Science.gov

Sample records for crystal growth

  1. Growth of dopamine crystals

    SciTech Connect

    Patil, Vidya Patki, Mugdha

    2016-05-06

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  2. Growth of dopamine crystals

    NASA Astrophysics Data System (ADS)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  3. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1993-01-01

    Proteins account for 50% or more of the dry weight of most living systems and play a crucial role in virtually all biological processes. Since the specific functions of essentially all biological molecules are determined by their three-dimensional structures, it is obvious that a detailed understanding of the structural makeup of a protein is essential to any systematic research pertaining to it. At the present time, protein crystallography has no substitute, it is the only technique available for elucidating the atomic arrangements within complicated biological molecules. Most macromolecules are extremely difficult to crystallize, and many otherwise exciting and promising projects have terminated at the crystal growth stage. There is a pressing need to better understand protein crystal growth, and to develop new techniques that can be used to enhance the size and quality of protein crystals. There are several aspects of microgravity that might be exploited to enhance protein crystal growth. The major factor that might be expected to alter crystal growth processes in space is the elimination of density-driven convective flow. Another factor that can be readily controlled in the absence of gravity is the sedimentation of growing crystal in a gravitational field. Another potential advantage of microgravity for protein crystal growth is the option of doing containerless crystal growth. One can readily understand why the microgravity environment established by Earth-orbiting vehicles is perceived to offer unique opportunities for the protein crystallographer. The near term objectives of the Protein Crystal Growth in a Microgravity Environment (PCG/ME) project is to continue to improve the techniques, procedures, and hardware systems used to grow protein crystals in Earth orbit.

  4. Aluminum Nitride Crystal Growth

    DTIC Science & Technology

    1979-12-01

    UOSR-TR- 80 - 04 2 4EL4- G LEYEL ALUMINUM NITRIDE CRYSTAL GROWTH G.A. Slack FINAL REPORT Contract F49620-78-C-0021 DTIC Period Covered ELECTE I...Laboratory personnel worked on the problem of Aluminum Nitride Heat Sink Crystal Growth for the U.S. Air Force Office of Scientific Research under Contract...Number F44620-76-C-0039. From November 1, 1977 to the present we have worked on Aluminum Nitride and Boron Phosphide Crystal Growth under Contract NUmber

  5. Shaped Crystal Growth

    NASA Astrophysics Data System (ADS)

    Tatartchenko, Vitali A.

    Crystals of specified shape and size (shaped crystals) with controlled crystal growth (SCG) defect and impurity structure have to be grown for the successful development of modern engineering. Since the 1950s many hundreds of papers and patents concerned with shaped growth have been published. In this chapter, we do not try to enumerate the successful applications of shaped growth to different materials but rather to carry out a fundamental physical and mathematical analysis of shaping as well as the peculiarities of shaped crystal structures. Four main techniques, based on which the lateral surface can be shaped without contact with the container walls, are analyzed: the Czochralski technique (CZT), the Verneuil technique (VT), the floating zone technique (FZT), and technique of pulling from shaper (TPS). Modifications of these techniques are analyzed as well. In all these techniques the shape of the melt meniscus is controlled by surface tension forces, i.e., capillary forces, and here they are classified as capillary shaping techniques (CST). We look for conditions under which the crystal growth process in each CST is dynamically stable. Only in this case are all perturbations attenuated and a crystal of constant cross section shaping technique (CST) grown without any special regulation. The dynamic stability theory of the crystal growth process for all CST is developed on the basis of Lyapunov's dynamic stability theory. Lyapunov's equations for the crystal growth processes follow from fundamental laws. The results of the theory allow the choice of stable regimes for crystal growth by all CST as well as special designs of shapers in TPS. SCG experiments by CZT, VT, and FZT are discussed but the main consideration is given to TPS. Shapers not only allow crystal of very complicated cross section to be grown but provide a special distribution of impurities. A history of TPS is provided later in the chapter, because it can only be described after explanation of the

  6. Crystal growth and crystallography

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    1998-01-01

    Selected topics that may be of interest for both crystal-structure and crystal-growth communities are overviewed. The growth of protein crystals, along with that of some other compounds, is one of the topics, and recent insights into related phenomena are considered as examples of applications of general principles. The relationship between crystal growth shape and structure is reviewed and an attempt to introduce semiquantitative characterization of binding for proteins is made. The concept of kinks for complex structures is briefly discussed. Even at sufficiently low supersaturations, the fluctuation of steps may not be sufficient to implement the Gibbs-Thomson law if the kink density is low enough. Subsurface ordering of liquids and growth of rough interfaces from melts is discussed. Crystals growing in microgravity from solution should be more perfect if they preferentially trap stress-inducing impurities, thus creating an impurity-depleted zone around themselves. Evidently, such a zone is developed only around the crystals growing in the absence of convection. Under terrestrial conditions, the self-purified depleted zone is destroyed by convection, the crystal traps more impurity and grows stressed. The stress relief causes mosaicity. In systems containing stress-inducing but poorly trapped impurities, the crystals grown in the absence of convection should be worse than those of their terrestrial counterparts.

  7. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Atomic force microscopy uses laser technology to reveal a defect, a double-screw dislocation, on the surface of this crystal of canavalin, a major source of dietary protein for humans and domestic animals. When a crystal grows, attachment kinetics and transport kinetics are competing for control of the molecules. As a molecule gets close to the crystal surface, it has to attach properly for the crystal to be usable. NASA has funded investigators to look at those attachment kinetics from a theoretical standpoint and an experimental standpoint. Dr. Alex McPherson of the University of California, Irvine, is one of those investigators. He uses X-ray diffraction and atomic force microscopy in his laboratory to answer some of the many questions about how protein crystals grow. Atomic force microscopy provides a means of looking at how individual molecules are added to the surface of growing protein crystals. This helps McPherson understand the kinetics of protein crystal growth. McPherson asks, How fast do crystals grow? What are the forces involved? Investigators funded by NASA have clearly shown that such factors as the level of supersaturation and the rate of growth all affect the habit [characteristic arrangement of facets] of the crystal and the defects that occur in the crystal.

  8. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Atomic force microscopy uses laser technology to reveal a defect, a double-screw dislocation, on the surface of this crystal of canavalin, a major source of dietary protein for humans and domestic animals. When a crystal grows, attachment kinetics and transport kinetics are competing for control of the molecules. As a molecule gets close to the crystal surface, it has to attach properly for the crystal to be usable. NASA has funded investigators to look at those attachment kinetics from a theoretical standpoint and an experimental standpoint. Dr. Alex McPherson of the University of California, Irvine, is one of those investigators. He uses X-ray diffraction and atomic force microscopy in his laboratory to answer some of the many questions about how protein crystals grow. Atomic force microscopy provides a means of looking at how individual molecules are added to the surface of growing protein crystals. This helps McPherson understand the kinetics of protein crystal growth. McPherson asks, How fast do crystals grow? What are the forces involved? Investigators funded by NASA have clearly shown that such factors as the level of supersaturation and the rate of growth all affect the habit [characteristic arrangement of facets] of the crystal and the defects that occur in the crystal.

  9. Microgravity crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Advanced finite element models are used to study three-dimensional, time-dependent flow and segregation in crystal growth systems. In this image of a prototypical model for melt and crystal growth, pathlines at one instant in time are shown for the flow of heated liquid silicon in a cylindrical container. The container is subjected to g-jitter disturbances along the vertical axis. A transverse magnetic field is applied to control them. Such computations are extremely powerful for understanding melt growth in microgravity where g-jitter drives buoyant flows. The simulation is part of the Theoretical Analysis of 3D, Transient Convection and Segregation in Microgravity Bridgman Crystal Growth investigation by Dr. Jeffrey J. Derby of the University of Mirnesota, Minneapolis.

  10. Microgravity crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Advanced finite element models are used to study three-dimensional, time-dependent flow and segregation in crystal growth systems. In this image of a prototypical model for melt and crystal growth, pathlines at one instant in time are shown for the flow of heated liquid silicon in a cylindrical container. The container is subjected to g-jitter disturbances along the vertical axis. A transverse magnetic field is applied to control them. Such computations are extremely powerful for understanding melt growth in microgravity where g-jitter drives buoyant flows. The simulation is part of the Theoretical Analysis of 3D, Transient Convection and Segregation in Microgravity Bridgman Crystal Growth investigation by Dr. Jeffrey J. Derby of the University of Mirnesota, Minneapolis.

  11. Crystal Growth Control

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.; Batur, Celal; Bennett, Robert J.

    1997-01-01

    We present an innovative design of a vertical transparent multizone furnace which can operate in the temperature range of 25 C to 750 C and deliver thermal gradients of 2 C/cm to 45 C/cm for the commercial applications to crystal growth. The operation of the eight zone furnace is based on a self-tuning temperature control system with a DC power supply for optimal thermal stability. We show that the desired thermal profile over the entire length of the furnace consists of a functional combination of the fundamental thermal profiles for each individual zone obtained by setting the set-point temperature for that zone. The self-tuning system accounts for the zone to zone thermal interactions. The control system operates such that the thermal profile is maintained under thermal load, thus boundary conditions on crystal growth ampoules can be predetermined prior to crystal growth. Temperature profiles for the growth of crystals via directional solidification, vapor transport techniques, and multiple gradient applications are shown to be easily implemented. The unique feature of its transparency and ease of programming thermal profiles make the furnace useful for scientific and commercial applications for the determination of process parameters to optimize crystal growth conditions.

  12. Quartz crystal growth

    DOEpatents

    Baughman, Richard J.

    1992-01-01

    A process for growing single crystals from an amorphous substance that can undergo phase transformation to the crystalline state in an appropriate solvent. The process is carried out in an autoclave having a lower dissolution zone and an upper crystallization zone between which a temperature differential (.DELTA.T) is maintained at all times. The apparatus loaded with the substance, solvent, and seed crystals is heated slowly maintaining a very low .DELTA.T between the warmer lower zone and cooler upper zone until the amorphous substance is transformed to the crystalline state in the lower zone. The heating rate is then increased to maintain a large .DELTA.T sufficient to increase material transport between the zones and rapid crystallization. .alpha.-Quartz single crystal can thus be made from fused quartz in caustic solvent by heating to 350.degree. C. stepwise with a .DELTA.T of 0.25.degree.-3.degree. C., increasing the .DELTA.T to about 50.degree. C. after the fused quartz has crystallized, and maintaining these conditions until crystal growth in the upper zone is completed.

  13. Laser-induced crystallization and crystal growth.

    PubMed

    Sugiyama, Teruki; Masuhara, Hiroshi

    2011-11-04

    Recent streams of laser studies on crystallization and crystal growth are summarized and reviewed. Femtosecond multiphoton excitation of solutions leads to their ablation at the focal point, inducing local bubble formation, shockwave propagation, and convection flow. This phenomenon, called "laser micro tsunami" makes it possible to trigger crystallization of molecules and proteins from their supersaturated solutions. Femtosecond laser ablation of a urea crystal in solution triggers the additional growth of a single daughter crystal. Intense continuous wave (CW) near infrared laser irradiation at the air/solution interface of heavy-water amino acid solutions results in trapping of the clusters and evolves to crystallization. A single crystal is always prepared in a spatially and temporally controlled manner, and the crystal polymorph of glycine depends on laser power, polarization, and solution concentration. Upon irradiation at the glass/solution interface, a millimeter-sized droplet is formed, and a single crystal is formed by shifting the irradiation position to the surface. Directional and selective crystal growth is also possible with laser trapping. Finally, characteristics of laser-induced crystallization and crystal growth are summarized.

  14. Protein crystal growth tray assembly

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Miller, Teresa Y. (Inventor)

    1992-01-01

    A protein crystal growth tray assembly includes a tray that has a plurality of individual crystal growth chambers. Each chamber has a movable pedestal which carries a protein crystal growth compartment at an upper end. The several pedestals for each tray assembly are ganged together for concurrent movement so that the solutions in the various pedestal growth compartments can be separated from the solutions in the tray's growth chambers until the experiment is to be activated.

  15. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenblum, William M.; Delucas, Lawrence J.; Wilson, William W.

    1989-01-01

    Major advances have been made in several of the experimental aspects of protein crystallography, leaving protein crystallization as one of the few remaining bottlenecks. As a result, it has become important that the science of protein crystal growth is better understood and that improved methods for protein crystallization are developed. Preliminary experiments with both small molecules and proteins indicate that microgravity may beneficially affect crystal growth. For this reason, a series of protein crystal growth experiments using the Space Shuttle was initiated. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth. Various optical techniques are being utilized to monitor the crystal growth process from the incipient or nucleation stage and throughout the growth phase. The eventual goal of these studies is to develop a system which utilizes optical monitoring for dynamic control of the crystallization process.

  16. Crystal growth of artificial snow

    NASA Technical Reports Server (NTRS)

    Kimura, S.; Oka, A.; Taki, M.; Kuwano, R.; Ono, H.; Nagura, R.; Narimatsu, Y.; Tanii, J.; Kamimiytat, Y.

    1984-01-01

    Snow crystals were grown onboard the space shuttle during STS-7 and STS-8 to facilitate the investigation of crystal growth under conditions of weightlessness. The experimental design and hardware are described. Space-grown snow crystals were polyhedrons looking like spheres, which were unlike snow crystals produced in experiments on Earth.

  17. Physical vapor transport crystal growth

    NASA Technical Reports Server (NTRS)

    Yoel, Dave W.; Anderson, Elmer; Wu, Maw-Kuen; Cheng, H. Y.

    1987-01-01

    The goals of this research are two-fold: to study effective means of growing ZnSe crystals of good optical quality and to determine the advantages of growing such crystals in microgravity. As of this date the optimal conditions for crystal growth have not been determined. However, successful growth runs were made in two furnances and the results are given.

  18. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Delucas, Lawrence J.; Smith, Craig D.; Smith, H. Wilson; Vijay-Kumar, Senadhi; Senadhi, Shobha E.; Ealick, Steven E.; Carter, Daniel C.; Snyder, Robert S.

    1989-01-01

    The crystals of most proteins or other biological macromolecules are poorly ordered and diffract to lower resolutions than those observed for most crystals of simple organic and inorganic compounds. Crystallization in the microgravity environment of space may improve crystal quality by eliminating convection effects near growing crystal surfaces. A series of 11 different protein crystal growth experiments was performed on U.S. Space Shuttle flight STS-26 in September 1988. The microgravity-grown crystals of gamma-interferon D1, porcine elastase, and isocitrate lyase are larger, display more uniform morphologies, and yield diffraction data to significantly higher resolutions than the best crystals of these proteins grown on earth.

  19. Protein crystals and their growth

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2003-01-01

    Recent results on the associations between protein molecules in crystal lattices, crystal-solution surface energy, elastic properties, strength, and spontaneous crystal cracking are reviewed and discussed. In addition, some basic approaches to understanding the solubility of proteins are followed by an overview of crystal nucleation and growth. It is argued that variability of mixing in batch crystallization may be a source of the variation in the number of crystals ultimately appearing in the sample. The frequency at which new molecules join a crystal lattice is measured by the kinetic coefficient and is related to the observed crystal growth rate. Numerical criteria used to discriminate diffusion- and kinetic-limited growth are discussed on this basis. Finally, the creation of defects is discussed with an emphasis on the role of impurities and convection on macromolecular crystal perfection.

  20. Protein Crystals and their Growth

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    2004-01-01

    Recent results on binding between protein molecules in crystal lattice, crystal-solution surface energy, elastic properties and strength and spontaneous crystal cracking are reviewed and discussed in the first half of this paper (Sea 2-4). In the second par&, some basic approaches to solubility of proteins are followed by overview on crystal nucleation and growth (Sec 5). It is argued that variability of mixing in batch crystallization may be a source for scattering of crystal number ultimately appearing in the batch. Frequency at which new molecules join crystal lattice is measured by kinetic coefficient and related to the observable crystal growth rate. Numerical criteria to discriminate diffusion and kinetic limited growth are discussed on this basis in Sec 7. In Sec 8, creation of defects is discussed with the emphasis on the role of impurities and convection on macromolecular crystal I;erfection.

  1. Protein crystals and their growth

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2003-01-01

    Recent results on the associations between protein molecules in crystal lattices, crystal-solution surface energy, elastic properties, strength, and spontaneous crystal cracking are reviewed and discussed. In addition, some basic approaches to understanding the solubility of proteins are followed by an overview of crystal nucleation and growth. It is argued that variability of mixing in batch crystallization may be a source of the variation in the number of crystals ultimately appearing in the sample. The frequency at which new molecules join a crystal lattice is measured by the kinetic coefficient and is related to the observed crystal growth rate. Numerical criteria used to discriminate diffusion- and kinetic-limited growth are discussed on this basis. Finally, the creation of defects is discussed with an emphasis on the role of impurities and convection on macromolecular crystal perfection.

  2. Protein Crystals and their Growth

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    2004-01-01

    Recent results on binding between protein molecules in crystal lattice, crystal-solution surface energy, elastic properties and strength and spontaneous crystal cracking are reviewed and discussed in the first half of this paper (Sea 2-4). In the second par&, some basic approaches to solubility of proteins are followed by overview on crystal nucleation and growth (Sec 5). It is argued that variability of mixing in batch crystallization may be a source for scattering of crystal number ultimately appearing in the batch. Frequency at which new molecules join crystal lattice is measured by kinetic coefficient and related to the observable crystal growth rate. Numerical criteria to discriminate diffusion and kinetic limited growth are discussed on this basis in Sec 7. In Sec 8, creation of defects is discussed with the emphasis on the role of impurities and convection on macromolecular crystal I;erfection.

  3. Protein crystal growth in space

    NASA Technical Reports Server (NTRS)

    Bugg, C. E.; Clifford, D. W.

    1987-01-01

    The advantages of protein crystallization in space, and the applications of protein crystallography to drug design, protein engineering, and the design of synthetic vaccines are examined. The steps involved in using protein crystallography to determine the three-dimensional structure of a protein are discussed. The growth chamber design and the hand-held apparatus developed for protein crystal growth by vapor diffusion techniques (hanging-drop method) are described; the experimental data from the four Shuttle missions are utilized to develop hardware for protein crystal growth in space and to evaluate the effects of gravity on protein crystal growth.

  4. Protein crystal growth in space

    NASA Technical Reports Server (NTRS)

    Bugg, C. E.; Clifford, D. W.

    1987-01-01

    The advantages of protein crystallization in space, and the applications of protein crystallography to drug design, protein engineering, and the design of synthetic vaccines are examined. The steps involved in using protein crystallography to determine the three-dimensional structure of a protein are discussed. The growth chamber design and the hand-held apparatus developed for protein crystal growth by vapor diffusion techniques (hanging-drop method) are described; the experimental data from the four Shuttle missions are utilized to develop hardware for protein crystal growth in space and to evaluate the effects of gravity on protein crystal growth.

  5. Direct flow crystal growth system

    SciTech Connect

    Montgomery, K.E.; Milanovich, F.P.

    1989-10-30

    A crystal is grown in a constantly filtered solution which is flowed directly into the growing face of a crystal. In a continuous flow system, solution at its saturation temperature is removed from a crystal growth tank, heated above its saturation temperatue, filtered, cooled back to its saturation temperature, and returned to the tank. 2 figs.

  6. Direct flow crystal growth system

    DOEpatents

    Montgomery, Kenneth E.; Milanovich, Fred P.

    1992-01-01

    A crystal is grown in a constantly filtered solution which is flowed directly into the growing face of a crystal. In a continuous flow system, solution at its saturation temperature is removed from a crystal growth tank, heated above its saturation temperature, filtered, cooled back to its saturation temperature, and returned to the tank.

  7. High density protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rouleau, Robyn (Inventor); Delucas, Lawrence (Inventor); Hedden, Douglas Keith (Inventor)

    2004-01-01

    A protein crystal growth assembly including a crystal growth cell and further including a cell body having a top side and a bottom side and a first aperture defined therethrough, the cell body having opposing first and second sides and a second aperture defined therethrough. A cell barrel is disposed within the cell body, the cell barrel defining a cavity alignable with the first aperture of the cell body, the cell barrel being rotatable within the second aperture. A reservoir is coupled to the bottom side of the cell body and a cap having a top side is disposed on the top side of the cell body. The protein crystal growth assembly may be employed in methods including vapor diffusion crystallization, liquid to liquid crystallization, batch crystallization, and temperature induction batch mode crystallization.

  8. Protein crystal growth in space

    NASA Technical Reports Server (NTRS)

    Delucas, Lawrence J.; Bugg, Charles E.

