Science.gov

Sample records for crystal field effects

  1. Oxidation and crystal field effects in uranium

    NASA Astrophysics Data System (ADS)

    Tobin, J. G.; Yu, S.-W.; Booth, C. H.; Tyliszczak, T.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Nordlund, D.; Weng, T.-C.; Bagus, P. S.

    2015-07-01

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (U O2) , uranium trioxide (U O3) , and uranium tetrafluoride (U F4) . A discussion of the role of nonspherical perturbations, i.e., crystal or ligand field effects, will be presented.

  2. Oxidation and crystal field effects in uranium

    SciTech Connect

    Tobin, J. G.; Booth, C. H.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Weng, T. -C.; Yu, S. W.; Bagus, P. S.; Tyliszczak, T.; Nordlund, D.

    2015-07-06

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO2), uranium trioxide (UO3), and uranium tetrafluoride (UF4). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.

  3. Effects of magnetic fields on dissolution of arthritis causing crystals

    NASA Astrophysics Data System (ADS)

    Takeuchi, Y.; Iwasaka, M.

    2015-05-01

    The number of gout patients has rapidly increased because of excess alcohol and salt intake. The agent responsible for gout is the monosodium urate (MSU) crystal. MSU crystals are found in blood and consist of uric acid and sodium. As a substitute for drug dosing or excessive water intake, physical stimulation by magnetic fields represents a new medical treatment for gout. In this study, we investigated the effects of a magnetic field on the dissolution of a MSU crystal suspension. The white MSU crystal suspension was dissolved in an alkaline solution. We measured the light transmission of the MSU crystal suspension by a transmitted light measuring system. The magnetic field was generated by a horizontal electromagnet (maximum field strength was 500 mT). The MSU crystal suspension that dissolved during the application of a magnetic field of 500 mT clearly had a higher dissolution rate when compared with the control sample. We postulate that the alkali solution promoted penetration upon diamagnetic rotation and this magnetic field orienting is because of the pronounced diamagnetic susceptibility anisotropy of the MSU crystal. The results indicate that magnetic fields represent an effective gout treatment approach.

  4. Electromagnetic Field Effects in Semiconductor Crystal Growth

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S.

    1996-01-01

    This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed.

  5. Reflective liquid crystal light valve with hybrid field effect mode

    NASA Technical Reports Server (NTRS)

    Boswell, Donald D. (Inventor); Grinberg, Jan (Inventor); Jacobson, Alexander D. (Inventor); Myer, Gary D. (Inventor)

    1977-01-01

    There is disclosed a high performance reflective mode liquid crystal light valve suitable for general image processing and projection and particularly suited for application to real-time coherent optical data processing. A preferred example of the device uses a CdS photoconductor, a CdTe light absorbing layer, a dielectric mirror, and a liquid crystal layer sandwiched between indium-tin-oxide transparent electrodes deposited on optical quality glass flats. The non-coherent light image is directed onto the photoconductor; this reduces the impedance of the photoconductor, thereby switching the AC voltage that is impressed across the electrodes onto the liquid crystal to activate the device. The liquid crystal is operated in a hybrid field effect mode. It utilizes the twisted nematic effect to create a dark off-state (voltage off the liquid crystal) and the optical birefringence effect to create the bright on-state. The liquid crystal thus modulates the polarization of the coherent read-out or projection light responsively to the non-coherent image. An analyzer is used to create an intensity modulated output beam.

  6. TOPICAL REVIEW: Organic field-effect transistors using single crystals

    NASA Astrophysics Data System (ADS)

    Hasegawa, Tatsuo; Takeya, Jun

    2009-04-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm2 Vs-1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  7. Crystal Field Handbook

    NASA Astrophysics Data System (ADS)

    Newman, D. J.; Ng, Betty

    2007-09-01

    List of contributors; Preface; Introduction; 1. Crystal field splitting mechanisms D. J. Newman and Betty Ng; 2. Empirical crystal fields D. J. Newman and Betty Ng; 3. Fitting crystal field parameters D. J. Newman and Betty Ng; 4. Lanthanide and actinide optical spectra G. K. Liu; 5. Superposition model D. J. Newman and Betty Ng; 6. Effects of electron correlation on crystal field splitting M. F. Reid and D. J. Newman; 7. Ground state splittings in S-state ions D. J. Newman and Betty Ng; 8. Invariants and moments Y. Y. Yeung; 9. Semiclassical model K. S. Chan; 10. Transition intensities M. F. Reid; Appendix 1. Point symmetry D. J. Newman and Betty Ng; Appendix 2. QBASIC programs D. J. Newman and Betty Ng; Appendix 3. Accessible program packages Y. Y. Yeung, M. F. Reid and D. J. Newman; Appendix 4. Computer package CST Cz. Rudowicz; Bibliography; Index.

  8. 2D Mica Crystal as Electret in Organic Field-Effect Transistors for Multistate Memory.

    PubMed

    Zhang, Xiaotao; He, Yudong; Li, Rongjin; Dong, Huanli; Hu, Wenping

    2016-05-01

    Organic nonvolatile multistate storage devices based on organic field-effect transistors using mica as the 2D single-crystal electrets are developed. A4-paper-sized 2D mica crystals with flat surface are prepared successfully. Devices with mica electrets exhibit a typical memory effect and show ideal output curves on both the on and the off states.

  9. Controlled deposition or organic semiconductor single crystals and its application in field-effect transistors

    NASA Astrophysics Data System (ADS)

    Liu, Shuhong

    The search for low-cost, large area, flexible devices has led to a remarkable increase in the research and development of organic semiconductors. Single-crystal organic field-effect transistors (OFETs) are ideal device structures for studying fundamental science associated with charge transport in organic materials and have demonstrated high mobility and outstanding electrical characteristics. For example, an exceptionally high carrier mobility of 20 cm2/Vs has been demonstrated for rubrene single crystal field effect transistors. However, it remains a technical challenge to integrate single-crystal devices into practical electronic applications. A key difficulty is that organic single-crystal devices are usually fabricated one device at a time by handpicking a single crystal and placing it onto the device substrate. This makes it impossible to mass-produce at high density with reasonable throughput. Therefore, there is a great need for a high-throughput method for depositing large arrays of organic semiconductor single crystals directly onto device structures. In this dissertation, I develop several approaches towards realizing this goal. The first approach is a solution-processing technique, which relies on solvent wetting and de-wetting on substrates with patterned wettability to selectively direct the deposition or removal of organic crystals. The assembly of different organic crystals over centimeter-squared areas on Au, SiO 2 and flexible plastic substrates is demonstrated. By designing line features on the substrate, alignment of needle-like crystals is also achieved. As a demonstration of the potential application of this approach, arrays of organic single crystal FETs are fabricated by patterning organic single crystals directly onto and between transistor source and drain electrodes. Besides organic single crystals, this self-assembly strategy is also applicable for patterning other objects such as metallic nanowires. In the second technique, organic

  10. Electronic transitions, crystal field effects and phonons in UO 2

    NASA Astrophysics Data System (ADS)

    Schoenes, J.

    1980-08-01

    An extensive optical study of the 5f magnetic semiconductor UO 2 is presented. The experimental data include near normal incidence reflectivity measurements from 0.0025 to 13 eV, absorption and Faraday rotation measurements as function of temperature and of magnetic fields up to 100 kOe and photoemission results. From the data in the fundamental absorption region an energy level scheme is derived. This level scheme differs markedly from an earlier model but it is quantitatively supported by a calculation using the thermochemical Haber-Born process and also by cluster calculations. The localized nature of the 5f electrons is demonstrated. The absorption edge at 2 eV shows an abrupt shift to lower energies at the first order phase transition of UO 2 to the antiferromagnetic state. This shift is shown to be larger than expected from the lattice contraction indicating a magnetic order induced contribution to the total red shift. Below the absorption edge, intra-5f transitions and multiphonon excitations are reported, showing striking order induced effects at and below TN = 30.8 K. New results are presented for ε st, ε opt, ω TO and ω LO which fulfill the Lyddane-Sachs-Teller relation.

  11. Monitoring of hydroxyapatite crystal formation using field-effect transistor

    NASA Astrophysics Data System (ADS)

    Kajisa, Taira; Sakata, Toshiya

    2016-04-01

    The biomineralization process of hydroxyapatite (HAp) in simulated body fluid (SBF) was monitored in realtime using extended-gate FETs whose gate electrode was modified with a variety of alkanethiol self-assembled monolayers (SAMs). It was found that the gate surface potential of the carboxyl- and amino-group-terminated SAM-coated gate FET was increased in SBF as HAp crystals grew on the gate surface. Moreover, in the carboxyl-group-terminated SAM-coated gate FET, the rate of increase and the shift of gate surface potential of the FET were found to depend on the concentration of calcium ions in the SBF. It was concluded that the process of HAp crystallization at a SAM-modified surface can be detected using FETs. Thus, a FET device that enables the easy detection of ionic charges in a real-time and label-free manner, will be useful for evaluating biomaterials based on biomineralization such as those in the bone regeneration process.

  12. Determination of optimal ionic liquid for organic single-crystal field-effect transistors

    NASA Astrophysics Data System (ADS)

    Ono, S.; Miwa, K.; Seki, S.

    2016-02-01

    We investigate organic single-crystal field-effect transistors with various ionic liquids as gate dielectric. We find that the mobility of the field-effect transistors for both p-type and n-type organic semiconductors increases with decreasing total capacitance of the ionic liquid. However, it does not depend on the ion species at the interface between the organic semiconductor and the ionic liquid. By choosing an appropriate ionic liquid, a high carrier mobility of 12.4 cm2/V s in rubrene single crystals (p-type) and 0.13 cm2/V s in 7.7.8.8-Tetracyanoquinodimethane single crystals (n-type) are achieved. This study clarifies the influence of ionic liquids on the device performance of organic field-effect transistors and shows a way to maximize carrier mobility at the solid/liquid interface.

  13. Diffraction and fringing field effects in small pixel liquid crystal devices with homeotropic alignment

    NASA Astrophysics Data System (ADS)

    Vanbrabant, Pieter J. M.; Beeckman, Jeroen; Neyts, Kristiaan; Willman, Eero; Fernandez, F. Anibal

    2010-10-01

    Reducing the pixel dimensions of liquid crystal microdisplays in search of high resolution has a fundamental impact on their electro-optic behavior. The liquid crystal director orientation becomes distorted due to fringing fields and diffraction effects influence the optical characteristics of the device once the structure features approach the wavelength of the incident light. Three-dimensional finite element simulation of the liquid crystal dynamics with a variable order approach is combined with a full-vector beam propagation analysis to investigate how elasticity and diffraction limit the resolution as a function of the pixel size for transmissive and reflective architectures with vertical liquid crystal alignment. The key liquid crystal properties are considered and the importance of materials with high birefringence is confirmed for small pixel devices as these improve the contrast for a fixed pixel size.

  14. The Effect of a Rotating Magnetic Field on Flow Stability During Crystal Growth

    NASA Technical Reports Server (NTRS)

    Volz, Martin P.; Mazuruk, K.

    2000-01-01

    The effect of a rotating magnetic field on the stability of flow in crystal growth configurations has been experimentally modeled using liquid gallium contained in a finite cylinder and heated from below. Several distinct flow regions were determined as a function of the Rayleigh and Hartmann numbers. At low values of the Rayleigh and Hartmann numbers, a region of stationary flow exists. As the rotating magnetic field is increased, the critical Rayleigh number bounding the stationary flow region can increase by a factor of 10. However, the rotating magnetic field itself induces an instability at a critical value of the Hartmann number independent of the Rayleigh number. In the stationary flow region, the rotating magnetic field can induce fluid motion with velocities several orders of magnitude larger than typical semiconductor crystal growth velocities. Thus, a rotating magnetic field can be used to achieve the benefits of forced convection without triggering deleterious instabilities.

  15. Metal electrode dependent field effect transistors made of lanthanide ion-doped DNA crystals

    NASA Astrophysics Data System (ADS)

    Reddy Dugasani, Sreekantha; Hwang, Taehyun; Kim, Jang Ah; Gnapareddy, Bramaramba; Kim, Taesung; Park, Sung Ha

    2016-03-01

    We fabricated lanthanide ion (Ln3+, e.g. Dy3+, Er3+, Eu3+, and Gd3+)-doped self-assembled double-crossover (DX) DNA crystals grown on the surface of field effect transistors (FETs) containing either a Cr, Au, or Ni electrode. Here we demonstrate the metal electrode dependent FET characteristics as a function of various Ln3+. The drain-source current (I ds), controlled by the drain-source voltage (V ds) of Ln3+-doped DX DNA crystals with a Cr electrode on an FET, changed significantly under various gate voltages (V g) due to the relative closeness of the work function of Cr to the energy band gap of Ln3+-DNA crystals compared to those of Au and Ni. For Ln3+-DNA crystals on an FET with either a Cr or Ni electrode at a fixed V ds, I ds decreased with increasing V g ranging from  -2 to 0 V and from 0 to  +3 V in the positive and negative regions, respectively. By contrast, I ds for Ln3+-DNA crystals on an FET with Au decreased with increasing V g in only the positive region due to the greater electronegativity of Au. Furthermore, Ln3+-DNA crystals on an FET exhibited behaviour sensitive to V g due to the appreciable charge carriers generated from Ln3+. Finally, we address the resistivity and the mobility of Ln3+-DNA crystals on an FET with different metal electrodes obtained from I ds-V ds and I ds-V g curves. The resistivities of Ln3+-DNA crystals on FETs with Cr and Au electrodes were smaller than those of pristine DNA crystals on an FET, and the mobility of Ln3+-DNA crystals on an FET with Cr was relatively higher than that associated with other electrodes.

  16. Electric field effects in nematic liquid crystals doped with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cîrtoaje, Cristina; Petrescu, Emil; Moţoc, Cornelia

    2013-12-01

    The aim of this paper was to investigate electric field induced effects in mixtures of nematic liquid crystals (NLCs) with positive electric anisotropies (MCL 6601 Merck) with carbon nanotubes (MWCNT from Aldrich). In planar alignment, the current-electric field dependence and the current-temperature dependence were explained by assuming a Poole-Frenkel effect (i.e. a tunnelling mechanism) and good agreement with the experimental data was obtained. Within this high field range it resulted that in planar aligned NLC-CNTs mixture the conductivity decreases when the temperature was increased. In homeotropic aligned mixture, the conduction mechanism is similar to the one occurring in a semiconductor: the conductivity increases when increasing temperature. This happens because in thin liquid crystal cells there is a possibility to realize an inner contact between nanotubes and electrodes so the mixture behaves like a semiconductor.

  17. Charge modulation infrared spectroscopy of rubrene single-crystal field-effect transistors

    NASA Astrophysics Data System (ADS)

    Uchida, R.; Yada, H.; Makino, M.; Matsui, Y.; Miwa, K.; Uemura, T.; Takeya, J.; Okamoto, H.

    2013-03-01

    Polarized absorption spectra of hole carriers in rubrene single crystal field-effect transistors were measured in the infrared region (725-8000 cm-1) by charge modulation spectroscopy. The absorptions, including the superimposed oscillatory components due to multiple reflections within thin crystals, monotonically increased with decreasing frequency. The spectra and their polarization dependences were well reproduced by the analysis based on the Drude model, in which the absorptions due to holes in rubrene and electrons in the gate electrodes (silicon), and multiple reflections were fully considered. The results support the band transport of hole carriers in rubrene.

  18. Rubrene crystal field-effect mobility modulation via conducting channel wrinkling

    NASA Astrophysics Data System (ADS)

    Reyes-Martinez, Marcos A.; Crosby, Alfred J.; Briseno, Alejandro L.

    2015-05-01

    With the impending surge of flexible organic electronic technologies, it has become essential to understand how mechanical deformation affects the electrical performance of organic thin-film devices. Organic single crystals are ideal for the systematic study of strain effects on electrical properties without being concerned about grain boundaries and other defects. Here we investigate how the deformation affects the field-effect mobility of single crystals of the benchmark semiconductor rubrene. The wrinkling instability is used to apply local strains of different magnitudes along the conducting channel in field-effect transistors. We discover that the mobility changes as dictated by the net strain at the dielectric/semiconductor interface. We propose a model based on the plate bending theory to quantify the net strain in wrinkled transistors and predict the change in mobility. These contributions represent a significant step forward in structure-function relationships in organic semiconductors, critical for the development of the next generation of flexible electronic devices.

  19. Resistive memory effects in BiFeO3 single crystals controlled by transverse electric fields

    NASA Astrophysics Data System (ADS)

    Kawachi, S.; Kuroe, H.; Ito, T.; Miyake, A.; Tokunaga, M.

    2016-04-01

    The effects of electric fields perpendicular to the c-axis of the trigonal cell in single crystals of BiFeO3 are investigated through magnetization and resistance measurements. Magnetization and resistance exhibit hysteretic changes under applied electric fields, which can be ascribed to the reorientation of the magnetoelectric domains. Samples are repetitively switched between high- and low-resistance states by changing the polarity of the applied electric fields over 20 000 cycles at room temperature. These results demonstrate the potential of BiFeO3 for use in non-volatile memory devices.

  20. Milestone in the History of Field-Effect Liquid Crystal Displays and Materials

    NASA Astrophysics Data System (ADS)

    Schadt, Martin

    2009-03-01

    The history of digital electronics would have been very different without the invention of field-effect liquid crystal displays (LCDs) in 1970 and their sophisticated development and implementation into numerous products. Transmissive and reflective LCDs have become a key interface between man and machine. After almost 40 years of interdisciplinary R+D and engineering, today's LCDs enable virtually all display applications, including high definition television. Field-effect LCDs are characterized by flat design, low weight, low driving voltage, design flexibility, compatibility with silicon-on-glass and very low power consumption, especially in reflection. Their polarization-sensitive layer concept is the basis for sandwiching and integration of optical and electronic thin-film functions. The liquid crystal technology has become a fast growing industry over the past 38 years, today surpassing 100 billion, with many spin-offs into new areas. Prerequisite for field-effect LCDs and their large diversification potential is the unique self-organization of liquid crystals. New applications beyond displays based on self-organisation, smart boundary alignment, dedicated liquid crystalline materials and the ability of LCs to respond to electromagnetic fields, including light, are being developed. Examples for new applications are LC polymer thin-film optics, or synergies between LCDs and solid state back-lighting, such as inorganic and organic light emitting diodes (LEDs/OLEDs).

  1. Effect of wake potential on Coulomb crystallization in the presence of magnetic field

    SciTech Connect

    Bhattacharjee, Saurav; Das, Nilakshi

    2012-10-15

    The formation of dust crystal in plasma under the influence of repulsive Yukawa (Debye-Hueckel) potential is a well known phenomenon. The regular structure of dust particles is affected by anisotropic ion flow near the sheath region. The bombardment of the ions over dust grains distorts their Debye sphere by overshielding the dust cloud and gives rise to an attractive oscillatory wake potential. In this paper, we have obtained an expression for wake potential along with the Yukawa type of potential in a complex plasma in the presence of magnetic field, for subsonic ion flow towards the plasma sheath. In the presence of magnetic field, interaction potential gets modified and becomes anisotropic. We have studied the combined effect of the attractive wake potential as well as repulsive Yukawa potential on a 2D dust crystal, both in the presence and absence of magnetic field, using molecular dynamic simulation.

  2. The Effects of a Magnetic Field on the Crystallization of a Fluorozirconate Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Lapointe, Michael R.; Jia, Zhiyong

    2006-01-01

    An axial magnetic field of 0.1T was applied to ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fibers during heating to the glass crystallization temperature. Scanning electron microscopy and x-ray diffraction were used to identify crystal phases. It was shown that fibers exposed to the magnetic field did not crystallize while fibers not exposed to the field did crystallize. A hypothesis based on magnetic work was proposed to explain the results and tested by measuring the magnetic susceptibilities of the glass and crystal.

  3. Low field induced giant anisotropic magnetocaloric effect in DyFeO3 single crystal

    NASA Astrophysics Data System (ADS)

    Ya-Jiao, Ke; Xiang-Qun, Zhang; Heng, Ge; Yue, Ma; Zhao-Hua, Cheng

    2015-03-01

    We have investigated the anisotropic magnetocaloric effect and the rotating field magnetic entropy in DyFeO3 single crystal. A giant rotating field entropy change of was achieved from b axis to c axis in bc plane at 5 K for a low field change of 20 kOe. The large anisotropic magnetic entropy change is mainly accounted for the 4f electron of rare-earth Dy3 + ion. The large value of rotating field entropy change, together with large refrigeration capacity and negligible hysteresis, suggests that the multiferroic ferrite DyFeO3 singlecrystal could be a potential material for anisotropic magnetic refrigeration at low field, which can be realized in the practical application around liquid helium temperature region. Project supported by the National Basic Research Program of China (Grant Nos. 2010CB934202, 2011CB921801, and 2012CB933102) and the National Natural Science Foundation of China (Grant Nos. 11174351, 11274360, and 11034004).

  4. Light quasiparticles dominate electronic transport in molecular crystal field-effect transistors

    SciTech Connect

    Li, Z. Q.; Podzorov, V.; Sai, N.; Martin, Michael C.; Gershenson, M. E.; Di Ventra, M.; Basov, D. N.

    2007-03-01

    We report on an infrared spectroscopy study of mobile holes in the accumulation layer of organic field-effect transistors based on rubrene single crystals. Our data indicate that both transport and infrared properties of these transistors at room temperature are governed by light quasiparticles in molecular orbital bands with the effective masses m[small star, filled]comparable to free electron mass. Furthermore, the m[small star, filled]values inferred from our experiments are in agreement with those determined from band structure calculations. These findings reveal no evidence for prominent polaronic effects, which is at variance with the common beliefs of polaron formation in molecular solids.

  5. Approaching the Trap-Free Limit in Organic Single-Crystal Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Blülle, Balthasar; Häusermann, Roger; Batlogg, Bertram

    2014-04-01

    We present measurements of rubrene single-crystal field-effect transistors with textbooklike transfer characteristics, as one would expect for intrinsically trap-free semiconductor devices. Particularly, the high purity of the crystals and the defect-free interface to the gate dielectric are reflected in an unprecedentedly low subthreshold swing of 65 mV/decade, remarkably close to the fundamental limit of 58.5 mV/decade. From these measurements, we quantify the residual density of traps by a detailed analysis of the subthreshold regime, including a full numerical simulation. An exceedingly low trap density of Dbulk=1×1013 cm-3 eV-1 at an energy of approximately 0.62 eV is found. This result corresponds to one trap per eV in 108 rubrene molecules. The equivalent density of traps located at the interface (Dit=3×109 cm-2 eV-1) is as low as in the best crystalline Si/Si field-effect transistors. These results highlight the benefit of having van der Waals bonded semiconducting crystals without electronically active states due to broken bonds at the surface.

  6. Effect of intense magnetic fields on the convection of biogenic guanine crystals in aqueous solution

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Mizukawa, Y.

    2015-05-01

    In this study, the basic magneto-optic properties of biogenic microcrystals in aqueous media were investigated. Microcrystals, mica plates, silica, and microcrystals from a diatom cell and biogenic guanine crystals from goldfish showed light scattering inhibition when the crystals were observed in water under a 5 T magnetic field and dark-field illumination. In particular, in 50% ethanol/water medium, convection of the biogenic guanine particle aggregates was reversibly inhibited when the microcrystal suspension was exposed to a 5 T magnetic field. Microscopic observation comparing the biogenic guanine crystals in water with 95% ethanol or 99% acetone revealed that light flickering on the surface of the crystals was affected by the surface interaction of the crystal with the surrounding medium. By considering both the magnetic orientation of the microcrystals and the possible interactions of crystals with the surrounding medium, a magnetically controllable fluidic tracer was suggested.

  7. Crystal field effect induced topological crystalline insulators in monolayer IV-VI semiconductors.

    PubMed

    Liu, Junwei; Qian, Xiaofeng; Fu, Liang

    2015-04-01

    Two-dimensional (2D) topological crystalline insulators (TCIs) were recently predicted in thin films of the SnTe class of IV-VI semiconductors, which can host metallic edge states protected by mirror symmetry. As thickness decreases, quantum confinement effect will increase and surpass the inverted gap below a critical thickness, turning TCIs into normal insulators. Surprisingly, based on first-principles calculations, here we demonstrate that (001) monolayers of rocksalt IV-VI semiconductors XY (X = Ge, Sn, Pb and Y = S, Se, Te) are 2D TCIs with the fundamental band gap as large as 260 meV in monolayer PbTe. This unexpected nontrivial topological phase stems from the strong crystal field effect in the monolayer, which lifts the degeneracy between p(x,y) and p(z) orbitals and leads to band inversion between cation pz and anion px,y orbitals. This crystal field effect induced topological phase offers a new strategy to find and design other atomically thin 2D topological materials.

  8. Rubrene crystal field-effect mobility modulation via conducting channel wrinkling

    PubMed Central

    Reyes-Martinez, Marcos A.; Crosby, Alfred J.; Briseno, Alejandro L.

    2015-01-01

    With the impending surge of flexible organic electronic technologies, it has become essential to understand how mechanical deformation affects the electrical performance of organic thin-film devices. Organic single crystals are ideal for the systematic study of strain effects on electrical properties without being concerned about grain boundaries and other defects. Here we investigate how the deformation affects the field-effect mobility of single crystals of the benchmark semiconductor rubrene. The wrinkling instability is used to apply local strains of different magnitudes along the conducting channel in field-effect transistors. We discover that the mobility changes as dictated by the net strain at the dielectric/semiconductor interface. We propose a model based on the plate bending theory to quantify the net strain in wrinkled transistors and predict the change in mobility. These contributions represent a significant step forward in structure–function relationships in organic semiconductors, critical for the development of the next generation of flexible electronic devices. PMID:25939864

  9. Rubrene crystal field-effect mobility modulation via conducting channel wrinkling.

    PubMed

    Reyes-Martinez, Marcos A; Crosby, Alfred J; Briseno, Alejandro L

    2015-01-01

    With the impending surge of flexible organic electronic technologies, it has become essential to understand how mechanical deformation affects the electrical performance of organic thin-film devices. Organic single crystals are ideal for the systematic study of strain effects on electrical properties without being concerned about grain boundaries and other defects. Here we investigate how the deformation affects the field-effect mobility of single crystals of the benchmark semiconductor rubrene. The wrinkling instability is used to apply local strains of different magnitudes along the conducting channel in field-effect transistors. We discover that the mobility changes as dictated by the net strain at the dielectric/semiconductor interface. We propose a model based on the plate bending theory to quantify the net strain in wrinkled transistors and predict the change in mobility. These contributions represent a significant step forward in structure-function relationships in organic semiconductors, critical for the development of the next generation of flexible electronic devices. PMID:25939864

  10. Spherical particle immersed in a nematic liquid crystal: Effects of confinement on the director field configurations

    NASA Astrophysics Data System (ADS)

    Grollau, S.; Abbott, N. L.; de Pablo, J. J.

    2003-01-01

    The effects of confinement on the director field configurations are studied for a spherical particle immersed in a nematic liquid crystal. The liquid crystal is confined in a cylindrical geometry and the particle is located on the axis of symmetry. A finite element method is used to minimize the Frank free energy for various sizes of the system. The liquid crystal is assumed to possess strong anchoring at all the surfaces in the system. Two structures are examined for strong homeotropic anchoring at the surface of the particle: configuration with a Saturn ring disclination line and configuration with a satellite point defect (hedgehog defect). It is shown that the equilibrium locations of the Saturn ring and of the hedgehog point defect change with confinement. It is also found that confinement induces an increase in the elastic free energy that differs substantially with the type of topological defect under consideration. In particular, the evaluation of the total free energy that includes an approximate contribution for the core defect shows that, for micrometer-sized particles in confined systems, the Saturn ring configuration appears to be more stable than the hedgehog defect. This result is in contrast to the bulk situation, where the hedgehog is more stable than the Saturn ring, and it helps explain recent experimental observations of Saturn ring defects around confined micrometer-sized solid particles.

  11. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  12. Effective crystal field and Fermi surface topology: A comparison of d- and dp-orbital models

    NASA Astrophysics Data System (ADS)

    Parragh, N.; Sangiovanni, G.; Hansmann, P.; Hummel, S.; Held, K.; Toschi, A.

    2013-11-01

    The effective crystal field in multiorbital correlated materials can be either enhanced or reduced by electronic correlations with crucial consequences for the topology of the Fermi surface and, hence, on the physical properties of these systems. In this respect, recent local density approximation plus dynamical mean-field theory studies of Ni-based heterostructure have shown contradicting results, depending on whether the less correlated p orbitals are included or not. We investigate the origin of this problem and identify the key parameters controlling the Fermi surface properties of these systems. Without the p orbitals, the model is quarter-filled, while the d manifold moves rapidly towards half-filling when the p orbitals are included. This implies that the local Hund's exchange, while rather unimportant for the former case, can play a predominant role in controlling the orbital polarization for the extended basis set by favoring the formation of a larger local magnetic moment.

  13. Effects of Polymers on the Rotational Viscosities of Nematic Liquid Crystals and Dynamics of Field Alignment.

    NASA Astrophysics Data System (ADS)

    Kim, Du-Rim

    Many of the important physical phenomena exhibited by the nematic phase, such as its unusual flow properties and its responses to the electric and the magnetic fields, can be discussed regarding it as a continuous medium. The Leslie-Erickson dynamic theory has the six dissipative coefficients from continuum model of liquid crystal. Parodi showed that only five of them are independent, when Onsagar's reciprocal relations are used. One of these, which has no counterpart in the isotropic liquids, is the rotational viscosity coefficient, gamma_1. The main objective of this project is to study the rotational viscosities of selected micellar nematic systems and the effect of dissolved polymers in micellar and thermotropic liquid crystals. We used rotating magnetic field method which allows one to determine gamma _1 and the anisotropic magnetic susceptibility, chi_{a}. For the ionic surfactant liquid crystals of SDS and KL systems used in this study, the rotational viscosity exhibited an extraordinary drop after reaching the highest value gamma_1 as the temperature was lowered. This behavior is not observed in normal liquid crystals. But this phenomena can be attributed to the existence of nematic biaxial phase below the rod-like nematic N_{c} phase. The pretransitional increase in gamma _1 near the disk-like nematic to smectic -A phase transition of the pure CsPFO H_2O systems are better understood with the help of mean-field models of W. L. McMillan. He predicted a critical exponent nu = -{1over 2} for the divergence of gamma_1. The polymer (PEO, molecular weight = 10 ^5) dissolved in CsPFO H_2O system (which has 0.6% critical polymer concentration), suppressed the nematic to lamellar smectic phase transition in concentrated polymer solutions (0.75% and higher). In dilute polymer solutions with lower than 0.3% polyethylene-oxide, a linear increase of gamma_1 is observed, which agrees with Brochard theory. The polymer solutions in thermotropic liquid crystal solvents

  14. Ferroelectric Single-Crystal Gated Graphene/Hexagonal-BN/Ferroelectric Field-Effect Transistor.

    PubMed

    Park, Nahee; Kang, Haeyong; Park, Jeongmin; Lee, Yourack; Yun, Yoojoo; Lee, Jeong-Ho; Lee, Sang-Goo; Lee, Young Hee; Suh, Dongseok

    2015-11-24

    The effect of a ferroelectric polarization field on the charge transport in a two-dimensional (2D) material was examined using a graphene monolayer on a hexagonal boron nitride (hBN) field-effect transistor (FET) fabricated using a ferroelectric single-crystal substrate, (1-x)[Pb(Mg1/3Nb2/3)O3]-x[PbTiO3] (PMN-PT). In this configuration, the intrinsic properties of graphene were preserved with the use of an hBN flake, and the influence of the polarization field from PMN-PT could be distinguished. During a wide-range gate-voltage (VG) sweep, a sharp inversion of the spontaneous polarization affected the graphene channel conductance asymmetrically as well as an antihysteretic behavior. Additionally, a transition from antihysteresis to normal ferroelectric hysteresis occurred, depending on the V(G) sweep range relative to the ferroelectric coercive field. We developed a model to interpret the complex coupling among antihysteresis, current saturation, and sudden conductance variation in relation with the ferroelectric switching and the polarization-assisted charge trapping, which can be generalized to explain the combination of 2D structured materials with ferroelectrics.

  15. Ferroelectric Single-Crystal Gated Graphene/Hexagonal-BN/Ferroelectric Field-Effect Transistor.

    PubMed

    Park, Nahee; Kang, Haeyong; Park, Jeongmin; Lee, Yourack; Yun, Yoojoo; Lee, Jeong-Ho; Lee, Sang-Goo; Lee, Young Hee; Suh, Dongseok

    2015-11-24

    The effect of a ferroelectric polarization field on the charge transport in a two-dimensional (2D) material was examined using a graphene monolayer on a hexagonal boron nitride (hBN) field-effect transistor (FET) fabricated using a ferroelectric single-crystal substrate, (1-x)[Pb(Mg1/3Nb2/3)O3]-x[PbTiO3] (PMN-PT). In this configuration, the intrinsic properties of graphene were preserved with the use of an hBN flake, and the influence of the polarization field from PMN-PT could be distinguished. During a wide-range gate-voltage (VG) sweep, a sharp inversion of the spontaneous polarization affected the graphene channel conductance asymmetrically as well as an antihysteretic behavior. Additionally, a transition from antihysteresis to normal ferroelectric hysteresis occurred, depending on the V(G) sweep range relative to the ferroelectric coercive field. We developed a model to interpret the complex coupling among antihysteresis, current saturation, and sudden conductance variation in relation with the ferroelectric switching and the polarization-assisted charge trapping, which can be generalized to explain the combination of 2D structured materials with ferroelectrics. PMID:26487348

  16. Phase-field study of crystal growth in three-dimensional capillaries: Effects of crystalline anisotropy.

    PubMed

    Debierre, Jean-Marc; Guérin, Rahma; Kassner, Klaus

    2016-07-01

    Phase-field simulations are performed to explore the thermal solidification of a pure melt in three-dimensional capillaries. Motivated by our previous work for isotropic or slightly anisotropic materials, we focus here on the more general case of anisotropic materials. Different channel cross sections are compared (square, hexagonal, circular) to reveal the influence of geometry and the effects of a competition between the crystal and the channel symmetries. In particular, a compass effect toward growth directions favored by the surface energy is identified. At given undercooling and anisotropy, the simulations generally show the coexistence of several growth modes. The relative stability of these growth modes is tested by submitting them to a strong spatiotemporal noise for a short time, which reveals a subtle hierarchy between them. Similarities and differences with experimental growth modes in confined geometry are discussed qualitatively. PMID:27575207

  17. Phase-field study of crystal growth in three-dimensional capillaries: Effects of crystalline anisotropy

    NASA Astrophysics Data System (ADS)

    Debierre, Jean-Marc; Guérin, Rahma; Kassner, Klaus

    2016-07-01

    Phase-field simulations are performed to explore the thermal solidification of a pure melt in three-dimensional capillaries. Motivated by our previous work for isotropic or slightly anisotropic materials, we focus here on the more general case of anisotropic materials. Different channel cross sections are compared (square, hexagonal, circular) to reveal the influence of geometry and the effects of a competition between the crystal and the channel symmetries. In particular, a compass effect toward growth directions favored by the surface energy is identified. At given undercooling and anisotropy, the simulations generally show the coexistence of several growth modes. The relative stability of these growth modes is tested by submitting them to a strong spatiotemporal noise for a short time, which reveals a subtle hierarchy between them. Similarities and differences with experimental growth modes in confined geometry are discussed qualitatively.

  18. Effects of the biaxial transverse crystal-field on the phase diagrams of a spin-1 nanowire

    NASA Astrophysics Data System (ADS)

    Magoussi, H.; Zaim, A.; Boughrara, M.; Kerouad, M.

    2016-09-01

    By using the effective field theory based on a probability distribution method, the phase diagrams and the magnetic properties of an Ising nanowire in the presence of the biaxial transverse crystal-field are investigated. The effects of the biaxial transverse crystal field, the interfacial coupling and the exchange interaction in the surface on the phase diagram, the magnetization and the internal energy are examined. Some characteristic phenomena are found such as the tricritical behavior, the critical end point and the re-entrant phenomenon.

  19. Enhanced mobility in organic field-effect transistors due to semiconductor/dielectric interface control and very thin single crystal

    NASA Astrophysics Data System (ADS)

    Dong, Ji; Yu, Peng; Atika Arabi, Syeda; Wang, Jiawei; He, Jun; Jiang, Chao

    2016-07-01

    A perfect organic crystal while keeping high quality semiconductor/dielectric interface with minimal defects and disorder is crucial for the realization of high performance organic single crystal field-effect transistors (OSCFETs). However, in most reported OSCFET devices, the crystal transfer processes is extensively used. Therefore, the semiconductor/dielectric interface is inevitably damaged. Carrier traps and scattering centers are brought into the conduction channel, so that the intrinsic high mobility of OSCFET devices is entirely disguised. Here, very thin pentacene single crystal is grown directly on bare SiO2 by developing a ‘seed-controlled’ pentacene single crystal method. The interface quality is controlled by an in situ fabrication of OSCFETs. The interface is kept intact without any transfer process. Furthermore, we quantitatively analyze the influence of crystal thickness on device performance. With a pristine interface and very thin crystal, we have achieved the highest mobility: 5.7 cm2 V‑1 s‑1—more than twice the highest ever reported pentacene OSCFET mobility on bare SiO2. This study may provide a universal route for the use of small organic molecules to achieve high performance in lamellar single crystal field-effect devices.

  20. High-performance single crystal organic field-effect transistors based on two dithiophene-tetrathiafulvalene (DT-TTF) polymorphs.

    PubMed

    Pfattner, Raphael; Mas-Torrent, Marta; Bilotti, Ivano; Brillante, Aldo; Milita, Silvia; Liscio, Fabiola; Biscarini, Fabio; Marszalek, Tomasz; Ulanski, Jacek; Nosal, Andrzej; Gazicki-Lipman, Maciej; Leufgen, Michael; Schmidt, Georg; Molenkamp, Laurens W; Laukhin, Vladimir; Veciana, Jaume; Rovira, Concepció

    2010-10-01

    Solution prepared single crystal organic field-effect transistors (OFETs) combine low-cost with high performance due to structural ordering of molecules. However, in organic crystals polymorphism is a known phenomenon, which can have a crucial influence on charge transport. Here, the performance of solution-prepared single crystal OFETs based on two different polymorphs of dithiophene-tetrathiafulvalene, which were investigated by confocal Raman spectroscopy and X-ray diffraction, are reported. OFET devices prepared using different configurations show that both polymorphs exhibited excellent device performance, although the -phase revealed charge carrier mobility between two and ten times higher in accordance to the closer stacking of the molecules.

  1. Exchange field effect in the crystal-field ground state of Ce M Al4Si2

    NASA Astrophysics Data System (ADS)

    Chen, K.; Strigari, F.; Sundermann, M.; Agrestini, S.; Ghimire, N. J.; Lin, S.-Z.; Batista, C. D.; Bauer, E. D.; Thompson, J. D.; Otero, E.; Tanaka, A.; Severing, A.

    2016-09-01

    The crystal-field ground-state wave functions of the tetragonal, magnetically ordering Kondo lattice materials Ce M Al4Si2 (M =Rh , Ir, and Pt) are determined with low-temperature linearly polarized soft-x-ray absorption spectroscopy, and estimates for the crystal-field splittings are given from the temperature evolution of the linear dichroism. Values for the dominant exchange field in the magnetically ordered phases can be obtained from fitting the influence of magnetic order on the linear dichroism. The direction of the required exchange field is ∥c for the antiferromagnetic Rh and Ir compounds, with the corresponding strength of the order of λex≈6 meV (65 K). Furthermore, the presence of Kondo screening in the Rh and Ir compound is demonstrated on the basis of the absorption due to f0 in the initial state.

  2. GW correlation effects on plutonium quasiparticle energies: changes in crystal-field splitting

    SciTech Connect

    Albers, Robert C; Chantis, Athanasios N; Svane, Axel; Christensen, Niels E

    2009-01-01

    We present results for the electronic structure of plutonium by using a recently developed quasiparticle self-consistent GW method (QSGW). We consider a paramagnetic solution without spin-orbit interaction as a function of volume for the face-centered cubic (fcc) unit cell. We span unit-cell volumes ranging from 10% greater than the equilibrium volume of the 8 phase to 90 % of the equivalent for the a phase of Pu. The self-consistent GW quasiparticle energies are compared to those obtained within the Local Density Approximation (LDA). The goal of the calculations is to understand systematic trends in the effects of electronic correlations on the quasiparticle energy bands of Pu as a function of the localization of the J orbitals. We show that correlation effects narrow the f bands in two significantly different ways. Besides the expected narrowing of individual f bands (flatter dispersion), we find that an even more significant effect on the f bands is a decrease in the crystal-field splitting of the different bands

  3. Effect of magnetic field on the wave dispersion relation in three-dimensional dusty plasma crystals

    SciTech Connect

    Yang Xuefeng; Wang Zhengxiong

    2012-07-15

    Three-dimensional plasma crystals under microgravity condition are investigated by taking into account an external magnetic field. The wave dispersion relations of dust lattice modes in the body centered cubic (bcc) and the face centered cubic (fcc) plasma crystals are obtained explicitly when the magnetic field is perpendicular to the wave motion. The wave dispersion relations of dust lattice modes in the bcc and fcc plasma crystals are calculated numerically when the magnetic field is in an arbitrary direction. The numerical results show that one longitudinal mode and two transverse modes are coupled due to the Lorentz force in the magnetic field. Moreover, three wave modes, i.e., the high frequency phonon mode, the low frequency phonon mode, and the optical mode, are obtained. The optical mode and at least one phonon mode are hybrid modes. When the magnetic field is neither parallel nor perpendicular to the primitive wave motion, all the three wave modes are hybrid modes and do not have any intersection points. It is also found that with increasing the magnetic field strength, the frequency of the optical mode increases and has a cutoff at the cyclotron frequency of the dust particles in the limit of long wavelength, and the mode mixings for both the optical mode and the high frequency phonon mode increase. The acoustic velocity of the low frequency phonon mode is zero. In addition, the acoustic velocity of the high frequency phonon mode depends on the angle of the magnetic field and the wave motion but does not depend on the magnetic field strength.

  4. Touch sensors based on planar liquid crystal-gated-organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Seo, Jooyeok; Lee, Chulyeon; Han, Hyemi; Lee, Sooyong; Nam, Sungho; Kim, Hwajeong; Lee, Joon-Hyung; Park, Soo-Young; Kang, Inn-Kyu; Kim, Youngkyoo

    2014-09-01

    We report a tactile touch sensor based on a planar liquid crystal-gated-organic field-effect transistor (LC-g-OFET) structure. The LC-g-OFET touch sensors were fabricated by forming the 10 μm thick LC layer (4-cyano-4'-pentylbiphenyl - 5CB) on top of the 50 nm thick channel layer (poly(3-hexylthiophene) - P3HT) that is coated on the in-plane aligned drain/source/gate electrodes (indium-tin oxide - ITO). As an external physical stimulation to examine the tactile touch performance, a weak nitrogen flow (83.3 μl/s) was employed to stimulate the LC layer of the touch device. The LC-g-OFET device exhibited p-type transistor characteristics with a hole mobility of 1.5 cm2/Vs, but no sensing current by the nitrogen flow touch was measured at sufficiently high drain (VD) and gate (VG) voltages. However, a clear sensing current signal was detected at lower voltages, which was quite sensitive to the combination of VD and VG. The best voltage combination was VD = -0.2 V and VG = -1 V for the highest ratio of signal currents to base currents (i.e., signal-to-noise ratio). The change in the LC alignment upon the nitrogen flow touch was assigned as the mechanism for the present LC-g-OFET touch sensors.

  5. Crystal-Field and Covalency Effects in Uranates: An X-ray Spectroscopic Study.

    PubMed

    Butorin, Sergei M; Kvashnina, Kristina O; Smith, Anna L; Popa, Karin; Martin, Philippe M

    2016-07-01

    The electronic structure of U(V) - and U(VI) -containing uranates NaUO3 and Pb3 UO6 was studied by using an advanced technique, namely X-ray absorption spectroscopy (XAS) in high-energy-resolution fluorescence-detection (HERFD) mode. Due to a significant reduction in core-hole lifetime broadening, the crystal-field splittings of the 5f shell were probed directly in HERFD-XAS spectra collected at the U 3d edge, which is not possible by using conventional XAS. In addition, the charge-transfer satellites that result from U 5f-O 2p hybridization were clearly resolved. The crystal-field parameters, 5f occupancy, and degree of covalency of the chemical bonding in these uranates were estimated by using the Anderson impurity model by calculating the U 3d HERFD-XAS, conventional XAS, core-to-core (U 4f-3d transitions) resonant inelastic X-ray scattering (RIXS), and U 4f X-ray photoelectron spectra. The crystal field was found to be strong in these systems and the 5f occupancy was determined to be 1.32 and 0.84 electrons in the ground state for NaUO3 and Pb3 UO6 , respectively, which indicates a significant covalent character for these compounds. PMID:27257782

  6. Effect of an electric field on the magnetization of a SmFe3(BO3)4 single crystal

    NASA Astrophysics Data System (ADS)

    Freidman, A. L.; Balaev, A. D.; Dubrovskii, A. A.; Eremin, E. V.; Shaikhutdinov, K. A.; Temerov, V. L.; Gudim, I. A.

    2015-07-01

    A change in the magnetization of a SmFe3(BO3)4 single crystal in response to an applied alternating electric field has been experimentally observed for the first time. The measurements have demonstrated that the magnetization oscillates not only at a frequency of the applied electric field but also at twice the frequency. The dependences of the magnetoelectric effect on the magnetic and electric fields and temperature have been measured. It has been assumed that the existence of the second harmonic of the magnetoelectric effect is due to the electrostriction.

  7. Volatilize-controlled oriented growth of the single-crystal layer for organic field-effect transistors.

    PubMed

    Zhao, Haoyan; Li, Dong; Dong, Guifang; Duan, Lian; Liu, Xiaohui; Wang, Liduo

    2014-10-14

    We demonstrate a solution method of volatilize-controlled oriented growth (VOG) to fabricate aligned single crystals of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) on a Si/SiO2 substrate. Through controlling the evaporation rate of the solvent, large-area-aligned single-crystal layers can be achieved on several substrates at the same time, covering over 90% on 2 × 1 cm substrates. The method provides a low-cost, maneuverable technology, which has potential to be used in batch production. We find that the atmosphere of the solvent with high dissolving capacity is in favor of aligned single-crystal growth. Besides, the growth mechanism of the VOG method is investigated in this paper. Top-contact organic field-effect transistors based on the single crystals of TIPS pentacene are achieved on a Si/SiO2 substrate. The optimal device exhibits a field-effect mobility of 0.42 cm(2) V(-1) s(-1) and an on/off current ratio of 10(5). Our research indicates that the VOG method is promising in single-crystal growth on a Si/SiO2 substrate for commercial production.

  8. Magnetic anisotropy and crystalline electric field effects in RRh{sub 4}B{sub 4} single crystals.

    SciTech Connect

    Zhou, H.; Lambert, S. E.; Maple, M. B.; Dunlap, B. D.; Materials Science Division; Univ. of California at San Diego

    2009-08-01

    Research on polycrystalline RRh{sub 4}B{sub 4} samples has shown that crystalline electric field (CEF) effects play an important role in these compounds. The successful synthesis of single crystal samples of RRh{sub 4}B{sub 4} with R = Y, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu has provided an opportunity to further investigate CEF effects in these materials. Magnetization and magnetic susceptibility measurements on the RRh{sub 4}B{sub 4} single crystals revealed strong magnetic anisotropy, and the experimental results could be described well by CEF calculations based on the parameters derived from an analysis of experimental data for ErRh{sub 4}B{sub 4} single crystals. The easy directions of magnetization of these compounds are consistent with the signs of the Stevens factor {alpha}J of the CEF Hamiltonian. A strong influence of magnetic anisotropy on superconductivity was also observed.

  9. Touch sensors based on planar liquid crystal-gated-organic field-effect transistors

    SciTech Connect

    Seo, Jooyeok; Lee, Chulyeon; Han, Hyemi; Lee, Sooyong; Nam, Sungho; Kim, Youngkyoo; Kim, Hwajeong; Lee, Joon-Hyung; Park, Soo-Young; Kang, Inn-Kyu

    2014-09-15

    We report a tactile touch sensor based on a planar liquid crystal-gated-organic field-effect transistor (LC-g-OFET) structure. The LC-g-OFET touch sensors were fabricated by forming the 10 μm thick LC layer (4-cyano-4{sup ′}-pentylbiphenyl - 5CB) on top of the 50 nm thick channel layer (poly(3-hexylthiophene) - P3HT) that is coated on the in-plane aligned drain/source/gate electrodes (indium-tin oxide - ITO). As an external physical stimulation to examine the tactile touch performance, a weak nitrogen flow (83.3 μl/s) was employed to stimulate the LC layer of the touch device. The LC-g-OFET device exhibited p-type transistor characteristics with a hole mobility of 1.5 cm{sup 2}/Vs, but no sensing current by the nitrogen flow touch was measured at sufficiently high drain (V{sub D}) and gate (V{sub G}) voltages. However, a clear sensing current signal was detected at lower voltages, which was quite sensitive to the combination of V{sub D} and V{sub G}. The best voltage combination was V{sub D} = −0.2 V and V{sub G} = −1 V for the highest ratio of signal currents to base currents (i.e., signal-to-noise ratio). The change in the LC alignment upon the nitrogen flow touch was assigned as the mechanism for the present LC-g-OFET touch sensors.

  10. Broken symmetry phase transition in solid p-H 2, o-D 2 and HD: crystal field effects

    NASA Astrophysics Data System (ADS)

    Freiman, Yu. A.; Hemley, R. J.; Jezowski, A.; Tretyak, S. M.

    1999-04-01

    We report the effect of the crystal field (CF) on the broken symmetry phase transition (BSP) in solid parahydrogen, orthodeuterium, and hydrogen deuteride. The CF was calculated taking into account a distortion from the ideal HCP structure. We find that, in addition to the molecular field generated by the coupling terms in the intermolecular potential, the Hamiltonian of the system contains a crystal-field term, originating from single-molecular terms in the intermolecular potential. Ignoring the CF is the main cause of the systematic underestimation of the transition pressure, characteristic of published theories of the BSP transition. The distortion of the lattice that gives rise to the negative CF in response to the applied pressure is in accord with the general Le Chatelier-Braun principle.

  11. Influence of the crystal field effect on chemical transport in Earth's mantle: Cr 3+ and Ga 3+ diffusion in periclase

    NASA Astrophysics Data System (ADS)

    Crispin, Katherine L.; Van Orman, James A.

    2010-06-01

    Experiments were performed to determine concentration-dependent diffusion coefficients of Cr 3+ and Ga 3+ in periclase at temperatures of 1563-2273 K. Diffusion profiles measured in the quenched samples are consistent with a theoretical model in which the mobile species is a bound M 3+-vacancy pair, and each profile was fitted to determine the binding energy and diffusion coefficient of the pair. Trivalent chromium-vacancy pairs diffuse more slowly than Ga 3+-vacancy pairs, and with higher migration energy, 237 kJ/mol vs. 190 kJ/mol. Cation vacancies also bind less tightly to Cr 3+ than to Ga 3+, with average binding free energies of -22 and -83 kJ/mol, respectively. At all concentrations and temperatures, Cr 3+ diffuses much more slowly than Ga 3+, by up to two orders of magnitude. The differences between Cr 3+ and Ga 3+ cannot be explained by differences in ionic radius or dipole polarizability, but are consistent with the influence of the crystal field on the partially occupied 3d orbitals of Cr 3+. The crystal field splitting stabilizes Cr 3+ on the octahedral cation site, increasing the energy required for Cr 3+ to exchange positions with an adjacent vacancy. It also makes Cr 3+-vacancy pairs less favorable, with the presence of a nearest-neighbor vacancy disrupting the symmetry of the octahedral site, thus diminishing the crystal field stabilization. Trends in the diffusion of first-row divalent transition metals in periclase can also be explained by the crystal field effect. High-spin to low-spin transitions in Fe 2+, Co 2+ or Mn 2+ would significantly enhance their crystal field stabilization in periclase, and if such spin transitions occur in the deep mantle, they would be expected to slow the diffusivity of these ions significantly, perhaps by several orders of magnitude.

  12. Metastable Copper-Phthalocyanine Single-Crystal Nanowires and Their Use in Fabricating High-Performance Field-Effect Transistors

    SciTech Connect

    Xiao, Kai; Li, Rongjin; Tao, Jing; Payzant, E Andrew; Ivanov, Ilia N; Puretzky, Alexander A; Hu, Wenping; Geohegan, David B

    2009-01-01

    This paper describes a simple, vapor-phase route to the synthesis of metastable α-phase copper-phthalocyanine (CuPc) single-crystal nanowires through control of the growth temperature. The influence of the growth temperature on the crystal structures, morphology, and size of the CuPc nanostructures was explored by XRD, optical absorption and Transmission Electron Microscopy (TEM). α-CuPc nanowires were successfully incorporated as active semiconductors in field-effect transistors (FETs). Single nanowire devices exhibited the carrier mobilities and current on/off ratios as high as 0.4 cm2/Vs and > 104, respectively, rendering them useful for organic photovoltaic cells, organic light-emitting diodes, field-effect transistors, memories and gas sensors

  13. Effect of Magnetic Fields on g-jitter Induced Convection and Solute Striation During Space Processing of Single Crystals

    NASA Technical Reports Server (NTRS)

    deGroh, H. C.; Li, K.; Li, B. Q.

    2002-01-01

    A 2-D finite element model is presented for the melt growth of single crystals in a microgravity environment with a superimposed DC magnetic field. The model is developed based on the deforming finite element methodology and is capable of predicting the phenomena of the steady and transient convective flows, heat transfer, solute distribution, and solid-liquid interface morphology associated with the melt growth of single crystals in microgravity with and without an applied magnetic field. Numerical simulations were carried out for a wide range of parameters including idealized microgravity conditions, the synthesized g-jitter and the real g-jitter data taken by on-board accelerometers during space flights. The results reveal that the time varying g-jitter disturbances, although small in magnitude, cause an appreciable convective flow in the liquid pool, which in turn produces detrimental effects during the space processing of single crystal growth. An applied magnetic field of appropriate strength, superimposed on microgravity, can be very effective in suppressing the deleterious effects resulting from the g-jitter disturbances.

  14. Partial Dissolution of Charge Order Phase Observed in β-(BEDT-TTF)2PF6 Single Crystal Field Effect Transistor.

    PubMed

    Sakai, Masatoshi; Moritoshi, Norifumi; Kuniyoshi, Shigekazu; Yamauchi, Hiroshi; Kudo, Kazuhiro; Masu, Hyuma

    2016-04-01

    The effect of an applied gate electric field on the charge-order phase in β-(BEDT-TTF)2PF6 single-crystal field-effect transistor structure was observed at around room temperature by technical improvement with respect to sample preparation and electrical measurements. A relatively slight but systematic increase of the electrical conductance induced by the applied gate electric field and its temperature dependence was observed at around the metal-insulator transition temperature (TMI). The temperature dependence of the modulated electrical conductance demonstrated that TMI was shifted toward the lower side by application of a gate electric field, which corresponds to partial dissolution of the charge-order phase. The thickness of the partially dissolved charge order region was estimated to be several score times larger than the charge accumulation region. PMID:27451615

  15. Effects of composition and temperature on the large-field behavior of [001]C relaxor single crystals.

    PubMed

    Gallagher, John; Lynch, Christopher; Tian, Jian

    2014-12-01

    The compositional dependence of the large-field behavior of [001]C-cut relaxor ferroelectric xPb(In1/2Nb1/2) O3-(1-x-y)Pb(Mg1/3Nb2/3)O3-yPbTiO3 (PIN-PMN-PT) single crystals that are on the rhombohedral side of the morphotropic phase boundary was characterized under electrical, mechanical, and thermal loading. The effects of varying the concentrations of PIN and PT are discussed. Composition was found to impact the material constants and the field-induced phase transformation threshold in the piezoelectric d333-mode configuration. PMID:25474790

  16. Single-crystal field-effect transistors of new Cl₂-NDI polymorph processed by sublimation in air.

    PubMed

    He, Tao; Stolte, Matthias; Burschka, Christian; Hansen, Nis Hauke; Musiol, Thomas; Kälblein, Daniel; Pflaum, Jens; Tao, Xutang; Brill, Jochen; Würthner, Frank

    2015-01-12

    Physical properties of active materials built up from small molecules are dictated by their molecular packing in the solid state. Here we demonstrate for the first time the growth of n-channel single-crystal field-effect transistors and organic thin-film transistors by sublimation of 2,6-dichloro-naphthalene diimide in air. Under these conditions, a new polymorph with two-dimensional brick-wall packing mode (β-phase) is obtained that is distinguished from the previously reported herringbone packing motif obtained from solution (α-phase). We are able to fabricate single-crystal field-effect transistors with electron mobilities in air of up to 8.6 cm(2) V(-1) s(-1) (α-phase) and up to 3.5 cm(2) V(-1) s(-1) (β-phase) on n-octadecyltriethoxysilane-modified substrates. On silicon dioxide, thin-film devices based on β-phase can be manufactured in air giving rise to electron mobilities of 0.37 cm(2) V(-1) s(-1). The simple crystal and thin-film growth procedures by sublimation under ambient conditions avoid elaborate substrate modifications and costly vacuum equipment-based fabrication steps.

  17. A Facile PDMS-Assisted Crystallization for the Crystal-Engineering of C60 Single-Crystal Organic Field-Effect Transistors.

    PubMed

    Wu, Kuan-Yi; Wu, Tzu-Yi; Chang, Shu-Ting; Hsu, Chain-Shu; Wang, Chien-Lung

    2015-08-01

    Poly(dimethylsiloxane) (PDMS)-assisted crystallization (PAC) is a facile method to produce oriented C60 crystal arrays. Changing the drying mechanism from evaporation to solvent absorption (by PDMS) widens the solvent selection and facilitates the engineering of both the macroscopic shape and the microscopic lattice structure of the crystal arrays. The method also shows the potential to be applied to other organic semiconductors and large-area production. PMID:26088050

  18. Fabrication of graphene field-effect transistor on top of ferroelectric single-crystal substrate

    NASA Astrophysics Data System (ADS)

    Park, Nahee; Kang, Haeyong; Lee, Yourack; Kim, Jeong-Gyun; Kim, Joong-Gyu; Yun, Yoojoo; Park, Jeongmin; Kim, Taesoo; Kim, Jung Ho; Jin, Youngjo; Shin, Yong Seon; Lee, Young Hee; Suh, Dongseok

    2015-03-01

    In the analysis of Graphene field-effect transistor, the substrate material which has the direct contact with Graphene layer plays an important in the device performance. In this presentation, we have tested PMN-PT(i.e.(1-x)Pb(Mg1/3Nb2/3) O3-xPbTiO3) substrate as a gate dielectric of Graphene field-effect transistor. Unlike the case of previously used substrates such as silicon oxide or hexagonal Boron-Nitride(h-BN), the PMN-PT substrate can induce giant amount of surface charge that is directly injected to the attached Graphene layer due to its ferroelectric property. And the hysteresis of polarization versus electric field of PMN-PT can cause the device to show the ferroelectric nonvolatile memory operation. We had successfully fabricated Graphene field-effect transistor using the mechanically exfoliated Graphene layer transferred on the PMN-PT(001) substrate. Unlike the case of mechanical exfoliation on the surface of silicon-oxide or the Poly(methyl methacrylate) (PMMA), the weak adhesion properties between graphene and PMNPT required the pretreatment on PMMA before the exfoliation process. The device performance is analyzed in terms of the effect of ferro- and piezo-electric effect of PMNPT substrate.

  19. Crystal field disorder effects in the optical spectra of Nd{sup 3+} and Yb{sup 3+}-doped calcium lithium niobium gallium garnets laser crystals and ceramics

    SciTech Connect

    Lupei, V.; Lupei, A.; Gheorghe, C.; Gheorghe, L.; Achim, A.; Ikesue, A.

