Science.gov

Sample records for crystal field effects

  1. Oxidation and crystal field effects in uranium

    SciTech Connect

    Tobin, J. G.; Booth, C. H.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Weng, T. -C.; Yu, S. W.; Bagus, P. S.; Tyliszczak, T.; Nordlund, D.

    2015-07-06

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO2), uranium trioxide (UO3), and uranium tetrafluoride (UF4). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.

  2. Effects of magnetic fields on dissolution of arthritis causing crystals

    NASA Astrophysics Data System (ADS)

    Takeuchi, Y.; Iwasaka, M.

    2015-05-01

    The number of gout patients has rapidly increased because of excess alcohol and salt intake. The agent responsible for gout is the monosodium urate (MSU) crystal. MSU crystals are found in blood and consist of uric acid and sodium. As a substitute for drug dosing or excessive water intake, physical stimulation by magnetic fields represents a new medical treatment for gout. In this study, we investigated the effects of a magnetic field on the dissolution of a MSU crystal suspension. The white MSU crystal suspension was dissolved in an alkaline solution. We measured the light transmission of the MSU crystal suspension by a transmitted light measuring system. The magnetic field was generated by a horizontal electromagnet (maximum field strength was 500 mT). The MSU crystal suspension that dissolved during the application of a magnetic field of 500 mT clearly had a higher dissolution rate when compared with the control sample. We postulate that the alkali solution promoted penetration upon diamagnetic rotation and this magnetic field orienting is because of the pronounced diamagnetic susceptibility anisotropy of the MSU crystal. The results indicate that magnetic fields represent an effective gout treatment approach.

  3. Electromagnetic Field Effects in Semiconductor Crystal Growth

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S.

    1996-01-01

    This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed.

  4. Reflective liquid crystal light valve with hybrid field effect mode

    NASA Technical Reports Server (NTRS)

    Boswell, Donald D. (Inventor); Grinberg, Jan (Inventor); Jacobson, Alexander D. (Inventor); Myer, Gary D. (Inventor)

    1977-01-01

    There is disclosed a high performance reflective mode liquid crystal light valve suitable for general image processing and projection and particularly suited for application to real-time coherent optical data processing. A preferred example of the device uses a CdS photoconductor, a CdTe light absorbing layer, a dielectric mirror, and a liquid crystal layer sandwiched between indium-tin-oxide transparent electrodes deposited on optical quality glass flats. The non-coherent light image is directed onto the photoconductor; this reduces the impedance of the photoconductor, thereby switching the AC voltage that is impressed across the electrodes onto the liquid crystal to activate the device. The liquid crystal is operated in a hybrid field effect mode. It utilizes the twisted nematic effect to create a dark off-state (voltage off the liquid crystal) and the optical birefringence effect to create the bright on-state. The liquid crystal thus modulates the polarization of the coherent read-out or projection light responsively to the non-coherent image. An analyzer is used to create an intensity modulated output beam.

  5. TOPICAL REVIEW: Organic field-effect transistors using single crystals

    NASA Astrophysics Data System (ADS)

    Hasegawa, Tatsuo; Takeya, Jun

    2009-04-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm2 Vs-1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  6. Organic field-effect transistors using single crystals.

    PubMed

    Hasegawa, Tatsuo; Takeya, Jun

    2009-04-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm(2) Vs(-1), achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  7. Organic field-effect transistors using single crystals

    PubMed Central

    Hasegawa, Tatsuo; Takeya, Jun

    2009-01-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for ‘plastic electronics’. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20–40 cm2 Vs−1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps. PMID:27877287

  8. Liquid Crystals for Organic Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    O'Neill, Mary; Kelly, Stephen M.

    Columnar, smectic and lamellar polymeric liquid crystals are widely recognized as very promising charge-transporting organic semiconductors due to their ability to spontaneously self-assemble into highly ordered domains in uniform thin films over large areas. The transport properties of smectic and columnar liquid crystals are discussed in Chaps. 2 (10.1007/978-90-481-2873-0_2) and 3 (10.1007/978-90-481-2873-0_3). Here we examine their application to organic field-effect transistors (OFETs): after a short introduction in Sect. 9.1 we introduce the OFET configuration and show how the mobility is measured in Sect. 9.2. Section 9.3 discusses polymeric liquid crystalline semiconductors in OFETs. We review research that shows that annealing of polymers in a fluid mesophase gives a more ordered microcrystalline morphology on cooling than that kinetically determined by solution processing of the thin film. We also demonstrate the benefits of monodomain alignment and show the application of liquid crystals in light-emitting field-effect transistors. Some columnar and smectic phases are highly ordered with short intermolecular separation to give large π-π coupling. We discuss their use in OFETs in Sects. 9.4, and 9.5 respectively. Section 9.6 summarises the conclusions of the chapter.

  9. Magnetic measurements on single crystals of dysprosium trifluoromethanesulfonate nonahydrate; effects of crystal field perturbed energy levels

    NASA Astrophysics Data System (ADS)

    Neogy, D.; Paul, P.; Chattopadhyay, K. N.; Bisui, D.

    2002-07-01

    Magnetic susceptibility measurements on single crystals of dysprosium trifluoromethanesulfonate (DyTFMS) have been carried out from 300 K down to 13 K. The hexagonal crystal structure of DyTFMS renders the crystal uniaxial with the Kramers ion Dy 3+ occupying a site of C 3h symmetry. The principal magnetic susceptibilities, observed by us and the Friedberg group, over the wide range 300 to ˜1.0 K find an excellent theoretical simulation by the crystal field perturbed J-mixed eigenvectors with due consideration of the intermediate coupling effects. No ordering effects were noticed down to ˜13 K indicating the interionic interaction to be predominantly of the dipolar type which is consistent with the discovery of a ferromagnetic transition at T˜0.111 K by the Friedberg group. The g-values derived from other sources are reasonably accounted for. The thermal behavior of quadrupole splitting and that of electronic and nuclear heat capacities is also worked out.

  10. Field-Effects in Large Axial Ratio Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Lonberg, Franklin J.

    This paper consists of an introduction and four chapters, the abstracts of which are presented below. Chapter 2. The subject of this chapter is the dynamic periodic structures which are observed in the twist Frederiks transition. It is found that, for fields above a material dependent level, a transient periodic distortion is observed. The wave vector is parallel to the unperturbed director and increases with increasing field. A theoretical model and experimental data are presented. Chapter 3. The subject of this chapter is the discovery of a new equilibrium structure in the splay Frederiks transition. Experimental observation has shown that the imposition of a field, just above the critical strength, produces a periodic distortion in the polymer liquid crystal PBG. This periodic state is not dynamic in origin but it is a true ground state. An analysis of the energy of a liquid crystal, in the splay Frederiks transition geometry, shows that in materials with K(,1)/K(,3) > 3.3 the periodic distortion will have a lower critical field than the uniform distortion. Chapter 4. The subject of this chapter is the dynamics of the bend Frederiks transition in large axial ratio nematics. Experimental evidence is presented to show that there is a distortion mode which occurs at field greater than 2H(,c), which is very fast and does not grow exponentially. An analysis of the equations of motion shows that a mode with wave length half that of the static equilibrium mode will have these properties. Chapter 5. The bend Frederiks transition is use to show that the bend and splay elastic constants are linear in concentration in PBG. Interpretation of this result is made in connection with models of the elastic energy in liquid crystal made of semi-flexible partiles.

  11. Effect of an electric field on nucleation and growth of crystals

    NASA Astrophysics Data System (ADS)

    Yurov, V. M.; Guchenko, S. A.; Gyngazova, M. S.

    2016-02-01

    The effect of the electric field strength on nucleation and growth of the crystals of ammonium halides and alkali metal sulfates has been studied. The optimal electric field strength for NH4Cl and NH4Br crystals was found to be 15 kV/cm, and for NH4I, it equaled 10 kV/cm. No effect of the electric field strength on the crystal growth was found for alkali metal sulfates. This difference is analyzed in terms of the crystal growth thermodynamics. In case, when the electric field is small and the Gibbs energy is of a significant value, the influence of the electric field at the crystal growth is negligible. A method to estimate the critical radius of homogeneous nucleation of the crystal is suggested.

  12. Crystal field effects on interionic distance in cubic MgO crystal doped with Fe2+ ions

    NASA Astrophysics Data System (ADS)

    Ivascu, S.; Gruia, A. S.; Avram, N. M.

    2014-10-01

    The exchange charge model of crystal field was applied to determine the dependence of the crystal field strength 10Dq on interionic distances R between the Fe2+ impurity ion and O2- ligands in cubic MgO:Fe2+. The obtained results were extrapolated by the power law and was shown that 10Dq depends on R as 1/R, with n=6.3486. The deviations of these values from the value n=5 (predicted by the simple point charge model of crystal field) is explained by the covalent and exchange effects between impurity ion and ligands; the contribution of these effects into the total crystal field strength was considered separately. The 10Dq functions obtained as a result of our calculations were used for estimations of the electron-vibrational constants, Huang-Rhys parameters, and Jahn-Teller stabilization energy, and compared with available literature data.

  13. SINGLE CRYSTAL CADMIUM SULFIDE AND CADMIUM SELENIDE INSULATED-GATE FIELD-EFFECT TRIODES.

    DTIC Science & Technology

    Insulated-gate field-effect triodes were fabricated on single crystal cadmium sulfide and cadmium selenide . Both bulk crystals and platelets were...used for single crystal samples. Chromium and aluminum were found to make low impedance contacts to cadmium sulfide and cadmium selenide . The...polycrystalline cadmium sulfide and cadmium selenide IGFET’s. The characteristics of the fabricated devices were unstable with respect to time and temperature

  14. Controlled deposition or organic semiconductor single crystals and its application in field-effect transistors

    NASA Astrophysics Data System (ADS)

    Liu, Shuhong

    The search for low-cost, large area, flexible devices has led to a remarkable increase in the research and development of organic semiconductors. Single-crystal organic field-effect transistors (OFETs) are ideal device structures for studying fundamental science associated with charge transport in organic materials and have demonstrated high mobility and outstanding electrical characteristics. For example, an exceptionally high carrier mobility of 20 cm2/Vs has been demonstrated for rubrene single crystal field effect transistors. However, it remains a technical challenge to integrate single-crystal devices into practical electronic applications. A key difficulty is that organic single-crystal devices are usually fabricated one device at a time by handpicking a single crystal and placing it onto the device substrate. This makes it impossible to mass-produce at high density with reasonable throughput. Therefore, there is a great need for a high-throughput method for depositing large arrays of organic semiconductor single crystals directly onto device structures. In this dissertation, I develop several approaches towards realizing this goal. The first approach is a solution-processing technique, which relies on solvent wetting and de-wetting on substrates with patterned wettability to selectively direct the deposition or removal of organic crystals. The assembly of different organic crystals over centimeter-squared areas on Au, SiO 2 and flexible plastic substrates is demonstrated. By designing line features on the substrate, alignment of needle-like crystals is also achieved. As a demonstration of the potential application of this approach, arrays of organic single crystal FETs are fabricated by patterning organic single crystals directly onto and between transistor source and drain electrodes. Besides organic single crystals, this self-assembly strategy is also applicable for patterning other objects such as metallic nanowires. In the second technique, organic

  15. Electronic transitions, crystal field effects and phonons in UO 2

    NASA Astrophysics Data System (ADS)

    Schoenes, J.

    1980-08-01

    An extensive optical study of the 5f magnetic semiconductor UO 2 is presented. The experimental data include near normal incidence reflectivity measurements from 0.0025 to 13 eV, absorption and Faraday rotation measurements as function of temperature and of magnetic fields up to 100 kOe and photoemission results. From the data in the fundamental absorption region an energy level scheme is derived. This level scheme differs markedly from an earlier model but it is quantitatively supported by a calculation using the thermochemical Haber-Born process and also by cluster calculations. The localized nature of the 5f electrons is demonstrated. The absorption edge at 2 eV shows an abrupt shift to lower energies at the first order phase transition of UO 2 to the antiferromagnetic state. This shift is shown to be larger than expected from the lattice contraction indicating a magnetic order induced contribution to the total red shift. Below the absorption edge, intra-5f transitions and multiphonon excitations are reported, showing striking order induced effects at and below TN = 30.8 K. New results are presented for ε st, ε opt, ω TO and ω LO which fulfill the Lyddane-Sachs-Teller relation.

  16. Determination of optimal ionic liquid for organic single-crystal field-effect transistors

    NASA Astrophysics Data System (ADS)

    Ono, S.; Miwa, K.; Seki, S.

    2016-02-01

    We investigate organic single-crystal field-effect transistors with various ionic liquids as gate dielectric. We find that the mobility of the field-effect transistors for both p-type and n-type organic semiconductors increases with decreasing total capacitance of the ionic liquid. However, it does not depend on the ion species at the interface between the organic semiconductor and the ionic liquid. By choosing an appropriate ionic liquid, a high carrier mobility of 12.4 cm2/V s in rubrene single crystals (p-type) and 0.13 cm2/V s in 7.7.8.8-Tetracyanoquinodimethane single crystals (n-type) are achieved. This study clarifies the influence of ionic liquids on the device performance of organic field-effect transistors and shows a way to maximize carrier mobility at the solid/liquid interface.

  17. Random crystal field effect on the magnetic and hysteresis behaviors of a spin-1 cylindrical nanowire

    NASA Astrophysics Data System (ADS)

    Zaim, N.; Zaim, A.; Kerouad, M.

    2017-02-01

    In this work, the magnetic behavior of the cylindrical nanowire, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms is studied in the presence of a random crystal field interaction. Based on Metropolis algorithm, the Monte Carlo simulation has been used to investigate the effects of the concentration of the random crystal field p, the crystal field D and the shell exchange interaction Js on the phase diagrams and the hysteresis behavior of the system. Some characteristic behaviors have been found, such as the first and second-order phase transitions joined by tricritical point for appropriate values of the system parameters, triple and isolated critical points can be also found. Depending on the Hamiltonian parameters, single, double and para hysteresis regions are explicitly determined.

  18. Crystal-field interaction and oxygen stoichiometry effects in strontium-doped rare-earth cobaltates

    NASA Astrophysics Data System (ADS)

    Furrer, A.; Podlesnyak, A.; Frontzek, M.; Sashin, I.; Embs, J. P.; Mitberg, E.; Pomjakushina, E.

    2014-08-01

    Inelastic neutron scattering was employed to study the crystal-field interaction in the strontium-doped rare-earth compounds RxSr1-xCoO3-z (R=Pr, Nd, Ho, and Er). Particular emphasis is laid on the effect of oxygen deficiencies that naturally occur in the synthesis of these compounds. The observed energy spectra are found to be the result of a superposition of crystal fields with different nearest-neighbor oxygen coordination at the R sites. The experimental data are interpreted in terms of crystal-field parameters, which behave in a consistent manner through the rare-earth series, thereby allowing a reliable extrapolation for rare-earth ions not considered in the present work.

  19. Patterning technology for solution-processed organic crystal field-effect transistors

    NASA Astrophysics Data System (ADS)

    Li, Yun; Sun, Huabin; Shi, Yi; Tsukagoshi, Kazuhito

    2014-04-01

    Organic field-effect transistors (OFETs) are fundamental building blocks for various state-of-the-art electronic devices. Solution-processed organic crystals are appreciable materials for these applications because they facilitate large-scale, low-cost fabrication of devices with high performance. Patterning organic crystal transistors into well-defined geometric features is necessary to develop these crystals into practical semiconductors. This review provides an update on recent development in patterning technology for solution-processed organic crystals and their applications in field-effect transistors. Typical demonstrations are discussed and examined. In particular, our latest research progress on the spin-coating technique from mixture solutions is presented as a promising method to efficiently produce large organic semiconducting crystals on various substrates for high-performance OFETs. This solution-based process also has other excellent advantages, such as phase separation for self-assembled interfaces via one-step spin-coating, self-flattening of rough interfaces, and in situ purification that eliminates the impurity influences. Furthermore, recommendations for future perspectives are presented, and key issues for further development are discussed.

  20. Rubrene crystal field-effect mobility modulation via conducting channel wrinkling.

    PubMed

    Reyes-Martinez, Marcos A; Crosby, Alfred J; Briseno, Alejandro L

    2015-05-05

    With the impending surge of flexible organic electronic technologies, it has become essential to understand how mechanical deformation affects the electrical performance of organic thin-film devices. Organic single crystals are ideal for the systematic study of strain effects on electrical properties without being concerned about grain boundaries and other defects. Here we investigate how the deformation affects the field-effect mobility of single crystals of the benchmark semiconductor rubrene. The wrinkling instability is used to apply local strains of different magnitudes along the conducting channel in field-effect transistors. We discover that the mobility changes as dictated by the net strain at the dielectric/semiconductor interface. We propose a model based on the plate bending theory to quantify the net strain in wrinkled transistors and predict the change in mobility. These contributions represent a significant step forward in structure-function relationships in organic semiconductors, critical for the development of the next generation of flexible electronic devices.

  1. Milestone in the History of Field-Effect Liquid Crystal Displays and Materials

    NASA Astrophysics Data System (ADS)

    Schadt, Martin

    2009-03-01

    The history of digital electronics would have been very different without the invention of field-effect liquid crystal displays (LCDs) in 1970 and their sophisticated development and implementation into numerous products. Transmissive and reflective LCDs have become a key interface between man and machine. After almost 40 years of interdisciplinary R+D and engineering, today's LCDs enable virtually all display applications, including high definition television. Field-effect LCDs are characterized by flat design, low weight, low driving voltage, design flexibility, compatibility with silicon-on-glass and very low power consumption, especially in reflection. Their polarization-sensitive layer concept is the basis for sandwiching and integration of optical and electronic thin-film functions. The liquid crystal technology has become a fast growing industry over the past 38 years, today surpassing 100 billion, with many spin-offs into new areas. Prerequisite for field-effect LCDs and their large diversification potential is the unique self-organization of liquid crystals. New applications beyond displays based on self-organisation, smart boundary alignment, dedicated liquid crystalline materials and the ability of LCs to respond to electromagnetic fields, including light, are being developed. Examples for new applications are LC polymer thin-film optics, or synergies between LCDs and solid state back-lighting, such as inorganic and organic light emitting diodes (LEDs/OLEDs).

  2. Effect of electric field on reentrance transition in a binary mixture of liquid crystals

    NASA Astrophysics Data System (ADS)

    Kumari, Sunita; Singh, S.

    2015-12-01

    Employing a phenomenological mean field theory, we analyze the effect of an electric field on the N - SmA phase transition for pure liquid crystal and on the reentrant nematic phase in a binary mixture of liquid crystals exhibiting the phase sequence I - N - SmA - NR on cooling. The basic idea of the work is to explain the phase transition behavior of the system by assuming that certain Landau coefficients associated with the order parameters coupling terms of the free-energy density expansion are field dependent. These parameters play a crucial role and show a rapid variation at the SmA - NR transition as compared to the SmA - N transition.

  3. The Effects of a Magnetic Field on the Crystallization of a Fluorozirconate Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Lapointe, Michael R.; Jia, Zhiyong

    2006-01-01

    An axial magnetic field of 0.1T was applied to ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fibers during heating to the glass crystallization temperature. Scanning electron microscopy and x-ray diffraction were used to identify crystal phases. It was shown that fibers exposed to the magnetic field did not crystallize while fibers not exposed to the field did crystallize. A hypothesis based on magnetic work was proposed to explain the results and tested by measuring the magnetic susceptibilities of the glass and crystal.

  4. On the fringing-field effect in liquid-crystal beam-steering devices.

    PubMed

    Apter, Boris; Efron, Uzi; Bahat-Treidel, Eldad

    2004-01-01

    A detailed simulation of the fringing-field effect in liquid-crystal (LC)-based blazed-grating structures has been carried out. These studies are aimed at clarifying the relationship between the width of the fringing-field-broadened phase profile of the blazed grating and the LC cell thickness. This fringing-field broadening of the blazed grating's phase profile is shown to affect mostly the 2pi phase-step zone (fly-back zone) of the blazed grating. The results of the simulations carried out on the blazed-grating structure indicate two main effects of the fringing field: (1) reduction in the attainable diffraction efficiency and (2) limitation of the maximum deflection angle of the device. Both effects are shown to be directly linked to the broadening of the fly-back zone, which is shown to be proportional to the LC cell thickness.

  5. Light quasiparticles dominate electronic transport in molecular crystal field-effect transistors

    SciTech Connect

    Li, Z. Q.; Podzorov, V.; Sai, N.; Martin, Michael C.; Gershenson, M. E.; Di Ventra, M.; Basov, D. N.

    2007-03-01

    We report on an infrared spectroscopy study of mobile holes in the accumulation layer of organic field-effect transistors based on rubrene single crystals. Our data indicate that both transport and infrared properties of these transistors at room temperature are governed by light quasiparticles in molecular orbital bands with the effective masses m[small star, filled]comparable to free electron mass. Furthermore, the m[small star, filled]values inferred from our experiments are in agreement with those determined from band structure calculations. These findings reveal no evidence for prominent polaronic effects, which is at variance with the common beliefs of polaron formation in molecular solids.

  6. Effect of field driven phase transformations on the loss tangent of relaxor ferroelectric single crystals

    NASA Astrophysics Data System (ADS)

    Gallagher, John A.; Liu, Tieqi; Lynch, Christopher S.

    2013-02-01

    The effect of a bias stress induced phase transformation on the large field dielectric loss in [001] cut and poled single crystal stack actuators of (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT, x = 32) was experimentally characterized. Dielectric loss was observed to increase with compressive preload and electric field amplitude. The dielectric loss was determined by measuring the area within electric displacement vs. electric field hysteresis loops and the measured area was expressed in terms of an effective loss tangent. This approach matches the measured area within the hysteresis loop to an equivalent area ellipse in which the electric displacement lags the electric field by an amount, delta, under sinusoidal loading. The results collapse the measured loss as a function of bias stress and electric field amplitude reasonably close to a single curve. The measured dielectric loss behavior was attributed to the compressive stress preload driving a partial phase transformation from rhombohedral to orthorhombic and the electric field driving the reverse phase transformation from the stress induced orthorhombic phase to the zero stress rhombohedral phase. When the compressive bias stress partially or fully drives this phase transformation, the dielectric loss under unipolar electric field loading increases. This work is focused on quasi-static measurements. The large field dielectric loss is anticipated to be a function of frequency and temperature.

  7. Effect of intense magnetic fields on the convection of biogenic guanine crystals in aqueous solution

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Mizukawa, Y.

    2015-05-01

    In this study, the basic magneto-optic properties of biogenic microcrystals in aqueous media were investigated. Microcrystals, mica plates, silica, and microcrystals from a diatom cell and biogenic guanine crystals from goldfish showed light scattering inhibition when the crystals were observed in water under a 5 T magnetic field and dark-field illumination. In particular, in 50% ethanol/water medium, convection of the biogenic guanine particle aggregates was reversibly inhibited when the microcrystal suspension was exposed to a 5 T magnetic field. Microscopic observation comparing the biogenic guanine crystals in water with 95% ethanol or 99% acetone revealed that light flickering on the surface of the crystals was affected by the surface interaction of the crystal with the surrounding medium. By considering both the magnetic orientation of the microcrystals and the possible interactions of crystals with the surrounding medium, a magnetically controllable fluidic tracer was suggested.

  8. Rubrene crystal field-effect mobility modulation via conducting channel wrinkling

    PubMed Central

    Reyes-Martinez, Marcos A.; Crosby, Alfred J.; Briseno, Alejandro L.

    2015-01-01

    With the impending surge of flexible organic electronic technologies, it has become essential to understand how mechanical deformation affects the electrical performance of organic thin-film devices. Organic single crystals are ideal for the systematic study of strain effects on electrical properties without being concerned about grain boundaries and other defects. Here we investigate how the deformation affects the field-effect mobility of single crystals of the benchmark semiconductor rubrene. The wrinkling instability is used to apply local strains of different magnitudes along the conducting channel in field-effect transistors. We discover that the mobility changes as dictated by the net strain at the dielectric/semiconductor interface. We propose a model based on the plate bending theory to quantify the net strain in wrinkled transistors and predict the change in mobility. These contributions represent a significant step forward in structure–function relationships in organic semiconductors, critical for the development of the next generation of flexible electronic devices. PMID:25939864

  9. Effects of a high magnetic field on the primary zinc-rich crystals in hypoeutectic Zn-Sn alloy

    NASA Astrophysics Data System (ADS)

    Li, Lei; Ban, Chunyan; Shi, Xuchen; Zhang, Haitao; Zuo, Yubo; Zhu, Qingfeng; Wang, Xiangjie; Zhang, Hui; Cui, Jianzhong; Nagaumi, Hiromi

    2017-04-01

    The effects of a high magnetic field on the primary zinc-rich crystals during the solidification process of hypoeutectic Zn-Sn were investigated, along with the analysis of crystallographic orientations of them. The results show that the primary zinc-rich crystals in two dimensions show column-like or dendritic forms whether without and with the HMF. However, they are highly aligned and textured by the application of a high magnetic field: with the longer axis parallel to but the crystallographic c axis perpendicular to the magnetic field. The two-dimensional forms of the primary zinc-rich crystals are related to their orientations relative to the observation planes. The orientation and alignment modification by the magnetic field arises from the induced magnetic torques due to the magnetocrystalline anisotropy of the zinc-rich crystals, which makes them in energetically optimal orientations.

  10. Effects of Polymers on the Rotational Viscosities of Nematic Liquid Crystals and Dynamics of Field Alignment.

    NASA Astrophysics Data System (ADS)

    Kim, Du-Rim

    Many of the important physical phenomena exhibited by the nematic phase, such as its unusual flow properties and its responses to the electric and the magnetic fields, can be discussed regarding it as a continuous medium. The Leslie-Erickson dynamic theory has the six dissipative coefficients from continuum model of liquid crystal. Parodi showed that only five of them are independent, when Onsagar's reciprocal relations are used. One of these, which has no counterpart in the isotropic liquids, is the rotational viscosity coefficient, gamma_1. The main objective of this project is to study the rotational viscosities of selected micellar nematic systems and the effect of dissolved polymers in micellar and thermotropic liquid crystals. We used rotating magnetic field method which allows one to determine gamma _1 and the anisotropic magnetic susceptibility, chi_{a}. For the ionic surfactant liquid crystals of SDS and KL systems used in this study, the rotational viscosity exhibited an extraordinary drop after reaching the highest value gamma_1 as the temperature was lowered. This behavior is not observed in normal liquid crystals. But this phenomena can be attributed to the existence of nematic biaxial phase below the rod-like nematic N_{c} phase. The pretransitional increase in gamma _1 near the disk-like nematic to smectic -A phase transition of the pure CsPFO H_2O systems are better understood with the help of mean-field models of W. L. McMillan. He predicted a critical exponent nu = -{1over 2} for the divergence of gamma_1. The polymer (PEO, molecular weight = 10 ^5) dissolved in CsPFO H_2O system (which has 0.6% critical polymer concentration), suppressed the nematic to lamellar smectic phase transition in concentrated polymer solutions (0.75% and higher). In dilute polymer solutions with lower than 0.3% polyethylene-oxide, a linear increase of gamma_1 is observed, which agrees with Brochard theory. The polymer solutions in thermotropic liquid crystal solvents

  11. Ferroelectric Single-Crystal Gated Graphene/Hexagonal-BN/Ferroelectric Field-Effect Transistor.

    PubMed

    Park, Nahee; Kang, Haeyong; Park, Jeongmin; Lee, Yourack; Yun, Yoojoo; Lee, Jeong-Ho; Lee, Sang-Goo; Lee, Young Hee; Suh, Dongseok

    2015-11-24

    The effect of a ferroelectric polarization field on the charge transport in a two-dimensional (2D) material was examined using a graphene monolayer on a hexagonal boron nitride (hBN) field-effect transistor (FET) fabricated using a ferroelectric single-crystal substrate, (1-x)[Pb(Mg1/3Nb2/3)O3]-x[PbTiO3] (PMN-PT). In this configuration, the intrinsic properties of graphene were preserved with the use of an hBN flake, and the influence of the polarization field from PMN-PT could be distinguished. During a wide-range gate-voltage (VG) sweep, a sharp inversion of the spontaneous polarization affected the graphene channel conductance asymmetrically as well as an antihysteretic behavior. Additionally, a transition from antihysteresis to normal ferroelectric hysteresis occurred, depending on the V(G) sweep range relative to the ferroelectric coercive field. We developed a model to interpret the complex coupling among antihysteresis, current saturation, and sudden conductance variation in relation with the ferroelectric switching and the polarization-assisted charge trapping, which can be generalized to explain the combination of 2D structured materials with ferroelectrics.

  12. Effects of polymers on the rotational viscosities of nematic liquid crystals and dynamics of field alignment

    SciTech Connect

    Kim, D.

    1993-12-31

    Many of the important physical phenomena exhibited by the nematic phase, such as its unusual flow properties and its responses to the electric and the magnetic fields, can be discussed regarding it as a continous medium. The Leslie-Erickson dynamic theory has the six dissipative coefficients from continuum model of liquid crystal. Parodi showed that only five of them are independent, when Onsagar`s reciprocal relations are used. One of these, which has no counterpart in the isotropic liquids, is the rotational viscosity co-efficient, {gamma}{sub 1}. The main objective of this project is to study the rotational viscosities of selected micellar nematic systems and the effect of dissolved polymers in micellar and thermotropic liqud crystals. We used rotating magnetic field method which allows one to determine {gamma}{sub 1} and the anisotropic magnetic susceptibility, {chi}{sub a}. For the ionic surfactant liquid crystals of SDS and KL systems used in this study, the rotational viscosity exhibited an extraordinary drop after reaching the highest values {gamma}{sub 1} as the temperature was lowered. This behavior is not observed in normal liquid crystals. But this phenomena can be attributed to the existence of nematic biaxial phase below the rod-like nematic N{sub c} phase. The pretransitional increase in {gamma}{sub 1} near the disk-like nematic to smectic-A phase transition of the pure CsPFO/H{sub 2}O systems are better understood with the help of mean-field models of W.L. McMillan. He predicted a critical exponent {nu} = {1/2} for the divergence of {gamma}{sub 1}. The polymer (PEO, molecular weight = 10{sup 5}) dissolved in CsPFO/H{sub 2}O system (which has 0.6% critical polymer concentration), suppressed the nematic to lamellar smectic phase transition in concentrated polymer solutions (0.75% and higher). In dilute polymer solutions with lower than 0.3% polyethylene-oxide, a linear increase of {gamma}{sub 1} is observed, which agrees with Brochard theory.

  13. Effects of a Rotating Magnetic Field on Gas Transport During Detached Crystal Growth in Space

    NASA Technical Reports Server (NTRS)

    Walker, John S.; Volz, Martin P.; Szofran, Frank R.; Motakef, Shariar; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    During the detached Bridgman growth of semiconductor crystals, the melt has a short free surface which is detached from the ampoule wall near the crystal-melt interface, thus eliminating the crystal defects caused by contact with the ampoule wall. Recent modelling has indicated that initiation and continuation of detached growth depends on the rate of transport of dissolved gas from the crystal-melt interface, where gas is rejected into the melt, to the detached free surface, where evaporating gas maintains the pressure on the free surface. Here we use numerical modelling to investigate whether the application of a rotating magnetic field increases or decreases the transport of rejected gas to the detached free surface. Unfortunately the results show that a rotating magnetic field almost always decreases the evaporation rate at the detached free surface. The exception is an insignificant increase for a short period at the beginning of crystal growth for a few circumstances. The evaporation rate decreases as the strength of the rotating magnetic field is increased.

  14. Twofold and Fourfold Symmetric Anisotropic Magnetoresistance Effect in a Model with Crystal Field

    NASA Astrophysics Data System (ADS)

    Kokado, Satoshi; Tsunoda, Masakiyo

    2015-09-01

    We theoretically study the twofold and fourfold symmetric anisotropic magnetoresistance (AMR) effects of ferromagnets. We here use the two-current model for a system consisting of a conduction state and localized d states. The localized d states are obtained from a Hamiltonian with a spin-orbit interaction, an exchange field, and a crystal field. From the model, we first derive general expressions for the coefficient of the twofold symmetric term (C2) and that of the fourfold symmetric term (C4) in the AMR ratio. In the case of a strong ferromagnet, the dominant term in C2 is proportional to the difference in the partial densities of states (PDOSs) at the Fermi energy (EF) between the dɛ and dγ states, and that in C4 is proportional to the difference in the PDOSs at EF among the dɛ states. Using the dominant terms, we next analyze the experimental results for Fe4N, in which |C2| and |C4| increase with decreasing temperature. The experimental results can be reproduced by assuming that the tetragonal distortion increases with decreasing temperature.

  15. Crystal electric field effects and thermal expansion of rare-earth hexaborides

    NASA Astrophysics Data System (ADS)

    Novikov, V. V.; Pilipenko, E. S.; Bud'ko, S. L.

    2017-02-01

    Anomalies in the magnetic contribution to the thermal expansion coefficients ∆β(T)of the CeB6, PrB6, and NdB6 hexaborides in the range of 5-300 K were found by comparison with diamagnetic LaB6. The characteristic of the anomalies was the same in all the studied borides: a distinct peak at low temperatures, followed by a broad maximum at higher temperatures (50-100 K), then a decrease and transition to the region of negative values as the temperature increases further. The features of ∆β(T) are explained by the effects of the magnetic order (sharp low temperature peaks) and the crystal electric field (CEF). The βCEF(T) dependencies were calculated using Raman and neutron scattering data on the splitting of the rare-earth (RE) ions R3+ f-level by the CEF. A satisfactory consistency between the values of βCEF(T) and ∆β(T)was obtained for the studied hexaborides. Additionally, we determined the values of the Grüneisen parameter γi that correspond to the transition between the ground and excited multiplets of R3+ ions f-level splitting.

  16. Touch sensors based on planar liquid crystal-gated-organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Seo, Jooyeok; Lee, Chulyeon; Han, Hyemi; Lee, Sooyong; Nam, Sungho; Kim, Hwajeong; Lee, Joon-Hyung; Park, Soo-Young; Kang, Inn-Kyu; Kim, Youngkyoo

    2014-09-01

    We report a tactile touch sensor based on a planar liquid crystal-gated-organic field-effect transistor (LC-g-OFET) structure. The LC-g-OFET touch sensors were fabricated by forming the 10 μm thick LC layer (4-cyano-4'-pentylbiphenyl - 5CB) on top of the 50 nm thick channel layer (poly(3-hexylthiophene) - P3HT) that is coated on the in-plane aligned drain/source/gate electrodes (indium-tin oxide - ITO). As an external physical stimulation to examine the tactile touch performance, a weak nitrogen flow (83.3 μl/s) was employed to stimulate the LC layer of the touch device. The LC-g-OFET device exhibited p-type transistor characteristics with a hole mobility of 1.5 cm2/Vs, but no sensing current by the nitrogen flow touch was measured at sufficiently high drain (VD) and gate (VG) voltages. However, a clear sensing current signal was detected at lower voltages, which was quite sensitive to the combination of VD and VG. The best voltage combination was VD = -0.2 V and VG = -1 V for the highest ratio of signal currents to base currents (i.e., signal-to-noise ratio). The change in the LC alignment upon the nitrogen flow touch was assigned as the mechanism for the present LC-g-OFET touch sensors.

  17. Phase field crystal study on the grain boundary porosity induced by the Kirkendall effect

    NASA Astrophysics Data System (ADS)

    Lu, Guang-Ming; Lu, Yan-Li; Hu, Ting-Ting; Chen, Zheng

    2016-03-01

    Grain boundary (GB) porosity strongly degrades the bonding quality of interfaces and affects the physical and mechanical properties of solid polycrystalline materials. In this paper, the formation and evolution mechanisms of porosity at the grain boundary were investigated using the binary phase field crystal simulation method. Simulated results indicate that the Kirkendall effect existing in the interdiffusion of substitutional binary alloys can result in GB porosity. For the low-angle grain boundary interdiffusion system, the porosity initially forms at the isolated dislocation core, evolving from circle to irregular polygon. For the large-angle GB interdiffusion system, the porosity initially forms at the dislocation core close to the diffusion plane, and then evolves toward the dislocation cores away from the diffusion plane. The porosities finally connect as a continuous slit that splits up the GB. The results also show that the diffusion of fast diffusers along the GB is obviously enhanced with the mobility ratio of species A and B increasing. Our simulation results agree well with theoretical and experimental results.

  18. Effect of carbon substitution on low magnetic field AC losses in MgB 2 single crystals

    NASA Astrophysics Data System (ADS)

    Ciszek, M.; Rogacki, K.; Karpiński, J.

    2011-11-01

    The DC magnetization and AC magnetic susceptibilities were measured for MgB2 single crystals, unsubstituted and carbon substituted with the composition of Mg(B0.94C0.06)2. AC magnetic losses were derived from the AC susceptibility data as a function of the AC amplitude and the DC bias magnetic field. From the DC magnetization loops critical current densities were derived as a function of temperature and DC field. Results show that the substitution with carbon decreases critical current densities at low external magnetic fields, in contrast to the well known effect of an increase of the critical current densities at higher magnetic fields.

  19. Slave Boson Theory of Orbital Differentiation with Crystal Field Effects: Application to UO2

    NASA Astrophysics Data System (ADS)

    Lanatà, Nicola; Yao, Yongxin; Deng, Xiaoyu; Dobrosavljević, Vladimir; Kotliar, Gabriel

    2017-03-01

    We derive an exact operatorial reformulation of the rotational invariant slave boson method, and we apply it to describe the orbital differentiation in strongly correlated electron systems starting from first principles. The approach enables us to treat strong electron correlations, spin-orbit coupling, and crystal field splittings on the same footing by exploiting the gauge invariance of the mean-field equations. We apply our theory to the archetypical nuclear fuel UO2 and show that the ground state of this system displays a pronounced orbital differentiation within the 5 f manifold, with Mott-localized Γ8 and extended Γ7 electrons.

  20. Giant reversible rotating cryomagnetocaloric effect in KEr (MoO4)2 induced by a crystal-field anisotropy

    NASA Astrophysics Data System (ADS)

    Tkáč, V.; Orendáčová, A.; Čižmár, E.; Orendáč, M.; Feher, A.; Anders, A. G.

    2015-07-01

    Magnetocaloric properties of KEr(MoO4)2 single crystals were investigated using magnetization and specific heat measurements in the magnetic field applied along the easy and hard axis. Large conventional magnetocaloric effect was found around 10 K (-Δ Smax =14 J/kg K for 5 T) in the field applied along the easy axis. What is more, a huge magnetic anisotropy in the a b plane leads to a large anisotropy of magnetocaloric effect, -Δ SR ,max =10 and 13 J/kg K obtained by a simple rotating of the single crystal within the a b plane in the constant magnetic field 2 and 5 T, respectively. Large Δ SR values with no hysteresis losses and rather wide working temperature spans imply that KEr(MoO4)2 may serve as a promising candidate for the implementation of a compact rotary magnetic cryorefrigerator.

  1. Measurements of mode field diameter and effective area of photonic crystal fibers by far-field scanning technique

    NASA Astrophysics Data System (ADS)

    Miyagi, Kazuya; Namihira, Yoshinori; Razzak, S. M. Abdur; Kaijage, Shubi F.; Begum, Feroza

    2010-07-01

    We have demonstrated that the correction factor k n = A eff/( πw 2), where ω = MFD/2 (MFD: mode field diameter), is above 1.20 for photonic crystal fibers (PCFs) with structural parameters in the range of d/Λ ≅ 0.40 to 0.90 ( d/Λ ratio of hole diameter d and pitch Λ). By using the far-field scanning (FFS) technique and the finite difference method, the results of experimental measurements and numerical simulations differed by only 0.9 to 3.0% for two types of PCFs. The finding that k n ≠ 1.0 for PCFs indicates that their electrical field distribution is non-Gaussian and cannot be determined by assuming a conventional step-index distribution for PCFs. It was also found that the ITU-T Petermann II definition is the most suitable for MFD measurements of PCFs with non-Gaussian distribution.

  2. Magnetic anisotropy and crystalline electric field effects in RRh{sub 4}B{sub 4} single crystals.

    SciTech Connect

    Zhou, H.; Lambert, S. E.; Maple, M. B.; Dunlap, B. D.; Materials Science Division; Univ. of California at San Diego

    2009-08-01

    Research on polycrystalline RRh{sub 4}B{sub 4} samples has shown that crystalline electric field (CEF) effects play an important role in these compounds. The successful synthesis of single crystal samples of RRh{sub 4}B{sub 4} with R = Y, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu has provided an opportunity to further investigate CEF effects in these materials. Magnetization and magnetic susceptibility measurements on the RRh{sub 4}B{sub 4} single crystals revealed strong magnetic anisotropy, and the experimental results could be described well by CEF calculations based on the parameters derived from an analysis of experimental data for ErRh{sub 4}B{sub 4} single crystals. The easy directions of magnetization of these compounds are consistent with the signs of the Stevens factor {alpha}J of the CEF Hamiltonian. A strong influence of magnetic anisotropy on superconductivity was also observed.

  3. Dependence of Pentacene Crystal Growth on Dielectric Roughness for Fabrication of Flexible Field-Effect Transistors

    SciTech Connect

    Yang, H.; Yang, C; Kim, S; Jang, M; Park, C

    2010-01-01

    The dependence of pentacene nanostructures on gate dielectric surfaces were investigated for flexible organic field-effect transistor (OFET) applications. Two bilayer types of polymer/aluminum oxide (Al{sub 2}O{sub 3}) gate dielectrics were fabricated on commercial Al foils laminated onto a polymer back plate. Some Al foils were directly used as gate electrodes, and others were smoothly polished by an electrolytic etching. These Al surfaces were then anodized and coated with poly({alpha}-methyl styrene) (PAMS). For PAMS/Al{sub 2}O{sub 3} dielectrics onto etched Al foils, surface roughness up to 1 nm could be reached, although isolated dimples with a lateral diameter of several micrometers were still present. On PAMS/Al{sub 2}O{sub 3} dielectrics (surface roughness >40 nm) containing mechanical grooves of Al foil, average hole mobility ({mu}FET) of 50 nm thick pentacene-FETs under the low operating voltages (|V| < 6 V) was {approx}0.15 cm{sup 2} V{sup -1} s{sup -1}. In contrast, pentacene-FETs employing the etched Al gates exhibited {mu}FET of 0.39 cm{sup 2} V{sup -1} s{sup -1}, which was comparable to that of reference samples with PAMS/Al{sub 2}O{sub 3} dielectrics onto flat sputtered Al gates. Conducting-probe atomic force microscopy and two-dimensional X-ray diffraction of pentacene films with various thicknesses revealed different out-of-plane and in-plane crystal orderings of pentacene, depending on the surface roughness of the gate dielectrics.

  4. Touch sensors based on planar liquid crystal-gated-organic field-effect transistors

    SciTech Connect

    Seo, Jooyeok; Lee, Chulyeon; Han, Hyemi; Lee, Sooyong; Nam, Sungho; Kim, Youngkyoo; Kim, Hwajeong; Lee, Joon-Hyung; Park, Soo-Young; Kang, Inn-Kyu

    2014-09-15

    We report a tactile touch sensor based on a planar liquid crystal-gated-organic field-effect transistor (LC-g-OFET) structure. The LC-g-OFET touch sensors were fabricated by forming the 10 μm thick LC layer (4-cyano-4{sup ′}-pentylbiphenyl - 5CB) on top of the 50 nm thick channel layer (poly(3-hexylthiophene) - P3HT) that is coated on the in-plane aligned drain/source/gate electrodes (indium-tin oxide - ITO). As an external physical stimulation to examine the tactile touch performance, a weak nitrogen flow (83.3 μl/s) was employed to stimulate the LC layer of the touch device. The LC-g-OFET device exhibited p-type transistor characteristics with a hole mobility of 1.5 cm{sup 2}/Vs, but no sensing current by the nitrogen flow touch was measured at sufficiently high drain (V{sub D}) and gate (V{sub G}) voltages. However, a clear sensing current signal was detected at lower voltages, which was quite sensitive to the combination of V{sub D} and V{sub G}. The best voltage combination was V{sub D} = −0.2 V and V{sub G} = −1 V for the highest ratio of signal currents to base currents (i.e., signal-to-noise ratio). The change in the LC alignment upon the nitrogen flow touch was assigned as the mechanism for the present LC-g-OFET touch sensors.

  5. Broken symmetry phase transition in solid p-H 2, o-D 2 and HD: crystal field effects

    NASA Astrophysics Data System (ADS)

    Freiman, Yu. A.; Hemley, R. J.; Jezowski, A.; Tretyak, S. M.

    1999-04-01

    We report the effect of the crystal field (CF) on the broken symmetry phase transition (BSP) in solid parahydrogen, orthodeuterium, and hydrogen deuteride. The CF was calculated taking into account a distortion from the ideal HCP structure. We find that, in addition to the molecular field generated by the coupling terms in the intermolecular potential, the Hamiltonian of the system contains a crystal-field term, originating from single-molecular terms in the intermolecular potential. Ignoring the CF is the main cause of the systematic underestimation of the transition pressure, characteristic of published theories of the BSP transition. The distortion of the lattice that gives rise to the negative CF in response to the applied pressure is in accord with the general Le Chatelier-Braun principle.

  6. Bimodal random crystal field distribution effects on the ferrimagnetic mixed spin-1/2 > and spin-3/2 Blume-Capel model

    NASA Astrophysics Data System (ADS)

    Yigit, Ali; Albayrak, Erhan

    2013-03-01

    The effects of bimodal random crystal field on the phase diagrams and magnetization curves of ferrimagnetic mixed spin-1/2 and spin-3/2 Blume-Capel model are examined by using the effective field theory with correlations for honeycomb lattice. The phase diagrams are obtained on the (Δ,kT/|J|), (Δ,Tcomp) and (p,kT/|J|) planes for given values of p and Δ, respectively. The model exhibits only the second-order phase transitions as in the Blume-Capel model with constant crystal fields. In addition, it was found that the model presents one or two compensation temperatures for appropriate values of random crystal field for given probability in contrast to constant crystal field case. Therefore, it is shown that the random crystal field considerably affects the thermal variations of net and sublattice magnetizations.

  7. Metastable Copper-Phthalocyanine Single-Crystal Nanowires and Their Use in Fabricating High-Performance Field-Effect Transistors

    SciTech Connect

    Xiao, Kai; Li, Rongjin; Tao, Jing; Payzant, E Andrew; Ivanov, Ilia N; Puretzky, Alexander A; Hu, Wenping; Geohegan, David B

    2009-01-01

    This paper describes a simple, vapor-phase route to the synthesis of metastable α-phase copper-phthalocyanine (CuPc) single-crystal nanowires through control of the growth temperature. The influence of the growth temperature on the crystal structures, morphology, and size of the CuPc nanostructures was explored by XRD, optical absorption and Transmission Electron Microscopy (TEM). α-CuPc nanowires were successfully incorporated as active semiconductors in field-effect transistors (FETs). Single nanowire devices exhibited the carrier mobilities and current on/off ratios as high as 0.4 cm2/Vs and > 104, respectively, rendering them useful for organic photovoltaic cells, organic light-emitting diodes, field-effect transistors, memories and gas sensors

  8. Effects of in-plane electric fields on the optical properties of cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Rumi, Mariacristina; Tondiglia, Vincent P.; Natarajan, Lalgudi V.; White, Timothy J.; Bunning, Timothy J.

    2013-09-01

    A considerable body of knowledge has been developed on the general behavior of cholesteric liquid crystal (CLC) materials in electric fields. One approach that has been reported to achieve tunability in optical filters based on CLCs with a positive dielectric anisotropy and in the planar homogeneous state involves the application of electric fields perpendicular to the axis of the CLC helix. The field leads to a progressive unwinding of the helix and a corresponding red-shift in the position of the reflection band of the CLC. In this work, a microspectrophotometer was employed to probe the spatial heterogeneity of the optical spectra of the CLC in cells with interdigitated electrodes. We will show that a complex behavior of the Bragg reflection band is obtained in the gap between electrodes for certain parameters of cells with interdigitated electrodes as a function of the applied field. This is ascribed to variations in the field magnitude and direction in the cell, which lead to a spatial variation of helix unwinding.

  9. Analysis of the effect of symmetric/asymmetric CUSP magnetic fields on melt/crystal interface during Czochralski silicon growth

    NASA Astrophysics Data System (ADS)

    Daggolu, Parthiv; Ryu, Jae Woo; Galyukov, Alex; Kondratyev, Alexey

    2016-10-01

    With the use of 300 mm silicon wafers for industrial semiconductor device manufacturing, the Czochralski (Cz) crystal growth process has to be optimized to achieve higher quality and productivity. Numerical studies based on 2D global thermal models combined with 3D simulation of melt convection are widely used today to save time and money in the process development. Melt convection in large scale Cz Si growth is controlled by a CUSP or transversal magnetic field (MF) to suppress the melt turbulence. MF can be optimized to meet necessary characteristics of the growing crystal, in terms of point defects, as MF affects the melt/crystal interface geometry and allows adjustment of the pulling rate. Among the different knobs associated with the CUSP magnetic field, the nature of its configuration, going from symmetric to asymmetric, is also reported to be an important tool for the control of crystallization front. Using a 3D unsteady model of the CGSim software, we have studied these effects and compared with several experimental results. In addition, physical mechanisms behind these observations are explored through a detailed modeling analysis of the effect of an asymmetric CUSP MF on convection features governing the heat transport in the silicon melt.

  10. Effect of Magnetic Fields on g-jitter Induced Convection and Solute Striation During Space Processing of Single Crystals

    NASA Technical Reports Server (NTRS)

    deGroh, H. C.; Li, K.; Li, B. Q.

    2002-01-01

    A 2-D finite element model is presented for the melt growth of single crystals in a microgravity environment with a superimposed DC magnetic field. The model is developed based on the deforming finite element methodology and is capable of predicting the phenomena of the steady and transient convective flows, heat transfer, solute distribution, and solid-liquid interface morphology associated with the melt growth of single crystals in microgravity with and without an applied magnetic field. Numerical simulations were carried out for a wide range of parameters including idealized microgravity conditions, the synthesized g-jitter and the real g-jitter data taken by on-board accelerometers during space flights. The results reveal that the time varying g-jitter disturbances, although small in magnitude, cause an appreciable convective flow in the liquid pool, which in turn produces detrimental effects during the space processing of single crystal growth. An applied magnetic field of appropriate strength, superimposed on microgravity, can be very effective in suppressing the deleterious effects resulting from the g-jitter disturbances.

  11. Effect of crystal-field splitting and interband hybridization on the metal-insulator transitions of strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Poteryaev, Alexander I.; Ferrero, Michel; Georges, Antoine; Parcollet, Olivier

    2008-07-01

    We investigate a quarter-filled two-band Hubbard model involving a crystal-field splitting, which lifts the orbital degeneracy as well as an interorbital hopping (interband hybridization). Both terms are relevant to the realistic description of correlated materials such as transition-metal oxides. The nature of the Mott metal-insulator transition is clarified and is found to depend on the magnitude of the crystal-field splitting. At large values of the splitting, a transition from a two-band to a one-band metal is first found as the on-site repulsion is increased and is followed by a Mott transition for the remaining band, which follows the single-band (Brinkman-Rice) scenario well documented previously within dynamical mean-field theory. At small values of the crystal-field splitting, a direct transition from a two-band metal to a Mott insulator with partial orbital polarization is found, which takes place simultaneously for both orbitals. This transition is characterized by a vanishing of the quasiparticle weight for the majority orbital but has a first-order character for the minority orbital. It is pointed out that finite-temperature effects may easily turn the metallic regime into a bad metal close to the orbital polarization transition in the metallic phase.

  12. Partial Dissolution of Charge Order Phase Observed in β-(BEDT-TTF)2PF6 Single Crystal Field Effect Transistor.

    PubMed

    Sakai, Masatoshi; Moritoshi, Norifumi; Kuniyoshi, Shigekazu; Yamauchi, Hiroshi; Kudo, Kazuhiro; Masu, Hyuma

    2016-04-01

    The effect of an applied gate electric field on the charge-order phase in β-(BEDT-TTF)2PF6 single-crystal field-effect transistor structure was observed at around room temperature by technical improvement with respect to sample preparation and electrical measurements. A relatively slight but systematic increase of the electrical conductance induced by the applied gate electric field and its temperature dependence was observed at around the metal-insulator transition temperature (TMI). The temperature dependence of the modulated electrical conductance demonstrated that TMI was shifted toward the lower side by application of a gate electric field, which corresponds to partial dissolution of the charge-order phase. The thickness of the partially dissolved charge order region was estimated to be several score times larger than the charge accumulation region.

  13. Terahertz-field-induced second harmonic generation through Pockels effect in zinc telluride crystal.

    PubMed

    Cornet, Marion; Degert, Jérôme; Abraham, Emmanuel; Freysz, Eric

    2014-10-15

    We report on the second harmonic generation (SHG) of a near-infrared pulse in a zinc telluride crystal through the Pockels effect induced by an intense terahertz pulse. The temporal and angular behaviors of the SHG have been measured and agree well with theoretical predictions. This phenomenon, so far overlooked, makes it possible to generate second harmonic through cascading of two second-order nonlinear phenomena in the near-infrared and terahertz ranges. We also show how this cascading process can be used to sample terahertz pulses.

  14. Lectures on Crystal Field Theory

    DTIC Science & Technology

    1982-11-01

    used to calculate the electric dipole transition probabilities using the theory of Judd (1962) and Ofelt (1962)o As of 1970, all these objectives had...metry higher than C1 or C•. (4) The calculation of transltion probabilities, Zeeman splitting factors, Judd - Ofelt intensity parameters, branching ratios...INTERACTIONS ..................................... 37 4.1 Phenomenological Theory of Crystal Fields ................ 37 4.1.1 Matrix Elements of H in J States

  15. Fabrication of graphene field-effect transistor on top of ferroelectric single-crystal substrate

    NASA Astrophysics Data System (ADS)

    Park, Nahee; Kang, Haeyong; Lee, Yourack; Kim, Jeong-Gyun; Kim, Joong-Gyu; Yun, Yoojoo; Park, Jeongmin; Kim, Taesoo; Kim, Jung Ho; Jin, Youngjo; Shin, Yong Seon; Lee, Young Hee; Suh, Dongseok

    2015-03-01

    In the analysis of Graphene field-effect transistor, the substrate material which has the direct contact with Graphene layer plays an important in the device performance. In this presentation, we have tested PMN-PT(i.e.(1-x)Pb(Mg1/3Nb2/3) O3-xPbTiO3) substrate as a gate dielectric of Graphene field-effect transistor. Unlike the case of previously used substrates such as silicon oxide or hexagonal Boron-Nitride(h-BN), the PMN-PT substrate can induce giant amount of surface charge that is directly injected to the attached Graphene layer due to its ferroelectric property. And the hysteresis of polarization versus electric field of PMN-PT can cause the device to show the ferroelectric nonvolatile memory operation. We had successfully fabricated Graphene field-effect transistor using the mechanically exfoliated Graphene layer transferred on the PMN-PT(001) substrate. Unlike the case of mechanical exfoliation on the surface of silicon-oxide or the Poly(methyl methacrylate) (PMMA), the weak adhesion properties between graphene and PMNPT required the pretreatment on PMMA before the exfoliation process. The device performance is analyzed in terms of the effect of ferro- and piezo-electric effect of PMNPT substrate.

  16. Effects of carbon nanotubes on electro-optical characteristics of liquid crystal cell driven by in-plane field

    NASA Astrophysics Data System (ADS)

    Jeon, Sang Youn; Shin, Seung Hwan; Jeong, Seok Jin; Lee, Seung Hee; Jeong, Seok Ho; Lee, Young Hee; Choi, Hyun Chul; Kim, Kyeong Jin

    2007-03-01

    Homogeneously aligned nematic liquid crystal (LC) cells doped with carbon nanotubes (CNTs) driven by an in-plane field were fabricated and their electro-optic characteristics were investigated. The effective cell retardation values showed no difference between doped and undoped LC cells in the absence of electric field. However, in the presence of electric field, it was smaller in the CNT-doped cell than in the undoped cell, resulting in the decrease of transmittance. Furthermore, the CNT-doped cell exhibited a slight increase in the driving voltage due to the increase of the twist elastic constant (K22) and the decrease in the decay response time due to the decrease in the rotational viscosity (γ) and γ /K22 compared to the undoped cell.

  17. Crystal field disorder effects in the optical spectra of Nd{sup 3+} and Yb{sup 3+}-doped calcium lithium niobium gallium garnets laser crystals and ceramics

    SciTech Connect

    Lupei, V.; Lupei, A.; Gheorghe, C.; Gheorghe, L.; Achim, A.; Ikesue, A.

    2012-09-15

    The optical spectroscopic properties of RE{sup 3+} (Nd, 1 at. % or Yb, 1 to 10 at. %)-doped calcium-lithium-niobium-gallium garnet (CLNGG) single crystals and ceramics in the 10 K-300 K range are analyzed. In these compositionally disordered materials, RE{sup 3+} substitute Ca{sup 2+} in dodecahedral sites and the charge compensation is accomplished by adjusting the proportion of Li{sup +}, Nb{sup 5+}, and Ga{sup 3+} to the doping concentration. The crystals and ceramics show similar optical spectra, with broad and structured (especially at low temperatures) bands whose shape depends on temperature and doping concentration. At 10 K, the Nd{sup 3+4}I{sub 9/2}{yields}{sup 4}F{sub 3/2,5/2} and Yb{sup 3+2}F{sub 7/2}{yields}{sup 2}F{sub 5/2} absorption bands, which show prospect for diode laser pumping, can be decomposed in several lines that can be attributed to centers with large differences in the crystal field. The positions of these components are the same, but the relative intensity depends on the doping concentration and two main centers dominate the spectra. Non-selective excitation evidences broad emission bands, of prospect for short-pulse laser emission, whereas the selective excitation reveals the particular emission spectra of the various centers. The modeling reveals that the nonequivalent centers correspond to RE{sup 3+} ions with different cationic combinations in the nearest octahedral and tetrahedral coordination spheres, and the most abundant two centers have 4Nb and, respectively, 3Nb1Li in the nearest octahedral sphere. At 300 K, the spectral resolution is lost. It is then inferred that the observed optical bands are envelopes of the spectra of various structural centers, whose resolution is determined by the relative contribution of the temperature-dependent homogeneous broadening and the effects of crystal field disordering (multicenter structure, inhomogeneous broadening). The relevance of spectroscopic properties for selection of pumping

  18. Investigation of fringing electric field effect on high-resolution blue phase liquid crystal spatial light modulator.

    PubMed

    Yan, Jing; Guo, Zhengbo; Xing, Yufei; Li, Qing

    2015-08-20

    The fringing electric field effect which determines the performance of a high-resolution blue phase liquid crystal spatial light modulator (BPLC-SLM) is investigated by numerical modeling. The BPLC-SLM is polarization-dependent due to the transverse electric field component. The physical mechanism of the phase profile properties for different polarization states is analyzed. General design issues related to the BPLC-SLM configuration and phase profile properties are discussed. Notably, the material parameters and cell gap thickness are both optimized to obtain a low operation voltage (V=26.07  V). This work provides fundamental understanding for the feasibility of low operation voltage and high spatial resolution BPLC-SLM.

  19. Unusual Kondo-hole effect and crystal-field frustration in Nd-doped CeRhIn5

    DOE PAGES

    Rosa, Priscila Ferrari Silveira; Oostra, Aaron; Thompson, Joe David; ...