    1991-01-01

    Studies of protein crystal growth in the microgravity environment in space are described with special attention given to the crystal growth facilities and the techniques used in Space Shuttle experiments. The properties of large space-grown crystals of gamma interferon, elastase, lathyros ochrus lectin I, and few other proteins grown on various STS flights are described. A comparison of the microgravity-grown crystals with the bast earth-grown crystals demonstrated that the space-grown crystals are more highly ordered at the molecular level than their earth-grown counterparts. When crystallization conditions were optimized, the microgravity-grown protein crystals were larger, displayed more uniform morphologies, and yielded diffraction data to significantly higher resolution than their earth-grown counterparts.

  9. Protein crystal growth - Growth kinetics for tetragonal lysozyme crystals

    NASA Technical Reports Server (NTRS)

    Pusey, M. L.; Snyder, R. S.; Naumann, R.

    1986-01-01

    Results are reported from theoretical and experimental studies of the growth rate of lysozyme as a function of diffusion in earth-gravity conditions. The investigations were carried out to form a comparison database for future studies of protein crystal growth in the microgravity environment of space. A diffusion-convection model is presented for predicting crystal growth rates in the presence of solutal concentration gradients. Techniques used to grow and monitor the growth of hen egg white lysozyme are detailed. The model calculations and experiment data are employed to discuss the effects of transport and interfacial kinetics in the growth of the crystals, which gradually diminished the free energy in the growth solution. Density gradient-driven convection, caused by presence of the gravity field, was a limiting factor in the growth rate.

  10. Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.

  11. Automated protein crystal growth facility

    NASA Technical Reports Server (NTRS)

    Donald, Stacey

    1994-01-01

    A customer for the protein crystal growth facility fills the specially designed chamber with the correct solutions, fills the syringes with their quenching solutions, and submits the data needed for the proper growth of their crystal. To make sure that the chambers and syringes are filled correctly, a NASA representative may assist the customer. The data needed is the approximate growth time, the growth temperature, and the desired crystal size, but this data can be changed anytime from the ground, if needed. The chambers are gathered and placed into numbered slots in special drawers. Then, data is entered into a computer for each of the chambers. Technicians map out when each chamber's growth should be activated so that all of the chambers have enough time to grow. All of this data is up-linked to the space station when the previous growth session is over. Anti-vibrational containers need to be constructed for the high forces encountered during the lift off and the landing of the space shuttle, and though our team has not designed these containers, we do not feel that there is any reason why a suitable one could not be made. When the shuttle reaches the space station, an astronaut removes a drawer of quenched chambers from the growth facility and inserts a drawer of new chambers. All twelve of the drawers can be replaced in this fashion. The optical disks can also be removed this way. The old drawers are stored for the trip back to earth. Once inside the growth facility, a chamber is removed by the robot and placed in one of 144 active sites at a time previously picked by a technician. Growth begins when the chamber is inserted into an active site. Then, the sensing system starts to determine the size of the protein crystal. All during the crystal's growth, the customer can view the crystal and read all of the crystal's data, such as growth rate and crystal size. When the sensing system determines that the crystal has reached the predetermined size, the robot is

  12. Crystal growth of semiconductor bulk crystals

    SciTech Connect

    Kakimoto, Koichi

    2010-07-22

    This course is aimed at showing how to grow bulk crystals by using several methods. The course involves the following points. The growth methods of Bridgman and Czochralski will be introduced. The course also focuses on the mechanism of some processes with consideration of the basic phenomenon. Experimental and numerical examples of the methods will also be introduced.

  13. Surrogate Seeds For Growth Of Crystals

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.

    1989-01-01

    Larger crystals of higher quality grown. Alternative method for starting growth of crystal involves use of seed crystal of different material instead of same material as solution. Intended for growing single-crystal proteins for experiments but applicable in general to growth of crystals from solutions and to growth of semiconductor or other crystals from melts.

  14. Surrogate Seeds For Growth Of Crystals

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.

    1989-01-01

    Larger crystals of higher quality grown. Alternative method for starting growth of crystal involves use of seed crystal of different material instead of same material as solution. Intended for growing single-crystal proteins for experiments but applicable in general to growth of crystals from solutions and to growth of semiconductor or other crystals from melts.

  15. Plenum type crystal growth chamber

    SciTech Connect

    Montgomery, K.E.

    1990-12-31

    Crystals are grown in a tank which is divided by a baffle into a crystal growth region above the baffle and a plenum region below the baffle. A turbine blade or stirring wheel is positioned in a turbine tube which extends through the baffle to generate a flow of solution from the crystal growing region to the plenum region. The solution is pressurized as it flows into the plenum region. The pressurized solution flows back to the crystal growing region through return flow tubes extending through the baffle. Growing crystals are positioned near the ends of the return flow tubes to receive a direct flow of solution.

  16. Plenum type crystal growth process

    DOEpatents

    Montgomery, Kenneth E.

    1992-01-01

    Crystals are grown in a tank which is divided by a baffle into a crystal growth region above the baffle and a plenum region below the baffle. A turbine blade or stirring wheel is positioned in a turbine tube which extends through the baffle to generate a flow of solution from the crystal growing region to the plenum region. The solution is pressurized as it flows into the plenum region. The pressurized solution flows back to the crystal growing region through return flow tubes extending through the baffle. Growing crystals are positioned near the ends of the return flow tubes to receive a direct flow of solution.

  17. Dynamically controlled crystal growth system

    NASA Technical Reports Server (NTRS)

    Bray, Terry L. (Inventor); Kim, Larry J. (Inventor); Harrington, Michael (Inventor); DeLucas, Lawrence J. (Inventor)

    2002-01-01

    Crystal growth can be initiated and controlled by dynamically controlled vapor diffusion or temperature change. In one aspect, the present invention uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from a number of different growth solutions simultaneously by means of an evaporative gas flow. A static laser light scattering sensor can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. A control/follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the control chamber. In a second aspect, the invention exploits the varying solubility of proteins versus temperature to control the growth of protein crystals. This system contains miniature thermoelectric devices under microcomputer control that change temperature as needed to grow crystals of a given protein. Complex temperature ramps are possible using this approach. A static laser light scattering probe also can be used in this system as a non-invasive probe for detection of aggregation events. The automated dynamic control system provides systematic and predictable responses with regard to crystal size. These systems can be used for microgravity crystallization projects, for example in a space shuttle, and for crystallization work under terrestial conditions. The present invention is particularly useful for macromolecular crystallization, e.g. for proteins, polypeptides, nucleic acids, viruses and virus particles.

  18. Czochralski crystal growth: Modeling study

    NASA Technical Reports Server (NTRS)

    Dudukovic, M. P.; Ramachandran, P. A.; Srivastava, R. K.; Dorsey, D.

    1986-01-01

    The modeling study of Czochralski (Cz) crystal growth is reported. The approach was to relate in a quantitative manner, using models based on first priniciples, crystal quality to operating conditions and geometric variables. The finite element method is used for all calculations.

  19. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Carter, Daniel

    1992-01-01

    The overall scientific goals and rationale for growing protein crystals in microgravity are discussed. Data on the growth of human serum albumin crystals which were produced during the First International Microgravity Laboratory (IML-1) are presented. Potential scientific advantages of the utilization of Space Station Freedom are discussed.

  20. Oscillatory growth for twisting crystals.

    PubMed

    Ibaraki, Shunsuke; Ise, Ryuta; Ishimori, Koichiro; Oaki, Yuya; Sazaki, Gen; Yokoyama, Etsuro; Tsukamoto, Katsuo; Imai, Hiroaki

    2015-05-18

    We demonstrate the oscillatory phenomenon for the twisting growth of a triclinic crystal through in situ observation of the concentration field around the growing tip of a needle by high-resolution phase-shift interferometry.

  1. Hydrothermal Growth of Polyscale Crystals

    NASA Astrophysics Data System (ADS)

    Byrappa, Kullaiah

    In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.

  2. Growth of Solid Solution Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.; Holland, L. R.

    1985-01-01

    The major objective of this program is to determine the conditions under which single crystals of solid solutions can be grown from the melt in a Bridgman configuration with a high degree of chemical homogeneity. The central aim is to assess the role of gravity in the growth process and to explore the possible advantages for growth in the absence of gravity. The alloy system being investigated is the solid solution semiconductor with x-values appropriate for infrared detector applications in Hg sub (1-x) Cd sub x Te the 8 to 14 micro m wavelength region. Both melt and Te-solvent growth are being considered. The study consists of an extensive ground-based experimental and theoretical research effort followed by flight experimentation where appropriate. Experimental facilities have been established for the purification, casting, and crystal growth of the alloy system. Facilities have been also established for the metallurgical, compositional, electric and optical characterization of the alloys. Crystals are being grown by the Bridgman-Stockbarger method and are analyzed by various experimental techniques to evaluate the effects of growth conditions on the longitudinal and radial compositional variations and defect densities in the crystals.

  3. Growth Defects in Biomacromolecular Crystals

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's ground based program confirmed close similarity between protein and small molecules crystal growth, but also revealed essential differences. No understanding exists as to why and when crystals grown in space are, in approx. 20 percent of cases, of higher quality. More rationale is needed in flight experiments. Ferritin crystals grown in space are 2.5 times cleaner than their terrestrial counterparts. This may occur because of the existence of a zone depleted with respect to impurities around a crystal growing in stagnant solution. This zone should appear since the distribution coefficient for homologous impurities exceeds unity. This impurity depletion zone hypothesis requires verification and development. Thorough purification from homologous impurities brought about resolution improvement from 2.6 to 1.8 angstroms for ferritin and from 2.6 to 2.0 angstroms for canavalin.

  4. Growth Defects in Biomacromolecular Crystals

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's ground based program confirmed close similarity between protein and small molecules crystal growth, but also revealed essential differences. No understanding exists as to why and when crystals grown in space are, in approx. 20 percent of cases, of higher quality. More rationale is needed in flight experiments. Ferritin crystals grown in space are 2.5 times cleaner than their terrestrial counterparts. This may occur because of the existence of a zone depleted with respect to impurities around a crystal growing in stagnant solution. This zone should appear since the distribution coefficient for homologous impurities exceeds unity. This impurity depletion zone hypothesis requires verification and development. Thorough purification from homologous impurities brought about resolution improvement from 2.6 to 1.8 angstroms for ferritin and from 2.6 to 2.0 angstroms for canavalin.

  5. Observable Protein Crystal Growth Apparatus

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This diagram shows a cross sectrion of the fluid volume of an individual cell in the Observable Protein Crystal Growth Apparatus (OPCGA) to be operated aboard the International Space Station (ISS). The principal investigator is Dr. Alex McPherson of the University of California, Irvine. Each individual cell comprises two sample chambers with a rotating center section that isolates the two from each other until the start of the experiment and after it is completed. The cells are made from optical-quality quartz glass to allow photography and interferometric observations. Each cell has a small light-emitting diode and lens to back-light the solution. In protein crystal growth experiments, a precipitating agent such as a salt solution is used to absorb and hold water but repel the protein molecules. This increases the concentration of protein until the molecules nucleate to form crystals. This cell is one of 96 that make up the experiment module portion of the OPCGA.

  6. (PCG) Protein Crystal Growth Canavalin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Canavalin. The major storage protein of leguminous plants and a major source of dietary protein for humans and domestic animals. It is studied in efforts to enhance nutritional value of proteins through protein engineerings. It is isolated from Jack Bean because of it's potential as a nutritional substance. Principal Investigator on STS-26 was Alex McPherson.

  7. Crystal growth in fused solvent systems

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.; Noone, M. J.; Spear, K. E.; White, W. B.; Henry, E. C.

    1973-01-01

    Research is reported on the growth of electronic ceramic single crystals from solution for the future growth of crystals in a microgravity environment. Work included growth from fused or glass solvents and aqueous solutions. Topics discussed include: crystal identification and selection; aqueous solution growth of triglycine sulphate (TGS); and characterization of TGS.

  8. Growth morphologies of crystal surfaces

    NASA Technical Reports Server (NTRS)

    Xiao, Rong-Fu; Alexander, J. Iwan D.; Rosenberger, Franz

    1991-01-01

    A previously proposed Monte Carlo model (Xiao et al., 1988, 1990) is extended to three dimensions, and reevaporation after accommodation and growth on dislocation-induced steps are included. It is found again that, for a given set of growth parameters, the critical size beyond which a crystal cannot retain its macroscopically faceted shape scales linearly with the mean free path in the vapor. However, the three-dimensional systems show increased shape stability as compared with the corresponding two-dimensional cases. The experimental observation that the critical size of a growing crystal depends on the prevailing growth mechanism is confirmed, and detailed insight into the processes leading to the loss of face and facet stability is obtained.

  9. Crystal growth of drug materials by spherical crystallization

    NASA Astrophysics Data System (ADS)

    Szabó-Révész, P.; Hasznos-Nezdei, M.; Farkas, B.; Göcző, H.; Pintye-Hódi, K.; Erős, I.

    2002-04-01

    One of the crystal growth processes is the production of crystal agglomerates by spherical crystallization. Agglomerates of drug materials were developed by means of non-typical (magnesium aspartate) and typical (acetylsalicylic acid) spherical crystallization techniques. The growth of particle size and the spherical form of the agglomerates resulted in formation of products with good bulk density, flow, compactibility and cohesivity properties. The crystal agglomerates were developed for direct capsule-filling and tablet-making.

  10. Silicon crystal growth in vacuum

    NASA Technical Reports Server (NTRS)

    Khattak, C. P.; Schmid, F.

    1982-01-01

    The most developed process for silicon crystal growth is the Czochralski (CZ) method which was in production for over two decades. In an effort to reduce cost of single crystal silicon for photovoltaic applications, a directional solidification technique, Heat Exchanger Method (HEM), was adapted. Materials used in HEM and CZ furnaces are quite similar (heaters, crucibles, insulation, etc.). To eliminate the cost of high purity argon, it was intended to use vacuum operation in HEM. Two of the major problems encountered in vacuum processing of silicon are crucible decomposition and silicon carbide formation in the melt.

  11. Computational analyses of crystal growth

    NASA Technical Reports Server (NTRS)

    Dakhoul, Youssef M.

    1987-01-01

    Two important aspects of Hg/Cd/Te crystal growth processes are discussed. First, the thermal field and second, the fluid movement in the melt zone. The thermal analysis includes numerical calculation of axisymmetric heat conduction within the sample. It also includes a three-dimensional radiation model to calculate the radiative heat exchange between the furnace and the crystal as determined by the complex geometry of the furnace and the adiabatic shield. The thermal analysis also includes a crystal conductivity which is dependent on temperature and composition. To tackle the fluid flow aspect of the problem, an attempt was made to use a newly developed incompressible flow code based on the slight compressibility, and hence the finite sound speed, of all real fluids.

  12. Zeolite crystal growth in space

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Thompson, Robert W.; Dixon, Anthony G.

    1991-01-01

    The growth of large, uniform zeolite crystals in high yield in space can have a major impact on the chemical process industry. Large zeolite crystals will be used to improve basic understanding of adsorption and catalytic mechanisms, and to make zeolite membranes. To grow large zeolites in microgravity, it is necessary to control the nucleation event and fluid motion, and to enhance nutrient transfer. Data is presented that suggests nucleation can be controlled using chemical compounds (e.g., Triethanolamine, for zeolite A), while not adversely effecting growth rate. A three-zone furnace has been designed to perform multiple syntheses concurrently. The operating range of the furnace is 295 K to 473 K. Teflon-lined autoclaves (10 ml liquid volume) have been designed to minimize contamination, reduce wall nucleation, and control mixing of pre-gel solutions on orbit. Zeolite synthesis experiments will be performed on USML-1 in 1992.

  13. Compact Apparatus For Growth Of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Miller, Teresa Y.

    1991-01-01

    Compact apparatus proposed specifically for growth of protein crystals in microgravity also used in terrestrial laboratories to initiate and terminate growth at prescribed times automatically. Has few moving parts. Also contains no syringes difficult to clean, load, and unload and introduces contaminant silicon grease into crystallization solution. After growth of crystals terminated, specimens retrieved and transported simply.

  14. Crystal growth and annealing method and apparatus

    DOEpatents

    Gianoulakis, Steven E.; Sparrow, Robert

    2001-01-01

    A method and apparatus for producing crystals that minimizes birefringence even at large crystal sizes, and is suitable for production of CaF.sub.2 crystals. The method of the present invention comprises annealing a crystal by maintaining a minimal temperature gradient in the crystal while slowly reducing the bulk temperature of the crystal. An apparatus according to the present invention includes a thermal control system added to a crystal growth and annealing apparatus, wherein the thermal control system allows a temperature gradient during crystal growth but minimizes the temperature gradient during crystal annealing. An embodiment of the present invention comprises a secondary heater incorporated into a conventional crystal growth and annealing apparatus. The secondary heater supplies heat to minimize the temperature gradients in the crystal during the annealing process. The secondary heater can mount near the bottom of the crucible to effectively maintain appropriate temperature gradients.

  15. Gordon Research Conference on Crystal Growth (1990)

    DTIC Science & Technology

    1990-04-01

    5500 Standard Form 298 (Rev. 2-89) Prescribed b ANSI td. 1I39G r 91102 _,r GORDON RESEARCH CONFERENCE ON CRYSTAL GROWTH Casa Sirena Marina Hotel...RESEARCH CONFERENCES CRYSTAL GROWTH CASA SIRENA MARINA HOTEL, OXNARDCA MARGARET BROWN (Chairman) MICHAEL A. DiGIUSEPPE (Vice Chairman) MARCH 11-16. 1990...Europium Doped BGO Crystals GORDON RESEARCH CONFERENCES Crystal Growth March 12-16, 1990 Casa Sirena Resort Oxnard, California Registration List Iwan

  16. Protein crystal growth in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1988-01-01

    Protein crystal growth is a major experimental problem and is the bottleneck in widespread applications of protein crystallography. Research efforts now being pursued and sponsored by NASA are making fundamental contributions to the understanding of the science of protein crystal growth. Microgravity environments offer the possibility of performing new types of experiments that may produce a better understanding of protein crystal growth processes and may permit growth environments that are more favorable for obtaining high quality protein crystals. A series of protein crystal growth experiments using the space shuttle was initiated. The first phase of these experiments was focused on the development of micro-methods for protein crystal growth by vapor diffusion techniques, using a space version of the hanging drop method. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth.

  17. Pressure-Reduction Technique for Crystal Growth

    NASA Technical Reports Server (NTRS)

    Shlichta, P. J.

    1981-01-01

    Large crystals grown by varying pressure rather than temperature. In constant temerature pressure-reduction process crystal growth promoted as solubility decreases by factor of more than 10. Technique used to study crystal growth kinetics by "pressure wave"" analog of conventional "thermal wave" experiments. Technique has advantages of faster response and freedom from convective interference.

  18. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1991-01-01

    The objective of this research is to study the effect of low gravity on the growth of protein crystals and those parameters which will affect growth and crystal quality. The application of graphoepitaxy (artificial epitaxy) to proteins is detailed. The development of a method for the control of nucleation is discussed. The factor affecting the morphology of isocitrate lyase crystals is presented.

  19. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1989-01-01

    The mechanisms involved in protein crystallization and those parameters which influence the growth process and crystalline perfection were studied. The analysis of the flows around growing crystals is detailed. The preliminary study of the growth of isocitrate lyase and the crystal morphologies found are discussed. Preliminary results of controlled nucleation studies are presented.

  20. Crystal growth of calcium phosphates - epitaxial considerations

    NASA Astrophysics Data System (ADS)

    Koutsoukos, P. G.; Nancollas, G. H.

    1981-05-01

    The growth of one crystalline phase on the surface of another that offers a good crystal lattice match, may be important in environmental, physiological and pathological mineralization processes. The epitaxial relationships and kinetics of growth of hydroxyapatite on crystals of dicalcium phosphate dihydrate, calcium fluoride and calcite have been studied at sustained low supersaturation with respect to hydroxyapatite. At the very low supersaturations, the crystallization of hydroxyapatite takes place without the formation of precursor phases. The experimental results are in agreement with theoretical predictions for epitaxial growth, while the kinetics of hydroxyapatite crystallization on the foreign substrates is the same as that for the growth of hydroxyapatite on synthetic hydroxyapatite crystals.

  1. PROCEEDINGS OF THE SOVIET CONFERENCE ON CRYSTAL GROWTH (3RD),

    DTIC Science & Technology

    The USSR symposium on crystal growth covered basic theories and methods for crystal growth, testing and determination. Discussions were made on...crystal growth theories, the water-heating crystal growing method , the flame melting crystal growing method , the effects of environmental conditions on...crystal growth, methods for semi-conductor crystal growth, methods for metallic single crystal growth, etching and formation of imperfections, crystal

  2. Hanging drop crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  3. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1990-01-01

    The effect of low gravity on the growth of protein crystals and those parameters which will affect growth and crystal quality was studied. The proper design of the flight hardware and experimental protocols are highly dependent on understanding the factors which influence the nucleation and growth of crystals of biological macromolecules. Thus, those factors are investigated and the body of knowledge which has been built up for small molecule crystallization. These data also provide a basis of comparison for the results obtained from low-g experiments. The flows around growing crystals are detailed. The preliminary study of the growth of isocitrate lyase, the crystal morphologies found and the preliminary x ray results are discussed. The design of two apparatus for protein crystal growth by temperature control are presented along with preliminary results.