    2012-09-15

    The optical spectroscopic properties of RE{sup 3+} (Nd, 1 at. % or Yb, 1 to 10 at. %)-doped calcium-lithium-niobium-gallium garnet (CLNGG) single crystals and ceramics in the 10 K-300 K range are analyzed. In these compositionally disordered materials, RE{sup 3+} substitute Ca{sup 2+} in dodecahedral sites and the charge compensation is accomplished by adjusting the proportion of Li{sup +}, Nb{sup 5+}, and Ga{sup 3+} to the doping concentration. The crystals and ceramics show similar optical spectra, with broad and structured (especially at low temperatures) bands whose shape depends on temperature and doping concentration. At 10 K, the Nd{sup 3+4}I{sub 9/2}{yields}{sup 4}F{sub 3/2,5/2} and Yb{sup 3+2}F{sub 7/2}{yields}{sup 2}F{sub 5/2} absorption bands, which show prospect for diode laser pumping, can be decomposed in several lines that can be attributed to centers with large differences in the crystal field. The positions of these components are the same, but the relative intensity depends on the doping concentration and two main centers dominate the spectra. Non-selective excitation evidences broad emission bands, of prospect for short-pulse laser emission, whereas the selective excitation reveals the particular emission spectra of the various centers. The modeling reveals that the nonequivalent centers correspond to RE{sup 3+} ions with different cationic combinations in the nearest octahedral and tetrahedral coordination spheres, and the most abundant two centers have 4Nb and, respectively, 3Nb1Li in the nearest octahedral sphere. At 300 K, the spectral resolution is lost. It is then inferred that the observed optical bands are envelopes of the spectra of various structural centers, whose resolution is determined by the relative contribution of the temperature-dependent homogeneous broadening and the effects of crystal field disordering (multicenter structure, inhomogeneous broadening). The relevance of spectroscopic properties for selection of pumping

  20. Rubrene single crystal field-effect transistor with epitaxial BaTiO{sub 3} high-k gate insulator

    SciTech Connect

    Hiroshiba, Nobuya; Kumashiro, Ryotaro; Tanigaki, Katsumi; Takenobu, Taishi; Iwasa, Yoshihiro; Kotani, Kenta; Kawayama, Iwao; Tonouchi, Masayoshi

    2006-10-09

    High quality BaTiO{sub 3} thin-film epitaxially grown on a Nb-doped SrTiO{sub 3} (BTO/Nb-STO) substrate by a laser ablation technique is employed as a high-k gate insulator for a field-effect transistor of a rubrene single crystal in order to search for the possibility of high carrier accumulation. The high dielectric constant {epsilon} of 280 esu for the prepared BaTiO{sub 3} thin-film accumulates 0.1 holes/rubrene-molecule, which is 2.5 times as high as the maximum carrier number of 0.04 holes/rubrene-molecule attained in the case of SiO{sub 2}. This is the highest carrier number so far obtained in organic field-effect transistors (FETs). Other important parameters of rubrene single crystal FETs on BTO/Nb-STO are described in comparison with those on SiO{sub 2}/doped-Si.

  1. Effect of two-dimensional confinement on switching of vertically aligned liquid crystals by an in-plane electric field.

    PubMed

    Choi, Tae-Hoon; Woo, Jae-Hyeon; Choi, Yeongyu; Yoon, Tae-Hoon

    2016-09-01

    We investigated the two-dimensional (2-D) confinement effect of liquid crystals (LCs) on the switching of vertically aligned LCs by an in-plane electric field. When an in-plane field is applied to a vertical alignment (VA) cell, virtual walls are built at the center of the interdigitated electrodes and at the middle of the gaps between them. The LC molecules are confined not only by the two substrates but also by the virtual walls so that the turn-off time of a VA cell driven by an in-plane field is dependent on the pitch of the interdigitated electrodes as well as the cell gap. Therefore, the turn-off time of a VA cell driven by an in-plane field can be reduced simply by decreasing the pitch of the interdigitated electrodes as a result of the enhanced anchoring provided by the virtual walls. The experimental results showed good agreement with a simple model based on the 2-D confinement effect of LCs.

  2. Effect of two-dimensional confinement on switching of vertically aligned liquid crystals by an in-plane electric field.

    PubMed

    Choi, Tae-Hoon; Woo, Jae-Hyeon; Choi, Yeongyu; Yoon, Tae-Hoon

    2016-09-01

    We investigated the two-dimensional (2-D) confinement effect of liquid crystals (LCs) on the switching of vertically aligned LCs by an in-plane electric field. When an in-plane field is applied to a vertical alignment (VA) cell, virtual walls are built at the center of the interdigitated electrodes and at the middle of the gaps between them. The LC molecules are confined not only by the two substrates but also by the virtual walls so that the turn-off time of a VA cell driven by an in-plane field is dependent on the pitch of the interdigitated electrodes as well as the cell gap. Therefore, the turn-off time of a VA cell driven by an in-plane field can be reduced simply by decreasing the pitch of the interdigitated electrodes as a result of the enhanced anchoring provided by the virtual walls. The experimental results showed good agreement with a simple model based on the 2-D confinement effect of LCs. PMID:27607702

  3. Electrostimulation of the magnetoplastic effect in LiF crystals by an "internal" electric field induced during indentation

    NASA Astrophysics Data System (ADS)

    Galustashvili, M. V.; Driaev, D. G.; Akopov, F. Kh.; Tsakadze, S. D.

    2013-08-01

    Indented LiF crystals demonstrate a change in the length of the dislocation rosette rays during their exposure to jointly acting dc magnetic and electric fields. It is shown that magnetic field with induction B = 1 T causes the electrostimulation or electrosuppression depending on the magnitude and direction of the external electric field with respect to the "internal" electric field induced by the charge transfer due to dislocations moving during the indentation.

  4. Unusual Kondo-hole effect and crystal-field frustration in Nd-doped CeRhIn5

    NASA Astrophysics Data System (ADS)

    Rosa, P. F. S.; Oostra, A.; Thompson, J. D.; Pagliuso, P. G.; Fisk, Z.

    2016-07-01

    We investigate single crystals of Ce1 -xNdxRhIn5 by means of x-ray-diffraction, microprobe, magnetic susceptibility, heat capacity, and electrical resistivity measurements. Our data reveal that the antiferromagnetic transition of CeRhIn5, at TNCe=3.8 K, is linearly suppressed with xNd. We associate this effect with the presence of a "Kondo hole" created by Nd substitution. The extrapolation of TNCe to zero temperature, however, occurs at xc˜0.3 , which is below the two-dimensional percolation limit found in Ce1 -xLaxRhIn5 . This result strongly suggests the presence of a crystal-field induced magnetic frustration. Near xNd˜0.2 , the Ising antiferromagnetic order from Nd3 + ions is stabilized and TNNd increases up to 11 K in NdRhIn5. Our results shed light on the effects of magnetic doping in heavy-fermion antiferromagnets and stimulate the study of such systems under applied pressure.

  5. Enhanced mobility in organic field-effect transistors due to semiconductor/dielectric iInterface control and very thin single crystal.

    PubMed

    Dong, Ji; Yu, Peng; Arabi, Syeda Atika; Wang, Jiawei; He, Jun; Jiang, Chao

    2016-07-01

    A perfect organic crystal while keeping high quality semiconductor/dielectric interface with minimal defects and disorder is crucial for the realization of high performance organic single crystal field-effect transistors (OSCFETs). However, in most reported OSCFET devices, the crystal transfer processes is extensively used. Therefore, the semiconductor/dielectric interface is inevitably damaged. Carrier traps and scattering centers are brought into the conduction channel, so that the intrinsic high mobility of OSCFET devices is entirely disguised. Here, very thin pentacene single crystal is grown directly on bare SiO2 by developing a 'seed-controlled' pentacene single crystal method. The interface quality is controlled by an in situ fabrication of OSCFETs. The interface is kept intact without any transfer process. Furthermore, we quantitatively analyze the influence of crystal thickness on device performance. With a pristine interface and very thin crystal, we have achieved the highest mobility: 5.7 cm(2) V(-1) s(-1)-more than twice the highest ever reported pentacene OSCFET mobility on bare SiO2. This study may provide a universal route for the use of small organic molecules to achieve high performance in lamellar single crystal field-effect devices. PMID:27211506

  6. Enhanced mobility in organic field-effect transistors due to semiconductor/dielectric iInterface control and very thin single crystal.

    PubMed

    Dong, Ji; Yu, Peng; Arabi, Syeda Atika; Wang, Jiawei; He, Jun; Jiang, Chao

    2016-07-01

    A perfect organic crystal while keeping high quality semiconductor/dielectric interface with minimal defects and disorder is crucial for the realization of high performance organic single crystal field-effect transistors (OSCFETs). However, in most reported OSCFET devices, the crystal transfer processes is extensively used. Therefore, the semiconductor/dielectric interface is inevitably damaged. Carrier traps and scattering centers are brought into the conduction channel, so that the intrinsic high mobility of OSCFET devices is entirely disguised. Here, very thin pentacene single crystal is grown directly on bare SiO2 by developing a 'seed-controlled' pentacene single crystal method. The interface quality is controlled by an in situ fabrication of OSCFETs. The interface is kept intact without any transfer process. Furthermore, we quantitatively analyze the influence of crystal thickness on device performance. With a pristine interface and very thin crystal, we have achieved the highest mobility: 5.7 cm(2) V(-1) s(-1)-more than twice the highest ever reported pentacene OSCFET mobility on bare SiO2. This study may provide a universal route for the use of small organic molecules to achieve high performance in lamellar single crystal field-effect devices.

  7. A phase-field-crystal model for liquid crystals.

    PubMed

    Löwen, Hartmut

    2010-09-15

    On the basis of static and dynamical density functional theory, a phase-field-crystal model is derived which involves both the translational density and the orientational degree of ordering as well as a local director field. The model exhibits stable isotropic, nematic, smectic A, columnar, plastic-crystalline and orientationally ordered crystalline phases. As far as the dynamics is concerned, the translational density is a conserved order parameter while the orientational ordering is non-conserved. The derived phase-field-crystal model can serve for use in efficient numerical investigations of various nonequilibrium situations in liquid crystals.

  8. Emergence of periodic order in electric-field-driven planar nematic liquid crystals: an exclusive ac effect absent in static fields.

    PubMed

    Krishnamurthy, K S; Kumar, Pramoda

    2007-11-01

    We report, for a nematic liquid crystal with a low conductivity anisotropy, an ac field generated transition from a uniformly planar to a periodically modulated director configuration with the wave vector parallel to the initial director. Significantly, with unblocked electrodes, this instability is not excited by dc fields. Additionally, in very low frequency square wave fields, it occurs transiently after each polarity reversal, vanishing completely during field constancy. The time of occurrence of maximum distortion after polarity reversal decreases exponentially with voltage. The time dependence of optical phase change during transient distortion is nearly Gaussian. The pattern threshold Vc is linear in sqrt[f], f denoting the frequency; the critical wave number qc of the modulation scales nearly linearly as sqrt[f] to a peak at approximately 50 Hz before falling slightly thereafter. The observed Vc(f) and qc(f) characteristics differ from the predictions of the standard model (SM). The instability may be interpreted as a special case of the Carr-Helfrich distortion suppressed in static fields due to weak charge focusing and strong charge injection. Its transient nature in the low frequency regime is suggestive of the possible role of gradient flexoelectric effect in its occurrence. The study includes measurement of certain elastic and viscosity parameters relevant to the application of the SM. PMID:18233671

  9. Crystal growth of CdTe in space and thermal field effects on mass flux and morphology

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.

    1988-01-01

    The primary, long-range goals are the development of vapor phase crystal growth experiments, and the growth of technologically useful crystals in space. The necessary ground-based studies include measurements of the effects of temperature variations on the mass flux and crystal morphology in vapor-solid growth processes. For in-situ mass flux measurements dynamic microbalance techniques will be employed. Crystal growth procedures and equipment will be developed to be compatible with microgravity conditions and flight requirements. Emphasis was placed on the further development of crystal growth and the investigation of relevant transport properties of CdTe. The dependence of the mass flux on source temperature was experimentally established. The CdTe synthesis and pretreatment procedures are being developed that yield considerable improvements in mass transport rates, and mass fluxes which are independent of the amount of source material. A higher degree of stoichiometric control of CdTe than before was achieved during this period of investigation. Based on this, a CdTe crystal growth experiment, employing physical vapor transport, yielded very promising results. Optical microscopy and X-ray diffraction studies revealed that the boule contained several large sized crystal grains of a high degree of crystallinity. Further characterization studies of CdTe crystals are in progress. The reaction chamber, furnace dimensions, and ampoule location of the dynamic microbalance system were modified in order to minimize radiation effects on the balance performance.

  10. Effective long-range interlayer interactions and electric-field-induced subphases in ferrielectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Chandani, A. D. L.; Fukuda, Atsuo; Vij, Jagdish K.; Takanishi, Yoichi; Iida, Atsuo

    2016-04-01

    Microbeam resonant x-ray scattering experiments recently revealed the sequential emergence of electric-field-induced subphases (stable states) with exceptionally large unit cells consisting of 12 and 15 smectic layers. We explain the emergence of the field-induced subphases by the quasimolecular model based on the Emelyanenko-Osipov long-range interlayer interactions (LRILIs) together with our primitive way of understanding the frustration in clinicity using the qE number defined as qE=|[R ] -[L ] | /([R ] +[L ] ) ; here [R ] and [L ] refer to the numbers of smectic layers with directors tilted to the right and to the left, respectively, in the unit cell of a field-induced subphase. We show that the model actually stabilizes the field-induced subphases with characteristic composite unit cells consisting of several blocks, each of which is originally a ferrielectric three-layer unit cell stabilized by the LRILIs, but some of which would be modified to become ferroelectric by an applied electric field. In a similar line of thought, we also try to understand the puzzling electric-field-induced birefringence data in terms of the LRILIs.

  11. Liquid crystal-gated-organic field-effect transistors with in-plane drain-source-gate electrode structure.

    PubMed

    Seo, Jooyeok; Nam, Sungho; Jeong, Jaehoon; Lee, Chulyeon; Kim, Hwajeong; Kim, Youngkyoo

    2015-01-14

    We report planar liquid crystal-gated-organic field-effect transistors (LC-g-OFETs) with a simple in-plane drain-source-gate electrode structure, which can be cost-effectively prepared by typical photolithography/etching processes. The LC-g-OFET devices were fabricated by forming the LC layer (4-cyano-4'-pentylbiphenyl, 5CB) on top of the channel layer (poly(3-hexylthiophene), P3HT) that was spin-coated on the patterned indium-tin oxide (ITO)-coated glass substrates. The LC-g-OFET devices showed p-type transistor characteristics, while a current saturation behavior in the output curves was achieved for the 50-150 nm-thick P3HT (channel) layers. A prospective on/off ratio (>1 × 10(3)) was obtained regardless of the P3HT thickness, whereas the resulting hole mobility (0.5-1.1 cm(2)/(V s)) at a linear regime was dependent on the P3HT thickness. The tilted ordering of 5CB at the LC-P3HT interfaces, which is induced by the gate electric field, has been proposed as a core point of working mechanism for the present LC-g-OFETs. PMID:25478816

  12. Effect of 10-T magnetic fields on structural colors in guanine crystals of fish scales

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Miyashita, Y.; Kudo, M.; Kurita, S.; Owada, N.

    2012-04-01

    This work reports the magnetically modulated structural colors in the chromatophore of goldfish scales under static magnetic fields up to 10 T. A fiber optic system for spectroscopy measurements and a CCD microscope were set in the horizontal bore of a 10-T superconducting magnet. One leaf of a fish scale was set in a glass chamber, exposed to visible light from its side direction, and then static magnetic fields were applied perpendicular to the surface of the scale. In addition, an optical fiber for spectroscopy was directed perpendicular to the surface. During the magnetic field sweep-up, the aggregate of guanine thin plates partially showed a rapid light quenching under 0.26 to 2 T; however, most of the thin plates continued to scatter the side-light and showed changing iridescence, which was displayed individually by each guanine plate. For example, an aggregate in the chromatophore exhibited a dynamic change in structural color from white-green to dark blue when the magnetic fields changed from 2 to 10 T. The spectrum profile, which was obtained by the fiber optic system, confirmed the image color changes under magnetic field exposure. Also, a linearly polarized light transmission was measured on fish scales by utilizing an optical polarizer and analyzer. The transmitted polarized light intensities increased in the range of 500-550 nm compared to the intensity at 700 nm during the magnetic field sweep-up. These results indicate that the multi-lamella structure of nano-mirror plates in guanine hexagonal micro-plates exhibit diamagnetically modulated structure changes, and its light interference is affected by strong magnetic fields.

  13. Random crystal field effect on the kinetic spin-3/2 Blume-Capel model under a time-dependent oscillating field

    NASA Astrophysics Data System (ADS)

    El Hachimi, A. G.; Dakir, O.; Sidi Ahmed, S.; Zaari, H.; El Yadari, M.; Benyoussef, A.; El Kenz, A.

    2016-09-01

    The effect of random crystal-field on the stationary states of the kinetic spin-3/2 Blume-Capel model is investigated within the framework of the mean-field approach. The Glauber-type stochastic dynamics is used to describe the time evolution of the system which is subject to a time-dependent oscillating external magnetic field. In addition to the well-known phase transitions and the appearance of the partly ferromagnetic phase characterized by the magnetization m = 1 in equilibrium case, a new dynamical regions between the ferromagnetic phases F1/2, F1 and F3/2 are found where F3/2 +F 1 / 2 ,F3/2 +F1, F1 +F1/2 phases coexist for a weak value of the reduced magnetic field (h). Whereas for higher value of h both solutions ordered F and disordered P phases coexist. Hence we present six types topologies of phase diagrams which exhibit dynamical first-order, second-order transition lines, dynamical tricritical and isolated critical end points. Furthermore, the dynamical thermal behavior magnetizations, susceptibilities and phase space trajectories are given and discussed.

  14. Effect of an electric field on the orientation of a liquid crystal in a cell with a nonuniform director distribution

    NASA Astrophysics Data System (ADS)

    Aksenova, E. V.; Karetnikov, A. A.; Karetnikov, N. A.; Kovshik, A. P.; Ryumtsev, E. I.; Sakhatskii, A. S.; Svanidze, A. V.

    2016-05-01

    The electric field-induced reorientation of a nematic liquid crystal in cells with a planar helicoidal or a homeoplanar structure of a director field is studied theoretically and experimentally. The dependences of the capacitances of these systems on the voltage in an applied electric field below and above the Fréedericksz threshold are experimentally obtained and numerically calculated. The calculations use the director distribution in volume that is obtained by direct minimization of free energy at various voltages. The inhomogeneity of the electric field inside a cell is taken into account. The calculation results are shown to agree with the experimental data.

  15. Effect of electric field and temperature gradient on the orientational dynamics of liquid crystals in a microvolume cylindrical cavity

    NASA Astrophysics Data System (ADS)

    Zakharov, A. V.; Vakulenko, A. A.; Romano, Silvano

    2009-10-01

    We have considered a homogeneously aligned liquid crystal (HALC) microvolume confined between two infinitely long horizontal coaxial cylinders and investigated dynamic field pumping, i.e., studied the interactions between director, velocity, and electric E fields as well as a radially applied temperature gradient ∇T, where the inner cylinder is kept at a lower temperature than the outer one. In order to elucidate the role of ∇T in producing hydrodynamic flow u, we have carried out a numerical study of a system of hydrodynamic equations including director reorientation, fluid flow, and temperature redistribution across the HALC cavity. Calculations show that only under the influence of ∇T does the initially quiescent HALC sample settle down to a stationary flow regime with horizontal component of velocity ueq(r). The effects of ∇T and of the size of the HALC cavity on magnitude and direction of ueq(r) have been investigated for a number of hydrodynamic regimes. Calculations also showed that E influences only the director redistribution across the HALC but not the magnitude of the velocity ueq(r).

  16. Liquid Crystal-on-Organic Field-Effect Transistor Sensory Devices for Perceptive Sensing of Ultralow Intensity Gas Flow Touch

    PubMed Central

    Seo, Jooyeok; Park, Soohyeong; Nam, Sungho; Kim, Hwajeong; Kim, Youngkyoo

    2013-01-01

    We demonstrate liquid crystal-on-organic field-effect transistor (LC-on-OFET) sensory devices that can perceptively sense ultralow level gas flows. The LC-on-OFET devices were fabricated by mounting LC molecules (4-cyano-4′-pentylbiphenyl – 5CB) on the polymer channel layer of OFET. Results showed that the presence of LC molecules on the channel layer resulted in enhanced drain currents due to a strong dipole effect of LC molecules. Upon applying low intensity nitrogen gas flows, the drain current was sensitively increased depending on the intensity and time of nitrogen flows. The present LC-on-OFET devices could detect extremely low level nitrogen flows (0.7 sccm–11 μl/s), which could not be felt by human skins, thanks to a synergy effect between collective behavior of LC molecules and charge-sensitive channel layer of OFET. The similar sensation was also achieved using the LC-on-OFET devices with a polymer film skin, suggesting viable practical applications of the present LC-on-OFET sensory devices. PMID:23948946

  17. Interplay between crystal field splitting and Kondo effect in CeNi9Ge(4-x)Si(x).

    PubMed

    Gold, C; Gross, P; Peyker, L; Eickerling, G; Simeoni, G G; Stockert, O; Kampert, E; Wolff-Fabris, F; Michor, H; Scheidt, E-W

    2012-09-01

    The pseudo-ternary solid solution CeNi(9)Ge(4-x)Si(x) (0 ≤ x ≤ 4) has been investigated by means of x-ray diffraction, magnetic susceptibility, specific heat, electrical resistivity, thermopower and inelastic neutron scattering studies. The isoelectronic substitution of germanium by silicon atoms causes a dramatic change of the relative strength of competing Kondo, RKKY and crystal field (CF) energy scales. The strongest effect is the continuous elevation of the Kondo temperature T(K) from approximately 3.5 K for CeNi(9)Ge(4) to about 70 K for CeNi(9)Si(4). This increase of the Kondo temperature is attended by a change of the CF level scheme of the Ce ions. The interplay of the different energy scales results in an incipient reduction of the ground state degeneracy from an effectively fourfold degenerate non-magnetic Kondo ground state with unusual non-Fermi-liquid features of CeNi(9)Ge(4) to a lower one, followed by an increase towards a sixfold, fully degenerate ground state multiplet in CeNi(9)Si(4) (T(K) ∼ Δ(CF)).

  18. Self-consistent field theory for lipid-based liquid crystals: hydrogen bonding effect.

    PubMed

    Lee, Won Bo; Mezzenga, Raffaele; Fredrickson, Glenn H

    2008-02-21

    A model to describe the self-assembly properties of aqueous blends of nonionic lipids is developed in the framework of self-consistent field theory (SCFT). Thermally reversible hydrogen bonding between lipid heads and water turns out to be a key factor in describing the lyotropic and thermotropic phase behavior of such systems. Our model includes reversible hydrogen bonding imposed in the context of the grand canonical ensemble and exact conditions of binding equilibrium. The lipid molecules are modeled as a rigid head and a flexible Gaussian tail, and the water molecules are treated explicitly. Here, we focus on systems where the lipid molecule has a relatively small hydrophilic head compared to the hydrophobic tail, such as monoolein in water. Experimentally, this system has both normal phase sequences (inverted hexagonal to inverted double gyroid cubic phase) and reverse phase sequences (lamellar to inverted double gyroid cubic phase) as the water volume fraction increases. From SCFT simulations of the model, two phase diagrams corresponding to temperature independent or dependent interaction parameters chi are constructed, which qualitatively capture the phase behavior of the monoolein-water mixture. The lattice parameters of the simulated mesophases are compared with the experimental values and are found to be in semiquantitative agreement. The role of various structural and solution parameters on the phase diagrams is also discussed.

  19. Amplified Emission and Field-Effect Transistor Characteristics of One-Dimensionally Structured 2,5-Bis(4-biphenylyl)thiophene Crystals.

    PubMed

    Hashimoto, Kazumasa; Sasaki, Fumio; Hotta, Shu; Yanagi, Hisao

    2016-04-01

    One-dimensional (1D) structures of 2,5-bis(4-biphenylyl)thiophene (BP1T) crystals are fabricated for light amplification and field-effect transistor (FET) measurements. A strip-shaped 1D structure (10 µm width) made by photolitography of a vapor-deposited polycrystalline film shows amplified spontaneous emission and lasing oscillations under optical pumping. An FET fabricated with this 1D structure exhibits hole-conduction with a mobility of µh = 8.0 x 10(-3) cm2/Vs. Another 1 D-structured FET is fabricated with epitaxially grown needle-like crystals of BP1T. This needle-crystal FET exhibits higher mobility of µh = 0.34 cm2/Vs. This improved hole mobility is attributed to the single-crystal channel of epitaxial needles while the grain boudaries in the polycrystalline 1 D-structure decrease the carrier transport. PMID:27451604

  20. Effect of elastic fields of dislocations on the equilibrium configurations of self-interstitial atoms in cubic crystals. Part II. FCC copper crystal

    SciTech Connect

    Ivanov, V.V.; Chernov, V.M.

    1987-06-01

    The aim of this study is to obtain the energy parameters of the interaction of dislocations of various types with different self-interstitial atom (SIA) configurations in an elastically anisotropic fcc copper crystal. The data from calculations of such interaction make it possible to identify the types of equilibrium SIA configurations that exist in the neighborhood of dislocations and to compare the results with the previously studied case of a bcc iron crystal. The calculations were carried out on the basis of available data on SIA characteristics, obtained with the aid of computer calculations of the parameters of point defects in a fcc copper crystal. The interaction of dislocations with an SIA results in the stabilization of the SIA configurations that are metastable in the absence of elastic fields. The size of the region of stabilization of the <110> dumbbell configuration depends weakly on the type of dislocation and is determined by the distance r = 3b. The distinctive features of the interaction of an SIA with a 60/sup 0/ dislocation enable us to speak of the high mobility of the interstitial atom along the dislocation line. An edge dislocation, interacting with an SIA, causes the SIA to hover as a <110> dumbbell configuration at a distance r = 3b from the line of the dislocation.

  1. Precise Characterisation of Molecular Orientation in a Single Crystal Field-Effect Transistor Using Polarised Raman Spectroscopy

    PubMed Central

    Wood, Sebastian; Rigas, Grigorios-Panagiotis; Zoladek-Lemanczyk, Alina; Blakesley, James C.; Georgakopoulos, Stamatis; Mas-Torrent, Marta; Shkunov, Maxim; Castro, Fernando A.

    2016-01-01

    Charge transport in organic semiconductors is strongly dependent on the molecular orientation and packing, such that manipulation of this molecular packing is a proven technique for enhancing the charge mobility in organic transistors. However, quantitative measurements of molecular orientation in micrometre-scale structures are experimentally challenging. Several research groups have suggested polarised Raman spectroscopy as a suitable technique for these measurements and have been able to partially characterise molecular orientations using one or two orientation parameters. Here we demonstrate a new approach that allows quantitative measurements of molecular orientations in terms of three parameters, offering the complete characterisation of a three-dimensional orientation. We apply this new method to organic semiconductor molecules in a single crystal field-effect transistor in order to correlate the measured orientation with charge carrier mobility measurements. This approach offers the opportunity for micrometre resolution (diffraction limited) spatial mapping of molecular orientation using bench-top apparatus, enabling a rational approach towards controlling this orientation to achieve optimum device performance. PMID:27619423

  2. Precise Characterisation of Molecular Orientation in a Single Crystal Field-Effect Transistor Using Polarised Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wood, Sebastian; Rigas, Grigorios-Panagiotis; Zoladek-Lemanczyk, Alina; Blakesley, James C.; Georgakopoulos, Stamatis; Mas-Torrent, Marta; Shkunov, Maxim; Castro, Fernando A.

    2016-09-01

    Charge transport in organic semiconductors is strongly dependent on the molecular orientation and packing, such that manipulation of this molecular packing is a proven technique for enhancing the charge mobility in organic transistors. However, quantitative measurements of molecular orientation in micrometre-scale structures are experimentally challenging. Several research groups have suggested polarised Raman spectroscopy as a suitable technique for these measurements and have been able to partially characterise molecular orientations using one or two orientation parameters. Here we demonstrate a new approach that allows quantitative measurements of molecular orientations in terms of three parameters, offering the complete characterisation of a three-dimensional orientation. We apply this new method to organic semiconductor molecules in a single crystal field-effect transistor in order to correlate the measured orientation with charge carrier mobility measurements. This approach offers the opportunity for micrometre resolution (diffraction limited) spatial mapping of molecular orientation using bench-top apparatus, enabling a rational approach towards controlling this orientation to achieve optimum device performance.

  3. Nonlinear elastic effects in phase field crystal and amplitude equations: Comparison to ab initio simulations of bcc metals and graphene

    NASA Astrophysics Data System (ADS)

    Hüter, Claas; Friák, Martin; Weikamp, Marc; Neugebauer, Jörg; Goldenfeld, Nigel; Svendsen, Bob; Spatschek, Robert

    2016-06-01

    We investigate nonlinear elastic deformations in the phase field crystal model and derived amplitude equation formulations. Two sources of nonlinearity are found, one of them is based on geometric nonlinearity expressed through a finite strain tensor. This strain tensor is based on the inverse right Cauchy-Green deformation tensor and correctly describes the strain dependence of the stiffness for anisotropic and isotropic behavior. In isotropic one- and two-dimensional situations, the elastic energy can be expressed equivalently through the left deformation tensor. The predicted isotropic low-temperature nonlinear elastic effects are directly related to the Birch-Murnaghan equation of state with bulk modulus derivative K'=4 for bcc. A two-dimensional generalization suggests K2D '=5 . These predictions are in agreement with ab initio results for large strain bulk deformations of various bcc elements and graphene. Physical nonlinearity arises if the strain dependence of the density wave amplitudes is taken into account and leads to elastic weakening. For anisotropic deformation, the magnitudes of the amplitudes depend on their relative orientation to the applied strain.

  4. Simultaneous monitoring of protein adsorption kinetics using a quartz crystal microbalance and field-effect transistor integrated device.

    PubMed

    Goda, Tatsuro; Maeda, Yasuhiro; Miyahara, Yuji

    2012-09-01

    We developed an integrated device comprising a quartz crystal microbalance (QCM) and a field-effect transistor (FET) with a single common gold electrode in a flow chamber. An alternating current inducing oscillations in the piezoelectric quartz of the QCM sensor is electrically independent of the circuit for the FET output so that the two sensors in different detection mechanisms simultaneously record binding kinetics from a single protein solution on the same electrode. A conjunction of adsorbed mass from QCM with electric nature of bound protein from FET provided deeper understanding on a complex process of nonspecific protein adsorption and subsequent conformational changes at a solid/liquid interface. Lower apparent k(on) values obtained by FET than those obtained by QCM on hydrophobic surfaces are interpreted as preferred binding of protein molecules facing uncharged domains to the electrode surface, whereas higher k(off) values by FET than those by QCM imply active macromolecular rearrangements on the surfaces mainly driven by hydrophobic association in an aqueous medium. The advanced features of the combined sensor including in situ, label-free, and real-time monitoring provide information on structural dynamics, beyond measurements of affinities and kinetics in biological binding reactions. PMID:22861174

  5. Precise Characterisation of Molecular Orientation in a Single Crystal Field-Effect Transistor Using Polarised Raman Spectroscopy.

    PubMed

    Wood, Sebastian; Rigas, Grigorios-Panagiotis; Zoladek-Lemanczyk, Alina; Blakesley, James C; Georgakopoulos, Stamatis; Mas-Torrent, Marta; Shkunov, Maxim; Castro, Fernando A

    2016-09-13

    Charge transport in organic semiconductors is strongly dependent on the molecular orientation and packing, such that manipulation of this molecular packing is a proven technique for enhancing the charge mobility in organic transistors. However, quantitative measurements of molecular orientation in micrometre-scale structures are experimentally challenging. Several research groups have suggested polarised Raman spectroscopy as a suitable technique for these measurements and have been able to partially characterise molecular orientations using one or two orientation parameters. Here we demonstrate a new approach that allows quantitative measurements of molecular orientations in terms of three parameters, offering the complete characterisation of a three-dimensional orientation. We apply this new method to organic semiconductor molecules in a single crystal field-effect transistor in order to correlate the measured orientation with charge carrier mobility measurements. This approach offers the opportunity for micrometre resolution (diffraction limited) spatial mapping of molecular orientation using bench-top apparatus, enabling a rational approach towards controlling this orientation to achieve optimum device performance.

  6. Precise Characterisation of Molecular Orientation in a Single Crystal Field-Effect Transistor Using Polarised Raman Spectroscopy.

    PubMed

    Wood, Sebastian; Rigas, Grigorios-Panagiotis; Zoladek-Lemanczyk, Alina; Blakesley, James C; Georgakopoulos, Stamatis; Mas-Torrent, Marta; Shkunov, Maxim; Castro, Fernando A

    2016-01-01

    Charge transport in organic semiconductors is strongly dependent on the molecular orientation and packing, such that manipulation of this molecular packing is a proven technique for enhancing the charge mobility in organic transistors. However, quantitative measurements of molecular orientation in micrometre-scale structures are experimentally challenging. Several research groups have suggested polarised Raman spectroscopy as a suitable technique for these measurements and have been able to partially characterise molecular orientations using one or two orientation parameters. Here we demonstrate a new approach that allows quantitative measurements of molecular orientations in terms of three parameters, offering the complete characterisation of a three-dimensional orientation. We apply this new method to organic semiconductor molecules in a single crystal field-effect transistor in order to correlate the measured orientation with charge carrier mobility measurements. This approach offers the opportunity for micrometre resolution (diffraction limited) spatial mapping of molecular orientation using bench-top apparatus, enabling a rational approach towards controlling this orientation to achieve optimum device performance. PMID:27619423

  7. Effect of external electric field and background illumination on the intensity distribution of optical surface waves in the metal – photorefractive crystal system

    SciTech Connect

    Akhmedzhanov, I M

    2013-11-30

    The influence of the external electric field and background illumination on the intensity distribution of optical photorefractive surface waves at the metal – photorefractive crystal interface has been numerically simulated. The simulation is performed for a strontium – barium niobate (SBN) crystal using the parameters corresponding to the experimental data. The replacement of a real metal with an ideal one and the choice of the corresponding boundary conditions (depending on the wave power) in the numerical simulation have been substantiated. The calculation results have shown good agreement with the previously published experimental data on the effect of background illumination and a significant discrepancy for the data on the effect of the external electric field. It is found that the effect of the external electric field can be significantly enhanced by reducing the optical power of the photorefractive wave to values close to the threshold ones. (nonlinear optical phenomena)

  8. Local Field Modulation Induced Three-Order Upconversion Enhancement: Combining Surface Plasmon Effect and Photonic Crystal Effect.

    PubMed

    Yin, Ze; Li, Hang; Xu, Wen; Cui, Shaobo; Zhou, Donglei; Chen, Xu; Zhu, Yongsheng; Qin, Guanshi; Song, Hongwei

    2016-04-01

    A 2D surface plasmon photonic crystal (SPPC) is achieved by implanting gold nanorods onto the periodic surface apertures of the poly(methyl methacrylate) (PMMA) opal photonic crystals. On the surface of the SPPC, the overall upconversion luminescence intensity of NaYF4 :Yb(3+) , Er(3+) under 980 nm excitation is improved more than 10(3) fold. The device is easily shifted to a transparent flexible substrate, applied to flexible displays. PMID:26833556

  9. Crystallization of insulin and lysozyme under reduced convection condition in a large gradient magnetic field

    NASA Astrophysics Data System (ADS)

    Yin, D. C.; Wakayama, N. I.; Fujiwara, M.; Harata, K.; Xue, X. P.; Fu, Z. X.; Zhang, S. W.; Shang, P.; Tanimoto, Y.

    The crystallization of protein from solution is governed by the process of transport phenomenon Any reason affecting the process of solute transport will impose effects on the crystallization process thus further affects the crystal quality Recent advancement in superconducting magnet technology makes it possible to provide a low cost long-time durable low effective gravity environment for the control of convection which is similar to the environment in the space As an ideal means to damp natural convection in a non-conductive solution on the Earth it may find applications in the field of protein crystallization In this presentation the authors investigated the crystallization of orthorhombic lysozyme crystals tetragonal lysozyme crystals and insulin crystals in a large gradient magnetic field Three effective gravity levels were used milli-gravity around 0G normal gravity 1G and hypergravity 1 8G Comparisons of the crystal quality obtained inside and outside the magnetic field showed that both the magnetic field and the effective gravity could affect the crystal quality But the effect also depends on the crystal and protein type For lysozyme crystals in tetragonal form the magnetic field and effective gravity showed no obvious effect on the quality whereas for the crystals in orthorhombic form both the magnetic field and effective gravity improved the crystal quality For insulin crystal which is highly symmetrical magnetic field and effective gravity showed no strong effect on the crystal quality It is well known that

  10. Effect of a Transverse Magnetic Field on Stray Grain Formation of Ni-Based Single Crystal Superalloy During Directional Solidification

    NASA Astrophysics Data System (ADS)

    Xuan, Weidong; Liu, Huan; Lan, Jian; Li, Chuanjun; Zhong, Yunbo; Li, Xi; Cao, Guanghui; Ren, Zhongming

    2016-08-01

    The effect of a transverse magnetic field on stray grain formation during directional solidification of superalloy was investigated. Experimental results indicated that the transverse magnetic field effectively suppressed the stray grain formation on the side the primary dendrite diverges from the mold wall. Moreover, the quenched experimental results indicated that the solid/liquid interface shape was obviously changed in a transverse magnetic field. The effect of a transverse magnetic field on stray grain formation was discussed.

  11. Crystal growth under external electric fields

    SciTech Connect

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo

    2014-10-06

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal.

  12. Effect of a High Magnetic Field on Microstructures of Ni-Based Single Crystal Superalloy During Seed Melt-Back

    NASA Astrophysics Data System (ADS)

    Xuan, Weidong; Liu, Huan; Li, Chuanjun; Ren, Zhongming; Zhong, Yunbo; Li, Xi; Cao, Guanghui

    2016-04-01

    The effects of a high magnetic field on microstructures during seed melt-back of superalloy were investigated. Experimental results indicated that the high magnetic field significantly modified the melt-back interface shape and the melt-back zone length. In addition, stray grain on the edge of sample was effectively suppressed in the high magnetic field. Based on experimental results and quantitative analysis, the above results should be attributed to the increasing temperature gradient in a high magnetic field.

  13. Magnetic Field Induced Phase Transitions in Gd5(Si1.95Ge2.05)Single Crystal and the Anisotropic Magnetocaloric Effect

    SciTech Connect

    H. Tang; V.K. Pecharsky; A.O. Pecharsky; D.L. Schlagel; T.A. Lograsso; K.A. Gschneidner,jr.

    2004-09-30

    The magnetization measurements using a Gd{sub 5}(Si{sub 1.95}Ge{sub 2.05}) single crystal with the magnetic field applied along three crystallographic directions, [001], [010] and [100], were carried out as function of applied field (0-56 kOe) at various temperatures ({approx}5-320 K). The magnetic-field induced phase transformations at temperature above the zero-field critical temperature, i.e. the paramagnetic (PM) {leftrightarrow} ferromagnetic (FM) transitions with application or removal of magnetic field, are found to be temperature dependent and hysteretic. The corresponding critical fields increase with increasing temperature. The magnetic field (H)-temperature (T) phase diagrams have been constructed for the Gd{sub 5}(Si{sub 1.95}Ge{sub 2.05}) single crystal with field along the three directions. A small anisotropy has been observed. The magnetocaloric effect (MCE) has been calculated from the isothermal magnetization data, and the observed anisotropy correlates with H-T phase diagrams. The results are discussed in connection with the magnetic-field induced martensitic-like structural transition observed in the Gd{sub 5}(Si{sub 2}Ge{sub 2})-type compounds.

  14. Crystallization of rubrene on a nanopillar-templated surface by the melt-recrystallization process and its application in field-effect transistors.

    PubMed

    Ho, Chi-Chih; Tao, Yu-Tai

    2015-01-11

    We present an approach to fabricate a continuous and crystalline rubrene film using the melt-recrystallization process with the assistance of a silicon nanopillar template. Better film morphology, enhanced crystallinity, and mainly oriented crystallites with the c-axis of the orthorhombic rubrene aligning parallel to the nanopillars were obtained as compared to that on a planar substrate. The oriented crystal growth is further modulated by the surface modification. It is suggested that the sidewalls of nanopillars play a key role in mediating the switch of crystal orientation and crystal growth. The obtained nanopillar-templated rubrene film was used to fabricate a vertical field-effect transistor. The device gave a current density of 78 mA cm(-2), on-off ratio around 10(3-4), subthreshold swing of 89.1 mV per decade and transconductance of 154.9 mS cm(-2) on an ODTS-modified substrate surface.

  15. Crystallization of rubrene on a nanopillar-templated surface by the melt-recrystallization process and its application in field-effect transistors.

    PubMed

    Ho, Chi-Chih; Tao, Yu-Tai

    2015-01-11

    We present an approach to fabricate a continuous and crystalline rubrene film using the melt-recrystallization process with the assistance of a silicon nanopillar template. Better film morphology, enhanced crystallinity, and mainly oriented crystallites with the c-axis of the orthorhombic rubrene aligning parallel to the nanopillars were obtained as compared to that on a planar substrate. The oriented crystal growth is further modulated by the surface modification. It is suggested that the sidewalls of nanopillars play a key role in mediating the switch of crystal orientation and crystal growth. The obtained nanopillar-templated rubrene film was used to fabricate a vertical field-effect transistor. The device gave a current density of 78 mA cm(-2), on-off ratio around 10(3-4), subthreshold swing of 89.1 mV per decade and transconductance of 154.9 mS cm(-2) on an ODTS-modified substrate surface. PMID:25415511

  16. Spectroscopic and magnetic studies of erbium(III)-TEMPO complex as a potential single-molecule magnet: Interplay of the crystal-field and exchange coupling effects

    NASA Astrophysics Data System (ADS)

    Karbowiak, Mirosław; Rudowicz, Czesław; Nakamura, Takeshi; Murakami, Rina; Ishida, Takayuki

    2016-10-01

    Crystallographic, spectroscopic, and magnetic studies of three-center systems: lanthanoid-Ln3+ ions doubly-coordinated by TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl) radicals [Ln-TEMPO2] are reported. The temperature dependence of alternating-current magnetic susceptibility indicates the single-molecule-magnet behavior of Er-TEMPO2, exhibiting relatively slow magnetization relaxation. Well-resolved absorption spectra were obtained only for Er-TEMPO2. Other samples yielded spectra not amenable for meaningful interpretation. The crystal-field parameters (CFPs) determined from the measured Er3+-energy levels served as starting CFPs for fitting the direct-current magnetic susceptibility result. Compatibility of the so-determined and fine-tuned CFPs, and interplay between crystal-field-related effects and exchange-coupling effects are considered. Exchange couplings in Ln-TEMPO2 appear antiferromagnetic and unexpectedly large.

  17. Effects of composition and temperature on the large field behavior of [011]{sub C} relaxor ferroelectric single crystals

    SciTech Connect

    Gallagher, John A.; Lynch, Christopher S.; Tian, Jian

    2014-08-04

    The large field behavior of [011]{sub C} cut relaxor ferroelectric lead indium niobate–lead magnesium niobate–lead titanate, xPb(In{sub 1/2}Nb{sub 1/2})O{sub 3}-(1-x-y)Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-yPbTiO{sub 3}, single crystals was experimentally characterized in the piezoelectric d{sub 322}-mode configuration under combined mechanical, electrical, and thermal loading. Increasing the concentration of lead indium niobate and decreasing the concentration of lead titanate in compositions near the morphotropic phase boundary resulted in a decrease of mechanical compliance, dielectric permittivity, and piezoelectric coefficients as well as a shift from a continuous to a discontinuous transformation.

  18. Nuclear quadrupole spin-lattice relaxation in Bi{sub 4}Ge{sub 3}O{sub 12} single crystals doped with atoms of d or f elements. Crystal field effects in compounds exhibiting anomalous magnetic properties

    SciTech Connect

    Orlov, V. G. Sergeev, G. S.; Asaji, Tetsuo; Kravchenko, E. A.; Kargin, Yu. F.

    2010-02-15

    The nuclear quadrupole spin-lattice relaxation was studied in the range 4.2-300 K for single crystals of Bi{sub 4}Ge{sub 3}O{sub 12} doped with minor amounts (the tenth fractions of mol%) of paramagnetic atoms of Cr, Nd, and Gd. Unusual spin dynamic features were recently found for these crystals at room temperature: a dramatic (up to 8-fold) increase in the effective nuclear quadrupole spin-spin relaxation time T{sub 2}* occurred upon doping the pure Bi{sub 4}Ge{sub 3}O{sub 12} sample. Unlike T{sub 2}*, the effective spin-lattice relaxation time T{sub 1}* at room temperature differs insignificantly for both doped and pure samples. But at lower temperatures, the samples exhibit considerably different behavior of the spin-lattice relaxation with temperature, which is caused by different contributions to the relaxation process of the dopant paramagnetic atoms. The distinctive maximum in the temperature dependence of the spin-lattice relaxation time for the Nd-doped crystal is shown to result from the crystal electric field effects.

  19. Crystal fields in UO2 - revisited

    SciTech Connect

    Nakotte, Heinz; Rajatram, R; Mcqueeney, R J; Lander, G H; Robinson, R A

    2009-01-01

    We performed inelastic neutron scattering (INS) in order to re-investigate the crystal-field ground state and the level splitting in UO{sub 2}. Previous INS studies on UO{sub 2} by Amorelli et al. [Physical Review B 15, 1989, 1856] uncovered four excitations at low temperatures in the 150-180 meV range. Considering the dipole-allowed transitions, only three of these transitions could be explained by the published crystal-field model. Our INS results on a different UO{sub 2} sample revealed that the unaccounted peak at about 180 meV is a spurious one, and thus not intrinsic to UO{sub 2}. In good agreement with Amoretti's results, we corroborated that the ground-state of UO{sub 2} is the {Lambda}{sub 5} triplet, and we computed that the fourth- and six-order crystal field parameters are V{sub 4} = -116 meV and V{sub 6} = 26 meV, respectively. We also studied the INS response of the non-magnetic U{sub 0.4}Th{sub 0.6}O{sub 2}. The splitting for this thorium-doped compound is similar to the one of UO{sub 2}, which orders antiferromagnetically at low temperatures. Therefore, we can conclude that magnetic interactions only weakly perturb the energy level splitting, which is dominated by strong crystal fields.

  20. Fluorination of Metal Phthalocyanines: Single-Crystal Growth, Efficient N-Channel Organic Field-Effect Transistors, and Structure-Property Relationships

    PubMed Central

    Jiang, Hui; Ye, Jun; Hu, Peng; Wei, Fengxia; Du, Kezhao; Wang, Ning; Ba, Te; Feng, Shuanglong; Kloc, Christian

    2014-01-01

    The fluorination of p-type metal phthalocyanines produces n-type semiconductors, allowing the design of organic electronic circuits that contain inexpensive heterojunctions made from chemically and thermally stable p- and n-type organic semiconductors. For the evaluation of close to intrinsic transport properties, high-quality centimeter-sized single crystals of F16CuPc, F16CoPc and F16ZnPc have been grown. New crystal structures of F16CuPc, F16CoPc and F16ZnPc have been determined. Organic single-crystal field-effect transistors have been fabricated to study the effects of the central metal atom on their charge transport properties. The F16ZnPc has the highest electron mobility (~1.1 cm2 V−1 s−1). Theoretical calculations indicate that the crystal structure and electronic structure of the central metal atom determine the transport properties of fluorinated metal phthalocyanines. PMID:25524460

  1. Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Zheng, Chen; Jing, Zhang; Yongxin, Wang; Yanli, Lu

    2016-03-01

    By employing the phase-field-crystal models, the atomic crystallization process of hexagonal and square crystals is investigated with the emphasis on the growth mechanism and morphological change. A unified regime describing the crystallization behavior of both crystals is obtained with the thermodynamic driving force varying. By increasing the driving force, both crystals (in the steady-state) transform from a faceted polygon to an apex-bulged polygon, and then into a symmetric dendrite. For the faceted polygon, the interface advances by a layer-by-layer (LL) mode while for the apex-bulged polygonal and the dendritic crystals, it first adopts the LL mode and then transits into the multi-layer (ML) mode in the later stage. In particular, a shift of the nucleation sites from the face center to the area around the crystal tips is detected in the early growth stage of both crystals and is rationalized in terms of the relation between the crystal size and the driving force distribution. Finally, a parameter characterizing the complex shape change of square crystal is introduced. Project supported by the National Natural Science Foundation of China (Grant Nos. 54175378, 51474176, and 51274167), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7261), and the Doctoral Foundation Program of Ministry of China (Grant No. 20136102120021).

  2. The effect of an electric field on the morphological stability of the crystal-melt interface of a binary alloy. III - Weakly nonlinear theory

    NASA Technical Reports Server (NTRS)

    Wheeler, A. A.; Mcfadden, G. B.; Coriell, S. R.; Hurle, D. T. J.

    1990-01-01

    The effect of a constant electric current on the crystal-melt interface morphology during directional solidification at constant velocity of a binary alloy is considered. A linear temperature field is assumed, and thermoelectric effects and Joule heating are neglected; electromigration and differing electrical conductivities of crystal and melt are taken into account. A two-dimensional weakly nonlinear analysis is carried out to third order in the interface amplitude, resulting in a cubic amplitude equation that describes whether the bifurcation from the planar state is supercritical or subcritical. For wavelengths corresponding to the most dangerous mode of linear theory, the demarcation between supercritical and subcritical behavior is calculated as a function of processing conditions and material parameters. The bifurcation behavior is a sensitive function of the magnitude and direction of the electric current and of the electrical conductivity ratio.

  3. Observation of high field DHVA-effect and induced magnetism in single crystal TiBe/sub 2/

    SciTech Connect

    van Deursen, A.P.J.; van Ruitenbeek, J.M.; Verhoef, W.A.; de Vroomen, A.R.; Smith, J.L.; de Groot, R.A.; Koelling, D.D.; Mueller, F.M.

    1981-01-01

    Recently much interest has been given to itinerant magnetism in cubic Laves phase or C15 materials. Primarily this stems from the discussion of the relationship of p-state pairing and ferromagnetism in ZrZn/sub 2/ by Enz and Matthias, and the possibility of triplet superconductivity. The most recent work in this field has focused on the isoelectronic, isostructural material TiBe/sub 2/, and the possibility that this material is metamagnetic. That TiBe/sub 2/ is close to some form of magnetic instability can be infered indirectly from the peaked nature of its density of states near the fermi level, but also from the observation of ferromagnetism in TiBe/sub 2-x/Cu/sub x/, when x is greater than about 0.15. In this paper a single crystal of pure TiBe/sub 2/ is considered in fields larger than 15 Tesla (T) and at a temperature of 1.3/sup 0/K.

  4. Birefringence of the antiferromagnetic crystals linear in a magnetic field

    NASA Astrophysics Data System (ADS)

    Eremenko, V. V.; Kharchenko, N. F.; Beliy, L. I.; Tutakina, O. P.

    1980-01-01

    The new linear magneto-optical effect-birefringence-of a linear polarized light which is directly proportional to the magnetic field strength has been observed. This effect is permitted in crystals which allow piezo-magnetic properties. One was studied in antiferromagnet CoF 2 and CoCO 3 for the longitudinal geometry of an experiment.

  5. Statistical electric field and switching time distributions in PZT 1Nb2Sr ceramics: Crystal- and microstructure effects

    NASA Astrophysics Data System (ADS)

    Zhukov, Sergey; Kungl, Hans; Genenko, Yuri A.; von Seggern, Heinz

    2014-01-01

    Dispersive polarization response of ferroelectric PZT ceramics is analyzed assuming the inhomogeneous field mechanism of polarization switching. In terms of this model, the local polarization switching proceeds according to the Kolmogorov-Avrami-Ishibashi scenario with the switching time determined by the local electric field. As a result, the total polarization reversal is dominated by the statistical distribution of the local field magnitudes. Microscopic parameters of this model (the high-field switching time and the activation field) as well as the statistical field and consequent switching time distributions due to disorder at a mesoscopic scale can be directly determined from a set of experiments measuring the time dependence of the total polarization switching, when applying electric fields of different magnitudes. PZT 1Nb2Sr ceramics with Zr/Ti ratios 51.5/48.5, 52.25/47.75, and 60/40 with four different grain sizes each were analyzed following this approach. Pronounced differences of field and switching time distributions were found depending on the Zr/Ti ratios. Varying grain size also affects polarization reversal parameters, but in another way. The field distributions remain almost constant with grain size whereas switching times and activation field tend to decrease with increasing grain size. The quantitative changes of the latter parameters with grain size are very different depending on composition. The origin of the effects on the field and switching time distributions are related to differences in structural and microstructural characteristics of the materials and are discussed with respect to the hysteresis loops observed under bipolar electrical cycling.

  6. Ink-jet printing of self-aligned soluble-pentacene crystals for high-performance organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Lim, Jung A.; Lee, Wi H.; Park, Yeong D.; Lee, Hwa S.; Cho, Kilwon

    2007-09-01

    We have reported the fabrication of the self-organized 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS_PEN) crystals with highly ordered molecular structures by using evaporation-induced flows in a solution process. The one-dimensional microcrystal arrays of TIPS_PEN were fabricated by simple solution casting on a tilted substrate. By pinning a solution droplet on the tilted substrate, an array of ribbon-shaped crystals aligned in the tilted direction was formed on the substrate. In particular, self-aligned TIPS_PEN crystals with highly ordered crystalline structures via inkjet printing were successfully produced by controlling the evaporation-induced flow using solvent mixture, and arise when there is a recirculation flow in a inkjet printed droplet that is induced by a Marangoni flow (surface-tension-driven flow) in the direction opposite to the outward convective flow. The field-effect transistors fabricated with these self-aligned TIPS_PEN crystals via drop casting and inkjet printing exhibit significantly improved electrical performance. These results demonstrate that control of evaporation-induced flow in a solution process of organic semiconductor can be an excellent method for the production of organic semiconductor films with uniform morphology and desired molecular orientation for the direct-write fabrication of high-performance OFETs.

  7. Consistent Hydrodynamics for Phase Field Crystals.

    PubMed

    Heinonen, V; Achim, C V; Kosterlitz, J M; Ying, See-Chen; Lowengrub, J; Ala-Nissila, T

    2016-01-15

    We use the amplitude expansion in the phase field crystal framework to formulate an approach where the fields describing the microscopic structure of the material are coupled to a hydrodynamic velocity field. The model is shown to reduce to the well-known macroscopic theories in appropriate limits, including compressible Navier-Stokes and wave equations. Moreover, we show that the dynamics proposed allows for long wavelength phonon modes and demonstrate the theory numerically showing that the elastic excitations in the system are relaxed through phonon emission. PMID:26824543

  8. Magnetic properties of Ce{sup 3+} in Pb{sub 1{minus}x}Ce{sub x}Se: Kondo and crystal-field effect

    SciTech Connect

    Gratens, X.; Charar, S.; Averous, M.; Isber, S.; Deportes, J.; Golacki, Z.

    1997-10-01

    Electron paramagnetic resonance (EPR) experiments were performed on a Pb{sub 1{minus}x}Ce{sub x}Se crystal at liquid-helium temperatures and show very clearly that the doublet {Gamma}{sub 7} is the ground state for cerium ions. The cubic symmetry is shown and the effective Land{acute e} factor for the Ce{sup 3+} is determined to be 1.354{plus_minus}0.003. An orbital reduction factor is introduced to explain the g experimental value. High-field magnetization results are in good agreement with the EPR results. The nominal Ce composition in PbSe deduced from saturation of the magnetization, x=0.0405{plus_minus}0.0003, is very closed to the value determined by microprobe analysis (x=0.04). At 1.5 K, an antiferromagnetic interaction between the nearest-neighbor cerium atoms is found, J{sub ex}/k{sub B}={minus}0.715thinspK. The low-field magnetic-susceptibility results show that the magnetic moment of cerium impurities is strongly temperature dependent, explained by the presence of the crystal-field effect and the Kondo effect. {copyright} {ital 1997} {ital The American Physical Society}

  9. Organic Memory Devices: 2D Mica Crystal as Electret in Organic Field-Effect Transistors for Multistate Memory (Adv. Mater. 19/2016).

    PubMed

    Zhang, Xiaotao; He, Yudong; Li, Rongjin; Dong, Huanli; Hu, Wenping

    2016-05-01

    R. Li, H. Dong, and co-workers describe the exfoliation of cheap and abundant minerals, such as mica, into nanometer-thick 2D crystals with atomically flat surfaces. As described on page 3755, the application of the 2D electret in organic field-effect transistors is well-suited for flexible nonvolatile memory devices. Stored information can be retrieved even after power cycling. Moreover, the devices can be used as full-function transistors with a low-resistance and a high-resistance state.

  10. Effect of an applied electric field on a weakly anchored non-planar Nematic Liquid Crystal (NLC) layer

    NASA Astrophysics Data System (ADS)

    Mema, Ensela; Cummings, Linda J.; Kondic, Lou

    We consider a mathematical model that consists of a NLC layer sandwiched between two parallel bounding plates, across which an external field is applied. We investigate its effect on the director orientation by considering the dielectric and flexoelectric contributions and varying parameters that represent the anchoring conditions and the electric field strength. In particular, we investigate possible director configurations that occur in weakly anchored and non-planar systems. We observe that non-planar anchoring angles destroy any hysteresis seen in a planar system by eliminating the fully vertical director configuration and the ''saturation threshold'' seen in weakly anchored planar Freedericksz cells. Supported by NSF Grant No. DMS-1211713.

  11. Electric field induced biaxiality and the electro-optic effect in a bent-core nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Nagaraj, Mamatha; Panarin, Y. P.; Manna, U.; Vij, J. K.; Keith, C.; Tschierske, C.

    2010-01-01

    We report the observation of a biaxial nematic phase in a bent-core molecular system using polarizing microscopy, electro-optics, and dielectric spectroscopy, where we find that the biaxiality exists on a microscopic scale. An application of electric field induces a macroscopic biaxiality and in consequence gives rise to electro-optic switching. This electro-optic effect shows significant potential in applications for displays due to its fast high-contrast response. The observed electro-optic switching is explained in terms of the interaction of the ferroelectric clusters with the electric field.

  12. Interaction of optical phonons with magnons in orthorhombic crystals. Effect of a magnetic field on structural phase transitions

    NASA Astrophysics Data System (ADS)

    Men'shenin, V. V.

    2007-05-01

    Interaction of polar optical phonons with magnons in manganates RMn2O5 (where R is a rare-earth ion) has been studied in the approximation of collinear antiferromagnetic ordering of manganese sublattices. It is shown that such interaction takes place only in multisublattice antiferromagnets in which exchange magnetic structures exist that are both even and odd with respect to space inversion. Effect of a magnetic field on the structural phase transitions in these oxides is analyzed.

  13. Phase-Field-Crystal Model for Electromigration in Metal Interconnects

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Bevan, Kirk H.; Provatas, Nikolas

    2016-10-01

    We propose an atomistic model of electromigration (EM) in metals based on a recently developed phase-field-crystal (PFC) technique. By coupling the PFC model's atomic density field with an applied electric field through the EM effective charge parameter, EM is successfully captured on diffusive time scales. Our framework reproduces the well-established EM phenomena known as Black's equation and the Blech effect, and also naturally captures commonly observed phenomena such as void nucleation and migration in bulk crystals. A resistivity dipole field arising from electron scattering on void surfaces is shown to contribute significantly to void migration velocity. With an intrinsic time scale set by atomic diffusion rather than atomic oscillations or hopping events, as in conventional atomistic methods, our theoretical approach makes it possible to investigate EM-induced circuit failure at atomic spatial resolution and experimentally relevant time scales.

  14. Magnetic ordering and crystal field effects in quasi-caged structure compound PrFe2Al8

    NASA Astrophysics Data System (ADS)

    Nair, Harikrishnan S.; Ghosh, Sarit K.; Ramesh Kumar, K.; Strydom, André M.

    2016-04-01

    The compound PrFe2Al8 possesses a three-dimensional network structure resulting from the packing of Al polyhedra centered at the transition metal element Fe and the rare earth Pr. Along the c-axis, Fe and Pr form chains which are separated from each other by the Al-network. In this paper, the magnetism and crystalline electric field effects in PrFe2Al8 are investigated through the analysis of magnetization and specific heat data. A magnetic phase transition in the Pr lattice is identified at TNPr ≈ 4 K in dc magnetization and ac susceptibility data. At 2 K, the magnetization isotherm presents a ferromagnetic saturation, however, failing to reach full spin-only ferromagnetic moment of Pr3+. Metamagnetic step-like low-field features are present in the magnetization curve at 2 K which is shown to shift upon field-cooling the material. Arrott plots centered around TPrN display "S"-like features suggestive of an inhomogeneous magnetic state. The magnetic entropy, Sm, estimated from specific heat outputs a value of R ln(2) at TN2 suggesting a doublet state for Pr3+. The magnetic specific heat is modeled by using a 9-level Schottky equation pertinent to the Pr3+ ion with J=4. Given the crystalline electric field situation of Pr3+, the inference of a doublet state from specific heat and consequent long-range magnetic order is an unexpected result.

  15. Electron Spin Resonance Study of Interface Trap States and Charge Carrier Concentration in Rubrene Single-Crystal Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Tsuji, Masaki; Arai, Norimichi; Marumoto, Kazuhiro; Takeya, Jun; Shimoi, Yukihiro; Tanaka, Hisaaki; Kuroda, Shin-ichi; Takenobu, Taishi; Iwasa, Yoshihiro

    2011-08-01

    Field-induced charge carriers at the semiconductor/dielectric interface of rubrene single-crystal field-effect transistors (RSC-FETs) were studied by ESR. We fabricated bottom-contact RSC-FETs to be used for ESR measurements by laminating RSCs onto SiO2 and polymer/SiO2 gate dielectric surfaces. The observed ESR spectra depict a minimal dependence on gate voltage, whose result is in sharp contrast to those obtained using RSC-FETs fabricated by the deposition of a parylene C gate dielectric. This behavior indicates that few deep trap levels are generated by the lamination technique. The dependence of ESR intensity on drain voltage was also investigated using gradual channel approximation.