    2016-07-05

    In this research, we investigate single crystals of Ce1₋xNdxRhIn5 by means of x-ray-diffraction, microprobe, magnetic susceptibility, heat capacity, and electrical resistivity measurements. Our data reveal that the antiferromagnetic transition of CeRhIn5, at Tmore » $$Ce\\atop{N}$$=3.8 K, is linearly suppressed with xNd. We associate this effect with the presence of a “Kondo hole” created by Nd substitution. The extrapolation of T$$Ce\\atop{N}$$ to zero temperature, however, occurs at xc~0.3, which is below the two-dimensional percolation limit found in Ce1₋xLaxRhIn5. This result strongly suggests the presence of a crystal-field induced magnetic frustration. Near xNd~0.2, the Ising antiferromagnetic order from Nd3+ ions is stabilized and T$$Nd\\atop{N}$$ increases up to 11 K in NdRhIn5. Finally, our results shed light on the effects of magnetic doping in heavy-fermion antiferromagnets and stimulate the study of such systems under applied pressure.« less

  20. MAGNETORESISTANCE AND HALL EFFECT IN SINGLE CRYSTALS OF ALUMINUM

    DTIC Science & Technology

    ALUMINUM, *SINGLE CRYSTALS, CRYSTALS, HALL EFFECT , IMPURITIES, LOW PRESSURE, MAGNETIC FIELDS, MAGNETIC PROPERTIES, PARTICLE TRAJECTORIES, ELECTRICAL RESISTANCE, SOLID STATE PHYSICS, SURFACE PROPERTIES.

  1. Liquid crystal-gated-organic field-effect transistors with in-plane drain-source-gate electrode structure.

    PubMed

    Seo, Jooyeok; Nam, Sungho; Jeong, Jaehoon; Lee, Chulyeon; Kim, Hwajeong; Kim, Youngkyoo

    2015-01-14

    We report planar liquid crystal-gated-organic field-effect transistors (LC-g-OFETs) with a simple in-plane drain-source-gate electrode structure, which can be cost-effectively prepared by typical photolithography/etching processes. The LC-g-OFET devices were fabricated by forming the LC layer (4-cyano-4'-pentylbiphenyl, 5CB) on top of the channel layer (poly(3-hexylthiophene), P3HT) that was spin-coated on the patterned indium-tin oxide (ITO)-coated glass substrates. The LC-g-OFET devices showed p-type transistor characteristics, while a current saturation behavior in the output curves was achieved for the 50-150 nm-thick P3HT (channel) layers. A prospective on/off ratio (>1 × 10(3)) was obtained regardless of the P3HT thickness, whereas the resulting hole mobility (0.5-1.1 cm(2)/(V s)) at a linear regime was dependent on the P3HT thickness. The tilted ordering of 5CB at the LC-P3HT interfaces, which is induced by the gate electric field, has been proposed as a core point of working mechanism for the present LC-g-OFETs.

  2. Crystal fields of porphyrins and phthalocyanines

    NASA Astrophysics Data System (ADS)

    Johnson, P. S.; Boukahil, I.; Himpsel, F. J.; Kennedy, C.; Jersett, N.; Cook, P. L.; Garcia-Lastra, J. M.

    2014-03-01

    Polarization-dependent X-ray absorption spectroscopy at the N 1s and metal 2p edges is combined with density functional and atomic multiplet calculations to determine the crystal field parameters 10Dq, Ds, and Dt of transition metal (Mn, Fe, Co, Ni) phthalocyanines and octaethylporphyrins. Octaethyl porphyrins are observed to lie flat on Si with native oxide, while phthalocyanines lie on edge. Strong polarization dependence is found at all edges, which facilitates a unique determination of the crystal field parameters. Crystal field values from PBE density functional calculations provide helpful starting values, which are refined by fitting atomic multiplet calculations to the data. Since the crystal field affects electron-hole separation in solar cells, the systematic set of crystal field parameters obtained here can be useful for optimizing dyes for solar cells.

  3. A new real-time non-coherent to coherent light image converter - The hybrid field effect liquid crystal light valve

    NASA Technical Reports Server (NTRS)

    Grinberg, J.; Jacobson, A.; Bleha, W.; Miller, L.; Fraas, L.; Boswell, D.; Myer, G.

    1975-01-01

    A new, high-performance device has been developed for application to real-time coherent optical data processing. The new device embodies a CdS photoconductor, a CdTe light-absorbing layer, a dielectric mirror, and a liquid crystal layer sandwiched between indium-tin-oxide transparent electrodes deposited on optical quality glass flats. The noncoherent image is directed onto the photoconductor; this reduces the impedance of the photoconductor, thereby switching the ac voltage that is impressed across the electrodes onto the liquid crystal to activate the device. The liquid crystal is operated in a hybrid field effect mode. It utilizes the twisted nematic effect to create a dark off-state and the optical birefringence effect to create the bright on-state. The liquid crystal modulates the polarization of the coherent read-out light so an analyzer must be used to create an intensity modulated output beam.

  4. Dynamic control of mode field diameter and effective area by germanium doping of hexagonal photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Miyagi, Kazuya; Namihira, Yoshinori; Kasamatsu, Yuho; Hossain, Md. Anwar

    2013-07-01

    We demonstrate dynamic control of the effective area ( A eff) of photonic crystal fibers (PCFs) in the range of 18.1-8.22 μm2 and the mode field diameter in the range of 4.78-3.42 μm. This control was realized by altering their structural properties and varying the germanium (Ge) doping rate, which changed the refractive index difference (Δ n Ge) between 1.0 and 3.0% relative to the refractive index of the silica cladding. This was achieved by adjusting the Ge doping rate in the core and changing the radius ( d core) of the doped region, i.e., by changing the equivalent refractive index, using numerical calculations. Numerical results were verified by comparison with experimental results for a fabricated Gedoped PCF obtained by far-field scanning based on the ITU-T Petermann II definition. The proposed approach will simultaneously decrease Aeff and achieves high light confinement and high nonlinearity in PCFs. It enables architectonics/controllability of highly nonlinear PCFs with passive optical devices in photonic networks and life science applications.

  5. Effect of electric field and temperature gradient on the orientational dynamics of liquid crystals in a microvolume cylindrical cavity

    NASA Astrophysics Data System (ADS)

    Zakharov, A. V.; Vakulenko, A. A.; Romano, Silvano

    2009-10-01

    We have considered a homogeneously aligned liquid crystal (HALC) microvolume confined between two infinitely long horizontal coaxial cylinders and investigated dynamic field pumping, i.e., studied the interactions between director, velocity, and electric E fields as well as a radially applied temperature gradient ∇T, where the inner cylinder is kept at a lower temperature than the outer one. In order to elucidate the role of ∇T in producing hydrodynamic flow u, we have carried out a numerical study of a system of hydrodynamic equations including director reorientation, fluid flow, and temperature redistribution across the HALC cavity. Calculations show that only under the influence of ∇T does the initially quiescent HALC sample settle down to a stationary flow regime with horizontal component of velocity ueq(r). The effects of ∇T and of the size of the HALC cavity on magnitude and direction of ueq(r) have been investigated for a number of hydrodynamic regimes. Calculations also showed that E influences only the director redistribution across the HALC but not the magnitude of the velocity ueq(r).

  6. Ab Initio Crystal Field for Lanthanides.

    PubMed

    Ungur, Liviu; Chibotaru, Liviu F

    2017-03-13

    An ab initio methodology for the first-principle derivation of crystal-field (CF) parameters for lanthanides is described. The methodology is applied to the analysis of CF parameters in [Tb(Pc)2 ](-) (Pc=phthalocyanine) and Dy4 K2 ([Dy(4) K(2) O(OtBu)(12) ]) complexes, and compared with often used approximate and model descriptions. It is found that the application of geometry symmetrization, and the use of electrostatic point-charge and phenomenological CF models, lead to unacceptably large deviations from predictions based on ab initio calculations for experimental geometry. It is shown how the predictions of standard CASSCF (Complete Active Space Self-Consistent Field) calculations (with 4f orbitals in the active space) can be systematically improved by including effects of dynamical electronic correlation (CASPT2 step) and by admixing electronic configurations of the 5d shell. This is exemplified for the well-studied Er-trensal complex (H3 trensal=2,2',2"-tris(salicylideneimido)trimethylamine). The electrostatic contributions to CF parameters in this complex, calculated with true charge distributions in the ligands, yield less than half of the total CF splitting, thus pointing to the dominant role of covalent effects. This analysis allows the conclusion that ab initio crystal field is an essential tool for the decent description of lanthanides.

  7. Precise Characterisation of Molecular Orientation in a Single Crystal Field-Effect Transistor Using Polarised Raman Spectroscopy

    PubMed Central

    Wood, Sebastian; Rigas, Grigorios-Panagiotis; Zoladek-Lemanczyk, Alina; Blakesley, James C.; Georgakopoulos, Stamatis; Mas-Torrent, Marta; Shkunov, Maxim; Castro, Fernando A.

    2016-01-01

    Charge transport in organic semiconductors is strongly dependent on the molecular orientation and packing, such that manipulation of this molecular packing is a proven technique for enhancing the charge mobility in organic transistors. However, quantitative measurements of molecular orientation in micrometre-scale structures are experimentally challenging. Several research groups have suggested polarised Raman spectroscopy as a suitable technique for these measurements and have been able to partially characterise molecular orientations using one or two orientation parameters. Here we demonstrate a new approach that allows quantitative measurements of molecular orientations in terms of three parameters, offering the complete characterisation of a three-dimensional orientation. We apply this new method to organic semiconductor molecules in a single crystal field-effect transistor in order to correlate the measured orientation with charge carrier mobility measurements. This approach offers the opportunity for micrometre resolution (diffraction limited) spatial mapping of molecular orientation using bench-top apparatus, enabling a rational approach towards controlling this orientation to achieve optimum device performance. PMID:27619423

  8. Crystal growth under external electric fields

    SciTech Connect

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo

    2014-10-06

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal.

  9. Effect of a Transverse Magnetic Field on Stray Grain Formation of Ni-Based Single Crystal Superalloy During Directional Solidification

    NASA Astrophysics Data System (ADS)

    Xuan, Weidong; Liu, Huan; Lan, Jian; Li, Chuanjun; Zhong, Yunbo; Li, Xi; Cao, Guanghui; Ren, Zhongming

    2016-12-01

    The effect of a transverse magnetic field on stray grain formation during directional solidification of superalloy was investigated. Experimental results indicated that the transverse magnetic field effectively suppressed the stray grain formation on the side the primary dendrite diverges from the mold wall. Moreover, the quenched experimental results indicated that the solid/liquid interface shape was obviously changed in a transverse magnetic field. The effect of a transverse magnetic field on stray grain formation was discussed.

  10. Electronic and Crystal-field Effects in the Fine Structure of Electron Energy-loss Spectra of Manganites

    SciTech Connect

    Luo, W.; Tao, J.; Varela, M.; Pennycook, S.J.; Pantelides, S.T.

    2009-02-23

    The fine structure of oxygen-K electron energy-loss spectra (EELS) of transition-metal oxides is known to correlate with nominal oxidation states (NOSs) that are often interpreted as charge states. Here we report calculations of O-K EELS in La{sub x}Ca{sub 1-x}MnO{sub 3} that agree with measured spectra and show that the variation in the prepeak's intensity with doping is controlled by the orbital occupancy of the majority-spin Mn 3d states, while its width is controlled by crystal-field splitting. The results confirm an earlier conclusion that the NOS extracted from EELS corresponds only to orbital occupancies, while the physical charge renders all atoms electrically neutral, even in so-called ionic crystals.

  11. Magnetic Field Induced Phase Transitions in Gd5(Si1.95Ge2.05)Single Crystal and the Anisotropic Magnetocaloric Effect

    SciTech Connect

    H. Tang; V.K. Pecharsky; A.O. Pecharsky; D.L. Schlagel; T.A. Lograsso; K.A. Gschneidner,jr.

    2004-09-30

    The magnetization measurements using a Gd{sub 5}(Si{sub 1.95}Ge{sub 2.05}) single crystal with the magnetic field applied along three crystallographic directions, [001], [010] and [100], were carried out as function of applied field (0-56 kOe) at various temperatures ({approx}5-320 K). The magnetic-field induced phase transformations at temperature above the zero-field critical temperature, i.e. the paramagnetic (PM) {leftrightarrow} ferromagnetic (FM) transitions with application or removal of magnetic field, are found to be temperature dependent and hysteretic. The corresponding critical fields increase with increasing temperature. The magnetic field (H)-temperature (T) phase diagrams have been constructed for the Gd{sub 5}(Si{sub 1.95}Ge{sub 2.05}) single crystal with field along the three directions. A small anisotropy has been observed. The magnetocaloric effect (MCE) has been calculated from the isothermal magnetization data, and the observed anisotropy correlates with H-T phase diagrams. The results are discussed in connection with the magnetic-field induced martensitic-like structural transition observed in the Gd{sub 5}(Si{sub 2}Ge{sub 2})-type compounds.

  12. Crystallization of rubrene on a nanopillar-templated surface by the melt-recrystallization process and its application in field-effect transistors.

    PubMed

    Ho, Chi-Chih; Tao, Yu-Tai

    2015-01-11

    We present an approach to fabricate a continuous and crystalline rubrene film using the melt-recrystallization process with the assistance of a silicon nanopillar template. Better film morphology, enhanced crystallinity, and mainly oriented crystallites with the c-axis of the orthorhombic rubrene aligning parallel to the nanopillars were obtained as compared to that on a planar substrate. The oriented crystal growth is further modulated by the surface modification. It is suggested that the sidewalls of nanopillars play a key role in mediating the switch of crystal orientation and crystal growth. The obtained nanopillar-templated rubrene film was used to fabricate a vertical field-effect transistor. The device gave a current density of 78 mA cm(-2), on-off ratio around 10(3-4), subthreshold swing of 89.1 mV per decade and transconductance of 154.9 mS cm(-2) on an ODTS-modified substrate surface.

  13. Nonlinear effects in photorefractive crystals

    NASA Astrophysics Data System (ADS)

    Erbschloe, Donald R.

    Photorefractive crystals are materials whose index of refraction is altered under illumination by light. These crystals are both photoconductive and electrooptic. When a nonuniform light intensity pattern is present in the material, photocarriers are generated and redistributed, creating space charge electric fields which change the refractive index locally. These crystals are ideal media for real time holography, and applications include wave amplification, image processing, phase conjugation, and laser beam steering for optical interconnects. This thesis investigates many novel aspects of the photorefractive effect. A study of nonreciprocal behavior identifies a new important consideration in the theory of two-wave mixing between counterpropagating beams-namely the presence of a photocurrent, or frequency detuning between the beams results in a spatially varying beam coupling. A numerical treatment of these important cases provides the first systematic theoretical assessment the control of nonreciprocal transmission and phase shift in lithium niobate, a representative photorefractive crystal. A comparison between crystal types suggests candidates for nonreciprocal applications such as an optical diode.

  14. Phase-field-crystal model for ordered crystals

    NASA Astrophysics Data System (ADS)

    Alster, Eli; Elder, K. R.; Hoyt, Jeffrey J.; Voorhees, Peter W.

    2017-02-01

    We describe a general method to model multicomponent ordered crystals using the phase-field-crystal (PFC) formalism. As a test case, a generic B2 compound is investigated. We are able to produce a line of either first-order or second-order order-disorder phase transitions, features that have not been incorporated in existing PFC approaches. Further, it is found that the only elastic constant for B2 that depends on ordering is C11. This B2 model is then used to study antiphase boundaries (APBs). The APBs are shown to reproduce classical mean-field results. Dynamical simulations of ordering across small-angle grain boundaries predict that dislocation cores pin the evolution of APBs.

  15. Crystal fields in UO2 - revisited

    SciTech Connect

    Nakotte, Heinz; Rajatram, R; Mcqueeney, R J; Lander, G H; Robinson, R A

    2009-01-01

    We performed inelastic neutron scattering (INS) in order to re-investigate the crystal-field ground state and the level splitting in UO{sub 2}. Previous INS studies on UO{sub 2} by Amorelli et al. [Physical Review B 15, 1989, 1856] uncovered four excitations at low temperatures in the 150-180 meV range. Considering the dipole-allowed transitions, only three of these transitions could be explained by the published crystal-field model. Our INS results on a different UO{sub 2} sample revealed that the unaccounted peak at about 180 meV is a spurious one, and thus not intrinsic to UO{sub 2}. In good agreement with Amoretti's results, we corroborated that the ground-state of UO{sub 2} is the {Lambda}{sub 5} triplet, and we computed that the fourth- and six-order crystal field parameters are V{sub 4} = -116 meV and V{sub 6} = 26 meV, respectively. We also studied the INS response of the non-magnetic U{sub 0.4}Th{sub 0.6}O{sub 2}. The splitting for this thorium-doped compound is similar to the one of UO{sub 2}, which orders antiferromagnetically at low temperatures. Therefore, we can conclude that magnetic interactions only weakly perturb the energy level splitting, which is dominated by strong crystal fields.

  16. Effects of composition and temperature on the large field behavior of [011]{sub C} relaxor ferroelectric single crystals

    SciTech Connect

    Gallagher, John A.; Lynch, Christopher S.; Tian, Jian

    2014-08-04

    The large field behavior of [011]{sub C} cut relaxor ferroelectric lead indium niobate–lead magnesium niobate–lead titanate, xPb(In{sub 1/2}Nb{sub 1/2})O{sub 3}-(1-x-y)Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-yPbTiO{sub 3}, single crystals was experimentally characterized in the piezoelectric d{sub 322}-mode configuration under combined mechanical, electrical, and thermal loading. Increasing the concentration of lead indium niobate and decreasing the concentration of lead titanate in compositions near the morphotropic phase boundary resulted in a decrease of mechanical compliance, dielectric permittivity, and piezoelectric coefficients as well as a shift from a continuous to a discontinuous transformation.

  17. Blue-emitting Eu2+-activated LaOX (X = Cl, Br, and I) materials: crystal field effect.

    PubMed

    Kim, Donghyeon; Park, Sangha; Kim, Sungyun; Kang, Seong-Gu; Park, Jung-Chul

    2014-11-17

    Novel blue-emitting LaOBr:Eu(2+) and LaOI:Eu(2+) phosphors have been successfully synthesized and compared to LaOCl:Eu(2+). The emission spectra of LaOX:Eu(2+) (X = Cl, Br, and I) show that the peak maxima change somewhat to the red-shift region; 425 nm for LaOCl:Eu(2+), 427 nm for LaOBr:Eu(2+), and 431 nm for LaOI:Eu(2+), which is quite opposite to one based on spectrochemical series (I(-) < Br(-) < Cl(-)). From diffuse reflectance spectra, the band gap energies for LaOCl, LaOBr, and LaOI host lattice are estimated as 5.53 eV (44,594 cm(-1)), 5.35 eV (43,142 cm(-1)), and 4.82 eV (38,868 cm(-1)), respectively, using the Kubelka-Munk function. For LaOX host lattices, the band gap energies are gradually decreased going from Cl to I as the order of energy levels of np orbitals is Cl 3p < Br 4p < I 5p. A quantum wave function calculation from crystal field theory (CFT) indicates the same tendency with experimental data in the LaOX:Eu(2+) (X = Cl, Br, and I) phosphor materials. With considerations of the radial wave function shape, crystral structure differences and electronegativities among phosphor materials, the splitting energies of 5d orbitals are calculaed; ΔECl = 14,597 cm(-1), ΔEBr = 14,864 cm(-1), ΔEI = 15,001 cm(-1) for LaOX:Eu(2+) (X = Cl, Br, and I). It is noteworthy that the crystal field strength decreases when the interatomic distance decreases, which is probably dependent on the ionic radius of halide ions in the series of LaOX:Eu(2+) phosphor materials.

  18. Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Zheng, Chen; Jing, Zhang; Yongxin, Wang; Yanli, Lu

    2016-03-01

    By employing the phase-field-crystal models, the atomic crystallization process of hexagonal and square crystals is investigated with the emphasis on the growth mechanism and morphological change. A unified regime describing the crystallization behavior of both crystals is obtained with the thermodynamic driving force varying. By increasing the driving force, both crystals (in the steady-state) transform from a faceted polygon to an apex-bulged polygon, and then into a symmetric dendrite. For the faceted polygon, the interface advances by a layer-by-layer (LL) mode while for the apex-bulged polygonal and the dendritic crystals, it first adopts the LL mode and then transits into the multi-layer (ML) mode in the later stage. In particular, a shift of the nucleation sites from the face center to the area around the crystal tips is detected in the early growth stage of both crystals and is rationalized in terms of the relation between the crystal size and the driving force distribution. Finally, a parameter characterizing the complex shape change of square crystal is introduced. Project supported by the National Natural Science Foundation of China (Grant Nos. 54175378, 51474176, and 51274167), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7261), and the Doctoral Foundation Program of Ministry of China (Grant No. 20136102120021).

  19. Fluorination of Metal Phthalocyanines: Single-Crystal Growth, Efficient N-Channel Organic Field-Effect Transistors, and Structure-Property Relationships

    PubMed Central

    Jiang, Hui; Ye, Jun; Hu, Peng; Wei, Fengxia; Du, Kezhao; Wang, Ning; Ba, Te; Feng, Shuanglong; Kloc, Christian

    2014-01-01

    The fluorination of p-type metal phthalocyanines produces n-type semiconductors, allowing the design of organic electronic circuits that contain inexpensive heterojunctions made from chemically and thermally stable p- and n-type organic semiconductors. For the evaluation of close to intrinsic transport properties, high-quality centimeter-sized single crystals of F16CuPc, F16CoPc and F16ZnPc have been grown. New crystal structures of F16CuPc, F16CoPc and F16ZnPc have been determined. Organic single-crystal field-effect transistors have been fabricated to study the effects of the central metal atom on their charge transport properties. The F16ZnPc has the highest electron mobility (~1.1 cm2 V−1 s−1). Theoretical calculations indicate that the crystal structure and electronic structure of the central metal atom determine the transport properties of fluorinated metal phthalocyanines. PMID:25524460

  20. The effect of an electric field on the morphological stability of the crystal-melt interface of a binary alloy. III - Weakly nonlinear theory

    NASA Technical Reports Server (NTRS)

    Wheeler, A. A.; Mcfadden, G. B.; Coriell, S. R.; Hurle, D. T. J.

    1990-01-01

    The effect of a constant electric current on the crystal-melt interface morphology during directional solidification at constant velocity of a binary alloy is considered. A linear temperature field is assumed, and thermoelectric effects and Joule heating are neglected; electromigration and differing electrical conductivities of crystal and melt are taken into account. A two-dimensional weakly nonlinear analysis is carried out to third order in the interface amplitude, resulting in a cubic amplitude equation that describes whether the bifurcation from the planar state is supercritical or subcritical. For wavelengths corresponding to the most dangerous mode of linear theory, the demarcation between supercritical and subcritical behavior is calculated as a function of processing conditions and material parameters. The bifurcation behavior is a sensitive function of the magnitude and direction of the electric current and of the electrical conductivity ratio.

  1. Observation of high field DHVA-effect and induced magnetism in single crystal TiBe/sub 2/

    SciTech Connect

    van Deursen, A.P.J.; van Ruitenbeek, J.M.; Verhoef, W.A.; de Vroomen, A.R.; Smith, J.L.; de Groot, R.A.; Koelling, D.D.; Mueller, F.M.

    1981-01-01

    Recently much interest has been given to itinerant magnetism in cubic Laves phase or C15 materials. Primarily this stems from the discussion of the relationship of p-state pairing and ferromagnetism in ZrZn/sub 2/ by Enz and Matthias, and the possibility of triplet superconductivity. The most recent work in this field has focused on the isoelectronic, isostructural material TiBe/sub 2/, and the possibility that this material is metamagnetic. That TiBe/sub 2/ is close to some form of magnetic instability can be infered indirectly from the peaked nature of its density of states near the fermi level, but also from the observation of ferromagnetism in TiBe/sub 2-x/Cu/sub x/, when x is greater than about 0.15. In this paper a single crystal of pure TiBe/sub 2/ is considered in fields larger than 15 Tesla (T) and at a temperature of 1.3/sup 0/K.

  2. Nonlinear Effects in Photorefractive Crystals.

    NASA Astrophysics Data System (ADS)

    Erbschloe, Donald Ross

    1988-12-01

    Available from UMI in association with The British Library. Requires signed TDF. Photorefractive crystals are materials whose index of refraction is altered under illumination by light. These crystals are both photoconductive and electrooptic. When a nonuniform light intensity pattern is present in the material, photocarriers are generated and redistributed, creating space charge electrical fields which change the refractive index locally. These crystals are ideal media for real-time holography, and applications include wave amplification, image processing, phase conjugation, and laser beam steering for optical interconnects. This thesis investigates many novel aspects of the photorefractive effect. A study of nonreciprocal behaviour identifies a new important consideration in the theory of two-wave mixing between counterpropagating beams--namely the presence of a photocurrent, or frequency detuning between the beams results in a spatially varying beam coupling. A numerical treatment of these important cases provides the first systematic theoretical assessment of the control of nonreciprocal transmission and phase shift in lithium niobate, a representative protorefractive crystal. A comparison between crystal types suggests candidates for nonreciprocal applications such as an optical diode. A study of bismuth silicon oxide, Bi_ {12}SiO_{20} , as the active gain medium in an oscillator reveals a novel feature, the presence of a light intensity threshold. For one crystal sample no oscillation occurred for incident intensities less than 0.8 mW/cm^2. A surprising new result is the appearance of higher diffracted orders in a crystal sample with a small wedge angle (0.036 ^circ) due to wave mixing between an incident beam and its first codirectional multiple reflection. Several applications for this new means of obtaining beam interaction are discussed--including the study of the photorefractive coupling for very large grating spacings, the investigation of transient

  3. Statistical electric field and switching time distributions in PZT 1Nb2Sr ceramics: Crystal- and microstructure effects

    NASA Astrophysics Data System (ADS)

    Zhukov, Sergey; Kungl, Hans; Genenko, Yuri A.; von Seggern, Heinz

    2014-01-01

    Dispersive polarization response of ferroelectric PZT ceramics is analyzed assuming the inhomogeneous field mechanism of polarization switching. In terms of this model, the local polarization switching proceeds according to the Kolmogorov-Avrami-Ishibashi scenario with the switching time determined by the local electric field. As a result, the total polarization reversal is dominated by the statistical distribution of the local field magnitudes. Microscopic parameters of this model (the high-field switching time and the activation field) as well as the statistical field and consequent switching time distributions due to disorder at a mesoscopic scale can be directly determined from a set of experiments measuring the time dependence of the total polarization switching, when applying electric fields of different magnitudes. PZT 1Nb2Sr ceramics with Zr/Ti ratios 51.5/48.5, 52.25/47.75, and 60/40 with four different grain sizes each were analyzed following this approach. Pronounced differences of field and switching time distributions were found depending on the Zr/Ti ratios. Varying grain size also affects polarization reversal parameters, but in another way. The field distributions remain almost constant with grain size whereas switching times and activation field tend to decrease with increasing grain size. The quantitative changes of the latter parameters with grain size are very different depending on composition. The origin of the effects on the field and switching time distributions are related to differences in structural and microstructural characteristics of the materials and are discussed with respect to the hysteresis loops observed under bipolar electrical cycling.

  4. Effect of rotating magnetic field on thermocapillary flow stability and the FZ crystal growth on the ground and in space

    NASA Astrophysics Data System (ADS)

    Feonychev, A. I.

    It is well known that numerous experiments on crystal growth by the Bridgman method in space had met with only limited success. Because of this, only floating zone method is promising at present. However, realization of this method demands solution of some problems, in particular reduction of dopant micro- and macrosegregation. Rotating magnetic field is efficient method for control of flow in electrically conducting fluid and transfer processes. Investigation of rotating magnetic field had initiated in RIAME MAI in 1994 /3/. Results of the last investigations had been presented in /4/. Mathematical model of flow generated by rotating magnetic field and computer program were verified by comparison with experiment in area of developed oscillatory flow. Nonlinear analysis of flow stability under combination of thermocapillary convection and secondary flow generated by rotating magnetic field shows that boundary of transition from laminar to oscillatory flow is nonmonotone function in the plane of Marangoni number (Ma) - combined parameter Reω Ha2 (Ha is Hartman number, Reω is dimensionless velocity of magnetic field rotation). These data give additional knowledge of mechanism of onset of oscillations. In this case, there is reason to believe that the cause is Eckman's viscous stresses in rotating fluid on solid end-walls. It was shown that there is a possibility to increase stability of thermocapillary convection and in doing so to remove the main cause of dopant microsegregation. In doing so, if parameters of rotating magnetic field had been incorrectly chosen the dangerous pulsating oscillations are to develop. Radial macrosegregation of dopant can result from correct choosing of parameters of rotating magnetic field. As example, optimization of rotating magnetic field had been carried out for Ge(Ga) under three values of Marangoni number in weightlessness conditions. In the case when rotating magnetic field is used in terrestrial conditions, under combination of

  5. Pattern Dynamics in the Electrohydrodynamics of Nematic Liquid Crystals ---Defect Patterns, Transition to Turbulence and Magnetic Field Effects---

    NASA Astrophysics Data System (ADS)

    Kai, S.; Zimmermann, W.

    Various patterns in the electrohydrodynamic convection of planarly aligned nematic liquid crystals are investigated. We give experimental and theoretical results on the onset of convection in the conduction regime and the dielectric regime as well. The transition to the fluctuating Williams domain (FWD) immediately above the onset of convection in the conduction regime is characterized in detail. At this secondary threshold the straight rolls become unstable and defects appear. During the temporal development of the FWD, defects are continuously created and annihilated, and the defect density behaves rather stochastical in time. At even higher values of the applied voltage we investigate the transition between the two turbulent states DSM1 and DSM2 which has some analogy with TI-TII transition in superfluid HeII. DSM 2 turbulence can be characterized by disclination and therefore called disclination turbulence. We show that this transition is local via nucleation and that the main difference between both states is the vanishing disclination density in the DSM1 state and its finite value in the DSM2. In the high frequency regime we analyse the secondary transition to chevrons and the defect dynamics in this pattern as a periodic defect structure. Furthermore, the influence of a superimposingly applied magnetic field on these patterns is considered.

  6. Polarization proximity effect in isolator crystal pairs.

    PubMed

    Linzon, Y; Ferrera, M; Razzari, L; Pignolet, A; Morandotti, R

    2008-12-01

    We experimentally study the polarization dynamics (orientation and ellipticity) of near-infrared light transmitted through magneto-optical yttrium iron garnet isolator crystal pairs using a modified balanced detection scheme. When the pair separation is in the submillimeter range, we observed a proximity effect in which the saturation field is reduced by up to 20%. One-dimensional calculations suggest that the proximity effect originates from magnetostatic interactions between the dipole moments of the isolator crystals.

  7. Effects of the vertically switching electric field on the photoelectric properties of polymer-stabilized blue-phase liquid crystal cells using the director model.

    PubMed

    Chi, Cheng-Yu; Qiu, Shi-Hao; Lin, Guan-Jhong; Chen, Tien-Jung; Yang, Yin-Jay; Wu, Jin-Jei

    2017-03-20

    This study uses the director model to analyze the optoelectronic properties of polymer-stabilized blue-phase liquid crystal (PS-BPLC). The director model revealed a linear relationship of refractive index change and the cosine squared of the angle between the LCs and the direction of the electric field. Moreover, we employed simulations based on the Kerr effect and compared the results with those of the director model. The simulation results also show high consistency with real circumstances. Consequently, it can be of great help to design BPLC displays that can be applied to adopting better strategies for developing next-generation LCD devices.

  8. Anisotropy of the upper critical fields and the paramagnetic Meissner effect in La1.85Sr0.15CuO4 single crystals

    NASA Astrophysics Data System (ADS)

    Felner, I.; Tsindlekht, M. I.; Drachuck, G.; Keren, A.

    2013-02-01

    Optimally doped La1.85Sr0.15CuO4 single crystals have been investigated by dc and ac magnetic measurements. These crystals have rectangular needle-like shapes with the long needle axis parallel to the crystallographic c axis (c-crystal) or parallel to the basal planes (a-crystal). In both crystals, the temperature dependence of the upper critical fields (HC2) and the surface critical field (HC3) were measured. The H-T phase diagram is presented. Close to TC = 35 K, for the c-crystal, {\\boldsymbol{\\gamma}}^{c}={H}_{{C3}}^{c}/{H}_{{C2}}^{c}=1.8 0(2), whereas for the a-crystal the {\\boldsymbol{\\gamma}}^{a}={H}_{{C3}}^{a}/{H}_{{C2}}^{a}=4.0(2) obtained is much higher than 1.69, predicted by the ideal mathematical model. At low applied dc fields, positive field-cooled branches known as the ‘paramagnetic Meissner effect’ (PME) are observed; their magnitude is inversely proportional to H. The anisotropic PME is observed in both a- and c-crystals, only when the applied field is along the basal planes. It is speculated that the high γa and the PME are connected to each other.

  9. Effect of an applied electric field on a weakly anchored non-planar Nematic Liquid Crystal (NLC) layer

    NASA Astrophysics Data System (ADS)

    Mema, Ensela; Cummings, Linda J.; Kondic, Lou

    We consider a mathematical model that consists of a NLC layer sandwiched between two parallel bounding plates, across which an external field is applied. We investigate its effect on the director orientation by considering the dielectric and flexoelectric contributions and varying parameters that represent the anchoring conditions and the electric field strength. In particular, we investigate possible director configurations that occur in weakly anchored and non-planar systems. We observe that non-planar anchoring angles destroy any hysteresis seen in a planar system by eliminating the fully vertical director configuration and the ''saturation threshold'' seen in weakly anchored planar Freedericksz cells. Supported by NSF Grant No. DMS-1211713.

  10. Magnetic ordering and crystal field effects in quasi-caged structure compound PrFe2Al8

    NASA Astrophysics Data System (ADS)

    Nair, Harikrishnan S.; Ghosh, Sarit K.; Ramesh Kumar, K.; Strydom, André M.

    2016-04-01

    The compound PrFe2Al8 possesses a three-dimensional network structure resulting from the packing of Al polyhedra centered at the transition metal element Fe and the rare earth Pr. Along the c-axis, Fe and Pr form chains which are separated from each other by the Al-network. In this paper, the magnetism and crystalline electric field effects in PrFe2Al8 are investigated through the analysis of magnetization and specific heat data. A magnetic phase transition in the Pr lattice is identified at TNPr ≈ 4 K in dc magnetization and ac susceptibility data. At 2 K, the magnetization isotherm presents a ferromagnetic saturation, however, failing to reach full spin-only ferromagnetic moment of Pr3+. Metamagnetic step-like low-field features are present in the magnetization curve at 2 K which is shown to shift upon field-cooling the material. Arrott plots centered around TPrN display "S"-like features suggestive of an inhomogeneous magnetic state. The magnetic entropy, Sm, estimated from specific heat outputs a value of R ln(2) at TN2 suggesting a doublet state for Pr3+. The magnetic specific heat is modeled by using a 9-level Schottky equation pertinent to the Pr3+ ion with J=4. Given the crystalline electric field situation of Pr3+, the inference of a doublet state from specific heat and consequent long-range magnetic order is an unexpected result.

  11. Metallic field effect transistors

    NASA Astrophysics Data System (ADS)

    Farooq, Hassan

    This thesis investigates the principle of operation behind metallic-field effect transistors (METFETs) through a systematic study of atomistic simulations performed on metallic bulk, nanowire and transistor structures. In particular, density functional theory (DFT) and non-equilibrium green's function (NEGF) based models were used to study the effect on the bandstructure and density of states of highly scaled metallic nanowires with varying parameters such as crystal orientation, cross-sectional area, and applied external bias. Similarly, the effect of varying similar parameters on the transfer and output characteristics of highly scaled metallic transistors was studied. Furthermore, oxide interfaces with metallic channels were investigated. The simulation results show that a gold METFET in the [100] crystal orientation has an I ON /IOFF ratio of 41, ION of 29.5microA and fT of 6.7THz, outperforming similarly sized MOSFETs as a promising alternative for use in high-frequency circuits.

  12. Characterizing ice crystal growth behavior under electric field using phase field method.

    PubMed

    He, Zhi Zhu; Liu, Jing

    2009-07-01

    In this article, the microscale ice crystal growth behavior under electrostatic field is investigated via a phase field method, which also incorporates the effects of anisotropy and thermal noise. The multiple ice nuclei's competitive growth as disclosed in existing experiments is thus successfully predicted. The present approach suggests a highly efficient theoretical tool for probing into the freeze injury mechanisms of biological material due to ice formation during cryosurgery or cryopreservation process when external electric field was involved.

  13. Net-charge-compensation effects on the crystal field and the spin Hamiltonian for the Fe3+ ions at the K+-vacancy sites in Fe3+:KZnF3 and Fe3+:KMgF3 crystals

    NASA Astrophysics Data System (ADS)

    Yu, Wan-Lun

    1995-08-01

    A microscopic theory is presented for the spin-Hamiltonian (SH) parameters of 6S(d5) ions in trigonal symmetry. This theory establishes the relationships between the SH and the crystal-field (CF) parameters. It enables us to study the net-charge-compensation (NCC) SH effect as a result of the NCC CF contribution for Fe3+ ions at the trigonal K+-vacancy sites in Fe3+:KZnF3. The microscopic contributions to the NCC CF parameters are then investigated, by proposing vacancy-induced lattice-distortion models according to the ENDOR data of Krebs and Jeck. In particular, the vacancy-induced and the distortion-induced dipolar effects are suggested and the former is found important.

  14. Pulsed zero field NMR of solids and liquid crystals

    SciTech Connect

    Thayer, A.M.

    1987-02-01

    This work describes the development and applications to solids and liquid crystals of zero field nuclear magnetic resonance (NMR) experiments with pulsed dc magnetic fields. Zero field NMR experiments are one approach for obtaining high resolution spectra of amorphous and polycrystalline materials which normally (in high field) display broad featureless spectra. The behavior of the spin system can be coherently manipulated and probed in zero field with dc magnetic field pulses which are employed in a similar manner to radiofrequency pulses in high field NMR experiments. Nematic phases of liquid crystalline systems are studied in order to observe the effects of the removal of an applied magnetic field on sample alignment and molecular order parameters. In nematic phases with positive and negative magnetic susceptibility anisotropies, a comparison between the forms of the spin interactions in high and low fields is made. High resolution zero field NMR spectra of unaligned smectic samples are also obtained and reflect the symmetry of the liquid crystalline environment. These experiments are a sensitive measure of the motionally induced asymmetry in biaxial phases. Homonuclear and heteronuclear solute spin systems are compared in the nematic and smectic phases. Nonaxially symmetric dipolar couplings are reported for several systems. The effects of residual fields in the presence of a non-zero asymmetry parameter are discussed theoretically and presented experimentally. Computer programs for simulations of these and other experimental results are also reported. 179 refs., 75 figs.

  15. Magnetic field measurements based on Terfenol coated photonic crystal fibers.

    PubMed

    Quintero, Sully M M; Martelli, Cicero; Braga, Arthur M B; Valente, Luiz C G; Kato, Carla C

    2011-01-01

    A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT) over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field.

  16. Using Magnetic Fields to Control Convection during Protein Crystallization: Analysis and Validation Studies

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2004-01-01

    The effect of convection during the crystallization of proteins is not very well understood. In a gravitational field, convection is caused by crystal sedimentation and by solutal buoyancy induced flow and these can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, we develop the analysis for magnetic flow control and test the predictions using analog experiments. Specifically, experiments on solutal convection in a paramagnetic fluid were conducted in a strong magnetic field gradient using a dilute solution of Manganese Chloride. The observed flows indicate that the magnetic field can completely counter the settling effects of gravity locally and are consistent with the theoretical predictions presented. This phenomenon suggests that magnetic fields may be useful in mimicking the microgravity environment of space for some crystal growth ana biological applications where fluid convection is undesirable.

  17. Semiconductor Crystal Growth in Static and Rotating Magnetic fields

    NASA Technical Reports Server (NTRS)

    Volz, Martin

    2004-01-01

    Magnetic fields have been applied during the growth of bulk semiconductor crystals to control the convective flow behavior of the melt. A static magnetic field established Lorentz forces which tend to reduce the convective intensity in the melt. At sufficiently high magnetic field strengths, a boundary layer is established ahead of the solid-liquid interface where mass transport is dominated by diffusion. This can have a significant effect on segregation behavior and can eliminate striations in grown crystals resulting from convective instabilities. Experiments on dilute (Ge:Ga) and solid solution (Ge-Si) semiconductor systems show a transition from a completely mixed convective state to a diffusion-controlled state between 0 and 5 Tesla. In HgCdTe, radial segregation approached the diffusion limited regime and the curvature of the solid-liquid interface was reduced by a factor of 3 during growth in magnetic fields in excess of 0.5 Tesla. Convection can also be controlled during growth at reduced gravitational levels. However, the direction of the residual steady-state acceleration vector can compromise this effect if it cannot be controlled. A magnetic field in reduced gravity can suppress disturbances caused by residual transverse accelerations and by random non-steady accelerations. Indeed, a joint program between NASA and the NHMFL resulted in the construction of a prototype spaceflight magnet for crystal growth applications. An alternative to the suppression of convection by static magnetic fields and reduced gravity is the imposition of controlled steady flow generated by rotating magnetic fields (RMF)'s. The potential benefits of an RMF include homogenization of the melt temperature and concentration distribution, and control of the solid-liquid interface shape. Adjusting the strength and frequency of the applied magnetic field allows tailoring of the resultant flow field. A limitation of RMF's is that they introduce deleterious instabilities above a

  18. The effect of an electric field on the morphological stability of the crystal-melt interface of a binary alloy

    NASA Technical Reports Server (NTRS)

    Wheeler, A. A.; Coriell, S. R.; Mcfadden, G. B.; Hurle, D. T. J.

    1988-01-01

    A fully time-dependent linear stability analysis of the morphological stability of a planar interface during directional solidification of a binary alloy at constant velocity in the presence of an electric field, is performed. The electromigration of solute and the differing electrical conductivities of solid and liquid for a model in which the temperature gradient is constant are taken into account. The present results are compared with the constitutional supercooling criterion, and it is shown there may be substantial differences. A modified constitutional supercooling criterion which is valid over a large range of conditions is derived. It is also found under certain conditions that the onset of instability may be time dependent.

  19. Subsurface Stress Fields In Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik C.; Duke, Greg; Battista, Gilda; Swanson, Greg

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is , presented, for evaluating the subsurface stresses in the elastic half-space, using a complex potential method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis. Effects of crystal orientation on stress response and fatigue life are examined.

  20. Polyelectrolyte effects on the crystallization phenomena of the lithium carbonate

    NASA Astrophysics Data System (ADS)

    Watamura, Hiroto; Marukawa, Hironobu; Hirasawa, Izumi

    2013-06-01

    Anionic polyelectrolyte effects on the lithium carbonate crystallization phenomena were investigated. Li2CO3 crystals were obtained by reactive crystallization with seed crystals. Polyelectrolytes were dissolved into the reactive field before the reaction. Obtained crystals were observed with scanning electron microscopy (SEM) and crystal size and agglomeration degree were measured by the SEM images. The results show that Li2CO3 crystallized different shape and size from absence of polyelectrolyte in those reactive fields. Especially polyacrylic acid (PAA) improved on the agglomeration of the crystals and shaped them high aspect needles. Thus other experimental conditions including PAA molecular weight and concentration, reaction time, supersaturation by Li concentration were investigated in addition. As a result, obtained crystals were not different in each PAA molecular weight reactive fields. Meanwhile PAA concentration has optimum range. Li2CO3 formed less agglomeration and higher aspect around 1 g/l. In the concentration, Li2CO3 did not agglomerate regardless of aging time and Li concentration. Moreover crystals became rectangle shape in higher Li concentration.(020) face intensity of the rectangle shape crystals increased according to XRD pattern. PAA affected the facial growth. These results may provide a method of morphological change and clearly crystallization of Li2CO3.

  1. Effective medium theory of photonic crystals

    NASA Astrophysics Data System (ADS)

    Lu, W. T.; Zhang, S.; Huang, Y. J.; Sridhar, S.

    2008-03-01

    We develop an effective medium theory for photonic crystals including negative index metamaterials. This theory is based on field summation within the unit cell. The unit cell is determined by the surface termination. The orientation of the surface breaks the field summation symmetry. This theory is self-consistent. The effective permittivity and permeability tensors will give the exact dispersion relation obtained from the band structure calculation. For waves incident into multilayered structures, our theory gives exact transmittance and reflectance for any wavelengths. For interface with periodic surface structures, our theory gives very accurate results for wavelength down to being comparable with the lattice spacing. By properly taking into account the multiple Bloch modes inside the photonic crystal, our theory can be made to give exact Bragg coefficients.

  2. Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves

  3. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    SciTech Connect

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J.; Tachibana, M.; Kojima, K.

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  4. Electromagnetic field patterning or crystal light

    NASA Astrophysics Data System (ADS)

    Słupski, Piotr; Wymysłowski, Artur; Czarczyński, Wojciech

    2016-12-01

    Using the orbital angular momentum of light for the development of a vortex interferometer, the underlying physics requires microwave/RF models,1 as well as quantum mechanics for light1, 2 and fluid flow for semiconductor devices.3, 4 The combination of the aforementioned physical models yields simulations and results such as optical lattices,1 or an Inverse Farday effect.5 The latter is explained as the absorption of optical angular momentum, generating extremely high instantenous magnetic fields due to radiation friction. An algorithmic reduction across the computational methods used in microwaves, lasers, quantum optics and holography is performed in order to explain electromagnetic field interactions in a single computational framework. This work presents a computational model for photon-electron interactions, being a simplified gauge theory described using differentials or disturbances (photons) instead of integrals or fields. The model is based on treating the Z-axis variables as a Laplace fluid with spatial harmonics, and the XY plane as Maxwell's equations on boundaries. The result is a unified, coherent, graphical computational method of describing the photon qualitatively, quantitatively and with proportion. The model relies on five variables and is described using two equations, which use emitted power, cavity wavelength, input frequency, phase and time. Phase is treated as a rotated physical dimension under gauge theory of Feynmann's QED. In essence, this model allows the electromagnetic field to be treated with it's specific crystallography. The model itself is described in Python programming language. PACS 42.50.Pq, 31.30.J-, 03.70.+k, 11.10.-z, 67.10.Hk

  5. Giant rotating magnetocaloric effect in RNi5 single crystals

    NASA Astrophysics Data System (ADS)

    de Oliveira, N. A.

    2017-04-01

    In this paper we theoretically discuss the rotating magnetocaloric effect in RNi5 (R = Nd , Tb , Dy , Er) single crystals, by using a model of interacting magnetic moments including the interaction with the crystal electric field. Our theoretical calculations show that the rotating magnetocaloric effect in RNi5 single crystals is as large as the conventional one. This fact points out that these single crystals are also good candidates to be used in magnetic refrigerators working at low temperatures and based on the rotating magnetocaloric effect.

  6. Dielectric Dispersion Effects in Liquid Crystals.

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Oleg; Yin, Ye; Gu, Mingxia; Shiyanovskii, Sergij

    2006-03-01

    As the switching speed in practical LC devices is pushed from the currently common 10 ms to sub-millisecond levels, it is important to take into account the effects associated with the finite rate with which the electric displacement changes in the external electric field. We discuss two important general consequences of the dielectric relaxation phenomenon: (1) Non-local time relationship between the electric displacement and the electric field [1]. In a quickly changing electric field, orientation of the liquid crystal depends not only on the instantaneous value of the electric field, but also on the previous values of the field and previous orientations of the material. (2) Dielectric heating. [1] Y. Yin, S.V. Shiyanovskii, A.B. Golovin, and O. D. Lavrentovich, Phys. Rev. Lett. 95, 087801 (2005) .

  7. Hidden local symmetry of Eu{sup 3+} in xenotime-like crystals revealed by high magnetic fields

    SciTech Connect

    Han, Yibo; Ma, Zongwei; Zhang, Junpei; Wang, Junfeng; Du, Guihuan; Xia, Zhengcai; Han, Junbo Li, Liang; Yu, Xuefeng

    2015-02-07

    The excellent optical properties of europium-doped crystals in visible and near infrared wavelength regions enable them to have broad applications in optoelectronics, laser crystals and sensing devices. The local site crystal fields can affect the intensities and peak positions of the photo-emission lines strongly, but they are usually difficult to be clarified due to magnetically degenerate 4f electronic levels coupling with the crystal fields. Here, we provide an effective way to explore the hidden local symmetry of the Eu{sup 3+} sites in different hosts by taking photoluminescence measurements under pulsed high magnetic fields up to 46 T. The zero-field photoluminescence peaks split further at high magnetic fields when the Zeeman splitting energy is comparable to or larger than that of the crystal field induced zero-field splitting. In particular, a magnetic field induced crossover of the local crystal fields has been observed in the GdVO{sub 4}:Eu{sup 3+} crystal, which resulted from the alignment of Gd{sup 3+} magnetic moment in high magnetic fields; and a hexagonally symmetric local crystal fields was observed in the YPO{sub 4} nanocrystals at the Eu{sup 3+} sites characterized by the special axial and rhombic crystal field terms. These distinct Zeeman splitting behaviors uncover the crystal fields-related local symmetry of luminescent Eu{sup 3+} centers in different hosts or magnetic environments, which are significant for their applications in optics and optoelectronics.

  8. Photonic crystal fiber sensor for magnetic field detection

    NASA Astrophysics Data System (ADS)

    Quintero, Sully M. M.; Martelli, Cicero; Kato, Carla C.; Valente, Luiz C. G.; Braga, Arthur M. B.

    2010-09-01

    A magnetic field sensor comprised of a high birefringence photonic crystal fiber coated by a Terfenol-D/Epoxy composite layer is proposed. Magnetic fields induce strains in the magnetostrictive composite that are transferred to the fiber interfering with light propagation. The sensitivity of the developed sensor with magnetic fields is measured to be 6 pm mT-1.

  9. Effect of magnetic field on the coherent THz emission from mesas of single crystal Bi2Sr2CaCu2O8+δ

    NASA Astrophysics Data System (ADS)

    Kitamura, Takeo; Kashiwagi, Takanari; Tsujimoto, Manabu; Delfanazari, Kaveh; Nakayama, Ryo; Sawamura, Masashi; Yamamoto, Takashi; Asai, Hidehiro; Minami, Hidetoshi; Tachiki, Masashi; Kadowaki, Kazuo

    2012-02-01

    Coherent and continuous electromagnetic (EM) waves radiation phenomena with a mesa structure of Bi2Sr2CaCu2O8+δ single crystal have been investigated precisely in magnetic field up to only 200 Oe where the emission intensity decreases sharply expectedly for the field H parallel to the c-axis. The emission could not be observed above 20 Oe for H//c-axis whereas it persisted up to 160 Oe for H//ab plane [1]. These results indicate that both pancake vortices as well as Josephson vortices suppress the THz emission very strongly. On the other hand, the Josephson plasma resonance phenomena have been observed in both H//ab and H//c even in very high fields (˜Tesla). The emission processes are considered to be the reverse processes of the absorption. It is interesting to pose a question what happens in high fields in the EM waves emission. We show interesting experimental results of THz emission in high magnetic fields including low field region and will argue the mechanism of emission in high magnetic fields. [4pt] [1] K. Yamaki et al., physica C 470 (2010) S804-805.

  10. Field-induced rectification in rutile single crystals.

    NASA Astrophysics Data System (ADS)

    Jameson, John R.; Fukuzumi, Yoshiaki; Tsunoda, Koji; Wang, Zheng; Griffin, Peter B.; Nishi, Yoshio

    2007-03-01

    A previously unknown resistive memory effect is reported in rutile titanium dioxide. Two Pt electrodes were placed on the surface of a rutile crystal, and a large voltage was applied between them. Afterwards, the device allowed current to pass in the direction of the voltage, but not in the other direction. The orientation of this rectification could then be switched by applying a large voltage of opposite sign. The effect was observed with electrodes on the (100) or (110) surfaces, but not the (001) surface. A plausible explanation is the field-induced motion of oxygen vacancies, which the large voltage might cause to pile up under the negative electrode, eliminating a Schottky barrier at that interface, but leaving a Schottky at the positive electrode intact. Parallels are drawn to other memory effects in titanium dioxide.

  11. Effect of magnetic ordering of Dy2BaNiO5 on the crystal-field levels of dysprosium: optical spectroscopy of f-f transitions

    NASA Astrophysics Data System (ADS)

    Galkin, A. S.; Klimin, S. A.

    2016-12-01

    Optical transmission spectroscopy study of the Haldane magnet Dy2BaNiO5 was performed in the region of f-f transitions of the Dy3+ ion in a wide range of temperatures (5-300 K). At temperatures lower than TN (59 K), Kramers doublets of the rare-earth ion split. Spectroscopic data obtained were used to calculate the Schottky-type anomaly in the temperature dependence of the magnetic susceptibility of Dy2BaNiO5 and to model the experimental data available in literature. Anomalous behavior of crystal-field energies of the Dy3+ ion was attributed to the magnetoelectric interactions.

  12. Anomalies in thermal expansion and heat capacity of TmB50 at low temperatures: magnetic phase transition and crystal electric field effect.

    PubMed

    Novikov, V V; Zhemoedov, N A; Mitroshenkov, N V; Matovnikov, A V

    2016-11-01

    We experimentally study the heat capacity and thermal expansion of thulium boride (TmB50) at temperatures of 2-300 K. The wide temperature range (2-180 K) of boride negative expansion was revealed. We found the anomalies in C(T) heat capacity temperature dependence, attributed to the Schottky contribution (i.e. the influence of the crystal electric field: CEF), as well as the magnetic phase transition. CEF-splitting of the f-levels of the Tm(3+) ion was described by the Schottky function of heat capacity with a quasi-quartet in the ground state. Excited multiplets are separated from the ground state by energy gaps δ1 = 100 K, and δ2 ≈ 350 K. The heat capacity maximum at Tmax ≈ 2.4 K may be attributed to the possible magnetic transition in TmB50. Other possible causes of the low-temperature maximum of C(T) dependence are the nonspherical surroundings of rare earth atoms due to the boron atoms in the crystal lattice of the boride and the emergence of two-level systems, as well as the splitting of the ground multiplet due to local magnetic fields of the neighboring ions of thulium. Anomalies in heat capacity are mapped with the thermal expansion features of boride. It is found that the TmB50 thermal expansion characteristic features are due to the influence of the CEF, as well as the asymmetry of the spatial arrangement of boron atoms around the rare earth atoms in the crystal lattice of RB50. The Grüneisen parameters, corresponding to the excitation of different multiplets of CEF-splitting, were determined. A satisfactory accordance between the experimental and estimated temperature dependencies of the boride thermal expansion coefficient was achieved.

  13. Magnetic Fields and the Crystallization of White Dwarfs

    NASA Astrophysics Data System (ADS)

    Isern, J.; García-Berro, E.; Külebi, B.; Lorén-Aguilar, P.

    2017-03-01

    The evolution of white dwarfs can be described as a cooling process. When the temperature is low enough, the interior experiences a phase transition and crystallizes. Crystallization introduces two new sources of energy, latent heat and chemical sedimentation, and induces the formation of a convective mantle around the solid core. This structure, which is analogous to that of the Earth, could induce the formation of a magnetic field via dynamo mechanism. In this work we discuss the viability of such mechanism, and its use as a diagnostic tool of crystallization.

  14. Crystal field spectra of lunar pyroxenes.

    NASA Technical Reports Server (NTRS)

    Burns, R. G.; Abu-Eid, R. M.; Huggins, F. E.

    1972-01-01

    Absorption spectra in the visible and near infrared regions have been obtained for pyroxene single crystals in rocks from the Apollo 11, 12, 14, and 15 missions. The polarized spectra are compared with those obtained from terrestrial calcic clinopyroxenes, subcalcic augites, pigeonites, and orthopyroxenes. The lunar pyroxenes contain several broad, intense absorption bands in the near infrared, the positions of which are related to bulk composition, Fe(2+) site occupancy and structure type of the pyroxene. The visible spectra contain several sharp, weak peaks mainly due to spin-forbidden transitions in Fe(2+). Additional weak bands in this region in Apollo 11 pyroxenes are attributed to Ti(3+) ions. Spectral features from Fe(3+), Mn(2+), Cr(3+), and Cr(2+) were not observed.

  15. Phase field crystal study of deformation and plasticity in nanocrystalline materials.

    PubMed

    Stefanovic, Peter; Haataja, Mikko; Provatas, Nikolas

    2009-10-01

    We introduce a modified phase field crystal (MPFC) technique that self-consistently incorporates rapid strain relaxation alongside the usual plastic deformation and multiple crystal orientations featured by the traditional phase field crystal (PFC) technique. Our MPFC formalism can be used to study a host of important phase transformation phenomena in material processing that require rapid strain relaxation. We apply the MPFC model to study elastic and plastic deformations in nanocrystalline materials, focusing on the "reverse" Hall-Petch effect. Finally, we introduce a multigrid algorithm for efficient numerical simulations of the MPFC model.

  16. Interpretation of experimental results on Kondo systems with crystal field.

    PubMed

    Romero, M A; Aligia, A A; Sereni, J G; Nieva, G

    2014-01-15

    We present a simple approach to calculate the thermodynamic properties of single Kondo impurities including orbital degeneracy and crystal field effects (CFE) by extending a previous proposal by Schotte and Schotte (1975 Phys. Lett. 55A 38). Comparison with exact solutions for the specific heat of a quartet ground state split into two doublets shows deviations below 10% in the absence of CFE and a quantitative agreement for moderate or large CFE. As an application, we fit the measured specific heat of the compounds CeCu2Ge2, CePd3Si0.3, CePdAl, CePt, Yb2Pd2Sn and YbCo2Zn20. The agreement between theory and experiment is very good or excellent depending on the compound, except at very low temperatures due to the presence of magnetic correlations (not accounted for in the model).

  17. Magnetic Field Applications in Semiconductor Crystal Growth and Metallurgy

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan; Grugel, Richard; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The Traveling Magnetic Field (TMF) technique, recently proposed to control meridional flow in electrically conducting melts, is reviewed. In particular, the natural convection damping capability of this technique has been numerically demonstrated with the implication of significantly improving crystal quality. Advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, are discussed. Finally, results of experiments with mixing metallic alloys in long ampoules using TMF is presented

  18. Modeling nuclear field shift isotope fractionation in crystals

    NASA Astrophysics Data System (ADS)

    Schauble, E. A.