  4. Controlled growth of semiconductor crystals

    DOEpatents

    Bourret-Courchesne, Edith D.

    1992-01-01

    A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.

  5. Controlled growth of semiconductor crystals

    DOEpatents

    Bourret-Courchesne, E.D.

    1992-07-21

    A method is disclosed for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B[sub x]O[sub y] are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T[sub m1] of the oxide of boron (T[sub m1]=723 K for boron oxide B[sub 2]O[sub 3]), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T[sub m2] of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm[sup 2]. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 [mu]m. 7 figs.

  6. Measurable characteristics of lysozyme crystal growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2005-01-01

    The behavior of protein crystal growth is estimated from measurements performed at both the microscopic and molecular levels. In the absence of solutal flow, it was determined that a model that balances the macromolecular flux toward the crystal surface with the flux of the crystal surface well characterizes crystal growth observed using microscopic methods. Namely, it was determined that the model provides accurate estimates for the crystal-growth velocities upon evaluation of crystal-growth measurements obtained in time. Growth velocities thus determined as a function of solution supersaturation were further interpreted using established deterministic models. From analyses of crystal-growth velocities, it was found that the mode of crystal growth varies with respect to increasing solution supersaturation, possibly owing to kinetic roughening. To verify further the hypothesis of kinetic roughening, crystal growth at the molecular level was examined using atomic force microscopy (AFM). From the AFM measurements, it was found that the magnitude of surface-height fluctuations, h(x), increases with increasing solution supersaturation. In contrast, the estimated characteristic length, xi, decreases rapidly upon increasing solution supersaturation. It was conjectured that the magnitude of both h(x) and xi could possibly determine the mode of crystal growth. Although the data precede any exact theory, the non-critical divergence of h(x) and xi with respect to increasing solution supersaturation was nevertheless preliminarily established. Moreover, approximate models to account for behavior of both h(x) and xi are also presented.

  7. Measurable characteristics of lysozyme crystal growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2005-01-01

    The behavior of protein crystal growth is estimated from measurements performed at both the microscopic and molecular levels. In the absence of solutal flow, it was determined that a model that balances the macromolecular flux toward the crystal surface with the flux of the crystal surface well characterizes crystal growth observed using microscopic methods. Namely, it was determined that the model provides accurate estimates for the crystal-growth velocities upon evaluation of crystal-growth measurements obtained in time. Growth velocities thus determined as a function of solution supersaturation were further interpreted using established deterministic models. From analyses of crystal-growth velocities, it was found that the mode of crystal growth varies with respect to increasing solution supersaturation, possibly owing to kinetic roughening. To verify further the hypothesis of kinetic roughening, crystal growth at the molecular level was examined using atomic force microscopy (AFM). From the AFM measurements, it was found that the magnitude of surface-height fluctuations, h(x), increases with increasing solution supersaturation. In contrast, the estimated characteristic length, xi, decreases rapidly upon increasing solution supersaturation. It was conjectured that the magnitude of both h(x) and xi could possibly determine the mode of crystal growth. Although the data precede any exact theory, the non-critical divergence of h(x) and xi with respect to increasing solution supersaturation was nevertheless preliminarily established. Moreover, approximate models to account for behavior of both h(x) and xi are also presented.

  8. Analytics of crystal growth in space

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Chang, C. E.; Shlichta, P. J.; Chen, P. S.; Kim, C. K.

    1974-01-01

    Two crystal growth processes considered for spacelab experiments were studied to anticipate and understand phenomena not ordinarily encountered on earth. Computer calculations were performed on transport processes in floating zone melting and on growth of a crystal from solution in a spacecraft environment. Experiments intended to simulate solution growth at micro accelerations were performed.

  9. Modelling the growth of feather crystals

    SciTech Connect

    Wood, H.J.; Hunt, J.D.; Evans, P.V.

    1997-02-01

    An existing numerical model of dendritic growth has been adapted to model the growth of twinned columnar dendrites (feather crystals) in a binary aluminium alloy, Examination of the effect of dendrite tip angle on growth has led to an hypothesis regarding the stability of a pointed tip morphology in these crystals.

  10. (PCG) Protein Crystal Growth Horse Serum Albumin

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Horse Serum Albumin crystals grown during the USML-1 (STS-50) mission's Protein Crystal Growth Glovebox Experiment. These crystals were grown using a vapor diffusion technique at 22 degrees C. The crystals were allowed to grow for nine days while in orbit. Crystals of 1.0 mm in length were produced. The most abundant blood serum protein, regulates blood pressure and transports ions, metabolites, and therapeutic drugs. Principal Investigator was Edward Meehan.

  11. (PCG) Protein Crystal Growth Horse Serum Albumin

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Horse Serum Albumin crystals grown during the USML-1 (STS-50) mission's Protein Crystal Growth Glovebox Experiment. These crystals were grown using a vapor diffusion technique at 22 degrees C. The crystals were allowed to grow for nine days while in orbit. Crystals of 1.0 mm in length were produced. The most abundant blood serum protein, regulates blood pressure and transports ions, metabolites, and therapeutic drugs. Principal Investigator was Edward Meehan.

  12. Measurements of Protein Crystal Face Growth Rates

    NASA Technical Reports Server (NTRS)

    Gorti, S.

    2014-01-01

    Protein crystal growth rates will be determined for several hyperthermophile proteins.; The growth rates will be assessed using available theoretical models, including kinetic roughening.; If/when kinetic roughening supersaturations are established, determinations of protein crystal quality over a range of supersaturations will also be assessed.; The results of our ground based effort may well address the existence of a correlation between fundamental growth mechanisms and protein crystal quality.

  13. Advanced protein crystal growth programmatic sensitivity study

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The purpose of this study is to define the costs of various APCG (Advanced Protein Crystal Growth) program options and to determine the parameters which, if changed, impact the costs and goals of the programs and to what extent. This was accomplished by developing and evaluating several alternate programmatic scenarios for the microgravity Advanced Protein Crystal Growth program transitioning from the present shuttle activity to the man tended Space Station to the permanently manned Space Station. These scenarios include selected variations in such sensitivity parameters as development and operational costs, schedules, technology issues, and crystal growth methods. This final report provides information that will aid in planning the Advanced Protein Crystal Growth Program.

  14. Investigation of crystal growth from solutions

    NASA Technical Reports Server (NTRS)

    Miyagawa, I.

    1975-01-01

    Growth of organic compounds from solution, in particular Rochelle salt and triglycine sulphate, was investigated. Ground-based experiments showed that gravity-driven convection currents in the growth solution influenced defect production in crystals, degraded ferroelectric quality, and indicated that an experiment done in a zero-gravity environment would be beneficial. A crystal of Rochelle salt was grown on board Skylab-4. The quality of this crystal was compared to earth-grown crystals and its unusual features were studied. A typical defect produced in this convection-free environment was a long straight tube extending in the direction of the c crystal axis. These tubes were much longer and more regularly arranged than in similar earth-grown crystals. The crystal was actually several crystals with corresponding axes parallel to each other. Ferroelectric hysteresis experiments showed that some parts of the crystal had many defects, while other parts were of extremely good quality.

  15. Crystal growth and agglomeration of calcium sulfite hemihydrate crystals

    SciTech Connect

    Tai, C.Y.; Chen, P.C.

    1995-04-01

    Flue gas desulfurization (FGD) processes are most commonly utilized to remove sulfur dioxide from stack gases of coal- or oil-fired plants. In the simple slurry technology, SO{sub 2} is absorbed by a slurry of lime/limestone to form calcium sulfite crystals of acicular habit and its strong agglomeration, requiring large clarifiers and filters to dewater the sludge to make an acceptable landfill. Crystal growth and agglomeration of calcium sulfite hemihydrate crystals from solution were studied by reacting Ca(OH){sub 2} with NaHSO{sub 3} in a pH-stat semibatch crystallizer. Single platelet crystals and agglomerates of platelet crystals were produced in the pH range from 5.80 to 6.80. The crystallization mechanism changed from primary nucleation to crystal growth in the progressive precipitation. Using the titration curves, the growth rate was calculated from the titration rate at the final stage of operation. The crystal growth rates of calcium sulfate hemihydrate crystals were found to obey the parabolic rate law in the low supersaturation range. Another point to be noted is that the precipitates of calcium sulfite hemihydrate in agitated suspensions have a tendency to form agglomerates. It was found that the degree of agglomeration is a weak function of relative supersaturation and magma density, while the pH value is a key factor that affects the degree of agglomeration. Addition of EDTA also has an effect on the agglomeration of calcium sulfite hemihydrates.

  16. Innovation in crystal growth: A personal perspective

    NASA Astrophysics Data System (ADS)

    Mullin, J. B.

    2008-04-01

    The evolution of crystal growth has been crucially dependent on revolutionary innovations and initiatives involving ideas, technology and communication. A personal perspective is presented on some of these aspects in connection with the early history of semiconductors that have helped evolve our knowledge and advance the science and technology of crystal growth. The presentation considers examples from work on germanium, silicon, indium antimonide, gallium arsenide, indium phosphide, gallium phosphide and mercury cadmium telluride. In connection with metal organic vapour phase epitaxy (MOVPE), the influence of adduct purification for alkyls is noted together with the growth of Hg xCd 1-xTe. The role of crystal growth organisations together with initiatives in the publication of the Journal of Crystal Growth (JCG) and the pivotal role of the International Organisation of Crystal Growth (IOCG) are also highlighted in the quest for scientific excellence.

  17. Economic analysis of crystal growth in space

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.; Chung, A. M.; Yan, C. S.; Mccreight, L. R.

    1972-01-01

    Many advanced electronic technologies and devices for the 1980's are based on sophisticated compound single crystals, i.e. ceramic oxides and compound semiconductors. Space processing of these electronic crystals with maximum perfection, purity, and size is suggested. No ecomonic or technical justification was found for the growth of silicon single crystals for solid state electronic devices in space.

  18. Crystal Shape Evolution in Detached Bridgman Growth

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2013-01-01

    Detached (or dewetted) Bridgman crystal growth defines that process in which a gap exists between a growing crystal and the crucible wall. Existence of the gap provides several advantages, including no sticking of the crystal to the crucible wall, reduced thermal and mechanical stresses, reduced dislocations, and no heterogeneous nucleation by the crucible. Numerical calculations are used to determine the conditions in which a gap can exist. According to crystal shape stability theory, only some of these gap widths will be dynamically stable. Beginning with a crystal diameter that differs from stable conditions, the transient crystal growth process is analyzed. In microgravity, dynamic stability depends only on capillary effects and is decoupled from heat transfer. Depending on the initial conditions and growth parameters, the crystal shape will evolve towards the crucible wall, towards a stable gap width, or towards the center of the crucible, collapsing the meniscus. The effect of a tapered crucible on dynamic stability is also described

  19. Crystal Shape Evolution in Detached Bridgman Growth

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2013-01-01

    Detached (or dewetted) Bridgman crystal growth defines that process in which a gap exists between a growing crystal and the crucible wall. Existence of the gap provides several advantages, including no sticking of the crystal to the crucible wall, reduced thermal and mechanical stresses, reduced dislocations, and no heterogeneous nucleation by the crucible. Numerical calculations are used to determine the conditions in which a gap can exist. According to crystal shape stability theory, only some of these gap widths will be dynamically stable. Beginning with a crystal diameter that differs from stable conditions, the transient crystal growth process is analyzed. In microgravity, dynamic stability depends only on capillary effects and is decoupled from heat transfer. Depending on the initial conditions and growth parameters, the crystal shape will evolve towards the crucible wall, towards a stable gap width, or towards the center of the crucible, collapsing the meniscus. The effect of a tapered crucible on dynamic stability is also described.

  20. Optical diagnostics of solution crystal growth

    NASA Technical Reports Server (NTRS)

    Kim, Yongkee; Reddy, B. R.; George, Tharayil G.; Lal, Ravindra B.

    1995-01-01

    Solution crystal growth monitoring of LAP/TGS crystals by various optical diagnostics systems, such as conventional and Mach-Zehnder (M-Z) interferometers, optical heterodyne technique, and ellipsometry, is under development. The study of the dynamics of the crystal growth process requires a detailed knowledge of crystal growth rate and the concentration gradient near growing crystals in aqueous solution. Crystal growth rate can be measured using conventional interferometry. Laser beam reflections from the crystal front as well as the back surface interfere with each other, and the fringe shift due to the growing crystal yields information about the growth rate. Our preliminary results indicate a growth rate of 6 A/sec for LAP crystals grown from solution. Single wavelength M-Z interferometry is in use to calculate the concentration gradient near the crystal. Preliminary investigation is in progress using an M-Z interferometer with 2 cm beam diameter to cover the front region of the growing crystal. In the optical heterodyne technique, phase difference between two rf signals (250 KHZ) is measured of which one is a reference signal, and the other growth signal, whose phase changes due to a change in path length as the material grows. From the phase difference the growth rate can also be calculated. Our preliminary results indicate a growth rate of 1.5 A/sec. the seed and solution temperatures were 26.46 C and 27.92 C respectively, and the solution was saturated at 29.0 C. an ellipsometer to measure the growth rate and interface layer is on order from JOBIN YVON, France. All these systems are arranged in such a manner that measurements can be made either sequentially or simultaneously. These techniques will be adapted for flight experiment.

  1. Optical diagnostics of solution crystal growth

    NASA Technical Reports Server (NTRS)

    Kim, Yongkee; Reddy, B. R.; George, Tharayil G.; Lal, Ravindra B.

    1995-01-01

    Solution crystal growth monitoring of LAP/TGS crystals by various optical diagnostics systems, such as conventional and Mach-Zehnder (M-Z) interferometers, optical heterodyne technique, and ellipsometry, is under development. The study of the dynamics of the crystal growth process requires a detailed knowledge of crystal growth rate and the concentration gradient near growing crystals in aqueous solution. Crystal growth rate can be measured using conventional interferometry. Laser beam reflections from the crystal front as well as the back surface interfere with each other, and the fringe shift due to the growing crystal yields information about the growth rate. Our preliminary results indicate a growth rate of 6 A/sec for LAP crystals grown from solution. Single wavelength M-Z interferometry is in use to calculate the concentration gradient near the crystal. Preliminary investigation is in progress using an M-Z interferometer with 2 cm beam diameter to cover the front region of the growing crystal. In the optical heterodyne technique, phase difference between two rf signals (250 KHZ) is measured of which one is a reference signal, and the other growth signal, whose phase changes due to a change in path length as the material grows. From the phase difference the growth rate can also be calculated. Our preliminary results indicate a growth rate of 1.5 A/sec. the seed and solution temperatures were 26.46 C and 27.92 C respectively, and the solution was saturated at 29.0 C. an ellipsometer to measure the growth rate and interface layer is on order from JOBIN YVON, France. All these systems are arranged in such a manner that measurements can be made either sequentially or simultaneously. These techniques will be adapted for flight experiment.

  2. Laser Irradiated Growth of Protein Crystal

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Takano, Kazufumi; Hosokawa, Youichiroh; Inoue, Tsuyoshi; Mori, Yusuke; Matsumura, Hiroyoshi; Yoshimura, Masashi; Tsunaka, Yasuo; Morikawa, Masaaki; Kanaya, Shigenori; Masuhara, Hiroshi; Kai, Yasushi; Sasaki, Takatomo

    2003-07-01

    We succeeded in the first ever generation of protein crystals by laser irradiation. We call this process Laser Irradiated Growth Technique (LIGHT). Effective crystallization was confirmed by applying an intense femtosecond laser. The crystallization period was dramatically shortened by LIGHT. In addition, protein crystals were obtained by LIGHT from normally uncrystallized conditions. These results indicate that intense femtosecond laser irradiation generates crystal nuclei; protein crystals can then be grown from the nuclei that act as seeds in a supersaturated solution. The nuclei formation is possible primarily due to nonlinear nucleation processes of an intense femtosecond laser with a peak intensity of over a gigawatt (GW).

  3. Crystal Growth and Spectroscopy of Diglycine

    NASA Technical Reports Server (NTRS)

    Taylor, Taravia M.

    1995-01-01

    Raman and infrared spectra have been obtained for alpha-diglycine (C4H8N2O3) single crystals. These dipeptide crystals are being grown as a models system for protein crystal growth studies. There have been previous Raman measurements on diglycine powder samples recorded, but there is no reference to measurements on oriented diglycine single crystals. Diglycine can grow in one of three forms, alpha, beta, or gamma.

  4. Crystal Growth and Spectroscopy of Diglycine

    NASA Technical Reports Server (NTRS)

    Taylor, Taravia M.

    1995-01-01

    Raman and infrared spectra have been obtained for alpha-diglycine (C4H8N2O3) single crystals. These dipeptide crystals are being grown as a models system for protein crystal growth studies. There have been previous Raman measurements on diglycine powder samples recorded, but there is no reference to measurements on oriented diglycine single crystals. Diglycine can grow in one of three forms, alpha, beta, or gamma.

  5. Diffusion, Viscosity and Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Myerson, Allan S.

    1996-01-01

    The diffusivity of TriGlycine Sulfate (TGS), Potassium Dihydrogen Phosphate (KDP), Ammonium Dihydrogen Phosphate (ADF) and other compounds of interest to microgravity crystal growth, in supersaturated solutions as a function of solution concentration, 'age' and 'history was studied experimentally. The factors that affect the growth of crystals from water solutions in microgravity have been examined. Three non-linear optical materials have been studied, potassium dihydrogen phosphate (KDP), ammonium dihydrogen phosphate (ADP) and triglycine sulfate (TGC). The diffusion coefficient and viscosity of supersaturated water solutions were measured. Also theoretical model of diffusivity and viscosity in a metastable state, model of crystal growth from solution including non-linear time dependent diffusivity and viscosity effect and computer simulation of the crystal growth process which allows simulation of the microgravity crystal growth were developed.

  6. Protein-crystal growth experiment (planned)

    NASA Technical Reports Server (NTRS)

    Fujita, S.; Asano, K.; Hashitani, T.; Kitakohji, T.; Nemoto, H.; Kitamura, S.

    1988-01-01

    To evaluate the effectiveness of a microgravity environment on protein crystal growth, a system was developed using 5 cubic feet Get Away Special payload canister. In the experiment, protein (myoglobin) will be simultaneously crystallized from an aqueous solution in 16 crystallization units using three types of crystallization methods, i.e., batch, vapor diffusion, and free interface diffusion. Each unit has two compartments: one for the protein solution and the other for the ammonium sulfate solution. Compartments are separated by thick acrylic or thin stainless steel plates. Crystallization will be started by sliding out the plates, then will be periodically recorded up to 120 hours by a still camera. The temperature will be passively controlled by a phase transition thermal storage component and recorded in IC memory throughout the experiment. Microgravity environment can then be evaluated for protein crystal growth by comparing crystallization in space with that on Earth.

  7. Materials discovery through crystal growth

    NASA Astrophysics Data System (ADS)

    zur Loye, Hans-Conrad

    2016-04-01

    The discovery of new materials and associated desirable properties has been a driving force behind chemical innovation for centuries. When we look at some of the many recent technological advances, and how widespread and significant their impact has been, we appreciate how much they have relied on new materials. The increase in hard drive storage capacity due to new giant magneto-resistive materials, the ever-shrinking cell phone due to improved microwave dielectric materials, the enhancement in lithium battery storage capacity due to new intercalation materials, or the improved capacitor due to new ferroelectric materials are all excellent examples. How were these materials discovered? While there is no single answer, in all cases there was a First-Material, the archetype in which the phenomenon was first observed, the one that led to further investigations and the subsequent preparation of improved 2nd or 3rd generation materials. It is this First-Material, the archetype, that was discovered - often via crystal growth.

  8. Transport and Growth Kinetics in Microgravity Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Otalora, F.; Garcia-Ruiz, J. M.; Carotenuto, L.; Castagnolo, D.; Novella, M. L.; Chernov, A. A.