  16. Nonequilibrium kinetics of the electron–phonon sybsystem of a crystal in a strong electric field as a base of the electroplastic effect

    SciTech Connect

    Karas, V. I. Vlasenko, A. M.; Sokolenko, V. I.; Zakharov, V. E.

    2015-09-15

    We present the results of a kinetic analysis of nonequilibrium dynamics of the electron–phonon system of a crystal in a strong electric field based on the proposed method of numerically solving a set of Boltzmann equations for electron and phonon distribution functions without expanding the electron distribution function into a series in the phonon energy. It is shown that the electric field action excites the electron subsystem, which by transferring energy to the phonon subsystem creates a large amount of short-wave phonons that effectively influence the lattice defects (point, lines, boundaries of different phases), which results in a redistribution of and decrease in the lattice defect density, in damage healing, in a decrease in the local peak stress, and a decrease in the degradation level of the construction material properties.

  17. Nonequilibrium kinetics of the electron-phonon sybsystem of a crystal in a strong electric field as a base of the electroplastic effect

    NASA Astrophysics Data System (ADS)

    Karas, V. I.; Vlasenko, A. M.; Sokolenko, V. I.; Zakharov, V. E.

    2015-09-01

    We present the results of a kinetic analysis of nonequilibrium dynamics of the electron-phonon system of a crystal in a strong electric field based on the proposed method of numerically solving a set of Boltzmann equations for electron and phonon distribution functions without expanding the electron distribution function into a series in the phonon energy. It is shown that the electric field action excites the electron subsystem, which by transferring energy to the phonon subsystem creates a large amount of short-wave phonons that effectively influence the lattice defects (point, lines, boundaries of different phases), which results in a redistribution of and decrease in the lattice defect density, in damage healing, in a decrease in the local peak stress, and a decrease in the degradation level of the construction material properties.

  18. An experimental charge density study of the effect of the noncentric crystal field on the molecular properties of organic NLO materials.

    PubMed

    Gopalan, R S; Kulkarni, G U; Rao, C N

    2000-11-01

    The structure, packing, and charge distribution in molecules of nonlinear optical materials have been analysed with reference to their counterparts in centrosymmetric structures based on low temperature X-ray measurements. The systems studied are the centric and noncentric polymorphs of 5-nitrouracil as well as the diamino, dithio, and thioamino derivatives of 1,1-ethylenedicarbonitrile; the latter possesses a noncentric structure. The molecular structure of 5-nitrouracil is invariant between the two forms, while the crystal packing is considerably different, leading to dimeric N-H·∙∙O rings in the centric polymorph and linear chains in noncentric one. There is an additional C-H·∙∙O contact in the centric form with a significant overlap of the electrostatic potentials between the alkenyl hydrogen atom and an oxygen atom of the nitro group. The dipole moment of 5-nitrouracil in the noncentric form is much higher (μ=9 D) than in the centric form (≈6 D). Among the 1,1-ethylenedicarbonitriles, there is an increased charge separation in the noncentric thioamino derivative, leading to an enhanced dipole of 15 D compared to the centric diamino (5 D) and dithio (6 D) derivatives. The effect of the crystal field is borne out by semiempirical AM1 calculations on the two systems. Dipole moments calculated for the molecules in the frozen geometries match closely with those obtained for centric crystals from the experimental charge densities. The calculated values of the dipole moment in the frozen or optimized geometries in the noncentric structures are, however, considerably lower than the observed value. Furthermore, the conformation of the S-CH(3) group in the noncentric crystal is anti with respect to the central C=C bond while the syn conformation is predicted for the free molecule in the optimized geometry. PMID:23696303

  19. Field-induced pinning effect of Nd(Ba 1- xNd x) 2Cu 3O 7-δ single crystals grown by the traveling-solvent floating-zone method

    NASA Astrophysics Data System (ADS)

    Egi, T.; Wen, J. G.; Kuroda, K.; Mori, H.; Unoki, H.; Koshizuka, N.

    1996-02-01

    We have studied the superconducting properties of Nd(Ba 1- xNd x) 2Cu 3O 7-δ (Nd123, x ≈ 0.1) single crystals grown by the traveling-solvent floating-zone method under 0.1% O 2 in Ar atmosphere. The enhancement of the magnetization with increasing field is observed in the hysteresis ( M- H) loop in fields both parallel and perpendicular to the c-axis of the Nd123 single crystals as well as in the bulk crystals prepared by the oxygen-controlled-melt-growth (OCMG) method. The composition variation of Ba/Nd is observed in the matrix of Nd123 crystals by an analytical TEM equipped with a cold field-emission gun. It turns out that the enhancement is due to the field-induced pinning effect ascribed to the weak superconducting NdBa substitution regions in the Nd123 matrix.

  20. Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell.

    PubMed

    Zyryanov, Victor Ya; Myslivets, Sergey A; Gunyakov, Vladimir A; Parshin, Alexander M; Arkhipkin, Vasily G; Shabanov, Vasily F; Lee, Wei

    2010-01-18

    Light transmission spectrum of a multilayer photonic crystal with a central liquid-crystal defect layer placed between crossed polarizers has been studied. Transmittance was varied due to the magnetically induced reorientation of the nematic director from homeotropic to planar alignment. Two notable effects were observed for this scheme: the spectral shift of defect modes corresponding to the extraordinary light wave and its superposition with the ordinary one. As a result, the optical cell allows controlling the intensity of interfering defect modes by applied magnetic field. PMID:20173953

  1. Order by virtual crystal field fluctuations in pyrochlore XY antiferromagnets

    NASA Astrophysics Data System (ADS)

    Rau, Jeffrey G.; Petit, Sylvain; Gingras, Michel J. P.

    2016-05-01

    Conclusive evidence of order by disorder is scarce in real materials. Perhaps one of the strongest cases presented has been for the pyrochlore XY antiferromagnet Er2Ti2O7 , with the ground state selection proceeding by order by disorder induced through the effects of quantum fluctuations. This identification assumes the smallness of the effect of virtual crystal field fluctuations that could provide an alternative route to picking the ground state. Here we show that this order by virtual crystal field fluctuations is not only significant, but competitive with the effects of quantum fluctuations. Further, we argue that higher-multipolar interactions that are generically present in rare-earth magnets can dramatically enhance this effect. From a simplified bilinear-biquadratic model of these multipolar interactions, we show how the virtual crystal field fluctuations manifest in Er2Ti2O7 using a combination of strong-coupling perturbation theory and the random-phase approximation. We find that the experimentally observed ψ2 state is indeed selected and the experimentally measured excitation gap can be reproduced when the bilinear and biquadratic couplings are comparable while maintaining agreement with the entire experimental spin-wave excitation spectrum. Finally, we comment on possible tests of this scenario and discuss implications for other order-by-disorder candidates in rare-earth magnets.

  2. Crystal field and magnetic properties of ErH3

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) times 10 to the minus 6 Weber m/kg Tesla. The saturation moment is 3.84 + or - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is of the order of 160 to 180 K.

  3. Pulsed zero field NMR of solids and liquid crystals

    SciTech Connect

    Thayer, A.M.

    1987-02-01

    This work describes the development and applications to solids and liquid crystals of zero field nuclear magnetic resonance (NMR) experiments with pulsed dc magnetic fields. Zero field NMR experiments are one approach for obtaining high resolution spectra of amorphous and polycrystalline materials which normally (in high field) display broad featureless spectra. The behavior of the spin system can be coherently manipulated and probed in zero field with dc magnetic field pulses which are employed in a similar manner to radiofrequency pulses in high field NMR experiments. Nematic phases of liquid crystalline systems are studied in order to observe the effects of the removal of an applied magnetic field on sample alignment and molecular order parameters. In nematic phases with positive and negative magnetic susceptibility anisotropies, a comparison between the forms of the spin interactions in high and low fields is made. High resolution zero field NMR spectra of unaligned smectic samples are also obtained and reflect the symmetry of the liquid crystalline environment. These experiments are a sensitive measure of the motionally induced asymmetry in biaxial phases. Homonuclear and heteronuclear solute spin systems are compared in the nematic and smectic phases. Nonaxially symmetric dipolar couplings are reported for several systems. The effects of residual fields in the presence of a non-zero asymmetry parameter are discussed theoretically and presented experimentally. Computer programs for simulations of these and other experimental results are also reported. 179 refs., 75 figs.

  4. Magnetic Field Measurements Based on Terfenol Coated Photonic Crystal Fibers

    PubMed Central

    Quintero, Sully M. M.; Martelli, Cicero; Braga, Arthur M. B.; Valente, Luiz C. G.; Kato, Carla C.

    2011-01-01

    A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT) over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field. PMID:22247655

  5. Magnetic field measurements based on Terfenol coated photonic crystal fibers.

    PubMed

    Quintero, Sully M M; Martelli, Cicero; Braga, Arthur M B; Valente, Luiz C G; Kato, Carla C

    2011-01-01

    A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT) over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field.

  6. Using Magnetic Fields to Control Convection during Protein Crystallization: Analysis and Validation Studies

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2004-01-01

    The effect of convection during the crystallization of proteins is not very well understood. In a gravitational field, convection is caused by crystal sedimentation and by solutal buoyancy induced flow and these can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, we develop the analysis for magnetic flow control and test the predictions using analog experiments. Specifically, experiments on solutal convection in a paramagnetic fluid were conducted in a strong magnetic field gradient using a dilute solution of Manganese Chloride. The observed flows indicate that the magnetic field can completely counter the settling effects of gravity locally and are consistent with the theoretical predictions presented. This phenomenon suggests that magnetic fields may be useful in mimicking the microgravity environment of space for some crystal growth ana biological applications where fluid convection is undesirable.

  7. Semiconductor Crystal Growth in Static and Rotating Magnetic fields

    NASA Technical Reports Server (NTRS)

    Volz, Martin

    2004-01-01

    Magnetic fields have been applied during the growth of bulk semiconductor crystals to control the convective flow behavior of the melt. A static magnetic field established Lorentz forces which tend to reduce the convective intensity in the melt. At sufficiently high magnetic field strengths, a boundary layer is established ahead of the solid-liquid interface where mass transport is dominated by diffusion. This can have a significant effect on segregation behavior and can eliminate striations in grown crystals resulting from convective instabilities. Experiments on dilute (Ge:Ga) and solid solution (Ge-Si) semiconductor systems show a transition from a completely mixed convective state to a diffusion-controlled state between 0 and 5 Tesla. In HgCdTe, radial segregation approached the diffusion limited regime and the curvature of the solid-liquid interface was reduced by a factor of 3 during growth in magnetic fields in excess of 0.5 Tesla. Convection can also be controlled during growth at reduced gravitational levels. However, the direction of the residual steady-state acceleration vector can compromise this effect if it cannot be controlled. A magnetic field in reduced gravity can suppress disturbances caused by residual transverse accelerations and by random non-steady accelerations. Indeed, a joint program between NASA and the NHMFL resulted in the construction of a prototype spaceflight magnet for crystal growth applications. An alternative to the suppression of convection by static magnetic fields and reduced gravity is the imposition of controlled steady flow generated by rotating magnetic fields (RMF)'s. The potential benefits of an RMF include homogenization of the melt temperature and concentration distribution, and control of the solid-liquid interface shape. Adjusting the strength and frequency of the applied magnetic field allows tailoring of the resultant flow field. A limitation of RMF's is that they introduce deleterious instabilities above a

  8. The effect of an electric field on the morphological stability of the crystal-melt interface of a binary alloy

    NASA Technical Reports Server (NTRS)

    Wheeler, A. A.; Coriell, S. R.; Mcfadden, G. B.; Hurle, D. T. J.

    1988-01-01

    A fully time-dependent linear stability analysis of the morphological stability of a planar interface during directional solidification of a binary alloy at constant velocity in the presence of an electric field, is performed. The electromigration of solute and the differing electrical conductivities of solid and liquid for a model in which the temperature gradient is constant are taken into account. The present results are compared with the constitutional supercooling criterion, and it is shown there may be substantial differences. A modified constitutional supercooling criterion which is valid over a large range of conditions is derived. It is also found under certain conditions that the onset of instability may be time dependent.

  9. Magnetic Field Control of the Quantum Chaotic Dynamics of Hydrogen Analogs in an Anisotropic Crystal Field

    SciTech Connect

    Zhou Weihang; Chen Zhanghai; Zhang Bo; Yu, C. H.; Lu Wei; Shen, S. C.

    2010-07-09

    We report magnetic field control of the quantum chaotic dynamics of hydrogen analogues in an anisotropic solid state environment. The chaoticity of the system dynamics was quantified by means of energy level statistics. We analyzed the magnetic field dependence of the statistical distribution of the impurity energy levels and found a smooth transition between the Poisson limit and the Wigner limit, i.e., transition between regular Poisson and fully chaotic Wigner dynamics. The effect of the crystal field anisotropy on the quantum chaotic dynamics, which manifests itself in characteristic transitions between regularity and chaos for different field orientations, was demonstrated.

  10. Impact of additional Pt and NiSi crystal orientation on channel stress induced by Ni silicide film in metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Mizuo, Mariko; Yamaguchi, Tadashi; Kudo, Shuichi; Hirose, Yukinori; Kimura, Hiroshi; Tsuchimoto, Jun-ichi; Hattori, Nobuyoshi

    2014-01-01

    The impact of additional Pt and Ni monosilicide (NiSi) crystal orientation on channel stress from Ni silicide in metal-oxide-semiconductor field-effect transistors (MOSFETs) has been demonstrated. The channel stress generation mechanism can be explained by the NiSi crystal orientation. In pure Ni silicide films, the channel stress in the p-type substrate is much larger than that in the n-type one, since the NiSi a-axis parallel to the channel direction is strongly aligned on the p-type substrate compared with on the n-type one. On the other hand, in NiPt silicide films, the difference in the channel stress between the p- and n-type substrates is small, because the NiSi crystal orientation on the p-type substrate is similar to that on the n-type one. These results can be explained by the Pt segregation at the interface between the NiSi film and the Si surface. Segregated Pt atoms cause the NiSi b-axis to align normal to the Si(001) surface in the nucleation step owing to the expansion of the NiSi lattice spacing at the NiSi/Si interface. Furthermore, the Pt segregation mechanism is considered to be caused by the grain boundary diffusion in the Ni2Si film during NiSi formation. We confirmed that the grains of Ni2Si on the p-type substrate are smaller than those on the n-type one. The Ni2Si film on the p-type substrate has more grain boundary diffusion paths than that on the n-type one. Therefore, the amount of Pt segregation at the NiSi/Si interface on the p-type substrate is larger than that on the n-type one. Consequently, the number of NiSi grains with the b-axis aligned normal to the Si(001) in the p-type substrate is larger than that in the n-type one. As a result, the channel stress induced by NiPt silicide in PMOS is larger than that in NMOS. According to this mechanism, controlling the Pt concentration at the NiSi/Si interface is one of the key factors for channel stress engineering.

  11. Investigation of electric field effect on the third order nonlinear optical properties of Fe3O4 nanoparticles-doped nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Dehghani, Z.; Saievar Iranizad, E.; Nadafan, M.

    2015-01-01

    Third order nonlinearity of Fe3O4 nanoparticles (NPs) doped in nematic liquid crystals (NLCs) was evaluated due to laser induced self-phase modulation. The influence of electric field on the nonlinear optical responses of the NLCs doped with Fe3O4 NPs was considered in different voltages. The measurements were performed for two commonly initial alignments (homogeneous and homeotropic) with different small compositional percentages of magnetic NPs. The experimental results show that the homogenous- aligned cell was considerably affected on the applied electric field while the nonlinearity of homeotropic-aligned NLCs with the Fe3O4 NPs did not approximately change in the presence of electric field.

  12. Subsurface Stress Fields In Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik C.; Duke, Greg; Battista, Gilda; Swanson, Greg

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is , presented, for evaluating the subsurface stresses in the elastic half-space, using a complex potential method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis. Effects of crystal orientation on stress response and fatigue life are examined.

  13. Electric heating effects in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Shiyanovskii, S. V.; Lavrentovich, O. D.

    2006-07-01

    Electric heating effects in the nematic liquid crystal change the liquid crystal physical properties and dynamics. We propose a model to quantitatively describe the heating effects caused by dielectric dispersion and ionic conductivity in the nematic liquid crystals upon the application of an ac electric field. The temperature increase of the liquid crystal cell is related to the properties of the liquid crystal such as the imaginary part of the dielectric permittivity, thermal properties of the bounding plates, and the surrounding medium as well as frequency and amplitude of the electric field. To study the temperature dynamics experimentally, we use a small thermocouple inserted directly into the nematic bulk; we assure that the thermocouple does not alter the thermal behavior of the system by comparing the results to those obtained by a noncontact birefringent probing technique recently proposed by Wen and Wu [Appl. Phys. Lett. 86, 231104 (2005)]. We determine how the temperature dynamics and the stationary value of the temperature increase depend on the parameters of the materials and the applied field. We used different surrounding media, from extremely good heat conductors such as aluminum cooling device to extremely poor conductor, Styrofoam; these two provide two limiting cases as compared to typical conditions of nematic cell exploitation in a laboratory or in commercial devices. The experiments confirm the theoretical predictions, namely, that the temperature rise is controlled not only by the heat transfer coefficient of the surrounding medium (as in the previous model) but also by the thickness and the thermal conductivity coefficient of the bounding plates enclosing the nematic layer. The temperature increase strongly depends on the director orientation and can change nonmonotonously with the frequency of the applied field.

  14. Effect of the bias electric field on the spectral distribution of the photodielectric effect in the Schottky-barrier structures based on the cadmium-zinc telluride crystals

    SciTech Connect

    Komar', V. K.; Puzikov, V. M.; Chugai, O. N. Nalivaiko, D. P.; Sulima, S. V.; Abashin, S. L.

    2007-06-15

    Spectral dependences of effective values of the real and imaginary parts of the low-frequency permittivity of the Cd{sub 1-x}Zn{sub x}Te crystals (x=0.12-0.16) with the Schottky barrier fabricated on the surface are measured. It is found that the boundary wavelengths of the characteristic portions of the measured dependences represented in the complex plane correspond to energies of photons, which cause the radical variations in the state of negatively charged and electrically neutral localized acceptor states. The variations in the energy spectrum of the localized states, which are determined by the magnitude and polarity of the electric bias applied to the Shottky barrier, are found.

  15. Novel vertical hetero- and homo-junction tunnel field-effect transistors based on multi-layer 2D crystals

    NASA Astrophysics Data System (ADS)

    Lu, Shang-Chun; Mohamed, Mohamed; Zhu, Wenjuan

    2016-03-01

    Vertical hetero- and homo-junction tunnel FET (TFET) based on multi-layer black phosphorus (BP) and transition metal dichalcogenides are proposed and studied by numerical simulations employing the semi-classical density gradient quantum correction model. It is found that the vertical TFET based on BP can achieve high on-current (>200 μA μm-1) and steep subthreshold swing (average value = 24.6 mV/dec) simultaneously, due to its high mobility, direct narrow bandgap, and low dielectric constant. We also found that the on-current in vertical TFETs based on MoS2/MoSe2 hetero-junction is two orders of magnitudes higher than the one in MoS2 homo-junction TFET, due to the reduced effective bandgap in heterostructure with staggered band alignment. In addition, we present various design considerations and recommendations as well as provide a qualitative comparison with published data.

  16. Analysis of NAD(P)+/NAD(P)H cofactors by imprinted polymer membranes associated with ion-sensitive field-effect transistor devices and Au-quartz crystals.

    PubMed

    Pogorelova, Svetlana P; Zayats, Maya; Bourenko, Tatyana; Kharitonov, Andrei B; Lioubashevski, Oleg; Katz, Eugenii; Willner, Itamar

    2003-02-01

    Specific recognition sites for the NAD(P)+ and NAD(P)H cofactors are imprinted in a cross-linked acrylamide-acrylamidophenylboronic acid copolymer membrane. The imprinted membranes, associated with pH-sensitive field-effect transistors (ISFETs) or Au-quartz piezoelectric crystals, enable the potentiometric or microgravimetric analysis of the oxidized NAD(P)+ cofactors and the reduced NAD(P)H cofactors, respectively. The NAD+- and NADP+-imprinted membranes associated with the ISFET allow the analysis of NAD+ and NADP+ with sensitivities that correspond to 15.0 and 18.0 mVdecade(-1) and detection limits of 4 x 10(-7) and 2 x 10(-7) M, respectively. The NADH- and NADPH-imprinted membranes associated with the ISFET device enable the analysis of NADH and NADPH with sensitivities that correspond to 24.2 and 21.8 mV x decade(-1) and lower detection limits that are 1 x 10(-7) and 2 x 10(-7) M, respectively. The ISFET devices functionalized with the NADH and NADPH membranes are employed in the analysis of the biocatalyzed oxidation of lactic acid and ethanol in the presence of lactate dehydrogenase and alcohol dehydrogenase, respectively. PMID:12585477

  17. Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves

  18. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    SciTech Connect

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J.; Tachibana, M.; Kojima, K.

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  19. Magnetic field effects on ultrafast lattice compression dynamics of Si(111) crystal when excited by linearly-polarized femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Hatanaka, Koji; Odaka, Hideho; Ono, Kimitoshi; Fukumura, Hiroshi

    2007-03-01

    Time-resolved X-ray diffraction measurements of Si (111) single crystal are performed when excited by linearly-polarized femtosecond laser pulses (780 nm, 260 fs, negatively-chirped, 1 kHz) under a magnetic field (0.47 T). Laser fluence on the sample surface is 40 mJ/cm^2, which is enough lower than the ablation threshold at 200 mJ/cm^2. Probing X-ray pulses of iron characteristic X-ray lines at 0.193604 and 0.193998 nm are generated by focusing femtosecond laser pulses onto audio-cassette tapes in air. Linearly-polarized femtosecond laser pulse irradiation onto Si(111) crystal surface induces transient lattice compression in the picosecond time range, which is confirmed by transient angle shift of X-ray diffraction to higher angles. Little difference of compression dynamics is observed when the laser polarization is changed from p to s-pol. without a magnetic field. On the other hand, under a magnetic field, the lattice compression dynamics changes when the laser is p-polarized which is vertical to the magnetic field vector. These results may be assigned to photo-carrier formation and energy-band distortion.

  20. Hidden local symmetry of Eu{sup 3+} in xenotime-like crystals revealed by high magnetic fields

    SciTech Connect

    Han, Yibo; Ma, Zongwei; Zhang, Junpei; Wang, Junfeng; Du, Guihuan; Xia, Zhengcai; Han, Junbo Li, Liang; Yu, Xuefeng

    2015-02-07

    The excellent optical properties of europium-doped crystals in visible and near infrared wavelength regions enable them to have broad applications in optoelectronics, laser crystals and sensing devices. The local site crystal fields can affect the intensities and peak positions of the photo-emission lines strongly, but they are usually difficult to be clarified due to magnetically degenerate 4f electronic levels coupling with the crystal fields. Here, we provide an effective way to explore the hidden local symmetry of the Eu{sup 3+} sites in different hosts by taking photoluminescence measurements under pulsed high magnetic fields up to 46 T. The zero-field photoluminescence peaks split further at high magnetic fields when the Zeeman splitting energy is comparable to or larger than that of the crystal field induced zero-field splitting. In particular, a magnetic field induced crossover of the local crystal fields has been observed in the GdVO{sub 4}:Eu{sup 3+} crystal, which resulted from the alignment of Gd{sup 3+} magnetic moment in high magnetic fields; and a hexagonally symmetric local crystal fields was observed in the YPO{sub 4} nanocrystals at the Eu{sup 3+} sites characterized by the special axial and rhombic crystal field terms. These distinct Zeeman splitting behaviors uncover the crystal fields-related local symmetry of luminescent Eu{sup 3+} centers in different hosts or magnetic environments, which are significant for their applications in optics and optoelectronics.

  1. Switching plastic crystals of colloidal rods with electric fields

    PubMed Central

    Liu, Bing; Besseling, Thijs H.; Hermes, Michiel; Demirörs, Ahmet F.; Imhof, Arnout; van Blaaderen, Alfons

    2014-01-01

    When a crystal melts into a liquid both long-ranged positional and orientational order are lost, and long-time translational and rotational self-diffusion appear. Sometimes, these properties do not change at once, but in stages, allowing states of matter such as liquid crystals or plastic crystals with unique combinations of properties. Plastic crystals/glasses are characterized by long-ranged positional order/frozen-in-disorder but short-ranged orientational order, which is dynamic. Here we show by quantitative three-dimensional studies that charged rod-like colloidal particles form three-dimensional plastic crystals and glasses if their repulsions extend significantly beyond their length. These plastic phases can be reversibly switched to full crystals by an electric field. These new phases provide insight into the role of rotations in phase behaviour and could be useful for photonic applications. PMID:24446033

  2. Field- and temperature-induced evolution of the magnetocaloric effect in Ba0.3Sr1.7Co2Fe12O22 single crystals with heliconical magnetism

    NASA Astrophysics Data System (ADS)

    Yan, Li-Qin; Chun, Sae Hwan; Sun, Young; Shin, Kwang Woo; Jeon, Byung-Gu; Shen, Shi Peng; Kim, Kee Hoon

    2013-06-01

    The magnetocaloric effect (MCE) associated with the spin transitions of alternating longitudinal conical (ALC)-mixed conical (MC) and MC-ferrimagnetic (FIM) states in a Ba0.3Sr1.7Co2Fe12O22 single crystal has been investigated. For magnetic field directions applied along either the [120] or [001] directions, the crystal is found to exhibit the conventional and inverse MCE near the ALC-MC (TN1 = 235 K) and MC-FIM (TN2 = 348 K) states, respectively. The dependence of the magnetic entropy on the magnetic field also exhibits such sign change behaviors in the MCE, which is attributed to the magnetic field induced gradual collapse of heliconical magnetic order.

  3. Influence of a weak magnetic field on microplasticity of silicon crystals

    NASA Astrophysics Data System (ADS)

    Makara, V. A.; Steblenko, L. P.; Plyushchai, I. V.; Kurylyuk, A. N.; Kalinichenko, D. V.; Krit, A. N.; Naumenko, S. N.

    2014-08-01

    The possibility of magnetic ordering at dangling bonds in dislocation cores has been investigated theoretically. It has been experimentally shown that magnetic ordering in dislocations affects the spin-dependent effects occurring in dislocation crystals of silicon. It has been found that preliminary magnetic treatment of silicon crystals in a weak magnetic field leads to the suppression of the electroplastic effect induced in silicon crystals excited by an electric current. It has been assumed that a change in the microplasticity under the combined action of a magnetic field and an electric current is caused by a weakening of spin-dependent recombination at dislocation dangling bonds.

  4. Pendellösung effect in photonic crystals

    NASA Astrophysics Data System (ADS)

    Savo, S.; di Gennaro, E.; Miletto, C.; Andreone, A.; Dardano, P.; Moretti, L.; Mocella, V.

    2008-06-01

    At the exit surface of a photonic crystal, the intensity of the diffracted wave can be periodically modulated, showing a maximum in the "positive" (forward diffracted) or in the "negative" (diffracted) direction, depending on the slab thickness. This thickness dependence is a direct result of the so-called Pendellosung phenomenon, consisting of the periodic exchange inside the crystal of the energy between direct and diffracted beams. We report the experimental observation of this effect in the microwave region at about 14 GHz by irradiating 2D photonic crystal slabs of different thickness and detecting the intensity distribution of the electromagnetic field at the exit surface and inside the crystal itself.

  5. Effects of impurities on crystal growth in fructose crystallization

    NASA Astrophysics Data System (ADS)

    Chu, Y. D.; Shiau, L. D.; Berglund, K. A.

    1989-10-01

    The influence of impurities on the crystallization of anhydrous fructose from aqueous solution was studied. The growth kinetics of fructose crystals in the fructose-water-glucose and fructose-water-difructose dianhydrides systems were investigated using photomicroscopic contact nucleation techniques. Glucose is the major impurity likely to be present in fructose syrup formed during corn wet milling, while several difructose dianhydrides are formed in situ under crystallization conditions and have been proposed as a cause in the decrease of overall yields. Both sets of impurities were found to cause inhibition of crystal growth, but the mechanisms responsible in each case are different. It was found that the presence of glucose increases the solubility of fructose in water and thus lowers the supersaturation of the solution. This is probably the main effect responsible for the decrease of crystal growth. Since the molecular structures of difructose dianhydrides are similar to that of fructose, they are probably "tailor-made" impurities. The decrease of crystal growth is probably caused by the incorporation of these impurities into or adsorption to the crystal surface which would accept fructose molecules in the orientation that existed in the difructose dianhydride.

  6. Quantized topological Hall effect in skyrmion crystal

    NASA Astrophysics Data System (ADS)

    Hamamoto, Keita; Ezawa, Motohiko; Nagaosa, Naoto

    2015-09-01

    We theoretically study the quantized topological Hall effect (QTHE) in skyrmion crystal (SkX) without external magnetic field. The emergent magnetic field in SkX could be gigantic, as much as 4000 T , when its lattice constant is 1 nm . The band structure is not flat but has a finite gap in the low electron-density regime. We also study the conditions to realize the QTHE for the skyrmion size, carrier density, disorder strength, and temperature. Comparing the SkX and the system under the corresponding uniform magnetic field, the former is more fragile against the temperature compared with the latter since the gap is reduced by a factor of 1/5, while they are almost equally robust against the disorder. Therefore, it is expected that the QTHE of the SkX system is realized even with strong disorder at room temperature when the electron density is of the order of 1 per skyrmion.

  7. Electric-field-tuned color in photonic crystal elastomers

    NASA Astrophysics Data System (ADS)

    Zhao, Qibin; Haines, Andrew; Snoswell, David; Keplinger, Christoph; Kaltseis, Rainer; Bauer, Siegfried; Graz, Ingrid; Denk, Richard; Spahn, Peter; Hellmann, Goetz; Baumberg, Jeremy J.

    2012-03-01

    Electrically tuned photonic crystals are produced by applying fields across shear-assembled elastomeric polymer opal thin films. At increasing voltages, the polymer opal films stretch biaxially under Maxwell stress, deforming the nanostructure and producing marked color changes. This quadratic electro-optic tuning of the photonic bandgap is repeatable over many cycles, switches within 100 ms, and bridges the gap between electro-active materials and photonic crystals.

  8. Enhancing the volume and the optical quality of hen egg-white lysozyme crystals by coupling the salt concentration gradient crystallization method with a magnetic field

    PubMed Central

    Magay, Elena; Cho, Sang Jin; Kim, Shin Ae

    2012-01-01

    The effect of coupling the salt concentration gradient crystallization method with the use of the paramagnetic salt MnCl2 and a magnetic field is reported. The use of a simple magnetic device is proposed to have a significant effect on hen egg-white lysozyme crystal growth. Large single crystals greater than 10 mm3 in volume with optical perfection were consistently obtained in this study. PMID:22997475

  9. Dual-field imaging polarimeter using liquid crystal variable retarders.

    PubMed

    Pust, Nathan J; Shaw, Joseph A

    2006-08-01

    An imaging Stokes-vector polarimeter using liquid crystal variable retarders (LCVRs) has been built and calibrated. Operating in five bands from 450 to 700 nm, the polarimeter can be changed quickly between narrow (12 degrees ) and wide (approximately 160 degrees) fields of view. The instrument is designed for studying the effects of differing sky polarization upon the measured polarization of ground-based objects. LCVRs exhibit variations in retardance with ray incidence angle and ray position in the aperture. Therefore LCVR-based Stokes polarimeters exhibit unique calibration challenges not found in other systems. Careful design and calibration of the instrument has achieved errors within +/-1.5%. Clear-sky measurements agree well with previously published data and cloudy data provide opportunities to explore spatial and spectral variations in sky polarization. PMID:16855645

  10. Control of active liquid crystals with a magnetic field.

    PubMed

    Guillamat, Pau; Ignés-Mullol, Jordi; Sagués, Francesc

    2016-05-17

    Living cells sense the mechanical features of their environment and adapt to it by actively remodeling their peripheral network of filamentary proteins, known as cortical cytoskeleton. By mimicking this principle, we demonstrate an effective control strategy for a microtubule-based active nematic in contact with a hydrophobic thermotropic liquid crystal. By using well-established protocols for the orientation of liquid crystals with a uniform magnetic field, and through the mediation of anisotropic shear stresses, the active nematic reversibly self-assembles with aligned flows and textures that feature orientational order at the millimeter scale. The turbulent flow, characteristic of active nematics, is in this way regularized into a laminar flow with periodic velocity oscillations. Once patterned, the microtubule assembly reveals its intrinsic length and time scales, which we correlate with the activity of motor proteins, as predicted by existing theories of active nematics. The demonstrated commanding strategy should be compatible with other viable active biomaterials at interfaces, and we envision its use to probe the mechanics of the intracellular matrix.

  11. Magnetic Field Applications in Semiconductor Crystal Growth and Metallurgy

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan; Grugel, Richard; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The Traveling Magnetic Field (TMF) technique, recently proposed to control meridional flow in electrically conducting melts, is reviewed. In particular, the natural convection damping capability of this technique has been numerically demonstrated with the implication of significantly improving crystal quality. Advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, are discussed. Finally, results of experiments with mixing metallic alloys in long ampoules using TMF is presented

  12. Modeling nuclear volume isotope effects in crystals.

    PubMed

    Schauble, Edwin A

    2013-10-29

    Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac-Hartree-Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor-crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from (119)Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium.

  13. Modeling nuclear volume isotope effects in crystals

    PubMed Central

    Schauble, Edwin A.

    2013-01-01

    Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac–Hartree–Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor–crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from 119Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium

  14. Modeling nuclear volume isotope effects in crystals

    NASA Astrophysics Data System (ADS)

    Schauble, Edwin A.

    2013-10-01

    Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac-Hartree-Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor-crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from 119Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium.

  15. Shells of crystal field symmetries evidenced in oxide nano-crystals.

    PubMed

    Masenelli, B; Ledoux, G; Amans, D; Dujardin, C; Mélinon, P

    2012-08-01

    By the use of a point charge model based on the Judd-Ofelt transition theory, the luminescence from Eu(3+) ions embedded in Gd(2)O(3) clusters is calculated and compared to the experimental data. The main result of the numerical study is that without invoking any other mechanisms such as crystal disorder, the pure geometrical argument of the symmetry breaking induced by the particle surface has an influence on the energy level splitting. The modifications are also predicted to be observable in realistic conditions where unavoidable size dispersion has to be taken into account. The emission spectrum results from the contribution of three distinct regions; a cluster core, a cluster shell and the very surface, the latter being almost completely quenched in realistic conditions. Eventually, by detailing the spectra of the ions embedded at different positions in the cluster we get an estimate of about 0.5 nm for the extent of the crystal field induced Stark effect. Due to the similarity between Y (2)O(3) and Gd(2)O(3), these results also apply to Eu(3+) doped Y(2)O(3) nanoparticles.

  16. Rashba coupling amplification by a staggered crystal field

    PubMed Central

    Santos-Cottin, David; Casula, Michele; Lantz, Gabriel; Klein, Yannick; Petaccia, Luca; Le Fèvre, Patrick; Bertran, François; Papalazarou, Evangelos; Marsi, Marino; Gauzzi, Andrea

    2016-01-01

    There has been increasing interest in materials where relativistic effects induce non-trivial electronic states with promise for spintronics applications. One example is the splitting of bands with opposite spin chirality produced by the Rashba spin-orbit coupling in asymmetric potentials. Sizable splittings have been hitherto obtained using either heavy elements, where this coupling is intrinsically strong, or large surface electric fields. Here by means of angular resolved photoemission spectroscopy and first-principles calculations, we give evidence of a large Rashba coupling of 0.25 eV Å, leading to a remarkable band splitting up to 0.15 eV with hidden spin-chiral polarization in centrosymmetric BaNiS2. This is explained by a huge staggered crystal field of 1.4 V Å−1, produced by a gliding plane symmetry, that breaks inversion symmetry at the Ni site. This unexpected result in the absence of heavy elements demonstrates an effective mechanism of Rashba coupling amplification that may foster spin-orbit band engineering. PMID:27089869

  17. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-01-01

    positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. Once the basic understanding is obtained, the study will focus on testing the hypothesis on proteins of pyruvate dehydrogenase complex (PDC), proteins E1 and E3. Obtaining high crystal quality of these proteins is of great importance to structural biologists since their structures need to be determined. Specific goals for the investigation are: 1. To develop an understanding of convection control in diamagnetic fluids with concentration gradients through experimentation and numerical modeling. Specifically solutal buoyancy driven convection due to crystal growth will be considered. 2. To develop predictive measures for successful crystallization in a magnetic field using analyses and numerical modeling for use in future protein crystal growth experiments. This will establish criteria that can be used to estimate the efficacy of magnetic field flow damping on crystallization of candidate proteins. 3. To demonstrate the understanding of convection damping by high magnetic fields to a class of proteins that is of interest and whose structure is as yet not determined. 4. To compare quantitatively, the quality of the grown crystals with and without a magnetic field. X-ray diffraction techniques will be used for the comparative studies. In a preliminary set of experiments, we studied crystal dissolution effects in a 5 Tesla magnet available at NASA Marshall Space Flight Center (MSFC). Using a Schlieren setup, a 1mm crystal of Alum (Aluminum-Potassium Sulfate) was introduced in a 75% saturated solution and the resulting dissolution plume was observed

  18. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Schweizer, M.; Cobb, S. D.; Walker, J. S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). The RMF has a marked affect on the interface shape, changing it from concave to nearly flat. The onset of time-dependent flow instabilities occurs when the critical magnetic Taylor number is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The critical magnetic Taylor number is a sensitive function of the aspect ratio and, as the crystal grows under a constant applied magnetic field, the induced striations change from nonperiodic to periodic, undergo a period-doubling transition, and then cease to exist. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.

  19. Tailor-made force fields for crystal-structure prediction.

    PubMed

    Neumann, Marcus A

    2008-08-14

    A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom.

  20. Tailor-made force fields for crystal-structure prediction.

    PubMed

    Neumann, Marcus A

    2008-08-14

    A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom. PMID:18642947

  1. X-ray and magnetic-field-enhanced change in physical characteristics of silicon crystals

    NASA Astrophysics Data System (ADS)

    Makara, V. A.; Steblenko, L. P.; Krit, A. N.; Kalinichenko, D. V.; Kurylyuk, A. N.; Naumenko, S. N.

    2012-07-01

    The effect of low-energy ( W = 8 keV) low-dose ((0.3-7.3) × 102 Gy) radiation and a dc magnetic field ( B = 0.17 T) on structural, micromechanical, and microplastic characteristics of silicon crystals has been studied. The features in the dynamic behavior of dislocations in silicon crystals, which manifest themselves upon only X-ray exposure and combined (X-ray and magnetic) exposure, have been revealed.

  2. Effects of trace elements on the crystal field parameters of Nd ions at the surface of Nd{sub 2}Fe{sub 14}B grains

    SciTech Connect

    Toga, Yuta; Suzuki, Tsuneaki; Sakuma, Akimasa

    2015-06-14

    Using first-principles calculations, we investigate the positional dependence of trace elements such as O and Cu on the crystal field parameter A{sub 2}{sup 0}, proportional to the magnetic anisotropy constant K{sub u} of Nd ions placed at the surface of Nd{sub 2}Fe{sub 14}B grains. The results suggest the possibility that the A{sub 2}{sup 0} parameter of Nd ions at the (001) surface of Nd{sub 2}Fe{sub 14}B grains exhibits a negative value when the O or Cu atom is located near the surface, closer than its equilibrium position. At the (110) surface, however, O atoms located at the equilibrium position provide a negative A{sub 2}{sup 0}, while for Cu additions A{sub 2}{sup 0} remains positive regardless of Cu's position. Thus, Cu atoms are expected to maintain a positive local K{sub u} of surface Nd ions more frequently than O atoms when they approach the grain surfaces in the Nd-Fe-B grains.

  3. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field.

    PubMed

    García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M; Geday, Morten A

    2016-01-01

    Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules.

  4. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field.

    PubMed

    García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M; Geday, Morten A

    2016-01-01

    Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules. PMID:27547599

  5. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field

    PubMed Central

    García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M

    2016-01-01

    Summary Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules. PMID:27547599

  6. Far-field coupling in nanobeam photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Rousseau, Ian; Sánchez-Arribas, Irene; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas

    2016-05-01

    We optimized the far-field emission pattern of one-dimensional photonic crystal nanobeams by modulating the nanobeam width, forming a sidewall Bragg cross-grating far-field coupler. By setting the period of the cross-grating to twice the photonic crystal period, we showed using three-dimensional finite-difference time-domain simulations that the intensity extracted to the far-field could be improved by more than three orders of magnitude compared to the unmodified ideal cavity geometry. We then experimentally studied the evolution of the quality factor and far-field intensity as a function of cross-grating coupler amplitude. High quality factor (>4000) blue (λ = 455 nm) nanobeam photonic crystals were fabricated out of GaN thin films on silicon incorporating a single InGaN quantum well gain medium. Micro-photoluminescence spectroscopy of sets of twelve identical nanobeams revealed a nine-fold average increase in integrated far-field emission intensity and no change in average quality factor for the optimized structure compared to the unmodulated reference. These results are useful for research environments and future nanophotonic light-emitting applications where vertical in- and out-coupling of light to nanocavities is required.

  7. An ambipolar organic field-effect transistor based on an AIE-active single crystal with a high mobility level of 2.0 cm(2) V(-1) s(-1).

    PubMed

    Deng, Jian; Xu, Yuanxiang; Liu, Liqun; Feng, Cunfang; Tang, Jia; Gao, Yu; Wang, Yan; Yang, Bing; Lu, Ping; Yang, Wensheng; Ma, Yuguang

    2016-02-01

    Organic field-effect transistors (OFETs) based on an aggregation-induced emission (AIE) material were fabricated using a calcium-gold asymmetric electrode system. The devices showed very high and balanced mobility, reaching 2.50 and 2.10 cm(2) V(-1) s(-1), respectively, for electron and hole. Strong green electroluminescence from the single-crystal side edge was observed from all the devices. This work demonstrates that AIE active materials could not only achieve high luminescence, but also be used in light emitting transistors and achieve very high mobility. PMID:26730680

  8. Effects of Gravity on ZBLAN Glass Crystallization

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Ethridge, Edwin C.; Smith, Guy A.; Workman, Gary

    2004-01-01

    The effects of gravity on the crystallization of ZrF(4)-BaF(2)-LaF(3)-AlF(3)-NaF glasses have been studied using the NASA KC-135 and a sounding rocket. Fibers and cylinders of ZBLAN glass were heated to the crystallization temperature in unit and reduced gravity. When processed in unit gravity the glass crystallized, but when processed in reduced gravity, crystallization was suppressed. A possible explanation involving shear thinning is presented to explain these results.

  9. Effects of Gravity on ZBLAN Glass Crystallization

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Ethridge, Edwin C.; Smith, G. A.; Workman, G.

    2003-01-01

    The effects of gravity on the crystallization of ZrF4-BaF2-LaF3-AlF3- NaF glasses have been studied utilizing NASA's KC135 and a sounding rocket, Fibers and cylinders of ZBLAN glass were heated to the crystallization temperature in unit and reduced gravity. When processed in unit gravity the glass crystallized, but when processed in reduced gravity, crystallization was suppressed. A possible explanation involving shear thinning is presented to explain these results.

  10. Transient current electric field profiling of single crystal CVD diamond

    NASA Astrophysics Data System (ADS)

    Isberg, J.; Gabrysch, M.; Tajani, A.; Twitchen, D. J.

    2006-08-01

    The transient current technique (TCT) has been adapted for profiling of the electric field distribution in intrinsic single crystal CVD diamond. It was found that successive hole transits do not appreciably affect the electric field distribution within the sample. Transits of holes can therefore be used to probe the electric field distribution and also the distribution of trapped charge. Electron transits, on the other hand, cause an accumulation of negative charge in the sample. Illumination with blue or green light was shown to lead to accumulation of positive charge. Low concentrations of trapped charge can be detected in diamond using TCT, corresponding to an ionized impurity concentration below N = 1010 cm-3.

  11. A phase-field model coupled with lattice kinetics solver for modeling crystal growth in furnaces

    SciTech Connect

    Lin, Guang; Bao, Jie; Xu, Zhijie; Tartakovsky, Alexandre M.; Henager, Charles H.

    2014-02-02

    In this study, we present a new numerical model for crystal growth in a vertical solidification system. This model takes into account the buoyancy induced convective flow and its effect on the crystal growth process. The evolution of the crystal growth interface is simulated using the phase-field method. Two novel phase-field models are developed to model the crystal growth interface in vertical gradient furnaces with two temperature profile setups: 1) fixed wall temperature profile setup and 2) time-dependent temperature profile setup. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. This model is used to investigate the effect of furnace operational conditions on crystal growth interface profiles and growth velocities. For a simple case of macroscopic radial growth, the phase-field model is validated against an analytical solution. Crystal growth in vertical gradient furnaces with two temperature profile setups have been also investigated using the developed model. The numerical simulations reveal that for a certain set of temperature boundary conditions, the heat transport in the melt near the phase interface is diffusion dominant and advection is suppressed.

  12. Fringing field suppression for liquid crystal gratings using equivalent capacitance configuration

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Xia, Jun; Zhang, Xiaobing; Xie, Yi; Kang, Mingwu; Zhang, Qiuzhi

    2014-10-01

    A liquid crystal grating with high spatial frequency and equivalent capacitance configuration is proposed, where two layers of periodical ground electrodes are interlaced and aligned with the addressing electrodes. The equivalent capacitance configuration can reduce the fringing field effect efficiently owing to the generated electric field resisting the fringing field and redistributing the equivalent voltage exerting on the liquid crystal layer. The phase modulation depth and far-field diffraction patterns both for conventional and novel configurations were simulated. The results show that phase modulation is greatly enhanced and the maximum diffraction efficiency for a sinusoidal phase grating is 33.86%, which indicates that the equivalent capacitance configuration provides a good solution for suppressing the fringing field effect.

  13. Self-Aligned Growth of Organic Semiconductor Single Crystals by Electric Field.

    PubMed

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2016-01-19

    We proposed a novel but facile method for growing organic semiconductor single-crystals via solvent vapor annealing (SVA) under electric field. In the conventional SVA growth process, nuclei of crystals appeared anywhere on the substrate and their crystallographic axes were randomly distributed. We applied electric field during the SVA growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) on the SiO2/Si substrate on which a pair of electrodes had been deposited beforehand. Real-time observation of the SVA process revealed that rodlike single crystals grew with their long axes parallel to the electric field and bridged the prepatterned electrodes. As a result, C8-BTBT crystals automatically formed a field effect transistor (FET) structure and the mobility reached 1.9 cm(2)/(V s). Electric-field-assisted SVA proved a promising method for constructing high-mobility single-crystal FETs at the desired position by a low-cost solution process.

  14. Self-Aligned Growth of Organic Semiconductor Single Crystals by Electric Field.

    PubMed

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2016-01-19

    We proposed a novel but facile method for growing organic semiconductor single-crystals via solvent vapor annealing (SVA) under electric field. In the conventional SVA growth process, nuclei of crystals appeared anywhere on the substrate and their crystallographic axes were randomly distributed. We applied electric field during the SVA growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) on the SiO2/Si substrate on which a pair of electrodes had been deposited beforehand. Real-time observation of the SVA process revealed that rodlike single crystals grew with their long axes parallel to the electric field and bridged the prepatterned electrodes. As a result, C8-BTBT crystals automatically formed a field effect transistor (FET) structure and the mobility reached 1.9 cm(2)/(V s). Electric-field-assisted SVA proved a promising method for constructing high-mobility single-crystal FETs at the desired position by a low-cost solution process. PMID:26695105

  15. Anisotropic local modification of crystal field levels in Pr-based pyrochlores: a muon-induced effect modeled using density functional theory.

    PubMed

    Foronda, F R; Lang, F; Möller, J S; Lancaster, T; Boothroyd, A T; Pratt, F L; Giblin, S R; Prabhakaran, D; Blundell, S J

    2015-01-01

    Although muon spin relaxation is commonly used to probe local magnetic order, spin freezing, and spin dynamics, we identify an experimental situation in which the measured response is dominated by an effect resulting from the muon-induced local distortion rather than the intrinsic behavior of the host compound. We demonstrate this effect in some quantum spin ice candidate materials Pr(2)B(2)O(7) (B=Sn, Zr, Hf), where we detect a static distribution of magnetic moments that appears to grow on cooling. Using density functional theory we show how this effect can be explained via a hyperfine enhancement arising from a splitting of the non-Kramers doublet ground states on Pr ions close to the muon, which itself causes a highly anisotropic distortion field. We provide a quantitative relationship between this effect and the measured temperature dependence of the muon relaxation and discuss the relevance of these observations to muon experiments in other magnetic materials.

  16. Low-frequency electromagnetic field in a Wigner crystal

    SciTech Connect

    Stupka, Anton

    2013-03-15

    Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.

  17. Influence of electromagnetic field intensity on the metastable zone width of CaCO3 crystallization in circulating water

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Liang, Yandong; Chen, Si

    2016-09-01

    In this study, changes in the metastable zone width of CaCO3 crystallization was determined through conductivity titration by altering electromagnetic field parameters applied to the circulating water system. The critical conductivity value and metastable zone curves of CaCO3 crystallization were determined under different solution concentrations and electromagnetic field intensities. Experimental results indicate that the effect of the electromagnetic field intensity on the critical conductivity value intensifies with the increase of solution concentration. Moreover, the metastable zone width of CaCO3 crystallization increases with the increase of electromagnetic field intensity within 200 Gs, thereby prolonging the induction period of nucleation.

  18. Field-induced phase transitions in chiral smectic liquid crystals studied by the constant current method

    NASA Astrophysics Data System (ADS)

    H, Dhaouadi; R, Zgueb; O, Riahi; F, Trabelsi; T, Othman

    2016-05-01

    In ferroelectric liquid crystals, phase transitions can be induced by an electric field. The current constant method allows these transition to be quickly localized and thus the (E,T) phase diagram of the studied product can be obtained. In this work, we make a slight modification to the measurement principles based on this method. This modification allows the characteristic parameters of ferroelectric liquid crystal to be quantitatively measured. The use of a current square signal highlights a phenomenon of ferroelectric hysteresis with remnant polarization at null field, which points out an effect of memory in this compound.

  19. Crystal field parameters and energy levels scheme of trivalent chromium doped BSO

    SciTech Connect

    Petkova, P.; Andreici, E.-L.; Avram, N. M.

    2014-11-24

    The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.

  20. Phase-field-crystal model for fcc ordering.

    PubMed

    Wu, Kuo-An; Adland, Ari; Karma, Alain

    2010-06-01

    We develop and analyze a two-mode phase-field-crystal model to describe fcc ordering. The model is formulated by coupling two different sets of crystal density waves corresponding to <111> and <200> reciprocal lattice vectors, which are chosen to form triads so as to produce a simple free-energy landscape with coexistence of crystal and liquid phases. The feasibility of the approach is demonstrated with numerical examples of polycrystalline and (111) twin growth. We use a two-mode amplitude expansion to characterize analytically the free-energy landscape of the model, identifying parameter ranges where fcc is stable or metastable with respect to bcc. In addition, we derive analytical expressions for the elastic constants for both fcc and bcc. Those expressions show that a nonvanishing amplitude of [200] density waves is essential to obtain mechanically stable fcc crystals with a nonvanishing tetragonal shear modulus (C11-C12)/2. We determine the model parameters for specific materials by fitting the peak liquid structure factor properties and solid-density wave amplitudes following the approach developed for bcc [K.-A. Wu and A. Karma, Phys. Rev. B 76, 184107 (2007)]. This procedure yields reasonable predictions of elastic constants for both bcc Fe and fcc Ni using input parameters from molecular dynamics simulations. The application of the model to two-dimensional square lattices is also briefly examined.

  1. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics

    PubMed Central

    Pyzer-Knapp, Edward O.; Thompson, Hugh P. G.; Day, Graeme M.

    2016-01-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370

  2. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics.

    PubMed

    Pyzer-Knapp, Edward O; Thompson, Hugh P G; Day, Graeme M

    2016-08-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370

  3. Long-range orientational order, local-field anisotropy, and mean molecular polarizability in liquid crystals

    SciTech Connect

    Aver'yanov, E. M.

    2009-01-15

    The problems on the relation of the mean effective molecular polarizability {gamma}-bar to the long-range orientational order of molecules (the optical anisotropy of the medium) in uniaxial and biaxial liquid crystals, the local anisotropy on mesoscopic scales, and the anisotropy of the Lorentz tensor L and the local-field tensor f are formulated and solved. It is demonstrated that the presence of the long-range orientational order of molecules in liquid crystals imposes limitations from below on the molecular polarizability {gamma}-bar, which differs for uniaxial and biaxial liquid crystals. The relation between the local anisotropy and the molecular polarizability {gamma}-bar is investigated for calamitic and discotic uniaxial liquid crystals consisting of lath- and disk-shaped molecules. These liquid crystals with identical macroscopic symmetry differ in the local anisotropy and the relationships between the components L{sub parallel} < L{sub perpendicular} , f{sub parallel} < f{sub perpendicular} (calamitic) and L{sub parallel} > L{sub perpendicular} , f{sub parallel} > f{sub perpendicular} (discotic) for an electric field oriented parallel and perpendicular to the director. The limitations from below and above on the molecular polarizability {gamma}-bar due to the anisotropy of the tensors L and f are established for liquid crystals of both types. These limitations indicate that the molecular polarizability {gamma}-bar depends on the phase state and the temperature. The factors responsible for the nonphysical consequences of the local-field models based on the approximation {gamma}-bar = const are revealed. The theoretical inferences are confirmed by the experimental data for a number of calamitic nematic liquid crystals with different values of birefringence and the discotic liquid crystal Col{sub ho}.

  4. An unforeseen polymorph of coronene by the application of magnetic fields during crystal growth

    NASA Astrophysics Data System (ADS)

    Potticary, Jason; Terry, Lui R.; Bell, Christopher; Papanikolopoulos, Alexandros N.; Christianen, Peter C. M.; Engelkamp, Hans; Collins, Andrew M.; Fontanesi, Claudio; Kociok-Köhn, Gabriele; Crampin, Simon; da Como, Enrico; Hall, Simon R.

    2016-05-01

    The continued development of novel drugs, proteins, and advanced materials strongly rely on our ability to self-assemble molecules in solids with the most suitable structure (polymorph) in order to exhibit desired functionalities. The search for new polymorphs remains a scientific challenge, that is at the core of crystal engineering and there has been a lack of effective solutions to this problem. Here we show that by crystallizing the polyaromatic hydrocarbon coronene in the presence of a magnetic field, a polymorph is formed in a β-herringbone structure instead of the ubiquitous γ-herringbone structure, with a decrease of 35° in the herringbone nearest neighbour angle. The β-herringbone polymorph is stable, preserves its structure under ambient conditions and as a result of the altered molecular packing of the crystals, exhibits significant changes to the optical and mechanical properties of the crystal.

  5. An unforeseen polymorph of coronene by the application of magnetic fields during crystal growth

    PubMed Central

    Potticary, Jason; Terry, Lui R.; Bell, Christopher; Papanikolopoulos, Alexandros N.; Christianen, Peter C. M.; Engelkamp, Hans; Collins, Andrew M.; Fontanesi, Claudio; Kociok-Köhn, Gabriele; Crampin, Simon; Da Como, Enrico; Hall, Simon R.

    2016-01-01

    The continued development of novel drugs, proteins, and advanced materials strongly rely on our ability to self-assemble molecules in solids with the most suitable structure (polymorph) in order to exhibit desired functionalities. The search for new polymorphs remains a scientific challenge, that is at the core of crystal engineering and there has been a lack of effective solutions to this problem. Here we show that by crystallizing the polyaromatic hydrocarbon coronene in the presence of a magnetic field, a polymorph is formed in a β-herringbone structure instead of the ubiquitous γ-herringbone structure, with a decrease of 35° in the herringbone nearest neighbour angle. The β-herringbone polymorph is stable, preserves its structure under ambient conditions and as a result of the altered molecular packing of the crystals, exhibits significant changes to the optical and mechanical properties of the crystal. PMID:27161600

  6. Coherent infrared emission from myoglobin crystals: an electric field measurement.

    PubMed

    Groot, Marie-Louise; Vos, Marten H; Schlichting, Ilme; van Mourik, Frank; Joffre, Manuel; Lambry, Jean-Christophe; Martin, Jean-Louis

    2002-02-01

    We introduce coherent infrared emission interferometry as a chi(2) vibrational spectroscopy technique and apply it to studying the initial dynamics upon photoactivation of myoglobin (Mb). By impulsive excitation (using 11-fs pulses) of a Mb crystal, vibrations that couple to the optical excitation are set in motion coherently. Because of the order in the crystal lattice the coherent oscillations of the different proteins in the crystal that are associated with charge motions give rise to a macroscopic burst of directional multi-teraHertz radiation. This radiation can be detected in a phase-sensitive way by heterodyning with a broad-band reference field. In this way both amplitude and phase of the different vibrations can be obtained. We detected radiation in the 1,000-1,500 cm(-1) frequency region, which contains modes sensitive to the structure of the heme macrocycle, as well as peripheral protein modes. Both in carbonmonoxy-Mb and aquomet-Mb we observed emission from six modes, which were assigned to heme vibrations. The phase factors of the modes contributing to the protein electric field show a remarkable consistency, taking on values that indicate that the dipoles are created "emitting" at t = 0, as one would expect for impulsively activated modes. The few deviations from this behavior in Mb-CO we propose are the result of these modes being sensitive to the photodissociation process and severely disrupted by it.

  7. Convection effects in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Roberts, Glyn O.

    1988-01-01

    Protein crystals for X-ray diffraction study are usually grown resting on the bottom of a hanging drop of a saturated protein solution, with slow evaporation to the air in a small enclosed cell. The evaporation rate is controlled by hanging the drop above a reservoir of water, with its saturation vapor pressure decreased by a low concentration of a passive solute. The drop has a lower solute concentration, and its volume shrinks by evaporation until the molecular concentrations match. Protein crystals can also be grown from a seed crystal suspended or supported in the interior of a supersaturated solution. The main analysis of this report concerns this case because it is less complicated than hanging-drop growth. Convection effects have been suggested as the reason for the apparent cessation of growth at a certain rather small crystal size. It seeems that as the crystal grows, the number of dislocations increases to a point where further growth is hindered. Growth in the microgravity environment of an orbiting space vehicle has been proposed as a method for obtaining larger crystals. Experimental observations of convection effects during the growth of protein crystals have been reported.

  8. Surface mediated nonlinear optic effects in liquid crystals

    NASA Astrophysics Data System (ADS)

    Merlin, Jessica M.

    Liquid crystals have become a significant part of technology, mainly through their use in the display industry. This is due in part to the fact that the optical properties of liquid crystals are easily manipulated electronically. It has been recognized that the optical properties liquid crystals may also be controlled using light. Because of this, there are other various applications being explored for liquid crystals in photorefraction, optical limiting and switching, and in spatial light modulators. Although, the photorefractive effect was reported in liquid crystals over 10 years ago, there is still controversy over the exact mechanism for the reorientation of the liquid crystal director. This difficulty may be due in part to the fact that it is difficult to characterize the effect using photorefractive measurements and figures of merit. The optical and electronic control of liquid crystals will be studied here using a Friedericksz transition measurement in a twist cell geometry. This type of apparatus was chosen because it leads to a more direct demonstration of the surface effect. Namely, by studying changes in the Friedericksz transition threshold in a twist cell, a more direct observation of changes in the internal field may be observed. First a brief introduction to liquid crystals and their role in technology will be presented. This will be followed by a more rigorous discussion of the physics of liquid crystals and a review of the important literature. The experimental apparatus and the materials and cell geometry used will be described followed by the results of those measurements. Finally, the results will be considered in terms of a model involving interfacial charge and discussed in the context of previous work.

  9. Effect of Interaction of the Temperature Field and Supersaturation on the Morphology of the Solid-Vapor Interface in Crystal Growth by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Grasza, K.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    An in-situ study of the morphology of the solid-vapor interface during iodine crystal growth was done. The conditions for terrace growth, flat faces formation and retraction, competition between sources of steps, formation of protrusions, surface roughening, and defect overgrowth are demonstrated and discussed.

  10. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Szofran, F. R.; Cobb, S. D.; Schweizer, M.; Walker, J. S.

    2005-01-01

    A series of (100)-oriented gallium-doped germanium crystals has been grown by the vertical Bridgman method and under the influence of a rotating magnetic field (RMF). Time-dependent flow instabilities occur when the critical magnetic Taylor number (Tm(sup c)) is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. Tm(sup c) decreases as the aspect ratio of the melt increases, and approaches the theoretical limit expected for an infinite cylinder. Intentional interface demarcations are introduced by pulsing the RMF on and off The RMF has a marked affect on the interface shape, changing it from concave to nearly flat as the RMF strength is increased.

  11. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Walker, J. S.; Schweizer, M.; Cobb, S. D.; Szofran, F. R.