    2013-12-01

    In this study nuclear field shift fractionations in solids (and chemically similar liquids) are estimated using calibrated density functional theory calculations. The nuclear field shift effect is a potential driver of mass independent isotope fractionation(1,2), especially for elements with high atomic number such as Hg, Tl and U. This effect is caused by the different shapes and volumes of isotopic nuclei, and their interactions with electronic structures and energies. Nuclear field shift isotope fractionations can be estimated with first principles methods, but the calculations are computationally difficult, limiting most theoretical studies so far to small gas-phase molecules and molecular clusters. Many natural materials of interest are more complex, and it is important to develop ways to estimate field shift effects that can be applied to minerals, solutions, in biomolecules, and at mineral-solution interfaces. Plane-wave density functional theory, in combination with the projector augmented wave method (DFT-PAW), is much more readily adapted to complex materials than the relativistic all-electron calculations that have been the focus of most previous studies. DFT-PAW is a particularly effective tool for studying crystals with periodic boundary conditions, and may also be incorporated into molecular dynamics simulations of solutions and other disordered phases. Initial calibrations of DFT-PAW calculations against high-level all-electron models of field shift fractionation suggest that there may be broad applicability of this method to a variety of elements and types of materials. In addition, the close relationship between the isomer shift of Mössbauer spectroscopy and the nuclear field shift isotope effect makes it possible, at least in principle, to estimate the volume component of field shift fractionations in some species that are too complex even for DFT-PAW models, so long as there is a Mössbauer isotope for the element of interest. Initial results

  19. Control of active liquid crystals with a magnetic field

    PubMed Central

    Guillamat, Pau; Sagués, Francesc

    2016-01-01

    Living cells sense the mechanical features of their environment and adapt to it by actively remodeling their peripheral network of filamentary proteins, known as cortical cytoskeleton. By mimicking this principle, we demonstrate an effective control strategy for a microtubule-based active nematic in contact with a hydrophobic thermotropic liquid crystal. By using well-established protocols for the orientation of liquid crystals with a uniform magnetic field, and through the mediation of anisotropic shear stresses, the active nematic reversibly self-assembles with aligned flows and textures that feature orientational order at the millimeter scale. The turbulent flow, characteristic of active nematics, is in this way regularized into a laminar flow with periodic velocity oscillations. Once patterned, the microtubule assembly reveals its intrinsic length and time scales, which we correlate with the activity of motor proteins, as predicted by existing theories of active nematics. The demonstrated commanding strategy should be compatible with other viable active biomaterials at interfaces, and we envision its use to probe the mechanics of the intracellular matrix. PMID:27140604

  20. Control of active liquid crystals with a magnetic field.

    PubMed

    Guillamat, Pau; Ignés-Mullol, Jordi; Sagués, Francesc

    2016-05-17

    Living cells sense the mechanical features of their environment and adapt to it by actively remodeling their peripheral network of filamentary proteins, known as cortical cytoskeleton. By mimicking this principle, we demonstrate an effective control strategy for a microtubule-based active nematic in contact with a hydrophobic thermotropic liquid crystal. By using well-established protocols for the orientation of liquid crystals with a uniform magnetic field, and through the mediation of anisotropic shear stresses, the active nematic reversibly self-assembles with aligned flows and textures that feature orientational order at the millimeter scale. The turbulent flow, characteristic of active nematics, is in this way regularized into a laminar flow with periodic velocity oscillations. Once patterned, the microtubule assembly reveals its intrinsic length and time scales, which we correlate with the activity of motor proteins, as predicted by existing theories of active nematics. The demonstrated commanding strategy should be compatible with other viable active biomaterials at interfaces, and we envision its use to probe the mechanics of the intracellular matrix.

  1. Relaxation Dynamics of Ferroelectric Liquid Crystals in Pulsed Electric Field

    NASA Astrophysics Data System (ADS)

    Kudreyko, A. A.; Migranov, N. G.; Migranova, D. N.

    2016-11-01

    In this contribution we report a theoretical study of relaxation processes in surface-stabilized ferroelectric liquid crystals with spontaneous polarization. The influence of pulsed electric field on the behavior of ferroelectric liquid crystal in the SmC* phase, which is placed in a thin cell with strong anchoring of SmC* molecules with the boundary substrate, is studied. In the vicinity of the substrate interface, temporal dependence of the azimuthal motion of the director induced by electric field is obtained. The response to the external distortion of ferroelectric liquid crystal confined between two microstructured substrates is the occurrence of periodic temporal formation of solitons connected with the distortion of the director field n in the sample bulk. The interplay between microstructured substrates and director distribution of the ferroelectric SmC* phase is explained by the Frenkel-Kontorova model for a chain of atoms, but adapted for the continuum problem.

  2. Effects of magnetic fields on the coherent THz emission from mesas of single crystal Bi2Sr2CaCu2O8+δ

    NASA Astrophysics Data System (ADS)

    Kitamura, Takeo; Kashiwagi, Takanari; Tsujimoto, Manabu; Delfanazari, Kaveh; Sawamura, Masashi; Ishida, Kazuya; Sekimoto, Shunsuke; Watanabe, Chiharu; Yamamoto, Takashi; Minami, Hidetoshi; Tachiki, Masashi; Kadowaki, Kazuo

    2013-11-01

    We have measured the magnetic field effect of THz radiation emitted from a mesa structure fabricated from high-quality high-transition temperature (Tc) superconductor single crystalline Bi2Sr2CaCu2O8+δ using a newly developed measurement system in magnetic fields up to 6 T. The results show that the THz radiation was strongly suppressed in magnetic fields with a considerable anisotropy: about 20 Oe magnetic field is sufficient for the total suppression of the THz radiation for the field being parallel to the c-axis, while for the field being parallel to the ab-plane the radiation has first a slight hump at about 50 Oe, then has a sudden drop at about 150 Oe, and shows a step-wise structure between about 200 and 300 Oe before the intensity diminishes completely below the detection sensitivity limit at about 450 Oe. These characteristic features are discussed in comparison with recent theoretical works.

  3. Rashba coupling amplification by a staggered crystal field

    PubMed Central

    Santos-Cottin, David; Casula, Michele; Lantz, Gabriel; Klein, Yannick; Petaccia, Luca; Le Fèvre, Patrick; Bertran, François; Papalazarou, Evangelos; Marsi, Marino; Gauzzi, Andrea

    2016-01-01

    There has been increasing interest in materials where relativistic effects induce non-trivial electronic states with promise for spintronics applications. One example is the splitting of bands with opposite spin chirality produced by the Rashba spin-orbit coupling in asymmetric potentials. Sizable splittings have been hitherto obtained using either heavy elements, where this coupling is intrinsically strong, or large surface electric fields. Here by means of angular resolved photoemission spectroscopy and first-principles calculations, we give evidence of a large Rashba coupling of 0.25 eV Å, leading to a remarkable band splitting up to 0.15 eV with hidden spin-chiral polarization in centrosymmetric BaNiS2. This is explained by a huge staggered crystal field of 1.4 V Å−1, produced by a gliding plane symmetry, that breaks inversion symmetry at the Ni site. This unexpected result in the absence of heavy elements demonstrates an effective mechanism of Rashba coupling amplification that may foster spin-orbit band engineering. PMID:27089869

  4. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-01-01

    positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. Once the basic understanding is obtained, the study will focus on testing the hypothesis on proteins of pyruvate dehydrogenase complex (PDC), proteins E1 and E3. Obtaining high crystal quality of these proteins is of great importance to structural biologists since their structures need to be determined. Specific goals for the investigation are: 1. To develop an understanding of convection control in diamagnetic fluids with concentration gradients through experimentation and numerical modeling. Specifically solutal buoyancy driven convection due to crystal growth will be considered. 2. To develop predictive measures for successful crystallization in a magnetic field using analyses and numerical modeling for use in future protein crystal growth experiments. This will establish criteria that can be used to estimate the efficacy of magnetic field flow damping on crystallization of candidate proteins. 3. To demonstrate the understanding of convection damping by high magnetic fields to a class of proteins that is of interest and whose structure is as yet not determined. 4. To compare quantitatively, the quality of the grown crystals with and without a magnetic field. X-ray diffraction techniques will be used for the comparative studies. In a preliminary set of experiments, we studied crystal dissolution effects in a 5 Tesla magnet available at NASA Marshall Space Flight Center (MSFC). Using a Schlieren setup, a 1mm crystal of Alum (Aluminum-Potassium Sulfate) was introduced in a 75% saturated solution and the resulting dissolution plume was observed

  5. Modeling nuclear volume isotope effects in crystals.

    PubMed

    Schauble, Edwin A

    2013-10-29

    Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac-Hartree-Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor-crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from (119)Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium.

  6. Modeling nuclear volume isotope effects in crystals

    NASA Astrophysics Data System (ADS)

    Schauble, Edwin A.

    2013-10-01

    Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac-Hartree-Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor-crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from 119Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium.

  7. Modeling nuclear volume isotope effects in crystals

    PubMed Central

    Schauble, Edwin A.

    2013-01-01

    Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac–Hartree–Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor–crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from 119Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium

  8. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Schweizer, M.; Cobb, S. D.; Walker, J. S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). The RMF has a marked affect on the interface shape, changing it from concave to nearly flat. The onset of time-dependent flow instabilities occurs when the critical magnetic Taylor number is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The critical magnetic Taylor number is a sensitive function of the aspect ratio and, as the crystal grows under a constant applied magnetic field, the induced striations change from nonperiodic to periodic, undergo a period-doubling transition, and then cease to exist. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.

  9. Effect of field modulation on the quasi-phase-matching for second harmonic generation in a two-dimensional nonlinear photonic crystal

    NASA Astrophysics Data System (ADS)

    Zhao, Li-Ming; Zhou, Yun-Song; Wang, Ai-Hua

    2017-02-01

    Second harmonic generation (SHG) in a two-dimensional (2D) nonlinear photonic crystal (NPC) with finite width along z-direction that is embedded in air is investigated, without adopting the traditional approximations such as a plane-wave approximation (PWA) and slowly varying amplitude approximation (SVAA). The so-called quasi-phase-matching (QPM) and the corresponding SHG conversion efficiency can be modulated significantly by the field of fundamental wave (FW). It is assumed that the incident light, along z-direction, is normally launched upon the surface of the sample, and QPM for different directions is investigated. It is found that the QPM shows significant differences, compared with the traditional QPM along the two different directions: in the direction of finite width of the sample, the peak value of SHG conversion efficiency is deviated from the traditional case and it gets to its peak values when the transmittance resonance occurs. However, in the other direction, the deviation from the traditional QPM arises from the field modulation of the second harmonic wave (SHW) and in this direction, it is investigated that the full width at half maximum of QPM is much wider than that in the direction of finite width of the sample. These results can be used to provide a theoretical guidance for achieving QPM SHG.

  10. Mechanic and electromechanic effects in biaxially stretched liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Diaz-Calleja, Ricardo; Llovera-Segovia, Pedro; Riande, Evaristo; Quijano López, Alfredo

    2013-02-01

    The effect of combined electromechanic force fields in nematic side chain liquid crystal elastomers will be analyzed. A biaxially stretched plate in the x- and y-directions under an electric field applied in the perpendicular direction to the plate will be considered. A neo-Hookean model is chosen, which implies Gaussian behaviour. Results are obtained for both a soft and semisoft case showing the effect of the electric field on the rotation of the director and the free energy density function.

  11. Liquid crystal infiltrated photonic crystal fibers for electric field intensity measurements.

    PubMed

    Mathews, Sunish; Farrell, Gerald; Semenova, Yuliya

    2011-06-10

    The application of nematic liquid crystal infiltrated photonic crystal fiber as a sensor for electric field intensity measurement is demonstrated. The device is based on an intrinsic sensing mechanism for electric fields. The sensor probe, which consists of a 1  cm infiltrated section of photonic crystal fiber with a lateral size of ∼125  μm, is very compact with small size and weight. A simple all-fiber design for the sensor is employed in an intensity based measurement scheme. The transmitted and reflected power of the infiltrated photonic crystal fiber is shown to have a linear response with the applied electric field. The sensor is operated in the telecommunication window at 1550  nm. The temperature dependence of the device at this operating wavelength is also experimentally studied and discussed. These structures can be used to accurately measure electric field intensity and can be used for the fabrication of all-fiber sensors for high electric field environments as both an in-line and reflective type point sensor.

  12. X-ray and magnetic-field-enhanced change in physical characteristics of silicon crystals

    NASA Astrophysics Data System (ADS)

    Makara, V. A.; Steblenko, L. P.; Krit, A. N.; Kalinichenko, D. V.; Kurylyuk, A. N.; Naumenko, S. N.

    2012-07-01

    The effect of low-energy ( W = 8 keV) low-dose ((0.3-7.3) × 102 Gy) radiation and a dc magnetic field ( B = 0.17 T) on structural, micromechanical, and microplastic characteristics of silicon crystals has been studied. The features in the dynamic behavior of dislocations in silicon crystals, which manifest themselves upon only X-ray exposure and combined (X-ray and magnetic) exposure, have been revealed.

  13. Field stability of piezoelectric shear properties in PIN-PMN-PT crystals under large drive field.

    PubMed

    Zhang, Shujun; Li, Fei; Luo, Jun; Xia, Ru; Hackenberger, Wesley; Shrout, Thomas

    2011-02-01

    The coercive fields (E(C)) of Pb(In₀.₅Nb₀.₅)O₃-Pb(Mg(¹/₃)Nb(²/₃)O₃-PbTiO₃ (PIN-PMN-PT) ternary single crystals were found to be 5 kV/cm, double the value of binary Pb(Mg(¹/₃)Nb(²/₃)O₃-PbTiO₃ (PMNT) crystals, further increased to 6 to 9 kV/cm using Mn modifications. In addition to an increased EC, the acceptor modification resulted in the developed internal bias (E(int)), on the order of ~1 kV/cm. The piezoelectric shear properties of unmodified and Mn-modified PIN-PMN-PT crystals with various domain configurations were investigated. The shear piezoelectric coefficients and electromechanical coupling factors for different domain configurations were found to be >2000 pC/N and >0.85, respectively, with slightly reduced properties observed in Mn-modified tetragonal crystals. Fatigue/cycling tests performed on shearmode samples as a function of ac drive field level demonstrated that the allowable ac field levels (the maximum applied ac field before the occurrence of depolarization) were only ~2 kV/cm for unmodified crystals, less than half of their coercive field. Allowable ac drive levels were on the order of 4 to 6 kV/cm for Mn-modified crystals with rhombohedral/orthorhombic phase, further increased to 5 to 8 kV/cm in tetragonal crystals, because of their higher coercive fields. It is of particular interest that the allowable ac drive field level for Mn-modified crystals was found to be ≥ 60% of their coercive fields, because of the developed E(int), induced by the acceptor-oxygen vacancy defect dipoles.

  14. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field

    PubMed Central

    García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M

    2016-01-01

    Summary Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules. PMID:27547599

  15. In-crystal and surface charge transport of electric-field-induced carriers in organic single-crystal semiconductors.

    PubMed

    Takeya, J; Kato, J; Hara, K; Yamagishi, M; Hirahara, R; Yamada, K; Nakazawa, Y; Ikehata, S; Tsukagoshi, K; Aoyagi, Y; Takenobu, T; Iwasa, Y

    2007-05-11

    Gate-voltage dependence of carrier mobility is measured in high-performance field-effect transistors of rubrene single crystals by simultaneous detection of the longitudinal conductivity sigma(square) and Hall coefficient R(H). The Hall mobility mu(H) (identical with sigma(square)R(H)) reaches nearly 10 cm(2)/V s when relatively low-density carriers (<10(11) cm(-2)) distribute into the crystal. mu(H) rapidly decreases with higher-density carriers as they are essentially confined to the surface and are subjected to randomness of the amorphous gate insulators. The mechanism to realize high carrier mobility in the organic transistor devices involves intrinsic-semiconductor character of the high-purity organic crystals and diffusive bandlike carrier transport in the bulk.

  16. Effects of trace elements on the crystal field parameters of Nd ions at the surface of Nd{sub 2}Fe{sub 14}B grains

    SciTech Connect

    Toga, Yuta; Suzuki, Tsuneaki; Sakuma, Akimasa

    2015-06-14

    Using first-principles calculations, we investigate the positional dependence of trace elements such as O and Cu on the crystal field parameter A{sub 2}{sup 0}, proportional to the magnetic anisotropy constant K{sub u} of Nd ions placed at the surface of Nd{sub 2}Fe{sub 14}B grains. The results suggest the possibility that the A{sub 2}{sup 0} parameter of Nd ions at the (001) surface of Nd{sub 2}Fe{sub 14}B grains exhibits a negative value when the O or Cu atom is located near the surface, closer than its equilibrium position. At the (110) surface, however, O atoms located at the equilibrium position provide a negative A{sub 2}{sup 0}, while for Cu additions A{sub 2}{sup 0} remains positive regardless of Cu's position. Thus, Cu atoms are expected to maintain a positive local K{sub u} of surface Nd ions more frequently than O atoms when they approach the grain surfaces in the Nd-Fe-B grains.

  17. A phase-field model coupled with lattice kinetics solver for modeling crystal growth in furnaces

    SciTech Connect

    Lin, Guang; Bao, Jie; Xu, Zhijie; Tartakovsky, Alexandre M.; Henager, Charles H.

    2014-02-02

    In this study, we present a new numerical model for crystal growth in a vertical solidification system. This model takes into account the buoyancy induced convective flow and its effect on the crystal growth process. The evolution of the crystal growth interface is simulated using the phase-field method. Two novel phase-field models are developed to model the crystal growth interface in vertical gradient furnaces with two temperature profile setups: 1) fixed wall temperature profile setup and 2) time-dependent temperature profile setup. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. This model is used to investigate the effect of furnace operational conditions on crystal growth interface profiles and growth velocities. For a simple case of macroscopic radial growth, the phase-field model is validated against an analytical solution. Crystal growth in vertical gradient furnaces with two temperature profile setups have been also investigated using the developed model. The numerical simulations reveal that for a certain set of temperature boundary conditions, the heat transport in the melt near the phase interface is diffusion dominant and advection is suppressed.

  18. Generation of Unprecedented high Electric Fields with Pyroelectric Crystals

    NASA Astrophysics Data System (ADS)

    Crimi, Sarah; Tornow, Werner; Corse, Zach

    2009-10-01

    Since a few years pyroelectric crystals in a deuterium gas environment have been used to produce neutrons via the ^2H(d,n)^3He reaction. The figure-of-merit for neutron production in the energy region of interest is about IE^3/2, where I is the deuterium ion current and E is the associated ion energy. Therefore, it is important to maximize E. Using single and double crystal arrangements with electric field enhancing nano-tips, the highest positive potentials reported in the literature were 115 keV [1] and 250 keV [2], respectively. Using longer LiTaO3 crystals than commonly employed (2.5 cm versus 1.0 cm) and without attaching a nano-tip, we have produced positive deuterium ion beams of energies up to 325 keV with a single crystal during the cooling phase from 130 ^oC to 0 ^oC. In a double crystal arrangement we have obtained positive ion energies of up to 390 keV. Details of our experimental approach will be presented.[4pt] [1] B. Naranjo et al., Nature 434, 1115 (2005).[0pt] [2] D. Gillich et al., Nucl. Instr. Meth. in Phys. Res. A 602, 306 (2009).

  19. Effects of Gravity on ZBLAN Glass Crystallization

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Ethridge, Edwin C.; Smith, G. A.; Workman, G.

    2003-01-01

    The effects of gravity on the crystallization of ZrF4-BaF2-LaF3-AlF3- NaF glasses have been studied utilizing NASA's KC135 and a sounding rocket, Fibers and cylinders of ZBLAN glass were heated to the crystallization temperature in unit and reduced gravity. When processed in unit gravity the glass crystallized, but when processed in reduced gravity, crystallization was suppressed. A possible explanation involving shear thinning is presented to explain these results.

  20. Effect of Stirring Method on Protein Crystallization

    NASA Astrophysics Data System (ADS)

    Yaoi, Mari; Adachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

    2004-10-01

    We previously proposed the use of solution stirring during the growth of protein crystals using the Micro-Stirring technique with a rotary shaker. In this paper, we report on the effects of a new type solution flow on the crystallization of hen egg-white lysozyme (HEWL) using a wave shaker. The time required for nucleation was reduced by wave stirring, but increased by rotary stirring. Nucleation was stimulated by wave stirring. This result indicates that protein crystal growth in a stirred solution is strongly dependent on the stirring method used and the solution flow. Therefore, optimized stirring conditions are essential for producing high-quality protein crystals.

  1. Fringing field suppression for liquid crystal gratings using equivalent capacitance configuration

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Xia, Jun; Zhang, Xiaobing; Xie, Yi; Kang, Mingwu; Zhang, Qiuzhi

    2014-10-01

    A liquid crystal grating with high spatial frequency and equivalent capacitance configuration is proposed, where two layers of periodical ground electrodes are interlaced and aligned with the addressing electrodes. The equivalent capacitance configuration can reduce the fringing field effect efficiently owing to the generated electric field resisting the fringing field and redistributing the equivalent voltage exerting on the liquid crystal layer. The phase modulation depth and far-field diffraction patterns both for conventional and novel configurations were simulated. The results show that phase modulation is greatly enhanced and the maximum diffraction efficiency for a sinusoidal phase grating is 33.86%, which indicates that the equivalent capacitance configuration provides a good solution for suppressing the fringing field effect.

  2. Self-Aligned Growth of Organic Semiconductor Single Crystals by Electric Field.

    PubMed

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2016-01-19

    We proposed a novel but facile method for growing organic semiconductor single-crystals via solvent vapor annealing (SVA) under electric field. In the conventional SVA growth process, nuclei of crystals appeared anywhere on the substrate and their crystallographic axes were randomly distributed. We applied electric field during the SVA growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) on the SiO2/Si substrate on which a pair of electrodes had been deposited beforehand. Real-time observation of the SVA process revealed that rodlike single crystals grew with their long axes parallel to the electric field and bridged the prepatterned electrodes. As a result, C8-BTBT crystals automatically formed a field effect transistor (FET) structure and the mobility reached 1.9 cm(2)/(V s). Electric-field-assisted SVA proved a promising method for constructing high-mobility single-crystal FETs at the desired position by a low-cost solution process.

  3. Nonlinear photovoltaic effect in Sillenite photorefractive crystals

    NASA Astrophysics Data System (ADS)

    de Oliveira, Ivan; Capovilla, Danilo Augusto; Moura, André L.; Timóteo, Varese S.; Carvalho, Jesiel F.; Frejlich, Jaime

    2017-04-01

    We report on the presence of photovoltaic effect in some Sillenite photorefractive crystals and compare their behavior with that of the well known photovoltaic LiNbO3:Fe crystal. Nonlinear photovoltaic behavior of these Sillenites are also reported here for the first time and explained by the presence of shallow along with deep photovoltaic centers.

  4. Influence of electromagnetic field intensity on the metastable zone width of CaCO3 crystallization in circulating water

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Liang, Yandong; Chen, Si

    2016-09-01

    In this study, changes in the metastable zone width of CaCO3 crystallization was determined through conductivity titration by altering electromagnetic field parameters applied to the circulating water system. The critical conductivity value and metastable zone curves of CaCO3 crystallization were determined under different solution concentrations and electromagnetic field intensities. Experimental results indicate that the effect of the electromagnetic field intensity on the critical conductivity value intensifies with the increase of solution concentration. Moreover, the metastable zone width of CaCO3 crystallization increases with the increase of electromagnetic field intensity within 200 Gs, thereby prolonging the induction period of nucleation.

  5. Field-induced phase transitions in chiral smectic liquid crystals studied by the constant current method

    NASA Astrophysics Data System (ADS)

    H, Dhaouadi; R, Zgueb; O, Riahi; F, Trabelsi; T, Othman

    2016-05-01

    In ferroelectric liquid crystals, phase transitions can be induced by an electric field. The current constant method allows these transition to be quickly localized and thus the (E,T) phase diagram of the studied product can be obtained. In this work, we make a slight modification to the measurement principles based on this method. This modification allows the characteristic parameters of ferroelectric liquid crystal to be quantitatively measured. The use of a current square signal highlights a phenomenon of ferroelectric hysteresis with remnant polarization at null field, which points out an effect of memory in this compound.

  6. Field-programmable rectification in rutile TiO2 crystals

    NASA Astrophysics Data System (ADS)

    Jameson, John R.; Fukuzumi, Yoshiaki; Wang, Zheng; Griffin, Peter; Tsunoda, Koji; Meijer, G. Ingmar; Nishi, Yoshio

    2007-09-01

    The authors report "field-programmable rectification" in crystals of rutile TiO2. A "programming" voltage is applied between two Pt electrodes on the surface of a crystal. Afterwards, current can pass in the direction of the programming voltage, but not in the reverse direction. The polarity of the rectification can be reversed by applying a programming voltage of opposite sign. The effect was observed on the (110) and (100) surfaces, but not the (001) surface. The proposed mechanism is field-induced motion of oxygen vacancies, which pile up under the negative terminal, eliminating a Schottky barrier, but leaving one at the positive terminal intact.

  7. Low-frequency electromagnetic field in a Wigner crystal

    SciTech Connect

    Stupka, Anton

    2013-03-15

    Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.

  8. Anisotropic local modification of crystal field levels in Pr-based pyrochlores: a muon-induced effect modeled using density functional theory.

    PubMed

    Foronda, F R; Lang, F; Möller, J S; Lancaster, T; Boothroyd, A T; Pratt, F L; Giblin, S R; Prabhakaran, D; Blundell, S J

    2015-01-09

    Although muon spin relaxation is commonly used to probe local magnetic order, spin freezing, and spin dynamics, we identify an experimental situation in which the measured response is dominated by an effect resulting from the muon-induced local distortion rather than the intrinsic behavior of the host compound. We demonstrate this effect in some quantum spin ice candidate materials Pr(2)B(2)O(7) (B=Sn, Zr, Hf), where we detect a static distribution of magnetic moments that appears to grow on cooling. Using density functional theory we show how this effect can be explained via a hyperfine enhancement arising from a splitting of the non-Kramers doublet ground states on Pr ions close to the muon, which itself causes a highly anisotropic distortion field. We provide a quantitative relationship between this effect and the measured temperature dependence of the muon relaxation and discuss the relevance of these observations to muon experiments in other magnetic materials.

  9. Determination of odd-symmetry crystal-field parameters from optical spectra

    NASA Astrophysics Data System (ADS)

    Kornienko, A. A.; Dunina, E. B.; Fomicheva, L. A.

    2014-05-01

    We have obtained analytical expressions for effective parameters of the crystal field that acts on spin-orbit multiplets of 4 f N configurations taking into account admixture to them of 4 f N-15 d excited states and ligand-to-metal charge-transfer states. As an example, we analyze splittings of the ground and excited multiplets of Pr3+ and Tm2+ ions in some crystals without an inversion center. The effect of mixing of states of different configurations is most strongly pronounced for the 1 G 4 and 1 D 2 excited multiplets. The interconfigurational contribution to splittings is different for different multiplets. This circumstance makes it possible to estimate the values of the parameters of the odd-symmetry crystal field, which causes mixing of the 4 f N and 4 f N-15 d states, and the covalence parameters of rare-earth ion-ligand bonds.

  10. Crystal field parameters and energy levels scheme of trivalent chromium doped BSO

    SciTech Connect

    Petkova, P.; Andreici, E.-L.; Avram, N. M.

    2014-11-24

    The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.

  11. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics.

    PubMed

    Pyzer-Knapp, Edward O; Thompson, Hugh P G; Day, Graeme M

    2016-08-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%.

  12. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics

    PubMed Central

    Pyzer-Knapp, Edward O.; Thompson, Hugh P. G.; Day, Graeme M.

    2016-01-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370

  13. Phase-field-crystal model for fcc ordering.

    PubMed

    Wu, Kuo-An; Adland, Ari; Karma, Alain

    2010-06-01

    We develop and analyze a two-mode phase-field-crystal model to describe fcc ordering. The model is formulated by coupling two different sets of crystal density waves corresponding to <111> and <200> reciprocal lattice vectors, which are chosen to form triads so as to produce a simple free-energy landscape with coexistence of crystal and liquid phases. The feasibility of the approach is demonstrated with numerical examples of polycrystalline and (111) twin growth. We use a two-mode amplitude expansion to characterize analytically the free-energy landscape of the model, identifying parameter ranges where fcc is stable or metastable with respect to bcc. In addition, we derive analytical expressions for the elastic constants for both fcc and bcc. Those expressions show that a nonvanishing amplitude of [200] density waves is essential to obtain mechanically stable fcc crystals with a nonvanishing tetragonal shear modulus (C11-C12)/2. We determine the model parameters for specific materials by fitting the peak liquid structure factor properties and solid-density wave amplitudes following the approach developed for bcc [K.-A. Wu and A. Karma, Phys. Rev. B 76, 184107 (2007)]. This procedure yields reasonable predictions of elastic constants for both bcc Fe and fcc Ni using input parameters from molecular dynamics simulations. The application of the model to two-dimensional square lattices is also briefly examined.

  14. Photorefractive effect in ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Sasaki, Takeo; Naka, Yumiko

    2014-03-01

    In this paper, we review recent progress of research on the photorefractive effect of ferroelectric liquid crystals. The photorefractive effect is a phenomenon that forms a dynamic hologram in a material. The interference of two laser beams in a photorefractive material establishes a refractive index grating. This phenomenon is applicable to a wide range of devices related to diffraction optics including 3D displays, optical amplification, optical tomography, novelty filters, and phase conjugate wave generators. Ferroelectric liquid crystals are considered as a candidate for practical photorefractive materials. A refractive index grating formation time of 8-10 ms and a large gain coefficient are easily obtained in photorefractive ferroelectric liquid crystals.

  15. An unforeseen polymorph of coronene by the application of magnetic fields during crystal growth

    PubMed Central

    Potticary, Jason; Terry, Lui R.; Bell, Christopher; Papanikolopoulos, Alexandros N.; Christianen, Peter C. M.; Engelkamp, Hans; Collins, Andrew M.; Fontanesi, Claudio; Kociok-Köhn, Gabriele; Crampin, Simon; Da Como, Enrico; Hall, Simon R.

    2016-01-01

    The continued development of novel drugs, proteins, and advanced materials strongly rely on our ability to self-assemble molecules in solids with the most suitable structure (polymorph) in order to exhibit desired functionalities. The search for new polymorphs remains a scientific challenge, that is at the core of crystal engineering and there has been a lack of effective solutions to this problem. Here we show that by crystallizing the polyaromatic hydrocarbon coronene in the presence of a magnetic field, a polymorph is formed in a β-herringbone structure instead of the ubiquitous γ-herringbone structure, with a decrease of 35° in the herringbone nearest neighbour angle. The β-herringbone polymorph is stable, preserves its structure under ambient conditions and as a result of the altered molecular packing of the crystals, exhibits significant changes to the optical and mechanical properties of the crystal. PMID:27161600

  16. An unforeseen polymorph of coronene by the application of magnetic fields during crystal growth

    NASA Astrophysics Data System (ADS)

    Potticary, Jason; Terry, Lui R.; Bell, Christopher; Papanikolopoulos, Alexandros N.; Christianen, Peter C. M.; Engelkamp, Hans; Collins, Andrew M.; Fontanesi, Claudio; Kociok-Köhn, Gabriele; Crampin, Simon; da Como, Enrico; Hall, Simon R.

    2016-05-01

    The continued development of novel drugs, proteins, and advanced materials strongly rely on our ability to self-assemble molecules in solids with the most suitable structure (polymorph) in order to exhibit desired functionalities. The search for new polymorphs remains a scientific challenge, that is at the core of crystal engineering and there has been a lack of effective solutions to this problem. Here we show that by crystallizing the polyaromatic hydrocarbon coronene in the presence of a magnetic field, a polymorph is formed in a β-herringbone structure instead of the ubiquitous γ-herringbone structure, with a decrease of 35° in the herringbone nearest neighbour angle. The β-herringbone polymorph is stable, preserves its structure under ambient conditions and as a result of the altered molecular packing of the crystals, exhibits significant changes to the optical and mechanical properties of the crystal.

  17. Phase-field crystal model with a vapor phase

    NASA Astrophysics Data System (ADS)

    Schwalbach, Edwin J.; Warren, James A.; Wu, Kuo-An; Voorhees, Peter W.

    2013-08-01

    Phase-field crystal (PFC) models are able to resolve atomic length scale features of materials during temporal evolution over diffusive time scales. Traditional PFC models contain solid and liquid phases, however many important materials processing phenomena involve a vapor phase as well. In this work, we add a vapor phase to an existing PFC model and show realistic interfacial phenomena near the triple point temperature. For example, the PFC model exhibits density oscillations at liquid-vapor interfaces that compare favorably to data available for interfaces in metallic systems from both experiment and molecular-dynamics simulations. We also quantify the anisotropic solid-vapor surface energy for a two-dimensional PFC hexagonal crystal and find well-defined step energies from measurements on the faceted interfaces. Additionally, the strain field beneath a stepped interface is characterized and shown to qualitatively reproduce predictions from continuum models, simulations, and experimental data. Finally, we examine the dynamic case of step-flow growth of a crystal into a supersaturated vapor phase. The ability to model such a wide range of surface and bulk defects makes this PFC model a useful tool to study processing techniques such as chemical vapor deposition or vapor-liquid-solid growth of nanowires.

  18. Phase-field crystal model with a vapor phase.

    PubMed

    Schwalbach, Edwin J; Warren, James A; Wu, Kuo-An; Voorhees, Peter W

    2013-08-01

    Phase-field crystal (PFC) models are able to resolve atomic length scale features of materials during temporal evolution over diffusive time scales. Traditional PFC models contain solid and liquid phases, however many important materials processing phenomena involve a vapor phase as well. In this work, we add a vapor phase to an existing PFC model and show realistic interfacial phenomena near the triple point temperature. For example, the PFC model exhibits density oscillations at liquid-vapor interfaces that compare favorably to data available for interfaces in metallic systems from both experiment and molecular-dynamics simulations. We also quantify the anisotropic solid-vapor surface energy for a two-dimensional PFC hexagonal crystal and find well-defined step energies from measurements on the faceted interfaces. Additionally, the strain field beneath a stepped interface is characterized and shown to qualitatively reproduce predictions from continuum models, simulations, and experimental data. Finally, we examine the dynamic case of step-flow growth of a crystal into a supersaturated vapor phase. The ability to model such a wide range of surface and bulk defects makes this PFC model a useful tool to study processing techniques such as chemical vapor deposition or vapor-liquid-solid growth of nanowires.

  19. Three dimensional simulation of melt flow in Czochralski crystal growth with steady magnetic fields

    NASA Astrophysics Data System (ADS)

    Cen, Xianrong; Li, Y. S.; Zhan, Jiemin

    2012-02-01

    Three-dimensional transient numerical simulations were carried out to investigate the melt convection and temperature fluctuations within an industrial Czochralski crucible. To study the magnetic damping effects on the growth process, a vertical magnetic field and a cusp magnetic field were considered. Due to our special interest in the melt convection, only local simulation was conducted. The melt flow was calculated by large-eddy simulation (LES) and the magnetic forces were implemented in the CFD code by solving a set of user-defined scalar (UDS) functions. In the absence of magnetic fields, the numerical results show that the buoyant plumes rise from the crucible to the free surface and the crystal-melt interface, which indicates that the heat and mass transfer phenomena in Si melt can be characterized by the turbulent flow patterns. In the presence of a vertical magnetic field, the temperature fluctuations in the melt are significantly damped, with the buoyant plumes forming regular cylindrical geometries. The cusp magnetic field could also markedly reduce the temperature fluctuations, but the buoyant plumes would break into smaller vortical structures, which gather around the crystal as well as in the center of the crucible bottom. With the present crucible configurations, it is found that the vertical magnetic field with an intensity of 128 mT can damp the temperature fluctuations more effectively than the 40 mT cusp magnetic field, especially in the region near the growing crystal.

  20. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Szofran, F. R.; Cobb, S. D.; Schweizer, M.; Walker, J. S.

    2005-01-01

    A series of (100)-oriented gallium-doped germanium crystals has been grown by the vertical Bridgman method and under the influence of a rotating magnetic field (RMF). Time-dependent flow instabilities occur when the critical magnetic Taylor number (Tm(sup c)) is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. Tm(sup c) decreases as the aspect ratio of the melt increases, and approaches the theoretical limit expected for an infinite cylinder. Intentional interface demarcations are introduced by pulsing the RMF on and off The RMF has a marked affect on the interface shape, changing it from concave to nearly flat as the RMF strength is increased.

  1. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Walker, J. S.; Schweizer, M.; Cobb, S. D.; Szofran, F. R.

    2004-01-01

    A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). Time-dependent flow instabilities occur when the critical magnetic Taylor number (Tm(sup c) is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The experimental data indicate that Tm(sup c) increases as the aspect ratio of the melt decreases. Modeling calculations predicting Tm(sup c) as a function of aspect ratio are in reasonable agreement with the experimental data. The RMF has a marked affect on the interface shape, changing it from concave to nearly flat as the RMF strength is increased. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.

  2. Superconformal field theories from M-theory crystal lattices

    NASA Astrophysics Data System (ADS)

    Lee, Sangmin

    2007-05-01

    We propose a brane configuration for the (2+1)d, N=2 superconformal theories (CFT3) arising from M2 branes probing toric Calabi-Yau 4-fold cones, using a T-duality transformation of M theory. We obtain intersections of M5-branes on a three-torus which form a 3d bipartite crystal lattice in a way similar to the 2d dimer models for CFT4. The fundamental fields of the CFT3 are M2-brane discs localized around the intersections, and the superpotential terms are identified with the atoms of the crystal. The model correctly reproduces the Bogomol’nyi-Prasad-Sommerfield (BPS) spectrum of mesons.

  3. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-11-01

    positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. Once the basic understanding is obtained, the study will focus on testing the hypothesis on proteins of pyruvate dehydrogenase complex (PDC), proteins E1 and E3. Obtaining high crystal quality of these proteins is of great importance to structural biologists since their structures need to be determined. Specific goals for the investigation are: 1. To develop an understanding of convection control in diamagnetic fluids with concentration gradients through experimentation and numerical modeling. Specifically solutal buoyancy driven convection due to crystal growth will be considered. 2. To develop predictive measures for successful crystallization in a magnetic field using analyses and numerical modeling for use in future protein crystal growth experiments. This will establish criteria that can be used to estimate the efficacy of magnetic field flow damping on crystallization of candidate proteins. 3. To demonstrate the understanding of convection damping by high magnetic fields to a class of proteins that is of interest and whose structure is as yet not determined. 4. To compare quantitatively, the quality of the grown crystals with and without a magnetic field. X-ray diffraction techniques will be used for the comparative studies. In a preliminary set of experiments, we studied crystal dissolution effects in a 5 Tesla magnet available at NASA Marshall Space Flight Center (MSFC). Using a Schlieren setup, a 1mm crystal of Alum (Aluminum-Potassium Sulfate) was introduced in a 75% saturated solution and the resulting dissolution plume was observed

  4. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-01-01

    positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. Once the basic understanding is obtained, the study will focus on testing the hypothesis on proteins of pyruvate dehydrogenase complex (PDC), proteins E1 and E3. Obtaining high crystal quality of these proteins is of great importance to structural biologists since their structures need to be determined. Specific goals for the investigation are: 1. To develop an understanding of convection control in diamagnetic fluids with concentration gradients through experimentation and numerical modeling. Specifically solutal buoyancy driven convection due to crystal growth will be considered. 2. To develop predictive measures for successful crystallization in a magnetic field using analyses and numerical modeling for use in future protein crystal growth experiments. This will establish criteria that can be used to estimate the efficacy of magnetic field flow damping on crystallization of candidate proteins. 3. To demonstrate the understanding of convection damping by high magnetic fields to a class of proteins that is of interest and whose structure is as yet not determined. 4. To compare quantitatively, the quality of the grown crystals with and without a magnetic field. X-ray diffraction techniques will be used for the comparative studies. In a preliminary set of experiments, we studied crystal dissolution effects in a 5 Tesla magnet available at NASA Marshall Space Flight Center (MSFC). Using a Schlieren setup, a 1mm crystal of Alum (Aluminum-Potassium Sulfate) was introduced in a 75% saturated solution and the resulting dissolution plume was observed

  5. Convection effects in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Roberts, Glyn O.

    1988-01-01

    Protein crystals for X-ray diffraction study are usually grown resting on the bottom of a hanging drop of a saturated protein solution, with slow evaporation to the air in a small enclosed cell. The evaporation rate is controlled by hanging the drop above a reservoir of water, with its saturation vapor pressure decreased by a low concentration of a passive solute. The drop has a lower solute concentration, and its volume shrinks by evaporation until the molecular concentrations match. Protein crystals can also be grown from a seed crystal suspended or supported in the interior of a supersaturated solution. The main analysis of this report concerns this case because it is less complicated than hanging-drop growth. Convection effects have been suggested as the reason for the apparent cessation of growth at a certain rather small crystal size. It seeems that as the crystal grows, the number of dislocations increases to a point where further growth is hindered. Growth in the microgravity environment of an orbiting space vehicle has been proposed as a method for obtaining larger crystals. Experimental observations of convection effects during the growth of protein crystals have been reported.

  6. Effect of Interaction of the Temperature Field and Supersaturation on the Morphology of the Solid-Vapor Interface in Crystal Growth by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Grasza, K.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    An in-situ study of the morphology of the solid-vapor interface during iodine crystal growth was done. The conditions for terrace growth, flat faces formation and retraction, competition between sources of steps, formation of protrusions, surface roughening, and defect overgrowth are demonstrated and discussed.

  7. Large area mode field photonic crystal fiber design

    NASA Astrophysics Data System (ADS)

    Guo, Shuqin; An, Wensheng; Wang, Kang; Zhu, Guangxin; Le, Zichun

    2005-11-01

    A novel design method about photonic crystal fiber (PCF) with large area model field (LAMF) is demonstrated. Different from ordinarily design that the core of PCF formed by missing one air holes in the center of section, many air holes distributed in heartland all together come into being the core region. Air holes are arranged regularly in core region and outer cladding regions according to different periodical character, respectively. The effective refractive index (n eff ) of core region should be higher than cladding region because of total internal reflection (TIR) requirement. In this paper, two kinds of typical scheme are offered to realize LAMF-PCF. First, Λ, the spacing of neighboring air holes in whole section is fixed, once the radius of air holes in the core region r c is smaller than the cladding air holes r cla, LAMF-PCF will be formed. The modal area only lessens a little as r c is reduced. Especially, optimal size of r c can nearly make MFA insensitive to wavelength. On the contrary, dispersion parameter of PCF will take place visible change along with r c reduced, and ultra-flattened dispersion character can be realized when r c is optimized. Another method of designing LAMF-PCF is keeping all air holes uniform in the whole section of PCF, but the space of neighboring air holes in the core region Λ c is longer than the cladding region Λ cla, so n eff of core region is higher than the cladding region and TIR can take place.

  8. Unusual Kondo-hole effect and crystal-field frustration in Nd-doped CeRhIn5

    SciTech Connect

    Rosa, Priscila Ferrari Silveira; Oostra, Aaron; Thompson, Joe David; Pagliuso, Pascoal G.; Fisk, Zachary

    2016-07-05

    In this research, we investigate single crystals of Ce1₋xNdxRhIn5 by means of x-ray-diffraction, microprobe, magnetic susceptibility, heat capacity, and electrical resistivity measurements. Our data reveal that the antiferromagnetic transition of CeRhIn5, at T$Ce\\atop{N}$=3.8 K, is linearly suppressed with xNd. We associate this effect with the presence of a “Kondo hole” created by Nd substitution. The extrapolation of T$Ce\\atop{N}$ to zero temperature, however, occurs at xc~0.3, which is below the two-dimensional percolation limit found in Ce1₋xLaxRhIn5. This result strongly suggests the presence of a crystal-field induced magnetic frustration. Near xNd~0.2, the Ising antiferromagnetic order from Nd3+ ions is stabilized and T$Nd\\atop{N}$ increases up to 11 K in NdRhIn5. Finally, our results shed light on the effects of magnetic doping in heavy-fermion antiferromagnets and stimulate the study of such systems under applied pressure.

  9. Intermittent dislocation density fluctuations in crystal plasticity from a phase-field crystal model.

    PubMed

    Tarp, Jens M; Angheluta, Luiza; Mathiesen, Joachim; Goldenfeld, Nigel

    2014-12-31

    Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations. Dislocation number fluctuations exhibit a power-law spectral density 1/f2 at high frequencies f. The probability distribution of number fluctuations becomes bimodal at low driving rates corresponding to a scenario where low density of defects alternates at irregular times with high populations of defects. We propose a simple stochastic model of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density fluctuations as a function of shear rate.

  10. Subsurface Stress Fields in Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.

    2003-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and fatigue stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. Techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts are presented in this report. Figure 1 shows typical damper contact locations in a turbine blade. The subsurface stress results are used for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades.

  11. Phase-field-crystal methodology for modeling of structural transformations.

    PubMed

    Greenwood, Michael; Rottler, Jörg; Provatas, Nikolas

    2011-03-01

    We introduce and characterize free-energy functionals for modeling of solids with different crystallographic symmetries within the phase-field-crystal methodology. The excess free energy responsible for the emergence of periodic phases is inspired by classical density-functional theory, but uses only a minimal description for the modes of the direct correlation function to preserve computational efficiency. We provide a detailed prescription for controlling the crystal structure and introduce parameters for changing temperature and surface energies, so that phase transformations between body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal-close-packed (hcp), and simple-cubic (sc) lattices can be studied. To illustrate the versatility of our free-energy functional, we compute the phase diagram for fcc-bcc-liquid coexistence in the temperature-density plane. We also demonstrate that our model can be extended to include hcp symmetry by dynamically simulating hcp-liquid coexistence from a seeded crystal nucleus. We further quantify the dependence of the elastic constants on the model control parameters in two and three dimensions, showing how the degree of elastic anisotropy can be tuned from the shape of the direct correlation functions.

  12. Taylor vortex effect on flocculation of hairy crystals of calcium lactate in anti-solvent crystallization

    NASA Astrophysics Data System (ADS)

    Lee, Sooyun; Lee, Choul-Ho; Kim, Woo-Sik

    2013-06-01

    A Taylor vortex flow was applied to inhibit the crystal flocculation of calcium lactate in anti-solvent crystallization. When using a conventional MSMPR crystallizer, hairy crystals of calcium lactate were formed and flocculated in the crystallizer. The whole suspension in the crystallizer then gelated and the solution trapped in the flocculated crystals was hardly removable from the gelated suspension. Thus, no purification of calcium lactate was achievable when using anti-solvent crystallization in the MSMPR crystallizer, regardless of a batch or continuous operating mode. In contrast, when using a Couette-Taylor (CT) crystallizer, short needle crystals (about 40 μm) were produced and their flocculation/entanglement was completely prevented. Due to the effective mixing of the Taylor vortex, a high supersaturation was induced in the inlet region of the CT crystallizer, thereby nucleating a high number of needle crystals. This then restricted any one-dimensional overgrowth of crystals, preventing the formation of hairy crystals. According to this mechanism, the mean crystal size was reduced when increasing the rotation speed of the CT crystallizer, the feed concentration, and flow rate. Moreover, the recovery ratio of calcium lactate crystals in the CT crystallizer was always greater than 83% and depended most significantly on the feed flow rate.

  13. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Effective Anisotropic Dielectric Properties of Crystal Composites

    NASA Astrophysics Data System (ADS)

    Wei, En-Bo; Gu, Guo-Qing; Poon, Ying-Ming; Franklin, G. Shin

    2010-02-01

    Transformation field method (TFM) is developed to estimate the anisotropic dielectric properties of crystal composites having arbitrary shapes and dielectric properties of crystal inclusions, whose principal dielectric axis are different from those of anisotropic crystal matrix. The complicated boundary-value problem caused by inclusion shapes is circumvented by introducing a transformation electric field into the crystal composites regions, and the effective anisotropic dielectric responses are formulated in terms of the transformation field. Furthermore, the numerical results show that the effective anisotropic dielectric responses of crystal composites periodically vary as a function of the rotating angle between the principal dielectric axes of inclusion and matrix crystal materials. It is found that at larger inclusion volume fraction the inclusion shapes induce profound effect on the effective anisotropic dielectric responses.

  14. Magnetic field sensor based on coupled photonic crystal nanobeam cavities

    NASA Astrophysics Data System (ADS)

    Du, Han; Zhou, Guangya; Zhao, Yunshan; Chen, Guoqiang; Chau, Fook Siong

    2017-02-01

    We report the design, fabrication, and characterization of a resonant Lorentz force magnetic field sensor based on dual-coupled photonic crystal nanobeam cavities. Compared with microelectromechanical systems (MEMS) Lorentz force magnetometers, the proposed magnetic field sensor has an ultra-small footprint (less than 70 μm × 40 μm) and a wider operation bandwidth (of 160 Hz). The sensing mechanism is based on the resonance wavelength shift of a selected supermode of the coupled cavities, which is caused by the Lorentz force-induced relative displacement of the cavity nanobeams, and thus the optical transmission variation. The sensitivity and resolution of the device demonstrated experimentally are 22.9 mV/T and 48.1 μT/Hz1/2, respectively. The results can be further improved by optimizing the initial offset of the two nanobeams.

  15. Phase-field-crystal models and mechanical equilibrium

    NASA Astrophysics Data System (ADS)

    Heinonen, V.; Achim, C. V.; Elder, K. R.; Buyukdagli, S.; Ala-Nissila, T.

    2014-03-01

    Phase-field-crystal (PFC) models constitute a field theoretical approach to solidification, melting, and related phenomena at atomic length and diffusive time scales. One of the advantages of these models is that they naturally contain elastic excitations associated with strain in crystalline bodies. However, instabilities that are diffusively driven towards equilibrium are often orders of magnitude slower than the dynamics of the elastic excitations, and are thus not included in the standard PFC model dynamics. We derive a method to isolate the time evolution of the elastic excitations from the diffusive dynamics in the PFC approach and set up a two-stage process, in which elastic excitations are equilibrated separately. This ensures mechanical equilibrium at all times. We show concrete examples demonstrating the necessity of the separation of the elastic and diffusive time scales. In the small-deformation limit this approach is shown to agree with the theory of linear elasticity.

  16. Negative Refractive Bi-Crystal with Broken Symmetry Leading to Unusual Fields in Guided Wave Heterostructures

    NASA Astrophysics Data System (ADS)

    Krowne, Clifford

    2004-03-01

    A recent finding has shown that a unixial bi-crystal shows negative refraction (NR) [1], a property in common with recent left-handed metamaterials examined for physics of focusing behavior and of field distributions [2], and field contouring effects in electronic structures [3]. This is a very interesting property related to energy wave front motion and has an analog in electron ballistic motion in a semiconductor heterostructure too. The property which yields NR, breaks field symmetry, and allows asymmetric distributions of electromagnetic fields in the cross-section in which heterostructure layering occurs when propagation is normal to this cross-section in a longitudinal direction. What is all the more remarkable is that individual heterostructure layers are not field symmetry breaking and do not lead to asymmetric field distributions. In fact when a single crystal is inserted in a guiding structure, nothing special happens. When heterostructure layering is constructive, successive layers could enhance the effect. We demonstrate here for the first time, using a model stripline structure to guide the wave, that a bi-crystal will indeed produce asymmetric rf electric and magnetic distributions. Calculations were done with an ab initio approach using an anisotropic Greens function which allows the physical properties of the uniaxial crystals to be treated via their tensors. The results have important implications for microwave devices which rely on asymmetric field distributions. One could envision wide application in monolithic integrated circuits in terms of devices utilizing both microwave and millimeter transmission as well as optical transmission using dielectric waveguiding structures. [1] Y. Zhang, B. Fluegel and A. Mascarenhas, Phys. Rev. Lett. 91, 157404 (Oct. 2003). [2] C. M. Krowne, Phys. Rev. Lett. 92, to be publ. (2004). [3] C. M. Krowne, IEEE Trans. Microwave Theory & Tech. 51, (Dec. 2003).

  17. Composite Fermion Theory for the High Field Wigner Crystal State

    NASA Astrophysics Data System (ADS)

    Narevich, Romanas; Murthy, Ganpathy; Fertig, Herbert

    2001-03-01

    The low filling fraction Quantum Hall Effect is reexamined using the hamiltonian composite fermion theory developed by Shankar and Murthy(R. Shankar and G. Murthy, Phys. Rev. Lett. 79), 4437 (1997). We address the experiment by Jiang et. al.(H. W. Jiang et. al., Phys. Rev. B 44), 8107 (1991) where the insulating phase surrounding the ν=1/5 quantum liquid was observed and its activation energies (gaps) measured. Previous studies either found gaps that were off by few orders of magnitude (Hartree-Fock calculations of the electronic Wigner crystal(D. Yoshioka and H. Fukuyama, J. Phys. Soc. Japan 47), 394 (1979)) or were unable to calculate them because of the computational complexity (Monte-Carlo studies of the correlated crystal(H. Yi and H. A. Fertig, Phys. Rev. B 58), 4019 (1998)). We use the Hartree-Fock approximation for the periodic density state of composite fermions and find gaps that have a correct order of magnitude and reproduce the experimental dependence on the filling factor. We also report the results of the shear modulus calculation relevant for the collective pinning of the crystal.

  18. Bridging the terahertz near-field and far-field observations of liquid crystal based metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ge, Shijun; Chen, Zhaoxian; Hu, Wei; Lu, Yanqing

    2016-09-01

    Metamaterial-based absorbers play a significant role in applications ranging from energy harvesting and thermal emitters to sensors and imaging devices. The middle dielectric layer of conventional metamaterial absorbers has always been solid. Researchers could not detect the near field distribution in this layer or utilize it effectively. Here, we use anisotropic liquid crystal as the dielectric layer to realize electrically fast tunable terahertz metamaterial absorbers. We demonstrate strong, position-dependent terahertz near-field enhancement with sub-wavelength resolution inside the metamaterial absorber. We measure the terahertz far-field absorption as the driving voltage increases. By combining experimental results with liquid crystal simulations, we verify the near-field distribution in the middle layer indirectly and bridge the near-field and far-field observations. Our work opens new opportunities for creating high-performance, fast, tunable, terahertz metamaterial devices that can be applied in biological imaging and sensing. Project supported by the National Basic Research Program of China (Grant No. 2012CB921803), the National Natural Science Foundation of China (Grants Nos. 61225026, 61490714, 11304151, and 61435008), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20150845 and 15KJB140004), the Open Foundation Project of National Laboratory of Solid State Microstructures, China (Grant No. M28003), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China.

  19. Effects of Ultrasonic Parameters on the Crystallization Behavior of Virgin Coconut Oil.

    PubMed

    Wu, Linhe; Cao, Jun; Bai, Xinpeng; Chen, Haiming; Zhang, Yuxiang; Wu, Qian

    2016-12-01

    Crystallization behavior of virgin coconut oil (VCO) in the absence and presence of ultrasonic treatment under a temperature gradient field was investigated. The effects of ultrasonic parameters on the crystallization behavior of VCO were studied by differential scanning calorimetry, ultraviolet/visible spectrophotometry and polarized light microscopy. The thermal effect of the ultrasonic treatment was also increased at higher power levels. Therefore, the optimal power level was determined at approximately 36 W. Induction time reduced evidently and the crystallization rate was accelerated under ultrasonic treatment at crystallization temperature (Tc) above 15°C. However, no significant difference in induction time was noted at 13°C. The result of morphological studies showed that the growth mechanism of crystals was significantly changed. Meanwhile, smaller and uniform crystals were produced by the ultrasonic treatment. This study shows a novel technique to accelerate the crystallization rate and alter the growth mechanism of VCO crystals.

  20. The interface morphology of a spherical crystal in the undercooled melt affected by a far-field uniform flow

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Wang, Y. L.; Zhang, H.; Wu, L. Y.; Wang, Z. D.

    2011-05-01

    The effect of the convective flow caused by the far-field uniform flow on the interface morphology of a spherical crystal is studied by using the matched asymptotic expansion method. For the case that the far-field uniform flow is far less than the characteristic velocity of the interface, we obtain the uniformly valid asymptotic solution of the spherical crystal in the entire melt region. The analytical results show that the far-field uniform flow has significant effect on the interface morphology of the spherical crystal. The convection flow makes the interface of the growing spherical crystal enhance growth velocity in the upstream direction of the far-field uniform flow, inhibit growth in the downstream direction and decrease growth velocity on the two sides of the spherical crystal. The drag effect of the far-field uniform flow makes the interface morphology of the spherical crystal evolve into a pearlike oval shape. Our analytical result is consistent with the experimental and simulation results.

  1. Fiber optic dynamic electric field sensor based on nematic liquid crystal Fabry-Perot etalon

    NASA Astrophysics Data System (ADS)

    Ko, Myeong Ock; Kim, Sung-Jo; Kim, Jong-Hyun; Jeon, Min Yong

    2014-05-01

    We propose a fiber-optic dynamic electric field sensor using a nematic liquid crystal (NLC) Fabry-Perot etalon and a wavelength-swept laser. The transmission wavelength of the NLC Fabry-Perot etalon depends on the applied electric field intensity. The change in the effective refractive index of the NLC is measured while changing the applied electric field intensity. It decreases from 1.67 to 1.51 as the applied the electric field intensity is increased. Additionally, we successfully measure the dynamic variation of the electric field using the high-speed wavelength-swept laser. By measuring the modulation frequency of the transmission peaks in the temporal domain, the frequency of the modulated electric field can be estimated.

  2. Electric Field-Induced Skyrmion Crystals via Charged Monopoles in Insulating Helimagets

    NASA Astrophysics Data System (ADS)

    Watanabe, Haruki; Vishwanath, Ashvin

    2016-06-01

    Electrons propagating in a magnetically ordered medium experience an additional gauge field associated with the Berry phase of their spin following the local magnetic texture. In contrast to the usual electromagnetic field, this gauge field admits monopole excitations, corresponding to hedgehog defects of the magnetic order. In an insulator, these hedgehogs carry a well-defined electric charge allowing for them to be controlled by electric fields. One particularly robust mechanism that contributes to the charge is the orbital magnetoelectric effect, captured by a θ angle, which leads to a charge of eθ/2π on hedgehogs. This is a direct consequence of the Witten effect for magnetic monopoles in a θ medium. A physical consequence is that external electric fields can induce skyrmion crystal phases in insulating helimagnets.

  3. Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color

    NASA Astrophysics Data System (ADS)

    Dellinger, Jean; Van Do, K.; Le Roux, Xavier; de Fornel, Frédérique; Cassan, Eric; Cluzel, Benoît

    2012-10-01

    Using a scanning near-field optical microscope operating with a hyperspectral detection scheme, we report the direct observation of the mirage effect within an on-chip integrated artificial material made of a two dimensional graded photonic crystal. The light rainbow due to the material dispersion is quantified experimentally and quantitatively compared to three dimensional plane wave assisted Hamiltonian optics predictions of light propagation.

  4. Forms of crystal field Hamiltonians - A critical review

    NASA Astrophysics Data System (ADS)

    Rudowicz, C.; Gnutek, P.; Karbowiak, M.

    2011-08-01

    Our survey reveals that various disparate forms, both compact and expanded ones, of crystal field (CF) Hamiltonians, HCF, expressed in the Wybourne notation have been used in the literature. It turns out that the disparities in the symbolic explicit forms of HCF are especially important for monoclinic and triclinic site symmetry. The extent of the inconsistencies identified in selected papers has prompted us to embark on a systematic critical review of the HCF forms employed in optical spectroscopy and related areas. Most crucial results of this survey are presented here. Comparative analysis has been carried out to establish the interrelations between CF parameters (CFPs) expressed in disparate forms. The usage of inconsistent or confusing HCF forms has implications also for CFP conversions between the Stevens and Wybourne notations as well as for theoretical modeling of CFPs. This review reveals that comparison of CFP data taken from various sources should be carried out with special care, especially for low symmetry cases.

