 internal loops using all-atom molecular dynamics (MD) simulation technique with explicit solvent model. As MD simulation is intricately dependent on the choice of force-field and these are often rather approximate, we have used both the most popular force-fields for nucleic acids-CHARMM27 and AMBER94-for a comparative analysis. We find that tandem noncanonical basepairs forming 2 × 2 and 3 × 3 internal loops are considerably more stable than the single mismatches forming 1 × 1 internal loops, irrespective of the force field. We have also analyzed crystal structure database to study the conservation of these helical fragments in the corresponding sets of RNA structures. We observe that the nature of stability in MD simulations mimic their fluctuating natures in crystal data sets also, probably indicating reliable natures of both the force fields to reproduce experimental results. We also notice significant structural changes in the wobble G:U basepairs present in these double helical stretches, leading to a biphasic stability for these wobble pairs to release the deformational strains introduced by internal loops within duplex regions.

  5. Magnetic and electronic properties of Nd--La and Ce--La alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, T.S.

    1979-05-01

    The electrical resistivity, thermoelectric power and magnetic susceptibility on Nd single crystals and polycrystalline dhcp Nd--La and Ce--La alloys have been measured at low temperatures. The measurements on the Nd--La alloys show features at the Neel temperatures and also show additional magnetic ordering phenomena. Some of these other features are dependent on the thermal history of the sample. Magnetic field studies are needed to correlate these features with observed neutron diffraction effects. Several magnetic features are seen in the Ce--La alloy system also, although the measurements are plagued with the problem of fcc contamination. In addition, alloys containing Ce showmore » Kondo effects. The logarithmic term in the resistivity is explained well by the theory of Liu et al. which uses a mean field to approximate the 4f-4f interactions in the nondilute alloys. The large peak in the thermopower of Ce--La alloys is explained well by the theory of Bhattacharjee and Coqblin which incorporates Kondo scattering from excited crystal field levels.« less

  6. Signatures of filamentary superconductivity in antiferromagnetic BaFe 2As 2 single crystals

    DOE PAGES

    Moseley, D. A.; Yates, K. A.; Branford, W. R.; ...

    2015-08-24

    In this paper, we present ac susceptibility and magnetotransport measurements on aged single crystals of the ferropnictide parent compound, BaFe 2As 2 with a paramagnetic-to-antiferromagnetic transition temperature of 134 K. The ac susceptibility shows the clear onset of a partial diamagnetic response with an onset temperature, commensurate with a subtle downturn in resistivity at approximately 20 K. Below 20 K the magnetotransport shows in-plane anisotropy, magnetic-field history dependence and a hysteretic signature. Above 20 K the crystals show the widely reported high-field linear magnetoresistance. An enhanced noise signature in ac susceptibility is observed above 20 K, which varies in character with amplitude and frequency of the ac signal. The hysteresis in magnetoresistance and the observed sensitivity of the superconducting phase to the amplitude of the ac signal are indicative characteristics of granular or weakly linked filamentary superconductivity. Furthermore, these features taken together with the observed noise signature abovemore » $$T_{\\mathrm{c}}$$ suggests a link between the formation of the superconducting filamentary phase and the freezing of antiphase domain walls, known to exist in these materials.« less

  7. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance

    USGS Publications Warehouse

    Grimes, Craig B.; John, Barbara E.; Kelemen, P.B.; Mazdab, F.K.; Wooden, J.L.; Cheadle, Michael J.; Hanghoj, K.; Schwartz, J.J.

    2007-01-01

    We present newly acquired trace element compositions for more than 300 zircon grains in 36 gabbros formed at the slow-spreading Mid-Atlantic and Southwest Indian Ridges. Rare earth element patterns for zircon from modern oceanic crust completely overlap with those for zircon crystallized in continental granitoids. However, plots of U versus Yb and U/Yb versus Hf or Y discriminate zircons crystallized in oceanic crust from continental zircon, and provide a relatively robust method for distinguishing zircons from these environments. Approximately 80% of the modern ocean crust zircons are distinct from the field defined by more than 1700 continental zircons from Archean and Phanerozoic samples. These discrimination diagrams provide a new tool for fingerprinting ocean crust zircons derived from reservoirs like that of modern mid-ocean ridge basalt (MORB) in both modern and ancient detrital zircon populations. Hadean detrital zircons previously reported from the Acasta Gneiss, Canada, and the Narryer Gneiss terrane, Western Australia, plot in the continental granitoid field, supporting hypotheses that at least some Hadean detrital zircons crystallized in continental crust forming magmas and not from a reservoir like modern MORB. ?? 2007 The Geological Society of America.

  8. Research on the optical and EPR spectral data and the local structure for the trigonal Mn4+ centers in MgTiO3 crystal

    NASA Astrophysics Data System (ADS)

    Liao, Bi-Tao; Mei, Yang; Chen, Bo-Wei; Zheng, Wen-Chen

    2017-07-01

    The optical bands and EPR (or spin-Hamiltonian) parameters (g factors g//, g⊥ and zero-field splitting D) for Mn4+ ions at the trigonal octahedral Ti4+ site of MgTiO3 crystal are uniformly computed by virtue of the complete diagonalization (of energy matrix) method based on the two-spin-orbit-parameter model, where besides the effects of spin-orbit parameter of central dn ion on the spectral data (in the classical crystal field theory), those of ligands are also contained. The computed eight optical and EPR spectral data with four suitable adjustable parameters (note: differing from those in the previous work within cubic symmetry approximation where the used Racah parameters violate the nephelauxetic effect, the present Racah parameters obey the effect and hence are suitable) are rationally coincident with the experimental values. In particular, the calculated ground state splitting 2D, the first excited splitting ΔE(2E) and g-anisotropy Δg (=g//-g⊥) (they depend strongly on the angular distortion of d3 centers) are in excellent agreement with the observed values, suggesting that the angular distortions caused by the impurity-induced local lattice relaxation obtained from the above calculation for the trigonal Mn4+ impurity center in MgTiO3: Mn4+ crystal seem to be acceptable.

  9. Near Infrared Luminescence Properties of Mn(5+): Ca5(PO4)3F

    NASA Technical Reports Server (NTRS)

    Davis, Valetta R.; Hoemmerich, Uwe; Loutts, George B.

    1997-01-01

    We report a spectroscopic investigation of Mn(5+) doped Ca5(PO4)(sub 3)F or FAP. Mn(5+) doped crystals have recently attracted world wide attention for potential solid-state laser applications. Following optical excitation of Mn: FAP with the 600 nm output of a Nd: YAG OPO laser system, we observed a strong near infrared luminescence centered at around 1150 nm. The room temperature luminescence decay time was measured to be approximately 635 microseconds. We attribute the infrared luminescence to the(1)E yields (3)A2 transition of tetrahedrally coordinated Mn5+ ions located in a strong crystal field environment. Absorption, luminescence and lifetime data of Mn: FAP will be presented and discussed.

  10. Aerosol-Cloud Interactions during Tropical Deep Convection: Evidence for the Importance of Free Tropospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Ackerman, A.; Jensen, E.; Stevens, D.; Wang, D.; Heymsfield, A.; Miloshevich, L.; Twohy, C.; Poellot, M.; VanReken, T.; Fridland, Ann

    2003-01-01

    NASA's 2002 CRYSTAL-FACE field experiment focused on the formation and evolution of tropical cirrus cloud systems in southern Florida. Multiple aircraft extensively sampled cumulonimbus dynamical and microphysical properties, as well as characterizing ambient aerosol populations both inside and outside the full depth of the convective column. On July 18, unique measurements were taken when a powerful updraft was traversed directly by aircraft, providing a window into the primary source region of cumulonimbus anvil crystals. Observations of the updraft, entered at approximately l0 km altitude and -34 C, indicated more than 200 cloud particles per mL at vertical velocities exceeding 20 m/s and the presence of significant condensation nuclei and liquid water within the core. In this work, aerosol and cloud phase observations are integrated by simulating the updraft conditions using a large-eddy resolving model with 3 explicit multiphase microphysics, including treatment of size-resolved aerosol fields, aerosol activation and freezing, and evaporation of cloud particles back to the aerosol phase. Simulations were initialized with observed thermodynamic and aerosol size distributions profiles and convection was driven by surface fluxes assimilated from the ARPS forecast model. Model results are consistent with the conclusions that most crystals are homogeneously frozen droplets and that entrained free tropospheric aerosols may contribute a significant fraction of the crystals. Thus most anvil crystals appear to be formed aloft in updraft cores, well above cloud base. These conclusions are supported by observations of hydrometeor size distribution made while traversing the dore, as well as aerosol and cloud particle size distributions generally observed by aircraft below 4km and crystal properties generally observed by aircraft above 12km.

  11. Orientation control of barium titanate films using metal oxide nanosheet layer

    NASA Astrophysics Data System (ADS)

    Uchida, Hiroshi; Oi, Tomotake; Noguchi, Keito; Moki, Shota; Kim, Jin Woon; Shima, Hiromi; Nishida, Ken; Kiguchi, Takanori; Akama, Akihiko; Konno, Toyohiko J.; Funakubo, Hiroshi

    2016-10-01

    In the present work, we aim to achieve the preferred crystal orientation of chemical solution deposition (CSD)-derived BaTiO3 films on ubiquitous Si wafers with the assistance of Ca2Nb3O10 nanosheet (ns-CN) template layers. The ns-CN on platinized Si (Pt/Si) substrates aligned the BaTiO3(100) plane to the substrate surface, because of the favorable lattice matching of the ns-CN (001) plane. The CSD process in air required a high crystallization temperature of 900 °C for the preferred crystal orientation of BaTiO3(100) because of the BaCO3 byproduct generated during the combustion reaction of the precursor gel. The processing in vacuum to remove CO2 species enhanced the crystal orientation even at the crystallization temperature of 800 °C, although it can generate oxygen vacancies (\\text{V}\\text{O}{} \\bullet \\bullet ) that cause distorted polarization behavior under an applied field higher than approximately 150 kV/cm. The relative dielectric constant (εr) of the (100)-oriented BaTiO3 film on the ns-CN-supported Pt/Si substrate (ns-CN/Pt/Si) was generally larger than that of the randomly oriented film on Pt/Si, depending on the degree of crystal orientation.

  12. Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Sasaki, Kohei; Thieu, Quang Tu; Wakimoto, Daiki; Koishikawa, Yuki; Kuramata, Akito; Yamakoshi, Shigenobu

    2017-12-01

    We developed depletion-mode vertical Ga2O3 trench metal-oxide-semiconductor field-effect transistors by using n+ contact and n- drift layers. These epilayers were grown on an n+ (001) Ga2O3 single-crystal substrate by halide vapor phase epitaxy. Cu and HfO2 were used for the gate metal and dielectric film, respectively. The mesa width and gate length were approximately 2 and 1 µm, respectively. The devices showed good DC characteristics, with a specific on-resistance of 3.7 mΩ cm2 and clear current modulation. An on-off ratio of approximately 103 was obtained.

  13. Bridgman Crystal Growth of an Alloy with Thermosolutal Convection Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Simpson, James E.; Garimella, Suresh V.; deGroh, Henry C., III; Abbaschian, Reza

    2000-01-01

    The solidification of a dilute alloy (bismuth-tin) under Bridgman crystal growth conditions is investigated. Computations are performed in two dimensions with a uniform grid. The simulation includes the species concentration, temperature and flow fields, as well as conduction in the ampoule. Fully transient simulations have been performed, with no simplifying steady state approximations. Results are obtained under microgravity conditions for pure bismuth, and for Bi-0.1 at.%Sn and Bi-1.0 at.%Sn alloys, and compared with experimental results obtained from crystals grown in the microgravity environment of space. For the Bi-1.0 at.%Sn case the results indicate that a secondary convective cell, driven by solutal gradients, forms near the interface. The magnitude of the velocities in this cell increases with time, causing increasing solute segregation at the solid/liquid interface. The concentration-dependence of the melting temperature is incorporated in the model for the Bi-1.0 at.%Sn alloy. Satisfactory correspondence is obtained between the predicted and experimental results in terms of solute concentrations in the solidified crystal.

  14. X-ray driven channeling acceleration in crystals and carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Young-Min; Still, Dean A.; Shiltsev, Vladimir

    2013-12-01

    Acceleration of particles channeling in a crystal by means of diffracted x-rays via Bormann anomalous transmission was conceived for heavy ions and muons by Tajima and Cavenago [Phys. Rev. Lett. 59, 1440 (1987)], which potentially offers an appreciably high field gradient on the order of GV/cm. The theoretical model of the high gradient acceleration has been studied in two kinds of atomic structure, crystals and carbon nanotubes (CNTs), with analytic calculations and electromagnetic eigenmode simulations. A range of acceleration gradients and cutoffs of the x-ray power (the lowest power limit to overcome the Bremsstrahlung radiation losses) are characterized in termsmore » of the lattice constants, unit cell sizes, and photon energies. The parametric analysis indicates that the required x-ray power can be reduced to an order of megawatt by replacing crystals with CNTs. Eventually, the equivalent dielectric approximation of a multi-wall nanotube shows that 250–810 MeV muons can be synchronously coupled with x-rays of 0.65–1.32 keV in the accelerating structure.« less

  15. Probing polymer crystallization at processing-relevant cooling rates with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavallo, Dario, E-mail: Dario.cavallo@unige.it; Portale, Giuseppe; Androsch, René

    2015-12-17

    Processing of polymeric materials to produce any kind of goods, from films to complex objects, involves application of flow fields on the polymer melt, accompanied or followed by its rapid cooling. Typically, polymers solidify at cooling rates which span over a wide range, from a few to hundreds of °C/s. A novel method to probe polymer crystallization at processing-relevant cooling rates is proposed. Using a custom-built quenching device, thin polymer films are ballistically cooled from the melt at rates between approximately 10 and 200 °C/s. Thanks to highly brilliant synchrotron radiation and to state-of-the-art X-ray detectors, the crystallization process ismore » followed in real-time, recording about 20 wide angle X-ray diffraction patterns per second while monitoring the instantaneous sample temperature. The method is applied to a series of industrially relevant polymers, such as isotactic polypropylene, its copolymers and virgin and nucleated polyamide-6. Their crystallization behaviour during rapid cooling is discussed, with particular attention to the occurrence of polymorphism, which deeply impact material’s properties.« less

  16. Nanosecond liquid crystalline optical modulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borshch, Volodymyr; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.

    2016-07-26

    An optical modulator includes a liquid crystal cell containing liquid crystal material having liquid crystal molecules oriented along a quiescent director direction in the unbiased state, and a voltage source configured to apply an electric field to the liquid crystal material wherein the direction of the applied electric field does not cause the quiescent director direction to change. An optical source is arranged to transmit light through or reflect light off the liquid crystal cell with the light passing through the liquid crystal material at an angle effective to undergo phase retardation in response to the voltage source applying themore » electric field. The liquid crystal material may have negative dielectric anisotropy, and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is transverse to the quiescent director direction. Alternatively, the liquid crystal material may have positive dielectric anisotropy and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is parallel with the quiescent director direction.« less

  17. Disordered Route to the Coulomb Quantum Spin Liquid: Random Transverse Fields on Spin Ice in Pr 2 Zr 2 O 7

    DOE PAGES

    Wen, J. -J.; Koohpayeh, S. M.; Ross, K. A.; ...

    2017-03-08

    Inelastic neutron scattering reveals a broad continuum of excitations in Pr 2 Zr 2 O 7 , the temperature and magnetic field dependence of which indicate a continuous distribution of quenched transverse fields ( Δ ) acting on the non-Kramers Pr 3 + crystal field ground state doublets. Spin-ice correlations are apparent within 0.2 meV of the Zeeman energy. In a random phase approximation an excellent account of the data is provided and contains a transverse field distribution ρ ( Δ ) ∝ ( Δ 2 + Γ 2 ) - 1 , where Γ = 0.27 ( 1 )more » meV . Established during high temperature synthesis due to an underlying structural instability, it appears disorder in Pr 2 Zr 2 O 7 actually induces a quantum spin liquid.« less

  18. Design of a multistep phase mask for high-energy THz pulse generation in ZnTe crystal

    NASA Astrophysics Data System (ADS)

    Avetisyan, Yuri H.; Makaryan, Armen; Tadevosyan, Vahe

    2017-08-01

    A new scheme for generating high-energy terahertz (THz) pulses by optical rectification of tilted pulse front (TPF) femtosecond laser pulses in ZnTe crystal is proposed and analyzed. The TPF laser pulses are originated due to propagation through a multistep phase mask (MSPM) attached to the entrance surface of the nonlinear crystal. Similar to the case of contacting optical grating the necessity of the imaging optics is avoided. In addition, introduction of large amounts of angular dispersion is also eliminated. The operation principle is based on the fact that the MSPM splits a single input beam into many smaller time-delayed "beamlets", which together form a discretely TPF in the nonlinear crystal. The dimensions of the mask's steps required for high-energy THz-pulse generation in ZnTe and widely used lithium niobate (LN) crystals are calculated. The optimal number of steps is estimated taking into account individual beamlet's spatial broadening and problems related to the mask fabrication. The THz field in no pump depletion approximation is analytically calculated using radiating antenna model. The analysis shows that application of ZnTe crystal allows obtaining higher THz-pulse energy than that of LN crystal, especially when long-wavelength pump sources are used. The proposed method is a promising way to develop high-energy, monolithic, and alignment-free THzpulse source.

  19. Thermal annealing and single-domain preparation in tetragonal Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystal for electro-optic and non-linear optical applications

    NASA Astrophysics Data System (ADS)

    Zhao, Ye; Wang, Sanhong; Fu, Xiaotian; Zhuang, Yongyong; Yang, Rui; Yang, Zhi; Li, Zhenrong; Xu, Zhuo; Wei, Xiaoyong

    2018-02-01

    The relaxor-PbTiO3 single crystal has attracted extensive attention in ultrasound transducers, sensors, actuators, and optoelectronics devices due to its excellent piezoelectric response and electro-optic properties. Preparation of a single-domain crystal as a critical process for application in electro-optic and non-linear optical devices suffers from serious and inevitable cracking. Therefore, a pre-poling thermal annealing process was suggested to release residual stress from crystal growth and the ferroelectric-paraelectric phase transition, which significantly reduced the chance of cracking. The effect of thermal annealing on dielectric properties, strain behavior, and domain structure were investigated. As a result, a significant increase of the dielectric constant near room temperature was obtained after annealing, which is close to the dielectric constant of the a-oriented domain. The annealed single crystal showed a lower and sharper strain peak at the coercive electric field compared with the unannealed sample, and the 90° domain walls completely vanished, which was verified by optical microscopy. The crack-free single-domain crystal showed excellent optical quality, with high transmittance of approximately 70% in the visible and near-infrared regions, which indicates that this crystal is a promising candidate for applications in electro-optic and non-linear optical devices.

  20. Multi-photon Rabi oscillations in high spin paramagnetic impurity

    NASA Astrophysics Data System (ADS)

    Bertaina, S.; Groll, N.; Chen, L.; Chiorescu, I.

    2011-10-01

    We report on multiple photon monochromatic quantum oscillations (Rabi oscillations) observed by pulsed EPR (Electron Paramagnetic Resonance) of Mn2+ (S = 5/2) impurities in MgO. We find that when the microwave magnetic field is similar or large than the anisotropy splitting, the Rabi oscillations have a spectrum made of many frequencies not predicted by the S = l/2 Rabi model. We show that these new frequencies come from multiple photon coherent manipulation of the multi-level spin impurity. We develop a model based on the crystal field theory and the rotating frame approximation, describing the observed phenomenon with a very good agreement.

  1. The first example of erbium triple-stranded helicates displaying SMM behaviour.

    PubMed

    Gorczyński, Adam; Kubicki, Maciej; Pinkowicz, Dawid; Pełka, Robert; Patroniak, Violetta; Podgajny, Robert

    2015-10-14

    A series of isostructural C3-symmetrical triple stranded dinuclear lanthanide [Ln2L3](NO3)3 molecules have been synthesized using subcomponent self-assembly of Ln(NO3)3 with 2-(methylhydrazino)benzimidazole and 4-tert-butyl-2,6-diformylphenol, where Ln = Tb (1), Dy (2), Ho (3), Er (4), Tm (5), and Yb (6). The temperature dependent and field dependent magnetic properties of 1-6 were modeled using the van Vleck approximation including the crystal field term HCF, the super-exchange term HSE and the Zeeman term HZE. Ferromagnetic interactions were found in 1, 2, 4 and 6, while antiferromagnetic interactions were found in 3 and 5. The erbium analogue reveals field induced SMM behaviour.

  2. Scanning hall probe microscopy (SHPM) using quartz crystal AFM feedback.

    PubMed

    Dede, M; Urkmen, K; Girişen, O; Atabak, M; Oral, A; Farrer, I; Ritchie, D

    2008-02-01

    Scanning Hall Probe Microscopy (SHPM) is a quantitative and non-invasive technique for imaging localized surface magnetic field fluctuations such as ferromagnetic domains with high spatial and magnetic field resolution of approximately 50 nm and 7 mG/Hz(1/2) at room temperature. In the SHPM technique, scanning tunneling microscope (STM) or atomic force microscope (AFM) feedback is used to keep the Hall sensor in close proximity of the sample surface. However, STM tracking SHPM requires conductive samples; therefore the insulating substrates have to be coated with a thin layer of gold. This constraint can be eliminated with the AFM feedback using sophisticated Hall probes that are integrated with AFM cantilevers. However it is very difficult to micro fabricate these sensors. In this work, we have eliminated the difficulty in the cantilever-Hall probe integration process, just by gluing a Hall Probe chip to a quartz crystal tuning fork force sensor. The Hall sensor chip is simply glued at the end of a 32.768 kHz or 100 kHz Quartz crystal, which is used as force sensor. An LT-SHPM system is used to scan the samples. The sensor assembly is dithered at the resonance frequency using a digital Phase Locked Loop circuit and frequency shifts are used for AFM tracking. SHPM electronics is modified to detect AFM topography and the frequency shift, along with the magnetic field image. Magnetic domains and topography of an Iron Garnet thin film crystal, NdFeB demagnetised magnet and hard disk samples are presented at room temperature. The performance is found to be comparable with the SHPM using STM feedback.

  3. Excitonic couplings between molecular crystal pairs by a multistate approximation

    NASA Astrophysics Data System (ADS)

    Aragó, Juan; Troisi, Alessandro

    2015-04-01

    In this paper, we present a diabatization scheme to compute the excitonic couplings between an arbitrary number of states in molecular pairs. The method is based on an algebraic procedure to find the diabatic states with a desired property as close as possible to that of some reference states. In common with other diabatization schemes, this method captures the physics of the important short-range contributions (exchange, overlap, and charge-transfer mediated terms) but it becomes particularly suitable in presence of more than two states of interest. The method is formulated to be usable with any level of electronic structure calculations and to diabatize different types of states by selecting different molecular properties. These features make the diabatization scheme presented here especially appropriate in the context of organic crystals, where several excitons localized on the same molecular pair may be found close in energy. In this paper, the method is validated on the tetracene crystal dimer, a well characterized case where the charge transfer (CT) states are closer in energy to the Frenkel excitons (FE). The test system was studied as a function of an external electric field (to explore the effect of changing the relative energy of the CT excited state) and as a function of different intermolecular distances (to probe the strength of the coupling between FE and CT states). Additionally, we illustrate how the approximation can be used to include the environment polarization effect.

  4. Reentrant behaviors in the phase diagram of spin-1 planar ferromagnet with single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Rabuffo, I.; De Cesare, L.; Caramico D'Auria, A.; Mercaldo, M. T.

    2018-05-01

    We used the two-time Green function framework to investigate the role played by the easy-axis single-ion anisotropy on the phase diagram of (d > 2)-dimensional spin-1planar ferromagnets, which exhibit a magnetic field induced quantum phase transition. We tackled the problem using two different kind of approximations: the Anderson-Callen decoupling scheme and the Devlin approach. In the latter scheme, the exchange anisotropy terms in the equations of motion are treated at the Tyablikov decoupling level while the crystal field anisotropy contribution is handled exactly. The emerging key result is a reentrant structure of the phase diagram close to the quantum critical point, for certain values of the single-ion anisotropy parameter. We compare the results obtained within the two approximation schemes. In particular, we recover the same qualitative behavior. We show the phase diagram, close to the field-induced quantum critical point and the behavior of the susceptibility for different values of the single-ion anisotropy parameter, enhancing the differences between the two different scenarios (i.e. with and without reentrant behavior).

  5. USGS field activity 08FSH01 on the west Florida shelf, Gulf of Mexico, in August 2008

    USGS Publications Warehouse

    Robbins, Lisa L.; Knorr, Paul O.; Liu, Xuewu; Byrne, Robert H.; Raabe, Ellen A.

    2009-01-01

    From August 11 to 15, 2008, a cruise led by the U.S. Geological Survey (USGS) collected air and sea surface partial pressure of carbon dioxide (pCO2), pH, dissolved inorganic carbon (DIC), and total alkalinity (TA) data on the west Florida shelf. Approximately 1,600 data points were collected underway over a 650-kilometer (km) trackline using the Multiparameter Inorganic Carbon Analyzer (MICA). The collection of data extended from Crystal River southward to Marco Island, Florida (~400 km), and westward up to 160 km off the Florida coast. Discrete water samples from approximately 40 locations were also taken at specific localities to corroborate underway data measurements. The USGS St. Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier to each cruise or field activity. For example, 08FSH01 tells us the data were collected in 2008 for the Response of Florida Shelf (FSH) Ecosystems to Climate Change project, and the data were collected during the first field activity for that study in that calendar year.

  6. A Fully Integrated Materials Framework for Enabling the Wireless Detection of Micro-defects in Aging and Battle-worn Structures (Year 1)

    DTIC Science & Technology

    2011-04-01

    sputtered PZT films on both sapphire and Si substrates were textured along the [110] direction. The degree of preference for the [110] direction was... PZT . Since these films are approximately 0.5 μm thick and breakdown occurs at relatively high fields, surface-related ( ceramic metal contact band... ceramics created donor sites, which are n-type. From the crystallographic data, it is seen that the degree of crystallinity and PZT crystal quality

  7. Electronic structure studies of La2CuO4

    NASA Astrophysics Data System (ADS)

    Wachs, A. L.; Turchi, P. E. A.; Jean, Y. C.; Wetzler, K. H.; Howell, R. H.; Fluss, M. J.; Harshman, D. R.; Remeika, J. P.; Cooper, A. S.; Fleming, R. M.

    1988-07-01

    We report results of positron-electron momentum-distribution measurements of single-crystal La2CuO4 using two-dimensional angular correlation of positron-annihilation-radiation techniques. The data contain two components: a large (~85%), isotropic corelike electron contribution and a remaining, anisotropic valence-electron contribution modeled using a linear combination of atomic orbitals-molecular orbital method and a localized ion scheme, within the independent-particle model approximation. This work suggests a ligand-field Hamiltonian to be justified for describing the electronic properties of perovskite materials.

  8. Improvement of the relaxation time and the order parameter of nematic liquid crystal using a hybrid alignment mixture of carbon nanotube and polyimide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyojin; Yang, Seungbin; Lee, Ji-Hoon, E-mail: jihoonlee@jbnu.ac.kr

    2014-05-12

    We examined the electrooptical properties of a nematic liquid crystal (LC) sample whose substrates were coated with a mixture of carbon nanotube (CNT) and polyimide (PI). The relaxation time of the sample coated with 1.5 wt. % CNT mixture was about 35% reduced compared to the pure polyimide sample. The elastic constant and the order parameter of the CNT-mixture sample were increased and the fast relaxation of LC could be approximated to the mean-field theory. We found the CNT-mixed polyimide formed more smooth surface than the pure PI from atomic force microscopy images, indicating the increased order parameter is related to themore » smooth surface topology of the CNT-polyimide mixture.« less

  9. Calibration of X-ray spectrometers for opacity experiments at the Orion laser facility (invited).

    PubMed

    Bentley, C; Allan, P; Brent, K; Bruce, N; Hoarty, D; Meadowcroft, A; Percival, J; Opie, C

    2016-11-01

    Accurately calibrated and characterised x-ray diagnostics are a key requirement in the fielding of experiments on the Orion laser where absolute measurements of x-ray emission are used to underpin the validity of models of emissivity and opacity. Diffraction crystals are used in spectrometers on Orion to record the dispersed spectral features emitted by the laser produced plasma to obtain a measurement of the plasma conditions. The ability to undertake diffraction crystal calibrations supports the successful outcome of these Orion experiments. This paper details the design and commissioning of a system to undertake these calibrations in the energy range 2.0 keV to approximately 8.5 keV. Improvements to the design are detailed which will extend the commissioned range of energies to below 1 keV.

  10. X-ray-generated heralded macroscopical quantum entanglement of two nuclear ensembles.

    PubMed

    Liao, Wen-Te; Keitel, Christoph H; Pálffy, Adriana

    2016-09-19

    Heralded entanglement between macroscopical samples is an important resource for present quantum technology protocols, allowing quantum communication over large distances. In such protocols, optical photons are typically used as information and entanglement carriers between macroscopic quantum memories placed in remote locations. Here we investigate theoretically a new implementation which employs more robust x-ray quanta to generate heralded entanglement between two crystal-hosted macroscopical nuclear ensembles. Mössbauer nuclei in the two crystals interact collectively with an x-ray spontaneous parametric down conversion photon that generates heralded macroscopical entanglement with coherence times of approximately 100 ns at room temperature. The quantum phase between the entangled crystals can be conveniently manipulated by magnetic field rotations at the samples. The inherent long nuclear coherence times allow also for mechanical manipulations of the samples, for instance to check the stability of entanglement in the x-ray setup. Our results pave the way for first quantum communication protocols that use x-ray qubits.

  11. Crystallization of a Keplerate-type polyoxometalate into a superposed kagome-lattice with huge channels.

    PubMed

    Saito, Masaki; Ozeki, Tomoji

    2012-09-07

    Crystal structures of two Sr(2+) salts of the Keplerate-type polyoxometalate, [Mo(VI)(72)Mo(V)(60)O(372)(CH(3)COO)(30)(H(2)O)(72)](42-), have been determined by single crystal X-ray diffraction. One compound exhibits a superposed kagome-lattice with huge channels whose diameters measure approximately 3.0 nm, while the arrangement of the Keplerate anions in the other compound approximates to a distorted cubic close packing.

  12. Transformation from an easy-plane to an easy-axis antiferromagnetic structure in the mixed rare-earth ferroborates Pr x Y1-x Fe3(BO3)4: magnetic properties and crystal field calculations.

    PubMed

    Pankrats, A I; Demidov, A A; Ritter, C; Velikanov, D A; Semenov, S V; Tugarinov, V I; Temerov, V L; Gudim, I A

    2016-10-05

    The magnetic structure of the mixed rare-earth system Pr x Y1-x Fe3(BO3)4 (x  =  0.75, 0.67, 0.55, 0.45, 0.25) was studied via magnetic and resonance measurements. These data evidence the successive spin reorientation from the easy-axis antiferromagnetic structure formed in PrFe3(BO3)4 to the easy-plane one of YFe3(BO3)4 associated with the weakening of the magnetic anisotropy of the Pr subsystem due to its diamagnetic dilution by nonmagnetic Y. This reorientation occurs through the formation of an inclined magnetic structure, as was confirmed by our previous neutron research in the range of x  =  0.67 ÷ 0.45. In the compounds with x  =  0.75 and 0.67 whose magnetic structure is close to the easy-axis one, a two-step spin reorientation takes place in the magnetic field H||c. Such a peculiarity is explained by the formation of an interjacent inclined magnetic structure with magnetic moments of Fe ions located closer to the basal plane than in the initial state, with these intermediate states remaining stable in some ranges of the magnetic field. An approach based on a crystal field model for the Pr(3+) ion and the molecular-field approximation is used to describe the magnetic characteristics of the system Pr x Y1-x Fe3(BO3)4. With the parameters of the d-d and f-d exchange interactions, of the magnetic anisotropy of the iron subsystem and of the crystal field parameters of praseodymium thus determined, it is possible to achieve a good agreement between the experimental and calculated temperature and field dependences of the magnetization curves (up to 90 kOe) and magnetic susceptibilities (2-300 K).

  13. Low-temperature elastic properties of YbSbPt probed by ultrasound measurements

    NASA Astrophysics Data System (ADS)

    Nakanishi, Y.; Takahashi, S.; Ohyama, R.; Hasegawa, J.; Nakamura, M.; Suzuki, H.; Yoshizawa, M.

    2018-03-01

    The elastic properties of a single crystal of the half-Heusler compound YbSbPt have been investigated by means of the ultrasonic measurement. In particular, careful measurements of the temperature (T) dependent elastic constant C 11(T) was performed in the vicinity of its phase transition point near T N of 0.5 K. A clear step-like anomaly accompanied by spin-density-wave type antiferromagnetic (AFM) phase transition was found in the C 11(T) curve. The low-temperature magnetic phase diagram is proposed on the basis of the results. The phase diagram consists of, at least two main distinct phases: a low-field and high-field regime with a transition field of approximately 0.6 T at zero field. We discuss the low-temperature elastic property based on analysis of Landau-type free energy.

  14. Magnetic properties of vanadium doped CdTe: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Goumrhar, F.; Bahmad, L.; Mounkachi, O.; Benyoussef, A.

    2017-04-01

    In this paper, we are applying the ab initio calculations to study the magnetic properties of vanadium doped CdTe. This study is based on the Korringa-Kohn-Rostoker method (KKR) combined with the coherent potential approximation (CPA), within the local density approximation (LDA). This method is called KKR-CPA-LDA. We have calculated and plotted the density of states (DOS) in the energy diagram for different concentrations of dopants. We have also investigated the magnetic and half-metallic properties of this compound and shown the mechanism of exchange interaction. Moreover, we have estimated the Curie temperature Tc for different concentrations. Finally, we have shown how the crystal field and the exchange splittings vary as a function of the concentrations.

  15. Tunneling-thermally activated vacancy diffusion mechanism in quantum crystals

    NASA Astrophysics Data System (ADS)

    Natsik, V. D.; Smirnov, S. N.

    2017-10-01

    We consider a quasiparticle model of a vacancy in a quantum crystal, with metastable quantum states localized at the lattice sites in potential wells of the crystal field. It is assumed that the quantum dynamics of such vacancies can be described in the semi-classical approximation, where its spectrum consists of a broad band with several split-off levels. The diffusive movement of the vacancy in the crystal volume is reduced to a sequence of tunneling and thermally activated hops between the lattice cites. The temperature dependence of the vacancy diffusion coefficient shows a monotonic decrease during cooling with a sharp transition from an exponential dependence that is characteristic of a high-temperature thermally activated diffusion, to a non-thermal tunneling process in the region of extremely low temperatures. Similar trends have been recently observed in an experimental study of mass-transfer in the 4He and 3He crystals [V. A. Zhuchkov et al., Low Temp. Phys. 41, 169 (2015); Low Temp. Phys. 42, 1075 (2016)]. This mechanism of vacancy diffusion and its analysis complement the concept of a diffusional flow of a defection-quasiparticle quantum gas with a band energy spectrum proposed by Andreev and Lifshitz [JETP 29, 1107 (1969)] and Andreev [Sov. Phys. Usp. 19, 137 (1976)].

  16. Growth, morphological properties and pulsed photo response of MoTe2 single crystal synthesized by DVT technique

    NASA Astrophysics Data System (ADS)

    Dixit, Vijay; Vyas, Chirag; Patel, Abhishek; Pathak, V. M.; Solanki, G. K.; Patel, K. D.

    2018-05-01

    Molybednum Di Telluride of group VI belongs to the family of layered transition metal di-chalcogenides (TMDCs). These TMDCs show good potential for applications in the field of optoelectronic devices as they are chemically inert trilayered structure of MX2 type. In the present investigation crystals of MoTe2 are grown by direct vapor transport technique in a dual zone horizontal furnace. The grown crystals were characterized by Energy Dispersive Analysis of X-rays (EDAX) to study its elemental and stoichiometric composition, Selected Area Electron Diffraction (SAED) confirms the hexagonal structure. Spot pattern of electron diffraction shows formation of single phase. Scanning Electron Microscope (SEM) shows the layer by layer growth of the crystals, Thermo Electric Power (TEP) reflects the p-type semiconducting nature of the grown crystals. As this material is photosensitive material having band gap of approximately 1.0 eV, a transient photo response against polychromatic radiation (40 mW/cm2) of photodetector is also measured which showed slow decay in generated photocurrent due to low trapping density within the active area of the prepared device. Thus, it shows that this material can be a good photovoltaic material for constructing a solar cell also.

  17. Occurrence of wide-chain Ca-pyriboles as primary crystals in the Salton Sea Geothermal Field, California, USA

    NASA Astrophysics Data System (ADS)

    Yau, Yu-Chyi; Peacor, Donald R.; Essene, Eric J.

    1986-09-01

    Amphiboles and pyroxenes occurring in the Salton Sea Geothermal Field were found to contain coherent intergrowths of chain silicates with other than double and single chain widths by using transmission and analytical electron microscopy. Both occur in the biotite zone at the temperature (depth) interval of 310° C (1,060 m) to 330° C (1,547m) which approximately corresponds to temperatures of the greenschist facies. The amphiboles occur as euhedral fibrous crystals occupying void space and are composed primarily of irregularly alternating (010) slabs of double or triple chains, with rare quadruple and quintuple chains. Primary crystallization from solution results in euhedral crystals. Clinopyroxenes formed mainly as a porefilling cement and subordinately as prismatic crystals coexisting with fibrous amphiboles. Fine lamellae of double and triple chains are irregularly intercalated with pyroxene. AEM analyses yield formulae (Ca1.8Mg2.9Fe1.9Mn0.1) Si8O21.8(OH)1.8 (310° C) and (Ca2.0Fe2.5Mg2.3) Si8O21.8 (OH)2.0 (330° C) for amphiboles and (Ca1.1Fe0.6Mg0.3) Si2O6 for clinopyroxene. Thermodynamic calculations at Pfluid=100 bar of equilibrium reactions of (1) 3 chlorite +10 calcite + 21 quartz = 3 actinolite + 2 clinozoisite + 8 H2O + 10 CO2 and (2) actinolite+ 3 calcite+ 2 quartz = 5 clinopyroxene + H2O + 3 CO2 using Mg-end member phases indicate that formation of amphibole and pyroxene require very water-rich conditions (X_{CO_2 } < 0.06) at temperatures below 330° C.

  18. Monochromatic neutron beam production at Brazilian nuclear research reactors

    NASA Astrophysics Data System (ADS)

    Stasiulevicius, Roberto; Rodrigues, Claudio; Parente, Carlos B. R.; Voi, Dante L.; Rogers, John D.

    2000-12-01

    Monochomatic beams of neutrons are obtained form a nuclear reactor polychromatic beam by the diffraction process, suing a single crystal energy selector. In Brazil, two nuclear research reactors, the swimming pool model IEA-R1 and the Argonaut type IEN-R1 have been used to carry out measurements with this technique. Neutron spectra have been measured using crystal spectrometers installed on the main beam lines of each reactor. The performance of conventional- artificial and natural selected crystals has been verified by the multipurpose neutron diffractometers installed at IEA-R1 and simple crystal spectrometer in operator at IEN- R1. A practical figure of merit formula was introduced to evaluate the performance and relative reflectivity of the selected planes of a single crystal. The total of 16 natural crystals were selected for use in the neutron monochromator, including a total of 24 families of planes. Twelve of these natural crystal types and respective best family of planes were measured directly with the multipurpose neutron diffractometers. The neutron spectrometer installed at IEN- R1 was used to confirm test results of the better specimens. The usually conventional-artificial crystal spacing distance range is limited to 3.4 angstrom. The interplane distance range has now been increased to approximately 10 angstrom by use of naturally occurring crystals. The neutron diffraction technique with conventional and natural crystals for energy selection and filtering can be utilized to obtain monochromatic sub and thermal neutrons with energies in the range of 0.001 to 10 eV. The thermal neutron is considered a good tool or probe for general applications in various fields, such as condensed matter, chemistry, biology, industrial applications and others.

  19. Crystal electric field excitations in the quasicrystal approximant TbCd 6 studied by inelastic neutron scattering

    DOE PAGES

    Das, Pinaki; Lory, P. -F.; Flint, R.; ...

    2017-02-07

    Here, we have performed inelastic neutron scattering measurements on powder samples of the quasicrystal approximant, TbCd 6, grown using isotopically enriched 112Cd. Both quasielastic scattering and distinct inelastic excitations were observed below 3 meV. The intensity of the quasielastic scattering measured in the paramag- netic phase diverges as T N ~ 22 K is approached from above. The inelastic excitations, and their evolution with temperature, are well characterized by the leading term, Bmore » $$0\\atop{2}$$O$$0\\atop{2}$$, of the crystalline electric field (CEF) level scheme for local pentagonal symmetry for the rare-earth ions [1] indicating that the Tb moment is directed primarily along the unique local pseudo-five-fold axis of the Tsai-type clusters. We also find good agreement between the inverse susceptibility determined from magnetization measurements using a magnetically diluted Tb 0.05Y 0.95Cd 6 sample and that calculated using the CEF level scheme determined from the neutron measurements.« less

  20. Dynamic magnetic hysteresis properties of two-dimensional ferrimagnetic structures containing high-spin (S = 5/2) and low-spin (S = 1/2)

    NASA Astrophysics Data System (ADS)

    Batı, Mehmet; Ertaş, Mehmet

    2017-09-01

    The dynamic hysteresis behaviors of a containing high spin-5/2 and low spin-1/2 Ising ferrimagnetic system on a square lattice are studied by using the dynamic mean-field approximation. The influences of the temperature, the single-ion anisotropy and the frequency on dynamic hysteresis behaviors are investigated in detail. Somewhat characteristic behaviors are found, such as the presence of triple hysteresis loop for appropriate values of the crystal field or temperature. Besides, we observed that, hysteresis loop area and phase transition points are very sensitive to changes in frequency and thus have profound importance in device application.

  1. Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Ji; Kim, Sung-Jo; Ko, Myeong Ock; Kim, Jong-Hyun; Jeon, Min Yong

    2018-03-01

    We propose a tunable multiwavelength-swept laser based on a nematic liquid crystal (NLC) Fabry-Perot (FP) etalon, which is embedded in the resonator of a wavelength-swept laser. We achieve the continuous wavelength tuning of the multiwavelength-swept laser by applying the electric field to the NLC FP etalon. The free spectral range of the fabricated NLC FP etalon is approximately 7.9 nm. When the electric field applied to the NLC FP etalon exceeds the threshold value (Fréedericksz threshold voltage), the output of the multiwavelength-swept laser can be tuned continuously. The tuning range of the multiwavelength-swept laser can be achieved at a value greater than 75 nm, which has a considerably wider tunable range than a conventional multiwavelength laser based on an NLC FP etalon. The slope efficiencies in the spectral and temporal domains for the tunable multiwavelength-swept laser are 22.2 nm/(mVrms / μm) and 0.17 ms/(mVrms / μm), respectively in the linear region. Therefore, the developed multiwavelength-swept laser based on the NLC FP etalon can be applied to an electric-field sensor. Because the wavelength measurement and time measurement have a linear relationship, the electric-field sensor can detect a rapid change in the electric-field intensity by measuring the peak change of the pulse in the temporal domain using the NLC FP etalon-based multiwavelength-swept laser.

  2. An Overview of Hardware for Protein Crystallization in a Magnetic Field.

    PubMed

    Yan, Er-Kai; Zhang, Chen-Yan; He, Jin; Yin, Da-Chuan

    2016-11-16

    Protein crystallization under a magnetic field is an interesting research topic because a magnetic field may provide a special environment to acquire improved quality protein crystals. Because high-quality protein crystals are very useful in high-resolution structure determination using diffraction techniques (X-ray, neutron, and electron diffraction), research using magnetic fields in protein crystallization has attracted substantial interest; some studies have been performed in the past two decades. In this research field, the hardware is especially essential for successful studies because the environment is special and the design and utilization of the research apparatus in such an environment requires special considerations related to the magnetic field. This paper reviews the hardware for protein crystallization (including the magnet systems and the apparatus designed for use in a magnetic field) and progress in this area. Future prospects in this field will also be discussed.

  3. An Overview of Hardware for Protein Crystallization in a Magnetic Field

    PubMed Central

    Yan, Er-Kai; Zhang, Chen-Yan; He, Jin; Yin, Da-Chuan

    2016-01-01

    Protein crystallization under a magnetic field is an interesting research topic because a magnetic field may provide a special environment to acquire improved quality protein crystals. Because high-quality protein crystals are very useful in high-resolution structure determination using diffraction techniques (X-ray, neutron, and electron diffraction), research using magnetic fields in protein crystallization has attracted substantial interest; some studies have been performed in the past two decades. In this research field, the hardware is especially essential for successful studies because the environment is special and the design and utilization of the research apparatus in such an environment requires special considerations related to the magnetic field. This paper reviews the hardware for protein crystallization (including the magnet systems and the apparatus designed for use in a magnetic field) and progress in this area. Future prospects in this field will also be discussed. PMID:27854318

  4. Enhanced moments of Eu in single crystals of the metallic helical antiferromagnet EuCo2 -yAs2

    NASA Astrophysics Data System (ADS)

    Sangeetha, N. S.; Anand, V. K.; Cuervo-Reyes, Eduardo; Smetana, V.; Mudring, A.-V.; Johnston, D. C.

    2018-04-01

    The compound EuCo2 -yAs2 with the tetragonal ThCr2Si2 structure is known to contain Eu+2 ions with spin S =7/2 that order below a temperature TN≈47 K into an antiferromagnetic (AFM) proper helical structure with the ordered moments aligned in the tetragonal a b plane, perpendicular to the helix axis along the c axis, with no contribution from the Co atoms. Here we carry out a detailed investigation of the properties of single crystals. We consistently find about 5% vacancies on the Co site from energy-dispersive x-ray analysis and x-ray diffraction refinements. Enhanced ordered and effective moments of the Eu spins are found in most of our crystals. Electronic structure calculations indicate that the enhanced moments arise from polarization of the d bands, as occurs in ferromagnetic Gd metal. Electrical resistivity measurements indicate metallic behavior. The low-field in-plane magnetic susceptibilities χa b(T

  5. Effects of magnetic fields on dissolution of arthritis causing crystals

    NASA Astrophysics Data System (ADS)

    Takeuchi, Y.; Iwasaka, M.

    2015-05-01

    The number of gout patients has rapidly increased because of excess alcohol and salt intake. The agent responsible for gout is the monosodium urate (MSU) crystal. MSU crystals are found in blood and consist of uric acid and sodium. As a substitute for drug dosing or excessive water intake, physical stimulation by magnetic fields represents a new medical treatment for gout. In this study, we investigated the effects of a magnetic field on the dissolution of a MSU crystal suspension. The white MSU crystal suspension was dissolved in an alkaline solution. We measured the light transmission of the MSU crystal suspension by a transmitted light measuring system. The magnetic field was generated by a horizontal electromagnet (maximum field strength was 500 mT). The MSU crystal suspension that dissolved during the application of a magnetic field of 500 mT clearly had a higher dissolution rate when compared with the control sample. We postulate that the alkali solution promoted penetration upon diamagnetic rotation and this magnetic field orienting is because of the pronounced diamagnetic susceptibility anisotropy of the MSU crystal. The results indicate that magnetic fields represent an effective gout treatment approach.

  6. Classical density functional theory and the phase-field crystal method using a rational function to describe the two-body direct correlation function.

    PubMed

    Pisutha-Arnond, N; Chan, V W L; Iyer, M; Gavini, V; Thornton, K

    2013-01-01

    We introduce a new approach to represent a two-body direct correlation function (DCF) in order to alleviate the computational demand of classical density functional theory (CDFT) and enhance the predictive capability of the phase-field crystal (PFC) method. The approach utilizes a rational function fit (RFF) to approximate the two-body DCF in Fourier space. We use the RFF to show that short-wavelength contributions of the two-body DCF play an important role in determining the thermodynamic properties of materials. We further show that using the RFF to empirically parametrize the two-body DCF allows us to obtain the thermodynamic properties of solids and liquids that agree with the results of CDFT simulations with the full two-body DCF without incurring significant computational costs. In addition, the RFF can also be used to improve the representation of the two-body DCF in the PFC method. Last, the RFF allows for a real-space reformulation of the CDFT and PFC method, which enables descriptions of nonperiodic systems and the use of nonuniform and adaptive grids.

  7. The Effects of a Magnetic Field on the Crystallization of a Fluorozirconate Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Lapointe, Michael R.; Jia, Zhiyong

    2006-01-01

    An axial magnetic field of 0.1T was applied to ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fibers during heating to the glass crystallization temperature. Scanning electron microscopy and x-ray diffraction were used to identify crystal phases. It was shown that fibers exposed to the magnetic field did not crystallize while fibers not exposed to the field did crystallize. A hypothesis based on magnetic work was proposed to explain the results and tested by measuring the magnetic susceptibilities of the glass and crystal.

  8. Elasticity and Strength of Biomacromolecular Crystals: Lysozyme

    NASA Technical Reports Server (NTRS)

    Holmes, A. M.; Witherow, W. K.; Chen, L. Q.; Chernov, A. A.

    2003-01-01

    The static Young modulus, E = 0.1 to 0.5 GPa, the crystal critical strength (sigma(sub c)) and its ratio to E,sigma(sub c)/E is approximately 10(exp 3), were measured for the first time for non cross-linked lysozyme crystals in solution. By using a triple point bending apparatus, we also demonstrated that the crystals were purely elastic. Softness of protein crystals built of hard macromolecules (26 GPa for lysozyme) is explained by the large size of the macromolecules as compared to the range of intermolecular forces and by the weakness of intermolecular bonds as compared to the peptide bond strength. The relatively large reported dynamic elastic moduli (approximately 8 GPa) from resonance light scattering should come from averaging over the moduli of intracrystalline water and intra- and intermolecular bonding.

  9. Measurements and properties of ice particles and carbon dioxide bubbles in aqueous mixture utilizing optical techniques

    NASA Astrophysics Data System (ADS)

    Diallo, Amadou O.

    Optical techniques are used to determine the size, shape and many other properties of particles ranging from the micro to a nano-level. These techniques have endless applications. This research is based on a project assigned by a "Vendor" that wants anonymity. The Leica optical microscope and the Dark Field Polarizing Metallurgical Microscope is used to determine the size and count of ice crystals (Vendors products) in multiple time frames. Since the ice temperature influences, its symmetry and the shape is subject to changes at room temperature (300 K) and the atmospheric pressure that is exerted on the ice crystals varies. The ice crystals are in a mixture of water, electrolytes and carbon dioxide with the optical spectroscopy (Qpod2) and Spectra suite, the optical density of the ice crystals is established from the absorbance and transmission measurements. The optical density in this case is also referred to as absorption; it is plotted with respect to a frequency (GHz), wavelength (nm) or Raman shift (1/cm) which shows the light colliding with the ice particles and CO2. Depending on the peaks positions, it is possible to profile the ice crystal sizes using a mean distribution plots. The region of absorbency wavelength expected for the ice is in the visible range; the water molecules in the (UV) Ultra-violet range and the CO2 in the (IR) infrared region. It is also possible to obtain the reflection and transmission output as a percentage change with the wavelengths ranging from 200 to 1100 nm. The refractive index of the ice can be correlated to the density based on the optical acoustic theorem, or Mie Scattering Theory. The viscosity of the ice crystals and the solutions from which the ice crystals are made of as well are recorded with the SV-10 viscometer. The baseline viscosity is used as reference and set lower than that of the ice crystals. The Zeta potential of the particles present in the mixture are approximated by first finding the viscosity of the solution where the pH level contribute to the surface charges, afterward use Stoke's diameter to compute the settling velocity of the bubbles, or alternatively record it under the microscope. With those parameters in hand the surface charge of the bubble (zeta potential) is approximated.

  10. Edge-shape barrier irreversibility and decomposition of vortices in Bi 2Sr 2CaCu 2O 8

    NASA Astrophysics Data System (ADS)

    Indenbom, M. V.; D'Anna, G.; André, M.-O.; Kabanov, V. V.; Benoit, W.

    1994-12-01

    Magnetic flux dynamics is studied in Bi 2Sr 2CaCu 2O 8 single crystals by means of magneto-optical technique. It is clearly demonstrated that the magnetic irreversibility of these crystals in a magnetic field perpendicular to the basal plane at temperatures higher than approximately 35 K is governed by an edge-shape barrier and its disappearance determines the high temperature part of the magnetic irreversibility line which is commonly associated in the literature with vortex lattice melting. We argue that this barrier exists because of the non ellipsoidal shape of the samples and can disappear only when the flux lines lose their rigidity decomposing into pancakes, which is the only true magnetic phase transition on the B-T diagram for Bi 2Sr 2CaCu 2O 8.

  11. On a simple molecular–statistical model of a liquid-crystal suspension of anisometric particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakhlevnykh, A. N., E-mail: anz@psu.ru; Lubnin, M. S.; Petrov, D. A.