    2004-01-01

    A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). Time-dependent flow instabilities occur when the critical magnetic Taylor number (Tm(sup c) is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The experimental data indicate that Tm(sup c) increases as the aspect ratio of the melt decreases. Modeling calculations predicting Tm(sup c) as a function of aspect ratio are in reasonable agreement with the experimental data. The RMF has a marked affect on the interface shape, changing it from concave to nearly flat as the RMF strength is increased. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.

  12. The influence of a magnetic field on the microhardness of K, Rb, Cs, NH{sub 4}, and Tl acid phthalate crystals

    SciTech Connect

    Koldaeva, M. V. Turskaya, T. N.; Zakalyukin, R. M.; Darinskaya, E. V.

    2009-11-15

    The influence of a magnetic field on the microhardness of potassium acid phthalate has been studied for different magnetic inductions, exposure times, sample orientations in a magnetic field, and impurity compositions of the crystals. It was shown that the magnetic field effect is multiply repeated on the (010) face after relaxation. The influence of magnetic treatment on ammonium, rubidium, thallium, and cesium acid phthalate crystals is analyzed. The reasons for the observed changes in the crystal microhardness in the magnetic field are discussed.

  13. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-11-01

    positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. Once the basic understanding is obtained, the study will focus on testing the hypothesis on proteins of pyruvate dehydrogenase complex (PDC), proteins E1 and E3. Obtaining high crystal quality of these proteins is of great importance to structural biologists since their structures need to be determined. Specific goals for the investigation are: 1. To develop an understanding of convection control in diamagnetic fluids with concentration gradients through experimentation and numerical modeling. Specifically solutal buoyancy driven convection due to crystal growth will be considered. 2. To develop predictive measures for successful crystallization in a magnetic field using analyses and numerical modeling for use in future protein crystal growth experiments. This will establish criteria that can be used to estimate the efficacy of magnetic field flow damping on crystallization of candidate proteins. 3. To demonstrate the understanding of convection damping by high magnetic fields to a class of proteins that is of interest and whose structure is as yet not determined. 4. To compare quantitatively, the quality of the grown crystals with and without a magnetic field. X-ray diffraction techniques will be used for the comparative studies. In a preliminary set of experiments, we studied crystal dissolution effects in a 5 Tesla magnet available at NASA Marshall Space Flight Center (MSFC). Using a Schlieren setup, a 1mm crystal of Alum (Aluminum-Potassium Sulfate) was introduced in a 75% saturated solution and the resulting dissolution plume was observed

  14. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-01-01

    positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. Once the basic understanding is obtained, the study will focus on testing the hypothesis on proteins of pyruvate dehydrogenase complex (PDC), proteins E1 and E3. Obtaining high crystal quality of these proteins is of great importance to structural biologists since their structures need to be determined. Specific goals for the investigation are: 1. To develop an understanding of convection control in diamagnetic fluids with concentration gradients through experimentation and numerical modeling. Specifically solutal buoyancy driven convection due to crystal growth will be considered. 2. To develop predictive measures for successful crystallization in a magnetic field using analyses and numerical modeling for use in future protein crystal growth experiments. This will establish criteria that can be used to estimate the efficacy of magnetic field flow damping on crystallization of candidate proteins. 3. To demonstrate the understanding of convection damping by high magnetic fields to a class of proteins that is of interest and whose structure is as yet not determined. 4. To compare quantitatively, the quality of the grown crystals with and without a magnetic field. X-ray diffraction techniques will be used for the comparative studies. In a preliminary set of experiments, we studied crystal dissolution effects in a 5 Tesla magnet available at NASA Marshall Space Flight Center (MSFC). Using a Schlieren setup, a 1mm crystal of Alum (Aluminum-Potassium Sulfate) was introduced in a 75% saturated solution and the resulting dissolution plume was observed

  15. Electric-field-induced weakly chaotic transients in ferroelectric liquid crystals.

    PubMed

    Śliwa, I; Jeżewski, W; Kuczyński, W

    2016-01-01

    Nonlinear dynamics induced in surface stabilized ferroelectric liquid crystals by strong alternating external electric fields is studied both theoretically and experimentally. As has already been shown, molecular reorientations induced by sufficiently strong fields of high-enough frequencies can reveal a long transient behavior that has a weakly chaotic character. The resulting complex dynamics of ferroelectric liquid crystals can be considered not only as a consequence of irregular motions of particular molecules but also as a repercussion of a surface-enforced partial decorrelation of nonlinear molecular motions within smectic layers. To achieve more insight into the nature of this phenomenon and to show that the underlying complex field-induced behavior of smectic liquid crystals is not exceptional, ranges of system parameters for which the chaotic behavior occurs are determined. It is proved that there exists a large enough set of initial phase trajectory points, for which weakly chaotic long-time transitory phenomena occur, and, thereby, it is demonstrated that such a chaotic behavior can be regarded as being typical for strongly field-driven thin liquid crystal systems. Additionally, the influence of low-amplitude random noise on the duration of the transient processes is numerically studied. The strongly nonlinear contribution to the electro-optic response, experimentally determined for liquid crystal samples at frequencies lower than the actual field frequency, is also analyzed for long-time signal sequences. Using a statistical approach to distinguish numerically response signals of samples from noise generated by measuring devices, it is shown that the distribution of sample signals distinctly differs from the device noise. This evidently corroborates the occurrence of the nonlinear low-frequency effect, found earlier for different surface stabilized liquid crystal samples.

  16. Electric-field-induced weakly chaotic transients in ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Śliwa, I.; JeŻewski, W.; Kuczyński, W.

    2016-01-01

    Nonlinear dynamics induced in surface stabilized ferroelectric liquid crystals by strong alternating external electric fields is studied both theoretically and experimentally. As has already been shown, molecular reorientations induced by sufficiently strong fields of high-enough frequencies can reveal a long transient behavior that has a weakly chaotic character. The resulting complex dynamics of ferroelectric liquid crystals can be considered not only as a consequence of irregular motions of particular molecules but also as a repercussion of a surface-enforced partial decorrelation of nonlinear molecular motions within smectic layers. To achieve more insight into the nature of this phenomenon and to show that the underlying complex field-induced behavior of smectic liquid crystals is not exceptional, ranges of system parameters for which the chaotic behavior occurs are determined. It is proved that there exists a large enough set of initial phase trajectory points, for which weakly chaotic long-time transitory phenomena occur, and, thereby, it is demonstrated that such a chaotic behavior can be regarded as being typical for strongly field-driven thin liquid crystal systems. Additionally, the influence of low-amplitude random noise on the duration of the transient processes is numerically studied. The strongly nonlinear contribution to the electro-optic response, experimentally determined for liquid crystal samples at frequencies lower than the actual field frequency, is also analyzed for long-time signal sequences. Using a statistical approach to distinguish numerically response signals of samples from noise generated by measuring devices, it is shown that the distribution of sample signals distinctly differs from the device noise. This evidently corroborates the occurrence of the nonlinear low-frequency effect, found earlier for different surface stabilized liquid crystal samples.

  17. Low-Temperature Band Transport and Impact of Contact Resistance in Organic Field-Effect Transistors Based on Single-Crystal Films of Ph-BTBT-C10

    NASA Astrophysics Data System (ADS)

    Cho, Joung-min; Mori, Takehiko

    2016-06-01

    Transistors based on single-crystal films of 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) fabricated using the blade-coating method are investigated by the four-probe method down to low temperatures. The four-probe mobility is as large as 18 cm2/V s at room temperature, and increases to 45 cm2/V s at 80 K. At 60 K the two-probe mobility drops abruptly by about 50%, but the mobility drop is mostly attributed to the increase of the source resistance. The carrier transport in the present single-crystal film is regarded as essentially bandlike down to 30 K.

  18. Crystal Field Studies on MgGa2O4:Ni2+

    NASA Astrophysics Data System (ADS)

    Andreici, L.; Stanciu, M.; Avram, N. M.

    2010-08-01

    The energy levels scheme of octahedrally coordinated Ni2+ ion in single crystal, powder nano-single crystal, ceramics and glass-ceramics of MgGa2O4 host matrix, has been calculated in the exchange charge model of crystal field. The parameters of the crystal field acting on the Ni2+ ion are calculated from the crystal structure data, after optimization of the geometry of the system. The energy level schemes have been calculated by diagonalization of the crystal field Hamiltonian of this system. The obtained results were compared with experimental data; a good agreement were demonstrated, which confirm the validity of the model and used method.

  19. Subsurface Stress Fields in Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.

    2003-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and fatigue stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. Techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts are presented in this report. Figure 1 shows typical damper contact locations in a turbine blade. The subsurface stress results are used for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades.

  20. Phase-field-crystal methodology for modeling of structural transformations.

    PubMed

    Greenwood, Michael; Rottler, Jörg; Provatas, Nikolas

    2011-03-01

    We introduce and characterize free-energy functionals for modeling of solids with different crystallographic symmetries within the phase-field-crystal methodology. The excess free energy responsible for the emergence of periodic phases is inspired by classical density-functional theory, but uses only a minimal description for the modes of the direct correlation function to preserve computational efficiency. We provide a detailed prescription for controlling the crystal structure and introduce parameters for changing temperature and surface energies, so that phase transformations between body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal-close-packed (hcp), and simple-cubic (sc) lattices can be studied. To illustrate the versatility of our free-energy functional, we compute the phase diagram for fcc-bcc-liquid coexistence in the temperature-density plane. We also demonstrate that our model can be extended to include hcp symmetry by dynamically simulating hcp-liquid coexistence from a seeded crystal nucleus. We further quantify the dependence of the elastic constants on the model control parameters in two and three dimensions, showing how the degree of elastic anisotropy can be tuned from the shape of the direct correlation functions. PMID:21517507

  1. Polymer-dispersed liquid crystal displays: switching times effect

    NASA Astrophysics Data System (ADS)

    Mucha, Maria; Nastal-Grosicka, E.

    1998-02-01

    Electrooptical and switching properties of polyester resin/nematic liquid crystal composite films have been studied by varying composition, temperature and UV curing time of the matrix. The PDLC films were formed by LC separation in UV polymerization process of the thin layer of oligoester resin between ITO coated glass plates. The electrooptical and response behavior based on the electric field controlled light scattering of the composite films was recorded. The result were interpreted in terms of effective anchoring strength at the interface of polymer and liquid crystal.

  2. Crystal field excitations of YbMn2Si2

    NASA Astrophysics Data System (ADS)

    Mole, R. A.; Hofmann, M.; Adroja, D. T.; Moze, O.; Campbell, S. J.

    2013-12-01

    The crystal field excitations of the rare earth intermetallic compound YbMn2Si2 have been measured by inelastic neutron scattering over the temperature range 2.5-50 K. The YbMn2Si2 spectra exhibit three low energy excitations (~3-7 meV) in the antiferromagnetic AFil region above the magnetic phase transition at TN2 = 30(5) K. The crystal field parameters have been determined for YbMn2Si2 in the antiferromagnetic AFil region. A further two inelastic excitations (~9 meV, 17 meV) are observed below TN2=30(5) K, the temperature at which the high temperature antiferromagnetic structure is reported to exhibit doubling of the magnetic cell. Energy level diagrams have been determined for Yb3+ ions in the different sites above (single site) and below the magnetic transition temperature (two sites). The excitation energies for both sites are shown to be temperature independent with the temperature dependences of the transition intensities for the two sites described well by a simple Boltzmann model. The spectra below TN2 cannot be described fully in terms of molecular field models based on either a single Yb3+ site or two Yb3+ sites. This indicates that the magnetic behaviour of YbMn2Si2 is more complicated than previously considered. The inability to account fully for excitations below the magnetic phase transition may be due to an, as yet, unresolved structural transition associated with the magnetic transition.

  3. Effect of magnetic field applied along the a-axis on the thermal expansion and first-order transition temperature of single crystal Gd5(Si2Ge2)

    NASA Astrophysics Data System (ADS)

    Han, M. G.; Jiles, D. C.; Lee, S. J.; Paulsen, J. A.; Snyder, J. E.

    2002-03-01

    The giant magnetocaloric material Gd5(SixGe(1-x))4 is known among other things for its unusual first order simultaneous structural and magnetic transition from monoclinic/paramagnetic to orthorhombic/ferromagnetic over the composition range 0.24< x <0.5. Thermal expansion measurements were made on this material to study the effect of magnetic field on the first order transition using single crystal Gd5(Si2Ge2). A magnetic field was applied along the a-axis with strengths of H = 0 kOe, 10 kOe, 15 kOe, 20 kOe and 25 kOe. Thermal expansion was measured on both heating and cooling. On cooling, the transition temperatures were found to be 267K, 271.6K, 273K, 276K, 278.6K respectively. On heating, the transition temperatures shifted to 269K, 274K, 276K, 279K, 281.5K respectively, showing hysteresis in a first order transition. This hysteresis of 2-3K observed during the cooling and heating cycle, was confirmed by in-situ magnetic force microscopy (MFM). The magnetic field increased the transition temperature by 0.5 K per 1kOe for either cooling or heating. This means that application of a magnetic field can change the Curie temperature for this intriguing intermetallic compound. The key to enhancement of the Curie temperature lies in the suppression of one dimensional vibration of the Gd atoms in the lattice. For Gd in Gd5(Si2Ge2)lattice, the applied magnetic field energy is equal to the change in thermal energy that occurs for one dimensional vibration of the Gd atoms. The magnetic moment on the Gd atoms needed to account for this was calculated to be 7.44Bohr magneton, which compares very well to the established value 7.94Bohr magneton per isolated Gd ion.

  4. Bridging the terahertz near-field and far-field observations of liquid crystal based metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ge, Shijun; Chen, Zhaoxian; Hu, Wei; Lu, Yanqing

    2016-09-01

    Metamaterial-based absorbers play a significant role in applications ranging from energy harvesting and thermal emitters to sensors and imaging devices. The middle dielectric layer of conventional metamaterial absorbers has always been solid. Researchers could not detect the near field distribution in this layer or utilize it effectively. Here, we use anisotropic liquid crystal as the dielectric layer to realize electrically fast tunable terahertz metamaterial absorbers. We demonstrate strong, position-dependent terahertz near-field enhancement with sub-wavelength resolution inside the metamaterial absorber. We measure the terahertz far-field absorption as the driving voltage increases. By combining experimental results with liquid crystal simulations, we verify the near-field distribution in the middle layer indirectly and bridge the near-field and far-field observations. Our work opens new opportunities for creating high-performance, fast, tunable, terahertz metamaterial devices that can be applied in biological imaging and sensing. Project supported by the National Basic Research Program of China (Grant No. 2012CB921803), the National Natural Science Foundation of China (Grants Nos. 61225026, 61490714, 11304151, and 61435008), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20150845 and 15KJB140004), the Open Foundation Project of National Laboratory of Solid State Microstructures, China (Grant No. M28003), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China.

  5. Bridging the terahertz near-field and far-field observations of liquid crystal based metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ge, Shijun; Chen, Zhaoxian; Hu, Wei; Lu, Yanqing

    2016-09-01

    Metamaterial-based absorbers play a significant role in applications ranging from energy harvesting and thermal emitters to sensors and imaging devices. The middle dielectric layer of conventional metamaterial absorbers has always been solid. Researchers could not detect the near field distribution in this layer or utilize it effectively. Here, we use anisotropic liquid crystal as the dielectric layer to realize electrically fast tunable terahertz metamaterial absorbers. We demonstrate strong, position-dependent terahertz near-field enhancement with sub-wavelength resolution inside the metamaterial absorber. We measure the terahertz far-field absorption as the driving voltage increases. By combining experimental results with liquid crystal simulations, we verify the near-field distribution in the middle layer indirectly and bridge the near-field and far-field observations. Our work opens new opportunities for creating high-performance, fast, tunable, terahertz metamaterial devices that can be applied in biological imaging and sensing. Project supported by the National Basic Research Program of China (Grant No. 2012CB921803), the National Natural Science Foundation of China (Grants Nos. 61225026, 61490714, 11304151, and 61435008), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20150845 and 15KJB140004), the Open Foundation Project of National Laboratory of Solid State Microstructures, China (Grant No. M28003), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China.

  6. Phase-field-crystal model of phase and microstructural stability in driven nanocrystalline systems

    NASA Astrophysics Data System (ADS)

    Ofori-Opoku, Nana; Hoyt, Jeffrey J.; Provatas, Nikolas

    2012-12-01

    We present a phase-field-crystal model for driven systems which describes competing effects between thermally activated diffusional processes and those driven by externally imposed ballistic events. The model demonstrates how the mesoscopic Enrique and Bellon [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.84.2885 84, 2885 (2000)] model of externally induced ballistic mixing can be incorporated into the atomistic phase-field-crystal formalism. The combination of the two approaches results in a model capable of describing the microstructural and compositional evolution of a driven system while incorporating elastoplastic effects. The model is applied to the study of grain growth in nanocrystalline materials subjected to an external driving.

  7. Low magnification differential phase contrast imaging of electric fields in crystals with fine electron probes.

    PubMed

    Taplin, D J; Shibata, N; Weyland, M; Findlay, S D

    2016-10-01

    To correlate atomistic structure with longer range electric field distribution within materials, it is necessary to use atomically fine electron probes and specimens in on-axis orientation. However, electric field mapping via low magnification differential phase contrast imaging under these conditions raises challenges: electron scattering tends to reduce the beam deflection due to the electric field strength from what simple models predict, and other effects, most notably crystal mistilt, can lead to asymmetric intensity redistribution in the diffraction pattern which is difficult to distinguish from that produced by long range electric fields. Using electron scattering simulations, we explore the effects of such factors on the reliable interpretation and measurement of electric field distributions. In addition to these limitations of principle, some limitations of practice when seeking to perform such measurements using segmented detector systems are also discussed.

  8. Light scattering from liquid crystal director fluctuations in steady magnetic fields up to 25 tesla

    NASA Astrophysics Data System (ADS)

    Challa, Pavan K.; Curtiss, O.; Williams, J. C.; Twieg, R.; Toth, J.; McGill, S.; Jákli, A.; Gleeson, J. T.; Sprunt, S. N.

    2012-07-01

    We report on homodyne dynamic light scattering measurements of orientational fluctuation modes in both calamitic and bent-core nematic liquid crystals, carried out in the new split-helix resistive magnet at the National High Magnetic Field Laboratory. The relaxation rate and inverse scattered intensity of director fluctuations exhibit a linear dependence on field-squared up to 25 tesla, which is consistent with strictly lowest order coupling of the tensor order parameter Q to field (QαβBαBβ) in the nematic free energy. However, we also observe evidence of field dependence of certain nematic material parameters, an effect which may be expected from the mean field scaling of these quantities with the magnitude of Q and the predicted variation of Q with field.

  9. Light scattering from liquid crystal director fluctuations in steady magnetic fields up to 25 tesla.

    PubMed

    Challa, Pavan K; Curtiss, O; Williams, J C; Twieg, R; Toth, J; McGill, S; Jákli, A; Gleeson, J T; Sprunt, S N

    2012-07-01

    We report on homodyne dynamic light scattering measurements of orientational fluctuation modes in both calamitic and bent-core nematic liquid crystals, carried out in the new split-helix resistive magnet at the National High Magnetic Field Laboratory. The relaxation rate and inverse scattered intensity of director fluctuations exhibit a linear dependence on field-squared up to 25 tesla, which is consistent with strictly lowest order coupling of the tensor order parameter Q to field (Q(αβ)B(α)B(β)) in the nematic free energy. However, we also observe evidence of field dependence of certain nematic material parameters, an effect which may be expected from the mean field scaling of these quantities with the magnitude of Q and the predicted variation of Q with field. PMID:23005438

  10. Pinning features of the magnetic flux trapped by YBCO single crystals in weak constant magnetic fields

    NASA Astrophysics Data System (ADS)

    Monarkha, V. Yu.; Paschenko, V. A.; Timofeev, V. P.

    2013-02-01

    The dynamics of Abrikosov vortices and their bundles was experimentally investigated in weak constant magnetic fields, in the range of Earth's magnetic field. Characteristics of the isothermal magnetization relaxation in YBCO single-crystal samples with strong pinning centers were studied for different sample-field orientation. The obtained values of normalized relaxation rate S allowed us to estimate the effective pinning potential U in the bulk of the YBCO sample and its temperature dependence, as well as the critical current density Jc. A comparison between the data obtained and the results of similar measurements in significantly higher magnetic fields was performed. To compare different techniques for evaluation of Jc, the magnetization loop measurements M(H), which relate the loop width to the critical current, were carried out. These measurements provided important parameters of the samples under study (penetration field Hp and first critical field Hc1), which involve the geometrical configuration of the samples.

  11. Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color

    NASA Astrophysics Data System (ADS)

    Dellinger, Jean; Van Do, K.; Le Roux, Xavier; de Fornel, Frédérique; Cassan, Eric; Cluzel, Benoît

    2012-10-01

    Using a scanning near-field optical microscope operating with a hyperspectral detection scheme, we report the direct observation of the mirage effect within an on-chip integrated artificial material made of a two dimensional graded photonic crystal. The light rainbow due to the material dispersion is quantified experimentally and quantitatively compared to three dimensional plane wave assisted Hamiltonian optics predictions of light propagation.

  12. Reductive renormalization of the phase-field crystal equation.

    PubMed

    Oono, Y; Shiwa, Y

    2012-12-01

    It has been known for some time that singular perturbation and reductive perturbation can be unified from the renormalization-group theoretical point of view: Reductive extraction of space-time global behavior is the essence of singular perturbation methods. Reductive renormalization was proposed to make this unification practically accessible; actually, this reductive perturbation is far simpler than most reduction methods, such as the rather standard scaling expansion. However, a rather cryptic exposition of the method seems to have been the cause of some trouble. Here, an explicit demonstration of the consistency of the reductive renormalization-group procedure is given for partial differentiation equations (of a certain type, including time-evolution semigroup type equations). Then, the procedure is applied to the reduction of a phase-field crystal equation to illustrate the streamlined reduction method. We conjecture that if the original system is structurally stable, the reductive renormalization-group result and that of the original equation are diffeomorphic.

  13. Dependence of image flicker on dielectric anisotropy of liquid crystal in a fringe field switching liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Oh, Seung-Won; Baek, Jong-Min; Kim, Jung-Wook; Yoon, Tae-Hoon

    2016-09-01

    Two types of image flicker, which are caused by the flexoelectric effect of liquid crystals (LCs), are observed when a fringe-field switching (FFS) LC cell is driven by a low frequency electric field. Static image flicker, observed because of the transmittance difference between neighboring frames, has been reported previously. On the other hand, research on dynamic image flicker has been minimal until now. Dynamic image flicker is noticeable because of the brief transmittance drop when the sign of the applied voltage is reversed. We investigated the dependence of the image flicker in an FFS LC cell on dielectric anisotropy of the LCs in terms of both the static and dynamic flicker. Experimental results show that small dielectric anisotropy of the LC can help suppress not only the static but also dynamic flicker for positive LCs. We found that both the static and dynamic flicker in negative LCs is less evident than in positive LCs.

  14. Evaluation of the Linear and Second-Order NLO Properties of Molecular Crystals within the Local Field Theory: Electron Correlation Effects, Choice of XC Functional, ZPVA Contributions, and Impact of the Geometry in the Case of 2-Methyl-4-nitroaniline.

    PubMed

    Seidler, Tomasz; Stadnicka, Katarzyna; Champagne, Benoît

    2014-05-13

    The linear [χ((1))] and second-order nonlinear [χ((2))] optical susceptibilities of the 2-methyl-4-nitroaniline (MNA) crystal are calculated within the local field theory, which consists of first computing the molecular properties, accounting for the dressing effects of the surroundings, and then taking into account the local field effects. Several aspects of these calculations are tackled with the aim of monitoring the convergence of the χ((1)) and χ((2)) predictions with respect to experiment by accounting for the effects of (i) the dressing field within successive approximations, of (ii) the first-order ZPVA corrections, and of (iii) the geometry. With respect to the reference CCSD-based results, besides double hybrid functionals, the most reliable exchange-correlation functionals are LC-BLYP for the static χ((1)) and CAM-B3LYP (and M05-2X, to a lesser extent) for the dynamic χ((1)) but they strongly underestimate χ((2)). Double hybrids perform better for χ((2)) but not necessarily for χ((1)), and, moreover, their performances are much similar to MP2, which is known to slightly overestimate β, with respect to high-level coupled-clusters calculations and, therefore, χ((2)). Other XC functionals with less HF exchange perform poorly with overestimations/underestimations of χ((1))/χ((2)), whereas the HF method leads to underestimations of both. The first-order ZPVA corrections, estimated at the B3LYP level, are usually small but not negligible. Indeed, after ZPVA corrections, the molecular polarizabilities and first hyperpolarizabilities increase by 2% and 5%, respectively, whereas their impact is magnified on the macroscopic responses with enhancements of χ((1)) by up to 5% and of χ((2)) by as much as 10%-12% at λ = 1064 nm. The geometry plays also a key role in view of predicting accurate susceptibilities, particularly for push-pull π-conjugated compounds such as MNA. So, the geometry optimized using periodic boundary conditions is characterized

  15. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D.

    PubMed

    Tóth, Gyula I; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László

    2010-09-15

    We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model. PMID:21386517

  16. Critical behaviors of transverse crystal field and bimodal magnetic field mixed spin Ising model with bond dilution or bond percolation threshold

    NASA Astrophysics Data System (ADS)

    Xu, C. Q.; Yan, S. L.

    2016-10-01

    Within the effective field theory, we investigate critical behaviors of transverse crystal field and bimodal magnetic field mixed spin-1/2 and spin-1 Ising model with bond dilution or percolation threshold on a simple cubic lattice. A-type double tricritical points and zigzag reentrant phenomenon can be found at pure bond and large bimodal magnetic field status. The ordered phase is impaired sharply due to bond dilution. The positive transverse crystal field can induce ordered phase at ordinary bond percolation threshold. The bimodal magnetic field can suppress the induced ordered phase and form a series of closed ordered regions. An extraordinary bond percolation threshold is determined, at which the induced ordered phase vanishes completely. The different effects of bimodal magnetic field and bond percolation threshold on induced ordered phase are discussed.

  17. Novel Polymer Ferroelectric Behavior via Crystal Isomorphism and Nanoconfinement Effect

    NASA Astrophysics Data System (ADS)

    Zhu, Lei

    2014-03-01

    Despite comprehensive understanding of novel ferroelectric [i.e., relaxor ferroelectric (RFE) and antiferroelectric (AFE)] behaviors for ceramics, RFE and double hysteresis loop (DHL) behaviors have just emerged for ferroelectric crystalline polymers since the past 15 years. A number of applications such as electrostriction, electric energy storage, and electrocaloric cooling have been realized by utilizing these novel ferroelectric properties. However, the fundamental understanding is still lacking. In this invited talk, we intend to unravel the basic physics behind these novel ferroelectric behaviors via systematic studies of poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)]-based terpolymers and e-beam irradiated copolymers. It is found that both crystal internal structure and crystal-amorphous interaction are important for achieving the RFE and DHL behaviors. For the crystal internal structure effect, friction-free dipole switching and nanodomain formation by pinning the polymer chains are essential, and they can be achieved via the mechanism of crystal repeating unit isomorphism. Physical pinning [e.g., in P(VDF-TrFE)-based terpolymers] induces a reversible RFE <-->FE phase transition and thus the DHL behavior, whereas chemical pinning [e.g., in e-beam irradiated P(VDF-TrFE)] results in the RFE behavior. Finally, the crystal-amorphous interaction (or the nanoconfinement effect) results in a competition between the polarization and depolarization local fields. When the depolarization field becomes stronger than the polarization field, a DHL behavior can also be observed. Obviously, the physics is different from ceramics and can be largely attributed to the long chain nature of semicrystalline ferroelectric polymers. This understanding will help us design new ferroelectric polymers with improved electroactive properties and/or better applications. This work is supported by NSF DMR-0907580.

  18. Optical electric-field sensor based on angular optical bias using single β-BaB2O4 crystal.

    PubMed

    Li, Changsheng; Shen, Xiaoli; Zeng, Rong

    2013-11-01

    A novel optical electric-field sensor is proposed and demonstrated in experiment by use of a single beta barium borate (β-BaB2O4, BBO) crystal. The optical sensing unit is only composed of one BBO crystal and two polarizers. An optical phase bias of 0.5π is provided by using natural birefringence in the BBO crystal itself. A small angle (e.g., 0.6°) between the sensing light beam and principal axis of the crystal is required in order to produce the above optical bias. Thus the BBO crystal is used as the electric-field-sensing element and quarter waveplate. The ac electric field in the range of (1.4-703.2) kV/m has been measured with measurement sensitivity of 1.39 mV/(kV/m) and nonlinear error of 0.6%. Compared with lithium niobate crystal used as an electric-field sensor, main advantages of the BBO crystal include higher measurement sensitivity, compact configuration, and no ferroelectric ringing effect.

  19. Vacancy diffusion in colloidal crystals as determined by dynamical density-functional theory and the phase-field-crystal model.

    PubMed

    van Teeffelen, Sven; Achim, Cristian Vasile; Löwen, Hartmut

    2013-02-01

    A two-dimensional crystal of repulsive dipolar particles is studied in the vicinity of its melting transition by using Brownian dynamics computer simulation, dynamical density-functional theory, and phase-field-crystal modeling. A vacancy is created by taking out a particle from an equilibrated crystal, and the relaxation dynamics of the vacancy is followed by monitoring the time-dependent one-particle density. We find that the vacancy is quickly filled up by diffusive hopping of neighboring particles towards the vacancy center. We examine the temperature dependence of the diffusion constant and find that it decreases with decreasing temperature in the simulations. This trend is reproduced by the dynamical density-functional theory. Conversely, the phase-field-crystal calculations predict the opposite trend. Therefore, the phase-field model needs a temperature-dependent expression for the mobility to predict trends correctly.

  20. Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Palto, S. P.; Barnik, M. I.; Geivandov, A. R.; Kasyanova, I. V.; Palto, V. S.

    2015-09-01

    Transmission of planar layers of cholesteric liquid crystals is studied in pulsed electric fields perpendicular to the helix axis at normal incidence of both linearly polarized and unpolarized light. Spectral and light polarization properties of the primary photonic band and the field-induced bands up to fourth order of Bragg selective reflection are studied in detail. In our experiments we have achieved an electric field strength several times higher than the theoretical values corresponding to the critical field of full helix unwinding. However, the experiments show that despite the high strength of the electric field applied the helix does not unwind, but strongly deforms, keeping its initial spatial period. Strong helix deformation results in distinct spectral band splitting, as well as very high field-induced selective reflectance that can be applied in lasers and other optoelectronic devices. Peculiarities of inducing and splitting the bands are discussed in terms of the scattering coefficient approach. All observed effects are confirmed by numerical simulations. The simulations also show that liquid crystal surface anchoring is not the factor that prevents the helix unwinding. Thus, the currently acknowledged concept of continuous helix unwinding in the electric field should be reconsidered.

  1. Imprint electric field controlled electronic transport in TlGaSe2 crystals

    NASA Astrophysics Data System (ADS)

    Seyidov, MirHasan Yu; Suleymanov, Rauf A.; Balaban, Ertan; Şale, Yasin

    2013-09-01

    The effect of built-in electric field onto the dc electrical conductivity, photoconductivity, and electrical switching phenomenon were investigated in TlGaSe2 layered semiconductor within the temperature range of 77-300 K. We have used different types of electrodes for different TlGaSe2 samples in both parallel and perpendicular directions to the plane of layers. The effect of electric field was investigated by cooling the samples from the room temperature under the electric field and then removing it at ˜80 K. After the procedure, it was found that a built-in internal electric field which strongly affects transport properties appears in TlGaSe2 crystals. Substantial increasing of both dark currents and photo-conductivities were observed predominantly at low temperatures, where hopping was the main conductivity mechanism. The anomalous decrease of the activation energy in the low temperature region and the switching effect are also the main experimental findings of the present work. Such behavior can be understood by assuming that the built-in electric field greatly increases the contribution of the hopping conductivity at low temperatures. Obtained results are discussed on the basis of the models widely used for disordered semiconductors. It was shown that TlGaSe2 crystal demonstrates the peculiar behavior that is typical to such type of semiconductors.

  2. Glassy phases and driven response of the phase-field-crystal model with random pinning.

    PubMed

    Granato, E; Ramos, J A P; Achim, C V; Lehikoinen, J; Ying, S C; Ala-Nissila, T; Elder, K R

    2011-09-01

    We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes. PMID:22060323

  3. Glassy phases and driven response of the phase-field-crystal model with random pinning.

    PubMed

    Granato, E; Ramos, J A P; Achim, C V; Lehikoinen, J; Ying, S C; Ala-Nissila, T; Elder, K R

    2011-09-01

    We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes.

  4. Interfacial free energy adjustable phase field crystal model for homogeneous nucleation.

    PubMed

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Huang, Yunhao

    2016-05-18

    To describe the homogeneous nucleation process, an interfacial free energy adjustable phase-field crystal model (IPFC) was proposed by reconstructing the energy functional of the original phase field crystal (PFC) methodology. Compared with the original PFC model, the additional interface term in the IPFC model effectively can adjust the magnitude of the interfacial free energy, but does not affect the equilibrium phase diagram and the interfacial energy anisotropy. The IPFC model overcame the limitation that the interfacial free energy of the original PFC model is much less than the theoretical results. Using the IPFC model, we investigated some basic issues in homogeneous nucleation. From the viewpoint of simulation, we proceeded with an in situ observation of the process of cluster fluctuation and obtained quite similar snapshots to colloidal crystallization experiments. We also counted the size distribution of crystal-like clusters and the nucleation rate. Our simulations show that the size distribution is independent of the evolution time, and the nucleation rate remains constant after a period of relaxation, which are consistent with experimental observations. The linear relation between logarithmic nucleation rate and reciprocal driving force also conforms to the steady state nucleation theory.

  5. MCZ: Striations in CZ silicon crystals grown under various axial magnetic field strengths

    NASA Technical Reports Server (NTRS)

    Kim, G. K. M.

    1985-01-01

    Suppression of fluid flow instabilities in the melt by the axial magnetic field in Czochralski silicon crystal growth (AMCZ) is investigated precisely by a high-sensitivity striation etching in conjunction with temperature measurements. The magnetic strength (B) was varied up to 4.0 kG, incremented in 0.5 kG/5 cm crystal length. The convection flow was substantially suppressed at B 1.0 kG. A low oxygen level of 2-3 ppma and a high resistivity of 400 ohm-cm is achieved in the AMCZ silicon crystals at B 1.0 kG. Details of the striation formation as a function of B are presented. Computer simulation of the magnetohydrodynamics of the AMCZ silicon crystal growth are discussed briefly with regard to the solute, especially oxygen segregation at B=0, 1.0, and 2.0 kG. Earlier studies in the inverted Bridgman growth of InSb and Ge, which have established the cause and effect relationship between the convection in the melt and the striation formation as well as the suppression of the convections in the melt by transverse magnetic field are reviewed.

  6. Magnetic field-induced transitions in geometrically frustrated Co3V2O8 single crystal

    NASA Astrophysics Data System (ADS)

    Szymczak, R.; Baran, M.; Diduszko, R.; Fink-Finowicki, J.; Gutowska, M.; Szewczyk, A.; Szymczak, H.

    2006-03-01

    Magnetization and specific heat of the S=3/2 antiferromagnet on a kagome staircase, Co3V2O8 , were investigated as a function of temperature and magnetic field. The low temperature magnetization data revealed unusual features related to the strongly frustrated spin lattice. Of particular interest were magnetic field induced phase transitions observed for various orientations of the magnetic field. Abrupt macroscopic magnetization jumps induced by a magnetic field directed along the c -axis have been observed below 6K . This effect was also observed for a high enough magnetic field applied in the a-c plane. It is suggested that the jump, observed for H∥c is due to a spin reorientation phase transition. It was shown that Co3V2O8 crystals are characterized by a strong magnetocrystalline anisotropy of an easy-plane type. This anisotropy is due to the presence of Co2+ ions in octahedral positions.

  7. Holographic effective field theories

    NASA Astrophysics Data System (ADS)

    Martucci, Luca; Zaffaroni, Alberto

    2016-06-01

    We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.

  8. Effects of electric field on acoustic properties of 0.83Pb(Mg1/3Nb2/3) -0.17PbTiO3 single crystals studied by Brillouin light scattering

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyun; Ko, Jae-Hyeon; Kojima, Seiji

    2013-03-01

    Relaxor-based ferroelectric Pb[(Mg1/3Nb2/3)1-x Tix]O3 (PMN-xPT) single crystals have attracted great attention because of their exceptionally strong piezoelectric properties. This peculiar characteristic was attributed to the rotation of polarization directions and structural complexity. In this study, the phase transition behaviors of PMN-17PT single crystals have been investigated under an electric field applied along [001] by micro-Brillouin scattering. PMN-17PT single crystals were grown by the modified Bridgeman method. The two (001) surfaces were Au-coated to apply the electric field, and the coating was thin enough to allow the incident beam to transmit without much loss. The electric field of different values was applied to the sample along the [001] direction, and the Brillouin scattering spectrum was measured under both field-heating (FH) and field-cooling (FC) conditions. The electric field of 1kV/cm induced a new longitudinal acoustic (LA) mode component along with a broad Brillouin peak evolving continuously from the paraelectric phase during both FC and FH processes. This was attributed to the remnant polar nanoregions that were not aligned under the electric field due to quenched random fields. However, the splitting of the LA mode did not appear when the electric field was over 2kV/cm indicating a clear structural phase transition. This research was supported in part by the Marubun Research Promotion Foundation and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0010497).

  9. Electric field effect of relaxor ferroelectric (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals near morphotropic phase boundary composition probed by Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Aftabuzzaman, Md; Kojima, Seiji

    2016-07-01

    The relaxor ferroelectric (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (x = 0.30, PMN-30PT) single crystal was studied under the zero field and the externally applied dc electric field by using micro-Brillouin scattering and dielectric spectroscopies over a wide temperature range of 303-773 K. The noticeable thermal hysteresis of longitudinal acoustic (LA) shift (νB) was observed between zero field heating and zero field cooling processes. Under the electric field of 0.5 kV/cm along the [001] axis, the LA mode splitting was observed in νB due to the coexistence of ferroelectric macrodomain and nanodomain states caused by the random field, and in dielectric measurements the monoclinic (M) and tetragonal phases were appeared between rhombohedral and cubic phases. The LA mode splitting and M phase disappeared under the field of 1.0 kV/cm. The electric field dependence of LA velocity was studied at 304 K. The critical end point of the PMN-30PT single crystal was investigated.

  10. Hyperfine and crystal field interactions in multiferroic HoCrO3

    NASA Astrophysics Data System (ADS)

    Kumar, C. M. N.; Xiao, Y.; Nair, H. S.; Voigt, J.; Schmitz, B.; Chatterji, T.; Jalarvo, N. H.; Brückel, Th

    2016-11-01

    We report a comprehensive specific heat and inelastic neutron scattering study to explore the possible origin of multiferroicity in HoCrO3. We have performed specific heat measurements in the temperature range 100 mK-290 K and inelastic neutron scattering measurements were performed in the temperature range 1.5-200 K. From the specific heat data we determined hyperfine splitting at 22.5(2) μeV and crystal field transitions at 1.379(5) meV, 10.37(4) meV, 15.49(9) meV and 23.44(9) meV, indicating the existence of strong hyperfine and crystal field interactions in HoCrO3. Further, an effective hyperfine field is determined to be 600(3) T. The quasielastic scattering observed in the inelastic scattering data and a large linear term γ =6.3(8) mJ mol-1  K-2 in the specific heat is attributed to the presence of short range exchange interactions, which is understood to be contributing to the observed ferroelectricity. Further the nuclear and magnetic entropies were computed to be, ˜17.2 Jmol-1 K-1 and  ˜34 Jmol-1 K-1, respectively. The entropy values are in excellent agreement with the limiting theoretical values. An anomaly is observed in the peak position of the temperature dependent crystal field spectra around 60 K, at the same temperature an anomaly in the pyroelectric current is reported. From this we could elucidate a direct correlation between the crystal electric field excitations of Ho3+ and ferroelectricity in HoCrO3. Our present study, along with recent reports, confirm that HoCrO3, and RCrO3 (R  =  rare earth) in general, possess more than one driving force for the ferroelectricity and multiferroicity.

  11. Hyperfine and crystal field interactions in multiferroic HoCrO3.

    PubMed

    Kumar, C M N; Xiao, Y; Nair, H S; Voigt, J; Schmitz, B; Chatterji, T; Jalarvo, N H; Brückel, Th

    2016-11-30

    We report a comprehensive specific heat and inelastic neutron scattering study to explore the possible origin of multiferroicity in HoCrO3. We have performed specific heat measurements in the temperature range 100 mK-290 K and inelastic neutron scattering measurements were performed in the temperature range 1.5-200 K. From the specific heat data we determined hyperfine splitting at 22.5(2) μeV and crystal field transitions at 1.379(5) meV, 10.37(4) meV, 15.49(9) meV and 23.44(9) meV, indicating the existence of strong hyperfine and crystal field interactions in HoCrO3. Further, an effective hyperfine field is determined to be 600(3) T. The quasielastic scattering observed in the inelastic scattering data and a large linear term [Formula: see text] mJ mol(-1)  K(-2) in the specific heat is attributed to the presence of short range exchange interactions, which is understood to be contributing to the observed ferroelectricity. Further the nuclear and magnetic entropies were computed to be, ∼17.2 Jmol(-1) K(-1) and  ∼34 Jmol(-1) K(-1), respectively. The entropy values are in excellent agreement with the limiting theoretical values. An anomaly is observed in the peak position of the temperature dependent crystal field spectra around 60 K, at the same temperature an anomaly in the pyroelectric current is reported. From this we could elucidate a direct correlation between the crystal electric field excitations of Ho(3+) and ferroelectricity in HoCrO3. Our present study, along with recent reports, confirm that HoCrO3, and RCrO3 (R  =  rare earth) in general, possess more than one driving force for the ferroelectricity and multiferroicity. PMID:27633731

  12. Simulated morphological landscape of polymer single crystals by phase field model

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Shi, Tongfei; Chen, Jizhong; An, Lijia; Jia, Yuxi

    2008-11-01

    The novel phase field model with the "polymer characteristic" was established based on a nonconserved spatiotemporal Ginzburg-Landau equation (TDGL model A). Especially, we relate the diffusion equation with the crystal growth faces of polymer single crystals. Namely, the diffusion equations are discretized according to the diffusion coefficient of every lattice site in various crystal growth faces and the shape of lattice is selected based on the real proportion of the unit cell dimensions. Spatiotemporal growth of syndiotactic polypropylene single crystals during isothermal crystallization has been investigated theoretically based on this phase field model. Two dimensional numerical calculations are performed to elucidate the faceted single crystal growth including square, rectangular, lozenge-shaped, and hexagonal single crystals. Our simulated patterns are in good agreement with the experimental morphologies, and the physical origin of polymer single crystal growth is discussed.

  13. Black phosphorus field-effect transistors.

    PubMed

    Li, Likai; Yu, Yijun; Ye, Guo Jun; Ge, Qingqin; Ou, Xuedong; Wu, Hua; Feng, Donglai; Chen, Xian Hui; Zhang, Yuanbo

    2014-05-01

    Two-dimensional crystals have emerged as a class of materials that may impact future electronic technologies. Experimentally identifying and characterizing new functional two-dimensional materials is challenging, but also potentially rewarding. Here, we fabricate field-effect transistors based on few-layer black phosphorus crystals with thickness down to a few nanometres. Reliable transistor performance is achieved at room temperature in samples thinner than 7.5 nm, with drain current modulation on the order of 10(5) and well-developed current saturation in the I-V characteristics. The charge-carrier mobility is found to be thickness-dependent, with the highest values up to ∼ 1,000 cm(2) V(-1) s(-1) obtained for a thickness of ∼ 10 nm. Our results demonstrate the potential of black phosphorus thin crystals as a new two-dimensional material for applications in nanoelectronic devices.

  14. Phase-Field Crystal Modeling of Polycrystalline Materials

    NASA Astrophysics Data System (ADS)

    Adland, Ari Joel

    In this thesis, we use and further develop the phase-field crystal (PFC) method derived from classical density functional theory to investigate polycyrstalline materials. The PFC method resolves atomistic scale processes by tracking the evolution of the local time averaged crystal density field, thereby naturally describing dislocations and grian boundaries (GBs), but with a phenomenological incorporation of vacancy diffusion that accesses long diffusive time scales beyond the reach of MD simulations. We use the PFC method to investigate two technologically important classes of polycrystalline materials whose properties are strongly influenced by GB equilibrium and non-equilibrium properties. The first are structural polycyrstalline materials such as nickel based superalloys used for turbine blades. Those alloys can develop large defects known as "hot tears'' due to the lack of complete crystal cohesion and strain localization during the late stages of solidification. We investigate the equilibrium structure of symmetric tilt GBs at high homologous temperatures and identify a wide range of misorientation that leads to the formation of nanometer-thick intergranular films with liquid like properties. The phase transition character of this "GB premelting'' phenomenon is investigated through the quantitative computation of a disjoining thermodynamic potential in both pure materials and alloys, using body-centered-cubic Fe as a model system. The analysis of this potential sheds light on the physical origin of attractive and repulsive forces that promote and suppress crystal cohesion, respectively, and are found to be strongly affected by solute addition. Our equilibrium studies also reveal the existence of novel structural transitions of low angle GBs driven by the pairing of dislocations with both screw and edge character. Non-equilibrium PFC simulations in turn characterize the response of GBs to an applied shear stress, showing that intergranular liquid-like films

  15. Microwave field effect transistor

    NASA Technical Reports Server (NTRS)

    Huang, Ho-Chung (Inventor)

    1989-01-01

    Electrodes of a high power, microwave field effect transistor are substantially matched to external input and output networks. The field effect transistor includes a metal ground plane layer, a dielectric layer on the ground plane layer, a gallium arsenide active region on the dielectric layer, and substantially coplanar spaced source, gate, and drain electrodes having active segments covering the active region. The active segment of the gate electrode is located between edges of the active segments of the source and drain electrodes. The gate and drain electrodes include inactive pads remote from the active segments. The pads are connected directly to the input and output networks. The source electrode is connected to the ground plane layer. The space between the electrodes and the geometry of the electrodes extablish parasitic shunt capacitances and series inductances that provide substantial matches between the input network and the gate electrode and between the output network and the drain electrode. Many of the devices are connected in parallel and share a common active region, so that each pair of adjacent devices shares the same source electrodes and each pair of adjacent devices shares the same drain electrodes. The gate electrodes for the parallel devices are formed by a continuous stripe that extends between adjacent devices and is connected at different points to the common gate pad.

  16. High-resolution X-ray absorption spectroscopy as a probe of crystal-field and covalency effects in actinide compounds.

    PubMed

    Butorin, Sergei M; Kvashnina, Kristina O; Vegelius, Johan R; Meyer, Daniel; Shuh, David K

    2016-07-19

    Applying the high-energy resolution fluorescence-detection (HERFD) mode of X-ray absorption spectroscopy (XAS), we were able to probe, for the first time to our knowledge, the crystalline electric field (CEF) splittings of the [Formula: see text] shell directly in the HERFD-XAS spectra of actinides. Using ThO2 as an example, data measured at the Th 3d edge were interpreted within the framework of the Anderson impurity model. Because the charge-transfer satellites were also resolved in the HERFD-XAS spectra, the analysis of these satellites revealed that ThO2 is not an ionic compound as previously believed. The Th [Formula: see text] occupancy in the ground state was estimated to be twice that of the Th [Formula: see text] states. We demonstrate that HERFD-XAS allows for characterization of the CEF interaction and degree of covalency in the ground state of actinide compounds as it is extensively done for 3d transition metal systems. PMID:27370799

  17. Study of Effects of Gravity on Crystallization

    NASA Technical Reports Server (NTRS)

    Smith, Guy A.; Workman, Gary L.; OBrian, Susan

    1996-01-01

    The effect of gravity on the crystallization behavior of fluoride fibers is being investigated by performing fiber annealing experiments on NASA's KC-135 using commercial grade fibers donated by industrial partners. The successful observations of reduced formation of microcrystallites in reduced gravity of the parabolic flights will be repeated to confirm earlier results. The design and implementation of an automated sting assembly for use in space fiber drawing experiments will also be emphasized in this study.

  18. Electric-field-assisted position and orientation control of organic single crystals.

    PubMed

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2014-12-01

    We have investigated the motion of growing pentacene single crystals in solution under various electric fields. The pentacene single crystals in 1,2,4-trichlorobenzene responded to the electric field as if they were positively charged. By optimizing the strength and frequency of an alternating electric field, the pentacene crystals automatically bridged the electrodes on SiO2. The pentacene crystal with a large aspect ratio tended to direct the [1̅10] orientation parallel to the conduction direction, which will be suitable from a viewpoint of anisotropy in mobility. The present result shows a possibility of controlling the position and orientation of organic single crystals by the use of an electric field, which leads to high throughput and low cost industrial manufacturing of the single crystal array from solution.

  19. A three-dimensional phase field model coupled with lattice kinetics solver for modeling crystal growth in furnaces with accelerated crucible rotation and traveling magnetic field

    SciTech Connect

    Lin, Guang; Bao, Jie; Xu, Zhijie

    2014-11-01

    In this study, which builds on other related work, we present a new three-dimensional numerical model for crystal growth in a vertical solidification system. This model accounts for buoyancy, accelerated crucible rotation technique (ACRT), and traveling magnetic field (TMF) induced convective flow and their effect on crystal growth and the chemical component's transport process. The evolution of the crystal growth interface is simulated using the phase field method. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. A one-way coupled concentration transport model is used to simulate the component fraction variation in both the liquid and solid phases, which can be used to check the quality of the crystal growth.

  20. Crystal-field calculations for transition-metal ions by application of an opposing potential

    DOE PAGESBeta

    Zhou, Fei; Aberg, Daniel

    2016-02-16

    We propose a fully ab initio method, the opposing crystal potential (OCP), to calculate the crystal-field parameters of transition-metal impurities in insulator hosts. Through constrained density functional calculations, OCP obtains the constraining Lagrange multipliers, which act as a cancellation potential against the crystal field and lead to spherical d-electron distribution. Furthermore, the method is applied to several insulators doped with Mn4+ and Mn2+ ions and shown to be in good agreement with experiment.

  1. Magnetic field tunable small-scale mechanical properties of nickel single crystals measured by nanoindentation technique.

    PubMed

    Zhou, Hao; Pei, Yongmao; Fang, Daining

    2014-01-01

    Nano- and micromagnetic materials have been extensively employed in micro-functional devices. However, measuring small-scale mechanical and magnetomechanical properties is challenging, which restricts the design of new products and the performance of smart devices. A new magnetomechanical nanoindentation technique is developed and tested on a nickel single crystal in the absence and presence of a saturated magnetic field. Small-scale parameters such as Young's modulus, indentation hardness, and plastic index are dependent on the applied magnetic field, which differ greatly from their macroscale counterparts. Possible mechanisms that induced 31% increase in modulus and 7% reduction in hardness (i.e., the flexomagnetic effect and the interaction between dislocations and magnetic field, respectively) are analyzed and discussed. Results could be useful in the microminiaturization of applications, such as tunable mechanical resonators and magnetic field sensors.

  2. Magnetic Field Tunable Small-scale Mechanical Properties of Nickel Single Crystals Measured by Nanoindentation Technique

    PubMed Central

    Zhou, Hao; Pei, Yongmao; Fang, Daining

    2014-01-01

    Nano- and micromagnetic materials have been extensively employed in micro-functional devices. However, measuring small-scale mechanical and magnetomechanical properties is challenging, which restricts the design of new products and the performance of smart devices. A new magnetomechanical nanoindentation technique is developed and tested on a nickel single crystal in the absence and presence of a saturated magnetic field. Small-scale parameters such as Young's modulus, indentation hardness, and plastic index are dependent on the applied magnetic field, which differ greatly from their macroscale counterparts. Possible mechanisms that induced 31% increase in modulus and 7% reduction in hardness (i.e., the flexomagnetic effect and the interaction between dislocations and magnetic field, respectively) are analyzed and discussed. Results could be useful in the microminiaturization of applications, such as tunable mechanical resonators and magnetic field sensors. PMID:24695002

  3. Phonon and crystal field excitations in geometrically frustrated rare earth titanates

    NASA Astrophysics Data System (ADS)

    Lummen, T. T. A.; Handayani, I. P.; Donker, M. C.; Fausti, D.; Dhalenne, G.; Berthet, P.; Revcolevschi, A.; van Loosdrecht, P. H. M.

    2008-06-01

    The phonon and crystal field excitations in several rare earth titanate pyrochlores are investigated. Magnetic measurements on single crystals of Gd2Ti2O7 , Tb2Ti2O7 , Dy2Ti2O7 , and Ho2Ti2O7 are used for characterization, while Raman spectroscopy and terahertz time domain spectroscopy are employed to probe the excitations in the materials. The lattice excitations are found to be analogous across the compounds over the whole temperature range investigated (295-4 K). The resulting full phononic characterization of the R2Ti2O7 pyrochlore structure is then used to identify crystal field excitations observed in the materials. Several crystal field excitations have been observed in Tb2Ti2O7 in Raman spectroscopy, among which all of the previously reported excitations. The presence of additional crystal field excitations, however, suggests the presence of two inequivalent Tb3+ sites in the low-temperature structure. Furthermore, the crystal field level at approximately 13cm-1 is found to be both Raman and dipole active, indicating broken inversion symmetry in the system and thus undermining its current symmetry interpretation. In addition, evidence is found for a significant crystal field-phonon coupling in Tb2Ti2O7 . The additional crystal field information on Tb2Ti2O7 adds to the recent discussion on the low temperature symmetry of this system and may serve to improve its theoretical understanding.

  4. Neutron study of crystal field excitations in single crystal CeCu2Ge2

    NASA Astrophysics Data System (ADS)

    Loewenhaupt, Michael; Faulhaber, Enrico; Schneidewind, Astrid; Deppe, Micha; Hradil, Klaudia

    2010-03-01

    CeCu2Ge2 is the counterpart of the heavy-fermion superconductor CeCu2Si2. CeCu2Ge2 is a magnetically ordering (TN= 4.1 K) Kondo lattice with a moderate Sommerfeld coefficient of 140 mJ/molK^2 [1]. Inelastic neutron measurements on a polycrystalline sample revealed a doublet ground state and a quasi-quartet at 16.5 meV [1] though a splitting of the 4f^1 (J=5/2) ground state multiplet into 3 doublets is expected from the point symmetry of the Ce^3+ ions. We performed detailed inelastic neutron scattering experiments on the thermal triple-axis spectrometer PUMA at FRM II at temperatures between 10 K and 300 K and for different crystallographic directions from low to high momentum transfers. In this way we obtained a reliable separation of magnetic and phonon contributions. From our results we infer that the quasi-quartet consists in fact of two doublets at 17 and 18 meV which exhibit a strong directional dependence of their transition matrix elements to the ground state doublet. Finally we will present a new set of crystal field parameters and their implications on other magnetic properties. [1] G. Knopp et al., Z. Physik B 77 (1989) 95

  5. Spatial Distribution of -Crystals in Metallocene-Made Isotactic Polypropylene Crystallized under Combined Thermal and Flow Fields

    SciTech Connect

    Wang, Y.; Pan, J; Mao, Y; Li, Z; Li, L; Hsiao, B

    2010-01-01

    The present Article reports the relationships between molecular orientation, formation, and spatial distribution of {gamma}-crystals in metallocene-made isotactic polypropylene (m-iPP) samples prepared by two industrial processes: conventional injection molding (CIM) and oscillatory shear injection molding (OSIM), in which combined thermal and flow fields typically exist. In particular, spatial distributions of crystallinity, fraction of {gamma}-crystal (f{gamma}) with respect to {alpha}-crystal, and lamella-branched shish-kebab structure in the shaped samples were characterized by synchrotron two-dimensional (2D) wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. The results showed that the crystallinity in any given region of OSIM samples was always higher than that of CIM samples. The value of f{gamma} increased monotonously from skin to core in CIM samples, whereas the corresponding f{gamma} increased nonmonotonically in OSIM samples. The spatial distribution of {gamma}-crystal in OSIM samples can be explained by the epitaxial arrangement between {gamma}- and {alpha}-crystal in a lamella-branched shish-kebab structure. In the proposed model, the parent lamellae of {alpha}-crystal provide secondary nucleation sites for daughter lamellae of {alpha}-crystal and {gamma}-crystal, and the different content of parent lamellae results in varying amounts of {gamma}-crystal. In OSIM samples, the smallest parent-daughter ratio ([R] = 1.38) in the core region led to the lowest fraction of {gamma}-crystal (0.57), but relatively higher {gamma}-crystal content (0.69) at 600 and 1200 {micro}m depth of the samples (corresponding to [R] of 4.5 and 5.8, respectively). This is consistent with the proposed model where more parent lamellae provide more nucleation sites for crystallization, thus resulting in higher content of {gamma}-crystal. The melting behavior of CIM and OSIM samples was studied by differential scanning calorimetery (DSC). The

  6. Magnetic field sensor based on selectively magnetic fluid infiltrated dual-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Gangwar, Rahul Kumar; Bhardwaj, Vanita; Singh, Vinod Kumar

    2016-02-01

    We reported the modeling result of selectively magnetic fluid infiltrated dual-core photonic crystal fiber based magnetic field sensor. Inside the cross-section of the designed photonic crystal fiber, the two fiber cores filled with magnetic fluid (Fe3O4) form two independent waveguides with mode coupling. The mode coupling under different magnetic field strengths is investigated theoretically. The sensitivity of the sensor as a function of the structural parameters of the photonic crystal fiber is calculated. The result shows that the proposed sensing device with 1 cm photonic crystal fiber length has a large sensitivity of 305.8 pm/Oe.

  7. Influence of magnetic fields on calcium salts crystal formation: an explanation of the 'pulsed electromagnetic field' technique for bone healing.

    PubMed

    Madroñero, A

    1990-09-01

    In the search for a mechanism by means of which a magnetic field deparalyses non-unions and enhances bone tissue formation, the influence of continuous magnetic fields on the formation of calcium phosphate crystal seeds has been investigated. From this perspective, an explanation is given of a working mode in conventional equipment for pulsed electromagnetic field treatment; this is compared with multifunction equipment.

  8. Reversed Doppler effect in photonic crystals.

    PubMed

    Reed, Evan J; Soljacić, Marin; Joannopoulos, John D

    2003-09-26

    Nonrelativistic reversed Doppler shifts have never been observed in nature and have only been speculated to occur in pathological systems with simultaneously negative effective permittivity and permeability. This Letter presents a different, new physical phenomenon that leads to a nonrelativistic reversed Doppler shift in light. It arises when light is reflected from a moving shock wave propagating through a photonic crystal. In addition to reflection of a single frequency, multiple discrete reflected frequencies or a 10 GHz periodic modulation can also be observed when a single carrier frequency of wavelength 1 microm is incident.

  9. DDA Computations of Porous Aggregates with Forsterite Crystals: Effects of Crystal Shape and Crystal Mass Fraction

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lindsay, Sean S.; Harker, David; Woodward, Charles; Kelley, Michael S.; Kolokolova, Ludmilla

    2015-01-01

    Porous aggregate grains are commonly found in cometary dust samples and are needed to model cometary IR spectral energy distributions (SEDs). Models for thermal emissions from comets require two forms of silicates: amorphous and crystalline. The dominant crystal resonances observed in comet SEDs are from Forsterite (Mg2SiO4). The mass fractions that are crystalline span a large range from 0.0 < or = fcrystal < or = 0.74. Radial transport models that predict the enrichment of the outer disk (>25 AU at 1E6 yr) by inner disk materials (crystals) are challenged to yield the highend-range of cometary crystal mass fractions. However, in current thermal models, Forsterite crystals are not incorporated into larger aggregate grains but instead only are considered as discrete crystals. A complicating factor is that Forsterite crystals with rectangular shapes better fit the observed spectral resonances in wavelength (11.0-11.15 microns, 16, 19, 23.5, 27, and 33 microns), feature asymmetry and relative height (Lindley et al. 2013) than spherically or elliptically shaped crystals. We present DDA-DDSCAT computations of IR absorptivities (Qabs) of 3 micron-radii porous aggregates with 0.13 < or = fcrystal < or = 0.35 and with polyhedral-shaped Forsterite crystals. We can produce crystal resonances with similar appearance to the observed resonances of comet Hale- Bopp. Also, a lower mass fraction of crystals in aggregates can produce the same spectral contrast as a higher mass fraction of discrete crystals; the 11micron and 23 micron crystalline resonances appear amplified when crystals are incorporated into aggregates composed otherwise of spherically shaped amorphous Fe-Mg olivines and pyroxenes. We show that the optical properties of a porous aggregate is not linear combination of its monomers, so aggregates need to be computed. We discuss the consequence of lowering comet crystal mass fractions by modeling IR SEDs with aggregates with crystals, and the implications for radial

  10. Radiation Damage of Myoglobin Crystals in Weak Stationary Electric and Magnetic Fields

    PubMed Central

    Trame, C B; Dragovic, M; Chiu, H-J

    2014-01-01

    Radiation damage is one of the bottlenecks in the field of structural biology. Cryo-cooling of protein crystals provided a breakthrough in the 1980s and resulted in significant reductions in radiation damage. Other factors positively influencing the progression of damage include the application of radical scavengers and reductions in the experimental beam size. Here we study the impact on radiation damage of applying static magnetic and electric fields during protein diffraction experiments, ultimately probing the Lorenz force effect on primary photoelectrons and secondary Auger electrons, which both contribute to the damage process. The design of a special mounting pin using graphene for applying electric fields on a crystalline sample is described. Analyses of myoglobin protein crystals exposed to the fields of ~40 mT and −300 V show a slower global radiation damage rate and also changes in the progression of specific damage process on the molecular level, in particular at doses extending beyond the Garman limit of 30 MGy. PMID:25089148

  11. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis

    PubMed Central

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-01-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings. PMID:27356625

  12. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-06-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings.