  5. Thermodynamics of bcc metals in phase-field-crystal models.

    PubMed

    Jaatinen, A; Achim, C V; Elder, K R; Ala-Nissila, T

    2009-09-01

    We examine the influence of different forms of the free-energy functionals used in the phase-field-crystal (PFC) model, and compare them with the second-order density-functional theory (DFT) of freezing, by using bcc iron as an example case. We show that there are large differences between the PFC and the DFT and it is difficult to obtain reasonable parameters for existing PFC models directly from the DFT. Therefore, we propose a way of expanding the correlation function in terms of gradients that allows us to incorporate the bulk modulus of the liquid as an additional parameter in the theory. We show that this functional reproduces reasonable values for both bulk and surface properties of bcc iron, and therefore it should be useful in modeling bcc materials. As a further demonstration, we also calculate the grain boundary energy as a function of misorientation for a symmetric tilt boundary close to the melting transition.

  6. Light-induced effects in liquid crystals: recent developments

    NASA Astrophysics Data System (ADS)

    Simoni, F.; Lucchetti, L.

    2016-09-01

    In this paper we outline that light-induced effects in liquid crystals are still able to provide scientific and technological novelty in spite of a long time investigation started more than thirty years ago. Here we review some recent achievements related to new phenomena that have been studied in the past few years. In the first part of our report we discuss optical trapping of nematic colloids whose origin relies on the elastic properties of liquid crystals rather than on the field gradient that is on the basis of conventional optical tweezing. In the second part we present some recent results obtained in studying the self-phase modulation in bent core nematic liquid crystals, pointing out a peculiar two regimes behavior.

  7. The Strength of PIN-PMN-PT Single Crystals under Bending with a Longitudinal Electric Field

    DTIC Science & Technology

    2011-04-06

    The strength of PIN– PMN – PT single crystals under bending with a longitudinal electric field This article has been downloaded from IOPscience. Please...COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE The Strength Of PIN- PMN - PT Single Crystals Under Bending With A Longitudinal Electric Field... PMN ? PT ) single crystals was measured using a four point bending apparatus with a longitudinal electric field applied to the bar during bending. The

  8. Evaluation of the Linear and Second-Order NLO Properties of Molecular Crystals within the Local Field Theory: Electron Correlation Effects, Choice of XC Functional, ZPVA Contributions, and Impact of the Geometry in the Case of 2-Methyl-4-nitroaniline.

    PubMed

    Seidler, Tomasz; Stadnicka, Katarzyna; Champagne, Benoît

    2014-05-13

    The linear [χ((1))] and second-order nonlinear [χ((2))] optical susceptibilities of the 2-methyl-4-nitroaniline (MNA) crystal are calculated within the local field theory, which consists of first computing the molecular properties, accounting for the dressing effects of the surroundings, and then taking into account the local field effects. Several aspects of these calculations are tackled with the aim of monitoring the convergence of the χ((1)) and χ((2)) predictions with respect to experiment by accounting for the effects of (i) the dressing field within successive approximations, of (ii) the first-order ZPVA corrections, and of (iii) the geometry. With respect to the reference CCSD-based results, besides double hybrid functionals, the most reliable exchange-correlation functionals are LC-BLYP for the static χ((1)) and CAM-B3LYP (and M05-2X, to a lesser extent) for the dynamic χ((1)) but they strongly underestimate χ((2)). Double hybrids perform better for χ((2)) but not necessarily for χ((1)), and, moreover, their performances are much similar to MP2, which is known to slightly overestimate β, with respect to high-level coupled-clusters calculations and, therefore, χ((2)). Other XC functionals with less HF exchange perform poorly with overestimations/underestimations of χ((1))/χ((2)), whereas the HF method leads to underestimations of both. The first-order ZPVA corrections, estimated at the B3LYP level, are usually small but not negligible. Indeed, after ZPVA corrections, the molecular polarizabilities and first hyperpolarizabilities increase by 2% and 5%, respectively, whereas their impact is magnified on the macroscopic responses with enhancements of χ((1)) by up to 5% and of χ((2)) by as much as 10%-12% at λ = 1064 nm. The geometry plays also a key role in view of predicting accurate susceptibilities, particularly for push-pull π-conjugated compounds such as MNA. So, the geometry optimized using periodic boundary conditions is characterized

  9. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Tóth, Gyula I.; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László

    2010-09-01

    We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model.

  10. Rheology of Pure Glasses and Crystal Bearing Melts: from the Newtonian Field to the Brittle Onset

    NASA Astrophysics Data System (ADS)

    Cordonnier, B.; Caricchi, L.; Pistone, M.; Castro, J. M.; Hess, K.; Dingwell, D. B.

    2010-12-01

    The brittle-ductile transition remains a central question of modern geology. If rocks can be perceived as a granular flow on geological time-scale, their behavior is brittle in dynamic areas. Understanding rock failure conditions is the main parameter in mitigating geological risks, more specifically the eruptive style transitions from effusive to explosive. If numerical simulations are the only way to fully understanding the physical processes involved, we are in a strong need of an experimental validation of the proposed models. here we present results obtained under torsion and uni-axial compression on both pure glasses and crystal bearing melts. We characterized the brittle onset of two phases magmas from 0 to 65% crystals. The strain-rates span a 5 orders magnitude range, from the Newtonian flow to the Brittle field (10-5 - 100 s-1). We particularly emphasize the time dependency of the measured rheology. The materials tested are a borosilicate glass from the National Bureau of Standards, a natural sample from Mt Unzen volcano and a synthetic sample. The lattest is an HPG8 melt with 7% sodium mole excess. The particles are quasi-isometric corundum crystalschosen for their shape and integrity under the stress range investigated. The crystal fraction ranges from 0 to 0.65. Concerning pure magmas, we recently demonstrated that the material passes from a Newtonian to a non-Nemtonian behavior with increasing strain-rate. This onset can mostly be explained by viscous-heating effects. However, for even greater strain-rates, the material cracks and finally fail. The brittle onset is here explained with the visco-elastic theory and corresponds to a Deborah number greater than 10-2. Concerning crystal bearing melts the departure from the Newtonian state is characterized by two effects: a shear-thinning and a time weakening effect. The first one is instantaneous and loading-unloading cyclic tests suggest an elastic contribution of the crystal network. The second one

  11. Electro-optical effects in anisotropic crystals: I. The Pockels effect

    NASA Astrophysics Data System (ADS)

    Novikov, M. A.; Stepanov, A. A.; Khyshov, A. A.

    2016-09-01

    The perturbation-theory method is proposed to calculate the induced anisotropy optical effects in crystals with different symmetries. On its basis, the influence of the Pockels effect on the light propagation in crystals with different symmetries is analyzed using Fedorov's approach of invariant vector fields. This approach has many advantages over known methods in calculating different versions of Pockels effect application for different purposes. Calculation schemes are presented that make it possible to select longitudinal and transverse versions of electro-optical sensors and modulators, which can be used, in particular, to design optical measuring transformers and electric field sensors in high-voltage power lines.

  12. Phase-field crystal modeling of heteroepitaxy and exotic modes of crystal nucleation

    NASA Astrophysics Data System (ADS)

    Podmaniczky, Frigyes; Tóth, Gyula I.; Tegze, György; Pusztai, Tamás; Gránásy, László

    2017-01-01

    We review recent advances made in modeling heteroepitaxy, two-step nucleation, and nucleation at the growth front within the framework of a simple dynamical density functional theory, the Phase-Field Crystal (PFC) model. The crystalline substrate is represented by spatially confined periodic potentials. We investigate the misfit dependence of the critical thickness in the StranskiKrastanov growth mode in isothermal studies. Apparently, the simulation results for stress release via the misfit dislocations fit better to the PeopleBean model than to the one by Matthews and Blakeslee. Next, we investigate structural aspects of two-step crystal nucleation at high undercoolings, where an amorphous precursor forms in the first stage. Finally, we present results for the formation of new grains at the solid-liquid interface at high supersaturations/supercoolings, a phenomenon termed Growth Front Nucleation (GFN). Results obtained with diffusive dynamics (applicable to colloids) and with a hydrodynamic extension of the PFC theory (HPFC, developed for simple liquids) will be compared. The HPFC simulations indicate two possible mechanisms for GFN.

  13. Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Palto, S. P.; Barnik, M. I.; Geivandov, A. R.; Kasyanova, I. V.; Palto, V. S.

    2015-09-01

    Transmission of planar layers of cholesteric liquid crystals is studied in pulsed electric fields perpendicular to the helix axis at normal incidence of both linearly polarized and unpolarized light. Spectral and light polarization properties of the primary photonic band and the field-induced bands up to fourth order of Bragg selective reflection are studied in detail. In our experiments we have achieved an electric field strength several times higher than the theoretical values corresponding to the critical field of full helix unwinding. However, the experiments show that despite the high strength of the electric field applied the helix does not unwind, but strongly deforms, keeping its initial spatial period. Strong helix deformation results in distinct spectral band splitting, as well as very high field-induced selective reflectance that can be applied in lasers and other optoelectronic devices. Peculiarities of inducing and splitting the bands are discussed in terms of the scattering coefficient approach. All observed effects are confirmed by numerical simulations. The simulations also show that liquid crystal surface anchoring is not the factor that prevents the helix unwinding. Thus, the currently acknowledged concept of continuous helix unwinding in the electric field should be reconsidered.

  14. Glassy phases and driven response of the phase-field-crystal model with random pinning.

    PubMed

    Granato, E; Ramos, J A P; Achim, C V; Lehikoinen, J; Ying, S C; Ala-Nissila, T; Elder, K R

    2011-09-01

    We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes.

  15. An Overview of Hardware for Protein Crystallization in a Magnetic Field

    PubMed Central

    Yan, Er-Kai; Zhang, Chen-Yan; He, Jin; Yin, Da-Chuan

    2016-01-01

    Protein crystallization under a magnetic field is an interesting research topic because a magnetic field may provide a special environment to acquire improved quality protein crystals. Because high-quality protein crystals are very useful in high-resolution structure determination using diffraction techniques (X-ray, neutron, and electron diffraction), research using magnetic fields in protein crystallization has attracted substantial interest; some studies have been performed in the past two decades. In this research field, the hardware is especially essential for successful studies because the environment is special and the design and utilization of the research apparatus in such an environment requires special considerations related to the magnetic field. This paper reviews the hardware for protein crystallization (including the magnet systems and the apparatus designed for use in a magnetic field) and progress in this area. Future prospects in this field will also be discussed. PMID:27854318

  16. The Effect of Protein Impurities on Lysozyme Crystal Growth

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    While bulk crystallization from impure solutions is used industrially as a purification step for a wide variety of materials, it is a technique that has rarely been used for proteins. Proteins have a reputation for being difficult to crystallize and high purity of the initial crystallization solution is considered paramount for success in the crystallization. Although little is written on the purifying capability of protein crystallization or of the effect of impurities on the various aspects of the crystallization process, recent published reports show that crystallization shows promise and feasibility as a purification technique for proteins. In order to further examine the issue of purity in macromolecule crystallization this study investigates the effect of the protein impurities, avidin, ovalbumin and conalbumin, at concentrations up to 50%, on the solubility, crystal face growth rates and crystal purity, of the protein lysozyme. Solubility was measured in batch experiments while a computer controlled video microscope system was used to measure the f {101} and {101} lysozyme crystal face growth rates. While little effect was observed on solubility and high crystal purity was obtained (>99.99%), the effect of the impurities on the face growth rates varied from no effect to a significant face specific effect leading to growth cessation, a phenomenon that is frequently observed in protein crystal growth. The results shed interesting light on the effect of protein impurities on protein crystal growth and strengthen the feasibility of using crystallization as a unit operation for protein purification.

  17. Interfacial free energy adjustable phase field crystal model for homogeneous nucleation.

    PubMed

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Huang, Yunhao

    2016-05-18

    To describe the homogeneous nucleation process, an interfacial free energy adjustable phase-field crystal model (IPFC) was proposed by reconstructing the energy functional of the original phase field crystal (PFC) methodology. Compared with the original PFC model, the additional interface term in the IPFC model effectively can adjust the magnitude of the interfacial free energy, but does not affect the equilibrium phase diagram and the interfacial energy anisotropy. The IPFC model overcame the limitation that the interfacial free energy of the original PFC model is much less than the theoretical results. Using the IPFC model, we investigated some basic issues in homogeneous nucleation. From the viewpoint of simulation, we proceeded with an in situ observation of the process of cluster fluctuation and obtained quite similar snapshots to colloidal crystallization experiments. We also counted the size distribution of crystal-like clusters and the nucleation rate. Our simulations show that the size distribution is independent of the evolution time, and the nucleation rate remains constant after a period of relaxation, which are consistent with experimental observations. The linear relation between logarithmic nucleation rate and reciprocal driving force also conforms to the steady state nucleation theory.

  18. Investigation of the linear and second-order nonlinear optical properties of molecular crystals within the local field theory.

    PubMed

    Seidler, Tomasz; Stadnicka, Katarzyna; Champagne, Benoît

    2013-09-21

    In this paper it is shown that modest calculations combining first principles evaluations of the molecular properties with electrostatic interaction schemes to account for the crystal environment effects are reliable for predicting and interpreting the experimentally measured electric linear and second-order nonlinear optical susceptibilities of molecular crystals within the experimental error bars. This is illustrated by considering two molecular crystals, namely: 2-methyl-4-nitroaniline and 4-(N,N-dimethylamino)-3-acetamidonitrobenzene. Three types of surrounding effects should be accounted for (i) the polarization due to the surrounding molecules, described here by static electric fields originating from their electric dipoles or charge distributions, (ii) the intermolecular interactions, which affect the geometry and particularly the molecular conformation, and (iii) the screening of the external electric field by the constitutive molecules. This study further highlights the role of electron correlation on the linear and nonlinear responses of molecular crystals and the challenge of describing frequency dispersion.

  19. Angular effects on thermochromic liquid crystal thermography

    NASA Astrophysics Data System (ADS)

    Kodzwa, Paul M.; Eaton, John K.

    2007-12-01

    This paper directly discusses the effects of lighting and viewing angles on liquid crystal thermography. This is because although thermochromic liquid crystals (TLCs) are a widely-used and accepted tool in heat transfer research, little effort has been directed to analytically describing these effects. Such insight is invaluable for the development of effective mitigation strategies. Using analytical relationships that describe the perceived color shift, a systematic manner of improving the performance of a TLC system is presented. This is particularly relevant for applications where significant variations in lighting and/or viewing angles are expected (such as a highly curved surface). This discussion includes an examination of the importance of the definition of the hue angle used to calibrate the color of a TLC-painted surface. The theoretical basis of the validated high-accuracy calibration approach reported by Kodzwa et al. (Exp Fluids s00348-007-0310-6, 2007) is presented.

  20. Electric-field-assisted position and orientation control of organic single crystals.

    PubMed

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2014-12-02

    We have investigated the motion of growing pentacene single crystals in solution under various electric fields. The pentacene single crystals in 1,2,4-trichlorobenzene responded to the electric field as if they were positively charged. By optimizing the strength and frequency of an alternating electric field, the pentacene crystals automatically bridged the electrodes on SiO2. The pentacene crystal with a large aspect ratio tended to direct the [1̅10] orientation parallel to the conduction direction, which will be suitable from a viewpoint of anisotropy in mobility. The present result shows a possibility of controlling the position and orientation of organic single crystals by the use of an electric field, which leads to high throughput and low cost industrial manufacturing of the single crystal array from solution.

  1. High-resolution X-ray absorption spectroscopy as a probe of crystal-field and covalency effects in actinide compounds.

    PubMed

    Butorin, Sergei M; Kvashnina, Kristina O; Vegelius, Johan R; Meyer, Daniel; Shuh, David K

    2016-07-19

    Applying the high-energy resolution fluorescence-detection (HERFD) mode of X-ray absorption spectroscopy (XAS), we were able to probe, for the first time to our knowledge, the crystalline electric field (CEF) splittings of the [Formula: see text] shell directly in the HERFD-XAS spectra of actinides. Using ThO2 as an example, data measured at the Th 3d edge were interpreted within the framework of the Anderson impurity model. Because the charge-transfer satellites were also resolved in the HERFD-XAS spectra, the analysis of these satellites revealed that ThO2 is not an ionic compound as previously believed. The Th [Formula: see text] occupancy in the ground state was estimated to be twice that of the Th [Formula: see text] states. We demonstrate that HERFD-XAS allows for characterization of the CEF interaction and degree of covalency in the ground state of actinide compounds as it is extensively done for 3d transition metal systems.

  2. High-resolution X-ray absorption spectroscopy as a probe of crystal-field and covalency effects in actinide compounds

    PubMed Central

    Butorin, Sergei M.; Kvashnina, Kristina O.; Vegelius, Johan R.; Meyer, Daniel; Shuh, David K.

    2016-01-01

    Applying the high-energy resolution fluorescence-detection (HERFD) mode of X-ray absorption spectroscopy (XAS), we were able to probe, for the first time to our knowledge, the crystalline electric field (CEF) splittings of the 5f shell directly in the HERFD-XAS spectra of actinides. Using ThO2 as an example, data measured at the Th 3d edge were interpreted within the framework of the Anderson impurity model. Because the charge-transfer satellites were also resolved in the HERFD-XAS spectra, the analysis of these satellites revealed that ThO2 is not an ionic compound as previously believed. The Th 6d occupancy in the ground state was estimated to be twice that of the Th 5f states. We demonstrate that HERFD-XAS allows for characterization of the CEF interaction and degree of covalency in the ground state of actinide compounds as it is extensively done for 3d transition metal systems. PMID:27370799

  3. Holmium iron borate: high-resolution spectroscopy and crystal-field parameters

    NASA Astrophysics Data System (ADS)

    Erofeev, D. A.; Chukalina, E. P.; Popova, M. N.; Malkin, B. Z.; Bezmaternykh, L. N.; Gudim, I. A.

    2016-12-01

    High-resolution transmission spectra of HoFe3(BO3)4 single crystals were measured in broad spectral (5000-23000 cm-1) and temperature (1.7-300 K) ranges. Crystal-field energies of the Ho3+ ions were determined for a paramagnetic and easy-axis antiferromagnetic phases of the compound. On the basis of these data and of preliminary crystal-field calculations in the frame of the exchange-charge model, crystal-field parameters were found. A parameter of the isotropic Ho-Fe exchange interaction was estimated.

  4. Crystal field and magnetism of Pr3+ and Nd3+ ions in orthorhombic perovskites

    NASA Astrophysics Data System (ADS)

    Novák, P.; Knížek, K.; Maryško, M.; Jirák, Z.; Kuneš, J.

    2013-11-01

    Fifteen parameters characterizing the crystal field of rare-earth ions in the RMO3 perovskites (R=Pr, Nd, M=Ga, Co) are calculated using a first-principles electronic structure and the Wannier projection. The method contains a single adjustable parameter that characterizes the hybridization of R(4f) states with the states of oxygen ligands. Subsequently the energy levels and magnetic moments of the trivalent R ion are determined by diagonalization of an effective Hamiltonian which, besides the crystal field, contains the 4f electron-electron repulsion, spin-orbit coupling and interaction with magnetic field. In the Ga compounds the energy levels of the ground multiplet agree within a few meV with those determined experimentally by other authors. For all four compounds in question the temperature dependence of magnetic susceptibility is measured on polycrystalline samples and compared with the results of calculation. For NdGaO3 the theory is also compared with the magnetic measurements on a single crystal presented by Luis et al (1998 Phys. Rev. B 58 798). Good agreement between the experiment and theory is found.

  5. A three-dimensional phase field model coupled with lattice kinetics solver for modeling crystal growth in furnaces with accelerated crucible rotation and traveling magnetic field

    SciTech Connect

    Lin, Guang; Bao, Jie; Xu, Zhijie

    2014-11-01

    In this study, which builds on other related work, we present a new three-dimensional numerical model for crystal growth in a vertical solidification system. This model accounts for buoyancy, accelerated crucible rotation technique (ACRT), and traveling magnetic field (TMF) induced convective flow and their effect on crystal growth and the chemical component's transport process. The evolution of the crystal growth interface is simulated using the phase field method. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. A one-way coupled concentration transport model is used to simulate the component fraction variation in both the liquid and solid phases, which can be used to check the quality of the crystal growth.

  6. Crystal-field calculations for transition-metal ions by application of an opposing potential

    DOE PAGES

    Zhou, Fei; Aberg, Daniel

    2016-02-16

    We propose a fully ab initio method, the opposing crystal potential (OCP), to calculate the crystal-field parameters of transition-metal impurities in insulator hosts. Through constrained density functional calculations, OCP obtains the constraining Lagrange multipliers, which act as a cancellation potential against the crystal field and lead to spherical d-electron distribution. Furthermore, the method is applied to several insulators doped with Mn4+ and Mn2+ ions and shown to be in good agreement with experiment.

  7. Study of Effects of Gravity on Crystallization

    NASA Technical Reports Server (NTRS)

    Smith, Guy A.; Workman, Gary L.; OBrian, Susan

    1996-01-01

    The effect of gravity on the crystallization behavior of fluoride fibers is being investigated by performing fiber annealing experiments on NASA's KC-135 using commercial grade fibers donated by industrial partners. The successful observations of reduced formation of microcrystallites in reduced gravity of the parabolic flights will be repeated to confirm earlier results. The design and implementation of an automated sting assembly for use in space fiber drawing experiments will also be emphasized in this study.

  8. Tunable Lamb wave band gaps in two-dimensional magnetoelastic phononic crystal slabs by an applied external magnetostatic field.

    PubMed

    Zhou, Changjiang; Sai, Yi; Chen, Jiujiu

    2016-09-01

    This paper theoretically investigates the band gaps of Lamb mode waves in two-dimensional magnetoelastic phononic crystal slabs by an applied external magnetostatic field. With the assumption of uniformly oriented magnetization, an equivalent piezomagnetic material model is used. The effects of magnetostatic field on phononic crystals are considered carefully in this model. The numerical results indicate that the width of the first band gap is significantly changed by applying the external magnetic field with different amplitude, and the ratio between the maximum and minimum gap widths reaches 228%. Further calculations demonstrate that the orientation of the magnetic field obviously affects the width and location of the first band gap. The contactless tunability of the proposed phononic crystal slabs shows many potential applications of vibration isolation in engineering.

  9. PHOTOMAGNETOELECTRIC EFFECT OF CDS SINGLE CRYSTALS AND OF BISMUTH ROLLED FOILS. THERMOMAGNETOELECTRIC EFFECT OF CONTACTS BI-CU, GE-CU AND SI-CU.

    DTIC Science & Technology

    CADMIUM SULFIDES, *BISMUTH, TRANSPORT PROPERTIES, TRANSPORT PROPERTIES, SINGLE CRYSTALS, FOILS(MATERIALS), PHOTOCONDUCTIVITY, CHARGE CARRIERS, GERMANIUM, MAGNETIC FIELDS, SEEBECK EFFECT , TEMPERATURE, COPPER, SILICON.

  10. First-order transition and tricritical behavior of the transverse crystal field spin-1 Ising model

    NASA Astrophysics Data System (ADS)

    Costabile, Emanuel; Viana, J. Roberto; de Sousa, J. Ricardo; de Arruda, Alberto S.

    2015-06-01

    The phase diagram of the spin-1 Ising model in the presence of a transverse crystal-field anisotropy (Dx) is studied within the framework of an effective-field theory with correlation. The effect of the coordination number (z) on the phase diagram in the T -Dx plane is investigated. We observe only second-order transitions for coordination number z < 7, while that for z ≥ 7 we have first- and second-order transitions, with the presence of two tricritical points. The lower tricritical temperature (Tt) decreases monotonically with the increasing value of z, and in the limit of z → ∞ we found Tt = 0, corresponding to the mean-field solution [Ricardo de Sousa and Branco, Phys. Rev. E 77 (2008) 012104] with a single tricritical point in the phase diagram.

  11. Effects of electrohydrodynamic instability in smectic C liquid crystals

    NASA Astrophysics Data System (ADS)

    Denisova, O. A.; Chuvyrov, A. N.

    2013-03-01

    The effects of electrohydrodynamic instability (EHDI) in smectic C liquid crystals in an electric field are studied. The objects of study are oriented layers of para-hydroxybenzoic acid possessing a smectic phase. The observed effects are divided into three groups according to the character of the motion of molecular centers of mass and the orientation of the director and the smectic C liquid crystal layers. The instabilities of the azimuthal and Kapustin-Williams domains are experimentally found. The experimental cell consists of two glass plates with tin dioxide electrodes separated by Mylar spacers of a specified thickness. Various schemes of domain rotation are considered. The EHDI is found to depend on the layer geometry.

  12. Phase Field Modeling of Twinning in Indentation of Transparent Crystals

    DTIC Science & Technology

    2011-09-01

    functional of (32). Thus the mathematical problem of interest whose solution is sought numerically , as described later in sections 4 and 5, can be...of deformed and twinned crystals are attained numerically via direct energy minimization. Results are in qualitative agreement with experimental...deformed and twinned crystals are attained numerically via direct energy minimization. Results are in qualitative agreement with experimental

  13. Fishtail effect in twinned and detwinned YBCO single crystals

    NASA Astrophysics Data System (ADS)

    Boudissa, M.; Halimi, R.; Frikach, K.; Senoussi, S.

    2006-09-01

    We have studied the magnetization hysteresis loops of a twinned and detwinned single crystals in a temperature range between 4.2 and 100 K and a magnetic field (H) range between 0 and 6 T. We carried out relaxation measurements on the samples at different temperatures and magnetic fields. We investigated the twin pinning as a function of temperature (T) and the fishtail anomaly in the critical current density of the two samples. We tried in this study to confirm or infirm the different models which explain the fishtail effect by confronting them to our experimental results We found that the collective creep theory is consistent with the results of our experiment in the field region where the magnetization is at its minimum. This field marks a crossover between the small and large bundle pinning regimes.

  14. Neutron study of crystal field excitations in single crystal CeCu2Ge2

    NASA Astrophysics Data System (ADS)

    Loewenhaupt, Michael; Faulhaber, Enrico; Schneidewind, Astrid; Deppe, Micha; Hradil, Klaudia

    2010-03-01

    CeCu2Ge2 is the counterpart of the heavy-fermion superconductor CeCu2Si2. CeCu2Ge2 is a magnetically ordering (TN= 4.1 K) Kondo lattice with a moderate Sommerfeld coefficient of 140 mJ/molK^2 [1]. Inelastic neutron measurements on a polycrystalline sample revealed a doublet ground state and a quasi-quartet at 16.5 meV [1] though a splitting of the 4f^1 (J=5/2) ground state multiplet into 3 doublets is expected from the point symmetry of the Ce^3+ ions. We performed detailed inelastic neutron scattering experiments on the thermal triple-axis spectrometer PUMA at FRM II at temperatures between 10 K and 300 K and for different crystallographic directions from low to high momentum transfers. In this way we obtained a reliable separation of magnetic and phonon contributions. From our results we infer that the quasi-quartet consists in fact of two doublets at 17 and 18 meV which exhibit a strong directional dependence of their transition matrix elements to the ground state doublet. Finally we will present a new set of crystal field parameters and their implications on other magnetic properties. [1] G. Knopp et al., Z. Physik B 77 (1989) 95

  15. Anisotropy of Lamb and SH waves propagation in langasite single crystal plates under the influence of dc electric field.

    PubMed

    Burkov, S I; Zolotova, O P; Sorokin, B P

    2012-03-01

    Paper is presented the results of computer simulation. Effect of the homogeneous dc electric field influence on the propagation of zero and first order Lamb and SH waves in piezoelectric langasite single crystal plates for a lot of cuts and directions have been calculated. Crystalline directions and cuts with maximal and minimal influence of dc electric field have indicated. Effect of hybridization of plate modes has been discussed.

  16. Remanent magnetization of ceramic and single-crystal high-Tc superconductors in tilted magnetic fields

    NASA Astrophysics Data System (ADS)

    Bugoslavsky, Yu. V.; Minakov, A. A.; Vasyurin, S. I.

    1996-02-01

    Dependence of the remanent magnetization (Mr) anisotropy on the structure and shape of the superconductor and on the magnetizing procedure was studied for a number of high-Tc superconductor ceramics and single crystals. The experiments were done by means of a vibrating-sample magnetometer with a rotatable sample holder. It was found that the main contribution to the anisotropic behavior of Mr is due to the surface screening currents, and therefore the anisotropy is subject to variation when sample shape is changed. The question is resolved, why the effective demagnetization factors for decoupled ceramic samples are different from those calculated in the inscribed-ellipsoid approximation. Influence of inhomogeneous grain magnetization and global bulk currents on the angular dependencies of Mr in ceramic samples is investigated. The evolution of remanence in YBCO single crystals with an increase of the magnetizing field is described within an extended Bean model.

  17. Magnetic field sensor based on selectively magnetic fluid infiltrated dual-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Gangwar, Rahul Kumar; Bhardwaj, Vanita; Singh, Vinod Kumar

    2016-02-01

    We reported the modeling result of selectively magnetic fluid infiltrated dual-core photonic crystal fiber based magnetic field sensor. Inside the cross-section of the designed photonic crystal fiber, the two fiber cores filled with magnetic fluid (Fe3O4) form two independent waveguides with mode coupling. The mode coupling under different magnetic field strengths is investigated theoretically. The sensitivity of the sensor as a function of the structural parameters of the photonic crystal fiber is calculated. The result shows that the proposed sensing device with 1 cm photonic crystal fiber length has a large sensitivity of 305.8 pm/Oe.

  18. High magnetic-field scales and critical currents in SmFeAs(O, F) crystals

    NASA Astrophysics Data System (ADS)

    Moll, Philip J. W.; Puzniak, Roman; Balakirev, Fedor; Rogacki, Krzysztof; Karpinski, Janusz; Zhigadlo, Nikolai D.; Batlogg, Bertram

    2010-08-01

    With the discovery of new superconducting materials, such as the iron pnictides, exploring their potential for applications is one of the foremost tasks. Even if the critical temperature Tc is high, intrinsic electronic properties might render applications difficult, particularly if extreme electronic anisotropy prevents effective pinning of vortices and thus severely limits the critical current density, a problem well known for cuprates. Although many questions concerning microscopic electronic properties of the iron pnictides have been successfully addressed and estimates point to a very high upper critical field, their application potential is less clear. Thus, we focus here on the critical currents, their anisotropy and the onset of electrical dissipation in high magnetic fields up to 65T. Our detailed study of the transport properties of SmFeAsO0.7F0.25 single crystals reveals a promising combination of high (>2×106Acm-2) and nearly isotropic critical current densities along all crystal directions. This favourable intragrain current transport in SmFeAs(O, F), which shows the highest Tc of 54K at ambient pressure, is a crucial requirement for possible applications. Essential in these experiments are four-probe measurements on focused-ion-beam-cut single crystals with a sub-square-micrometre cross-section, with current along and perpendicular to the crystallographic c axis.

  19. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis

    PubMed Central

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-01-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings. PMID:27356625

  20. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-06-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings.

  1. Impedance of Polymer-Dispersed Liquid Crystals with Carbon Nanofibers in Weak Electric Fields

    NASA Astrophysics Data System (ADS)

    Zhdanov, K. R.; Romanenko, A. I.; Zharkova, G. M.; Podyacheva, O. Yu.

    2016-11-01

    Impedance of polymer-dispersed liquid crystals modified by carbon nanofibers is studied in fields lower than the threshold field of the director reorientation of a liquid crystal. It is shown that the real and imaginary parts of the impedance obey to the relationship (Zre - X0)2 + (Zim - Y0)2 = R 0 2 , where X0, Y0, and R0 are the fitting parameters depending on the frequency of the exciting electric field.

  2. Large field enhancement obtained by combining Fabry–Perot resonance and Rayleigh anomaly in photonic crystal slabs

    NASA Astrophysics Data System (ADS)

    Dossou, Kokou B.

    2017-04-01

    By applying the properties of Fabry–Perot resonance and Rayleigh anomaly, we have shown that a photonic crystal slab can scatter the light from an incident plane wave into a diffracted light with a very large reflection or transmission coefficient. The enhanced field is either a propagating diffracted wave (with a grazing angle of diffraction) or a weakly evanescent diffracted wave, so it can be particularly useful for applications requiring an enhanced propagating field (or an enhanced field with a low attenuation). An efficient effective medium technique is developed for the design of the resonant photonic crystal slabs. Numerical simulations have shown that photonic crystal slabs with low index contrast, such as the ones found in the cell wall of diatoms, can enhance the intensity of the incident light by four orders of magnitude.

  3. Enhanced electrocaloric cooling in ferroelectric single crystals by electric field reversal

    NASA Astrophysics Data System (ADS)

    Ma, Yang-Bin; Novak, Nikola; Koruza, Jurij; Yang, Tongqing; Albe, Karsten; Xu, Bai-Xiang

    2016-09-01

    An improved thermodynamic cycle is validated in ferroelectric single crystals, where the cooling effect of an electrocaloric refrigerant is enhanced by applying a reversed electric field. In contrast to the conventional adiabatic heating or cooling by on-off cycles of the external electric field, applying a reversed field is significantly improving the cooling efficiency, since the variation in configurational entropy is increased. By comparing results from computer simulations using Monte Carlo algorithms and experiments using direct electrocaloric measurements, we show that the electrocaloric cooling efficiency can be enhanced by more than 20% in standard ferroelectrics and also relaxor ferroelectrics, like Pb (Mg1 /3 /Nb2 /3)0.71Ti0.29O3 .

  4. Melt Motion Due to Peltier Marking During Bridgman Crystal Growth with an Axial Magnetic Field

    NASA Technical Reports Server (NTRS)

    Sellers, C. C.; Walker, John S.; Szofran, Frank R.; Motakef, Shariar

    2000-01-01

    This paper treats a liquid-metal flow inside an electrically insulating cylinder with electrically conducting solids above and below the liquid region. There is a uniform axial magnetic field, and there is an electric current through the liquid and both solids. Since the lower liquid-solid interface is concave into the solid and since the liquid is a better electrical conductor than the adjacent solid, the electric current is locally concentrated near the centerline. The return to a uniform current distribution involves a radial electric current which interacts with the axial magnetic field to drive an azimuthal flow. The axial variation of the centrifugal force due to the azimuthal velocity drives a meridional circulation with radial and axial velocities. This problem models the effects of Peltier marking during the vertical Bridgman growth of semiconductor crystals with an externally applied magnetic field, where the meridional circulation due to the Peltier Current may produce important mixing in the molten semiconductor.

  5. Paper field effect transistor

    NASA Astrophysics Data System (ADS)

    Fortunato, E.; Correia, Nuno; Barquinha, Pedro; Costa, Cláudia; Pereira, Luís; Gonçalves, Gonçalo; Martins, Rodrigo

    2009-02-01

    In this paper we report the use of a sheet of cellulose fiber-based paper as the dielectric layer used in oxide based semiconductor thin film field-effect transistors (FETs). In this new approach we are using the cellulose fiber-based paper in an "interstrate" structure since the device is build on both sides of the cellulose sheet. Such hybrid FETs present excellent operating characteristics such as high channel saturation mobility (>30 cm2/Vs), drain-source current on/off modulation ratio of approximately 104, near-zero threshold voltage, enhancement n-type operation and sub-threshold gate voltage swing of 0.8 V/decade. The cellulose fiber-based paper FETs characteristics have been measured in air ambient conditions and present good stability. The obtained results outpace those of amorphous Si TFTs and rival with the same oxide based TFTs produced on either glass or crystalline silicon substrates. The compatibility of these devices with large-scale/large-area deposition techniques and low cost substrates as well as their very low operating bias delineates this as a promising approach to attain high-performance disposable electronics like paper displays, smart labels, smart packaging, RFID and point-of-care systems for self analysis in bio-applications, among others.

  6. Phase alignment and crystal orientation of Al 3Ni in Al-Ni alloy by imposition of a uniform high magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Chunjiang; Wang, Qiang; Wang, Zhongying; Li, Hutian; Nakajima, Keiji; He, Jicheng

    2008-03-01

    Solidification experiments of aluminum-nickel binary alloys under uniform high magnetic fields have been conducted. The effects of high magnetic fields on the crystal orientation of Al 3Ni were investigated by XRD and the alignment of primary phases Al 3Ni were also analyzed. Experimental results showed that the easy magnetization axis of Al 3Ni crystal oriented parallel to the imposed magnetic fields and the primary phase Al 3Ni aligned perpendicular to the magnetic fields. Magnetic orientation of crystal was determined by magnetic anisotropy energy. Whereas the phase alignment should be contributed to the combined effects of magnetic orientation, crystal growth and the effects of magnetic fields on mass transport during solidification.

  7. Plasmon electro-optic effect in a subwavelength metallic nanograting with a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Palto, S. P.; Barnik, M. I.; Kasyanova, I. V.; Geivandov, A. R.; Shtykov, N. M.; Artemov, V. V.; Gorkunov, M. V.

    2016-01-01

    The electro-optic effect in hybrid structures based on subwavelength metallic nanogratings in contact with a layer of a nematic liquid crystal has been experimentally studied. Metallic gratings are fabricated in the form of interdigitated electrodes, which makes it possible to use them not only as optical elements but also for the production of an electric field in a thin surface region of the layer of the liquid crystal. It has been shown that, owing to the electric-field-induced reorientation of molecules of the liquid crystal near the surface of the grating, it is possible to significantly control the spectral features of the transmission of light, which are caused by the excitation of surface plasmons. The electro-optic effect is superfast for liquid crystal devices because a change in the optical properties of the system requires the reorientation of molecules only in a very thin surface layer of the liquid crystal.

  8. DDA Computations of Porous Aggregates with Forsterite Crystals: Effects of Crystal Shape and Crystal Mass Fraction

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lindsay, Sean S.; Harker, David; Woodward, Charles; Kelley, Michael S.; Kolokolova, Ludmilla

    2015-01-01

    Porous aggregate grains are commonly found in cometary dust samples and are needed to model cometary IR spectral energy distributions (SEDs). Models for thermal emissions from comets require two forms of silicates: amorphous and crystalline. The dominant crystal resonances observed in comet SEDs are from Forsterite (Mg2SiO4). The mass fractions that are crystalline span a large range from 0.0 < or = fcrystal < or = 0.74. Radial transport models that predict the enrichment of the outer disk (>25 AU at 1E6 yr) by inner disk materials (crystals) are challenged to yield the highend-range of cometary crystal mass fractions. However, in current thermal models, Forsterite crystals are not incorporated into larger aggregate grains but instead only are considered as discrete crystals. A complicating factor is that Forsterite crystals with rectangular shapes better fit the observed spectral resonances in wavelength (11.0-11.15 microns, 16, 19, 23.5, 27, and 33 microns), feature asymmetry and relative height (Lindley et al. 2013) than spherically or elliptically shaped crystals. We present DDA-DDSCAT computations of IR absorptivities (Qabs) of 3 micron-radii porous aggregates with 0.13 < or = fcrystal < or = 0.35 and with polyhedral-shaped Forsterite crystals. We can produce crystal resonances with similar appearance to the observed resonances of comet Hale- Bopp. Also, a lower mass fraction of crystals in aggregates can produce the same spectral contrast as a higher mass fraction of discrete crystals; the 11micron and 23 micron crystalline resonances appear amplified when crystals are incorporated into aggregates composed otherwise of spherically shaped amorphous Fe-Mg olivines and pyroxenes. We show that the optical properties of a porous aggregate is not linear combination of its monomers, so aggregates need to be computed. We discuss the consequence of lowering comet crystal mass fractions by modeling IR SEDs with aggregates with crystals, and the implications for radial

  9. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores.

    PubMed

    Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R

    2010-07-14

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.

  10. Simulation of jet cooling effects on Czochralski crystal growth

    NASA Technical Reports Server (NTRS)

    Srivastava, R. K.; Ramachandran, P. A.; Dudukovic, M. P.

    1986-01-01

    The effects of cooling the crystal side surface by blowing a jet of an inert gas are examined in detail for Czochralski crystal growth. A combined model of the crystal + melt, which incorporates the detailed radiation calculations, the shape of the melt-gas meniscus, predicts the growth rate and the crystal-melt interface shape, is used for this study. The convective heat transfer coefficient for the jet is estimated from the correlation available in the literature. The effect of the jet cooling on the interface shape and the pulling rate is significant. The crystal diameter as well as the interface shape tend to be more stable in the environment of the rapid cooling of the crystal by the jet. The crystal diameter or the interface shape can be easily controlled by adjusting the gas flow rate through the jet. This gives the Czochralski pulling an additional degree of freedom facilitating the control of crystal diameter and interface shape.

  11. An effective packing density of binary cubic crystals

    NASA Astrophysics Data System (ADS)

    Eremin, I. E.; Eremina, V. V.; Sychev, M. S.; Moiseenko, V. G.

    2015-04-01

    The methodology of effective macroscopic calculation of numerical values of internuclear distances in binary crystals of a cubic crystal system is based on the use of coefficients of the structural packing density of the crystal lattice. The possibility of combining the reference data on the main physicochemical parameters of the substance is implemented by synthesis of the corresponding mathematical models.

  12. Pyroelectric properties and electrocaloric effect in TGS1-xPx single crystals

    NASA Astrophysics Data System (ADS)

    Sampathkumar, P.; Srinivasan, K.

    2016-10-01

    Triglycine sulfate (TGS) single crystals modified with phosphoric acid (TGS1-xPx) have been grown by slow evaporation technique at room temperature. Lattice parameters were identified by using single crystal x-ray diffractometer. The dielectric, pyroelectric, ferroelectric properties and electrocaloric effect have been investigated. Curie temperature of grown crystals was determined from dielectric constant measurements at various temperatures at a frequency of 1 kHz. The Curie temperature is found decreased for the TGS single crystals with the addition of phosphoric acid. Room temperature P-E hysteresis loops of TGS1-xPx single crystals are presented. The values of coercive field Ec, spontaneous polarization Ps and internal bias field Eb were obtained from the hysteresis loops. Discussion on pyroelectric properties as a function of temperature and applied electric field is presented. Figure of merits (FOMs) were determined to study the pyroelectric performance of the grown crystals. Among all compositions of x, x = 0.2 (i.e., TGS0.8P0.2) single crystals exhibited the largest pyroelectric coefficient and pyroelectric figure of merit at room temperature. From the above investigations the electrocaloric temperature change, ΔT of TGS1-xPx single crystals at selected applied fields and temperatures are obtained by indirect method and discussed.

  13. Electric Field Effects in RUS Measurements

    SciTech Connect

    Darling, Timothy W; Ten Cate, James A; Allured, Bradley; Carpenter, Michael A

    2009-09-21

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  14. Electric field effects in RUS measurements.

    PubMed

    Darling, Timothy W; Allured, Bradley; Tencate, James A; Carpenter, Michael A

    2010-02-01

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material--a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the "statistical residual" strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  15. Growth, structure, spectral properties and crystal-field analysis of monoclinic Nd:YNbO4 single crystal

    NASA Astrophysics Data System (ADS)

    Ding, Shoujun; Zhang, Qingli; Gao, Jinyun; Liu, Wenpeng; Luo, Jianqiao; Sun, Dunlu; Sun, Guihua; Wang, Xiaofei

    2016-12-01

    A Nd:YNbO4 single crystal was successfully grown by Czochralski (Cz) method, its structural and spectroscopic properties were investigated. The X-ray rocking curve of the (010) diffraction face of Nd:YNbO4 crystal was measured, the full width at half maximum (FWHM) of this diffraction peak is 0.05°, which indicates a high crystalline quality of the as-grown crystal. Its lattice parameters, atomic coordinates and so on were obtained by Rietvield refinement to X-ray diffraction data. According to the Archimedes drainage method, the crystal density of Nd:YNbO4 is calculated to be 5.4 g/cm3. The Mohr‧s hardness value along (010) face was determined to be 6.0. The transmission spectrum along (010) face at room temperature was recorded and the excitation and emission spectra at 8 K were measured. Photoluminescence peaks of Nd:YNbO4 were assigned, and the crystal-field splitting of Nd3+ in YNbO4 was obtained. The fluorescence lifetime of the 4F3/2→4I11/2 transition of Nd3+ in YNbO4 is fitted to be 152 μs These spectroscopic and energy splitting data give an important reference for the research of laser property of Nd:YNbO4 crystal.

  16. Large piezoelectricity in electric-field modified single crystals of SrTiO3

    NASA Astrophysics Data System (ADS)

    Khanbabaee, B.; Mehner, E.; Richter, C.; Hanzig, J.; Zschornak, M.; Pietsch, U.; Stöcker, H.; Leisegang, T.; Meyer, D. C.; Gorfman, S.

    2016-11-01

    Defect engineering is an effective and powerful tool to control the existing material properties and produce completely new ones, which are symmetry-forbidden in a defect-free crystal. For example, the application of a static electric field to a single crystal of SrTiO3 forms a strained near-surface layer through the migration of oxygen vacancies out of the area beneath the positively charged electrode. While it was previously shown that this near-surface phase holds pyroelectric properties, which are symmetry-forbidden in centrosymmetric bulk SrTiO3, this paper reports that the same phase is strongly piezoelectric. We demonstrate the piezoelectricity of this phase through stroboscopic time-resolved X-ray diffraction under alternating electric field and show that the effective piezoelectric coefficient d33 ranges between 60 and 100 pC/N. The possible atomistic origins of the piezoelectric activity are discussed as a coupling between the electrostrictive effect and spontaneous polarization of this near-surface phase.

  17. Formation of temperature fields in doped anisotropic crystals under spatially inhomogeneous light beams passing through them

    SciTech Connect

    Zaitseva, E. V.; Markelov, A. S.; Trushin, V. N. Chuprunov, E. V.

    2013-12-15

    The features of formation of thermal fields in potassium dihydrophosphate crystal doped with potassium permanganate under a 532-nm laser beam passing through it have been investigated. Data on the influence of birefringence on the temperature distribution in an anisotropic crystal whose surface is illuminated by a spatially modulated light beam are presented.

  18. The Fano-type transmission and field enhancement in heterostructures composed of epsilon-near-zero materials and truncated photonic crystals

    SciTech Connect

    Zhang, Zhi-fang; Jiang, Hai-tao E-mail: jiang-haitao@tongji.edu.cn; Li, Yun-hui; Chen, Hong; Xue, Chun-hua E-mail: jiang-haitao@tongji.edu.cn; Lu, Hai

    2013-11-11

    The Fano-type interference effect is studied in the heterostructure composed of an epsilon-near-zero (ENZ) material and a truncated photonic crystal for transverse magnetic polarized light. In the Fano-type interference effect, the ENZ material provides narrow reflection pathway and the photonic crystal provides broadband reflection pathway. The boundary condition across the ENZ interface and the confinement effect provided by the photonic crystal can enhance the electric fields in the ENZ material greatly. The field enhancements, together with the asymmetric property of Fano-type spectrum, possess potential applications for significantly lowering the threshold of nonlinear processes such as optical switching and bistability.

  19. Electric field effect in ultrathin black phosphorus

    SciTech Connect

    Koenig, Steven P.; Schmidt, Hennrik; Doganov, Rostislav A.; Castro Neto, A. H.; Özyilmaz, Barbaros

    2014-03-10

    Black phosphorus exhibits a layered structure similar to graphene, allowing mechanical exfoliation of ultrathin single crystals. Here, we demonstrate few-layer black phosphorus field effect devices on Si/SiO{sub 2} and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration. We find room-temperature mobilities of up to 300 cm{sup 2}/Vs and drain current modulation of over 10{sup 3}. At low temperatures, the on-off ratio exceeds 10{sup 5}, and the device exhibits both electron and hole conduction. Using atomic force microscopy, we observe significant surface roughening of thin black phosphorus crystals over the course of 1 h after exfoliation.

  20. Electric field effect in ultrathin black phosphorus

    NASA Astrophysics Data System (ADS)

    Koenig, Steven P.; Doganov, Rostislav A.; Schmidt, Hennrik; Castro Neto, A. H.; Özyilmaz, Barbaros

    2014-03-01

    Black phosphorus exhibits a layered structure similar to graphene, allowing mechanical exfoliation of ultrathin single crystals. Here, we demonstrate few-layer black phosphorus field effect devices on Si/SiO2 and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration. We find room-temperature mobilities of up to 300 cm2/Vs and drain current modulation of over 103. At low temperatures, the on-off ratio exceeds 105, and the device exhibits both electron and hole conduction. Using atomic force microscopy, we observe significant surface roughening of thin black phosphorus crystals over the course of 1 h after exfoliation.

  1. Imposed Orientation of Dye Molecules by Liquid Crystals and an Electric Field.

    ERIC Educational Resources Information Center

    Sadlej-Sosnowska, Nina

    1980-01-01

    Describes experiments using dye solutions in liquid crystals in which polar molecules are oriented in an electrical field and devices are constructed to change their color in response to an electric signal. (CS)

  2. Giant Goos-Hänchen effect and Fano resonance at photonic crystal surfaces.

    PubMed

    Soboleva, I V; Moskalenko, V V; Fedyanin, A A

    2012-03-23

    The Goos-Hänchen effect and Fano resonance are studied in photonic crystals that are considered Fourier counterparts in wave-vector-coordinate space. The Goos-Hänchen effect, which is enhanced by the excitation of Bloch surface electromagnetic waves, is visualized using far-field microscopy and measured at the surface of photonic crystals by angular spectroscopy. The maximal Goos-Hänchen shift is observed to be 66  μm.

  3. DDA Computations of Porous Aggregates with Forsterite Crystals: Effects of Crystal Shape and Crystal Mass Fraction

    NASA Astrophysics Data System (ADS)

    Wooden, Diane H.; Lindsay, Sean S.; Harker, David; Woodward, Charles; Kelley, Michael S. P.; Kolokolova, Ludmilla

    2015-08-01

    Porous aggregate grains are commonly found in cometary dust samples and are needed to model cometary IR spectral energy distributions (SEDs). Models for thermal emissions from comets require two forms of silicates: amorphous and crystalline. The dominant crystal resonances observed in comet SEDs are from Forsterite (Mg2SiO4). The mass fractions that are crystalline span a large range from 0.0 ≤ fcrystal ≤ 0.74. Radial transport models that predict the enrichment of the outer disk (>25 AU at 1E6 yr) by inner disk materials (crystals) are challenged to yield the highend-range of cometary crystal mass fractions. However, in current thermal models, Forsterite crystals are not incorporated into larger aggregate grains but instead only are considered as discrete crystals. A complicating factor is that Forsterite crystals with rectangular shapes better fit the observed spectral resonances in wavelength (11.0-11.15 μm, 16, 19, 23.5, 27, and 33 μm), feature asymmetry and relative height (Lindley et al. 2013) than spherically or elliptically shaped crystals. We present DDA-DDSCAT computations of IR absorptivities (Qabs) of 3 μm-radii porous aggregates with 0.13 ≤ fcrystal ≤ 0.35 and with polyhedral-shaped Forsterite crystals. We can produce crystal resonances with similar appearance to the observed resonances of comet Hale-Bopp. Also, a lower mass fraction of crystals in aggregates can produce the same spectral contrast as a higher mass fraction of discrete crystals; the 11µm and 23 µm crystalline resonances appear amplified when crystals are incorporated into aggregates composed otherwise of spherically shaped amorphous Fe-Mg olivines and pyroxenes. We show that the optical properties of a porous aggregate is not linear combination of its monomers, so aggregates need to be computed. We discuss the consequence of lowering comet crystal mass fractions by modeling IR SEDs with aggregates with crystals, and the implications for radial transport models of our

  4. Method of bonding single crystal quartz by field-assisted bonding

    DOEpatents

    Curlee, Richard M.; Tuthill, Clinton D.; Watkins, Randall D.

    1991-01-01

    The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals.

  5. Method of bonding single crystal quartz by field-assisted bonding

    DOEpatents

    Curlee, R.M.; Tuthill, C.D.; Watkins, R.D.

    1991-04-23

    The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals. 2 figures.

  6. Two beam energy exchange in hybrid liquid crystal cells with photorefractive field controlled boundary conditions

    NASA Astrophysics Data System (ADS)

    Reshetnyak, V. Yu.; Pinkevych, I. P.; Subota, S. I.; Evans, D. R.

    2016-09-01

    We develop a theory describing energy gain when two light beams intersect in a hybrid nematic liquid crystal (LC) cell with photorefractive crystalline substrates. A periodic space-charge field induced by interfering light beams in the photorefractive substrates penetrates into the LC layer and reorients the director. We account for two main mechanisms of the LC director reorientation: the interaction of the photorefractive field with the LC flexopolarization and the director easy axis at the cell boundaries. It is shown that the resulting director grating is a sum of two in-phase gratings: the flexoelectric effect driven grating and the boundary-driven grating. Each light beam diffracts from the induced gratings leading to an energy exchange between beams. We evaluate the signal beam gain coefficient and analyze its dependence on the director anchoring energy and the magnitude of the director easy axis modulation.

  7. A test of improved force field parameters for urea: molecular-dynamics simulations of urea crystals.

    PubMed

    Özpınar, Gül Altınbaş; Beierlein, Frank R; Peukert, Wolfgang; Zahn, Dirk; Clark, Timothy

    2012-08-01

    Molecular-dynamics (MD) simulations of urea crystals of different shapes (cubic, rectangular prismatic, and sheet) have been performed using our previously published force field for urea. This force field has been validated by calculating values for the cohesive energy, sublimation temperature, and melting point from the MD data. The cohesive energies computed from simulations of cubic and rectangular prismatic urea crystals in vacuo at 300 K agreed very well with the experimental sublimation enthalpies reported at 298 K. We also found very good agreement between the melting points as observed experimentally and from simulations. Annealing the crystals just below the melting point leads to reconstruction to form crystal faces that are consistent with experimental observations. The simulations reveal a melting mechanism that involves surface (corner/edge) melting well below the melting point, and rotational disordering of the urea molecules in the corner/edge regions of the crystal, which then facilitates the translational motion of these molecules.

  8. Models of Mass Transport During Microgravity Crystal Growth of Alloyed Semiconductors in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Ma, Nancy

    2003-01-01

    Alloyed semiconductor crystals, such as germanium-silicon (GeSi) and various II-VI alloyed crystals, are extremely important for optoelectronic devices. Currently, high-quality crystals of GeSi and of II-VI alloys can be grown by epitaxial processes, but the time required to grow a certain amount of single crystal is roughly 1,000 times longer than the time required for Bridgman growth from a melt. Recent rapid advances in optoelectronics have led to a great demand for more and larger crystals with fewer dislocations and other microdefects and with more uniform and controllable compositions. Currently, alloyed crystals grown by bulk methods have unacceptable levels of segregation in the composition of the crystal. Alloyed crystals are being grown by the Bridgman process in space in order to develop successful bulk-growth methods, with the hope that the technology will be equally successful on earth. Unfortunately some crystals grown in space still have unacceptable segregation, for example, due to residual accelerations. The application of a weak magnetic field during crystal growth in space may eliminate the undesirable segregation. Understanding and improving the bulk growth of alloyed semiconductors in microgravity is critically important. The purpose of this grant to to develop models of the unsteady species transport during the bulk growth of alloyed semiconductor crystals in the presence of a magnetic field in microgravity. The research supports experiments being conducted in the High Magnetic Field Solidification Facility at Marshall Space Flight Center (MSFC) and future experiments on the International Space Station.

  9. Neutron study of crystal-field transitions in ErPO{sub 4}

    SciTech Connect

    Loong, C.-K.; Soderholm, L.; Hammonds, J.P.; Abraham, M.M.; Boatner, L.A.; Edelstein, N.M.

    1992-12-01

    The crystal-field splitting of the Er{sup 3+} ground multiplet, {sup 4}I{sub 15/2}, in ErPO{sub 4} is investigated by inelastic neutron scattering. Four excitations from the {Gamma}{sub 7} ground state to the excited states and several transitions between the excited states have been identified. The observed transition energies and intensities are used to refine the parameters of the crystal-field potential. The calculated magnetic susceptibility, {chi}(T), agrees well with experimental values from single-crystal measurements. A comparison of the neutron data with optical absorption and both nonresonance and resonance Raman scattering measurements has been made.

  10. Neutron study of crystal-field transitions in ErPO[sub 4

    SciTech Connect

    Loong, C.-K.; Soderholm, L.; Hammonds, J.P. ); Abraham, M.M.; Boatner, L.A. ); Edelstein, N.M. )

    1992-01-01

    The crystal-field splitting of the Er[sup 3+] ground multiplet, [sup 4]I[sub 15/2], in ErPO[sub 4] is investigated by inelastic neutron scattering. Four excitations from the [Gamma][sub 7] ground state to the excited states and several transitions between the excited states have been identified. The observed transition energies and intensities are used to refine the parameters of the crystal-field potential. The calculated magnetic susceptibility, [chi](T), agrees well with experimental values from single-crystal measurements. A comparison of the neutron data with optical absorption and both nonresonance and resonance Raman scattering measurements has been made.

  11. Crystal-field calculations for transition-metal ions by application of an opposing potential

    SciTech Connect

    Zhou, Fei; Aberg, Daniel

    2016-02-16

    We propose a fully ab initio method, the opposing crystal potential (OCP), to calculate the crystal-field parameters of transition-metal impurities in insulator hosts. Through constrained density functional calculations, OCP obtains the constraining Lagrange multipliers, which act as a cancellation potential against the crystal field and lead to spherical d-electron distribution. Furthermore, the method is applied to several insulators doped with Mn4+ and Mn2+ ions and shown to be in good agreement with experiment.

  12. A Navier-Stokes phase-field crystal model for colloidal suspensions

    SciTech Connect

    Praetorius, Simon Voigt, Axel

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.

  13. Ideal Channel Field Effect Transistors

    DTIC Science & Technology

    2010-03-01

    to bring the electron energy in equilibrium with the local electric field, i.e. the electron energy lags the local electric field. This non...equilibrium effect makes the impact ionization depend mostly on the carrier energy instead of the local electric field. The electron kinetic energy (E - Ec...the peak of the electron energy does not happen at the peak local electric field. Therefore the breakdown voltage was calculated using a non- local

  14. An optical analog of the Borrmann effect in photonic crystals

    SciTech Connect

    Bogdanova, M. V. Lozovik, Yu. E.; Eiderman, S. L.

    2010-04-15

    Numerical simulation using the layered Korringa-Kohn-Rostoker (LKKR) method is applied to calculate the reflection and absorption spectra of an s-polarized electromagnetic wave incident on a faced-centered cubic photonic crystal (PC) with opal structure whose sites are occupied by two-layer metal-dielectric spheres. The reflection and absorption coefficients of the PC are analyzed as a function of the angle of incidence of the electromagnetic wave on the crystal surface. A range of wavelengths {lambda} and angles of inclination {theta} to the normal is found in which the absorption experiences a sharp change under small variations of the above parameters. The appearance of peaks in the absorption spectrum of the PC is analyzed, and the spectrum is compared with the behavior of the reduced density of states. By the finite difference time domain (FDTD) method applied to the Maxwell equations, the spatial distribution of the energy density of electromagnetic field inside each of five layers of the PC is obtained at angles of incidence of 23{sup o} and 30{sup o} for a wave-length of 455 nm. It is demonstrated that the sharp maxima of the density of electromagnetic-field energy that are localized on the surfaces of absorbing metal spheres correspond to the absorption maximum. At the same time, at the absorption minimum, the maxima of the field energy density in each of the five layers are localized mainly between the lattice sites of the PC. An analogy between this phenomenon and the Borrmann effect, which is known in X-ray spectroscopy of ordinary crystals, is analyzed.