    2016-11-15

    A molecular–statistical mean-field theory is constructed for suspensions of anisometric particles in nematic liquid crystals (NLCs). The spherical approximation, well known in the physics of ferromagnetic materials, is considered that allows one to obtain an analytic expression for the free energy and simple equations for the orientational state of a suspension that describe the temperature dependence of the order parameters of the suspension components. The transition temperature from ordered to isotropic state and the jumps in the order parameters at the phase-transition point are studied as a function of the anchoring energy of dispersed particles to the matrix, the concentrationmore » of the impurity phase, and the size of particles. The proposed approach allows one to generalize the model to the case of biaxial ordering.« less

  12. Optical third harmonic generation in the magnetic semiconductor EuSe

    NASA Astrophysics Data System (ADS)

    Lafrentz, M.; Brunne, D.; Kaminski, B.; Pavlov, V. V.; Pisarev, R. V.; Henriques, A. B.; Yakovlev, D. R.; Springholz, G.; Bauer, G.; Bayer, M.

    2012-01-01

    Third harmonic generation (THG) has been studied in europium selenide EuSe in the vicinity of the band gap at 2.1-2.6 eV and at higher energies up to 3.7 eV. EuSe is a magnetic semiconductor crystalizing in centrosymmetric structure of rock-salt type with the point group m3m. For this symmetry the crystallographic and magnetic-field-induced THG nonlinearities are allowed in the electric-dipole approximation. Using temperature, magnetic field, and rotational anisotropy measurements, the crystallographic and magnetic-field-induced contributions to THG were unambiguously separated. Strong resonant magnetic-field-induced THG signals were measured at energies in the range of 2.1-2.6 eV and 3.1-3.6 eV for which we assign to transitions from 4f7 to 4f65d1 bands, namely involving 5d(t2g) and 5d(eg) states.

  13. Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago.

    PubMed

    Tarduno, John A; Cottrell, Rory D; Watkeys, Michael K; Hofmann, Axel; Doubrovine, Pavel V; Mamajek, Eric E; Liu, Dunji; Sibeck, David G; Neukirch, Levi P; Usui, Yoichi

    2010-03-05

    Stellar wind standoff by a planetary magnetic field prevents atmospheric erosion and water loss. Although the early Earth retained its water and atmosphere, and thus evolved as a habitable planet, little is known about Earth's magnetic field strength during that time. We report paleointensity results from single silicate crystals bearing magnetic inclusions that record a geodynamo 3.4 to 3.45 billion years ago. The measured field strength is approximately 50 to 70% that of the present-day field. When combined with a greater Paleoarchean solar wind pressure, the paleofield strength data suggest steady-state magnetopause standoff distances of < or = 5 Earth radii, similar to values observed during recent coronal mass ejection events. The data also suggest lower-latitude aurora and increases in polar cap area, as well as heating, expansion, and volatile loss from the exosphere that would have affected long-term atmospheric composition.

  14. Perturbation Theory versus Thermodynamic Integration. Beyond a Mean-Field Treatment of Pair Correlations in a Nematic Model Liquid Crystal.

    PubMed

    Schoen, Martin; Haslam, Andrew J; Jackson, George

    2017-10-24

    The phase behavior and structure of a simple square-well bulk fluid with anisotropic interactions is described in detail. The orientation dependence of the intermolecular interactions allows for the formation of a nematic liquid-crystalline phase in addition to the more conventional isotropic gas and liquid phases. A version of classical density functional theory (DFT) is employed to determine the properties of the model, and comparisons are made with the corresponding data from Monte Carlo (MC) computer simulations in both the grand canonical and canonical ensembles, providing a benchmark to assess the adequacy of the DFT results. A novel element of the DFT approach is the assumption that the structure of the fluid is dominated by intermolecular interactions in the isotropic fluid. A so-called augmented modified mean-field (AMMF) approximation is employed accounting for the influence of anisotropic interactions. The AMMF approximation becomes exact in the limit of vanishing density. We discuss advantages and disadvantages of the AMMF approximation with respect to an accurate description of isotropic and nematic branches of the phase diagram, the degree of orientational order, and orientation-dependent pair correlations. The performance of the AMMF approximations is found to be good in comparison with the MC data; the AMMF approximation has clear advantages with respect to an accurate and more detailed description of the fluid structure. Possible strategies to improve the DFT are discussed.

  15. Ti, Ni and TiNi nanoparticles physically synthesized by Ar+ beam milling.

    PubMed

    Torres Castro, A; López Cuéllar, E; José Yacamán, M; Ortiz Méndez, U

    2008-12-01

    When the size of a particle decreases around 100 nm or less, there is a change in properties from those shown in the bulk material. In this work approximately 3 nm nanoparticles of Ni, Ti and TiNi bimetallic are produced using physical vapor deposition (PVD). Nanoparticles are characterized by High Resolution Transmission Electron Microscopy (HRTEM), High Angle Annular Dark Field (HAADF), Electron Diffraction (ED). The results show that all nanoparticles maintain the same crystal structure of bulk material but a change in their lattice parameter is produced.

  16. X-Ray Diffraction and Imaging Study of Imperfections of Crystallized Lysozyme with Coherent X-Rays

    NASA Technical Reports Server (NTRS)

    Hu, Zheng-Wei; Chu, Y. S.; Lai, B.; Cai, Z.; Thomas, B. R.; Chernov, A. A.

    2003-01-01

    Phase-sensitive x-ray diffraction imaging and high angular-resolution diffraction combined with phase contrast radiographic imaging are employed to characterize defects and perfection of a uniformly grown tetragonal lysozyme crystal in symmetric Laue case. The fill width at half-maximum (FWHM) of a 4 4 0 rocking curve measured from the original crystal is approximately 16.7 arcseconds, and defects, which include point defects, line defects, and microscopic domains, have been clearly observed in the diffraction images of the crystal. The observed line defects carry distinct dislocation features running approximately along the <110> growth front, and they have been found to originate mostly at a central growth area and occasionally at outer growth regions. Individual point defects trapped at a crystal nucleus are resolved in the images of high sensitivity to defects. Slow dehydration has led to the broadening of the 4 4 0 rocking curve by a factor of approximately 2.4. A significant change of the defect structure and configuration with drying has been revealed, which suggests the dehydration induced migration and evolution of dislocations and lattice rearrangements to reduce overall strain energy. The sufficient details of the observed defects shed light upon perfection, nucleation and growth, and properties of protein crystals.

  17. Crystal-field effects in fluoride crystals for optical refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hehlen, Markus P

    2010-01-01

    The field of optical refrigeration of rare-earth-doped solids has recently seen an important breakthrough. The cooling of a YLiF{sub 4} (YLF) crystal doped with 5 mol% Yb3+ to 155 K by Seletskiy et al [NPhot] has surpassed the lowest temperatures ({approx}170 K for {approx}100 mW cooling capacity) that are practical with commercial multi-stage thermoelectric coolers (TEC) [Glaister]. This record performance has advanced laser cooling into an application relevant regime and has put first practical optical cryocoolers within reach. The result is also relevant from a material perspective since for the first time, an Yb3+-doped crystal has outperformed an Yb3+-doped glass.more » The record temperature of 208 K was held by the Yb3+-doped fluorozirconate glass ZBLAN. Advanced purification and glass fabrication methods currently under development are expected to also advance ZBLAN:Yb3+ to sub-TEC temperatures. However, recent achievements with YLF:Yb3+ illustrate that crystalline materials may have two potentially game-changing advantajes over glassy materials. First, the crystalline environment reduces the inhomogeneous broadening of the Yb3+ electronic transitions as compared to a glassy matrix. The respective sharpening of the crystal-field transitions increases the peak absorption cross section at the laser excitation wavelength and allows for more efficient pumping of the Yb3+ ions, particularly at low temperatures. Second, many detrimental impurities present in the starting materials tend to be excluded from the crystal during its slow growth process, in contrast to a glass where all impurities present in the starting materials are included in the glass when it is formed by temperature quenching a melt. The ultra high purity required for laser cooling materials [PRB] therefore may be easier to realize in crystals than in glasses. Laser cooling occurs by laser excitation of a rare-earth ion followed by anti-Stokes luminescence. Each such laser-cooling cycle extracts thermal energy from the solid and carries it away as high-entropy light, thereby cooling the material. In the ideal case, the respective laser-cooling power is given by the pump wavelength ({lambda}{sub p}), the mean fluorescence wavelength ({bar {lambda}}{sub L}), and the absorption coefficient (a{sub r}) of the pumped transition. These quantities are solely determined by crystal field interactions. On one hand, a large crystal-field splitting offers a favorably large difference of {lambda}{sub p} - {bar {lambda}}{sub L} and thus a high cooling efficiency {eta}{sub cool} = ({lambda}{sub p} - {bar {lambda}}{sub L})/{bar {lambda}}{sub L}. On the other hand, a small crystal-field splitting offers a high thermal population (n{sub i}) of the initial state of the pumped transition, giving a high pump absorption coefficient and thus high laser cooling power, particularly at low temperatures. A quantitative description of crystal-field interactions is therefore critical to the understanding and optimization of optical refrigeration. In the case of Yb3+ as the laser cooling ion, however, development of a crystal-field model is met with substantial difficulties. First, Yb3+ has only two 4/multiplets, {sup 2}F{sub 7/2} and {sup 2}F{sub 5/2}, which lead to at most 7 crystal-field levels. This makes it difficult, and in some cases impossible, to evaluate the crystal-field Hamiltonian, which has at least 4 parameters for any Yb3+ point symmety lower than cubic. Second, {sup 2}F{sub 7/2}{leftrightarrow}{sup 2}F{sub 5/2} transitions exhibit an exceptionally strong electron-phonon coupling compared to 4f transitions of other rare earths. This makes it difficult to distinguish electronic from vibronic transitions in the absorption and luminescence spectra and to reliably identify the crystal-field levels. Yb3+ crystal-field splittings reported in the literature should thus generally be viewed with caution. This paper explores the effects of crystal-field interactions on the laser cooling performance of Yb3+-doped fluoride crystals. It is shown that the total crystal-field splitting of the {sup 2}F{sub 7/2} and {sup 2}F{sub 5/2} multiplets of Yb3+ can be estimated from crystal-field splittings of other rare-earth-doped fluoride crystals. This approach takes advantage of an extensive body of experimental work from which Yb3+ doped fluoride crystals with favorable laser cooling properties might be identified. Section 2 reviews the crystal-field splitting of the 4f electronic states and introduces the crystal-field strength as a means to predict the total crystal-field splitting of the {sup 2}F{sub 7/2} and {sup 2}F{sub 5/2} multiplets. Section 3 illustrates the effect of the total {sup 2}F{sub 7/2} crystal field splitting on the laser cooling power. Finally, Section 4 compiles literature data on crystal-field splittings in fluoride crystals from which the {sup 2}F{sub 7/2} splitting is predicted.« less

  18. Static quadrupolar susceptibility for a Blume-Emery-Griffiths model based on the mean-field approximation

    NASA Astrophysics Data System (ADS)

    Pawlak, A.; Gülpınar, G.; Erdem, R.; Ağartıoğlu, M.

    2015-12-01

    The expressions for the dipolar and quadrupolar susceptibilities are obtained within the mean-field approximation in the Blume-Emery-Griffiths model. Temperature as well as crystal field dependences of the susceptibilities are investigated for two different phase diagram topologies which take place for K/J=3 and K/J=5.0.Their behavior near the second and first order transition points as well as multi-critical points such as tricritical, triple and critical endpoint is presented. It is found that in addition to the jumps connected with the phase transitions there are broad peaks in the quadrupolar susceptibility. It is indicated that these broad peaks lie on a prolongation of the first-order line from a triple point to a critical point ending the line of first-order transitions between two distinct paramagnetic phases. It is argued that the broad peaks are a reminiscence of very strong quadrupolar fluctuations at the critical point. The results reveal the fact that near ferromagnetic-paramagnetic phase transitions the quadrupolar susceptibility generally shows a jump whereas near the phase transition between two distinct paramagnetic phases it is an edge-like.

  19. High-resolution electron microscopy and its applications.

    PubMed

    Li, F H

    1987-12-01

    A review of research on high-resolution electron microscopy (HREM) carried out at the Institute of Physics, the Chinese Academy of Sciences, is presented. Apart from the direct observation of crystal and quasicrystal defects for some alloys, oxides, minerals, etc., and the structure determination for some minute crystals, an approximate image-contrast theory named pseudo-weak-phase object approximation (PWPOA), which shows the image contrast change with crystal thickness, is described. Within the framework of PWPOA, the image contrast of lithium ions in the crystal of R-Li2Ti3O7 has been observed. The usefulness of diffraction analysis techniques such as the direct method and Patterson method in HREM is discussed. Image deconvolution and resolution enhancement for weak-phase objects by use of the direct method are illustrated. In addition, preliminary results of image restoration for thick crystals are given.

  20. Raman intensity as a probe of concentration near a crystal growing in solution

    NASA Technical Reports Server (NTRS)

    Wilkinson, R. Allen

    1989-01-01

    The feasibility of using Raman spectral scattering signals for measurements of concentration profiles near a crystal interface during growth or dissolution is discussed. With KH2PO4 (KDP) as a test material, optical multichannel analyzer (OMA) detection of a solute Raman vibrational band provided direct quantification of solute concentration with band intensity. The intersection of incident laser and Raman collection optics provided 3-D selective point measurements of the solution concentration field. Unlike many other techniques, the Raman band intensity is not sensitive to the typical temperature variations. Precision calibration of Raman intensity versus KDP concentration with less than 1 pct standard deviation error levels was demonstrated. A fiber optic, which sampled incident laser intensity and coupled it to the OMA, provided a fully synchronized monitor of fluctuations in laser power to correlate with observed Raman signals. With 1 W of laser power at the sample, good data statistics required eight repeated data collections at approximately 2.5 min collection. The accumulated time represents the concentration measurement time at one spatial location. Photomicroscopy documented a 30 micrometer diameter by 200 micrometer of laser Raman scattering region in the solution near the crystal surface. The laser beam was able to approach up to 25 micrometer from the crystal surface. However, a crystal surface reflected intensity contribution was weakly detectable. Nucleated microcrystals were seen in the crystal-growing solution. These microcrystals convect right up to the crystal surface and indicate no quiet diffusion region under normal gravity conditions. Translation of the solution cell with respect to the optics caused systematic intensity errors.

  1. Recent Advances in the Understanding of the Influence of Electric and Magnetic Fields on Protein Crystal Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareja-Rivera, Carina; Cuéllar-Cruz, Mayra; Esturau-Escofet, Nuria

    Here, in this contribution we use nonconventional methods that help to increase the success rate of a protein crystal growth, and consequently of structural projects using X-ray diffraction techniques. In order to achieve this purpose, this contribution presents new approaches involving more sophisticated techniques of protein crystallization, not just for growing protein crystals of different sizes by using electric fields, but also for controlling crystal size and orientation. Also, this latter was possible through the use of magnetic fields that allow to obtain protein crystals suitable for both high-resolution X-ray and neutron diffraction crystallography where big crystals are required. Thismore » contribution discusses some pros, cons and realities of the role of electromagnetic fields in protein crystallization research, and their effect on protein crystal contacts. Additionally, we discuss the importance of room and low temperatures during data collection. Finally, we also discuss the effect of applying a rather strong magnetic field of 16.5 T, for shorts and long periods of time, on protein crystal growth, and on the 3D structure of two model proteins.« less

  2. Recent Advances in the Understanding of the Influence of Electric and Magnetic Fields on Protein Crystal Growth

    DOE PAGES

    Pareja-Rivera, Carina; Cuéllar-Cruz, Mayra; Esturau-Escofet, Nuria; ...

    2016-12-05

    Here, in this contribution we use nonconventional methods that help to increase the success rate of a protein crystal growth, and consequently of structural projects using X-ray diffraction techniques. In order to achieve this purpose, this contribution presents new approaches involving more sophisticated techniques of protein crystallization, not just for growing protein crystals of different sizes by using electric fields, but also for controlling crystal size and orientation. Also, this latter was possible through the use of magnetic fields that allow to obtain protein crystals suitable for both high-resolution X-ray and neutron diffraction crystallography where big crystals are required. Thismore » contribution discusses some pros, cons and realities of the role of electromagnetic fields in protein crystallization research, and their effect on protein crystal contacts. Additionally, we discuss the importance of room and low temperatures during data collection. Finally, we also discuss the effect of applying a rather strong magnetic field of 16.5 T, for shorts and long periods of time, on protein crystal growth, and on the 3D structure of two model proteins.« less

  3. Report on the sixth blind test of organic crystal structure prediction methods

    PubMed Central

    Reilly, Anthony M.; Cooper, Richard I.; Adjiman, Claire S.; Bhattacharya, Saswata; Boese, A. Daniel; Brandenburg, Jan Gerit; Bygrave, Peter J.; Bylsma, Rita; Campbell, Josh E.; Car, Roberto; Case, David H.; Chadha, Renu; Cole, Jason C.; Cosburn, Katherine; Cuppen, Herma M.; Curtis, Farren; Day, Graeme M.; DiStasio Jr, Robert A.; Dzyabchenko, Alexander; van Eijck, Bouke P.; Elking, Dennis M.; van den Ende, Joost A.; Facelli, Julio C.; Ferraro, Marta B.; Fusti-Molnar, Laszlo; Gatsiou, Christina-Anna; Gee, Thomas S.; de Gelder, René; Ghiringhelli, Luca M.; Goto, Hitoshi; Grimme, Stefan; Guo, Rui; Hofmann, Detlef W. M.; Hoja, Johannes; Hylton, Rebecca K.; Iuzzolino, Luca; Jankiewicz, Wojciech; de Jong, Daniël T.; Kendrick, John; de Klerk, Niek J. J.; Ko, Hsin-Yu; Kuleshova, Liudmila N.; Li, Xiayue; Lohani, Sanjaya; Leusen, Frank J. J.; Lund, Albert M.; Lv, Jian; Ma, Yanming; Marom, Noa; Masunov, Artëm E.; McCabe, Patrick; McMahon, David P.; Meekes, Hugo; Metz, Michael P.; Misquitta, Alston J.; Mohamed, Sharmarke; Monserrat, Bartomeu; Needs, Richard J.; Neumann, Marcus A.; Nyman, Jonas; Obata, Shigeaki; Oberhofer, Harald; Oganov, Artem R.; Orendt, Anita M.; Pagola, Gabriel I.; Pantelides, Constantinos C.; Pickard, Chris J.; Podeszwa, Rafal; Price, Louise S.; Price, Sarah L.; Pulido, Angeles; Read, Murray G.; Reuter, Karsten; Schneider, Elia; Schober, Christoph; Shields, Gregory P.; Singh, Pawanpreet; Sugden, Isaac J.; Szalewicz, Krzysztof; Taylor, Christopher R.; Tkatchenko, Alexandre; Tuckerman, Mark E.; Vacarro, Francesca; Vasileiadis, Manolis; Vazquez-Mayagoitia, Alvaro; Vogt, Leslie; Wang, Yanchao; Watson, Rona E.; de Wijs, Gilles A.; Yang, Jack; Zhu, Qiang; Groom, Colin R.

    2016-01-01

    The sixth blind test of organic crystal structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal and a bulky flexible molecule. This blind test has seen substantial growth in the number of participants, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and ‘best practices’ for performing CSP calculations. All of the targets, apart from a single potentially disordered Z′ = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms. PMID:27484368

  4. Magnetic properties of a quasi-two-dimensional S =1/2 Heisenberg antiferromagnet with distorted square lattice

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hironori; Tamekuni, Yusuke; Iwasaki, Yoshiki; Otsuka, Rei; Hosokoshi, Yuko; Kida, Takanori; Hagiwara, Masayuki

    2017-06-01

    We successfully synthesize single crystals of the verdazyl radical α -2 ,3 ,5 -Cl3 -V. Ab initio molecular orbital calculations indicate that the two dominant antiferromagnetic interactions, J1 and J2 (α =J2/J1≃0.56 ), form an S =1 /2 distorted square lattice. We explain the magnetic properties based on the S =1 /2 square lattice Heisenberg antiferromagnet using the quantum Monte Carlo method, and examine the effects of the lattice distortion and the interplane interaction contribution. In the low-temperature regions below 6.4 K, we observe anisotropic magnetic behavior accompanied by a phase transition to a magnetically ordered state. The electron spin resonance signals exhibit anisotropic behavior in the temperature dependence of the resonance field and the linewidth. We explain the frequency dependence of the resonance fields in the ordered phase using a mean-field approximation with out-of-plane easy-axis anisotropy, which causes a spin-flop phase transition at approximately 0.4 T for the field perpendicular to the plane. Furthermore, the anisotropic dipole field provides supporting information regarding the presence of the easy-axis anisotropy. These results demonstrate that the lattice distortion, anisotropy, and interplane interaction of this model are sufficiently small that they do not affect the intrinsic behavior of the S =1 /2 square lattice Heisenberg antiferromagnet.

  5. Crystal-field analysis of U3+ ions in K2LaX5 (X=Cl, Br or I) single crystals

    NASA Astrophysics Data System (ADS)

    Karbowiak, M.; Edelstein, N.; Gajek, Z.; Drożdżyński, J.

    1998-11-01

    An analysis of low temperature absorption spectra of U3+ ions doped in K2LaX5 (X=Cl, Br or I) single crystals is reported. The energy levels of the U3+ ion in the single crystals were assigned and fitted to a semiempirical Hamiltonian representing the combined atomic and crystal-field interactions at the Cs symmetry site. An analysis of the nephelauxetic effect and crystal-field splittings in the series of compounds is also reported.

  6. Multiwavelength ultralow-threshold lasing in quantum dot photonic crystal microcavities.

    PubMed

    Chakravarty, S; Bhattacharya, P; Chakrabarti, S; Mi, Z

    2007-05-15

    We demonstrate multiwavelength lasing of resonant modes in linear (L3) microcavities in a triangular-lattice 2D photonic crystal (PC) slab. The broad spontaneous emission spectrum from coupled quantum dots, modified by the PC microcavity, is studied as a function of the intensity of incident optical excitation. We observe lasing with an ultralow-threshold power of approximately 600 nW and an output efficiency of approximately 3% at threshold. Two other resonant modes exhibit weaker turnon characteristics and thresholds of approximately 2.5 and 200 microW, respectively.

  7. Stability of Detached Solidification

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.; Croell, A.

    2009-01-01

    Bridgman crystal growth can be conducted in the so-called "detached" solidification regime, where the growing crystal is detached from the crucible wall. A small gap between the growing crystal and the crucible wall, of the order of 100 micrometers or less, can be maintained during the process. A meniscus is formed at the bottom of the melt between the crystal and crucible wall. Under proper conditions, growth can proceed without collapsing the meniscus. The meniscus shape plays a key role in stabilizing the process. Thermal and other process parameters can also affect the geometrical steady-state stability conditions of solidification. The dynamic stability theory of the shaped crystal growth process has been developed by Tatarchenko. It consists of finding a simplified autonomous set of differential equations for the radius, height, and possibly other process parameters. The problem then reduces to analyzing a system of first order linear differential equations for stability. Here we apply a modified version of this theory for a particular case of detached solidification. Approximate analytical formulas as well as accurate numerical values for the capillary stability coefficients are presented. They display an unexpected singularity as a function of pressure differential. A novel approach to study the thermal field effects on the crystal shape stability has been proposed. In essence, it rectifies the unphysical assumption of the model that utilizes a perturbation of the crystal radius along the axis as being instantaneous. It consists of introducing time delay effects into the mathematical description and leads, in general, to stability over a broader parameter range. We believe that this novel treatment can be advantageously implemented in stability analyses of other crystal growth techniques such as Czochralski and float zone methods.

  8. Manipulation of local optical properties and structures in molybdenum-disulfide monolayers using electric field-assisted near-field techniques.

    PubMed

    Nozaki, Junji; Fukumura, Musashi; Aoki, Takaaki; Maniwa, Yutaka; Yomogida, Yohei; Yanagi, Kazuhiro

    2017-04-05

    Remarkable optical properties, such as quantum light emission and large optical nonlinearity, have been observed in peculiar local sites of transition metal dichalcogenide monolayers, and the ability to tune such properties is of great importance for their optoelectronic applications. For that purpose, it is crucial to elucidate and tune their local optical properties simultaneously. Here, we develop an electric field-assisted near-field technique. Using this technique we can clarify and tune the local optical properties simultaneously with a spatial resolution of approximately 100 nm due to the electric field from the cantilever. The photoluminescence at local sites in molybdenum-disulfide (MoS 2 ) monolayers is reversibly modulated, and the inhomogeneity of the charge neutral points and quantum yields is suggested. We successfully etch MoS 2 crystals and fabricate nanoribbons using near-field techniques in combination with an electric field. This study creates a way to tune the local optical properties and to freely design the structural shapes of atomic monolayers using near-field optics.

  9. Lithographic fine-tuning of vertical cavity surface emitting laser-pumped two-dimensional photonic crystal lasers.

    PubMed

    Cao, J R; Lee, Po-Tsung; Choi, Sang-Jun; O'Brien, John D; Dapkus, P Daniel

    2002-01-01

    Lithographic tuning of operating wavelengths in a photonic crystal laser array is demonstrated. The photonic crystal lattice constant is varied by 2 nm between elements of the array, and a wavelength spacing of approximately 4 nm is achieved.

  10. Effects of emulsifier addition on the crystallization and melting behavior of palm olein and coconut oil.

    PubMed

    Maruyama, Jessica Mayumi; Soares, Fabiana Andreia Schafer De Martini; D'Agostinho, Natalia Roque; Gonçalves, Maria Inês Almeida; Gioielli, Luiz Antonio; da Silva, Roberta Claro

    2014-03-12

    Two commercial emulsifiers (EM1 and EM2), containing predominantly monoacylglycerols (MAGs), were added in proportiond of 1.0 and 3.0% (w/w) to coconut oil and palm olein. EM1 consisted of approximately 90% MAGs, whereas EM2 consisted of approximately 50% MAGs. The crystallization behavior of these systems was evaluated by differential scanning calorimetry (DSC) and microscopy under polarized light. On the basis of DSC results, it was clear that the addition of EM2 accelerated the crystallization of coconut oil and delayed the crystallization of palm olein. In both oils EM2 addition led to the formation of smaller spherulites, and these effects improved the possibilities for using these fats as ingredients. In coconut oil the spherulites were maintained even at higher temperatures (20 °C). The addition of EM1 to coconut oil changed the crystallization pattern. In palm olein, the addition of 3.0% (w/w) of this emulsifier altered the pattern of crystallization of this fat.

  11. Method for characterization of a spherically bent crystal for K.alpha. X-ray imaging of laser plasmas using a focusing monochromator geometry

    DOEpatents

    Kugland, Nathan; Doeppner, Tilo; Glenzer, Siegfried; Constantin, Carmen; Niemann, Chris; Neumayer, Paul

    2015-04-07

    A method is provided for characterizing spectrometric properties (e.g., peak reflectivity, reflection curve width, and Bragg angle offset) of the K.alpha. emission line reflected narrowly off angle of the direct reflection of a bent crystal and in particular of a spherically bent quartz 200 crystal by analyzing the off-angle x-ray emission from a stronger emission line reflected at angles far from normal incidence. The bent quartz crystal can therefore accurately image argon K.alpha. x-rays at near-normal incidence (Bragg angle of approximately 81 degrees). The method is useful for in-situ calibration of instruments employing the crystal as a grating by first operating the crystal as a high throughput focusing monochromator on the Rowland circle at angles far from normal incidence (Bragg angle approximately 68 degrees) to make a reflection curve with the He-like x-rays such as the He-.alpha. emission line observed from a laser-excited plasma.

  12. Single crystals of metal solid solutions: A study

    NASA Technical Reports Server (NTRS)

    Miller, J. F.; Gelles, S. H.

    1975-01-01

    Report describes growth of silver-alloy crystals under widely varying conditions of growth rate, temperature gradient, and magnetic field. Role of gravitation and convection on crystal substructure is analyzed, as well as influence of magnetic fields applied during crystallization.

  13. Effect of transition dipole phase on high-order-harmonic generation in solid materials

    NASA Astrophysics Data System (ADS)

    Jiang, Shicheng; Wei, Hui; Chen, Jigen; Yu, Chao; Lu, Ruifeng; Lin, C. D.

    2017-11-01

    High-order harmonic spectra from solid materials driven by single-color multicycle laser fields sometimes contain even harmonics. In this work we attribute the appearance of even harmonics to the nonzero transition dipole phase (TDP) when the solid system has broken symmetry. By calculating the harmonic efficiency from graphene and gapped graphene by using the semiconductor Bloch equations under the tight-binding approximation, we demonstrate the role of the TDP, which has been ignored for a long time. When the crystal has inversion symmetry, or reflection symmetry with the symmetry plane perpendicular to the laser polarization direction, the TDP can be neglected. Without such symmetry, however, the TDP will lead to the appearance of even harmonics. We further show that the TDP is sensitive to the crystal geometry. To extract the structure information from the harmonic spectra of a solid the TDP cannot be ignored.

  14. Orbital angular momentum correlations with a phase-flipped Gaussian mode pump beam

    NASA Astrophysics Data System (ADS)

    Romero, J.; Giovannini, D.; McLaren, M. G.; Galvez, E. J.; Forbes, A.; Padgett, M. J.

    2012-08-01

    We report orbital angular momentum (OAM) and angle correlations between signal and idler photons observed when the nonlinear crystal used in spontaneous parametric down-conversion is illuminated by a non-fundamental Gaussian pump beam. We introduce a π-phase step to the transverse profile of the pump, before it impinges on the crystal to create a phase-flipped Gaussian mode, which is a close approximation to an HG10 Hermite-Gaussian-like beam. The correlations in OAM and angular position are then measured holographically using two separate spatial light modulators in the signal and idler arms. We show the transfer of the OAM spectrum of the pump to the down-converted fields, manifested as a redistribution in the OAM correlations consistent with OAM conservation. This corresponds to a modulation of the angular position correlations consistent with the Fourier relationship between the OAM and angle.

  15. Radiation collimation in a thick crystalline undulator

    NASA Astrophysics Data System (ADS)

    Wistisen, Tobias Nyholm; Uggerhøj, Ulrik Ingerslev; Hansen, John Lundsgaard; Lauth, Werner; Klag, Pascal

    2017-05-01

    With the recent experimental confirmation of the existence of energetic radiation from a Small Amplitude, Small Period (SASP) crystalline undulator [T.N. Wistisen, K.K. Andersen, S. Yilmaz, R. Mikkelsen, J. Lundsgaard Hansen, U.I. Uggerhøj, W. Lauth, H. Backe, Phys. Rev. Lett. 112, 254801 (2014)], the field of specially manufactured crystals, from which specific radiation characteristics can be obtained, has evolved substantially. In this paper we confirm the existence of the crystalline undulator radiation, using electrons of energies of 855 GeV from the MAinzer MIcrotron (MAMI) in a crystal that is approximately 10 times thicker than the previous one. Furthermore, we have measured a significant increase in enhancement, in good agreement with calculations, of the undulator peak by collimation to angles smaller than the natural opening angle of the radiation emission process, 1 /γ. Contribution to the Topical Issue: "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  16. Superconductor-to-insulator transition and transport properties of underdoped YBa2Cu3O(y) crystals.

    PubMed

    Semba, K; Matsuda, A

    2001-01-15

    The carrier-concentration-driven superconductor-to-insulator (SI) transition as well as transport properties in underdoped YBa2Cu3O(y) twinned crystals is studied. The SI transition takes place at y approximately 6.3, carrier concentration n(SI)H approximately 3x10(20) cm(-3), anisotropy rho(c)/rho(ab) approximately 10(3), and the threshold resistivity rho(SI)ab approximately 0.8 mOmega cm which corresponds to a critical sheet resistance h/4e2 approximately 6.5 kOmega per CuO2 bilayer. The evolution of a carrier, nH infiniti y - 6.2, is clearly observed in the underdoped region. The resistivity and Hall coefficient abruptly acquire strong temperature dependence at y approximately 6.5 indicating a radical change in the electronic state.

  17. Electrical characteristics of organic perylene single-crystal-based field-effect transistors

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Woo; Kang, Han-Saem; Kim, Min-Ki; Kim, Kihyun; Cho, Mi-Yeon; Kwon, Young-Wan; Joo, Jinsoo; Kim, Jae-Il; Hong, Chang-Seop

    2007-12-01

    We report on the fabrication of organic field-effect transistors (OFETs) using perylene single crystal as the active material and their electrical characteristics. Perylene single crystals were directly grown from perylene powder in a furnace using a relatively short growth time of 1-3 h. The crystalline structure of the perylene single crystals was characterized by means of a single-crystal x-ray diffractometer. In order to place the perylene single crystal onto the Au electrodes of the field-effect transistor, a polymethlymethacrylate thin layer was spin-coated on top of the crystal surface. The OFETs fabricated using the perylene single crystal showed a typical p-type operating mode. The field-effect mobility of the perylene crystal based OFETs was measured to be ˜9.62×10-4 cm2/V s at room temperature. The anisotropy of the mobility implying the existence of different mobilities when applying currents in different directions was observed for the OFETs, and the existence of traps in the perylene crystal was found through the measurements of the temperature-dependent mobility at various operating drain voltages.

  18. Electronic and magnetic properties of NiS2, NiSSe and NiSe2 by a combination of theoretical methods

    NASA Astrophysics Data System (ADS)

    Schuster, Cosima; Gatti, Matteo; Rubio, Angel

    2012-09-01

    We investigate the electronic and magnetic properties of NiS2, which, by varying the chemical composition substituting S by Se atoms or applying pressure, can be driven across various electronic and magnetic phase transitions. By combining several theoretical methods, we highlight the different role played by the chalcogen dimers and the volume compression in determining the phase transitions, through variations of the chalcogen p bonding-antibonding gap, the crystal-field splitting and the broadening of the bandwidths. While the generalized gradient approximation (GGA) of density-functional theory fails to reproduce the insulating nature of NiS2, it describes well the magnetic boundaries of the phase diagram. The large GGA delocalization error is corrected to a large extent by the use of GGA + U, hybrid functionals or the self-consistent COHSEX + GW approximation. We also discuss the advantages and the shortcomings of the different approximations in the various regions of the phase diagram of this prototypical correlated compound.

  19. Fabric Development in a Late-Hercynian Magmatic Strike-Slip Shear Zone in Southern Corsica: Indications of Melt-Supported Large-Scale Deformation Localization

    NASA Astrophysics Data System (ADS)

    Kruhl, J. H.; Vernon, R. H.

    2009-05-01

    The calc-alcaline granitoids of the Hercynian Corsica Batholith show a large-scale magmatic flow pattern, outlined by the alignment of large (mm-cm) euhedral feldspar crystals. The trend of the steep magmatic foliation is generally N-S in the northern part of the island, swings to approximately E-W orientation in the central part of the Batholith and back again to approximately N-S orientation in the southern part. This pattern is intensified by large-scale magmatic layering, mainly kilometer long lenses and layers of mafic and intermediate intrusions into the granitoids. On the macro- to micro-scale, magma mingling and mixing are present, reflecting the complex intrusion history and the compositional variability of the Corsica Batholith on different scales. Around the Golf of Valinco, a steep, sinistral magmatic shear zone is represented by E-W trending magmatic layering in mingled dioritic, tonalitic, and granitic magmas - previously misleadingly interpreted as migmatites - and by a magmatic flow foliation formed by the alignment of platy feldspar crystals, as well as amphibole and biotite. Characteristic magmatic structures include multiple thin layering, boudinage, monoclinic folding, melt-injected micro shear zones, and fragmenting and back- veining of dioritic enclaves. The intensity of grain alignment roughly correlates with the thickness of layers. It is low in thick and short boudins and high in cm-thin and cm-m long layers. The monoclinic folds refold the magmatic layering. Flat faces of amphibole and biotite grains are aligned in the axial planes of the folds. The feldspar crystals are locally recrystallized to a few large polygonal grains (up to 1 mm across), and quartz commonly shows chessboard subgrain patterns. No further indications of solid-state deformation are present. Field observations, as well as pattern quantification on variably oriented rock surfaces, indicate variations of crystal alignment and fabric anisotropy in cm- to more than 100m-wide bands parallel to the E-W oriented layering, and various stages of melt-present fragmentation. These variations are interpreted as variations of flow intensity and possibly strain-rate variation. The observations on the macro- as well as the micro-scale point to repeated injection of mafic to felsic magma and crystallization in the presence of a regional stress field. The resulting km-scale sinistral, sub-horizontal synmagmatic shear zone reflects large-scale movements during late-Hercynian crustal reorganization and represents an excellent example of localization of deformation into magma-enriched parts of the continental crust.

  20. Metastability Gap in the Phase Diagram of Monoclonal IgG Antibody.

    PubMed

    Rowe, Jacob B; Cancel, Rachel A; Evangelous, Tyler D; Flynn, Rhiannon P; Pechenov, Sergei; Subramony, J Anand; Zhang, Jifeng; Wang, Ying

    2017-10-17

    Crystallization of IgG antibodies has important applications in the fields of structural biology, biotechnology, and biopharmaceutics. However, a rational approach to crystallize antibodies is still lacking. In this work, we report a method to estimate the solubility of antibodies at various temperatures. We experimentally determined the full phase diagram of an IgG antibody. Using the full diagram, we examined the metastability gaps, i.e., the distance between the crystal solubility line and the liquid-liquid coexistence curve, of IgG antibodies. By comparing our results to the partial phase diagrams of other IgGs reported in literature, we found that IgG antibodies have similar metastability gaps. Thereby, we present an equation with two phenomenological parameters to predict the approximate location of the solubility line of IgG antibodies with respect to their liquid-liquid coexistence curves. We have previously shown that the coexistence curve of an antibody solution can be readily determined by the polyethylene glycol-induced liquid-liquid phase separation method. Combining the polyethylene glycol-induced liquid-liquid phase separation measurements and the phenomenological equation in this article, we provide a general and practical means to predict the thermodynamic conditions for crystallizing IgG antibodies in the solution environments of interest. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Sumida, John

    2000-01-01

    One of the most powerful and versatile methods for studying molecules in solution is fluorescence. Crystallization typically takes place in a concentrated solution environment, whereas fluorescence typically has an upper concentration limit of approximately 1 x 10(exp -5)M, thus intrinsic fluorescence cannot be employed, but a fluorescent probe must be added to a sub population of the molecules. However the fluorescent species cannot interfere with the self-assembly process. This can be achieved with macromolecules, where fluorescent probes can be covalently attached to a sub population of molecules that are subsequently used to track the system as a whole. We are using fluorescence resonance energy transfer (FRET) to study the initial solution phase self-assembly process of tetragonal lysozyme crystal nucleation, using covalent fluorescent derivatives which crystallize in the characteristic P432121 space group. FRET studies are being carried out between cascade blue (CB-lys, donor, Ex 376 nm, Em 420 nm) and lucifer yellow (LY-lys, acceptor, Ex 425 nm, Em 520 nm) asp101 derivatives. The estimated R0 for this probe pair, the distance where 50% of the donor energy is transferred to the acceptor, is approximately 1.2 nm, compared to 2.2 nm between the side chain carboxyls of adjacent asp101's in the crystalline 43 helix. The short CB-lys lifetime (approximately 5 ns), coupled with the large average distances between the molecules ((sup 3) 50 nm) in solution, ensure that any energy transfer observed is not due to random diffusive interactions. Addition of LY-lys to CB-lys results in the appearance of a second, shorter lifetime (approximately 0.2 ns). Results from these and other ongoing studies will be discussed in conjunction with a model for how tetragonal lysozyme crystals nucleate and grow, and the relevance of that model to microgravity protein crystal growth

  2. Characterization of photonic colloidal crystals in real and reciprocal space

    NASA Astrophysics Data System (ADS)

    Thijssen, J. H. J.

    2007-05-01

    In this thesis, we present experimental work on the characterization of photonic colloidal crystals in real and reciprocal space. Photonic crystals are structures in which the refractive index varies periodically in space on the length scale of the wavelength of light. Self-assembly of colloidal particles is a promising route towards three-dimensional (3-D) photonic crystals. However, fabrication of photonic band-gap materials remains challenging, so calculations that predict their optical properties are indispensable. Our photonic band-structure calculations on binary Laves phases have led to a proposed route towards photonic colloidal crystals with a band gap in the visible region. Furthermore, contrary to results in literature, we found that there is no photonic band gap for inverse BCT crystals. Finally, optical spectra of colloidal crystals were analyzed using band-structure calculations. Self-assembled photonic crystals are fabricated in multiple steps. Each of these steps can significantly affect the 3-D structure of the resulting crystal. X-rays are an excellent probe of the internal structure of photonic crystals, even if the refractive-index contrast is large. In Chapter 3, we demonstrate that an angular resolution of 0.002 mrad is achievable at a third-generation synchrotron using compound refractive optics. As a result, the position and the width of Bragg reflections in 2D diffraction patterns can be resolved, even for lattice spacings larger than a micrometer (corresponding to approximately 0.1 mrad). X-ray diffraction patterns and electron-microscopy images are used in Chapter 4 to determine the orientation of hexagonal layers in convective-assembly colloidal crystals. Quantitative analysis revealed that, in our samples, the layers were not exactly hexagonal and the stacking sequence was that of face-centered cubic (FCC) crystals, though stacking faults may have been present. In Chapter 5, binary colloidal crystals of organic spheres (polystyrene, PMMA) and/or inorganic spheres (silica) are introduced as promising templates for strongly photonic crystals. To prevent melting of the template, we used atomic layer deposition (ALD) to infiltrate polystyrene and PMMA templates with alumina, after which chemical vapor deposition (CVD) was used to further enhance the refractive-index contrast. Binary colloidal crystals of silica spheres can be infiltrated by CVD directly, but they often have a layer of colloidal fluid on top. Preliminary etching experiments demonstrated that it may be possible to etch silica templates with plasmas or with adhesive tape. As described in Chapter 6, sedimentation of colloidal silica spheres in an external, high-frequency electric field lead to mm-scale BCT crystals with up to 25 layers. In addition, electric fields were used as an external control to switch between BCT and close-packed (CP) crystal structures within seconds. We also developed two procedures to invert BCT crystals without loss of structure - colloidal particles were immobilized by diffusion-polymerization or photo-induced polymerization of the surrounding solvent. Some BCT crystals were even infiltrated with silicon using CVD. We demonstrate in Chapter 7 that X-ray diffraction can be used to determine the 3-D structure of such photonic colloidal crystals at the various stages of their fabrication. Excellent agreement was found with confocal and electron-microscopy images.

  3. Using Magnetic Fields to Control Convection during Protein Crystallization: Analysis and Validation Studies

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2004-01-01

    The effect of convection during the crystallization of proteins is not very well understood. In a gravitational field, convection is caused by crystal sedimentation and by solutal buoyancy induced flow and these can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, we develop the analysis for magnetic flow control and test the predictions using analog experiments. Specifically, experiments on solutal convection in a paramagnetic fluid were conducted in a strong magnetic field gradient using a dilute solution of Manganese Chloride. The observed flows indicate that the magnetic field can completely counter the settling effects of gravity locally and are consistent with the theoretical predictions presented. This phenomenon suggests that magnetic fields may be useful in mimicking the microgravity environment of space for some crystal growth ana biological applications where fluid convection is undesirable.

  4. Self-Aligned Growth of Organic Semiconductor Single Crystals by Electric Field.

    PubMed

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2016-01-19

    We proposed a novel but facile method for growing organic semiconductor single-crystals via solvent vapor annealing (SVA) under electric field. In the conventional SVA growth process, nuclei of crystals appeared anywhere on the substrate and their crystallographic axes were randomly distributed. We applied electric field during the SVA growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) on the SiO2/Si substrate on which a pair of electrodes had been deposited beforehand. Real-time observation of the SVA process revealed that rodlike single crystals grew with their long axes parallel to the electric field and bridged the prepatterned electrodes. As a result, C8-BTBT crystals automatically formed a field effect transistor (FET) structure and the mobility reached 1.9 cm(2)/(V s). Electric-field-assisted SVA proved a promising method for constructing high-mobility single-crystal FETs at the desired position by a low-cost solution process.

  5. Interplay between spin-orbit coupling and crystal-field effect in topological insulators

    NASA Astrophysics Data System (ADS)

    Lee, Hyungjun; Yazyev, Oleg V.

    2015-07-01

    Band inversion, one of the key signatures of time-reversal invariant topological insulators (TIs), arises mostly due to the spin-orbit (SO) coupling. Here, based on ab initio density-functional calculations, we report a theoretical investigation of the SO-driven band inversion in isostructural bismuth and antimony chalcogenide TIs from the viewpoint of its interplay with the crystal-field effect. We calculate the SO-induced energy shift of states in the top valence and bottom conduction manifolds and reproduce this behavior using a simple one-atom model adjusted to incorporate the crystal-field effect. The crystal-field splitting is shown to compete with the SO coupling, that is, stronger crystal-field splitting leads to weaker SO band shift. We further show how both these effects can be controlled by changing the chemical composition, whereas the crystal-field splitting can be tuned by means of uniaxial strain. These results provide a practical guidance to the rational design of novel TIs as well as to controlling the properties of existing materials.

  6. Magnetic removal of electron contamination for 60Co panoramic gamma ray exposure--Investigations with CaSO4:Dy and LiF based dosimeters.

    PubMed

    Kumar, Munish; Sahani, G; Chourasiya, G

    2010-06-01

    Electron contamination from a sealed (60)Co radiation source has been investigated comprehensively using a CaSO(4):Dy based TLD badge and LiF crystals. It has been found that due to electron contamination, the thermoluminescence (TL) detectors exhibit over response which can be corrected by applying a magnetic field. It has also been found that for a source-to-dosimeter distance of 50 cm, the ratio of the TL readouts of the third to first discs of the TLD badge reduces from approximately 1.5 to approximately 1.00 after applying a magnetic field. Hence detectors which are sensitive to electrons as well as photons, and are capable of distinguishing them, can lead to an erroneous measurement. This happens because the contribution due to electron contamination interferes with pure gamma calibration. The study is helpful in establishing accurate calibration and appropriate correction factors for personnel monitoring carried out using CaSO(4):Dy based TLD badge. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. The influence of a magnetic field on the microhardness of K, Rb, Cs, NH{sub 4}, and Tl acid phthalate crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koldaeva, M. V., E-mail: mkoldaeva@ns.crys.ras.ru; Turskaya, T. N.; Zakalyukin, R. M.

    2009-11-15

    The influence of a magnetic field on the microhardness of potassium acid phthalate has been studied for different magnetic inductions, exposure times, sample orientations in a magnetic field, and impurity compositions of the crystals. It was shown that the magnetic field effect is multiply repeated on the (010) face after relaxation. The influence of magnetic treatment on ammonium, rubidium, thallium, and cesium acid phthalate crystals is analyzed. The reasons for the observed changes in the crystal microhardness in the magnetic field are discussed.

  8. Itinerant Antiferromagnetism in RuO 2

    DOE PAGES

    Berlijn, Tom; Snijders, Paul C.; Delaire, Oliver A.; ...

    2017-02-15

    Bulk rutile RuO 2 has long been considered a Pauli paramagnet. Here, in this article, we report that RuO 2 exhibits a hitherto undetected lattice distortion below approximately 900 K. The distortion is accompanied by antiferromagnetic order up to at least 300 K with a small room temperature magnetic moment of approximately 0.05μ B as evidenced by polarized neutron diffraction. Density functional theory plus U(DFT+U) calculations indicate that antiferromagnetism is favored even for small values of the Hubbard U of the order of 1 eV. The antiferromagnetism may be traced to a Fermi surface instability, lifting the band degeneracy imposedmore » by the rutile crystal field. The combination of high Néel temperature and small itinerant moments make RuO 2 unique among ruthenate compounds and among oxide materials in general.« less

  9. Contribution of Twinning to Low Strain Deformation in a Mg Alloy

    NASA Astrophysics Data System (ADS)

    Barnett, Matthew R.; Ghaderi, Alireza; Robson, Joseph D.

    2014-07-01

    Deformation twinning plays an important role in the yielding of extruded magnesium alloys, especially when loaded in compression along the extrusion axis. The magnitude of this contribution is not accurately known. The present study employs electron backscatter diffraction to reveal the influence of grain orientation on twin-volume fraction for alloy AZ31 tested in compression to strains between 0.008 and 0.015. For these strains, it is seen that approximately 45 pct of the deformation can be attributed to "tensile" twinning. The variation of twin-volume fraction over different orientation classes correlates closely with the maximum Schmid factors for both tensile twinning and basal slip. These effects are readily explained quantitatively using a mean field crystal plasticity model without recourse to stochastic effects. Encouraged by this, we introduce an analytical approximation based on the uniformity of (axial) work.

  10. Mechanisms of 200 MeV electron radiation in diamond crystal in the axial orientation

    NASA Astrophysics Data System (ADS)

    Ganenko, V. B.; Burdeinyi, D. D.; Truten', V. I.; Shul'ga, N. F.; Fissum, K.; Brudvik, J.; Hansen, K.; Isaksson, L.; Livingston, K.; Lundin, M.; Nilsson, B.; Schroder, B.

    2018-06-01

    The γ -radiation by electrons with the energy of ∼ 200 MeV in a 100 μ m-thick diamond crystal has been measured at the MAX-lab experimental facility, when the electrons are incident on the crystal along the < 100 > axis. In this case, the intensity of the -radiation with the energy ∼ 1-2 MeV is approximately 16 times higher than that in amorphous matter of the same thickness. Theoretical calculations based on the quasi-classical QED approximation are in good agreement with the experimental data. The analysis of the radiation mechanisms has shown that the main contribution to the radiation intensity resulted from electrons, moving in the above-barrier regime and at small angles to the crystal axis.

  11. Cohesive Energy-Lattice Constant and Bulk Modulus-Lattice Constant Relationships: Alkali Halides, Ag Halides, Tl Halides

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert

    1992-01-01

    In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.

  12. Studies of Nucleation, Growth, Specific Heat, and Viscosity of Undercooled Melts of Quasicrystals and Polytetrahedral-Phase-Forming Alloys

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Croat, T. K.; Gangopadhyay, A.; Holland-Moritz, D.; Hyers, Robert W.; Rathz, Thomas J.; Robinson, Michael B.; Rogers, Jan R.

    2001-01-01

    Undercooling experiments and thermal physical property measurements of metallic alloys on the International Space Station (ISS) are planned. This recently-funded research focuses on fundamental issues of the formation and structure of highly-ordered non-crystallographic phases (quasicrystals) and related crystal phases (crystal approximants), and the connections between the atomic structures of these phases and those of liquids and glasses. It extends studies made previously by us of the composition dependence of crystal nucleation processes in silicate and metallic glasses, to the case of nucleation from the liquid phase. Motivating results from rf-levitation and drop-tube measurements of the undercooling of Ti/Zr-based liquids that form quasicrystals and crystal approximants are discussed. Preliminary measurements by electrostatic levitation (ESL) are presented.

  13. Correlation of intercalation potential with d-electron configurations for cathode compounds of lithium-ion batteries.

    PubMed

    Chen, Zhenlian; Zhang, Caixia; Zhang, Zhiyong; Li, Jun

    2014-07-14

    The d-electron localization is widely recognized as important to transport properties of transition metal compounds, but its role in the energy conversion of intercalation reactions of cathode compounds is still not fully explored. In this work, the correlation of intercalation potential with electron affinity, a key energy term controlling electron intercalation, then with d-electron configuration, is investigated. Firstly, we find that the change of the intercalation potential with respect to the transition metal cations within the same structure class is correlated in an approximately mirror relationship with the electron affinity, based on first-principles calculations on three typical categories of cathode compounds including layered oxides and polyoxyanions Then, by using a new model Hamiltonian based on the crystal-field theory, we reveal that the evolution is governed by the combination of the crystal-field splitting and the on-site d-d exchange interactions. Further, we show that the charge order in solid-solution composites and the compatibility of multi-electron redox steps could be inferred from the energy terms with the d-electron configuration alternations. These findings may be applied to rationally designing new chemistry for the lithium-ion batteries and other metal-ion batteries.

  14. Electronic and magnetic properties of double perovskite Sr2CoUO6: Heisenberg model

    NASA Astrophysics Data System (ADS)

    Nid-bahami, A.; Ahmed, S. Sidi; Ait-Tamerd, M.; Zaari, H.; El Kenz, A.; Benyoussef, A.

    2018-01-01

    This work will be focused on the electronic and magnetic properties of Sr2CoUO6 (SCUO) using ab-initio calculations and Monte Carlo Simulation (MCS). Firstly, we calculate the exchange coupling and the crystal field, then, the electronic and magnetic properties will be studied, using the full-potential linearized augmented plane wave (FP-LAPW) method, as implemented in the Wien2k code. This method employing the generalized gradient approximation (GGA) for exchange-correlation term. The half-metallic ferromagnetic nature implies a potential application of this new compound in spintronics devices. Also, we have presented the results of the band structures and densities of states for the two up and down spin polarizations. The exchange coupling and the crystal field calculated are J = 0 . 567 meV and δ = 0 . 559meV, and total spin magnetic moments is 2.96 μB closed to experimental values 3 μB. Secondly, we have presented the results for the magnetization and the susceptibility as a function of temperature. Finally, we obtain the critical temperature T = 9 . 20 K by MCS in good agreement with the experimental value.