  13. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis.

    PubMed

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-01-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient's joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient's tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm(2)), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings. PMID:27356625

  14. Plasmon electro-optic effect in a subwavelength metallic nanograting with a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Palto, S. P.; Barnik, M. I.; Kasyanova, I. V.; Geivandov, A. R.; Shtykov, N. M.; Artemov, V. V.; Gorkunov, M. V.

    2016-01-01

    The electro-optic effect in hybrid structures based on subwavelength metallic nanogratings in contact with a layer of a nematic liquid crystal has been experimentally studied. Metallic gratings are fabricated in the form of interdigitated electrodes, which makes it possible to use them not only as optical elements but also for the production of an electric field in a thin surface region of the layer of the liquid crystal. It has been shown that, owing to the electric-field-induced reorientation of molecules of the liquid crystal near the surface of the grating, it is possible to significantly control the spectral features of the transmission of light, which are caused by the excitation of surface plasmons. The electro-optic effect is superfast for liquid crystal devices because a change in the optical properties of the system requires the reorientation of molecules only in a very thin surface layer of the liquid crystal.

  15. Giant electric-field induced strain in ferroelectric crystals by point-defect mediated reversible domain switching

    NASA Astrophysics Data System (ADS)

    Ren, Xiaobing

    2004-03-01

    Ferroelectric crystals are characterized by their asymmetric or polar structures. In electric field, ions undergo asymmetric displacement and result in a small change in crystal dimension, which is proportional to the applied field. Such electric-field induced strain (or piezoelectricity) has found extensive applications in actuators and sensors. However, the effect is generally very small and thus limits its usefulness. Here I show that with a different mechanism, an aged BaTiO3 single crystal can generate a large recoverable non-linear strain of 0.75% at a low field of 200V/mm. At the same field this value is about 40 times higher than piezoelectric PZT ceramics and more than 10 times higher than the high strain PZN-PT single crystals. This giant electro-strain stems from an unusual reversible domain switching (most importantly the switching of non-180^o domains) in which the restoring force is provided by a general symmetry-conforming property of point defects. This mechanism provides a general method to achieve large electro-strain effect in a wide range of ferroelectric systems and the effect may lead to novel applications in ultra large stroke and non-linear actuators.

  16. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching

    NASA Astrophysics Data System (ADS)

    Ren, Xiaobing

    2004-02-01

    Ferroelectric crystals are characterized by their asymmetric or polar structures. In an electric field, ions undergo asymmetric displacement and result in a small change in crystal dimension, which is proportional to the applied field. Such electric-field-induced strain (or piezoelectricity) has found extensive applications in actuators and sensors. However, the effect is generally very small and thus limits its usefulness. Here I show that with a different mechanism, an aged BaTiO3 single crystal can generate a large recoverable nonlinear strain of 0.75% at a low field of 200 V mm-1. At the same field this value is about 40 times higher than piezoelectric Pb(Zr, Ti)O3 (PZT) ceramics and more than 10 times higher than the high-strain Pb(Zn1/3Nb2/3)O3-PbTiO3 (PZN-PT) single crystals. This large electro-strain stems from an unusual reversible domain switching (most importantly the switching of non-180° domains) in which the restoring force is provided by a general symmetry-conforming property of point defects. This mechanism provides a general method to achieve large electro-strain effect in a wide range of ferroelectric systems and the effect may lead to novel applications in ultra-large stroke and nonlinear actuators.

  17. Field-induced periodic distortions in a nematic liquid crystal: deuterium NMR study and theoretical analysis.

    PubMed

    Sugimura, A; Zakharov, A V

    2011-08-01

    The peculiarities in the dynamic of the director reorientation in a liquid crystal (LC) film under the influence of the electric E field directed at an angle α to the magnetic B field have been investigated both experimentally and theoretically. Time-resolved deuterium NMR spectroscopy is employed to investigate the field-induced director dynamics. Analysis of the experimental results, based on the predictions of hydrodynamic theory including both the director motion and fluid flow, provides an evidence for the appearance of the spatially periodic patterns in 4-n-pentyl-4'-cyanobiphenyl LC film, at the angles α>60∘, in response to the suddenly applied E. These periodic distortions produce a lower effective rotational viscosity. This gives a faster response of the director rotation than for a uniform mode, as observed in our NMR experiment. PMID:21929001

  18. Melt Motion Due to Peltier Marking During Bridgman Crystal Growth with an Axial Magnetic Field

    NASA Technical Reports Server (NTRS)

    Sellers, C. C.; Walker, John S.; Szofran, Frank R.; Motakef, Shariar

    2000-01-01

    This paper treats a liquid-metal flow inside an electrically insulating cylinder with electrically conducting solids above and below the liquid region. There is a uniform axial magnetic field, and there is an electric current through the liquid and both solids. Since the lower liquid-solid interface is concave into the solid and since the liquid is a better electrical conductor than the adjacent solid, the electric current is locally concentrated near the centerline. The return to a uniform current distribution involves a radial electric current which interacts with the axial magnetic field to drive an azimuthal flow. The axial variation of the centrifugal force due to the azimuthal velocity drives a meridional circulation with radial and axial velocities. This problem models the effects of Peltier marking during the vertical Bridgman growth of semiconductor crystals with an externally applied magnetic field, where the meridional circulation due to the Peltier Current may produce important mixing in the molten semiconductor.

  19. Application of magnetic fields in industrial growth of silicon single crystals

    NASA Astrophysics Data System (ADS)

    von Ammon, W.; Gelfgat, Yu.; Gorbunov, L.; Mulbauer, A.; Muiznieks, A.; Makarov, Y.; Virbulis, J.; Muller, G.

    2006-12-01

    The use of magnetic fields for the growth of semiconductor crystals has already been considered many decades ago. As early as in 1966, Chedzey et al te{1} and Utech et al te{2} reported about InSb crystals grown in a horizontal boat under the influence of a magnetic field. They found a suppression of temperature fluctuations in the InSb melt and a decrease of growth variations (striations) in the crystal. In 1970, Witt et al te{3} applied a static transverse (horizontal) magnetic field to the Czochralski (CZ) growth of InSb crystals. 10 years later, in 1980, the transverse field was also used for the CZ growth of silicon single crystals te{4,5}. Since then, the method has received considerable attention over the years. One of the major driving forces for introducing magnetic fields in the industrial CZ growth of silicon crystals was the request by the semiconductor industry to replace floating zone (FZ) grown crystals, which had been the preferred substrate material for the manufacturing of high power devices, by low oxygen CZ crystals te{6}. The reason for this changeover was the fact that the FZ method in the early 80's could not follow the rapid crystal diameter increase as required by the industry, namely, the switch from 4" to 5" diameter in the early 80's. The application of magnetic fields to the CZ technique (MCZ) allowed the growth of low oxygen crystals with the required diameter and having similar properties as the FZ grown crystals. Figs 12, Refs 59.

  20. Three-dimensional control of crystal growth using magnetic fields

    NASA Astrophysics Data System (ADS)

    Dulikravich, George S.; Ahuja, Vineet; Lee, Seungsoo

    1993-07-01

    Two coupled systems of partial differential equations governing three-dimensional laminar viscous flow undergoing solidification or melting under the influence of arbitrarily oriented externally applied magnetic fields have been formulated. The model accounts for arbitrary temperature dependence of physical properties including latent heat release, effects of Joule heating, magnetic field forces, and mushy region existence. On the basis of this model a numerical algorithm has been developed and implemented using central differencing on a curvilinear boundary-conforming grid and Runge-Kutta explicit time-stepping. The numerical results clearly demonstrate possibilities for active and practically instantaneous control of melt/solid interface shape, the solidification/melting front propagation speed, and the amount and location of solid accrued.

  1. Local Field Effects

    NASA Astrophysics Data System (ADS)

    Tarrio, C.; Schnatterly, S. E.

    We review the local field problem, beginning with the pioneering work of the 19th century. We then approach the problem from a microscopic perspective and include a momentum dependence. We also offer experimental examples.

  2. Electric Field Effects in RUS Measurements

    SciTech Connect

    Darling, Timothy W; Ten Cate, James A; Allured, Bradley; Carpenter, Michael A

    2009-09-21

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  3. Pyroelectric properties and electrocaloric effect in TGS1‑xPx single crystals

    NASA Astrophysics Data System (ADS)

    Sampathkumar, P.; Srinivasan, K.

    2016-10-01

    Triglycine sulfate (TGS) single crystals modified with phosphoric acid (TGS1‑xPx) have been grown by slow evaporation technique at room temperature. Lattice parameters were identified by using single crystal x-ray diffractometer. The dielectric, pyroelectric, ferroelectric properties and electrocaloric effect have been investigated. Curie temperature of grown crystals was determined from dielectric constant measurements at various temperatures at a frequency of 1 kHz. The Curie temperature is found decreased for the TGS single crystals with the addition of phosphoric acid. Room temperature P-E hysteresis loops of TGS1‑xPx single crystals are presented. The values of coercive field Ec, spontaneous polarization Ps and internal bias field Eb were obtained from the hysteresis loops. Discussion on pyroelectric properties as a function of temperature and applied electric field is presented. Figure of merits (FOMs) were determined to study the pyroelectric performance of the grown crystals. Among all compositions of x, x = 0.2 (i.e., TGS0.8P0.2) single crystals exhibited the largest pyroelectric coefficient and pyroelectric figure of merit at room temperature. From the above investigations the electrocaloric temperature change, ΔT of TGS1‑xPx single crystals at selected applied fields and temperatures are obtained by indirect method and discussed.

  4. Polymer crystallization in a temperature gradient field with controlled crystal growth rate

    NASA Technical Reports Server (NTRS)

    Hansen, D.; Taskar, A. N.; Casale, O.

    1971-01-01

    A method is described for studying the influence of a temperature gradient on the crystallization of quiescent polymer melts. The apparatus used consists of two brass plates with embedded electrical resistance heaters and cooling coils. The crystallizations experiments were conducted by placing polymer specimens between the paltes, and manually adjusting heaters and cooling fluids for temperature control. Linear polyethylene, isotactic polyprophylene, and a high density polyethylene were used. It is concluded that the role of a temperature gradient in producing oriented crystallization is in producing conditions which lead the spherulitic growth pattern to proceed primarily in one direction. Steep gradients diminish the penetration of supercooling and favors oriented growth.

  5. Formation of temperature fields in doped anisotropic crystals under spatially inhomogeneous light beams passing through them

    SciTech Connect

    Zaitseva, E. V.; Markelov, A. S.; Trushin, V. N. Chuprunov, E. V.

    2013-12-15

    The features of formation of thermal fields in potassium dihydrophosphate crystal doped with potassium permanganate under a 532-nm laser beam passing through it have been investigated. Data on the influence of birefringence on the temperature distribution in an anisotropic crystal whose surface is illuminated by a spatially modulated light beam are presented.

  6. Thermal fluctuation effects on the magnetization above and below the superconducting transition in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} crystals in the weak magnetic field limit

    SciTech Connect

    Mosqueira, J.; Miramontes, E.G.; Torron, C.; Campa, J.A.; Rasines, I.; Vidal, F.

    1996-06-01

    We present detailed experimental data of the magnetization, {ital M}{sub {ital ab}}({ital T},{ital H}), of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} crystals on both sides of the superconducting transition, for magnetic fields, {ital H}, applied perpendicularly to the {ital ab} (CuO{sub 2}) planes and for amplitudes up to {mu}{sub 0}{ital H}=5 T, which not too close to the superconducting transition correspond to the weak magnetic field amplitude limit. These data are analyzed in terms of thermal fluctuations in this weak {ital H} limit: In the reversible mixed state below the transition, by taking into account the fluctuations of the vortex lines positions, as first proposed by Bulaevskii, Ledvij, and Kogan. Above the transition, by taking into account the Cooper pairs created by thermal fluctuations, through a generalization of multilayered superconductors of the Schmidt-like approach. These simultaneous, quantitative and consistent analyses of {ital M}{sub {ital ab}}({ital T},{ital H}) above and below the transition allow us to estimate the effective number of independent fluctuating superconducting CuO{sub 2} planes in the periodicity length {ital s}={ital c}/2, {ital c} being the unit-cell length, and to separate for the first time the in-plane correlation length amplitude, {xi}{sub {ital ab}}(0), and the parameter related to the vortex structure, {eta}. We found {xi}{sub {ital ab}}(0)=(0.8{plus_minus}0.1) nm and {eta}=0.15{plus_minus}0.05, this last value being well within the one calculated by Fetter by applying the London model to a triangular vortex lattice. For the in-plane magnetic penetration depth, we found a temperature behavior compatible with the clean BCS weak coupling limit, and an amplitude (at {ital T}=0 K) of {lambda}{sub {ital ab}}(0)=(180{plus_minus}20) nm. {copyright} {ital 1996 The American Physical Society.}

  7. Electric field effect in ultrathin black phosphorus

    SciTech Connect

    Koenig, Steven P.; Schmidt, Hennrik; Doganov, Rostislav A.; Castro Neto, A. H.; Özyilmaz, Barbaros

    2014-03-10

    Black phosphorus exhibits a layered structure similar to graphene, allowing mechanical exfoliation of ultrathin single crystals. Here, we demonstrate few-layer black phosphorus field effect devices on Si/SiO{sub 2} and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration. We find room-temperature mobilities of up to 300 cm{sup 2}/Vs and drain current modulation of over 10{sup 3}. At low temperatures, the on-off ratio exceeds 10{sup 5}, and the device exhibits both electron and hole conduction. Using atomic force microscopy, we observe significant surface roughening of thin black phosphorus crystals over the course of 1 h after exfoliation.

  8. DDA Computations of Porous Aggregates with Forsterite Crystals: Effects of Crystal Shape and Crystal Mass Fraction

    NASA Astrophysics Data System (ADS)

    Wooden, Diane H.; Lindsay, Sean S.; Harker, David; Woodward, Charles; Kelley, Michael S. P.; Kolokolova, Ludmilla

    2015-08-01

    Porous aggregate grains are commonly found in cometary dust samples and are needed to model cometary IR spectral energy distributions (SEDs). Models for thermal emissions from comets require two forms of silicates: amorphous and crystalline. The dominant crystal resonances observed in comet SEDs are from Forsterite (Mg2SiO4). The mass fractions that are crystalline span a large range from 0.0 ≤ fcrystal ≤ 0.74. Radial transport models that predict the enrichment of the outer disk (>25 AU at 1E6 yr) by inner disk materials (crystals) are challenged to yield the highend-range of cometary crystal mass fractions. However, in current thermal models, Forsterite crystals are not incorporated into larger aggregate grains but instead only are considered as discrete crystals. A complicating factor is that Forsterite crystals with rectangular shapes better fit the observed spectral resonances in wavelength (11.0-11.15 μm, 16, 19, 23.5, 27, and 33 μm), feature asymmetry and relative height (Lindley et al. 2013) than spherically or elliptically shaped crystals. We present DDA-DDSCAT computations of IR absorptivities (Qabs) of 3 μm-radii porous aggregates with 0.13 ≤ fcrystal ≤ 0.35 and with polyhedral-shaped Forsterite crystals. We can produce crystal resonances with similar appearance to the observed resonances of comet Hale-Bopp. Also, a lower mass fraction of crystals in aggregates can produce the same spectral contrast as a higher mass fraction of discrete crystals; the 11µm and 23 µm crystalline resonances appear amplified when crystals are incorporated into aggregates composed otherwise of spherically shaped amorphous Fe-Mg olivines and pyroxenes. We show that the optical properties of a porous aggregate is not linear combination of its monomers, so aggregates need to be computed. We discuss the consequence of lowering comet crystal mass fractions by modeling IR SEDs with aggregates with crystals, and the implications for radial transport models of our

  9. The Fano-type transmission and field enhancement in heterostructures composed of epsilon-near-zero materials and truncated photonic crystals

    SciTech Connect

    Zhang, Zhi-fang; Jiang, Hai-tao E-mail: jiang-haitao@tongji.edu.cn; Li, Yun-hui; Chen, Hong; Xue, Chun-hua E-mail: jiang-haitao@tongji.edu.cn; Lu, Hai

    2013-11-11

    The Fano-type interference effect is studied in the heterostructure composed of an epsilon-near-zero (ENZ) material and a truncated photonic crystal for transverse magnetic polarized light. In the Fano-type interference effect, the ENZ material provides narrow reflection pathway and the photonic crystal provides broadband reflection pathway. The boundary condition across the ENZ interface and the confinement effect provided by the photonic crystal can enhance the electric fields in the ENZ material greatly. The field enhancements, together with the asymmetric property of Fano-type spectrum, possess potential applications for significantly lowering the threshold of nonlinear processes such as optical switching and bistability.

  10. Imposed Orientation of Dye Molecules by Liquid Crystals and an Electric Field.

    ERIC Educational Resources Information Center

    Sadlej-Sosnowska, Nina

    1980-01-01

    Describes experiments using dye solutions in liquid crystals in which polar molecules are oriented in an electrical field and devices are constructed to change their color in response to an electric signal. (CS)

  11. Anisotropy effect on the caloric properties of NdAl2 single crystal

    NASA Astrophysics Data System (ADS)

    Caro Patiño, J.; de Oliveira, N. A.; von Ranke, P. J.

    2015-11-01

    In this paper we theoretically discuss the effect of anisotropy on the magnetocaloric properties of NdAl2 single crystal. To this end, we use a model Hamiltonian of interacting magnetic moments under the influence of the crystal electric field. The magnetocaloric quantity, ΔSiso, calculated for 7 T magnetic field variation is in a reasonable agreement with the available experimental data. Moreover, we predict the existence of anomalies in the magnetocaloric effect when the magnetic field of constant intensity rotates from < 100 > to < 110 > direction.

  12. An optical analog of the Borrmann effect in photonic crystals

    SciTech Connect

    Bogdanova, M. V. Lozovik, Yu. E.; Eiderman, S. L.

    2010-04-15

    Numerical simulation using the layered Korringa-Kohn-Rostoker (LKKR) method is applied to calculate the reflection and absorption spectra of an s-polarized electromagnetic wave incident on a faced-centered cubic photonic crystal (PC) with opal structure whose sites are occupied by two-layer metal-dielectric spheres. The reflection and absorption coefficients of the PC are analyzed as a function of the angle of incidence of the electromagnetic wave on the crystal surface. A range of wavelengths {lambda} and angles of inclination {theta} to the normal is found in which the absorption experiences a sharp change under small variations of the above parameters. The appearance of peaks in the absorption spectrum of the PC is analyzed, and the spectrum is compared with the behavior of the reduced density of states. By the finite difference time domain (FDTD) method applied to the Maxwell equations, the spatial distribution of the energy density of electromagnetic field inside each of five layers of the PC is obtained at angles of incidence of 23{sup o} and 30{sup o} for a wave-length of 455 nm. It is demonstrated that the sharp maxima of the density of electromagnetic-field energy that are localized on the surfaces of absorbing metal spheres correspond to the absorption maximum. At the same time, at the absorption minimum, the maxima of the field energy density in each of the five layers are localized mainly between the lattice sites of the PC. An analogy between this phenomenon and the Borrmann effect, which is known in X-ray spectroscopy of ordinary crystals, is analyzed.

  13. Method of bonding single crystal quartz by field-assisted bonding

    DOEpatents

    Curlee, Richard M.; Tuthill, Clinton D.; Watkins, Randall D.

    1991-01-01

    The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals.

  14. Method of bonding single crystal quartz by field-assisted bonding

    DOEpatents

    Curlee, R.M.; Tuthill, C.D.; Watkins, R.D.

    1991-04-23

    The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals. 2 figures.

  15. Magnetic field tuning of polaron losses in Fe doped BaTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Anand Theerthan, R.; Artemenko, Alla; Maglione, Mario

    2012-10-01

    Artificial tuning of dielectric parameters can result from interface conductivity in polycrystalline materials. In ferroelectric single crystals, it has already been shown that ferroelectric domain walls can be the source of such artificial coupling. We show here that low-temperature dielectric losses can be tuned by a dc magnetic field. Since such losses were previously ascribed to polaron relaxation we suggest this results from the interaction of hopping polarons with the magnetic field. The fact that this loss alteration has no counterpart in the real part of the dielectric permittivity confirms that no interface is involved in this purely dynamical effect. The contribution of mobile charges hopping among Fe-related centers was confirmed by ESR spectroscopy, showing a maximum intensity at ca T ˜ 40 K.

  16. Two beam energy exchange in hybrid liquid crystal cells with photorefractive field controlled boundary conditions

    NASA Astrophysics Data System (ADS)

    Reshetnyak, V. Yu.; Pinkevych, I. P.; Subota, S. I.; Evans, D. R.

    2016-09-01

    We develop a theory describing energy gain when two light beams intersect in a hybrid nematic liquid crystal (LC) cell with photorefractive crystalline substrates. A periodic space-charge field induced by interfering light beams in the photorefractive substrates penetrates into the LC layer and reorients the director. We account for two main mechanisms of the LC director reorientation: the interaction of the photorefractive field with the LC flexopolarization and the director easy axis at the cell boundaries. It is shown that the resulting director grating is a sum of two in-phase gratings: the flexoelectric effect driven grating and the boundary-driven grating. Each light beam diffracts from the induced gratings leading to an energy exchange between beams. We evaluate the signal beam gain coefficient and analyze its dependence on the director anchoring energy and the magnitude of the director easy axis modulation.

  17. Magnetic field-controlled two-way shape memory in CoNiGa single crystals

    NASA Astrophysics Data System (ADS)

    Li, Y. X.; Liu, H. Y.; Meng, F. B.; Yan, L. Q.; Liu, G. D.; Dai, X. F.; Zhang, M.; Liu, Z. H.; Chen, J. L.; Wu, G. H.

    2004-05-01

    A two-way magnetic field controlled shape memory effect has been observed in single crystals of CoNiGa with martensitic transformation temperature ranging from 205 to 341 K. Two-way shape memory with -2.3% strain has been obtained in free samples. By applying a bias field of up to 2 T, the shape memory strain can be continuously controlled from negative 2.3% to positive 2.2% giving it a total strain of 4.5%. The magnetic properties of CoNiGa show that it is a good shape memory material working at relatively high temperature of up to 450 K, and has a lower magnetic anisotropy than NiMnGa.

  18. Models of Mass Transport During Microgravity Crystal Growth of Alloyed Semiconductors in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Ma, Nancy

    2003-01-01

    Alloyed semiconductor crystals, such as germanium-silicon (GeSi) and various II-VI alloyed crystals, are extremely important for optoelectronic devices. Currently, high-quality crystals of GeSi and of II-VI alloys can be grown by epitaxial processes, but the time required to grow a certain amount of single crystal is roughly 1,000 times longer than the time required for Bridgman growth from a melt. Recent rapid advances in optoelectronics have led to a great demand for more and larger crystals with fewer dislocations and other microdefects and with more uniform and controllable compositions. Currently, alloyed crystals grown by bulk methods have unacceptable levels of segregation in the composition of the crystal. Alloyed crystals are being grown by the Bridgman process in space in order to develop successful bulk-growth methods, with the hope that the technology will be equally successful on earth. Unfortunately some crystals grown in space still have unacceptable segregation, for example, due to residual accelerations. The application of a weak magnetic field during crystal growth in space may eliminate the undesirable segregation. Understanding and improving the bulk growth of alloyed semiconductors in microgravity is critically important. The purpose of this grant to to develop models of the unsteady species transport during the bulk growth of alloyed semiconductor crystals in the presence of a magnetic field in microgravity. The research supports experiments being conducted in the High Magnetic Field Solidification Facility at Marshall Space Flight Center (MSFC) and future experiments on the International Space Station.

  19. Comparison of the simulations of cellulosic crystals with three carbohydrate force fields.

    PubMed

    Miyamoto, Hitomi; Schnupf, Udo; Crowley, Michael F; Brady, John W

    2016-03-01

    Three independently developed molecular mechanics force fields for carbohydrates have been used to simulate a suite of small molecule analogs of cellulose for which crystal structures have been reported, as a test to determine which might be best for simulations of cellulose itself. Such evaluation is necessary since the reported cellulose crystal structure is not stable in molecular dynamics simulations with any available force field. The present simulations found that all three resulted in small deviations from the reported crystal structures, but that all were reasonably accurate and none was clearly superior to the others for the entire suite of structures examined.

  20. A Navier-Stokes phase-field crystal model for colloidal suspensions

    SciTech Connect

    Praetorius, Simon Voigt, Axel

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.

  1. Influence of Acoustic Field Structure on Polarization Characteristics of Acousto-optic Interaction in Crystals

    NASA Astrophysics Data System (ADS)

    Muromets, A. V.; Trushin, A. S.

    Influence of acoustic field structure on polarization characteristics of acousto-optic interaction is investigated. It is shown that inhomogeneity of acoustic field and mechanism of ultrasound excitation causes changes in values of acousto-optic figure of merit for ordinary and extraordinary light beams in comparison with theoretic values. The theoretic values were derived under assumption that acoustic wave is homogeneous. Experimental analysis was carried out in acousto-optic cell based on lithium niobate crystal where the acoustic wave propagates at the angle 13 degrees to Z axis of the crystal. We used three different methods of ultrasound generation in the crystal: by means of external piezotransducer, by interdigital transducer and by two sets of electrodes placed on top of the crystal surface. In the latter case, the first pair of the electrodes was directed along X crystal axis, while the second pair of the electrodes was directed orthogonally to X crystal axis and the direction of ultrasound. Obtained values for diffraction efficiencies for ordinary and extraordinary polarized optical beams were qualitatively different which may be caused by spatial inhomogeneity of the generated acoustic waves in the crystal. Structure of acoustic field generated by these sets of electrodes was examined by laser probing. We performed the analysis of the acoustic field intensity using acousto-optic method. A relation of diffraction efficiencies for ordinary and extraordinary light waves was measured during each iteration of the laser probing.

  2. Modified phase-field-crystal model for solid-liquid phase transitions

    NASA Astrophysics Data System (ADS)

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Tang, Sai

    2015-07-01

    A modified phase-field-crystal (PFC) model is proposed to describe solid-liquid phase transitions by reconstructing the correlation function. The effects of fitting parameters of our modified PFC model on the bcc-liquid phase diagram, numerical stability, and solid-liquid interface properties during planar interface growth are examined carefully. The results indicate that the increase of the correlation function peak width at k =km will enhance the stability of the ordered phase, while the increase of peak height at k =0 will narrow the two-phase coexistence region. The third-order term in the free-energy function and the short wave-length of the correlation function have significant influences on the numerical stability of the PFC model. During planar interface growth, the increase of peak width at k =km will decrease the interface width and the velocity coefficient C , but increase the anisotropy of C and the interface free energy. Finally, the feasibility of the modified phase-field-crystal model is demonstrated with a numerical example of three-dimensional dendritic growth of a body-centered-cubic structure.

  3. Modified phase-field-crystal model for solid-liquid phase transitions.

    PubMed

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Tang, Sai

    2015-07-01

    A modified phase-field-crystal (PFC) model is proposed to describe solid-liquid phase transitions by reconstructing the correlation function. The effects of fitting parameters of our modified PFC model on the bcc-liquid phase diagram, numerical stability, and solid-liquid interface properties during planar interface growth are examined carefully. The results indicate that the increase of the correlation function peak width at k=k(m) will enhance the stability of the ordered phase, while the increase of peak height at k=0 will narrow the two-phase coexistence region. The third-order term in the free-energy function and the short wave-length of the correlation function have significant influences on the numerical stability of the PFC model. During planar interface growth, the increase of peak width at k=k(m) will decrease the interface width and the velocity coefficient C, but increase the anisotropy of C and the interface free energy. Finally, the feasibility of the modified phase-field-crystal model is demonstrated with a numerical example of three-dimensional dendritic growth of a body-centered-cubic structure. PMID:26274309

  4. Phase diagrams of mixtures of a polymer and a cholesteric liquid crystal under an external field.

    PubMed

    Matsuyama, Akihiko

    2014-11-14

    We present a mean field theory to describe phase behaviors in mixtures of a polymer and a cholesteric liquid crystal under an external magnetic or electric field. Taking into account a chiral coupling between a polymer and a liquid crystal under the external field, we examine twist-untwist phase transitions and phase separations in the mixtures. It is found that a cholesteric-nematic phase transition can be induced by not only the external field but also concentration and temperature. Depending on the strength of the external field, we predict cholesteric-paranematic (Ch+pN), nematic-paranematic (N+pN), cholesteric-nematic (Ch+N) phase separations, etc., on the temperature-concentration plane. We also discuss mixtures of a non-chiral nematic liquid crystal and a chiral dopant. PMID:25399158

  5. Phase diagrams of mixtures of a polymer and a cholesteric liquid crystal under an external field

    SciTech Connect

    Matsuyama, Akihiko

    2014-11-14

    We present a mean field theory to describe phase behaviors in mixtures of a polymer and a cholesteric liquid crystal under an external magnetic or electric field. Taking into account a chiral coupling between a polymer and a liquid crystal under the external field, we examine twist-untwist phase transitions and phase separations in the mixtures. It is found that a cholesteric-nematic phase transition can be induced by not only the external field but also concentration and temperature. Depending on the strength of the external field, we predict cholesteric-paranematic (Ch+pN), nematic-paranematic (N+pN), cholesteric-nematic (Ch+N) phase separations, etc., on the temperature-concentration plane. We also discuss mixtures of a non-chiral nematic liquid crystal and a chiral dopant.

  6. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, N. K.; Swanson, G.

    2002-01-01

    High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297

  7. Terahertz field enhancement via coherent superposition of the pulse sequences after a single optical-rectification crystal

    SciTech Connect

    Sajadi, Mohsen Wolf, Martin; Kampfrath, Tobias

    2014-03-03

    Terahertz electromagnetic pulses are frequently generated by optical rectification of femtosecond laser pulses. In many cases, the efficiency of this process is known to saturate with increasing intensity of the generation beam because of two-photon absorption. Here, we demonstrate two routes to reduce this effect in ZnTe(110) crystals and enhance efficiency, namely, by (i) recycling the generation pulses and by (ii) splitting each generation pulse into two pulses before pumping the crystal. In both methods, the second pulse arrives ∼1 ns after the first one, sufficiently long for optically generated carriers to relax. Enhancement is achieved by coherently superimposing the two resulting terahertz fields.

  8. Effect of Co2+ doping on solubility, crystal growth and properties of ADP crystals

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Shkir, Mohd.; AlFaify, S.; Yahia, I. S.

    2016-09-01

    Bulk size crystal growth of ADP with different concentrations doping of cobalt (Co2+) has been done by low cost slow evaporation technique at ambient conditions. The solubility measurement was carried out on pure and doped crystals and found that the solubility is decreasing with doping concentrations. The presence of Co2+ ion in crystalline matrix of ADP has been confirmed by structural, vibrational and elemental analyses. Scanning electron microscopic study reveals that the doping has strong effect on the quality of the crystals. The optical absorbance and transmission confirms the enhancement of quality of ADP crystals due to Co2+ doping and so the optical band gap. Further the dislocation, photoluminescence, dielectric and mechanical studies confirms that the properties of grown crystals with Co2+ doping has been enriched and propose it as a better candidate for optoelectronic applications.

  9. Visualization of acoustic cavitation effects on suspended calcite crystals.

    PubMed

    Wagterveld, R M; Boels, L; Mayer, M J; Witkamp, G J

    2011-01-01

    The acoustic cavitation (42,080 Hz, 7.1 W cm(-2) or 17 W) effects on suspended calcite crystals, sized between 5 and 50 μm, have been visualized for the first time using high speed photography. High speed recordings with a duration of 1 s containing up to 300,000 frames per second, revealed the effect of cluster and streamer cavitation on several calcite crystals. Cavitation clusters, evolved from cavitation inception and collapse, caused attrition, disruption of aggregates and deagglomeration, whereas streamer cavitation was observed to cause deagglomeration only. Cavitation on the surface gave the crystals momentum. However, it is shown that breakage of accelerated crystals by interparticle collisions is unrealistic because of their small sizes and low velocities. Crystals that were accelerated by bubble expansion, subsequently experienced a deceleration much stronger than expected from drag forces, upon bubble collapse. Experiments with pre-dried crystals seemed to support the current theory on bubble nucleation through the presence of pre-existing gas pockets. However, experiments with fully wetted crystals also showed the nucleation of bubbles on the crystal surface. Although microjet impingement on the crystal surface could not be directly visualized with high speed photography, scanning electron microscopy (SEM) analysis of irradiated calcite seeds showed deep circular indentations. It was suggested that these indentations might be caused by shockwave induced jet impingement. Furthermore, the appearance of voluminous fragments with large planes of fracture indicated that acoustic cavitation can also cause the breakage of single crystal structures.

  10. Changes in crystal structure and physicochemical properties of potato starch treated by induced electric field.

    PubMed

    Li, Dandan; Yang, Na; Jin, Yamei; Zhou, Yuyi; Xie, Zhengjun; Jin, Zhengyu; Xu, Xueming

    2016-11-20

    The effects of induced electric field (IEF) on the crystal structure and physicochemical properties of potato starch were investigated by subjecting identically treated control and electrically-modified samples to the same temperature history. Additionally, a method of combining IEF with heating for efficient modification of native polymer was also proposed. Results showed that the application of IEF at an electric voltage of 75V has a statistically significant effect on starch gelatinization and pasting properties, especially when combined with heating at 50°C. After treatment by the combination method for 96h, the gelatinization temperatures increased, which can be explained by the slight increase in the ratio of 1044/1015cm(-1) and relative crystallinity. Furthermore, IEF reduced granular swelling and therefore contributed to decreasing the peak, breakdown, and setback viscosity of potato starch. This study explores the potential of IEF as innovative technology for starch modification. PMID:27561526

  11. Changes in crystal structure and physicochemical properties of potato starch treated by induced electric field.

    PubMed

    Li, Dandan; Yang, Na; Jin, Yamei; Zhou, Yuyi; Xie, Zhengjun; Jin, Zhengyu; Xu, Xueming

    2016-11-20

    The effects of induced electric field (IEF) on the crystal structure and physicochemical properties of potato starch were investigated by subjecting identically treated control and electrically-modified samples to the same temperature history. Additionally, a method of combining IEF with heating for efficient modification of native polymer was also proposed. Results showed that the application of IEF at an electric voltage of 75V has a statistically significant effect on starch gelatinization and pasting properties, especially when combined with heating at 50°C. After treatment by the combination method for 96h, the gelatinization temperatures increased, which can be explained by the slight increase in the ratio of 1044/1015cm(-1) and relative crystallinity. Furthermore, IEF reduced granular swelling and therefore contributed to decreasing the peak, breakdown, and setback viscosity of potato starch. This study explores the potential of IEF as innovative technology for starch modification.

  12. Large electrocaloric effects in single-crystal ammonium sulfate.

    PubMed

    Crossley, S; Li, W; Moya, X; Mathur, N D

    2016-08-13

    Electrocaloric (EC) effects are typically studied near phase transitions in ceramic and polymer materials. Here, we investigate EC effects in an inorganic salt, namely ammonium sulfate (NH4)2SO4, with an order-disorder transition whose onset occurs at 223 K on cooling. For a single crystal thinned to 50 μm, we use a Maxwell relation to find a large isothermal entropy change of 30 J K(-1) kg(-1) in response to a field change of 400 kV cm(-1) The Clausius-Clapeyron equation implies a corresponding adiabatic temperature change of 4.5 K.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'. PMID:27402930

  13. Large electrocaloric effects in single-crystal ammonium sulfate.

    PubMed

    Crossley, S; Li, W; Moya, X; Mathur, N D

    2016-08-13

    Electrocaloric (EC) effects are typically studied near phase transitions in ceramic and polymer materials. Here, we investigate EC effects in an inorganic salt, namely ammonium sulfate (NH4)2SO4, with an order-disorder transition whose onset occurs at 223 K on cooling. For a single crystal thinned to 50 μm, we use a Maxwell relation to find a large isothermal entropy change of 30 J K(-1) kg(-1) in response to a field change of 400 kV cm(-1) The Clausius-Clapeyron equation implies a corresponding adiabatic temperature change of 4.5 K.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

  14. Study of Fluid Flow Control In Protein Crystallization Using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F.; Ciszak, E.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in 'microgravity', researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  15. Effects of Convective Transport of Solute and Impurities on Defect-Causing Kinetics Instabilities in Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.

    2003-01-01

    Insight into the crystallization processes of biological macromolecules into crystals or aggregates can provide valuable guidelines in many fundamental and applied fields. Such insight will prompt new means to regulate protein phase transitions in-vivo, e.g., polymerization of hemoglobin S in the red cells, crystallization of crystallins in the eye lens, etc. Understanding of protein crystal nucleation will help achieve narrow crystallite size distributions, needed for sustained release of pharmaceutical protein preparations such as insulin or interferon. Traditionally, protein crystallization studies have been related to the pursuit of crystal perfection needed to improve the structure details provided by x-ray, electron or neutron diffraction methods. Crystallization trials for the purposes of structural biology carried out in space have posed an intriguing question related to the inconsistency of the effects of the microgravity growth on the quality of the crystals.

  16. Phase field modelling of strain induced crystal growth in an elastic matrix

    NASA Astrophysics Data System (ADS)

    Laghmach, Rabia; Candau, Nicolas; Chazeau, Laurent; Munch, Etienne; Biben, Thierry

    2015-06-01

    When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation.

  17. Structural relaxation and crystal field stabilization in Cr3+-containing oxides and silicates

    NASA Astrophysics Data System (ADS)

    Urusov, Vadim S.; Taran, Michail N.

    2012-01-01

    The effect of crystal structure relaxation in oxygen-based Cr3+-containing minerals on the crystal field stabilization energy (CFSE) is considered. It is shown that the dependence of {{CFSE}}_{{{{Cr}}^{ 3+ } }} , which is found from optical absorption spectra, on the average interatomic distances is described by the power function with a negative exponent {c {/ {{bar{R}n }}} {bar{R}n }} , where n approaches 5, as predicted theoretically, for pure Cr3+ compounds, but decreases to 1.0-1.5 for Cr3+-containing oxide and silicate solid solutions. The deviation of the experimental dependence for solid solutions from the theoretical curve is due to structure relaxation, which tends to bring the local structure of Cr3+ ions closer to the structure in the pure Cr compound, thus producing changes in interatomic distances between the nearest neighbors with respect to those in the average structure determined by X-ray diffraction. As a consequence, the mixing enthalpy of Cr3+-bearing solid solutions can be represented by the sum of contributions from lattice strain and CFSE. The latter contribution is most often negative in sign and, therefore, brings the Al-Cr solid solutions close to an ideal solid solution. It is supposed that the increased Cr content in minerals from deep-seated mantle xenoliths and mineral inclusions in diamonds results from the effect of {{CFSE}}_{{{{Cr}}^{ 3+ } }} enhanced by high pressure.

  18. Electric-field variations within a nematic-liquid-crystal layer.

    PubMed

    Cummings, L J; Mema, E; Cai, C; Kondic, L

    2014-07-01

    A thin layer of nematic liquid crystal (NLC) across which an electric field is applied is a setup of great industrial importance in liquid crystal display devices. There is thus a large literature modeling this situation and related scenarios. A commonly used assumption is that an electric field generated by electrodes at the two bounding surfaces of the layer will produce a field that is uniform: that is, the presence of NLC does not affect the electric field. In this paper, we use calculus of variations to derive the equations coupling the electric potential to the orientation of the NLC's director field, and use a simple one-dimensional model to investigate the limitations of the uniform field assumption in the case of a steady applied field. The extension of the model to the unsteady case is also briefly discussed.

  19. Appearance of singularities of optical fields under torsion of crystals containing threefold symmetry axes.

    PubMed

    Skab, Ihor; Vasylkiv, Yurij; Zapeka, Bohdan; Savaryn, Viktoriya; Vlokh, Rostyslav

    2011-07-01

    We present an analysis of the effect of torsion stresses on the spatial distribution of optical birefringence in crystals of different point symmetry groups. The symmetry requirements needed so that the optical beam carries dislocations of the phase front are evaluated for the case when the crystals are twisted and the beam closely corresponds to a plane wave. It is shown that the torsion stresses can produce screw-edge, pure screw, or pure edge dislocations of the phase front in the crystals belonging to cubic and trigonal systems. The conditions for appearance of canonical and noncanonical vortices in the conditions of crystal torsion are analyzed.

  20. The influence of detector size relative to field size in small-field photon-beam dosimetry using synthetic diamond crystals as sensors

    NASA Astrophysics Data System (ADS)

    Ade, N.; Nam, T. L.

    2015-08-01

    The choice of a detector for small-field dosimetry remains a challenge due to the size/volume effect of detectors in small fields. Aimed at selecting a suitable crystal type and detector size for small-field dosimetry, this study investigates the relationship between detector and field size by analysing output factors (OFs) measured with a Diode E (reference detector), a Farmer chamber and synthetic diamond detectors of various types and sizes in the dosimetry of a 6 MV photon beam with small fields between 0.3×0.3 cm2 and 10×10 cm2. The examined diamond sensors included two HPHT samples (HP1 and HP2) and six polycrystalline CVD specimens of optical grade (OG) and detector grade (DG) qualities with sizes between 0.3 and 1.0 cm. Each diamond was encapsulated in a tissue-equivalent probe housing which can hold crystals of various dimensions up to 1.0×1.0×0.1 cm3 and has different exposure geometries ('edge-on' and 'flat-on') for impinging radiation. The HPHT samples were found to show an overall better performance compared to the CVD crystals with the 'edge-on' orientation being a preferred geometry for OF measurement especially for very small fields. For instance, down to a 0.4×0.4 cm2 field a maximum deviation of 1.9% was observed between the OFs measured with Diode E and HP2 in the 'edge-on' orientation compared to a 4.6% deviation in the 'flat-on' geometry. It was observed that for fields below 4×4 cm2, the dose deviation between the OFs measured with the detectors and Diode E increase with increasing detector size. It was estimated from an established relationship between the dose deviation and the ratio of detector size to field size for the detectors that the dose deviation probably due to the volume averaging effect would be >3% when the detector size is >3/4 of the field size. A sensitivity value of 223 nC Gy-1 mm-3 was determined in a 0.5×0.5 cm2 field with HP2 compared to a value of 159.2 nC Gy-1 mm-3 obtained with the diode. The results of this

  1. Far-field detection system for laser beam and crystal alignment

    NASA Astrophysics Data System (ADS)

    Zhang, Jiachen; Liu, Daizhong; Zhu, Baoqiang; Tang, Shunxing; Gao, Yanqi

    2016-03-01

    Laser beam far-field alignment as well as frequency-doubling and frequency-tripling crystal adjustment is very important for high-power laser facility. Separate systems for beam and crystal alignment are generally used while the proposed approach by off-axial grating sampling share common optics for these two functions, reducing both space and cost requirements. This detection system has been demonstrated on the National Laser Facility of Israel. The experimental results indicate that the average far-field alignment error is <5% of the spatial filter pinhole diameter, average autocollimation angle error of crystals is <10 μrad, and average frequency-tripling conversion efficiency is 69.3%, which meet the alignment system requirements on the beam direction and crystals.

  2. Converse flexoelectric effect in the SrTiO3 single crystal

    NASA Astrophysics Data System (ADS)

    Zalesskii, V. G.; Rumyantseva, E. D.

    2014-07-01

    The converse flexoelectric effect in the SrTiO3 single crystal as a response of inhomogeneous strain (bending strain) to an applied electric field has been studied. The temperature dependence of the effect in the temperature range of 77-450 K has been obtained.

  3. Broadband coherent light generation in Raman-active crystals driven by femtosecond laser fields

    NASA Astrophysics Data System (ADS)

    Zhi, Miaochan

    I studied a family of closely connected topics related to the production and application of ultrashort laser pulses. I achieved broadband cascade Raman generation in crystals, producing mutually coherent frequency sidebands which can possibly be used to synthesize optical pulses as short as a fraction of a femtosecond (fs). Unlike generation using gases, there is no need for a cumbersome vacuum system when working with room temperature crystals. Our method, therefore, shows promise for a compact system. One problem for sideband generation in solids is phase matching, because the dispersion is significant. I solved this problem by using non-collinear geometry. I observed what to our knowledge is a record-large number of spectral sidebands generated in a popular Raman crystal PbWO4 covering infrared, visible, and ultraviolet spectral regions, when I applied two 50 fs laser pulses tuned close to the Raman resonance. Similar generation in diamond was also observed, which shows that the method is universal. When a third probe pulse is applied, a very interesting 2-D color array is generated in both crystals. As many as 40 anti-Stokes and 5 Stokes sidebands are generated when a pair of time-delayed linear chirped pulses are applied to the PbWO4 crystal. This shows that pulses with picosecond duration, which is on the order of the coherence decay time, is more effective for sidebands generation than Fourier transform limited fs pulses. I also studied the technique of fs coherent Raman anti-Stokes scattering (CARS) which is used as a tool for detecting dipicolinic acid, the marker molecule for bacterial spores. I observed that there is a maximum when the concentration dependence of the near-resonant CARS signal is measured. I presented a model to describe this behavior, and found an analytical solution that agrees with our experimental data. Theoretically, I explored a possible application for single-cycle pulses: laser induced nuclear fusion. I performed both classical

  4. X-ray dynamical diffraction from single crystals with arbitrary shape and strain field: A universal approach to modeling

    NASA Astrophysics Data System (ADS)

    Yan, Hanfei; Li, Li

    2014-01-01

    The effects of dynamical diffraction in single crystals engender many unique diffraction phenomena that cannot be interpreted by the kinematical-diffraction theory, yet knowledge of them is vital to resolving a vast variety of scientific problems ranging from crystal optics to strain measurements in crystalline specimens. Although the fundamental dynamical-diffraction theory was established decades ago, modeling it remains a challenge in a general case wherein the crystal has complex boundaries and mixed diffraction geometries (Bragg or Laue). Here, we propose a universal approach for modeling x-ray dynamical diffraction from a single crystal with arbitrary shape and strain field that is based on the integral representation of the Takagi-Taupin equations. Using it, we can construct the solution iteratively via a converging series, independent of the diffraction geometry. Moreover, the integral equations offer additional insights into the diffraction physics that are not readily apparent in its differential counterparts. To demonstrate this approach, we studied the dynamical diffraction from a slab of single crystal with both Bragg and Laue diffraction excited on the entrance boundaries, a problem that is difficult to model by other methods. We also explored the mirage effect caused by the presence of a linear strain field and compared it to the Eikonal theory. Lastly, we derived a dynamical-diffraction equation correlating the structural properties of a particle to its far-field Bragg-diffraction pattern, shedding light on how dynamical diffraction affects these kinematical-diffraction-based inverse techniques for reconstructing the shape and the strain field.

  5. Segmentation Effect on Inhomogeneity of [110]-Single Crystal Deformation

    NASA Astrophysics Data System (ADS)

    Lychagin, D. V.; Nesterenko, E. A. Alfyorova V. P.

    2016-08-01

    This work presents a detailed analysis of segmentation process in FCC single crystals with compression axis [110] and side faces( ̅110) and (001) considering effect of octahedral shear crystal-geometry and basic stress concentrators. Sequence of meso-band systems formation on side faces is determined. Macro-segmentation patterns are specified, that are common to the FCC single crystals under investigation. It is proved that rectangular shape of highly compressed crystals, elongated in direction of operating planes, is conditioned by orientation symmetry of compression axis, single crystal side faces and shears directions, which are characteristic for the given orientation. The specified patterns are characteristic only for the samples with initial height-to-width ratio equal to 2. When varying sample height relative to the initial one, segmentation patterns will also vary due to crystal geometry variations.

  6. Dielectric Permittivity of Polymer Composites with Encapsulated Liquid Crystals in Strong Electric Fields

    NASA Astrophysics Data System (ADS)

    Zhdanov, K. R.; Romanenko, A. I.; Zharkova, G. M.; Suslyaev, V. I.; Zhuravlev, V. A.

    2013-12-01

    It is demonstrated that the threshold value of the electric Fredericks transition in the composite based on polyvinyl acetate with 35% weight content of nematic liquid crystal 5СВ (4-pentyl-4'-cyanobiphenyl) is observed at a voltage of 60 V. A cell and a circuit for measuring the dielectric permittivity of polymer composites with encapsulated liquid crystals in strong electric fields are described.

  7. Role of the crystal field stabilization energy in the formation of metal(II) formate mixed crystals

    NASA Astrophysics Data System (ADS)

    Balarew, Christo; Stoilova, Donka; Vassileva, Violeta

    A relationship between the distribution coefficient values and the factors determining the isomorphous substitution of some metal(II) formates (Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd) has been found, given by D=[exp⁡{aṡf[ΔR/R]+bṡϕ(Δɛ)+cṡψ(Δs)}/{RT}, where Δ R/R is the relative difference in the ionic radii of the intersubstituting ions, Δɛ is the difference in the Me sbnd O bond energy, Δ s is the difference in the crystal field stabilization energy. The pre-exponential term represents the balance in bonding factors between the ions in the crystal and in the aqueous solution, in the case of ideally mixing in the solid state. The exponential term takes into account the enthalpy of mixing in the solid state. For the isostructural formate salts in which the substitution of a given cation by another one occurs in equivalent octahedral positions, the difference in the crystal field stabilization energy exerts the most important influence on the enthalpy of mixing.

  8. Spectroscopic characterisation and crystal field calculations of varicoloured kyanites from Loliondo, Tanzania

    NASA Astrophysics Data System (ADS)

    Wildner, Manfred; Beran, Anton; Koller, Friedrich

    2013-04-01

    Orange, ochre-coloured, light green and dark blue varieties of kyanite, ideally Al2SiO5, from Loliondo, Tanzania, have been characterised by electron microprobe analysis and polarised infrared and optical absorption spectroscopy. All colour varieties show elevated Fe contents of 0.39 to 1.31 wt.% FeO, but Ti contents only in the range of the EMP detection limit. Orange and ochre-coloured crystals have Mn contents of 0.23 and 0.06 wt.% MnO, respectively, the dark blue kyanite contains 0.28 wt.% Cr2O3, while the light green sample is nearly free from transition metal cations other than Fe. Polarised infrared spectra reveal OH defect concentrations of 3 to 17 wt.ppm H2O with structural OH defects partially replacing the OB (O2) oxygen atoms. Polarised optical absorption spectra show that the colour of all four varieties is governed by crystal field d-d transitions of trivalent cations, i.e. Fe3+ (all samples), Mn3+ (orange and ochre) and Cr3+ (blue kyanite), replacing Al in sixfold coordinated triclinic sites of the kyanite structure. Intervalence charge transfer, the prevalent colour-inducing mechanism in `usual' (Cr-poor) blue kyanites, seems to play a very minor, if any, role in the present samples. Crystal field calculations in both a `classic' tetragonal and in the semiempirical Superposition Model approach, accompanied by distance- and angle-least-squares refinements, indicate that Fe3+ preferably occupies the Al4 site, Cr3+ prefers the Al1 and Al2 sites, and Mn3+ predominantly enters the Al1 site. In each case specific local relaxation effects were observed according to the crystal chemical preferences of these transition metal cations. Furthermore, the high values obtained in the calculations for the interelectronic repulsion parameter Racah B correspond to a high ionic contribution to Me3+-O bonding in the kyanite structure. In the particular case of the blue sample, band positions specifically related to the high Racah B value enable this `unusual' type of

  9. Liquid crystal cell design of VGA field sequential color LCoS display

    NASA Astrophysics Data System (ADS)

    Liu, Yanyan; Geng, Weidong; Dai, Yongping

    2009-07-01

    The design of liquid crystal cell is an important factor to determine the display quality of LCoS display device. The goal of this paper is to gain VGA field sequential color (FSC) LCoS device used for near-to-eye system. The characteristics of optics and electrooptics for the twist nematic liquid crystal material and the material requirements of the FSC LCoS were studied. The LCOS liquid crystal cell optimized by dynamic parameter space method had an uniform reflectivity (about 90%) for the light with wave length from 450nm to 650nm. Both considering the electrooptic response curve of liquid crystal and the relationship between the contrast ratio and pixel size, we determined to use high speed twist nematic liquid crystal working in normally white mode. The liquid crystal cell gap and the pixel size were determined as 2.5um and 12um, respectively. The VGA FSC LCoS device was fabricated with SMIC 0.35um CMOS process and filled with LC-A liquid crystal of Merck in Varitronix. The measurement showed that the response time of liquid crystal from light to dark was 1.8ms and from dark to light was 4.4ms. The contrast ratio is bigger than 50:1. The LCoS displays well.

  10. Effect of medicinal plants on the crystallization of cholesterol

    NASA Astrophysics Data System (ADS)

    Saraswathi, N. T.; Gnanam, F. D.

    1997-08-01

    One of the least desirable calcifications in the human body is the mineral deposition in atherosclerosis plaques. These plaques principally consist of lipids such as cholesterol, cholesteryl esters, phospholipids and triglycerides. Chemical analysis of advanced plaques have shown the presence of considerable amounts of free cholesterol identified as cholesterol monohydrate crystals. Cholesterol has been crystallized in vitro. The extracts of some of the Indian medicinal plants detailed below were used as additives to study their effect on the crystallization behaviour of cholesterol. It has been found that many of the herbs have inhibitory effect on the crystallization such as nucleation, crystal size and habit modification. The inhibitory effect of the plants are graded as Commiphora mughul > Aegle marmeleos > Cynoden dactylon > Musa paradisiaca > Polygala javana > Alphinia officinarum > Solanum trilobatum > Enicostemma lyssopifolium.

  11. Memory effect in composites of liquid crystal and silica aerosil

    SciTech Connect

    Relaix, Sabrina; Leheny, Robert L.; Reven, Linda; Sutton, Mark

    2012-02-07

    Aerosil silica nanoparticles dispersed in a liquid crystal (LC) possess the interesting property of keeping memory of an electric- or magnetic-field-induced orientation. Two types of memory have been identified: thermally erasable memory arising from the pinning of defect lines versus a 'permanent' memory where the orientation persists even after thermal cycling the samples up to the isotropic phase. To address the source of the latter type of memory, solid-state nuclear magnetic resonance spectroscopy and conventional x-ray diffraction (XRD) were first combined to characterize the LC orientational order as a function of multiple in-field temperature cycles. Microbeam XRD was then performed on aligned gels of different concentrations to gain knowledge of the structural properties at the origin of the memory effect. No detectable anisotropy of the gel or significant breaking of silica strands with heating ruled out the formation of an anisotropic silica network as the source of the permanent memory as previously proposed. Instead, support for a role of the surface memory effect, well known for planar substrates, in stabilizing the permanent memory was deduced from 'training' of the composites, that is, optimizing the orientational order through the thermal in-field cycling. The ability to train the composites is inversely proportional to the strength of the random-field disorder. The portion of thermally erasable memory also decreases as the silica density increases. We propose that the permanent memory originates from the surface memory effect operating at points of intersection in the silica network. These areas, where the LC is strongly confined with conflicted surface interactions, are trained to achieve an optimized orientation and subsequently act as sites from which the LC orientational order regrows after zero-field thermal cycling up to the isotropic phase.

  12. Atomic density functional and diagram of structures in the phase field crystal model

    NASA Astrophysics Data System (ADS)

    Ankudinov, V. E.; Galenko, P. K.; Kropotin, N. V.; Krivilyov, M. D.

    2016-02-01

    The phase field crystal model provides a continual description of the atomic density over the diffusion time of reactions. We consider a homogeneous structure (liquid) and a perfect periodic crystal, which are constructed from the one-mode approximation of the phase field crystal model. A diagram of 2D structures is constructed from the analytic solutions of the model using atomic density functionals. The diagram predicts equilibrium atomic configurations for transitions from the metastable state and includes the domains of existence of homogeneous, triangular, and striped structures corresponding to a liquid, a body-centered cubic crystal, and a longitudinal cross section of cylindrical tubes. The method developed here is employed for constructing the diagram for the homogeneous liquid phase and the body-centered iron lattice. The expression for the free energy is derived analytically from density functional theory. The specific features of approximating the phase field crystal model are compared with the approximations and conclusions of the weak crystallization and 2D melting theories.

  13. Solidification behavior of high-density polyethylene (HDPE) during injection molding: Correlation between crystallization kinetics and thermal gradient field

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Deng, Yan-Li; Li, Gui-Jing; Miao, Ji-Bin; Xia, Ru; Qian, Jia-Sheng; Chen, Peng; Liu, Jing-Wang

    2015-07-01

    This work mainly investigated the effect of thermal field on the crystallization kinetics of high-density polyethylene (HDPE) during injection molding (IM) process. The thickness X = 0.4 was found to be a crucial location heavily influenced by thermal conduction. The temperature decay tended to be stable, with limited variation of the crystallization rate when X > 0.4. It was observed that the crystallization rate was in good proportion to the cooling rate (ϕ). Our experimental finding showed that the consequence of relative crystallinity (χ) was in agreement with that of the secondary temperature difference (STD). This study is practically significant to the further investigation on the relationship among “processing-structure-property” of polymeric materials.

  14. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1994-01-01

    The long-term stability of the interferometric setup for the monitoring of protein morphologies has been improved. Growth or dissolution of a crystal on a 100 A scale can now be clearly distinguished from dimensional changes occurring within the optical path of the interferometer. This capability of simultaneously monitoring the local interfacial displacement at several widely-spaced positions on the crystal surface with high local depth resolution, has already yielded novel results. We found with lysozyme that (1) the normal growth rate is oscillatory, and (2) the mean growth step density is greater at the periphery of a facet than in its center. The repartitioning of Na(+) and Cl(-) ions between lysozyme solutions and crystals was studied for a wide range of crystallization conditions. A nucleation-growth-repartitioning model was developed to interpret the large body of data in a unified way. The results strongly suggests that (1) the ion to lysozyme ratio in the crystal depends mostly on kinetic rather than crystallographic parameters, and (2) lysozyme crystals possess a salt-rich core with a diameter on the order of 10 microns. The computational model for diffusive-convective transport in protein crystallization (see the First Report) has been applied to a realistic growth cell geometry, taking into account the findings of the above repartitioning studies. These results show that some elements of a moving boundary problem must be incorporated into the model in order to obtain a more realistic description. Our experimental setup for light scattering investigations of aggregation and nucleation in protein solutions has been extensively tested. Scattering intensity measurements with a true Rayleigh scatterer produced systematically increased forward scattering, indicating problems with glare. These have been resolved. Preliminary measurements with supersaturated lysozyme solutions revealed that the scatterers grow with time. Work has begun on a computer program

  15. Liquid Crystal Switching Response by Localized Surface Plasmon Induced Electric Fields

    NASA Astrophysics Data System (ADS)

    Nuno, Zachary; Hirst, Linda; Ghosh, Sayantani

    2013-03-01

    We investigate the effect of electric fields induced by localized surface plasmons (LSPs) from gold nanoparticles (AuNPs) on the director of a nematic liquid crystal (LC). We deposit LC thin films on a self-assembled AuNP layer and excite the LSPs in the AuNPs using 530 nm excitation light. Using polarized optical microscopy we follow the birefringence of the LC film as the excitation is turned on and off and observe the homeotropic alignment of the LC change to planar. This realignment response is observed to be dependent on the excitation wavelength, excitation power, and temperature; occurring only within 1 degree Celsius of the LC phase transition from nematic to isotropic. This work was funded by UC Merced GRC Summer Fellowship.

  16. Poisson-Boltzmann equation and electro-convective instability in ferroelectric liquid crystals: a mean-field approach

    NASA Astrophysics Data System (ADS)

    Lahiri, T.; Pal Majumder, T.; Ghosh, N. K.

    2014-07-01

    Commercialization of ferroelectric liquid crystal displays (FLCDs) suffers from mechanical and electro-convective instabilities. Impurity ions play a pivotal role in the latter case, and therefore we developed a mean-field type model to understand the complex role of space charges, particularly ions in a ferroelectric liquid crystal. Considering an effective ion-chirality relation, we obtained a modified Poisson-Boltzmann equation for ions dissolved into a chiral solvent like the ferroelectric smectic phase. A nonuniform director profile induced by the mean electrostatic potential of the ions is then calculated by solving an Euler-Lagrange equation for a helically twisted smectic state. A combination of effects resulting from molecular chirality and an electrostatically driven twist created by the ions seems to produce this nonuniform fluctuation in the director orientation. Finally, both theoretical and experimental points of view are presented on the prediction of this mean-field model.