    2002-01-01

    The dynamic coupling between mass transport and incorporation of growth units into the surface of a crystal growing from solution in microgravity is used to derive quantitative information on the crystal growth kinetics. To this end, new procedures for experiment preparation, interferometric data processing and model fitting have been developed. The use of experimental data from the bulk diffusive maw transport together with a model for steady state stagnant crystal growth allows the detailed quantitative understanding of the kinetics of both the concentration depletion zone around the crystal and the growth of the crystal interface. The protein crystal used in the experiment is shown to be growing in the mixed kinetic regime (0.2 x 10(exp -6) centimeters per second less than beta R/D less than 0.9 x 10(exp -6) centimeters per second).

  9. Transport and Growth Kinetics in Microgravity Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Otalora, F.; Garcia-Ruiz, J. M.; Carotenuto, L.; Castagnolo, D.; Novella, M. L.; Chernov, A. A.

    2002-01-01

    The dynamic coupling between mass transport and incorporation of growth units into the surface of a crystal growing from solution in microgravity is used to derive quantitative information on the crystal growth kinetics. To this end, new procedures for experiment preparation, interferometric data processing and model fitting have been developed. The use of experimental data from the bulk diffusive maw transport together with a model for steady state stagnant crystal growth allows the detailed quantitative understanding of the kinetics of both the concentration depletion zone around the crystal and the growth of the crystal interface. The protein crystal used in the experiment is shown to be growing in the mixed kinetic regime (0.2 x 10(exp -6) centimeters per second less than beta R/D less than 0.9 x 10(exp -6) centimeters per second).

  10. Crack propagation driven by crystal growth

    SciTech Connect

    A. Royne; Paul Meaking; A. Malthe-Sorenssen; B. Jamtveit; D. K. Dysthe

    2011-10-01

    Crystals that grow in confinement may exert a force on their surroundings and thereby drive crack propagation in rocks and other materials. We describe a model of crystal growth in an idealized crack geometry in which the crystal growth and crack propagation are coupled through the stress in the surrounding bulk solid. Subcritical crack propagation takes place during a transient period, which may be very long, during which the crack velocity is limited by the kinetics of crack propagation. When the crack is sufficiently large, the crack velocity becomes limited by the kinetics of crystal growth. The duration of the subcritical regime is determined by two non-dimensional parameters, which relate the kinetics of crack propagation and crystal growth to the supersaturation of the fluid and the elastic properties of the surrounding material.

  11. Growth of single crystals of BaFe12O19 by solid state crystal growth

    NASA Astrophysics Data System (ADS)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-10-01

    Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.

  12. Promotion of protein crystal growth by actively switching crystal growth mode via femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Tominaga, Yusuke; Maruyama, Mihoko; Yoshimura, Masashi; Koizumi, Haruhiko; Tachibana, Masaru; Sugiyama, Shigeru; Adachi, Hiroaki; Tsukamoto, Katsuo; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Yoshikawa, Hiroshi Y.; Mori, Yusuke

    2016-11-01

    Large single crystals with desirable shapes are essential for various scientific and industrial fields, such as X-ray/neutron crystallography and crystalline devices. However, in the case of proteins the production of such crystals is particularly challenging, despite the efforts devoted to optimization of the environmental, chemical and physical parameters. Here we report an innovative approach for promoting the growth of protein crystals by directly modifying the local crystal structure via femtosecond laser ablation. We demonstrate that protein crystals with surfaces that are locally etched (several micrometers in diameter) by femtosecond laser ablation show enhanced growth rates without losing crystal quality. Optical phase-sensitive microscopy and X-ray topography imaging techniques reveal that the local etching induces spiral growth, which is energetically advantageous compared with the spontaneous two-dimensional nucleation growth mode. These findings prove that femtosecond laser ablation can actively switch the crystal growth mode, offering flexible control over the size and shape of protein crystals.

  13. Effects of impurities on crystal growth in fructose crystallization

    NASA Astrophysics Data System (ADS)

    Chu, Y. D.; Shiau, L. D.; Berglund, K. A.

    1989-10-01

    The influence of impurities on the crystallization of anhydrous fructose from aqueous solution was studied. The growth kinetics of fructose crystals in the fructose-water-glucose and fructose-water-difructose dianhydrides systems were investigated using photomicroscopic contact nucleation techniques. Glucose is the major impurity likely to be present in fructose syrup formed during corn wet milling, while several difructose dianhydrides are formed in situ under crystallization conditions and have been proposed as a cause in the decrease of overall yields. Both sets of impurities were found to cause inhibition of crystal growth, but the mechanisms responsible in each case are different. It was found that the presence of glucose increases the solubility of fructose in water and thus lowers the supersaturation of the solution. This is probably the main effect responsible for the decrease of crystal growth. Since the molecular structures of difructose dianhydrides are similar to that of fructose, they are probably "tailor-made" impurities. The decrease of crystal growth is probably caused by the incorporation of these impurities into or adsorption to the crystal surface which would accept fructose molecules in the orientation that existed in the difructose dianhydride.

  14. Asteroid core crystallization by inward dendritic growth

    NASA Technical Reports Server (NTRS)

    Haack, Henning; Scott, Edward R. D.

    1992-01-01

    The physics of the asteroid core crystallization process in metallic asteroids is investigated, with special attention given to the initial conditions for core crystallization, the manner of crystallization, the mechanisms acting in the stirring of the liquid, and the effects of elements such as sulfur on crystallization of Fe-Ni. On the basis of theoretical considerations and the published data on iron meteorites, it is suggested that the mode of crystallization in asteroid core was different from the apparent outward concentric crystallization of the earth core, in that the crystallization of asteroidal cores commenced at the base of the mantle and proceeded inward. The inward crystallization resulted in complex dendritic growth. These dendrites may have grown to lengths of hundreds of meters or perhaps even as large as the core radius, thereby dividing the core into separate magma chambers.

  15. The Nucleation and Growth of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc

    2004-01-01

    Obtaining crystals of suitable size and high quality continues to be a major bottleneck in macromolecular crystallography. Currently, structural genomics efforts are achieving on average about a 10% success rate in going from purified protein to a deposited crystal structure. Growth of crystals in microgravity was proposed as a means of overcoming size and quality problems, which subsequently led to a major NASA effort in microgravity crystal growth, with the agency also funding research into understanding the process. Studies of the macromolecule crystal nucleation and growth process were carried out in a number of labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. Based upon experimental evidence, as well as simple starting assumptions, we have proposed that crystal nucleation occurs by a series of discrete self assembly steps, which 'set' the underlying crystal symmetry. This talk will review the model developed, and its origins, in our laboratory for how crystals nucleate and grow, and will then present, along with preliminary data, how we propose to use this model to improve the success rate for obtaining crystals from a given protein.

  16. The Nucleation and Growth of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc

    2004-01-01

    Obtaining crystals of suitable size and high quality continues to be a major bottleneck in macromolecular crystallography. Currently, structural genomics efforts are achieving on average about a 10% success rate in going from purified protein to a deposited crystal structure. Growth of crystals in microgravity was proposed as a means of overcoming size and quality problems, which subsequently led to a major NASA effort in microgravity crystal growth, with the agency also funding research into understanding the process. Studies of the macromolecule crystal nucleation and growth process were carried out in a number of labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. Based upon experimental evidence, as well as simple starting assumptions, we have proposed that crystal nucleation occurs by a series of discrete self assembly steps, which 'set' the underlying crystal symmetry. This talk will review the model developed, and its origins, in our laboratory for how crystals nucleate and grow, and will then present, along with preliminary data, how we propose to use this model to improve the success rate for obtaining crystals from a given protein.

  17. Growth Of Oriented Crystals At Polymerized Membranes

    DOEpatents

    Charych, Deborah H. , Berman, Amir

    2000-01-25

    The present invention relates to methods and compositions for the growth and alignment of crystals at biopolymeric films. The methods and compositions of the present invention provide means to generate a variety of dense crystalline ceramic films, with totally aligned crystals, at low temperatures and pressures, suitable for use with polymer and plastic substrates.

  18. Oxide Control for Silicon Crystal Growth

    NASA Technical Reports Server (NTRS)

    Wehrli, H. A. I.

    1982-01-01

    Web dendrite growth process pulls sheet of newly crystallized silicon from molten silicon. Jets of argon pull outside gas into melt cavity, preventing silicon oxide from passing through heat-shield hold and depositing on it. Generated by aspirators, reversed flow is used in web dendrite process, which produces sheets of single-crystal silicon for low-cost solar cells.

  19. Protein crystal growth (5-IML-1)

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1992-01-01

    Proteins (enzymes, hormones, immunoglobulins) account for 50 pct. or more of the dry weight of most living systems. A detailed understanding of the structural makeup of a protein is essential to any systematic research pertaining to it. Most macromolecules are extremely difficult to crystallize, and many otherwise exciting projects have terminated at the crystal growth stage. In principle, there are several aspects of microgravity that might be exploited to enhance protein crystal growth. The major factor is the elimination of density driven convective flow. Other factors that can be controlled in the absence of gravity is the sedimentation of growing crystals in a gravitational field, and the potential advantage of doing containerless crystal growth. As a result of these theories and facts, one can readily understand why the microgravity environment of an Earth orbiting vehicle seems to offer unique opportunities for the protein crystallographer. This perception has led to the establishment of the Protein Crystal Growth in a Microgravity Environment (PCG/ME) project. The results of experiments already performed during STS missions have in many cases resulted in large protein crystals which are structurally correct. Thus, the near term objective of the PCG/ME project is to continue to improve the techniques, procedures, and hardware systems used to grow protein crystals in Earth orbit.

  20. Electrochemical Growth Of Crystals In Gels

    NASA Technical Reports Server (NTRS)

    Barber, Patrick G.; Coleman, James

    1988-01-01

    Nucleation and growth rates readily controlled. Technique developed to grow crystals by controlling rate of transfer of one component into crystallization volume. Method involves electrochemically controlled generation of one of precipitation species, coupled with diffusion barrier. New procedure, developed in connection with formation of lead tin telluride by reaction in gels of metal ions with telluride ions.

  1. Research support for cadmium telluride crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Banish, Michael

    1993-01-01

    Work performed during the period 11 Feb. 1992 to 10 Aug. 1993 on research support for cadmium telluride crystal growth is reported. Work on chemical impurity characterization and mass spectroscopy is described.

  2. The Growth of Large Single Crystals.

    ERIC Educational Resources Information Center

    Baer, Carl D.

    1990-01-01

    Presented is an experiment which demonstrates principles of experimental design, solubility, and crystal growth and structure. Materials, procedures and results are discussed. Suggestions for adapting this activity to the high school laboratory are provided. (CW)

  3. Silicon carbide - Progress in crystal growth

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony

    1987-01-01

    Recent progress in the development of two processes for producing large-area high-quality single crystals of SiC is described: (1) a modified Lely process for the growth of the alpha polytypes (e.g., 6H SiC) initially developed by Tairov and Tsvetkov (1978, 1981) and Ziegler et al. (1983), and (2) a process for the epitaxial growth of the beta polytype on single-crystal silicon or other substrates. Growth of large-area cubic SiC on Si is described together with growth of defect-free beta-SiC films on alpha-6H SiC crystals and TiC lattice. Semiconducting qualities of silicon carbide crystals grown by various techniques are discussed.

  4. (PCG) Protein Crystal Growth Porcine Elastase

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Porcine Elastase. This enzyme is associated with the degradation of lung tissue in people suffering from emphysema. It is useful in studying causes of this disease. Principal Investigator on STS-26 was Charles Bugg.

  5. Silicon carbide - Progress in crystal growth

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony

    1987-01-01

    Recent progress in the development of two processes for producing large-area high-quality single crystals of SiC is described: (1) a modified Lely process for the growth of the alpha polytypes (e.g., 6H SiC) initially developed by Tairov and Tsvetkov (1978, 1981) and Ziegler et al. (1983), and (2) a process for the epitaxial growth of the beta polytype on single-crystal silicon or other substrates. Growth of large-area cubic SiC on Si is described together with growth of defect-free beta-SiC films on alpha-6H SiC crystals and TiC lattice. Semiconducting qualities of silicon carbide crystals grown by various techniques are discussed.

  6. Convection effects in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Roberts, Glyn O.

    1988-01-01

    Protein crystals for X-ray diffraction study are usually grown resting on the bottom of a hanging drop of a saturated protein solution, with slow evaporation to the air in a small enclosed cell. The evaporation rate is controlled by hanging the drop above a reservoir of water, with its saturation vapor pressure decreased by a low concentration of a passive solute. The drop has a lower solute concentration, and its volume shrinks by evaporation until the molecular concentrations match. Protein crystals can also be grown from a seed crystal suspended or supported in the interior of a supersaturated solution. The main analysis of this report concerns this case because it is less complicated than hanging-drop growth. Convection effects have been suggested as the reason for the apparent cessation of growth at a certain rather small crystal size. It seeems that as the crystal grows, the number of dislocations increases to a point where further growth is hindered. Growth in the microgravity environment of an orbiting space vehicle has been proposed as a method for obtaining larger crystals. Experimental observations of convection effects during the growth of protein crystals have been reported.

  7. Vapor Crystal Growth (VCG) experiment Cell

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The image shows a test cell of Crystal Growth experiment inside the Vapor Crystal Growth System (VCGS) furnace aboard the STS-42, International Microgravity Laboratory-1 (IML-1), mission. The goal of IML-1, a pressurized marned Spacelab module, was to explore in depth the complex effects of weightlessness of living organisms and materials processing. More than 200 scientists from 16 countires participated in the investigations.

  8. Interface control and snow crystal growth

    NASA Astrophysics Data System (ADS)

    Li, Jessica; Schaposnik, Laura P.

    2016-02-01

    The growth of snow crystals is dependent on the temperature and saturation of the environment. In the case of dendrites, Reiter's local two-dimensional model provides a realistic approach to the study of dendrite growth. In this paper we obtain a new geometric rule that incorporates interface control, a basic mechanism of crystallization that is not taken into account in the original Reiter model. By defining two new variables, growth latency and growth direction, our improved model gives a realistic model not only for dendrite but also for plate forms.

  9. On growth rate hysteresis and catastrophic crystal growth

    NASA Astrophysics Data System (ADS)

    Ferreira, Cecília; Rocha, Fernando A.; Damas, Ana M.; Martins, Pedro M.

    2013-04-01

    Different crystal growth rates as supersaturation is increasing or decreasing in impure media is a phenomenon called growth rate hysteresis (GRH) that has been observed in varied systems and applications, such as protein crystallization or during biomineralization. We have recently shown that the transient adsorption of impurities onto newly formed active sites for growth (or kinks) is sensitive to the direction and rate of supersaturation variation, thus providing a possible explanation for GRH [6]. In the present contribution, we expand on this concept by deriving the analytical expressions for transient crystal growth based on the energetics of growth hillock formation and kink occupation by impurities. Two types of GRH results are described according to the variation of kink density with supersaturation: for nearly constant density, decreasing or increasing supersaturation induce, respectively, growth promoting or inhibiting effects relative to equilibrium conditions. This is the type of GRH measured by us during the crystallization of egg-white lysozyme. For variable kink density, slight changes in the supersaturation level may induce abrupt variations in the crystal growth rate. Different literature examples of this so-called 'catastrophic' crystal growth are discussed in terms of their fundamental consequences.

  10. Ultraslow growth rates of giant gypsum crystals

    PubMed Central

    Van Driessche, A. E. S.; García-Ruíz, J. M.; Tsukamoto, K.; Patiño-Lopez, L. D.; Satoh, H.

    2011-01-01

    Mineralogical processes taking place close to equilibrium, or with very slow kinetics, are difficult to quantify precisely. The determination of ultraslow dissolution/precipitation rates would reveal characteristic timing associated with these processes that are important at geological scale. We have designed an advanced high-resolution white-beam phase-shift interferometry microscope to measure growth rates of crystals at very low supersaturation values. To test this technique, we have selected the giant gypsum crystals of Naica ore mines in Chihuahua, Mexico, a challenging subject in mineral formation. They are thought to form by a self-feeding mechanism driven by solution-mediated anhydrite-gypsum phase transition, and therefore they must be the result of an extremely slow crystallization process close to equilibrium. To calculate the formation time of these crystals we have measured the growth rates of the {010} face of gypsum growing from current Naica waters at different temperatures. The slowest measurable growth rate was found at 55 °C, 1.4 ± 0.2 × 10-5 nm/s, the slowest directly measured normal growth rate for any crystal growth process. At higher temperatures, growth rates increase exponentially because of decreasing gypsum solubility and higher kinetic coefficient. At 50 °C neither growth nor dissolution was observed indicating that growth of giant crystals of gypsum occurred at Naica between 58 °C (gypsum/anhydrite transition temperature) and the current temperature of Naica waters, confirming formation temperatures determined from fluid inclusion studies. Our results demonstrate the usefulness of applying advanced optical techniques in laboratory experiments to gain a better understanding of crystal growth processes occurring at a geological timescale. PMID:21911400

  11. Ultraslow growth rates of giant gypsum crystals.

    PubMed

    Van Driessche, A E S; García-Ruíz, J M; Tsukamoto, K; Patiño-Lopez, L D; Satoh, H

    2011-09-20

    Mineralogical processes taking place close to equilibrium, or with very slow kinetics, are difficult to quantify precisely. The determination of ultraslow dissolution/precipitation rates would reveal characteristic timing associated with these processes that are important at geological scale. We have designed an advanced high-resolution white-beam phase-shift interferometry microscope to measure growth rates of crystals at very low supersaturation values. To test this technique, we have selected the giant gypsum crystals of Naica ore mines in Chihuahua, Mexico, a challenging subject in mineral formation. They are thought to form by a self-feeding mechanism driven by solution-mediated anhydrite-gypsum phase transition, and therefore they must be the result of an extremely slow crystallization process close to equilibrium. To calculate the formation time of these crystals we have measured the growth rates of the {010} face of gypsum growing from current Naica waters at different temperatures. The slowest measurable growth rate was found at 55 °C, 1.4 ± 0.2 × 10(-5) nm/s, the slowest directly measured normal growth rate for any crystal growth process. At higher temperatures, growth rates increase exponentially because of decreasing gypsum solubility and higher kinetic coefficient. At 50 °C neither growth nor dissolution was observed indicating that growth of giant crystals of gypsum occurred at Naica between 58 °C (gypsum/anhydrite transition temperature) and the current temperature of Naica waters, confirming formation temperatures determined from fluid inclusion studies. Our results demonstrate the usefulness of applying advanced optical techniques in laboratory experiments to gain a better understanding of crystal growth processes occurring at a geological timescale.

  12. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1993-01-01

    This Final Technical Report for NASA Grant NAG8-774 covers the period from April 27, 1989 through December 31, 1992. It covers five main topics: fluid flow studies, the influence of growth conditions on the morphology of isocitrate lyase crystals, control of nucleation, the growth of lysozyme by the temperature gradient method and graphoepitaxy of protein crystals. The section on fluid flow discusses the limits of detectability in the Schlieren imaging of fluid flows around protein crystals. The isocitrate lyase study compares crystals grown terrestrially under a variety of conditions with those grown in space. The controlling factor governing the morphology of the crystals is the supersaturation. The lack of flow in the interface between the drop and the atmosphere in microgravity causes protein precipitation in the boundary layer and a lowering of the supersaturation in the drop. This lowered supersaturation leads to improved crystal morphology. Preliminary experiments with lysozyme indicated that localized temperature gradients could be used to nucleate crystals in a controlled manner. An apparatus (thermonucleator) was designed to study the controlled nucleation of protein crystals. This apparatus has been used to nucleate crystals of materials with both normal (ice-water, Rochelle salt and lysozyme) and retrograde (horse serum albumin and alpha chymotrypsinogen A) solubility. These studies have lead to the design of an new apparatus that small and more compatible with use in microgravity. Lysozyme crystals were grown by transporting nutrient from a source (lysozyme powder) to the crystal in a temperature gradient. The influence of path length and cross section on the growth rate was demonstrated. This technique can be combined with the thermonucleator to control both nucleation and growth. Graphoepitaxy utilizes a patterned substrate to orient growing crystals. In this study, silicon substrates with 10 micron grooves were used to grow crystals of catalase

  13. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1987-01-01

    The solubility and growth mechanism of canavalin were studied, and the applicability of the Schlieren technique to protein crystal growth was investigated. Canavalin which may be crystallized from a basic solution by the addition of hydrogen (H+) ions was shown to have normal solubility characteristics over the range of temperatures (5 to 25 C) and pH (5 to 7.5) studied. The solubility data combined with growth rate data gathered from the seeded growth of canavalin crystals indicated that the growth mechanism at high supersaturation ratios (>1.28) is screw dislocation like. A Schlieren apparatus was constructed and flow patterns were observed in Rochelle salt (sodium potassium tartrate), lysozyme, and canavalin. The critical parameters were identified as the change in density with concentration (dp/dc) and the change in index of refraction with concentration (dn/dc). Some of these values were measured for the materials listed.