  15. Acoustic scattering from phononic crystals with complex geometry.

    PubMed

    Kulpe, Jason A; Sabra, Karim G; Leamy, Michael J

    2016-05-01

    This work introduces a formalism for computing external acoustic scattering from phononic crystals (PCs) with arbitrary exterior shape using a Bloch wave expansion technique coupled with the Helmholtz-Kirchhoff integral (HKI). Similar to a Kirchhoff approximation, a geometrically complex PC's surface is broken into a set of facets in which the scattering from each facet is calculated as if it was a semi-infinite plane interface in the short wavelength limit. When excited by incident radiation, these facets introduce wave modes into the interior of the PC. Incorporation of these modes in the HKI, summed over all facets, then determines the externally scattered acoustic field. In particular, for frequencies in a complete bandgap (the usual operating frequency regime of many PC-based devices and the requisite operating regime of the presented theory), no need exists to solve for internal reflections from oppositely facing edges and, thus, the total scattered field can be computed without the need to consider internal multiple scattering. Several numerical examples are provided to verify the presented approach. Both harmonic and transient results are considered for spherical and bean-shaped PCs, each containing over 100 000 inclusions. This facet formalism is validated by comparison to an existing self-consistent scattering technique.

  16. Magnetic penetration-depth measurements of a suppressed superfluid density of superconducting Ca0.5Na0.5Fe2As2 single crystals by proton irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Jeehoon; Haberkorn, N.; Graf, M. J.; Usov, I.; Ronning, F.; Civale, L.; Nazaretski, E.; Chen, G. F.; Yu, W.; Thompson, J. D.; Movshovich, R.

    2012-10-01

    We report on the dramatic effect of random point defects, produced by proton irradiation, on the superfluid density ρs in superconducting Ca0.5Na0.5Fe2As2 single crystals. The magnitude of the suppression is inferred from measurements of the temperature-dependent magnetic penetration depth λ(T) using magnetic force microscopy. Our findings indicate that a radiation dose of 2×1016 cm-2 produced by 3 MeV protons results in a reduction of the superconducting critical temperature Tc by approximately 10%. In contrast, ρs(0) is suppressed by approximately 60%. This breakdown of the Abrikosov-Gorkov theory may be explained by the so-called “Swiss cheese model,” which accounts for the spatial suppression of the order parameter near point defects similar to holes in Swiss cheese. Both the slope of the upper critical field and the penetration depth λ(T/Tc)/λ(0) exhibit similar temperature dependences before and after irradiation. This may be due to a combination of the highly disordered nature of Ca0.5Na0.5Fe2As2 with large intraband and simultaneous interband scattering as well as the s±-wave nature of short coherence length superconductivity.

  17. Influences of misfit strains on liquid phase heteroepitaxial growth

    NASA Astrophysics Data System (ADS)

    Lu, Yanli; Peng, Yingying; Yu, Genggeng; Chen, Zheng

    2017-10-01

    Influences of misfit strains with different signs on liquid phase heteroepitaxial growth are studied by binary phase field crystal model. It is amazing to find that double islands are formed because of lateral and vertical separation. The morphological evolution of epitaxial layer depends on signs of misfit strains. The maximum atomic layer thickness of double islands under negative misfit strain is larger than that of under positive misfit strain at the same evolutional time, and size differences between light and dark islands is much smaller under negative misfit strain than that of under positive misfit strain. In addition, concentration field and density field approximately have similar variational law along x direction under the same misfit strain but show opposite variational trend under misfit strains with different signs. Generally, free energy of epitaxial growth systems keeps similar variational trend under misfit strains with different signs.

  18. Iridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales

    PubMed Central

    Wilts, Bodo D.; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G.

    2012-01-01

    The cover scales on the wing of the Emerald-patched Cattleheart butterfly, Parides sesostris, contain gyroid-type biological photonic crystals that brightly reflect green light. A pigment, which absorbs maximally at approximately 395 nm, is immersed predominantly throughout the elaborate upper lamina. This pigment acts as a long-pass filter shaping the reflectance spectrum of the underlying photonic crystals. The additional effect of the filtering is that the spatial distribution of the scale reflectance is approximately angle-independent, leading to a stable wing pattern contrast. The spectral tuning of the original reflectance is verified by photonic band structure modelling. PMID:24098853

  19. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koizumi, H.; Uda, S.; Fujiwara, K.

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  20. In-situ Optical Waveguides for Monitoring and Modifying Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Gibson, Ursula; Osterberg, Ulf

    2004-01-01

    The use of electric fields in the growth of protein crystals was investigated, both theoretically and experimentally. We used dc, ac and optical fields to change the spatial distribution of proteins. Dc fields had only local effects, due to the conductivity of the growth solution. We found that for low frequency fields, movement of the buffer and salt ions dominated, and that for high frequency ac fields, &electrophoretic effects could be useful for relocating growing protein crystals. The most promising result was that for optical fields, a large gradient in the field could be used to capture a crystal, and observe growth in-situ. This concept could be developed into an experimental setup compatible with automated x-ray diffraction measurements in microgravity.

  1. Electric-field-induced motion of colloid particles in smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Jakli, Antal

    2005-03-01

    We present the first observations of DC electric-field-induced rotational and translational motion of finite particles in liquid crystals. The electro-rotation is basically identical to the well known Quincke rotation, which triggers the translational motion at higher fields. From the electric field dependence of the angular velocity of the rotation we obtain the viscosity of the liquid crystals. The analysis of the translational motion in smectic liquid crystals indicates elastic responses near the threshold for translation. At increasing fields the speed of the particles is increasing and at sufficiently high speeds the flow of the smectic A and smectic C liquid crystal around the beads become purely viscous. Colloid particles in smectic materials maybe considered as model systems for understanding motion of proteins in cell membranes.

  2. Diffraction and imaging study of imperfections of crystallized lysozyme with coherent X-rays

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Chu, Y. S.; Lai, B.; Thomas, B. R.; Chernov, A. A.

    2004-01-01

    Phase-contrast X-ray diffraction imaging and high-angular-resolution diffraction combined with phase-contrast radiographic imaging were employed to characterize defects and perfection of a uniformly grown tetragonal lysozyme crystal in the symmetric Laue case. The full-width at half-maximum (FWHM) of a 4 4 0 rocking curve measured from the original crystal was approximately 16.7 arcsec and imperfections including line defects, inclusions and other microdefects were observed in the diffraction images of the crystal. The observed line defects carry distinct dislocation features running approximately along the <1 1 0> growth front and have been found to originate mostly in a central growth area and occasionally in outer growth regions. Inclusions of impurities or formations of foreign particles in the central growth region are resolved in the images with high sensitivity to defects. Slow dehydration led to the broadening of a fairly symmetric 4 4 0 rocking curve by a factor of approximately 2.6, which was primarily attributed to the dehydration-induced microscopic effects that are clearly shown in X-ray diffraction images. The details of the observed defects and the significant change in the revealed microstructures with drying provide insight into the nature of imperfections, nucleation and growth, and the properties of protein crystals.

  3. Microgravity

    NASA Image and Video Library

    2000-11-15

    Watching molecules of the iron-storing protein apoferritin come together to form a nucleus reveals some interesting behavior. In this series of images, researchers observed clusters of four molecules at the corners of a diamond shape (top). As more molecules attach to the cluster, they arrange themselves into rods (second from top), and a raft-like configuration of molecules forms the critical nucleus (third from top), suggesting that crystal growth is much slower than it could be were the molecules arranged in a more compact formation. In the final image, a crystallite consisting of three layers containing approximately 60 to 70 molecules each is formed. Atomic force microscopy made visualizing the process of nucleation possible for the first time. The principal investigator is Peter Vekilov, of the University of Alabama in Huntsville. Vekilov's team at UAH studies protein solutions as they change phases from liquids to crystalline solids. They want to know if the molecules in the solution interact with one another, and if so, how, from the perspectives of thermodynamics and kinetics. They want to understand which forces -- electrical, electrostatic, hydrodynamic, or other kinds of forces -- are responsible for the interactions. They also study nucleation, the begirning stage of crystallization. This process is important to understand because it sets the stage for crystal growth in all kinds of solutions and liquid melts that are important in such diverse fields as agriculture, medicine, and the fabrication of metal components. Nucleation can determine the rate of crystal growth, the number of crystals that will be formed, and the quality and size of the crystals.

  4. Computational modelling of Er(3+): Garnet laser materials

    NASA Technical Reports Server (NTRS)

    Spangler, Lee H.

    1994-01-01

    The Er(3+) ion has attracted a lot of interest for four reasons: (1) Its (4)I(sub 13/2) yields (4)I(sub 15/2) transition lases in the eyesafe region near 1.5 micron; (2) the (4)I(sub 13/2) transition lases near 2.8 micron, an important wavelength for surgical purposes; (3) it displays surprisingly efficient upconversion with lasing observed at 1.7, 1.2, 0.85, 0.56, 0.55, and 0.47 micron following 1.5 micron pumping; and (4) it has absorption bands at 0.96 and 0.81 micron and thus can be diode pumped. However, properties desirable for upconversion reduce the efficiency of 1.5 and 3 micron laser operation and vice versa. Since all of the processes are influenced by the host via the crystal field induced stark splittings in the Er levels, this project undertook modelling of the host influence on the Er lasinng behavior. While growth and measurement of all ten Er(3+) doped garnets is the surest way of identifying hosts which maximize upconversion (or conversly, 1.5 and 3 micron performance), it is also expensive - costing approximately $10,000/material or approximately $100,000 for the materials computationally investigated here. The calculations were performed using a quantum mechanical point charge model developed by Clyde Morrison at Harry Diamond Laboratories. The programs were used to fit the Er:YAG experimental energy levels so that the crystal field parameters, B(sub nm) could be extracted. From these radial factors, rho (sub n) were determined for Er(3+) in garnets. These, in combination with crystal field components, Anm, available from X-ray data, were used to predict energy levels for Er in the other nine garnet hosts. The levels in Er:YAG were fit with an rms error of 12.2/cm over a 22,000/cm range. Predicted levels for two other garnets for which literature values were available had rms errors of less than 17/cm , showing the calculations to be reliable. Based on resonances between pairs of calculated stark levels, the model predicts GSGG as the best host for 1.5 micron laser operation, GSGG or YSAG as the best host for a 2.8 micron operation, and LuGG as the best host for an upconversion material.

  5. Realization of all-optical switch and diode via Raman gain process using a Kerr field

    NASA Astrophysics Data System (ADS)

    Abbas, Muqaddar; Qamar, Sajid; Qamar, Shahid

    2016-08-01

    The idea of optical photonic crystal, which is generated using two counter-propagating fields, is revisited to study gain-assisted all-optical switch and diode using Kerr field. Two counter-propagating fields with relative detuning Δ ν generate standing-wave field pattern which interacts with a four-level atomic system. The standing-wave field pattern acts like a static photonic crystal for Δ ν =0 , however, it behaves as a moving photonic crystal for Δ ν \

  6. Laboratory Annealing Experiments Of Refractory Silicate Grain Analogs Using Differential Scanning Calorimetry

    NASA Technical Reports Server (NTRS)

    Kimura, Yuki; Nuth, Joseph A., III; Tsukamota, Katsuo; Kaito, Chihiro

    2010-01-01

    Exothermic reactions during the annealing of laboratory synthesized amorphous magnesium-bearing silicate particles used as grain analogs of cosmic dust were detected by differential scanning calorimetry (DSC) in air. With infrared spectroscopy and transmission electron microscopy, we show that cosmic dust could possibly undergo fusion to larger particles, with oxidation of magnesium silicide and crystallization of forsterite as exothermic reactions in the early solar system. The reactions begin at approximately 425, approximately 625, and approximately 1000 K, respectively, and the reaction energies (enthalpies) are at least 727, 4151, and 160.22 J per gram, respectively. During the crystallization of forsterite particles, the spectral evolution of the 10 micrometer feature from amorphous to crystalline was observed to begin at lower temperature than the crystallization temperature of 1003 K. During spectral evolution at lower temperature, nucleation and/or the formation of nanocrystallites of forsterite at the surface of the grain analogs was observed.

  7. Numerical Study of Hydrothermal Wave Suppression in Thermocapillary Flow Using a Predictive Control Method

    NASA Astrophysics Data System (ADS)

    Muldoon, F. H.

    2018-04-01

    Hydrothermal waves in flows driven by thermocapillary and buoyancy effects are suppressed by applying a predictive control method. Hydrothermal waves arise in the manufacturing of crystals, including the "open boat" crystal growth process, and lead to undesirable impurities in crystals. The open boat process is modeled using the two-dimensional unsteady incompressible Navier-Stokes equations under the Boussinesq approximation and the linear approximation of the surface thermocapillary force. The flow is controlled by a spatially and temporally varying heat flux density through the free surface. The heat flux density is determined by a conjugate gradient optimization algorithm. The gradient of the objective function with respect to the heat flux density is found by solving adjoint equations derived from the Navier-Stokes ones in the Boussinesq approximation. Special attention is given to heat flux density distributions over small free-surface areas and to the maximum admissible heat flux density.

  8. Development of a ReaxFF reactive force field for ammonium nitrate and application to shock compression and thermal decomposition.

    PubMed

    Shan, Tzu-Ray; van Duin, Adri C T; Thompson, Aidan P

    2014-02-27

    We have developed a new ReaxFF reactive force field parametrization for ammonium nitrate. Starting with an existing nitramine/TATB ReaxFF parametrization, we optimized it to reproduce electronic structure calculations for dissociation barriers, heats of formation, and crystal structure properties of ammonium nitrate phases. We have used it to predict the isothermal pressure-volume curve and the unreacted principal Hugoniot states. The predicted isothermal pressure-volume curve for phase IV solid ammonium nitrate agreed with electronic structure calculations and experimental data within 10% error for the considered range of compression. The predicted unreacted principal Hugoniot states were approximately 17% stiffer than experimental measurements. We then simulated thermal decomposition during heating to 2500 K. Thermal decomposition pathways agreed with experimental findings.

  9. Presence of 3d quadrupole moment in LaTiO3 studied by 47,49Ti NMR.

    PubMed

    Kiyama, Takashi; Itoh, Masayuki

    2003-10-17

    47,49Ti NMR spectra of LaTiO3 are reexamined and the orbital state of this compound is discussed. The NMR spectra of LaTiO3 taken at 1.5 K under zero external field indicate a large nuclear quadrupole splitting. This splitting is ascribed to the presence of the rather large quadrupole moment of 3d electrons at Ti sites, suggesting that the orbital liquid model proposed for LaTiO3 is inappropriate. The NMR spectra are well explained by the orbital ordering model expressed approximately as 1/square root of 3(d(xy)+d(yz)+d(zx)) originating from a crystal field effect. It is also shown that most of the orbital moment is quenched.

  10. CRYSTAL: The Cirrus Regional Study of Tropical Anvils and Layers

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E.; Cox, Stephen K.; Curran, Robert J.

    1999-01-01

    CRYSTAL the Cirrus Regional Study of Tropical Anvils and Layers is part of the ongoing series of field experiments to study clouds and their impact on world weather and climate, and will attempt to improve the application of cloud effects in global climate models. CRYSTAL is being planned as two parts: a limited CRYSTAL field campaign in 2001 to examine towering clouds and anvil genesis over the Everglades of Florida, and the main CRYSTAL field campaign in the summer of 2003 in the Tropical Western Pacific. The latter is timed to take advantage of several cloud measurement satellites that will be operational at that time. This paper discusses some of the issues to be addressed in CRYSTAL, gives a brief description of the research plan, and describes its relationship to other important field experiments.

  11. Surface heat shock protein 90 serves as a potential receptor for calcium oxalate crystal on apical membrane of renal tubular epithelial cells.

    PubMed

    Fong-Ngern, Kedsarin; Sueksakit, Kanyarat; Thongboonkerd, Visith

    2016-07-01

    Adhesion of calcium oxalate monohydrate (COM) crystals on renal tubular epithelial cells is a crucial step in kidney stone formation. Finding potential crystal receptors on the apical membrane of the cells may lead to a novel approach to prevent kidney stone disease. Our previous study identified a large number of crystal-binding proteins on the apical membrane of MDCK cells. However, their functional role as potential crystal receptors had not been validated. The present study aimed to address the potential role of heat shock protein 90 (HSP90) as a COM crystal receptor. The apical membrane was isolated from polarized MDCK cells by the peeling method and recovered proteins were incubated with COM crystals. Western blot analysis confirmed the presence of HSP90 in the apical membrane and the crystal-bound fraction. Immunofluorescence staining without permeabilization and laser-scanning confocal microscopy confirmed the surface HSP90 expression on the apical membrane of the intact cells. Crystal adhesion assay showed that blocking surface HSP90 by specific anti-HSP90 antibody and knockdown of HSP90 by small interfering RNA (siRNA) dramatically reduced crystal binding on the apical surface of MDCK cells (by approximately 1/2 and 2/3, respectively). Additionally, crystal internalization assay revealed the presence of HSP90 on the membrane of endocytic vesicle containing the internalized COM crystal. Moreover, pretreatment of MDCK cells with anti-HSP90 antibody significantly reduced crystal internalization (by approximately 1/3). Taken together, our data indicate that HSP90 serves as a potential receptor for COM crystals on the apical membrane of renal tubular epithelial cells and is involved in endocytosis/internalization of the crystals into the cells.

  12. Splitting Fermi Surfaces and Heavy Electronic States in Non-Centrosymmetric U3Ni3Sn4

    NASA Astrophysics Data System (ADS)

    Maurya, Arvind; Harima, Hisatomo; Nakamura, Ai; Shimizu, Yusei; Homma, Yoshiya; Li, DeXin; Honda, Fuminori; Sato, Yoshiki J.; Aoki, Dai

    2018-04-01

    We report the single-crystal growth of the non-centrosymmetric paramagnet U3Ni3Sn4 by the Bridgman method and the Fermi surface properties detected by de Haas-van Alphen (dHvA) experiments. We have also investigated single-crystal U3Ni3Sn4 by single-crystal X-ray diffraction, magnetization, electrical resistivity, and heat capacity measurements. The angular dependence of the dHvA frequencies reveals many closed Fermi surfaces, which are nearly spherical in topology. The experimental results are in good agreement with local density approximation (LDA) band structure calculations based on the 5f-itinerant model. The band structure calculation predicts many Fermi surfaces, mostly with spherical shape, derived from 12 bands crossing the Fermi energy. To our knowledge, the splitting of Fermi surfaces due to the non-centrosymmetric crystal in 5f-electron systems is experimentally detected for the first time. The temperature dependence of the dHvA amplitude reveals a large cyclotron effective mass of up to 35 m0, indicating the heavy electronic state of U3Ni3Sn4 due to the proximity of the quantum critical point. From the field dependence of the dHvA amplitude, a mean free path of conduction electrons of up to 1950 Å is detected, reflecting the good quality of the grown crystal. The small splitting energy related to the antisymmetric spin-orbit interaction is most likely due to the large cyclotron effective mass.

  13. Thermoelectric properties of nanocrystalline Sb2Te3 thin films: experimental evaluation and first-principles calculation, addressing effect of crystal grain size.

    PubMed

    Morikawa, Satoshi; Inamoto, Takuya; Takashiri, Masayuki

    2018-02-16

    The effect of crystal grain size on the thermoelectric properties of nanocrystalline antimony telluride (Sb 2 Te 3 ) thin films was investigated by experiments and first-principles studies using a developed relaxation time approximation. The Sb 2 Te 3 thin films were deposited on glass substrates using radio-frequency magnetron sputtering. To change the crystal grain size of the Sb 2 Te 3 thin films, thermal annealing was performed at different temperatures. The crystal grain size, lattice parameter, and crystal orientation of the thin films were estimated using XRD patterns. The carrier concentration and in-plane thermoelectric properties of the thin films were measured at room temperature. A theoretical analysis was performed using a first-principles study based on density functional theory. The electronic band structures of Sb 2 Te 3 were calculated using different lattice parameters, and the thermoelectric properties were predicted based on the semi-classical Boltzmann transport equation in the relaxation time approximation. In particular, we introduced the effect of carrier scattering at the grain boundaries into the relaxation time approximation by estimating the group velocities from the electronic band structures. Finally, the experimentally measured thermoelectric properties were compared with those obtained by calculation. As a result, the calculated thermoelectric properties were found to be in good agreement with the experimental results. Therefore, we can conclude that introducing the effect of carrier scattering at the grain boundaries into the relaxation time approximation contributes to enhance the accuracy of a first-principles calculation relating to nanocrystalline materials.

  14. Thermoelectric properties of nanocrystalline Sb2Te3 thin films: experimental evaluation and first-principles calculation, addressing effect of crystal grain size

    NASA Astrophysics Data System (ADS)

    Morikawa, Satoshi; Inamoto, Takuya; Takashiri, Masayuki

    2018-02-01

    The effect of crystal grain size on the thermoelectric properties of nanocrystalline antimony telluride (Sb2Te3) thin films was investigated by experiments and first-principles studies using a developed relaxation time approximation. The Sb2Te3 thin films were deposited on glass substrates using radio-frequency magnetron sputtering. To change the crystal grain size of the Sb2Te3 thin films, thermal annealing was performed at different temperatures. The crystal grain size, lattice parameter, and crystal orientation of the thin films were estimated using XRD patterns. The carrier concentration and in-plane thermoelectric properties of the thin films were measured at room temperature. A theoretical analysis was performed using a first-principles study based on density functional theory. The electronic band structures of Sb2Te3 were calculated using different lattice parameters, and the thermoelectric properties were predicted based on the semi-classical Boltzmann transport equation in the relaxation time approximation. In particular, we introduced the effect of carrier scattering at the grain boundaries into the relaxation time approximation by estimating the group velocities from the electronic band structures. Finally, the experimentally measured thermoelectric properties were compared with those obtained by calculation. As a result, the calculated thermoelectric properties were found to be in good agreement with the experimental results. Therefore, we can conclude that introducing the effect of carrier scattering at the grain boundaries into the relaxation time approximation contributes to enhance the accuracy of a first-principles calculation relating to nanocrystalline materials.

  15. Diffraction and Imaging Study of Imperfections of Protein Crystals with Coherent X-rays

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Thomas, B. R.; Chernov, A. A.; Chu, Y. S.; Lai, B.

    2004-01-01

    High angular-resolution x-ray diffraction and phase contrast x-ray imaging were combined to study defects and perfection of protein crystals. Imperfections including line defects, inclusions and other microdefects were observed in the diffraction images of a uniformly grown lysozyme crystal. The observed line defects carry distinct dislocation features running approximately along the <110> growth front and have been found to originate mostly in a central growth area and occasionally in outer growth regions. Slow dehydration led to the broadening of a fairly symmetric 4 4 0 rocking curve by a factor of approximately 2.6, which was primarily attributed to the dehydration-induced microscopic effects that are clearly shown in diffraction images. X-ray imaging and diffraction characterization of the quality of apoferritin crystals will also be discussed in the presentation.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modak, Viraj P., E-mail: virajmodak@gmail.com; Wyslouzil, Barbara E., E-mail: wyslouzil.1@osu.edu; Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210

    The crystal-vapor surface free energy γ is an important physical parameter governing physical processes, such as wetting and adhesion. We explore exact and approximate routes to calculate γ based on cleaving an intact crystal into non-interacting sub-systems with crystal-vapor interfaces. We do this by turning off the interactions, ΔV, between the sub-systems. Using the soft-core scheme for turning off ΔV, we find that the free energy varies smoothly with the coupling parameter λ, and a single thermodynamic integration yields the exact γ. We generate another exact method, and a cumulant expansion for γ by expressing the surface free energy inmore » terms of an average of e{sup −βΔV} in the intact crystal. The second cumulant, or Gaussian approximation for γ is surprisingly accurate in most situations, even though we find that the underlying probability distribution for ΔV is clearly not Gaussian. We account for this fact by developing a non-Gaussian theory for γ and find that the difference between the non-Gaussian and Gaussian expressions for γ consist of terms that are negligible in many situations. Exact and approximate methods are applied to the (111) surface of a Lennard-Jones crystal and are also tested for more complex molecular solids, the surface of octane and nonadecane. Alkane surfaces were chosen for study because their crystal-vapor surface free energy has been of particular interest for understanding surface freezing in these systems.« less

  17. Unconventional Magnetism and Band Gap Formation in LiFePO4: Consequence of Polyanion Induced Non-planarity.

    PubMed

    Jena, Ajit; Nanda, B R K

    2016-01-21

    Oxygen plays a critical role in strongly correlated transition metal oxides as crystal field effect is one of the key factors that determine the degree of localization of the valence d/f states. Based on the localization, a set of conventional mechanisms such as Mott-Hubbard, Charge-transfer and Slater were formulated to explain the antiferromagnetic and insulating (AFI) phenomena in many of these correlated systems. From the case study on LiFePO4, through density-functional calculations, we demonstrate that none of these mechanisms are strictly applicable to explain the AFI behavior when the transition metal oxides have polyanions such as (PO4)(3-). The symmetry-lowering of the metal-oxygen complex, to stabilize the polyanion, creates an asymmetric crystal field for d/f states. In LiFePO4 this field creates completely non-degenerate Fe-d states which, with negligible p-d and d-d covalent interactions, become atomically localized to ensure a gap at the Fermi level. Due to large exchange splitting, high spin state is favored and an antiferromagnetic configuration is stabilized. For the prototype LiFePO4, independent electron approximation is good enough to obtain the AFI ground state. Inclusion of additional correlation measures like Hubbard U simply amplifies the gap and therefore LiFePO4 can be preferably called as weakly coupled Mott insulator.

  18. Unconventional Magnetism and Band Gap Formation in LiFePO4: Consequence of Polyanion Induced Non-planarity

    PubMed Central

    Jena, Ajit; Nanda, B. R. K.

    2016-01-01

    Oxygen plays a critical role in strongly correlated transition metal oxides as crystal field effect is one of the key factors that determine the degree of localization of the valence d/f states. Based on the localization, a set of conventional mechanisms such as Mott-Hubbard, Charge-transfer and Slater were formulated to explain the antiferromagnetic and insulating (AFI) phenomena in many of these correlated systems. From the case study on LiFePO4, through density-functional calculations, we demonstrate that none of these mechanisms are strictly applicable to explain the AFI behavior when the transition metal oxides have polyanions such as (PO4)3−. The symmetry-lowering of the metal-oxygen complex, to stabilize the polyanion, creates an asymmetric crystal field for d/f states. In LiFePO4 this field creates completely non-degenerate Fe-d states which, with negligible p-d and d-d covalent interactions, become atomically localized to ensure a gap at the Fermi level. Due to large exchange splitting, high spin state is favored and an antiferromagnetic configuration is stabilized. For the prototype LiFePO4, independent electron approximation is good enough to obtain the AFI ground state. Inclusion of additional correlation measures like Hubbard U simply amplifies the gap and therefore LiFePO4 can be preferably called as weakly coupled Mott insulator. PMID:26791249

  19. Screened dipolar interactions in some molecular crystals

    NASA Astrophysics Data System (ADS)

    Munn, R. W.; Hurst, M.

    1990-10-01

    Screened dipole energies and dipole electric fields are calculated for the crystals of HCN, meta- and para-nitroaniline, the nonlinear optical compounds POM, MAP and DAN, meta-dinitrobenzene, and acetanilide. Only para-nitroaniline is centrosymmetric, but all the crystals have significant negative dipole energies (of the order of -20 kJ mol -1) except for POM and metadinitrobenzene, where they are positive but small in magnitude. Local dipole fields are of the order of 10 GV m -1. The results assume that surface charge annuls any macroscopic dipole field. It is speculated that the observed preponderance of centrosymmetric crystals of polar molecules may reflect a favourable dipole energy in the initial crystal nucleus rather than the macroscopic crystal.

  20. Asymptotic Analysis of Melt Growth for Antimonide-Based Compound Semiconductor Crystals in Magnetic and Electric Fields

    DTIC Science & Technology

    2006-10-01

    F. Bliss, Gerald W. Iseler and Piotr Becla, "Combining static and rotating magnetic fields during modified vertical Bridgman crystal growth ," AIAA...Wang and Nancy Ma, "Semiconductor crystal growth by the vertical Bridgman process with rotating magnetic fields," ASME Journal of Heat Transfer...2005. 15. Stephen J. LaPointe, Nancy Ma and Donald W. Mueller, Jr., " Growth of binary alloyed semiconductor crystals by the vertical Bridgman

  1. Crystal field parameters and energy levels scheme of trivalent chromium doped BSO

    NASA Astrophysics Data System (ADS)

    Petkova, P.; Andreici, E.-L.; Avram, N. M.

    2014-11-01

    The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.

  2. Crystal field parameters and energy levels scheme of trivalent chromium doped BSO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petkova, P.; Andreici, E.-L.; Avram, N. M., E-mail: n1m2marva@yahoo.com

    The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of themore » crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.« less

  3. Effects of β-sheet crystals and a glycine-rich matrix on the thermal conductivity of spider dragline silk.

    PubMed

    Park, Jinju; Kim, Duckjong; Lee, Seung-Mo; Choi, Ji-Ung; You, Myungil; So, Hye-Mi; Han, Junkyu; Nah, Junghyo; Seol, Jae Hun

    2017-03-01

    We measured the thermal conductivity of Araneus ventricosus' spider dragline silk using a suspended microdevice. The thermal conductivity of the silk fiber was approximately 0.4Wm -1 K -1 at room temperature and gradually increased with an increasing temperature in a manner similar to that of other disordered crystals or proteins. In order to elucidate the effect of β-sheet crystals in the silk, thermal denaturation was used to reduce the quantity of the β-sheet crystals. A calculation with an effective medium approximation supported this measurement result showing that the thermal conductivity of β-sheet crystals had an insignificant effect on the thermal conductivity of SDS. Additionally, the enhancement of bonding strength in a glycine-rich matrix by atomic layer deposition did not increase the thermal conductivity. Thus, this study suggests that the disordered part of the glycine-rich matrix prevented the peptide chains from being coaxially extended via the cross-linking covalent bonds. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Common misconceptions about the dynamical theory of crystal lattices: Cauchy relations, lattice potentials and infinite crystals

    NASA Astrophysics Data System (ADS)

    Elcoro, Luis; Etxebarria, Jesús

    2011-01-01

    The requirement of rotational invariance for lattice potential energies is investigated. Starting from this condition, it is shown that the Cauchy relations for the elastic constants are fulfilled if the lattice potential is built from pair interactions or when the first-neighbour approximation is adopted. This is seldom recognized in widely used solid-state textbooks. Frequently, pair interaction is even considered to be the most general situation. In addition, it is shown that the demand of rotational invariance in an infinite crystal leads to inconsistencies in the symmetry of the elastic tensor. However, for finite crystals, no problems arise, and the Huang conditions are deduced using exclusively a microscopic approach for the elasticity theory, without making any reference to macroscopic parameters. This work may be useful in both undergraduate and graduate level courses to point out the crudeness of the pair-potential interaction and to explore the limits of the infinite-crystal approximation.

  5. Electronegativity, charge transfer, crystal field strength, and the point charge model revisited.

    PubMed

    Tanner, Peter A; Ning, Lixin

    2013-02-21

    Although the optical spectra of LnCl(6)(3-) systems are complex, only two crystal field parameters, B(40) and B(60), are required to model the J-multiplet crystal field splittings in octahedral symmetry. It is found that these parameters exhibit R(-5) and R(-7) dependence, respectively, upon the ionic radius Ln(3+)(VI), but not upon the Ln-Cl distance. More generally, the crystal field strengths of LnX(6) systems (X = Br, Cl, F, O) exhibit linear relationships with ligand electronegativity, charge transfer energy, and fractional ionic character of the Ln-X bond.

  6. Composition dependences of crystal structure and electrical properties of epitaxial Pb(Zr,Ti)O3 films grown on Si and SrTiO3 substrates

    NASA Astrophysics Data System (ADS)

    Okamoto, Shoji; Okamoto, Satoshi; Yokoyama, Shintaro; Akiyama, Kensuke; Funakubo, Hiroshi

    2016-10-01

    {100}-oriented Pb(Zr x ,Ti1- x )O3 (PZT) thin films of approximately 2 µm thickness and Zr/(Zr + Ti) ratios of 0.39-0.65 were epitaxially grown on (100)cSrRuO3//(100)SrTiO3 (STO) and (100)cSrRuO3//(100)cLaNiO3//(100)CeO2//(100)YSZ//(100)Si (Si) substrates having different thermal expansion coefficients by pulsed metal-organic chemical vapor deposition (MOCVD). The effects of Zr/(Zr + Ti) ratio and type of substrate on the crystal structure and dielectric, ferroelectric and piezoelectric properties of the films were systematically investigated. The X-ray diffraction measurement showed that both films changed from having a tetragonal symmetry to rhombohedral symmetry through the coexisting region with increasing Zr/(Zr + Ti) ratio. This region showed the Zr/(Zr + Ti) ratios of 0.45-0.59 for the films on the STO substrates that were wider than the films on the Si substrates. Saturation polarization values were minimum at approximately Zr/(Zr + Ti) = 0.50 for the films on the STO substrates, and no obvious Zr/(Zr + Ti) ratio dependence was detected in the films on the Si substrates. On the other hand, the maximum field-induced strain values measured by scanning force microscopy at approximately Zr/(Zr + Ti) = 0.50 at 100 kV/cm were about 0.5 and 0.1% in the films on the Si and STO, respectively.

  7. Global mean-field phase diagram of the spin-1 Ising ferromagnet in a random crystal field

    NASA Astrophysics Data System (ADS)

    Borelli, M. E. S.; Carneiro, C. E. I.

    1996-02-01

    We study the phase diagram of the mean-field spin-1 Ising ferromagnet in a uniform magnetic field H and a random crystal field Δi, with probability distribution P( Δi) = pδ( Δi - Δ) + (1 - p) δ( Δi). We analyse the effects of randomness on the first-order surfaces of the Δ- T- H phase diagram for different values of the concentration p and show how these surfaces are affected by the dilution of the crystal field.

  8. Photonic crystal geometry for organic solar cells.

    PubMed

    Ko, Doo-Hyun; Tumbleston, John R; Zhang, Lei; Williams, Stuart; DeSimone, Joseph M; Lopez, Rene; Samulski, Edward T

    2009-07-01

    We report organic solar cells with a photonic crystal nanostructure embossed in the photoactive bulk heterojunction layer, a topography that exhibits a 3-fold enhancement of the absorption in specific regions of the solar spectrum in part through multiple excitation resonances. The photonic crystal geometry is fabricated using a materials-agnostic process called PRINT wherein highly ordered arrays of nanoscale features are readily made in a single processing step over wide areas (approximately 4 cm(2)) that is scalable. We show efficiency improvements of approximately 70% that result not only from greater absorption, but also from electrical enhancements. The methodology is generally applicable to organic solar cells and the experimental findings reported in our manuscript corroborate theoretical expectations.

  9. Computing approximate solutions of the protein structure determination problem using global constraints on discrete crystal lattices.

    PubMed

    Dal Palù, Alessandro; Dovier, Agostino; Pontelli, Enrico

    2010-01-01

    Crystal lattices are discrete models of the three-dimensional space that have been effectively employed to facilitate the task of determining proteins' natural conformation. This paper investigates alternative global constraints that can be introduced in a constraint solver over discrete crystal lattices. The objective is to enhance the efficiency of lattice solvers in dealing with the construction of approximate solutions of the protein structure determination problem. Some of them (e.g., self-avoiding-walk) have been explicitly or implicitly already used in previous approaches, while others (e.g., the density constraint) are new. The intrinsic complexities of all of them are studied and preliminary experimental results are discussed.

  10. Parametrization of semiempirical models against ab initio crystal data: evaluation of lattice energies of nitrate salts.

    PubMed

    Beaucamp, Sylvain; Mathieu, Didier; Agafonov, Viatcheslav

    2005-09-01

    A method to estimate the lattice energies E(latt) of nitrate salts is put forward. First, E(latt) is approximated by its electrostatic component E(elec). Then, E(elec) is correlated with Mulliken atomic charges calculated on the species that make up the crystal, using a simple equation involving two empirical parameters. The latter are fitted against point charge estimates of E(elec) computed on available X-ray structures of nitrate crystals. The correlation thus obtained yields lattice energies within 0.5 kJ/g from point charge values. A further assessment of the method against experimental data suggests that the main source of error arises from the point charge approximation.

  11. Stability of Magnetically-Suppressed Solutal Convection In Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Leslie, F. W.; Ramachandran, N.

    2005-01-01

    The effect of convection during the crystallization of proteins is not very well understood. In a gravitational field, convection is caused by crystal sedimentation and by solutal buoyancy induced flow and these can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, a theory is presented on the stability of solutal convection of a magnetized fluid in the presence of a magnetic field. The requirements for stability are developed and compared to experiments performed within the bore of a superconducting magnet. The theoretical predictions are in good agreement with the experiments and show solutal convection can be stabilized if the surrounding fluid has larger magnetic susceptibility and the magnetic field has a specific structure. Discussion on the application of the technique to protein crystallization is also provided.

  12. Effect of grain boundary on the field-effect mobility of microrod single crystal organic transistors.

    PubMed

    Kim, Jaekyun; Kang, Jingu; Cho, Sangho; Yoo, Byungwook; Kim, Yong-Hoon; Park, Sung Kyu

    2014-11-01

    High-performance microrod single crystal organic transistors based on a p-type 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) semiconductor are fabricated and the effects of grain boundaries on the carrier transport have been investigated. The spin-coating of C8-BTBT and subsequent solvent vapor annealing process enabled the formation of organic single crystals with high aspect ratio in the range of 10 - 20. It was found that the organic field-effect transistors (OFETs) based on these single crystals yield a field-effect mobility and an on/off current ratio of 8.04 cm2/Vs and > 10(5), respectively. However, single crystal OFETs with a kink, in which two single crystals are fused together, exhibited a noticeable drop of field-effect mobility, and we claim that this phenomenon results from the carrier scattering at the grain boundary.

  13. GROWTH AND CHARACTERIZATION OF SINGLE CRYSTALS OF RARE EARTH COMPOUNDS.

    DTIC Science & Technology

    SINGLE CRYSTALS, CRYSTAL GROWTH), (*CRYSTAL GROWTH, SINGLE CRYSTALS), (*RARE EARTH COMPOUNDS, SINGLE CRYSTALS), EPITAXIAL GROWTH, SODIUM COMPOUNDS, CHLORIDES, VAPOR PLATING, ELECTROSTATIC FIELDS, ENERGY, ATOMIC PROPERTIES , BONDING

  14. Molding resonant energy transfer by colloidal crystal: Dexter transfer and electroluminescence

    NASA Astrophysics Data System (ADS)

    González-Urbina, Luis; Kolaric, Branko; Libaers, Wim; Clays, Koen

    2010-05-01

    Building photonic crystals by combination of colloidal ordering and metal sputtering we were able to construct a system sensitive to an electrical field. In corresponding crystals we embedded the Dexter pair (Ir(ppy3) and BAlq) and investigated the influence of the band gap on the resonant energy transfer when the system is excited by light and by an electric field respectively. Our investigations extend applications of photonic crystals into the field of electroluminescence and LED technologies.

  15. Vacuum lamination approach to fabrication of high-performance single-crystal organic field-effect transistors.

    PubMed

    Yi, H T; Chen, Y; Czelen, K; Podzorov, V

    2011-12-22

    A novel vacuum lamination approach to fabrication of high-performance single-crystal organic field-effect transistors has been developed. The non-destructive nature of this method allows a direct comparison of field-effect mobilities achieved with various gate dielectrics using the same single-crystal sample. The method also allows gating delicate systems, such as n -type crystals and SAM-coated surfaces, without perturbation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. In-plane orientation and composition dependences of crystal structure and electrical properties of {100}-oriented Pb(Zr,Ti)O3 films grown on (100) Si substrates by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Okamoto, Shoji; Sankara Rama Krishnan, P. S.; Okamoto, Satoshi; Yokoyama, Shintaro; Akiyama, Kensuke; Funakubo, Hiroshi

    2017-10-01

    In-plane orientation-controlled Pb(Zr x ,Ti1- x )O3 (PZT) films with a thickness of approximately 2 µm and a Zr/(Zr + Ti) ratio of 0.39-0.65 were grown on (100) Si substrates by pulsed metal-organic chemical vapor deposition (MOCVD). In-plane-oriented epitaxial PZT films and in-plane random fiber-textured PZT films with {100} out-of-plane orientation were grown on (100)c SrRuO3//(100)c LaNiO3//(100) CeO2//(100) YSZ//(100) Si and (100)c SrRuO3/(100)c LaNiO3/(111) Pt/TiO2/SiO2/(100) Si substrates, respectively. The effects of Zr/(Zr + Ti) ratio and in-plane orientation on the crystal structure, dielectric, ferroelectric, and piezoelectric properties of the films were systematically investigated. The X-ray diffraction measurement showed that the epitaxial PZT films had a higher volume fraction of (100) orientation than the fiber-textured PZT films in the tetragonal Zr/(Zr + Ti) ratio region. A large difference was not detected between the epitaxial films and the fiber-textured films for Zr/(Zr + Ti) ratio dependence of the dielectric constant, and remanent polarization. However, in the rhombohedral phase region [Zr/(Zr + Ti) = 0.65], coercive field was found to be 1.5-fold different between the epitaxial and fiber-textured PZT films. The maximum field-induced strains measured at 0-100 kV/cm by scanning atomic force microscopy were obtained at approximately Zr/(Zr + Ti) = 0.50 and were about 0.5 and 0.3% for the epitaxial and fiber-textured PZT films, respectively.

  17. Effect of magnetic pulses on Caribbean spiny lobsters: implications for magnetoreception.

    PubMed

    Ernst, David A; Lohmann, Kenneth J

    2016-06-15

    The Caribbean spiny lobster, Panulirus argus, is a migratory crustacean that uses Earth's magnetic field as a navigational cue, but how these lobsters detect magnetic fields is not known. Magnetic material thought to be magnetite has previously been detected in spiny lobsters, but its role in magnetoreception, if any, remains unclear. As a first step toward investigating whether lobsters might have magnetite-based magnetoreceptors, we subjected lobsters to strong, pulsed magnetic fields capable of reversing the magnetic dipole moment of biogenic magnetite crystals. Lobsters were subjected to a single pulse directed from posterior to anterior and either: (1) parallel to the horizontal component of the geomagnetic field (i.e. toward magnetic north); or (2) antiparallel to the horizontal field (i.e. toward magnetic south). An additional control group was handled but not subjected to a magnetic pulse. After treatment, each lobster was tethered in a water-filled arena located within 200 m of the capture location and allowed to walk in any direction. Control lobsters walked in seemingly random directions and were not significantly oriented as a group. In contrast, the two groups exposed to pulsed fields were significantly oriented in approximately opposite directions. Lobsters subjected to a magnetic pulse applied parallel to the geomagnetic horizontal component walked westward; those subjected to a pulse directed antiparallel to the geomagnetic horizontal component oriented approximately northeast. The finding that a magnetic pulse alters subsequent orientation behavior is consistent with the hypothesis that magnetoreception in spiny lobsters is based at least partly on magnetite-based magnetoreceptors. © 2016. Published by The Company of Biologists Ltd.

  18. A parametric study of segregation effects during vertical Bridgman crystal growth with an axial magnetic field

    NASA Astrophysics Data System (ADS)

    Ma, N.; Walker, J. S.

    2000-01-01

    This paper presents a model for the unsteady transport of a dopant during the vertical Bridgman crystal growth process with a planar crystal-melt interface and with an axial magnetic field, and investigates the effects of varying different process variables on the crystal composition. The convective mass transport due to the buoyant convection in the melt produces nonuniformities in the concentration in both the melt and the crystal. The convective mass transport plays an important role for all magnetic field strengths considered. Diffusive mass transport begins to dominate for a magnetic flux density of 4 T and a fast growth rate, producing crystals which have an axial variation of the radially averaged crystal composition approaching that of the diffusion-controlled limit. Dopant distributions for several different combinations of process parameters are presented.

  19. Active crystals on a sphere

    NASA Astrophysics Data System (ADS)

    Praetorius, Simon; Voigt, Axel; Wittkowski, Raphael; Löwen, Hartmut

    2018-05-01

    Two-dimensional crystals on curved manifolds exhibit nontrivial defect structures. Here we consider "active crystals" on a sphere, which are composed of self-propelled colloidal particles. Our work is based on a phase-field-crystal-type model that involves a density and a polarization field on the sphere. Depending on the strength of the self-propulsion, three different types of crystals are found: a static crystal, a self-spinning "vortex-vortex" crystal containing two vortical poles of the local velocity, and a self-translating "source-sink" crystal with a source pole where crystallization occurs and a sink pole where the active crystal melts. These different crystalline states as well as their defects are studied theoretically here and can in principle be confirmed in experiments.

  20. Phase Equilibria and Crystal Chemistry in Portions of the System SrO-CaO-Bi2O3-CuO, Part II—The System SrO-Bi2O3-CuO

    PubMed Central

    Roth, R. S.; Rawn, C. J.; Burton, B. P.; Beech, F.

    1990-01-01

    New data are presented on the phase equilibria and crystal chemistry of the binary systems Sr0-Bi203 and SrO-CuO and the ternary system SrO-Bi2O3-CuO. Symmetry data and unit cell dimensions based on single crystal and powder x-ray diffraction measurements are reported for all the binary SrO-Bi2O3 phases, including a new phase identified as Sr6Bi2O9. The ternary system contains at least four ternary phases which can be formed in air at ~900 °C. These are identified as Sr2Bi2CuO6, Sr8Bi4Cu5O19+x, Sr3Bi2Cu2O8 and a solid solution (the Raveau phase) which, for equilibrium conditions at ~900 °C, corresponds approximately to the formula Sr1.8−xBi2.2+xCu1±x/2Oz.(0.0⩽x⩽~0.15). Superconductivity in this phase apparently occurs only in compositions that correspond to negative values of x. Compositions that lie outside the equilibrium Raveau-phase field often form nearly homogeneous Raveau-phase products. Typically this occurs after relatively brief heat treatments, or in crystallization of a quenched melt. PMID:28179779

  1. Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals

    NASA Astrophysics Data System (ADS)

    Kananen, B. E.; Halliburton, L. E.; Scherrer, E. M.; Stevens, K. T.; Foundos, G. K.; Chang, K. B.; Giles, N. C.

    2017-08-01

    Electron paramagnetic resonance (EPR) is used to directly observe and characterize neutral Mg acceptors ( M gGa0 ) in a β-Ga2O3 crystal. These acceptors, best considered as small polarons, are produced when the Mg-doped crystal is irradiated at or near 77 K with x rays. During the irradiation, neutral acceptors are formed when holes are trapped at singly ionized Mg acceptors ( M gGa- ). Unintentionally present Fe3+ (3d5) and Cr3+ (3d3) transition-metal ions serve as the corresponding electron traps. The hole is localized in a nonbonding p orbital on a threefold-coordinated oxygen ion adjacent to an Mg ion at a sixfold-coordinated Ga site. These M gGa0 acceptors (S = 1/2) have a slightly anisotropic g matrix (principal values are 2.0038, 2.0153, and 2.0371). There is also partially resolved 69Ga and 71Ga hyperfine structure resulting from unequal interactions with the two Ga ions adjacent to the hole. With the magnetic field along the a direction, hyperfine parameters are 2.61 and 1.18 mT for the 69Ga nuclei at the two inequivalent neighboring Ga sites. The M gGa0 acceptors thermally convert back to their nonparamagnetic M gGa- charge state when the temperature of the crystal is raised above approximately 250 K.

  2. Two-stage magnetic orientation of uric acid crystals as gout initiators

    NASA Astrophysics Data System (ADS)

    Takeuchi, Y.; Miyashita, Y.; Mizukawa, Y.; Iwasaka, M.

    2014-01-01

    The present study focuses on the magnetic behavior of uric acid crystals, which are responsible for gout. Under a sub-Tesla (T)-level magnetic field, rotational motion of the crystals, which were caused by diamagnetic torque, was observed. We used horizontal magnetic fields with a maximum magnitude of 500 mT generated by an electromagnet to observe the magnetic orientation of the uric acid microcrystals by a microscope. The uric acid crystals showed a perpendicular magnetic field orientation with a minimum threshold of 130 mT. We speculate that the distinct diamagnetic anisotropy in the uric acid crystals resulted in their rotational responses.

  3. Electronic structure of ytterbium-implanted GaN at ambient and high pressure: experimental and crystal field studies.

    PubMed

    Kaminska, A; Ma, C-G; Brik, M G; Kozanecki, A; Boćkowski, M; Alves, E; Suchocki, A

    2012-03-07

    The results of high-pressure low-temperature optical measurements in a diamond-anvil cell of bulk gallium nitride crystals implanted with ytterbium are reported in combination with crystal field calculations of the Yb(3+) energy levels. Crystal field analysis of splitting of the (2)F(7/2) and (2)F(5/2) states has been performed, with the aim of assigning all features of the experimental luminescence spectra. A thorough analysis of the pressure behavior of the Yb(3+) luminescence lines in GaN allowed the determination of the ambient-pressure positions and pressure dependence of the Yb(3+) energy levels in the trigonal crystal field as well as the pressure-induced changes of the spin-orbit coupling coefficient.

  4. Picosecond electric-field-induced threshold switching in phase-change materials [THz-induced threshold switching and crystallization of phase-change materials

    DOE PAGES

    Zalden, Peter; Shu, Michael J.; Chen, Frank; ...

    2016-08-05

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag 4In 3Sb 67Te 26. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales—faster than crystals can nucleate. As a result, this supports purely electronic models of thresholdmore » switching and reveals potential applications as an ultrafast electronic switch.« less

  5. Induced Anisotropy in FeCo-Based Nanocrystalline Ferromagnetic Alloys (HITPERM) by Very High Field Annealing

    NASA Technical Reports Server (NTRS)

    Johnson, F.; Garmestani, H.; Chu, S.-Y.; McHenry, M. E.; Laughlin, D. E.

    2004-01-01

    Very high magnetic field annealing is shown to affect the magnetic anisotropy in FeCo-base nanocrystalline soft ferromagnetic alloys. Alloys of composition Fe(44.5)Co(44.5)Zr(7)B(4) were prepared by melt spinning into amorphous ribbons, then wound to form toroidal bobbin cores. One set of cores was crystallized in a zero field at 600 deg. C for 1 h, then, field annealed at 17 tesla (T) at 480 deg. C for 1 h. Another set was crystallized in a 17-T field at 480 deg. C for 1 h. Field orientation was transverse to the magnetic path of the toroidal cores. An induced anisotropy is indicated by a sheared hysteresis loop. Sensitive torque magnetometry measurements with a Si cantilever sensor indicated a strong, uniaxial, longitudinal easy axis in the zero-field-crystallized sample. The source is most likely magnetoelastic anisotropy, caused by the residual stress from nanocrystallization and the nonzero magnetostriction coefficient for this material. The magnetostrictive coefficient lambda(5) is measured to be 36 ppm by a strain gage technique. Field annealing reduces the magnitude of the induced anisotropy. Core loss measurements were made in the zero-field-crystallized, zero-field-crystallized- than-field-annealed, and field-crystallized states. Core loss is reduced 30%-50% (depending on frequency) by field annealing. X-ray diffraction reveals no evidence of crystalline texture or orientation that would cause the induced anisotropy. Diffusional pair ordering is thought to be the cause of the induced anisotropy. However, reannealing the samples in the absence of a magnetic field at 480 deg. C does not completely remove the induced anisotropy.

  6. Crystallization of Chicken Egg White Lysozyme from Assorted Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.

    1999-01-01

    Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Crystals have also been grown at 4 C in the absence of any other added salts using isoionic lysozyme which was titrated to pH 4.6 with dilute sulfuric acid. Four different crystal forms have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed. Crystals grown at 15 C were generally tetragonal, with space group P4(sub 3)2(sub 1)2. Crystallization at 20 C typically resulted in the formation of orthorhombic crystals, space group P2(sub 1)2(sub 1)2(sub 1). The tetragonal reversible reaction orthorhombic transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20 C and between 100 and 125 mg/ml protein concentration. Crystallization from 1.2 M magnesium sulfate at pH 7.8 gave a trigonal crystal, space group P3(sub 1)2(sub 1), a = b = 87.4, c = 73.7, gamma = 120 deg, which diffracted to 2.8 A. Crystallization from ammonium sulfate at pH 4.6, generally at lower temperatures, was also found to result in a monoclinic form. space group C2, a = 65.6, b = 95.0, c = 41.2, beta = 119.2 deg. A crystal of approximately 0.2 x 0.2 x 0.5 mm grown from bulk solution diffracted to approximately 3.5 A.