  15. Study of photonic crystal structures and their application in the field of antennas

    NASA Astrophysics Data System (ADS)

    Gonzalo Garcia, Ramon

    2000-08-01

    "Photonic Crystals" defined as periodic structures in one, two or three dimensions, prevent the propagation of an incident electromagnetic wave inside them, over a determined frequency range (bandgap) and for any propagation direction. One of the main problems in the antenna field is the power transferred to the surface wave modes. This energy does not contribute to the main radiation of the antenna, considering this effect as a loss mechanism. Besides, this energy, depending on the dielectric constant of the substrate and its thickness, could be more than 70% of the total power. Even sometimes, this energy will be added in counter-phase to the main radiation pattern of the antenna making worse this pattern. The main idea is to use the "Photonic Crystal" structures as substrates for these antenna configurations leading to an increasing of the antenna efficiency and directivity, a more symmetric radiation pattern and a reduction of the back radiation. The thesis can be divided into two parts: (1) Firstly, the Maxwell's equations for dielectric periodic structures are presented in Chapter 2. An eigensystem has been formulated to solve for the eigenvalues and eigenmodes of any "Photonic Crystal" providing the information to determine a full or a partial bandgap. The gap behaviour of different structures as function of the geometry, dielectric constant contrast or fill factor of the unit cell has been analysed in Chapter 3. Besides, a new three-dimensional structure has been proposed. (2) Chapter 4 and 5 focus on using "Photonic Crystal" to avoid propagation of surface waves in microstrip patch antenna configurations, replacing conventional substrates for "Photonic Crystal" structures. A comparison between the conventional substrate features versus the "Photonic Crystal" is presented. The analysis reveals a decrease in coupled power to substrate modes and an improvement of efficiency, directivity, back radiation, pattern symmetry and mutual coupling. In Chapter 5 the

  16. Propelling and spinning of microsheets in nematic liquid crystals driven by ac electric field

    NASA Astrophysics Data System (ADS)

    Rasna, M. V.; Ramudu, U. V.; Chandrasekar, R.; Dhara, Surajit

    2017-01-01

    Dynamics of microparticles in isotropic liquids by transducing the energy of an applied electric field have been studied for decades. Recently, such studies in anisotropic media like liquid crystals have opened up new perspectives in colloid science. Here, we report studies on ac-electric-field-driven dynamics of microsheets in nematic liquid crystals. In planar aligned liquid crystals, with negative dielectric anisotropy, the microsheets are propelled parallel to the director. A steady spinning of the microsheets is observed in homeotropic cells with positive dielectric anisotropy liquid crystals. The velocity of propelling and the angular frequency of spinning depends on the amplitude and the frequency of the applied electric field. The electrokinetic studies of anisotropic microparticles are important as they are potential for applications in microfluidics and in areas where the controlled transport or rotation is required.

  17. Effects of thermal expansion of the crystal lattice on x-ray crystal spectrometers used for fusion research

    NASA Astrophysics Data System (ADS)

    Delgado-Aparicio, L.; Bitter, M.; Podpaly, Y.; Rice, J.; Burke, W.; Sanchez del Rio, M.; Beiersdorfer, P.; Bell, R.; Feder, R.; Gao, C.; Hill, K.; Johnson, D.; Lee, S. G.; Marmar, E.; Pablant, N.; Reinke, M. L.; Scott, S.; Wilson, R.

    2013-12-01

    X-ray imaging crystal spectrometers with high spectral and spatial resolution are currently being used on magnetically confined fusion devices to infer the time history profiles of ion and electron temperatures as well as plasma flow velocities. The absolute measurement of flow velocities is important for optimizing various discharge scenarios and evaluating the radial electric field in tokamak and stellarator plasmas. Recent studies indicate that the crystal temperature must be kept constant to within a fraction of a degree to avoid changes of the interplanar 2d-spacing by thermal expansion that cause changes in the Bragg angle, which could be misinterpreted as Doppler shifts. For the instrumental parameters of the x-ray crystal spectrometer on Alcator C-Mod, where those thermal effects were investigated, a change of the crystal temperature by 1 °C causes a change of the lattice spacing of the order of Δd = 1 × 10-5 Å introducing a fictitious velocity drift of the order of ˜3 km s-1. This effect must be considered for x-ray imaging crystals spectrometers installed on LHD, KSTAR, EAST, J-TEXT, NSTX and, in the future, W7-X and ITER.

  18. Magnetic properties and crystal field in Pr2Zr2O7

    NASA Astrophysics Data System (ADS)

    Bonville, P.; Guitteny, S.; Gukasov, A.; Mirebeau, I.; Petit, S.; Decorse, C.; Hatnean, M. Ciomaga; Balakrishnan, G.

    2016-10-01

    In this work, we revisit the crystal field acting on the non-Kramers Pr3 + ion (4 f2 ) in the quantum spin-ice candidate Pr2Zr2O7 using both a standard calculation restricted to the ground spin-orbit multiplet and intermediate coupling states in the full basis of the f2 configuration. Analysis of the thermal variation of the polycrystal magnetic susceptibility and of the local susceptibilities χ⊥ and χ∥ determined by means of polarized neutron diffraction experiments reveals that the effective antiferromagnetic exchange is strongly depleted at low temperature with respect to its high-temperature value. We then discuss the influence of crystal field imperfections arising from residual strains, which are especially important for a non-Kramers ion. We find that they are an essential ingredient to account for the very low temperature M (H ) magnetization curves, showing that the saturation is not achieved even at 8 T. Furthermore, as possible candidates to qualitatively understand the Curie-like behavior observed below 0.5 K, we discuss the influence of the magnetic hyperfine interaction.

  19. Modified phase-field-crystal model for solid-liquid phase transitions

    NASA Astrophysics Data System (ADS)

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Tang, Sai

    2015-07-01

    A modified phase-field-crystal (PFC) model is proposed to describe solid-liquid phase transitions by reconstructing the correlation function. The effects of fitting parameters of our modified PFC model on the bcc-liquid phase diagram, numerical stability, and solid-liquid interface properties during planar interface growth are examined carefully. The results indicate that the increase of the correlation function peak width at k =km will enhance the stability of the ordered phase, while the increase of peak height at k =0 will narrow the two-phase coexistence region. The third-order term in the free-energy function and the short wave-length of the correlation function have significant influences on the numerical stability of the PFC model. During planar interface growth, the increase of peak width at k =km will decrease the interface width and the velocity coefficient C , but increase the anisotropy of C and the interface free energy. Finally, the feasibility of the modified phase-field-crystal model is demonstrated with a numerical example of three-dimensional dendritic growth of a body-centered-cubic structure.

  20. Modified phase-field-crystal model for solid-liquid phase transitions.

    PubMed

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Tang, Sai

    2015-07-01

    A modified phase-field-crystal (PFC) model is proposed to describe solid-liquid phase transitions by reconstructing the correlation function. The effects of fitting parameters of our modified PFC model on the bcc-liquid phase diagram, numerical stability, and solid-liquid interface properties during planar interface growth are examined carefully. The results indicate that the increase of the correlation function peak width at k=k(m) will enhance the stability of the ordered phase, while the increase of peak height at k=0 will narrow the two-phase coexistence region. The third-order term in the free-energy function and the short wave-length of the correlation function have significant influences on the numerical stability of the PFC model. During planar interface growth, the increase of peak width at k=k(m) will decrease the interface width and the velocity coefficient C, but increase the anisotropy of C and the interface free energy. Finally, the feasibility of the modified phase-field-crystal model is demonstrated with a numerical example of three-dimensional dendritic growth of a body-centered-cubic structure.

  1. Phase diagrams of mixtures of a polymer and a cholesteric liquid crystal under an external field

    SciTech Connect

    Matsuyama, Akihiko

    2014-11-14

    We present a mean field theory to describe phase behaviors in mixtures of a polymer and a cholesteric liquid crystal under an external magnetic or electric field. Taking into account a chiral coupling between a polymer and a liquid crystal under the external field, we examine twist-untwist phase transitions and phase separations in the mixtures. It is found that a cholesteric-nematic phase transition can be induced by not only the external field but also concentration and temperature. Depending on the strength of the external field, we predict cholesteric-paranematic (Ch+pN), nematic-paranematic (N+pN), cholesteric-nematic (Ch+N) phase separations, etc., on the temperature-concentration plane. We also discuss mixtures of a non-chiral nematic liquid crystal and a chiral dopant.

  2. Field-driven dynamics of microcapillaries filled with nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Fu, Fred; Khayyatzadeh, Pouya; Abukhdeir, Nasser M.

    Polymer-dispersed liquid crystal (PDLC) composites have long been a focus of study for their unique electro-optical properties and the feasibility of manufacturing them on a large scale, resulting in applications such as switchable windows. LC domains within PDLCs are typically spheroidal, as opposed to rectangular in LCD technology, and thus exhibit substantially different behaviour in the presence of an external field. In this work, continuum simulations were performed in order to capture the complex formation and electric field-driven switching dynamics of approximations of PDLC domains. A simplified elliptic cylinder (microcapillary) geometry is used and the effects of varying aspect ratio, surface anchoring, and external field strength were studied using the Landau-de Gennes model. The observed nematic formation and reorientation dynamics were found to be governed by the presence and motion of defects within the domain. Aspect ratio was found to strongly influence domain texture by providing regions of high curvature to which defects are attracted. Simulations also predict the presence of a geometry-controlled transition from nematic order enhanced by an external field (low aspect ratio) to nematic order frustrated by an external field (high aspect ratio). This work was made possible by the Natural Sciences and Engineering Research Council of Canada and Compute Ontario.

  3. Magnetic field controlled single crystal growth and surface modification of titanium alloys exposed for biocompatibility

    NASA Astrophysics Data System (ADS)

    Hermann, Regina; Uhlemann, Margitta; Wendrock, Horst; Gerbeth, Gunter; Büchner, Bernd

    2011-03-01

    The aim of this work is growth and characterisation of Ti55Nb45 (wt%) single crystals by floating-zone single crystal growth of intermetallic compounds using two-phase radio-frequency (RF) electromagnetic heating. Thereby, the process and, in particular, the flow field in the molten zone is influenced by additional magnetic fields. The growth of massive intermetallic single crystals is very often unsuccessful due to an unfavourable solid-liquid interface geometry enclosing concave fringes. It is generally known that the crystallization process stability is enhanced if the crystallization interface is convex. For this, a tailored magnetic two-phase stirrer system has been developed, which enables a controlled influence on the melt ranging from intensive inwards to outwards flows. Since Ti is favourably light, strong and biocompatible, it is one of the few materials that naturally match the requirements for implantation in the human body. Therefore, the magnetic system was applied to crystal growth of Ti alloys. The grown crystals were oriented and cut to cubes with the desired crystallographic orientations [1 0 0] and [1 0 1] normally on a plane. The electron backscatter diffraction (EBSD) technique was applied to clearly determine crystal orientation and to localize grain boundaries. The formation of oxidic nanotubes on Ti surfaces in dependence of the grain orientation was investigated, performed electrochemically by anodic oxidation from fluoride containing electrolyte.

  4. Terahertz field enhancement via coherent superposition of the pulse sequences after a single optical-rectification crystal

    SciTech Connect

    Sajadi, Mohsen Wolf, Martin; Kampfrath, Tobias

    2014-03-03

    Terahertz electromagnetic pulses are frequently generated by optical rectification of femtosecond laser pulses. In many cases, the efficiency of this process is known to saturate with increasing intensity of the generation beam because of two-photon absorption. Here, we demonstrate two routes to reduce this effect in ZnTe(110) crystals and enhance efficiency, namely, by (i) recycling the generation pulses and by (ii) splitting each generation pulse into two pulses before pumping the crystal. In both methods, the second pulse arrives ∼1 ns after the first one, sufficiently long for optically generated carriers to relax. Enhancement is achieved by coherently superimposing the two resulting terahertz fields.

  5. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, N. K.; Swanson, G.

    2002-01-01

    High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297

  6. Crystallization behavior of bisphenol-A polycarbonate: Effects of crystallization time, temperature, and molar mass

    NASA Astrophysics Data System (ADS)

    Sohn, Seungman

    2000-12-01

    Crystallization and multiple melting behavior of bisphenol-A polycarbonate (PC) was investigated using differential scanning calorimetry (DSC) for the monitoring of thermal behavior and atomic force microscopy (AFM) for the morphology study. The exceedingly slow crystallization kinetics of PC and the feasibility of obtaining near monodisperse fractions provide distinct advantages for the elucidation of the effects of crystallization time, temperature, and molar mass on crystallization kinetics. The effects of molar mass on the glass transition temperature (T g) and heat capacity change at Tg, and the amorphous density of PC were investigated. Similar to many semicrystalline polymers, PC exhibits a multiple melting behavior upon heating. While for each PC sample, the coexistence of low and high temperature endothermic regions in the DSC heating traces is explained by the melting of populations of crystals with different stabilities, melting-recrystallization-remelting effects are observed only for the lowest molar mass samples. The effects of crystallization temperature and molar mass distribution on overall crystallization kinetics were studied for some of the fractions, including the commercial PC-28K (Mw = 28,000 g.mol-1 ) sample. Regarding the kinetics of secondary crystallization, particular attention was placed on understanding the effects of molar mass, initial degree of crystallinity prior to the secondary crystallization, and secondary crystallization time and temperature. The secondary crystallization of PC follows the same laws discovered in previous studies of PEEK, PET, it-PS and ethylene copolymers, and the results are discussed in the context of a bundle-like secondary crystallization model. During isothermal annealing of semicrystalline PC-28K around the high melting endotherm, a significant increase of melting temperature along with peak broadening with time was observed. Independently, morphological studies using AFM showed that mean lamellar

  7. Study of Fluid Flow Control In Protein Crystallization Using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F.; Ciszak, E.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in 'microgravity', researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  8. Electric-field variations within a nematic-liquid-crystal layer

    NASA Astrophysics Data System (ADS)

    Cummings, L. J.; Mema, E.; Cai, C.; Kondic, L.

    2014-07-01

    A thin layer of nematic liquid crystal (NLC) across which an electric field is applied is a setup of great industrial importance in liquid crystal display devices. There is thus a large literature modeling this situation and related scenarios. A commonly used assumption is that an electric field generated by electrodes at the two bounding surfaces of the layer will produce a field that is uniform: that is, the presence of NLC does not affect the electric field. In this paper, we use calculus of variations to derive the equations coupling the electric potential to the orientation of the NLC's director field, and use a simple one-dimensional model to investigate the limitations of the uniform field assumption in the case of a steady applied field. The extension of the model to the unsteady case is also briefly discussed.

  9. Visualization of acoustic cavitation effects on suspended calcite crystals.

    PubMed

    Wagterveld, R M; Boels, L; Mayer, M J; Witkamp, G J

    2011-01-01

    The acoustic cavitation (42,080 Hz, 7.1 W cm(-2) or 17 W) effects on suspended calcite crystals, sized between 5 and 50 μm, have been visualized for the first time using high speed photography. High speed recordings with a duration of 1 s containing up to 300,000 frames per second, revealed the effect of cluster and streamer cavitation on several calcite crystals. Cavitation clusters, evolved from cavitation inception and collapse, caused attrition, disruption of aggregates and deagglomeration, whereas streamer cavitation was observed to cause deagglomeration only. Cavitation on the surface gave the crystals momentum. However, it is shown that breakage of accelerated crystals by interparticle collisions is unrealistic because of their small sizes and low velocities. Crystals that were accelerated by bubble expansion, subsequently experienced a deceleration much stronger than expected from drag forces, upon bubble collapse. Experiments with pre-dried crystals seemed to support the current theory on bubble nucleation through the presence of pre-existing gas pockets. However, experiments with fully wetted crystals also showed the nucleation of bubbles on the crystal surface. Although microjet impingement on the crystal surface could not be directly visualized with high speed photography, scanning electron microscopy (SEM) analysis of irradiated calcite seeds showed deep circular indentations. It was suggested that these indentations might be caused by shockwave induced jet impingement. Furthermore, the appearance of voluminous fragments with large planes of fracture indicated that acoustic cavitation can also cause the breakage of single crystal structures.

  10. The influence of detector size relative to field size in small-field photon-beam dosimetry using synthetic diamond crystals as sensors

    NASA Astrophysics Data System (ADS)

    Ade, N.; Nam, T. L.

    2015-08-01

    The choice of a detector for small-field dosimetry remains a challenge due to the size/volume effect of detectors in small fields. Aimed at selecting a suitable crystal type and detector size for small-field dosimetry, this study investigates the relationship between detector and field size by analysing output factors (OFs) measured with a Diode E (reference detector), a Farmer chamber and synthetic diamond detectors of various types and sizes in the dosimetry of a 6 MV photon beam with small fields between 0.3×0.3 cm2 and 10×10 cm2. The examined diamond sensors included two HPHT samples (HP1 and HP2) and six polycrystalline CVD specimens of optical grade (OG) and detector grade (DG) qualities with sizes between 0.3 and 1.0 cm. Each diamond was encapsulated in a tissue-equivalent probe housing which can hold crystals of various dimensions up to 1.0×1.0×0.1 cm3 and has different exposure geometries ('edge-on' and 'flat-on') for impinging radiation. The HPHT samples were found to show an overall better performance compared to the CVD crystals with the 'edge-on' orientation being a preferred geometry for OF measurement especially for very small fields. For instance, down to a 0.4×0.4 cm2 field a maximum deviation of 1.9% was observed between the OFs measured with Diode E and HP2 in the 'edge-on' orientation compared to a 4.6% deviation in the 'flat-on' geometry. It was observed that for fields below 4×4 cm2, the dose deviation between the OFs measured with the detectors and Diode E increase with increasing detector size. It was estimated from an established relationship between the dose deviation and the ratio of detector size to field size for the detectors that the dose deviation probably due to the volume averaging effect would be >3% when the detector size is >3/4 of the field size. A sensitivity value of 223 nC Gy-1 mm-3 was determined in a 0.5×0.5 cm2 field with HP2 compared to a value of 159.2 nC Gy-1 mm-3 obtained with the diode. The results of this

  11. Large electrocaloric effects in single-crystal ammonium sulfate.

    PubMed

    Crossley, S; Li, W; Moya, X; Mathur, N D

    2016-08-13

    Electrocaloric (EC) effects are typically studied near phase transitions in ceramic and polymer materials. Here, we investigate EC effects in an inorganic salt, namely ammonium sulfate (NH4)2SO4, with an order-disorder transition whose onset occurs at 223 K on cooling. For a single crystal thinned to 50 μm, we use a Maxwell relation to find a large isothermal entropy change of 30 J K(-1) kg(-1) in response to a field change of 400 kV cm(-1) The Clausius-Clapeyron equation implies a corresponding adiabatic temperature change of 4.5 K.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

  12. Effects of Convective Transport of Solute and Impurities on Defect-Causing Kinetics Instabilities in Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.

    2003-01-01

    Insight into the crystallization processes of biological macromolecules into crystals or aggregates can provide valuable guidelines in many fundamental and applied fields. Such insight will prompt new means to regulate protein phase transitions in-vivo, e.g., polymerization of hemoglobin S in the red cells, crystallization of crystallins in the eye lens, etc. Understanding of protein crystal nucleation will help achieve narrow crystallite size distributions, needed for sustained release of pharmaceutical protein preparations such as insulin or interferon. Traditionally, protein crystallization studies have been related to the pursuit of crystal perfection needed to improve the structure details provided by x-ray, electron or neutron diffraction methods. Crystallization trials for the purposes of structural biology carried out in space have posed an intriguing question related to the inconsistency of the effects of the microgravity growth on the quality of the crystals.

  13. Appearance of singularities of optical fields under torsion of crystals containing threefold symmetry axes.

    PubMed

    Skab, Ihor; Vasylkiv, Yurij; Zapeka, Bohdan; Savaryn, Viktoriya; Vlokh, Rostyslav

    2011-07-01

    We present an analysis of the effect of torsion stresses on the spatial distribution of optical birefringence in crystals of different point symmetry groups. The symmetry requirements needed so that the optical beam carries dislocations of the phase front are evaluated for the case when the crystals are twisted and the beam closely corresponds to a plane wave. It is shown that the torsion stresses can produce screw-edge, pure screw, or pure edge dislocations of the phase front in the crystals belonging to cubic and trigonal systems. The conditions for appearance of canonical and noncanonical vortices in the conditions of crystal torsion are analyzed.

  14. Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal.

    PubMed

    Aluicio-Sarduy, Eduardo; Callegari, Simone; Figueroa Del Valle, Diana Gisell; Desii, Andrea; Kriegel, Ilka; Scotognella, Francesco

    2016-01-01

    An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches.

  15. Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal

    PubMed Central

    Aluicio-Sarduy, Eduardo; Callegari, Simone; Figueroa del Valle, Diana Gisell; Desii, Andrea; Kriegel, Ilka

    2016-01-01

    Summary An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches. PMID:27826514

  16. X-ray dynamical diffraction from single crystals with arbitrary shape and strain field: A universal approach to modeling

    NASA Astrophysics Data System (ADS)

    Yan, Hanfei; Li, Li

    2014-01-01

    The effects of dynamical diffraction in single crystals engender many unique diffraction phenomena that cannot be interpreted by the kinematical-diffraction theory, yet knowledge of them is vital to resolving a vast variety of scientific problems ranging from crystal optics to strain measurements in crystalline specimens. Although the fundamental dynamical-diffraction theory was established decades ago, modeling it remains a challenge in a general case wherein the crystal has complex boundaries and mixed diffraction geometries (Bragg or Laue). Here, we propose a universal approach for modeling x-ray dynamical diffraction from a single crystal with arbitrary shape and strain field that is based on the integral representation of the Takagi-Taupin equations. Using it, we can construct the solution iteratively via a converging series, independent of the diffraction geometry. Moreover, the integral equations offer additional insights into the diffraction physics that are not readily apparent in its differential counterparts. To demonstrate this approach, we studied the dynamical diffraction from a slab of single crystal with both Bragg and Laue diffraction excited on the entrance boundaries, a problem that is difficult to model by other methods. We also explored the mirage effect caused by the presence of a linear strain field and compared it to the Eikonal theory. Lastly, we derived a dynamical-diffraction equation correlating the structural properties of a particle to its far-field Bragg-diffraction pattern, shedding light on how dynamical diffraction affects these kinematical-diffraction-based inverse techniques for reconstructing the shape and the strain field.

  17. Role of the crystal field stabilization energy in the formation of metal(II) formate mixed crystals

    NASA Astrophysics Data System (ADS)

    Balarew, Christo; Stoilova, Donka; Vassileva, Violeta

    A relationship between the distribution coefficient values and the factors determining the isomorphous substitution of some metal(II) formates (Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd) has been found, given by D=[exp⁡{aṡf[ΔR/R]+bṡϕ(Δɛ)+cṡψ(Δs)}/{RT}, where Δ R/R is the relative difference in the ionic radii of the intersubstituting ions, Δɛ is the difference in the Me sbnd O bond energy, Δ s is the difference in the crystal field stabilization energy. The pre-exponential term represents the balance in bonding factors between the ions in the crystal and in the aqueous solution, in the case of ideally mixing in the solid state. The exponential term takes into account the enthalpy of mixing in the solid state. For the isostructural formate salts in which the substitution of a given cation by another one occurs in equivalent octahedral positions, the difference in the crystal field stabilization energy exerts the most important influence on the enthalpy of mixing.

  18. Observation of weak antilocalization effect in high-quality ScNiBi single crystal

    NASA Astrophysics Data System (ADS)

    Deng, L.; Liu, Z. H.; Ma, X. Q.; Hou, Z. P.; Liu, E. K.; Xi, X. K.; Wang, W. H.; Wu, G. H.; Zhang, X. X.

    2017-03-01

    In this paper, we have successfully grown the high-quality ScNiBi single crystals by a Bi flux method and investigated their electronic-transport properties. It was found that the ScNiBi single crystal is a gapless semiconductor with positive linear magnetoresistance (MR). Moreover, the field-dependent MR in the low-field region has demonstrated obvious weak antilocalization (WAL) effect below 50 K. The extremely large prefactor α and angle-dependent magnetoconductance ΔGxx suggest that the WAL effect originates from the contribution of a strong bulk spin-orbital coupling.

  19. Atomic density functional and diagram of structures in the phase field crystal model

    NASA Astrophysics Data System (ADS)

    Ankudinov, V. E.; Galenko, P. K.; Kropotin, N. V.; Krivilyov, M. D.

    2016-02-01

    The phase field crystal model provides a continual description of the atomic density over the diffusion time of reactions. We consider a homogeneous structure (liquid) and a perfect periodic crystal, which are constructed from the one-mode approximation of the phase field crystal model. A diagram of 2D structures is constructed from the analytic solutions of the model using atomic density functionals. The diagram predicts equilibrium atomic configurations for transitions from the metastable state and includes the domains of existence of homogeneous, triangular, and striped structures corresponding to a liquid, a body-centered cubic crystal, and a longitudinal cross section of cylindrical tubes. The method developed here is employed for constructing the diagram for the homogeneous liquid phase and the body-centered iron lattice. The expression for the free energy is derived analytically from density functional theory. The specific features of approximating the phase field crystal model are compared with the approximations and conclusions of the weak crystallization and 2D melting theories.

  20. Semiconductor crystal growth in crossed electric and magnetic fields: Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    1996-01-01

    A unique growth cell was designed in which crossed electric and magnetic fields could be separately or simultaneously applied during semiconductor crystal growth. A thermocouple was inserted into an InSb melt inside the growth cell to examine the temperature response of the fluid to applied electromagnetic fields. A static magnetic field suppressed time-dependent convection when a destabilizing thermal field was applied. The simultaneous application of electric and magnetic fields resulted in forced convection in the melt. The InSb ingots grown in the cell were polycrystalline. An InGaSb crystal, 0.5 cm in diameter and 23-cm long, was grown without electromagnetic fields applied. The axial composition results indicated that complete mixing in the melt occurred for this large aspect ratio.

  1. Interacting spin-wave dispersion relations of ferrimagnetic Heisenberg chains with crystal-field anisotropy

    NASA Astrophysics Data System (ADS)

    Solano-Carrillo, E.; Franco, R.; Silva-Valencia, J.

    2010-11-01

    We study the effect of crystal-field anisotropy on the dispersion relations of mixed-spin (S,s) alternating chains by using the interacting spin-wave theory and the density-matrix renormalization group algorithm. For the easy-plane anisotropy case we find that the spin-wave results fail to describe the ground-state properties of the systems under consideration, whereas for the easy-axis anisotropy regime the method demonstrates a surprising efficiency showing, for example for the system (S,s)=(3/2,1/2), a discrepancy from the density-matrix renormalization group of about 0.0006% for the ground-state energy and of 2% for the sublattice magnetizations.

  2. Segmentation Effect on Inhomogeneity of [110]-Single Crystal Deformation

    NASA Astrophysics Data System (ADS)

    Lychagin, D. V.; Nesterenko, E. A. Alfyorova V. P.

    2016-08-01

    This work presents a detailed analysis of segmentation process in FCC single crystals with compression axis [110] and side faces( ̅110) and (001) considering effect of octahedral shear crystal-geometry and basic stress concentrators. Sequence of meso-band systems formation on side faces is determined. Macro-segmentation patterns are specified, that are common to the FCC single crystals under investigation. It is proved that rectangular shape of highly compressed crystals, elongated in direction of operating planes, is conditioned by orientation symmetry of compression axis, single crystal side faces and shears directions, which are characteristic for the given orientation. The specified patterns are characteristic only for the samples with initial height-to-width ratio equal to 2. When varying sample height relative to the initial one, segmentation patterns will also vary due to crystal geometry variations.

  3. Memory effect in composites of liquid crystal and silica aerosil

    NASA Astrophysics Data System (ADS)

    Relaix, Sabrina; Leheny, Robert L.; Reven, Linda; Sutton, Mark

    2011-12-01

    Aerosil silica nanoparticles dispersed in a liquid crystal (LC) possess the interesting property of keeping memory of an electric- or magnetic-field-induced orientation. Two types of memory have been identified: thermally erasable memory arising from the pinning of defect lines versus a “permanent” memory where the orientation persists even after thermal cycling the samples up to the isotropic phase. To address the source of the latter type of memory, solid-state nuclear magnetic resonance spectroscopy and conventional x-ray diffraction (XRD) were first combined to characterize the LC orientational order as a function of multiple in-field temperature cycles. Microbeam XRD was then performed on aligned gels of different concentrations to gain knowledge of the structural properties at the origin of the memory effect. No detectable anisotropy of the gel or significant breaking of silica strands with heating ruled out the formation of an anisotropic silica network as the source of the permanent memory as previously proposed. Instead, support for a role of the surface memory effect, well known for planar substrates, in stabilizing the permanent memory was deduced from “training” of the composites, that is, optimizing the orientational order through the thermal in-field cycling. The ability to train the composites is inversely proportional to the strength of the random-field disorder. The portion of thermally erasable memory also decreases as the silica density increases. We propose that the permanent memory originates from the surface memory effect operating at points of intersection in the silica network. These areas, where the LC is strongly confined with conflicted surface interactions, are trained to achieve an optimized orientation and subsequently act as sites from which the LC orientational order regrows after zero-field thermal cycling up to the isotropic phase.

  4. Memory effect in composites of liquid crystal and silica aerosil

    SciTech Connect

    Relaix, Sabrina; Leheny, Robert L.; Reven, Linda; Sutton, Mark

    2012-02-07

    Aerosil silica nanoparticles dispersed in a liquid crystal (LC) possess the interesting property of keeping memory of an electric- or magnetic-field-induced orientation. Two types of memory have been identified: thermally erasable memory arising from the pinning of defect lines versus a 'permanent' memory where the orientation persists even after thermal cycling the samples up to the isotropic phase. To address the source of the latter type of memory, solid-state nuclear magnetic resonance spectroscopy and conventional x-ray diffraction (XRD) were first combined to characterize the LC orientational order as a function of multiple in-field temperature cycles. Microbeam XRD was then performed on aligned gels of different concentrations to gain knowledge of the structural properties at the origin of the memory effect. No detectable anisotropy of the gel or significant breaking of silica strands with heating ruled out the formation of an anisotropic silica network as the source of the permanent memory as previously proposed. Instead, support for a role of the surface memory effect, well known for planar substrates, in stabilizing the permanent memory was deduced from 'training' of the composites, that is, optimizing the orientational order through the thermal in-field cycling. The ability to train the composites is inversely proportional to the strength of the random-field disorder. The portion of thermally erasable memory also decreases as the silica density increases. We propose that the permanent memory originates from the surface memory effect operating at points of intersection in the silica network. These areas, where the LC is strongly confined with conflicted surface interactions, are trained to achieve an optimized orientation and subsequently act as sites from which the LC orientational order regrows after zero-field thermal cycling up to the isotropic phase.

  5. Effect of medicinal plants on the crystallization of cholesterol

    NASA Astrophysics Data System (ADS)

    Saraswathi, N. T.; Gnanam, F. D.

    1997-08-01

    One of the least desirable calcifications in the human body is the mineral deposition in atherosclerosis plaques. These plaques principally consist of lipids such as cholesterol, cholesteryl esters, phospholipids and triglycerides. Chemical analysis of advanced plaques have shown the presence of considerable amounts of free cholesterol identified as cholesterol monohydrate crystals. Cholesterol has been crystallized in vitro. The extracts of some of the Indian medicinal plants detailed below were used as additives to study their effect on the crystallization behaviour of cholesterol. It has been found that many of the herbs have inhibitory effect on the crystallization such as nucleation, crystal size and habit modification. The inhibitory effect of the plants are graded as Commiphora mughul > Aegle marmeleos > Cynoden dactylon > Musa paradisiaca > Polygala javana > Alphinia officinarum > Solanum trilobatum > Enicostemma lyssopifolium.

  6. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1994-01-01

    The long-term stability of the interferometric setup for the monitoring of protein morphologies has been improved. Growth or dissolution of a crystal on a 100 A scale can now be clearly distinguished from dimensional changes occurring within the optical path of the interferometer. This capability of simultaneously monitoring the local interfacial displacement at several widely-spaced positions on the crystal surface with high local depth resolution, has already yielded novel results. We found with lysozyme that (1) the normal growth rate is oscillatory, and (2) the mean growth step density is greater at the periphery of a facet than in its center. The repartitioning of Na(+) and Cl(-) ions between lysozyme solutions and crystals was studied for a wide range of crystallization conditions. A nucleation-growth-repartitioning model was developed to interpret the large body of data in a unified way. The results strongly suggests that (1) the ion to lysozyme ratio in the crystal depends mostly on kinetic rather than crystallographic parameters, and (2) lysozyme crystals possess a salt-rich core with a diameter on the order of 10 microns. The computational model for diffusive-convective transport in protein crystallization (see the First Report) has been applied to a realistic growth cell geometry, taking into account the findings of the above repartitioning studies. These results show that some elements of a moving boundary problem must be incorporated into the model in order to obtain a more realistic description. Our experimental setup for light scattering investigations of aggregation and nucleation in protein solutions has been extensively tested. Scattering intensity measurements with a true Rayleigh scatterer produced systematically increased forward scattering, indicating problems with glare. These have been resolved. Preliminary measurements with supersaturated lysozyme solutions revealed that the scatterers grow with time. Work has begun on a computer program

  7. Dynamically tuning the optical properties of Europium-doped sodium niobate nano-crystals through magnetic field

    NASA Astrophysics Data System (ADS)

    Xiao, Quanlan; Zhang, Yuanhao; Zhang, Junpei; Zhang, Han; Dong, Guoping; Han, Junbo; Qiu, Jianrong

    2016-11-01

    We have fabricated high quality NaNbO3:Eu3+ nano-crystals based on the Pechini sol-gel method and realized its magneto-optical effect under external pulsed magnetic field. Our results show that magnetic field can induce the suppression of luminescence, the splitting of peaks, and shifting of peak locations due to the expansion of electric dipole emission in Europium ions, and further demonstrate that the magnetic dipole emission plays an insignificant role in effect on the magnetic dipole emission for Eu3+:5 D 0 → 7 F 1, 5 D 0 → 7 F 3 transitions in NaNbO3:Eu3+ nano-crystals. These magnetic-optical interactions are attributed to the results of the Zeeman effect by high magnetic field that could result in the change of the symmetry of Eu3+ ions, and there is different sensitivity to changes of symmetry for Eu3+:5 D 0 → 7 F J (J = 1-4) transitions in NaNbO3 nano-crystals. This work might provide a viable magneto-optical approach in tuning the optical properties (luminescence intensity, peak location, profile, etc) of the rare-earth ions doped nano-particles.

  8. Electric field-induced optical second harmonic generation in nematic liquid crystal 5CB

    NASA Astrophysics Data System (ADS)

    Torgova, S. I.; Shigorin, V. D.; Maslyanitsyn, I. A.; Todorova, L.; Marinov, Y. G.; Hadjichristov, G. B.; Petrov, A. G.

    2014-12-01

    Electric field-induced second harmonic generation (EFISH) was studied for the liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) (a nematic phase material at room temperature). The intensity of coherent SHG from 5CB cells upon DC electric field was measured for various initial orientations of the liquid crystal. The dependence of the SHG intensity on the pump beam incidence angle was obtained in transmission geometry using sample rotation method. The experimental results (the registered light intensity in the output SHG interference patterns) were theoretically modelled and analyzed.

  9. Modelling of melt motion in a Czochralski crystal puller with an axial magnetic field

    NASA Astrophysics Data System (ADS)

    Hjellming, L. N.; Walker, J. S.

    1986-12-01

    The use of matched asymptotic expansions provide analytical solutions for the bulk flow in a Czochralski crystal puller in a strong axial magnetic field. Treating the crystal as a slight electrical conductor alters the radial and axial flows driven by centrifugal pumping. The motion due to buoyancy and thermocapillarity are found by considering the temperature as a known function and solving the non-linear heat equation numerically for different magnetic field strengths and melt depths. This note presents a summary of the analysis and results that are detailed in two papers.

  10. A Crystal Field Approach to Orbitally Degenerate SMMs: Beyond the Spin-Only Hamiltonian

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Lakshmi; Marriott, Katie; Murrie, Mark; Hill, Stephen

    Single-Molecule Magnets (SMMs) with large magnetization reversal barriers are promising candidates for high-density information storage. Recently, a large uniaxial magnetic anisotropy was observed for a mononuclear trigonal bipyramidal (TBP) [NiIICl3(Me-abco)2] SMM. High-field EPR studies analyzed on the basis of a spin-only Hamiltonian give ¦D¦>400 cm-1, which is close to the spin-orbit coupling parameter λ = 668 cm-1 for NiII, suggesting an orbitally degenerate ground state. The spin-only description is ineffective in this limit, necessitating the development of a model that includes the orbital moment. Here we describe a phenomenological approach that takes into account a full description of crystal field, electron-electron repulsion and spin-orbit coupling effects on the ground state of a NiII ion in a TBP coordination geometry. The model is in good agreement with the high-field EPR experiments, validating its use for spectroscopic studies of orbitally degenerate molecular nanomagnets. This work was supported by the NSF (DMR-1309463).

  11. The onset of layer undulations in smectic A liquid crystals due to a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Contreras, A.; Garcia-Azpeitia, C.; García-Cervera, C. J.; Joo, S.

    2016-08-01

    We investigate the effect of a strong magnetic field on a three dimensional smectic A liquid crystal. We identify a critical field above which the uniform layered state loses stability; this is associated to the onset of layer undulations. In a previous work García-Cervera and Joo (2012 Arch. Ration. Mech. Anal. 203 1-43), García-Cervera and Joo considered the two dimensional case and analyzed the transition to the undulated state via a simple bifurcation. In dimension n  =  3 the situation is more delicate because the first eigenvalue of the corresponding linearized problem is not simple. We overcome the difficulties inherent to this higher dimensional setting by identifying the irreducible representations for natural actions on the functional that take into account the invariances of the problem thus allowing for reducing the bifurcation analysis to a subspace with symmetries. We are able to describe at least two bifurcation branches, highlighting the richer landscape of energy critical states in the three dimensional setting. Finally, we analyze a reduced two dimensional problem, assuming the magnetic field is very strong, and are able to relate this to a model in micromagnetics studied in Alouges et al (2002 ESAIM Control Optim. Calc. Var. 8 31-68), from where we deduce the periodicity property of minimizers.

  12. Accurate force fields and methods for modelling organic molecular crystals at finite temperatures.

    PubMed

    Nyman, Jonas; Pundyke, Orla Sheehan; Day, Graeme M

    2016-06-21

    We present an assessment of the performance of several force fields for modelling intermolecular interactions in organic molecular crystals using the X23 benchmark set. The performance of the force fields is compared to several popular dispersion corrected density functional methods. In addition, we present our implementation of lattice vibrational free energy calculations in the quasi-harmonic approximation, using several methods to account for phonon dispersion. This allows us to also benchmark the force fields' reproduction of finite temperature crystal structures. The results demonstrate that anisotropic atom-atom multipole-based force fields can be as accurate as several popular DFT-D methods, but have errors 2-3 times larger than the current best DFT-D methods. The largest error in the examined force fields is a systematic underestimation of the (absolute) lattice energy.

  13. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1995-01-01

    During the fifth semi-annual period under this grant we have pursued the following activities: (1) Characterization of the purity and further purification of lysozyme solutions, these efforts are summarized in Section 2; (2) Crystal growth morphology and kinetics studies with tetragonal lysozyme, our observation on the dependence of lysozyme growth kinetics on step sources and impurities has been summarized in a manuscript which was accepted for publication in the Journal of Crystal Growth; (3) Numerical modelling of the interaction between bulk transport and interface kinetics, for a detailed summary of this work see the manuscript which was accepted for publication in the Journal of Crystal Growth; and (4) Light scattering studies, this work has been summarized in a manuscript that has been submitted for publication to the Journal of Chemical Physics.

  14. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    SciTech Connect

    Zhu, Xiaoyang

    2014-12-10

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering. Organic semiconductors are emerging as viable materials for low-cost electronics and optoelectronics, such as organic photovoltaics (OPV), organic field effect transistors (OFETs), and organic light emitting diodes (OLEDs). Despite extensive studies spanning many decades, a clear understanding of the nature of charge carriers in organic semiconductors is still lacking. It is generally appreciated that polaron formation and charge carrier trapping are two hallmarks associated with electrical transport in organic semiconductors; the former results from the low dielectric constants and weak intermolecular electronic overlap while the latter can be attributed to the prevalence of structural disorder. These properties have lead to the common observation of low charge carrier mobilities, e.g., in the range of 10-5 - 10-3 cm2/Vs, particularly at low carrier concentrations. However, there is also growing evidence that charge carrier mobility approaching those of inorganic semiconductors and metals can exist in some crystalline organic semiconductors, such as pentacene, tetracene and rubrene. A particularly striking example is single crystal rubrene (Figure 1), in which hole mobilities well above 10 cm2/Vs have been observed in OFETs operating at room temperature. Temperature dependent transport and spectroscopic measurements both revealed evidence of free carriers in rubrene. Outstanding questions are: what are the structural features and physical properties that make rubrene so unique? How do we establish fundamental design principles for the development of other organic semiconductors of high mobility? These questions are critically important but not comprehensive, as the nature of

  15. Pulsed field actuation of Ni-Mn-Ga ferromagnetic shape memory alloy single crystal

    NASA Astrophysics Data System (ADS)

    Marioni, M.; Bono, D.; Banful, A. B.; del Rosario, M.; Rodriguez, E.; Peterson, B. W.; Allen, S. M.; O'Handley, R. C.

    2003-10-01

    Ferromagnetic Shape Memory Alloy Ni-Mn-Ga has twin boundaries in the martensitic phase that move when a suitable magnetic field is applied. In this fashion strains of up to 6% have been observed for static fields in single crystals [1]. Recently 2.5% strain has been demonstrated [2] in Ni-Mn-Ga single crystals for oscillating fields up to frequencies of 75 Hz (150 Hz actuation). This work studies the actuation of single crystals when pulsed fields are applied. Fields in the 0.4-1.5MA/m-range were generated in an air coil with rise times of the order of 1ms and below. The elongation of the samples is measured with a light beam reflected off the tip of the crystal. Single twin boundaries have been observed to advance 0.16 mm during 600 μsec-ong pulses. Actuation has been shown to be possible at least up to frequencies of 1700 Hz.

  16. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1994-01-01

    A high-resolution microscopic interferometric setup for the monitoring of protein morphologies has been developed. Growth or dissolution of a crystal can be resolved with a long-term depth resolution of 200 A and a lateral resolution of 2 microns. This capability of simultaneously monitoring the interfacial displacement with high local depth resolution has yielded several novel results. We have found with lysozyme that (1) the normal growth rate is oscillatory, and (2) depending on the impurity content of the solution, the growth step density is either greater or lower at the periphery of a facet than in its center. The repartitioning of Na plus and Cl minus ions between lysozyme solutions and crystals was studied for a wide range of crystallization conditions. A nucleation-growth-repartitioning model was developed, to interpret the large body of data in unified way. The results strongly suggest that (1) the ion to lysozyne ratio in the crystal depends mostly on kinetic rather than crystallographic parameters, and (2) lysozyme crystals possess a salt-rich core with a diameter electron microscopy results appear to confirm this finding, which could have far-reaching consequences for x-ray diffraction studies. A computational model for diffusive-convective transport in protein crystallization has been applied to a realistic growth cell geometry, taking into account the findings of the above repartitioning studies and our kinetics data for the growth of lysozyme. The results show that even in the small cell employed, protein concentration nonuniformities and gravity-driven solutal convection can be significant. The calculated convection velocities are of the same order to magnitude as those found in earlier experiments. As expected, convective transport, i.e., at Og, lysozyme crystal growth remains kinetically limited. The salt distribution in the crystal is predicted to be non-uniform at both 1g and 0g, as a consequence of protein depletion in the solution. Static and

  17. Reversed Crystal-Field Splitting and Spin-Orbital Ordering in α-Sr2CrO4

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takashi; Toriyama, Tatsuya; Konishi, Takehisa; Sakurai, Hiroya; Ohta, Yukinori

    2017-03-01

    The origin of successive phase transitions observed in the layered perovskite α-Sr2CrO4 is studied by the density-functional-theory-based electronic structure calculation and mean-field analysis of the proposed low-energy effective model. We find that, despite the fact that the CrO6 octahedron is elongated along the c-axis of the crystal structure, the crystal-field level of nondegenerate 3dxy orbitals of the Cr ion is lower in energy than that of doubly degenerate 3dyz and 3dxz orbitals, giving rise to the orbital degrees of freedom in the system with a 3d2 electron configuration. We show that the higher (lower) temperature phase transition is caused by the ordering of the orbital (spin) degrees of freedom.

  18. A full field, 3-D velocimeter for microgravity crystallization experiments

    NASA Technical Reports Server (NTRS)

    Brodkey, Robert S.; Russ, Keith M.

    1991-01-01

    The programming and algorithms needed for implementing a full-field, 3-D velocimeter for laminar flow systems and the appropriate hardware to fully implement this ultimate system are discussed. It appears that imaging using a synched pair of video cameras and digitizer boards with synched rails for camera motion will provide a viable solution to the laminar tracking problem. The algorithms given here are simple, which should speed processing. On a heavily loaded VAXstation 3100 the particle identification can take 15 to 30 seconds, with the tracking taking less than one second. It seeems reasonable to assume that four image pairs can thus be acquired and analyzed in under one minute.

  19. Near-field thermal radiation transfer between semiconductors based on thickness control and introduction of photonic crystals

    NASA Astrophysics Data System (ADS)

    Inoue, Takuya; Asano, Takashi; Noda, Susumu

    2017-03-01

    We numerically investigate the spectral control of near-field thermal radiation transfer using interband absorption in semiconductors and the band-folding effect in photonic crystals (PCs) for highly efficient thermophotovoltaics. We reveal that the near-field coupling between two semiconductors (Si and GaSb) realizes frequency-selective thermal radiation transfer concentrated above their bandgap energy when their thicknesses are optimized considering their absorption coefficient spectra. Moreover, we elucidate the role of PC structures in the near-field thermal radiation transfer and demonstrate that the band-folding effect in PCs can further increase both the radiation power and frequency selectivity of the near-field thermal radiation transfer.

  20. Eu(2+)-Activated Alkaline-Earth Halophosphates, M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) for NUV-LEDs: Site-Selective Crystal Field Effect.

    PubMed

    Kim, Donghyeon; Kim, Sung-Chul; Bae, Jong-Seong; Kim, Sungyun; Kim, Seung-Joo; Park, Jung-Chul

    2016-09-06

    Eu(2+)-activated M5(PO4)3X (M = Ca, Sr, Ba; X = F, Cl, Br) compounds providing different alkaline-earth metal and halide ions were successfully synthesized and characterized. The emission peak maxima of the M5(PO4)3Cl:Eu(2+) (M = Ca, Sr, Ba) compounds were blue-shifted from Ca to Ba (454 nm for Ca, 444 nm for Sr, and 434 nm for Ba), and those of the Sr5(PO4)3X:Eu(2+) (X = F, Cl, Br) compounds were red-shifted along the series of halides, F → Cl → Br (437 nm for F, 444 nm for Cl, and 448 nm for Br). The site selectivity and occupancy of the activator ions (Eu(2+)) in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) crystal lattices were estimated based on theoretical calculation of the 5d → 4f transition energies of Eu(2+) using LCAO. In combination with the photoluminescence measurements and theoretical calculation, it was elucidated that the Eu(2+) ions preferably enter the fully oxygen-coordinated sites in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) compounds. This trend can be well explained by "Pauling's rules". These compounds may provide a platform for modeling a new phosphor and application in the solid-state lighting field.

  1. Electromagnetic Field Effects in Explosives

    NASA Astrophysics Data System (ADS)

    Tasker, D. G.; Whitley, V. H.; Lee, R. J.

    2009-12-01

    Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: enhancement of performance; and control of initiation and growth of reaction. Two series of experiments were performed to determine the effects of 1-T magnetic fields on explosive initiation and growth in the modified gap test and on the propagation of explosively generated plasma into air. The results have implications for the control of reactions in explosives and for the use of electromagnetic particle velocity gauges.

  2. Realization of Field Sequential Color in Simple Matrix Antiferroelectric Liquid Crystal Displays by Utilizing Fast Pretransitional Response

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasushi; Chen, Guo-Ping; Manna, Uttam; Vij, Jagdish K.; Fukuda, Atsuo

    2009-07-01

    Simple matrix antiferroelectric liquid crystal displays (SM-AFLCDs) are prototyped to realize field sequential color (FSC) by utilizing the fast pretransitional response. The developed FSC-SM-AFLCDs will lead to the replacement of existing static driven FSC-SM-nematic-LCDs. Bright and clear color can be given to already market-acquired, black-and-white SM-LCDs of up to 1/64-duty and 3-in. diagonal size. To optimize the display performance, we analyze two important factors, the large pretransitional effect and the appropriate reset pulse, in terms of the interlayer interaction potential used in describing the field-induced transition of the antiferroelectric smectic phase.

  3. Simulations of a protein crystal with a high resolution X-ray structure: evaluation of force fields and water models.

    PubMed

    Cerutti, David S; Freddolino, Peter L; Duke, Robert E; Case, David A

    2010-10-14

    We use classical molecular dynamics and 16 combinations of force fields and water models to simulate a protein crystal observed by room-temperature X-ray diffraction. The high resolution of the diffraction data (0.96 Å) and the simplicity of the crystallization solution (nearly pure water) make it possible to attribute any inconsistencies between the crystal structure and our simulations to artifacts of the models rather than inadequate representation of the crystal environment or uncertainty in the experiment. All simulations were extended for 100 ns of production dynamics, permitting some long-time scale artifacts of each model to emerge. The most noticeable effect of these artifacts is a model-dependent drift in the unit cell dimensions, which can become as large as 5% in certain force fields; the underlying cause is the replacement of native crystallographic contacts with non-native ones, which can occur with heterogeneity (loss of crystallographic symmetry) in simulations with some force fields. We find that the AMBER FF99SB force field maintains a lattice structure nearest that seen in the X-ray data, and produces the most realistic atomic fluctuations (by comparison to crystallographic B-factors) of all the models tested. We find that the choice of water model has a minor effect in comparison to the choice of protein model. We also identify a number of artifacts that occur throughout all of the simulations: excessive formation of hydrogen bonds or salt bridges between polar groups and loss of hydrophobic interactions. This study is intended as a foundation for future work that will identify individual parameters in each molecular model that can be modified to improve their representations of protein structure and thermodynamics.

  4. X-ray plane-wave diffraction effects in a crystal with third-order nonlinearity

    NASA Astrophysics Data System (ADS)

    Balyan, M. K.

    2016-12-01

    The two-wave dynamical diffraction in the Laue geometry has been theoretically considered for a plane X-ray wave in a crystal with a third-order nonlinear response to the external field. An analytical solution to the problem stated is found for certain diffraction conditions. A nonlinear pendulum effect is analyzed. The nonlinear extinction length is found to depend on the incident-wave intensity. A pendulum effect of a new type is revealed: the intensities of the transmitted and diffracted waves periodically depend on the incidentwave intensity at a fixed crystal thickness. The rocking curves and Borrmann nonlinear effect are numerically calculated.

  5. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    SciTech Connect

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  6. Electric Field-Controlled Crystallizing CaCO3 Nanostructures from Solution

    NASA Astrophysics Data System (ADS)

    Qi, Jian Quan; Guo, Rui; Wang, Yu; Liu, Xuan Wen; Chan, Helen Lai Wah

    2016-03-01

    The role of electric field is investigated in determining the structure, morphology, and crystallographic characteristics of CaCO3 nanostructures crystallized from solution. It is found that the lattice structure and crystalline morphology of CaCO3 can be tailed by the electric field applied to the solution during its crystallization. The calcite structure with cubic-like morphology can be obtained generally without electric field, and the vaterite structure with the morphology of nanorod is formed under the high electric field. The vaterite nanorods can be piled up to the petaliform layers. Both the nanorod and the petaliform layer can have mesocrystal structures which are piled up by much fine units of the rods with the size of several nanometers. Beautiful rose-like nanoflowers can be self-arranged by the petaliform layers. These structures can have potential application as carrier for medicine to involve into metabolism of living cell.

  7. Effects of ionizing radiation on struvite crystallization of livestock wastewater

    NASA Astrophysics Data System (ADS)

    Kim, Tak-Hyun; Nam, Yun-Ku; Joo Lim, Seung

    2014-04-01

    Livestock wastewater is generally very difficult to be treated by conventional wastewater treatment techniques because it contains high-strength organics (COD), ammonium (NH4+), phosphate (PO43-) and suspended solids. Struvite crystallization has been recently studied for the simultaneous removal of NH4+ and PO43-. In this study, gamma ray irradiation was carried out prior to struvite crystallization of the anaerobically digested livestock wastewater. The effects of gamma ray irradiation on the struvite crystallization of livestock wastewater were investigated. As a result, gamma ray irradiation can decrease the concentration of COD, NH4+ and PO43- contained in the livestock wastewater. This results in not only an enhancement of the struvite crystallization efficiency but also a decrease in the chemical demands for the struvite crystallization of livestock wastewater.

  8. Effect of impurities on crystal growth rate of ammonium pentaborate

    NASA Astrophysics Data System (ADS)

    Şahin, Ö.; Özdemir, M.; Genli, N.

    2004-01-01

    The effect of sodium chloride, borax and boric acid of different concentrations on the growth rate of ammonium pentaborate octahydrate crystals (APBO) was measured and was found to depend on supersaturation in a fluidized bed crystallizer. The presence of impurities in APBO solution increases the growth rate compared with growth from pure solution. It was found that the presence of sodium chloride, borax and boric acid decreases the reaction rate constant kr, while it increases the mass-transfer coefficient, K, of APBO crystals. In pure aqueous solution, the crystal growth rate of APBO is mainly controlled by diffusion. However, both diffusion and integration steps affect the growth rate of APBO crystals in the presence of sodium chloride, borax and boric acid. The mass-transfer coefficient, K, reaction rate constant, kr and reaction order, r were calculated from general mass-transfer equation by using genetic algorithm method making no assumption.

  9. Electric-field-induced domain intersection in BaTiO3 single crystal

    NASA Astrophysics Data System (ADS)

    He, Ming; Wang, Mengxia; Zhang, Zhihua

    2017-03-01

    Large-angle convergent beam electron diffraction was used to determine the directions of polarization vectors in a BaTiO3 single crystal. Domain intersections driven by an electric field were investigated by in situ transmission electron microscopy. The dark triangles observed in the domain intersection region can be accounted for by dislocations and the strain field. Domains nucleate at the domain tip depending on the dislocations and strain field to relieve the accumulated stress. Schematic representations of the intersecting domains and the microscopic structure are given, clarifying the special electric-field-induced domain structure.

  10. Crystal Field Theory and the Angular Overlap Model Applied to Hydrides of Main Group Elements.

    ERIC Educational Resources Information Center

    Moore, E. A.

    1990-01-01

    Described is how crystal field theory and the angular overlap model can be applied to very simple molecules which can then be used to introduce such concepts as bonding orbitals, MO diagrams, and Walsh diagrams. The main-group compounds are used as examples and a switch to the transition metal complexes. (KR)

  11. Assembly of colloidal molecules, polymers, and crystals in acoustic and magnetic fields.

    PubMed

    Yang, Ye; Pham, An T; Cruz, Daniela; Reyes, Christopher; Wiley, Benjamin J; Lopez, Gabriel P; Yellen, Benjamin B

    2015-08-26

    A dynamically adjustable colloidal assembly technique is presented, which combines magnetic and acoustic fields to produce a wide range of colloidal structures, ranging from discrete colloidal molecules, to polymer networks and crystals. The structures can be stabilized and dried, making them suitable for the fabrication of advanced materials.

  12. Scaling of crystal field parameters between Pd 2REIn and Pd 2RESn

    NASA Astrophysics Data System (ADS)

    Babateen, M.; Neumann, K.-U.; Ziebeck, K. R. A.

    1995-02-01

    Experimentally it is found that crystal field (CF) parameters between the same rare earth compounds in the alloy series Pd 2REIn and Pd 2RESn (RE = rare earth element) exhibit scaling properties. A phenomenological model is put forward to explain this observation.

  13. Measurement of temperature and velocity fields of freezing water using liquid crystal tracers

    NASA Astrophysics Data System (ADS)

    Kowalewski, Tomasz A.

    A new experimental technique based on a computational analysis of the colour and displacement of thermochromic liquid crystal tracers was applied to determine both the temperature and velocity fields of freezing water. The technique combines Digital Particle Image Thermometry and Digital Particle Image Velocimetry. Full 2-D temperature and velocity fields are determined from a pair or a longer sequence, of colour images taken for the selected cross-section of the flow.

  14. Near-field observation of subwavelength confinement of photoluminescence by a photonic crystal microcavity.

    PubMed

    Louvion, Nicolas; Rahmani, Adel; Seassal, Christian; Callard, Ségolène; Gérard, Davy; de Fornel, Frédérique

    2006-07-15

    We present a direct, room-temperature near-field optical study of light confinement by a subwavelength defect microcavity in a photonic crystal slab containing quantum-well sources. The observations are compared with three-dimensional finite-difference time-domain calculations, and excellent agreement is found. Moreover, we use a subwavelength cavity to study the influence of a near-field probe on the imaging of localized optical modes.

  15. Crystal field and magnetoelastic interactions in Tb2Ti2O7

    NASA Astrophysics Data System (ADS)

    Klekovkina, V. V.; Malkin, B. Z.

    2014-06-01

    In terms of a semiphenomenological exchange charge model, we have obtained estimates of parameters of the crystal field and parameters of the electron-deformation interaction in terbium titanate Tb2Ti2O7 with a pyrochlore structure. The obtained set of parameters has been refined based on the analysis of spectra of neutron inelastic scattering and Raman light scattering, field dependences of the forced magnetostriction, and temperature dependences of elastic constants.

  16. High Field Magnetization measurements of uranium dioxide single crystals (P08358- E003-PF)

    SciTech Connect

    Gofryk, K.; Harrison, N.; Jaime, M.

    2014-12-01

    Our preliminary high field magnetic measurements of UO2 are consistent with a complex nature of the magnetic ordering in this material, compatible with the previously proposed non-collinear 3-k magnetic structure. Further extensive magnetic studies on well-oriented (<100 > and <111>) UO2 crystals are planned to address the puzzling behavior of UO2 in both antiferromagnetic and paramagnetic states at high fields.

  17. Effects of ultrasonic fields in the phosphoric acid process

    NASA Technical Reports Server (NTRS)

    Kowalska, E.; Mizera, J.; Jakobiec, H.

    1974-01-01

    A process of apatite decomposition with sulfuric acid was studied under the influence of ultrasound in the phosphoric acid production process. The studies were carried out with and without ultrasonic fields in the reaction mixture, which resembled the mixing ratio used in technical production processes. Ultrasound with a frequency of 20 kHz and an intensity of 1 W/sq cm was used in the studies. A very favorable ultrasonic effect upon the degree of apatite decomposition was observed. The ultrasonic field affects the shape of byproduct gypsum crystals. In the H3PO4 production process without ultrasound, the byproduct gypsum crystallizes as long, thin needles which cause problems in filtration. In the trials involving the application of wound, gypsum crystallized in the form of small platelets possessing a favorable ratio of length to width.