  17. Semiconductor crystal growth in crossed electric and magnetic fields: Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    1996-01-01

    A unique growth cell was designed in which crossed electric and magnetic fields could be separately or simultaneously applied during semiconductor crystal growth. A thermocouple was inserted into an InSb melt inside the growth cell to examine the temperature response of the fluid to applied electromagnetic fields. A static magnetic field suppressed time-dependent convection when a destabilizing thermal field was applied. The simultaneous application of electric and magnetic fields resulted in forced convection in the melt. The InSb ingots grown in the cell were polycrystalline. An InGaSb crystal, 0.5 cm in diameter and 23-cm long, was grown without electromagnetic fields applied. The axial composition results indicated that complete mixing in the melt occurred for this large aspect ratio.

  18. Distinctive features of a crystal, crystal-like properties of a liquid and atomic quantum effects

    NASA Astrophysics Data System (ADS)

    Pavlov, V. V.

    2008-02-01

    It is believed that 'a crystal is similar to the crowd which is tightly compressed within enclosed space' and its structure in the simplest case is similar to the closest ball packing. Based on this assumption the strength of a crystal, long range ordering, the granular structure, capability for polymorphic transformation etc. were deduced. In a liquid such properties are impossible even in feebly marked form. However some of crystal-like features of melts are revealed in experiments and they frequently remain unacknowledged with a theory. From the other hand, computer model of crystal does not give even listed distinctive features of a crystal state. In the classical model the solidification more than to sunflower oil consistence was not obtained. It is possible to reach the real solidification if quantum 'freezing' of a part of atomic degrees of freedom would taken into account and any movement would stopped at zero energy level. There are some reasons to believe that another crystal properties and corresponding crystal-like features of liquids also can be got basing on these atomic quantum effects. In this case the reasons of many discussions on 'heredity', 'memory' of liquid and its microheterogeneity disappear.

  19. Polarized photocurrent response in black phosphorus field-effect transistors.

    PubMed

    Hong, Tu; Chamlagain, Bhim; Lin, Wenzhi; Chuang, Hsun-Jen; Pan, Minghu; Zhou, Zhixian; Xu, Ya-Qiong

    2014-08-01

    We investigate electrical transport and optoelectronic properties of field effect transistors (FETs) made from few-layer black phosphorus (BP) crystals down to a few nanometers. In particular, we explore the anisotropic nature and photocurrent generation mechanisms in BP FETs through spatial-, polarization-, gate-, and bias-dependent photocurrent measurements. Our results reveal that the photocurrent signals at BP-electrode junctions are mainly attributed to the photovoltaic effect in the off-state and photothermoelectric effect in the on-state, and their anisotropic feature primarily results from the directional-dependent absorption of BP crystals.

  20. Molecular dynamics simulation of the nematic liquid crystal phase in the presence of an intense magnetic field

    NASA Astrophysics Data System (ADS)

    Satoh, Katsuhiko

    2006-04-01

    The influence of an intense external field on the dynamics of the nematic liquid crystal phase is investigated using a molecular dynamics simulation for the Gay-Berne nematogen under isobaric-isothermal conditions. The molecular dynamics as a function of the second-rank orientational order parameter ⟨P2⟩ for a system consisting of a nematic liquid crystal in the presence of an intense magnetic field is compared with that of a similar system without the field. The translational motion of molecules is determined as a function of the translational diffusion coefficient tensor and the anisotropy and compared with the values predicted theoretically. The rotational dynamics of molecules is analyzed using the first- and the second-rank orientational time correlation functions. The translational diffusion coefficient parallel with respect to the director is constrained by the intense field, although the perpendicular one is decreased as the ⟨P2⟩ is increased, just as it is in the system without the field. However, no essential effect of the strong magnetic field is observed in the rotational molecular dynamics. Further, the rotational diffusion coefficient parallel with respect to the director obtained from the first-rank orientational time correlation function in the simulation is qualitatively in agreement with that in the real nematic liquid crystalline molecules. The ⟨P2⟩ dependence of the rotational diffusion coefficient for the system with the intense magnetic field shows a tendency similar to that for the system without the field.

  1. A Monte Carlo study of the Blume-Capel thin film in the presence of a random crystal field

    NASA Astrophysics Data System (ADS)

    Boughrara, M.; Kerouad, M.; Zaim, A.

    2016-07-01

    A Monte Carlo simulation with heat bath algorithm is used to study the effect of random crystal field and surface exchange interactions on the critical behavior and the magnetic properties of a spin-1 Ising ferromagnetic thin film having the simple cubic symmetry. The phase diagram exhibits a rich variety of behaviors such as the double reentrant phenomena and the existence of tricritical points. Thermal magnetization behavior and phase diagrams have been discussed in detail.

  2. Effect of gamma ray irradiation on sodium borate single crystals

    NASA Astrophysics Data System (ADS)

    Kalidasan, M.; Asokan, K.; Baskar, K.; Dhanasekaran, R.

    2015-12-01

    In this work, the effects of 5 kGy, 10 kGy and 20 kGy doses of gamma ray irradiation on sodium borate, Na2[B4O5(OH)4]·(H2O)8 single crystals have been studied. Initially these crystals were grown by solution growth technique and identified as monoclinic using X-ray diffraction analysis. X-ray rocking curves confirm the formation of crystalline defects due to gamma rays in sodium borate single crystals. The electron paramagnetic resonance spectra have been recorded to identify the radicals created due to gamma ray irradiation in sodium borate single crystals. The thermoluminescence glow curves due to the defects created by gamma rays in this crystal have been observed and their kinetic parameters were calculated using Chen's peak shape method. The optical absorption increases and photoluminescence spectral intensity decreases for 5 kGy and 20 kGy doses gamma ray irradiated crystals compared to pristine and 10 kGy dose irradiated one. The effect of various doses of gamma rays on vibrational modes of the sodium borate single crystals was studied using FT-Raman and ATR-FTIR spectral analysis. The dielectric permittivity, conductance and dielectric loss versus frequency graphs of these crystals have been analyzed to know the effect of gamma ray irradiation on these parameters.

  3. Surface effects on the crystallization of ritonavir glass.

    PubMed

    Kawakami, Kohsaku

    2015-01-01

    In our previous study, initiation time of crystallization was shown to be basically expressed as a function of only the reduced temperature, which was a ratio of storage and glass transition temperatures. This conclusion was obtained using quenched glasses with minimized surface area stored under a dried atmosphere. In this study, the surface effects on the crystallization were investigated using freeze-dried ritonavir (RTV) glass. Although quenched RTV glass exhibited exceptionally long initiation time, the initiation was accelerated by using the freeze-dried glasses. Storage of the samples under humid conditions further accelerated the crystallization. These surface effects eliminated the energetic barrier for nucleation, and the RTV glass exhibited universal initiation time. In contrast, subsequent crystal growth was slower for the freeze-dried glasses relative to the quenched one, presumably because of less condensed and porous structures that would suppress molecular cooperativity. Storage under a humid atmosphere also appeared to inhibit the crystal growth, presumably because of disruption of the molecular network by water. These findings support the existence of the universal initiation time for crystallization and indicated the importance of surface effects in crystallization behavior. Also, the suppression of crystal growth because of the void structure and incorporation of water molecules were indicated.

  4. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1995-01-01

    During the fifth semi-annual period under this grant we have pursued the following activities: (1) Characterization of the purity and further purification of lysozyme solutions, these efforts are summarized in Section 2; (2) Crystal growth morphology and kinetics studies with tetragonal lysozyme, our observation on the dependence of lysozyme growth kinetics on step sources and impurities has been summarized in a manuscript which was accepted for publication in the Journal of Crystal Growth; (3) Numerical modelling of the interaction between bulk transport and interface kinetics, for a detailed summary of this work see the manuscript which was accepted for publication in the Journal of Crystal Growth; and (4) Light scattering studies, this work has been summarized in a manuscript that has been submitted for publication to the Journal of Chemical Physics.

  5. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1994-01-01

    A high-resolution microscopic interferometric setup for the monitoring of protein morphologies has been developed. Growth or dissolution of a crystal can be resolved with a long-term depth resolution of 200 A and a lateral resolution of 2 microns. This capability of simultaneously monitoring the interfacial displacement with high local depth resolution has yielded several novel results. We have found with lysozyme that (1) the normal growth rate is oscillatory, and (2) depending on the impurity content of the solution, the growth step density is either greater or lower at the periphery of a facet than in its center. The repartitioning of Na plus and Cl minus ions between lysozyme solutions and crystals was studied for a wide range of crystallization conditions. A nucleation-growth-repartitioning model was developed, to interpret the large body of data in unified way. The results strongly suggest that (1) the ion to lysozyne ratio in the crystal depends mostly on kinetic rather than crystallographic parameters, and (2) lysozyme crystals possess a salt-rich core with a diameter electron microscopy results appear to confirm this finding, which could have far-reaching consequences for x-ray diffraction studies. A computational model for diffusive-convective transport in protein crystallization has been applied to a realistic growth cell geometry, taking into account the findings of the above repartitioning studies and our kinetics data for the growth of lysozyme. The results show that even in the small cell employed, protein concentration nonuniformities and gravity-driven solutal convection can be significant. The calculated convection velocities are of the same order to magnitude as those found in earlier experiments. As expected, convective transport, i.e., at Og, lysozyme crystal growth remains kinetically limited. The salt distribution in the crystal is predicted to be non-uniform at both 1g and 0g, as a consequence of protein depletion in the solution. Static and

  6. Convective flow effects on protein crystal growth

    NASA Astrophysics Data System (ADS)

    Rosenberger, Franz; Monaco, Lisa A.

    A high-resolution microscopic interferometric setup for the monitoring of protein morphologies has been developed. Growth or dissolution of a crystal can be resolved with a long-term depth resolution of 200 A and a lateral resolution of 2 microns. This capability of simultaneously monitoring the interfacial displacement with high local depth resolution has yielded several novel results. We have found with lysozyme that (1) the normal growth rate is oscillatory, and (2) depending on the impurity content of the solution, the growth step density is either greater or lower at the periphery of a facet than in its center. The repartitioning of Na plus and Cl minus ions between lysozyme solutions and crystals was studied for a wide range of crystallization conditions. A nucleation-growth-repartitioning model was developed, to interpret the large body of data in unified way. The results strongly suggest that (1) the ion to lysozyne ratio in the crystal depends mostly on kinetic rather than crystallographic parameters, and (2) lysozyme crystals possess a salt-rich core with a diameter electron microscopy results appear to confirm this finding, which could have far-reaching consequences for x-ray diffraction studies. A computational model for diffusive-convective transport in protein crystallization has been applied to a realistic growth cell geometry, taking into account the findings of the above repartitioning studies and our kinetics data for the growth of lysozyme. The results show that even in the small cell employed, protein concentration nonuniformities and gravity-driven solutal convection can be significant. The calculated convection velocities are of the same order to magnitude as those found in earlier experiments. As expected, convective transport, i.e., at Og, lysozyme crystal growth remains kinetically limited. The salt distribution in the crystal is predicted to be non-uniform at both 1g and 0g, as a consequence of protein depletion in the solution. Static and

  7. The onset of layer undulations in smectic A liquid crystals due to a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Contreras, A.; Garcia-Azpeitia, C.; García-Cervera, C. J.; Joo, S.

    2016-08-01

    We investigate the effect of a strong magnetic field on a three dimensional smectic A liquid crystal. We identify a critical field above which the uniform layered state loses stability; this is associated to the onset of layer undulations. In a previous work García-Cervera and Joo (2012 Arch. Ration. Mech. Anal. 203 1–43), García-Cervera and Joo considered the two dimensional case and analyzed the transition to the undulated state via a simple bifurcation. In dimension n  =  3 the situation is more delicate because the first eigenvalue of the corresponding linearized problem is not simple. We overcome the difficulties inherent to this higher dimensional setting by identifying the irreducible representations for natural actions on the functional that take into account the invariances of the problem thus allowing for reducing the bifurcation analysis to a subspace with symmetries. We are able to describe at least two bifurcation branches, highlighting the richer landscape of energy critical states in the three dimensional setting. Finally, we analyze a reduced two dimensional problem, assuming the magnetic field is very strong, and are able to relate this to a model in micromagnetics studied in Alouges et al (2002 ESAIM Control Optim. Calc. Var. 8 31–68), from where we deduce the periodicity property of minimizers.

  8. A Crystal Field Approach to Orbitally Degenerate SMMs: Beyond the Spin-Only Hamiltonian

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Lakshmi; Marriott, Katie; Murrie, Mark; Hill, Stephen

    Single-Molecule Magnets (SMMs) with large magnetization reversal barriers are promising candidates for high-density information storage. Recently, a large uniaxial magnetic anisotropy was observed for a mononuclear trigonal bipyramidal (TBP) [NiIICl3(Me-abco)2] SMM. High-field EPR studies analyzed on the basis of a spin-only Hamiltonian give ¦D¦>400 cm-1, which is close to the spin-orbit coupling parameter λ = 668 cm-1 for NiII, suggesting an orbitally degenerate ground state. The spin-only description is ineffective in this limit, necessitating the development of a model that includes the orbital moment. Here we describe a phenomenological approach that takes into account a full description of crystal field, electron-electron repulsion and spin-orbit coupling effects on the ground state of a NiII ion in a TBP coordination geometry. The model is in good agreement with the high-field EPR experiments, validating its use for spectroscopic studies of orbitally degenerate molecular nanomagnets. This work was supported by the NSF (DMR-1309463).

  9. The onset of layer undulations in smectic A liquid crystals due to a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Contreras, A.; Garcia-Azpeitia, C.; García-Cervera, C. J.; Joo, S.

    2016-08-01

    We investigate the effect of a strong magnetic field on a three dimensional smectic A liquid crystal. We identify a critical field above which the uniform layered state loses stability; this is associated to the onset of layer undulations. In a previous work García-Cervera and Joo (2012 Arch. Ration. Mech. Anal. 203 1-43), García-Cervera and Joo considered the two dimensional case and analyzed the transition to the undulated state via a simple bifurcation. In dimension n  =  3 the situation is more delicate because the first eigenvalue of the corresponding linearized problem is not simple. We overcome the difficulties inherent to this higher dimensional setting by identifying the irreducible representations for natural actions on the functional that take into account the invariances of the problem thus allowing for reducing the bifurcation analysis to a subspace with symmetries. We are able to describe at least two bifurcation branches, highlighting the richer landscape of energy critical states in the three dimensional setting. Finally, we analyze a reduced two dimensional problem, assuming the magnetic field is very strong, and are able to relate this to a model in micromagnetics studied in Alouges et al (2002 ESAIM Control Optim. Calc. Var. 8 31-68), from where we deduce the periodicity property of minimizers.

  10. Computer-Aided Design of Liquid Crystals: A Mean Field Approach

    NASA Astrophysics Data System (ADS)

    Weider, Titus; Glaser, Matthew A.; Clark, Noel A.

    1997-08-01

    The directed design of soft materials is challenging owing to their complex structure and interactions. A promising strategy for the modeling of organic materials involves the replacement of the explicit condensed phase environment of a molecule or group of molecules by an effective mean field potential. We have created mean field theory-based methods for the routine pre-synthesis prediction of materials properties of liquid crystals, including phase behavior, linear and nonlinear optical properties, and spontaneous polarization density. These methods are semi-empirical in the sense that they rely on experimental data (e.g. from NMR or FTIR measurements) for the development of transferable mean field potentials capable of yielding quantitative predictions for novel materials. Our calculations involve detailed quantum chemical studies of conformational energy surfaces and evaluation of statistical averages by exact enumeration (within an RIS approximation) or importance sampling (for fully flexible molecular models). This strategy appears to have great promise, and represents perhaps the only viable approach to computer-aided design of liquid crystalline materials.

  11. Phase transitional behaviors of bent-cored liquid crystal in electric field

    NASA Astrophysics Data System (ADS)

    Peng, Huan-Gao; Zhou, Zicong; Merlitz, Holger; Wu, Chen-Xu

    2016-06-01

    Monte Carlo (MC) simulations based on lattice model were performed to study the phase diagram (anisotropy, uniaxiality and biaxiality) of liquid crystals formed by bent-cored molecules with a strong transverse dipole moment deviating from their angular bisector. It is shown that the asymmetric strong dipolar interaction enhances biaxiality slightly but encourages uniaxiality greatly and as a result suppresses the system's isotropic order, which is different from a system free from external field in that dipole moment increases biaxiality by suppressing the uniaxial and the isotropic orders simultaneously. It is also found that an external electric field encourages the biaxiality slightly but considerably enhances the uniaxiality of bent-cored liquid crystal.

  12. Effect of mechanical deformation on the electrical properties of organic single crystals

    NASA Astrophysics Data System (ADS)

    Reyes-Martinez, Marcos; Crosby, Alfred; Briseno, Alejandro

    2014-03-01

    Despite efforts in the flexible electronics field, relatively little research quantified the effects of mechanical strain on the electrical properties of organic single crystals (OSCs) and their device performance in deformed geometries. Single crystals of organic semiconductors are ideal systems for the elucidation of these effects without having to account for imperfections, grain boundaries and other defects. The aim of this presentation is to bring new understanding of the effects of mechanical strain in charge transport phenomena on OSCs. First, the existence of a piezoresistive effect in rubrene crystals is demonstrated and experimentally quantified by the application of in-plane strain along its [010] axis. A piezoresistive coefficient approximately 50 is determined. Second, the effect of local mechanical deformation on the conductive channel is investigated in rubrene single-crystal field-effect transistors. A wrinkling instability is used as a technique to apply local strains of different magnitudes to the conducting channel of field-effect transistors. All devices maintain excellent transistor behavior, and small, reversible changes in performance are observed during wrinkling. This work provides useful knowledge for the effective application of organic semiconductors in strain intensive applications such as pressure sensors, electronic skins and strained-channel organic transistors.

  13. Accurate force fields and methods for modelling organic molecular crystals at finite temperatures.

    PubMed

    Nyman, Jonas; Pundyke, Orla Sheehan; Day, Graeme M

    2016-06-21

    We present an assessment of the performance of several force fields for modelling intermolecular interactions in organic molecular crystals using the X23 benchmark set. The performance of the force fields is compared to several popular dispersion corrected density functional methods. In addition, we present our implementation of lattice vibrational free energy calculations in the quasi-harmonic approximation, using several methods to account for phonon dispersion. This allows us to also benchmark the force fields' reproduction of finite temperature crystal structures. The results demonstrate that anisotropic atom-atom multipole-based force fields can be as accurate as several popular DFT-D methods, but have errors 2-3 times larger than the current best DFT-D methods. The largest error in the examined force fields is a systematic underestimation of the (absolute) lattice energy.

  14. Kerr effect and Kerr constant enhancement in vertically aligned deformed helix ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Shi, Liangyu; Srivastava, Abhishek Kumar; Chigrinov, Vladimir G.; Kwok, Hoi-Sing

    2016-09-01

    In this article, we review recently achieved Kerr effect progress in novel liquid crystal (LC) material: vertically aligned deformed helix ferroelectric liquid crystal (VADHFLC). With an increasing applied electric field, the induced inplane birefringence of LCs shows quadratic nonlinearity. The theoretical calculations and experimental details are illustrated. With an enhanced Kerr constant to 130 nm/V2, this VADHFLC cell can achieve a 2π modulation by a small efficient electric field with a fast response around 100 μs and thus can be employed in both display and photonics devices.

  15. Graphene field-effect devices

    NASA Astrophysics Data System (ADS)

    Echtermeyer, T. J.; Lemme, M. C.; Bolten, J.; Baus, M.; Ramsteiner, M.; Kurz, H.

    2007-09-01

    In this article, graphene is investigated with respect to its electronic properties when introduced into field effect devices (FED). With the exception of manual graphene deposition, conventional top-down CMOS-compatible processes are applied. Few and monolayer graphene sheets are characterized by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The electrical properties of monolayer graphene sandwiched between two silicon dioxide films are studied. Carrier mobilities in graphene pseudo-MOS structures are compared to those obtained from double-gated Graphene-FEDs and silicon metal-oxide-semiconductor field-effect-transistors (MOSFETs).

  16. Electric field generation of Skyrmion-like structures in a nematic liquid crystal.

    PubMed

    Cattaneo, Laura; Kos, Žiga; Savoini, Matteo; Kouwer, Paul; Rowan, Alan; Ravnik, Miha; Muševič, Igor; Rasing, Theo

    2016-01-21

    Skyrmions are particle-like topological objects that are increasingly drawing attention in condensed matter physics, where they are connected to inversion symmetry breaking and chirality. Here we report the generation of stable Skyrmion-like structures in a thin nematic liquid crystal film on chemically patterned patchy surfaces. Using the interplay of material elasticity and surface boundary conditions, we use a strong electric field to quench the nematic liquid crystal from a fully aligned phase to vortex-like nematic liquid crystal structures, centered on patterned patches, which carry two different sorts of topological defects. Numerical calculations reveal that these are Skyrmion-like structures, seeded from the surface boojum topological defects and swirling towards the second confining surface. These observations, supported by numerical methods, demonstrate the possibility to generate, manipulate and study Skyrmion-like objects in nematic liquid crystals on patterned surfaces. PMID:26549212

  17. Crystal field analysis of the absorption spectra and electron phonon interaction in Ca3Sc2Ge3O12:Ni2+

    NASA Astrophysics Data System (ADS)

    Brik, M. G.

    2006-04-01

    Exchange charge model of crystal field [B.Z. Malkin, in: A.A. Kaplyanskii, B.M. Macfarlane (Eds.), Spectroscopy of Solids Containing Rare-earth Ions, North-Holland, Amsterdam, 1987, pp. 33 50.] was used to analyze the energy level schemes of Ni2+ ion at both possible positions (octahedral and tetrahedral) in Ca3Sc2Ge3O12. The crystal field parameters were calculated from the crystal structure data; the crystal field Hamiltonian was diagonalised in the complete basis consisting of 25 wave functions of all LS terms of the Ni2+ ion. Results of calculations are in a good agreement with experimental data. From the experimental spectra available in the literature, the Huang Rhys parameter S=3.5 and effective phonon energy ℏω=200cm were evaluated for the octahedral Ni2+ ion.

  18. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    SciTech Connect

    Zhu, Xiaoyang

    2014-12-10

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering. Organic semiconductors are emerging as viable materials for low-cost electronics and optoelectronics, such as organic photovoltaics (OPV), organic field effect transistors (OFETs), and organic light emitting diodes (OLEDs). Despite extensive studies spanning many decades, a clear understanding of the nature of charge carriers in organic semiconductors is still lacking. It is generally appreciated that polaron formation and charge carrier trapping are two hallmarks associated with electrical transport in organic semiconductors; the former results from the low dielectric constants and weak intermolecular electronic overlap while the latter can be attributed to the prevalence of structural disorder. These properties have lead to the common observation of low charge carrier mobilities, e.g., in the range of 10-5 - 10-3 cm2/Vs, particularly at low carrier concentrations. However, there is also growing evidence that charge carrier mobility approaching those of inorganic semiconductors and metals can exist in some crystalline organic semiconductors, such as pentacene, tetracene and rubrene. A particularly striking example is single crystal rubrene (Figure 1), in which hole mobilities well above 10 cm2/Vs have been observed in OFETs operating at room temperature. Temperature dependent transport and spectroscopic measurements both revealed evidence of free carriers in rubrene. Outstanding questions are: what are the structural features and physical properties that make rubrene so unique? How do we establish fundamental design principles for the development of other organic semiconductors of high mobility? These questions are critically important but not comprehensive, as the nature of

  19. Eu(2+)-Activated Alkaline-Earth Halophosphates, M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) for NUV-LEDs: Site-Selective Crystal Field Effect.

    PubMed

    Kim, Donghyeon; Kim, Sung-Chul; Bae, Jong-Seong; Kim, Sungyun; Kim, Seung-Joo; Park, Jung-Chul

    2016-09-01

    Eu(2+)-activated M5(PO4)3X (M = Ca, Sr, Ba; X = F, Cl, Br) compounds providing different alkaline-earth metal and halide ions were successfully synthesized and characterized. The emission peak maxima of the M5(PO4)3Cl:Eu(2+) (M = Ca, Sr, Ba) compounds were blue-shifted from Ca to Ba (454 nm for Ca, 444 nm for Sr, and 434 nm for Ba), and those of the Sr5(PO4)3X:Eu(2+) (X = F, Cl, Br) compounds were red-shifted along the series of halides, F → Cl → Br (437 nm for F, 444 nm for Cl, and 448 nm for Br). The site selectivity and occupancy of the activator ions (Eu(2+)) in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) crystal lattices were estimated based on theoretical calculation of the 5d → 4f transition energies of Eu(2+) using LCAO. In combination with the photoluminescence measurements and theoretical calculation, it was elucidated that the Eu(2+) ions preferably enter the fully oxygen-coordinated sites in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) compounds. This trend can be well explained by "Pauling's rules". These compounds may provide a platform for modeling a new phosphor and application in the solid-state lighting field. PMID:27494550

  20. A full field, 3-D velocimeter for microgravity crystallization experiments

    NASA Technical Reports Server (NTRS)

    Brodkey, Robert S.; Russ, Keith M.

    1991-01-01

    The programming and algorithms needed for implementing a full-field, 3-D velocimeter for laminar flow systems and the appropriate hardware to fully implement this ultimate system are discussed. It appears that imaging using a synched pair of video cameras and digitizer boards with synched rails for camera motion will provide a viable solution to the laminar tracking problem. The algorithms given here are simple, which should speed processing. On a heavily loaded VAXstation 3100 the particle identification can take 15 to 30 seconds, with the tracking taking less than one second. It seeems reasonable to assume that four image pairs can thus be acquired and analyzed in under one minute.

  1. Effect of impurities on crystal growth rate of ammonium pentaborate

    NASA Astrophysics Data System (ADS)

    Şahin, Ö.; Özdemir, M.; Genli, N.

    2004-01-01

    The effect of sodium chloride, borax and boric acid of different concentrations on the growth rate of ammonium pentaborate octahydrate crystals (APBO) was measured and was found to depend on supersaturation in a fluidized bed crystallizer. The presence of impurities in APBO solution increases the growth rate compared with growth from pure solution. It was found that the presence of sodium chloride, borax and boric acid decreases the reaction rate constant kr, while it increases the mass-transfer coefficient, K, of APBO crystals. In pure aqueous solution, the crystal growth rate of APBO is mainly controlled by diffusion. However, both diffusion and integration steps affect the growth rate of APBO crystals in the presence of sodium chloride, borax and boric acid. The mass-transfer coefficient, K, reaction rate constant, kr and reaction order, r were calculated from general mass-transfer equation by using genetic algorithm method making no assumption.

  2. Deuterium NMR investigations of field-induced director alignment in nematic liquid crystals.

    PubMed

    Sugimura, Akihiko; Luckhurst, Geoffrey R

    2016-05-01

    There have been many investigations of the alignment of nematic liquid crystals by either a magnetic and/or an electric field. The basic features of the important hydrodynamic processes for low molar mass nematics have been characterized for the systems in their equilibrium and non-equilibrium states. These have been created using electric and magnetic fields to align the director and deuterium nuclear magnetic resonance ((2)H NMR) spectroscopy has been used to explore this alignment. Theoretical models based on continuum theory have been developed to complement the experiments and found to describe successfully the static and the dynamic phenomena observed. Such macroscopic behaviour has been investigated with (2)H NMR spectroscopy, in which an electric field in addition to the magnetic field of the spectrometer is used to rotate the director and produce a non-equilibrium state. This powerful technique has proved to be especially valuable for the investigation of nematic liquid crystals. Since the quadrupolar splitting for deuterons observed in the liquid crystal phase is determined by the angle between the director and the magnetic field, time-resolved and time-averaged (2)H NMR spectroscopies can be employed to investigate the dynamic director alignment process in a thin nematic film following the application or removal of an electric field. In this article, we describe some seminal studies to illustrate the field-induced static and dynamic director alignment for low molar mass nematics.

  3. Thermoelectric Magnetohydrodynamic Flow During Crystal Growth with a Moderate or Weak Magnetic Field

    NASA Technical Reports Server (NTRS)

    Khine, Y. Y.; Walker, John S.; Szofran, Frank R.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    This paper treats a steady, axisymmetric melt motion in a cylindrical ampoule with a uniform, axial magnetic field and with an electric current due to a radial temperature variation along the crystal-melt interface, where the values of the absolute thermoelectric power for the crystal and melt are different. The radial component of the thermoelectric current in the melt produces an azimuthal body force, and the axial variation of the centrifugal force due to the azimuthal motion drives a meridional circulation with radial and axial velocities. For moderate magnetic field strengths, the azimuthal velocity and magnetic field produce a radial induced electric field which partially cancels the Seebeck electromotive force in the melt, so that the thermoelectric current and the melt motion are coupled. For weak magnetic fields, the thermoelectric current is decoupled from the melt motion, which is an ordinary hydrodynamic flow driven by a known azimuthal body force. The results show how the flow varies with the strength of the magnetic field and with the magnitude of the temperature variation along the crystal-melt interface. They also define the parameter ranges for which the simpler weak-field decoupled analysis gives accurate predictions.

  4. Two-prism crystal structures for far-field imaging of subwavelength features at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Barros, D. A.; Dumelow, T.

    2016-08-01

    We investigate how a system of two single crystals can be used for far field imaging of subwavelength features. We make use of the phonon response to induce canalization of narrow collimated beams in crystals with suitably high anisotropy at the appropriate transverse optical phonon frequency. By cutting the crystals into suitably designed prisms, we show that an magnified image can be obtained and projected into the far field by a two-prism structure, noting that a single prism does not give a faithful reproduction of the object and will usually result in total internal reflection of most of the radiation. We show simulations using triglycine sulphate, which is both highly anisotropic and has very low absorption, at low temperature.

  5. Strong crystal size effect on deformation twinning.

    PubMed

    Yu, Qian; Shan, Zhi-Wei; Li, Ju; Huang, Xiaoxu; Xiao, Lin; Sun, Jun; Ma, Evan

    2010-01-21

    Deformation twinning in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium's ideal strength. We develop a 'stimulated slip' model to explain the strong size dependence of deformation twinning. The sample size in transition is relatively large and easily accessible in experiments, making our understanding of size dependence relevant for applications.

  6. Strong crystal size effect on deformation twinning.

    PubMed

    Yu, Qian; Shan, Zhi-Wei; Li, Ju; Huang, Xiaoxu; Xiao, Lin; Sun, Jun; Ma, Evan

    2010-01-21

    Deformation twinning in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium's ideal strength. We develop a 'stimulated slip' model to explain the strong size dependence of deformation twinning. The sample size in transition is relatively large and easily accessible in experiments, making our understanding of size dependence relevant for applications. PMID:20090749

  7. Effects of ultrasonic fields in the phosphoric acid process

    NASA Technical Reports Server (NTRS)

    Kowalska, E.; Mizera, J.; Jakobiec, H.

    1974-01-01

    A process of apatite decomposition with sulfuric acid was studied under the influence of ultrasound in the phosphoric acid production process. The studies were carried out with and without ultrasonic fields in the reaction mixture, which resembled the mixing ratio used in technical production processes. Ultrasound with a frequency of 20 kHz and an intensity of 1 W/sq cm was used in the studies. A very favorable ultrasonic effect upon the degree of apatite decomposition was observed. The ultrasonic field affects the shape of byproduct gypsum crystals. In the H3PO4 production process without ultrasound, the byproduct gypsum crystallizes as long, thin needles which cause problems in filtration. In the trials involving the application of wound, gypsum crystallized in the form of small platelets possessing a favorable ratio of length to width.

  8. Studying Crystal Growth With the Peltier Effect

    NASA Technical Reports Server (NTRS)

    Larsen, David J., Jr.; Dressler, B.; Silberstein, R. P.; Poit, W. J.

    1986-01-01

    Peltier interface demarcation (PID) shown useful as aid in studying heat and mass transfer during growth of crystals from molten material. In PID, two dissimilar "metals" solid and liquid phases of same material. Current pulse passed through unidirectionally solidifying sample to create rapid Peltier thermal disturbance at liquid/solid interface. Disturbance, measured by thermocouple stationed along path of solidification at or near interface, provides information about position and shape of interface.

  9. Capillarity effects on crystallization kinetics: insulin.

    PubMed

    Reviakine, Ilya; Georgiou, Dimitra K; Vekilov, Peter G

    2003-09-24

    During layerwise growth of crystals, capillarity governs the generation of new crystal layers. Theory predicts that the line tension of the layer edge determines, via the characteristic two-dimensional capillary length L(c), the rates of generation and initial growth of the new layers. To test the correlation between L(c) and the rate of layer generation, we used in situ Tapping Mode Atomic Force Microscopy (TM-AFM) to study the generation and spreading of layers during crystallization of rhombohedral, R3, porcine insulin. We show that crystallization of this insulin form is uniquely suitable for such an investigation due to the linear kinetics of step growth it exhibits. This linear kinetics reflects the abundance of the incorporation sites along the rough steps, the lack of long-range step-step interactions, and the transport control of the growth kinetics. The kinetic coefficients are 7 x 10(-)(3) and 4 x 10(-)(2) cm s(-)(1), respectively, in the absence and presence of the cosolvent acetone-somewhat high for proteins and comparable to values for inorganic systems. We show that (i). the relevant capillary length, the size of a critical quadrangular 2D nucleus L(c), is the main scaling factor for the density of growth steps, while (ii). all steps longer than L(c) grow with a rate determined only by the supersaturation and independent of their length. We explain the divergence of (ii). from theoretical predictions with the high supersaturations typical of the growth of this protein system.

  10. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    SciTech Connect

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  11. Particle trapping and transport achieved via an adjustable acoustic field above a phononic crystal plate

    NASA Astrophysics Data System (ADS)

    Wang, T.; Ke, M.; Qiu, C.; Liu, Z.

    2016-06-01

    We present the design for an acoustic system that can achieve particle trapping and transport using the acoustic force field above a phononic crystal plate. The phononic crystal plate comprised a thin brass plate with periodic slits alternately embedded with two kinds of elastic inclusions. Enhanced acoustic transmission and localized acoustic fields were achieved when the structure was excited by external acoustic waves. Because of the different resonant frequencies of the two elastic inclusions, the acoustic field could be controlled via the working frequency. Particles were transported between adjacent traps under the influence of the adjustable acoustic field. This device provides a new and versatile avenue for particle manipulation that would complement other means of particle manipulation.

  12. Dynamics of electroconvective nematic liquid crystal structures in a nonharmonic electric field

    NASA Astrophysics Data System (ADS)

    Kartavykh, N. N.; Smorodin, B. L.

    2010-10-01

    The emergence of electroconvection in a nematic liquid crystal under the action of a nonharmonic electric field is investigated. Analysis is carried out using a 2D model. We propose new forms of the varying electric field acting on the system, for which subharmonic oscillations exist: (a) electric field of a trapezoidal form and (b) external field varying in accordance with the law of “joined cosines.” The behavior of synchronous excitations in the insulating and conducting regimes, as well as subharmonic oscillations, is analyzed. The parametric instability domains are found, and the critical frequencies of transition between different response regimes are determined. The stability maps of the nematic liquid crystal are constructed on the frequency-voltage amplitude plane.

  13. Observation of the local field distribution in photonic crystal microcavity by SNOM technique

    NASA Astrophysics Data System (ADS)

    Maidykovski, Anton I.; Lebedev, Oleg V.; Dolgova, Tatyana V.; Kazantsev, D. V.; Fedyanin, Andrew A.

    2002-11-01

    The spatial distribution of the local optical field at the cleavage of photonic crystal smicrocavity has been obtained by the scanning near-field optical microscope (SNOM). The localization of optical radiation at microcavity resonant wavelength in the vicinity of the λ/2 spacer layer is demonstrated. Samples of photonic crystal microcavity are prepared from silicon wafer by electrochemical etching technique. The wavelength of the microcavity mode is optimized for resonance with wavelengths of lasers. The image of the spatial distribution of optical field at the cleaved edge of the facing vertically microcavity is observed. Sample is pumped through external single-mode fiber perpendicularly to the microcavity. SNOM operates in the collection mode with the apertureless tip. We observe the localization of the resonant optical field in microcavity but we do not reveal such localization of the radiation at the non-resonant wavelength.

  14. Electric Field-Controlled Crystallizing CaCO3 Nanostructures from Solution.

    PubMed

    Qi, Jian Quan; Guo, Rui; Wang, Yu; Liu, Xuan Wen; Chan, Helen Lai Wah

    2016-12-01

    The role of electric field is investigated in determining the structure, morphology, and crystallographic characteristics of CaCO3 nanostructures crystallized from solution. It is found that the lattice structure and crystalline morphology of CaCO3 can be tailed by the electric field applied to the solution during its crystallization. The calcite structure with cubic-like morphology can be obtained generally without electric field, and the vaterite structure with the morphology of nanorod is formed under the high electric field. The vaterite nanorods can be piled up to the petaliform layers. Both the nanorod and the petaliform layer can have mesocrystal structures which are piled up by much fine units of the rods with the size of several nanometers. Beautiful rose-like nanoflowers can be self-arranged by the petaliform layers. These structures can have potential application as carrier for medicine to involve into metabolism of living cell.

  15. Evidence for preferentail rearrangements of mertensite variants by magnetic field in antiferromagnetic CoO crystal.

    SciTech Connect

    Nie, Z. H.; Ren, Y.; Terai, T.; Wang, Y. D.; Brown, D. E.; Kekeshita, T.

    2009-01-01

    The synchrotron high-energy x-ray diffraction provides the direct crystallographic evidence for the magnetic-field-driven preferential rearrangements of martensite multivariants in antiferromagnetic CoO crystal. When a magnetic field was incrementally applied up to 6 T on the CoO single crystal cooled below the Neel temperature, the martensite variants with the magnetization easy-axis parallel to the magnetic field direction ({rvec H}) were consumed, while the variants with magnetic moments perpendicular to {rvec H} were enhanced. The microscopic origin for the observation is discussed, which provides important information for understanding the magnetic-field-driven strain observed in the antiferromagnetic alloys, with a selection principle on martensite variants different from that found in the ferromagnetic shape memory alloys.

  16. Electric Field-Controlled Crystallizing CaCO3 Nanostructures from Solution

    NASA Astrophysics Data System (ADS)

    Qi, Jian Quan; Guo, Rui; Wang, Yu; Liu, Xuan Wen; Chan, Helen Lai Wah

    2016-03-01

    The role of electric field is investigated in determining the structure, morphology, and crystallographic characteristics of CaCO3 nanostructures crystallized from solution. It is found that the lattice structure and crystalline morphology of CaCO3 can be tailed by the electric field applied to the solution during its crystallization. The calcite structure with cubic-like morphology can be obtained generally without electric field, and the vaterite structure with the morphology of nanorod is formed under the high electric field. The vaterite nanorods can be piled up to the petaliform layers. Both the nanorod and the petaliform layer can have mesocrystal structures which are piled up by much fine units of the rods with the size of several nanometers. Beautiful rose-like nanoflowers can be self-arranged by the petaliform layers. These structures can have potential application as carrier for medicine to involve into metabolism of living cell.

  17. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1995-01-01

    During the fourth semi-annual period under this grant we have pursued the following activities: (1) crystal growth morphology and kinetics studies with tetragonal lysozyme. These clearly revealed the influence of higher molecular weight protein impurities on interface shape; (2) characterization of the purity and further purification of lysozyme solutions. These efforts have, for the first time, resulted in lysozyme free of higher molecular weight components; (3) continuation of the salt repartitioning studies with Seikagaku lysozyme, which has a lower protein impurity content that Sigma stock. These efforts confirmed our earlier findings of higher salt contents in smaller crystals. However, less salt is in corporated into the crystals grown from Seikagaku stock. This strongly suggests a dependence of salt repartitioning on the concentration of protein impurities in lysozyme. To test this hypothesis, repartitioning studies with the high purity lysozyme prepared in-house will be begun shortly; (4) numerical modelling of the interaction between bulk transport and interface kinetics. These simulations have produced interface shapes which are in good agreement with out experimental observations; and (5) light scattering studies on under- and supersaturated lysozyme solutions. A consistent interpretation of the static and dynamic data leaves little doubt that pre-nucleation clusters, claimed to exist even in undersaturated solutions, are not present. The article: 'Growth morphology response to nutrient and impurity nonuniformities' is attached.

  18. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1993-01-01

    The experimental setup for the in-situ high resolution optical monitoring of protein crystal growth/dissolution morphologies was substantially improved. By augmenting the observation system with a temperature-controlled enclosure, laser illumination for the interferometric microscope, and software for pixel by pixel light intensity recording, a height resolution of about two unit cells for lysozyme can now be obtained. The repartitioning of Na(+) and Cl(-) ions between lysozyme solutions and crystals was studied. Quite unexpectedly, it was found that the longer crystals were in contact with their solution, the lower was their ion content. The development of a model for diffusive-convective transport and resulting distribution of the growth rate on facets was completed. Results obtained for a realistic growth cell geometry show interesting differences between 'growth runs' at 1g and 0g. The kinematic viscosity of lysozyme solutions of various supersaturations and salt concentrations was monitored over time. In contrast to the preliminary finding of other authors, no changes in viscosity were found over four days. The experimental setup for light scattering investigations of aggregation and nucleation in protein solutions was completed, and a computer program for the evaluation of multi-angle light scattering data was acquired.

  19. Convective flow effects on protein crystal growth

    NASA Astrophysics Data System (ADS)

    Rosenberger, Franz; Monaco, Lisa A.

    The experimental setup for the in-situ high resolution optical monitoring of protein crystal growth/dissolution morphologies was substantially improved. By augmenting the observation system with a temperature-controlled enclosure, laser illumination for the interferometric microscope, and software for pixel by pixel light intensity recording, a height resolution of about two unit cells for lysozyme can now be obtained. The repartitioning of Na(+) and Cl(-) ions between lysozyme solutions and crystals was studied. Quite unexpectedly, it was found that the longer crystals were in contact with their solution, the lower was their ion content. The development of a model for diffusive-convective transport and resulting distribution of the growth rate on facets was completed. Results obtained for a realistic growth cell geometry show interesting differences between 'growth runs' at 1g and 0g. The kinematic viscosity of lysozyme solutions of various supersaturations and salt concentrations was monitored over time. In contrast to the preliminary finding of other authors, no changes in viscosity were found over four days. The experimental setup for light scattering investigations of aggregation and nucleation in protein solutions was completed, and a computer program for the evaluation of multi-angle light scattering data was acquired.

  20. Structural analysis and crystal-field calculations of Nd3+ in GdxLu1-xTaO4 (x = 0.85) polycrystalline

    NASA Astrophysics Data System (ADS)

    Gao, Jin-Yun; Zhang, Qing-Li; Yang, Hua-Jun; Zhou, Peng-Yu; Sun, Dun-Lu; Yin, Shao-Tang; He, Ye

    2012-10-01

    The crystal structural parameters of Nd3+-doped rare earth orthotantalate GdxLu1-xTaO4 (x = 0.85) are determined by applying the Rietveld refinement to its X-ray diffraction, and its emission and excitation spectra at 77 K are analysed. The relativistic model of ab initio self-consistent DV-Xα method, which is applied to the cluster NdO8 in GdxLu1-xTaO4, and the effective Hamiltonian model are used to investigate its spin—orbit and crystal-field parameters. The free-ions and crystal-field parameters are fitted to the experimental energy levels at 77 K with a root-mean-square deviation of 14.92 cm-1. According to the crystal-field calculations, 96 levels of Nd3+ are assigned. Finally, the fitting results of free-ions and crystal-field parameters are compared with those already reported for Nd3+:YAlO3. The results indicate that the free-ion parameters are similar to those of the Nd3+ in GdxLu1-xTaO4 and YAlO3 hosts, and the crystal-field interaction of Nd3+ in GdxLu1-xTaO4 is stronger than that in YAlO3.

  1. Crystal Field Theory and the Angular Overlap Model Applied to Hydrides of Main Group Elements.

    ERIC Educational Resources Information Center

    Moore, E. A.

    1990-01-01

    Described is how crystal field theory and the angular overlap model can be applied to very simple molecules which can then be used to introduce such concepts as bonding orbitals, MO diagrams, and Walsh diagrams. The main-group compounds are used as examples and a switch to the transition metal complexes. (KR)

  2. Crystal field splitting on D<-->S transitions of atomic manganese isolated in solid krypton

    NASA Astrophysics Data System (ADS)

    Byrne, O.; Collier, M. A.; Ryan, M. C.; McCaffrey, J. G.

    2010-05-01

    Narrow excitation features present on the [Ar]3d64s1aD(J=9/2-1/2)6←[Ar]3d54s2aS1/26 transitions of manganese atoms isolated in solid Kr are analyzed within the framework of weak crystal field splitting. Use of the Wp optical lineshape function allowed identification of multiple zero-phonon lines for individual spin-orbit J states of the a aD6←aS6 transition recorded with laser-induced excitation spectroscopy. Excellent agreement exists between the predicted crystal field splitting patterns for the J levels of the aD6 state isolated in the «red» tetravacancy site of solid Kr. The tetrahedral crystal field of the «red» trapping site splits J >3/2 levels of the aDJ6 and aD7/24 states by approximately 30cm-1. This report represents the first definitive evidence of crystal field splitting, induced by the weak van der Waals interactions between a neutral metal atom and the rare gas atoms surrounding it in a well-defined solid-state site.

  3. Molecular field theory for biaxial smectic A liquid crystals.

    PubMed

    To, T B T; Sluckin, T J; Luckhurst, G R

    2013-10-01

    Thermotropic biaxial nematic phases seem to be rare, but biaxial smectic A phases less so. Here we use molecular field theory to study a simple two-parameter model, with one parameter promoting a biaxial phase and the second promoting smecticity. The theory combines the biaxial Maier-Saupe and McMillan models. We use alternatively the Sonnet-Virga-Durand (SVD) and geometric mean approximations (GMA) to characterize molecular biaxiality by a single parameter. For non-zero smecticity and biaxiality, the model always predicts a ground state biaxial smectic A phase. For a low degree of smectic order, the phase diagram is very rich, predicting uniaxial and biaxial nematic and smectic phases, with the addition of a variety of tricritical and tetracritical points. For higher degrees of smecticity, the region of stability of the biaxial nematic phase is restricted and eventually disappears, yielding to the biaxial smectic phase. Phase diagrams from the two alternative approximations for molecular biaxiality are similar, except inasmuch that SVD allows for a first-order isotropic-biaxial nematic transition, whereas GMA predicts a Landau point separating isotropic and biaxial nematic phases. We speculate that the rarity of thermotropic biaxial nematic phases is partly a consequence of the presence of stabler analogous smectic phases.

  4. High Field Magnetization measurements of uranium dioxide single crystals (P08358- E003-PF)

    SciTech Connect

    Gofryk, K.; Harrison, N.; Jaime, M.

    2014-12-01

    Our preliminary high field magnetic measurements of UO2 are consistent with a complex nature of the magnetic ordering in this material, compatible with the previously proposed non-collinear 3-k magnetic structure. Further extensive magnetic studies on well-oriented (<100 > and <111>) UO2 crystals are planned to address the puzzling behavior of UO2 in both antiferromagnetic and paramagnetic states at high fields.

  5. Electro-optical field sensor using single total internal reflection in electro-optical crystals

    NASA Astrophysics Data System (ADS)

    Kijima, K.; Abe, O.; Shimizu, A.; Nakamura, T.; Kono, H.; Hagihara, S.; Torikai, E.; Hori, H.

    2015-08-01

    A novel electro-optical radio frequency field sensor with simple structure and high sensitivity is realized using single total internal reflection in electro-optical crystals. Without employing any waveguide structures, the minimum detectable electric field strength of the total internal reflection electro-optical-sensor is estimated to 86.52 dB μV/m (21.18 mV/m) at a resolution band width of 100 Hz for a short interaction length.

  6. Faceted growth of primary Al{sub 2}Cu crystals during directional solidification in high magnetic field

    SciTech Connect

    Li, Chuanjun; Ren, Zhongming; Shen, Yu; Wang, Qiuliang; Dai, Yinming; Wang, Hui

    2013-10-21

    The high magnetic field is widely used to modify the crystal morphology. In this work, the effect of the magnetic field on growing behavior of faceted crystals in the Al-40 wt. %Cu alloy was investigated using directional solidification technique. It was found that the faceted growth of primary Al{sub 2}Cu phase was degraded and the primary spacing was reduced upon applying the magnetic field. Additionally, the length of the mushy zone first decreased and then increased with increase of the magnetic field intensity. The quantitative analysis reveals that the shear stress induced by the fluid motion is insufficient to break the atom bonds at the solid-liquid interface. However, both of the thermoelectric magnetic convection (TEMC) and the thermoelectric magnetic force (TEMF) cause dendrites to fracture and reduce the primary spacing. The two effects also weaken the faceting growth. Moreover, the instability of the solid-liquid interface is generated by the TEMF, which further leads to degrade the faceted growth. The length of mushy zone was changed by the TEMC and reached the minimum in the magnetic field of 0.5 T, which is in good agreement with the predicted value (0.83 T)

  7. Application of Terahertz Field Enhancement Effect in Metal Microstructures

    NASA Astrophysics Data System (ADS)

    Nakajima, M.; Kurihara, T.; Tadokoro, Y.; Kang, B.; Takano, K.; Yamaguchi, K.; Watanabe, H.; Oto, K.; Suemoto, T.; Hangyo, M.

    2016-10-01

    Applications of high-field terahertz pulses are attractive in physics and terahertz technology. In this study, two applications related to high-intensity terahertz pulses are demonstrated. The field enhancement effect by subwavelength metallic microstructures is utilized for terahertz excitation measurement. The spin precession dynamics in magnetic materials was induced by a terahertz magnetic field. Spin precession was amplified by one order of magnitude in amplitude by the enhanced magnetic terahertz field in orthoferrite ErFeO3 with metal microstructures. The induced spin dynamics was analyzed and explained by LLG-LCR model. Moreover, a detection method for terahertz pulses was developed using a cholesteric liquid crystal at room temperature without any electronic devices. The beam profile of terahertz pulses was visualized and compared to other methods such as the knife edge method using pyroelectric detector and micro-bolometer array. The liquid crystal terahertz imager is very simple and has good applicability as a portable terahertz-sensing card.

  8. Effect of amino acid doping on the growth and ferroelectric properties of triglycine sulphate single crystals

    SciTech Connect

    Raghavan, C.M.; Sankar, R.; Mohan Kumar, R.; Jayavel, R.

    2008-02-05

    Effect of amino acids (L-leucine and isoleucine) doping on the growth aspects and ferroelectric properties of triglycine sulphate crystals has been studied. Pure and doped crystals were grown from aqueous solution by low temperature solution growth technique. The cell parameter values were found to significantly vary for doped crystals. Fourier transform infrared analysis confirmed the presence of functional groups in the grown crystal. Morphology study reveals that amino acid doping induces faster growth rate along b-direction leading to a wide b-plane and hence suitable for pyroelectric detector applications. Ferroelectric domain structure has been studied by atomic force microscopy and hysteresis measurements reveal an increase of coercive field due to the formation of single domain pattern.

  9. Far-field detection system for laser beams alignment and crystals alignment

    NASA Astrophysics Data System (ADS)

    Liu, D.; Qin, H.; Zhu, B.

    2015-08-01

    Laser beams far-field alignment is very important for the high power laser facility as well as the frequency doubling crystals adjustment. Traditional beams alignment system and crystals alignment system are separated. That means, they use different optical image systems and CCD cameras, which will occupy larger space and use more money. A new farfield detection system of laser beams is presented with a big diffraction grating (37mm*37mm), a set of optical imaging components and a high resolution CCD camera. This detection system, which is fully demonstrated on the National Laser Facility of Israel, can align high power laser facility beams' direction as well as the frequency doubling crystals. The new system occupies small space in the spatial filter through off-axial grating sampling. The experimental results indicate that the average far-field alignment error is less than 5% of spatial filter pinhole diameter, and the average crystals' matching angle error is less than 10urad, which meet the alignment system requirements for beams and crystals.

  10. Rearranging Pionless Effective Field Theory

    SciTech Connect

    Martin Savage; Silas Beane

    2001-11-19

    We point out a redundancy in the operator structure of the pionless effective field theory which dramatically simplifies computations. This redundancy is best exploited by using dibaryon fields as fundamental degrees of freedom. In turn, this suggests a new power counting scheme which sums range corrections to all orders. We explore this method with a few simple observables: the deuteron charge form factor, n p -> d gamma, and Compton scattering from the deuteron. Higher dimension operators involving electroweak gauge fields are not renormalized by the s-wave strong interactions, and therefore do not scale with inverse powers of the renormalization scale. Thus, naive dimensional analysis of these operators is sufficient to estimate their contribution to a given process.

  11. Elasto-optic effect anisotropy in gallium phosphide crystals.

    PubMed

    Mytsyk, B G; Demyanyshyn, N M; Sakharuk, O M

    2015-10-01

    Elasto-optic coefficients of gallium phosphide (GaP) crystals were calculated on the basis of their piezo-optic and elastic coefficients. Surfaces of the spatial distribution of piezo- and elasto-optic effects in these crystals were built. The maxima of the surfaces of the elasto-optic effect and the geometries of acousto-optic interaction that correspond to these maxima were found. Ratios that describe the rotation of optical indicatrix, depending on direction of the action of uniaxial pressure or deformation on cubic crystal, were recorded. It was shown that such rotations induced by mechanical stress do not exceed 1.5° in GaP, but in some cubic crystals they can reach tens of degrees. PMID:26479633

  12. Inflating with large effective fields

    SciTech Connect

    Burgess, C.P.; Cicoli, M.; Quevedo, F.; Williams, M. E-mail: mcicoli@ictp.it E-mail: mwilliams@perimeterinsititute.ca

    2014-11-01

    We re-examine large scalar fields within effective field theory, in particular focussing on the issues raised by their use in inflationary models (as suggested by BICEP2 to obtain primordial tensor modes). We argue that when the large-field and low-energy regimes coincide the scalar dynamics is most effectively described in terms of an asymptotic large-field expansion whose form can be dictated by approximate symmetries, which also help control the size of quantum corrections. We discuss several possible symmetries that can achieve this, including pseudo-Goldstone inflatons characterized by a coset G/H (based on abelian and non-abelian, compact and non-compact symmetries), as well as symmetries that are intrinsically higher dimensional. Besides the usual trigonometric potentials of Natural Inflation we also find in this way simple large-field power laws (like V ∝ φ{sup 2}) and exponential potentials, V(φ) = ∑{sub k}V{sub x}e{sup −kφ/M}. Both of these can describe the data well and give slow-roll inflation for large fields without the need for a precise balancing of terms in the potential. The exponential potentials achieve large r through the limit |η| || ε and so predict r ≅ (8/3)(1-n{sub s}); consequently n{sub s} ≅ 0.96 gives r ≅ 0.11 but not much larger (and so could be ruled out as measurements on r and n{sub s} improve). We examine the naturalness issues for these models and give simple examples where symmetries protect these forms, using both pseudo-Goldstone inflatons (with non-abelian non-compact shift symmetries following familiar techniques from chiral perturbation theory) and extra-dimensional models.

  13. New theoretical results for the Lehmann effect in cholesteric liquid crystals

    NASA Technical Reports Server (NTRS)

    Brand, Helmut R.; Pleiner, Harald

    1988-01-01

    The Lehmann effect arising in a cholesteric liquid crystal drop when a temperature gradient is applied parallel to its helical axis is investigated theoretically using a local approach. A pseudoscalar quantity is introduced to allow for cross couplings which are absent in nematic liquid crystals, and the statics and dissipative dynamics are analyzed in detail. It is shown that the Lehmann effect is purely dynamic for the case of an external electric field and purely static for an external density gradient, but includes both dynamic and static coupling contributions for the cases of external temperature or concentration gradients.

  14. Anomalous bending effect in photonic crystal fibers

    PubMed Central

    Tu, Haohua; Jiang, Zhi; Marks, Daniel. L.; Boppart, Stephen A.

    2010-01-01

    An unexpected transmission loss up to 50% occurs to intense femtosecond pulses propagating along an endlessly single-mode photonic crystal fiber over a length of 1 m. A specific leaky-fiber mode gains amplification along the fiber at the expense of the fundamental fiber mode through stimulated four-wave mixing and Raman scattering, leading to this transmission loss. Bending near the fiber entrance dissipates the propagating seed of this leaky mode, preventing the leaky mode amplification and therefore enhancing the transmission of these pulses. PMID:18542666

  15. Conoscopic analysis of electric field driven planar aligned nematic liquid crystal.

    PubMed

    Ranjini, Radhakrishnan; Matham, Murukeshan Vadakke; Nguyen, Nam-Trung

    2014-05-01

    This paper illustrates the conoscopic observation of a molecular reconstruction occurring across a nematic liquid crystal (NLC) medium in the presence of an external electric field. Conoscopy is an optical interferometric method, employed to determine the orientation of an optic axis in uniaxial crystals. Here a planar aligned NLC medium is used, and the topological changes with respect to various applied voltages are monitored simultaneously. Homogenous planar alignment is obtained by providing suitable surface treatments to the ITO coated cell walls. The variation in the conoscopic interferometric patterns clearly demonstrates the transition from planar to homeotropic state through various intermediate states. PMID:24921859

  16. Simultaneous negative refraction and focusing of fundamental frequency and second-harmonic fields by two-dimensional photonic crystals

    SciTech Connect

    Zhang, Jun; Zhang, Xiangdong

    2015-09-28

    Simultaneous negative refraction for both the fundamental frequency (FF) and second-harmonic (SH) fields in two-dimensional nonlinear photonic crystals have been found through both the physical analysis and exact numerical simulation. By combining such a property with the phase-matching condition and strong second-order susceptibility, we have designed a SH lens to realize focusing for both the FF and SH fields at the same time. Good-quality non-near field images for both FF and SH fields have been observed. The physical mechanism for such SH focusing phenomena has been disclosed, which is different from the backward SH generation as has been pointed out in the previous investigations. In addition, the effect of absorption losses on the phenomena has also been discussed. Thus, potential applications of these phenomena to biphotonic microscopy technique are anticipated.

  17. Glass bead size and morphology characteristics in support of Crystal Mist field experiments

    SciTech Connect

    Einfeld, W.

    1995-03-01

    One of the tasks of the Lethality Group within US Army Space and Strategic Defense Command (USASSDC) is the development of a capability to simulate various missile intercept scenarios using computer codes. Currently under development within USASSDC and its various contractor organizations is a group of codes collected under a master code called PEGEM for Post Event Ground Effects Model. Among the various components of the code are modules which are used to predict atmospheric dispersion and transport of particles or droplets following release at the altitude specified in the missile intercept scenario. The atmospheric transport code takes into account various source term data from the intercept such as: initial cloud size; droplet or particle size distribution; and, total mass of agent released. An ongoing USASSDC experimental program termed Crystal Mist involved release of precision glass beads under various altitude and meteorological conditions to assist in validation and refinement of various codes that are components of PEGEM used to predict particle atmospheric transport and diffusion following a missile intercept. Here, soda-lime glass beads used in the Crystal Mist series of atmospheric transport and diffusion tests were characterized by scanning electron microscopy and automated image processing routines in order to fully define their size distributions and morphology. Four bead size classifications ranging from a median count diameter of 45 to 200 micrometers were found to be approximately spherical and to fall within the supplier`s sizing specifications. Log-normal functions fit to the measured size distributions resulted in geometric standard deviations ranging from 1.08 to 1.12, thereby fulfilling the field trial requirements for a relatively narrow bead size distribution.

  18. Investigation of Three-Dimensional Stress Fields and Slip Systems for FCC Single Crystal Superalloy Notched Specimens

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Magnan, Shannon; Ebrahimi, Fereshteh; Ferroro, Luis

    2004-01-01

    Metals and their alloys, except for a few intermetallics, are inherently ductile, i.e. plastic deformation precedes fracture in these materials. Therefore, resistance to fracture is directly related to the development of the plastic zone at the crack tip. Recent studies indicate that the fracture toughness of single crystals depends on the crystallographic orientation of the notch as well as the loading direction. In general, the dependence of crack propagation resistance on crystallographic orientation arises from the anisotropy of (i) elastic constants, (ii) plastic deformation (or slip), and (iii) the weakest fracture planes (e.g. cleavage planes). Because of the triaxial stress state at the notch tips, many slip systems that otherwise would not be activated during uniaxial testing, become operational. The plastic zone formation in single crystals has been tackled theoretically by Rice and his co-workers and only limited experimental work has been conducted in this area. The study of the stresses and strains in the vicinity of a FCC single crystal notch tip is of relatively recent origin. We present experimental and numerical investigation of 3D stress fields and evolution of slip sector boundaries near notches in FCC single crystal tension test specimens, and demonstrate that a 3D linear elastic finite element model that includes the effect of material anisotropy is shown to predict active slip planes and sectors accurately. The slip sector boundaries are shown to have complex curved shapes with several slip systems active simultaneously near the notch. Results are presented for surface and mid-plane of the specimens. The results demonstrate that accounting for 3D elastic anisotropy is very important for accurate prediction of slip activation near FCC single crystal notches loaded in tension. Results from the study will help establish guidelines for fatigue damage near single crystal notches.