  7. The Kinetics of Crystallization of Colloids and Proteins: A Light Scattering Study

    NASA Technical Reports Server (NTRS)

    McClymer, Jim

    2002-01-01

    Hard-sphere colloidal systems serve as model systems for aggregation, nucleation, crystallization and gelation as well as interesting systems in their own right.There is strong current interest in using colloidal systems to form photonic crystals. A major scientific thrust of NASA's microgravity research is the crystallization of proteins for structural determination. The crystallization of proteins is a complicated process that requires a great deal of trial and error experimentation. In spite of a great deal of work, "better" protein crystals cannot always be grown in microgravity and conditions for crystallization are not well understood. Crystallization of colloidal systems interacting as hard spheres and with an attractive potential induced by entropic forces have been studied in a series of static light scattering experiments. Additionally, aggregation of a protein as a function of pH has been studied using dynamic light scattering. For our experiments we used PMMA (polymethylacrylate) spherical particles interacting as hard spheres, with no attractive potential. These particles have a radius of 304 nanometers, a density of 1.22 gm/ml and an index of refraction of 1.52. A PMMA colloidal sample at a volume fraction of approximately 54% was index matched in a solution of cycloheptyl bromide (CHB) and cis-decalin. The sample is in a glass cylindrical vial that is placed in an ALV static and dynamic light scattering goniometer system. The vial is immersed in a toluene bath for index matching to minimize flair. Vigorous shaking melts any colloidal crystals initially present. The sample is illuminated with diverging laser light (632.8 nanometers) from a 4x microscope objective placed so that the beam is approximately 1 cm in diameter at the sample location. The sample is rotated about its long axis at approximately 3.5 revolutions per minute (highest speed) as the colloidal crystal system is non-ergodic. The scattered light is detected at various angles using the ALV light detection optics, which is fed into an APD detector module and linked to a computer. The scattering angle (between 12 and 160 degrees), scattering angle step size (0.1 degree minimum) and acquisition time (minimum 3 s) is set by the user.

  8. Growth of (Y1-x Ca x )Ba2Cu4O8 in ambient pressure and its tri-axial magnetic alignment

    NASA Astrophysics Data System (ADS)

    Horii, S.; Yamaki, M.; Shimoyama, J.; Kishio, K.; Doi, T.

    2015-10-01

    We report the growth of single crystals in ambient pressure and tri-axial orientation under modulated rotation magnetic fields (MRFs) for (Y1-x Ca x )Ba2Cu4O8 [(Y1-x Ca x )124] with x ≤ 0.1. Rectangular (Y1-x Ca x )124 crystals approximately 50 μm in size have been successfully grown for x ≤ 0.1 in a growth temperature region from 650 °C to 750 °C. Their critical temperatures increased with x and exhibited approximately 91 K for x = 0.1. By applying an MRF of 10 T, pulverised powders of (Y1-x Ca x )124 were tri-axially aligned in epoxy resin at room temperature in a whole x region below x = 0.1. The magnitude relationship of the magnetic susceptibilities (χ) along crystallographic directions for (Y1-x Ca x )124 was χ c > χ a > χ b at room temperature and was unchanged with a change in x. From changes in the degrees of the c-axis and the in-plane orientation (Δω) for the (Y1-x Ca x )124 powder samples aligned under three different MRF conditions, it was found that MRFs above at least 1 T were required to achieve almost complete tri-axial alignment with Δω < 5°. Irreversibility lines for H//c were successfully determined even from the powder samples by the introduction of magnetic alignment without using single crystalline samples. The present study indicates that magnetic alignment is a useful process for the fabrication of quasi-single-crystals from the perspective of solid-state physics and the production of cuprate superconducting materials.

  9. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-11-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. Once the basic understanding is obtained, the study will focus on testing the hypothesis on proteins of pyruvate dehydrogenase complex (PDC), proteins E1 and E3. Obtaining high crystal quality of these proteins is of great importance to structural biologists since their structures need to be determined. Specific goals for the investigation are: 1. To develop an understanding of convection control in diamagnetic fluids with concentration gradients through experimentation and numerical modeling. Specifically solutal buoyancy driven convection due to crystal growth will be considered. 2. To develop predictive measures for successful crystallization in a magnetic field using analyses and numerical modeling for use in future protein crystal growth experiments. This will establish criteria that can be used to estimate the efficacy of magnetic field flow damping on crystallization of candidate proteins. 3. To demonstrate the understanding of convection damping by high magnetic fields to a class of proteins that is of interest and whose structure is as yet not determined. 4. To compare quantitatively, the quality of the grown crystals with and without a magnetic field. X-ray diffraction techniques will be used for the comparative studies. In a preliminary set of experiments, we studied crystal dissolution effects in a 5 Tesla magnet available at NASA Marshall Space Flight Center (MSFC). Using a Schlieren setup, a 1mm crystal of Alum (Aluminum-Potassium Sulfate) was introduced in a 75% saturated solution and the resulting dissolution plume was observed. The experiment was conducted both in the presence and absence of a magnetic field gradient. The magnet produces a gradient field of approx. 1 Tesla2/cm. Image analysis of the recorded images indicated an enhanced plume velocity that was of the order of the measurement limit. For this experiment, both the gradient and gravity fields are in the same direction resulting in an enhanced effective gravity that tends to accelerate the observed plume velocity. While the results are not conclusive, pending further tests, it clearly points out the inadequacy of the MSFC magnet for conducting protein crystallization experiments and the need for a stronger magnet. In spacebased experiments, however, where the gravitational effects are small, only a weak magnetic field will be required to control or mitigate the effects of convective contamination.

  10. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. Once the basic understanding is obtained, the study will focus on testing the hypothesis on proteins of pyruvate dehydrogenase complex (PDC), proteins E1 and E3. Obtaining high crystal quality of these proteins is of great importance to structural biologists since their structures need to be determined. Specific goals for the investigation are: 1. To develop an understanding of convection control in diamagnetic fluids with concentration gradients through experimentation and numerical modeling. Specifically solutal buoyancy driven convection due to crystal growth will be considered. 2. To develop predictive measures for successful crystallization in a magnetic field using analyses and numerical modeling for use in future protein crystal growth experiments. This will establish criteria that can be used to estimate the efficacy of magnetic field flow damping on crystallization of candidate proteins. 3. To demonstrate the understanding of convection damping by high magnetic fields to a class of proteins that is of interest and whose structure is as yet not determined. 4. To compare quantitatively, the quality of the grown crystals with and without a magnetic field. X-ray diffraction techniques will be used for the comparative studies. In a preliminary set of experiments, we studied crystal dissolution effects in a 5 Tesla magnet available at NASA Marshall Space Flight Center (MSFC). Using a Schlieren setup, a 1mm crystal of Alum (Aluminum-Potassium Sulfate) was introduced in a 75% saturated solution and the resulting dissolution plume was observed. The experiment was conducted both in the presence and absence of a magnetic field gradient. The magnet produces a gradient field of approx. 1 Tesla2/cm. Image analysis of the recorded images indicated an enhanced plume velocity that was of the order of the measurement limit. For this experiment, both the gradient and gravity fields are in the same direction resulting in an enhanced effective gravity that tends to accelerate the observed plume velocity. While the results are not conclusive, pending further tests, it clearly points out the inadequacy of the MSFC magnet for conducting protein crystallization experiments and the need for a stronger magnet. In spacebased experiments, however, where the gravitational effects are small, only a weak magnetic field will be required to control or mitigate the effects of convective contamination.

  11. Color changing plasmonic surfaces utilizing liquid crystal (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Franklin, Daniel; Wu, Shin-Tson; Chanda, Debashis

    2016-09-01

    Plasmonic structural color has recently garnered significant interest as an alternative to the organic dyes standard in print media and liquid crystal displays. These nanostructured metallic systems can produce diffraction limited images, be made polarization dependent, and exhibit resistance to color bleaching. Perhaps even more advantageous, their optical characteristics can also be tuned, post-fabrication, by altering the surrounding media's refractive index parallel to the local plasmonic fields. A common material with which to achieve this is liquid crystal. By reorienting the liquid crystal molecules through external electric fields, the optical resonances of the plasmonic filters can be dynamically controlled. Demonstrations of this phenomenon, however, have been limited to modest shifts in plasmon resonance. Here, we report a liquid crystal-plasmonic system with an enhanced tuning range through the use of a shallow array of nano-wells and high birefringent liquid crystal. The continuous metallic nanostructure maximizes the overlap between plasmonic fields and liquid crystal while also allowing full reorientation of the liquid crystal upon an applied electric field. Sweeping over structural dimensions and voltages results in a color palette for these dynamic reflective pixels that can further be exploited to create color tunable images. These advances make plasmonic-liquid crystal systems more attractive candidates for filter, display, and other tunable optical technologies.

  12. Using Strong Magnetic Fields to Control Solutal Convection

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in microgravity , we have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. The paper will report on the experimental results using paramagnetic salts and solutions in magnetic fields and compare them to analytical predictions.

  13. Reliability Studies of Ceramic Capacitors.

    DTIC Science & Technology

    1983-07-01

    increases. This case has been found to be a good approximation for single crystals with high chemical and structural purity. Shallow traps may arise as a...theory, this sudden increase may be otherwise explained. Single crystals of ZnS have been found to exhibit this vertical increase in the current...Smith and Rose observed SCLC behavior in CdS single crystals . Branwood and Tredgold 2 8 and Branwood et al. 2 9 measured BaTiO 3 single crystals and

  14. Enhanced dual-frequency operation of a polymerized liquid crystal microplate by liquid crystal infiltration

    NASA Astrophysics Data System (ADS)

    Kumagai, Takayuki; Yoshida, Hiroyuki; Ozaki, Masanori

    2017-04-01

    The electric-field-induced switching behavior of a polymer microplate is investigated. A microplate fabricated with a photopolymerizable dual-frequency liquid crystal was surrounded by an unpolymerized photopolymerizable dual-frequency liquid crystal in the isotropic phase. As an electric field was applied along the plane of the microplate, the microplate switched to set its interior molecular orientation to be either parallel or perpendicular to the field, depending on the frequency. Analysis of the rotational behavior, as well as numerical calculations, showed that the surrounding unpolymerized photopolymerizable dual-frequency liquid crystal infiltrated into the microplate, which enhanced the dielectric properties of the microplate. To the best of our knowledge, this is the first report of an enhanced dual-frequency dielectric response of a polymer microplate induced by liquid crystal infiltration.

  15. radiation and electric field induced effects on the order-disorder phase in lithium sodium sulphate crystals

    NASA Astrophysics Data System (ADS)

    Hamed, A. E.; Kassem, M. E.; El-Wahidy, E. F.; El-Abshehy, M. A.

    1995-03-01

    The temperature dependence of specific heat at constant pressure, Cp(T), has been measured for lithium sodium sulphate, LiNaSo4 crystals, at different ?-radiation doses and external bias electric field (Eb), in the temperature range 300-900 K. A nonlinear dependence of transition temperature, T1 and a remarkable change in the thermodynamic parameters, were obtained as the effect of both electric field and ?-radiation. The effect of ?-radiation doses on the phase transition in LiNaSO4 crystals was explained as due to an internal bias field, Eb, originating from the interaction of polar defects with the order parameter of the host lattice. The internal bias field effect on the behaviour of Cp(T) in LiNaSO4 crystals was similar to that of the external electric field (E).

  16. Strong coupling in the optical spectra of polymorphs of a squarylium dye

    NASA Astrophysics Data System (ADS)

    Tristani-Kendra, M.; Eckhardt, C. J.; Bernstein, J.; Goldstein, E.

    1983-06-01

    The X-ray structure and single-crystal spectra of monoclinic and triclinic dimorphs of a squarylium dye are reported. Crystal polymorphism is shown to be an effective approach for studying excitation energy transfer in crystals. The long-axis-polarized transition leads to quasi-metallic reflection bands which cannot be fitted by molecular polariton calculations in the point-dipole approximation.

  17. 16th National Conference and Global Forum on Science, Policy and the Environment: The Food–Energy–Water Nexus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saundry, Peter

    The National Council for Science and the Environment (NCSE) received $50,000 from the US Department of Energy to support the organization of the of the 16th National Conference and Global Forum on the theme of The Food-Energy-Water Nexus, held January 19-21, 2016 at the Hyatt Regency Crystal City in Crystal City, VA. Approximately 1,000 participants attended the event from the fields of science, engineering, federal and local government, business, and civil society. The conference developed and advanced partnerships focusing on strategies and initiatives to address the world’s interconnected food, water and energy systems, specifically how to provide these resources tomore » a population of 9 billion people by midcentury without overwhelming the environment. The conference emphasized actionable outcomes—moving forward on policy and practice with a focus on “opportunities for impact” on the most critical issues in the relatively near term.« less

  18. Investigation of a Spin Transition in a LaCoO3 Single Crystal by the Method of X-Ray Magnetic Circular Dichroism at the Cobalt K- and L 2,3-Edges

    NASA Astrophysics Data System (ADS)

    Sikolenko, V. V.; Troyanchuk, I. O.; Karpinsky, D. V.; Rogalev, A.; Wilhelm, F.; Rosenberg, R.; Prabhakaran, D.; Efimova, E. A.; Efimov, V. V.; Tiutiunnikov, S. I.; Bobrikov, I. A.

    2018-02-01

    Spin transitions of cobalt ions in LaCoO3 single crystals have been studied by the method of X-ray magnetic circular dichroism (XMCD) at the K- and L 2,3-edges of Co3+ ions. The orbital momentum of cobalt ions obtained for the K-edge at the 3 d level in the region of the spin transition in the temperature range from 25 to 120 K increases by a factor of approximately 1.6, whereas the slope of the magnetization curve value in the same temperature range and magnetic field increases by a factor of more than 10. XMCD experiments at the cobalt L 2,3-edges demonstrate gradual growth of the ratio of the orbital momentum to the spin one L/ S from 0.48 to 0.53 in the temperature range from 60 K to 120 K.

  19. Noncollinear antiferromagnetic Mn3Sn films

    NASA Astrophysics Data System (ADS)

    Markou, A.; Taylor, J. M.; Kalache, A.; Werner, P.; Parkin, S. S. P.; Felser, C.

    2018-05-01

    Noncollinear hexagonal antiferromagnets with almost zero net magnetization were recently shown to demonstrate giant anomalous Hall effect. Here, we present the structural and magnetic properties of noncollinear antiferromagnetic Mn3Sn thin films heteroepitaxially grown on Y:ZrO2 (111) substrates with a Ru underlayer. The Mn3Sn films were crystallized in the hexagonal D 019 structure with c -axis preferred (0001) crystal orientation. The Mn3Sn films are discontinuous, forming large islands of approximately 400 nm in width, but are chemical homogeneous and characterized by near perfect heteroepitaxy. Furthermore, the thin films show weak ferromagnetism with an in-plane uncompensated magnetization of M =34 kA/m and coercivity of μ0Hc=4.0 mT at room temperature. Additionally, the exchange bias effect was studied in Mn3Sn /Py bilayers. Exchange bias fields up to μ0HEB=12.6 mT can be achieved at 5 K. These results show Mn3Sn films to be an attractive material for applications in antiferromagnetic spintronics.

  20. Melt Convection Effects in the Bridgman Crystal Growth of an Alloy Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Simpson James E.; Garimella, Suresh V.; deGroh, Henry C., III; Abbaschian, Reza

    1998-01-01

    The solidification of a dilute bismuth-tin alloy under Bridgman crystal growth conditions is investigated in support of NASA's MEPHISTO space shuttle flight experiment. Computations are performed in two-dimensions with a uniform grid. The simulation includes the species-concentration, temperature and flow fields, as well as conduction in the ampoule. Fully transient simulations have been performed; no simplifying steady state approximations are used. Results are obtained under microgravity conditions for pure bismuth, and Bismuth-0.1 at.% Sn and Bi-1.0 at.% Sn alloys. The concentration dependence of the melting temperature is neglected; the solid/liquid interface temperature is assumed to be the melting temperature of pure bismuth for all cases studied. For the Bi-1.0 at.% Sn case the results indicate that a secondary convective cell, driven by solutal gradients, forms near the interface. The magnitude of the velocities in this cell increases with time; this causes increasing solute segregation at the liquid/solid interface.

  1. A review of recent theoretical studies in nonlinear crystals: towards the design of new materials

    NASA Astrophysics Data System (ADS)

    Luppi, Eleonora; Véniard, Valérie

    2016-12-01

    Nonlinear optics is an important and exciting field of fundamental and applied research, with applications in many different disciplines such as physics chemistry, material science and biology. In the recent years, nonlinear optical phenomena started to be also widely used in technological applications for optoelectronics and photovoltaics. This coincided with an important experimental and theoretical search for new materials with an efficient and exploitable nonlinear optical response. Here, starting from the discovery of nonlinear optics, we review the most important theoretical formalisms developed to understand, interpret and predict the nonlinear optical phenomena. We show the different level of approximation of the many-electrons interactions that these formalisms can describe which are fundamental in the interpretation of the experiments. The impact of the theory is then analyzed on different classes of new materials particularly studied in these years: silicon bulk to nano, compound semiconductors, graphene, transition metal dichalcogenide, hexagonal boron nitride and borate crystals.

  2. Vibrational and thermodynamic properties of β-HMX: a first-principles investigation.

    PubMed

    Wu, Zhongqing; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya

    2011-05-28

    Thermodynamic properties of β-HMX crystal are investigated using the quasi-harmonic approximation and density functional theory within the local density approximation (LDA), generalized gradient approximation (GGA), and GGA + empirical van der Waals (vdW) correction. It is found that GGA well describes the thermal expansion coefficient and heat capacity but fails to produce correct bulk modulus and equilibrium volume. The vdW correction improves the bulk modulus and volume, but worsens the thermal expansion coefficient and heat capacity. In contrast, LDA describes all thermodynamic properties with reasonable accuracy, and overall is a good exchange-correlation functional for β-HMX molecular crystal. The results also demonstrate significant contributions of phonons to the equation of state. The static calculation of equilibrium volume for β-HMX differs from the room-temperature value incorporating lattice vibrations by over 5%. Therefore, for molecular crystals, it is essential to include phonon contributions when calculated equation of state is compared with experimental data at ambient condition. © 2011 American Institute of Physics

  3. Multi-Wavelength, Multi-Beam, and Polarization-Sensitive Laser Transmitter for Surface Mapping

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Ramos-Izquierdo, Luis; Harding, David; Huss, Tim

    2011-01-01

    A multi-beam, multi-color, polarized laser transmitter has been developed for mapping applications. It uses commercial off-the-shelf components for a lowcost approach for a ruggedized laser suitable for field deployment. The laser transmitter design is capable of delivering dual wavelengths, multiple beams on each wavelength with equal (or variable) intensities per beam, and a welldefined state of polarization. This laser transmitter has been flown on several airborne campaigns for the Slope Imaging Multi-Polarization Photon Counting Lidar (SIMPL) instrument, and at the time of this reporting is at a technology readiness level of between 5 and 6. The laser is a 1,064-nm microchip high-repetition-rate laser emitting energy of about 8 microjoules per pulse. The beam was frequency-doubled to 532 nm using a KTP (KTiOPO4) nonlinear crystal [other nonlinear crystals such as LBO (LiB3O5) or periodically poled lithium niobiate can be used as well, depending on the conversion efficiency requirements], and the conversion efficiency was approximately 30 percent. The KTP was under temperature control using a thermoelectric cooler and a feedback monitoring thermistor. The dual-wavelength beams were then spectrally separated and each color went through its own optical path, which consisted of a beam-shaping lens, quarterwave plate (QWP), and a birefringent crystal (in this case, a calcite crystal, but others such as vanadate can be used). The QWP and calcite crystal set was used to convert the laser beams from a linearly polarized state to circularly polarized light, which when injected into a calcite crystal, will spatially separate the circularly polarized light into the two linear polarized components. The spatial separation of the two linearly polarized components is determined by the length of the crystal. A second set of QWP and calcite then further separated the two beams into four. Additional sets of QWP and calcite can be used to further split the beams into multiple orders of two. The spatially separated beams had alternating linearly polarization states; a half-wave plate (HWP) array was then made to rotate the alternating states of A multi-beam, multi-color, polarized laser transmitter has been developed for mapping applications. It uses commercial off-the-shelf components for a lowcost approach for a ruggedized laser suitable for field deployment. The laser transmitter design is capable of delivering dual wavelengths, multiple beams on each wavelength with equal (or variable) intensities per beam, and a welldefined state of polarization. This laser transmitter has been flown on several airborne campaigns for the Slope Imaging Multi-Polarization Photon Counting Lidar (SIMPL) instrument, and at the time of this reporting is at a technology readiness level of between 5 and 6. The laser is a 1,064-nm microchip high-repetition-rate laser emitting energy of about 8 microjoules per pulse. The beam was frequency-doubled to 532 nm using a KTP (KTiOPO4) nonlinear crystal [other nonlinear crystals such as LBO (LiB3O5) or periodically poled lithium niobiate can be used as well, depending on the conversion efficiency requirements], and the conversion efficiency was approximately 30 percent. The KTP was under temperature control using a thermoelectric cooler and a feedback monitoring thermistor. The dual-wavelength beams were then spectrally separated and each color went through its own optical path, which consisted of a beam-shaping lens, quarterwave plate (QWP), and a birefringent crystal (in this case, a calcite crystal, but others such as vanadate can be used). The QWP and calcite crystal set was used to convert the laser beams from a linearly polarized state to circularly polarized light, which when injected into a calcite crystal, will spatially separate the circularly polarized light into the two linear polarized components. The spatial separation of the two linearly polarized components is determined by the length of the crystal. A cond set of QWP and calcite then further separated the two beams into four. Additional sets of QWP and calcite can be used to further split the beams into multiple orders of two. The spatially separated beams had alternating linearly polarization states; a half-wave plate (HWP) array was then made to rotate the alternating states of

  4. Laser ablation of dental tissues with picosecond pulses of 1.06-microm radiation transmitted through a hollow-core photonic-crystal fiber.

    PubMed

    Konorov, Stanislav O; Mitrokhin, Vladimir P; Fedotov, Andrei B; Sidorov-Biryukov, Dmitrii A; Beloglazov, Valentin I; Skibina, Nina B; Shcherbakov, Andrei V; Wintner, Ernst; Scalora, Michael; Zheltikov, Aleksei M

    2004-04-10

    Sequences of picosecond pulses of 1.06-microm Nd:YAG laser radiation with a total energy of approximately 2 mJ are transmitted through a hollow-core photonic-crystal fiber with a core diameter of approximately 14 microm and are focused onto a tooth's surface in vitro to ablate dental tissue. The hollow-core photonic-crystal fiber is shown to support the single-fundamental-mode regime for 1.06-microm laser radiation, serving as a spatial filter and allowing the laser beam's quality to be substantially improved. The same fiber is used to transmit emission from plasmas produced by laser pulses onto the tooth's surface in the backward direction for detection and optical diagnostics.

  5. An infrared upconverter for astronomical imaging

    NASA Technical Reports Server (NTRS)

    Boyd, R. W.; Townes, C. H.

    1977-01-01

    An imaging upconverter has been constructed which is suitable for use in the study of the thermal 10-micron radiation from astronomical sources. The infrared radiation is converted to visible radiation by mixing in a 1-cm-long proustite crystal. The phase-matched 2-kayser bandpass is tunable from 9 to 11 microns. The conversion efficiency is 2 by 10 to the -7th power and the field of view of 40 arc seconds on the sky contains several hundred picture elements, approximately diffraction-limited resolution in a large telescope. The instrument has been used in studies of the sun, moon, Mercury, and VY Canis Majoris.

  6. The self-assembly of particles with isotropic interactions: Using DNA coated colloids to create designer nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, R. B.; Dion, S.; Konigslow, K. von

    Self-consistent field theory equations are presented that are suitable for use as a coarse-grained model for DNA coated colloids, polymer-grafted nanoparticles and other systems with approximately isotropic interactions. The equations are generalized for arbitrary numbers of chemically distinct colloids. The advantages and limitations of such a coarse-grained approach for DNA coated colloids are discussed, as are similarities with block copolymer self-assembly. In particular, preliminary results for three species self-assembly are presented that parallel results from a two dimensional ABC triblock copolymer phase. The possibility of incorporating crystallization, dynamics, inverse statistical mechanics and multiscale modelling techniques are discussed.

  7. Optical spectroscopy of interplanetary dust collected in the earth's stratosphere

    NASA Technical Reports Server (NTRS)

    Fraundorf, P.; Patel, R. I.; Shirck, J.; Walker, R. M.; Freeman, J. J.

    1980-01-01

    Optical absorption spectra of interplanetary dust particles 2-30 microns in size collected in the atmosphere at an altitude of 20 km by inertial impactors mounted on NASA U-2 aircraft are reported. Fourier transform absorption spectroscopy of crushed samples of the particles reveals a broad feature in the region 1300-800 kaysers which has also been found in meteorite and cometary dust spectra, and a weak iron crystal field absorption band at approximately 9800 kaysers, as is observed in meteorites. Work is currently in progress to separate the various components of the interplanetary dust particles in order to evaluate separately their contributions to the absorption.

  8. Tools for magnetostructural correlations for the 3d8(3A2 state) ions at orthorhombic sites: Comparative study with applications to Ni2+ ions in Y2BaNiO5 and Nd2BaNiO5

    NASA Astrophysics Data System (ADS)

    Gnutek, P.; Açıkgöz, M.; Rudowicz, C.

    2015-01-01

    Three approaches are employed to study magnetostructural correlations for the 3d8(3A2 state) ions at orthorhombic sites in crystals: (i) the higher-order perturbation theory (PT) of the microscopic spin Hamiltonian (MSH) parameters, (ii) the crystal field (CF) analysis (CFA) within all 3d8 states combined with the superposition model (SPM) calculations of CF parameters, and (iii) the second-order PT of MSH parameters. A comparative study is carried out to assess the merit of each modeling approach. These approaches enable predictions of the orthorhombic zero-field splitting parameters (ZFSPs) for the 3d8 ions at orthorhombic sites. Hence, correlation of the magnetic and spectroscopic properties with the structural ones may be considered. The approach (i) and (iii) take into account only the spin-orbit coupling (SOC) and a limited set of low lying states. Analysis of the expressions used in the approach (i) reveals discrepancies concerning: the sign of the SOC parameter, the cubic crystal field parameter Dq, the energy levels sequence, and numerical errors, which diminish its reliability. The distinction between the first- and second-kind orthorhombic symmetry is also elucidated. The approaches (i)-(iii) are applied for Ni2+ (S=1) ions in the Haldane gap systems Y2BaNiO5 and Nd2BaNiO5. The contributions to the ZFSPs due to the spin-spin and spin-other-orbit interactions considered using the approach (ii) are found nearly insignificant as compared with the dominant SOC ones. The results indicate that the approach (i)-corrected and (iii) may be employed only as an approximation. The approach (ii) together with the SPM/CFP modeling appear to be preferable and more reliable tools to study magnetostructural correlations and thus spectroscopic and magnetic properties of the 3d8(3A2 state) ions at orthorhombic sites in crystals.

  9. Field induced heliconical structure of cholesteric liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavrentovich, Oleg D.; Shiyanovsii, Sergij V.; Xiang, Jie

    A diffraction grating comprises a liquid crystal (LC) cell configured to apply an electric field through a cholesteric LC material that induces the cholesteric LC material into a heliconical state with an oblique helicoid director. The applied electric field produces diffracted light from the cholesteric LC material within the visible, infrared or ultraviolet. The axis of the heliconical state is in the plane of the liquid crystal cell or perpendicular to the plane, depending on the application. A color tuning device operates with a similar heliconical state liquid crystal material but with the heliconical director axis oriented perpendicular to themore » plane of the cell. A power generator varies the strength of the applied electric field to adjust the wavelength of light reflected from the cholesteric liquid crystal material within the visible, infrared or ultraviolet.« less

  10. Progress in HTS trapped field magnets: J(sub c), area, and applications

    NASA Technical Reports Server (NTRS)

    Weinstein, Roy; Ren, Yanru; Liu, Jianxiong; Sawh, Ravi; Parks, Drew; Foster, Charles; Obot, Victor; Arndt, G. Dickey; Crapo, Alan

    1995-01-01

    Progress in trapped field magnets is reported. Single YBCO grains with diameters of 2 cm are made in production quantities, while 3 cm, 4 1/2 cm and 6 cm diameters are being explored. For single grain tiles: J(sub c) is approximately 10,000 A/cm(exp 2) for melt textured grains; J(sub c) is approximately 40,000 A/cm2 for light ion irradiation; and J(sub c) is approximately 85,000 A/cm(exp 2) for heavy ion irradiation. Using 2 cm diameter tiles bombarded by light ions, we have fabricated a mini-magnet which trapped 2.25 Tesla at 77K, and 5.3 Tesla at 65K. A previous generation of tiles, 1 cm x 1 cm, was used to trap 7.0 Tesla at 55K. Unirradiated 2.0 cm tiles were used to provide 8 magnets for an axial gap generator, in a collaborative experiment with Emerson Electric Co. This generator delivered 100 Watts to a resistive load, at 2265 rpm. In this experiment activation of the TFMs was accomplished by a current pulse of 15 ms duration. Tiles have also been studied for application as a bumper-tether system for the soft docking of spacecraft. A method for optimizing tether forces, and mechanisms of energy dissipation are discussed. A bus bar was constructed by welding three crystals while melt-texturing, such that their a,b planes were parallel and interleaved. The bus bar, an area of approximately 2 cm(exp 2), carried a transport current of 1000 amps, the limit of the testing equipment available.

  11. Models of Mass Transport During Microgravity Crystal Growth of Alloyed Semiconductors in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Ma, Nancy

    2003-01-01

    Alloyed semiconductor crystals, such as germanium-silicon (GeSi) and various II-VI alloyed crystals, are extremely important for optoelectronic devices. Currently, high-quality crystals of GeSi and of II-VI alloys can be grown by epitaxial processes, but the time required to grow a certain amount of single crystal is roughly 1,000 times longer than the time required for Bridgman growth from a melt. Recent rapid advances in optoelectronics have led to a great demand for more and larger crystals with fewer dislocations and other microdefects and with more uniform and controllable compositions. Currently, alloyed crystals grown by bulk methods have unacceptable levels of segregation in the composition of the crystal. Alloyed crystals are being grown by the Bridgman process in space in order to develop successful bulk-growth methods, with the hope that the technology will be equally successful on earth. Unfortunately some crystals grown in space still have unacceptable segregation, for example, due to residual accelerations. The application of a weak magnetic field during crystal growth in space may eliminate the undesirable segregation. Understanding and improving the bulk growth of alloyed semiconductors in microgravity is critically important. The purpose of this grant to to develop models of the unsteady species transport during the bulk growth of alloyed semiconductor crystals in the presence of a magnetic field in microgravity. The research supports experiments being conducted in the High Magnetic Field Solidification Facility at Marshall Space Flight Center (MSFC) and future experiments on the International Space Station.

  12. Residence, resorption and recycling of zircons in Devils Kitchen rhyolite, Coso Volcanic Field, California

    USGS Publications Warehouse

    Miller, J.S.; Wooden, J.L.

    2004-01-01

    Zircons from the Devils Kitchen rhyolite in the Pleistocene Coso Volcanic field, California have been analyzed by in situ Pb/U ion microprobe (SHRIMP-RG) and by detailed cathodoluminescence imaging. The zircons yield common-Pb-corrected and disequilibrium-corrected 206Pb/238U ages that predate a previously reported K-Ar sanidine age by up to 200 kyr, and the range of ages exhibited by the zircons is also approximately 200 kyr. Cathodoluminescence imaging indicates that zircons formed in contrasting environments. Most zircons are euhedral, and a majority of the zircons are weakly zoned, but many also have anhedral, embayed cores, with euhedral overgrowths and multiple internal surfaces that are truncated by later crystal zones. Concentrations of U and Th vary by two orders of magnitude within the zircon population, and by 10-20 times between zones within some zircon crystals, indicating that zircons were transferred between contrasting chemical environments. A zircon saturation temperature of ???750??C overlaps within error a previously reported phenocryst equilibration temperature of 740 ?? 25??C. Textures in zircons indicative of repeated dissolution and subsequent regrowth are probably caused by punctuated heating by mafic magma input into rhyolite. The overall span of ages and large variation in U and Th concentrations, combined with calculated zircon saturation temperatures and resorption times, are most compatible with crystallization in magma bodies that were emplaced piecemeal in the crust at Coso over 200 kyr prior to eruption, and that were periodically rejuvenated or melted by subsequent basaltic injections. ?? Oxford University Press 2004; all rights reserved.

  13. Observation of Wigner crystal phase and ripplon-limited mobility behavior in monolayer CVD MoS2 with grain boundary.

    PubMed

    Chen, Jyun-Hong; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong

    2018-06-01

    Two-dimensional electron gas (2DEG) is crucial in condensed matter physics and is present on the surface of liquid helium and at the interface of semiconductors. Monolayer MoS 2 of 2D materials also contains 2DEG in an atomic layer as a field effect transistor (FET) ultrathin channel. In this study, we synthesized double triangular MoS 2 through a chemical vapor deposition method to obtain grain boundaries for forming a ripple structure in the FET channel. When the temperature was higher than approximately 175 K, the temperature dependence of the electron mobility μ was consistent with those in previous experiments and theoretical predictions. When the temperature was lower than approximately 175 K, the mobility behavior decreased with the temperature; this finding was also consistent with that of the previous experiments. We are the first research group to explain the decreasing mobility behavior by using the Wigner crystal phase and to discover the temperature independence of ripplon-limited mobility behavior at lower temperatures. Although these mobility behaviors have been studied on the surface of liquid helium through theories and experiments, they have not been previously analyzed in 2D materials and semiconductors. We are the first research group to report the similar temperature-dependent mobility behavior of the surface of liquid helium and the monolayer MoS 2 .

  14. Observation of Wigner crystal phase and ripplon-limited mobility behavior in monolayer CVD MoS2 with grain boundary

    NASA Astrophysics Data System (ADS)

    Chen, Jyun-Hong; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong

    2018-06-01

    Two-dimensional electron gas (2DEG) is crucial in condensed matter physics and is present on the surface of liquid helium and at the interface of semiconductors. Monolayer MoS2 of 2D materials also contains 2DEG in an atomic layer as a field effect transistor (FET) ultrathin channel. In this study, we synthesized double triangular MoS2 through a chemical vapor deposition method to obtain grain boundaries for forming a ripple structure in the FET channel. When the temperature was higher than approximately 175 K, the temperature dependence of the electron mobility μ was consistent with those in previous experiments and theoretical predictions. When the temperature was lower than approximately 175 K, the mobility behavior decreased with the temperature; this finding was also consistent with that of the previous experiments. We are the first research group to explain the decreasing mobility behavior by using the Wigner crystal phase and to discover the temperature independence of ripplon-limited mobility behavior at lower temperatures. Although these mobility behaviors have been studied on the surface of liquid helium through theories and experiments, they have not been previously analyzed in 2D materials and semiconductors. We are the first research group to report the similar temperature-dependent mobility behavior of the surface of liquid helium and the monolayer MoS2.

  15. Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials.

    PubMed

    Zalden, Peter; Shu, Michael J; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi-Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W; Wong, H-S Philip; Sher, Meng-Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M

    2016-08-05

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag_{4}In_{3}Sb_{67}Te_{26}. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales-faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.

  16. Electronic structure and electron energy-loss spectroscopy of ZrO2 zirconia

    NASA Astrophysics Data System (ADS)

    Dash, L. K.; Vast, Nathalie; Baranek, Philippe; Cheynet, Marie-Claude; Reining, Lucia

    2004-12-01

    The atomic and electronic structures of zirconia are calculated within density functional theory, and their evolution is analyzed as the crystal-field symmetry changes from tetrahedral [cubic (c-ZrO2) and tetragonal (t-ZrO2) phases] to octahedral (hypothetical rutile ZrO2 ), to a mixing of these symmetries (monoclinic phase, m-ZrO2 ). We find that the theoretical bulk modulus in c-ZrO2 is 30% larger than the experimental value, showing that the introduction of yttria in zirconia has a significant effect. Electronic structure fingerprints which characterize each phase from their electronic spectra are identified. We have carried out electron energy-loss spectroscopy experiments at low momentum transfer and compared these results to the theoretical spectra calculated within the random phase approximation. We show a dependence of the valence and 4p ( N2,3 edge) plasmons on the crystal structure, the dependence of the latter being brought into the spectra by local-field effects. Last, we attribute low energy excitations observed in EELS of m-ZrO2 to defect states 2eV above the top of the intrinsic valence band, and the EELS fundamental band gap value is reconciled with the 5.2 or 5.8eV gaps determined by vacuum ultraviolet spectroscopy.

  17. Two Beam Energy Exchange in Hybrid Liquid Crystal Cells with Photorefractive Field Controlled Boundary Conditions (Postprint)

    DTIC Science & Technology

    2016-09-12

    AFRL-RX-WP-JA-2017-0209 TWO BEAM ENERGY EXCHANGE IN HYBRID LIQUID CRYSTAL CELLS WITH PHOTOREFRACTIVE FIELD CONTROLLED BOUNDARY...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the... CRYSTAL CELLS WITH PHOTOREFRACTIVE FIELD CONTROLLED BOUNDARY CONDITIONS (POSTPRINT) 5a. CONTRACT NUMBER FA8650-16-D-5402-0001 5b. GRANT

  18. Organic Crystal Engineering of Thermosetting Cyanate Ester Monomers: Influence of Structure on Melting Point

    DTIC Science & Technology

    2016-05-27

    often discussed in the field of thermosetting materials, crystal engineering1-4 plays a key role in facilitating the successful utilization of these...not to alter the desirable properties of the polymerized networks. Fortunately, the field of crystal engineering provides examples where even very...Chickos and Acree.26 For molecular modeling, methods ranging from atomistic simulations with semi-empirical force fields to density functional

  19. Improving the Quality of Protein Crystals Using Stirring Crystallization

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Matsumura, Hiroyoshi; Niino, Ai; Takano, Kazufumi; Kinoshita, Takayoshi; Warizaya, Masaichi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

    2004-04-01

    Recent reports state that a high magnetic field improves the crystal quality of bovine adenosine deaminase (ADA) with an inhibitor [Kinoshita et al.: Acta Cryst. D59 (2003) 1333]. In this paper, we examine the effect of stirring solution on ADA crystallization using a vapor-diffusion technique with rotary and figure-eight motion shakers. The probability of obtaining high-quality crystals is increased with stirring in a figure-eight pattern. Furthermore, rotary stirring greatly increased the probability of obtaining high-quality crystals, however, nucleation time was also increased. The crystal structure with the inhibitor was determined at a high resolution using a crystal obtained from a stirred solution. These results indicate that stirring with simple equipment is as useful as the high magnetic field technique for protein crystallization.

  20. Competition between monomeric and dimeric crystals in schematic models for globular proteins.

    PubMed

    Fusco, Diana; Charbonneau, Patrick

    2014-07-17

    Advances in experimental techniques and in theoretical models have improved our understanding of protein crystallization. However, they have also left open questions regarding the protein phase behavior and self-assembly kinetics, such as why (nearly) identical crystallization conditions can sometimes result in the formation of different crystal forms. Here, we develop a patchy particle model with competing sets of patches that provides a microscopic explanation of this phenomenon. We identify different regimes in which one or two crystal forms can coexist with a low-density fluid. Using analytical approximations, we extend our findings to different crystal phases, providing a general framework for treating protein crystallization when multiple crystal forms compete. Our results also suggest different experimental routes for targeting a specific crystal form, and for reducing the dynamical competition between the two forms, thus facilitating protein crystal assembly.

  1. Light scattering by nonspherical particles: Remote sensing and climatic implications

    NASA Astrophysics Data System (ADS)

    Liou, K. N.; Takano, Y.

    Calculations of the scattering and adsorption properties of ice crystals and aerosols, which are usually nonspherical, require specific methodologies. There is no unique theoretical solution for the scattering by nonspherical particles. Practically, all the numerical solutions for the scattering of nonspherical particles, including the exact wave equation approach, integral equation method, and discrete-dipole approximation, are applicable only to size parameters less than about 20. Thus, these methods are useful for the study of radiation problems involving nonspherical aerosols and small ice crystals in the thermal infrared wavelengths. The geometric optics approximation has been used to evaluate the scattering, absorption and polarization properties of hexagonal ice crystals whose sizes are much larger than the incident wavelength. This approximation is generally valid for hexagonal ice crystals with size parameters larger than about 30. From existing laboratory data and theoretical results, we illustrate that nonspherical particles absorb less and have a smaller asymmetry factor than the equal-projected area/volume spherical counterparts. In particular, we show that hexagonal ice crystals exhibit numerous halo and arc features that cannot be obtained from spherical particles; and that ice crystals scatter more light in the 60° to 140° scattering angle regions than the spherical counterparts. Satellite remote sensing of the optical depth and height of cirrus clouds using visible and IR channels must use appropriate phase functions for ice crystals. Use of an equivalent sphere model would lead to a significant overestimation and underestimation of the cirrus optical depth and height, respectively. Interpretation of the measurements for polarization reflected from sunlight involving cirrus clouds cannot be made without an appropriate ice crystal model. Large deviations exist for the polarization patterns between spheres and hexagonal ice crystals. Interpretation of lidar backscattering and depolarization signals must also utilize the scattering characteristics of hexagonal ice crystals. Equivalent spherical models substantially underestimate the broadband solar albedos of ice crystal clouds because of stronger forward scattering and larger absorption by spherical particles than hexagonal ice crystals. We illustrate that the net cloud radiative forcing at the top of the atmosphere involving most cirrus clouds is positive, implying that the IR greenhouse effect outweighs the solar albedo effect. If the radiative properties of equivalent spheres are used, a significant increase in cloud radiative forcing occurs. Using a one-dimensional cloud and climate model, we further demonstrate that there is sufficient model sensitivity, in terms of temperature increase, to the use of ice crystal models in radiation calculations.

  2. Empirical temperature-dependent intermolecular potentials determined by data mining from crystal data

    NASA Astrophysics Data System (ADS)

    Hofmann, D. W. M.; Kuleshova, L. N.

    2018-05-01

    Modern force fields are accurate enough to describe thermal effects in molecular crystals. Here, we have extended our earlier approach to discrete force fields for various temperatures to a force field with a continuous function. For the parametrisation of the force field, we used data mining on experimental structures with the temperature as an additional descriptor. The obtained force field can be used to minimise energy at a finite temperature and for molecular dynamics with zero-K potentials. The applicability of the method has been demonstrated for the prediction of crystal density, temperature density gradients and transition temperature.

  3. A Laboratory Study of the Effect of Frost Flowers on C Band Radar Backscatter from Sea Ice

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Martin, S.; Perovich, D. K.; Kwok, R.; Drucker, R.; Gow, A. J.

    1997-01-01

    C band images of Arctic sea ice taken by the ERS 1 synthetic aperture radar show transitory regions of enhanced radar backscatter from young sea ice. Published field observations associate this increase with frost flower growth and the capture of blowing snow by the flowers. To investigate the first part of this phenomenon, we carried out a laboratory experiment on the response of C band radar backscatter to frost flowers growing on the surface of newly formed saline ice. The experiment took place in a 5 m by 7 m by 1.2 m deep saline water pool located in a two-story indoor refrigerated facility at the Cold Regions Research and Engineering Laboratory. Sodium chloride ice was grown in this pool at an air temperature of -28 C. The frost flowers first appeared on the ice surface as dendrites and then changed to needles as the ice sheet grew thicker and the surface temperatures became colder. The frost flowers reached to a height of 10-15 mm, and beneath each cluster of frost flowers a slush layer formed to a thickness of approximately 4 mm. Far-field radar measurements of the backscatter from the ice were made at incident angles from 20 to 40 deg and at approximately 6-hour intervals throughout the 3-day period of the experiment. A backscatter minimum occurred early in the flower growth at the time coincident with an abrupt doubling in the ice surface salinity. Once the full flower coverage was achieved, we removed first the crystal flowers and then the slush layer from the ice surface. The results for these cases show that the crystals have little impact on the backscatter, while the underlying slush patches yield a backscatter increase of 3-5 dB over that of bare ice. The laboratory results suggest that this relative backscatter increase of approximately 5 dB can be used as an index to mark the full area coverage of frost flowers.

  4. A Laboratory Study of the Effect of Frost Flowers on C Band Radar Backscatter from Sea Ice

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Martin, S.; Perovich, D. K.; Kwok, R.; Drucker, R.; Gow, A. J.

    1997-01-01

    C band images of Arctic sea ice taken by the ERS 1 synthetic aperture radar show transitory regions of enhanced radar backscatter from young sea ice. Published field observations associate this increase with frost flower growth and the capture of blowing snow by the flowers. To investigate the first part of this phenomenon, we carried out a laboratory experiment on the response of C band radar backscatter to frost flowers growing on the surface of newly formed saline ice. The experiment took place in a 5 m by 7 m by 1.2 m deep saline water pool located in a two-story indoor refrigerated facility at the Cold Regions Research and Engineering Laboratory. Sodium chloride ice was grown in this pool at an air temperature of -28 C. The frost flowers first appeared on the ice surface as dendrites and then changed to needles as the ice sheet grew thicker and the surface temperatures became colder. The frost flowers reached to a height of 10-15 mm, and beneath each cluster of frost flowers a slush layer formed to a thickness of approximately 4 mm. Far-field radar measurements of the backscatter from the ice were made at incident angles from 20 C to 40 C and at approximately 6-hour intervals throughout the 3-day period of the experiment. A backscatter minimum occurred early in the flower growth at the time coincident with an abrupt doubling in the ice surface salinity. Once the full flower coverage was achieved, we removed first the crystal flowers and then the slush layer from the ice surface. The results for these cases show that the crystals have little impact on the backscatter, while the underlying slush patches yield a backscatter increase of 3-5 dB over that o f bare ice. The laboratory results suggest that this relative backscatter increase of approximately 5 dB can be used as an index to mark the full areal coverage of frost flowers.

  5. A Navier-Stokes phase-field crystal model for colloidal suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Praetorius, Simon, E-mail: simon.praetorius@tu-dresden.de; Voigt, Axel, E-mail: axel.voigt@tu-dresden.de

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.

  6. A Navier-Stokes phase-field crystal model for colloidal suspensions.

    PubMed

    Praetorius, Simon; Voigt, Axel

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.

  7. Magneto-optical properties of biogenic photonic crystals in algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwasaka, M., E-mail: iwasaka-m@umin.ac.jp; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi 332-0012 Saitama; Mizukawa, Y.

    In the present study, the effects of strong static magnetic fields on the structural colors of the cell covering crystals on a microalgae, coccolithophore, were investigated. The coccolithophore, Emiliania huxleyi, generates a precise assembly of calcite crystals called coccoliths by biomineralization. The coccoliths attached to the cells exhibited structural colors under side light illumination, and the colors underwent dynamic transitions when the magnetic fields were changed between 0 T and 5 T, probably due to diamagnetically induced changes of their inclination under the magnetic fields. The specific light-scattering property of individual coccoliths separated from the cells was also observed. Light scattering frommore » a condensed suspension of coccoliths drastically decreased when magnetic fields of more than 4 T were applied parallel to the direction of observation. The magnetically aligned cell-covering crystals of the coccolithophores exhibited the properties of both a photonic crystal and a minimum micromirror.« less

  8. Optical coherence of 166Er:7LiYF4 crystal below 1 K

    NASA Astrophysics Data System (ADS)

    Kukharchyk, N.; Sholokhov, D.; Morozov, O.; Korableva, S. L.; Kalachev, A. A.; Bushev, P. A.

    2018-02-01

    We explore optical coherence and spin dynamics of an isotopically purified 166Er:7LiYF4 crystal below 1 K and at weak magnetic fields < 0.3T. Crystals were grown in our lab and demonstrate narrow inhomogeneous optical broadening down to 16 MHz. Solid-state atomic ensembles with such narrow linewidths are very attractive for implementing of off-resonant Raman quantum memory and for the interfacing of superconducting quantum circuits and telecom C-band optical photons. Both applications require a low magnetic field of ∼10 mT. However, at conventional experimental temperatures T > 1.5 K, optical coherence of Er:LYF crystal attains ≃ 10 μ {{s}} time scale only at strong magnetic fields above 1.5 T. In the present work, we demonstrate that the deep freezing of Er:LYF crystal below 1 K results in the increase of optical coherence time to ≃ 100 μ {{s}} at weak fields.

  9. Field-Induced Transient Periodic Structures in Nematic Liquid Crystals: The Twist-Fréedericksz Transition

    NASA Astrophysics Data System (ADS)

    Lonberg, Franklin; Fraden, Seth; Hurd, Alan J.; Meyer, Robert E.

    1984-05-01

    Field-induced reorientations of liquid crystals, far from equilibrium, produce spatially periodic responses. The wavelength selected maximizes response speed. A detailed analysis of the effect in a novel geometry is presented, along with a discussion of its general importance in polymerlike liquid crystals.

  10. A PET Design Based on SiPM and Monolithic LYSO Crystals: Performance Evaluation

    NASA Astrophysics Data System (ADS)

    González, Antonio J.; Aguilar, Albert; Conde, Pablo; Hernández, Liczandro; Moliner, Laura; Vidal, Luis F.; Sánchez, Filomeno; Sánchez, Sebastián; Correcher, Carlos; Molinos, César; Barberá, Julio; Lankes, Konrad; Junge, Sven; Bruckbauer, Thomas; Bruyndonckx, Peter; Benlloch, Jose M.

    2016-10-01

    A new small animal PET based on SiPM and monolithic LYSO crystals has been developed. Eight detector modules form the PET ring, each mounting an array of 12 × 12 SiPMs coupled to a readout providing the summed signals of the pixels on each of the 12 rows and 12 columns of the SiPM array. This design makes it possible to accurately determine the centroid of the scintillation light distribution with about 1.6 mm full width at half maximum (FWHM) resolution without correction for the 1 mm source size, and the photon depth of interaction (DOI) with nearly 2 mm FWHM. This single ring PET system has a homogeneous spatial resolution across the entire 80 mm transaxial field of view (FOV) of about 1 mm FWHM. The noise equivalent count rate (NECR) peak is estimated to occur at around 39.2 MBq with a rate of approximately 82.7 kcps for the mouse-like phantom and 22 kcps at 48.1 MBq for the rat-like phantom. Following the NEMA protocol, the peak absolute sensitivity in the center of the FOV is 2.8% for a 30% peak energy window. A pilot test injecting NaF to a mouse of 20 grams is also presented. Finally, the PET ring has been tested in front of a high field 15.2 T Magnetic Resonance (MR). No significant variation on energy and spatial resolution across the FOV has been observed due to the presence of the magnetic field.

  11. Photonic crystal wave guide for non-cryogenic cooled carbon nanotube based middle wave infrared sensors

    NASA Astrophysics Data System (ADS)

    Fung, Carmen Kar Man; Xi, Ning; Lou, Jianyong; Lai, King Wai Chiu; Chen, Hongzhi

    2010-10-01

    We report high sensitivity carbon nanotube (CNT) based middle wave infrared (MWIR) sensors with a two-dimensional photonic crystal waveguide. MWIR sensors are of great importance in a variety of current military applications including ballistic missile defense, surveillance and target detection. Unlike other existing MWIR sensing materials, CNTs exhibit low noise level and can be used as new nano sensing materials for MWIR detection where cryogenic cooling is not required. However, the quantum efficiency of the CNT based infrared sensor is still limited by the small sensing area and low incoming electric field. Here, a photonic nanostructure is used as a resonant cavity for boosting the electric field intensity at the position of the CNT sensing element. A two-dimensional photonic crystal with periodic holes in a polymer thin film is fabricated and a resonant cavity is formed by removing holes from the array of the photonic crystal. Based on the design of the photonic crystal topologies, we theoretically study the electric field distribution to predict the resonant behavior of the structure. Numerical simulations reveal the field is enhanced and almost fully confined to the defect region of the photonic crystal. To verify the electric field enhancement effect, experiments are also performed to measure the photocurrent response of the sensor with and without the photonic crystal resonant cavity. Experimental results show that the photocurrent increases ~3 times after adding the photonic crystal resonant cavity.

  12. Molecular polarizability of water from local dielectric response theory

    DOE PAGES

    Ge, Xiaochuan; Lu, Deyu

    2017-08-08

    Here, we propose a fully ab initio theory to compute the electron density response under the perturbation in the local field. This method is based on our recently developed local dielectric response theory [Phys. Rev. B 92, 241107(R), 2015], which provides a rigorous theoretical framework to treat local electronic excitations in both nite and extended systems beyond the commonly employed dipole approximation. We have applied this method to study the electronic part of the molecular polarizability of water in ice Ih and liquid water. Our results reveal that the crystal field of the hydrogen-bond network has strong anisotropic effects, whichmore » significantly enhance the out-of-plane component and suppress the in-plane component perpendicular to the bisector direction. The contribution from the charge transfer is equally important, which increases the isotropic molecular polarizability by 5-6%. Our study provides new insights into the dielectric properties of water, which form the basis to understand electronic excitations in water and to develop accurate polarizable force fields of water.« less

  13. Shock induced damage in copper: A before and after, three-dimensional study

    NASA Astrophysics Data System (ADS)

    Menasche, David B.; Lind, Jonathan; Li, Shiu Fai; Kenesei, Peter; Bingert, John F.; Lienert, Ulrich; Suter, Robert M.