  18. Inhomogeneous field induced magnetoelectric effect in Mott insulators

    SciTech Connect

    Boulaevskii, Lev N; Batista, Cristian D

    2008-01-01

    We consider a Mott insulator like HoMnO{sub 3} whose magnetic lattice is geometrically frustrated and comprises a 3D array of triangular layers with magnetic moments ordered in a 120{sup o} structure. We show that the effect of a uniform magnetic field gradient, {gradient}H, is to redistribute the electronic charge of the magnetically ordered phase leading to a unfirom electric field gradient. The resulting voltage difference between the crystal edges is proportional to the square of the crystal thickness, or inter-edge distance, L. It can reach values of several volts for |{gradient}H| {approx} 0.01 T/cm and L {approx_equal} 1mm, as long as the crystal is free of antiferromagnetic domain walls.

  19. Faceted growth of primary Al{sub 2}Cu crystals during directional solidification in high magnetic field

    SciTech Connect

    Li, Chuanjun; Ren, Zhongming; Shen, Yu; Wang, Qiuliang; Dai, Yinming; Wang, Hui

    2013-10-21

    The high magnetic field is widely used to modify the crystal morphology. In this work, the effect of the magnetic field on growing behavior of faceted crystals in the Al-40 wt. %Cu alloy was investigated using directional solidification technique. It was found that the faceted growth of primary Al{sub 2}Cu phase was degraded and the primary spacing was reduced upon applying the magnetic field. Additionally, the length of the mushy zone first decreased and then increased with increase of the magnetic field intensity. The quantitative analysis reveals that the shear stress induced by the fluid motion is insufficient to break the atom bonds at the solid-liquid interface. However, both of the thermoelectric magnetic convection (TEMC) and the thermoelectric magnetic force (TEMF) cause dendrites to fracture and reduce the primary spacing. The two effects also weaken the faceting growth. Moreover, the instability of the solid-liquid interface is generated by the TEMF, which further leads to degrade the faceted growth. The length of mushy zone was changed by the TEMC and reached the minimum in the magnetic field of 0.5 T, which is in good agreement with the predicted value (0.83 T)

  20. Synaptic Effects of Electric Fields

    NASA Astrophysics Data System (ADS)

    Rahman, Asif

    Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits

  1. Application of Terahertz Field Enhancement Effect in Metal Microstructures

    NASA Astrophysics Data System (ADS)

    Nakajima, M.; Kurihara, T.; Tadokoro, Y.; Kang, B.; Takano, K.; Yamaguchi, K.; Watanabe, H.; Oto, K.; Suemoto, T.; Hangyo, M.

    2016-12-01

    Applications of high-field terahertz pulses are attractive in physics and terahertz technology. In this study, two applications related to high-intensity terahertz pulses are demonstrated. The field enhancement effect by subwavelength metallic microstructures is utilized for terahertz excitation measurement. The spin precession dynamics in magnetic materials was induced by a terahertz magnetic field. Spin precession was amplified by one order of magnitude in amplitude by the enhanced magnetic terahertz field in orthoferrite ErFeO3 with metal microstructures. The induced spin dynamics was analyzed and explained by LLG-LCR model. Moreover, a detection method for terahertz pulses was developed using a cholesteric liquid crystal at room temperature without any electronic devices. The beam profile of terahertz pulses was visualized and compared to other methods such as the knife edge method using pyroelectric detector and micro-bolometer array. The liquid crystal terahertz imager is very simple and has good applicability as a portable terahertz-sensing card.

  2. Studying Crystal Growth With the Peltier Effect

    NASA Technical Reports Server (NTRS)

    Larsen, David J., Jr.; Dressler, B.; Silberstein, R. P.; Poit, W. J.

    1986-01-01

    Peltier interface demarcation (PID) shown useful as aid in studying heat and mass transfer during growth of crystals from molten material. In PID, two dissimilar "metals" solid and liquid phases of same material. Current pulse passed through unidirectionally solidifying sample to create rapid Peltier thermal disturbance at liquid/solid interface. Disturbance, measured by thermocouple stationed along path of solidification at or near interface, provides information about position and shape of interface.

  3. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1995-01-01

    During the fourth semi-annual period under this grant we have pursued the following activities: (1) crystal growth morphology and kinetics studies with tetragonal lysozyme. These clearly revealed the influence of higher molecular weight protein impurities on interface shape; (2) characterization of the purity and further purification of lysozyme solutions. These efforts have, for the first time, resulted in lysozyme free of higher molecular weight components; (3) continuation of the salt repartitioning studies with Seikagaku lysozyme, which has a lower protein impurity content that Sigma stock. These efforts confirmed our earlier findings of higher salt contents in smaller crystals. However, less salt is in corporated into the crystals grown from Seikagaku stock. This strongly suggests a dependence of salt repartitioning on the concentration of protein impurities in lysozyme. To test this hypothesis, repartitioning studies with the high purity lysozyme prepared in-house will be begun shortly; (4) numerical modelling of the interaction between bulk transport and interface kinetics. These simulations have produced interface shapes which are in good agreement with out experimental observations; and (5) light scattering studies on under- and supersaturated lysozyme solutions. A consistent interpretation of the static and dynamic data leaves little doubt that pre-nucleation clusters, claimed to exist even in undersaturated solutions, are not present. The article: 'Growth morphology response to nutrient and impurity nonuniformities' is attached.

  4. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1993-01-01

    The experimental setup for the in-situ high resolution optical monitoring of protein crystal growth/dissolution morphologies was substantially improved. By augmenting the observation system with a temperature-controlled enclosure, laser illumination for the interferometric microscope, and software for pixel by pixel light intensity recording, a height resolution of about two unit cells for lysozyme can now be obtained. The repartitioning of Na(+) and Cl(-) ions between lysozyme solutions and crystals was studied. Quite unexpectedly, it was found that the longer crystals were in contact with their solution, the lower was their ion content. The development of a model for diffusive-convective transport and resulting distribution of the growth rate on facets was completed. Results obtained for a realistic growth cell geometry show interesting differences between 'growth runs' at 1g and 0g. The kinematic viscosity of lysozyme solutions of various supersaturations and salt concentrations was monitored over time. In contrast to the preliminary finding of other authors, no changes in viscosity were found over four days. The experimental setup for light scattering investigations of aggregation and nucleation in protein solutions was completed, and a computer program for the evaluation of multi-angle light scattering data was acquired.

  5. Effect of amino acid doping on the growth and ferroelectric properties of triglycine sulphate single crystals

    SciTech Connect

    Raghavan, C.M.; Sankar, R.; Mohan Kumar, R.; Jayavel, R.

    2008-02-05

    Effect of amino acids (L-leucine and isoleucine) doping on the growth aspects and ferroelectric properties of triglycine sulphate crystals has been studied. Pure and doped crystals were grown from aqueous solution by low temperature solution growth technique. The cell parameter values were found to significantly vary for doped crystals. Fourier transform infrared analysis confirmed the presence of functional groups in the grown crystal. Morphology study reveals that amino acid doping induces faster growth rate along b-direction leading to a wide b-plane and hence suitable for pyroelectric detector applications. Ferroelectric domain structure has been studied by atomic force microscopy and hysteresis measurements reveal an increase of coercive field due to the formation of single domain pattern.

  6. Simultaneous negative refraction and focusing of fundamental frequency and second-harmonic fields by two-dimensional photonic crystals

    SciTech Connect

    Zhang, Jun; Zhang, Xiangdong

    2015-09-28

    Simultaneous negative refraction for both the fundamental frequency (FF) and second-harmonic (SH) fields in two-dimensional nonlinear photonic crystals have been found through both the physical analysis and exact numerical simulation. By combining such a property with the phase-matching condition and strong second-order susceptibility, we have designed a SH lens to realize focusing for both the FF and SH fields at the same time. Good-quality non-near field images for both FF and SH fields have been observed. The physical mechanism for such SH focusing phenomena has been disclosed, which is different from the backward SH generation as has been pointed out in the previous investigations. In addition, the effect of absorption losses on the phenomena has also been discussed. Thus, potential applications of these phenomena to biphotonic microscopy technique are anticipated.

  7. Simultaneous negative refraction and focusing of fundamental frequency and second-harmonic fields by two-dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Zhang, Xiangdong

    2015-09-01

    Simultaneous negative refraction for both the fundamental frequency (FF) and second-harmonic (SH) fields in two-dimensional nonlinear photonic crystals have been found through both the physical analysis and exact numerical simulation. By combining such a property with the phase-matching condition and strong second-order susceptibility, we have designed a SH lens to realize focusing for both the FF and SH fields at the same time. Good-quality non-near field images for both FF and SH fields have been observed. The physical mechanism for such SH focusing phenomena has been disclosed, which is different from the backward SH generation as has been pointed out in the previous investigations. In addition, the effect of absorption losses on the phenomena has also been discussed. Thus, potential applications of these phenomena to biphotonic microscopy technique are anticipated.

  8. Local observation of modes from three-dimensional woodpile photonic crystals with near-field microspectroscopy under supercontinuum illumination.

    PubMed

    Jia, Baohua; Norton, Andrew H; Li, Jiafang; Rahmani, Adel; Asatryan, Ara A; Botten, Lindsay C; Gu, Min

    2008-05-15

    A near-field microscope coupled with a near-infrared (NIR) supercontinuum source is developed and applied to characterize optical modes in a three-dimensional (3D) woodpile photonic crystal (PC) possessing a NIR partial bandgap. Spatially resolved near-field intensity distributions under different illumination wavelengths demonstrate that the electric fields preferentially dwell in the polymer rods or in the gaps between rods, respectively, for frequencies below or above the stop gap, as predicted by the 3D finite-difference time-domain modeling. Near-field microspectroscopy further reveals that the position-dependent band-edge effect plays an important role in PC-based all-optical integrated devices.

  9. Coupled thermal-optic effects and electrical modulation mechanism of birefringence crystal with Gaussian laser incidence

    NASA Astrophysics Data System (ADS)

    Zhou, Ji; He, Zhi-Hong; Ma, Yu; Dong, Shi-Kui

    2015-09-01

    We study the Gaussian laser transmission in lithium niobate crystal (LiNbO3) by using the finite element method to solve the electromagnetic field’s frequency domain equation and energy equation. The heat generated is identified by calculating the transmission loss of the electromagnetic wave in the birefringence crystal, and the calculated value of the heat generated is substituted into the energy equation. The electromagnetic wave’s energy losses induced by its multiple refractions and reflections along with the resulting physical property changes of the lithium niobate crystal are considered. Influences of ambient temperature and heat transfer coefficient on refraction and walk-off angles of O-ray and E-ray in the cases of different incident powers and crystal thicknesses are analyzed. The E-ray electrical modulation instances, in which the polarized light waveform is adjusted to the rated condition via an applied electrical field in the cases of different ambient temperatures and heat transfer coefficients, are provided to conclude that there is a correlation between ambient temperature and applied electrical field intensity and a correlation between surface heat transfer coefficient and applied electrical field intensity. The applicable electrical modulation ranges without crystal breakdown are proposed. The study shows that the electrical field-adjustable heat transfer coefficient range becomes narrow as the incident power decreases and wide as the crystal thickness increases. In addition, it is pointed out that controlling the ambient temperature is easier than controlling the heat transfer coefficient. The results of the present study can be used as a quantitative theoretical basis for removing the adverse effects induced by thermal deposition due to linear laser absorption in the crystal, such as depolarization or wave front distortion, and indicate the feasibility of adjusting the refractive index in the window area by changing the heat transfer

  10. New theoretical results for the Lehmann effect in cholesteric liquid crystals

    NASA Technical Reports Server (NTRS)

    Brand, Helmut R.; Pleiner, Harald

    1988-01-01

    The Lehmann effect arising in a cholesteric liquid crystal drop when a temperature gradient is applied parallel to its helical axis is investigated theoretically using a local approach. A pseudoscalar quantity is introduced to allow for cross couplings which are absent in nematic liquid crystals, and the statics and dissipative dynamics are analyzed in detail. It is shown that the Lehmann effect is purely dynamic for the case of an external electric field and purely static for an external density gradient, but includes both dynamic and static coupling contributions for the cases of external temperature or concentration gradients.

  11. Creating physically-based three-dimensional microstructures: Bridging phase-field and crystal plasticity models.

    SciTech Connect

    Lim, Hojun; Owen, Steven J.; Abdeljawad, Fadi F.; Hanks, Byron; Battaile, Corbett Chandler

    2015-09-01

    In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct link between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.

  12. Effect of solvent on crystallization behavior of xylitol

    NASA Astrophysics Data System (ADS)

    Hao, Hongxun; Hou, Baohong; Wang, Jing-Kang; Lin, Guangyu

    2006-04-01

    Effect of organic solvents content on crystallization behavior of xylitol was studied. Solubility and crystallization kinetics of xylitol in methanol-water system were experimentally determined. It was found that the solubility of xylitol at various methanol content all increases with increase of temperature. But it decreases when increasing methanol content at constant temperature. Based on the theory of population balance, the nucleation and growth rates of xylitol in methanol-water mixed solvents were calculated by moments method. From a series of experimental population density data of xylitol gotten from a batch-operated crystallizer, parameters of crystal nucleation and growth rate equations at different methanol content were got by the method of nonlinear least-squares. By analyzing, it was found that the content of methanol had an apparent effect on nucleation and growth rate of xylitol. At constant temperature, the nucleation and growth rate of xylitol all decrease with increase of methanol content.

  13. Luminescent properties of rare earth fully activated apatites, LiRE9(SiO4)6O2 (RE = Ce, Eu, and Tb): site selective crystal field effect.

    PubMed

    Kim, Donghyeon; Park, Doyoung; Oh, Namgyeong; Kim, Jaegyeom; Jeong, Euh Duck; Kim, Seung-Joo; Kim, Sungyun; Park, Jung-Chul

    2015-02-16

    Novel LiCe9(SiO4)6O2 and LiTb9(SiO4)6O2 compounds have been successfully synthesized, and the site selectivity and occupancy of activator ions have been estimated including LiEu9(SiO4)6O2 compound. The rare earth (RE) fully occupied compounds, as well as the RE partially occupied congeners are required for the assessment of site selectivity of RE (activator) ions in apatite-type compounds. The splitting energies of the 6H and 4F Wycoff positions of LiRE9(SiO4)6O2 (RE = Ce, Eu, and Tb) compounds are calculated based on crystal field theory: ΔECe(6H) = 3849.3 cm(-1), ΔECe(4F) = 4228.1 cm(-1), ΔEEu(6H) = 3870.0 cm(-1), ΔEEu(4F) = 4092.8 cm(-1), ΔETb(6H) = 3637.6 cm(-1), ΔETb(4F) = 4396.1 cm(-1), indicating that the splitting energy for the 4F site is larger than that for the 6H site in all compounds; thus the absorption energy is higher for the 6H site. In apatite-type LiRE9(SiO4)6O2 (RE = Ce, Eu, and Tb) compounds, the Ce(3+) ions predominantly occupy the 4F site associated with the absorption band around 300 nm at lower Ce(3+) concentration, and then enter the 6H site associated the absorption band around 245 nm. For the Eu(3+)-doped compounds, the 4F site and 6H site are mixed within the charge transfer band (CTB) between 220 and 350 nm. Eu(3+) ions initially preferentially occupy the 6H site (around 290 nm) at lower Eu(3+) concentration and subsequently enter the 4F site (around 320 nm) with increasing Eu(3+) concentration. For the Tb(3+)-doped compounds, the absorption due to the two different sites is mixed within f-d absorption band between 200 and 300 nm. At lower Tb(3+) concentration, the Tb(3+) ions enter favorably 6H site around 240 nm and then enter 4F site around 270 nm. These compounds may provide a platform for modeling a new phosphor and application in the solid-state lighting field.

  14. Investigation of Three-Dimensional Stress Fields and Slip Systems for FCC Single Crystal Superalloy Notched Specimens

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Magnan, Shannon; Ebrahimi, Fereshteh; Ferroro, Luis

    2004-01-01

    Metals and their alloys, except for a few intermetallics, are inherently ductile, i.e. plastic deformation precedes fracture in these materials. Therefore, resistance to fracture is directly related to the development of the plastic zone at the crack tip. Recent studies indicate that the fracture toughness of single crystals depends on the crystallographic orientation of the notch as well as the loading direction. In general, the dependence of crack propagation resistance on crystallographic orientation arises from the anisotropy of (i) elastic constants, (ii) plastic deformation (or slip), and (iii) the weakest fracture planes (e.g. cleavage planes). Because of the triaxial stress state at the notch tips, many slip systems that otherwise would not be activated during uniaxial testing, become operational. The plastic zone formation in single crystals has been tackled theoretically by Rice and his co-workers and only limited experimental work has been conducted in this area. The study of the stresses and strains in the vicinity of a FCC single crystal notch tip is of relatively recent origin. We present experimental and numerical investigation of 3D stress fields and evolution of slip sector boundaries near notches in FCC single crystal tension test specimens, and demonstrate that a 3D linear elastic finite element model that includes the effect of material anisotropy is shown to predict active slip planes and sectors accurately. The slip sector boundaries are shown to have complex curved shapes with several slip systems active simultaneously near the notch. Results are presented for surface and mid-plane of the specimens. The results demonstrate that accounting for 3D elastic anisotropy is very important for accurate prediction of slip activation near FCC single crystal notches loaded in tension. Results from the study will help establish guidelines for fatigue damage near single crystal notches.

  15. Inflating with large effective fields

    SciTech Connect

    Burgess, C.P.; Cicoli, M.; Quevedo, F.; Williams, M. E-mail: mcicoli@ictp.it E-mail: mwilliams@perimeterinsititute.ca

    2014-11-01

    We re-examine large scalar fields within effective field theory, in particular focussing on the issues raised by their use in inflationary models (as suggested by BICEP2 to obtain primordial tensor modes). We argue that when the large-field and low-energy regimes coincide the scalar dynamics is most effectively described in terms of an asymptotic large-field expansion whose form can be dictated by approximate symmetries, which also help control the size of quantum corrections. We discuss several possible symmetries that can achieve this, including pseudo-Goldstone inflatons characterized by a coset G/H (based on abelian and non-abelian, compact and non-compact symmetries), as well as symmetries that are intrinsically higher dimensional. Besides the usual trigonometric potentials of Natural Inflation we also find in this way simple large-field power laws (like V ∝ φ{sup 2}) and exponential potentials, V(φ) = ∑{sub k}V{sub x}e{sup −kφ/M}. Both of these can describe the data well and give slow-roll inflation for large fields without the need for a precise balancing of terms in the potential. The exponential potentials achieve large r through the limit |η| || ε and so predict r ≅ (8/3)(1-n{sub s}); consequently n{sub s} ≅ 0.96 gives r ≅ 0.11 but not much larger (and so could be ruled out as measurements on r and n{sub s} improve). We examine the naturalness issues for these models and give simple examples where symmetries protect these forms, using both pseudo-Goldstone inflatons (with non-abelian non-compact shift symmetries following familiar techniques from chiral perturbation theory) and extra-dimensional models.

  16. Te inclusion-induced electrical field perturbation in CdZnTe single crystals revealed by Kelvin probe force microscopy.

    PubMed

    Gu, Yaxu; Jie, Wanqi; Li, Linglong; Xu, Yadong; Yang, Yaodong; Ren, Jie; Zha, Gangqiang; Wang, Tao; Xu, Lingyan; He, Yihui; Xi, Shouzhi

    2016-09-01

    To understand the effects of tellurium (Te) inclusions on the device performance of CdZnTe radiation detectors, the perturbation of the electrical field in and around Te inclusions was studied in CdZnTe single crystals via Kelvin probe force microscopy (KPFM). Te inclusions were proved to act as lower potential centers with respect to surrounding CdZnTe matrix. Based on the KPFM results, the energy band diagram at the Te/CdZnTe interface was established, and the bias-dependent effects of Te inclusion on carrier transportation is discussed.

  17. Magnetic field induced extraordinary photoluminescence enhancement in Er{sup 3+}:YVO{sub 4} single crystal

    SciTech Connect

    Zhang, Junpei; Wang, Xia; Tang, Chaoqun; Zhong, Zhiqiang; Ma, Zongwei; Wang, Shaoliang; Han, Yibo; Han, Jun-Bo Li, Liang

    2015-08-28

    A bright green photoluminescence (PL) from {sup 4}S{sub 3∕2} → {sup 4}I{sub 15∕2} emission band in Er{sup 3+}:YVO{sub 4} single crystal has been observed with the excitation of an argon laser at 488.0 nm. More than two orders of PL enhancement have been obtained under the effect of magnetic fields, and the enhancement factor f reaches 170 when the applied magnetic field is 7.7 T under the sample temperature of 4.2 K. Unusually, the PL enhancements only happen at some certain magnetic fields (B{sub c}s), and a decrease of sample temperature will lead to the increase of f and decrease of B{sub c}. The results confirm that this PL enhancement originates from the resonance excitation of the electron transitions induced by the cross of the laser energy and the absorption energy modulated by both the magnetic field and temperature. This special PL enhancement in Er{sup 3+}:YVO{sub 4} single crystal can be applied in the calibration of pulsed high magnetic field, detection of material fine energy structures, and modulation of magneto-optical devices.

  18. Aharonov-Casher Effect in One-Dimensional Wigner Crystals

    NASA Astrophysics Data System (ADS)

    Tserkovnyak, Yaroslav; Kindermann, Markus

    2010-03-01

    We theoretically study the effects of spin-orbit coupling on spin exchange in a low-density Wigner crystal. In addition to the familiar antiferromagnetic Heisenberg exchange, we find general anisotropic interactions in spin space if the exchange paths allowed by the crystal structure form loops in real space. In particular, it is shown that the two-electron exchange interaction can acquire ferromagnetic character. Tserkovnyak and Kindermann, Phys. Rev. Lett. 102 (2009) 126801.

  19. Crystal field excitations in CeCu2Ge2: Revisited employing a single crystal and inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Loewenhaupt, Michael; Faulhaber, Enrico; Schneidewind, Astrid; Deppe, Micha; Hradil, Klaudia

    2012-04-01

    The intermetallic compound, CeCu2Ge2, is the counterpart of the heavy-fermion superconductor CeCu2Si2. CeCu2Ge2 is a magnetically ordering (TN = 4.1K) Kondo lattice with a moderate Sommerfeld coefficient of 140 mJ/ molK2. Earlier inelastic neutron measurements on a polycrystalline sample revealed a doublet ground state and a quasi-quartet excited state at 16.5 meV, although a splitting of the 4f1 (J = 5/2) ground state multiplet into 3 doublets is expected from the point symmetry of the Ce3+ ions. We performed detailed inelastic neutron scattering experiments on a single crystal at the thermal triple-axis spectrometer PUMA at FRM II for different crystallographic directions. From our results we infer that the quasi-quartet, in fact, consists of two doublets at 17.0 and 18.3 meV which exhibit a strong directional dependence of their transition matrix elements to the ground state doublet. Finally, we will present a new set of crystal field parameters.

  20. Anomalous bending effect in photonic crystal fibers.

    PubMed

    Tu, Haohua; Jiang, Zhi; Marks, Daniel L; Boppart, Stephen A

    2008-04-14

    An unexpected transmission loss up to 50% occurs to intense femtosecond pulses propagating along an endlessly single-mode photonic crystal fiber over a length of 1 m. A specific leaky-fiber mode gains amplification along the fiber at the expense of the fundamental fiber mode through stimulated four-wave mixing and Raman scattering, leading to this transmission loss. Bending near the fiber entrance dissipates the propagating seed of this leaky mode, preventing the leaky mode amplification and therefore enhancing the transmission of these pulses.

  1. Large low-field positive magnetoresistance in nonmagnetic half-Heusler ScPtBi single crystal

    NASA Astrophysics Data System (ADS)

    Hou, Zhipeng; Wang, Yue; Liu, Enke; Zhang, Hongwei; Wang, Wenhong; Wu, Guangheng

    2015-11-01

    High-quality nonmagnetic half-Heusler ScPtBi single crystals were synthesized by a Bi self-flux method. This compound was revealed to be a hole-dominated semimetal with a large low-field magnetoresistance up to 240% at 2 K in a magnetic field of 1 T. Magneto-transport measurements demonstrated that the large low-field magnetoresistance effect resulted from the coexistence of field-induced metal-semiconductor transition and weak-antilocalization effect. Moreover, Hall measurements indicated that ScPtBi single crystal showed a high mobility over a wide temperature region even up to room temperature (4050 cm2V-1s-1 at 2 K-2016 cm2V-1s-1 at 300 K). These findings not only suggest the nonmagnetic ScPtBi semimetal a potential material candidate for applications in high-sensitivity magnetic sensors but also are of great significance to comprehensively understand the rare-earth based half-Heusler compounds.

  2. Effect of spherical magnetic particles on liquid crystals behavior studied by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Bury, Peter; Kúdelčík, Jozef; Hardoň, Štefan; Veveričik, Marek; Kopčanský, Peter; Timko, Milan; Závišová, Vlasta

    2017-02-01

    The effect of spherical magnetic particles (Fe3O4) on liquid crystals (6CHBT) behavior and structural changes in electric and weak magnetic fields was studied by means of the attenuation of surface acoustic wave (SAW) of frequency 30 MHz propagating along ferronematic liquid crystals. Three low volume concentrations (Φ = 1 ×10-5 , 1 ×10-4 and 1 ×10-3) of spherical magnetic particles were added to liquid crystal during its isotropic phase. In contrast to undoped 6CHTB the distinctive SAW attenuation responses induced by both electric and magnetic fields in studied ferronematic liquid crystals below Fréedericksz transition have been observed suggesting both structural changes and the orientational coupling between magnetic moments of magnetic particles and the director of the liquid crystal. The geometrical re-ranking of magnetic particles was registered only for some orientations of magnetic field. Observed results confirmed the significant influence of the presence of magnetic particles on the structural properties and following behavior of 6CHTB.

  3. Simulation of weak anchoring effects on nematic liquid crystal hemispheres

    NASA Astrophysics Data System (ADS)

    Gillen, Sean; Somers, David A. T.; Munday, Jeremy N.

    The free energy of a nematic liquid crystal droplet depends on an interplay between elastic and surface interactions. When the two contributions are of similar magnitude, there exists a transition of the nematic structure of the droplet. Because the two contributions scale differently with length scales, this transition is visible as a function of the size of the droplet. We carry out numerical simulations to explore the use of this transition in measuring surface anchoring energies. This technique could help elucidate alignment forces on liquid crystals, such as those caused by rubbed surfaces, electric fields, or even the Casimir torque. Electrical and Computer Engineering.

  4. Selective Precipitation and Concentrating of Perovskite Crystals from Titanium-Bearing Slag Melt in Supergravity Field

    NASA Astrophysics Data System (ADS)

    Gao, Jintao; Zhong, Yiwei; Guo, Zhancheng

    2016-08-01

    Selective precipitation and concentrating of perovskite crystals from titanium-bearing slag melt in the supergravity field was investigated in this study. Since perovskite was the first precipitated phase from the slag melt during the cooling process, and a greater precipitation quantity and larger crystal sizes of perovskite were obtained at 1593 K to 1563 K (1320 °C to 1290 °C), concentrating of perovskite crystals from the slag melt was carried out at this temperature range in the supergravity field, at which the perovskite transforms into solid particles while the other minerals remain in the liquid melt. The layered structures appeared significantly in the sample obtained by supergravity treatment, and all the perovskite crystals moved along the supergravity direction and concentrated as the perovskite-rich phase in the bottom area, whereas the molten slag concentrated in the upper area along the opposite direction, in which it was impossible to find any perovskite crystals. With the gravity coefficient of G = 750, the mass fraction of TiO2 in the perovskite-rich phase was up to 34.65 wt pct, whereas that of the slag phase was decreased to 12.23 wt pct, and the recovery ratio of Ti in the perovskite-rich phase was up to 75.28 pct. On this basis, an amplification experimental centrifugal apparatus was exploited and the continuous experiment with larger scale was further carried out, the results confirming that selective precipitation and concentrating of perovskite crystals from the titanium-bearing slag melt by supergravity was a feasible method.

  5. Mechanism Analysis of the Inverse Doppler Effect in Two-Dimensional Photonic Crystal based on Phase Evolution.

    PubMed

    Jiang, Qiang; Chen, Jiabi; Wang, Yan; Liang, Binming; Hu, Jinbing; Zhuang, Songlin

    2016-04-22

    Although the inverse Doppler effect has been observed experimentally at optical frequencies in photonic crystal with negative effective refractive index, its explanation is based on phenomenological theory rather than a strict theory. Elucidating the physical mechanism underlying the inverse Doppler shift is necessary. In this article, the primary electrical field component in the photonic crystal that leads to negative refraction was extracted, and the phase evolution of the entire process when light travels through a moving photonic crystal was investigated using static and dynamic finite different time domain methods. The analysis demonstrates the validity of the use of np (the effective refractive index of the photonic crystal in the light path) in these calculations, and reveals the origin of the inverse Doppler effect in photonic crystals.

  6. Effect of hydrogen bonds on optical nonlinearities of inorganic crystals

    NASA Astrophysics Data System (ADS)

    Xue, Dongfeng; Zhang, Siyuan

    1999-03-01

    This work probes the role of hydrogen bonds (such as O-H⋯O and N-H⋯O) in some inorganic nonlinear optical (NLO) crystals, such as HIO 3, NH 4H 2PO 4 (ADP), K[B 5O 6(OH) 4]·2H 2O (KB 5) and K 2La(NO 3) 5·2H 2O (KLN), from the chemical bond standpoint. Second order NLO behaviors of these four typical inorganic crystals have been quantitatively studied, results show hydrogen bonds play a very important role in NLO contributions to the total nonlinearity. Conclusions derived here concerning the effect of hydrogen bonds on optical nonlinearities of inorganic crystals have important implications with regard to the utilization of hydrogen bonds in the structural design of inorganic NLO crystals.

  7. The Effect of Radiation "Memory" in Alkali-Halide Crystals

    NASA Astrophysics Data System (ADS)

    Korovkin, M. V.; Sal'nikov, V. N.

    2017-01-01

    The exposure of the alkali-halide crystals to ionizing radiation leads to the destruction of their structure, the emergence of radiation defects, and the formation of the electron and hole color centers. Destruction of the color centers upon heating is accompanied by the crystal bleaching, luminescence, and radio-frequency electromagnetic emission (REME). After complete thermal bleaching of the crystal, radiation defects are not completely annealed, as the electrons and holes released from the color centers by heating leave charged and locally uncompensated defects. Clusters of these "pre centers" lead to electric microheterogeneity of the crystal, the formation of a quasi-electret state, and the emergence of micro-discharges accompanied by radio emission. The generation of REME associated with residual defectiveness, is a manifestation of the effect of radiation "memory" in dielectrics.

  8. Shear effects on crystal nucleation in colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Cerdà, Juan J.; Sintes, Tomás; Holm, C.; Sorensen, C. M.; Chakrabarti, A.

    2008-09-01

    Extensive two-dimensional Langevin dynamics simulations are used to determine the effect of steady shear flows on the crystal nucleation kinetics of charge stabilized colloids and colloids whose pair potential possess an attractive shallow well of a few kBT ’s (attractive colloids). Results show that in both types of systems small amounts of shear speeds up the crystallization process and enhances the quality of the growing crystal significantly. Moderate shear rates, on the other hand, destroy the ordering in the system. The very high shear rate regime where a reentering transition to the ordered state could exist is not considered in this work. In addition to the crystal nucleation phenomena, the analysis of the transport properties and the characterization of the steady state regime under shear are performed.

  9. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory R.

    2000-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.

  10. Hybrid excitations due to crystal field, spin-orbit coupling, and spin waves in LiFePO4

    NASA Astrophysics Data System (ADS)

    Yiu, Yuen; Le, Manh Duc; Toft-Peterson, Rasmus; Ehlers, Georg; McQueeney, Robert J.; Vaknin, David

    2017-03-01

    We report on the spin waves and crystal field excitations in single crystal LiFePO4 by inelastic neutron scattering over a wide range of temperatures, below and above the antiferromagnetic transition of this system. In particular, we find extra excitations below TN=50 K that are nearly dispersionless and are most intense around magnetic zone centers. We show that these excitations correspond to transitions between thermally occupied excited states of Fe2 + due to splitting of the S =2 levels that arise from the crystal field and spin-orbit interactions. These excitations are further amplified by the highly distorted nature of the oxygen octahedron surrounding the iron atoms. Above TN, magnetic fluctuations are observed up to at least 720 K, with an additional inelastic excitation around 4 meV, which we attribute to single-ion effects, as its intensity weakens slightly at 720 K compared to 100 K, which is consistent with the calculated cross sections using a single-ion model. Our theoretical analysis, using the MF-RPA model, provides both detailed spectra of the Fe d shell and estimates of the average ordered magnetic moment and TN. By applying the MF-RPA model to a number of existing spin-wave results from other Li M PO4 (M =Mn , Co, and Ni), we are able to obtain reasonable predictions for the moment sizes and transition temperatures.

  11. Research of quasi-three-level thermal effect of diode-pumped Tm:YAG crystal

    NASA Astrophysics Data System (ADS)

    Niu, Yanxiong; Man, Da; Wang, Caili; Liu, Wenwen; Niu, Haisha

    2014-11-01

    The combination of volumetric heating of the laser material by the absorbed pump radiation and surface cooling required for heat extraction leads to a no uniform temperature distribution in the rod. With the coactions of pump field and coolant, the temperature gradient is formed within laser working medium, and then the thermal effects including thermal lens, thermal stress birefringence, etc. They all seriously restrict the output characteristics of laser. The uniform temperature field distribution in laser working medium weakens the influences of thermal effects in laser. The thermal effect of Tm:YAG laser generated by laser-diode pumping the Tm:YAG crystal is analyzed. After considering the quasi three-level structure of the crystal and the distribution of transmission power in the cavity, a more actual temperature field in the crystal is obtained by revamping the heat conversion coefficient. The thermal effects mechanics were analyzed at first, and then the physical and mathematical thermal analysis models were established based on the theoretical knowledge of thermal effects in LD pumped Tm:YAG laser. The method can be applied to the laser thermal effect research of quasi three-level. The analysis and the result can be referred to the thermal effect research of the solid state laser end-pumped by the LD and the optimal design of resonant cavity.

  12. Emergence of foams from the breakdown of the phase field crystal model

    NASA Astrophysics Data System (ADS)

    Guttenberg, Nicholas; Goldenfeld, Nigel; Dantzig, Jonathan

    2010-06-01

    The phase field crystal (PFC) model captures the elastic and topological properties of crystals with a single scalar field at small undercooling. At large undercooling, new foamlike behavior emerges. We characterize this foam phase of the PFC equation and propose a modified PFC equation that may be used for the simulation of foam dynamics. This minimal model reproduces von Neumann’s rule for two-dimensional dry foams and Lifshitz-Slyozov coarsening for wet foams. We also measure the coordination number distribution and find that its second moment is larger than previously reported experimental and theoretical studies of soap froths, a finding that we attribute to the wetness of the foam increasing with time.

  13. Flow and temperature field measurements of thermal convection in a small vertical gap using liquid crystals

    NASA Astrophysics Data System (ADS)

    Heiland, Hans Georg; Wozniak, Günter; Wozniak, Klaus

    2007-07-01

    Thermal convection in a small vertical gap is studied experimentally applying digital particle image velocimetry/thermometry. This optical method enables the simultaneous measurement of two-dimensional flow and temperature fields in a liquid. The principle is based on seeding the liquid flow medium with thermochromic liquid crystal particles. The temperature is measured by the crystal particles which change their reflected colour as function of temperature. The flow velocity is measured by using the same particles as flow tracers. The investigation shall contribute to the understanding of the fluid mechanical behaviour of biological liquids within micro reactor systems. However, the problem is also of fundamental interest as far as heat and mass transfer is concerned. Measured temperature and flow velocity fields are presented and discussed.

  14. Direct mapping of local director field of nematic liquid crystals at the nanoscale

    PubMed Central

    Xia, Yu; Serra, Francesca; Kamien, Randall D.; Stebe, Kathleen J.; Yang, Shu

    2015-01-01

    Liquid crystals (LCs), owing to their anisotropy in molecular ordering, are of wide interest in both the display industry and soft matter as a route to more sophisticated optical objects, to direct phase separation, and to facilitate colloidal assemblies. However, it remains challenging to directly probe the molecular-scale organization of nonglassy nematic LC molecules without altering the LC directors. We design and synthesize a new type of nematic liquid crystal monomer (LCM) system with strong dipole–dipole interactions, resulting in a stable nematic phase and strong homeotropic anchoring on silica surfaces. Upon photopolymerization, the director field can be faithfully “locked,” allowing for direct visualization of the LC director field and defect structures by scanning electron microscopy (SEM) in real space with 100-nm resolution. Using this technique, we study the nematic textures in more complex LC/colloidal systems and calculate the extrapolation length of the LCM. PMID:26621729

  15. Self-consistent density functional calculations of the crystal field levels in lanthanide and actinide dioxides

    NASA Astrophysics Data System (ADS)

    Zhou, Fei; Ozoliņš, Vidvuds

    2012-02-01

    Using a recently developed method combining a nonspherical self-interaction corrected LDA + U scheme and an on-site multibody Hamiltonian [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.83.085106 83, 085106 (2011)], we calculate the crystal field parameters and crystal field (CF) excitation levels of f-element dioxides in the fluorite structure with fn electronic configurations, including n=1 (PaO2, PrO2), n=2 (UO2), n=3 (NpO2), and n=4 (PuO2). It is shown that good agreement with experimental data (within approximately 10-20 meV) can be obtained in all cases. The properties of the multielectron CF ground states are analyzed.

  16. Intense THz radiation produced in organic salt crystals for high-field applications

    NASA Astrophysics Data System (ADS)

    Vicario, C.; Ruchert, C.; Hauri, C. P.

    2013-03-01

    Organic stilbazolium salt crystals pumped by intense, ultrashort mid-infrared laser have been investigated for efficient THz generation by optical rectification. In this paper we present our latest results in view of the generation of single-cycle and high-field THz transient in the THz gap (0.1-10 THz). The organic rectifiers like DAST, OH1 and DSTMS combine extremely large optical susceptibility with excellent velocity matching between the infrared pump and the THz radiation. Our simple collinear conversion scheme provides THz beams with excellent focusing properties and single cycle electric field larger than 1.5 MV/cm and magnetic field strength beyond 0.5 Tesla. The source can potentially cover the full THz gap at field strength which is barely provided by other THz sources. The THz pulse is carrier-envelope phase stable and the polarity of the field can be easily inverted.

  17. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Pu, Shengli; Ji, Hongzhu; Yu, Guojun

    2012-05-01

    Ferronematic materials composed of 4-cyano-4'-pentylbiphenyl nematic liquid crystal and oil-based Fe3O4 magnetic fluid were prepared using ultrasonic agitation. The birefringence (Δ n) and figure of merit of optical properties ( Q = Δ n/α, where α is the extinction coefficient) of pure magnetic fluids and the as-prepared ferronematic materials were examined and compared. The figure of merit of optical properties weighs the birefringence and extinction of the materials and is more appropriate to evaluate their optical properties. Similar magnetic-field- and magnetic-particle-concentration-dependent properties of birefringence and figure of merit of optical properties were obtained for the pure magnetic fluids and the ferronematic materials. For the ferronematic materials, the values of Q increase with the volume fractions of nematic liquid crystal under certain fixed field strength and are larger than those of their corresponding pure magnetic fluids at high field region. In addition, the enhancement of Q value increases monotonously with the magnetic field and becomes remarkable when the applied magnetic field is beyond 50 mT. The maximum relative enhanced value of Q R exceeds 6.8% in our experiments. The results of this work may conduce to extend the pragmatic applications of nanostructured magnetic fluids in optical field.

  18. Heteromorphism and crystallization paths of katungites, Navajo volcanic field, Arizona, USA

    SciTech Connect

    Laughlin, A.W.; Charles, R.W.; Aldrich, M.J. Jr.

    1986-01-01

    A swarm of thin, isochemical but heteromorphic dikes crops out in the valley of Hasbidito Creek in NE Arizona. The swarm is part of the dominantly potassic, mid-Tertiary Navajo volcanic field of the Colorado Plateau. Whole-rock chemical analyses of five samples from four of the dikes indicate that they are chemically identical to the katungites of Uganda. These dikes show the characteristic seriate-porphyritic texture of lamprophyres. Samples of an olivine-melilitite dike from the same swarm lack this texture and the chemical analysis, while similar to those of the other dikes, shows effects from the incorporation of xenocrystic olivine. Over 20 mineral phases have been identified in the Arizona samples and as many as 18 phases may occur in a single sample. The major phases are phlogopite, olivine, perovskite, opaque oxides, +- melilite and +- clinopyroxene. Based upon the modal mineralogies and textures of ten dike samples, we recognize five general non-equilibrium assemblages. Comparison of these assemblages with recent experimental results shows that they represent various combinations of complete and incomplete reactions. Reaction relations were determined by entering melt and phase compositions into the computer program GENMIX to obtain balanced reactions. By combining petrographic observations with mineral chemical data, balanced reactions from GENMIX, and the recently determined phase diagrams we are able to trace crystallization paths for the katungite magma.

  19. Strain of a BaTiO3 single crystal caused by the converse flexoelectric effect

    NASA Astrophysics Data System (ADS)

    Rumyantseva, E. D.; Zalesskii, V. G.

    2016-04-01

    The inhomogeneous strain induced by a homogeneous external electric field (the converse flexoelectric effect) has been studied in a thin BaTiO3 single crystal slab. The type of inhomogeneous strain (cylindrical and spherical bending) has been determined via the interference method, and its dependence on the applied filed is measured, as well. The influence of the domain structure on this effect has also been shown.

  20. Ni-Mn-Ga Single Crystal Exhibiting Multiple Magnetic Shape Memory Effects

    NASA Astrophysics Data System (ADS)

    Heczko, Oleg; Veřtát, Petr; Vronka, Marek; Kopecky, Vít; Perevertov, Oleksiy

    2016-09-01

    Both magnetically induced phase transformation and magnetically induced reorientation (MIR) effects were observed in one Ni50Mn28Ga22 single crystal sample by direct measurement of the magnetic field-induced strain. We investigated various twinning microstructures ranged from single twin interface to fine twinning and crossing twins to evaluate what controls the apparent twinning stress crucial for MIR. The main challenges for the applications of these effects are outlined.

  1. Effects of photocrosslinking on photorefractive properties in polymer-liquid crystal composites

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Hasebe, Ryoya; Sasaki, Tomoyuki; Noda, Kohei; Kawatsuki, Nobuhiro

    2014-03-01

    This article presents effects of photocrosslinking on photorefractive properties in polymer-liquid crystal composites doped with fullerene (C60) as a photoconductive agent. The efficiency of the photorefraction was improved by crosslinking the polymer network and reached near to the theoretical limit for the thin phase grating. The carrier conduction in the composite films was investigated and the high-performance photorefractivity of the photocrosslinked mesogenic composite was explained by low dark current and high photocurrent. The firm crosslinked polymer network in the polymer-liquid crystal composite has also employed for the stable photorefractive diffraction at elevated temperature and under a static dc field applied the mesogenic composite film.

  2. Dust Lattice Waves in Two-Dimensional Hexagonal Dust Crystals with an External Magnetic Field

    SciTech Connect

    Farokhi, B.; Shahmansouri, M.

    2008-09-07

    The influence of a constant magnetic field on the propagation of dust-lattice (DL) modes in a two-dimensional hexagonal strongly coupled plasma crystal formed by paramagnetic particles is considered. The expression for the wave dispersion relation clearly shows that high-frequency and low-frequency branches exist as a result of the coupling of longitudinal and transverse modes due to the Lorentz force acting on the dust particles.

  3. Tunable extended depth of field using a liquid crystal annular spatial filter.

    PubMed

    Klapp, Iftach; Solodar, Asi; Abdulhalim, Ibrahim

    2014-03-15

    A tunable extended depth of field (EDOF) imaging is presented using temporal multiplexing and a low-cost eight-ring, annular liquid crystal spatial light modulator. By changing between different phase profiles in the pupil plane of a lens we perform several levels of EDOF. Using these levels as a "database" it is shown by temporal multiplexing how to decompose tunable levels of EDOF.

  4. Observation of nonlinear bands in near-field scanning optical microscopy of a photonic-crystal waveguide

    SciTech Connect

    Singh, A.; Huisman, S. R.; Ctistis, G. Mosk, A. P.; Pinkse, P. W. H.; Korterik, J. P.; Herek, J. L.

    2015-01-21

    We have measured the photonic bandstructure of GaAs photonic-crystal waveguides with high resolution in energy as well as in momentum using near-field scanning optical microscopy. Intriguingly, we observe additional bands that are not predicted by eigenmode solvers, as was recently demonstrated by Huisman et al. [Phys. Rev. B 86, 155154 (2012)]. We study the presence of these additional bands by performing measurements of these bands while varying the incident light power, revealing a non-linear power dependence. Here, we demonstrate experimentally and theoretically that the observed additional bands are caused by a waveguide-specific near-field tip effect not previously reported, which can significantly phase-modulate the detected field.

  5. Direct and inverse magnetoelectric effects in HoAl{sub 3}(BO{sub 3}){sub 4} single crystal

    SciTech Connect

    Freydman, A. L.; Balaev, A. D.; Dubrovskiy, A. A.; Eremin, E. V.; Temerov, V. L.; Gudim, I. A.

    2014-05-07

    The direct (ME{sub H}-) and inverse (ME{sub E}-) magnetoelectric effects in the HoAl{sub 3}(BO{sub 3}){sub 4} single crystal are studied. Temperature and magnetic field dependences of permittivity of the crystal are investigated. A relation between the investigated effects was established. It was found that the magnetoelectric effect can exist in crystals without magnetic order or spontaneous polarization. It was shown that the phenomena investigated are due to magnetostriction or magnetoelastic effect. The thermodynamic potential was considered for describing magnetoelectric effect at low magnetic fields. The results obtained are explained within a proposed qualitative microscopic model, based on interplay of configuration of 4f- electron subshell of the rare-earth element and applied magnetic or electric field.

  6. Effect of dopant nanoparticles on reorientation process in polymer-dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Zobov, K. V.; Zharkova, G. M.; Syzrantsev, V. V.

    2016-01-01

    The analysis of the experimental data of the nanoscale powders application for doping polymer-dispersed liquid crystals (PDLC) was represented in this work. A model based on the separation of the liquid crystals reorientation process on the surface mode and the volume mode was proposed and tested. In the research the wide-spread model mixture PDLC were used. But alumina nanoparticles were the distinctive ones obtained by electron beam evaporation. The proposed model allowed to conclude that the nanoparticles localization at the surface of the droplets (as in the Pickering emulsion) lead to the variation of the connection force between the liquid crystals and the polymer. The effect of nanoparticles resulted in an acceleration of the reorientation process near the surface when the control field is turned on and in a deceleration when it is turned off. The effect for the different size particles was confirmed.

  7. Ambipolar phosphorene field effect transistor.

    PubMed

    Das, Saptarshi; Demarteau, Marcel; Roelofs, Andreas

    2014-11-25

    In this article, we demonstrate enhanced electron and hole transport in few-layer phosphorene field effect transistors (FETs) using titanium as the source/drain contact electrode and 20 nm SiO2 as the back gate dielectric. The field effect mobility values were extracted to be ∼38 cm(2)/Vs for electrons and ∼172 cm(2)/Vs for the holes. On the basis of our experimental data, we also comprehensively discuss how the contact resistances arising due to the Schottky barriers at the source and the drain end effect the different regime of the device characteristics and ultimately limit the ON state performance. We also propose and implement a novel technique for extracting the transport gap as well as the Schottky barrier height at the metal-phosphorene contact interface from the ambipolar transfer characteristics of the phosphorene FETs. This robust technique is applicable to any ultrathin body semiconductor which demonstrates symmetric ambipolar conduction. Finally, we demonstrate a high gain, high noise margin, chemical doping free, and fully complementary logic inverter based on ambipolar phosphorene FETs.

  8. Gentle, fast and effective crystal soaking by acoustic dispensing

    PubMed Central

    Ng, Jia Tsing; Talon, Romain; Nekrosiute, Karolina; Krojer, Tobias; Douangamath, Alice; Brandao-Neto, Jose; Pearce, Nicholas M.; von Delft, Frank

    2017-01-01

    The steady expansion in the capacity of modern beamlines for high-throughput data collection, enabled by increasing X-ray brightness, capacity of robotics and detector speeds, has pushed the bottleneck upstream towards sample preparation. Even in ligand-binding studies using crystal soaking, the experiment best able to exploit beamline capacity, a primary limitation is the need for gentle and nontrivial soaking regimens such as stepwise concentration increases, even for robust and well characterized crystals. Here, the use of acoustic droplet ejection for the soaking of protein crystals with small molecules is described, and it is shown that it is both gentle on crystals and allows very high throughput, with 1000 unique soaks easily performed in under 10 min. In addition to having very low compound consumption (tens of nanolitres per sample), the positional precision of acoustic droplet ejection enables the targeted placement of the compound/solvent away from crystals and towards drop edges, allowing gradual diffusion of solvent across the drop. This ensures both an improvement in the reproducibility of X-ray diffraction and increased solvent tolerance of the crystals, thus enabling higher effective compound-soaking concentrations. The technique is detailed here with examples from the protein target JMJD2D, a histone lysine demethylase with roles in cancer and the focus of active structure-based drug-design efforts. PMID:28291760

  9. Direct AFM observations of impurity effects on a lysozyme crystal

    NASA Astrophysics Data System (ADS)

    Nakada, Toshitaka; Sazaki, Gen; Miyashita, Satoru; Durbin, Stephen D.; Komatsu, Hiroshi

    1999-01-01

    Impurity effects on the growth of tetragonal lysozyme crystals have been studied using in situ atomic force microscopy. Commercially available hen egg white lysozyme was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis with silver staining, and purified by re-crystallization and successive high pressure liquid chromatography. On the (1 1 0) crystal surface, there was no significant difference in morphology between crystals grown in commercial and in purified solutions. On the (1 0 1) surface, however, a large number of small particles were found when the crystal was grown in the commercial solution, while the surface grown in the purified solution was quite smooth. Among the typical residual impurities contained in commercial lysozyme, only covalently bound lysozyme dimer yielded such particles. From measurements of particle separation and an estimate of the critical nucleation size, we infer that the particles reduced the step velocity according to the mechanism described by Cabrera et al. [N. Cabrera, D.A. Vermilyea, in: R.H. Doremus et al. (Eds.), Growth and Perfection of Crystals, 1958, P. 393].

  10. Gentle, fast and effective crystal soaking by acoustic dispensing.

    PubMed

    Collins, Patrick M; Ng, Jia Tsing; Talon, Romain; Nekrosiute, Karolina; Krojer, Tobias; Douangamath, Alice; Brandao-Neto, Jose; Wright, Nathan; Pearce, Nicholas M; von Delft, Frank

    2017-03-01

    The steady expansion in the capacity of modern beamlines for high-throughput data collection, enabled by increasing X-ray brightness, capacity of robotics and detector speeds, has pushed the bottleneck upstream towards sample preparation. Even in ligand-binding studies using crystal soaking, the experiment best able to exploit beamline capacity, a primary limitation is the need for gentle and nontrivial soaking regimens such as stepwise concentration increases, even for robust and well characterized crystals. Here, the use of acoustic droplet ejection for the soaking of protein crystals with small molecules is described, and it is shown that it is both gentle on crystals and allows very high throughput, with 1000 unique soaks easily performed in under 10 min. In addition to having very low compound consumption (tens of nanolitres per sample), the positional precision of acoustic droplet ejection enables the targeted placement of the compound/solvent away from crystals and towards drop edges, allowing gradual diffusion of solvent across the drop. This ensures both an improvement in the reproducibility of X-ray diffraction and increased solvent tolerance of the crystals, thus enabling higher effective compound-soaking concentrations. The technique is detailed here with examples from the protein target JMJD2D, a histone lysine demethylase with roles in cancer and the focus of active structure-based drug-design efforts.

  11. Effect of Viscosity on the Crystallization of Undercooled Liquids

    NASA Technical Reports Server (NTRS)

    2003-01-01

    There have been numerous studies of glasses indicating that low-gravity processing enhances glass formation. NASA PI s are investigating the effect of low-g processing on the nucleation and crystal growth rates. Dr. Ethridge is investigating a potential mechanism for glass crystallization involving shear thinning of liquids in 1-g. For shear thinning liquids, low-g (low convection) processing will enhance glass formation. The study of the viscosity of glass forming substances at low shear rates is important to understand these new crystallization mechanisms. The temperature dependence of the viscosity of undercooled liquids is also very important for NASA s containerless processing studies. In general, the viscosity of undercooled liquids is not known, yet knowledge of viscosity is required for crystallization calculations. Many researchers have used the Turnbull equation in error. Subsequent nucleation and crystallization calculations can be in error by many orders of magnitude. This demonstrates the requirement for better methods for interpolating and extrapolating the viscosity of undercooled liquids. This is also true for undercooled water. Since amorphous water ice is the predominant form of water in the universe, astrophysicists have modeled the crystallization of amorphous water ice with viscosity relations that may be in error by five orders-of-magnitude.

  12. `Guest-host' effect in liquid crystal mixtures

    NASA Astrophysics Data System (ADS)

    Suchodolska, B.; Rudzki, A.; Ossowska-Chruściel, M. D.; Zalewski, S.; Chruściel, J.

    2015-01-01

    The most important goal of our research is to show the influence of the 'guest' (bent-core mesogen, 1,3-phenyldicarboxylatebis{4-[(4-octylbenzoyl)sulphanyl]phenyl} [IFOS8], banana-shaped liquid crystal [BLC]) on the 'host' (calamitic liquid crystal [CLC], (S)-(+)-1-methylheptyloxybiphenyl-(4-n-octylphenyl)thiobenzoate [MHOBS8]), on the stability and the destabilization of the antiferroelectric B2 and the ferroelectric smectic C* (SmC*) phases, and change of the temperature ranges of other phases in the binary liquid crystal mixtures. This work is focused on polymorphism of three new binary liquid crystal mixtures, exhibiting a 'guest-host' (guest liquid crystal-host liquid crystal [GH-LC]) effect. MHOBS8 has, among others, a ferroelectric SmC* phase, and IFOS8 assumes the B2 phase with antiferroelectric properties. The observed properties of the mixtures, such as variation of the phase transition temperatures, spontaneous polarization, tilt angle and switching time, are characteristic of a 'guest-host' mixture. The influence of BLC on the character of the interactions within the CLC host is discussed, with particular attention paid to electro-optical properties of the GH-LC mixtures.

  13. Crystal field parameters with Wannier functions: Application to rare-earth aluminates

    NASA Astrophysics Data System (ADS)

    Novák, P.; Knížek, K.; Kuneš, J.

    2013-05-01

    A method to calculate the crystal field parameters is proposed and applied to trivalent rare-earth impurities in yttrium aluminate and to Tb3+ ion in TbAlO3. To determine crystal field parameters local Hamiltonian expressed in the basis of Wannier functions is expanded in a series of spherical tensor operators. Wannier functions are obtained by transforming the Bloch functions calculated using the density functional theory based program. The results show that the crystal field is continuously decreasing as the number of 4f electrons increases and that the hybridization of 4f states with the states of oxygen ligands is important. The method contains a single adjustable parameter characterizing the 4f-ligand charge transfer. Theory is confronted with experiment for Nd3+ and Er3+ ions in the YAlO3 matrix and for the Tb3+ ion in TbAlO3, and a good agreement within a few meV is found.

  14. Evaluation of the exchange interaction and crystal fields in a prototype Dy2 SMM

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Sarachik, Myriam; Baker, Michael; Chen, Yizhang; Kent, Andrew; Pineda, Eufemio; McInnes, Eric

    In order to gain an understanding of the INS and magnetization data obtained for Dy2, the simplest member of a newly synthesized family of dysprosium-based molecular magnets, we report on calculations of the magnetic behavior of a Dy2 cluster with the formula [hqH2][Dy2(hq)4(NO3)3].MeOH. The molecular complex contains one high symmetry Dy(III) ion and one low symmetry Dy(III) ion. Our calculations suggest that exchange coupling between the two ions controls the behavior of the magnetization at low temperature, while the crystal field of the low symmetry Dy(III) ion controls the behavior at higher temperature. A point charge electrostatic model, based on crystallographic coordinates, provides a starting point for the determination of the crystal field. Parameters in these calculations are adjusted to provide best fits to inelastic neutron scattering data (INS) and low temperature magnetometry: the INS measurements access crystal field energies and low temperature magnetization probes the Dy-Dy exchange interaction. Work supported by ARO W911NF-13-1-1025 (CCNY) and NSF-DMR-1309202 (NYU).

  15. The paleomagnetism of single silicate crystals: Recording geomagnetic field strength during mixed polarity intervals, superchrons, and inner core growth

    NASA Astrophysics Data System (ADS)

    Tarduno, J. A.; Cottrell, R. D.; Smirnov, A. V.

    2006-03-01

    The basic features of the geomagnetic reversal chronology of the last 160 million years are well established. The relationship between this history and other features of the field, however, has been elusive. The determination of past field strength (paleointensity) is especially challenging. Commonly accepted results have come from analyses of bulk samples of lava. Historic lavas have been shown to faithfully record the past field strength when analyzed using the Thellier double-heating method. Data from older lavas, however, tend to show effects of in situ and laboratory-induced alteration. Here we review an alternative approach. Single plagioclase crystals can contain minute magnetic inclusions, 50-350 nm in size, that are potential high-fidelity field recorders. Thellier experiments using plagioclase feldspars from an historic lava on Hawaii provide a benchmark for the method. Rock magnetic data from older lavas indicate that the feldspars are less susceptible to experimental alteration than bulk samples. This resistance is likely related to the lack of clays. In addition, magnetic minerals are sheltered by the encasing silicate matrix from natural alteration that can otherwise transform the well-defined thermoremanent magnetization into an irresolute chemical remanent magnetization. If there is a relationship between geomagnetic reversal frequency and paleointensity, it should be best expressed during superchrons, intervals with few (or no) reversals. Thellier data sets based on single plagioclase crystals from lavas erupted during the Cretaceous Normal Polarity Superchron (~83-120 million years ago) suggest a strong (>12 × 1022 Am2), stable field, consistent with an inverse relationship between reversal frequency and paleointensity. Superchrons may represent times when the pattern of core-mantle boundary heat flux allows the geodynamo to operate at peak efficiency, as suggested in some numerical models. Thellier data from single plagioclase crystals formed

  16. First visualization of temperature fields in liquids at high pressure using thermochromic liquid crystals

    NASA Astrophysics Data System (ADS)

    Pehl, M.; Werner, F.; Delgado, A.

    A first application of encapsulated thermochromic liquid crystals (TLCs) for visualizing temperature fields in pressurized liquids was studied experimentally. By means of a tempered high-pressure optical cell, investigations were performed in a wide temperature range and at pressures up to 7000bar. The measured calibration curves of isochromes in the pressure/temperature domain as well as photographically documented temperature fields at high pressure are presented and discussed. The results found illustrate that TLCs provide an efficient instrument for investigating thermofluiddynamical processes even at high pressure.

  17. A molecular-field approximation for quantum crystals. Ph.D. Thesis; [considering ground state properties

    NASA Technical Reports Server (NTRS)

    Danilowicz, R.