  14. Historical aspects of crystal growth technology

    NASA Astrophysics Data System (ADS)

    Scheel, Hans J.

    2000-04-01

    The father of crystal fabrication technology is A. Verneuil with his flame-fusion growth method 1902. His principles of nucleation and growth control are adapted in most later growth methods from melt. The Czochralski method was essentially developed by Teal, Little and Dash. The multidisciplinary nature of crystal growth and epitaxy technology and the complex multiparameter processes, and also the scaling problem, have impeded the scientific development of this important area. Only recently it was possible to solve the striation problem and to understand the control of epitaxial growth modes for achieving structurally perfect layers of GaAs and high- Tc superconductors with atomically flat surfaces. The formation of crystal growth and epitaxy engineers and scientists as well as centers of excellence are necessary in order to develop crystal and epilayer fabrication technologies required for development of highest-efficiency white light-emitting diodes and photovoltaic solar cells for energy-saving lighting and as alternative source of energy. Also laser-fusion energy and other high technologies have to wait for progress in crystal growth technology.

  15. Growth rate dispersion of small ammonium alum crystals

    NASA Astrophysics Data System (ADS)

    Teodossiev, N.

    1987-01-01

    The growth rates of small (below 60 μm) and large (about 1 mm) crystals of ammonium alum was measured during batch crystallization from aqueous solutions. The growth rate distribution of small crystals is close to normal. With increasing supersaturation the growth rate of the large crystals increases more rapidly than that of small crystals.

  16. Reduced gravity favors columnar crystal growth

    NASA Technical Reports Server (NTRS)

    Kattamis, T. Z.; Papazian, J. M.

    1981-01-01

    In zero gravity, alined columnar microstructures form at expense of equiaxed growth. Preferential crystal growth occurs in solidification chamber consisting of semicylindrical copper chill block brazed to stainless steel top plate. Method is best utilized in castings where directional dependence of physical properties is beneficial, as in turbine blades.

  17. (PCG) Protein Crystal Growth Isocitrate Lyase

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Isocitrate Lyase. Target enzyme for fungicides. A better understanding of this enzyme should lead to the discovery of more potent fungicides to treat serious crop diseases such as rice blast. It regulates the flow of metabolic intermediates required for cell growth. Principal Investigator for STS-26 was Charles Bugg.

  18. (PCG) Protein Crystal Growth Isocitrate Lysase

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Isocitrate Lysase. Target enzyme for fungicides. A better understanding of this enzyme should lead to the discovery of more potent fungicides to treat serious crop diseases such as rice blast. It regulates the flow of metabolic intermediates required for cell growth. Principal Investigator on STS-26 was Charles Bugg.

  19. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1995-01-01

    During the fifth semi-annual period under this grant we have pursued the following activities: (1) Characterization of the purity and further purification of lysozyme solutions, these efforts are summarized in Section 2; (2) Crystal growth morphology and kinetics studies with tetragonal lysozyme, our observation on the dependence of lysozyme growth kinetics on step sources and impurities has been summarized in a manuscript which was accepted for publication in the Journal of Crystal Growth; (3) Numerical modelling of the interaction between bulk transport and interface kinetics, for a detailed summary of this work see the manuscript which was accepted for publication in the Journal of Crystal Growth; and (4) Light scattering studies, this work has been summarized in a manuscript that has been submitted for publication to the Journal of Chemical Physics.

  20. Convective flow effects on protein crystal growth

    NASA Astrophysics Data System (ADS)

    Rosenberger, Franz

    1995-08-01

    During the fifth semi-annual period under this grant we have pursued the following activities: (1) Characterization of the purity and further purification of lysozyme solutions, these efforts are summarized in Section 2; (2) Crystal growth morphology and kinetics studies with tetragonal lysozyme, our observation on the dependence of lysozyme growth kinetics on step sources and impurities has been summarized in a manuscript which was accepted for publication in the Journal of Crystal Growth; (3) Numerical modelling of the interaction between bulk transport and interface kinetics, for a detailed summary of this work see the manuscript which was accepted for publication in the Journal of Crystal Growth; and (4) Light scattering studies, this work has been summarized in a manuscript that has been submitted for publication to the Journal of Chemical Physics.

  1. Macromolecular Crystal Growth by Means of Microfluidics

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark; Ferree, Darren; Spearing, Scott; Monaco, Lisa; Molho, Josh; Spaid, Michael; Brasseur, Mike; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We have performed a feasibility study in which we show that chip-based, microfluidic (LabChip(TM)) technology is suitable for protein crystal growth. This technology allows for accurate and reliable dispensing and mixing of very small volumes while minimizing bubble formation in the crystallization mixture. The amount of (protein) solution remaining after completion of an experiment is minimal, which makes this technique efficient and attractive for use with proteins, which are difficult or expensive to obtain. The nature of LabChip(TM) technology renders it highly amenable to automation. Protein crystals obtained in our initial feasibility studies were of excellent quality as determined by X-ray diffraction. Subsequent to the feasibility study, we designed and produced the first LabChip(TM) device specifically for protein crystallization in batch mode. It can reliably dispense and mix from a range of solution constituents into two independent growth wells. We are currently testing this design to prove its efficacy for protein crystallization optimization experiments. In the near future we will expand our design to incorporate up to 10 growth wells per LabChip(TM) device. Upon completion, additional crystallization techniques such as vapor diffusion and liquid-liquid diffusion will be accommodated. Macromolecular crystallization using microfluidic technology is envisioned as a fully automated system, which will use the 'tele-science' concept of remote operation and will be developed into a research facility for the International Space Station as well as on the ground.

  2. Research support for cadmium telluride crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1995-01-01

    The growth of single crystals of zinc selenide was carried out by both closed ampoule physical vapor transport and effusive ampoule physical vapor transport (EAPVT). The latter technique was shown to be a much more efficient method for the seeded growth of zinc selenide, resulting in higher transport rates. Furthermore, EAPVT work on CdTe has shown that growth onto (n 11) seeds is advantageous for obtaining reduced twinning and defect densities in II-VI sphalerite materials.

  3. Growth of single crystals under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Popolitov, Vladislav Ivanovich; Litvin, Boris Nikolaevich

    The book summarizes the available theoretical, methodological, and experimental data on the hydrothermal growth of inorganic compounds, such as simple and complex oxides, sulfides, silicates, germanates, phosphates, niobates, and tantalates. Attention is given to the physicochemical, hydrodynamic, and kinetic characteristics of the growth of these compounds, as well as hydrothermal growth techniques and equipment. The discussion also covers the morphogenetic characteristics of hydrothermally grown single crystals, their principal physical properties, and X-ray diffraction and structural data.

  4. Growth Modes and Energetics of 101 Face Lysozyme Crystal Growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, L.

    2004-01-01

    From analyses of lysozyme 101 face growth rate data using a 2D nucleation model for layer-by-layer growth, we find the effective barrier for crystal growth to be gamma = 1.0 +/- 0.2 x 10(exp -13) erg/molecule. The magnitude of the effective barrier is 2.4 +/- 0.5 k(sub beta)T, at 22 C. We also find that beyond a critical solution supersaturation, sigma(sub c), crystal growth rates are more accurately described by a kinetic roughening hypothesis. Beyond sigma(sub c), crystals grow by the continuous addition of molecules anywhere on the crystal surface rather than layer-by-layer. The magnitude of the critical supersaturation (sigma(sub c), = 1.7 +/- 0.2) for a crossover from a layer-by-layer to continuous growth is found to be statistically independent of the solution conditions that vary with buffer pH, temperature or precipitant concentration. Using the experimentally determined values for gamma and sigma(sub c), we find the crystal growth unit to be comprised of 7 +/- 3 molecules. The energy barrier, E(sub c), for the continuous addition of the growth Units is 6.2 +/- 0.3 x 10(exp -13) erg/molecule or 15 +/1 1 k(sub beta)T at 22C.

  5. Protein Crystal Growth Dynamics and Impurity Incorporation

    NASA Technical Reports Server (NTRS)

    Chernov, Alex A.; Thomas, Bill

    2000-01-01

    The general concepts and theories of crystal growth are proven to work for biomolecular crystallization. This allowed us to extract basic parameters controlling growth kinetics - free surface energy, alpha, and kinetic coefficient, beta, for steps. Surface energy per molecular site in thermal units, alpha(omega)(sup 2/3)/kT approx. = 1, is close to the one for inorganic crystals in solution (omega is the specific molecular volume, T is the temperature). Entropic restrictions on incorporation of biomolecules into the lattice reduce the incorporation rate, beta, by a factor of 10(exp 2) - 10(exp 3) relative to inorganic crystals. A dehydration barrier of approx. 18kcal/mol may explain approx. 10(exp -6) times difference between frequencies of adding a molecule to the lattice and Brownian attempts to do so. The latter was obtained from AFM measurements of step and kink growth rates on orthorhombic lysozyme. Protein and many inorganic crystals typically do not belong to the Kossel type, thus requiring a theory to account for inequivalent molecular positions within its unit cell. Orthorhombic lysozyme will serve as an example of how to develop such a theory. Factors deteriorating crystal quality - stress and strain, mosaicity, molecular disorder - will be reviewed with emphasis on impurities. Dimers in ferritin and lysozyme and acetylated lysozyme, are microheterogeneous i.e. nearly isomorphic impurities that are shown to be preferentially trapped by tetragonal lysozyme and ferritin crystals, respectively. The distribution coefficient, K defined as a ratio of the (impurity/protein) ratios in crystal and in solution is a measure of trapping. For acetylated lysoyzme, K = 2.15 or, 3.42 for differently acetylated forms, is independent of both the impurity and the crystallizing protein concentration. The reason is that impurity flux to the surface is constant while the growth rate rises with supersaturation. About 3 times lower dimer concentration in space grown ferritin and

  6. Protein Crystal Growth Dynamics and Impurity Incorporation

    NASA Technical Reports Server (NTRS)

    Chernov, Alex A.; Thomas, Bill

    2000-01-01

    The general concepts and theories of crystal growth are proven to work for biomolecular crystallization. This allowed us to extract basic parameters controlling growth kinetics - free surface energy, alpha, and kinetic coefficient, beta, for steps. Surface energy per molecular site in thermal units, alpha(omega)(sup 2/3)/kT approx. = 1, is close to the one for inorganic crystals in solution (omega is the specific molecular volume, T is the temperature). Entropic restrictions on incorporation of biomolecules into the lattice reduce the incorporation rate, beta, by a factor of 10(exp 2) - 10(exp 3) relative to inorganic crystals. A dehydration barrier of approx. 18kcal/mol may explain approx. 10(exp -6) times difference between frequencies of adding a molecule to the lattice and Brownian attempts to do so. The latter was obtained from AFM measurements of step and kink growth rates on orthorhombic lysozyme. Protein and many inorganic crystals typically do not belong to the Kossel type, thus requiring a theory to account for inequivalent molecular positions within its unit cell. Orthorhombic lysozyme will serve as an example of how to develop such a theory. Factors deteriorating crystal quality - stress and strain, mosaicity, molecular disorder - will be reviewed with emphasis on impurities. Dimers in ferritin and lysozyme and acetylated lysozyme, are microheterogeneous i.e. nearly isomorphic impurities that are shown to be preferentially trapped by tetragonal lysozyme and ferritin crystals, respectively. The distribution coefficient, K defined as a ratio of the (impurity/protein) ratios in crystal and in solution is a measure of trapping. For acetylated lysoyzme, K = 2.15 or, 3.42 for differently acetylated forms, is independent of both the impurity and the crystallizing protein concentration. The reason is that impurity flux to the surface is constant while the growth rate rises with supersaturation. About 3 times lower dimer concentration in space grown ferritin and

  7. Method for solid state crystal growth

    DOEpatents

    Nolas, George S.; Beekman, Matthew K.

    2013-04-09

    A novel method for high quality crystal growth of intermetallic clathrates is presented. The synthesis of high quality pure phase crystals has been complicated by the simultaneous formation of both clathrate type-I and clathrate type-II structures. It was found that selective, phase pure, single-crystal growth of type-I and type-II clathrates can be achieved by maintaining sufficient partial pressure of a chemical constituent during slow, controlled deprivation of the chemical constituent from the primary reactant. The chemical constituent is slowly removed from the primary reactant by the reaction of the chemical constituent vapor with a secondary reactant, spatially separated from the primary reactant, in a closed volume under uniaxial pressure and heat to form the single phase pure crystals.

  8. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1994-01-01

    The long-term stability of the interferometric setup for the monitoring of protein morphologies has been improved. Growth or dissolution of a crystal on a 100 A scale can now be clearly distinguished from dimensional changes occurring within the optical path of the interferometer. This capability of simultaneously monitoring the local interfacial displacement at several widely-spaced positions on the crystal surface with high local depth resolution, has already yielded novel results. We found with lysozyme that (1) the normal growth rate is oscillatory, and (2) the mean growth step density is greater at the periphery of a facet than in its center. The repartitioning of Na(+) and Cl(-) ions between lysozyme solutions and crystals was studied for a wide range of crystallization conditions. A nucleation-growth-repartitioning model was developed to interpret the large body of data in a unified way. The results strongly suggests that (1) the ion to lysozyme ratio in the crystal depends mostly on kinetic rather than crystallographic parameters, and (2) lysozyme crystals possess a salt-rich core with a diameter on the order of 10 microns. The computational model for diffusive-convective transport in protein crystallization (see the First Report) has been applied to a realistic growth cell geometry, taking into account the findings of the above repartitioning studies. These results show that some elements of a moving boundary problem must be incorporated into the model in order to obtain a more realistic description. Our experimental setup for light scattering investigations of aggregation and nucleation in protein solutions has been extensively tested. Scattering intensity measurements with a true Rayleigh scatterer produced systematically increased forward scattering, indicating problems with glare. These have been resolved. Preliminary measurements with supersaturated lysozyme solutions revealed that the scatterers grow with time. Work has begun on a computer program

  9. Laboratory studies of crystal growth in magma

    NASA Astrophysics Data System (ADS)

    Hammer, J. E.; Welsch, B. T.; First, E.; Shea, T.

    2012-12-01

    The proportions, compositions, and interrelationships among crystalline phases and glasses in volcanic rocks cryptically record pre-eruptive intensive conditions, the timing of changes in crystallization environment, and the devolatilization history of eruptive ascent. These parameters are recognized as important monitoring tools at active volcanoes and interpreting geologic events at prehistoric and remote eruptions, thus motivating our attempts to understand the information preserved in crystals through an experimental appoach. We are performing laboratory experiments in mafic, felsic, and intermediate composition magmas to study the mechanisms of crystal growth in thermochemical environments relevant to volcanic environments. We target features common to natural crystals in igneous rocks for our experimental studies of rapid crystal growth phenomena: (1) Surface curvature. Do curved interfaces and spongy cores represent evidence of dissolution (i.e., are they corrosion features), or do they record the transition from dendritic to polyhedral morphology? (2) Trapped melt inclusions. Do trapped liquids represent bulk (i.e., far-field) liquids, boundary layer liquids, or something intermediate, depending on individual species diffusivity? What sequence of crystal growth rates leads to preservation of sealed melt inclusions? (3) Subgrain boundaries. Natural phenocrysts commonly exhibit tabular subgrain regions distinguished by small angle lattice misorientations or "dislocation lamellae" and undulatory extinction. Might these crystal defects be produced as dendrites undergo ripening? (4) Clusters. Contacting clusters of polymineralic crystals are the building blocks of cumulates, and are ubiquitous features of mafic volcanic rocks. Are plagioclase and clinopyroxene aligned crystallographically, suggesting an epitaxial (surface energy) relationship? (5) Log-normal size distribution. What synthetic cooling histories produce "natural" distributions of crystal sizes, and

  10. Crystal growth under external electric fields

    SciTech Connect

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo

    2014-10-06

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal.

  11. Drop deployment system for crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy (Inventor); Snyder, Robert S. (Inventor); Pusey, Marc L. (Inventor)

    1990-01-01

    A crystal growth apparatus is presented. It utilizes a vapor diffusion method for growing protein crystals, and particularly such an apparatus wherein a ball mixer is used to mix the fluids that form a drop within which crystals are grown. Particular novelty of this invention lies in utilizing a ball mixer to completely mix the precipitate and protein solutions prior to forming the drop. Additional novelty lies in details of construction of the vials, the fluid deployment system, and the fluid storage system of the preferred embodiment.

  12. Protein Crystal Growth Apparatus for Microgravity

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Dowling, Timothy E. (Inventor)

    1997-01-01

    Apparatus for growing protein crystals under microgravity environment includes a plurality of protein growth assemblies stacked one above the other within a canister. Each of the protein growth assemblies includes a tray having a number of spaced apart growth chambers recessed below an upper surface. the growth chambers each having an upstanding pedestal and an annular reservoir about the pedestal for receiving a wick and precipitating agents. A well is recessed below the top of each pedestal to define a protein crystal growth receptacle. A flexible membrane is positioned on the upper surface of each tray and a sealing plate is positioned above each membrane, each sealing plate having a number of bumpers corresponding in number and alignment to the pedestals for forcing the membrane selectively against the upper end of the respective pedestal to seal the reservoir and the receptacle when the sealing plate is forced down.

  13. Growth of crystals in optical tweezers

    NASA Astrophysics Data System (ADS)

    Gibson, Ursula; Singer, Wolfgang; Nieminen, Timo; Heckenberg, Norman; Rubinsztein-Dunlop, Halina

    2005-08-01

    We report here on the use of optical tweezers in the growth and manipulation of protein and inorganic crystals. Sodium chloride and hen egg-white lysozyme crystals were grown in a batch process, and then seeds from the solution were introduced into the optical tweezers. The regular and controllable shape and the known optical birefringence in these structures allowed a detailed study of the orientation effects in the beam due to both polarization and gradient forces. Additionally, we determined that the laser tweezers could be used to suspend a crystal for three-dimensional growth under varying conditions. Studies included increasing the protein concentration, thermal cycling, and a diffusion-induced increase in precipitant concentration. Preliminary studies on the use of the tweezers to create a localized seed for growth from polyethylene oxide solutions are also reported.

  14. Theoretical model of crystal growth shaping process

    NASA Astrophysics Data System (ADS)

    Tatarchenko, V. A.; Uspenski, V. S.; Tatarchenko, E. V.; Nabot, J. Ph.; Duffar, T.; Roux, B.

    1997-10-01

    A theoretical investigation of the crystal growth shaping process is carried out on the basis of the dynamic stability concept. The capillary dynamic stability of shaped crystal growth processes for various forms of the liquid menisci is analyzed using the mathematical model of the phenomena in the axisymmetric case. The catching boundary condition of the capillary boundary problem is considered and the limits of its application for shaped crystal growth modeling are discussed. The static stability of a liquid free surface is taken into account by means of the Jacobi equation analysis. The result is that a large number of menisci having drop-like shapes are statically unstable. A few new non-traditional liquid meniscus shapes (e.g., bubbles and related shapes) are proposed for the case of a catching boundary condition.

  15. Biomolecular Modification of Inorganic Crystal Growth

    NASA Astrophysics Data System (ADS)

    De Yoreo, James J.