    2016-04-01

    We report on the microstructural features associated with the formation of incipient spall and damage in a fully recrystallized, high purity copper sample. Before and after ballistic shock loading, approximately 0.8 mm3 of the sample's crystal lattice orientation field is mapped using non-destructive near-field High Energy Diffraction Microscopy. Absorption contrast tomography is used to image voids after loading. This non-destructive interrogation of damage initiation allows for novel characterization of spall points vis-a-vis microstructural features and a fully 3D examination of microstructural topology and its influence on incipient damage. The spalled region is registered with and mapped back onto the pre-shock orientation field. As expected, the great majority of voids occur at grain boundaries and higher order microstructural features; however, we find no statistical preference for particular grain boundary types. The damaged region contains a large volume of Σ-3 (60 °<111 >) connected domains with a large area fraction of incoherent Σ-3 boundaries.

  14. Field-controllable Spin-Hall Effect of Light in Optical Crystals: A Conoscopic Mueller Matrix Analysis.

    PubMed

    Samlan, C T; Viswanathan, Nirmal K

    2018-01-31

    Electric-field applied perpendicular to the direction of propagation of paraxial beam through an optical crystal dynamically modifies the spin-orbit interaction (SOI), leading to the demonstration of controllable spin-Hall effect of light (SHEL). The electro- and piezo-optic effects of the crystal modifies the radially symmetric spatial variation in the fast-axis orientation of the crystal, resulting in a complex pattern with different topologies due to the symmetry-breaking effect of the applied field. This introduces spatially-varying Pancharatnam-Berry type geometric phase on to the paraxial beam of light, leading to the observation of SHEL in addition to the spin-to-vortex conversion. A wave-vector resolved conoscopic Mueller matrix measurement and analysis provides a first glimpse of the SHEL in the biaxial crystal, identified via the appearance of weak circular birefringence. The emergence of field-controllable fast-axis orientation of the crystal and the resulting SHEL provides a new degree of freedom for affecting and controlling the spin and orbital angular momentum of photons to unravel the rich underlying physics of optical crystals and aid in the development of active photonic spin-Hall devices.

  15. Attenuated total reflection-Fourier transform infrared imaging of large areas using inverted prism crystals and combining imaging and mapping.

    PubMed

    Chan, K L Andrew; Kazarian, Sergei G

    2008-10-01

    Attenuated total reflection-Fourier transform infrared (ATR-FT-IR) imaging is a very useful tool for capturing chemical images of various materials due to the simple sample preparation and the ability to measure wet samples or samples in an aqueous environment. However, the size of the array detector used for image acquisition is often limited and there is usually a trade off between spatial resolution and the field of view (FOV). The combination of mapping and imaging can be used to acquire images with a larger FOV without sacrificing spatial resolution. Previous attempts have demonstrated this using an infrared microscope and a Germanium hemispherical ATR crystal to achieve images of up to 2.5 mm x 2.5 mm but with varying spatial resolution and depth of penetration across the imaged area. In this paper, we demonstrate a combination of mapping and imaging with a different approach using an external optics housing for large ATR accessories and inverted ATR prisms to achieve ATR-FT-IR images with a large FOV and reasonable spatial resolution. The results have shown that a FOV of 10 mm x 14 mm can be obtained with a spatial resolution of approximately 40-60 microm when using an accessory that gives no magnification. A FOV of 1.3 mm x 1.3 mm can be obtained with spatial resolution of approximately 15-20 microm when using a diamond ATR imaging accessory with 4x magnification. No significant change in image quality such as spatial resolution or depth of penetration has been observed across the whole FOV with this method and the measurement time was approximately 15 minutes for an image consisting of 16 image tiles.

  16. AOM reconciling of crystal field parameters for UCl 3, UBr 3, UI 3 series

    NASA Astrophysics Data System (ADS)

    Gajek, Z.; Mulak, J.

    1990-07-01

    Available inelastic neutron scattering interpretations of crystal field effect in the uranium trihalides have been verified in terms of Angular Overlap Model. For UCl 3 a good reconciling of both INS and optical interpretations of crystal field effect has been obtained. On the contrary, the parameterizations for UBr 3 and UI 3 were found to be highly artificial and suggestion is given to experimentalists to reinterpret their INS spectra.

  17. Countering Solutal Buoyant Convection with High Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemist, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitant, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in microgravity, we have been able to dramatically effect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. The paper will report on the current status of the investigation and discuss results from the experimental and modeling efforts.

  18. A spatially resolving x-ray crystal spectrometer for measurement of ion-temperature and rotation-velocity profiles on the Alcator C-Mod tokamak.

    PubMed

    Hill, K W; Bitter, M L; Scott, S D; Ince-Cushman, A; Reinke, M; Rice, J E; Beiersdorfer, P; Gu, M-F; Lee, S G; Broennimann, Ch; Eikenberry, E F

    2008-10-01

    A new spatially resolving x-ray crystal spectrometer capable of measuring continuous spatial profiles of high resolution spectra (lambda/d lambda>6000) of He-like and H-like Ar K alpha lines with good spatial (approximately 1 cm) and temporal (approximately 10 ms) resolutions has been installed on the Alcator C-Mod tokamak. Two spherically bent crystals image the spectra onto four two-dimensional Pilatus II pixel detectors. Tomographic inversion enables inference of local line emissivity, ion temperature (T(i)), and toroidal plasma rotation velocity (upsilon(phi)) from the line Doppler widths and shifts. The data analysis techniques, T(i) and upsilon(phi) profiles, analysis of fusion-neutron background, and predictions of performance on other tokamaks, including ITER, will be presented.

  19. Some Fundamental Issues in Ground-State Density Functional Theory: A Guide for the Perplexed.

    PubMed

    Perdew, John P; Ruzsinszky, Adrienn; Constantin, Lucian A; Sun, Jianwei; Csonka, Gábor I

    2009-04-14

    Some fundamental issues in ground-state density functional theory are discussed without equations: (1) The standard Hohenberg-Kohn and Kohn-Sham theorems were proven for a Hamiltonian that is not quite exact for real atoms, molecules, and solids. (2) The density functional for the exchange-correlation energy, which must be approximated, arises from the tendency of electrons to avoid one another as they move through the electron density. (3) In the absence of a magnetic field, either spin densities or total electron density can be used, although the former choice is better for approximations. (4) "Spin contamination" of the determinant of Kohn-Sham orbitals for an open-shell system is not wrong but right. (5) Only to the extent that symmetries of the interacting wave function are reflected in the spin densities should those symmetries be respected by the Kohn-Sham noninteracting or determinantal wave function. Functionals below the highest level of approximations should however sometimes break even those symmetries, for good physical reasons. (6) Simple and commonly used semilocal (lower-level) approximations for the exchange-correlation energy as a functional of the density can be accurate for closed systems near equilibrium and yet fail for open systems of fluctuating electron number. (7) The exact Kohn-Sham noninteracting state need not be a single determinant, but common approximations can fail when it is not. (8) Over an open system of fluctuating electron number, connected to another such system by stretched bonds, semilocal approximations make the exchange-correlation energy and hole-density sum rule too negative. (9) The gap in the exact Kohn-Sham band structure of a crystal underestimates the real fundamental gap but may approximate the first exciton energy in the large-gap limit. (10) Density functional theory is not really a mean-field theory, although it looks like one. The exact functional includes strong correlation, and semilocal approximations often overestimate the strength of static correlation through their semilocal exchange contributions. (11) Only under rare conditions can excited states arise directly from a ground-state theory.

  20. Hierarchical mean-field approach to the J1-J2 Heisenberg model on a square lattice

    NASA Astrophysics Data System (ADS)

    Isaev, L.; Ortiz, G.; Dukelsky, J.

    2009-01-01

    We study the quantum phase diagram and excitation spectrum of the frustrated J1-J2 spin-1/2 Heisenberg Hamiltonian. A hierarchical mean-field approach, at the heart of which lies the idea of identifying relevant degrees of freedom, is developed. Thus, by performing educated, manifestly symmetry-preserving mean-field approximations, we unveil fundamental properties of the system. We then compare various coverings of the square lattice with plaquettes, dimers, and other degrees of freedom, and show that only the symmetric plaquette covering, which reproduces the original Bravais lattice, leads to the known phase diagram. The intermediate quantum paramagnetic phase is shown to be a (singlet) plaquette crystal, connected with the neighboring Néel phase by a continuous phase transition. We also introduce fluctuations around the hierarchical mean-field solutions, and demonstrate that in the paramagnetic phase the ground and first excited states are separated by a finite gap, which closes in the Néel and columnar phases. Our results suggest that the quantum phase transition between Néel and paramagnetic phases can be properly described within the Ginzburg-Landau-Wilson paradigm.

  1. Hierarchical mean-field approach to the J1-J2 Heisenberg model on a square lattice

    NASA Astrophysics Data System (ADS)

    Isaev, Leonid; Ortiz, Gerardo; Dukelsky, Jorge

    2009-03-01

    We study the quantum phase diagram and excitation spectrum of the frustrated J1-J2 spin-1/2 Heisenberg Hamiltonian. A hierarchical mean-field approach, at the heart of which lies the idea of identifying relevant degrees of freedom, is developed. Thus, by performing educated, manifestly symmetry preserving mean-field approximations, we unveil fundamental properties of the system. We then compare various coverings of the square lattice with plaquettes, dimers and other degrees of freedom, and show that only the symmetric plaquette covering, which reproduces the original Bravais lattice, leads to the known phase diagram. The intermediate quantum paramagnetic phase is shown to be a (singlet) plaquette crystal, connected with the neighbouring N'eel phase by a continuous phase transition. We also introduce fluctuations around the hierarchical mean-field solutions, and demonstrate that in the paramagnetic phase the ground and first excited states are separated by a finite gap, which closes in the N'eel and columnar phases. Our results suggest that the quantum phase transition between N'eel and paramagnetic phases can be properly described within the Ginzburg-Landau-Wilson paradigm.

  2. Space-time crystals of trapped ions.

    PubMed

    Li, Tongcang; Gong, Zhe-Xuan; Yin, Zhang-Qi; Quan, H T; Yin, Xiaobo; Zhang, Peng; Duan, L-M; Zhang, Xiang

    2012-10-19

    Spontaneous symmetry breaking can lead to the formation of time crystals, as well as spatial crystals. Here we propose a space-time crystal of trapped ions and a method to realize it experimentally by confining ions in a ring-shaped trapping potential with a static magnetic field. The ions spontaneously form a spatial ring crystal due to Coulomb repulsion. This ion crystal can rotate persistently at the lowest quantum energy state in magnetic fields with fractional fluxes. The persistent rotation of trapped ions produces the temporal order, leading to the formation of a space-time crystal. We show that these space-time crystals are robust for direct experimental observation. We also study the effects of finite temperatures on the persistent rotation. The proposed space-time crystals of trapped ions provide a new dimension for exploring many-body physics and emerging properties of matter.

  3. Study of crystal-field interaction in magnetic frustrated lead pyrochlore Gd2Pb2O7

    NASA Astrophysics Data System (ADS)

    Swarnakar, D.; Jana, Y. M.

    2018-05-01

    A fine tuning between the crystal field and the molecular field to adopt unique ground state in frustrated magnetic R2M2O7 pyrochlores structures is made by the variation of chemical pressure at R-site caused by substitution of nonmagnetic cation of M-site. Existence of larger cation at M-site increases the lattice parameter or nearest-neighbor bond distance between magnetic R-spins, and causes subtle changes to the local oxygen environment surrounding each R-ion, thereby reduces the chemical pressure at R-site which leads to a dramatic change in the crystal-field and molecular field. To investigate the effect of chemical pressure, the experimental results of powder magnetic susceptibility and isothermal magnetization of the frustrated compound Gd2Pb2O7 containing largest cation, e.g. lead (Pb), at M4+-sites were simulated and analyzed employing a D3d crystal-field (CF) and anisotropic molecular field at R-sites in the self- consistent mean-field approach. The second-ordered axial parameter B20 and total CF splitting of the ground multiplet Gd-ion in Gd2Pb2O7 are 477 cm-1 and 4.8 cm-1 respectively which are the lowest among their isomorphous counterparts, implying reduced effect of the crystal-field at Gd site in Gd2Pb2O7.

  4. Study on the temperature field of large-sized sapphire single crystal furnace

    NASA Astrophysics Data System (ADS)

    Zhai, J. P.; Jiang, J. W.; Liu, K. G.; Peng, X. B.; Jian, D. L.; Li, I. L.

    2018-01-01

    In this paper, the temperature field of large-sized (120kg, 200kg and 300kg grade) sapphire single crystal furnace was simulated. By keeping the crucible diameter ratio and the insulation system unchanged, the power consumption, axial and radial temperature gradient, solid-liquid surface shape, stress distribution and melt flow were studied. The simulation results showed that with the increase of the single crystal furnace size, the power consumption increased, the temperature field insulation effect became worse, the growth stress value increased and the stress concentration phenomenon occurred. To solve these problems, the middle and bottom insulation system should be enhanced during designing the large-sized sapphire single crystal furnace. The appropriate radial and axial temperature gradient was favorable to reduce the crystal stress and prevent the occurrence of cracking. Expanding the interface between the seed and crystal was propitious to avoid the stress accumulation phenomenon.

  5. Crystallization of bFGF-DNA Aptamer Complexes Using a Sparse Matrix Designed for Protein-Nucleic Acid Complexes

    NASA Technical Reports Server (NTRS)

    Cannone, Jaime J.; Barnes, Cindy L.; Achari, Aniruddha; Kundrot, Craig E.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Sparse Matrix approach for obtaining lead crystallization conditions has proven to be very fruitful for the crystallization of proteins and nucleic acids. Here we report a Sparse Matrix developed specifically for the crystallization of protein-DNA complexes. This method is rapid and economical, typically requiring 2.5 mg of complex to test 48 conditions. The method was originally developed to crystallize basic fibroblast growth factor (bFGF) complexed with DNA sequences identified through in vitro selection, or SELEX, methods. Two DNA aptamers that bind with approximately nanomolar affinity and inhibit the angiogenic properties of bFGF were selected for co-crystallization. The Sparse Matrix produced lead crystallization conditions for both bFGF-DNA complexes.

  6. Mechanical and electro-optical properties of unconventional liquid crystal systems

    NASA Astrophysics Data System (ADS)

    Liao, Guangxun

    Four types of unconventional liquid crystal systems - amphotropic glycolipids; novel bent-core liquid crystals, bent-core liquid crystal and glycolipid mixtures, and colloidal crystal-liquid crystal systems - were studied and characterized by polarizing microscopy, electrical current, digital scanning calorimetry, and dielectric spectroscopy. Thermotropic properties of glycolipids show a number of unusual properties, most notably high (60-120) relative dielectric constants mainly proportional to the number of polar sugar heads. The relaxation of this dielectric mode is found to be governed by the hydrogen bonding between sugar heads. Studies on novel bent-core liquid crystals reveal a new optically isotropic ferroelectric phase, molecular chirality-induced polarity, and transitions between molecular chirality and polarity driven phases. Mixtures of several bent-core substances with nematic, polar SmA and SmC phases, and a simple amphiphilic sugar lipid with SmA mesophase found to obey the well known miscibility rules, i.e. the sugar lipid mixes best with the polar SmA bent-core material. In addition, the chiral sugar lipid was found to induce tilt to the non-tilted polar SmA phase, which represents a new direction among the chirality--polarity--tilt relations. The effects of the surface properties and electric fields were studied on various colloid particles--and liquid crystal systems. It is found that the surface properties (hydrophobicity, roughness, rubbing) of the substrates are important in determining the size and symmetry of colloidal crystals. The director field of the liquid crystal infiltrated in the colloid crystals can be rendered both random and uniform along one of the crystallographic axis. We present the first observations of DC electric-field-induced rotational and translational motion of finite particles in liquid crystals. The electrorotation is essentially identical to the well - known Quincke rotation, which in liquid crystals triggers an additional translational motion at higher fields. Analysis of the electro-rotation and translations provides new ways to probe local rheological properties of liquid crystals.

  7. Mathematical modeling and statistical analysis of SPE-OCDMA systems utilizing second harmonic generation effect in thick crystal receivers

    NASA Astrophysics Data System (ADS)

    Matinfar, Mehdi D.; Salehi, Jawad A.

    2009-11-01

    In this paper we analytically study and evaluate the performance of a Spectral-Phase-Encoded Optical CDMA system for different parameters such as the user's code length and the number of users in the network. In this system an advanced receiver structure in which the Second Harmonic Generation effect imposed in a thick crystal is employed as the nonlinear pre-processor prior to the conventional low speed photodetector. We consider ASE noise of the optical amplifiers, effective in low power conditions, besides the multiple access interference (MAI) noise which is the dominant source of noise in any OCDMA communications system. We use the results of the previous work which we analyzed the statistical behavior of the thick crystals in an optically amplified digital lightwave communication system to evaluate the performance of the SPE-OCDMA system with thick crystals receiver structure. The error probability is evaluated using Saddle-Point approximation and the approximation is verified by Monte-Carlo simulation.

  8. Ultrathin solution-processed single crystals of thiophene-phenylene co-oligomers for organic field-effect devices

    NASA Astrophysics Data System (ADS)

    Glushkova, Anastasia V.; Poimanova, Elena Yu.; Bruevich, Vladimir V.; Luponosov, Yuriy N.; Ponomarenko, Sergei A.; Paraschuk, Dmitry Yu.

    2017-08-01

    Thiophene-phenylene co-oligomers (TPCO) single crystals are promising materials for organic light-emitting devices, e.g., light-emitting transistors (OLETs), due to their ability to combine high luminescence and efficient charge transport. However, optical confinement in platy single crystals strongly decreases light emission from their top surface degrading the device performance. To avoid optical waveguiding, single crystals thinner than 100 nm would be beneficial. Herein, we report on solution-processed ultrathin single crystals of TPCO and study their charge transport properties. As materials we used 1,4-bis(5'-hexyl-2,2'-bithiophene-5-yl)benzene (DH-TTPTT) and 1,4-bis(5'-decyl-2,2'-bithiophene-5-yl)benzene (DD-TTPTT). The ultrathin single crystals were studied by optical polarization, atomic-force, and transmission electron microscopies, and as active layers in organic field effect transistors (OFET). The OFET hole mobility was increased tenfold for the oligomer with longer alkyl substituents (DD-TTPTT) reaching 0.2 cm2/Vs. Our studies of crystal growth indicate that if the substrate is wetted, it has no significant effect on the crystal growth. We conclude that solution-processed ultrathin TPCO single crystals are a promising platform for organic optoelectronic field-effect devices.

  9. Magnetic assembly of nonmagnetic particles into photonic crystal structures.

    PubMed

    He, Le; Hu, Yongxing; Kim, Hyoki; Ge, Jianping; Kwon, Sunghoon; Yin, Yadong

    2010-11-10

    We report the rapid formation of photonic crystal structures by assembly of uniform nonmagnetic colloidal particles in ferrofluids using external magnetic fields. Magnetic manipulation of nonmagnetic particles with size down to a few hundred nanometers, suitable building blocks for producing photonic crystals with band gaps located in the visible regime, has been difficult due to their weak magnetic dipole moment. Increasing the dipole moment of magnetic holes has been limited by the instability of ferrofluids toward aggregation at high concentration or under strong magnetic field. By taking advantage of the superior stability of highly surface-charged magnetite nanocrystal-based ferrofluids, in this paper we have been able to successfully assemble 185 nm nonmagnetic polymer beads into photonic crystal structures, from 1D chains to 3D assemblies as determined by the interplay of magnetic dipole force and packing force. In a strong magnetic field with large field gradient, 3D photonic crystals with high reflectance (83%) in the visible range can be rapidly produced within several minutes, making this general strategy promising for fast creation of large-area photonic crystals using nonmagnetic particles as building blocks.

  10. Estimating ice particle scattering properties using a modified Rayleigh-Gans approximation

    NASA Astrophysics Data System (ADS)

    Lu, Yinghui; Clothiaux, Eugene E.; Aydin, Kültegin; Verlinde, Johannes

    2014-09-01

    A modification to the Rayleigh-Gans approximation is made that includes self-interactions between different parts of an ice crystal, which both improves the accuracy of the Rayleigh-Gans approximation and extends its applicability to polarization-dependent parameters. This modified Rayleigh-Gans approximation is both efficient and reasonably accurate for particles with at least one dimension much smaller than the wavelength (e.g., dendrites at millimeter or longer wavelengths) or particles with sparse structures (e.g., low-density aggregates). Relative to the Generalized Multiparticle Mie method, backscattering reflectivities at horizontal transmit and receive polarization (HH) (ZHH) computed with this modified Rayleigh-Gans approach are about 3 dB more accurate than with the traditional Rayleigh-Gans approximation. For realistic particle size distributions and pristine ice crystals the modified Rayleigh-Gans approach agrees with the Generalized Multiparticle Mie method to within 0.5 dB for ZHH whereas for the polarimetric radar observables differential reflectivity (ZDR) and specific differential phase (KDP) agreement is generally within 0.7 dB and 13%, respectively. Compared to the A-DDA code, the modified Rayleigh-Gans approximation is several to tens of times faster if scattering properties for different incident angles and particle orientations are calculated. These accuracies and computational efficiencies are sufficient to make this modified Rayleigh-Gans approach a viable alternative to the Rayleigh-Gans approximation in some applications such as millimeter to centimeter wavelength radars and to other methods that assume simpler, less accurate shapes for ice crystals. This method should not be used on materials with dielectric properties much different from ice and on compact particles much larger than the wavelength.

  11. An Experimental Study of the Effects of A Rotating Magnetic Field on Electrically Conducting Aqueous Solutions

    NASA Technical Reports Server (NTRS)

    Ramachandran Narayanan; Mazuruk, Konstantin

    1998-01-01

    The use of a rotating magnetic field for stirring metallic melts has been a commonly adopted practice for a fairly long period. The elegance of the technique stems from its non-intrusive nature and the intense stirring it can produce in an electrically conducting medium. A further application of the method in recent times has been in the area of crystal growth from melts (e.g. germanium). The latter experiments have been mainly research oriented in order to understand the basic physics of the process and to establish norms for optimizing such a technique for the commercial production of crystals. When adapted for crystal growth applications, the rotating magnetic field is used to induce a slow flow or rotation in the melt which in effect significantly curtails temperature field oscillations in the melt. These oscillations are known to cause dopant striations and thereby inhomogeneities in the grown crystal that essentially degrades the crystal quality. The applied field strength is typically of the order of milli-Teslas with a frequency range between 50-400 Hz. In this investigation, we report findings from experiments that explore the feasibility of applying a rotating magnetic field to aqueous salt solutions, that are characterized by conductivities that are several orders of magnitude smaller than semi-conductor melts. The aim is to study the induced magnetic field and consequently the induced flow in such in application. Detailed flow field description obtained through non-intrusive particle displacement tracking will be reported along with an analytical assessment of the results. It is anticipated that the obtained results will facilitate in establishing a parameter range over which the technique can be applied to obtain a desired flow field distribution. This method can find applicability in the growth of crystals from aqueous solutions and give an experimenter another controllable parameter towards improving the quality of the grown crystal.

  12. Optical properties and refractive indices of Gd3Al2Ga3O12:Ce3+ crystals

    NASA Astrophysics Data System (ADS)

    Kozlova, N. S.; Busanov, O. A.; Zabelina, E. V.; Kozlova, A. P.; Kasimova, V. M.

    2016-05-01

    Crystals of cerium-doped gadolinium-gallium-aluminum garnet have been grown by the Czochralski method. The transmission and reflection spectra of these crystals in the wavelength range of 250-800 nm have been obtained by optical spectroscopy. Refractive indices are calculated based on the measured Brewster angles, the experimental results are approximated using the Cauchy equation, and a dispersion dependence is obtained.

  13. Purification, crystallization and preliminary X-ray analysis of Enterococcus faecium aminoglycoside-2′′-phosphotransferase-Ib [APH(2′′)-Ib

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walanj, Rupa; Young, Paul; Baker, Heather M.

    2005-04-01

    APH(2′′)-Ib is an enzyme responsible for high-level gentamicin resistance in E. faecium isolates. Native crystals of this enzyme have been prepared and preliminary X-ray diffraction experiments have been undertaken. Bacterial resistance to the aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, APH(2′′)-Ib, has been cloned and the protein (comprising 299 amino-acid residues) expressed in Escherichia coli, purified and crystallized in the presence of 16%(w/v) PEG 3350 and gentamicin. The crystals belong tomore » the monoclinic space group P2{sub 1}, with approximate unit-cell parameters a = 79.7, b = 58.8, c = 81.4 Å, β = 98.4°, and preliminary X-ray diffraction analysis is consistent with the presence of two molecules in the asymmetric unit. Synchrotron diffraction data to approximately 2.65 Å resolution were collected from a native APH(2′′)-Ib crystal at beamline BL9-2 at SSRL (Stanford, CA, USA). Selenium-substituted crystals have also been produced and structure determination is proceeding.« less

  14. Why do ultrasoft repulsive particles cluster and crystallize? Analytical results from density-functional theory.

    PubMed

    Likos, Christos N; Mladek, Bianca M; Gottwald, Dieter; Kahl, Gerhard

    2007-06-14

    We demonstrate the accuracy of the hypernetted chain closure and of the mean-field approximation for the calculation of the fluid-state properties of systems interacting by means of bounded and positive pair potentials with oscillating Fourier transforms. Subsequently, we prove the validity of a bilinear, random-phase density functional for arbitrary inhomogeneous phases of the same systems. On the basis of this functional, we calculate analytically the freezing parameters of the latter. We demonstrate explicitly that the stable crystals feature a lattice constant that is independent of density and whose value is dictated by the position of the negative minimum of the Fourier transform of the pair potential. This property is equivalent with the existence of clusters, whose population scales proportionally to the density. We establish that regardless of the form of the interaction potential and of the location on the freezing line, all cluster crystals have a universal Lindemann ratio Lf=0.189 at freezing. We further make an explicit link between the aforementioned density functional and the harmonic theory of crystals. This allows us to establish an equivalence between the emergence of clusters and the existence of negative Fourier components of the interaction potential. Finally, we make a connection between the class of models at hand and the system of infinite-dimensional hard spheres, when the limits of interaction steepness and space dimension are both taken to infinity in a particularly described fashion.

  15. The use of magnetic fields in vertical Bridgman/Gradient Freeze-type crystal growth

    NASA Astrophysics Data System (ADS)

    Pätzold, Olf; Niemietz, Kathrin; Lantzsch, Ronny; Galindo, Vladimir; Grants, Ilmars; Bellmann, Martin; Gerbeth, Gunter

    2013-03-01

    This paper outlines advanced vertical Bridgman/Gradient Freeze techniques with flow control using magnetic fields developed for the growth of semiconductor crystals. Low-temperature flow modelling, as well as laboratory-scaled crystal growth under the influence of rotating, travelling, and static magnetic fields are presented. Experimental and numerical flow modelling demonstrate the potential of the magnetic fields to establish a well-defined flow for tailoring heat and mass transfer in the melt during growth. The results of the growth experiments are discussed with a focus on the influence of a rotating field on the segregation of dopants, the influence of a travelling field on the temperature field and thermal stresses, and the potential of rotating and static fields for a stabilization of the melt flow.

  16. On thermal conditions and properties of thallium bromide single crystals grown by the Electro Dynamic Gradient method

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiping; Yu, Yongtao; Gong, Shuping; Fu, Qiuyun; Zhou, Dongxiang

    2013-05-01

    The Electro Dynamic Gradient (EDG) method has been proved to be a feasible way to grow TlBr crystals in our previous work. In this research, the influence of thermal conditions such as cooling rate during growth process on the crystal performance was investigated. Crystals of approximately 12 mm diameter were obtained by the EDG method at different cooling rates during the growth process, and the quality of the crystals was routinely evaluated by X-ray diffraction (XRD), infrared (IR) and ultraviolet (UV) transmission, I-V measurement and energy response spectrum. The results proved that thermal conditions during growth had a profound influence on the characteristics of the crystals.

  17. Wide-view transflective liquid crystal display for mobile applications

    NASA Astrophysics Data System (ADS)

    Kim, Hyang Yul; Ge, Zhibing; Wu, Shin-Tson; Lee, Seung Hee

    2007-12-01

    A high optical efficiency and wide-view transflective liquid crystal display based on fringe-field switching structure is proposed. The transmissive part has a homogenous liquid crystal (LC) alignment and is driven by a fringe electric field, which exhibits excellent electro-optic characteristics. The reflective part has a hybrid LC alignment with quarter-wave phase retardation and is also driven by a fringe electric field. Consequently, the transmissive and reflective parts have similar gamma curves.

  18. A short review of theoretical and empirical models for characterization of optical materials doped with the transition metal and rare earth ions

    NASA Astrophysics Data System (ADS)

    Su, P.; Ma, C.-G.; Brik, M. G.; Srivastava, A. M.

    2018-05-01

    In this paper, a brief retrospective review of the main developments in crystal field theory is provided. We have examined how different crystal field models are applied to solve the problems that arise in the spectroscopy of optically active ions. Attention is focused on the joint application of crystal field and density functional theory (DFT) based models, which takes advantages of strong features of both individual approaches and allows for obtaining a complementary picture of the electronic properties of a doped crystal with impurity energy levels superimposed onto the host band structure.

  19. Broadband continuous-variable entanglement source using a chirped poling nonlinear crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J. S.; Sun, L.; Yu, X. Q.

    2010-01-15

    Aperiodically poled nonlinear crystal can be used as a broadband continuous-variable entanglement source and has strong stability under perturbations. We study the conversion dynamics of the sum-frequency generation and the quantum correlation of the two pump fields in a chirped-structure nonlinear crystal using the quantum stochastic method. The results show that there exists a frequency window for the pumps where two optical fields can perform efficient upconversion. The two pump fields are demonstrated to be entangled in the window and the chirped-structure crystal can be used as a continuous-variable entanglement source with a broad response bandwidth.

  20. Magnetic Control of Convection during Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2004-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular Crystals for diffraction analyses has been the central focus for bio-chemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and Sedimentation as is achieved in "microgravity", we have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, f o d o n of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with counteracts on for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility force counteract terrestrial gravity. The genera1 objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. The paper will report on the experimental results using paramagentic salts and solutions in magnetic fields and compare them to analyticalprctions.

  1. Electronic entanglement in late transition metal oxides.

    PubMed

    Thunström, Patrik; Di Marco, Igor; Eriksson, Olle

    2012-11-02

    We present a study of the entanglement in the electronic structure of the late transition metal monoxides--MnO, FeO, CoO, and NiO--obtained by means of density-functional theory in the local density approximation combined with dynamical mean-field theory. The impurity problem is solved through exact diagonalization, which grants full access to the thermally mixed many-body ground state density operator. The quality of the electronic structure is affirmed through a direct comparison between the calculated electronic excitation spectrum and photoemission experiments. Our treatment allows for a quantitative investigation of the entanglement in the electronic structure. Two main sources of entanglement are explicitly resolved through the use of a fidelity based geometrical entanglement measure, and additional information is gained from a complementary entropic entanglement measure. We show that the interplay of crystal field effects and Coulomb interaction causes the entanglement in CoO to take a particularly intricate form.

  2. Radiation of X-Rays Using Uniaxially Polarized LiNbO3 Single Crystal

    NASA Astrophysics Data System (ADS)

    Fukao, Shinji; Nakanishi, Yoshikazu; Mizoguchi, Tadahiro; Ito, Yoshiaki; Nakamura, Toru; Yoshikado, Shinzo

    2009-03-01

    X-rays are radiated due to the bremsstrahlung caused by the collision of electrons with a metal target placed opposite the negative electric surface of a crystal by changing the temperature of a LiNbO3 single crystal uniaxially polarized in the c-axis direction. It is suggested that both electric field intensity and electron density determine the intensity of X-ray radiation. Electrons are supplied by the ionization of residual gas in space, field emission from a case inside which a crystal is located, considered to be due to the high electric-field intensity formed by the surface charges on the crystal, and an external electron source, such as a thermionic source. In a high vacuum, it was found that the electrons supplied by electric-field emission mainly contribute to the radiation of X-rays. It was found that the integrated intensity of X-rays can be maximized by supplying electrons both external and by electric-field emission. Furthermore, the integrated intensity of the X-rays is stable for many repeated temperature changes.

  3. Method of bonding single crystal quartz by field-assisted bonding

    DOEpatents

    Curlee, R.M.; Tuthill, C.D.; Watkins, R.D.

    1991-04-23

    The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals. 2 figures.

  4. Method of bonding single crystal quartz by field-assisted bonding

    DOEpatents

    Curlee, Richard M.; Tuthill, Clinton D.; Watkins, Randall D.

    1991-01-01

    The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals.

  5. Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahle, Markus, E-mail: markus.wahle@uni-paderborn.de; Kitzerow, Heinz-Siegfried

    2015-11-16

    We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue ormore » red shifted depending on the frequency of the applied voltage.« less

  6. Spin-Orbit Qubits of Rare-Earth-Metal Ions in Axially Symmetric Crystal Fields

    NASA Astrophysics Data System (ADS)

    Bertaina, S.; Shim, J. H.; Gambarelli, S.; Malkin, B. Z.; Barbara, B.

    2009-11-01

    Contrary to the well-known spin qubits, rare-earth-metal qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground state which nutates (for several μs) and the Rabi frequency ΩR is anisotropic. Here, we present a study of the variations of ΩR(H→0) with the magnitude and direction of the static magnetic field H→0 for the odd Er167 isotope in a single crystal CaWO4:Er3+. The hyperfine interactions split the ΩR(H→0) curve into eight different curves which are fitted numerically and described analytically. These “spin-orbit qubits” should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.

  7. Spin-orbit qubits of rare-earth-metal ions in axially symmetric crystal fields.

    PubMed

    Bertaina, S; Shim, J H; Gambarelli, S; Malkin, B Z; Barbara, B

    2009-11-27

    Contrary to the well-known spin qubits, rare-earth-metal qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground state which nutates (for several micros) and the Rabi frequency Omega(R) is anisotropic. Here, we present a study of the variations of Omega(R)(H(0)) with the magnitude and direction of the static magnetic field H(0) for the odd 167Er isotope in a single crystal CaWO(4):Er(3+). The hyperfine interactions split the Omega(R)(H(0)) curve into eight different curves which are fitted numerically and described analytically. These "spin-orbit qubits" should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.

  8. Thermodynamics around the first-order ferromagnetic phase transition of Fe2P single crystals

    NASA Astrophysics Data System (ADS)

    Hudl, M.; Campanini, D.; Caron, L.; Höglin, V.; Sahlberg, M.; Nordblad, P.; Rydh, A.

    2014-10-01

    The specific heat and thermodynamics of Fe2P single crystals around the first-order paramagnetic to ferromagnetic (FM) phase transition at TC≃217 K are empirically investigated. The magnitude and direction of the magnetic field relative to the crystal axes govern the derived H -T phase diagram. Strikingly different phase contours are obtained for fields applied parallel and perpendicular to the c axis of the crystal. In parallel fields, the FM state is stabilized, while in perpendicular fields the phase transition is split into two sections, with an intermediate FM phase where there is no spontaneous magnetization along the c axis. The zero-field transition displays a textbook example of a first-order transition with different phase stability limits on heating and cooling. The results have special significance since Fe2P is the parent material to a family of compounds with outstanding magnetocaloric properties.

  9. Spatially resolved micro-Raman observation on the phase separation of effloresced sea salt droplets.

    PubMed

    Xiao, Han-Shuang; Dong, Jin-Ling; Wang, Liang-Yu; Zhao, Li-Jun; Wang, Feng; Zhang, Yun-Hong

    2008-12-01

    We report on the investigation of the phase separation of individual seawater droplets in the efflorescence processes with the spatially resolved Raman system. Upon decreasing the relative humidity (RH), CaSO4.0.5H2O separated out foremost fromthe droplet atan unexpectedly high RH of approcimately 90%. Occasionally, CaSO4.2H2O substituted for CaSO4.O.5H2O crystallizing first at approximately 78% RH. Relatively large NaCI solids followed to crystallize at approximately 55% RH and led to the great loss of the solution. Then, the KMgCl3.6H2O crystallites separated out from the residual solutions, adjacentto NaCl at approximately 44% RH. Moreover, a shell structure of dried sea salt particle was found to form at low RHs, with the NaCl crystals in the core and minor supersaturated solutions covered with MgSO4 gel coating on the surface. Ultimately, the shielded solution partly effloresced into MgSO4 hydrates at very dry state (<5% RH).

  10. Modeling Conformal Growth in Photonic Crystals and Comparing to Experiment

    NASA Astrophysics Data System (ADS)

    Brzezinski, Andrew; Chen, Ying-Chieh; Wiltzius, Pierre; Braun, Paul

    2008-03-01

    Conformal growth, e.g. atomic layer deposition (ALD), of materials such as silicon and TiO2 on three dimensional (3D) templates is important for making photonic crystals. However, reliable calculations of optical properties as a function of the conformal growth, such as the optical band structure, are hampered by difficultly in accurately assessing a deposited material's spatial distribution. A widely used approximation ignores ``pinch off'' of precursor gas and assumes complete template infilling. Another approximation results in non-uniform growth velocity by employing iso-intensity surfaces of the 3D interference pattern used to create the template. We have developed an accurate model of conformal growth in arbitrary 3D periodic structures, allowing for arbitrary surface orientation. Results are compared with the above approximations and with experimentally fabricated photonic crystals. We use an SU8 polymer template created by 4-beam interference lithography, onto which various amounts of TiO2 are grown by ALD. Characterization is performed by analysis of cross-sectional scanning electron micrographs and by solid angle resolved optical spectroscopy.

  11. Crystallization Kinetics of Amorphous AgInS2 Film

    NASA Astrophysics Data System (ADS)

    Kerimova, N. K.; Mamedova, A. Ch.

    2018-04-01

    The paper deals with crystallization kinetics of amorphous AgInS2 film. The dependence between lnln(V0 / (V0 -Vt) and lnt is obtained for 423, 448 and 468 K temperatures, which shows a linear arrangement of points for these temperatures, i.e. 2.80 2.87 and 2.93, respectively. The approximate equality of these values indicates that during AgInS2 film crystallization, a two-dimensional crystal growth occurs and the reaction rate constant equals (1/3π) {η}_n{η}_c^2.

  12. Image transfer by cascaded stack of photonic crystal and air layers.

    PubMed

    Shen, C; Michielsen, K; De Raedt, H

    2006-01-23

    We demonstrate image transfer by a cascaded stack consisting of two and three triangular-lattice photonic crystal slabs separated by air. The quality of the image transfered by the stack is sensitive to the air/photonic crystal interface termination and the frequency. Depending on the frequency and the surface termination, the image can be transfered by the stack with very little deterioration of the resolution, that is the resolution of the final image is approximately the same as the resolution of the image formed behind one single photonic crystal slab.

  13. Phase-field study of grain boundary tracking behavior in crack-seal microstructures

    NASA Astrophysics Data System (ADS)

    Ankit, Kumar; Nestler, Britta; Selzer, Michael; Reichardt, Mathias

    2013-12-01

    In order to address the growth of crystals in veins, a multiphase-field model is used to capture the dynamics of crystals precipitating from a super-saturated solution. To gain a detailed understanding of the polycrystal growth phenomena in veins, we investigate the influence of various boundary conditions on crystal growth. In particular, we analyze the formation of vein microstructures resulting from the free growth of crystals as well as crack-sealing processes. We define the crystal symmetry by considering the anisotropy in surface energy to simulate crystals with flat facets and sharp corners. The resulting growth competition of crystals with different orientations is studied to deduce a consistent orientation selection rule in the free-growth regime. Using crack-sealing simulations, we correlate the grain boundary tracking behavior depending on the relative rate of crack opening, opening trajectory, initial grain size, and wall roughness. Further, we illustrate how these parameters induce the microstructural transition between blocky (crystals growing anisotropically) to fibrous morphology (isotropic) and formation of grain boundaries. The phase-field simulations of crystals in the free-growth regime (in 2D and 3D) indicate that the growth or consumption of a crystal is dependent on the orientation difference with neighboring crystals. The crack-sealing simulation results (in 2D and 3D) reveal that crystals grow isotropically and grain boundaries track the opening trajectory if the wall roughness is high, opening increments are small, and crystals touch the wall before the next crack increment starts. Further, we find that within the complete crack-seal regime, anisotropy in surface energy results in the formation of curved/oscillating grain boundaries (instead of straight) when the crack-opening velocity is increased and wall roughness is not sufficiently high. Additionally, the overall capability of phase-field method to simulate large-scale polycrystal growth in veins (in 3D) is demonstrated enumerating the main advantages of adopting the novel approach.

  14. A simple proof of orientability in colored group field theory.

    PubMed

    Caravelli, Francesco

    2012-01-01

    Group field theory is an emerging field at the boundary between Quantum Gravity, Statistical Mechanics and Quantum Field Theory and provides a path integral for the gluing of n-simplices. Colored group field theory has been introduced in order to improve the renormalizability of the theory and associates colors to the faces of the simplices. The theory of crystallizations is instead a field at the boundary between graph theory and combinatorial topology and deals with n-simplices as colored graphs. Several techniques have been introduced in order to study the topology of the pseudo-manifold associated to the colored graph. Although of the similarity between colored group field theory and the theory of crystallizations, the connection between the two fields has never been made explicit. In this short note we use results from the theory of crystallizations to prove that color in group field theories guarantees orientability of the piecewise linear pseudo-manifolds associated to each graph generated perturbatively. Colored group field theories generate orientable pseudo-manifolds. The origin of orientability is the presence of two interaction vertices in the action of colored group field theories. In order to obtain the result, we made the connection between the theory of crystallizations and colored group field theory.

  15. 4D Light Field Imaging System Using Programmable Aperture

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam

    2012-01-01

    Complete depth information can be extracted from analyzing all angles of light rays emanated from a source. However, this angular information is lost in a typical 2D imaging system. In order to record this information, a standard stereo imaging system uses two cameras to obtain information from two view angles. Sometimes, more cameras are used to obtain information from more angles. However, a 4D light field imaging technique can achieve this multiple-camera effect through a single-lens camera. Two methods are available for this: one using a microlens array, and the other using a moving aperture. The moving-aperture method can obtain more complete stereo information. The existing literature suggests a modified liquid crystal panel [LC (liquid crystal) panel, similar to ones commonly used in the display industry] to achieve a moving aperture. However, LC panels cannot withstand harsh environments and are not qualified for spaceflight. In this regard, different hardware is proposed for the moving aperture. A digital micromirror device (DMD) will replace the liquid crystal. This will be qualified for harsh environments for the 4D light field imaging. This will enable an imager to record near-complete stereo information. The approach to building a proof-ofconcept is using existing, or slightly modified, off-the-shelf components. An SLR (single-lens reflex) lens system, which typically has a large aperture for fast imaging, will be modified. The lens system will be arranged so that DMD can be integrated. The shape of aperture will be programmed for single-viewpoint imaging, multiple-viewpoint imaging, and coded aperture imaging. The novelty lies in using a DMD instead of a LC panel to move the apertures for 4D light field imaging. The DMD uses reflecting mirrors, so any light transmission lost (which would be expected from the LC panel) will be minimal. Also, the MEMS-based DMD can withstand higher temperature and pressure fluctuation than a LC panel can. Robotics need near complete stereo images for their autonomous navigation, manipulation, and depth approximation. The imaging system can provide visual feedback

  16. Magneto- to electroactive transmutation of spin waves in ErMnO3.

    PubMed

    Chaix, L; de Brion, S; Petit, S; Ballou, R; Regnault, L-P; Ollivier, J; Brubach, J-B; Roy, P; Debray, J; Lejay, P; Cano, A; Ressouche, E; Simonet, V

    2014-04-04

    The low-energy dynamical properties of the multiferroic hexagonal perovskite ErMnO3 have been studied by inelastic neutron scattering as well as terahertz and far infrared spectroscopies on a synchrotron source. From these complementary techniques, we have determined the magnon and crystal field spectra and identified a zone center magnon excitable only by the electric field of an electromagnetic wave. Using a comparison with the isostructural YMnO3 compound and crystal field calculations, we propose that this dynamical magnetoelectric process is due to the hybridization of a magnon with an electroactive crystal field transition.

  17. Magnetic anisotropy in nickel complexes as determined by combined magnetic susceptibility/magnetization/theoretical studies

    NASA Astrophysics Data System (ADS)

    Mašlejová, Anna; Boča, Roman; Dlháň, L.'ubor; Herchel, Radovan

    2004-05-01

    The zero-field splitting in nickel(II) complexes was modeled by considering all relevant operators (electron repulsion, crystal-field, spin-orbit coupling, orbital-Zeeman, and spin-Zeeman) in the complete basis set spanned by d n-atomic terms. D-values between weak and strong crystal field limits were evaluated from the crystal-field multiplets as well as using the spin Hamiltonian formalism. Importance of the anisotropic orbital reduction factors is discussed and exemplified by D/hc=-22 cm-1 as subtracted from magnetic data for [Ni(imidazole) 4(acetate) 2] complex.

  18. Microscopic study of crystal growth in cryopreservation agent solutions and water.

    PubMed

    Tao, Le-Ren; Hua, Tse-Chao

    2002-10-01

    Ice formation inside or outside cells during cryopreservation is evidently the main factor of cryoinjury to cells. In the study described here a high voltage DC electric field and a cryomicroscopic stage were used to test DMSO and NaCl solutions under electric field strengths ranging from 83 kV/m to 320 kV/m. Dendritic ice crystals became asymmetric when the electric field was activated. This change in the ice crystal shape was more pronounced in the ionic NaCl solution. In addition, ice growth of distilled water without an electric field was tested under different cooling rates.

  19. From molecule to solid: The prediction of organic crystal structures

    NASA Astrophysics Data System (ADS)

    Dzyabchenko, A. V.

    2008-10-01

    A method for predicting the structure of a molecular crystal based on the systematic search for a global potential energy minimum is considered. The method takes into account unequal occurrences of the structural classes of organic crystals and symmetry of the multidimensional configuration space. The programs of global minimization PMC, comparison of crystal structures CRYCOM, and approximation to the distributions of the electrostatic potentials of molecules FitMEP are presented as tools for numerically solving the problem. Examples of predicted structures substantiated experimentally and the experience of author’s participation in international tests of crystal structure prediction organized by the Cambridge Crystallographic Data Center (Cambridge, UK) are considered.

  20. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-06-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings.

  1. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis

    PubMed Central

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-01-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings. PMID:27356625

  2. Optical ridge waveguides preserving the thermo-optic features in LiNbO3 crystals fabricated by combination of proton implantation and selective wet etching.

    PubMed

    Tan, Yang; Chen, Feng

    2010-05-24

    We report on a new, simple method to fabricate optical ridge waveguides in a z-cut LiNbO3 wafer by using proton implantation and selective wet etching. The measured modal field is well confined in the ridge waveguide region, which is also confirmed by the numerical simulation. With thermal annealing treatment at 400 degrees C, the propagation loss of the ridge waveguides is determined to be as low as approximately 0.9 dB/cm. In addition, the measured thermo-optic coefficients of the waveguides are in good agreement with those of the bulk, suggesting potential applications in integrated photonics.

  3. Drop evaporation in a single-axis acoustic levitator

    NASA Technical Reports Server (NTRS)

    Lierke, E. G.; Croonquist, A. P.

    1990-01-01

    A 20 kHz single-axis acoustic positioner is used to levitate aqueous-solution drops (volumes less than or approximately equal to 100 micro-liters). Drop evaporation rates are measured under ambient, isothermal conditions for different relative humidities. Acoustic convection around the levitated sample enhances the mass loss over that due to natural convection and diffusion. A theoretical treatment of the mass flow is developed in analogy to previous studies of the heat transfer from a sphere in an acoustic field. Predictions of the enhanced mass loss, in the form of Nusselt (Sherwood) numbers, are compared with observed rages of drop shrinking. The work is part of an ESA crystal growth from levitated solution drops.

  4. First-principles Study of Intersite Magnetic Couplings and Curie Temperature in RFe12-xCrx (R = Y, Nd, Sm)

    NASA Astrophysics Data System (ADS)

    Fukazawa, Taro; Akai, Hisazumi; Harashima, Yosuke; Miyake, Takashi

    2018-04-01

    We present a first-principles study of RFe12-xCrx (R = Y, Nd, Sm) crystals with ThMn12 structure. We discuss, within the mean field approximation, intersite magnetic couplings calculated using Liechtenstein's formula and convert them into Curie temperatures, TC, which are found to become larger when a small amount of Cr (x ≤ 0.5) is introduced into the system. This enhancement is larger than that for Co in the dilute limit, x → 0. In contrast, above x > 0.5, the Curie temperature decreases as Cr concentration increases. This behavior is analyzed using an expansion of TC in terms of concentration.

  5. IPRT polarized radiative transfer model intercomparison project - Three-dimensional test cases (phase B)

    NASA Astrophysics Data System (ADS)

    Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Wang, Zhen; Labonotte, Laurent C.; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred

    2018-04-01

    Initially unpolarized solar radiation becomes polarized by scattering in the Earth's atmosphere. In particular molecular scattering (Rayleigh scattering) polarizes electromagnetic radiation, but also scattering of radiation at aerosols, cloud droplets (Mie scattering) and ice crystals polarizes. Each atmospheric constituent produces a characteristic polarization signal, thus spectro-polarimetric measurements are frequently employed for remote sensing of aerosol and cloud properties. Retrieval algorithms require efficient radiative transfer models. Usually, these apply the plane-parallel approximation (PPA), assuming that the atmosphere consists of horizontally homogeneous layers. This allows to solve the vector radiative transfer equation (VRTE) efficiently. For remote sensing applications, the radiance is considered constant over the instantaneous field-of-view of the instrument and each sensor element is treated independently in plane-parallel approximation, neglecting horizontal radiation transport between adjacent pixels (Independent Pixel Approximation, IPA). In order to estimate the errors due to the IPA approximation, three-dimensional (3D) vector radiative transfer models are required. So far, only a few such models exist. Therefore, the International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to provide benchmark results for polarized radiative transfer. The group has already performed an intercomparison for one-dimensional (1D) multi-layer test cases [phase A, 1]. This paper presents the continuation of the intercomparison project (phase B) for 2D and 3D test cases: a step cloud, a cubic cloud, and a more realistic scenario including a 3D cloud field generated by a Large Eddy Simulation (LES) model and typical background aerosols. The commonly established benchmark results for 3D polarized radiative transfer are available at the IPRT website (http://www.meteo.physik.uni-muenchen.de/ iprt).

  6. Strong anisotropy of electric field effects on uniaxial relaxor ferroelectric Sr0.75Ba0.25Nb2O6 crystals proved by acoustic emission

    NASA Astrophysics Data System (ADS)

    Dul'kin, E.; Kojima, S.; Roth, M.

    2018-01-01

    [001] oriented Sr0.75Ba0.25Nb2O6 uniaxial relaxor ferroelectric crystals have been studied by acoustic emission in the temperature range of 20÷200 °C and under an external electric field up to 1 kV/cm. Under the application of an electric field the temperature of a dielectric maximum exhibits a nontrivial behavior: it remains constant at first, secondly steep decreases down to some threshold field, and thirdly starts to increase as a field enhances, whereas the same temperature of a dielectric maximum under a bias electric field to [100] oriented Sr0.75Ba0.25Nb2O6 crystals exhibits a smoothed minimum before the start to increase as a field enhances (E. Dul'kin et al., J. Appl. Phys. 110, 044106 (2011)). Such a difference of electric field effects in c- and a-cut crystals is discussed from the viewpoint of random-bond-random-field model of relaxor ferroelectrics. By the comparison between experimental and theoretical data, a dipole moment of the PNR was estimated to be 0.1 (C cm).

  7. Semiconductor crystal growth in crossed electric and magnetic fields: Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    1996-01-01

    A unique growth cell was designed in which crossed electric and magnetic fields could be separately or simultaneously applied during semiconductor crystal growth. A thermocouple was inserted into an InSb melt inside the growth cell to examine the temperature response of the fluid to applied electromagnetic fields. A static magnetic field suppressed time-dependent convection when a destabilizing thermal field was applied. The simultaneous application of electric and magnetic fields resulted in forced convection in the melt. The InSb ingots grown in the cell were polycrystalline. An InGaSb crystal, 0.5 cm in diameter and 23-cm long, was grown without electromagnetic fields applied. The axial composition results indicated that complete mixing in the melt occurred for this large aspect ratio.