    1973-01-01

    Ground-state properties of quantum crystals have received considerable attention from both theorists and experimentalists. The theoretical results have varied widely with the Monte Carlo calculations being the most successful. The molecular field approximation yields ground-state properties which agree closely with the Monte Carlo results. This approach evaluates the dynamical behavior of each pair of molecules in the molecular field of the other N-2 molecules. In addition to predicting ground-state properties that agree well with experiment, this approach yields data on the relative importance of interactions of different nearest neighbor pairs.

  18. Modeling Multiple Time Scales during Glass Formation with Phase-Field Crystals

    SciTech Connect

    Berry, Joel; Grant, Martin

    2011-04-29

    The dynamics of glass formation in monatomic and binary liquids are studied numerically using a microscopic field theory for the evolution of the time-averaged atomic number density. A stochastic framework combining phase-field crystal free energies and dynamic density functional theory is shown to successfully describe several aspects of glass formation over multiple time scales. Agreement with mode coupling theory is demonstrated for underdamped liquids at moderate supercoolings, and a rapidly growing dynamic correlation length is found to be associated with fragile behavior.

  19. A photonic-crystal optical antenna for extremely large local-field enhancement.

    PubMed

    Chang, Hyun-Joo; Kim, Se-Heon; Lee, Yong-Hee; Kartalov, Emil P; Scherer, Axel

    2010-11-08

    We propose a novel design of an all-dielectric optical antenna based on photonic-band-gap confinement. Specifically, we have engineered the photonic-crystal dipole mode to have broad spectral response (Q~70) and well-directed vertical-radiation by introducing a plane mirror below the cavity. Considerably large local electric-field intensity enhancement~4,500 is expected from the proposed design for a normally incident planewave. Furthermore, an analytic model developed based on coupled-mode theory predicts that the electric-field intensity enhancement can easily be over 100,000 by employing reasonably high-Q (~10,000) resonators.

  20. Faraday effect in Sn2P2S6 crystals.

    PubMed

    Krupych, Oleh; Adamenko, Dmytro; Mys, Oksana; Grabar, Aleksandr; Vlokh, Rostyslav

    2008-11-10

    We have revealed a large Faraday rotation in tin thiohypodiphosphate (Sn(2)P(2)S(6)) crystals, which makes this material promising for magneto-optics. The effective Faraday tensor component and the Verdet constant for the direction of the optic axis have been determined by measuring the pure Faraday rotation in Sn(2)P(2)S(6) crystals with both the single-ray and small-angular polarimetric methods at the normal conditions and a wavelength of 632.8 nm. The effective Verdet constant is found to be equal to 115 rad/T x m.

  1. Quantum effects for particles channeling in a bent crystal

    NASA Astrophysics Data System (ADS)

    Feranchuk, Ilya; San, Nguyen Quang

    2016-09-01

    Quantum mechanical theory for channeling of the relativistic charged particles in the bent crystals is considered in the paper. Quantum effects of under-barrier tunneling are essential when the radius of the curvature is closed to its critical value. In this case the wave functions of the quasi-stationary states corresponding to the particles captured in a channel are presented in the analytical form. The efficiency of channeling of the particles and their angular distribution at the exit crystal surface are calculated. Characteristic experimental parameters for observation the quantum effects are estimated.

  2. The effect of CuII ions in L-asparagine single crystals

    NASA Astrophysics Data System (ADS)

    Santana, Ricardo C.; Gontijo, Henrique O.; Menezes, Arthur F.; Martins, José A.; Carvalho, Jesiel F.

    2016-11-01

    We report the synthesis, crystal growth, and spectroscopic characterization of L-asparagine monohydrate (LAM) single crystals doped with CuII. The crystals were successfully grown by slow cooling from a supersaturated aqueous solution up to size of 16×12×2 mm3;the effect of copper impurities in the crystals morphology was discussed. Electron Paramagnetic Resonance (EPR) was used to calculate the g and hyperfine coupling (A) tensors of the CuII ions (g1=2.044, g2=2.105, g3=2.383and A1≈0, A2=35, A3=108 Gauss). The EPR spectra for certain orientations of the magnetic field suggest that CuII ions are coordinated to two 14N atoms. Correlating the EPR and optical absorption results, the crystal field and the CuII orbital bond parameters were calculated. The results indicate that the paramagnetic center occupies interstitial rhombic distorted site and the ground orbital state for the unpaired electron is the d(x2-y2).

  3. Crystal fields of porphyrins and phthalocyanines from polarization-dependent 2p-to-3d multiplets.

    PubMed

    Johnson, Phillip S; García-Lastra, J M; Kennedy, Colton K; Jersett, Nathan J; Boukahil, Idris; Himpsel, F J; Cook, Peter L

    2014-03-21

    Polarization-dependent X-ray absorption spectroscopy is combined with density functional calculations and atomic multiplet calculations to determine the crystal field parameters 10Dq, Ds, and Dt of transition metal phthalocyanines and octaethylporphyrins (Mn, Fe, Co, Ni). The polarization dependence facilitates the assignment of the multiplets in terms of in-plane and out-of-plane orbitals and avoids ambiguities. Crystal field values from density functional calculations provide starting values close to the optimum fit of the data. The resulting systematics of the crystal field can be used for optimizing electron-hole separation in dye-sensitized solar cells.

  4. Crystal fields of porphyrins and phthalocyanines from polarization-dependent 2p-to-3d multiplets

    SciTech Connect

    Johnson, Phillip S.; Boukahil, Idris; Himpsel, F. J.; García-Lastra, J. M.; Kennedy, Colton K.; Jersett, Nathan J.; Cook, Peter L.

    2014-03-21

    Polarization-dependent X-ray absorption spectroscopy is combined with density functional calculations and atomic multiplet calculations to determine the crystal field parameters 10Dq, Ds, and Dt of transition metal phthalocyanines and octaethylporphyrins (Mn, Fe, Co, Ni). The polarization dependence facilitates the assignment of the multiplets in terms of in-plane and out-of-plane orbitals and avoids ambiguities. Crystal field values from density functional calculations provide starting values close to the optimum fit of the data. The resulting systematics of the crystal field can be used for optimizing electron-hole separation in dye-sensitized solar cells.

  5. Crystal fields of porphyrins and phthalocyanines from polarization-dependent 2p-to-3d multiplets

    NASA Astrophysics Data System (ADS)

    Johnson, Phillip S.; García-Lastra, J. M.; Kennedy, Colton K.; Jersett, Nathan J.; Boukahil, Idris; Himpsel, F. J.; Cook, Peter L.

    2014-03-01

    Polarization-dependent X-ray absorption spectroscopy is combined with density functional calculations and atomic multiplet calculations to determine the crystal field parameters 10Dq, Ds, and Dt of transition metal phthalocyanines and octaethylporphyrins (Mn, Fe, Co, Ni). The polarization dependence facilitates the assignment of the multiplets in terms of in-plane and out-of-plane orbitals and avoids ambiguities. Crystal field values from density functional calculations provide starting values close to the optimum fit of the data. The resulting systematics of the crystal field can be used for optimizing electron-hole separation in dye-sensitized solar cells.

  6. Phase-field Simulations of Te-Precipitate Morphology and Evolution Kinetics in Te-Rich CdTe Crystals

    SciTech Connect

    Hu, Shenyang Y.; Henager, Charles H.

    2009-05-15

    Te precipitates are one of main defects that form during the cooling process of as–grown CdTe crystals. Many factors such as the kinetic properties of intrinsic point defects (vacancy, interstitial, and antisites), internal stresses around the precipitates associated with the lattice mismatch between the precipitate and matrix, thermal stresses due to temperature gradients, extended defects (dislocations, twin and grain boundaries), non-stoichiometric composition, and the thermal treatment processing might all affect the formation and growth/dissolution of Te precipitates. A good understanding of these effects on Te precipitate evolution kinetics is technically important in order to optimize the material process and obtain high quality crystals. This work aims to develop a phase-field model for investigating the evolution of a Te-precipitate in a Te-rich CdTe crystal under cooling. Cd vacancies and Te interstitials are assumed to be the diffusion species in the system. We also assume that the system is in two phase equilibrium (matrix CdTe and liquid Cd-Te droplet) at high temperatures and three phase equilibrium (matrix CdTe, Te-precipitate, and void) at low temperatures. With the thermodynamic and kinetic properties from experimental phase diagrams and thermodynamic calculations, the effect of Te and vacancy mobility, cooling rates and internal stresses on Te-precipitate and void evolution kinetics are investigated.

  7. Photovoltage field-effect transistors

    NASA Astrophysics Data System (ADS)

    Adinolfi, Valerio; Sargent, Edward H.

    2017-02-01

    The detection of infrared radiation enables night vision, health monitoring, optical communications and three-dimensional object recognition. Silicon is widely used in modern electronics, but its electronic bandgap prevents the detection of light at wavelengths longer than about 1,100 nanometres. It is therefore of interest to extend the performance of silicon photodetectors into the infrared spectrum, beyond the bandgap of silicon. Here we demonstrate a photovoltage field-effect transistor that uses silicon for charge transport, but is also sensitive to infrared light owing to the use of a quantum dot light absorber. The photovoltage generated at the interface between the silicon and the quantum dot, combined with the high transconductance provided by the silicon device, leads to high gain (more than 104 electrons per photon at 1,500 nanometres), fast time response (less than 10 microseconds) and a widely tunable spectral response. Our photovoltage field-effect transistor has a responsivity that is five orders of magnitude higher at a wavelength of 1,500 nanometres than that of previous infrared-sensitized silicon detectors. The sensitization is achieved using a room-temperature solution process and does not rely on traditional high-temperature epitaxial growth of semiconductors (such as is used for germanium and III–V semiconductors). Our results show that colloidal quantum dots can be used as an efficient platform for silicon-based infrared detection, competitive with state-of-the-art epitaxial semiconductors.

  8. Graphene field-effect transistors

    NASA Astrophysics Data System (ADS)

    Reddy, Dharmendar; Register, Leonard F.; Carpenter, Gary D.; Banerjee, Sanjay K.

    2011-08-01

    Owing in part to scaling challenges for metal oxide semiconductor field-effect transistors (MOSFETs) and complementary metal oxide semiconductor (CMOS) logic, the semiconductor industry is placing an increased emphasis on emerging materials and devices that may provide improved MOSFET performance beyond the 22 nm node, or provide novel functionality for, e.g. 'beyond CMOS' devices. Graphene, with its novel and electron-hole symmetric band structure and its high carrier mobilities and thermal velocities, is one such material that has garnered a great deal of interest for both purposes. Single and few layer carbon sheets have been fabricated by a variety of techniques including mechanical exfoliation and chemical vapour deposition, and field-effect transistors have been demonstrated with room-temperature mobilities as high as 10 000 cm2 V-1 s-1. But graphene is a gapless semiconductor and gate control of current is challenging, off-state leakage currents are high, and current does not readily saturate with drain voltage. However, various ways to overcome, adapt to, or even embrace this property are now being considered for device applications. In this work we explore through illustrative examples the potential of and challenges to graphene use for conventional and novel device applications.

  9. Protein phase behavior and crystallization: Effect of glycerol

    NASA Astrophysics Data System (ADS)

    Sedgwick, H.; Cameron, J. E.; Poon, W. C. K.; Egelhaaf, S. U.

    2007-09-01

    Glycerol is widely used as an additive to stabilize proteins in aqueous solution. We have studied the effect of up to 40wt% glycerol on the crystallization of lysozyme from brine. As the glycerol concentration increased, progressively larger amounts of salt were needed to crystallize the protein. Like previous authors, we interpret this as evidence for glycerol changing the interaction between lysozyme molecules. We quantitatively model the interprotein interaction using a Derjaguin-Landau-Verwey-Overbeek potential. We find that the effect of glycerol can be entirely accounted for by the way it modifies the dielectric constant and refractive index of the solvent. Quantifying the interprotein interaction by the second virial coefficient, B2, we find a universal crystallization boundary for all glycerol concentrations.

  10. Protein phase behavior and crystallization: effect of glycerol.

    PubMed

    Sedgwick, H; Cameron, J E; Poon, W C K; Egelhaaf, S U

    2007-09-28

    Glycerol is widely used as an additive to stabilize proteins in aqueous solution. We have studied the effect of up to 40 wt % glycerol on the crystallization of lysozyme from brine. As the glycerol concentration increased, progressively larger amounts of salt were needed to crystallize the protein. Like previous authors, we interpret this as evidence for glycerol changing the interaction between lysozyme molecules. We quantitatively model the interprotein interaction using a Derjaguin-Landau-Verwey-Overbeek potential. We find that the effect of glycerol can be entirely accounted for by the way it modifies the dielectric constant and refractive index of the solvent. Quantifying the interprotein interaction by the second virial coefficient, B(2), we find a universal crystallization boundary for all glycerol concentrations.

  11. Molecular dynamics simulations of dislocations in TlBr crystals under an electrical field

    SciTech Connect

    Zhou, X. W.; Foster, M. E.; Yang, P.; Doty, F. P.

    2016-07-13

    TlBr crystals have superior radiation detection properties; however, their properties degrade in the range of hours to weeks when an operating electrical field is applied. To account for this rapid degradation using the widely-accepted vacancy migration mechanism, the vacancy concentration must be orders of magnitude higher than any conventional estimates. The present work has incorporated a new analytical variable charge model in molecular dynamics (MD) simulations to examine the structural changes of materials under electrical fields. Our simulations indicate that dislocations in TlBr move under electrical fields. As a result, this discovery can lead to new understanding of TlBr aging mechanisms under external fields.

  12. Nematic liquid crystals in a spatially step-wise magnetic field

    NASA Astrophysics Data System (ADS)

    Napoli, Gaetano; Scaraggi, Michele

    2016-01-01

    We study the molecular reorientation induced by a textured external field in a nematic liquid crystal (nLC). In particular, we consider an infinitely wide cell with strong planar anchoring boundary conditions, subjected to a spatially periodic piecewise magnetic field. In the framework of the Frank's continuum theory, we use the perturbation analysis to study in detail the field-induced splay-bend Fréedericksz transition. A numerical approach, based on the finite differences method, is instead employed to solve the fully nonlinear equations. At high field strengths, an analytic approach allows us to draw the bulk profile of the director in terms of elliptic integrals. Finally, through the application of the Bruggeman texture hydrodynamics theory, we qualitatively discuss on the LCs piecewise director configuration under sliding interfaces, which can be adopted to actively regulate friction. Our study opens the pathway for the application of highly controlled nLC texturing for tribotronics.

  13. Wide-Viewing-Angle Hybrid Aligned Nematic Liquid Crystal Cell Controlled by Complex Electric Field

    NASA Astrophysics Data System (ADS)

    Hong, Seung Ho; Kim, Hyang Yul; Kim, Jae-Hyung; Nam, Sang-Hee; Lee, Myong-Hoon; Lee, Seung Hee

    2002-07-01

    We have developed a hybrid aligned nematic liquid crystal (LC) cell driven by a complex electric field. In the device, the pixel electrode exists on the bottom substrate and the counter electrodes exist on the top and bottom substrates such that with a bias voltage both vertical and horizontal fields are generated. The LC molecules are hybrid aligned with homogeneous alignment on the bottom substrate where the alignment direction is coincident with one of the transmission axes of the crossed polarizers. Therefore, the cell appears to be black in the absence of an electric field. When a voltage is applied to obtain a white state, both vertical and horizontal fields enable the LC molecules to rotate with lowered tilt angles than those in the dark state. The device shows a much wider viewing angle than that of the twisted nematic mode, high light efficiency and low driving voltage in electro-optic characteristics.

  14. Molecular dynamics simulations of dislocations in TlBr crystals under an electrical field

    DOE PAGES

    Zhou, X. W.; Foster, M. E.; Yang, P.; ...

    2016-07-13

    TlBr crystals have superior radiation detection properties; however, their properties degrade in the range of hours to weeks when an operating electrical field is applied. To account for this rapid degradation using the widely-accepted vacancy migration mechanism, the vacancy concentration must be orders of magnitude higher than any conventional estimates. The present work has incorporated a new analytical variable charge model in molecular dynamics (MD) simulations to examine the structural changes of materials under electrical fields. Our simulations indicate that dislocations in TlBr move under electrical fields. As a result, this discovery can lead to new understanding of TlBr agingmore » mechanisms under external fields.« less

  15. All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers.

    PubMed

    Gao, R; Jiang, Y; Abdelaziz, S

    2013-05-01

    A method for measurement of a magnetic field by combining photonic crystal fibers (PCFs) and magnetic fluid is presented and experimentally demonstrated. The magnetic fluid is filled into the air holes of the cladding layer in the PCF. Due to the tunable refractive index property of the magnetic fluid, the refractive index difference between the fiber core and cladding layer is changed with the external magnetic field. The magnetic field can be directly detected by measuring the intensity of the transmission light. A series of magnetic fields with different strengths have been measured with the sensor. The experimental results show that a resolution of up to 0.09 Oe is achieved, and a good repetition is demonstrated experimentally. Compared with other expensive methods, the proposed method possesses high sensitivity and low cost.

  16. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields.

    SciTech Connect

    Armas-Perez, Julio C.; Londono-Hurtado, Alejandro; Guzman, Orlando; Hernandez-Ortiz, Juan P.; de Pablo, Juan J.

    2015-07-27

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.

  17. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields

    SciTech Connect

    Armas-Pérez, Julio C.; Londono-Hurtado, Alejandro; Guzmán, Orlando; Hernández-Ortiz, Juan P.; Pablo, Juan J. de

    2015-07-28

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.

  18. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields.

    PubMed

    Armas-Pérez, Julio C; Londono-Hurtado, Alejandro; Guzmán, Orlando; Hernández-Ortiz, Juan P; de Pablo, Juan J

    2015-07-28

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.

  19. Effects of Packaging SrI2(Eu) Scintillator Crystals

    SciTech Connect

    Sturm, Benjamin; Cherepy, Nerine; Drury, Owen; Thelin, P; Fisher, S E; Payne, Stephen A.; Burger, Arnold; Boatner, Lynn A; Ramey, Joanne Oxendine; Shah, Kanai; Hawrami, Rastgo

    2011-01-01

    Recent renewed emphasis placed on gamma-ray detectors for national security purposes has motivated 13 researchers to identify and develop new scintillator materials capable of high energy resolution and 14 growable to large sizes. We have discovered that SrI2(Eu) has many desirable properties for gamma-ray 15 detection and spectroscopy, including high light yield of ~90,000 photons/MeV and excellent light yield 16 proportionality. Furthermore, we have demonstrated growth of crack-free 2 diameter boules. We 17 have measured <2.7% FWHM at 662 keV with small detectors (<1 cm3) in direct contact with a 18 photomultiplier tube, and ~3% resolution at 662 keV is obtained for 1 in3 crystals. Due to the 19 hygroscopic nature of SrI2(Eu), proper packaging is required for field use. This work describes a 20 systematic study performed to determine the key factors in the packaging process to optimize 21 performance. These factors include proper polishing of the surface, the geometry of the crystal, 22 reflector materials and windows. A technique based on use of a collimated Cs-137 source was developed 23 to examine light collection uniformity. Employing this technique, we found that when the crystal is 24 packaged properly, the variance in the pulse height at 662 keV from events near the bottom of the 25 crystal compared to those near the top of the crystal could be reduced to <1%. This paper describes the 26 design and engineering of our detector package in order to improve energy resolution of 1 in3-scale 27 SrI2(Eu) crystals.

  20. Confined Crystal Growth in Space. Deterministic vs Stochastic Vibroconvective Effects

    NASA Astrophysics Data System (ADS)

    Ruiz, Xavier; Bitlloch, Pau; Ramirez-Piscina, Laureano; Casademunt, Jaume

    The analysis of the correlations between characteristics of the acceleration environment and the quality of the crystalline materials grown in microgravity remains an open and interesting question. Acceleration disturbances in space environments usually give rise to effective gravity pulses, gravity pulse trains of finite duration, quasi-steady accelerations or g-jitters. To quantify these disturbances, deterministic translational plane polarized signals have largely been used in the literature [1]. In the present work, we take an alternative approach which models g-jitters in terms of a stochastic process in the form of the so-called narrow-band noise, which is designed to capture the main statistical properties of realistic g-jitters. In particular we compare their effects so single-frequency disturbances. The crystalline quality has been characterized, following previous analyses, in terms of two parameters, the longitudinal and the radial segregation coefficients. The first one averages transversally the dopant distribution, providing continuous longitudinal information of the degree of segregation along the growth process. The radial segregation characterizes the degree of lateral non-uniformity of the dopant in the solid-liquid interface at each instant of growth. In order to complete the description, and because the heat flux fluctuations at the interface have a direct impact on the crystal growth quality -growth striations -the time dependence of a Nusselt number associated to the growing interface has also been monitored. For realistic g-jitters acting orthogonally to the thermal gradient, the longitudinal segregation remains practically unperturbed in all simulated cases. Also, the Nusselt number is not significantly affected by the noise. On the other hand, radial segregation, despite its low magnitude, exhibits a peculiar low-frequency response in all realizations. [1] X. Ruiz, "Modelling of the influence of residual gravity on the segregation in

  1. Effect of crystal habit on the dissolution behaviour of simvastatin crystals and its relationship to crystallization solvent properties.

    PubMed

    Bukovec, P; Benkic, P; Smrkolj, M; Vrecer, F

    2016-05-01

    Simvastatin crystals, having same crystal structure but different types of habits and hence different intrinsic dissolution rate, were prepared by recrystallization from solvents selected according to their polarity index. Scanning electron microscopy, laser diffraction, image analysis, X-ray powder diffractometry, Fourier transform infrared spectroscopy and differential scanning calorimetry were used to investigate the physicochemical characteristics of the prepared crystals. The isolated crystals exhibited different crystal habits but possessed the same internal crystal structure. In this study the comparative intrinsic dissolution behaviour of the simvastatin crystals with different types of habits was studied and explained by surface energy and correlated to different solvent systems that were used for crystallization. In our work we diminished the influence of all other physical parameters that could influence the dissolution rate, e.g. particle size, specific surface area and polymorphism in order to focus the study onto the impact of crystal shape itself on the dissolution rate of simvastatin crystals. Rod shaped crystals isolated from more hydrophilic solvent mixture dissolved faster than plate-like crystals obtained from solvent mixture with lower polarity index. We correlated this fact to the different growth rate of the individual faces which resulted in different relative size of the individual crystal faces exposed to the dissolution medium as well as the chemical nature of those faces which in turn influenced the wettability and subsequent dissolution of the active pharmaceutical ingredient.

  2. Magnetic-field-driven surface electromagnetic states in the graphene-antiferromagnetic photonic crystal system

    SciTech Connect

    Averkov, Yu. O. Tarapov, S. I.; Yakovenko, V. M.; Yampol’skii, V. A.

    2015-04-15

    The surface electromagnetic states (SEMSs) on graphene, which has a linear carrier dispersion law and is placed in an antiferromagnetic photonic crystal, are theoretically studied in the terahertz frequency range. The unit cell of such a crystal consists of layers of a nonmagnetic insulator and a uniaxial antiferromagnet, the easy axis of which is parallel to the crystal layers. A dc magnetic field is parallel to the easy axis of the antiferromagnet. An expression that relates the SEMS frequencies to the structure parameters is obtained. The problem of SEMS excitation by an external TE-polarized electromagnetic wave is solved, and the dependences of the transmission coefficient on the dc magnetic field and the carrier concentration are constructed. These dependences are shown to differ substantially from the case of a conventional two-dimensional electron gas with a quadratic electron dispersion law. Thus, the positions of the transmission coefficient peaks related to resonance SEMS excitation can be used to determine the character of carrier dispersion law in a two-dimensional electron gas.

  3. Magnetic field effects on reactive sintering of MnBi

    NASA Astrophysics Data System (ADS)

    Abematsu, Ken-ichi; Mitsui, Yoshifuru; Taira, Atsushi; Miyazaki, Daiki; Takaki, Akio; Umetsu, Rie Y.; Takahashi, Kohki; Koyama, Keiichi

    2016-08-01

    Annealing temperature of reactive sintering of MnBi was optimized. The highest fraction of MnBi phase was obtained to be 93wt.% at annealing temperature of 280°C. Magnetic field effects on solid- and liquid-state sintering of MnBi were described. The reacted fraction of MnBi was enhanced by the application of magnetic field of 15 T for solid- state sintering. In contract, reacted fraction was not influenced by magnetic field for liquid-state sintering. Both of in- field solid- and liquid-state sintered samples realized the highly crystal orientation of MnBi phase along the applied magnetic field direction. The Lotgering factor of the MnBi phase was obtained to be 1.0 for both in-field sintered samples, which was an "almost complete" uniaxial orientation. Due to the crystal orientation, anisotropic magnetic properties exhibited. The anisotropy field of the bulk sample was evaluated to be 4 T at room temperature, which also suggested the uniaxial orientation of the sample.

  4. Effect of microheterogeneity on horse spleen apoferritin crystallization

    NASA Astrophysics Data System (ADS)

    Thomas, B. R.; Carter, D.; Rosenberger, F.

    1998-05-01

    Apoferritin (APO) is an interesting model protein for crystal growth studies, as an alternative to the widely used hen egg white lysozyme. The effect of naturally occurring oligomers on the crystallization of isolated, microhomogeneous APO monomers (24 subunits, Mr=440 000) was investigated. SDS PAGE analysis and immunoblotting showed that commercial APO was free of foreign proteins (>99.9% w/w). The quaternary structure of APO oligomers that form prior to the addition of precipitant was analyzed in native 4-15% T (1-2% C) gradient PAGE. Optical densitometry of these gels showed that oligomers (>24 subunit monomer) constituted approximately 45% w/w of the total APO. The primary oligomeric contaminants were dimers (48 subunits) with 35% w/w, and several bands constituting trimers (˜72 subunits) with 10% w/w. Directly determined physical molecular weights ( Mw) and conformational data for oligomers obtained by analytical gel filtration fast protein-liquid-chromatography separations utilizing UV and multi-angle laser light scattering detectors (GF-FPLC-MALLS) confirmed and expanded the native PAGE results. This technique allowed the discovery of large oligomers ( Mw=5 000 000 and 80 000 000) present in concentrations <1% w/w. Semi-preparative GF-FPLC was used to quantitatively reduce oligomer contamination to 5% w/w, and to produce 0.25 g of microhomogeneous monomers from 0.5 g APO. Crystallization from microhomogeneous monomer solutions yielded large crystals 0.5-1.0 mm in size. These crystals yielded an X-ray diffraction resolution of 1.8 Å. Reconstitutive experiments in which isolated oligomers were added to monomer preparations showed that dimers perturb the growth habit and reduce the crystal growth, without significantly affecting the nucleation. On trimer addition, the nucleation was increased and the crystal growth decreased. Addition of cadmium sulfate precipitant to unpurified APO did not affect the nature or quantity of the oligomers. These

  5. Effect of crystal anisotropy and adhesive forces on laser induced deformation patterns in covalently bonded thin films

    NASA Astrophysics Data System (ADS)

    Walgraef, D.; Ghoniem, N. M.

    2002-04-01

    The effect of crystal structure on laser induced deformation patterns in thin films and surfaces is analyzed within the framework of a dynamical model for the coupled evolution of defect densities and deformation fields. In crystals with covalent bonding, such as Si and SiC, preferential bond breaking may occur, as a result of the relative orientation of the laser electric field and crystallographic axes. We extend here our theoretical framework to incorporate the effects of anisotropic defect diffusion, and the influence of film-substrate adhesion on deformation pattern selection and stability of thin films subjected to laser beams. We also compare theoretical predictions to experimental observations on single crystal silicon wafer surfaces. Furthermore, it is predicted that the laser induced damage threshold for SiC single crystals can be in excess of 200 J/cm2.

  6. A Lagrangian effective field theory

    DOE PAGES

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro

    2015-09-02

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.« less

  7. A Lagrangian effective field theory

    SciTech Connect

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro E-mail: mwhite@berkeley.edu

    2015-09-01

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The 'new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all of our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. All the perturbative models fare better than linear theory.

  8. A Lagrangian effective field theory

    SciTech Connect

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro

    2015-09-02

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all of our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.

  9. Imaging the oblique propagation of electrons in germanium crystals at low temperature and low electric field

    SciTech Connect

    Moffatt, R. A. Cabrera, B.; Corcoran, B. M.; Kreikebaum, J. M.; Redl, P.; Shank, B.; Yen, J. J.; Young, B. A.; Brink, P. L.; Cherry, M.; Tomada, A.; Phipps, A.; Sadoulet, B.; Sundqvist, K. M.

    2016-01-11

    Excited electrons in the conduction band of germanium collect into four energy minima, or valleys, in momentum space. These local minima have highly anisotropic mass tensors which cause the electrons to travel in directions which are oblique to an applied electric field at sub-Kelvin temperatures and low electric fields, in contrast to the more isotropic behavior of the holes. This experiment produces a full two-dimensional image of the oblique electron and hole propagation and the quantum transitions of electrons between valleys for electric fields oriented along the [0,0,1] direction. Charge carriers are excited with a focused laser pulse on one face of a germanium crystal and then drifted through the crystal by a uniform electric field of strength between 0.5 and 6 V/cm. The pattern of charge density arriving on the opposite face is used to reconstruct the trajectories of the carriers. Measurements of the two-dimensional pattern of charge density are compared in detail with Monte Carlo simulations developed for the Cryogenic Dark Matter Search (SuperCDMS) to model the transport of charge carriers in high-purity germanium detectors.

  10. Direct current electric field assembly of colloidal crystals displaying reversible structural color.

    PubMed

    Shah, Aayush A; Ganesan, Mahesh; Jocz, Jennifer; Solomon, Michael J

    2014-08-26

    We report the application of low-voltage direct current (dc) electric fields to self-assemble close-packed colloidal crystals in nonaqueous solvents from colloidal spheres that vary in size from as large as 1.2 μm to as small as 0.1 μm. The assemblies are created rapidly (∼2 min) from an initially low volume fraction colloidal particle suspension using a simple capacitor-like electric field device that applies a steady dc electric voltage. Confocal microscopy is used to observe the ordering that is produced by the assembly method. This spatial evidence for ordering is consistent with the 6-fold diffraction patterns identified by light scattering. Red, green, and blue structural color is observed for the ordered assemblies of colloids with diameters of 0.50, 0.40, and 0.29 μm, respectively, consistent with spectroscopic measurements of reflectance. The diffraction and spectrophotometry results were found to be consistent with the theoretical Bragg's scattering expected for closed-packed crystals. By switching the dc electric field from on to off, we demonstrate reversibility of the structural color response on times scales ∼60 s. The dc electric field assembly method therefore represents a simple method to produce reversible structural color in colloidal soft matter.

  11. Effects of light exposure on irradiated barium fluoride crystals

    SciTech Connect

    Wuest, C.R.; Mauger, G.J.

    1993-04-20

    Small barium fluoride crystals have been irradiated using cobalt-60 gamma rays under various illumination conditions to establish the effect of photo-bleaching of the radiation-induced color centers. This paper describes results of a few different experiments conducted at LLNL over the past few weeks.

  12. Effective bichromatic potential for ultra-high Q-factor photonic crystal slab cavities

    SciTech Connect

    Alpeggiani, Filippo Andreani, Lucio Claudio; Gerace, Dario

    2015-12-28

    We introduce a confinement mechanism in photonic crystal slab cavities, which relies on the superposition of two incommensurate one-dimensional lattices in a line-defect waveguide. It is shown that the resulting photonic profile realizes an effective quasi-periodic bichromatic potential for the electromagnetic field confinement yielding extremely high quality (Q) factor nanocavities, while simultaneously keeping the mode volume close to the diffraction limit. We apply these concepts to pillar- and hole-based photonic crystal slab cavities, respectively, and a Q-factor improvement by over an order of magnitude is shown over existing designs, especially in pillar-based structures. Thanks to the generality and easy adaptation of such confinement mechanism to a broad class of cavity designs and photonic lattices, this work opens interesting routes for applications where enhanced light–matter interaction in photonic crystal structures is required.

  13. Gyrator employing field effect transistors

    NASA Technical Reports Server (NTRS)

    Hochmair, E. S. (Inventor)

    1973-01-01

    A gyrator circuit of the conventional configuration of two amplifiers in a circular loop, one producing zero phase shift and the other producing 180 deg phase reversal is examined. All active elements are MOS field effect transistors. Each amplifier comprises a differential amplifier configuration with current limiting transistor, followed by an output transistor in cascode configuration, and two load transistors of opposite conductivity type from the other transistors. A voltage divider control circuit comprises a series string of transistors with a central voltage input to provide control, with locations on the amplifiers receiving reference voltages by connection to appropriate points on the divider. The circuit produces excellent response and is well suited for fabrication by integrated circuits.

  14. General equations for the motions of ice crystals and water drops in gravitational and electric fields

    NASA Technical Reports Server (NTRS)

    Nisbet, John S.

    1988-01-01

    General equations for the Reynolds number of a variety of types of ice crystals and water drops are given in terms of the Davies, Bond, and Knudsen numbers. The equations are in terms of the basic physical parameters of the system and are valid for calculating velocities in gravitational and electric fields over a very wide range of sizes and atmospheric conditions. The equations are asymptotically matched at the bottom and top of the size spectrum, useful when checking large computer codes. A numerical system for specifying the dimensional properties of ice crystals is introduced. Within the limits imposed by such variables as particle density, which have large deviations, the accuracy of velocities appears to be within 10 percent over the entire range of sizes of interest.

  15. Temperature and Field Induced Strain Measurements in Single Crystal Gd5Si2Ge2

    NASA Astrophysics Data System (ADS)

    McCall, S. K.; Nersessian, N.; Carman, G. P.; Pecharsky, V. K.; Schlagel, D. L.; Radousky, H. B.

    2016-06-01

    The first-order magneto-structural transformation that occurs in Gd5Si2Ge2 near room temperature makes it a strong candidate for many energy harvesting applications. Understanding the single crystal properties is crucial for allowing simulations of device performance. In this study, magnetically and thermally induced transformation strains were measured in a single crystal of Gd5Si2.05Ge1.95 as it transforms from a high-temperature monoclinic paramagnet to a lower-temperature orthorhombic ferromagnet. Thermally induced transformation strains of -8500 ppm, +960 ppm and +1800 ppm, and magnetically induced transformation strains of -8500 ppm, +900 ppm and +2300 ppm were measured along the a, b and c axes, respectively. Using experimental data coupled with general thermodynamic considerations, a universal phase diagram was constructed showing the transition from the monoclinic to the orthorhombic phase as a function of temperature and magnetic field.

  16. General equations for the motions of ice crystals and water drops in gravitational and electric fields

    NASA Technical Reports Server (NTRS)

    Nisbet, John S.

    1989-01-01

    General equations for the Reynolds number of a variety of types of ice crystals and water drops are given in terms of the Davies, Bond, and Knudsen numbers. The equations are in terms of the basic physical parameters of the system and are valid for calculating velocities in gravitational and electric fields over a very wide range of sizes and atmospheric conditions. The equations are asymptotically matched at the bottom and top of the size spectrum, useful when checking large computer codes. A numerical system for specifying the dimensional properties of ice crystals is introduced. Within the limits imposed by such variables as particle density, which have large deviations, the accuracy of velocities appears to be within 10 percent over the entire range of sizes of interest.

  17. Crystal size of epidotes: A potentially exploitable geothermometer in geothermal fields

    SciTech Connect

    Patrier, P.; Beaufort, D.; Touchard, G. ); Fouillac, A.M. )

    1990-11-01

    Crystal size of epidotes crystallized in quartz + epidote veins is used as the basis for a new geothermometer from the fossil geothermal field of Saint Martin (Lesser Antilles). The epidote-bearing alteration paragenesis is developed as far as 3 km from a quartz diorite pluton at temperatures of 220-350C. The length/width ratio of the epidote grains is constant for all the analyzed samples and suggests isotropic growth environments. However, the length and width of the grains vary exponentially with temperature. The obtained results offer new perspectives for simple grain-size geothermomentry but must be extended to other geologic environments to clarify the influence of different rock types.

  18. Orientation of growing crystals of Co- or Gd-containing L-threonine dehydrogenase by magnetic fields

    NASA Astrophysics Data System (ADS)

    Maki, Syou; Ishikawa, Kazuhiko; Ataka, Mitsuo

    2009-12-01

    L-Threonine dehydrogenase from Pyrococcus horikoshii (TDH) is a water-soluble metalloenzyme, the molecular structure of which has been unknown until recently. The Zn 2+ ion in the native TDH, prepared as a recombinant protein, is replaced artificially with Co 2+, Ni 2+ or Gd 3+. These samples are crystallized in homogeneous magnetic fields of 2-10 T. Half of the Co- or Gd-substituted crystals show magnetic orientation in a field of 2 T at 278 K whereas the crystals of the native TDH require a 4 T magnetic field for half orientation. The sensitivity to magnetic orientation can thus be increased by metal substitution. On the other hand, we cannot assign clear changes in the size, number, and quality of the native and metal-substituted crystals with and without the presence of the magnetic field.

  19. Crystal field interaction in the pyrochlore magnet Ho{sub 2}Ti{sub 2}O{sub 7}.

    SciTech Connect

    Rosenkranz, S.; Ramirez, A. P.; Hayashi, A.; Cava, R. J.; Siddharthan, R.; Shastry, B. S.

    1999-09-30

    Neutron time-of-flight spectroscopy has been employed to study the crystal field interaction in the pyrochlore titanate Ho{sub 2}Ti{sub 2}O{sub 7}. The crystal field parameters and corresponding energy level scheme have been determined from a profile fit to the observed neutron spectra. The groundstate is a well separated E{sub g} doublet with a strong Ising like anisotropy, which can give rise to titration in the pyrochlore lattice. Using the crystal field parameters determined for the Ho compound as an estimate of the crystal field interaction in other pyrochlore magnets, we also find the Ising type behavior for Dy. In contrast, the almost planar like anisotropy found for Er and Yb prevents frustration, because of the continuous range of possible spin orientations in this case.

  20. Assessment of biomolecular force fields for molecular dynamics simulations in a protein crystal.

    PubMed

    Hu, Zhongqiao; Jiang, Jianwen

    2010-01-30

    Different biomolecular force fields (OPLS-AA, AMBER03, and GROMOS96) in conjunction with SPC, SPC/E and TIP3P water models are assessed for molecular dynamics simulations in a tetragonal lysozyme crystal. The root mean square deviations for the C(a) atoms of lysozymes are about 0.1 to 0.2 nm from OPLS-AA and AMBER03, smaller than 0.4 nm from GROMOS96. All force fields exhibit similar pattern in B-factors, whereas OPLS-AA and AMBER03 accurately reproduce experimental measurements. Despite slight variations, the primary secondary structures are well conserved using different force fields. Water diffusion in the crystal is approximately ten-fold slower than in bulk phase. The directional and average water diffusivities from OPLS-AA and AMBER03 along with SPC/E model match fairly well with experimental data. Compared to GROMOS96, OPLS-AA and AMBER03 predict larger hydrophilic solvent-accessible surface area of lysozyme, more hydrogen bonds between lysozyme and water, and higher percentage of water in hydration shell. SPC, SPC/E and TIP3P water models have similar performance in most energetic and structural properties, but SPC/E outperforms in water diffusion. While all force fields overestimate the mobility and electrical conductivity of NaCl, a combination of OPLS-AA for lysozyme and the Kirkwood-Buff model for ions is superior to others. As attributed to the steric restraints and surface interactions, the mobility and conductivity in the crystal are reduced by one to two orders of magnitude from aqueous solution.

  1. Effect of curvature on cholesteric liquid crystals in toroidal geometries

    NASA Astrophysics Data System (ADS)

    Fialho, Ana R.; Bernardino, Nelson R.; Silvestre, Nuno M.; Telo da Gama, Margarida M.

    2017-01-01

    The confinement of liquid crystals inside curved geometries leads to exotic structures, with applications ranging from biosensors to optical switches and privacy windows. Here we study how curvature affects the alignment of a cholesteric liquid crystal. We model the system on the mesoscale using the Landau-de Gennes model. Our study was performed in three stages, analyzing different curved geometries from cylindrical walls and pores, to toroidal domains, in order to isolate the curvature effects. Our results show that the stresses introduced by the curvature influence the orientation of the liquid crystal molecules, and cause distortions in the natural periodicity of the cholesteric that depend on the radius of curvature, on the pitch, and on the dimensions of the system. In particular, the cholesteric layers of toroidal droplets exhibit a symmetry breaking not seen in cylindrical pores and that is driven by the additional curvature.

  2. The effect of microgravity on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Mcpherson, Alexander; Greenwood, Aaron; Day, John

    1991-01-01

    Based on the results of microgravity crystallization experiments using the protein canavalin aboard four separate U.S. Space Shuttle missions, visual observations and diffraction data are presented that support the contention that protein crystals of improved quality can be obtained in a microgravity environment. With canavalin, no significant increase in resolution was noted, but an overall improvement in diffraction quality, as judged by statistical analyses of the data, was clear. This improvement in quality may be due primarily to the elimination of defects and dislocations rather than an overall enhancement of order. The mechanism for this improvement may be microgravity-stabilized depletion zones that develop around growing crystals that establish and maintain optimal growth conditions more rapidly following nucleation. Such zones would be destroyed by convective flow effects in earth's gravity.

  3. Nucleation and Convection Effects in Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1997-01-01

    Work during the second year under this grant (NAG8-1161) resulted in several major achievements. We have characterized protein impurities as well as microheterogeneities in the proteins hen egg white lysozyme and horse spleen apoferritin, and demonstrated the effects of these impurities on nucleation and crystallization. In particular, the purification of apoferritin resulted in crystals with an X-ray diffraction resolution of better than 1.8 A, i.e. a 1 A improvement over earlier work on the cubic form. Furthermore, we have shown, in association with studies of liquid-liquid phase separation, that depending on the growth conditions, lysozyme can produce all growth morphologies that have been observed with other proteins. Finally, in connection with our experimental and simulation work on growth step bunching, we have developed a system-dependent criterion for advantages and disadvantages of crystallization from solution under reduced gravity. In the following, these efforts are described in some detail.

  4. Measurement of spatio-temporal field distribution of THz pulses in electro-optic crystal by interferometry method

    SciTech Connect

    Chizhov, P A; Ushakov, A A; Bukin, V V; Garnov, S V

    2015-05-31

    We propose a scheme for measuring the spatial distribution of the THz pulse electric field strength in an electro-optic crystal using optical interferometry. The resulting images of the field distribution from a test source with a spherical wave front are presented. (extreme light fields and their applications)

  5. The Effect of Crystallizing and Non-crystallizing Cosolutes on Succinate Buffer Crystallization and the Consequent pH Shift in Frozen Solutions

    SciTech Connect

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    2011-09-06

    To effectively inhibit succinate buffer crystallization and the consequent pH changes in frozen solutions. Using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD), the crystallization behavior of succinate buffer in the presence of either (i) a crystallizing (glycine, mannitol, trehalose) or (ii) a non-crystallizing cosolute (sucrose) was evaluated. Aqueous succinate buffer solutions, 50 or 200 mM, at pH values 4.0 or 6.0 were cooled from room temperature to -25 C at 0.5 C/min. The pH of the solution was measured as a function of temperature using a probe designed to function at low temperatures. The final lyophiles prepared from these solutions were characterized using synchrotron radiation. When the succinic acid solution buffered to pH 4.0, in the absence of a cosolute, was cooled, there was a pronounced shift in the freeze-concentrate pH. Glycine and mannitol, which have a tendency to crystallize in frozen solutions, remained amorphous when the initial pH was 6.0. Under this condition, they also inhibited buffer crystallization and prevented pH change. At pH 4.0 (50 mM initial concentration), glycine and mannitol crystallized and did not prevent pH change in frozen solutions. While sucrose, a non-crystallizing cosolute, did not completely prevent buffer crystallization, the extent of crystallization was reduced. Sucrose decomposition, based on XRD peaks attributable to {beta}-D-glucose, was observed in frozen buffer solutions with an initial pH of 4.0. Trehalose completely inhibited crystallization of the buffer components when the initial pH was 6.0 but not at pH 4.0. At the lower pH, the crystallization of both trehalose dihydrate and buffer components was evident. When retained amorphous, sucrose and trehalose effectively inhibited succinate buffer component crystallization and the consequent pH shift. However, when trehalose crystallized or sucrose degraded to yield a crystalline decomposition product, crystallization of buffer was

  6. Comparative study of the absorption spectrum of Li 2CaSiO 4:Cr 4+: First-principles fully relativistic and crystal field calculations

    NASA Astrophysics Data System (ADS)

    Brik, M. G.; Ogasawara, K.

    2007-11-01

    Systematic analysis of the energy level scheme and ground state absorption of the Cr4+ ion in Li2CaSiO4 crystal was performed using the exchange charge model of the crystal field [B.Z. Malkin, in: A.A. Kaplyanskii, B.M. Macfarlane (Eds.), Spectroscopy of Solids Containing Rare-earth Ions, North-Holland, Amsterdam, 1987, pp. 33-50] and recently developed first-principles approach to the analysis of the absorption spectra of impurity ions in crystals based on the discrete variational multielectron (DVME) method [K. Ogasawara, T. Iwata, Y. Koyama, T. Ishii, I. Tanaka, H. Adachi, Phys. Rev. B 64 (2001) 115413]. Using the former method, the values of parameters of crystal field acting on the Cr4+ ion valence electrons were calculated using the Li2CaSiO4 crystal structure data. Energy levels of the Cr4+ ion obtained after diagonalizing the crystal field Hamiltonian are in good agreement with those obtained from the experimental spectra. The latter method is based on the numerical solution of the Dirac equation; therefore, all relativistic effects are automatically considered. As a result, energy level scheme of Cr4+ and its absorption spectra in both polarizations were calculated, assigned and compared with experimental data; energy of the lowest charge transfer transition was evaluated and compared with theoretical predictions for the CrO44- complex available in the literature. The main features of the experimental spectra shape are reproduced well by the calculations. By performing analysis of the molecular orbitals (MO) population, it was shown that the covalent effects play an important role in formation of the spectral properties of Cr4+ ion in the considered crystal.

  7. Crystal-field study of magnetization and specific heat properties of frustrated pyrochlore Pr2Zr2O7

    NASA Astrophysics Data System (ADS)

    Alam, J.; Jana, Y. M.; Biswas, A. Ali

    2016-10-01

    The experimental results of temperature dependent dc magnetic susceptibility, field dependent isothermal magnetization, magnetic specific heat and entropy of the pyrochlore Pr2Zr2O7 are simulated and analyzed using appropriate D3d crystal-field (CF) and anisotropic molecular field tensors at Pr-sites in the self-consistent mean-field approach involving four magnetically non-equivalent rare-earth spins on the tetrahedral unit of the pyrochlore structure. CF level pattern and wave-functions of the ground 3H4 multiplet of the Pr3+ ions are obtained considering intermediate coupling between different Russell-Saunders terms of the 4f2 electronic configurations of Pr-ion and J-mixing effects. CF analysis shows that the CF ground-state of the Pr3+ ion in Pr2Zr2O7 is a well-isolated doublet, with significant admixtures of terms coming from |MJ=±4> and |MJ=±1>, and the Pr-spins are effectively Ising-like along the local <111> axes. Magnetic specific heat in zero-field is simulated by considering a temperature dependence of the exchange splitting of the ground doublet.

  8. Three-Dimensional Stress Fields and Slip Systems for Single Crystal Superalloy Notched Specimens

    NASA Technical Reports Server (NTRS)

    Magnan, Shannon M.; Throckmorton, David (Technical Monitor)

    2002-01-01

    Single crystal superalloys have become increasingly popular for turbine blade and vane applications due to their high strength, and creep and fatigue resistance at elevated temperatures. The crystallographic orientation of a single crystal material greatly affects its material properties, including elastic modulus, shear modulus, and ductility. These directional properties, along with the type of loading and temperature, dictate an anisotropic response in the yield strength, creep resistance, creep rupture ductility, fatigue resistance, etc. A significant amount of research has been conducted to determine the material properties in the <001> orientation, yet the material properties deviating from the <001> orientation have not been assessed for all cases. Based on the desired application and design criteria, a crystal orientation is selected to yield the maximum properties. Currently, single crystal manufacturing is able to control the primary crystallographic orientation within 15 of the target orientation, which is an acceptable deviation to meet both performance and cost guidelines; the secondary orientation is rarely specified. A common experiment is the standard load-controlled tensile test, in which specimens with different orientations can be loaded to observe the material response. The deformation behavior of single-crystal materials under tension and compression is known to be a function of not only material orientation, but also of varying microdeformation (i.e. dislocation) mechanisms. The underlying dislocation motion causes deformation via slip, and affects the activation of specific slip systems based on load and orientation. The slip can be analyzed by observing the visible traces left on the surface of the specimen from the slip activity within the single crystal material. The goal of this thesis was to predict the slip systems activated in three-dimensional stress fields of a notched tensile specimen, as a function of crystal orientation, using

  9. Electric field sensor based on cholesteric liquid crystal Fabry-Perot etalon

    NASA Astrophysics Data System (ADS)

    Ko, Myeong Ock; Kim, Sung-Jo; Kim, Jong-Hyun; Lee, Bong Wan; Jeon, Min Yong

    2015-09-01

    We propose an electric field sensor using a cholesteric liquid crystal (CLC) Fabry-Perot etalon and a broadband optical source. The CLC cell consists of glass substrates, polyimide layers, electrodes, and CLC layer. There is a threshold behavior for CLC cell and no change in the transmitted wavelength occurs until a threshold value. The threshold value is 0.8 V/μm for fabricated CLC cell in this experiment. The transmitted or reflected wavelength from the CLC Fabry-Perot etalon depends on the applied electric field. The valley wavelengths of the transmitted light from the CLC device are linearly increased from 1303 nm to 1317 nm as the applied electric field to the CLC device is increased from 0.8 V/μm to 1.9 V/μm.

  10. Crystal field energy levels, spin-Hamiltonian parameters and local structures for the Cr3+ and Mn4+ centers in La3Ga5SiO14 crystals

    NASA Astrophysics Data System (ADS)

    Mei, Yang; Chen, Bo-Wei; Zheng, Wen-Chen; Li, Bang-Xing

    2017-02-01

    The crystal field energy levels (obtained from optical spectra) together with the spin-Hamiltonian parameters g//, g⊥ and D (obtained from EPR spectra) for 3d3 ions Cr3+ and Mn4+ at the trigonal octahedral Ga3+ sites in La3Ga5SiO14 crystals are computed from the complete diagonalization (of energy matrix) method based on the two-spin-orbit-parameter model. The model takes into account the contributions due to the spin-orbit parameter of central dn ion (in the traditional crystal field theory) and that of ligand ions via covalence effect. The calculated results are in rational accord with the experimental values. The calculations also imply that the covalence of (MnO6)8- center in La3Ga5SiO14 crystals is stronger than that of (CrO6)9- center, and the impurity-induced local lattice relaxation for (MnO6)8- center is larger than that for (CrO6)9- cluster because of the larger size and charge mismatch for Mn4+ replacing Ga3+ in La3Ga5SiO14 crystals.

  11. Electric field induced rotation of polymer cholesteric liquid crystal flakes: mechanisms and applications

    NASA Astrophysics Data System (ADS)

    Kosc, Tanya Z.; Marshall, Kenneth L.; Jacobs, Stephen D.; Lambropoulos, John C.

    2002-12-01

    Electric fields can induce motion of polymer cholesteric liquid crystal (pCLC) flakes suspended in a fluid medium. The platelet-shaped pCLC flakes with a Grandjean texture show strong selective reflection when lying flat in the plane of a conventional cell. As their orientation with respect to normally incident light changes, their selective reflection color shifts toward the blue and diminishes until the flakes are no longer easily visible beyond 7-12° of rotation. Reproducibility and control of motion has been observed in moderately conductive host fluid. Flakes in such hosts do not respond to a DC electric field, but they rotate 90° in an AC field within a given frequency band. The response times and frequency regions for motion depend partially on the field magnitude, the dielectric properties of the host fluid and the flake geometry. We observe flakes reorienting in less than 500 ms in an electric field of 0.17 Vrms/μm, while sub-second reorientation is seen in fields as low as 5x10-2 Vrms/μm. This response time is comparable with typical electronic-paper applications, but with a significantly lower electric field. Displays using pCLC flakes would not require backlighting, sheet polarizers, color filters or alignment layers. Numerous additional applications for pCLC flakes are envisioned, including filters, polarizers, and spatial light modulators.

  12. Effect of storage temperature on crystal formation rate and growth rate of calcium lactate crystals on smoked Cheddar cheeses.

    PubMed

    Rajbhandari, P; Patel, J; Valentine, E; Kindstedt, P S

    2013-06-01

    Previous studies have shown that storage temperature influences the formation of calcium lactate crystals on vacuum-packaged Cheddar cheese surfaces. However, the mechanisms by which crystallization is modulated by storage temperature are not completely understood. The objectives of this study were to evaluate the effect of storage temperature on smoked Cheddar cheese surfaces for (1) the number of discrete visible crystals formed per unit of cheese surface area; (2) growth rate and shape of discrete crystals (as measured by area and circularity); (3) percentage of total cheese surface area occupied by crystals. Three vacuum-packaged, random weight (∼300 g) retail samples of naturally smoked Cheddar cheese, produced from the same vat of cheese, were obtained from a retail source. The samples were cut parallel to the longitudinal axis at a depth of 10mm from the 2 surfaces to give six 10-mm-thick slabs, 4 of which were randomly assigned to 4 different storage temperature treatments: 1, 5, 10°C, and weekly cycling between 1 and 10°C. Samples were stored for 30 wk. Following the onset of visible surface crystals, digital photographs of surfaces were taken every other week and evaluated by image analysis for number of discrete crystal regions and total surface area occupied by crystals. Specific discrete crystals were chosen and evaluated biweekly for radius, area, and circularity. The entire experiment was conducted in triplicate. The effects of cheese surface, storage temperature, and storage time on crystal number and total crystal area were evaluated by ANOVA, according to a repeated-measures design. The number of discrete crystal regions increased significantly during storage but at different rates for different temperature treatments. Total crystal area also increased significantly during storage, at rates that varied with temperature treatment. Storage temperature did not appear to have a major effect on the growth rates and shapes of the individual crystals

  13. Skyrmion crystal and topological Hall effect in B20-type transition-metal compounds

    NASA Astrophysics Data System (ADS)

    Onose, Yoshinori

    2011-03-01

    Topological objects in solids such as domain walls and vortices have been attracting much attention for long. Among them the spin texture called skyrmion is an unusual topological object, in which the spins point in all the directions wrapping a sphere. The skyrmion hosts finite spin chirality, and therefore is anticipated to induce novel electromagnetic phenomena such as topological Hall effect. In B20-type transition metal compounds MnSi and Fe 1-x Co x Si, the crystallization of skyrmions was observed by the neutron diffraction studies. , . Recently, we have observed the real-space images of skyrmion crystal in thin films of related compounds (Fe 0.5 Co 0.5 Si and FeGe) using Lorentz transmission electron spectroscopy., Nature material, inpress.} We have observed the hexagonal arrangement of skyrmions including the topological defects (chiral domains and dislocations) under the magnetic field normal to the films, and found that the two dimensional skyrmion crystal phase is fairly stabilized by the thin film form of the samples. We have also studied the topological Hall effect caused by the spin chirality of the skyrmion crystal in a related material MnGe. In terms of the Hall measurement, they have shown the real space nature of the fictitious magnetic field caused by the magnetic configuration of the skyrmion crystal, in contrast with the momentum-space fictitious field in another spin chirality system, Nd 2 Mo 2 O7 . This work was done in collaboration with X. Z. Yu, N. Kanazawa, J. H. Park, J. H. Han, K. Kimoto, W. Z. Zhang, S. Ishiwata, Y. Matsui, N. Nagaosa, and Y. Tokura. S. Mühlbauer et al. Science 323, 915 (2009).}

  14. The crystallization of apo-form UMP kinase from Xanthomonas campestris is significantly improved in a strong magnetic field

    SciTech Connect

    Tu, Jhe-Le; Chin, Ko-Hsin; Wang, Andrew H.-J.; Chou, Shan-Ho

    2007-05-01

    A bacterial UMP kinase from the plant pathogen X. campestris pathovar campestris has been overexpressed in E. coli, purified and crystallized in a strong magnetic field. The crystals diffracted to 2.35 Å. Bacterial UMP kinases (UMPKs) are crucial enzymes that are responsible for microbial UTP biosynthesis. Interestingly, eukaryotic and prokaryotic cells use different enzymes for UMP-phosphorylation reactions. Prokaryotic UMPKs are thus believed to be potential targets for antimicrobial drug development. Here, the cloning, expression and crystallization of SeMet-substituted XC1936, a bacterial UMPK from Xanthomonas campestris pathovar campestris, are reported. The crystallization of the apo-form UMPK was found to be significantly improved in a strong magnetic field; the crystals diffracted to a resolution of 2.35 Å, a dramatic improvement over the original value of 3.6 Å. Preliminary structural analyses of apo-form XC1936 using crystals grown in a strong magnetic field clearly reveal well defined loop regions involved in substrate-analogue binding that were previously not visible. Crystallization in a strong magnetic field thus was found to be indispensable in determining the flexible region of the XC1936 UMPK structure.

  15. Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals.

    PubMed

    Tarduno, John A; Cottrell, Rory D; Watkeys, Michael K; Bauch, Dorothy

    2007-04-05

    The strength of the Earth's early geomagnetic field is of importance for understanding the evolution of the Earth's deep interior, surface environment and atmosphere. Palaeomagnetic and palaeointensity data from rocks formed near the boundary of the Proterozoic and Archaean eons, some 2.5 Gyr ago, show many hallmarks of the more recent geomagnetic field. Reversals are recorded, palaeosecular variation data indicate a dipole-dominated morphology and available palaeointensity values are similar to those from younger rocks. The picture before 2.8 Gyr ago is much less clear. Rocks of the Archaean Kaapvaal craton (South Africa) are among the best-preserved, but even they have experienced low-grade metamorphism. The variable acquisition of later magnetizations by these rocks is therefore expected, precluding use of conventional palaeointensity methods. Silicate crystals from igneous rocks, however, can contain minute magnetic inclusions capable of preserving Archaean-age magnetizations. Here we use a CO2 laser heating approach and direct-current SQUID magnetometer measurements to obtain palaeodirections and intensities from single silicate crystals that host magnetite inclusions. We find 3.2-Gyr-old field strengths that are within 50 per cent of the present-day value, indicating that a viable magnetosphere sheltered the early Earth's atmosphere from solar wind erosion.

  16. Large field-induced-strain at high temperature in ternary ferroelectric crystals

    PubMed Central

    Wang, Yaojin; Chen, Lijun; Yuan, Guoliang; Luo, Haosu; Li, Jiefang; Viehland, D.

    2016-01-01

    The new generation of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals have potential applications in high power devices due to their surperior operational stability relative to the binary system. In this work, a reversible, large electric field induced strain of over 0.9% at room temperature, and in particular over 0.6% above 380 K was obtained. The polarization rotation path and the phase transition sequence of different compositions in these ternary systems have been determined with increasing electric field applied along [001] direction based on x-ray diffraction data. Thereafter, composition dependence of field-temperature phase diagrams were constructed, which provide compositional and thermal prospectus for the electromechanical properties. It was found the structural origin of the large stain, especially at higher temperature is the lattice parameters modulated by dual independent variables in composition of these ternary solid solution crystals. PMID:27734908

  17. Large field-induced-strain at high temperature in ternary ferroelectric crystals

    NASA Astrophysics Data System (ADS)

    Wang, Yaojin; Chen, Lijun; Yuan, Guoliang; Luo, Haosu; Li, Jiefang; Viehland, D.