    2007-06-01

    The fascinating shapes and hierarchical designs of biomineralized structures are an inspiration to materials scientists because of the potential they suggest for biomolecular control over materials synthesis. Conversely, the failure to prevent or limit tissue mineralization in the vascular, skeletal, and urinary systems is a common source of disease. Understanding the mechanisms by which organisms direct or limit crystallization has long been a central challenge to the biomineralization community. One prevailing view is that mineral-associated macromolecules are responsible for either inhibiting crystallization or initiating and stabilizing non-equilibrium crystal polymorphs and morphologies through interactions between anionic moieties and cations in solution or at mineralizing surfaces. In particular, biomolecules that present carboxyl groups to the growing crystal have been implicated as primary modulators of growth. Here we review the results from a combination of in situ atomic force microscopy (AFM) and molecular modeling (MM) studies to investigate the effect of specific interactions between carboxylate-rich biomolecules and atomic steps on crystal surfaces during the growth of carbonates, oxalates and phosphates of calcium. Specifically, we how the growth kinetics and morphology depend on the concentration of additives that include citrate, simple amino acids, synthetic Asp-rich polypeptides, and naturally occurring Asp-rich proteins found in both functional and pathological mineral tissues. The results reveal a consistent picture of shape modification in which stereochemical matching of modifiers to specific atomic steps drives shape modification. Inhibition and other changes in growth kinetics are shown to be due to a range of mechanisms that depend on chemistry and molecular size. Some effects are well described by classic crystal growth theories, but others, such as step acceleration due to peptide charge and hydrophylicity, were previously unrealized

  16. Biomolecular Modification of Inorganic Crystal Growth

    SciTech Connect

    De Yoreo, J J

    2007-04-27

    The fascinating shapes and hierarchical designs of biomineralized structures are an inspiration to materials scientists because of the potential they suggest for biomolecular control over materials synthesis. Conversely, the failure to prevent or limit tissue mineralization in the vascular, skeletal, and urinary systems is a common source of disease. Understanding the mechanisms by which organisms direct or limit crystallization has long been a central challenge to the biomineralization community. One prevailing view is that mineral-associated macromolecules are responsible for either inhibiting crystallization or initiating and stabilizing non-equilibrium crystal polymorphs and morphologies through interactions between anionic moieties and cations in solution or at mineralizing surfaces. In particular, biomolecules that present carboxyl groups to the growing crystal have been implicated as primary modulators of growth. Here we review the results from a combination of in situ atomic force microscopy (AFM) and molecular modeling (MM) studies to investigate the effect of specific interactions between carboxylate-rich biomolecules and atomic steps on crystal surfaces during the growth of carbonates, oxalates and phosphates of calcium. Specifically, we how the growth kinetics and morphology depend on the concentration of additives that include citrate, simple amino acids, synthetic Asp-rich polypeptides, and naturally occurring Asp-rich proteins found in both functional and pathological mineral tissues. The results reveal a consistent picture of shape modification in which stereochemical matching of modifiers to specific atomic steps drives shape modification. Inhibition and other changes in growth kinetics are shown to be due to a range of mechanisms that depend on chemistry and molecular size. Some effects are well described by classic crystal growth theories, but others, such as step acceleration due to peptide charge and hydrophylicity, were previously unrealized

  17. Challenges in modeling of bulk crystal growth

    NASA Astrophysics Data System (ADS)

    Müller, G.; Friedrich, J.

    2004-05-01

    This paper tries to analyze some of the presently existing problems and challenges in the field of modeling bulk crystal growth processes. Strategies will be discussed to meet and overcome these problems and challenges. The different topics will be illustrated by typical examples of bulk growth of semiconductor and optical crystals. Experimental results will be used for a comparison and validation of the numerical results in order to demonstrate the status and maturity of the models. The following topics are considered: modeling of transport phenomena and three-dimensional effects, process optimization by soft computing, modeling of defect formation and finally the speed-up of computations by using PC clusters and paralellization.

  18. Interfacial supersaturation, secondary nucleation, and crystal growth

    NASA Astrophysics Data System (ADS)

    Tai, Clifford Y.; Wu, Jenn-Fang; Rousseau, Ronald W.

    1992-02-01

    A theory describing the source of nuclei in secondary nucleation is presented and used to rationalize experimental data from the literature, some of which had appeared to be conflicting. The theory rests on a model in which an adsorption layer consisting of clusters of growth units of varying size is formed on the surface of growing crystals. The existence of the layer is related to the two-resistance model of crystal growth; by varying system conditions, the relative importance of the two resistances is altered and thereby changes the interfacial supersaturation even though overall supersaturation remains constant. Interracial supersaturation and contact energy determine kinetics in a system dominated by contact nucleation.

  19. An Apparatus for Growth of Small Crystals From Solutions.

    ERIC Educational Resources Information Center

    Mitrovic, Mico M.

    1995-01-01

    Describes an apparatus for crystal growth that was designed to study growth kinetics of small crystals from solutions and to obtain crystals of various substances. Describes the use of the apparatus in laboratory practical experiments in the field of crystal growth physics within the course "Solid State Physics". (JRH)

  20. Growth rate study of canavalin single crystals

    NASA Technical Reports Server (NTRS)

    Demattei, R. C.; Feigelson, R. S.

    1989-01-01

    The dependence on supersaturation of the growth rate of single crystals of the protein canavalin is studied. In the supersaturation ranges studied, the rate-limiting step for growth is best described by a screw dislocation mechanism associated with interface attachment kinetics. Using a ln-ln plot, the growth-rate data is found to fit a predictive relationship of the form G = 0.012 x the supersaturation to the 6.66, which, together with the solubility curves, allows the growth rate to be estimated under a variety of conditions.

  1. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1994-01-01

    A high-resolution microscopic interferometric setup for the monitoring of protein morphologies has been developed. Growth or dissolution of a crystal can be resolved with a long-term depth resolution of 200 A and a lateral resolution of 2 microns. This capability of simultaneously monitoring the interfacial displacement with high local depth resolution has yielded several novel results. We have found with lysozyme that (1) the normal growth rate is oscillatory, and (2) depending on the impurity content of the solution, the growth step density is either greater or lower at the periphery of a facet than in its center. The repartitioning of Na plus and Cl minus ions between lysozyme solutions and crystals was studied for a wide range of crystallization conditions. A nucleation-growth-repartitioning model was developed, to interpret the large body of data in unified way. The results strongly suggest that (1) the ion to lysozyne ratio in the crystal depends mostly on kinetic rather than crystallographic parameters, and (2) lysozyme crystals possess a salt-rich core with a diameter electron microscopy results appear to confirm this finding, which could have far-reaching consequences for x-ray diffraction studies. A computational model for diffusive-convective transport in protein crystallization has been applied to a realistic growth cell geometry, taking into account the findings of the above repartitioning studies and our kinetics data for the growth of lysozyme. The results show that even in the small cell employed, protein concentration nonuniformities and gravity-driven solutal convection can be significant. The calculated convection velocities are of the same order to magnitude as those found in earlier experiments. As expected, convective transport, i.e., at Og, lysozyme crystal growth remains kinetically limited. The salt distribution in the crystal is predicted to be non-uniform at both 1g and 0g, as a consequence of protein depletion in the solution. Static and

  2. CVT Growth of Single Crystal Zinc Oxide

    NASA Astrophysics Data System (ADS)

    Kjar, Michael J.; Boone, Jack L.; Cantwell, Gene; Thomas, J. E.

    1997-03-01

    The growth of single crystal ZnO by chemical vapor transport using hydrogen as the transporting agent is being investigated both theoretically and experimentally. A mathematical model has been developed for the growth process using a quasi-equilibrium approach. By calculating the equilibrium constants at both the source and growing ends of the growth ampoule, a transport equation has been developed. The transport calculations have been made under the assumption of a "leaky" ampoule in which the hydrogen , water vapor, and inert gas pressures can be controlled externally. The chemical reactions at the source and growth surfaces are being investigated to ascertain their effect on the transport and growth processes. Also, the effects of varying the "communication" between the ampoule interior and the large containment vessel on the overall growth process have been investigated. The parameters for the growth process are being refined through a correlation of the theoretical model predictions with experimental data.

  3. Czochralski crystal growth for laser cooling

    NASA Astrophysics Data System (ADS)

    Cittadino, Giovanni; Volpi, Azzurra; Di Lieto, Alberto; Tonelli, Mauro

    2017-01-01

    In laser cooling of crystals in solid-state physics, it is really important to obtain crystals with a large size at a relatively fast growth rate and high-optical quality that is defect-free. To get that, one of the methods to grow crystals is the Czochralski technique. The Czochralski technique will be presented and, in particular, the furnaces in New Materials for Laser Applications Laboratories of Pisa for this application will be discussed. Afterward the parameters for the growth of crystal fluorides are depicted and it is shown how these parameters lead to build samples suitable for optical cooling. All processes that are necessary to avoid contamination inside crystals like OH- ion and how to avoid reduction of Yb to Yb will be given. Spectroscopy of all samples will be treated in order to obtain the cooling parameters λf and αb for each sample. Afterward, an efficiency model will be discussed and the data efficiency of cooling obtained by a sample's own crystals will be shown.

  4. Method for crystal growth control

    DOEpatents

    Yates, Douglas A.; Hatch, Arthur E.; Goldsmith, Jeff M.

    1981-01-01

    The growth of a crystalline body of a selected material is controlled so that the body has a selected cross-sectional shape. The apparatus is of the type which includes the structure normally employed in known capillary die devices as well as means for observing at least the portion of the surfaces of the growing crystalline body and the meniscus (of melt material from which the body is being pulled) including the solid/liquid/vapor junction in a direction substantially perpendicular to the meniscus surface formed at the junction when the growth of the crystalline body is under steady state conditions. The cross-sectional size of the growing crystalline body can be controlled by determining which points exhibit a sharp change in the amount of reflected radiation of a preselected wavelength and controlling the speed at which the body is being pulled or the temperature of the growth pool of melt so as to maintain those points exhibiting a sharp change at a preselected spatial position relative to a predetermined reference position. The improvement comprises reference object means positioned near the solid/liquid/vapor junction and capable of being observed by the means for observing so as to define said reference position so that the problems associated with convection current jitter are overcome.

  5. Optical monitoring of protein crystal growth

    NASA Technical Reports Server (NTRS)

    Choudry, A.

    1988-01-01

    The possibility of using various optical techniques for detecting the onset of nucleation in protein crystal growth was investigated. Direct microscopy, general metrologic techniques, light scattering, ultraviolet absorption, and interferometry are addressed along with techniques for determining pH value. The necessity for collecting basic data on the optical properties of the growth solution as a prerequisite to the evaluation of monitoring techniques is pointed out.

  6. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1988-01-01

    The solubility and growth of the protein canavalin, and the application of the schlieren technique to study fluid flow in protein crystal growth systems were investigated. These studies have resulted in the proposal of a model to describe protein crystal growth and the preliminary plans for a long-term space flight experiment. Canavalin, which may be crystallized from a basic solution by the addition of hydrogen (H+) ions, was shown to have normal solubility characteristics over the range of temperatures (5 to 25 C) and pH (5 to 7.5) studies. The solubility data combined with growth rate data gathered from the seeded growth of canavalin crystals indicated that the growth rate limiting step is a screw dislocation mechanism. A schlieren apparatus was constructed and flow patterns were observed in Rochelle salt (sodium potassium tartrate), lysozyme, and canavalin. The critical parameters were identified as the change in density with concentration (dp/dc) and the change in index of refraction with concentration (dn/dc). Some of these values were measured for the materials listed. The data for lyrozyme showed non-linearities in plots of optical properties and density vs. concentration. In conjunction with with W. A. Tiller, a model based on colloid stability theory was proposed to describe protein crystallization. The model was used to explain observations made by ourselves and others. The results of this research has lead to the development for a preliminary design for a long-term, low-g experiment. The proposed apparatus is univeral and capable of operation under microprocessor control.

  7. Crystal growth in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L. (Inventor); Reiss, Donald A. (Inventor); Lehoczky, Sandor L. (Inventor)

    1992-01-01

    Gravitational phenomena, including convection, sedimentation, and interactions of materials with their containers all affect the crystal growth process. If they are not taken into consideration they can have adverse effects on the quantity and quality of crystals produced. As a practical matter, convection, and sedimentation can be completely eliminated only under conditions of low gravity attained during orbital flight. There is, then, an advantage to effecting crystallization in space. In the absence of convection in a microgravity environment cooling proceeds by thermal diffusion from the walls to the center of the solution chamber. This renders control of nucleation difficult. Accordingly, there is a need for a new improved nucleation process in space. Crystals are nucleated by creating a small localized region of high relative supersaturation in a host solution at a lower degree of supersaturation.

  8. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, Frank R.; Gillies, Donald C.; Watring, Dale A.

    1999-01-01

    The objective of the study is to establish the effects of processing semiconducting, solid solution, single crystals in a microgravity environment on the metallurgical, compositional, electrical, and optical characteristics of the crystals. The alloy system being investigated is the solid solution semiconductor Hg(1-x)Cd(x)Te, with x-values appropriate for infrared detector applications in the 8 to 14 mm wavelength region. Both melt and Te-solvent growth are being performed. The study consists of an extensive ground-based experimental and theoretical research effort followed by flight experimentation where appropriate. The ground-based portion of the investigation also includes the evaluation of the relative effectiveness of stabilizing techniques, such as applied magnetic fields, for suppressing convective flow during the melt growth of the crystals.

  9. Meniscus Imaging for Crystal-Growth Control

    NASA Technical Reports Server (NTRS)

    Sachs, E. M.

    1983-01-01

    Silicon crystal growth monitored by new video system reduces operator stress and improves conditions for observation and control of growing process. System optics produce greater magnification vertically than horizontally, so entire meniscus and melt is viewed with high resolution in both width and height dimensions.

  10. Crystal growth furnace safety system validation

    NASA Technical Reports Server (NTRS)

    Mackowski, D. W.; Hartfield, R.; Bhavnani, S. H.; Belcher, V. M.

    1994-01-01

    The findings are reported regarding the safe operation of the NASA crystal growth furnace (CGF) and potential methods for detecting containment failures of the furnace. The main conclusions are summarized by ampoule leak detection, cartridge leak detection, and detection of hazardous species in the experiment apparatus container (EAC).

  11. (PCG) Protein Crystal Growth Isocitrate Lysase

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Comparison of Earth grown and Space grown Isocitrate Lysase crystals. Target enzyme for fungicides. A better understanding of this enzyme should lead to the discovery of more potent fungicides to treat serious crop diseases such as rice blast. It regulates the flow of metabolic intermediates required for cell growth. Principal Investigator was Charles Bugg.

  12. Growth of single-crystal gallium nitride

    NASA Technical Reports Server (NTRS)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Use of ultrahigh purity ammonia prevents oxygen contamination of GaN during growth, making it possible to grow the GaN at temperatures as high as 825 degrees C, at which point single crystal wafers are deposited on /0001/-oriented sapphire surfaces.

  13. Growth of Organic Crystals by Ostwald Ripening

    NASA Technical Reports Server (NTRS)

    Egbert, W.; Podsiadly, C.; Naumann, R.

    1985-01-01

    The objective of this investigation is to evaluate the growth of various organic crystals by chemical precipitation and Ostwald ripening. Six precipitation reactors were flown on STS-51A. Five of the reactors contained proprietary materials. The sixth contained urea dissolved in ethanol with toluene as the precipitating agent. The size distribution will be analyzed and compared with a similar model being developed.

  14. Spacelab 3 vapor crystal growth experiment

    NASA Technical Reports Server (NTRS)

    Schnepple, W.; Vandenberg, L.; Skinner, N.; Ortale, C.

    1987-01-01

    The Space Shuttle Challenger, with Spacelab 3 as its payload, was launched into orbit April 29, 1985. The mission, number 51-B, emphasized materials processing in space, although a wide variety of experiments in other disciplines were also carried onboard. One of the materials processing experiments on this flight is described, specifically the growth of single crystals of mercuric iodide by physical vapor transport.

  15. Apparatus for monitoring crystal growth

    DOEpatents

    Sachs, Emanual M.

    1981-01-01

    A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.

  16. Method of monitoring crystal growth

    DOEpatents

    Sachs, Emanual M.

    1982-01-01

    A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.

  17. Heterogeneous growth of single crystals on polycrystals

    NASA Astrophysics Data System (ADS)

    Wang, Zumin; Jeurgens, Lars P. H.; Gu, Lin; Mittemeijer, Eric J.

    2017-03-01

    This work discloses a surprising, previously unknown heterogeneous growth mode. Namely, large-area, thin sheets of single-crystalline Ge were observed to grow laterally on top of a polycrystalline Al substrate, covering as many as tens of differently oriented Al grains at low temperatures. The observation of the Ge crystal-growth process by in situ heating transmission electron microscopy demonstrates an intriguing type of "faceted" growth: the growth of single-crystalline Ge thin sheets proceeding Al-grain by Al-grain on top of the polycrystalline Al substrate. The crystalline Ge growth front tends to align along the lines of intersection of the Al grain boundaries with the Al surface. Such an unusual heterogeneous growth mode has been shown to be a consequence of the strong anisotropy of the energy of the crystalline/crystalline (here: c-Ge/c-Al) interfaces.

  18. Nucleation and growth control in protein crystallization

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Nyce, Thomas A.; Meehan, Edward J.; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    The five topics summarized in this final report are as follows: (1) a technique for the expedient, semi-automated determination of protein solubilities as a function of temperature and application of this technique to proteins other than lysozyme; (2) a small solution cell with adjustable temperature gradients for the growth of proteins at a predetermined location through temperature programming; (3) a microscopy system with image storage and processing capability for high resolution optical studies of temperature controlled protein growth and etching kinetics; (4) growth experiments with lysozyme in thermosyphon flow ; and (5) a mathematical model for the evolution of evaporation/diffusion induced concentration gradients in the hanging drop protein crystallization technique.

  19. Drop deployment system for crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H. (Inventor); Snyder, Robert S. (Inventor); Pusey, Marc L. (Inventor)

    1992-01-01

    This invention relates to a crystal growth apparatus (10) generally used for growing protein crystals wherein a vapor diffusion method is used for growing the crystals. In this apparatus, a precipitating solution and a solution containing dissolved crystalline material are stored in separate vials (12, 14), each having a resilient diaphragm (28) across one end and an opening (24) with a puncturable septum (26) thereacross at an opposite end. The vials are placed in receptacles (30) having a manifold (41) with a manifold diaphragm (42) in contact with the vial diaphragm at one end of the receptacle and a hollow needle (36) for puncturing the septum at the other end of the manifold. The needles of each vial communicate with a ball mixer (40) that mixes the precipitate and protein solutions and directs the mixed solution to a drop support (64) disposed in a crystal growth chamber (16), the drop support being a tube with an inner bevelled surface (66) that provides more support for the drop (68) than the tubes of the prior art. A sealable storage region (70) intermediate the drop support and mixer provides storage of the drop (68) and the grown crystals.

  20. Interferometer Protein Crystal Growth (IPCG) system

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Interferometer Protein Crystal Growth (IPCG) experiment was designed to measure details of how protein molecules move through a fluid. It was flown on the STS-86 mission for use aboard Russian Space Station Mir in 1998. It studied aspects of how crystals grow - and what conditions lead to the best crystals, details that remain a mystery. IPCG produces interference patterns by spilitting then recombining laser light. This let scientists see how fluid densities - and molecular diffusion - change around a crystal as it grows in microgravity. The heart of the IPCG apparatus is the interferometer cell comprising the optical bench, microscope, other optics, and video camera. IPCG experiment cells are made of optical glass and silvered on one side to serve as a mirror in the interferometer system that visuzlizes crystals and conditions around them as they grow inside the cell. This view shows a large growth cell. The principal investigator was Dr. Alexander McPherson of University of California, Irvine. Co-investigators are William Witherow and Dr. Marc Pusey of NASA's Marshall Space Flight Center (MSFC).

  1. Interferometer Protein Crystal Growth (IPCG) system

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Interferometer Protein Crystal Growth (IPCG) experiment was designed to measure details of how protein molecules move through a fluid. It was flown on the STS-86 mission for use aboard Russian Space Station Mir in 1998. It studied aspects of how crystals grow - and what conditions lead to the best crystals, details that remain a mystery. IPCG produces interference patterns by spilitting then recombining laser light. This let scientists see how fluid densities - and molecular diffusion - change around a crystal as it grows in microgravity. The heart of the IPCG apparatus is the interferometer cell comprising the optical bench, microscope, other optics, and video camera. IPCG experiment cells are made of optical glass and silvered on one side to serve as a mirror in the interferometer system that visuzlizes crystals and conditions around them as they grow inside the cell. This view shows the optical bench. The growth cell would be on the right side. The principal investigator was Dr. Alexander McPherson of University of California, Irvine. Co-investigators are William Witherow and Dr. Marc Pusey of NASA's Marshall Space Flight Center (MSFC).

  2. Interferometer Protein Crystal Growth (IPCG) system

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Interferometer Protein Crystal Growth (IPCG) experiment was designed to measure details of how protein molecules move through a fluid. It was flown on the STS-86 mission for use aboard Russian Space Station Mir in 1998. It studied aspects of how crystals grow - and what conditions lead to the best crystals, details that remain a mystery. IPCG produces interference patterns by spilitting then recombining laser light. This let scientists see how fluid densities - and molecular diffusion - change around a crystal as it grows in microgravity. The heart of the IPCG apparatus is the interferometer cell comprising the optical bench, microscope, other optics, and video camera. IPCG experiment cells are made of optical glass and silvered on one side to serve as a mirror in the interferometer system that visuzlizes crystals and conditions around them as they grow inside the cell. This diagram shows the growth cells. The principal investigator was Dr. Alexander McPherson of University of California, Irvine. Co-investigators are William Witherow and Dr. Marc Pusey of NASA's Marshall Space Flight Center (MSFC).

  3. On the growth of microscopic hurt and unhurt crystals

    NASA Astrophysics Data System (ADS)

    Offermann, H.; Ulrich, J.