  8. Measurement of spatio-temporal field distribution of THz pulses in electro-optic crystal by interferometry method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chizhov, P A; Ushakov, A A; Bukin, V V

    2015-05-31

    We propose a scheme for measuring the spatial distribution of the THz pulse electric field strength in an electro-optic crystal using optical interferometry. The resulting images of the field distribution from a test source with a spherical wave front are presented. (extreme light fields and their applications)

  9. Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy.

    PubMed

    Müller-Caspary, Knut; Krause, Florian F; Grieb, Tim; Löffler, Stefan; Schowalter, Marco; Béché, Armand; Galioit, Vincent; Marquardt, Dennis; Zweck, Josef; Schattschneider, Peter; Verbeeck, Johan; Rosenauer, Andreas

    2017-07-01

    This study sheds light on the prerequisites, possibilities, limitations and interpretation of high-resolution differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). We draw particular attention to the well-established DPC technique based on segmented annular detectors and its relation to recent developments based on pixelated detectors. These employ the expectation value of the momentum transfer as a reliable measure of the angular deflection of the STEM beam induced by an electric field in the specimen. The influence of scattering and propagation of electrons within the specimen is initially discussed separately and then treated in terms of a two-state channeling theory. A detailed simulation study of GaN is presented as a function of specimen thickness and bonding. It is found that bonding effects are rather detectable implicitly, e.g., by characteristics of the momentum flux in areas between the atoms than by directly mapping electric fields and charge densities. For strontium titanate, experimental charge densities are compared with simulations and discussed with respect to experimental artifacts such as scan noise. Finally, we consider practical issues such as figures of merit for spatial and momentum resolution, minimum electron dose, and the mapping of larger-scale, built-in electric fields by virtue of data averaged over a crystal unit cell. We find that the latter is possible for crystals with an inversion center. Concerning the optimal detector design, this study indicates that a sampling of 5mrad per pixel is sufficient in typical applications, corresponding to approximately 10×10 available pixels. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Crystal-field, exchange interactions and magnetism in pyrochlore ferromagnet R2V2O7 (R3+=Y, Lu)

    NASA Astrophysics Data System (ADS)

    Ali Biswas, A.; Jana, Y. M.

    2013-03-01

    The temperature dependence of the observed bulk magnetic susceptibility, magnetization, paramagnetic Curie temperature θCW, magnetic specific heat of ferromagnetic semi-conducting pyrochlore-based vanadate compounds Y2V2O7 and Lu2V2O7, which are the simplest of R2M2O7 pyrochlore series of oxides, are simulated and analyzed, simultaneously and consistently, within the frame work of the appropriate crystal-field (CF) theory and a mean-field approximation by introducing effective anisotropic molecular-field tensors and also taking account of appreciable spin-orbit coupling. The electronic and magnetic properties are correlated to the structural parameters. Ten-fold degenerate 2D term of 3d1 V4+-ions is split into five Kramers doublets with overall CF splitting Δ1≈2 eV and the total splitting of the 2T2g state Δ0≈0.4 eV under combined actions of octahedral CF, trigonal (D3d) distortion at V-site and spin-orbit coupling. The ground doublet is a well-isolated effectively spin s=1/2 state, characterized by the anisotropic g-tensors and directional magnetic moments. The degeneracy of the ground state is lifted by the spin-spin correlations among V4-tetrahedra at T∼170 K, which causes the formation of ferromagnetic clusters in these pyrochlores. The temperature dependence of the calculated directional site-susceptibilities shows that the V4+ ions have a substantial easy-axis single-ion anisotropy along local <111> axis of a given V4-tetrahedron in the magnetic phase where ferromagnetic clusters coexist with paramagnetic phase.

  11. Aneurysm clip motion during magnetic resonance imaging: in vivo experimental study with metallurgical factor analysis.

    PubMed

    Dujovny, M; Kossovsky, N; Kossowsky, R; Valdivia, R; Suk, J S; Diaz, F G; Berman, S K; Cleary, W

    1985-10-01

    Because of various mechanical, metallurgical, and commercial constraints, aneurysm clips are manufactured from different alloys, including several stainless steel and cobalt alloys. Some of the steels contain volume fractions of the crystal phase known as martensite. Martensitic alloys have body-centered cubic structure, are prone to stress corrosion failure, and are ferromagnetic. Martensitic steel can be displaced like a compass needle when exposed to a magnetic field such as that generated during magnetic resonance imaging (MRI). The force exerted by the magnetic field is proportional to the volume fraction of the magnetic phase. We investigated the martensitic content and magnetic field-induced displacement of 12 common aneurysm clips. Four clips of each of the following types were examined: Sugita, Sundt-Kees Multi-Angle, Heifetz (two types), Vari-Angle McFadden, Yasargil (two types), Scoville, Mayfield, Vari-Angle, Pivot, and Kapp. Phase homogeneity and crystal structure were analyzed by x-ray diffraction using a Phillips x-ray diffractometer. Clip deflection in an Oxford Research Systems MRI spectrometer was measured in our in vivo rat abdominal aortic aneurysm model. Results showed that the volume fraction of the martensitic phase in the various clips correlated with the magnitude of the deflection. Among the clips examined, the Yasargil, Sugita, Heifetz Elgiloy, and Vari-Angle McFadden had a nonmartensitic composition and did not deflect in the magnetic field. The Scoville contained 5% martensite and deflected only marginally. Martensite comprised 35% of the Mayfield clip, which deflected 45 degrees, and 90% of the Heifetz, Vari-Angle, Pivot, and Sundt-Kees Multi-Angle clips, which deflected approximately 70 degrees or slipped off the aneurysm.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Study of Fluid Flow Control In Protein Crystallization Using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F.; Ciszak, E.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in 'microgravity', researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. Once the basic understanding is obtained, the study will focus on testing the hypothesis on proteins of pyruvate dehydrogenase complex (PDC), proteins E1 and E3. Obtaining high crystal quality of these proteins is of great importance to structural biologists since their structures need to be determined.

  13. High-Temperature Crystal-Growth Cartridge Tubes Made by VPS

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; O'Dell, Scott; McKechnie, Timothy; Power, Christopher

    2008-01-01

    Cartridge tubes for use in a crystal growth furnace at temperatures as high as 1,600 deg. C have been fabricated by vacuum plasma spraying (VPS). These cartridges consist mainly of an alloy of 60 weight percent molybdenum with 40 weight percent rhenium, made from molybdenum powder coated with rhenium. This alloy was selected because of its high melting temperature (approximately equal.2,550 C) and because of its excellent ductility at room temperature. These cartridges are intended to supplant tungsten/nickel-alloy cartridges, which cannot be used at temperatures above approximately equal 1,300 C.

  14. Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals.

    PubMed

    Reese, Chad E; Asher, Sanford A

    2002-04-01

    We have developed emulsifier-free, emulsion polymerization recipes for the synthesis of highly charged, monodisperse latex particles of diameters between 500 and 1100 nm. These latexes consist of poly[styrene-(co-2-hydroxyethyl methacrylate)] spherical particles whose surfaces are functionalized with sulfate and carboxylic acid groups. These highly charged, monodisperse particles readily self-assemble into robust, three-dimensionally ordered crystalline colloidal array photonic crystals that Bragg diffract light in the near infrared spectral region. By altering the particle number density, the diffraction wavelength can be tuned from approximately 1000 to approximately 4000 nm.

  15. High energy X-ray diffraction study of a dental ceramics–titanium functional gradient material prepared by field assisted sintering technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witte, K., E-mail: kerstin.witte@uni-rostock.de; Bodnar, W.; Schell, N.

    A functional gradient material with eleven layers composed of a dental ceramics and titanium was successfully consolidated using field assisted sintering technique in a two-step sintering process. High energy X-ray diffraction studies on the gradient were performed at High Energy Material Science beamline at Desy in Hamburg. Phase composition, crystal unit edges and lattice mismatch along the gradient were determined applying Rietveld refinement procedure. Phase analysis revealed that the main crystalline phase present in the gradient is α-Ti. Crystallinity increases stepwisely along the gradient with a decreasing increment between every next layer, following rather the weight fraction of titanium. Themore » crystal unit edge a of titanium remains approximately constant with a value of 2.9686(1) Å, while c is reduced with increasing amount of titanium. In the layer with pure titanium the crystal unit edge c is constant with a value of 4.7174(2) Å. The lattice mismatch leading to an internal stress was calculated over the whole gradient. It was found that the maximal internal stress in titanium embedded in the studied gradient is significantly smaller than its yield strength, which implies that the structure of titanium along the whole gradient is mechanically stable. - Highlights: • High energy XRD studies of dental ceramics–Ti gradient material consolidated by FAST. • Phase composition, crystallinity and lattice parameters are determined. • Crystallinity increases stepwisely along the gradient following weight fraction of Ti. • Lattice mismatch leading to internal stress is calculated over the whole gradient. • Internal stress in α-Ti embedded in the gradient is smaller than its yield strength.« less

  16. The origin of transverse anisotropy in axially symmetric single molecule magnets.

    PubMed

    Barra, Anne-Laure; Caneschi, Andrea; Cornia, Andrea; Gatteschi, Dante; Gorini, Lapo; Heiniger, Leo-Philipp; Sessoli, Roberta; Sorace, Lorenzo

    2007-09-05

    Single-crystal high-frequency electron paramagnetic resonance spectroscopy has been employed on a truly axial single molecule magnet of formula [Mn(12)O(12)(tBu-CH(2)CO(2))16(CH(3)OH)4].CH(3)OH to investigate the origin of the transverse magnetic anisotropy, a crucial parameter that rules the quantum tunneling of the magnetization. The crystal structure, including the absolute structure of the crystal used for EPR experiments, has been fully determined and found to belong to I4 tetragonal space group. The angular dependence of the resonance fields in the crystallographic ab plane shows the presence of high-order tetragonal anisotropy and strong dependence on the MS sublevels with the second-highest-field transition being angular independent. This was rationalized including competing fourth- and sixth-order transverse parameters in a giant spin Hamiltonian which describes the magnetic anisotropy in the ground S = 10 spin state of the cluster. To establish the origin of these anisotropy terms, the experimental results have been further analyzed using a simplified multispin Hamiltonian which takes into account the exchange interactions and the single ion magnetic anisotropy of the Mn(III) centers. It has been possible to establish magnetostructural correlations with spin Hamiltonian parameters up to the sixth order. Transverse anisotropy in axial single molecule magnets was found to originate from the multispin nature of the system and from the breakdown of the strong exchange approximation. The tilting of the single-ion easy axes of magnetization with respect to the 4-fold molecular axis of the cluster plays the major role in determining the transverse anisotropy. Counterintuitively, the projections of the single ion easy axes on the ab plane correspond to hard axes of magnetization.

  17. The Band Structure of Polymers: Its Calculation and Interpretation. Part 2. Calculation.

    ERIC Educational Resources Information Center

    Duke, B. J.; O'Leary, Brian

    1988-01-01

    Details ab initio crystal orbital calculations using all-trans-polyethylene as a model. Describes calculations based on various forms of translational symmetry. Compares these calculations with ab initio molecular orbital calculations discussed in a preceding article. Discusses three major approximations made in the crystal case. (CW)

  18. Theoretical approach to the ground state of spherically confined Yukawa plasmas

    NASA Astrophysics Data System (ADS)

    Henning, Christian; Bonitz, Michael; Piel, Alexander; Ludwig, Patrick; Baumgartner, Henning

    2007-11-01

    Recently spherical 3D dust crystals (aka Yukawa balls) were discovered [1], which allow direct observation of strong correlation phenomena and the structure of which is well explained by computer simulations of charged Yukawa interacting particles within an external parabolic confinement [2]. Here we present an analytical approach to the ground state of these systems using the minimization of the system's energy. Applying the non-local mean-field approximation we show that screening has a dramatic effect on the density profile, which can be derived explicitly [3]. In addition the local density approximation allows for the inclusion of correlations, which further improves the results in the regime of large screening [4]. Comparisons with MD simulations of Yukawa balls show excellent agreement.[1] O. Arp et al. Phys. Rev. Lett. 93, 165004 (2004)[2] M. Bonitz et al., Phys. Rev. Lett. 96, 075001 (2006)[3] C. Henning et al., Phys. Rev. E 74, 056403 (2006)[4] C. Henning at al., Phys. Rev. E (2007)

  19. The Fano-type transmission and field enhancement in heterostructures composed of epsilon-near-zero materials and truncated photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhi-fang; Jiang, Hai-tao, E-mail: davies2000@163.com, E-mail: jiang-haitao@tongji.edu.cn; Li, Yun-hui

    2013-11-11

    The Fano-type interference effect is studied in the heterostructure composed of an epsilon-near-zero (ENZ) material and a truncated photonic crystal for transverse magnetic polarized light. In the Fano-type interference effect, the ENZ material provides narrow reflection pathway and the photonic crystal provides broadband reflection pathway. The boundary condition across the ENZ interface and the confinement effect provided by the photonic crystal can enhance the electric fields in the ENZ material greatly. The field enhancements, together with the asymmetric property of Fano-type spectrum, possess potential applications for significantly lowering the threshold of nonlinear processes such as optical switching and bistability.

  20. Phase-field-crystal model for ordered crystals

    NASA Astrophysics Data System (ADS)

    Alster, Eli; Elder, K. R.; Hoyt, Jeffrey J.; Voorhees, Peter W.

    2017-02-01

    We describe a general method to model multicomponent ordered crystals using the phase-field-crystal (PFC) formalism. As a test case, a generic B2 compound is investigated. We are able to produce a line of either first-order or second-order order-disorder phase transitions, features that have not been incorporated in existing PFC approaches. Further, it is found that the only elastic constant for B2 that depends on ordering is C11. This B2 model is then used to study antiphase boundaries (APBs). The APBs are shown to reproduce classical mean-field results. Dynamical simulations of ordering across small-angle grain boundaries predict that dislocation cores pin the evolution of APBs.

  1. Tailor-made force fields for crystal-structure prediction.

    PubMed

    Neumann, Marcus A

    2008-08-14

    A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom.

  2. Purification, Crystallization, and Preliminary X-ray Analysis of Native Canavalin

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Dowell, Jennifer; Ng, Joseph; Gavira, Jose A.

    2003-01-01

    The protein canavalin is a 7S vicilin, from the Jack Bean, Canavalis ensfomis. Canavalin is described as a seed storage protein, an energy source for a developing seed, as no other known activity or function has been found. The protein was first isolated and crystallized by Sumner and Howell (J. Biol. Chem. 113, 607-610, 1936). Canavalin spontaneously crystallizes after proteolytic cleavage at neutral pH, which removes residues 1-46, 224-245, and 325-330 and produces peptides of approximately 25, 13, and 12 kDa. Preliminary gel filtration experiments indicated the presence of nucleic acid with the uncleaved protein. We developed a dual column procedure, ion exchange followed by hydroxy apatite chromatography, that effectively removes the nucleic acid and yields an essentially pure uncut canavalin preparation with an OD 280/260 ratio of approximately 1.9-2.0. Standard crystallization screens using this material gave a number of positive results having a common requirement for alcohols and Mg(2+) ion, with crystals typically appearing within a day or less. Optimization experiments to date have shown that we can obtain crystals from pH 6.5 to pH 8.2, using MPD from 5 to 20% and 0.05 to 0.2M Mg(2+) (sulfate or acetate). The crystals are of space group P2(sub 1)2(sub 1)2(sub 1), unit cell dimensions, and a complete data set to 1.5 Angstroms, resolution has now been collected at a synchrotron source. Most importantly, the crystals are not twinned, a persistent problem with the most commonly obtained rhombohedral form of proteolytically cleaved canavalin.

  3. Probing periodic potential of crystals via strong-field re-scattering

    NASA Astrophysics Data System (ADS)

    You, Yong Sing; Cunningham, Eric; Reis, David A.; Ghimire, Shambhu

    2018-06-01

    Strong-field ionization and re-scattering phenomena have been used to image angstrom-scale structures of isolated molecules in the gas phase. These methods typically make use of the anisotropic response of the participating molecular orbital. Recently, an anisotropic strong-field response has also been observed in high-order harmonic generation (HHG) from bulk crystals (2016 Nat. Phys. 13 345). In a (100) cut magnesium oxide crystal, extreme ultraviolet high-harmonics are found to depend strongly on the crystal structure and inter-atomic bonding. Here, we extend these measurements to other two important crystal orientations: (111) and (110). We find that HHG from these orientations is also strongly anisotropic. The underlying dynamics is understood using a real-space picture, where high-harmonics are produced via coherent collision of strong-field driven electrons from the atomic sites, including from the nearest neighbor atoms. We find that harmonic efficiency is enhanced when semi-classical electron trajectories connect to the concentrated valence charge distribution regions around the atomic cores. Similarly, the efficiency is suppressed when the trajectories miss the atomic cores. These results further support the real-space picture of HHG with implications for retrieving the periodic potential of the crystal, if not the wavefunctions in three-dimensions.

  4. Random crystal field effect on the magnetic and hysteresis behaviors of a spin-1 cylindrical nanowire

    NASA Astrophysics Data System (ADS)

    Zaim, N.; Zaim, A.; Kerouad, M.

    2017-02-01

    In this work, the magnetic behavior of the cylindrical nanowire, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms is studied in the presence of a random crystal field interaction. Based on Metropolis algorithm, the Monte Carlo simulation has been used to investigate the effects of the concentration of the random crystal field p, the crystal field D and the shell exchange interaction Js on the phase diagrams and the hysteresis behavior of the system. Some characteristic behaviors have been found, such as the first and second-order phase transitions joined by tricritical point for appropriate values of the system parameters, triple and isolated critical points can be also found. Depending on the Hamiltonian parameters, single, double and para hysteresis regions are explicitly determined.

  5. Photonic time crystals.

    PubMed

    Zeng, Lunwu; Xu, Jin; Wang, Chengen; Zhang, Jianhua; Zhao, Yuting; Zeng, Jing; Song, Runxia

    2017-12-07

    When space (time) translation symmetry is spontaneously broken, the space crystal (time crystal) forms; when permittivity and permeability periodically vary with space (time), the photonic crystal (photonic time crystal) forms. We proposed the concept of photonic time crystal and rewritten the Maxwell's equations. Utilizing Finite Difference Time Domain (FDTD) method, we simulated electromagnetic wave propagation in photonic time crystal and photonic space-time crystal, the simulation results show that more intensive scatter fields can obtained in photonic time crystal and photonic space-time crystal.

  6. Patterning technology for solution-processed organic crystal field-effect transistors

    PubMed Central

    Li, Yun; Sun, Huabin; Shi, Yi; Tsukagoshi, Kazuhito

    2014-01-01

    Organic field-effect transistors (OFETs) are fundamental building blocks for various state-of-the-art electronic devices. Solution-processed organic crystals are appreciable materials for these applications because they facilitate large-scale, low-cost fabrication of devices with high performance. Patterning organic crystal transistors into well-defined geometric features is necessary to develop these crystals into practical semiconductors. This review provides an update on recentdevelopment in patterning technology for solution-processed organic crystals and their applications in field-effect transistors. Typical demonstrations are discussed and examined. In particular, our latest research progress on the spin-coating technique from mixture solutions is presented as a promising method to efficiently produce large organic semiconducting crystals on various substrates for high-performance OFETs. This solution-based process also has other excellent advantages, such as phase separation for self-assembled interfaces via one-step spin-coating, self-flattening of rough interfaces, and in situ purification that eliminates the impurity influences. Furthermore, recommendations for future perspectives are presented, and key issues for further development are discussed. PMID:27877656

  7. Dipole moment and solvatochromism of benzoic acid liquid crystals: Tuning the dipole moment and molecular orbital energies by substituted Au under external electric field

    NASA Astrophysics Data System (ADS)

    Sıdır, Yadigar Gülseven; Sıdır, İsa; Demiray, Ferhat

    2017-06-01

    The optical absorption and steady-state fluorescence spectra of 4-heptyloxybenzoic acid (4hoba), 4-octyloxybenzoic acid (4ooba) and 4-nonyloxybenzoic acid (4noba) liquid crystals have been measured in a series of different polarity organic solvents. The ground state (μg) and excited state (μe) dipole moments of the monomeric and dimeric 4-alkyloxybenzoic acid liquid crystals have been obtained by means of different solvatochromic shift methods. HOMO-LUMO gaps (HLG) and dipole moments have been tuned by applying external electric (EF) field on monomer, dimer and Au substituted monomer and dimer liquid crystal structures. By applying external electric field, Au substituted monomer liquid crystals display semiconductor character, while Au substituted dimer liquid crystals gain metallic character under E = 0.04 V/Å. Eventuated specific and non-specific interactions between solvent and solute in solvent medium have been expounded by using LSER (Linear Solvation Energy Relationships).

  8. Crystal Field in Rare-Earth Complexes: From Electrostatics to Bonding.

    PubMed

    Alessandri, Riccardo; Zulfikri, Habiburrahman; Autschbach, Jochen; Bolvin, Hélène

    2018-04-11

    The flexibility of first-principles (ab initio) calculations with the SO-CASSCF (complete active space self-consistent field theory with a treatment of the spin-orbit (SO) coupling by state interaction) method is used to quantify the electrostatic and covalent contributions to crystal field parameters. Two types of systems are chosen for illustration: 1) The ionic and experimentally well-characterized PrCl 3 crystal; this study permits a revisitation of the partition of contributions proposed in the early days of crystal field theory; and 2) a series of sandwich molecules [Ln(η n -C n H n ) 2 ] q , with Ln=Dy, Ho, Er, and Tm and n=5, 6, and 8, in which the interaction between Ln III and the aromatic ligands is more difficult to describe within an electrostatic approach. It is shown that a model with three layers of charges reproduces the electrostatic field generated by the ligands and that the covalency plays a qualitative role. The one-electron character of crystal field theory is discussed and shown to be valuable, although it is not completely quantitative. This permits a reduction of the many-electron problem to a discussion of the energy of the seven 4f orbitals. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Imaging System For Measuring Macromolecule Crystal Growth Rates in Microgravity

    NASA Technical Reports Server (NTRS)

    Corder, Eric L.; Briscoe, Jeri

    2004-01-01

    In order to determine how macromolecule crystal quality improvement in microgravity is related to crystal growth characteristics, a team of scientists and engineers at NASA's Marshal Space Flight Center (MSFC) developed flight hardware capable of measuring the crystal growth rates of a population of crystals growing under the same conditions. As crystal growth rate is defined as the change or delta in a defined dimension or length (L) of crystal over time, the hardware was named Delta-L. Delta-L consists of three sub assemblies: a fluid unit including a temperature-controlled growth cell, an imaging unit, and a control unit (consisting of a Data Acquisition and Control Unit (DACU), and a thermal control unit). Delta-L will be used in connection with the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) inside the Microgravity Science Glovebox (MSG), onboard the International Space Station. This paper will describe the Delta-L imaging system. The Delta-L imaging system was designed to locate, resolve, and capture images of up to 10 individual crystals ranging in size from 10 to 500 microns with a point-to-point accuracy of +/- 2.0 microns within a quartz growth cell observation area of 20 mm x 10 mm x 1 mm. The optical imaging system is comprised of a video microscope camera mounted on computer controlled translation stages. The 3-axis translation stages and control units provide crewmembers the ability to search throughout the growth cell observation area for crystals forming in size of approximately 10 microns. Once the crewmember has selected ten crystals of interest, the growth of these crystals is tracked until the size reaches approximately 500 microns. In order to resolve these crystals an optical system with a magnification of 10X was designed. A black and white NTSC camera was utilized with a 20X microscope objective and a 0.5X custom designed relay lens with an inline light to meet the magnification requirement. The design allows a 500 pm crystal to be viewed in the vertical dimension on a standard NTSC monitor (4:3 aspect ratio). Images of the 10 crystals are collected periodically and stored in sets by the DACU.

  10. Space-Time Crystals of Trapped Ions

    DTIC Science & Technology

    2012-10-15

    Spontaneous symmetry breaking can lead to the formation of time crystals, as well as spatial crystals. Here we propose a space- time crystal of...fields with fractional fluxes. The persistent rotation of trapped ions produces the temporal order, leading to the formation of a space- time crystal . We

  11. Effects of a High Magnetic Field on the Microstructure of Ni-Based Single-Crystal Superalloys During Directional Solidification

    NASA Astrophysics Data System (ADS)

    Xuan, Weidong; Lan, Jian; Liu, Huan; Li, Chuanjun; Wang, Jiang; Ren, Weili; Zhong, Yunbo; Li, Xi; Ren, Zhongming

    2017-08-01

    High magnetic fields are widely used to improve the microstructure and properties of materials during the solidification process. During the preparation of single-crystal turbine blades, the microstructure of the superalloy is the main factor that determines its mechanical properties. In this work, the effects of a high magnetic field on the microstructure of Ni-based single-crystal superalloys PWA1483 and CMSX-4 during directional solidification were investigated experimentally. The results showed that the magnetic field modified the primary dendrite arm spacing, γ' phase size, and microsegregation of the superalloys. In addition, the size and volume fractions of γ/ γ' eutectic and the microporosity were decreased in a high magnetic field. Analysis of variance (ANOVA) results showed that the effect of a high magnetic field on the microstructure during directional solidification was significant ( p < 0.05). Based on both experimental results and theoretical analysis, the modification of microstructure was attributed to thermoelectric magnetic convection occurring in the interdendritic regions under a high magnetic field. The present work provides a new method to optimize the microstructure of Ni-based single-crystal superalloy blades by applying a high magnetic field.

  12. One-dimensional model of interacting-step fluctuations on vicinal surfaces: Analytical formulas and kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Patrone, Paul N.; Einstein, T. L.; Margetis, Dionisios

    2010-12-01

    We study analytically and numerically a one-dimensional model of interacting line defects (steps) fluctuating on a vicinal crystal. Our goal is to formulate and validate analytical techniques for approximately solving systems of coupled nonlinear stochastic differential equations (SDEs) governing fluctuations in surface motion. In our analytical approach, the starting point is the Burton-Cabrera-Frank (BCF) model by which step motion is driven by diffusion of adsorbed atoms on terraces and atom attachment-detachment at steps. The step energy accounts for entropic and nearest-neighbor elastic-dipole interactions. By including Gaussian white noise to the equations of motion for terrace widths, we formulate large systems of SDEs under different choices of diffusion coefficients for the noise. We simplify this description via (i) perturbation theory and linearization of the step interactions and, alternatively, (ii) a mean-field (MF) approximation whereby widths of adjacent terraces are replaced by a self-consistent field but nonlinearities in step interactions are retained. We derive simplified formulas for the time-dependent terrace-width distribution (TWD) and its steady-state limit. Our MF analytical predictions for the TWD compare favorably with kinetic Monte Carlo simulations under the addition of a suitably conservative white noise in the BCF equations.

  13. High field (up to 140 kOe) angle dependent magneto transport of Bi2Te3 single crystals

    NASA Astrophysics Data System (ADS)

    Sultana, Rabia; Maheshwari, P. K.; Tiwari, Brajesh; Awana, V. P. S.

    2018-01-01

    We report the angle dependent high field (up to 140 kOe) magneto transport of Bi2Te3 single crystals, a well-known topological insulator. The crystals were grown from melt of constituent elements via solid state reaction route by self-flux method. Details of crystal growth along with their brief characterisation up to 5 Tesla applied field was reported by some of us recently (Sultana et al 2017 J. Magn. Magn. Mater. 428 213). The angle dependence of the magneto-resistance (MR) of Bi2Te3 follows the cos (θ) function i.e., MR is responsive, when the applied field is perpendicular (tilt angle θ = 0° and/or 180°) to the transport current. The low field (±10 kOe) MR showed the signatures of weak anti localisation character with typical ν-type cusp near origin at 5 K. Further, the MR is linear right up to highest applied field of 140 kOe. The large positive MR are observed up to high temperatures and are above 250% and 150% at 140 kOe in perpendicular fields at 50 K and 100 K respectively. Heat capacity C P(T) measurements revealed the value of Debye temperature (ѲD) to be 135 K. Angle resolved photoemission spectroscopy data clearly showed that the bulk Bi2Te3 single crystal consists of a single Dirac cone.

  14. Reverse-mode microdroplet liquid crystal display

    NASA Astrophysics Data System (ADS)

    Ma, Yao-Dong; Wu, Bao Gang; Xu, Gang

    1990-04-01

    This paper presents the production of the a reverse-mode microdroplet liquid crystal (RMLC) light shutter display. In this unit, the display is formed by a thin polymer film with dispersed liquid crystal microdroplets. The display is light transmissive in the absence of an applied electrical field. The display is converted to a non-transmissive state (i.e. absorbing or scattering) when an electrical field is applied. The "off' and "on" state. of this display are thus exactly opposite to that encountered in "normal-mode" microdroplet liquid crystal display devices such as polymer dispersed liquid crystals (PDLC)15 or Nematic Curvilinear Aligned Phase (NCAP)6. The Reverse Mode Microdroplet Liquid Crystal is obtained by modification of the surface energy of the polymer which encases liquid crystals via reaction of a dopant incorporated inside of the microdroplet during the droplet formation within the inside polymer layer. The liquid crystal used in RMLC is of negative dielectric anisotropy.

  15. Field-induced charge transport at the surface of pentacene single crystals: A method to study charge dynamics of two-dimensional electron systems in organic crystals

    NASA Astrophysics Data System (ADS)

    Takeya, J.; Goldmann, C.; Haas, S.; Pernstich, K. P.; Ketterer, B.; Batlogg, B.

    2003-11-01

    A method has been developed to inject mobile charges at the surface of organic molecular crystals, and the dc transport of field-induced holes has been measured at the surface of pentacene single crystals. To minimize damage to the soft and fragile surface, the crystals are attached to a prefabricated substrate which incorporates a gate dielectric (SiO2) and four probe pads. The surface mobility of the pentacene crystals ranges from 0.1 to 0.5 cm2/V s and is nearly temperature independent above ˜150 K, while it becomes thermally activated at lower temperatures when the induced charges become localized. Ruling out the influence of electric contacts and crystal grain boundaries, the results contribute to the microscopic understanding of trapping and detrapping mechanisms in organic molecular crystals.

  16. A drunken search in crystallization space.

    PubMed

    Fazio, Vincent J; Peat, Thomas S; Newman, Janet

    2014-10-01

    The REMARK280 field of the Protein Data Bank is the richest open source of successful crystallization information. The REMARK280 field is optional and currently uncurated, so significant effort needs to be applied to extract reliable data. There are well over 15 000 crystallization conditions available commercially from 12 different vendors. After putting the PDB crystallization information and the commercial cocktail data into a consistent format, these data are used to extract information about the overlap between the two sets of crystallization conditions. An estimation is made as to which commercially available conditions are most appropriate for producing well diffracting crystals by looking at which commercial conditions are found unchanged (or almost unchanged) in the PDB. Further analyses include which commercial kits are the most appropriate for shotgun or more traditional approaches to crystallization screening. This analysis suggests that almost 40% of the crystallization conditions found currently in the PDB are identical or very similar to a commercial condition.

  17. Crystallization of aqueous ammonium sulfate particles internally mixed with soot and kaolinite: crystallization relative humidities and nucleation rates.

    PubMed

    Pant, Atul; Parsons, Matthew T; Bertram, Allan K

    2006-07-20

    Using optical microscopy, we investigated the crystallization of aqueous ammonium sulfate droplets containing soot and kaolinite, as well as the crystallization of aqueous ammonium sulfate droplets free of solid material. Our results show that soot did not influence the crystallization RH of aqueous ammonium sulfate particles under our experimental conditions. In contrast, kaolinite increased the crystallization RH of the aqueous ammonium sulfate droplets by approximately 10%. In addition, our results show that the crystallization RH of aqueous ammonium sulfate droplets free of solid material does not depend strongly on particle size. This is consistent with conclusions made previously in the literature, based on comparisons of results from different laboratories. From the crystallization results we determined the homogeneous nucleation rates of crystalline ammonium sulfate in aqueous ammonium sulfate droplets and the heterogeneous nucleation rates of crystalline ammonium sulfate in aqueous ammonium sulfate particles containing kaolinite. Using classical nucleation theory and our experimental data, we determined that the interfacial tension between an ammonium sulfate critical nucleus and an aqueous ammonium sulfate solution is 0.064 +/- 0.003 J m(-2) (in agreement with our previous measurements), and the contact angle between an ammonium sulfate critical nucleus and a kaolinite surface is 59 +/- 2 degrees. On the basis of our results, we argue that soot will not influence the crystallization RH of aqueous ammonium sulfate droplets in the atmosphere, but kaolinite can significantly modify the crystallization RH of atmospheric ammonium sulfate droplets. As an example, the CRH50 (the relative humidity at which 50% of the droplets crystallize) ranges from about 41 to 51% RH when the diameter of the kaolinite inclusion ranges from 0.1 to 5 microm. For comparison, the CRH50 of aqueous ammonium sulfate droplets (0.5 microm diameter) free of solid material is approximately 34.3% RH under atmospheric conditions.

  18. The effect of growth temperature on the irreversibility line of MPMG YBCO bulk with Y2O3 layer

    NASA Astrophysics Data System (ADS)

    Kurnaz, Sedat; Çakır, Bakiye; Aydıner, Alev

    2017-07-01

    In this study, three kinds of YBCO samples which are named Y1040, Y1050 and Y1060 were fabricated by Melt-Powder-Melt-Growth (MPMG) method without a seed crystal. Samples seem to be single crystal. The compacted powders were located on a crucible with a buffer layer of Y2O3 to avoid liquid to spread on the furnace plate and also to support crystal growth. YBCO samples were investigated by magnetoresistivity (ρ-T) and magnetization (M-T) measurements in dc magnetic fields (parallel to c-axis) up to 5 T. Irreversibility fields (Hirr) and upper critical fields (Hc2) were obtained using 10% and 90% criteria of the normal state resistivity value from ρ-T curves. M-T measurements were carried out using the zero field cooling (ZFC) and field cooling (FC) processes to get irreversible temperature (Tirr). Fitting of the irreversibility line results to giant flux creep and vortex glass models were discussed. The results were found to be consistent with the results of the samples fabricated using a seed crystal. At the fabrication of MPMG YBCO, optimized temperature for crystal growth was determined to be around 1050-1060 °C.

  19. Optical characterization of randomly microrough surfaces covered with very thin overlayers using effective medium approximation and Rayleigh-Rice theory

    NASA Astrophysics Data System (ADS)

    Ohlídal, Ivan; Vohánka, Jiří; Čermák, Martin; Franta, Daniel

    2017-10-01

    The modification of the effective medium approximation for randomly microrough surfaces covered by very thin overlayers based on inhomogeneous fictitious layers is formulated. The numerical analysis of this modification is performed using simulated ellipsometric data calculated using the Rayleigh-Rice theory. The system used to perform this numerical analysis consists of a randomly microrough silicon single crystal surface covered with a SiO2 overlayer. A comparison to the effective medium approximation based on homogeneous fictitious layers is carried out within this numerical analysis. For ellipsometry of the system mentioned above the possibilities and limitations of both the effective medium approximation approaches are discussed. The results obtained by means of the numerical analysis are confirmed by the ellipsometric characterization of two randomly microrough silicon single crystal substrates covered with native oxide overlayers. It is shown that the effective medium approximation approaches for this system exhibit strong deficiencies compared to the Rayleigh-Rice theory. The practical consequences implied by these results are presented. The results concerning the random microroughness are verified by means of measurements performed using atomic force microscopy.

  20. Influence of initial seed distribution on the pattern formation of the phase field crystals

    NASA Astrophysics Data System (ADS)

    Starodumov, Ilya; Galenko, Peter; Kropotin, Nikolai; Alexandrov, Dmitri V.

    2017-11-01

    The process of crystal growth can be expressed as a transition of atomic structure to a finally stable state or to a metastable state. In the Phase Field Crystal Model (PFC-model) these states are described by regular distributions of the atomic density. Getting the system into any metastable condition may be caused by the peculiarities of the computational domain, initial and boundary conditions. However, an important factor in the formation of the crystal structure can be the initial disturbance. In the report we show how different types of initial disturbance can change the finally stable state of crystal structure in equilibrium.

  1. New Intermetallic Ternary Phosphide Chalcogenide AP2-xXx (A = Zr, Hf; X = S, Se) Superconductors with PbFCl-Type Crystal Structure

    NASA Astrophysics Data System (ADS)

    Kitô, Hijiri; Yanagi, Yousuke; Ishida, Shigeyuki; Oka, Kunihiko; Gotoh, Yoshito; Fujihisa, Hiroshi; Yoshida, Yoshiyuki; Iyo, Akira; Eisaki, Hiroshi

    2014-07-01

    We have synthesized a series of intermetallic ternary phosphide chalcogenide superconductors, AP2-xXx (A = Zr, Hf; X = S, Se), using the high-pressure synthesis technique. These materials have a PbFCl-type crystal structure (space group P4/nmm) when x is greater than 0.3. The superconducting transition temperature Tc changes systematically with x, yielding dome-like phase diagrams. The maximum Tc is achieved at approximately x = 0.7, at which point the Tc is 6.3 K for ZrP2-xSex (x = 0.75), 5.5 K for HfP2-xSex (x = 0.7), 5.0 K for ZrP2-xSx (x = 0.675), and 4.6 K for Hfp2-xSx (x = 0.5). They are typical type-II superconductors and the upper and lower critical fields are estimated to be 2.92 T at 0 K and 0.021 T at 2 K for ZrP2-xSex (x = 0.75), respectively.

  2. Optimization of the open-loop liquid crystal adaptive optics retinal imaging system

    NASA Astrophysics Data System (ADS)

    Kong, Ningning; Li, Chao; Xia, Mingliang; Li, Dayu; Qi, Yue; Xuan, Li

    2012-02-01

    An open-loop adaptive optics (AO) system for retinal imaging was constructed using a liquid crystal spatial light modulator (LC-SLM) as the wavefront compensator. Due to the dispersion of the LC-SLM, there was only one illumination source for both aberration detection and retinal imaging in this system. To increase the field of view (FOV) for retinal imaging, a modified mechanical shutter was integrated into the illumination channel to control the size of the illumination spot on the fundus. The AO loop was operated in a pulsing mode, and the fundus was illuminated twice by two laser impulses in a single AO correction loop. As a result, the FOV for retinal imaging was increased to 1.7-deg without compromising the aberration detection accuracy. The correction precision of the open-loop AO system was evaluated in a closed-loop configuration; the residual error is approximately 0.0909λ (root-mean-square, RMS), and the Strehl ratio ranges to 0.7217. Two subjects with differing rates of myopia (-3D and -5D) were tested. High-resolution images of capillaries and photoreceptors were obtained.

  3. Detection and mapping of mineralized areas in the Cortez-Uinta Belt, Utah-Nevada, using computer-enhanced ERTS imagery

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Preliminary analysis indicates that mineralogical differences between altered rocks and most unaltered rocks in south-central Nevada cause visible and near infrared spectral reflectance differences, which can be used to discriminate these broad categories of rocks in multispectral images. The most important mineralogical differences are the increased abundance of goethite, hematite, and jarosite, and the presence of alunite, montmorillonite, and kaolinite in the altered rock. The technique to enhance subtle spectral differences combines ratioing of the MSS bands and contrast stretching. The stretched ratio values are used to produce black and white images that depict materials according to spectral reflectance; rationing minimizes the influence of topography and overall albedo on the grouping of spectrally similar materials. Field evaluation of color-ratio composite shows that, excluding alluvial areas, approximately 80 percent of the green and brown color patterns are related to hydrothermal alternation. The remaining 20 percent consists mainly of pink hematitic crystallized tuff, a result of vapor phase crystallization, and of tan and red ferruginous shale and siltstone.

  4. Clustered atom-replaced structure in single-crystal-like metal oxide

    NASA Astrophysics Data System (ADS)

    Araki, Takeshi; Hayashi, Mariko; Ishii, Hirotaka; Yokoe, Daisaku; Yoshida, Ryuji; Kato, Takeharu; Nishijima, Gen; Matsumoto, Akiyoshi

    2018-06-01

    By means of metal organic deposition using trifluoroacetates (TFA-MOD), we replaced and localized two or more atoms in a single-crystalline structure having almost perfect orientation. Thus, we created a new functional structure, namely, clustered atom-replaced structure (CARS), having single-crystal-like metal oxide. We replaced metals in the oxide with Sm and Lu and localized them. Energy dispersive x-ray spectroscopy results, where the Sm signal increases with the Lu signal in the single-crystalline structure, confirm evidence of CARS. We also form other CARS with three additional metals, including Pr. The valence number of Pr might change from 3+ to approximately 4+, thereby reducing the Pr–Ba distance. We directly observed the structure by a high-angle annular dark-field image, which provided further evidence of CARS. The key to establishing CARS is an equilibrium chemical reaction and a combination of additional larger and smaller unit cells to matrix cells. We made a new functional metal oxide with CARS and expect to realize CARS in other metal oxide structures in the future by using the above-mentioned process.

  5. Spin-orbital model of stoichiometric LaMnO3 with tetragonal distortions

    NASA Astrophysics Data System (ADS)

    Snamina, Mateusz; Oleś, Andrzej M.

    2018-03-01

    The spin-orbital superexchange model is derived for the cubic (perovskite) symmetry of LaMnO3, whereas real crystal structure is strongly deformed. We identify and explain three a priori important physical effects arising from tetragonal deformation: (i) the splitting of eg orbitals ∝Ez , (ii) the directional renormalization of d -p hybridization tp d, and (iii) the directional renormalization of charge excitation energies. Using the example of LaMnO3 crystal we evaluate their magnitude. It is found that the major effects of deformation are an enhanced amplitude of x2-y2 orbitals induced in the orbital order by Ez≃300 meV and anisotropic tp d≃2.0 (2.35) eV along the a b (c ) cubic axis, in very good agreement with Harrison's law. We show that the improved tetragonal model analyzed within mean field approximation provides a surprisingly consistent picture of the ground state. Excellent agreement with the experimental data is obtained simultaneously for: (i) eg orbital mixing angle, (ii) spin exchange constants, and (iii) the temperatures of spin and orbital phase transition.

  6. Crystal structure and magnetic properties of cyclohexylammonium trichlorocuprate(II): A quasi 1d Heisenberg S = {1}/{2} ferromagnet

    NASA Astrophysics Data System (ADS)

    Groenendijk, H. A.; Blöte, H. W. J.; van Duyneveldt, A. J.; Gaura, R. M.; Landee, C. P.; Willett, R. D.

    1981-06-01

    The crystal structure of [C 6H 11NH 3] CuCl 3, cyclohexylammonium trichlorocuprate(II) (CHAC), is orthorhombic, space group P2 12 12 1 with a = 19.441(5), b = 8.549(2) and c = 6.190(1) Å. The salt contains chains of CuCl -3 ions along the c axis. From magnetization and susceptibility measurements it is found that the compound behaves as a one-dimensional S = {1}/{2} Heisenberg ferromagnet with J1/ k = 70(2) K. Antiferromagnetic ordering with a weak ferromagnetic moment along the a axis occurs below T c = 2.18(2) K. From the metamagnetic phase diagram the interchain interactions are derived using mean field theory: z2J2/ z1J1 = 1.1 × 10 -3 and z3J3/ z1J1 = -1.0 × 10 -4. Also a small anisotropy ( J|/ J⊥ ≈ 0.01) is found in the intrachain interaction. The measurements indicate that CHAC is one of the best approximations to the 1d Heisenberg ferromagnet known to date.

  7. Crystal Growth and Luminescence Properties of Yb-doped Gd3Al2Ga3O12 Infra-red Scintillator

    NASA Astrophysics Data System (ADS)

    Suzuki, Akira; Kurosawa, Shunsuke; Nagata, Shinji; Yamamura, Tomoo; Pejchal, Jan; Yamaji, Akihiro; Yokota, Yuui; Shirasaki, Kenji; Homma, Yoshiya; Aoki, Dai; Shikama, Tatsuo; Yoshikawa, Akira

    2014-07-01

    1-mol%-Yb-doped Gd3Al2Ga3O12 infra-red scintillator crystal has been studied as a novel implantable radiation monitor in radiation therapy. Powder X-ray diffraction measurement and chemical analysis with a field emission scanning microscope and wavelength dispersive spectrometer determined its garnet structure and average chemical composition of Yb0.03±0.01Gd2.99±0.07Al2.21±0.08Ga2.64±0.09O12.10±0.09. Transmittance measurements reached high values of approximately 70% in the human body transparency region between 650 to 1200 nm. Photoluminescence peaks were detected around 970 and 1030 nm under the 940 nm excitation with a Xe lamp. Infra-red scintillation emissions were clearly observed around 970 and 1030 nm due to Yb3+ 4f-4f transitions under X-ray excitation. Therefore, these results suggest that Yb-doped Gd3Al2Ga3O12 might be used as an infra-red scintillator material.

  8. An Apparatus for Growth of Small Crystals From Solutions.

    ERIC Educational Resources Information Center

    Mitrovic, Mico M.

    1995-01-01

    Describes an apparatus for crystal growth that was designed to study growth kinetics of small crystals from solutions and to obtain crystals of various substances. Describes the use of the apparatus in laboratory practical experiments in the field of crystal growth physics within the course "Solid State Physics". (JRH)

  9. Approximate Theoretical Model for the Five Electronic States (Ω = 5/2, 3/2, 3/2, 1/2, 1/2) Arising from the Ground 3d9 Configuration in Nickel Halide Molecules and for Rotational Levels of the Two Ω = 1/2 States in that Manifold

    NASA Astrophysics Data System (ADS)

    Cheung, Allan S.-C.

    2011-06-01

    An effective Hamiltonian for a non-rotating diatomic molecule containing only crystal-field and spin-orbit operators has been set up to describe the energies of the five spin-orbit components that arise in the ground electronic configuration of the nickel monohalides. The model assumes that bonding in the nickel halides has the approximate form Ni+X-, with an electronic 3d9 configuration plus closed shells on the Ni+ moiety and a closed shell configuration on the X&- moiety. Least-squares fits of the observed five spin-orbit components of the three lowest electronic states in NiF and NiCl are then carried out in terms of the three crystal field parameters C0, C2, C4 and the spin-orbit coupling constant A. Following this, the usual effective Hamiltonian B(J-L-S)^2 for a rotating diatomic molecule is used to derive expressions for the unusually large Ω-type doubling parameter p in the two Ω = 1/2 states in the 3d9 manifold. These expressions show (for certain sign conventions) that the sum of the two p values should be -2B, but that their difference can vary between -10B and +10B. The theoretical magnitudes for p are in good agreement with the two observed p values for both NiF and NiCl, but the signs are not. The experimental signs can be brought into agreement with the theoretical signs by a fairly massive change in +/- parity assignments in the NiF and NiCl literature. The last part of the talk will focus on the theoretical and experimental implications of these parity changes.

  10. Study on influence of growth conditions on position and shape of crystal/melt interface of alkali lead halide crystals at Bridgman growth

    NASA Astrophysics Data System (ADS)

    Král, Robert

    2012-12-01

    Suitable conditions for growth of high quality single crystals of ternary alkali lead halides prepared by a Bridgman method were explored using direct observation of a crystal/melt interface when pulling an ampoule out of a furnace, deliberated striations' induction and measurement of a temperature field in the filled ampoule in the vertical Bridgman arrangement, as model compounds lead chloride and ternary rubidium lead bromide were used. By direct observation only position of the crystal/melt interface was markedly determined, while by induced striations both the position and the shape of the interface were visualized but their contrast had to be intensified by adding admixtures. Performed temperature measurements in the filled ampoule brought both a view of temperature field in the 3D radial symmetry and basic data for comparison of a real temperature field with those obtained by projected modeling.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukao, Shinji; Nakanishi, Yoshikazu; Mizoguchi, Tadahiro

    X-rays are radiated due to the bremsstrahlung caused by the collision of electrons with a metal target placed opposite the negative electric surface of a crystal by changing the temperature of a LiNbO{sub 3} single crystal uniaxially polarized in the c-axis direction. It is suggested that both electric field intensity and electron density determine the intensity of X-ray radiation. Electrons are supplied by the ionization of residual gas in space, field emission from a case inside which a crystal is located, considered to be due to the high electric-field intensity formed by the surface charges on the crystal, and anmore » external electron source, such as a thermionic source. In a high vacuum, it was found that the electrons supplied by electric-field emission mainly contribute to the radiation of X-rays. It was found that the integrated intensity of X-rays can be maximized by supplying electrons both external and by electric-field emission. Furthermore, the integrated intensity of the X-rays is stable for many repeated temperature changes.« less

  12. Vacuum electrolysis of quartz

    DOEpatents

    King, James Claude

    1976-01-13

    The disclosure is directed to a method for processing quartz used in fabricating crystal resonators such that transient frequency change of resonators exposed to pulse irradiation is virtually eliminated. The method involves heating the crystal quartz in a hydrogen-free atmosphere while simultaneously applying an electric field in the Z-axis direction of the crystal. The electric field is maintained during the cool-down phase of the process.

  13. Switching plastic crystals of colloidal rods with electric fields

    PubMed Central

    Liu, Bing; Besseling, Thijs H.; Hermes, Michiel; Demirörs, Ahmet F.; Imhof, Arnout; van Blaaderen, Alfons

    2014-01-01

    When a crystal melts into a liquid both long-ranged positional and orientational order are lost, and long-time translational and rotational self-diffusion appear. Sometimes, these properties do not change at once, but in stages, allowing states of matter such as liquid crystals or plastic crystals with unique combinations of properties. Plastic crystals/glasses are characterized by long-ranged positional order/frozen-in-disorder but short-ranged orientational order, which is dynamic. Here we show by quantitative three-dimensional studies that charged rod-like colloidal particles form three-dimensional plastic crystals and glasses if their repulsions extend significantly beyond their length. These plastic phases can be reversibly switched to full crystals by an electric field. These new phases provide insight into the role of rotations in phase behaviour and could be useful for photonic applications. PMID:24446033

  14. Switching plastic crystals of colloidal rods with electric fields

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Besseling, Thijs H.; Hermes, Michiel; Demirörs, Ahmet F.; Imhof, Arnout; van Blaaderen, Alfons

    2014-01-01

    When a crystal melts into a liquid both long-ranged positional and orientational order are lost, and long-time translational and rotational self-diffusion appear. Sometimes, these properties do not change at once, but in stages, allowing states of matter such as liquid crystals or plastic crystals with unique combinations of properties. Plastic crystals/glasses are characterized by long-ranged positional order/frozen-in-disorder but short-ranged orientational order, which is dynamic. Here we show by quantitative three-dimensional studies that charged rod-like colloidal particles form three-dimensional plastic crystals and glasses if their repulsions extend significantly beyond their length. These plastic phases can be reversibly switched to full crystals by an electric field. These new phases provide insight into the role of rotations in phase behaviour and could be useful for photonic applications.

  15. Solution-processed, Self-organized Organic Single Crystal Arrays with Controlled Crystal Orientation

    PubMed Central

    Kumatani, Akichika; Liu, Chuan; Li, Yun; Darmawan, Peter; Takimiya, Kazuo; Minari, Takeo; Tsukagoshi, Kazuhito

    2012-01-01

    A facile solution process for the fabrication of organic single crystal semiconductor devices which meets the demand for low-cost and large-area fabrication of high performance electronic devices is demonstrated. In this paper, we develop a bottom-up method which enables direct formation of organic semiconductor single crystals at selected locations with desired orientations. Here oriented growth of one-dimensional organic crystals is achieved by using self-assembly of organic molecules as the driving force to align these crystals in patterned regions. Based upon the self-organized organic single crystals, we fabricate organic field effect transistor arrays which exhibit an average field-effect mobility of 1.1 cm2V−1s−1. This method can be carried out under ambient atmosphere at room temperature, thus particularly promising for production of future plastic electronics. PMID:22563523

  16. Polymer dispersed nematic liquid crystal for large area displays and light valves

    NASA Astrophysics Data System (ADS)

    Drzaic, Paul S.

    1986-09-01

    A new electro-optical material based on nematic liquid crystal dispersed in a polymer matrix has recently been introduced by Fergason. This technology (termed NCAP, for nematic curvilinear aligned phase) is suitable for making very large area (thousands of square centimeter) light valves and displays. The device consists of micron size droplets of liquid crystal dispersed in and surrounded by a polymer film. Light passing through the film in the absence of an applied field is strongly forward scattered, giving a milky, translucent film. Application of an electric field across the liquid crystal/polymer film places the film in a highly transparent state. Pleochroic dyes may be employed in the system in order to achieve controllable light absorption as well as scattering. Microscopically, it is shown that the liquid-crystal director lies preferentially parallel to the polymer wall, leading to a bipolar-like configuration of the liquid-crystal directors within the droplet. The symmetry axes of the droplets are randomly oriented in the unpowered, scattering state, but align parallel to the field in the powered, transparent state. The electric field required to reorient a given droplet varies inversely with the diameter of that droplet, and it is shown that the macroscopic electro-optical properties of the film can be modeled if the distribution of liquid-crystal droplet sizes is known.