  19. Creating physically-based three-dimensional microstructures: Bridging phase-field and crystal plasticity models.

    SciTech Connect

    Lim, Hojun; Owen, Steven J.; Abdeljawad, Fadi F.; Hanks, Byron; Battaile, Corbett Chandler

    2015-09-01

    In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct link between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.

  20. Simulation of weak anchoring effects on nematic liquid crystal hemispheres

    NASA Astrophysics Data System (ADS)

    Gillen, Sean; Somers, David A. T.; Munday, Jeremy N.

    The free energy of a nematic liquid crystal droplet depends on an interplay between elastic and surface interactions. When the two contributions are of similar magnitude, there exists a transition of the nematic structure of the droplet. Because the two contributions scale differently with length scales, this transition is visible as a function of the size of the droplet. We carry out numerical simulations to explore the use of this transition in measuring surface anchoring energies. This technique could help elucidate alignment forces on liquid crystals, such as those caused by rubbed surfaces, electric fields, or even the Casimir torque. Electrical and Computer Engineering.

  1. Crystal-field splitting of some quintet states of Tb3+ in aluminum garnets

    NASA Astrophysics Data System (ADS)

    Gruber, John B.; Zandi, Bahram; Valiev, Uygun V.; Rakhimov, Sh. A.

    2004-03-01

    A detailed crystal-field splitting analysis is reported for the quintet states 5DJ, 5GJ, and 5LJ of Tb3+(4f8) in the garnets Y3Al5O12(YAG) and Tb3Al5O12(TbAG). In both garnets we assume that Tb3+ ions occupy sites of D2 symmetry in the cubic structure. We have analyzed the optical spectra of Tb3+ between 487 and 349 nm. The absorption spectrum consist of transitions from the ground-state multiplet manifold, 7F6, to individual energy (Stark) levels of the 5D4, 5D3, 5G6, 5L10, 5G5, 5D2, 5G4, and 5L9 multiplet manifolds. An algorithm used successfully by some of us earlier to analyze the spectra of Tm3+(4f12) in YAG is helpful in the present study to establish the crystal quantum labels, Γn(n=1,2,3,4) for individual Stark levels. A lattice-sum model is used to determine an initial set of crystal-field splitting parameters, Bnm. A combined free-ion and crystal-field Hamiltonian is diagonalized for the quintet and septet states. Considerable crystal-field mixing is found among all the quintet states investigated. A least-squares fitting analysis between 130 experimental-to-calculated Stark levels for Tb3+ in YAG gave a rms deviation of 9 cm-1. A least-squares fitting analysis between 136 experimental-to-calculated Stark levels for Tb3+ in TbAG gave a rms deviation of 10 cm-1.

  2. Crystal field excitations in CeCu2Ge2: Revisited employing a single crystal and inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Loewenhaupt, Michael; Faulhaber, Enrico; Schneidewind, Astrid; Deppe, Micha; Hradil, Klaudia

    2012-04-01

    The intermetallic compound, CeCu2Ge2, is the counterpart of the heavy-fermion superconductor CeCu2Si2. CeCu2Ge2 is a magnetically ordering (TN = 4.1K) Kondo lattice with a moderate Sommerfeld coefficient of 140 mJ/ molK2. Earlier inelastic neutron measurements on a polycrystalline sample revealed a doublet ground state and a quasi-quartet excited state at 16.5 meV, although a splitting of the 4f1 (J = 5/2) ground state multiplet into 3 doublets is expected from the point symmetry of the Ce3+ ions. We performed detailed inelastic neutron scattering experiments on a single crystal at the thermal triple-axis spectrometer PUMA at FRM II for different crystallographic directions. From our results we infer that the quasi-quartet, in fact, consists of two doublets at 17.0 and 18.3 meV which exhibit a strong directional dependence of their transition matrix elements to the ground state doublet. Finally, we will present a new set of crystal field parameters.

  3. Magnetic field induced extraordinary photoluminescence enhancement in Er{sup 3+}:YVO{sub 4} single crystal

    SciTech Connect

    Zhang, Junpei; Wang, Xia; Tang, Chaoqun; Zhong, Zhiqiang; Ma, Zongwei; Wang, Shaoliang; Han, Yibo; Han, Jun-Bo Li, Liang

    2015-08-28

    A bright green photoluminescence (PL) from {sup 4}S{sub 3∕2} → {sup 4}I{sub 15∕2} emission band in Er{sup 3+}:YVO{sub 4} single crystal has been observed with the excitation of an argon laser at 488.0 nm. More than two orders of PL enhancement have been obtained under the effect of magnetic fields, and the enhancement factor f reaches 170 when the applied magnetic field is 7.7 T under the sample temperature of 4.2 K. Unusually, the PL enhancements only happen at some certain magnetic fields (B{sub c}s), and a decrease of sample temperature will lead to the increase of f and decrease of B{sub c}. The results confirm that this PL enhancement originates from the resonance excitation of the electron transitions induced by the cross of the laser energy and the absorption energy modulated by both the magnetic field and temperature. This special PL enhancement in Er{sup 3+}:YVO{sub 4} single crystal can be applied in the calibration of pulsed high magnetic field, detection of material fine energy structures, and modulation of magneto-optical devices.

  4. Specific features of attenuated light transmission by liquid-crystal twist cells in constant and alternating electric fields

    NASA Astrophysics Data System (ADS)

    Konshina, E. A.; Amosova, L. P.

    2012-07-01

    Optical transmission characteristics of dual-frequency nematic liquid crystal (NLC) twist cells with different alignment layers (rubbed polyimide and obliquely deposited cerium dioxide) have been studied in constant and alternating electric fields. It has been established that a change in the optical (twist effect) threshold and dynamic range of attenuated transmission depend both on the boundary conditions (that influence the screening of applied voltage) and on the parameters of the applied electric field. The maximum dynamic range (49.5 dB) has been obtained in the cell with a CeO2 alignment layer controlled by a constant potential. In the case of an alternating electric field, the dynamic range decreases because of reduced effective voltage.

  5. Large low-field positive magnetoresistance in nonmagnetic half-Heusler ScPtBi single crystal

    NASA Astrophysics Data System (ADS)

    Hou, Zhipeng; Wang, Yue; Liu, Enke; Zhang, Hongwei; Wang, Wenhong; Wu, Guangheng

    2015-11-01

    High-quality nonmagnetic half-Heusler ScPtBi single crystals were synthesized by a Bi self-flux method. This compound was revealed to be a hole-dominated semimetal with a large low-field magnetoresistance up to 240% at 2 K in a magnetic field of 1 T. Magneto-transport measurements demonstrated that the large low-field magnetoresistance effect resulted from the coexistence of field-induced metal-semiconductor transition and weak-antilocalization effect. Moreover, Hall measurements indicated that ScPtBi single crystal showed a high mobility over a wide temperature region even up to room temperature (4050 cm2V-1s-1 at 2 K-2016 cm2V-1s-1 at 300 K). These findings not only suggest the nonmagnetic ScPtBi semimetal a potential material candidate for applications in high-sensitivity magnetic sensors but also are of great significance to comprehensively understand the rare-earth based half-Heusler compounds.

  6. Mechanism Analysis of the Inverse Doppler Effect in Two-Dimensional Photonic Crystal based on Phase Evolution

    PubMed Central

    Jiang, Qiang; Chen, Jiabi; Wang, Yan; Liang, Binming; Hu, Jinbing; Zhuang, Songlin

    2016-01-01

    Although the inverse Doppler effect has been observed experimentally at optical frequencies in photonic crystal with negative effective refractive index, its explanation is based on phenomenological theory rather than a strict theory. Elucidating the physical mechanism underlying the inverse Doppler shift is necessary. In this article, the primary electrical field component in the photonic crystal that leads to negative refraction was extracted, and the phase evolution of the entire process when light travels through a moving photonic crystal was investigated using static and dynamic finite different time domain methods. The analysis demonstrates the validity of the use of np (the effective refractive index of the photonic crystal in the light path) in these calculations, and reveals the origin of the inverse Doppler effect in photonic crystals. PMID:27102211

  7. Mechanism Analysis of the Inverse Doppler Effect in Two-Dimensional Photonic Crystal based on Phase Evolution

    NASA Astrophysics Data System (ADS)

    Jiang, Qiang; Chen, Jiabi; Wang, Yan; Liang, Binming; Hu, Jinbing; Zhuang, Songlin

    2016-04-01

    Although the inverse Doppler effect has been observed experimentally at optical frequencies in photonic crystal with negative effective refractive index, its explanation is based on phenomenological theory rather than a strict theory. Elucidating the physical mechanism underlying the inverse Doppler shift is necessary. In this article, the primary electrical field component in the photonic crystal that leads to negative refraction was extracted, and the phase evolution of the entire process when light travels through a moving photonic crystal was investigated using static and dynamic finite different time domain methods. The analysis demonstrates the validity of the use of np (the effective refractive index of the photonic crystal in the light path) in these calculations, and reveals the origin of the inverse Doppler effect in photonic crystals.

  8. Mechanism Analysis of the Inverse Doppler Effect in Two-Dimensional Photonic Crystal based on Phase Evolution.

    PubMed

    Jiang, Qiang; Chen, Jiabi; Wang, Yan; Liang, Binming; Hu, Jinbing; Zhuang, Songlin

    2016-04-22

    Although the inverse Doppler effect has been observed experimentally at optical frequencies in photonic crystal with negative effective refractive index, its explanation is based on phenomenological theory rather than a strict theory. Elucidating the physical mechanism underlying the inverse Doppler shift is necessary. In this article, the primary electrical field component in the photonic crystal that leads to negative refraction was extracted, and the phase evolution of the entire process when light travels through a moving photonic crystal was investigated using static and dynamic finite different time domain methods. The analysis demonstrates the validity of the use of np (the effective refractive index of the photonic crystal in the light path) in these calculations, and reveals the origin of the inverse Doppler effect in photonic crystals.

  9. Mechanism Analysis of the Inverse Doppler Effect in Two-Dimensional Photonic Crystal based on Phase Evolution.

    PubMed

    Jiang, Qiang; Chen, Jiabi; Wang, Yan; Liang, Binming; Hu, Jinbing; Zhuang, Songlin

    2016-01-01

    Although the inverse Doppler effect has been observed experimentally at optical frequencies in photonic crystal with negative effective refractive index, its explanation is based on phenomenological theory rather than a strict theory. Elucidating the physical mechanism underlying the inverse Doppler shift is necessary. In this article, the primary electrical field component in the photonic crystal that leads to negative refraction was extracted, and the phase evolution of the entire process when light travels through a moving photonic crystal was investigated using static and dynamic finite different time domain methods. The analysis demonstrates the validity of the use of np (the effective refractive index of the photonic crystal in the light path) in these calculations, and reveals the origin of the inverse Doppler effect in photonic crystals. PMID:27102211

  10. Photorefractive Bragg gratings in nematic liquid crystals aligned by a magnetic field

    SciTech Connect

    Wiederrecht, G.P.; Wasielewski, M.R. |

    1999-06-01

    Photorefractive Bragg gratings are observed in low-molar-mass nematic liquid crystals doped with electron donor and acceptor molecules. This is accomplished by alignment of the nematic liquid crystals in a 0.3 T magnetic field, which produces thicker homeotropic aligned samples than traditional surfactant techniques. Grating fringe spacings as low as 3.7 {mu}m are achieved with 176-{mu}m-thick samples, producing grating {ital Q} values of 33. Up to this point, low molar mass nematic liquid crystals have exhibited photorefractive gratings with Q{le}1. Asymmetric two-beam coupling and photoconductivity experiments are performed to verify the photorefractive origin of the gratings. {copyright} {ital 1999 American Institute of Physics.}

  11. Selective Precipitation and Concentrating of Perovskite Crystals from Titanium-Bearing Slag Melt in Supergravity Field

    NASA Astrophysics Data System (ADS)

    Gao, Jintao; Zhong, Yiwei; Guo, Zhancheng

    2016-08-01

    Selective precipitation and concentrating of perovskite crystals from titanium-bearing slag melt in the supergravity field was investigated in this study. Since perovskite was the first precipitated phase from the slag melt during the cooling process, and a greater precipitation quantity and larger crystal sizes of perovskite were obtained at 1593 K to 1563 K (1320 °C to 1290 °C), concentrating of perovskite crystals from the slag melt was carried out at this temperature range in the supergravity field, at which the perovskite transforms into solid particles while the other minerals remain in the liquid melt. The layered structures appeared significantly in the sample obtained by supergravity treatment, and all the perovskite crystals moved along the supergravity direction and concentrated as the perovskite-rich phase in the bottom area, whereas the molten slag concentrated in the upper area along the opposite direction, in which it was impossible to find any perovskite crystals. With the gravity coefficient of G = 750, the mass fraction of TiO2 in the perovskite-rich phase was up to 34.65 wt pct, whereas that of the slag phase was decreased to 12.23 wt pct, and the recovery ratio of Ti in the perovskite-rich phase was up to 75.28 pct. On this basis, an amplification experimental centrifugal apparatus was exploited and the continuous experiment with larger scale was further carried out, the results confirming that selective precipitation and concentrating of perovskite crystals from the titanium-bearing slag melt by supergravity was a feasible method.

  12. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory R.

    2000-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.

  13. Vertically-Aligned Single-Crystal Nanocone Arrays: Controlled Fabrication and Enhanced Field Emission.

    PubMed

    Duan, Jing Lai; Lei, Dang Yuan; Chen, Fei; Lau, Shu Ping; Milne, William I; Toimil-Molares, M E; Trautmann, Christina; Liu, Jie

    2016-01-13

    Metal nanostructures with conical shape, vertical alignment, large ratio of cone height and curvature radius at the apex, controlled cone angle, and single-crystal structure are ideal candidates for enhancing field electron-emission efficiency with additional merits, such as good mechanical and thermal stability. However, fabrication of such nanostructures possessing all these features is challenging. Here, we report on the controlled fabrication of large scale, vertically aligned, and mechanically self-supported single-crystal Cu nanocones with controlled cone angle and enhanced field emission. The Cu nanocones were fabricated by ion-track templates in combination with electrochemical deposition. Their cone angle is controlled in the range from 0.3° to 6.2° by asymmetrically selective etching of the ion tracks and the minimum tip curvature diameter reaches down to 6 nm. The field emission measurements show that the turn-on electric field of the Cu nanocone field emitters can be as low as 1.9 V/μm at current density of 10 μA/cm(2) (a record low value for Cu nanostructures, to the best of our knowledge). The maximum field enhancement factor we measured was as large as 6068, indicating that the Cu nanocones are promising candidates for field emission applications.

  14. Biological effects of electromagnetic fields.

    PubMed

    Adey, W R

    1993-04-01

    Life on earth has evolved in a sea of natural electromagnetic (EM) fields. Over the past century, this natural environment has sharply changed with introduction of a vast and growing spectrum of man-made EM fields. From models based on equilibrium thermodynamics and thermal effects, these fields were initially considered too weak to interact with biomolecular systems, and thus incapable of influencing physiological functions. Laboratory studies have tested a spectrum of EM fields for bioeffects at cell and molecular levels, focusing on exposures at athermal levels. A clear emergent conclusion is that many observed interactions are not based on tissue heating. Modulation of cell surface chemical events by weak EM fields indicates a major amplification of initial weak triggers associated with binding of hormones, antibodies, and neurotransmitters to their specific binding sites. Calcium ions play a key role in this amplification. These studies support new concepts of communication between cells across the barriers of cell membranes; and point with increasing certainty to an essential physical organization in living matter, at a far finer level than the structural and functional image defined in the chemistry of molecules. New collaborations between physical and biological scientists define common goals, seeking solutions to the physical nature of matter through a strong focus on biological matter. The evidence indicates mediation by highly nonlinear, nonequilibrium processes at critical steps in signal coupling across cell membranes. There is increasing evidence that these events relate to quantum states and resonant responses in biomolecular systems, and not to equilibrium thermodynamics associated with thermal energy exchanges and tissue heating.

  15. White Synchortron Radiation Topography of (1????10) Nickel Single Crystal. The Influence of a (1????10) Magnetic Field

    NASA Astrophysics Data System (ADS)

    Stephenson, J. D.

    1982-05-01

    Changes in 70.53° magnetic domain structure on the surface of a perfect (11¯0) nickel crystal have been observed using white synchrotron X-radiation topography. The crystal was influenced by a variable [11¯0] magnetic field. At field strengths ≿ 100 A/m [111¯]-spike domains, thought to be traces of [011], 70.53° (oblique) magnetic domain walls, appeared within [111]-bands (0.4 mm wide) in the topographs. Reversal of the field produced similar spikes at equivalent field values but in different regions of the crystal.

  16. Cr sup 3+ to Nd sup 3+ energy transfer in substituted GGG in relation to the crystal field distribution

    SciTech Connect

    Monteil, A.; Garapon, C.; Boulon, G. )

    1989-10-20

    In the garnet (Gd, Ca){sub 3} (Ga, Mg, Zr){sub 2} Ga{sub 3} O{sub 12}, Cr{sup 3+} is located in sites of intermediate crystal field strength. This induces a fast energy transfer to Nd{sup 3+}. We have shown that it is possible to differentiate Cr{sup 3+} in sites of rather strong field against sites of rather weak crystal field. Different spectroscopic measurements allow us to conclude that Cr{sup 3+} ions in weaker crystal fields are mainly responsible for the energy transfer to Nd{sup 3+}.

  17. Temperature dependence of Fe/++/ crystal field spectra - Implications to mineralogical mapping of planetary surfaces

    NASA Technical Reports Server (NTRS)

    Sung, C.-M.; Singer, R. B.; Parkin, K. M.; Burns, R. G.; Osborne, M.

    1977-01-01

    Results are reported of Fe(++) crystal field spectral measurements for olivines and pyroxenes up to 400 C. The results are correlated with crystal structure data at elevated temperatures, and the validity of remote-sensed identifications of minerals on hot surfaces of the moon and Mercury is assessed. Two techniques were used to obtain spectra of minerals at elevated temperatures using a spectrophotometer. One employed a diamond cell assembly or a specially designed sample holder to measure polarized absorption spectra of heated single crystals. For the other technique, a sample holder was designed to attach to a diffuse reflectance accessory to produce reflectance spectra of heated powdered samples. Polarized absorption spectra of forsterite at 20-400 C are shown in a graph. Other graphs show the temperature dependence of Fe(++) crystal field bands in olivines, the diffuse reflectance spectra of olivine at 40-400 C, the polarization absorption spectra of orthopyroxene at 30-400 C, the diffuse reflectance spectra of pigeonite at 40-400 C, and unpolarized absorption spectra of lunar pyroxene from Apollo 15 rock 15058.

  18. Phase-field crystal study for the characteristics and influence factors of grain boundary segregation in binary alloys

    NASA Astrophysics Data System (ADS)

    Lu, Yan-Li; Hu, Ting-Ting; Mu, Hong; Chen, Zheng; Zhang, Liu-Chao

    2014-07-01

    Grain boundary segregation strongly modifies grain boundary behaviors and affects the physical and mechanical properties of solid polycrystalline materials. In this paper, we study the grain boundary segregation characteristics and the variation law of grain boundary segregation with temperature, crystal misorientation angle, undercooling, lattice mismatch and the difference of interspecies bond energy and self-bond energy using the binary-alloy phase-field crystal model. The simulation results show that the solute atoms segregate into individual dislocation regions for the low-angle grain boundary while the solute atoms homogeneously segregate into the entire boundary for the high-angle grain boundary with nonzero initial concentration. The degree of segregation strongly increases when the temperature, the difference of interspecies bond energy and the self-bond energy decrease, and when misorientation and undercooling increase. Small lattice mismatches did not strongly affect segregation; however, the higher mismatch has obvious effects on segregation. Our simulation results agree well with theoretical and experimental results.

  19. Elasto-optic effect anisotropy in calcium tungstate crystals.

    PubMed

    Demyanyshyn, N M; Mytsyk, B G; Kost, Y P; Solskii, I M; Sakharuk, O M

    2015-03-20

    The anisotropy of piezo- and elasto-optic effects in calcium tungstate CaWO4 crystals was studied by the indicatory surfaces method. On the basis of the maximum surfaces of the elasto-optic effect, the geometry of acousto-optic interaction with maximum efficiency was found. PMID:25968520

  20. Ambipolar phosphorene field effect transistor.

    PubMed

    Das, Saptarshi; Demarteau, Marcel; Roelofs, Andreas

    2014-11-25

    In this article, we demonstrate enhanced electron and hole transport in few-layer phosphorene field effect transistors (FETs) using titanium as the source/drain contact electrode and 20 nm SiO2 as the back gate dielectric. The field effect mobility values were extracted to be ∼38 cm(2)/Vs for electrons and ∼172 cm(2)/Vs for the holes. On the basis of our experimental data, we also comprehensively discuss how the contact resistances arising due to the Schottky barriers at the source and the drain end effect the different regime of the device characteristics and ultimately limit the ON state performance. We also propose and implement a novel technique for extracting the transport gap as well as the Schottky barrier height at the metal-phosphorene contact interface from the ambipolar transfer characteristics of the phosphorene FETs. This robust technique is applicable to any ultrathin body semiconductor which demonstrates symmetric ambipolar conduction. Finally, we demonstrate a high gain, high noise margin, chemical doping free, and fully complementary logic inverter based on ambipolar phosphorene FETs.

  1. Effect of Viscosity on the Crystallization of Undercooled Liquids

    NASA Technical Reports Server (NTRS)

    2003-01-01

    There have been numerous studies of glasses indicating that low-gravity processing enhances glass formation. NASA PI s are investigating the effect of low-g processing on the nucleation and crystal growth rates. Dr. Ethridge is investigating a potential mechanism for glass crystallization involving shear thinning of liquids in 1-g. For shear thinning liquids, low-g (low convection) processing will enhance glass formation. The study of the viscosity of glass forming substances at low shear rates is important to understand these new crystallization mechanisms. The temperature dependence of the viscosity of undercooled liquids is also very important for NASA s containerless processing studies. In general, the viscosity of undercooled liquids is not known, yet knowledge of viscosity is required for crystallization calculations. Many researchers have used the Turnbull equation in error. Subsequent nucleation and crystallization calculations can be in error by many orders of magnitude. This demonstrates the requirement for better methods for interpolating and extrapolating the viscosity of undercooled liquids. This is also true for undercooled water. Since amorphous water ice is the predominant form of water in the universe, astrophysicists have modeled the crystallization of amorphous water ice with viscosity relations that may be in error by five orders-of-magnitude.

  2. `Guest-host' effect in liquid crystal mixtures

    NASA Astrophysics Data System (ADS)

    Suchodolska, B.; Rudzki, A.; Ossowska-Chruściel, M. D.; Zalewski, S.; Chruściel, J.

    2015-01-01

    The most important goal of our research is to show the influence of the 'guest' (bent-core mesogen, 1,3-phenyldicarboxylatebis{4-[(4-octylbenzoyl)sulphanyl]phenyl} [IFOS8], banana-shaped liquid crystal [BLC]) on the 'host' (calamitic liquid crystal [CLC], (S)-(+)-1-methylheptyloxybiphenyl-(4-n-octylphenyl)thiobenzoate [MHOBS8]), on the stability and the destabilization of the antiferroelectric B2 and the ferroelectric smectic C* (SmC*) phases, and change of the temperature ranges of other phases in the binary liquid crystal mixtures. This work is focused on polymorphism of three new binary liquid crystal mixtures, exhibiting a 'guest-host' (guest liquid crystal-host liquid crystal [GH-LC]) effect. MHOBS8 has, among others, a ferroelectric SmC* phase, and IFOS8 assumes the B2 phase with antiferroelectric properties. The observed properties of the mixtures, such as variation of the phase transition temperatures, spontaneous polarization, tilt angle and switching time, are characteristic of a 'guest-host' mixture. The influence of BLC on the character of the interactions within the CLC host is discussed, with particular attention paid to electro-optical properties of the GH-LC mixtures.

  3. Strain of a BaTiO3 single crystal caused by the converse flexoelectric effect

    NASA Astrophysics Data System (ADS)

    Rumyantseva, E. D.; Zalesskii, V. G.

    2016-04-01

    The inhomogeneous strain induced by a homogeneous external electric field (the converse flexoelectric effect) has been studied in a thin BaTiO3 single crystal slab. The type of inhomogeneous strain (cylindrical and spherical bending) has been determined via the interference method, and its dependence on the applied filed is measured, as well. The influence of the domain structure on this effect has also been shown.

  4. Ni-Mn-Ga Single Crystal Exhibiting Multiple Magnetic Shape Memory Effects

    NASA Astrophysics Data System (ADS)

    Heczko, Oleg; Veřtát, Petr; Vronka, Marek; Kopecky, Vít; Perevertov, Oleksiy

    2016-09-01

    Both magnetically induced phase transformation and magnetically induced reorientation (MIR) effects were observed in one Ni50Mn28Ga22 single crystal sample by direct measurement of the magnetic field-induced strain. We investigated various twinning microstructures ranged from single twin interface to fine twinning and crossing twins to evaluate what controls the apparent twinning stress crucial for MIR. The main challenges for the applications of these effects are outlined.

  5. Spontaneous polarization-vector-reorientation photorefractive effect in ferroelectric liquid crystals

    SciTech Connect

    Sasaki, Takeo; Kino, Yuji; Shibata, Minoru; Mizusaki, Naoko; Katsuragi, Atsushi; Ishikawa, Yuichi; Yoshimi, Takeshi

    2001-06-25

    The photorefractive effect of a ferroelectric liquid crystal doped with a photoconductive compound was investigated. The photorefractive effect appeared only at the temperature at which the sample exhibits ferroelectricity. The refractive index grating formation time was measured to be {similar_to}30ms. In the ferroelectric phase, reorientation of the spontaneous polarization vector was found to be induced by the internal space-charge field. {copyright} 2001 American Institute of Physics.

  6. Prospective effect in dispersion properties of photonic crystal fibers by selective water-filling of holes.

    PubMed

    Ghosh, Prasenjit; Sarkar, Somenath

    2016-01-20

    Based on a simple but accurate semivectorial solution of Helmholtz's equation by the finite difference method devised with a mode-field convergence technique, we have shown an interesting and significant effect showing an almost ultraflat zero group velocity dispersion in photonic crystal fiber when the holes of the first ring of the fiber are filled with water. Crosschecking our results with earlier results involving a deeply involved multipole method for the central core of photonic crystal fiber filled with water and fused silica, our observation in the case of filling the first ring holes with water reveals potential information in studies of supercontinuum generation. PMID:26835922

  7. Effect of dopant nanoparticles on reorientation process in polymer-dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Zobov, K. V.; Zharkova, G. M.; Syzrantsev, V. V.

    2016-01-01

    The analysis of the experimental data of the nanoscale powders application for doping polymer-dispersed liquid crystals (PDLC) was represented in this work. A model based on the separation of the liquid crystals reorientation process on the surface mode and the volume mode was proposed and tested. In the research the wide-spread model mixture PDLC were used. But alumina nanoparticles were the distinctive ones obtained by electron beam evaporation. The proposed model allowed to conclude that the nanoparticles localization at the surface of the droplets (as in the Pickering emulsion) lead to the variation of the connection force between the liquid crystals and the polymer. The effect of nanoparticles resulted in an acceleration of the reorientation process near the surface when the control field is turned on and in a deceleration when it is turned off. The effect for the different size particles was confirmed.

  8. DDFT calibration and investigation of an anisotropic phase-field crystal model.

    PubMed

    Choudhary, Muhammad Ajmal; Li, Daming; Emmerich, Heike; Löwen, Hartmut

    2011-07-01

    The anisotropic phase-field crystal model recently proposed and used by Prieler et al (2009 J. Phys.: Condens. Matter 21 464110) is derived from microscopic density functional theory for anisotropic particles with fixed orientation. Its morphology diagram is also explored. In particular we have investigated the influence of anisotropy and undercooling on the process of nucleation and microstructure formation from the atomic to the microscale. To that end numerical simulations were performed varying those dimensionless parameters which represent anisotropy and undercooling in our anisotropic phase-field crystal model. The results from these numerical simulations are summarized in terms of a morphology diagram of the stable state phases. These stable phases are also investigated with respect to their kinetics and characteristic morphological features.

  9. Emergence of foams from the breakdown of the phase field crystal model

    NASA Astrophysics Data System (ADS)

    Guttenberg, Nicholas; Goldenfeld, Nigel; Dantzig, Jonathan

    2010-06-01

    The phase field crystal (PFC) model captures the elastic and topological properties of crystals with a single scalar field at small undercooling. At large undercooling, new foamlike behavior emerges. We characterize this foam phase of the PFC equation and propose a modified PFC equation that may be used for the simulation of foam dynamics. This minimal model reproduces von Neumann’s rule for two-dimensional dry foams and Lifshitz-Slyozov coarsening for wet foams. We also measure the coordination number distribution and find that its second moment is larger than previously reported experimental and theoretical studies of soap froths, a finding that we attribute to the wetness of the foam increasing with time.

  10. Direct mapping of local director field of nematic liquid crystals at the nanoscale

    PubMed Central

    Xia, Yu; Serra, Francesca; Kamien, Randall D.; Stebe, Kathleen J.; Yang, Shu

    2015-01-01

    Liquid crystals (LCs), owing to their anisotropy in molecular ordering, are of wide interest in both the display industry and soft matter as a route to more sophisticated optical objects, to direct phase separation, and to facilitate colloidal assemblies. However, it remains challenging to directly probe the molecular-scale organization of nonglassy nematic LC molecules without altering the LC directors. We design and synthesize a new type of nematic liquid crystal monomer (LCM) system with strong dipole–dipole interactions, resulting in a stable nematic phase and strong homeotropic anchoring on silica surfaces. Upon photopolymerization, the director field can be faithfully “locked,” allowing for direct visualization of the LC director field and defect structures by scanning electron microscopy (SEM) in real space with 100-nm resolution. Using this technique, we study the nematic textures in more complex LC/colloidal systems and calculate the extrapolation length of the LCM. PMID:26621729

  11. Direct mapping of local director field of nematic liquid crystals at the nanoscale.

    PubMed

    Xia, Yu; Serra, Francesca; Kamien, Randall D; Stebe, Kathleen J; Yang, Shu

    2015-12-15

    Liquid crystals (LCs), owing to their anisotropy in molecular ordering, are of wide interest in both the display industry and soft matter as a route to more sophisticated optical objects, to direct phase separation, and to facilitate colloidal assemblies. However, it remains challenging to directly probe the molecular-scale organization of nonglassy nematic LC molecules without altering the LC directors. We design and synthesize a new type of nematic liquid crystal monomer (LCM) system with strong dipole-dipole interactions, resulting in a stable nematic phase and strong homeotropic anchoring on silica surfaces. Upon photopolymerization, the director field can be faithfully "locked," allowing for direct visualization of the LC director field and defect structures by scanning electron microscopy (SEM) in real space with 100-nm resolution. Using this technique, we study the nematic textures in more complex LC/colloidal systems and calculate the extrapolation length of the LCM.

  12. Magnetostrictive behaviors of Fe-Si(001) single-crystal films under rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Kawai, Tetsuroh; Aida, Takuya; Ohtake, Mitsuru; Futamoto, Masaaki

    2015-05-01

    Magnetostrictive behaviors under rotating magnetic fields are investigated for bcc(001) single-crystal films of Fe100-x-Six(x = 0, 6, 10 at. %). The magnetostriction observation directions are along bcc[100] and bcc[110] of the films. The magnetostriction waveform varies greatly depending on the observation direction. For the observation along [100], the magnetostriction waveform of all the films is bathtub-like and the amplitude stays at almost constant even when the magnetic field is increased up to the anisotropy field. On the other hand, the waveform along [110] is triangular and the amplitude increases with increasing magnetic field up to the anisotropy field and then saturates. In addition, the waveform of Fe90Si10 film is distorted triangular when the applied magnetic fields are less than its anisotropy field. These magnetostrictive behaviors under rotating magnetic fields are well explained by employing a proposed modified coherent rotation model where the anisotropy field and the magnetization reversal field are determined by using measured magnetization curves. The results show that magnetocrystalline anisotropy plays important role on magnetostrictive behavior under rotating magnetic fields.

  13. Direct and inverse magnetoelectric effects in HoAl{sub 3}(BO{sub 3}){sub 4} single crystal

    SciTech Connect

    Freydman, A. L.; Balaev, A. D.; Dubrovskiy, A. A.; Eremin, E. V.; Temerov, V. L.; Gudim, I. A.

    2014-05-07

    The direct (ME{sub H}-) and inverse (ME{sub E}-) magnetoelectric effects in the HoAl{sub 3}(BO{sub 3}){sub 4} single crystal are studied. Temperature and magnetic field dependences of permittivity of the crystal are investigated. A relation between the investigated effects was established. It was found that the magnetoelectric effect can exist in crystals without magnetic order or spontaneous polarization. It was shown that the phenomena investigated are due to magnetostriction or magnetoelastic effect. The thermodynamic potential was considered for describing magnetoelectric effect at low magnetic fields. The results obtained are explained within a proposed qualitative microscopic model, based on interplay of configuration of 4f- electron subshell of the rare-earth element and applied magnetic or electric field.

  14. Novel magnetic field sensor based on magnetic fluids infiltrated dual-core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Li, Jianhua; Wang, Rong; Wang, Jingyuan; Zhang, Baofu; Xu, Zhiyong; Wang, Huali

    2014-03-01

    Novel magnetic field sensor based on magnetic fluids infiltrated dual-core Photonic Crystal Fibers (PCFs) is proposed in this paper. Inside the cross-section of the designed PCFs, the two fiber cores filled with magnetic fluids (Fe3O4) are separated by an air hole, and then form two independent waveguides with mode coupling. The mode coupling under different magnetic field strength is investigated theoretically. A novel and simple magnetic field sensing system is proposed and its sensing performances have been studied numerically. The results show that the magnetic field sensor with 15-cm PCFs has a large sensing range and high sensitivity of 4.80 pm/Oe. It provides a new feasible method to design PCF-based magnetic field sensor.

  15. Effects of crystallization in the presence of the diastereomer on the crystal properties of (SS)-(+)-pseudoephedrine hydrochloride.

    PubMed

    Gu, C H; Grant, D J

    2000-01-01

    The formation and separation of diastereomers is widely used to resolve enantiomers. However, during crystallization of a chiral compound from a solution containing its diastereomer, the diastereomer may be incorporated as an impurity into the host crystal lattice, leading to changes in the thermodynamic properties and intrinsic dissolution rate of the host crystals. This hypothesis was tested by growing crystals of (SS)-(+)-pseudoephedrine hydrochloride (+PC) from aqueous solution containing various amounts of (RS)-(-)-ephedrine hydrochloride (-EC). Although the melting phase diagram of these two solid compounds, determined by differential scanning calorimetry (DSC), shows eutectic behavior, 0.034-2.4 mol% of -EC was incorporated into the crystal lattice of +PC during crystallization to form terminal solid solutions with a segregation coefficient of 0.31. In a single batch, the larger crystals contain more incorporated impurities than smaller crystals. The enthalpy and entropy of fusion measured by DSC decrease with increasing incorporation of the guest molecules into the host, indicating increases in the enthalpy and entropy of the solid. The disruption index, which indicates the disruptive effect of guest molecules in the host crystal lattice, is 60 at < or = 0.084 mol% of -EC in +PC crystals, but is only 5 at higher levels of -EC. The greater disruptive effect at lower levels of impurity incorporation may be explained by the formation of substitutional solid solutions in which the impurity molecules disrupt the hydrogen bonding network in the host crystals, whereas additional incorporated impurity may be adsorbed onto the surfaces of the mosaic blocks with reduced effect on the crystal lattice. The average intrinsic dissolution rate of impure crystals in 2-propanol is 15.8% lower than that of pure host crystals, suggesting the formation of stable solid solutions.

  16. Quantum effects for particles channeling in a bent crystal

    NASA Astrophysics Data System (ADS)

    Feranchuk, Ilya; San, Nguyen Quang

    2016-09-01

    Quantum mechanical theory for channeling of the relativistic charged particles in the bent crystals is considered in the paper. Quantum effects of under-barrier tunneling are essential when the radius of the curvature is closed to its critical value. In this case the wave functions of the quasi-stationary states corresponding to the particles captured in a channel are presented in the analytical form. The efficiency of channeling of the particles and their angular distribution at the exit crystal surface are calculated. Characteristic experimental parameters for observation the quantum effects are estimated.

  17. Faraday effect in Sn2P2S6 crystals.

    PubMed

    Krupych, Oleh; Adamenko, Dmytro; Mys, Oksana; Grabar, Aleksandr; Vlokh, Rostyslav

    2008-11-10

    We have revealed a large Faraday rotation in tin thiohypodiphosphate (Sn(2)P(2)S(6)) crystals, which makes this material promising for magneto-optics. The effective Faraday tensor component and the Verdet constant for the direction of the optic axis have been determined by measuring the pure Faraday rotation in Sn(2)P(2)S(6) crystals with both the single-ray and small-angular polarimetric methods at the normal conditions and a wavelength of 632.8 nm. The effective Verdet constant is found to be equal to 115 rad/T x m.

  18. Velocity profiles of electric-field-induced backflows in liquid crystals confined between parallel plates

    NASA Astrophysics Data System (ADS)

    Tsuji, Tomohiro; Chono, Shigeomi; Matsumi, Takanori

    2015-02-01

    For the purpose of developing liquid crystalline microactuators, we visualize backflows induced between two parallel plates for various parameters such as the twist angle, cell gap, applied voltage, and molecular configuration mode. We use 4-cyano-4'-pentyl biphenyl, a typical low-molar-mass nematic liquid crystal. By increasing the twist angle from 0° to 180°, the velocity component parallel to the anchoring direction of the lower plate changes from an S-shaped profile to a distorted S-shaped profile before finally becoming unidirectional. In contrast, the velocity component perpendicular to the anchoring direction evolves from a flat profile at 0° into an S-shaped profile at 180°. Because both an increase in the applied voltage and a decrease in the cell gap increase the electric field intensity, the backflow becomes large. The hybrid molecular configuration mode induces a larger backflow than that for the planar aligned mode. The backflow develops in two stages: an early stage with a microsecond time scale and a later stage with a millisecond time scale. The numerical predictions are in qualitative agreement with the measurements, but not quantitative agreement because our computation ignores the plate edge effect of surface tension.

  19. Heteromorphism and crystallization paths of katungites, Navajo volcanic field, Arizona, USA

    SciTech Connect

    Laughlin, A.W.; Charles, R.W.; Aldrich, M.J. Jr.

    1986-01-01

    A swarm of thin, isochemical but heteromorphic dikes crops out in the valley of Hasbidito Creek in NE Arizona. The swarm is part of the dominantly potassic, mid-Tertiary Navajo volcanic field of the Colorado Plateau. Whole-rock chemical analyses of five samples from four of the dikes indicate that they are chemically identical to the katungites of Uganda. These dikes show the characteristic seriate-porphyritic texture of lamprophyres. Samples of an olivine-melilitite dike from the same swarm lack this texture and the chemical analysis, while similar to those of the other dikes, shows effects from the incorporation of xenocrystic olivine. Over 20 mineral phases have been identified in the Arizona samples and as many as 18 phases may occur in a single sample. The major phases are phlogopite, olivine, perovskite, opaque oxides, +- melilite and +- clinopyroxene. Based upon the modal mineralogies and textures of ten dike samples, we recognize five general non-equilibrium assemblages. Comparison of these assemblages with recent experimental results shows that they represent various combinations of complete and incomplete reactions. Reaction relations were determined by entering melt and phase compositions into the computer program GENMIX to obtain balanced reactions. By combining petrographic observations with mineral chemical data, balanced reactions from GENMIX, and the recently determined phase diagrams we are able to trace crystallization paths for the katungite magma.

  20. Controllable strain fields in multimonolayer 2D-layered TiO2 (110) crystals studied by STM

    NASA Astrophysics Data System (ADS)

    Li, Zhisheng; Potapenko, Denis; Osgood, Richard

    2014-03-01

    Strain of crystal lattice can change the electronic property of materials, such as oxides and semiconductors, significantly. However, experimental studies of lattice effects in oxides are limited especially in atomic scale, due to the difficulty of generating strain field experimentally. In this work, we generate a strain field in multiple monolayer sample of at TiO2 (110) by very low energy bombardment of single crystal TiO2 samples with argon ions at 1000oC. The interstitial argon diffuses so as to form nanometer scale regions of local exfoliated TiO2 layers. These layers retain their unstressed surface reconstruction although the top-most surface layers have a convex morphology. We use STM studies along with a continuum model to show the strain field. Our studies also show that the strained surface layers are free of oxygen vacancies and that the adsorption energy of hydrogen is altered by the local strain field. The authors gratefully acknowledge support of this work by the Basic Energy Sciences Division of the U.S. Department of Energy, Contract No. DE-FG02-90ER14104.

  1. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Pu, Shengli; Ji, Hongzhu; Yu, Guojun

    2012-05-01

    Ferronematic materials composed of 4-cyano-4'-pentylbiphenyl nematic liquid crystal and oil-based Fe3O4 magnetic fluid were prepared using ultrasonic agitation. The birefringence (Δ n) and figure of merit of optical properties ( Q = Δ n/α, where α is the extinction coefficient) of pure magnetic fluids and the as-prepared ferronematic materials were examined and compared. The figure of merit of optical properties weighs the birefringence and extinction of the materials and is more appropriate to evaluate their optical properties. Similar magnetic-field- and magnetic-particle-concentration-dependent properties of birefringence and figure of merit of optical properties were obtained for the pure magnetic fluids and the ferronematic materials. For the ferronematic materials, the values of Q increase with the volume fractions of nematic liquid crystal under certain fixed field strength and are larger than those of their corresponding pure magnetic fluids at high field region. In addition, the enhancement of Q value increases monotonously with the magnetic field and becomes remarkable when the applied magnetic field is beyond 50 mT. The maximum relative enhanced value of Q R exceeds 6.8% in our experiments. The results of this work may conduce to extend the pragmatic applications of nanostructured magnetic fluids in optical field.

  2. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals.

    PubMed

    Wang, Xiang; Pu, Shengli; Ji, Hongzhu; Yu, Guojun

    2012-01-01

    Ferronematic materials composed of 4-cyano-4'-pentylbiphenyl nematic liquid crystal and oil-based Fe3O4 magnetic fluid were prepared using ultrasonic agitation. The birefringence (Δn) and figure of merit of optical properties (Q = Δn/α, where α is the extinction coefficient) of pure magnetic fluids and the as-prepared ferronematic materials were examined and compared. The figure of merit of optical properties weighs the birefringence and extinction of the materials and is more appropriate to evaluate their optical properties. Similar magnetic-field- and magnetic-particle-concentration-dependent properties of birefringence and figure of merit of optical properties were obtained for the pure magnetic fluids and the ferronematic materials. For the ferronematic materials, the values of Q increase with the volume fractions of nematic liquid crystal under certain fixed field strength and are larger than those of their corresponding pure magnetic fluids at high field region. In addition, the enhancement of Q value increases monotonously with the magnetic field and becomes remarkable when the applied magnetic field is beyond 50 mT. The maximum relative enhanced value of QR exceeds 6.8% in our experiments. The results of this work may conduce to extend the pragmatic applications of nanostructured magnetic fluids in optical field. PMID:22587542

  3. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals.

    PubMed

    Wang, Xiang; Pu, Shengli; Ji, Hongzhu; Yu, Guojun

    2012-01-01

    Ferronematic materials composed of 4-cyano-4'-pentylbiphenyl nematic liquid crystal and oil-based Fe3O4 magnetic fluid were prepared using ultrasonic agitation. The birefringence (Δn) and figure of merit of optical properties (Q = Δn/α, where α is the extinction coefficient) of pure magnetic fluids and the as-prepared ferronematic materials were examined and compared. The figure of merit of optical properties weighs the birefringence and extinction of the materials and is more appropriate to evaluate their optical properties. Similar magnetic-field- and magnetic-particle-concentration-dependent properties of birefringence and figure of merit of optical properties were obtained for the pure magnetic fluids and the ferronematic materials. For the ferronematic materials, the values of Q increase with the volume fractions of nematic liquid crystal under certain fixed field strength and are larger than those of their corresponding pure magnetic fluids at high field region. In addition, the enhancement of Q value increases monotonously with the magnetic field and becomes remarkable when the applied magnetic field is beyond 50 mT. The maximum relative enhanced value of QR exceeds 6.8% in our experiments. The results of this work may conduce to extend the pragmatic applications of nanostructured magnetic fluids in optical field.

  4. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals

    PubMed Central

    2012-01-01

    Ferronematic materials composed of 4-cyano-4′-pentylbiphenyl nematic liquid crystal and oil-based Fe3O4 magnetic fluid were prepared using ultrasonic agitation. The birefringence (Δn) and figure of merit of optical properties (Q = Δn/α, where α is the extinction coefficient) of pure magnetic fluids and the as-prepared ferronematic materials were examined and compared. The figure of merit of optical properties weighs the birefringence and extinction of the materials and is more appropriate to evaluate their optical properties. Similar magnetic-field- and magnetic-particle-concentration-dependent properties of birefringence and figure of merit of optical properties were obtained for the pure magnetic fluids and the ferronematic materials. For the ferronematic materials, the values of Q increase with the volume fractions of nematic liquid crystal under certain fixed field strength and are larger than those of their corresponding pure magnetic fluids at high field region. In addition, the enhancement of Q value increases monotonously with the magnetic field and becomes remarkable when the applied magnetic field is beyond 50 mT. The maximum relative enhanced value of QR exceeds 6.8% in our experiments. The results of this work may conduce to extend the pragmatic applications of nanostructured magnetic fluids in optical field. PMID:22587542

  5. Extended phase diagram of the three-dimensional phase field crystal model.

    PubMed

    Jaatinen, A; Ala-Nissila, T

    2010-05-26

    We determine the phase diagram of the phase field crystal model in three dimensions by using numerical free energy minimization methods. Previously published results, based on single mode approximations, have indicated that in addition to the uniform (liquid) phase, there would be regions of stability of body-centered cubic, hexagonal and stripe phases. We find that in addition to these, there are also regions of stability of face-centered cubic and hexagonal close packed structures in this model. PMID:21393705

  6. Dust Lattice Waves in Two-Dimensional Hexagonal Dust Crystals with an External Magnetic Field

    SciTech Connect

    Farokhi, B.; Shahmansouri, M.

    2008-09-07

    The influence of a constant magnetic field on the propagation of dust-lattice (DL) modes in a two-dimensional hexagonal strongly coupled plasma crystal formed by paramagnetic particles is considered. The expression for the wave dispersion relation clearly shows that high-frequency and low-frequency branches exist as a result of the coupling of longitudinal and transverse modes due to the Lorentz force acting on the dust particles.

  7. Consideration of the condensation processes of thin films in the crystal substrate's potential field

    NASA Astrophysics Data System (ADS)

    Tupik, V. A.; Margolin, V. I.; Trong Su, Chu

    2016-07-01

    The condensation process of a single particle in an ideal crystal substrate's potential field is considered. The optimal deposition path and the potential barrier of deposited particle's motion are shown. Some computer modeling examples of thin film's growth process were carried out on the basis of the implemented programs. A fractal analysis of obtained thin films was made, on the basis of which the possibility of estimating the performance of thin film's growth process will be discussed.

  8. Observation of nonlinear bands in near-field scanning optical microscopy of a photonic-crystal waveguide

    NASA Astrophysics Data System (ADS)

    Singh, A.; Ctistis, G.; Huisman, S. R.; Korterik, J. P.; Mosk, A. P.; Herek, J. L.; Pinkse, P. W. H.

    2015-01-01

    We have measured the photonic bandstructure of GaAs photonic-crystal waveguides with high resolution in energy as well as in momentum using near-field scanning optical microscopy. Intriguingly, we observe additional bands that are not predicted by eigenmode solvers, as was recently demonstrated by Huisman et al. [Phys. Rev. B 86, 155154 (2012)]. We study the presence of these additional bands by performing measurements of these bands while varying the incident light power, revealing a non-linear power dependence. Here, we demonstrate experimentally and theoretically that the observed additional bands are caused by a waveguide-specific near-field tip effect not previously reported, which can significantly phase-modulate the detected field.

  9. Observation of nonlinear bands in near-field scanning optical microscopy of a photonic-crystal waveguide

    SciTech Connect

    Singh, A.; Huisman, S. R.; Ctistis, G. Mosk, A. P.; Pinkse, P. W. H.; Korterik, J. P.; Herek, J. L.

    2015-01-21

    We have measured the photonic bandstructure of GaAs photonic-crystal waveguides with high resolution in energy as well as in momentum using near-field scanning optical microscopy. Intriguingly, we observe additional bands that are not predicted by eigenmode solvers, as was recently demonstrated by Huisman et al. [Phys. Rev. B 86, 155154 (2012)]. We study the presence of these additional bands by performing measurements of these bands while varying the incident light power, revealing a non-linear power dependence. Here, we demonstrate experimentally and theoretically that the observed additional bands are caused by a waveguide-specific near-field tip effect not previously reported, which can significantly phase-modulate the detected field.

  10. The effect of CuII ions in L-asparagine single crystals

    NASA Astrophysics Data System (ADS)

    Santana, Ricardo C.; Gontijo, Henrique O.; Menezes, Arthur F.; Martins, José A.; Carvalho, Jesiel F.

    2016-11-01

    We report the synthesis, crystal growth, and spectroscopic characterization of L-asparagine monohydrate (LAM) single crystals doped with CuII. The crystals were successfully grown by slow cooling from a supersaturated aqueous solution up to size of 16×12×2 mm3;the effect of copper impurities in the crystals morphology was discussed. Electron Paramagnetic Resonance (EPR) was used to calculate the g and hyperfine coupling (A) tensors of the CuII ions (g1=2.044, g2=2.105, g3=2.383and A1≈0, A2=35, A3=108 Gauss). The EPR spectra for certain orientations of the magnetic field suggest that CuII ions are coordinated to two 14N atoms. Correlating the EPR and optical absorption results, the crystal field and the CuII orbital bond parameters were calculated. The results indicate that the paramagnetic center occupies interstitial rhombic distorted site and the ground orbital state for the unpaired electron is the d(x2-y2).

  11. Field dependent transport properties in InAs nanowire field effect transistors.

    PubMed

    Dayeh, Shadi A; Susac, Darija; Kavanagh, Karen L; Yu, Edward T; Wang, Deli

    2008-10-01

    We present detailed studies of the field dependent transport properties of InAs nanowire field-effect transistors. Transconductance dependence on both vertical and lateral fields is discussed. Velocity-field plots are constructed from a large set of output and transfer curves that show negative differential conductance behavior and marked mobility degradation at high injection fields. Two dimensional electrothermal simulations at current densities similar to those measured in the InAs NWFET devices indicate that a significant temperature rise occurs in the channel due to enhanced phonon scattering that leads to the observed mobility degradation. Scanning transmission electron microscopy measurements on devices operated at high current densities reveal arsenic vaporization and crystal deformation in the subject nanowires.

  12. A molecular-field approximation for quantum crystals. Ph.D. Thesis; [considering ground state properties

    NASA Technical Reports Server (NTRS)

    Danilowicz, R.

    1973-01-01

    Ground-state properties of quantum crystals have received considerable attention from both theorists and experimentalists. The theoretical results have varied widely with the Monte Carlo calculations being the most successful. The molecular field approximation yields ground-state properties which agree closely with the Monte Carlo results. This approach evaluates the dynamical behavior of each pair of molecules in the molecular field of the other N-2 molecules. In addition to predicting ground-state properties that agree well with experiment, this approach yields data on the relative importance of interactions of different nearest neighbor pairs.

  13. Modeling Multiple Time Scales during Glass Formation with Phase-Field Crystals

    SciTech Connect

    Berry, Joel; Grant, Martin

    2011-04-29

    The dynamics of glass formation in monatomic and binary liquids are studied numerically using a microscopic field theory for the evolution of the time-averaged atomic number density. A stochastic framework combining phase-field crystal free energies and dynamic density functional theory is shown to successfully describe several aspects of glass formation over multiple time scales. Agreement with mode coupling theory is demonstrated for underdamped liquids at moderate supercoolings, and a rapidly growing dynamic correlation length is found to be associated with fragile behavior.

  14. Capacitance changes in ferronematic liquid crystals induced by low magnetic fields

    NASA Astrophysics Data System (ADS)

    Tomašovičová, Natália; Timko, Milan; Mitróová, Zuzana; Koneracká, Martina; Rajňak, Michal; Éber, Nándor; Tóth-Katona, Tibor; Chaud, Xavier; Jadzyn, Jan; Kopčanský, Peter

    2013-01-01

    The response in capacitance to low external magnetic fields (up to 0.1 T) of suspensions of spherical magnetic nanoparticles, single-wall carbon nanotubes (SWCNT), SWCNT functionalized with carboxyl group (SWCNT-COOH), and SWCNT functionalized with Fe3O4 nanoparticles in a nematic liquid crystal has been studied experimentally. The volume concentration of nanoparticles was ϕ1=10-4 and ϕ2=10-3. Independent of the type and the volume concentration of the nanoparticles, a linear response to low magnetic fields (far below the magnetic Fréederiksz transition threshold) has been observed, which is not present in the undoped nematic.

  15. Phase transitions of Ising mixed spin 1 and 3/2 with random crystal field distribution

    NASA Astrophysics Data System (ADS)

    Sabri, S.; EL Falaki, M.; EL Yadari, M.; Benyoussef, A.; EL Kenz, A.

    2016-10-01

    The thermal and magnetic properties of the mixed spin-1 and spin-3/2 in the presence of the random crystal field are studied within the mean field approach based on the Bogoliubov inequality for the Gibbs free energy. The model exhibits first, second order transitions, a tricritical point, triple point and an isolated critical end point. It is found that the system displays simple and double compensation temperatures, five topologies of the phase diagrams. A re-entrant phenomenon is also discussed and the thermal dependences of total magnetization according to extended Neel classification have been also given.

  16. [Health effects of electromagnetic fields].

    PubMed

    Röösli, Martin

    2013-12-01

    Use of electricity causes extremely low frequency magnetic fields (ELF-MF) and wireless communication devices emit radiofrequency electromagnetic fields (RF-EMF). Average ELF-MF exposure is mainly determined by high voltage power lines and transformers at home or at the workplace, whereas RF-EMF exposure is mainly caused by devices operating close to the body (mainly mobile and cordless phones). Health effects of EMF are controversially discussed. The IARC classified ELF-MF and RF-EMF as possible carcinogenic. Most consistent epidemiological evidence was found for an association between ELF-MF and childhood leukaemia. If causal, 1 - 4 percent of all childhood leukaemia cases could be attributed to ELF-MF. Epidemiological research provided some indications for an association between ELF-MF and Alzheimer's diseases as well as amyotrophic lateral sclerosis, although not entirely consistent. Regarding mobile phones and brain tumours, some studies observed an increased risk after heavy or long term use on the one hand. On the other hand, brain tumour incidence was not found to have increased in the last decade in Sweden, England or the US. Acute effects of RF-EMF on non-specific symptoms of ill health seem unlikely according to randomized and double blind provocation studies. However, epidemiological research on long term effects is still limited. Although from the current state of the scientific knowledge a large individual health risk from RF-EMF exposure is unlikely, even a small risk would have substantial public health relevance because of the widespread use of wireless communication technologies.

  17. Crystal fields of porphyrins and phthalocyanines from polarization-dependent 2p-to-3d multiplets

    SciTech Connect

    Johnson, Phillip S.; Boukahil, Idris; Himpsel, F. J.; García-Lastra, J. M.; Kennedy, Colton K.; Jersett, Nathan J.; Cook, Peter L.

    2014-03-21

    Polarization-dependent X-ray absorption spectroscopy is combined with density functional calculations and atomic multiplet calculations to determine the crystal field parameters 10Dq, Ds, and Dt of transition metal phthalocyanines and octaethylporphyrins (Mn, Fe, Co, Ni). The polarization dependence facilitates the assignment of the multiplets in terms of in-plane and out-of-plane orbitals and avoids ambiguities. Crystal field values from density functional calculations provide starting values close to the optimum fit of the data. The resulting systematics of the crystal field can be used for optimizing electron-hole separation in dye-sensitized solar cells.

  18. Confined Crystal Growth in Space. Deterministic vs Stochastic Vibroconvective Effects

    NASA Astrophysics Data System (ADS)

    Ruiz, Xavier; Bitlloch, Pau; Ramirez-Piscina, Laureano; Casademunt, Jaume

    The analysis of the correlations between characteristics of the acceleration environment and the quality of the crystalline materials grown in microgravity remains an open and interesting question. Acceleration disturbances in space environments usually give rise to effective gravity pulses, gravity pulse trains of finite duration, quasi-steady accelerations or g-jitters. To quantify these disturbances, deterministic translational plane polarized signals have largely been used in the literature [1]. In the present work, we take an alternative approach which models g-jitters in terms of a stochastic process in the form of the so-called narrow-band noise, which is designed to capture the main statistical properties of realistic g-jitters. In particular we compare their effects so single-frequency disturbances. The crystalline quality has been characterized, following previous analyses, in terms of two parameters, the longitudinal and the radial segregation coefficients. The first one averages transversally the dopant distribution, providing continuous longitudinal information of the degree of segregation along the growth process. The radial segregation characterizes the degree of lateral non-uniformity of the dopant in the solid-liquid interface at each instant of growth. In order to complete the description, and because the heat flux fluctuations at the interface have a direct impact on the crystal growth quality -growth striations -the time dependence of a Nusselt number associated to the growing interface has also been monitored. For realistic g-jitters acting orthogonally to the thermal gradient, the longitudinal segregation remains practically unperturbed in all simulated cases. Also, the Nusselt number is not significantly affected by the noise. On the other hand, radial segregation, despite its low magnitude, exhibits a peculiar low-frequency response in all realizations. [1] X. Ruiz, "Modelling of the influence of residual gravity on the segregation in

  19. Dynamical Casimir effect in microwave cavities containing nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Dodonov, V. V.

    2015-06-01

    I consider a possibility of parametric amplification of the microwave vacuum field in a reentrant cavity enclosing a nonlinear crystal whose refractive index is modulated by periodic high-intensity short laser pulses. The main result is that the total number of created ‘Casimir quanta’ depends neither on the laser beam shape, nor on the duration or power of individual pulses, but it depends on the total energy of all the pulses, provided the duration of each pulse is much shorter than the period of field oscillations in the selected resonant mode. The scheme can be feasible if reliable materials with high nonlinear coefficients can be found.

  20. Effect of crystal habit on the dissolution behaviour of simvastatin crystals and its relationship to crystallization solvent properties.

    PubMed

    Bukovec, P; Benkic, P; Smrkolj, M; Vrecer, F

    2016-05-01

    Simvastatin crystals, having same crystal structure but different types of habits and hence different intrinsic dissolution rate, were prepared by recrystallization from solvents selected according to their polarity index. Scanning electron microscopy, laser diffraction, image analysis, X-ray powder diffractometry, Fourier transform infrared spectroscopy and differential scanning calorimetry were used to investigate the physicochemical characteristics of the prepared crystals. The isolated crystals exhibited different crystal habits but possessed the same internal crystal structure. In this study the comparative intrinsic dissolution behaviour of the simvastatin crystals with different types of habits was studied and explained by surface energy and correlated to different solvent systems that were used for crystallization. In our work we diminished the influence of all other physical parameters that could influence the dissolution rate, e.g. particle size, specific surface area and polymorphism in order to focus the study onto the impact of crystal shape itself on the dissolution rate of simvastatin crystals. Rod shaped crystals isolated from more hydrophilic solvent mixture dissolved faster than plate-like crystals obtained from solvent mixture with lower polarity index. We correlated this fact to the different growth rate of the individual faces which resulted in different relative size of the individual crystal faces exposed to the dissolution medium as well as the chemical nature of those faces which in turn influenced the wettability and subsequent dissolution of the active pharmaceutical ingredient. PMID:27348970

  1. Effect of crystal habit on the dissolution behaviour of simvastatin crystals and its relationship to crystallization solvent properties.

    PubMed

    Bukovec, P; Benkic, P; Smrkolj, M; Vrecer, F

    2016-05-01

    Simvastatin crystals, having same crystal structure but different types of habits and hence different intrinsic dissolution rate, were prepared by recrystallization from solvents selected according to their polarity index. Scanning electron microscopy, laser diffraction, image analysis, X-ray powder diffractometry, Fourier transform infrared spectroscopy and differential scanning calorimetry were used to investigate the physicochemical characteristics of the prepared crystals. The isolated crystals exhibited different crystal habits but possessed the same internal crystal structure. In this study the comparative intrinsic dissolution behaviour of the simvastatin crystals with different types of habits was studied and explained by surface energy and correlated to different solvent systems that were used for crystallization. In our work we diminished the influence of all other physical parameters that could influence the dissolution rate, e.g. particle size, specific surface area and polymorphism in order to focus the study onto the impact of crystal shape itself on the dissolution rate of simvastatin crystals. Rod shaped crystals isolated from more hydrophilic solvent mixture dissolved faster than plate-like crystals obtained from solvent mixture with lower polarity index. We correlated this fact to the different growth rate of the individual faces which resulted in different relative size of the individual crystal faces exposed to the dissolution medium as well as the chemical nature of those faces which in turn influenced the wettability and subsequent dissolution of the active pharmaceutical ingredient.