    1983-09-01

    The effect of secondary nucleation depends strongly on the growth behaviour of the nuclei. Therefore the growth rate of small (<12 μm) damaged crystals was compared with that of regular shaped crystals: Damaged NaCl crystals do not grow, K 2SO 4 crystals grow slower and potash-alum crystals grow faster than the corresponding unhurt crystals. As more detailed experiments are still to be done, this paper makes no attempt to explain the above mentioned phenomena.

  4. Growth of single crystals by vapor transport

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.

    1978-01-01

    The primary objectives of the program were to establish basic vapor transport and crystal growth properties and to determine thermodynamic, kinetic and structural parameters relevant to chemical vapor transport systems for different classes of materials. An important aspect of these studies was the observation of the effects of gravity-caused convection on the mass transport rate and crystal morphology. These objectives were accomplished through extensive vapor transport, thermochemical and structural studies on selected Mn-chalcogenides, II-VI and IV-VI compounds.

  5. FNAS/advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1992-01-01

    A scintillation method is presented for determination of the temperature dependence of the solubility, S(T), of proteins in 50-100 micro-l volumes of solution. S(T) data for lysozyme and horse serum albumin were obtained for various combinations of pH and precipitant concentrations. The resulting kinetics and equilibrium information was used for dynamic control, that is the separation of nucleation and growth stages in protein crystallization. Individual lysozyme and horse serum albumin crystals were grown in 15-20 micro-l solution volumes contained in x-ray capillaries.

  6. Crystal growth and annealing for minimized residual stress

    DOEpatents

    Gianoulakis, Steven E.

    2002-01-01

    A method and apparatus for producing crystals that minimizes birefringence even at large crystal sizes, and is suitable for production of CaF.sub.2 crystals. The method of the present invention comprises annealing a crystal by maintaining a minimal temperature gradient in the crystal while slowly reducing the bulk temperature of the crystal. An apparatus according to the present invention includes a thermal control system added to a crystal growth and annealing apparatus, wherein the thermal control system allows a temperature gradient during crystal growth but minimizes the temperature gradient during crystal annealing.

  7. Application of energy stability theory to problems in crystal growth

    NASA Technical Reports Server (NTRS)

    Neitzel, G. P.; Jankowski, D. F.

    1990-01-01

    The use of energy stability theory to study problems in crystal growth is outlined and justified in terms of convection mechanisms. An application to the float zone process of crystal growth is given as an illustration.

  8. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1994-01-01

    This research involved (1) using the Atomic Force Microscope (AFM) in a study on the growth of lysozyme crystals and (2) refinement of the design of the Thermonucleator which controls the supersaturation required for the nucleation and growth of protein crystals separately. AFM studies of the (110) tetragonal face confirmed that lysozyme crystals grow by step propagation. There appears to be very little step pile up in the growth regimes which we studied. The step height was measured at = 54A which was equal to the (110) interpane spacing. The AFM images showed areas of step retardation and the formation of pits. These defects ranged in size from 0.1 to 0.4 mu. The source of these defects was not determined. The redesign of the Thermonucleator produced an instrument based on thermoelectric technology which is both easier to use and more amenable to use in a mu g environment. The use of thermoelectric technology resulted in a considerable size reduction which will allow for the design of a multi-unit growth apparatus. The performance of the new apparatus was demonstrated to be the same as the original design.

  9. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1993-01-01

    The experimental setup for the in-situ high resolution optical monitoring of protein crystal growth/dissolution morphologies was substantially improved. By augmenting the observation system with a temperature-controlled enclosure, laser illumination for the interferometric microscope, and software for pixel by pixel light intensity recording, a height resolution of about two unit cells for lysozyme can now be obtained. The repartitioning of Na(+) and Cl(-) ions between lysozyme solutions and crystals was studied. Quite unexpectedly, it was found that the longer crystals were in contact with their solution, the lower was their ion content. The development of a model for diffusive-convective transport and resulting distribution of the growth rate on facets was completed. Results obtained for a realistic growth cell geometry show interesting differences between 'growth runs' at 1g and 0g. The kinematic viscosity of lysozyme solutions of various supersaturations and salt concentrations was monitored over time. In contrast to the preliminary finding of other authors, no changes in viscosity were found over four days. The experimental setup for light scattering investigations of aggregation and nucleation in protein solutions was completed, and a computer program for the evaluation of multi-angle light scattering data was acquired.

  10. Interferometer Protein Crystal Growth (IPCG) system

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Interferometer Protein Crystal Growth (IPCG) experiment was designed to measure details of how protein molecules move through a fluid. It was flown on the STS-86 mission for use aboard Russian Space Station Mir in 1998. It studied aspects of how crystals grow - and what conditions lead to the best crystals, details that remain a mystery. IPCG produces interference patterns by spilitting then recombining laser light. This let scientists see how fluid densities - and molecular diffusion - change around a crystal as it grows in microgravity. The heart of the IPCG apparatus is the interferometer cell comprising the optical bench, microscope, other optics, and video camera. IPCG experiment cells are made of optical glass and silvered on one side to serve as a mirror in the interferometer system that visuzlizes crystals and conditions around them as they grow inside the cell. This diagram shows the optical layout. The principal investigator was Dr. Alexander McPherson of University of California, Irvine. Co-investigators are William Witherow and Dr. Marc Pusey of NASA's Marshall Space Flight Center (MSFC).

  11. Interferometer Protein Crystal Growth (IPCG) system

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Interferometer Protein Crystal Growth (IPCG) experiment was designed to measure details of how protein molecules move through a fluid. It was flown on the STS-86 mission for use aboard Russian Space Station Mir in 1998. It studied aspects of how crystals grow - and what conditions lead to the best crystals, details that remain a mystery. IPCG produces interference patterns by spilitting then recombining laser light. This let scientists see how fluid densities - and molecular diffusion - change around a crystal as it grows in microgravity. The heart of the IPCG apparatus is the interferometer cell comprising the optical bench, microscope, other optics, and video camera. IPCG experiment cells are made of optical glass and silvered on one side to serve as a mirror in the interferometer system that visuzlizes crystals and conditions around them as they grow inside the cell. This view shows interferograms produced in ground tests. The principal investigator was Dr. Alexander McPherson of University of California, Irvine. Co-investigators are William Witherow and Dr. Marc Pusey of NASA's Marshall Space Flight Center (MSFC).

  12. Sealed silica pressure ampoules for crystal growth

    NASA Technical Reports Server (NTRS)

    Holland, L. R.

    1984-01-01

    The properties of vitreous silica and the mechanics of thick walled pressure vessels are reviewed with regard to the construction of sealed silica crucibles such as are used in the growth of mercury-cadmium telluride crystals. Data from destructive rupture tests are reported, failure modes discussed, and recommendations for design given. Ordinary commercial clear vitreous silica from flame fused quartz can withstand a surface stress of 20 MPa or more in this application.

  13. (PCG) Protein Crystal Growth Gamma-Interferon

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Gamma-Interferon. Stimulates the body's immune system and is used clinically in the treatment of cancer. Potential as an anti-tumor agent against solid tumors as well as leukemia's and lymphomas. It has additional utility as an anti-ineffective agent, including antiviral, anti-bacterial, and anti-parasitic activities. Principal Investigator on STS-26 was Charles Bugg.

  14. Studying Crystal Growth With the Peltier Effect

    NASA Technical Reports Server (NTRS)

    Larsen, David J., Jr.; Dressler, B.; Silberstein, R. P.; Poit, W. J.

    1986-01-01

    Peltier interface demarcation (PID) shown useful as aid in studying heat and mass transfer during growth of crystals from molten material. In PID, two dissimilar "metals" solid and liquid phases of same material. Current pulse passed through unidirectionally solidifying sample to create rapid Peltier thermal disturbance at liquid/solid interface. Disturbance, measured by thermocouple stationed along path of solidification at or near interface, provides information about position and shape of interface.

  15. A Century of Sapphire Crystal Growth

    DTIC Science & Technology

    2004-05-17

    process • 1904: Full publication: A. Verneuil, “Memoire sur la reproduction du rubis par fusion,” Annales de Chimie et de Physique Ser. 8, 3: 20-48...quality 54 Sapphire from Atlas Russian Research and Production Company Kyropoulos growth method, also called GOI in Russia 55 Verneuil Sapphire from... Atlas Russian Research and Production Company 56 Acknowledgements: • Kurt Nassau, Gems Made by Man Bell Labs • Fred Schmid and Chandra Khattak Crystal

  16. (PCG) Protein Crystal Growth Gamma-Interferon

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Gamma-Interferon. Stimulates the body's immune system and is used clinically in the treatment of cancer. Potential as an anti-tumor agent against solid tumors as well as leukemia's and lymphomas. It has additional utility as an anti-ineffective agent, including antiviral, anti-bacterial, and anti-parasitic activities. Principal Investigator on STS-26 was Charles Bugg.

  17. (PCG) Protein Crystal Growth Human Serum Albumin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Human Serum Albumin. Contributes to many transport and regulatory processes and has multifunctional binding properties which range from various metals, to fatty acids, hormones, and a wide spectrum of therapeutic drugs. The most abundant protein of the circulatory system. It binds and transports an incredible variety of biological and pharmaceutical ligands throughout the blood stream. Principal Investigator on STS-26 was Larry DeLucas.

  18. Studying Crystal Growth With the Peltier Effect

    NASA Technical Reports Server (NTRS)

    Larsen, David J., Jr.; Dressler, B.; Silberstein, R. P.; Poit, W. J.

    1986-01-01

    Peltier interface demarcation (PID) shown useful as aid in studying heat and mass transfer during growth of crystals from molten material. In PID, two dissimilar "metals" solid and liquid phases of same material. Current pulse passed through unidirectionally solidifying sample to create rapid Peltier thermal disturbance at liquid/solid interface. Disturbance, measured by thermocouple stationed along path of solidification at or near interface, provides information about position and shape of interface.

  19. Simultaneous growths of gold colloidal crystals.

    PubMed

    Goubet, Nicolas; Portalès, Hervé; Yan, Cong; Arfaoui, Imad; Albouy, Pierre-Antoine; Mermet, Alain; Pileni, Marie-Paule

    2012-02-29

    Natural systems give the route to design periodic arrangements with mesoscopic architecture using individual nanocrystals as building blocks forming colloidal crystals or supracrystals. The collective properties of such supracrystals are one of the main driving forces in materials research for the 21st century with potential applications in electronics or biomedical environments. Here we describe two simultaneous supracrystal growth processes from gold nanocrystal suspension, taking place in solution and at the air-liquid interface. Furthermore, the growth processes involve the crystallinity selection of nanocrystals and induce marked changes in the supracrystal mechanical properties. © 2012 American Chemical Society

  20. Growth of solid solution single crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1987-01-01

    Based on the thermophysical properties of Hg sub 1-x Cd sub x Te alloys, the reasons are discussed for the failure of conventional Bridgman-Stockbarger growth methods to produce high quality homogeneous crystals in the presence of Earth's gravity. The deleterious effects are considered which arise from the dependence of the thermophysical properties on temperature and composition and from the large amount of heat carried by the fused silica ampules. An improved growth method, developed to optimize heat flow conditions, is described and experimental results are presented. The problems associated with growth in a gravitational environment are discussed. The anticipated advantages of growth in microgravity are given and the implications of the requirements for spaceflight experiments are summarized.

  1. Growth of solid solution single crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1988-01-01

    Based on the thermophysical properties of Hg sub 1-x Cd sub x Te alloys, the reasons are discussed for the failure of conventional Bridgman-Stockbarger growth methods to produce high quality homogeneous crystals in the prescence of Earth's gravity. The deleterious effects are considered which arise from the dependence of the thermophysical properties on temperature and composition and from the large amount of heat carried by the fused silica ampules. An improved growth method, developed to optimize heat flow conditions, is described and experimental results are presented. The problems associated with growth in a gravitational environment are discussed. The anticipated advantages of growth in microgravity are given and the implications of the requirements for spaceflight experiments are summarized.

  2. Growth Habits and Growth Rates of Snow Crystals

    NASA Astrophysics Data System (ADS)

    Mason, B. J.

    1993-04-01

    Equations are derived for the growth rates of snow crystals as they fall through the atmosphere in terms of the air temperature, supersaturation and their terminal velocities. The predicted maximum attainable diameters of regular hexagonal plates (0.84 mm), sector plates (ca. 2 mm) and stellar dendrites (3.5 mm) are in good agreement with observations based on Nakaya's large collection of snow crystal photographs. Mason et al. (Phil. Mag. 8, 505 (1963)) determined experimentally the average migration distance xB for water molecules diffusing across the basal surface of ice crystals as a function of temperature. These measurements of xB have now been supplemented by calculations of the corresponding quantity xp for the prism faces from measurements of the limiting c/a ratios of small growing crystals whose shape is largely determined by the values of both xp and xB.A theoretical treatment for the onset of dendritic growth leads to the result that a stationary thin regular hexagonal plate starts to sprout at the corners when its diameter dc exceeds 1.6 × 105 xp2/Dv, where Dv is the diffusion coefficient of water vapour in air. Plates grow in the temperature range -8 degrees C to -23 degrees C, for which dc ranges from 50 μ m at -15 degrees C to 670 μ m at -8 degrees C. For falling ventilated plates the corresponding values of dc are rather larger at 50 μ m and 940 μ m respectively, because the vapour concentration gradients around the crystal are enhanced. These latter values agree respectively with the observed minimum sizes of thin plates found at the centres of stellar dendritic crystals, and with the observed maximum size of regular plates. The observed maximum diameter (1.2 mm) of sector plates at the centre of dendritic crystals agrees well with calculations based on the assumption that these originate at about the -20 degrees C level and develop into dendrites only after falling below the -16 degrees C level. A mechanism, based on the interplay between

  3. The Biological Macromolecule Crystallization Database and NASA Protein Crystal Growth Archive.

    PubMed

    Gilliland, G L; Tung, M; Ladner, J

    1996-01-01

    The NIST/NASA/CARB Biological Macromolecule Crystallization Database (BMCD), NIST Standard Reference Database 21, contains crystal data and crystallization conditions for biological macromolecules. The database entries include data abstracted from published crystallographic reports. Each entry consists of information describing the biological macromolecule crystallized and crystal data and the crystallization conditions for each crystal form. The BMCD serves as the NASA Protein Crystal Growth Archive in that it contains protocols and results of crystallization experiments undertaken in microgravity (space). These database entries report the results, whether successful or not, from NASA-sponsored protein crystal growth experiments in microgravity and from microgravity crystallization studies sponsored by other international organizations. The BMCD was designed as a tool to assist x-ray crystallographers in the development of protocols to crystallize biological macromolecules, those that have previously been crystallized, and those that have not been crystallized.

  4. The Biological Macromolecule Crystallization Database and NASA Protein Crystal Growth Archive

    PubMed Central

    Gilliland, Gary L.; Tung, Michael; Ladner, Jane

    1996-01-01

    The NIST/NASA/CARB Biological Macromolecule Crystallization Database (BMCD), NIST Standard Reference Database 21, contains crystal data and crystallization conditions for biological macromolecules. The database entries include data abstracted from published crystallographic reports. Each entry consists of information describing the biological macromolecule crystallized and crystal data and the crystallization conditions for each crystal form. The BMCD serves as the NASA Protein Crystal Growth Archive in that it contains protocols and results of crystallization experiments undertaken in microgravity (space). These database entries report the results, whether successful or not, from NASA-sponsored protein crystal growth experiments in microgravity and from microgravity crystallization studies sponsored by other international organizations. The BMCD was designed as a tool to assist x-ray crystallographers in the development of protocols to crystallize biological macromolecules, those that have previously been crystallized, and those that have not been crystallized. PMID:11542472

  5. Optical Investigation of Nanoconfined Crystal Growth

    NASA Astrophysics Data System (ADS)

    Kohler, F.; Dysthe, D. K.

    2015-12-01

    Crystals growing in a confined space exert forces on their surroundings. This crystallization force causes deformation of solids and is therefore particularly relevant for the comprehension of geological processes such as replacement and weathering [1]. In addition, these forces are relevant for the understanding of damages in porous building materials caused by crystallization, which is of great economical importance and fundamental for methods that can help to preserve our cultural heritage [2,3]. However, the exact behavior of the growth and the dissolution process in close contact to an interface are still not known in detail. The crystallization, the dissolution and the transport of material is mediated by a nanoconfined water film. We observe brittle NaClO3 crystals growing against a glass surface by optical methods such as reflective interference contrast microscopy (RICM) [4]. In order to carefully control the supersaturation of the fluid close to the crystal interface, a temperature regulated microfluidic system is used (fig. A). The interference based precision of RICM enables to resolve distance variations down to the sub nanometer range without any unwanted disturbances by the measuring method. The combination of RICM with a sensitive camera allows us to observe phenomena such as periodic, wavelike growth of atomic layers. These waves are particularly obvious when observing the difference between two consecutive images (fig. B). In contradiction to some theoretical results, which predict a smooth interface, some recent experiments have shown that the nanoconfined growth surfaces are rough. In combination with theoretical studies and Kinetic Monte Carlo simulations we aim at providing more realistic descriptions of surface energies and energy barriers which are able to explain the discrepancies between experiments and current theory. References:[1] Maliva, Diagenetic replacement controlled by force of crystallization, Geology, August (1988), v. 16 [2] G

  6. Application of enthalpy model for floating zone silicon crystal growth

    NASA Astrophysics Data System (ADS)

    Krauze, A.; Bergfelds, K.; Virbulis, J.

    2017-09-01

    A 2D simplified crystal growth model based on the enthalpy method and coupled with a low-frequency harmonic electromagnetic model is developed to simulate the silicon crystal growth near the external triple point (ETP) and crystal melting on the open melting front of a polycrystalline feed rod in FZ crystal growth systems. Simulations of the crystal growth near the ETP show significant influence of the inhomogeneities of the EM power distribution on the crystal growth rate for a 4 in floating zone (FZ) system. The generated growth rate fluctuations are shown to be larger in the system with higher crystal pull rate. Simulations of crystal melting on the open melting front of the polycrystalline rod show the development of melt-filled grooves at the open melting front surface. The distance between the grooves is shown to grow with the increase of the skin-layer depth in the solid material.

  7. The Effect of Protein Impurities on Lysozyme Crystal Growth

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    While bulk crystallization from impure solutions is used industrially as a purification step for a wide variety of materials, it is a technique that has rarely been used for proteins. Proteins have a reputation for being difficult to crystallize and high purity of the initial crystallization solution is considered paramount for success in the crystallization. Although little is written on the purifying capability of protein crystallization or of the effect of impurities on the various aspects of the crystallization process, recent published reports show that crystallization shows promise and feasibility as a purification technique for proteins. In order to further examine the issue of purity in macromolecule crystallization this study investigates the effect of the protein impurities, avidin, ovalbumin and conalbumin, at concentrations up to 50%, on the solubility, crystal face growth rates and crystal purity, of the protein lysozyme. Solubility was measured in batch experiments while a computer controlled video microscope system was used to measure the f {101} and {101} lysozyme crystal face growth rates. While little effect was observed on solubility and high crystal purity was obtained (>99.99%), the effect of the impurities on the face growth rates varied from no effect to a significant face specific effect leading to growth cessation, a phenomenon that is frequently observed in protein crystal growth. The results shed interesting light on the effect of protein impurities on protein crystal growth and strengthen the feasibility of using crystallization as a unit operation for protein purification.

  8. The Effect of Protein Impurities on Lysozyme Crystal Growth

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    While bulk crystallization from impure solutions is used industrially as a purification step for a wide variety of materials, it is a technique that has rarely been used for proteins. Proteins have a reputation for being difficult to crystallize and high purity of the initial crystallization solution is considered paramount for success in the crystallization. Although little is written on the purifying capability of protein crystallization or of the effect of impurities on the various aspects of the crystallization process, recent published reports show that crystallization shows promise and feasibility as a purification technique for proteins. In order to further examine the issue of purity in macromolecule crystallization this study investigates the effect of the protein impurities, avidin, ovalbumin and conalbumin, at concentrations up to 50%, on the solubility, crystal face growth rates and crystal purity, of the protein lysozyme. Solubility was measured in batch experiments while a computer controlled video microscope system was used to measure the f {101} and {101} lysozyme crystal face growth rates. While little effect was observed on solubility and high crystal purity was obtained (>99.99%), the effect of the impurities on the face growth rates varied from no effect to a significant face specific effect leading to growth cessation, a phenomenon that is frequently observed in protein crystal growth. The results shed interesting light on the effect of protein impurities on protein crystal growth and strengthen the feasibility of using crystallization as a unit operation for protein purification.