  17. Microgravity

    NASA Image and Video Library

    2004-04-15

    Comparison of Germanium Telluride (GeTe) Crystals grown on Earth (left) and in space (right) during the Skylab SL-3 mission. These crystals were grown using a vapor transport crystal growth method in the Multipurpose Electric Furnace System (MEFS). Crystals grown on earth are needles and platelettes with distorted surfaces and hollow growth habits. The length of the ground-based needle is approximately 2 mm and the average lenth of the platelets is 1 mm. The dull appearance of the Skylab crystals resulted from condensation of the transport agent during the long cooling period dictated by the Skylab furnace. In a dedicated process, this would be prevented by removing the ampoule from the furnace and quenching the vapor source.

  18. Effect of intracrystalline water on longitudinal sound velocity in tetragonal hen-egg-white lysozyme crystals.

    PubMed

    Tachibana, M; Koizumi, H; Kojima, K

    2004-05-01

    Longitudinal sound velocity of tetragonal hen-egg-white (HEW) lysozyme crystals was measured during air drying by ultrasonic pulseecho method. The sound velocity increases with exposure to open air and approaches a constant value. The maximum value is approximately 2900 m/s that is about 1.6 times as much as that of original one before drying. In addition, the sound velocity clearly recovers to original one after immersing the dried crystal in solution. Therefore, the sound velocity in tetragonal HEW lysozyme crystals can be reversibly changed due to dehydration and rehydration. These changes in sound velocity are discussed in the light of water-mediated intramolecular and intermolecular interactions in the crystals.

  19. Genarris: Random generation of molecular crystal structures and fast screening with a Harris approximation

    NASA Astrophysics Data System (ADS)

    Li, Xiayue; Curtis, Farren S.; Rose, Timothy; Schober, Christoph; Vazquez-Mayagoitia, Alvaro; Reuter, Karsten; Oberhofer, Harald; Marom, Noa

    2018-06-01

    We present Genarris, a Python package that performs configuration space screening for molecular crystals of rigid molecules by random sampling with physical constraints. For fast energy evaluations, Genarris employs a Harris approximation, whereby the total density of a molecular crystal is constructed via superposition of single molecule densities. Dispersion-inclusive density functional theory is then used for the Harris density without performing a self-consistency cycle. Genarris uses machine learning for clustering, based on a relative coordinate descriptor developed specifically for molecular crystals, which is shown to be robust in identifying packing motif similarity. In addition to random structure generation, Genarris offers three workflows based on different sequences of successive clustering and selection steps: the "Rigorous" workflow is an exhaustive exploration of the potential energy landscape, the "Energy" workflow produces a set of low energy structures, and the "Diverse" workflow produces a maximally diverse set of structures. The latter is recommended for generating initial populations for genetic algorithms. Here, the implementation of Genarris is reported and its application is demonstrated for three test cases.

  20. Crystallization and preliminary X-ray analysis of a low density lipoprotein from human plasma.

    PubMed

    Prassl, R; Chapman, J M; Nigon, F; Sara, M; Eschenburg, S; Betzel, C; Saxena, A; Laggner, P

    1996-11-15

    Single crystals of human plasma low density lipoprotein (LDL), the major transport vehicle for cholesterol in blood, have been produced with a view to analysis of the three-dimensional structure by x-ray crystallography. Crystals with dimensions of approximately 200 x 100 x 50 microm have been reproducibly obtained from highly homogeneous LDL particle subspecies, isolated in the density ranges d = 1.0271-1. 0297 g/ml and d = 1.0297-1.0327 g/ml. Electron microscopic imaging of ultrathin-sectioned preparations of the crystals confirmed the existence of a regular, quasihexagonal arrangement of spherical particles of approximately 18 nm in diameter, thereby resembling the dimensions characteristic of LDL after dehydration and fixation. X-ray diffraction with synchrotron radiation under cryogenic conditions revealed the presence of well resolved diffraction spots, to a resolution of about 29 A. The diffraction patterns are indexed in terms of a triclinic lattice with unit cell dimensions of a = 16. 1 nm, b = 39.0 nm, c = 43.9 nm; alpha = 96.2 degrees, beta = 92.1 degrees, gamma = 102 degrees, and with space group P1.

  1. Tunable two-dimensional photonic crystals using liquid crystal infiltration

    NASA Astrophysics Data System (ADS)

    Leonard, S. W.; Mondia, J. P.; van Driel, H. M.; Toader, O.; John, S.; Busch, K.; Birner, A.; Gösele, U.; Lehmann, V.

    2000-01-01

    The photonic band gap of a two-dimensional photonic crystal is continuously tuned using the temperature dependent refractive index of a liquid crystal. Liquid crystal E7 was infiltrated into the air pores of a macroporous silicon photonic crystal with a triangular lattice pitch of 1.58 μm and a band gap wavelength range of 3.3-5.7 μm. After infiltration, the band gap for the H polarized field shifted dramatically to 4.4-6.0 μm while that of the E-polarized field collapsed. As the sample was heated to the nematic-isotropic phase transition temperature of the liquid crystal (59 °C), the short-wavelength band edge of the H gap shifted by as much as 70 nm while the long-wavelength edge was constant within experimental error. Band structure calculations incorporating the temperature dependence of the liquid crystal birefringence can account for our results and also point to an escaped-radial alignment of the liquid crystal in the nematic phase.

  2. Nonlinear optical and electroabsorption spectra of polydiacetylene crystals and films

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, D.; Soos, Z. G.

    1996-01-01

    Vibronic structure of nonlinear optical (NLO) coefficients is developed within the Condon approximation, displaced harmonic oscillators, and crude adiabatic states. The displacements of backbone modes of conjugated polymers are taken from vibrational data on the ground and 1B excited state. NLO resonances are modeled by three excitations and transition moments taken from Pariser-Parr-Pople (PPP) theory and optimized to polydiacetylene (PDA) spectra in crystals and films, with blue-shifted 1B exciton. The joint analysis of third-harmonic-generation, two-photon absorption, and nondegenerate four-wave-mixing spectra of PDA crystals and films shows weak two-photon absorption to 2A below 1B, leading to overlapping resonances in the THG spectrum, strong two-photon absorption to an nA state some 35% above 1B, and weak Raman resonances in nondegenerate FWM spectra. The full π-π* spectrum contributes to Stark shifts and field-induced transitions, as shown by PPP results for PDA oligomers. The Stark shift dominates high-resolution electroabsorption (EA) spectra of PDA crystals below 10 K. The close correspondence between EA and the first-derivative I'(ω) of the linear absorption above the 1B exciton in PDA crystals provides an experimental separation of vibrational and electronic contributions that limits any even-parity state in this 0.5 eV interval. An oscillator-strength sum rule is applied to the convergence of PDA oligomers with increasing length, N, and the crystal oscillator strengths are obtained without adjustable parameters. The sum rule for the 1B exciton implies large transition moments to higher-energy Ag states, whose locations in recent models are contrasted to PPP results. Joint analysis of NLO and EA spectra clarifies when a few electronic excitations are sufficient, distinguishes between vibrational and electronic contributions, and supports similar π-electron interactions in conjugated molecules and polymers.

  3. KMC-1: a high resolution and high flux soft x-ray beamline at BESSY.

    PubMed

    Schaefers, F; Mertin, M; Gorgoi, M

    2007-12-01

    The crystal monochromator beamline KMC-1 at a BESSY II bending magnet covers the energy range from soft (1.7 keV) to hard x-rays (12 keV) employing the (n,-n) double crystal arrangement with constant beam offset. The monochromator is equipped with three sets of crystals, InSb, Si (111), and Si (422) which are exchangeable in situ within a few minutes. Beamline and monochromator have been optimized for high flux and high resolution. This could be achieved by (1) a windowless setup under ultrahigh-vacuum conditions up to the experiment, (2) by the use of only three optical elements to minimize reflection losses, (3) by collecting an unusually large horizontal radiation fan (6 mrad) with the toroidal premirror, and (4) the optimization of the crystal optics to the soft x-ray range necessitating quasibackscattering crystal geometry (theta(Bragg,max)=82 degrees) delivering crystal limited resolution. The multipurpose beamline is in use for a variety of user facilities such as extended x-ray absorption fine structure, ((Bio-)EXAFS) near-edge x-ray absorption fine structure (NEXAFS), absorption and fluorescence spectroscopy. Due to the windowless UHV setup the k edges of the technologically and biologically important elements such as Si, P, and S are accessible. In addition to these experiments this beamline is now extensively used for photoelectron spectroscopy at high kinetic energies. Photon flux in the 10(11)-10(12) photons/s range and beamline resolving powers of more than E/DeltaE approximately 100.000 have been measured at selected energies employing Si (nnn) high order radiation in quasibackscattering geometry, thus photoelectron spectroscopy with a total instrumental resolution of about 150 meV is possible. This article describes the design features of the beamline and reports some experimental results in the above mentioned fields.

  4. A sensor for vector electric field measurements through a nonlinear anisotropic optical crystal

    NASA Astrophysics Data System (ADS)

    Barbieri, Luca; Gondola, Marco; Potenza, Marco; Villa, Andrea; Malgesini, Roberto

    2017-11-01

    Electrical applications require the development of electric field sensors that can reproduce vector electric field waveforms with a very large spectral width ranging from 50 Hz to at least 70 MHz. This makes it possible to measure both the normal operation modes of electrical components and abnormal behaviors such as the corona emission and partial discharges. In this work, we aim to develop a fully dielectric sensor capable of measuring two components of the electric field using a wide class of optical crystals including anisotropic ones, whereas most of the efforts in this field have been devoted to isotropic crystals. We report the results of the measurements performed at 50 Hz and with a lightning impulse, to validate the sensor.

  5. Dislocation dynamics and crystal plasticity in the phase-field crystal model

    NASA Astrophysics Data System (ADS)

    Skaugen, Audun; Angheluta, Luiza; Viñals, Jorge

    2018-02-01

    A phase-field model of a crystalline material is introduced to develop the necessary theoretical framework to study plastic flow due to dislocation motion. We first obtain the elastic stress from the phase-field crystal free energy under weak distortion and show that it obeys the stress-strain relation of linear elasticity. We focus next on dislocations in a two-dimensional hexagonal lattice. They are composite topological defects in the weakly nonlinear amplitude equation expansion of the phase field, with topological charges given by the standard Burgers vector. This allows us to introduce a formal relation between the dislocation velocity and the evolution of the slowly varying amplitudes of the phase field. Standard dissipative dynamics of the phase-field crystal model is shown to determine the velocity of the dislocations. When the amplitude expansion is valid and under additional simplifications, we find that the dislocation velocity is determined by the Peach-Koehler force. As an application, we compute the defect velocity for a dislocation dipole in two setups, pure glide and pure climb, and compare it with the analytical predictions.

  6. Liquid-Crystal-Enabled Active Plasmonics: A Review

    PubMed Central

    Si, Guangyuan; Zhao, Yanhui; Leong, Eunice Sok Ping; Liu, Yan Jun

    2014-01-01

    Liquid crystals are a promising candidate for development of active plasmonics due to their large birefringence, low driving threshold, and versatile driving methods. We review recent progress on the interdisciplinary research field of liquid crystal based plasmonics. The research scope of this field is to build the next generation of reconfigurable plasmonic devices by combining liquid crystals with plasmonic nanostructures. Various active plasmonic devices, such as switches, modulators, color filters, absorbers, have been demonstrated. This review is structured to cover active plasmonic devices from two aspects: functionalities and driven methods. We hope this review would provide basic knowledge for a new researcher to get familiar with the field, and serve as a reference for experienced researchers to keep up the current research trends. PMID:28788515

  7. Radiative Transfer and Satellite Remote Sensing of Cirrus Clouds Using FIRE-2-IFO Data

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Under the support of the NASA grant, we have developed a new geometric-optics model (GOM2) for the calculation of the single-scattering and polarization properties for arbitrarily oriented hexagonal ice crystals. From comparisons with the results computed by the finite difference time domain (FDTD) method, we show that the novel geometric-optics can be applied to the computation of the extinction cross section and single-scattering albedo for ice crystals with size parameters along the minimum dimension as small as approximately 6. We demonstrate that the present model converges to the conventional ray tracing method for large size parameters and produces single-scattering results close to those computed by the FDTD method for size parameters along the minimum dimension smaller than approximately 20. We demonstrate that neither the conventional geometric optics method nor the Lorenz-Mie theory can be used to approximate the scattering, absorption, and polarization features for hexagonal ice crystals with size parameters from approximately 5 to 20. On the satellite remote sensing algorithm development and validation, we have developed a numerical scheme to identify multilayer cirrus cloud systems using AVHRR data. We have applied this scheme to the satellite data collected over the FIRE-2-IFO area during nine overpasses within seven observation dates. Determination of the threshold values used in the detection scheme are based on statistical analyses of these satellite data.

  8. Using Magnetic Field Gradients to Simulate Variable Gravity in Fluids and Materials Experiments

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan

    2006-01-01

    Fluid flow due to a gravitational field is caused by sedimentation, thermal buoyancy, or solutal buoyancy induced convection. During crystal growth, for example, these flows are undesirable and can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, a theory is presented on the stability of solutal convection of a magnetized fluid(weak1y paramagnetic) in the presence of a magnetic field. The requirements for stability are developed and compared to experiments performed within the bore of a superconducting magnet. The theoretical predictions are in good agreement with the experiments. Extension of the technique can also be applied to study artificial gravity requirements for long duration exploration missions. Discussion of this application with preliminary experiments and application of the technique to crystal growth will be provided.

  9. Physical modelling of Czochralski crystal growth in horizontal magnetic field

    NASA Astrophysics Data System (ADS)

    Grants, Ilmārs; Pal, Josef; Gerbeth, Gunter

    2017-07-01

    This study addresses experimentally the heat transfer, the temperature azimuthal non-uniformity and the onset of oscillations in a low temperature physical model of a medium-sized Czochralski crystal growth process with a strong horizontal magnetic field (HMF). It is observed that under certain conditions the integral heat flux may decrease with increasing magnetic field strength at the same time as the flow velocity increases. The azimuthal non-uniformity of the temperature field in the melt near the crystal model rim is only little influenced by its rotation rate outside of a narrow range where the centrifugal force balances the buoyant one. The flow oscillation onset has been observed for two values of the HMF strength. Conditions of this onset are little influenced by the crystal rotation. The critical temperature difference of the oscillation onset considerably exceeds that of the Rayleigh-Bénard (RB) cell in a strong HMF.

  10. Crystal structure and phase stability in Fe{sub 1{minus}x}Co{sub x} from AB initio theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soederlind, P.; Abrikosov, I.A.; James, P.

    1996-06-01

    For alloys between Fe and Co, their magnetic properties determine their structure. From the occupation of d states, a phase diagram is expected which depend largely on the spin polarization. A method more elaborate than canonical band models is used to calculate the spin moment and crystal structure energies. This method was the multisublattice generalization of the coherent potential approximation in conjunction with the Linear-Muffin-Tin-Orbital method in the atomic sphere approximation. To treat itinerant magnetism, the Vosko-Wilk-Nusair parameterization was used for the local spin density approximation. The fcc, bcc, and hcp phases were studied as completely random alloys, while themore » {alpha}{prime} phase for off-stoichiometries were considered as partially ordered. Results are compared with experiment and canonical band model.« less

  11. Organic field-effect transistors using single crystals.

    PubMed

    Hasegawa, Tatsuo; Takeya, Jun

    2009-04-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm 2 Vs -1 , achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  12. Organic field-effect transistors using single crystals

    PubMed Central

    Hasegawa, Tatsuo; Takeya, Jun

    2009-01-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for ‘plastic electronics’. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20–40 cm2 Vs−1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps. PMID:27877287

  13. Crystallization screening: the influence of history on current practice.

    PubMed

    Luft, Joseph R; Newman, Janet; Snell, Edward H

    2014-07-01

    While crystallization historically predates crystallography, it is a critical step for the crystallographic process. The rich history of crystallization and how that history influences current practices is described. The tremendous impact of crystallization screens on the field is discussed.

  14. Magnetic field controlled single crystal growth and surface modification of titanium alloys exposed for biocompatibility

    NASA Astrophysics Data System (ADS)

    Hermann, Regina; Uhlemann, Margitta; Wendrock, Horst; Gerbeth, Gunter; Büchner, Bernd

    2011-03-01

    The aim of this work is growth and characterisation of Ti55Nb45 (wt%) single crystals by floating-zone single crystal growth of intermetallic compounds using two-phase radio-frequency (RF) electromagnetic heating. Thereby, the process and, in particular, the flow field in the molten zone is influenced by additional magnetic fields. The growth of massive intermetallic single crystals is very often unsuccessful due to an unfavourable solid-liquid interface geometry enclosing concave fringes. It is generally known that the crystallization process stability is enhanced if the crystallization interface is convex. For this, a tailored magnetic two-phase stirrer system has been developed, which enables a controlled influence on the melt ranging from intensive inwards to outwards flows. Since Ti is favourably light, strong and biocompatible, it is one of the few materials that naturally match the requirements for implantation in the human body. Therefore, the magnetic system was applied to crystal growth of Ti alloys. The grown crystals were oriented and cut to cubes with the desired crystallographic orientations [1 0 0] and [1 0 1] normally on a plane. The electron backscatter diffraction (EBSD) technique was applied to clearly determine crystal orientation and to localize grain boundaries. The formation of oxidic nanotubes on Ti surfaces in dependence of the grain orientation was investigated, performed electrochemically by anodic oxidation from fluoride containing electrolyte.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, S St.; Argento, D; Stewart, R

    Purpose: The University of Washington Medical Center offers neutron therapy for the palliative and definitive treatment of selected cancers. In vivo field verification has the potential to improve the safe and effective delivery of neutron therapy. We propose a portal imaging method that relies on the creation of positron emitting isotopes (11C and 15O) through (n, 2n) reactions with a PMMA plate placed below the patient. After field delivery, the plate is retrieved from the vault and imaged using a reader that detects annihilation photons. The spatial pattern of activity produced in the PMMA plate provides information to reconstruct themore » neutron fluence map needed to confirm treatment delivery. Methods: We used MCNP to simulate the accumulation of 11C activity in a slab of PMMA 2 mm thick, and GATE was used to simulate the sensitivity and spatial resolution of a prototype imaging system. BGO crystal thicknesses of 1 cm, 2 cm and 3 cm were simulated with detector separations of 2 cm. Crystal pitches of 2 mm and 4 mm were evaluated. Back-projection of the events was used to create a planar image. The spatial resolution was taken to be the FWHM of the reconstructed point source image. Results: The system sensitivity for a point source in the center of the field of view was found to range from 58% for 1 cm thick BGO with 2 mm crystal pitch to 74% for the 3 cm thick BGO crystals with 4 mm crystal pitch. The spatial resolution at the center of the field of view was found to be 1.5 mm for the system with 2 mm crystal pitch and 2.8 mm for the system with the 4 mm crystal pitch. Conclusion: BGO crystals with 4 mm crystal pitch and 3 cm length would offer the best sensitivity reader.« less

  16. Magnetically-assembled micro/mesopixels exhibiting light intensity enhancement in the (012) planes of fish guanine crystals

    NASA Astrophysics Data System (ADS)

    Chikashige, T.; Iwasaka, M.

    2018-05-01

    In this study, a new method was investigated to form light-reflecting dots at the micrometer scale using the magnetic orientations of biogenic guanine crystals obtained from fish skin and scales. The crystal platelets, possessing average dimensions of 5 μm×20 μm×100 nm, were dispersed in water and observed during exposure to vertical magnetic fields up to 5 T. The magnetic field direction was parallel to Earth's gravity, and allowed the narrowest edges of the crystals to be observed at the micrometer scale for the first time. The magnetic orientation process was initiated under conditions where the crystal platelets in water were laid on a glass substrate or where the platelets had random orientations. In the former case, the crystal platelets followed a two-stage magnetic orientation process where, in the first step, the platelet widths were aligned in the magnetic field direction. The second step required rotation of the ˜20-μm-long plates with respect to the Earth's gravity, where application of a 5 T magnetic field enabled their orientation. Real-time images of the magnetically aligning platelets provided new evidence that the crystal platelets also emitted reflected light from a very narrow window at two crystal planes (i.e., (0 1 ¯ 2 ¯ ) and (0 1 ¯ 2 )). In the latter case with random platelet orientation, spatially-condensed light-reflecting dots appeared while the guanine crystal platelets were floating and maintaining their orientation. The technique developed for controlling light-reflecting microscale objects in an aqueous medium can be applied to produce a type of microfluidic optical tool.

  17. Tuning the functional properties of PMN-PT single crystals via doping and thermoelectrical treatments

    NASA Astrophysics Data System (ADS)

    Luo, Laihui; Dietze, Matthias; Solterbeck, Claus-Henning; Luo, Haosu; Es-Souni, Mohammed

    2013-12-01

    Single crystals based on solid solutions of lead-magnesium-niobate (PMN) and lead titanate (PT) have emerged as highly promising multifunctional systems combining piezoelectric, pyroelectric, and electro-optic properties that surpass by far those of the best known lead-zirkonium-titanate ceramics. In this paper we present new findings on how the phase transition temperature and the dielectric and ferroelectric properties can be tuned depending on crystal composition, orientation, and thermoelectrical treatment. Mn-doped and pure 0.72PbMg1/3Nb2/3O3-0.28PbTiO3 (0.72PMN-0.28PT) single crystals with ⟨111⟩ and ⟨001⟩ orientations were investigated. A special attention was devoted to field cooling (FC), i.e., cooling under electric field from different temperatures. The results illustrate different findings that were not reported before: the Curie temperature, i.e., ferroelectric-paraelectric transition temperature, is enhanced after field cooling of the Mn-doped, ⟨001⟩-oriented crystal while such a shift is not observed in the ⟨111⟩-oriented and the non-doped crystals. In addition, substantial polarization suppression occurs in the Mn-doped crystals upon FC from high temperature regardless of orientation. Based on piezoforce microscopy of the domain structure that shows suppression of domain growth following field cooling from 200 °C, we propose a mechanism for polarization suppression based on domain pinning by charged defects. The practical importance of our results lies in showing the opportunity offered by a proper choice of crystal composition and poling conditions for tuning the functional properties of PMN-PT single crystals for a specific application. This should contribute to the understanding of their properties towards advanced sensor and transducers devices.

  18. SF-FDTD analysis of a predictive physical model for parallel aligned liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Márquez, Andrés.; Francés, Jorge; Martínez, Francisco J.; Gallego, Sergi; Alvarez, Mariela L.; Calzado, Eva M.; Pascual, Inmaculada; Beléndez, Augusto

    2017-08-01

    Recently we demonstrated a novel and simplified model enabling to calculate the voltage dependent retardance provided by parallel aligned liquid crystal devices (PA-LCoS) for a very wide range of incidence angles and any wavelength in the visible. To our knowledge it represents the most simplified approach still showing predictive capability. Deeper insight into the physics behind the simplified model is necessary to understand if the parameters in the model are physically meaningful. Since the PA-LCoS is a black-box where we do not have information about the physical parameters of the device, we cannot perform this kind of analysis using the experimental retardance measurements. In this work we develop realistic simulations for the non-linear tilt of the liquid crystal director across the thickness of the liquid crystal layer in the PA devices. We consider these profiles to have a sine-like shape, which is a good approximation for typical ranges of applied voltage in commercial PA-LCoS microdisplays. For these simulations we develop a rigorous method based on the split-field finite difference time domain (SF-FDTD) technique which provides realistic retardance values. These values are used as the experimental measurements to which the simplified model is fitted. From this analysis we learn that the simplified model is very robust, providing unambiguous solutions when fitting its parameters. We also learn that two of the parameters in the model are physically meaningful, proving a useful reverse-engineering approach, with predictive capability, to probe into internal characteristics of the PA-LCoS device.

  19. The Role of KREEP in the Production of Mg-Suite Magmas and Its Influence on the Extent of Mg-Suite Magmatism in the Lunar Crust

    NASA Technical Reports Server (NTRS)

    Elardo, S. M.; Shearer, C. K.; McCubbin, F. M.

    2017-01-01

    The lunar magnesian-suite, or Mg-suite, is a series of ancient plutonic rocks from the lunar crust. They have received a considerable amount of attention from lunar scientists since their discovery for three primary reasons: 1) their ages and geochemistry indicate they represent pristine magmatic samples that crystallized very soon after the formation of the Moon; 2) their ages often overlap with ages of the ferroan anorthosite (FAN) crust; and 3) planetary-scale processes are needed in formation models to account for their unique geochemical features. Taken as a whole, the Mg-suite samples, as magmatic cumulate rocks, approximate a fractional crystallization sequence in the low-pressure forsterite-anorthite-silica system, and thus these samples are generally thought to be derived from layered mafic intrusions which crystallized very slowly from magmas that intruded the anorthositic crust. However, no direct linkages have been established between different Mg-suite samples based either on field relationships or geochemistry.The model for the origin of the Mg-suite, which best fits the limited available data, is one where Mg-suite magmas form from melting of a hybrid cumulate package consisting of deep mantle dunite, crustal anorthosite, and KREEP (potassium-rare earth elements-phosphorus) at the base of the crust under the Procellarum KREEP Terrane (PKT). In this model, these three LMO (Lunar Magma Ocean) cumulate components are brought into close proximity by the cumulate overturn process. Deep mantle dunitic cumulates with an Mg number of approximately 90 rise to the base of the anorthositic crust due to their buoyancy relative to colder, more dense Fe- and Ti-rich cumulates. This hybridized source rock melts to form Mg-suite magmas, saturated in Mg-rich olivine and anorthitic plagioclase, that have a substantial KREEP component.

  20. Magnetostriction of Hexagonal HoMnO3 and YMnO3 Single Crystals

    NASA Astrophysics Data System (ADS)

    Pavlovskii, N. S.; Dubrovskii, A. A.; Nikitin, S. E.; Semenov, S. V.; Terent'ev, K. Yu.; Shaikhutdinov, K. A.

    2018-03-01

    We report on the magnetostriction of hexagonal HoMnO3 and YMnO3 single crystals in a wide range of applied magnetic fields (up to H = 14 T) at all possible combinations of the mutual orientations of magnetic field H and magnetostriction Δ L/L. The measured Δ L/L( H, T) data agree well with the magnetic phase diagram of the HoMnO3 single crystal reported previously by other authors. It is shown that the nonmonotonic behavior of magnetostriction of the HoMnO3 crystal is caused by the Ho3+ ion; the magnetic moment of the Mn3+ ion parallel to the hexagonal crystal axis. The anomalies established from the magnetostriction measurements of HoMnO3 are consistent with the phase diagram of these compounds. For the isostructural YMnO3 single crystal with a nonmagnetic rare-earth ion, the Δ L/L( H, T) dependences are described well by a conventional quadratic law in a wide temperature range (4-100 K). In addition, the magnetostriction effect is qualitatively estimated with regard to the effect of the crystal electric field on the holmium ion.

  1. High purith low defect FZ silicon

    NASA Technical Reports Server (NTRS)

    Kimura, H.; Robertson, G.

    1985-01-01

    The most common intrinsic defects in dislocation-free float zone (FZ) silicon crystals are the A- and B-type swirl defects. The mechanisms of their formation and annihilation have been extensively studied. Another type of defect in dislocation-free FZ crystals is referred to as a D-type defect. Concentrations of these defects can be minimized by optimizing the growth conditions, and the residual swirls can be reduced by the post-growth extrinsic gettering process. Czochralski (Cz) silicon wafers are known to exhibit higher resistance to slip and warpage due to thermal stress than do FZ wafers. The Cz crystals containing dislocations are more resistant to dislocation movement than dislocated FZ crystals because of the locking of dislocations by oxygen atoms present in the Cz crystals. Recently a transverse magnetic field was applied during the FZ growth of extrinsic silicon. Resultant flow patterns, as revealed by striation etching and spreading resistance in Ga-doped silicon crystals, indicate strong effects of the transverse magnetic field on the circulation within the melt. At fields of 5500 gauss, the fluid flow in the melt volume is so altered as to affect the morphology of the growing crystal.

  2. Eliminating Crystals in Non-Oxide Optical Fiber Preforms and Optical Fibers

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; LaPointe, Michael R.

    2012-01-01

    Non ]oxide fiber optics such as heavy metal fluoride and chalcogenide glasses are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. The addition of rare earths such as erbium, enable these materials to be used as fiber laser and amplifiers. Some of these glasses however are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. Previously two research teams found that microgravity suppressed crystallization in heavy metal fluoride glasses. Looking for a less expensive method to suppress crystallization, ground based research was performed utilizing an axial magnetic field. The experiments revealed identical results to those obtained via microgravity processing. This research then led to a patented process for eliminating crystals in optical fiber preforms and the resulting optical fibers. In this paper, the microgravity results will be reviewed as well as patents and papers relating to the use of magnetic fields in various material and glass processing applications. Finally our patent to eliminate crystals in non ]oxide glasses utilizing a magnetic field will be detailed.

  3. Optimization of Pockels electric field in transverse modulated optical voltage sensor

    NASA Astrophysics Data System (ADS)

    Huang, Yifan; Xu, Qifeng; Chen, Kun-Long; Zhou, Jie

    2018-05-01

    This paper investigates the possibilities of optimizing the Pockels electric field in a transverse modulated optical voltage sensor with a spherical electrode structure. The simulations show that due to the edge effect and the electric field concentrations and distortions, the electric field distributions in the crystal are non-uniform. In this case, a tiny variation in the light path leads to an integral error of more than 0.5%. Moreover, a 2D model cannot effectively represent the edge effect, so a 3D model is employed to optimize the electric field distributions. Furthermore, a new method to attach a quartz crystal to the electro-optic crystal along the electric field direction is proposed to improve the non-uniformity of the electric field. The integral error is reduced therefore from 0.5% to 0.015% and less. The proposed method is simple, practical and effective, and it has been validated by numerical simulations and experimental tests.

  4. Vibrational, calorimetric and nonlinear optical studies of melaminium-bis(trichloroacetate) monohydrate molecular ionic crystal

    NASA Astrophysics Data System (ADS)

    Debrus, S.; Marchewka, M. K.; Drozd, M.; Ratajczak, H.

    2007-04-01

    The efficiency of second harmonic generation for melaminium bis(trichloroacetate) was estimated relatively to KDP: deff = 3.09 deff (KDP). Room temperature FT IR and FT Raman spectra were recorded. Some spectral features of this new crystal are referred to corresponding one for melamine crystal as well as for other trichloroacetates. Differential scanning calorimetric measurements performed on powder sample indicate the phase transition point at approximately 276 and 239 K for heating and cooling, respectively.

  5. Crystallization of Chicken Egg White Lysozyme from Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc

    1998-01-01

    It has been "known" that chicken egg white lysozyme does not crystallize from sulfate, particularly ammonium sulfate, salts, but instead gives amorphous precipitates. This has been the basis of several studies using lysozyme comparing macromolecule crystal nucleation and amorphous precipitation. Recently Ries-Kautt et al (Acta Cryst D50, (1994) 366) have shown that purified isoionic CEWL could be crystallized from low concentrations of sulfate at basic pH, and we subsequently showed that in fact CEWL could be purified in both the tetragonal and orthorhombic forms using ammonium sulfate over the pH range 4.0 to 7.8 (Acta Cryst D53, (1997) 795). We have now extended these observations to include a range of common sulfate salts, specifically sodium, potassium, rubidium, magnesium, and manganese sulfates. In all cases but the manganese sulfates both the familiar tetragonal and orthorhombic forms were obtained, with unit cell dimensions close to those known for the "classic" sodium chloride crystallized forms. Manganese sulfate has only yielded orthorhombic crystals to date. All crystallizations were carried out using low (typically less than or equal to 6 M) salt and high (greater than approximately 90 mg/ml) protein concentrations. As with ammonium sulfate, the tetragonal - orthorhombic phase shift appears to be a function of both the temperature and the protein concentration, with higher temperatures and concentrations favoring the orthorhombic and lower the tetragonal form. The phase change range is somewhat reduced for the sulfate salts, depending upon conditions being typically between approximately 15 - 20 C. Both the magnesium and manganese sulfates gave crystals at salt concentrations over 0.6 M as well, with magnesium sulfate giving a very slowly nucleating and growing hexagonal form. A triclinic crystal form, characterized by aggressively small crystals (typically 0.1 mm in size) has been occasionally obtained from ammonium sulfate. Finally, preliminary spot solubility determinations have suggested that in some cases the solubility increases with increasing salt concentrations.

  6. Perovskite single crystals and thin films for optoelectronic devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Gang; Han, Qifeng; Yang, Yang; Bae, Sang-Hoon; Sun, Pengyu

    2016-09-01

    Hybrid organolead trihalide perovskite (OTP) solar cells have developed as a promising candidate in photovoltaics due to their excellent properties including a direct bandgap, strong absorption coefficient, long carrier lifetime, and high mobility. Most recently, formamidinium (NH2CH=NH2+ or FA) lead iodide (FAPbI3) has attracted significant attention due to several advantages: (1) the larger organic FA cation can replace the MA cation and form a more symmetric crystal structure, (2) the smaller bandgap of FAPbI3 allows for near infrared (NIR) absorption, and (3) FAPbI3 has an elevated decomposition temperature and thus potential to improve stability. Single crystals provide an excellent model system to study the intrinsic electrical and optical properties of these materials due to their high purity, which is particularly important to understand the limits of these materials. In this work, we report the growth of large ( 5 millimeter size) single crystal FAPbI3 using a novel liquid based crystallization method. The single crystal FAPbI3 demonstrated a δ-phase to α-phase transition with a color change from yellow to black when heated to 185°C within approximately two minutes. The crystal structures of the two phases were identified and the PL emission peak of the α-phase FAPbI3 (820 nm) shows clear red-shift compared to the FAPbI3 thin film (805 nm). The FAPbI3 single crystal shows a long carrier lifetime of 484 ns, a high carrier mobility of 4.4 cm2·V-1·s-1, and even more interestingly a conductivity of 1.1 × 10-7(ohm·cm)-1, which is approximately one order of magnitude higher than that of the MAPbI3 single crystal. Finally, high performance photoconductivity type photodetectors were successfully demonstrated using the single crystal FAPbI3.

  7. Crystallization of Calcium Carbonate in a Large Scale Field Study

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Wismeth, Carina; Baumann, Thomas

    2017-04-01

    The long term efficiency of geothermal facilities and aquifer thermal energy storage in the carbonaceous Malm aquifer in the Bavarian Molasse Basin is seriously affected by precipitations of carbonates. This is mainly caused by pressure and temperature changes leading to oversaturation during production. Crystallization starts with polymorphic nuclei of calcium carbonate and is often described as diffusion-reaction controlled. Here, calcite crystallization is favoured by high concentration gradients while aragonite crystallization is occurring at high reaction rates. The factors affecting the crystallization processes have been described for simplified, well controlled laboratory experiments, the knowledge about the behaviour in more complex natural systems is still limited. The crystallization process of the polymorphic forms of calcium carbonate were investigated during a heat storage test at our test site in the eastern part of the Bavarian Molasse Basin. Complementary laboratory experiments in an autoclave were run. Both, field and laboratory experiments were conducted with carbonaceous tap water. Within the laboratory experiments additionally ultra pure water was used. To avoid precipitations of the tap water, a calculated amount of {CO_2} was added prior to heating the water from 45 - 110°C (laboratory) resp. 65 - 110°C (field). A total water volume of 0.5 L (laboratory) resp. 1 L (field) was immediately sampled and filtrated through 10 - 0.1

  8. Investigation of channeling and radiation of relativistic electrons in charged planes of the crystals with zinc blende structure

    NASA Astrophysics Data System (ADS)

    Maksyuta, N. V.; Vysotskii, V. I.; Efimenko, S. V.; Slinchenko, Y. A.

    2018-04-01

    In this paper the interaction potentials of relativistic electrons with the charged (2m+1, 2n+1, 2p+1) and (2m+1, 2n, 2p) planes (m, n, p=0,1,dot s, and Miller indices are mutually prime numbers) in the crystals with a zinc blende structure are calculated using Moliere approximation. It is shown that at the change of the type of used crystal plane (from the main (100) to the high-index charged planes), the structures of potential wells are transformed from non-unimodal to unimodal ones. In this case for the crystals constructed from ions with close nucleus charges, there arise so-called positron-like potential wells for the channeled electrons, i.e. with minima in the interplanar space. The influence of temperature factor on interaction potentials structures is also investigated. For the electrons with Lorentz-factors γ = 25, 50, 75 in the main (100) and (111) planes the transverse energy levels and corresponding wave functions in single planar approximation are found numerically. By means of these data the spectra of channeling radiation (CR) in dipole approximation are calculated for the electrons beams with a Lorentz-factor γ = 50 and an angular dispersion θ 0 ≈ 0,5 mrad, arising in the main charged (100) and (111) planes in ZnS, ZnSe and ZnTe crystals. It is shown that the CR generated at electron channeling along the (111) planes is more intense. It is shown also that spectra of CR arising in (111) planes of silicon and AlP crystals at using of channeled electron beam with γ = 25 and an angular dispersion θ 0 ≈ 0,5 mrad, due to similarity of structures of potential wells are identical. The spectra of CR at γ = 25, 50, 75 are calculated for a number of crystals with a zinc blende structure, namely AlP, AlAs, AlSb, GaP, GaAs, InP, InAs, InSb.

  9. Crystallization screening: the influence of history on current practice

    PubMed Central

    Luft, Joseph R.; Newman, Janet; Snell, Edward H.

    2014-01-01

    While crystallization historically predates crystallography, it is a critical step for the crystallographic process. The rich history of crystallization and how that history influences current practices is described. The tremendous impact of crystallization screens on the field is discussed. PMID:25005076

  10. A view inside the nature of protein crystals

    NASA Astrophysics Data System (ADS)

    Oswald, R.; Pietzsch, M.; Ulrich, J.

    2017-07-01

    In this work a fundamental analysis of protein crystal modifications was presented to compare and confirm the components of protein crystal modifications. The result is that a protein crystal contains besides the protein, the precipitant and water. A mass spectrometer coupled to a thermogravimetry device was used to confirm the different waters (free water -the chosen buffer- and bound water) inside the crystals. Here the biggest amount of water is the free water (the buffer) with an amount of approximately 35%. The bound water (in the sense of a hydrate) has only an amount of about 1-1.5%. Furthermore, an x-ray analysis to confirm the influence range of pH value on the stability of one crystal modification for the understanding of effects on dissolution mechanism of protein crystals was investigated. The crystals of the tetragonal modification crystallized at pH 4.7, 4.85, 5.0, 5.15 and 5.3 maintain according to the x-ray measurements the same lattice parameters. The measured data are discussed.

  11. USGS field activity 09FSH02 on the west Florida shelf, Gulf of Mexico, in August 2009

    USGS Publications Warehouse

    Robbins, Lisa L.; Knorr, Paul O.; Liu, Xuewu; Byrne, Robert H.; Raabe, Ellen A.

    2009-01-01

    From August 17 to 21, 2009, a cruise led by the U.S. Geological Survey (USGS) collected air and sea surface partial pressure of carbon dioxide (pCO2), pH, dissolved inorganic carbon (DIC), and total alkalinity (TA) data on the west Florida shelf. Approximately 2,000 data points were collected underway over a 1,320-kilometer (km) track line using the Multiparameter Inorganic Carbon Analyzer (MICA). The collection of data extended from Crystal River to Marco Island, Florida (~400 km), and westward up to 160 km off the Florida coast. Discrete water samples were also taken at specific localities to corroborate underway data measurements. The USGS St. Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier to each cruise or field activity. For example, 09FSH02 tells us that the data were collected in 2009 for the Response of Florida Shelf (FSH) Ecosystems to Climate Change project, and the data were collected during the second field activity for that study in that calendar year.

  12. USGS field activity 09FSH01 on the west Florida shelf, Gulf of Mexico, in February 2009

    USGS Publications Warehouse

    Robbins, Lisa L.; Knorr, Paul O.; Liu, Xuewu; Byrne, Robert H.; Raabe, Ellen A.

    2009-01-01

    From February 24 to 28, 2009, a cruise led by the U.S. Geological Survey (USGS) collected air and sea surface partial pressure of carbon dioxide (pCO2), pH, dissolved inorganic carbon (DIC), and total alkalinity (TA) data on the west Florida shelf. Approximately 1,800 data points were collected underway over a 1,300-kilometer (km) trackline using the Multiparameter Inorganic Carbon Analyzer (MICA). The collection of data extended from Crystal River to Marco Island, Florida (~400 km), and westward up to 160 km off the Florida coast. Discrete water samples were also taken at specific localities to corroborate underway data measurements. The USGS St. Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier to each cruise or field activity. For example, 09FSH01 tells us that the data were collected in 2009 for the Response of Florida Shelf (FSH) Ecosystems to Climate Change project, and the data were collected during the first field activity for that study in that calendar year.

  13. Investigation of head group behaviour of lamellar liquid crystals

    NASA Astrophysics Data System (ADS)

    Delikatny, E. J.; Burnell, E. E.

    A mean field equilibrium statistical mechanical model, based on the Samulski inertial frame model, was developed to simulate experimental dipolar and quadrupolar nmr couplings of isotopically substituted potassium palmitates. An isolated four spin system was synthesized (2,2,3,3,-H4-palmitic acid-d27) and in conjunction with data presented in a previous paper on perdeuterated and carbon 13 labelled soaps, the head group behaviour of the molecule was investigated. Two interactions were considered in the modelling procedure: a mean field steric interaction characterized by a constraining cylinder, and a head group interaction characterized by a mass on the end of a rod of variable length. The rod lies along the first C-C bond direction and accounts for the interaction between polar head group and water via its effect on the moment of inertia of the molecule. In potassium palmitate mean field steric repulsive forces remain constant over the entire temperature range studied. In contrast, electrostatic interactions between polar head group and water, approximately constant at higher temperatures, increase dramatically as the phase transition is approached. This evidence supports a previously proposed model of lipidwater interaction.

  14. Effects of rare-earth size on the electronic structure of La1−xLuxVO3.

    PubMed

    Chen, B; Laverock, J; Newby, D; McNulty, J F; Smith, K E; Glans, P-A; Guo, J-H; Qiao, R-M; Yang, W-L; Lees, M R; Tung, L D; Singh, R P; Balakrishnan, G

    2015-03-18

    The electronic structure of La(1-x)Lu(x)VO(3)(x = 0, 0.2, 0.6 and 1) single crystals has been investigated using soft x-ray absorption spectroscopy, soft x-ray emission spectroscopy, and resonant soft x-ray inelastic scattering to study the effects of rare-earth size. The x-ray absorption and emission spectra at the O K-edge present a progressive evolution with R-site cation, in agreement with local spin density approximation calculations. This evolution with R, together with the temperature dependence of the O K-edge spectra, is attributed to changes in the crystal structure of La(1-x)Lu(x)VO(3). The crystal-field dd. excitations probed by resonant inelastic x-ray scattering at the V L(3)-edge exhibit an increase in energy and enhanced intensity with the decrease of R-site ionic radius, which is mainly attributed to the increased tilting magnitude of the VO(6) octahedra. Upon cooling to ~95 K, the dd* excitations are prominently enhanced in relative Intensity, in agreement with the formation of the Jahn.Teller distortion int he orbital ordering phase. Additionally, the dd* transitions of the mixed compounds are noticeably suppressed with respect to those of the pure compounds, possibly owing to the formation of C-type orbital ordering induced by large R-site size variances.

  15. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue

    2012-05-01

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission.

  16. Molecular reorientation of a nematic liquid crystal by thermal expansion

    PubMed Central

    Kim, Young-Ki; Senyuk, Bohdan; Lavrentovich, Oleg D.

    2012-01-01

    A unique feature of nematic liquid crystals is orientational order of molecules that can be controlled by electromagnetic fields, surface modifications and pressure gradients. Here we demonstrate a new effect in which the orientation of nematic liquid crystal molecules is altered by thermal expansion. Thermal expansion (or contraction) causes the nematic liquid crystal to flow; the flow imposes a realigning torque on the nematic liquid crystal molecules and the optic axis. The optical and mechanical responses activated by a simple temperature change can be used in sensing, photonics, microfluidic, optofluidic and lab-on-a-chip applications as they do not require externally imposed gradients of temperature, pressure, surface realignment, nor electromagnetic fields. The effect has important ramifications for the current search of the biaxial nematic phase as the optical features of thermally induced structural changes in the uniaxial nematic liquid crystal mimic the features expected of the biaxial nematic liquid crystal. PMID:23072803

  17. Field emission investigations of single crystal LaB6 FEA fabricated by femtosecond laser direct writing

    NASA Astrophysics Data System (ADS)

    Liu, Hongliang; Zhang, Xin; Li, Yuancheng; Xiao, Yixin; Zhang, Wei; Zhang, Jiu-Xing

    2018-04-01

    The femtosecond laser direct writing method has been used to fabricate the single crystal lanthanum hexaboride (LaB6) field-emission tip arrays (FEAs). The morphologies, structure phase, and field emission of the single crystal LaB6 FEAs are systematically studied. The nanostructures on the surface of tips with the LaB6 phase were formed, resulting in favor of improving field emission, particularly for samples with the nanohill shaped bulges having the size of about 100 nm. The produced single crystal LaB6 FEAs have a uniform structure and a controllable curvature radius of about 0.5-3.0 μm. The FEAs with a curvature radius of about 0.5 μm as field emitters have the best field emission performance, which the field emission turns on and the threshold electric fields are as low as 2.2 and 3.8 V/μm with an emission current of 1.0 A/cm2 at 8.0 V/μm, and the emission current exhibits high stability. These indicate that the processed LaB6 FEAs have a good prospect applied in vacuum microelectronic devices and the simple femtosecond laser direct writing method could lead to an approach for the development of electron sources.

  18. Increasing the switching speed of liquid crystal devices with magnetic nanorods

    NASA Astrophysics Data System (ADS)

    Garbovskiy, Yu.; Baptist, J. R.; Thompson, J.; Hunter, T.; Lim, J. H.; Gi Min, Seong; Wiley, J. B.; Malkinski, L. M.; Glushchenko, A.; Celinski, Z.

    2012-10-01

    Liquid crystal (LC)/magnetic nanorods colloids were fabricated and tested using a magneto-optical setup. These thermotropic ferronematics do not show any signs of macroscopic aggregation, exhibit enhanced magnetic sensitivity, and faster time response in the simultaneous presence of crossed electric and magnetic fields. Magnetic nanorods increase an effective magnetic anisotropy of the colloid and decrease magnetic Freedericksz threshold. Applying a magnetic field along the direction perpendicular to the applied electric field leads to a decrease of the time OFF by a factor of 6 for pure liquid crystals, and by a factor of 9—for ferronematics.

  19. Field alignment of bent-core smectic liquid crystals for analog optical phase modulation

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Goodhew, L.; Shao, R.; Moran, M.; Korblova, E.; Walba, D. M.; Clark, N. A.; Maclennan, J. E.; Rudquist, P.

    2015-05-01

    A general method for aligning bent-core smectic liquid crystal materials is described. Alternating electric fields between interdigitated electrodes patterned on one cell surface create torques on the liquid crystal that result in uniform "bookshelf" orientation of the smectic layers. The aligned cell can then be driven in the conventional way by applying an electric field between all of the stripe electrodes connected together and a monolithic electrode on the other cell surface. Fast, analog, optical phase-only modulation is demonstrated in a device containing a polar, bent-core SmAPF material aligned using this technique.

  20. Study of light-absorbing crystal birefringence and electrical modulation mechanisms for coupled thermal-optical effects.

    PubMed

    Zhou, Ji; He, Zhihong; Ma, Yu; Dong, Shikui

    2014-09-20

    This paper discusses Gaussian laser transmission in double-refraction crystal whose incident light wavelength is within its absorption wave band. Two scenarios for coupled radiation and heat conduction are considered: one is provided with an applied external electric field, the other is not. A circular heat source with a Gaussian energy distribution is introduced to present the crystal's light-absorption process. The electromagnetic field frequency domain analysis equation and energy equation are solved to simulate the phenomenon by using the finite element method. It focuses on the influence of different values such as wavelength, incident light intensity, heat transfer coefficient, ambient temperature, crystal thickness, and applied electric field strength. The results show that the refraction index of polarized light increases with the increase of crystal temperature. It decreases as the strength of the applied electric field increases if it is positive. The mechanism of electrical modulation for the thermo-optical effect is used to keep the polarized light's index of refraction constant in our simulation. The quantitative relation between thermal boundary condition and strength of applied electric field during electrical modulation is determined. Numerical results indicate a possible approach to removing adverse thermal effects such as depolarization and wavefront distortion, which are caused by thermal deposition during linear laser absorption.

  1. Topographically induced homeotropic alignment of liquid crystals on self-assembled opal crystals.

    PubMed

    Kumar, Pankaj; Oh, Su Yeon; Baliyan, Vijay K; Kundu, Sudarshan; Lee, Seung Hee; Kang, Shin-Woong

    2018-04-02

    The surface of multilayered opal crystals resulted in homeotropic alignment of liquid crystal (LC), originated from the surface topography of opal crystals rather than a chemical nature of the nanoparticles. The polar anchoring energy (5.51 × 10 -5 J/m 2 ) of the crystal surface for nematic LC molecules was in a similar range to the conventional polyimide alignment layer (2.11 × 10 -5 J/m 2 ) used for commercial applications. The critical length scale for anchoring transition was approximately Lw = ~1 μm. If a diameter of particle d < 1 μm for opal crystals, LC molecules preferred to anchor vertically to the surface to minimize elastic free energy of bulk LCs. The LC favored a planar anchoring if d > 1 μm. The results provide crucial insights to understand the homeotropic alignment of LCs on solid surfaces and therefore offer opportunities to develop novel materials for a vertical alignment of LCs.

  2. Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers

    DOE PAGES

    Ihli, Johannes; Clark, Jesse N.; Côté, Alexander S.; ...

    2016-06-15

    Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. In this study, we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO 3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generatedmore » in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. In conclusion, this work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates.« less

  3. A drunken search in crystallization space

    PubMed Central

    Fazio, Vincent J.; Peat, Thomas S.; Newman, Janet

    2014-01-01

    The REMARK280 field of the Protein Data Bank is the richest open source of successful crystallization information. The REMARK280 field is optional and currently uncurated, so significant effort needs to be applied to extract reliable data. There are well over 15 000 crystallization conditions available commercially from 12 different vendors. After putting the PDB crystallization information and the commercial cocktail data into a consistent format, these data are used to extract information about the overlap between the two sets of crystallization conditions. An estimation is made as to which commercially available conditions are most appropriate for producing well diffracting crystals by looking at which commercial conditions are found unchanged (or almost unchanged) in the PDB. Further analyses include which commercial kits are the most appropriate for shotgun or more traditional approaches to crystallization screening. This analysis suggests that almost 40% of the crystallization conditions found currently in the PDB are identical or very similar to a commercial condition. PMID:25286930

  4. Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers

    PubMed Central

    Ihli, Johannes; Clark, Jesse N.; Côté, Alexander S.; Kim, Yi-Yeoun; Schenk, Anna S.; Kulak, Alexander N.; Comyn, Timothy P.; Chammas, Oliver; Harder, Ross J.; Duffy, Dorothy M.; Robinson, Ian K.; Meldrum, Fiona C.

    2016-01-01

    Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. Here we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generated in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. This work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates. PMID:27302863

  5. Characteristics of a liquid-crystal-filled composite lattice terahertz bandgap fiber

    NASA Astrophysics Data System (ADS)

    Bai, Jinjun; Ge, Meilan; Wang, Shasha; Yang, Yanan; Li, Yong; Chang, Shengjiang

    2018-07-01

    A new type of terahertz fiber is presented based on composite lattice photonic crystal bandgap. The cladding is filled selectively with the nematic liquid crystal 5CB which is sensitive to the electric field. The terahertz wave can be modulated by using the electric field to control the orientation of liquid crystal molecules. The plane wave expansion method and the finite element method are employed to theoretically analyze bandgap characteristics, polarization characteristics, energy fraction and material absorption loss. The results show that this fiber structure can be used as tunable terahertz polarization controller.

  6. Properties of Coulomb crystals: rigorous results.

    PubMed

    Cioslowski, Jerzy

    2008-04-28

    Rigorous equalities and bounds for several properties of Coulomb crystals are presented. The energy e(N) per particle pair is shown to be a nondecreasing function of the particle number N for all clusters described by double-power-law pairwise-additive potentials epsilon(r) that are unbound at both r-->0 and r-->infinity. A lower bound for the ratio of the mean reciprocal crystal radius and e(N) is derived. The leading term in the asymptotic expression for the shell capacity that appears in the recently introduced approximate model of Coulomb crystals is obtained, providing in turn explicit large-N asymptotics for e(N) and the mean crystal radius. In addition, properties of the harmonic vibrational spectra are investigated, producing an upper bound for the zero-point energy.

  7. Crystal structure, chemical composition, and extended defects of the high-Tc (Bi,Pb)2Sr2Ca(n)-1CunO4 + 2n + delta compounds.