  2. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields.

    PubMed

    Armas-Pérez, Julio C; Londono-Hurtado, Alejandro; Guzmán, Orlando; Hernández-Ortiz, Juan P; de Pablo, Juan J

    2015-07-28

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.

  3. Photonic crystal cavities for resonant evanescent field trapping of single bacteria

    NASA Astrophysics Data System (ADS)

    van Leest, Thijs; Heldens, Jeroen; van der Gaag, Bram; Caro, Jaap

    2012-06-01

    In monitoring the quality of drinking water with respect to the presence of hazardous bacteria there is a strong need for on-line sensors that allow quick identification of bacterium species at low cost. In this respect, the combination of photonics and microfluidics is promising for lab-on-a-chip sensing of these contaminants. Photonic crystal slabs have proven to form a versatile platform for controlling the flow of light and creating resonant cavities on a wavelength scale. The goal of our research is to use photonic crystal cavities for optical trapping of microorganisms in water, exploiting the enhanced evanescent field of the cavity mode. We optimize the H0, H1 and L3 cavities for optical trapping of bacteria in water, by reducing out-of-plane losses and taking into account the trapping-induced resonance shift and the in-plane coupling with photonic crystal waveguides. The cavities are fabricated on silicon-on-insulator material, using e-beam lithography and dry etching. A fluidic channel is created on top of the photonic crystal using dry film resist techniques. Transmission measurements show clear resonances for the cavities in water. In the present state of our research, we demonstrate optical trapping of 1 μm diameter polystyrene beads for the three cavities, with estimated trapping forces on the order of 0.7 pN.

  4. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields.

    SciTech Connect

    Armas-Perez, Julio C.; Londono-Hurtado, Alejandro; Guzman, Orlando; Hernandez-Ortiz, Juan P.; de Pablo, Juan J.

    2015-07-27

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.

  5. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields

    SciTech Connect

    Armas-Pérez, Julio C.; Londono-Hurtado, Alejandro; Guzmán, Orlando; Hernández-Ortiz, Juan P.; Pablo, Juan J. de

    2015-07-28

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.

  6. Dielectric heating effects of dual-frequency liquid crystals

    NASA Astrophysics Data System (ADS)

    Wen, Chien-Hui; Wu, Shin-Tson

    2005-06-01

    A noncontact birefringence probing method is developed to monitor the temperature rise of dual-frequency liquid crystals (DFLCs) due to the dielectric heating effect. This method allows us to determine the temperature change accurately without using a thermocouple. The dielectric heating effects of three DFLC mixtures are investigated quantitatively. By properly choosing the molecular structures, the dielectric heating effect can be minimized while keeping other desirable physical properties uncompromised.

  7. A high-field (30 Tesla) pulsed magnet instrument for single-crystal scattering studies

    NASA Astrophysics Data System (ADS)

    Islam, Zahirul; Nojiri, Hiroyuki; Narumi, Yasuo; Lang, Jonathan

    2010-03-01

    Pulsed magnets have emerged as a viable approach at synchrotron x-ray facilities for studying materials in high magnetic fields. We are developing a new high-field (30 Tesla) pulsed magnet system for single-crystal x-ray diffraction studies. It consists of a single 18mm-bore solenoid, designed and built at Tohoku University using high-tensile-strength and high conductivity CuAg wires. A dual-cryostat scheme has been developed at Advanced Photon Source in order to cool the coil using liquid nitrogen and the sample using a closed-cycle cryostat independently. Liquid nitrogen cooling allows repetition rate of a few minutes for peak fields near 30 Tesla. This scheme is unique in that it allows the applied magnetic field to be parallel to the scattering plane. Time-resolved scattering data are typically collected using a fast one-dimensional strip detector. Opportunities and challenges for experiments and instrumentation will be discussed.

  8. Anisotropies of the lower and upper critical fields in MgB2 single crystals.

    PubMed

    Lyard, L; Szabó, P; Klein, T; Marcus, J; Marcenat, C; Kim, K H; Kang, B W; Lee, H S; Lee, S I

    2004-02-01

    The temperature dependence of the upper (H(c2)) and lower (H(c1)) critical fields has been deduced from Hall probe magnetization measurements of high quality MgB2 single crystals along the two main crystallographic directions. We show that Gamma(H(c2))=H(c2 axially ab)/H(c2 axially c) and Gamma(H(c1))=H(c1 axially c)/H(c1 axially ab) differ significantly at low temperature (being approximately 5 and approximately 1, respectively) and have opposite temperature dependencies. We suggest that MgB2 can be described by a single field dependent anisotropy parameter gamma(H) (=lambda(c)/lambda(ab)=xi(ab)/xi(c)) that increases from Gamma(H(c1)) at low field to Gamma(H(c2)) at high field.

  9. Nematic liquid crystals in a spatially step-wise magnetic field

    NASA Astrophysics Data System (ADS)

    Napoli, Gaetano; Scaraggi, Michele

    2016-01-01

    We study the molecular reorientation induced by a textured external field in a nematic liquid crystal (nLC). In particular, we consider an infinitely wide cell with strong planar anchoring boundary conditions, subjected to a spatially periodic piecewise magnetic field. In the framework of the Frank's continuum theory, we use the perturbation analysis to study in detail the field-induced splay-bend Fréedericksz transition. A numerical approach, based on the finite differences method, is instead employed to solve the fully nonlinear equations. At high field strengths, an analytic approach allows us to draw the bulk profile of the director in terms of elliptic integrals. Finally, through the application of the Bruggeman texture hydrodynamics theory, we qualitatively discuss on the LCs piecewise director configuration under sliding interfaces, which can be adopted to actively regulate friction. Our study opens the pathway for the application of highly controlled nLC texturing for tribotronics.

  10. Effect of microheterogeneity on horse spleen apoferritin crystallization

    NASA Astrophysics Data System (ADS)

    Thomas, B. R.; Carter, D.; Rosenberger, F.

    1998-05-01

    Apoferritin (APO) is an interesting model protein for crystal growth studies, as an alternative to the widely used hen egg white lysozyme. The effect of naturally occurring oligomers on the crystallization of isolated, microhomogeneous APO monomers (24 subunits, Mr=440 000) was investigated. SDS PAGE analysis and immunoblotting showed that commercial APO was free of foreign proteins (>99.9% w/w). The quaternary structure of APO oligomers that form prior to the addition of precipitant was analyzed in native 4-15% T (1-2% C) gradient PAGE. Optical densitometry of these gels showed that oligomers (>24 subunit monomer) constituted approximately 45% w/w of the total APO. The primary oligomeric contaminants were dimers (48 subunits) with 35% w/w, and several bands constituting trimers (˜72 subunits) with 10% w/w. Directly determined physical molecular weights ( Mw) and conformational data for oligomers obtained by analytical gel filtration fast protein-liquid-chromatography separations utilizing UV and multi-angle laser light scattering detectors (GF-FPLC-MALLS) confirmed and expanded the native PAGE results. This technique allowed the discovery of large oligomers ( Mw=5 000 000 and 80 000 000) present in concentrations <1% w/w. Semi-preparative GF-FPLC was used to quantitatively reduce oligomer contamination to 5% w/w, and to produce 0.25 g of microhomogeneous monomers from 0.5 g APO. Crystallization from microhomogeneous monomer solutions yielded large crystals 0.5-1.0 mm in size. These crystals yielded an X-ray diffraction resolution of 1.8 Å. Reconstitutive experiments in which isolated oligomers were added to monomer preparations showed that dimers perturb the growth habit and reduce the crystal growth, without significantly affecting the nucleation. On trimer addition, the nucleation was increased and the crystal growth decreased. Addition of cadmium sulfate precipitant to unpurified APO did not affect the nature or quantity of the oligomers. These

  11. A Lagrangian effective field theory

    SciTech Connect

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro

    2015-09-02

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all of our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.

  12. A Lagrangian effective field theory

    DOE PAGESBeta

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro

    2015-09-02

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.« less

  13. A Lagrangian effective field theory

    SciTech Connect

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro E-mail: mwhite@berkeley.edu

    2015-09-01

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The 'new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all of our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. All the perturbative models fare better than linear theory.

  14. NMR Spectroscopy and the Crystal-Field Interaction in Holmium Trifluoride

    NASA Astrophysics Data System (ADS)

    Warner, Simeon

    The work to be described falls into three parts: (1) The computer-controlled CW spectrometer was designed to supplement the Manchester pulsed microwave spectrometer in situations where rapid nuclear relaxation makes spin-echo spectroscopy difficult. Its operating range is 4-8 GHz. Resonator designs and modulation strategies will be discussed in the light of practical experience. (2) Both CW and pulsed NMR have been used to study the field dependence of the hyperfine splittings of ^{165}Ho in HoF_3 and, as a dilute substituent, in YF_3. The low site symmetry results in a singlet crystal-field ground state for the Ho^{3+} ion, giving Van Vleck paramagnetism and enhanced nuclear magnetism at low temperatures. The measurements were made at temperatures in the range 1.5 to 4.2 K and in fields of up to 8 T. This work has revealed, for the first time, distinct spectra from the two subtly inequivalent rare-earth sites in the orthorhombic unit cell. Because of the non-colinear spin structure of HoF_3, the NMR and magnetometry measurements give independent and complimentary information about the ionic moments. (3) The measured hyperfine splittings have been interpreted in terms of a 15-parameter crystal-field Hamiltonian appropriate to the C_{1h} site symmetry. This work has entailed a substantial effort to clarify the notational confusion that exists in the literature. A computer program has been developed to automate conversion between notational conventions prior to diagonalization of the 136-dimensional electronic-nuclear Hamiltonian comprising the Zeeman, crystal-field and hyperfine interactions. [abridged

  15. Effects of light exposure on irradiated barium fluoride crystals

    SciTech Connect

    Wuest, C.R.; Mauger, G.J.

    1993-04-20

    Small barium fluoride crystals have been irradiated using cobalt-60 gamma rays under various illumination conditions to establish the effect of photo-bleaching of the radiation-induced color centers. This paper describes results of a few different experiments conducted at LLNL over the past few weeks.

  16. Gyrator employing field effect transistors

    NASA Technical Reports Server (NTRS)

    Hochmair, E. S. (Inventor)

    1973-01-01

    A gyrator circuit of the conventional configuration of two amplifiers in a circular loop, one producing zero phase shift and the other producing 180 deg phase reversal is examined. All active elements are MOS field effect transistors. Each amplifier comprises a differential amplifier configuration with current limiting transistor, followed by an output transistor in cascode configuration, and two load transistors of opposite conductivity type from the other transistors. A voltage divider control circuit comprises a series string of transistors with a central voltage input to provide control, with locations on the amplifiers receiving reference voltages by connection to appropriate points on the divider. The circuit produces excellent response and is well suited for fabrication by integrated circuits.

  17. A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Tsou, Yu-Shih

    2011-12-01

    A polarization-independent liquid crystal (LC) phase modulation using the surface pinning effect of polymer dispersed liquid crystals (SP-PDLC) is demonstrated. In the bulk region of the SP-PDLC, the orientations of LC directors are randomly dispersed; thus, any polarization of incident light experiences the same averaged refractive index. In the regions near glass substrates, the LC droplets are pinned. The orientations of top and bottom droplets are orthogonal. Two eigen-polarizations of an incident light experience the same phase shift. As a result, the SP-PDLC is polarization independent. Polarizer-free microlens arrays of SP-PDLC are also demonstrated. The SP-PDLC has potential for application in spatial light modulators, laser beam steering, and electrically tunable microprisms.

  18. Structural effects of monovalent anions on polymorphic lysozyme crystals.

    PubMed

    Vaney, M C; Broutin, I; Retailleau, P; Douangamath, A; Lafont, S; Hamiaux, C; Prangé, T; Ducruix, A; Riès-Kautt, M

    2001-07-01

    Understanding direct salt effects on protein crystal polymorphism is addressed by comparing different crystal forms (triclinic, monoclinic, tetragonal and orthorhombic) for hen, turkey, bob white quail and human lysozymes. Four new structures of hen egg-white lysozyme are reported: crystals grown in the presence of NapTS diffracted to 1.85 A, of NaI to 1.6 A, of NaNO(3) to 1.45 A and of KSCN to 1.63 A. These new structures are compared with previously published structures in order to draw a mapping of the surface of different lysozymes interacting with monovalent anions, such as nitrate, chloride, iodide, bromide and thiocyanate. An analysis of the structural sites of these anions in the various lysozyme structures is presented. This study shows common anion sites whatever the crystal form and the chemical nature of anions, while others seem specific to a given geometry and a particular charge environment induced by the crystal packing.

  19. The effect of microgravity on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Mcpherson, Alexander; Greenwood, Aaron; Day, John

    1991-01-01

    Based on the results of microgravity crystallization experiments using the protein canavalin aboard four separate U.S. Space Shuttle missions, visual observations and diffraction data are presented that support the contention that protein crystals of improved quality can be obtained in a microgravity environment. With canavalin, no significant increase in resolution was noted, but an overall improvement in diffraction quality, as judged by statistical analyses of the data, was clear. This improvement in quality may be due primarily to the elimination of defects and dislocations rather than an overall enhancement of order. The mechanism for this improvement may be microgravity-stabilized depletion zones that develop around growing crystals that establish and maintain optimal growth conditions more rapidly following nucleation. Such zones would be destroyed by convective flow effects in earth's gravity.

  20. Nucleation and Convection Effects in Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1997-01-01

    Work during the second year under this grant (NAG8-1161) resulted in several major achievements. We have characterized protein impurities as well as microheterogeneities in the proteins hen egg white lysozyme and horse spleen apoferritin, and demonstrated the effects of these impurities on nucleation and crystallization. In particular, the purification of apoferritin resulted in crystals with an X-ray diffraction resolution of better than 1.8 A, i.e. a 1 A improvement over earlier work on the cubic form. Furthermore, we have shown, in association with studies of liquid-liquid phase separation, that depending on the growth conditions, lysozyme can produce all growth morphologies that have been observed with other proteins. Finally, in connection with our experimental and simulation work on growth step bunching, we have developed a system-dependent criterion for advantages and disadvantages of crystallization from solution under reduced gravity. In the following, these efforts are described in some detail.

  1. Radiation effect studies in single crystal of Trifluoroacetyl-α-Aminoisobutyric acid

    NASA Astrophysics Data System (ADS)

    Halim Başkan, M.; Emre Osmanoğlu, Y.; Sütçü, K.; Aydın, M.; Osmanoğlu, Ş.

    2015-10-01

    In this study, electron paramagnetic resonance of γ-irradiated single crystals of N-Trifluoroacetyl-α-amino isobutyric acid (F3Ac-Aib-OH) was investigated at room temperature and analyzed for different orientations of the crystal in the magnetic field. The paramagnetic species in N-Trifluoroacetyl-α-aminoisobutyric acid was attributed to the ĊF2-R radical (R= CONHC(CH3)COOH). Hyperfine coupling constants and g value were also determined. In addition, the single crystal of F3Ac-Aib-OH was UV-irradiated and paramagnetic species formed was studied at room temperature. The effects of gamma irradiation on fluoroamino acid and stability were discussed.

  2. Effective bichromatic potential for ultra-high Q-factor photonic crystal slab cavities

    SciTech Connect

    Alpeggiani, Filippo Andreani, Lucio Claudio; Gerace, Dario

    2015-12-28

    We introduce a confinement mechanism in photonic crystal slab cavities, which relies on the superposition of two incommensurate one-dimensional lattices in a line-defect waveguide. It is shown that the resulting photonic profile realizes an effective quasi-periodic bichromatic potential for the electromagnetic field confinement yielding extremely high quality (Q) factor nanocavities, while simultaneously keeping the mode volume close to the diffraction limit. We apply these concepts to pillar- and hole-based photonic crystal slab cavities, respectively, and a Q-factor improvement by over an order of magnitude is shown over existing designs, especially in pillar-based structures. Thanks to the generality and easy adaptation of such confinement mechanism to a broad class of cavity designs and photonic lattices, this work opens interesting routes for applications where enhanced light–matter interaction in photonic crystal structures is required.

  3. Magnetic-field-driven surface electromagnetic states in the graphene-antiferromagnetic photonic crystal system

    NASA Astrophysics Data System (ADS)

    Averkov, Yu. O.; Tarapov, S. I.; Yakovenko, V. M.; Yampol'skii, V. A.

    2015-04-01

    The surface electromagnetic states (SEMSs) on graphene, which has a linear carrier dispersion law and is placed in an antiferromagnetic photonic crystal, are theoretically studied in the terahertz frequency range. The unit cell of such a crystal consists of layers of a nonmagnetic insulator and a uniaxial antiferromagnet, the easy axis of which is parallel to the crystal layers. A dc magnetic field is parallel to the easy axis of the antiferromagnet. An expression that relates the SEMS frequencies to the structure parameters is obtained. The problem of SEMS excitation by an external TE-polarized electromagnetic wave is solved, and the dependences of the transmission coefficient on the dc magnetic field and the carrier concentration are constructed. These dependences are shown to differ substantially from the case of a conventional two-dimensional electron gas with a quadratic electron dispersion law. Thus, the positions of the transmission coefficient peaks related to resonance SEMS excitation can be used to determine the character of carrier dispersion law in a two-dimensional electron gas.

  4. Magnetic-field-driven surface electromagnetic states in the graphene-antiferromagnetic photonic crystal system

    SciTech Connect

    Averkov, Yu. O. Tarapov, S. I.; Yakovenko, V. M.; Yampol’skii, V. A.

    2015-04-15

    The surface electromagnetic states (SEMSs) on graphene, which has a linear carrier dispersion law and is placed in an antiferromagnetic photonic crystal, are theoretically studied in the terahertz frequency range. The unit cell of such a crystal consists of layers of a nonmagnetic insulator and a uniaxial antiferromagnet, the easy axis of which is parallel to the crystal layers. A dc magnetic field is parallel to the easy axis of the antiferromagnet. An expression that relates the SEMS frequencies to the structure parameters is obtained. The problem of SEMS excitation by an external TE-polarized electromagnetic wave is solved, and the dependences of the transmission coefficient on the dc magnetic field and the carrier concentration are constructed. These dependences are shown to differ substantially from the case of a conventional two-dimensional electron gas with a quadratic electron dispersion law. Thus, the positions of the transmission coefficient peaks related to resonance SEMS excitation can be used to determine the character of carrier dispersion law in a two-dimensional electron gas.

  5. Tunability of two dimensional n-doped semiconductor photonic crystals based on the Faraday effect.

    PubMed

    Aly, Arafa H; El-Naggar, Sahar A; Elsayed, Hussein A

    2015-06-01

    In this paper, we theoretically investigate the effect of an external magnetic field on the properties of photonic band structures in two-dimensional n-doped semiconductor photonic crystals. We used the frequency-dependent plane wave expansion method. The numerical results reveal that the external magnetic field has a significant effect on the permittivity of the semiconductor materials. Therefore, the photonic band structures can be strongly tuned and controlled. The proposed structure is a good candidate for many applications, including filters, switches, and modulators in optoelectronics and microwave devices.

  6. The Effect of Crystallizing and Non-crystallizing Cosolutes on Succinate Buffer Crystallization and the Consequent pH Shift in Frozen Solutions

    SciTech Connect

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    2011-09-06

    To effectively inhibit succinate buffer crystallization and the consequent pH changes in frozen solutions. Using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD), the crystallization behavior of succinate buffer in the presence of either (i) a crystallizing (glycine, mannitol, trehalose) or (ii) a non-crystallizing cosolute (sucrose) was evaluated. Aqueous succinate buffer solutions, 50 or 200 mM, at pH values 4.0 or 6.0 were cooled from room temperature to -25 C at 0.5 C/min. The pH of the solution was measured as a function of temperature using a probe designed to function at low temperatures. The final lyophiles prepared from these solutions were characterized using synchrotron radiation. When the succinic acid solution buffered to pH 4.0, in the absence of a cosolute, was cooled, there was a pronounced shift in the freeze-concentrate pH. Glycine and mannitol, which have a tendency to crystallize in frozen solutions, remained amorphous when the initial pH was 6.0. Under this condition, they also inhibited buffer crystallization and prevented pH change. At pH 4.0 (50 mM initial concentration), glycine and mannitol crystallized and did not prevent pH change in frozen solutions. While sucrose, a non-crystallizing cosolute, did not completely prevent buffer crystallization, the extent of crystallization was reduced. Sucrose decomposition, based on XRD peaks attributable to {beta}-D-glucose, was observed in frozen buffer solutions with an initial pH of 4.0. Trehalose completely inhibited crystallization of the buffer components when the initial pH was 6.0 but not at pH 4.0. At the lower pH, the crystallization of both trehalose dihydrate and buffer components was evident. When retained amorphous, sucrose and trehalose effectively inhibited succinate buffer component crystallization and the consequent pH shift. However, when trehalose crystallized or sucrose degraded to yield a crystalline decomposition product, crystallization of buffer was

  7. Direct current electric field assembly of colloidal crystals displaying reversible structural color.

    PubMed

    Shah, Aayush A; Ganesan, Mahesh; Jocz, Jennifer; Solomon, Michael J

    2014-08-26

    We report the application of low-voltage direct current (dc) electric fields to self-assemble close-packed colloidal crystals in nonaqueous solvents from colloidal spheres that vary in size from as large as 1.2 μm to as small as 0.1 μm. The assemblies are created rapidly (∼2 min) from an initially low volume fraction colloidal particle suspension using a simple capacitor-like electric field device that applies a steady dc electric voltage. Confocal microscopy is used to observe the ordering that is produced by the assembly method. This spatial evidence for ordering is consistent with the 6-fold diffraction patterns identified by light scattering. Red, green, and blue structural color is observed for the ordered assemblies of colloids with diameters of 0.50, 0.40, and 0.29 μm, respectively, consistent with spectroscopic measurements of reflectance. The diffraction and spectrophotometry results were found to be consistent with the theoretical Bragg's scattering expected for closed-packed crystals. By switching the dc electric field from on to off, we demonstrate reversibility of the structural color response on times scales ∼60 s. The dc electric field assembly method therefore represents a simple method to produce reversible structural color in colloidal soft matter.

  8. Magnetostrictive behaviors of Fe-Al(001) single-crystal films under rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Kawai, Tetsuroh; Abe, Tatsuya; Ohtake, Mitsuru; Futamoto, Masaaki

    2016-05-01

    Magnetostrictive behaviors of Fe100-x - Alx(x = 0 - 30 at.%)(001) single-crystal films under rotating magnetic fields are investigated along the two different crystallographic orientations, [100] and [110]. The behaviors of Fe and Fe90Al10 films show bath-tub like waveform along [100], easy magnetization axis, and triangular waveform along [110], hard magnetization axis, with respect to their four-fold magnetic anisotropy. On the other hand, the behaviors of Fe80Al20 film are different from those of Fe or Fe90Al10 film. The output of the film along [100] shows a strong magnetic field dependence. The Fe70Al30 film shows similar magnetostrictive behaviors along both [100] and [110] reflecting its magnetic properties, which are almost same for the both directions. The growth of ordered phase (B2) in Fe80Al20 and Fe70Al30 films is considered to have affected their magnetostrictive behaviors. The Al content dependence on λ100 and λ111 values shows similar tendency to that reported for the bulk samples but the values are slightly different. The Fe90Al10(001) single-crystal film shows a large magnetostriction along [100] under a very small magnetic field of 0.02 kOe, which is comparable to the saturated one, and changes the value abruptly in relation to the angle of applied magnetic field.

  9. Directed peptide amphiphile assembly using aqueous liquid crystal templates in magnetic fields.

    PubMed

    van der Asdonk, Pim; Keshavarz, Masoumeh; Christianen, Peter C M; Kouwer, Paul H J

    2016-08-21

    An alignment technique based on the combination of magnetic fields and a liquid crystal (LC) template uses the advantages of both approaches: the magnetic fields offer non-contact methods that apply to all sample sizes and shapes, whilst the LC templates offer high susceptibilities. The combination introduces a route to control the spatial organization of materials with low intrinsic susceptibilities. We demonstrate that we can unidirectionally align one such material, peptide amphiphiles in water, on a centimeter scale at a tenfold lower magnetic field by using a lyotropic chromonic liquid crystal as a template. We can transform the aligned supramolecular assemblies into optically active π-conjugated polymers after photopolymerization. Lastly, by reducing the magnetic field strength needed for addressing these assemblies, we are able to create more complex structures by initiating self-assembly of our supramolecular materials under competing alignment forces between the magnetically induced alignment of the assemblies (with a positive diamagnetic anisotropy) and the elastic force dominated alignment of the template (with a negative diamagnetic anisotropy), which is directed orthogonally. Although the approach is still in its infancy and many critical parameters need optimization, we believe that it is a very promising technique to create tailor-made complex structures of (aqueous) functional soft matter. PMID:27320385

  10. Imaging the oblique propagation of electrons in germanium crystals at low temperature and low electric field

    NASA Astrophysics Data System (ADS)

    Moffatt, R. A.; Cabrera, B.; Corcoran, B. M.; Kreikebaum, J. M.; Redl, P.; Shank, B.; Yen, J. J.; Young, B. A.; Brink, P. L.; Cherry, M.; Tomada, A.; Phipps, A.; Sadoulet, B.; Sundqvist, K. M.

    2016-01-01

    Excited electrons in the conduction band of germanium collect into four energy minima, or valleys, in momentum space. These local minima have highly anisotropic mass tensors which cause the electrons to travel in directions which are oblique to an applied electric field at sub-Kelvin temperatures and low electric fields, in contrast to the more isotropic behavior of the holes. This experiment produces a full two-dimensional image of the oblique electron and hole propagation and the quantum transitions of electrons between valleys for electric fields oriented along the [0,0,1] direction. Charge carriers are excited with a focused laser pulse on one face of a germanium crystal and then drifted through the crystal by a uniform electric field of strength between 0.5 and 6 V/cm. The pattern of charge density arriving on the opposite face is used to reconstruct the trajectories of the carriers. Measurements of the two-dimensional pattern of charge density are compared in detail with Monte Carlo simulations developed for the Cryogenic Dark Matter Search (SuperCDMS) to model the transport of charge carriers in high-purity germanium detectors.

  11. General equations for the motions of ice crystals and water drops in gravitational and electric fields

    NASA Technical Reports Server (NTRS)

    Nisbet, John S.

    1989-01-01

    General equations for the Reynolds number of a variety of types of ice crystals and water drops are given in terms of the Davies, Bond, and Knudsen numbers. The equations are in terms of the basic physical parameters of the system and are valid for calculating velocities in gravitational and electric fields over a very wide range of sizes and atmospheric conditions. The equations are asymptotically matched at the bottom and top of the size spectrum, useful when checking large computer codes. A numerical system for specifying the dimensional properties of ice crystals is introduced. Within the limits imposed by such variables as particle density, which have large deviations, the accuracy of velocities appears to be within 10 percent over the entire range of sizes of interest.

  12. Crystal size of epidotes: A potentially exploitable geothermometer in geothermal fields

    SciTech Connect

    Patrier, P.; Beaufort, D.; Touchard, G. ); Fouillac, A.M. )

    1990-11-01

    Crystal size of epidotes crystallized in quartz + epidote veins is used as the basis for a new geothermometer from the fossil geothermal field of Saint Martin (Lesser Antilles). The epidote-bearing alteration paragenesis is developed as far as 3 km from a quartz diorite pluton at temperatures of 220-350C. The length/width ratio of the epidote grains is constant for all the analyzed samples and suggests isotropic growth environments. However, the length and width of the grains vary exponentially with temperature. The obtained results offer new perspectives for simple grain-size geothermomentry but must be extended to other geologic environments to clarify the influence of different rock types.

  13. Temperature and Field Induced Strain Measurements in Single Crystal Gd5Si2Ge2

    NASA Astrophysics Data System (ADS)

    McCall, S. K.; Nersessian, N.; Carman, G. P.; Pecharsky, V. K.; Schlagel, D. L.; Radousky, H. B.

    2016-06-01

    The first-order magneto-structural transformation that occurs in Gd5Si2Ge2 near room temperature makes it a strong candidate for many energy harvesting applications. Understanding the single crystal properties is crucial for allowing simulations of device performance. In this study, magnetically and thermally induced transformation strains were measured in a single crystal of Gd5Si2.05Ge1.95 as it transforms from a high-temperature monoclinic paramagnet to a lower-temperature orthorhombic ferromagnet. Thermally induced transformation strains of -8500 ppm, +960 ppm and +1800 ppm, and magnetically induced transformation strains of -8500 ppm, +900 ppm and +2300 ppm were measured along the a, b and c axes, respectively. Using experimental data coupled with general thermodynamic considerations, a universal phase diagram was constructed showing the transition from the monoclinic to the orthorhombic phase as a function of temperature and magnetic field.

  14. General equations for the motions of ice crystals and water drops in gravitational and electric fields

    NASA Technical Reports Server (NTRS)

    Nisbet, John S.

    1988-01-01

    General equations for the Reynolds number of a variety of types of ice crystals and water drops are given in terms of the Davies, Bond, and Knudsen numbers. The equations are in terms of the basic physical parameters of the system and are valid for calculating velocities in gravitational and electric fields over a very wide range of sizes and atmospheric conditions. The equations are asymptotically matched at the bottom and top of the size spectrum, useful when checking large computer codes. A numerical system for specifying the dimensional properties of ice crystals is introduced. Within the limits imposed by such variables as particle density, which have large deviations, the accuracy of velocities appears to be within 10 percent over the entire range of sizes of interest.

  15. Experimental study of strong nonlinear-optics effects in liquid crystals

    NASA Astrophysics Data System (ADS)

    Darbin, S. D.; Arakelyan, S. M.; Cheung, M. M.; Shen, Y. R.

    1984-07-01

    Nonlinear optical effects that arise in nematic liquid crystals as a result of a change in the index of refraction induced by a laser field are considered. Since the resultant nonlinearity is extremely high, the approximation of perturbation theory cannot be used in calculations. However, the change in refractive index results mainly in phase advance as waves propagate through a thin film of liquid crystal, while the change of intensity is significant. Moreover, if there is no change in polarization of the pumping field, calculations are relatively simple. An investigation is made of the propagation of a cross sectionally bounded laser beam through a homeotropically oriented liquid crystal, giving rise to spatial phase modulation of emission. When the intensity of the laser beam exceeds a certain value, a system of aberation rings is observed in the output radiation. Effects of dynamic self-diffraction accompanying degenerate four-wave mixing when a change in refractive index is induced in a homeotropic liquid crystal film, and optical bistability in a nonlinear Fabry-Perot optical cavity, as well as generation of a self-oscillatory state in such a resonator are discussed.

  16. Magnetization behavior of RE123 bulk magnets bearing twin seed-crystals in pulsed field magnetization processes

    NASA Astrophysics Data System (ADS)

    Oka, T.; Miyazaki, T.; Ogawa, J.; Fukui, S.; Sato, T.; Yokoyama, K.; Langer, M.

    2016-02-01

    Melt-textured Y-Ba-Cu-O high temperature superconducting bulk magnets were fabricated by the cold seeding method with using single or twin-seed crystals composed of Nd-Ba-Cu-O thin films on MgO substrates. The behavior of the magnetic flux penetration into anisotropic-grown bulk magnets thus fabricated was precisely evaluated during and after the pulsed field magnetization operated at 35 K. These seed crystals were put on the top surfaces of the precursors to grow large grains during the melt-processes. Although we know the magnetic flux motion is restricted by the enhanced pinning effect in temperature ranges lower than 77 K, we observed that flux invasion occurred at applied fields of 3.3 T when the twin seeds were used. This is definitely lower than those of 3.7 T when the single-seeds were employed. This means that the magnetic fluxes are capable of invading into twin-seeded bulk magnets more easily than single-seeded ones. The twin seeds form the different grain growth regions, the narrow-GSR (growth sector region) and wide-GSR, according to the different grain growth directions which are parallel and normal to the rows of seed crystals, respectively. The invading flux measurements revealed that the magnetic flux invades the sample from the wide-GSR prior to the narrow-GSR. It suggests that such anisotropic grain growth leads to different distributions of pinning centers, variations of J c values, and the formation of preferential paths for the invading magnetic fluxes. Using lower applied fields definitely contributed to lowering the heat generation during the PFM process, which, in turn, led to enhanced trapped magnetic fluxes.

  17. Research on temperature field of KDP crystal under ion beam cleaning.

    PubMed

    Li, Furen; Xie, Xuhui; Tie, Guipeng; Hu, Hao; Zhou, Lin

    2016-06-20

    KH2PO4 (KDP) crystal is a kind of excellent nonlinear optical component used as a laser frequency conversion unit in a high-power laser system. However, KDP crystal has raised a huge challenge in regards to its fabrication for high precision: KDP crystal has special physical and chemical characteristics. Abrasive-free water-dissolution magnetorheological finishing is used in KDP figuring in our lab. But the iron powders of MRF fluid are easily embedded into the soft surface of KDP crystal, which will greatly decrease the laser-induced damage resistance. This paper proposes to utilize ion beam figuring (IBF) technology to figure and clean the surface of a KDP component. Although IBF has many good performances, the thermal effect control is a headachy problem for the KDP process. To solve this problem, we have established its thermal effect models, which are used to calculate a component's surface temperature and thermal gradient in the whole process. By this way, we can understand how to control a temperature map and its gradient in the IBF process. Many experiments have been done to validate and optimize this method. Finally, a KDP component with the size of 200×200×12  mm is successfully processed by this method. PMID:27409114

  18. Shock-induced optical emission from yttria-doped cubic zircon single crystal: crystal orientation effects

    NASA Astrophysics Data System (ADS)

    Cao, Xiuxia; Zhou, Xianming; Meng, Chuanmin

    2015-06-01

    The shock-induced optical emission from yttria (Y2O3) -doped cubic zircon single crystal (< 100 > and < 110 > crystal orientations) under the pressure range from 30 to 52 GPa was measured by the time-resolved 40-channel optical pyrometer at discrete wavelengths ranging from 400 to 800 nm. Clear periodic fluctuation was observed in spectral radiance history of < 110 > ZrO2, while a noise fluctuation was found in < 100 > ZrO2. The gray-body function was used to fit the spectral radiance histories. We found that the obtained apparent temperature varied slightly with time, but the emissivity history showed a fluctuate increase with time. Moreover, all the temperature data were independent of shock stress and were well above the calculated Lindeman melting temperature. Present result suggests that the optical emission relates to the shock-induced local hot spots, and its crystal orientation effect is attributed to the different dynamic deformation response between < 100 > and < 110 > ZrO2.

  19. Three-Dimensional Stress Fields and Slip Systems for Single Crystal Superalloy Notched Specimens

    NASA Technical Reports Server (NTRS)

    Magnan, Shannon M.; Throckmorton, David (Technical Monitor)

    2002-01-01

    Single crystal superalloys have become increasingly popular for turbine blade and vane applications due to their high strength, and creep and fatigue resistance at elevated temperatures. The crystallographic orientation of a single crystal material greatly affects its material properties, including elastic modulus, shear modulus, and ductility. These directional properties, along with the type of loading and temperature, dictate an anisotropic response in the yield strength, creep resistance, creep rupture ductility, fatigue resistance, etc. A significant amount of research has been conducted to determine the material properties in the <001> orientation, yet the material properties deviating from the <001> orientation have not been assessed for all cases. Based on the desired application and design criteria, a crystal orientation is selected to yield the maximum properties. Currently, single crystal manufacturing is able to control the primary crystallographic orientation within 15 of the target orientation, which is an acceptable deviation to meet both performance and cost guidelines; the secondary orientation is rarely specified. A common experiment is the standard load-controlled tensile test, in which specimens with different orientations can be loaded to observe the material response. The deformation behavior of single-crystal materials under tension and compression is known to be a function of not only material orientation, but also of varying microdeformation (i.e. dislocation) mechanisms. The underlying dislocation motion causes deformation via slip, and affects the activation of specific slip systems based on load and orientation. The slip can be analyzed by observing the visible traces left on the surface of the specimen from the slip activity within the single crystal material. The goal of this thesis was to predict the slip systems activated in three-dimensional stress fields of a notched tensile specimen, as a function of crystal orientation, using

  20. Theory of the zero-field splitting of 6S(3d5)-state ions in cubic crystals

    NASA Astrophysics Data System (ADS)

    Wan-Lun, Yu; Tao, Tan

    1994-02-01

    A study is made of the zero-field splitting (ZFS) of 6S(3d5) ions in cubic crystals, based on an extended crystal-field (CF) model which assumes two constants ζte and ζtt in the description of the spin-orbit (SO) interaction. In addition to the recognized origin for the ZFS, namely, the combined effect of the CF and the SO couplings, a second source is found to arise from the SO interaction alone through a difference between ζte and ζtt caused by covalency. To understand this second effect, we have investigated the SO coupling processes which contribute to the ZFS, using the Macfarlane-Zdansky perturbation procedure. Processes in which the couplings are all between states of different configurations tm2e5-m are found to make a positive contribution proportional to ζ4te. Other processes contribute negatively through a term in ζ2teζ2tt. The ZFS is thus determined by the relative magnitudes of these two parts, and a small difference between ζte and ζtt will cause a great change in its value. Application of this new theory is successfully made to Mn2+ ions in tetrahedral II-VI compounds and in fluoroperovskites.

  1. Effect of storage temperature on crystal formation rate and growth rate of calcium lactate crystals on smoked Cheddar cheeses.

    PubMed

    Rajbhandari, P; Patel, J; Valentine, E; Kindstedt, P S

    2013-06-01

    Previous studies have shown that storage temperature influences the formation of calcium lactate crystals on vacuum-packaged Cheddar cheese surfaces. However, the mechanisms by which crystallization is modulated by storage temperature are not completely understood. The objectives of this study were to evaluate the effect of storage temperature on smoked Cheddar cheese surfaces for (1) the number of discrete visible crystals formed per unit of cheese surface area; (2) growth rate and shape of discrete crystals (as measured by area and circularity); (3) percentage of total cheese surface area occupied by crystals. Three vacuum-packaged, random weight (∼300 g) retail samples of naturally smoked Cheddar cheese, produced from the same vat of cheese, were obtained from a retail source. The samples were cut parallel to the longitudinal axis at a depth of 10mm from the 2 surfaces to give six 10-mm-thick slabs, 4 of which were randomly assigned to 4 different storage temperature treatments: 1, 5, 10°C, and weekly cycling between 1 and 10°C. Samples were stored for 30 wk. Following the onset of visible surface crystals, digital photographs of surfaces were taken every other week and evaluated by image analysis for number of discrete crystal regions and total surface area occupied by crystals. Specific discrete crystals were chosen and evaluated biweekly for radius, area, and circularity. The entire experiment was conducted in triplicate. The effects of cheese surface, storage temperature, and storage time on crystal number and total crystal area were evaluated by ANOVA, according to a repeated-measures design. The number of discrete crystal regions increased significantly during storage but at different rates for different temperature treatments. Total crystal area also increased significantly during storage, at rates that varied with temperature treatment. Storage temperature did not appear to have a major effect on the growth rates and shapes of the individual crystals

  2. Comparative study of the absorption spectrum of Li 2CaSiO 4:Cr 4+: First-principles fully relativistic and crystal field calculations

    NASA Astrophysics Data System (ADS)

    Brik, M. G.; Ogasawara, K.

    2007-11-01

    Systematic analysis of the energy level scheme and ground state absorption of the Cr4+ ion in Li2CaSiO4 crystal was performed using the exchange charge model of the crystal field [B.Z. Malkin, in: A.A. Kaplyanskii, B.M. Macfarlane (Eds.), Spectroscopy of Solids Containing Rare-earth Ions, North-Holland, Amsterdam, 1987, pp. 33-50] and recently developed first-principles approach to the analysis of the absorption spectra of impurity ions in crystals based on the discrete variational multielectron (DVME) method [K. Ogasawara, T. Iwata, Y. Koyama, T. Ishii, I. Tanaka, H. Adachi, Phys. Rev. B 64 (2001) 115413]. Using the former method, the values of parameters of crystal field acting on the Cr4+ ion valence electrons were calculated using the Li2CaSiO4 crystal structure data. Energy levels of the Cr4+ ion obtained after diagonalizing the crystal field Hamiltonian are in good agreement with those obtained from the experimental spectra. The latter method is based on the numerical solution of the Dirac equation; therefore, all relativistic effects are automatically considered. As a result, energy level scheme of Cr4+ and its absorption spectra in both polarizations were calculated, assigned and compared with experimental data; energy of the lowest charge transfer transition was evaluated and compared with theoretical predictions for the CrO44- complex available in the literature. The main features of the experimental spectra shape are reproduced well by the calculations. By performing analysis of the molecular orbitals (MO) population, it was shown that the covalent effects play an important role in formation of the spectral properties of Cr4+ ion in the considered crystal.

  3. Slow light effect in pinch waveguide in photonic crystal

    NASA Astrophysics Data System (ADS)

    Rani, Preeti; Kalra, Yogita; Sinha, R. K.

    2015-08-01

    In this paper, we have proposed a design for slow light effect in pinch photonic crystal waveguide. The design consists of two dimensional triangular arrangements of air holes in silicon on insulator substrate. From the calculations it has been found out that for the proposed structure the group index is high and group velocity dispersion is low. The confinement of light in the pinch waveguide with slow light effect can be a strong candidate for sensor applications.

  4. Lensing effects in a nematic liquid crystal with topological defects.

    PubMed

    Sátiro, C; Moraes, F

    2006-06-01

    Light traveling through a liquid crystal with disclinations perceives a geometrical background which causes lensing effects similar to the ones predicted for cosmic objects like global monopoles and cosmic strings. In this paper we explore the effective geometry as perceived by light in such media. The comparison between both systems suggests that experiments can be done in the laboratory to simulate optical properties, like gravitational lensing, of cosmic objects. PMID:16775663

  5. Crystal-field study of magnetization and specific heat properties of frustrated pyrochlore Pr2Zr2O7

    NASA Astrophysics Data System (ADS)

    Alam, J.; Jana, Y. M.; Biswas, A. Ali

    2016-10-01

    The experimental results of temperature dependent dc magnetic susceptibility, field dependent isothermal magnetization, magnetic specific heat and entropy of the pyrochlore Pr2Zr2O7 are simulated and analyzed using appropriate D3d crystal-field (CF) and anisotropic molecular field tensors at Pr-sites in the self-consistent mean-field approach involving four magnetically non-equivalent rare-earth spins on the tetrahedral unit of the pyrochlore structure. CF level pattern and wave-functions of the ground 3H4 multiplet of the Pr3+ ions are obtained considering intermediate coupling between different Russell-Saunders terms of the 4f2 electronic configurations of Pr-ion and J-mixing effects. CF analysis shows that the CF ground-state of the Pr3+ ion in Pr2Zr2O7 is a well-isolated doublet, with significant admixtures of terms coming from |MJ=±4> and |MJ=±1>, and the Pr-spins are effectively Ising-like along the local <111> axes. Magnetic specific heat in zero-field is simulated by considering a temperature dependence of the exchange splitting of the ground doublet.

  6. Influence of Electric Fields on the Flow of a Liquid Crystal Mixture in Circular-Pipe Electrodes

    NASA Astrophysics Data System (ADS)

    Tsukiji, Tetsuhiro; Koyabu, Eitaro; Tsuji, Tomohiro; Chono, Shigeomi

    Two types of circular-pipe electrode are designed to control the pressure and flow rate of electrorheological(ER) fluids under the application of an electric field. The shape of the electrode is a circular pipe and some parts of the inner surface of the pipe are made of electrode strips. A liquid crystal mixture is selected as a homogeneous ER fluid and the pressure drop in the circular-pipe electrode is measured at constant flow rates. On the other hand, numerical analysis of the electric field and the fluid flow in the circular-pipe electrode is conducted. It is assumed that the viscosity, which depends on the electric field intensity, is distributed in the flow fields. The relationships between the flow rate and the pressure are simulated numerically for various electric field intensities, which agree with experimental results. The difference in the ER effect between the two types of electrodes is discussed on the basis of the distributions of the electric field intensity and the pressure drop. Furthermore, the influence of both the number of electrode strips and the gaps between electrode strips in the pipe on the flow rate vs. pressure characteristics is investigated numerically, and a comparison of the flow characteristics between the present electrodes and two types of parallel-plate electrodes is conducted.

  7. Effect of borax on the crystallization kinetics of boric acid

    NASA Astrophysics Data System (ADS)

    Şahin, Ömer

    2002-03-01

    The effect of different borax concentrations on the growth and dissolution rates of boric acid crystals were measured in a fluidized bed crystallizer under well-established conditions of supersaturation and undersaturation and fluidization. It was found that the presence of borax in boric-acid solution decreases the mass-transfer coefficient, kd, the surface-reaction constant, kr and reaction order r pertaining to growth and dissolution rates of boric acid crystals. The effectiveness factors were estimated from the growth rate data to evaluate the relative magnitudes of the two resistances in series, diffusion and integration. The controlling mechanism is mainly by integration for the crystal growth of boric acid in the pure state and in the presence of borax in solution. The kinetic parameters ( kr, kd, r) were determined by a new method which is called trial and error under no assumption. This method gives a high accuracy of determination of the mass-transfer coefficient, kd, the surface-reaction constant, kr and surface-reaction order, r. The relative standard deviation between the equation Rg= kr(( ρα- ρeq)- Rg(1- wα)/ kd) r and those experimentally obtained and represented by the equation Rg= kg( ρα- ρeq) g do not exceed 0.013 for both the growth and dissolution regions.

  8. Near-field probing of slow Bloch modes on photonic crystals with a nanoantenna.

    PubMed

    Vo, T-P; Mivelle, M; Callard, S; Rahmani, A; Baida, F; Charraut, D; Belarouci, A; Nedeljkovic, D; Seassal, C; Burr, G W; Grosjean, T

    2012-02-13

    We study the near-field probing of the slow Bloch laser mode of a photonic crystal by a bowtie nano-aperture (BNA) positioned at the end of a metal-coated fiber probe. We show that the BNA acts as a polarizing nanoprobe allowing us to extract information about the polarization of the near-field of the slow-light mode, without causing any significant perturbation of the lasing process. Near-field experiments reveal a spatial resolution better than λ/20 and a polarization ratio as strong as 110. We also demonstrate that the collection efficiency is two orders of magnitude larger for the BNA than for a 200 nm large circular aperture opened at the apex of the same metal-coated fiber tip. The BNA allows for overcoming one of the main limitations of SNOM linked to the well-known trade off between resolution and signal-to-noise ratio.

  9. Strain mapping in nanocrystalline grains simulated by phase field crystal model

    NASA Astrophysics Data System (ADS)

    Guo, Yaolin; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Tang, Sai; Liu, Feng; Zhou, Yaohe

    2015-03-01

    In recent years, the phase field crystal (PFC) model has been confirmed as a good candidate to describe grain boundary (GB) structures and their nearby atomic arrangement. To further understand the mechanical behaviours of nanocrystalline materials, strain fields near GBs need to be quantitatively characterized. Using the strain mapping technique of geometric phase approach (GPA), we have conducted strain mapping across the GBs in nanocrystalline grains simulated by the PFC model. The results demonstrate that the application of GPA in strain mapping of low and high angles GBs as well as polycrystalline grains simulated by the PFC model is very successful. The results also show that the strain field around the dislocation in a very low angle GB is quantitatively consistent with the anisotropic elastic theory of dislocations. Moreover, the difference between low angle GBs and high angle GBs is revealed by the strain analysis in terms of the strain contour shape and the structural GB width.

  10. Temperature and field dependence of the flux pinning mechanisms in Fe1.06Te0.6Se0.4 single crystal

    NASA Astrophysics Data System (ADS)

    Hossaini, S. J.; Ghorbani, S. R.; Arabi, H.; Wang, X. L.; Lin, C. T.

    2016-11-01

    The temperature and magnetic field dependence of the magnetization and critical current density of Fe1.06 Te0.6 Se0.4 single crystal have been investigated, and the flux pinning mechanism has been analyzed. The critical current density results indicate that there are different pinning mechanisms in this crystal. The pinning mechanisms are studied in terms of the pinning model where the normalized volume pinning force, fp, versus h = H /Hirr , where Hirr is the irreversibility, were studied systematically. It was found that a variety of pinning mechanisms including normal point pinning, normal surface pinning, and pinning based on spatial variation in the Ginzburg-Landau parameter (Δk pinning) pinning mechanisms coexist. The effects each of the different pinning mechanisms were obtained. The results show that the contributions of the real pinning mechanisms are dependent on the temperature and magnetic field in this the single crystal.

  11. Migration-induced field-stabilized polar phase in strontium titanate single crystals at room temperature

    NASA Astrophysics Data System (ADS)

    Hanzig, Juliane; Zschornak, Matthias; Hanzig, Florian; Mehner, Erik; Stöcker, Hartmut; Abendroth, Barbara; Röder, Christian; Talkenberger, Andreas; Schreiber, Gerhard; Rafaja, David; Gemming, Sibylle; Meyer, Dirk C.

    2013-07-01

    Local reversible structural changes in SrTiO3 single crystals in an external electric field are induced by oxygen redistribution. We present in situ x-ray diffraction measurements during and immediately after electroformation. Several reflections are monitored and show an elongation of the cubic unit cell of strontium titanate. Raman investigations verify that the expansion of the unit cell involves a transition from the centrosymmetric to a lower symmetry phase. During a complete formation cycle, including the hold time of the electric field and relaxation time without field, two different dynamics are observed for the reversible transitions from cubic symmetry to tetragonal distortion: a slow one during the increase of the lattice constant in field direction and a fast one after switching off the electric field. Based on the experimental data, we propose the formation of a polar strontium titanate unit cell at room temperature stabilized by the electric field, which is referred to as migration-induced field-stabilized polar phase.

  12. Atomistic study of diffusion-mediated plasticity and creep using phase field crystal methods

    NASA Astrophysics Data System (ADS)

    Berry, Joel; Rottler, Jörg; Sinclair, Chad W.; Provatas, Nikolas

    2015-10-01

    The nonequilibrium dynamics of diffusion-mediated plasticity and creep in materials subjected to constant load at high homologous temperatures is studied atomistically using phase field crystal (PFC) methods. Creep stress and grain size exponents obtained for nanopolycrystalline systems, m ≃1.02 and p ≃1.98 , respectively, closely match those expected for idealized diffusional Nabarro-Herring creep. These exponents are observed in the presence of significant stress-assisted diffusive grain boundary migration, indicating that Nabarro-Herring creep and stress-assisted boundary migration contribute in the same manner to the macroscopic constitutive relation. When plastic response is dislocation-mediated, power-law stress exponents inferred from dislocation climb rates are found to increase monotonically from m ≃3 , as expected for generic climb-mediated natural creep, to m ≃5.8 as the dislocation density ρd is increased beyond typical experimental values. Stress exponents m ≳3 directly measured from simulations that include dislocation nucleation, climb, glide, and annihilation are attributed primarily to these large ρd effects. Extrapolation to lower ρd suggests that m ≃4 -4.5 should be obtained from our PFC description at typical experimental ρd values, which is consistent with expectations for power-law creep via mixed climb and glide. The anomalously large stress exponents observed in our atomistic simulations at large ρd may nonetheless be relevant to systems in which comparable densities are obtained locally within heterogeneous defect domains such as dislocation cell walls or tangles.

  13. The effect of ice crystal shape on aircraft contrails

    NASA Astrophysics Data System (ADS)

    Meza Castillo, Omar E.

    Aircraft contrails are a common phenomenon observed in the sky. They are formed mainly of water, from the ambient atmosphere and as a by-product of the combustion process, in the form of ice crystals. They have been identified as a potential contributor to global warming. Some contrails can be long-lived and create man-made cloud cover, thus possibly altering the radiative balance of the earth. There has been a great deal of research on various aspects of contrail development, but to date, little has been done on the influence of ice crystal shapes on the contrail evolution. In-situ studies have reported that young contrails are mainly quasi-spherical crystals while older contrails can have a much more diverse spectrum of possible shapes. The most common shapes found in contrails are quasi-spherical, hexagonal columns, hexagonal plates, and bullet rosettes. Numerical simulations of contrails to date typically have assumed "spherical" as the default ice shape. This work simulated contrail development with a large eddy simulation (LES) model that implemented both spherical and non-spherical shapes to examine the effects. The included shape effect parameters, such as capacitance coefficient, ventilation factor, Kelvin effect, fall velocity and ice crystal surface area, help to establish the shape difference in the results. This study also investigated initial sensitivities to an additional ice parameter, the ice deposition coefficient. The literature shows conflicting values for this coefficient over a wide range. In the course of this investigation a comparison of various ice metrics was made for simulations with different assumed crystal shapes (spheres, hexagonal columns, hexagonal plates, bullet rosettes and combination of shapes). The simulations were performed at early and late contrail time, with a range of ice crystal sizes, and with/without coupled radiation. In young and older contrails and without coupled radiation, the difference from the shape effect in

  14. Graphene nanopore field effect transistors

    SciTech Connect

    Qiu, Wanzhi; Skafidas, Efstratios

    2014-07-14

    Graphene holds great promise for replacing conventional Si material in field effect transistors (FETs) due to its high carrier mobility. Previously proposed graphene FETs either suffer from low ON-state current resulting from constrained channel width or require complex fabrication processes for edge-defecting or doping. Here, we propose an alternative graphene FET structure created on intrinsic metallic armchair-edged graphene nanoribbons with uniform width, where the channel region is made semiconducting by drilling a pore in the interior, and the two ends of the nanoribbon act naturally as connecting electrodes. The proposed GNP-FETs have high ON-state currents due to seamless atomic interface between the channel and electrodes and are able to be created with arbitrarily wide ribbons. In addition, the performance of GNP-FETs can be tuned by varying pore size and ribbon width. As a result, their performance and fabrication process are more predictable and controllable in comparison to schemes based on edge-defects and doping. Using first-principle transport calculations, we show that GNP-FETs can achieve competitive leakage current of ∼70 pA, subthreshold swing of ∼60 mV/decade, and significantly improved On/Off current ratios on the order of 10{sup 5} as compared with other forms of graphene FETs.

  15. The crystallization of apo-form UMP kinase from Xanthomonas campestris is significantly improved in a strong magnetic field

    SciTech Connect

    Tu, Jhe-Le; Chin, Ko-Hsin; Wang, Andrew H.-J.; Chou, Shan-Ho

    2007-05-01

    A bacterial UMP kinase from the plant pathogen X. campestris pathovar campestris has been overexpressed in E. coli, purified and crystallized in a strong magnetic field. The crystals diffracted to 2.35 Å. Bacterial UMP kinases (UMPKs) are crucial enzymes that are responsible for microbial UTP biosynthesis. Interestingly, eukaryotic and prokaryotic cells use different enzymes for UMP-phosphorylation reactions. Prokaryotic UMPKs are thus believed to be potential targets for antimicrobial drug development. Here, the cloning, expression and crystallization of SeMet-substituted XC1936, a bacterial UMPK from Xanthomonas campestris pathovar campestris, are reported. The crystallization of the apo-form UMPK was found to be significantly improved in a strong magnetic field; the crystals diffracted to a resolution of 2.35 Å, a dramatic improvement over the original value of 3.6 Å. Preliminary structural analyses of apo-form XC1936 using crystals grown in a strong magnetic field clearly reveal well defined loop regions involved in substrate-analogue binding that were previously not visible. Crystallization in a strong magnetic field thus was found to be indispensable in determining the flexible region of the XC1936 UMPK structure.

  16. Large field-induced-strain at high temperature in ternary ferroelectric crystals

    NASA Astrophysics Data System (ADS)

    Wang, Yaojin; Chen, Lijun; Yuan, Guoliang; Luo, Haosu; Li, Jiefang; Viehland, D.

    2016-10-01

    The new generation of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals have potential applications in high power devices due to their surperior operational stability relative to the binary system. In this work, a reversible, large electric field induced strain of over 0.9% at room temperature, and in particular over 0.6% above 380 K was obtained. The polarization rotation path and the phase transition sequence of different compositions in these ternary systems have been determined with increasing electric field applied along [001] direction based on x-ray diffraction data. Thereafter, composition dependence of field-temperature phase diagrams were constructed, which provide compositional and thermal prospectus for the electromechanical properties. It was found the structural origin of the large stain, especially at higher temperature is the lattice parameters modulated by dual independent variables in composition of these ternary solid solution crystals.

  17. Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals.

    PubMed

    Tarduno, John A; Cottrell, Rory D; Watkeys, Michael K; Bauch, Dorothy

    2007-04-01

    The strength of the Earth's early geomagnetic field is of importance for understanding the evolution of the Earth's deep interior, surface environment and atmosphere. Palaeomagnetic and palaeointensity data from rocks formed near the boundary of the Proterozoic and Archaean eons, some 2.5 Gyr ago, show many hallmarks of the more recent geomagnetic field. Reversals are recorded, palaeosecular variation data indicate a dipole-dominated morphology and available palaeointensity values are similar to those from younger rocks. The picture before 2.8 Gyr ago is much less clear. Rocks of the Archaean Kaapvaal craton (South Africa) are among the best-preserved, but even they have experienced low-grade metamorphism. The variable acquisition of later magnetizations by these rocks is therefore expected, precluding use of conventional palaeointensity methods. Silicate crystals from igneous rocks, however, can contain minute magnetic inclusions capable of preserving Archaean-age magnetizations. Here we use a CO2 laser heating approach and direct-current SQUID magnetometer measurements to obtain palaeodirections and intensities from single silicate crystals that host magnetite inclusions. We find 3.2-Gyr-old field strengths that are within 50 per cent of the present-day value, indicating that a viable magnetosphere sheltered the early Earth's atmosphere from solar wind erosion. PMID:17410173

  18. Inversion of absorption anisotropy and bowing of crystal field splitting in wurtzite MgZnO

    NASA Astrophysics Data System (ADS)

    Neumann, M. D.; Esser, N.; Chauveau, J.-M.; Goldhahn, R.; Feneberg, M.

    2016-05-01

    The anisotropic optical properties of wurtzite MgxZn1-xO thin films (0 ≤x ≤0.45 ) grown on m-plane ZnO substrates by plasma assisted molecular beam epitaxy are studied using spectroscopic ellipsometry at room temperature. The data analysis provides the dielectric functions for electric field polarizations perpendicular and parallel to the optical axis. The splitting between the absorption edges of the two polarization directions decreases between x = 0 and x = 0.24, while an inverted absorption anisotropy is found at higher Mg content, indicating a sign change of the crystal field splitting Δcr as for the spin orbit parameter. The characteristic energies such as exciton binding energies and band gaps are determined from the analysis of the imaginary parts of the dielectric functions. In particular, these data reveal a bowing parameter of b =-283 meV for describing the compositional dependence of the crystal field splitting and indicate Δcr=-327 meV for wurtzite MgO. The inverted valence band ordering of ZnO ( Γ7-Γ9-Γ7 ) is found to be preserved with increasing Mg content, while the optical selection rules interchange.

  19. Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals.

    PubMed

    Tarduno, John A; Cottrell, Rory D; Watkeys, Michael K; Bauch, Dorothy

    2007-04-01

    The strength of the Earth's early geomagnetic field is of importance for understanding the evolution of the Earth's deep interior, surface environment and atmosphere. Palaeomagnetic and palaeointensity data from rocks formed near the boundary of the Proterozoic and Archaean eons, some 2.5 Gyr ago, show many hallmarks of the more recent geomagnetic field. Reversals are recorded, palaeosecular variation data indicate a dipole-dominated morphology and available palaeointensity values are similar to those from younger rocks. The picture before 2.8 Gyr ago is much less clear. Rocks of the Archaean Kaapvaal craton (South Africa) are among the best-preserved, but even they have experienced low-grade metamorphism. The variable acquisition of later magnetizations by these rocks is therefore expected, precluding use of conventional palaeointensity methods. Silicate crystals from igneous rocks, however, can contain minute magnetic inclusions capable of preserving Archaean-age magnetizations. Here we use a CO2 laser heating approach and direct-current SQUID magnetometer measurements to obtain palaeodirections and intensities from single silicate crystals that host magnetite inclusions. We find 3.2-Gyr-old field strengths that are within 50 per cent of the present-day value, indicating that a viable magnetosphere sheltered the early Earth's atmosphere from solar wind erosion.

  20. Large field-induced-strain at high temperature in ternary ferroelectric crystals

    PubMed Central

    Wang, Yaojin; Chen, Lijun; Yuan, Guoliang; Luo, Haosu; Li, Jiefang; Viehland, D.

    2016-01-01

    The new generation of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals have potential applications in high power devices due to their surperior operational stability relative to the binary system. In this work, a reversible, large electric field induced strain of over 0.9% at room temperature, and in particular over 0.6% above 380 K was obtained. The polarization rotation path and the phase transition sequence of different compositions in these ternary systems have been determined with increasing electric field applied along [001] direction based on x-ray diffraction data. Thereafter, composition dependence of field-temperature phase diagrams were constructed, which provide compositional and thermal prospectus for the electromechanical properties. It was found the structural origin of the large stain, especially at higher temperature is the lattice parameters modulated by dual independent variables in composition of these ternary solid solution crystals. PMID:27734908