    2016-10-01

    The new generation of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals have potential applications in high power devices due to their surperior operational stability relative to the binary system. In this work, a reversible, large electric field induced strain of over 0.9% at room temperature, and in particular over 0.6% above 380 K was obtained. The polarization rotation path and the phase transition sequence of different compositions in these ternary systems have been determined with increasing electric field applied along [001] direction based on x-ray diffraction data. Thereafter, composition dependence of field-temperature phase diagrams were constructed, which provide compositional and thermal prospectus for the electromechanical properties. It was found the structural origin of the large stain, especially at higher temperature is the lattice parameters modulated by dual independent variables in composition of these ternary solid solution crystals.

  18. Crystal growth of pure substances: Phase-field simulations in comparison with analytical and experimental results

    NASA Astrophysics Data System (ADS)

    Nestler, B.; Danilov, D.; Galenko, P.

    2005-07-01

    A phase-field model for non-isothermal solidification in multicomponent systems [SIAM J. Appl. Math. 64 (3) (2004) 775-799] consistent with the formalism of classic irreversible thermodynamics is used for numerical simulations of crystal growth in a pure material. The relation of this approach to the phase-field model by Bragard et al. [Interface Science 10 (2-3) (2002) 121-136] is discussed. 2D and 3D simulations of dendritic structures are compared with the analytical predictions of the Brener theory [Journal of Crystal Growth 99 (1990) 165-170] and with recent experimental measurements of solidification in pure nickel [Proceedings of the TMS Annual Meeting, March 14-18, 2004, pp. 277-288; European Physical Journal B, submitted for publication]. 3D morphology transitions are obtained for variations in surface energy and kinetic anisotropies at different undercoolings. In computations, we investigate the convergence behaviour of a standard phase-field model and of its thin interface extension at different undercoolings and at different ratios between the diffuse interface thickness and the atomistic capillary length. The influence of the grid anisotropy is accurately analyzed for a finite difference method and for an adaptive finite element method in comparison.

  19. Effect of borax on the crystallization kinetics of boric acid

    NASA Astrophysics Data System (ADS)

    Şahin, Ömer

    2002-03-01

    The effect of different borax concentrations on the growth and dissolution rates of boric acid crystals were measured in a fluidized bed crystallizer under well-established conditions of supersaturation and undersaturation and fluidization. It was found that the presence of borax in boric-acid solution decreases the mass-transfer coefficient, kd, the surface-reaction constant, kr and reaction order r pertaining to growth and dissolution rates of boric acid crystals. The effectiveness factors were estimated from the growth rate data to evaluate the relative magnitudes of the two resistances in series, diffusion and integration. The controlling mechanism is mainly by integration for the crystal growth of boric acid in the pure state and in the presence of borax in solution. The kinetic parameters ( kr, kd, r) were determined by a new method which is called trial and error under no assumption. This method gives a high accuracy of determination of the mass-transfer coefficient, kd, the surface-reaction constant, kr and surface-reaction order, r. The relative standard deviation between the equation Rg= kr(( ρα- ρeq)- Rg(1- wα)/ kd) r and those experimentally obtained and represented by the equation Rg= kg( ρα- ρeq) g do not exceed 0.013 for both the growth and dissolution regions.

  20. Numerical model of protein crystal growth in a diffusive field such as the microgravity environment.

    PubMed

    Tanaka, Hiroaki; Sasaki, Susumu; Takahashi, Sachiko; Inaka, Koji; Wada, Yoshio; Yamada, Mitsugu; Ohta, Kazunori; Miyoshi, Hiroshi; Kobayashi, Tomoyuki; Kamigaichi, Shigeki

    2013-11-01

    It is said that the microgravity environment positively affects the quality of protein crystal growth. The formation of a protein depletion zone and an impurity depletion zone due to the suppression of convection flow were thought to be the major reasons. In microgravity, the incorporation of molecules into a crystal largely depends on diffusive transport, so the incorporated molecules will be allocated in an orderly manner and the impurity uptake will be suppressed, resulting in highly ordered crystals. Previously, these effects were numerically studied in a steady state using a simplified model and it was determined that the combination of the diffusion coefficient of the protein molecule (D) and the kinetic constant for the protein molecule (β) could be used as an index of the extent of these depletion zones. In this report, numerical analysis of these depletion zones around a growing crystal in a non-steady (i.e. transient) state is introduced, suggesting that this model may be used for the quantitative analysis of these depletion zones in the microgravity environment.

  1. Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices (Invited)

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1999-01-01

    As illustrated by the invited paper at this conference and other works, SiC wafers and epilayers contain a variety of crystallographic imperfections, including micropipes, closed-core screw dislocations, grain boundaries, basal plane dislocations, heteropolytypic inclusions, and surfaces that are often damaged and contain atomically rough features like step bunching and growth pits or hillocks. Present understanding of the operational impact of various crystal imperfections on SiC electrical devices is reviewed, with an emphasis placed on high-field SiC power devices and circuits.

  2. Tunable far-field acoustic imaging by two-dimensional sonic crystal with concave incident surface

    NASA Astrophysics Data System (ADS)

    Shen, Feng-Fu; Lu, Dan-Feng; Zhu, Hong-Wei; Ji, Chang-Ying; Shi, Qing-Fan

    2017-01-01

    An additional concave incident surface comprised of two-dimensional (2D) sonic crystals (SCs) is employed to tune the acoustic image in the far-field region. The tunability is realized through changing the curvature of the concave surface. To explain the tuning mechanism, a simple ray-trace analysis is demonstrated based on the wave-beam negative refractive law. Then, a numerical confirmation is carried out. Results show that both the position and the intensity of the image can be tuned by the introduced concave surface.

  3. Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Han, Daozhi

    2017-02-01

    In this paper, we develop a series of linear, unconditionally energy stable numerical schemes for solving the classical phase field crystal model. The temporal discretizations are based on the first order Euler method, the second order backward differentiation formulas (BDF2) and the second order Crank-Nicolson method, respectively. The schemes lead to linear elliptic equations to be solved at each time step, and the induced linear systems are symmetric positive definite. We prove that all three schemes are unconditionally energy stable rigorously. Various classical numerical experiments in 2D and 3D are performed to validate the accuracy and efficiency of the proposed schemes.

  4. Renormalization-group theory for the phase-field crystal equation

    NASA Astrophysics Data System (ADS)

    Athreya, Badrinarayan P.; Goldenfeld, Nigel; Dantzig, Jonathan A.

    2006-07-01

    We derive a set of rotationally covariant amplitude equations for use in multiscale simulation of the two-dimensional phase-field crystal model by a variety of renormalization-group (RG) methods. We show that the presence of a conservation law introduces an ambiguity in operator ordering in the RG procedure, which we show how to resolve. We compare our analysis with standard multiple-scale techniques, where identical results can be obtained with greater labor, by going to sixth order in perturbation theory, and by assuming the correct scaling of space and time.

  5. Free energy functionals for efficient phase field crystal modeling of structural phase transformations.

    PubMed

    Greenwood, Michael; Provatas, Nikolas; Rottler, Jörg

    2010-07-23

    The phase field crystal (PFC) method is a promising technique for modeling materials with atomic resolution on mesoscopic time scales. While numerically more efficient than classical density functional theory (CDFT), its single mode free energy limits the complexity of structural transformations that can be simulated. We introduce a new PFC model inspired by CDFT, which uses a systematic construction of two-particle correlation functions that allows for a broad class of structural transformations. Our approach considers planar spacings, lattice symmetries, planar atomic densities, and atomic vibrational amplitudes in the unit cell, and parameterizes temperature and anisotropic surface energies. The power of our approach is demonstrated by two examples of structural phase transformations.

  6. Simultaneously combined liquid crystal surface heat transfer and PIV flow-field measurements

    NASA Astrophysics Data System (ADS)

    Praisner, T. J.; Sabatino, D. R.; Smith, C. R.

    An experimental technique has been developed which combines simultaneous high-density particle image velocimetry (PIV) with a new thermochromic liquid-crystal based instantaneous convective heat transfer sensing system. The new heat transfer sensing system employs liquid crystals applied to the non-flow side of a constant heat flux foil, and isolated from the support plate by a thin insulating cavity. The resulting composite sensing sheet is capable of a 66Hz frequency response and, when utilized in a water flow, it can track instantaneous variations in convective heat transfer for turbulent flows. Placement of the liquid crystals on the non-flow side of the constant heat flux foil also provides optical separation from the flow field, allowing the simultaneous application of high image-density PIV measurements. A description of the experimental apparatus is provided along with a validation and uncertainty analysis of the combined technique. Selected quasi-three-dimensional constructs obtained using this new technique are presented for a variety of turbulent flow configurations.

  7. Direct mapping of local director field of nematic liquid crystals at the nano-scale

    NASA Astrophysics Data System (ADS)

    Xia, Yu; Serra, Francesca; Yang, Shu; Kamien, Randall

    2015-03-01

    The director field in liquid crystals (LCs) has been characterized mainly via polarized optical microscopy, fluorescence confocal microscopy, and Raman spectroscopy, all of which are limited by optical wavelengths - from hundreds of nanometers to several micrometers. Since LC orientation cannot be resolved directly by these methods, theory is needed to interpret the local director field of LC alignment. In this work, we introduce a new approach to directly visualize the local director field of a nematic LC (NLC) at the nano-scale using scanning electron microscopy (SEM). A new type of NLC monomer bearing crosslinkable groups was designed and synthesized. It can be well-oriented at particle surfaces and patterned polymer substrates, including micron-sized silica colloids, porous membranes, micropillar arrays, and 1D channels. After carefully crosslinking, the molecular orientation of NLCs around the particles or within the patterns could be directly visualized by SEM, showing oriented nanofibers representing LC director from the fractured samples. Here, we could precisely resolve not only the local director field by this approach, but the defect structures of NLCs, including hedgehogs and line defects. The direct mapping of LC directors at the nanoscale using this method will improve our understanding of NLC local director field, and thus their manipulation and applications. More importantly, a theoretical interpretation will no longer be a necessity to resolve a new material system in this field.

  8. Electronic structure of ytterbium-implanted GaN at ambient and high pressure: experimental and crystal field studies.

    PubMed

    Kaminska, A; Ma, C-G; Brik, M G; Kozanecki, A; Boćkowski, M; Alves, E; Suchocki, A

    2012-03-07

    The results of high-pressure low-temperature optical measurements in a diamond-anvil cell of bulk gallium nitride crystals implanted with ytterbium are reported in combination with crystal field calculations of the Yb(3+) energy levels. Crystal field analysis of splitting of the (2)F(7/2) and (2)F(5/2) states has been performed, with the aim of assigning all features of the experimental luminescence spectra. A thorough analysis of the pressure behavior of the Yb(3+) luminescence lines in GaN allowed the determination of the ambient-pressure positions and pressure dependence of the Yb(3+) energy levels in the trigonal crystal field as well as the pressure-induced changes of the spin-orbit coupling coefficient.

  9. Infrared light gated MoS₂ field effect transistor.

    PubMed

    Fang, Huajing; Lin, Ziyuan; Wang, Xinsheng; Tang, Chun-Yin; Chen, Yan; Zhang, Fan; Chai, Yang; Li, Qiang; Yan, Qingfeng; Chan, H L W; Dai, Ji-Yan

    2015-12-14

    Molybdenum disulfide (MoS₂) as a promising 2D material has attracted extensive attentions due to its unique physical, optical and electrical properties. In this work, we demonstrate an infrared (IR) light gated MoS₂ transistor through a device composed of MoS₂ monolayer and a ferroelectric single crystal Pb(Mg(1/3)Nb(2/3))O₃-PbTiO₃ (PMN-PT). With a monolayer MoS₂ onto the top surface of (111) PMN-PT crystal, the drain current of MoS₂ channel can be modulated with infrared illumination and this modulation process is reversible. Thus, the transistor can work as a new kind of IR photodetector with a high IR responsivity of 114%/Wcm⁻². The IR response of MoS₂ transistor is attributed to the polarization change of PMN-PT single crystal induced by the pyroelectric effect which results in a field effect. Our result promises the application of MoS₂ 2D material in infrared optoelectronic devices. Combining with the intrinsic photocurrent feature of MoS₂ in the visible range, the MoS₂ on ferroelectric single crystal may be sensitive to a broadband wavelength of light.

  10. Resolving the spin reorientation and crystal-field transitions in TmFeO3 with terahertz transient

    PubMed Central

    Zhang, Kailin; Xu, Kai; Liu, Xiumei; Zhang, Zeyu; Jin, Zuanming; Lin, Xian; Li, Bo; Cao, Shixun; Ma, Guohong

    2016-01-01

    Rare earth orthoferrites (RFeO3) exhibit abundant physical properties such as, weak macroscopic magnetization, spin reorientation transition, and magneto-optical effect, especially the terahertz magnetic response, have received lots of attention in recent years. In this work, quasi-ferromagnetic (FM) and quasi-antiferromagnetic (AFM) modes arising from Fe sublattice of TmFeO3 single crystal are characterized in a temperature range from 40 to 300 K, by using terahertz time-domain spectroscopy (THz-TDS). The magnetic anisotropy constants in ac-plane are estimated according to the temperature-dependent resonant frequencies of both FM and AFM modes. Here, we further observe the broad-band absorptions centered ~0.52, ~0.61, and ~1.15 THz below 110 K, which are reasonably assigned to a series of crystal-field transitions (R modes) of ground multiplets (6H3) of Tm3+ ions. Specially, our finding reveals that the spin reorientation transition at a temperature interval from 93 to 85 K is driven by magnetic anisotropy, however, which plays negligible role on the electronic transitions of Tm ions in the absence of applied magnetic fields. PMID:27009361

  11. On the binary nature of the mechanism of orientational instability in cholesteric liquid crystals in wave fields

    NASA Astrophysics Data System (ADS)

    Kapustina, O. A.

    2014-07-01

    The prediction of a theory developed with allowance for the processes of orientational order parameter relaxation in liquid crystals about two independent acoustic mechanisms of orientational instability in the planar layer of a cholesteric liquid crystal (CLC) in a wave field, manifesting itself in the occurrence of a system of 2D domains, is experimentally substantiated for the first time. The distortions of the layer macrostructure for the mesophase of this type was observed in the field of longitudinal waves in a wide frequency range, including frequencies above the relaxation frequency of the orientational order parameter in CLC. The values of the spatial domain period at the effect threshold and the threshold compression amplitudes are determined for CLC layers 10-100 μm thick with a helix pitch of 2-30 μm in the frequency range of 0.3-45 MHz. It is shown that a complete theoretical description of the phenomenon, consistent with the experimental data, can be obtained only with allowance for the action of the convection and the nonlinear relaxation mechanisms of the mesophase layer structure destabilization, which have different natures.

  12. Magnetic field effects on liquid-phase reactive sintering of MnBi

    NASA Astrophysics Data System (ADS)

    Mitsui, Yoshifuru; Abematsu, Ken-ichi; Umetsu, Rie Y.; Takahashi, Kohki; Koyama, Keiichi

    2016-02-01

    Magnetic fields effects on liquid-phase reaction sintering on MnBi were investigated. The liquid-phase reaction was so fast even in a zero field that the fraction of in-field sintered ferromagnetic MnBi phase was independent of the external magnetic field. However, the ferromagnetic MnBi crystals in the in-field sintered sample were oriented along the external magnetic field direction. The Lotgering factor of the in-field sintered sample was 0.99. This result indicated that almost completely anisotropic MnBi phase could be obtained by in-field liquid phase reactive sintering.

  13. Negative Differential Velocity in Artificial Crystals Probed by High Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Patanè, A.

    , for x > 0.2%, which we have attributed to the emergence of defect states with deep (~ 0.3 eV) energy levels. Electron trapping onto these states was not observed at low x (x = 0.2%). In this ultra-dilute alloy regime and at low electric fields (F < 1 kV/cm) the electrical conductivity retains the characteristic features of transport through extended states, albeit with relatively low mobility (µ ~ 0.1 m2/Vs at RT) due to scattering of electrons by N-atoms. We have focused our research on this ultra-dilute regime and exploited the admixing of the localized single N-impurity level with the extended conduction band states of GaAs to realize an unusual type of negative differential velocity (NDV) effect: at large F (> 1 kV/cm), electrons gain sufficient energy to approach the energy of the resonant N-level, where they become spatially localized.7-10 This Resonant Electron Localization in Electric Field, to which we give the acronym RELIEF, leads to NDV and strongly non-linear current-voltage characteristics. We envisage that the RELIEF-effect could be observed in other III-N-V alloys, such as InP1-xNx and InAs1-xNx. In these compounds the nature of the resonant interaction between the N-level and the conduction band states of the host-crystal is still relatively unexplored. However, it is clear that the different energy positions of the N-level relative to the conduction band minimum of different materials could offer new degrees of freedom in the design of the electronic band structure and electron dynamics. The RELIEF-effect may open up prospects for future applications in fast electronics. We have shown that the maximum response frequency, fmax, of a RELIEF-diode can be tuned by the applied electric field in the THz frequency range.7 This is of potential technological significance for the development of detectors/sources in the 0.6-1 THz region, which is not currently attainable using conventional Transferred Electron Devices and Quantum Cascade Lasers. Our recent

  14. Segregation effects during solidification in weightless melts. [effects of evaporation and solidification on crystalization

    NASA Technical Reports Server (NTRS)

    Li, C.

    1975-01-01

    Computer programs are developed and used in the study of the combined effects of evaporation and solidification in space processing. The temperature and solute concentration profiles during directional solidification of binary alloys with surface evaporation were mathematically formulated. Computer results are included along with an econotechnical model of crystal growth. This model allows: prediction of crystal size, quality, and cost; systematic selection of the best growth equipment or alloy system; optimization of growth or material parameters; and a maximization of zero-gravity effects. Segregation in GaAs crystals was examined along with vibration effects on GaAs crystal growth. It was found that a unique segregation pattern and strong convention currents exist in GaAs crystal growth. Some beneficial effects from vibration during GaAs growth were discovered. The implications of the results in space processing are indicated.

  15. Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal

    SciTech Connect

    Basu, Rajratan

    2014-09-15

    A small quantity of graphene flakes was doped in a ferroelectric liquid crystal (FLC), and the field-induced ferroelectric electro-optic switching was found to be significantly faster in the FLC + graphene hybrid than that of the pure FLC. Further studies revealed that the suspended graphene flakes enhanced the FLC's spontaneous polarization by improving smectic-C ordering resulting from the π–π electron stacking, and reduced rotation viscosity by trapping some of the free ions of the FLC media. These effects coherently impacted the FLC-switching phenomenon, enabling the FLC molecules to switch faster on reversing an external electric field.

  16. Proton Damage Effects on Carbon Nanotube Field-Effect Transistors

    DTIC Science & Technology

    2014-06-19

    PROTON DAMAGE EFFECTS ON CARBON NANOTUBE FIELD-EFFECT TRANSISTORS THESIS Evan R. Kemp, Ctr...United States. AFIT-ENP-T-14-J-39 PROTON DAMAGE EFFECTS ON CARBON NANOTUBE FIELD-EFFECT TRANSISTORS THESIS Presented to...PROTON DAMAGE EFFECTS ON CARBON NANOTUBE FIELD-EFFECT TRANSISTORS Evan R. Kemp, BS Ctr, USAF Approved: // Signed

  17. Interdigitated pixel electrodes with alternating tilts for fast fringe-field switching of liquid crystals.

    PubMed

    Choi, Tae-Hoon; Woo, Jae-Hyeon; Choi, Yeongyu; Yoon, Tae-Hoon

    2016-11-28

    We propose an interdigitated pixel electrode structure with alternating tilts for fast fringe-field switching of liquid crystals (LCs). In contrast to an LC cell, where the pixel electrodes are parallel to the LC alignment direction, this device does not require a non-zero pretilt angle, owing to an obliquely applied electric field; thus, it can retain a much wider viewing angle by aligning the LCs without a pretilt. In addition to a short response time and wide viewing angle, the proposed device allows a much larger deviation of the LC alignment direction, which is essential for mass production. Moreover, LCs with negative dielectric anisotropy can be used to minimize the transmittance decrease.

  18. Bicritical universality of the anisotropic Heisenberg model in a crystal field.

    PubMed

    Freire, R T S; Plascak, J A

    2015-03-01

    The bicritical properties of the three-dimensional classical anisotropic Heisenberg model in a crystal field are investigated through extensive Monte Carlo simulations on a simple cubic lattice, using Metropolis and Wolff algorithms. Field-mixing and multidimensional histogram techniques were employed in order to compute the probability distribution function of the extensive conjugate variables of interest and, using finite-size scaling analysis, the first-order transition line of the model was precisely located. The fourth-order cumulant of the order parameter was then calculated along this line and the bicritical point located with good precision from the cumulant crossings. The bicritical properties of this point were further investigated through the measurement of the universal probability distribution function of the order parameter. The results lead us to conclude that the studied bicritical point belongs in fact to the three-dimensional Heisenberg universality class.

  19. Long-wavelength properties of phase-field-crystal models with second-order dynamics.

    PubMed

    Heinonen, V; Achim, C V; Ala-Nissila, T

    2016-05-01

    The phase-field-crystal (PFC) approach extends the notion of phase-field models by describing the topology of the microscopic structure of a crystalline material. One of the consequences is that local variation of the interatomic distance creates an elastic excitation. The dynamics of these excitations poses a challenge: pure diffusive dynamics cannot describe relaxation of elastic stresses that happen through phonon emission. To this end, several different models with fast dynamics have been proposed. In this article we use the amplitude expansion of the PFC model to compare the recently proposed hydrodynamic PFC amplitude model with two simpler models with fast dynamics. We compare these different models analytically and numerically. The results suggest that in order to have proper relaxation of elastic excitations, the full hydrodynamical description of the PFC amplitudes is required.

  20. Long-wavelength properties of phase-field-crystal models with second-order dynamics

    NASA Astrophysics Data System (ADS)

    Heinonen, V.; Achim, C. V.; Ala-Nissila, T.

    2016-05-01

    The phase-field-crystal (PFC) approach extends the notion of phase-field models by describing the topology of the microscopic structure of a crystalline material. One of the consequences is that local variation of the interatomic distance creates an elastic excitation. The dynamics of these excitations poses a challenge: pure diffusive dynamics cannot describe relaxation of elastic stresses that happen through phonon emission. To this end, several different models with fast dynamics have been proposed. In this article we use the amplitude expansion of the PFC model to compare the recently proposed hydrodynamic PFC amplitude model with two simpler models with fast dynamics. We compare these different models analytically and numerically. The results suggest that in order to have proper relaxation of elastic excitations, the full hydrodynamical description of the PFC amplitudes is required.

  1. Nanoscale mechanical actuation and near-field read-out of photonic crystal molecules

    NASA Astrophysics Data System (ADS)

    Petruzzella, M.; La China, F.; Intonti, F.; Caselli, N.; De Pas, M.; van Otten, F. W. M.; Gurioli, M.; Fiore, A.

    2016-09-01

    We employed the contact forces induced by a near-field tip to tune and probe the optical resonances of a mechanically compliant photonic crystal molecule. Here, the pressure induced by the near-field tip is exploited to control the spectral proprieties of the coupled cavities in an ultrawide spectral range, demonstrating a reversible mode shift of 37.5 nm . Besides, by monitoring the coupling strength variation due to the vertical nanodeformation of the dielectric structure, distinct tip-sample interaction regimes have been unambiguously reconstructed with a nano-Newton sensitivity. These results demonstrate an optical method for mapping mechanical forces at the nanoscale with a lateral spatial resolution below 100 nm.

  2. Switching ferroelectric domain configurations using both electric and magnetic fields in Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 single-crystal lamellae

    PubMed Central

    Evans, D. M.; Schilling, A.; Kumar, Ashok; Sanchez, D.; Ortega, N.; Katiyar, R. S.; Scott, J. F.; Gregg, J. M.

    2014-01-01

    Thin single-crystal lamellae cut from Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 ceramic samples have been integrated into simple coplanar capacitor devices. The influence of applied electric and magnetic fields on ferroelectric domain configurations has been mapped, using piezoresponse force microscopy. The extent to which magnetic fields alter the ferroelectric domains was found to be strongly history dependent: after switching had been induced by applying electric fields, the susceptibility of the domains to change under a magnetic field (the effective magnetoelectric coupling parameter) was large. Such large, magnetic field-induced changes resulted in a remanent domain state very similar to the remanent state induced by an electric field. Subsequent magnetic field reversal induced more modest ferroelectric switching. PMID:24421376

  3. Effect of manganese doping on PIN-PMN-PT single crystals for high power applications

    NASA Astrophysics Data System (ADS)

    Sahul, Raffi

    Single crystals based on relaxor-lead titanate (relaxor-PT) solid solutions have advanced the world of piezoelectric materials for the past two decades with their giant piezoelectric properties achieved by domain engineered configurations. When single crystals of lead magnesium niobate-lead titanate (PMN-PT) solid solution in the rhombohedral phase were poled along [001]c direction with "4R" domain configuration, they exhibited high piezoelectric charge coefficient (d33 >2000 pC/N) and high electromechanical coupling (k33 >0.9) which led to their widespread use in advanced medical imaging systems and underwater acoustic devices. However, PMN-PT crystals suffer from low phase transition temperature (Trt ˜85-95 °C) and lower coercive field (depolarizing electric field, Ec ˜2-3 kV/cm). Lead indium niobate - lead magnesium niobate - lead titanate (PIN-PMN-PT) ternary single crystals formed by adding indium as another constituent exhibit higher coercive field (E c ˜5kV/cm) and higher Curie temperature (Tc >210 °C) than the binary PMN-PT crystals (Ec ˜2.5 kV/cm and Tc <140 °C). When these ternary PIN-PMN-PT crystals are doped with manganese (Mn:PIN-PMN-PT), they behave like hard piezoelectric materials demonstrating an internal bias field (Ei ˜0.8-1.6 kV/cm), leading to low elastic losses and high mechanical Q-factor (Qm >600) compared to the undoped binary crystals (Qm of PMN-PT <150). Although the spontaneous polarization directions for these rhombohedral crystals are in the c directions, the giant piezoelectric effect (d33 >2000 pC/N for PMN-PT) occurs in the [001]c poled crystals, which is attributed to the polarization rotation mechanisms. Hence, domain engineering configurations induced by poling these crystals in orientations other than their polarization axis are critical for achieving large piezoelectric effects. Based on the phase diagram of these solid solutions, with the increase in PT content beyond the rhombohedral phase region, orthorhombic

  4. Large anomalous Nernst effect in a skyrmion crystal

    NASA Astrophysics Data System (ADS)

    Mizuta, Yo Pierre; Ishii, Fumiyuki

    2016-06-01

    Thermoelectric properties of a model skyrmion crystal were theoretically investigated, and it was found that its large anomalous Hall conductivity, corresponding to large Chern numbers induced by its peculiar spin structure leads to a large transverse thermoelectric voltage through the anomalous Nernst effect. This implies the possibility of finding good thermoelectric materials among skyrmion systems, and thus motivates our quests for them by means of the first-principles calculations as were employed in this study.

  5. Large anomalous Nernst effect in a skyrmion crystal

    PubMed Central

    Mizuta, Yo Pierre; Ishii, Fumiyuki

    2016-01-01

    Thermoelectric properties of a model skyrmion crystal were theoretically investigated, and it was found that its large anomalous Hall conductivity, corresponding to large Chern numbers induced by its peculiar spin structure leads to a large transverse thermoelectric voltage through the anomalous Nernst effect. This implies the possibility of finding good thermoelectric materials among skyrmion systems, and thus motivates our quests for them by means of the first-principles calculations as were employed in this study. PMID:27306142

  6. Maxwell-Wagner-Sillars effects on the thermal-transport properties of polymer-dispersed liquid crystals.

    PubMed

    Kuriakose, M; Longuemart, S; Depriester, M; Delenclos, S; Sahraoui, A Hadj

    2014-02-01

    We present the depolarization field effects (Maxwell-Wagner-Sillars effect) for the thermal transport properties of polymer dispersed liquid crystal composites under a frequency-dependent electric field. The experiments were conducted on polystyrene/4-Cyano-4'-pentylbiphenyl (PS/5CB) PDLCs of 73 vol.% and 85 vol.% liquid crystal (LC) concentrations. A self-consistent field approximation model is used to deduce the electrical properties of polymer and LC materials as well as the threshold electric field. Electric field-varying (at constant frequency) experiments were also conducted to calculate the interfacial thermal resistance between the LC droplets and polymer matrix as well as to find the elastic constant of LCs in droplet form.

  7. Minireview: Biological effects of magnetic fields

    SciTech Connect

    Villa, M.; Mustarelli, P. ); Caprotti, M. )

    1991-01-01

    The literature about the biological effects of magnetic fields is reviewed. The authors begin by discussing the weak and/or time variable fields, responsible for subtle changes in the circadian rhythms of superior animals, which are believed to be induced by same sort of resonant mechanism. The safety issues related with the strong magnetic fields and gradients generated by clinical NMR magnets are then considered. The last portion summarizes the debate about the biological effects of strong and uniform magnetic fields.

  8. A Photonic Crystal Magnetic Field Sensor Using a Shoulder-Coupled Resonant Cavity Infiltrated with Magnetic Fluid

    PubMed Central

    Su, Delong; Pu, Shengli; Mao, Lianmin; Wang, Zhaofang; Qian, Kai

    2016-01-01

    A kind of photonic crystal magnetic field sensor is proposed and investigated numerically. The shoulder-coupled resonant cavity is introduced in the photonic crystal, which is infiltrated with magnetic fluid. Through monitoring the shift of resonant wavelength, the magnetic field sensing is realized. According to the designed infiltration schemes, both the magnetic field sensitivity and full width at half maximum increase with the number of infiltrated air holes. The figure of merit of the structure is defined to evaluate the sensing performance comprehensively. The best structure corresponding to the optimal infiltration scheme with eight air holes infiltrated with magnetic fluid is obtained. PMID:27999254

  9. A Photonic Crystal Magnetic Field Sensor Using a Shoulder-Coupled Resonant Cavity Infiltrated with Magnetic Fluid.

    PubMed

    Su, Delong; Pu, Shengli; Mao, Lianmin; Wang, Zhaofang; Qian, Kai

    2016-12-16

    A kind of photonic crystal magnetic field sensor is proposed and investigated numerically. The shoulder-coupled resonant cavity is introduced in the photonic crystal, which is infiltrated with magnetic fluid. Through monitoring the shift of resonant wavelength, the magnetic field sensing is realized. According to the designed infiltration schemes, both the magnetic field sensitivity and full width at half maximum increase with the number of infiltrated air holes. The figure of merit of the structure is defined to evaluate the sensing performance comprehensively. The best structure corresponding to the optimal infiltration scheme with eight air holes infiltrated with magnetic fluid is obtained.

  10. Photonic crystal fiber injected with Fe{sub 3}O{sub 4} nanofluid for magnetic field detection

    SciTech Connect

    Thakur, Harneet V.; Nalawade, Sandipan M.; Gupta, Swati; Kitture, Rohini; Kale, S. N.

    2011-10-17

    We report a magnetic field sensor having advantages of both photonic crystal fiber and optofluidics, combining them on a single platform by infiltrating small amount of Fe{sub 3}O{sub 4} magnetic optofluid/nanofluid in cladding holes of polarization-maintaining photonic crystal fiber. We demonstrated that magnetic field of few mT can be easily and very well detected with higher sensitivity of 242 pm/mT. The change in the birefringence values has been correlated to the response of nanofluid to applied field.

  11. Photoscattering effect in supercontinuum-generating photonic crystal fiber

    PubMed Central

    Tu, H.; Marks, D. L.; Jiang, Z.; Boppart, S. A.

    2010-01-01

    A photosensitivity different from that responsible for fiber grating inscription is found in a supercontinuum-generating photonic crystal fiber transmitting intense 818 nm femtosecond pulses. This photosensitivity progressively generates a waveguide at the entrance of the fiber to scatter light of specific wavelengths and is termed as the photoscattering effect. This effect is linked to the ~800 nm photosensitivity in the microlithography of bulk silica glass. While the effect somewhat limits fiber-optic supercontinuum applications, it can be beneficial to produce new photonic devices. PMID:21350681

  12. Morphology effect on the light scattering and dynamic response of polymer network liquid crystal phase modulator.

    PubMed

    Xiangjie, Zhao; Cangli, Liu; Jiazhu, Duan; Jiancheng, Zeng; Dayong, Zhang; Yongquan, Luo

    2014-06-16

    Polymer network liquid crystal (PNLC) was one of the most potential liquid crystal for submillisecond response phase modulation, which was possible to be applied in submillisecond response phase only spatial light modulator. But until now the light scattering when liquid crystal director was reoriented by external electric field limited its phase modulation application. Dynamic response of phase change when high voltage was applied was also not elucidated. The mechanism that determines the light scattering was studied by analyzing the polymer network morphology by SEM method. Samples were prepared by varying the polymerization temperature, UV curing intensity and polymerization time. The morphology effect on the dynamic response of phase change was studied, in which high voltage was usually applied and electro-striction effect was often induced. The experimental results indicate that the polymer network morphology was mainly characterized by cross linked single fibrils, cross linked fibril bundles or even both. Although the formation of fibril bundle usually induced large light scattering, such a polymer network could endure higher voltage. In contrast, although the formation of cross linked single fibrils induced small light scattering, such a polymer network cannot endure higher voltage. There is a tradeoff between the light scattering and high voltage endurance. The electro-optical properties such as threshold voltage and response time were taken to verify our conclusion. For future application, the monomer molecular structure, the liquid crystal solvent and the polymerization conditions should be optimized to generate optimal polymer network morphology.

  13. Coupled crystal orientation-size effects on the strength of nano crystals

    PubMed Central

    Yuan, Rui; Beyerlein, Irene J.; Zhou, Caizhi

    2016-01-01

    We study the combined effects of grain size and texture on the strength of nanocrystalline copper (Cu) and nickel (Ni) using a crystal-plasticity based mechanics model. Within the model, slip occurs in discrete slip events exclusively by individual dislocations emitted statistically from the grain boundaries. We show that a Hall-Petch relationship emerges in both initially texture and non-textured materials and our values are in agreement with experimental measurements from numerous studies. We find that the Hall-Petch slope increases with texture strength, indicating that preferred orientations intensify the enhancements in strength that accompany grain size reductions. These findings reveal that texture is too influential to be neglected when analyzing and engineering grain size effects for increasing nanomaterial strength. PMID:27185364

  14. Effects of impurities on membrane-protein crystallization in different systems

    SciTech Connect

    Kors, Christopher A.; Wallace, Ellen; Davies, Douglas R.; Li, Liang; Laible, Philip D.; Nollert, Peter

    2009-10-01

    The effects of commonly encountered impurities on various membrane-protein crystallization regimes are investigated and it is found that the lipidic cubic phase crystallization methodology is the most robust, tolerating protein contamination levels of up to 50%, with little effect on crystal quality. If generally applicable, this tolerance may be exploited (i) in initial crystallization trials to determine the ‘crystallizability’ of a given membrane-protein and (ii) to subject partially pure membrane-protein samples to crystallization trials. When starting a protein-crystallization project, scientists are faced with several unknowns. Amongst them are these questions: (i) is the purity of the starting material sufficient? and (ii) which type of crystallization experiment is the most promising to conduct? The difficulty in purifying active membrane-protein samples for crystallization trials and the high costs associated with producing such samples require an extremely pragmatic approach. Additionally, practical guidelines are needed to increase the efficiency of membrane-protein crystallization. In order to address these conundrums, the effects of commonly encountered impurities on various membrane-protein crystallization regimes have been investigated and it was found that the lipidic cubic phase (LCP) based crystallization methodology is more robust than crystallization in detergent environments using vapor diffusion or microbatch approaches in its ability to tolerate contamination in the forms of protein, lipid or other general membrane components. LCP-based crystallizations produced crystals of the photosynthetic reaction center (RC) of Rhodobacter sphaeroides from samples with substantial levels of residual impurities. Crystals were obtained with protein contamination levels of up to 50% and the addition of lipid material and membrane fragments to pure samples of RC had little effect on the number or on the quality of crystals obtained in LCP

  15. Terahertz probes of magnetic field induced spin reorientation in YFeO{sub 3} single crystal

    SciTech Connect

    Lin, Xian; Jiang, Junjie; Ma, Guohong; Jin, Zuanming; Wang, Dongyang; Tian, Zhen; Han, Jiaguang; Cheng, Zhenxiang

    2015-03-02

    Using the terahertz time-domain spectroscopy, we demonstrate the spin reorientation of a canted antiferromagnetic YFeO{sub 3} single crystal, by evaluating the temperature and magnetic field dependence of resonant frequency and amplitude for the quasi-ferromagnetic (FM) and quasi-antiferromagnetic modes (AFM), a deeper insight into the dynamics of spin reorientation in rare-earth orthoferrites is established. Due to the absence of 4f-electrons in Y ion, the spin reorientation of Fe sublattices can only be induced by the applied magnetic field, rather than temperature. In agreement with the theoretical predication, the frequency of FM mode decreases with magnetic field. In addition, an obvious step of spin reorientation phase transition occurs with a relatively large applied magnetic field of 4 T. By comparison with the family members of RFeO{sub 3} (R = Y{sup 3+} or rare-earth ions), our results suggest that the chosen of R would tailor the dynamical rotation properties of Fe ions, leading to the designable spin switching in the orthoferrite antiferromagnetic systems.

  16. Mixing effects in the crystallization of supercooled quantum binary liquids

    NASA Astrophysics Data System (ADS)

    Kühnel, M.; Fernández, J. M.; Tramonto, F.; Tejeda, G.; Moreno, E.; Kalinin, A.; Nava, M.; Galli, D. E.; Montero, S.; Grisenti, R. E.

    2015-08-01

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH2) or orthodeuterium (oD2) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH2 and oD2 crystal growth rates, similarly to what found in our previous work on supercooled pH2-oD2 liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites.

  17. Mixing effects in the crystallization of supercooled quantum binary liquids

    SciTech Connect

    Kühnel, M.; Kalinin, A.; Fernández, J. M.; Tejeda, G.; Moreno, E.; Montero, S.; Tramonto, F.; Galli, D. E.; Nava, M.; Grisenti, R. E.

    2015-08-14

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH{sub 2}) or orthodeuterium (oD{sub 2}) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH{sub 2} and oD{sub 2} crystal growth rates, similarly to what found in our previous work on supercooled pH{sub 2}-oD{sub 2} liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites.

  18. In Field Detection of Biologicals in Human Blood Serum, Saliva and Urine Using Pan Coated Quartz Crystals

    DTIC Science & Technology

    1996-10-01

    removed and stored at 40 C for use in assays. 11 inhibit these proteins. Other enzymes, such as a - amylase , are also found in abundance in saliva . This...Detection of Biologicals in Human Blood Serum, Saliva and Urine Using Pan Coated Quartz Crystals PRINCIPAL INVESTIGATOR: Robert Carter CONTRACTING...TITLE AND SUBTITLE In Field Detection of Biologicals in 5. FUNDING NUMBERS Human Blood Serum, Saliva and Urine Using Pan Coated Quartz Crystals

  19. Rotational spin Hall effect in a uniaxial crystal

    NASA Astrophysics Data System (ADS)

    Fadeyeva, Tatyana A.; Alexeyev, Constantine N.; Rubass, Alexander F.; Ivanov, Maksym O.; Zinov'ev, Alexey O.; Konovalenko, Victor L.; Volyar, Alexander V.

    2012-04-01

    We have considered the propagation process of the phase-matched array of singular beams through a uniaxial crystal. We have revealed that local beams in the array are rotated when propagating. However the right and left rotations are unequal. There are at least two processes responsible for the array rotation: the interference of local beams and the spatial depolarization. The interference takes place in the vortex birth and annihilation events forming the symmetrical part of the rotation. The depolarization process contributes to the asymmetry of the rotation that is called the rotational spin Hall effect. It can be brought to light due to the difference between the envelopes of the dependences of the angular displacement on the inclination angle of the local beams or the crystal length reaching the value some angular degree. The direction of the additional array rotation is exclusively defined by the handedness of the circular polarization in the initial beam array.

  20. Rotational spin Hall effect in a uniaxial crystal.

    PubMed

    Fadeyeva, Tatyana A; Alexeyev, Constantine N; Rubass, Alexander F; Ivanov, Maksym O; Zinov'ev, Alexey O; Konovalenko, Victor L; Volyar, Alexander V

    2012-04-01

    We have considered the propagation process of the phase-matched array of singular beams through a uniaxial crystal. We have revealed that local beams in the array are rotated when propagating. However the right and left rotations are unequal. There are at least two processes responsible for the array rotation: the interference of local beams and the spatial depolarization. The interference takes place in the vortex birth and annihilation events forming the symmetrical part of the rotation. The depolarization process contributes to the asymmetry of the rotation that is called the rotational spin Hall effect. It can be brought to light due to the difference between the envelopes of the dependences of the angular displacement on the inclination angle of the local beams or the crystal length reaching the value of some angular degree. The direction of the additional array rotation is exclusively defined by the handedness of the circular polarization in the initial beam array.

  1. Controlling electromagnetic fields using periodic structures: Gratings, metamaterials, and photonic crystals

    NASA Astrophysics Data System (ADS)

    Memarian, Mohammad

    This thesis presents novel devices and techniques that enable new methods for enhancement, concentration, refraction, shaping, collimation, and directive beaming of electromagnetic fields. These unprecedented methods to control electromagnetic fields are achieved by exploring and harnessing the unique wave-interactions in periodic gratings, metamaterials, and photonic crystals, with emphasis on Epsilon-Near-Zero (ENZ) metamaterials and zero-index media. The presented solutions impact a wide variety of applications ranging from microwave to optical frequencies. A discovery of dramatic radiation enhancement of an invisible array of sources next to a sub-wavelength periodic metal strip grating is reported, both theoretically and experimentally. The phenomenon is first systematically theorized by introducing the 'spectral impulse response' approach for the aperiodic excitation problem, followed by the 'spectral array factor' approach for designing the near-field of array of sources. Such radiation enhancement has applications in sensing, detection, and accurate measurement of distance. The shaping and collimation of radiation of a simple dipole source near or buried inside a general anisotropic ENZ half-space is then systematically studied using the Lorentz reciprocity method. Various elliptic and hyperbolic anisotropic ENZ media are considered, showing how the air-side radiation can be enhanced and shaped using certain ENZs. A novel device and technique is proposed for collecting, refracting and concentrating incident waves into an area of high power concentration, at extremely short distances. This flat low-profile light-concentrator comprises a hetero-junction of anisotropic ENZ metamaterials (hyperbolic or elliptic), and is realized with plasmonic layered media at optical frequencies. By harnessing an extremely oblique refraction process in ENZs, the light-concentrator significantly outperforms the size requirements of existing thick high curvature lenses, useful

  2. Pyroelectric field assisted ion migration induced by ultraviolet laser irradiation and its impact on ferroelectric domain inversion in lithium niobate crystals

    SciTech Connect

    Ying, C. Y. J.; Mailis, S.; Daniell, G. J.; Steigerwald, H.; Soergel, E.

    2013-08-28

    The impact of UV laser irradiation on the distribution of lithium ions in ferroelectric lithium niobate single crystals has been numerically modelled. Strongly absorbed UV radiation at wavelengths of 244–305 nm produces steep temperature gradients which cause lithium ions to migrate and result in a local variation of the lithium concentration. In addition to the diffusion, here the pyroelectric effect is also taken into account which predicts a complex distribution of lithium concentration along the c-axis of the crystal: two separated lithium deficient regions on the surface and in depth. The modelling on the local lithium concentration and the subsequent variation of the coercive field are used to explain experimental results on the domain inversion of such UV treated lithium niobate crystals.

  3. A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids

    NASA Astrophysics Data System (ADS)

    Zhao, Jia; Yang, Xiaofeng; Shen, Jie; Wang, Qi

    2016-01-01

    We develop a linear, first-order, decoupled, energy-stable scheme for a binary hydrodynamic phase field model of mixtures of nematic liquid crystals and viscous fluids that satisfies an energy dissipation law. We show that the semi-discrete scheme in time satisfies an analogous, semi-discrete energy-dissipation law for any time-step and is therefore unconditionally stable. We then discretize the spatial operators in the scheme by a finite-difference method and implement the fully discrete scheme in a simplified version using CUDA on GPUs in 3 dimensions in space and time. Two numerical examples for rupture of nematic liquid crystal filaments immersed in a viscous fluid matrix are given, illustrating the effectiveness of this new scheme in resolving complex interfacial phenomena in free surface flows of nematic liquid crystals.

  4. ATMOSPHERIC EFFECTS ON THE PERFORMANCE OF CDZNTE SINGLE CRYSTAL DETECTORS

    SciTech Connect

    Washington, A.; Duff, M.; Teague, L.

    2010-05-12

    The production of high-quality ternary single-crystal materials for radiation detectors has progressed over the past 15 years. One of the more common materials being studied is CdZnTe (CZT), which can be grown using several methods to produce detector-grade materials. The work presented herein examines the effects of environmental conditions including temperature and humidity on detector performance [full-width at half-maximum (FWHM)] using the single pixel with guard detector configuration. The effects of electrical probe placement, reproducibility, and aging are also presented.

  5. Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering

    NASA Astrophysics Data System (ADS)

    He, Xiaoxian; Wang, Xiangru; Wu, Liang; Tan, Qinggui; Li, Man; Shang, Jiyang; Wu, Shuanghong; Huang, Ziqiang

    2017-01-01

    Non-mechanical laser beam steering has been reported previously in liquid crystal array devices. To be one of the most promising candidates to be practical non-mechanical laser deflector, its laser induced effect still has few theoretical model. In this paper, we propose a theoretical model to analyze this laser induced effect of LC-OPA to evaluate the deterioration on phased beam steering. The model has three parts: laser induced thermal distribution; temperature dependence of material parameters and beam steering deterioration. After these three steps, the far field of laser beam is obtained to demonstrate the steering performance with the respect to the incident laser beam power and beam waist.

  6. Temperature dependence of crystal-field peaks of RbMnF 3 and KMnF 3

    NASA Astrophysics Data System (ADS)

    Rodríguez, F.; Moreno, M.; Dance, J. M.; Tressaud, A.

    1989-01-01

    The influence of temperature on the position of crystal-field peaks of RbMnF 3 and KMnF 3 has been investigated in the 14-550 K range. Upon warming in the 200-550 K range, the 4T1 g( G) peak dependent on 10 Dq experiences a total blue shift of 470 cm -1. It is shown that only 40% of this shift arises from thermal expansion effects, the rest being due to the explicit (∂ E/∂ T) v term. The positive sign of this term is associated to higher vibration frequencies for the 4T1 g( G) state (belonging mainly to the t4e configuration) than for 6A1 g( S) as a result of smaller Mn 2+-F - distances for that excited state. Below 200 K the present data reflect the existence of magnetic and structural (only for KMnF 3) phase transitions in the compounds.

  7. Temperature and field induced strain measurements in single crystal Gd5Si2Ge2

    DOE PAGES

    McCall, S. K.; Nersessian, N.; Carman, G. P.; ...

    2016-03-29

    The first-order magneto-structural transformation that occurs in Gd5Si2Ge2 near room temperature makes it a strong candidate for many energy harvesting applications. Understanding the single crystal properties is crucial for allowing simulations of device performance. In this study, magnetically and thermally induced transformation strains were measured in a single crystal of Gd5Si2.05Ge1.95 as it transforms from a high-temperature monoclinic paramagnet to a lower-temperature orthorhombic ferromagnet. Thermally induced transformation strains of –8500 ppm, +960 ppm and +1800 ppm, and magnetically induced transformation strains of –8500 ppm, +900 ppm and +2300 ppm were measured along the a, b and c axes, respectively. Furthermore,more » using experimental data coupled with general thermodynamic considerations, a universal phase diagram was constructed showing the transition from the monoclinic to the orthorhombic phase as a function of temperature and magnetic field.« less

  8. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    SciTech Connect

    Mohamed, Mamdouh S.; Larson, Bennett C.; Tischler, Jonathan Z.; El-Azab, Anter

    2015-05-18

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kr ner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  9. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    DOE PAGES

    Mohamed, Mamdouh S.; Larson, Bennett C.; Tischler, Jonathan Z.; ...

    2015-05-18

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoreticalmore » analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kr ner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.« less

  10. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    NASA Astrophysics Data System (ADS)

    Mohamed, Mamdouh S.; Larson, Bennett C.; Tischler, Jonathan Z.; El-Azab, Anter

    2015-09-01

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kröner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  11. Phase field crystal modeling as a unified atomistic approach to defect dynamics

    NASA Astrophysics Data System (ADS)

    Berry, Joel; Provatas, Nikolas; Rottler, Jörg; Sinclair, Chad W.

    2014-06-01

    Material properties controlled by evolving defect structures, such as mechanical response, often involve processes spanning many length and time scales which can not be modeled using a single approach. We present a variety of results that demonstrate the ability of phase field crystal (PFC) models to describe complex defect evolution phenomena on atomistic length scales and over long, diffusive time scales. Primary emphasis is given to the unification of conservative and nonconservative dislocation creation mechanisms in three-dimensional fcc and bcc materials. These include Frank-Read-type glide mechanisms involving closed dislocation loops or grain boundaries as well as Bardeen-Herring-type climb mechanisms involving precipitates, inclusions, and/or voids. Both source classes are naturally and simultaneously captured at the atomistic level by PFC descriptions, with arbitrarily complex defect configurations, types, and environments. An unexpected dipole-to-quadrupole source transformation is identified, as well as various complex geometrical features of loop nucleation via climb from spherical particles. Results for the strain required to nucleate a dislocation loop from such a particle are in agreement with analytic continuum theories. Other basic features of fcc and bcc dislocation structure and dynamics are also outlined, and initial results for dislocation-stacking fault tetrahedron interactions are presented. These findings together highlight various capabilities of the PFC approach as a coarse-grained atomistic tool for the study of three-dimensional crystal plasticity.

  12. Effect of cell gap on electro-optical properties of polymer dispersed liquid crystal lens for smart electronic glasses

    NASA Astrophysics Data System (ADS)

    Kim, Jaeyong; Han, Jeong In

    2014-07-01

    Polymer dispersed liquid crystal (PDLC) lenses with a cell gap of 11 μm and 30 μm were made from a uniformly dispersed mixture of 40% prepolymer (NOA 65, Norland optical adhesive 65) and 60% E7 liquid crystal. PDLC's mixture between two ITO coated glasses was polymerized by UV (ultraviolet) curing in the polymerization induced phase separation (PIPS) process. Decline of cell gap is a physical approach to improve the electrooptical properties, while cooling or doping of SiO2 nanoparticles is the microstructural approach to enhance the properties, because the electric field applied to the liquid crystal molecules in LC droplets is inversely proportional to the cell gap. A smaller cell gap significantly and effectively increases the electric field applied to PDLCD devices. The driving voltages and slope for the sample with a cell gap of 11 μm and 30 μm were drastically improved. The driving voltage and the slope of the linear region of PDLC lens with narrow cell gap of 11 μm were drastically enhanced compared to those of the samples with 30 μm cell gap and the cooled and doped samples. These improvements were due to the increase of the applied electric field. However, the response time and contrast ratio were deteriorated. It seems that this deterioration was caused by the sticking or fixing of liquid crystal molecules in LC (liquid crystal) droplets by the intensive electric field applied to the PDLC device.

  13. High Performance Vertical Organic Field Effect Transistors

    DTIC Science & Technology

    2010-05-01

    synthesized low bandgap silole-containing polymers for OPV application; [7] and studied Anisotropy in Organic Single-Crystal Photovoltaic devices based on...transfer effect in the polyaniline -gold nanoparticle memory system.[9] A composite system comprised of polyaniline nanofibers bonded with gold... polyaniline and the gold nanoparticles and is confirmed by x-ray photoelectron spectroscopy and Raman spectroscopy. This charge transfer enables a bistable

  14. Field induced phase transitions and energy harvesting performance of (Pb,La)(Zr,Sn,Ti)O3 single crystal

    NASA Astrophysics Data System (ADS)

    Zhuo, Fangping; Li, Qiang; Li, Yuanyuan; Gao, Jinghan; Yan, Qingfeng; Zhang, Yiling; Xi, Xiaoqing; Chu, Xiangcheng; Cao, Wenwu

    2017-02-01

    (Pb,La)(Zr,Sn,Ti)O3 (PLZST) single crystals with composition close to the morphotropic phase boundary had been grown by the flux method. The antiferroelectric-ferroelectric phase switching electric field was 0.8 kV/mm. Temperature-dependent dielectric and polarization versus electric field hysteresis loops revealed that the electric field induced ferroelectric phase could transform back into the antiferroelectric phase at depolarization temperature (145 °C). An enhanced pyroelectric coefficient value of 1.46 μC/cm2/K was obtained at 145 °C, which is several times larger than that of conventional pyroelectric materials. Furthermore, multiple peak pyroelectric responses and an enhanced harvested energy density value of 0.4 J/cm3 were achieved in the PLZST crystal. The enhanced harvested energy density and multiple peak pyroelectric responses make the PLZST crystal a promising candidate for high sensitive temperature sensors and energy conversion technologies.

  15. First and second order numerical methods based on a new convex splitting for phase-field crystal equation

    NASA Astrophysics Data System (ADS)

    Shin, Jaemin; Lee, Hyun Geun; Lee, June-Yub

    2016-12-01

    The phase-field crystal equation derived from the Swift-Hohenberg energy functional is a sixth order nonlinear equation. We propose numerical methods based on a new convex splitting for the phase-field crystal equation. The first order convex splitting method based on the proposed splitting is unconditionally gradient stable, which means that the discrete energy is non-increasing for any time step. The second order scheme is unconditionally weakly energy stable, which means that the discrete energy is bounded by its initial value for any time step. We prove mass conservation, unique solvability, energy stability, and the order of truncation error for the proposed methods. Numerical experiments are presented to show the accuracy and stability of the proposed splitting methods compared to the existing other splitting methods. Numerical tests indicate that the proposed convex splitting is a good choice for numerical methods of the phase-field crystal equation.

  16. Pressure effects on crystal and electronic structure of bismuth tellurohalides

    NASA Astrophysics Data System (ADS)

    Rusinov, I. P.; Menshchikova, T. V.; Sklyadneva, I. Yu; Heid, R.; Bohnen, K.-P.; Chulkov, E. V.

    2016-11-01

    We study the possibility of pressure-induced transitions from a normal semiconductor to a topological insulator (TI) in bismuth tellurohalides using density functional theory and tight-binding method. In BiTeI this transition is realized through the formation of an intermediate phase, a Weyl semimetal, that leads to modification of surface state dispersions. In the topologically trivial phase, the surface states exhibit a Bychkov-Rashba type dispersion. The Weyl semimetal phase exists in a narrow pressure interval of 0.2 GPa. After the Weyl semimetal-TI transition occurs, the surface electronic structure is characterized by gapless states with linear dispersion. The peculiarities of the surface states modification under pressure depend on the band-bending effect. We have also calculated the frequencies of Raman active modes for BiTeI in the proposed high-pressure crystal phases in order to compare them with available experimental data. Unlike BiTeI, in BiTeBr and BiTeCl the topological phase transition does not occur. In BiTeBr, the crystal structure changes with pressure but the phase remains a trivial one. However, the transition appears to be possible if the low-pressure crystal structure is retained. In BiTeCl under pressure, the topological phase does not appear up to 18 GPa due to a relatively large band gap width in this compound.

  17. Study of light-absorbing crystal birefringence and electrical modulation mechanisms for coupled thermal-optical effects.

    PubMed

    Zhou, Ji; He, Zhihong; Ma, Yu; Dong, Shikui

    2014-09-20

    This paper discusses Gaussian laser transmission in double-refraction crystal whose incident light wavelength is within its absorption wave band. Two scenarios for coupled radiation and heat conduction are considered: one is provided with an applied external electric field, the other is not. A circular heat source with a Gaussian energy distribution is introduced to present the crystal's light-absorption process. The electromagnetic field frequency domain analysis equation and energy equation are solved to simulate the phenomenon by using the finite element method. It focuses on the influence of different values such as wavelength, incident light intensity, heat transfer coefficient, ambient temperature, crystal thickness, and applied electric field strength. The results show that the refraction index of polarized light increases with the increase of crystal temperature. It decreases as the strength of the applied electric field increases if it is positive. The mechanism of electrical modulation for the thermo-optical effect is used to keep the polarized light's index of refraction constant in our simulation. The quantitative relation between thermal boundary condition and strength of applied electric field during electrical modulation is determined. Numerical results indicate a possible approach to removing adverse thermal effects such as depolarization and wavefront distortion, which are caused by thermal deposition during linear laser absorption.

  18. First and second order operator splitting methods for the phase field crystal equation

    SciTech Connect

    Lee, Hyun Geun; Shin, Jaemin; Lee, June-Yub

    2015-10-15

    In this paper, we present operator splitting methods for solving the phase field crystal equation which is a model for the microstructural evolution of two-phase systems on atomic length and diffusive time scales. A core idea of the methods is to decompose the original equation into linear and nonlinear subequations, in which the linear subequation has a closed-form solution in the Fourier space. We apply a nonlinear Newton-type iterative method to solve the nonlinear subequation at the implicit time level and thus a considerably large time step can be used. By combining these subequations, we achieve the first- and second-order accuracy in time. We present numerical experiments to show the accuracy and efficiency of the proposed methods.

  19. Motion of a colloidal particle in a nonuniform director field of a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Lee, Beom-Kyu; Kim, Sung-Jo; Lev, Bohdan; Kim, Jong-Hyun

    2017-01-01

    We investigate the dynamics of a single spherical particle immersed in a nematic liquid crystal. A nonuniform director field is imposed on the substrate by a stripe alignment pattern with splay deformation. The particle of homeotropic anchoring at the surface is accompanied by hyperbolic hedgehog or Saturn-ring defects. The particle motion is dependent on the defect structure. We study the two types of motions theoretically and confirm the obtained results experimentally. The particle accompanied by a hyperbolic hedgehog defect is pulled to a deformed region to relax the elastic deformation energy. The motion occurs in the direction heading the hyperbolic hedgehog defect of a particle in a twist region. The position exhibits a weak S-shaped change as a function of time. The particle accompanied by a Saturn-ring defect shows insignificant motion due to its relatively small deformation energy.

  20. Extended depth of field using a liquid crystal annular spatial light modulator.

    PubMed

    Klapp, Iftach; Solodar, Asi; Abdulhalim, Ibrahim

    2014-07-01

    A detailed investigation is presented on the tunable extended depth of field (EDOF) method, proposed recently by Klapp et al. [Opt. Lett.39, 1414 (2014)]. This method is based on temporal multiplexing of phase masks, using an annular liquid crystal spatial light modulator possessing a small number of rings. Examples of 3D simulations used to determine the phase profiles in the pupil plane are presented, as well as more detailed experimental results. Both the experimental and numerical results include comprehensive analysis of contrast dependence on both the spatial spectrum of the object and the amount of defocus. In addition, for the first time, we present the EDOF order inversion in the experimental and simulated data. The results show a profound performance of the proposed system and method.