    PubMed

    Eibl, O

    1995-02-15

    This paper summarizes results obtained by high-resolution transmission electron microscopy on the crystal structure and microstructure of the (Bi,Pb)2Sr2Ca(n)-1CunO4 + 2n + delta high-Tc superconducting oxides. The experimental basis for the work presented here are high-resolution structure images obtained at ultra-thin (3 nm) areas of carefully prepared transmission electron microscope (TEM) samples. The analysis was carried out on a 400 kV TEM equipped with a pole piece yielding 0.17 nm point-to-point resolution. From the images obtained the projected crystal potential of the cations can be extracted directly, as confirmed by detailed image simulation. Structural analysis of the oxygen sublattice remains an unsolved problem by high-resolution TEM (HRTEM), mainly because of the small scattering factors, and thus the contribution of the oxygen sublattice to the image contrast is small. The (BiPb)2Sr2Ca(n)-1CunO4 + 2n + delta phases are modulated structures that can be understood as an average structure plus a superimposed displacement field. The crystal structure consists of BiO double layers and perovskite-type cuboids (containing Sr, Ca, Cu, and O), which are sandwiched between the BiO double layers. The displacement field can be directly analyzed by HRTEM, and the largest displacement amplitudes of 70 pm were determined for the Bi atoms in the n = 1 compound. The chemical composition of the n = 2 and n = 3 compounds was determined by EDX in the TEM for the cation sublattice. A significant (Ca + Sr) deficiency (approximately 10%) with respect to Cu was found. The (Sr + Ca)/Cu mole fraction ratio was 1.31 for the Bi-2212 phase and 1.14 for the Bi(Pb)-2223 phase. The oxygen content cannot be determined by EDX in the TEM with the accuracy necessary for a correlation with electrical and superconducting properties. The defect structure present in these materials, that is, intergrown lamellae with different crystal structures and equal or different chemical compositions, stacking faults, and grain boundaries, is summarized. The importance of grain boundaries for understanding and improving superconducting properties is emphasized.

  8. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaoyang; Frisbie, Daniel

    2017-03-31

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering.

  9. Magnetic Field Applications in Semiconductor Crystal Growth and Metallurgy

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan; Grugel, Richard; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The Traveling Magnetic Field (TMF) technique, recently proposed to control meridional flow in electrically conducting melts, is reviewed. In particular, the natural convection damping capability of this technique has been numerically demonstrated with the implication of significantly improving crystal quality. Advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, are discussed. Finally, results of experiments with mixing metallic alloys in long ampoules using TMF is presented

  10. Exchange field effect in the crystal-field ground state of Ce M Al 4 Si 2

    DOE PAGES

    Chen, K.; Strigari, F.; Sundermann, M.; ...

    2016-09-06

    The crystal-field ground-state wave functions of the tetragonal, magnetically ordering Kondo lattice materials CeMAl 4Si 2 (M = Rh, Ir, and Pt) are determined in this paper with low-temperature linearly polarized soft-x-ray absorption spectroscopy, and estimates for the crystal-field splittings are given from the temperature evolution of the linear dichroism. Values for the dominant exchange field in the magnetically ordered phases can be obtained from fitting the influence of magnetic order on the linear dichroism. The direction of the required exchange field is || c for the antiferromagnetic Rh and Ir compounds, with the corresponding strength of the order ofmore » λ ex ≈ 6 meV (65 K). Finally and furthermore, the presence of Kondo screening in the Rh and Ir compound is demonstrated on the basis of the absorption due to f 0 in the initial state.« less

  11. Ferromagnetic Switching of Knotted Vector Fields in Liquid Crystal Colloids.

    PubMed

    Zhang, Qiaoxuan; Ackerman, Paul J; Liu, Qingkun; Smalyukh, Ivan I

    2015-08-28

    We experimentally realize polydomain and monodomain chiral ferromagnetic liquid crystal colloids that exhibit solitonic and knotted vector field configurations. Formed by dispersions of ferromagnetic nanoplatelets in chiral nematic liquid crystals, these colloidal ferromagnets exhibit spontaneous long-range alignment of magnetic dipole moments of individual platelets, giving rise to a continuum of the magnetization field M(r). Competing effects of surface confinement and chirality prompt spontaneous formation and enable the optical generation of localized twisted solitonic structures with double-twist tubes and torus knots of M(r), which exhibit a strong sensitivity to the direction of weak magnetic fields ∼1  mT. Numerical modeling, implemented through free energy minimization to arrive at a field-dependent three-dimensional M(r), shows a good agreement with experiments and provides insights into the torus knot topology of observed field configurations and the corresponding physical underpinnings.

  12. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  13. Optical devices having flakes suspended in a host fluid to provide a flake/fluid system providing flakes with angularly dependent optical properties in response to an alternating current electric field due to the dielectric properties of the system

    DOEpatents

    Kosc, Tanya Z [Rochester, NY; Marshall, Kenneth L [Rochester, NY; Jacobs, Stephen D [Pittsford, NY

    2006-05-09

    Optical devices utilizing flakes (also called platelets) suspended in a host fluid have optical characteristics, such as reflective properties, which are angular dependent in response to an AC field. The reflectivity may be Bragg-like, and the characteristics are obtained through the use of flakes of liquid crystal material, such as polymer liquid crystal (PLC) materials including polymer cholesteric liquid crystal (PCLC) and polymer nematic liquid crystal (PNLC) material or birefringent polymers (BP). The host fluid may be propylene carbonate, poly(ethylene glycol) or other fluids or fluid mixtures having fluid conductivity to support conductivity in the flake/host system. AC field dependent rotation of 90.degree. can be obtained at rates and field intensities dependent upon the frequency and magnitude of the AC field. The devices are useful in providing displays, polarizers, filters, spatial light modulators and wherever switchable polarizing, reflecting, and transmission properties are desired.

  14. A portable extruder for in situ wide angle x-ray scattering study on multi-dimensional flow field induced crystallization of polymer

    NASA Astrophysics Data System (ADS)

    Chang, Jiarui; Wang, Zhen; Tang, Xiaoliang; Tian, Fucheng; Ye, Ke; Li, Liangbin

    2018-02-01

    We have designed and constructed a portable extruder with a rotatable mandrel, which can be employed to study the multi-dimensional flow field (MDFF) induced crystallization of polymer combined with in situ wide angle x-ray scattering (WAXS). With the piston driving the melt sample to flow along the channel, a direct axial shear field is achieved. At the same time, the central mandrel keeps rotating under a stable speed, providing the sample with an additional circumferential shear field. By presetting different proportions of the two shear fields, namely, axial and circumferential, various flow states of the sample can be obtained, which makes it capable of investigating the effects of MDFF on polymer crystallization. We have performed an in situ WAXS experiment of MDFF induced crystallization of isotactic polypropylene based on the portable extruder at the beam line BL16B in Shanghai Synchrotron Radiation Facility. The rheological and structural information is collected simultaneously, which manifests the viability of the portable extruder on regulating MDFF and can provide guidance for polymer processing.

  15. Optical properties of Mn 2+ in KCaF 3 single crystal

    NASA Astrophysics Data System (ADS)

    Mazurak, Z.; Ratuszna, A.; Daniel, Ph.

    1999-02-01

    It is known that the spectroscopic properties of 3d impurities in crystals are very sensitive to the environment of the ion and can be changed considerably by using different matrices. The crystal structure of KCaF 3 has been previously determined by the Rietveld profile method. At room temperature, KCa 1- xMn xF 3 ( x<0.1) crystallizes in monoclinic C2 h ( B2 1/ m) symmetry. The local geometries around Mn 2+ in this crystals, in their ground and excited states, are the primary properties that govern the spectroscopic behavior of these systems, which enjoy of fundamental and technological interest. The present work reports the absorption and luminescence spectra of the Mn 2+-doped KCaF 3 (fluoroperovskite). The luminescence spectra recorded over a range of temperatures are dominated by wide bands, corresponding to the 4T 1(G)→ 6A 1(G), Mn 2+ transition. The lifetime ( τ= f( T)) of the first excited state 4T 1(G) was measured as a function of temperature. The lifetime of the Mn 2+ emission, in this crystal have been found to be temperature independent ( τ<7 μs). The absorption and emission spectra of Mn 2+ (3d 5) in KCaF 3 are analyzed using a C4 crystal-field hamiltonian. The calculated energy levels are in good agreement with those obtained experimentally. The resulting crystal-field parameters Bnm are a good representation of the crystal-field interactions of Mn 2+ in KCaF 3.

  16. Dislocation Mobility and Anomalous Shear Modulus Effect in ^4He Crystals

    NASA Astrophysics Data System (ADS)

    Malmi-Kakkada, Abdul N.; Valls, Oriol T.; Dasgupta, Chandan

    2017-02-01

    We calculate the dislocation glide mobility in solid ^4He within a model that assumes the existence of a superfluid field associated with dislocation lines. Prompted by the results of this mobility calculation, we study within this model the role that such a superfluid field may play in the motion of the dislocation line when a stress is applied to the crystal. To do this, we relate the damping of dislocation motion, calculated in the presence of the assumed superfluid field, to the shear modulus of the crystal. As the temperature increases, we find that a sharp drop in the shear modulus will occur at the temperature where the superfluid field disappears. We compare the drop in shear modulus of the crystal arising from the temperature dependence of the damping contribution due to the superfluid field, to the experimental observation of the same phenomena in solid ^4He and find quantitative agreement. Our results indicate that such a superfluid field plays an important role in dislocation pinning in a clean solid ^4He at low temperatures and in this regime may provide an alternative source for the unusual elastic phenomena observed in solid ^4He.

  17. Far-field coupling in nanobeam photonic crystal cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousseau, Ian, E-mail: ian.rousseau@epfl.ch; Sánchez-Arribas, Irene; Carlin, Jean-François

    2016-05-16

    We optimized the far-field emission pattern of one-dimensional photonic crystal nanobeams by modulating the nanobeam width, forming a sidewall Bragg cross-grating far-field coupler. By setting the period of the cross-grating to twice the photonic crystal period, we showed using three-dimensional finite-difference time-domain simulations that the intensity extracted to the far-field could be improved by more than three orders of magnitude compared to the unmodified ideal cavity geometry. We then experimentally studied the evolution of the quality factor and far-field intensity as a function of cross-grating coupler amplitude. High quality factor (>4000) blue (λ = 455 nm) nanobeam photonic crystals were fabricated out ofmore » GaN thin films on silicon incorporating a single InGaN quantum well gain medium. Micro-photoluminescence spectroscopy of sets of twelve identical nanobeams revealed a nine-fold average increase in integrated far-field emission intensity and no change in average quality factor for the optimized structure compared to the unmodulated reference. These results are useful for research environments and future nanophotonic light-emitting applications where vertical in- and out-coupling of light to nanocavities is required.« less

  18. Dynamic and magneto-optic properties of bent-core liquid crystals

    NASA Astrophysics Data System (ADS)

    Salili, Seyyed Muhammad

    In this work, we describe dynamic behavior of free-standing bent-core liquid crystal filaments under dilative and axial compressive stresses in the B7 phase. We found that such filaments demonstrate very complex structures depending on the filament's temperature relative to the isotropic phase, initial filament thickness, and velocity at which the filament is pulled or compressed. We also present our experimental methods, results and analysis of the rupture and recoil properties of several bent-core liquid crystal filaments, anticipating that they may serve as a model system for complex biological fibers. After that, we systematically describe rheological measurements for dimeric liquid crystal compounds. We studied the shear-induced alignment properties, measured the viscoelastic properties as a function of temperature, shear rate, stress and frequency, and compared the results with the rheological properties of conventional chiral nematic and smectic phases. Then we present results of chiral nematic liquid crystals composed of flexible dimer molecules subject to large DC magnetic fields between 0 and 31T. We observe that these fields lead to selective reflection of light depending on temperature and magnetic field. The band of reflected wavelengths can be tuned from ultraviolet to beyond the IR-C band. A similar effect induced by electric fields has been presented previously, and was explained by a field-induced oblique-heliconical director deformation in accordance with early theoretical predictions. Finally, we report an unprecedented magnetic field-induced shifts of the isotropic-nematic phase transition temperature observed in liquid crystal dimers where two rigid linear mesogens are linked by flexible chains of either even- or odd-numbered hydrocarbon groups. This effect is explained in terms of quenching of the thermal fluctuations and decrease of the average bend angle of molecules in the odd-numbered dimers.

  19. Reflection Spectra of Distorted Cholesteric Liquid Crystal Structures in Cells with Interdigitated Electrodes (Postprint)

    DTIC Science & Technology

    2014-07-01

    adjusting the magnitude of the electric field. 15. SUBJECT TERMS liquid crystals , liquid- crystal devices, Bragg reflectors, optical properties, chiral ...160.3710) Liquid crystals ; (230.3720) Liquid- crystal devices; (230.1480) Bragg reflectors; (160.4760) Optical properties; (160.1585) Chiral media...White, and T. J. Bunning, “Local optical spectra and texture for chiral nematic liquid crystals in cells with interdigitated electrodes,” Mol

  20. Investigation of the linear and second-order nonlinear optical properties of molecular crystals within the local field theory.

    PubMed

    Seidler, Tomasz; Stadnicka, Katarzyna; Champagne, Benoît

    2013-09-21

    In this paper it is shown that modest calculations combining first principles evaluations of the molecular properties with electrostatic interaction schemes to account for the crystal environment effects are reliable for predicting and interpreting the experimentally measured electric linear and second-order nonlinear optical susceptibilities of molecular crystals within the experimental error bars. This is illustrated by considering two molecular crystals, namely: 2-methyl-4-nitroaniline and 4-(N,N-dimethylamino)-3-acetamidonitrobenzene. Three types of surrounding effects should be accounted for (i) the polarization due to the surrounding molecules, described here by static electric fields originating from their electric dipoles or charge distributions, (ii) the intermolecular interactions, which affect the geometry and particularly the molecular conformation, and (iii) the screening of the external electric field by the constitutive molecules. This study further highlights the role of electron correlation on the linear and nonlinear responses of molecular crystals and the challenge of describing frequency dispersion.

  1. Isogyres - Manifestation of Spin-orbit interaction in uniaxial crystal: A closed-fringe Fourier analysis of conoscopic interference

    NASA Astrophysics Data System (ADS)

    Samlan, C. T.; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2016-09-01

    Discovered in 1813, the conoscopic interference pattern observed due to light propagating through a crystal, kept between crossed polarizers, shows isochromates and isogyres, respectively containing information about the dynamic and geometric phase acquired by the beam. We propose and demonstrate a closed-fringe Fourier analysis method to disentangle the isogyres from the isochromates, leading us to the azimuthally varying geometric phase and its manifestation as isogyres. This azimuthally varying geometric phase is shown to be the underlying mechanism for the spin-to-orbital angular momentum conversion observed in a diverging optical field propagating through a z-cut uniaxial crystal. We extend the formalism to study the optical activity mediated uniaxial-to-biaxial transformation due to a weak transverse electric field applied across the crystal. Closely associated with the phase and polarization singularities of the optical field, the formalism enables us to understand crystal optics in a new way, paving the way to anticipate several emerging phenomena.

  2. Isogyres - Manifestation of Spin-orbit interaction in uniaxial crystal: A closed-fringe Fourier analysis of conoscopic interference.

    PubMed

    Samlan, C T; Naik, Dinesh N; Viswanathan, Nirmal K

    2016-09-14

    Discovered in 1813, the conoscopic interference pattern observed due to light propagating through a crystal, kept between crossed polarizers, shows isochromates and isogyres, respectively containing information about the dynamic and geometric phase acquired by the beam. We propose and demonstrate a closed-fringe Fourier analysis method to disentangle the isogyres from the isochromates, leading us to the azimuthally varying geometric phase and its manifestation as isogyres. This azimuthally varying geometric phase is shown to be the underlying mechanism for the spin-to-orbital angular momentum conversion observed in a diverging optical field propagating through a z-cut uniaxial crystal. We extend the formalism to study the optical activity mediated uniaxial-to-biaxial transformation due to a weak transverse electric field applied across the crystal. Closely associated with the phase and polarization singularities of the optical field, the formalism enables us to understand crystal optics in a new way, paving the way to anticipate several emerging phenomena.

  3. Light intensity compressor

    DOEpatents

    Rushford, Michael C.

    1990-02-06

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  4. Light intensity compressor

    DOEpatents

    Rushford, Michael C.

    1990-01-01

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  5. Elimination of image flicker in a fringe-field switching liquid crystal display by applying a bipolar voltage wave.

    PubMed

    Oh, Seung-Won; Park, Jun-Hee; Lee, Ji-Hoon; Yoon, Tae-Hoon

    2015-09-07

    Recently, low-frequency driving of liquid crystal display (LCD) panels to minimize power consumption has drawn much attention. In the case in which an LCD panel is driven by a fringe-field at a low frequency, the image flickering phenomenon occurs when the sign of the applied electric field is reversed. We investigated image flickering induced by the flexoelectric effect in a fringe-field switching (FFS) liquid crystal cell in terms of the transmittance difference between frames and the ripple phenomenon. Experimental results show that image flicker due to transmittance difference can be eliminated completely and that the ripple phenomena can be reduced significantly by applying a bipolar voltage wave to the FFS cell.

  6. All-optical switch based on doped graphene quantum dots in a defect layer of a one-dimensional photonic crystal.

    PubMed

    Sahrai, Mostafa; Abbasabadi, Majid

    2018-01-20

    We discuss the light pulse propagation in a one-dimensional photonic crystal doped by graphene quantum dots in a defect layer. The graphene quantum dots behave as a three-level quantum system and are driven by three coherent laser fields. It is shown that the group velocity of the transmitted and reflected pulses can be switched from subluminal to superluminal light propagation by adjusting the relative phase of the applied fields. Furthermore, it is found that by proper choice of the phase difference between applied fields, the weak probe field amplification is achieved through a one-dimensional photonic crystal. In this way, the result is simultaneous subluminal transmission and reflection.

  7. Structural and magnetic investigations of single-crystalline neodymium zirconate pyrochlore Nd2Zr2O7

    NASA Astrophysics Data System (ADS)

    Hatnean, M. Ciomaga; Lees, M. R.; Petrenko, O. A.; Keeble, D. S.; Balakrishnan, G.; Gutmann, M. J.; Klekovkina, V. V.; Malkin, B. Z.

    2015-05-01

    We report structural and magnetic properties studies of large high-quality single crystals of the frustrated magnet Nd2Zr2O7 . Powder x-ray diffraction analysis confirms that Nd2Zr2O7 adopts the pyrochlore structure. Room-temperature x-ray diffraction and time-of-flight neutron-scattering experiments show that the crystals are stoichiometric in composition with no measurable site disorder. The temperature dependence of the magnetic susceptibility shows no magnetic ordering at temperatures down to 0.5 K. Fits to the magnetic susceptibility data using a Curie-Weiss law reveal a ferromagnetic coupling between the Nd moments. Magnetization versus field measurements show a local Ising anisotropy along the <111 > axes of the Nd3 + ions in the ground state. Specific heat versus temperature measurements in zero applied magnetic field indicate the presence of a thermal anomaly below T ˜7 K, but no evidence of magnetic ordering is observed down to 0.5 K. The experimental temperature dependence of the single-crystal bulk dc susceptibility and isothermal magnetization are analyzed using crystal field theory and the crystal field parameters and exchange coupling constants determined.

  8. Magnetic field-induced strain and magnetoelectric effects in sandwich composite of ferromagnetic shape memory Ni-Mn-Ga crystal and piezoelectric PVDF polymer.

    PubMed

    Zeng, Min; Or, Siu Wing; Chan, Helen Lai Wa

    2010-10-01

    A sandwich composite consisting of one layer of ferromagnetic shape memory Ni-Mn-Ga crystal plate bonded between two layers of piezoelectric PVDF polymer film was fabricated, and its magnetic field-induced strain (MFIS) and magnetoelectric (ME) effects were investigated, together with a monolithic Ni-Mn-Ga crystal, as functions of magnetic fields and mechanical load. The load-free dc- and ac-MFISs were 0.35 and 0.05% in the composite, and 5.6 and 0.3% in the monolithic crystal, respectively. The relatively smaller load-free MFISs in the composite than the monolithic crystal resulted from the clamping of martensitic twin-boundary motion in the Ni-Mn-Ga plate by the PVDF films. The largest ME coefficient (α(E)) was 0.58 V/cm·Oe at a magnetic bias field (H(Bias)) of 8.35 kOe under load-free condition. The mechanism of the ME effect originated from the mechanically mediated MFIS effect in the Ni-Mn-Ga plate and piezoelectric effect in the PVDF films. The measured α(E)-H(Bias) responses under different loads showed good agreement with the model prediction.

  9. Long-Term Effect of Fault-Controlled CO2 Alteration on the Weakening and Strengthening of Reservoir and Seal Lithologies at Crystal Geyser, Green River, Utah

    NASA Astrophysics Data System (ADS)

    Major, J. R.; Eichhubl, P.; Dewers, T. A.

    2014-12-01

    An understanding of the coupled chemical and mechanical properties and behavior of reservoir and seal rocks is critical for assessing both the short and long term security of sequestered CO2. A combined structural diagenesis approach using observations from natural analogs has great advantages for understanding these properties over longer time scales than is possible using laboratory or numerical experiments. Current numerical models evaluating failure of reservoirs and seals during and after CO2 injection in the subsurface are just beginning to account for such coupled processes. Well-characterized field studies of natural analogs such as Crystal Geyser, Utah, are essential for providing realistic input parameters, calibration, and testing of numerical models across a range of spatial and temporal scales. Fracture mechanics testing was performed on a suite of naturally altered and unaltered reservoir and seal rocks exposed at the Crystal Geyser field site. These samples represent end-products of CO2-related alteration over geologic (>103 yr) time scales. Both the double torsion and short rod test methods yield comparable results on the same samples. Tests demonstrate that CO2-related alteration has weakened one reservoir sandstone lithology by approximately 50%, but the subcritical index is not significantly affected. An altered siltstone sample also shows a reduction in fracture toughness values and lowered subcritical index in comparison to unaltered siltstone. In contrast, elevated calcite content in shales due to CO2 alteration has increased fracture toughness. Similarly, fracture toughness was increased in what is otherwise a weak, poorly cemented sandstone unit due to increased calcite cement. Combined, these results demonstrate that CO2-related alteration generally weakens rock to fracturing (i.e. lowers fracture toughness), except in cases where calcite cementation is significantly increased. The natural system at Crystal Geyser demonstrates that water-CO2-rock interaction driven by changes in the geochemical environment have measurably altered rock geomechanical properties and that some rock units may become more prone to failure, ultimately leading to fracturing and leakage of subsurface reservoirs. These results also have application for CO2-based enhanced oil recovery.

  10. Absorption spectra analysis of hydrated uranium(III) complex chlorides

    NASA Astrophysics Data System (ADS)

    Karbowiak, M.; Gajek, Z.; Drożdżyński, J.

    2000-11-01

    Absorption spectra of powdered samples of hydrated uranium(III) complex chlorides of the formulas NH 4UCl 4 · 4H 2O and CsUCl 4 · 3H 2O have been recorded at 4.2 K in the 4000-26 000 cm -1 range. The analysis of the spectra enabled the determination of crystal-field parameters and assignment of 83 and 77 crystal-field levels for the tetrahydrate and trihydrate, respectively. The energies of the levels were computed by applying a simplified angular overlap model as well as a semiempirical Hamiltonian representing the combined atomic and crystal-field interactions. Ab initio calculations have enabled the application of a simplified parameterization and the determination of the starting values of the AOM parameters. The received results have proved that the AOM approach can quite well predict both the structure of the ground multiplet and the positions of the crystal-field levels in the 17 000-25 000 cm -1 range, usually obscured by strong f-d bands.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Fei; Wan, Xiangang; Phelan, Daniel

    ZrCuSi 2-type CePd 1-xBi 2 crystals were obtained from excess Bi flux. Magnetic susceptibility measurements reveal that CePd 1-xBi 2 is a highly anisotropic antiferromagnet with transition temperature at 6 K, and a magnetic-field-induced metamagnetic transition at 5 T. An enhanced Sommerfeld coefficient of γ of 0.199 J-mol-Ce -1K -2 obtained from specific heat measurements suggests a moderate Kondo effect in CePd 1-xBi 2. In addition to the antiferromagnetic peak the resistivity curve shows a shoulder-like behavior which could be attributed to the presence of Kondo effect and crystal-electric-field effects in this compound. Magnetoresistance and Hall effect measurements suggest anmore » interplay between Kondo and crystal-electric-field effects which reconstructs the Fermi surface topology of CePd 1-xBi 2 around 75 K. Electronic structure calculations reveal the Pd vacancies are important to the magnetic structure and enhance the crystal-electric-field effects which quench the orbital moment of Ce at low temperatures.« less

  12. Anisotropies in the linear polarization of vacancy photoluminescence in diamond induced by crystal rotations and strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Braukmann, D.; Popov, V. P.; Glaser, E. R.; Kennedy, T. A.; Bayer, M.; Debus, J.

    2018-03-01

    We study the linear polarization properties of the photoluminescence of ensembles of neutral and negatively charged nitrogen vacancies and neutral vacancies in diamond crystals as a function of their symmetry and their response to strong external magnetic fields. The linear polarization degree, which exceeds 10% at room temperature, and rotation of the polarization plane of their zero-phonon lines significantly depend on the crystal rotation around specific axes demonstrating anisotropic angular evolutions. The sign of the polarization plane rotation is changed periodically through the crystal rotation, which indicates a switching between electron excited states of orthogonal linear polarizations. At external magnetic fields of up to 10 T, the angular dependencies of the linear polarization degree experience a remarkable phase shift. Moreover, the rotation of the linear polarization plane increases linearly with rising magnetic field at 6 K and room temperature, for the negatively charged nitrogen vacancies, which is attributed to magneto-optical Faraday rotation.

  13. Monoclinic MB phase and phase instability in [110] field cooled Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Yao, Jianjun; Cao, Hu; Ge, Wenwei; Li, Jiefang; Viehland, D.

    2009-08-01

    We report the finding of a monoclinic MB phase in Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 single crystals. High precision x-ray diffraction investigations of [110] field cooled crystals have shown a transformation sequence of cubic(C)→tetragonal(T)→orthorhombic(O)→monoclinic(MB), which is different from that previously reported [A.-E. Renault et al., J. Appl. Phys. 97, 044105 (2005)]. Beginning in the zero-field-cooled condition at 383 K, a rhombohedral (R)→MB→O sequence was observed with increasing field. Coexisting MB and O phases were then found upon removal of field, which fully transformed to MB on cooling to room temperature.

  14. On the local field method with the account of spatial dispersion. Application to the optical activity theory

    NASA Astrophysics Data System (ADS)

    Tyu, N. S.; Ekhilevsky, S. G.

    1992-07-01

    For the perfect molecular crystals the equations of the local field method (LFM) with the account of spatial dispersion are formulated. They are used to derive the expression for the crystal polarizability tensor. For the first time within the framework of this method the formula for the gyrotropy tensor of an arbitrary optically active molecular crystal is obtained. This formula is analog of well known relationships of Lorentz-Lorenz.

  15. Dielectric, magnetic, and lattice dynamics properties of Y-type hexaferrite Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}Fe{sub 12}O{sub 22}: Comparison of ceramics and single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamba, S.; Goian, V.; Savinov, M.

    2010-05-15

    We prepared multiferroic Y-type hexaferrite Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}Fe{sub 12}O{sub 22} ceramics and compared their magnetic and dielectric properties with single crystal. Magnetic susceptibility and microwave resonance measurement revealed magnetic phase transition at T{sub C}=312 K, similar as in single crystal. Ferroelectric (FE) phase can be induced by external magnetic field in all investigated samples and the phase diagram in ceramics qualitatively resembles that of the single crystal. The range of magnetic fields, where the FE phase is induced, broadens after annealing of single crystal. Ceramics quenched after sintering exhibit several orders of magnitude lower conductivity than the single crystal.more » Heavily damped magnetic resonance was discovered in terahertz spectra at 10 K and its frequency softens below 5 GHz near T{sub C}. Number and symmetry of observed infrared (IR) and Raman active phonons correspond to paraelectric phase with D{sub 3d}{sup 5} hexagonal structure. No evidence for a structural phase transition was found in the IR and Raman spectra on cooling (in zero magnetic field) or in the room-temperature IR spectra with external static magnetic field up to 0.3 T.« less

  16. Fluctuation conductivity of oxygen underdoped YBa2Cu3O7-δ single crystals

    NASA Astrophysics Data System (ADS)

    Vovk, R. V.; Khadzhai, G. Ya.; Goulatis, I. L.; Chroneos, A.

    2014-03-01

    The electrical resistance in the range of ТC-300 K in the layer planes of YВа2Сu3О7-δ single crystals with a range of oxygen deficiency (providing a range of TC from 78 to 92 K) was investigated. The experimental data is approximated by an expression that accounts for the scattering of electrons on phonons, as well as on defects and the fluctuation conductivity in a 3-D model of the Aslamazov-Larkin theory. According to this approximation, depending upon the oxygen deficiency, the Debye temperature varies from 245 to 400 K, coherence length ξС(0)≈0.5 Å.

  17. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Schweizer, M.; Cobb, S. D.; Walker, J. S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). The RMF has a marked affect on the interface shape, changing it from concave to nearly flat. The onset of time-dependent flow instabilities occurs when the critical magnetic Taylor number is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The critical magnetic Taylor number is a sensitive function of the aspect ratio and, as the crystal grows under a constant applied magnetic field, the induced striations change from nonperiodic to periodic, undergo a period-doubling transition, and then cease to exist. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.

  18. Experimental study of the rotational magnetocaloric effect in KTm(MoO4)2

    NASA Astrophysics Data System (ADS)

    Tarasenko, Róbert; Tkáč, Vladimír; Orendáčová, Alžbeta; Orendáč, Martin; Feher, Alexander

    2018-06-01

    An experimental study is presented of the rotational magnetocaloric effect in a KTm(MoO4)2 single crystal at temperatures above 2 K associated with the rotation of a single crystal between the magnetic easy and hard axis in constant magnetic fields up to 5 T. The magnetocaloric properties of KTm(MoO4)2 single crystals are investigated by isothermal magnetization measurements. The maximal rotational entropy change -ΔSR ≈ 9.8 J/(kgK) is achieved at 10 K in a magnetic field of 5 T. The adiabatic rotation of a single crystal in a field of 5 T at an initial temperature of 4.2 K causes cooling of the sample down to 0.5 K, which indicates an interesting possibility of using this material for cooling processes at low temperatures.

  19. Electron paramagnetic resonance study of alinement induced by magnetic fields in two smectic-A liquid crystals not exhibiting nematic phases

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Gelerinter, E.

    1972-01-01

    Using vanadyl acetylacetonate (VAAC) as a paramagnetic probe, the molecular ordering in two smectic-A liquid crystals that do not display nematic phases were studied. Reproducible alinement was attained by slow cooling throughout the isotropic smectic-A transition in dc magnetic fields of 1.1 and 2.15 teslas. The degree of order attained is small for a smectic-A liquid crystal. Measurements were made of the variation of the average hyperfine splitting of the alined samples as a function of orientation relative to the dc magnetic field of the spectrometer. This functional dependence is in agreement with the theoretical prediction except where the viscosity of the liquid crystal becomes large enough to slow the tumbling of the VAAC, as indicated by asymmetry in the end lines of the spectrum.

  20. Fluid mechanics in crystal growth - The 1982 Freeman scholar lecture

    NASA Technical Reports Server (NTRS)

    Ostrach, S.

    1983-01-01

    An attempt is made to unify the current state of knowledge in crystal growth techniques and fluid mechanics. After identifying important fluid dynamic problems for such representative crystal growth processes as closed tube vapor transport, open reactor vapor deposition, and the Czochralski and floating zone melt growth techniques, research results obtained to date are presented. It is noted that the major effort to date has been directed to the description of the nature and extent of bulk transport under realistic conditions, where bulk flow determines the heat and solute transport which strongly influence the temperature and concentration fields in the vicinity of the growth interface. Proper treatment of near field, or interface, problems cannot be given until the far field, or global flow, involved in a given crystal growth technique has been adequately described.

  1. The Syrtis Major volcano, Mars: A multidisciplinary approach to interpreting its magmatic evolution and structural development

    NASA Astrophysics Data System (ADS)

    Lillis, Robert J.; Dufek, Josef; Kiefer, Walter S.; Black, Benjamin A.; Manga, Michael; Richardson, Jacob A.; Bleacher, Jacob E.

    2015-09-01

    Very weak crustal magnetic fields over the Syrtis Major volcanic complex imply almost total thermal demagnetization via magmatic intrusions over a large area less than ~4 Ga. We fit a model of these intrusions and the resulting thermal demagnetization to maps of crustal magnetic field strength at 185 km altitude. The best fits are most consistent with a "dog bone"-shaped region of intrusive material, elongated approximately north-south, with an area of ~350,000 km2 and an inferred volume of ~4-19 × 106 km3. Such a large volume is best explained by a long-lived mantle plume beneath the Syrtis edifice. A free-air gravity anomaly high over the Syrtis Major caldera is consistent with dense mafic residue remaining at depth following crystal fractionation that produced the silicic magmas seen at the surface. The elongation of this region is consistent with ascent and north-south emplacement of magma enabled by structures parallel to and associated with the preexisting Isidis impact basin.

  2. Investigation of focusing and correcting aberrations with binary amplitude and polarization modulation

    DOE PAGES

    Fiala, Peter; Li, Yunqi; Dorrer, Christophe

    2018-01-29

    Here, we investigate the focusing and correcting wavefront aberration of an optical wave using binary amplitude and polarization modulation. Focusing is performed by selectively modulating the field in different zones of the pupil to obtain on-axis constructive interference at a given distance. The conventional Soret zone plate (binary amplitude profile) is expanded to a polarization Soret zone plate with twice the focusing efficiency. Binary pixelated devices that approximate the sinusoidal transmission profile of a Gabor zone plate by spatial dithering are also investigated with amplitude and polarization modulation. Wavefront aberrations are corrected by modulation of the field in the pupilmore » plane to prevent destructive interference in the focal plane of an ideal focusing element. Polarization modulation improves the efficiency obtained by amplitude-only modulation, with a gain that depends on the aberration. Experimental results obtained with Cr-on-glass devices for amplitude modulation and liquid crystal devices operating in the Mauguin condition for polarization modulation are in very good agreement with simulations.« less

  3. Investigation of focusing and correcting aberrations with binary amplitude and polarization modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiala, Peter; Li, Yunqi; Dorrer, Christophe

    Here, we investigate the focusing and correcting wavefront aberration of an optical wave using binary amplitude and polarization modulation. Focusing is performed by selectively modulating the field in different zones of the pupil to obtain on-axis constructive interference at a given distance. The conventional Soret zone plate (binary amplitude profile) is expanded to a polarization Soret zone plate with twice the focusing efficiency. Binary pixelated devices that approximate the sinusoidal transmission profile of a Gabor zone plate by spatial dithering are also investigated with amplitude and polarization modulation. Wavefront aberrations are corrected by modulation of the field in the pupilmore » plane to prevent destructive interference in the focal plane of an ideal focusing element. Polarization modulation improves the efficiency obtained by amplitude-only modulation, with a gain that depends on the aberration. Experimental results obtained with Cr-on-glass devices for amplitude modulation and liquid crystal devices operating in the Mauguin condition for polarization modulation are in very good agreement with simulations.« less

  4. Crystal Structure, Conformational Analysis, and Charge Density Distribution for Eng-Epifisetinidol: An Explanation for Regiospecific Aromatic Substitution of 5-Deoxyflavan

    Treesearch

    Fred L. Tobiason; Frank R. Fronczek; Jan P. Steynberg; Elizabeth C. Steynberg; Richard W. Hemingway; Wayne L. Mattice

    1993-01-01

    Molecular modeling and molecular orbital analyses of ent-epifisetinidol gave &ood predictions of the approximate "reverse half-chair" conformation found for the crystal structure. MNDO and AM1 analyses of HOMO electron densities provided an explanation for the stereospecific electrophilic aromatic substitution at C(6) in 5-deoxy-flavans...

  5. Common Misconceptions about the Dynamical Theory of Crystal Lattices: Cauchy Relations, Lattice Potentials and Infinite Crystals

    ERIC Educational Resources Information Center

    Elcoro, Luis; Etxebarria, Jesus

    2011-01-01

    The requirement of rotational invariance for lattice potential energies is investigated. Starting from this condition, it is shown that the Cauchy relations for the elastic constants are fulfilled if the lattice potential is built from pair interactions or when the first-neighbour approximation is adopted. This is seldom recognized in widely used…

  6. Forces Generated by High Velocity Impact of Ice on a Rigid Structure

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Padula, Santo A., II; Revilock, Duane M.; Melis, Matthew E.

    2006-01-01

    Tests were conducted to measure the impact forces generated by cylindrical ice projectiles striking a relatively rigid target. Two types of ice projectiles were used, solid clear ice and lower density fabricated ice. Three forms of solid clear ice were tested: single crystal, poly-crystal, and "rejected" poly-crystal (poly-crystal ice in which defects were detected during inspection.) The solid ice had a density of approximately 56 lb/cu ft (0.9 gm/cu cm). A second set of test specimens, termed "low density ice" was manufactured by molding shaved ice into a cylindrical die to produce ice with a density of approximately 40 lb/cu ft (0.65 gm/cu cm). Both the static mechanical characteristics and the crystalline structure of the ice were found to have little effect on the observed transient response. The impact forces generated by low density ice projectiles, which had very low mechanical strength, were comparable to those of full density solid ice. This supports the hypothesis that at a velocity significantly greater than that required to produce fracture in the ice, the mechanical properties become relatively insignificant, and the impact forces are governed by the shape and mass of the projectile.

  7. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals

    NASA Astrophysics Data System (ADS)

    Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.

    2017-11-01

    A framework for dislocation-based viscoplasticity and dynamic ductile failure has been developed to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. An averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Additionally, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in (Wilkerson and Ramesh, 2014), which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.

  8. Hypernetted-chain-like closure of Ornstein-Zernike equation in multibody dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Mo, Chao-jie; Qin, Li-zi; Yang, Li-jun

    2017-10-01

    We have derived a hypernetted-chain-like (HNC-like) approximate closure of the Ornstein-Zernike equation for multibody dissipative particle dynamics (MDPD) system in which the classic closures are not directly practicable. We first point out that the Percus's method is applicable to MDPD system in which particles interact with a density-dependent potential. And then an HNC-like closure is derived using Percus's idea and the saddle-point approximation of particle free energy. This HNC-like closure is compared with results of previous researchers, and in many cases, it demonstrates better agreement with computer simulation results. The HNC-like closure is used to predict the cluster crystallization in MDPD. We determine whether the cluster crystallization will happen in a system utilizing the widely applicable Hansen-Verlet freezing criterion and by observing the radial distribution function. The conclusions drawn from the results of the HNC-like closure are in agreement with computer simulation results. We evaluate different weight functions to determine whether they are prone to cluster crystallization. A new effective density-dependent pairwise potential is also proposed to help to explain the tendency to cluster crystallization of MDPD systems.

  9. Solitons induced by alternating electric fields in surface-stabilized ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Jeżewski, W.; Kuczyński, W.; Hoffmann, J.

    2011-04-01

    Propagation of solitary waves activated in thin ferroelectric liquid crystal cells under external, sinusoidally alternating electric fields is investigated using the electro-optic technique. It is shown that solitons give contributions only to the loss component of the response spectrum, within rather narrow ranges of frequencies and in sufficiently strong fields. The limit frequency, at which the amplitude of the velocity of the solitary waves is greatest, is found to be related to material constants of liquid crystals. Measuring this threshold frequency provides the capability to determine the elastic constant of surface stabilized liquid crystalline materials in the bookshelf or chevron layer geometries.

  10. Field-induced phase transitions in chiral smectic liquid crystals studied by the constant current method

    NASA Astrophysics Data System (ADS)

    H, Dhaouadi; R, Zgueb; O, Riahi; F, Trabelsi; T, Othman

    2016-05-01

    In ferroelectric liquid crystals, phase transitions can be induced by an electric field. The current constant method allows these transition to be quickly localized and thus the (E,T) phase diagram of the studied product can be obtained. In this work, we make a slight modification to the measurement principles based on this method. This modification allows the characteristic parameters of ferroelectric liquid crystal to be quantitatively measured. The use of a current square signal highlights a phenomenon of ferroelectric hysteresis with remnant polarization at null field, which points out an effect of memory in this compound.

  11. Investigation of Methods to Eliminate Voltage Delay in Li/SOCl2 Cells.

    DTIC Science & Technology

    1980-05-01

    of storage at 550C the surface was completely covered with cubic crystals averaging about 8 pim on an edge (Figure 24). The lithium surface stored at...completely covered with cubic crystals, showing no smooth undercoating at all (Figure 25). The average crystal diameter was approximately 3.3 pim , with a...used. ithi timl acgu ire0d A Ci yst al I me surt ace, oil dr n torage at elevated temlper aI Ite t. T[he out lace, showed ch[ ott ine by EPAC except

  12. Evaluation of copper, aluminum, and nickel interatomic potentials on predicting the elastic properties

    NASA Astrophysics Data System (ADS)

    Rassoulinejad-Mousavi, Seyed Moein; Mao, Yijin; Zhang, Yuwen

    2016-06-01

    Choice of appropriate force field is one of the main concerns of any atomistic simulation that needs to be seriously considered in order to yield reliable results. Since investigations on the mechanical behavior of materials at micro/nanoscale have been becoming much more widespread, it is necessary to determine an adequate potential which accurately models the interaction of the atoms for desired applications. In this framework, reliability of multiple embedded atom method based interatomic potentials for predicting the elastic properties was investigated. Assessments were carried out for different copper, aluminum, and nickel interatomic potentials at room temperature which is considered as the most applicable case. Examined force fields for the three species were taken from online repositories of National Institute of Standards and Technology, as well as the Sandia National Laboratories, the LAMMPS database. Using molecular dynamic simulations, the three independent elastic constants, C11, C12, and C44, were found for Cu, Al, and Ni cubic single crystals. Voigt-Reuss-Hill approximation was then implemented to convert elastic constants of the single crystals into isotropic polycrystalline elastic moduli including bulk modulus, shear modulus, and Young's modulus as well as Poisson's ratio. Simulation results from massive molecular dynamic were compared with available experimental data in the literature to justify the robustness of each potential for each species. Eventually, accurate interatomic potentials have been recommended for finding each of the elastic properties of the pure species. Exactitude of the elastic properties was found to be sensitive to the choice of the force fields. Those potentials that were fitted for a specific compound may not necessarily work accurately for all the existing pure species. Tabulated results in this paper might be used as a benchmark to increase assurance of using the interatomic potential that was designated for a problem.

  13. Modelling of thermal field and point defect dynamics during silicon single crystal growth using CZ technique

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2018-05-01

    Mathematical modelling is employed to numerically analyse the dynamics of the Czochralski (CZ) silicon single crystal growth. The model is axisymmetric, its thermal part describes heat transfer by conduction and thermal radiation, and allows to predict the time-dependent shape of the crystal-melt interface. Besides the thermal field, the point defect dynamics is modelled using the finite element method. The considered process consists of cone growth and cylindrical phases, including a short period of a reduced crystal pull rate, and a power jump to avoid large diameter changes. The influence of the thermal stresses on the point defects is also investigated.

  14. The formation and optical properties of planar waveguide in laser crystal Nd:YGG by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Jiao, Yang; Guan, Jing; Fu, Gang

    2017-10-01

    As one kind of prominent laser crystal, Nd:Y3Ga5O12 (Nd:YGG) crystal has outstanding performance on laser excitation at multi-wavelength which have shown promising applications in optical communication field. In addition, Nd:YGG crystal has potential applications in medical field due to its ability of emit the laser at 1110 nm. Optical waveguide structure with high quality could improve the efficiency of laser emission. In this work, we fabricated the optical planar waveguide on Nd:YGG crystal by medium mass ion implantation which was convinced an effective method to realize a waveguide structure with superior optical properties. The sample is implanted by C ions at energy of 5.0 MeV with the fluence of 1 × 1015 ions/cm2. We researched the optical propagation properties in the Nd:YGG waveguide by end-face coupling and prism coupling method. The Nd ions fluorescent properties are obtained by a confocal micro-luminescence measurement. The fluorescent properties of Nd ions obtained good reservation after C ion implantation. Our work has reference value for the application of Nd:YGG crystal in the field of optical communication.

  15. Fabrication of large binary colloidal crystals with a NaCl structure

    PubMed Central

    Vermolen, E. C. M.; Kuijk, A.; Filion, L. C.; Hermes, M.; Thijssen, J. H. J.; Dijkstra, M.; van Blaaderen, A.

    2009-01-01

    Binary colloidal crystals offer great potential for tuning material properties for applications in, for example, photonics, semiconductors and spintronics, because they allow the positioning of particles with quite different characteristics on one lattice. For micrometer-sized colloids, it is believed that gravity and slow crystallization rates hinder the formation of high-quality binary crystals. Here, we present methods for growing binary colloidal crystals with a NaCl structure from relatively heavy, hard-sphere-like, micrometer-sized silica particles by exploring the following external fields: electric, gravitational, and dielectrophoretic fields and a structured surface (colloidal epitaxy). Our simulations show that the free-energy difference between the NaCl and NiAs structures, which differ in their stacking of the hexagonal planes of the larger spheres, is very small (≈0.002 kBT). However, we demonstrate that the fcc stacking of the large spheres, which is crucial for obtaining the pure NaCl structure, can be favored by using a combination of the above-mentioned external fields. In this way, we have successfully fabricated large, 3D, oriented single crystals having a NaCl structure without stacking disorder. PMID:19805259

  16. Crystal growth of incommensurate members of 2H-hexagonal perovskite related oxides: Ba{sub 4}M{sub z}Pt{sub 3−z}O{sub 9} (M=Co, Ni, Cu, Zn, Mg, Pt)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, Timothy; Morrison, Gregory; Yeon, Jeongho

    2016-04-15

    Millimeter sized crystals of six oxides of approximate composition Ba{sub 4}M{sub z}Pt{sub 3-z}O{sub 9} (M=Co, Ni, Cu, Zn, Mg, Pt) were grown from molten K{sub 2}CO{sub 3} fluxes and found to crystallize in a 2H hexagonal perovskite-related structure type. The compositions of these incommensurate structures, which belong to the A{sub 3n+3m}A′{sub n}B{sub 3m+n}O{sub 9m+6n} family of 2H hexagonal perovskite related oxides, were characterized by X-ray diffraction, energy dispersive spectroscopy, and magnetic susceptibility measurements. The specific synthetic considerations, crystal growth conditions, and magnetic susceptibility measurements are discussed. - Graphical abstract: SEM image and average commensurate unit cell of Ba{sub 4}Pt{sub 3}O{submore » 9.} - Highlights: • Single crystals of the series Ba{sub 4}A′{sub z}Pt{sub 3-z}O{sub 9} were grown via a molten carbonate flux. • Ba{sub 4}Pt{sub 3}O{sub 9} and all substitutional variants are incommensurate, composite structures. • All compounds have an approximate stoichiometry of Ba{sub 4}A′Pt{sub 2}O{sub 9.}.« less

  17. A Flexible Parameterization for Shortwave Optical Properties of Ice Crystals

    NASA Technical Reports Server (NTRS)

    VanDiedenhoven, Bastiaan; Ackerman, Andrew S.; Cairns, Brian; Fridlind, Ann M.

    2014-01-01

    A parameterization is presented that provides extinction cross section sigma (sub e), single-scattering albedo omega, and asymmetry parameter (g) of ice crystals for any combination of volume, projected area, aspect ratio, and crystal distortion at any wavelength in the shortwave. Similar to previous parameterizations, the scheme makes use of geometric optics approximations and the observation that optical properties of complex, aggregated ice crystals can be well approximated by those of single hexagonal crystals with varying size, aspect ratio, and distortion levels. In the standard geometric optics implementation used here, sigma (sub e) is always twice the particle projected area. It is shown that omega is largely determined by the newly defined absorption size parameter and the particle aspect ratio. These dependences are parameterized using a combination of exponential, lognormal, and polynomial functions. The variation of (g) with aspect ratio and crystal distortion is parameterized for one reference wavelength using a combination of several polynomials. The dependences of g on refractive index and omega are investigated and factors are determined to scale the parameterized (g) to provide values appropriate for other wavelengths. The parameterization scheme consists of only 88 coefficients. The scheme is tested for a large variety of hexagonal crystals in several wavelength bands from 0.2 to 4 micron, revealing absolute differences with reference calculations of omega and (g) that are both generally below 0.015. Over a large variety of cloud conditions, the resulting root-mean-squared differences with reference calculations of cloud reflectance, transmittance, and absorptance are 1.4%, 1.1%, and 3.4%, respectively. Some practical applications of the parameterization in atmospheric models are highlighted.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davaasuren, Bambar; Dashjav, Enkhtsetseg; Kreiner, Guido

    The carboferrates RE{sub 15}[Fe{sub 8}C{sub 25}] (RE=Dy, Ho) were prepared from mixtures of the elements by arc-melting followed with subsequent annealing at 1373 K. The crystal structures were determined from single crystal X-ray diffraction data and revealed an isotypic relationship to Er{sub 15}[Fe{sub 8}C{sub 25}] (hP48, P321). The main feature of the crystal structure is given by Fe{sub 6} cluster units characterized by covalent Fe–Fe bonding interactions. {sup 57}Fe Mössbauer spectra of Dy{sub 15}[Fe{sub 8}C{sub 25}] were fitted by three subspectra with relative spectral weights of about 3:3:2 which is in general agreement with the crystal structure. Below 50 K,more » an onset of magnetic hyperfine fields at the three iron sites is observed which is supposed to be caused by dipolar fields arising from neighboring, slowly relaxing Dy magnetic moments. - Graphical abstract: Fe{sub 6}-cluster in the crystal structure of RE{sub 15}[Fe{sub 8}C{sub 25}], RE=Dy, Ho. - Highlights: • New carboferrates RE{sub 15}[Fe{sub 8}C{sub 25}] with RE=Dy, Ho have been synthesized. • The crystal structures were refined using single crystal X-ray data. • An orientational relationship between Fe{sub 6}-clusters and Fe in γ-Fe is outlined. • {sup 57}Fe Mössbauer spectra are in agreement with structural data from X-rays. • Magnetic hyperfine fields below 50 K are explained by dipolar fields from Dy atoms.« less

  19. Towards Simulating the Transverse Ising Model in a 2D Array of Trapped Ions

    NASA Astrophysics Data System (ADS)

    Sawyer, Brian

    2013-05-01

    Two-dimensional Coulomb crystals provide a useful platform for large-scale quantum simulation. Penning traps enable confinement of large numbers of ions (>100) and allow for the tunable-range spin-spin interactions demonstrated in linear ion strings, facilitating simulation of quantum magnetism at a scale that is currently intractable on classical computers. We readily confine hundreds of Doppler laser-cooled 9Be+ within a Penning trap, producing a planar array of ions with self-assembled triangular order. The transverse ``drumhead'' modes of our 2D crystal along with the valence electron spin of Be+ serve as a resource for generating spin-motion and spin-spin entanglement. Applying a spin-dependent optical dipole force (ODF) to the ion array, we perform spectroscopy and thermometry of individual drumhead modes. This ODF also allows us to engineer long-range Ising spin couplings of either ferromagnetic or anti-ferromagnetic character whose approximate power-law scaling with inter-ion distance, d, may be varied continuously from 1 /d0 to 1 /d3. An effective transverse magnetic field is applied via microwave radiation at the ~124-GHz spin-flip frequency, and ground states of the effective Ising Hamiltonian may in principle be prepared adiabatically by slowly decreasing this transverse field in the presence of the induced Ising coupling. Long-range anti-ferromagnetic interactions are of particular interest due to their inherent spin frustration and resulting large, near-degenerate manifold of ground states. We acknowledge support from NIST and the DARPA-OLE program.

  20. Peculiarities of Crystallization of the Restriction Endonuclease EcoRII

    NASA Technical Reports Server (NTRS)

    Karpove, Elizaveta; Pusey, M.arc L.

    1998-01-01

    Nucleases interfere with most standard molecular biology procedures. We have purified and crystallized the restriction endonuclease EcoRII, which belongs to the type II of restriction- modification enzyme, to study the protein crystallization process using a "non standard" macromolecule. A procedure for the purification of EcoRII was developed and 99% pure protein as determined by SDS PAGE electrophoresis obtained. Light scattering experiments were performed to assist in screening protein suitable crystallization conditions. The second virial coefficient was determined as a function of precipitating salt concentration, using sodium chloride, ammonium sulfate, and sodium sulfate. Small (maximum size approximately 0.2 mm) well shaped crystals have been obtained. Larger poorly formed crystals (ca 0.5 mm) have also been obtained, but we have been unable to mount them for diff-raction analysis due to their extreme fragility. Crystallization experiments with PEG have shown that using this precipitant, the best crystals are obtained from slightly over-saturated solutions. Use of higher precipitant concentration leads to dendritic crystal formation. EcoRII is difficult to solubilize and meticulous attention must be paid to the presence of reducing agents.

Top