  9. Accelerated protein crystal growth by protein thin film template

    NASA Astrophysics Data System (ADS)

    Pechkova, Eugenia; Nicolini, Claudio

    2001-11-01

    A new method based on Langmuir-Blodgett (LB) technology is presented for the template stimulation of protein crystal growth. The new approach allows the acceleration of the hen egg white lysozyme (HEWL) crystal growth rate in comparison with such a classical vapour diffusion method as hanging drop. Protein thin films were coated on the cover slide of the common crystallization plates. Lysozyme crystal growth was observed on the LB thin films of HEWL.

  10. The Slow Growth of Ice Crystals in Water

    DTIC Science & Technology

    1992-03-01

    AD-A251 864 (R DTIC ELECT JUN2 4192 The Slow Growth of A Ice Crystals in Water Samuel C. Colbeck March 1992 --- - - - aat 5uercooled ~Distilled...Report 92-3 U.S. Army Corps of Engineers Cold Regions Research & Engineering Laboratory The Slow Growth of Ice Crystals in Water Samuel C. Colbeck...Clarkson University. The Slow Growth of Ice Crystals in Water SAMUEL C. COLBECK INTRODUCTION the rate at which the growing crystals lose heat

  11. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1995-01-01

    During the fourth semi-annual period under this grant we have pursued the following activities: (1) crystal growth morphology and kinetics studies with tetragonal lysozyme. These clearly revealed the influence of higher molecular weight protein impurities on interface shape; (2) characterization of the purity and further purification of lysozyme solutions. These efforts have, for the first time, resulted in lysozyme free of higher molecular weight components; (3) continuation of the salt repartitioning studies with Seikagaku lysozyme, which has a lower protein impurity content that Sigma stock. These efforts confirmed our earlier findings of higher salt contents in smaller crystals. However, less salt is in corporated into the crystals grown from Seikagaku stock. This strongly suggests a dependence of salt repartitioning on the concentration of protein impurities in lysozyme. To test this hypothesis, repartitioning studies with the high purity lysozyme prepared in-house will be begun shortly; (4) numerical modelling of the interaction between bulk transport and interface kinetics. These simulations have produced interface shapes which are in good agreement with out experimental observations; and (5) light scattering studies on under- and supersaturated lysozyme solutions. A consistent interpretation of the static and dynamic data leaves little doubt that pre-nucleation clusters, claimed to exist even in undersaturated solutions, are not present. The article: 'Growth morphology response to nutrient and impurity nonuniformities' is attached.

  12. Efg Crystal Growth Apparatus And Method

    DOEpatents

    Mackintosh, Brian H.; Ouellette, Marc

    2003-05-13

    An improved mechanical arrangement controls the introduction of silicon particles into an EFG (Edge-defined Film-fed Growth) crucible/die unit for melt replenishment during a crystal growth run. A feeder unit injects silicon particles upwardly through a center hub of the crucible/die unit and the mechanical arrangement intercepts the injected particles and directs them so that they drop into the melt in a selected region of the crucible and at velocity which reduces splashing, whereby to reduce the likelihood of interruption of the growth process due to formation of a solid mass of silicon on the center hub and adjoining components. The invention also comprises use of a Faraday ring to alter the ratio of the electrical currents flowing through primary and secondary induction heating coils that heat the crucible die unit and the mechanical arrangement.

  13. Convective diffusion in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Baird, J. K.; Meehan, E. J., Jr.; Xidis, A. L.; Howard, S. B.

    1986-01-01

    A protein crystal modeled as a flat plate suspended in the parent solution, with the normal to the largest face perpendicular to gravity and the protein concentration in the solution adjacent to the plate taken to be the equilibrium solubility, is studied. The Navier-Stokes equation and the equation for convective diffusion in the boundary layer next to the plate are solved to calculate the flow velocity and the protein mass flux. The local rate of growth of the plate is shown to vary significantly with depth due to the convection. For an aqueous solution of lysozyme at a concentration of 40 mg/ml, the boundary layer at the top of a 1-mm-high crystal has a thickness of 80 microns at 1 g, and 2570 microns at 10 to the -6th g.

  14. Convective diffusion in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Baird, J. K.; Meehan, E. J., Jr.; Xidis, A. L.; Howard, S. B.

    1986-01-01

    A protein crystal modeled as a flat plate suspended in the parent solution, with the normal to the largest face perpendicular to gravity and the protein concentration in the solution adjacent to the plate taken to be the equilibrium solubility, is studied. The Navier-Stokes equation and the equation for convective diffusion in the boundary layer next to the plate are solved to calculate the flow velocity and the protein mass flux. The local rate of growth of the plate is shown to vary significantly with depth due to the convection. For an aqueous solution of lysozyme at a concentration of 40 mg/ml, the boundary layer at the top of a 1-mm-high crystal has a thickness of 80 microns at 1 g, and 2570 microns at 10 to the -6th g.

  15. Alloy Semiconductor Crystal Growth Under Microgravity

    SciTech Connect

    Hayakawa, Yasuhiro; Arivanandhan, Mukannan; Rajesh, Govindasamy; Tanaka, Akira; Ozawa, Tetsuo; Okano, Yasunori; Sankaranarayanan, Krishnasamy; Inatomi, Yuko

    2010-12-01

    Microgravity studies on the dissolution and crystallization of In{sub x}Ga{sub 1-x}Sb have been done using a sandwich combination of InSb and GaSb as the starting material using the Chinese recoverable satellite. The same type of experiment was performed under 1G gravity condition for comparison. From these experiments and the numerical simulation, it is found that the shape of the solid/liquid interface and composition profile in the solution was found to be significantly affected by gravity. GaSb seed was dissolved faster than GaSb feed even though the GaSb feed temperature was higher than that of GaSb seed temperature. These results clearly indicate that solute transport due to gravity affects dissolution and growth processes of alloy semiconductor bulk crystals.

  16. Bridgman growth of large-aperture yttrium calcium oxyborate crystal

    SciTech Connect

    Wu, Anhua; Jiang, Linwen; Qian, Guoxing; Zheng, Yanqing; Xu, Jun; Shi, Erwei

    2012-09-15

    Highlights: ► YCOB is a novel non-linear optical crystal possessing good thermal, mechanical and nonlinear optical properties. ► Large size crystal growth is key technology question for YCOB crystal. ► YCOB crystals 3 in. in diameter were grown with modified vertical Bridgman method. ► It is a more effective growth method to obtain large size and high quality YCOB crystal. -- Abstract: Large-aperture yttrium calcium oxyborate YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) crystals with 3 in. in diameter were grown with modified vertical Bridgman method, and the large crystal plate (63 mm × 68 mm × 20 mm) was harvested for high-average power frequency conversion system. The crack, facet growth and spiral growth can be effectively controlled in the as-grown crystal, and Bridgman method displays more effective in obtain large size and high quality YCOB crystal plate than Czochralski technique.

  17. Growth kinetics of sodium perborate from batch crystallization

    NASA Astrophysics Data System (ADS)

    Söhnel, O.; Bravi, M.; Chianese, A.; Mazzarotta, B.

    1996-03-01

    The size distribution of sodium perborate crystals was continually monitored using a Malvern sizer during batch crystallization from aqueous solutions carried out under falling supersaturation established at the experiment onset. The growth rate was determined from the time shift of the crystal size distribution expressed in cumulative oversize numbers. The size independent overall growth rate was first order with respect to supersaturation for crystals larger than 150 μm. Crystals between 20 and 150 μm exhibited a significant size-dependent growth rate. Furthermore, the fraction of crystals smaller than 20 μm, formed by primary nucleation, grew extremely slowly or did not grow at all.

  18. Crystal growth formation in melt extrudates.

    PubMed

    Bruce, Caroline; Fegely, Kurt A; Rajabi-Siahboomi, Ali R; McGinity, James W

    2007-08-16

    The purpose of the study was to investigate the physical state of hot-melt extruded guaifenesin tablets containing either Acryl-EZE or Eudragit L100-55 and to study the physicochemical factors influencing crystal growth of guaifenesin on the surface of the extrudates. The powder mixtures containing Acryl-EZE were extruded on a single-screw Randcastle Microtruder at 20rpm and at temperatures of 90, 95, 110 degrees C (zones 1, 2, 3, respectively) and 115 degrees C (die), before being manually cut into tablets (250+/-5mg). Extrudates containing Eudragit L100-55, TEC and guaifenesin were extruded at temperatures ranging from 60 to 115 degrees C. Modulated differential calorimetry (DSC) was used to demonstrate the plasticizing effect of guaifenesin on Eudragit L100-55. Powder X-ray diffraction (PXRD) showed that while the drug powder is crystalline, extrudates containing up to 25% drug exhibited an amorphous diffraction profile. Extrudates containing higher drug concentrations showed an amorphous profile with some crystalline peaks corresponding to guaifenesin, indicating that the limit of solubility of drug in the matrix had been exceeded. Scanning electron microscopy was used to demonstrate that drug crystallization was a surface phenomenon and dependent on the drug concentration. In vitro dissolution testing showed no effect of surface crystallization of guaifenesin on drug release rates of extruded matrix tablets. The influence of hydrophilic polymeric additives including PVP K25, polycarbophil, PEG 3,350, poloxamer 188 or poly(ethylene oxide) as crystal growth inhibitors was investigated at a level of 10% based on the drug content. The extent of crystal growth was reduced for all additives. Complete drug release in pH 6.8 phosphate buffer was prolonged from 4h in extrudates containing Acryl-EZE and guaifenesin to 8h in extrudates containing Eudragit L100-55, TEC and guaifenesin. Drug release in extrudates containing Eudragit L100-55 and guaifenesin was not affected

  19. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Pusey, M.; Snell, E.; Judge, R.; Chayen, N.; Boggon, T.

    2000-01-01

    The molecular structure of biological macromolecules is important in understanding how these molecules work and has direct application to rational drug design for new medicines and for the improvement and development of industrial enzymes. In order to obtain the molecular structure, large, well formed, single macromolecule crystals are required. The growth of macromolecule crystals is a difficult task and is often hampered on the ground by fluid flows that result from the interaction of gravity with the crystal growth process. One such effect is the bulk movement of the crystal through the fluid due to sedimentation. A second is buoyancy driven convection close to the crystal surface. On the ground the crystallization process itself induces both of these flows. Buoyancy driven convection results from density differences between the bulk solution and fluid close to the crystal surface which has been depleted of macromolecules due to crystal growth. Schlieren photograph of a growing lysozyme crystal illustrating a 'growth plume' resulting from buoyancy driven convection. Both sedimentation and buoyancy driven convection have a negative effect on crystal growth and microgravity is seen as a way to both greatly reduce sedimentation and provide greater stability for 'depletion zones' around growing crystals. Some current crystal growth hardware however such as those based on a vapor diffusion techniques, may also be introducing unwanted Marangoni convection which becomes more pronounced in microgravity. Negative effects of g-jitter on crystal growth have also been observed. To study the magnitude of fluid flows around growing crystals we have attached a number of different fluorescent probes to lysozyme molecules. At low concentrations, less than 40% of the total protein, the probes do not appear to effect the crystal growth process. By using these probes we expect to determine not only the effect of induced flows due to crystal growth hardware design but also hope to

  20. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Pusey, M.; Snell, E.; Judge, R.; Chayen, N.; Boggon, T.

    2000-01-01

    The molecular structure of biological macromolecules is important in understanding how these molecules work and has direct application to rational drug design for new medicines and for the improvement and development of industrial enzymes. In order to obtain the molecular structure, large, well formed, single macromolecule crystals are required. The growth of macromolecule crystals is a difficult task and is often hampered on the ground by fluid flows that result from the interaction of gravity with the crystal growth process. One such effect is the bulk movement of the crystal through the fluid due to sedimentation. A second is buoyancy driven convection close to the crystal surface. On the ground the crystallization process itself induces both of these flows. Buoyancy driven convection results from density differences between the bulk solution and fluid close to the crystal surface which has been depleted of macromolecules due to crystal growth. Schlieren photograph of a growing lysozyme crystal illustrating a 'growth plume' resulting from buoyancy driven convection. Both sedimentation and buoyancy driven convection have a negative effect on crystal growth and microgravity is seen as a way to both greatly reduce sedimentation and provide greater stability for 'depletion zones' around growing crystals. Some current crystal growth hardware however such as those based on a vapor diffusion techniques, may also be introducing unwanted Marangoni convection which becomes more pronounced in microgravity. Negative effects of g-jitter on crystal growth have also been observed. To study the magnitude of fluid flows around growing crystals we have attached a number of different fluorescent probes to lysozyme molecules. At low concentrations, less than 40% of the total protein, the probes do not appear to effect the crystal growth process. By using these probes we expect to determine not only the effect of induced flows due to crystal growth hardware design but also hope to

  1. Crystal growth kinetics of the two-step model

    NASA Astrophysics Data System (ADS)

    Tai, Clifford Y.; Lin, Chiu-Hsiung

    1987-03-01

    The single crystal technique was used to measure the growth rate of the potassium alum (111) face and the magnesium sulfate (110) face. The two-step model was found appropriate to describe the growth kinetics with the surface integration order of two for potassium alum crystal and of one for magnesium sulfate crystal. The individual rate constants, Kd and Kr, were determined accordingly.

  2. A study of crystal growth by solution technique

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1981-01-01

    The mechanism of crystal growth by solution technique was studied. A low temperature solution crystal growth setup was developed. Crystals of triglycine sulfate (TGS) were grown using this arrangement. Some additional tasks were performed toward fabrication of experiments for future space flight.

  3. The impact of space research on semiconductor crystal growth technology

    NASA Technical Reports Server (NTRS)

    Witt, A. F.

    1983-01-01

    Crystal growth experiments in reduced gravity environment and related ground-based research have contributed significantly to the establishment of a scientific basis for semiconductor growth from the melt. NASA-sponsored research has been instrumental in the introduction of heat pipes for heat and mass transfer control in crystal growth and in the development of magnetic field induced melt stabilization, approaches primarily responsible for recent advances in crystal growth technology.

  4. In-situ detection of growth striations by crystallization electromotive force measurement during Czochralski crystal growth

    NASA Astrophysics Data System (ADS)

    Zhu, Yunzhong; Ma, Decai; Long, Siwei; Tang, Feng; Lin, Shaopeng; Wang, Biao

    2017-10-01

    Growth striations, as macrodefects of crystalline materials, are mainly caused by convection and temperature fluctuations in growth interface. For decades, striations have been widely regarded as an inherent problem. Even in the well-developed Czochralski method, the striation formation process is difficult to inspect in situ. In view of this long-standing issue, after systematically studying the temperature, weight, and output power during crystal growth and numerically modeling the growth process, we found that the regularity of the growth interface electromotive force (GEMF) is related to the distribution of striations. Furthermore, the GEMF quantifies interface fluctuations (711.2 s, 16.6 μm) and thermal hysteresis (107 s), presenting finer details than those provided by a thermocouple and a load cell. In this paper, GEMF is found to be an outstanding choice for monitoring the crystal growth status in real time. As an additional feedback, a new automatic control method could be developed for reducing growth striations and promoting crystal quality.

  5. Physicochemical principles of high-temperature crystallization and single crystal growth methods

    NASA Astrophysics Data System (ADS)

    Bagdasarov, Kh. S.

    The mechanisms of crystal growth are reviewed, with attention given to the physicochemical reactions taking place in the melt near the phase boundary; phenomena determining physical and chemical kinetics directly at the growth front; solid-phase processes occurring within the crystal. Methods for growing refractory single crystals are discussed with particular reference to the Verneuil method, zone melting, Czhochralskii growth, horizontal directional solidification, and the Stockbarger method. Methods for growing crystals of complex geometrical shapes are also discussed.

  6. A study of crystal growth by solution technique. [triglycine sulfate single crystals

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1979-01-01

    The advantages and mechanisms of crystal growth from solution are discussed as well as the effects of impurity adsorption on the kinetics of crystal growth. Uncertainities regarding crystal growth in a low gravity environment are examined. Single crystals of triglycine sulfate were grown using a low temperature solution technique. Small components were assembled and fabricated for future space flights. A space processing experiment proposal accepted by NASA for the Spacelab-3 mission is included.

  7. The influence of internal crystal perfection on growth rate dispersion in a continuous suspension crystallizer

    NASA Astrophysics Data System (ADS)

    Zacher, U.; Mersmann, A.

    1995-01-01

    The objective of the work presented here is to demonstrate the influence of induced lattice strain on growth behaviour of potassium alum crystals in a continuously operated mixed suspension mixed product removal (MSMPR) crystallizer. Therefore crystal size distributions in the crystallizer and individual growth velocities, especially of small particles (initial size 20-60 μm) in a flow-through cell, were simultaneously determined. Moreover Laue diffraction patterns of crystals withdrawn from the MSMPR crystallizer were carried out indicating lattice deformation and strain. Most crystals exhibit constant crystal growth (CCG) behaviour with significant growth rate dispersion. The mean growth rate of small particles in the sub-sieve size range is considerably smaller than the mean rate of product sized crystals at constant supersaturation. Small potash alum crystals show a clear tendency of increased lattice strain with increasing supersaturation which can be explained by the refaceting process of attrition nuclei in the crystallizer. The average amount of induced strain in crystals having the same growth history is obviously related to crystal size. Only slightly strained particles with sufficiently high growth rates will reach the product size range in the MSMPR crystallizer.

  8. An automated protein crystal growth facility on the space station

    NASA Technical Reports Server (NTRS)

    Herrmann, Melody

    1988-01-01

    The need is addressed for an automated Protein Crystal Growth experiment on the Space Station and how robotics will be integrated into the system design. This automated laboratory system will enable several hundred protein crystals to grow simultaneously in microgravity and will allow the major variables in protein crystal growth to be monitored and controlled during the experiment. Growing good quality crystals is important in determining the complete structure of the protein by X-ray diffraction. This information is useful in the research and development of medicines and other important medical and biotechnological products. Previous Protein Crystal Growth experiments indicate that the microgravity environment of space allows larger crystals of higher quality to be grown as compared to the same crystals grown on the ground. It is therefore important to have a laboratory in space where protein crystals can be grown under carefully controlled conditions so that a crystal type can be reproduced as needed.

  9. An automated protein crystal growth facility on the space station

    NASA Technical Reports Server (NTRS)

    Herrmann, Melody

    1988-01-01

    The need is addressed for an automated Protein Crystal Growth experiment on the Space Station and how robotics will be integrated into the system design. This automated laboratory system will enable several hundred protein crystals to grow simultaneously in microgravity and will allow the major variables in protein crystal growth to be monitored and controlled during the experiment. Growing good quality crystals is important in determining the complete structure of the protein by X-ray diffraction. This information is useful in the research and development of medicines and other important medical and biotechnological products. Previous Protein Crystal Growth experiments indicate that the microgravity environment of space allows larger crystals of higher quality to be grown as compared to the same crystals grown on the ground. It is therefore important to have a laboratory in space where protein crystals can be grown under carefully controlled conditions so that a crystal type can be reproduced as needed.

  10. Residual Gases in Crystal Growth Systems

    NASA Technical Reports Server (NTRS)

    Palosz, W.

    2003-01-01

    Residual gases present in closed ampoules may affect different crystal growth processes. That seems to be particularly true under microgravity conditions where, due to weightlessness of the melt, the gases may lead to detached solidification and/or formation of voids and bubbles, as observed in the past. For that reason a good understanding and control of formation of residual gases is important for an optimum design and meaningful interpretation of crystal growth experiments. Our extensive experimental and theoretical studies of the subject, summarized in this paper, include degassing of silica glass and generation of gases from different source materials. Different materials processing conditions, like outgassing under vacuum, annealing in hydrogen, resublimation, different material preparation procedures, multiple annealings, different processing times, and others were applied and their effect on the amount and composition of gas were analyzed. The experimental results were interpreted based on theoretical calculations on diffusion in silica glass and source materials and thermochemistry of the system. Procedures for a reduction of the amount of gas are also discussed.

  11. Residual Gases in Crystal Growth Systems

    NASA Technical Reports Server (NTRS)

    Palosz, W.

    2003-01-01

    Residual gases present in closed ampoules may affect different crystal growth processes. That seems to be particularly true under microgravity conditions where, due to weightlessness of the melt, the gases may lead to detached solidification and/or formation of voids and bubbles, as observed in the past. For that reason a good understanding and control of formation of residual gases is important for an optimum design and meaningful interpretation of crystal growth experiments. Our extensive experimental and theoretical studies of the subject, summarized in this paper, include degassing of silica glass and generation of gases from different source materials. Different materials processing conditions, like outgassing under vacuum, annealing in hydrogen, resublimation, different material preparation procedures, multiple annealings, different processing times, and others were applied and their effect on the amount and composition of gas were analyzed. The experimental results were interpreted based on theoretical calculations on diffusion in silica glass and source materials and thermochemistry of the system. Procedures for a reduction of the amount of gas are also discussed.

  12. Crystal Growth in Liquid-Encapsulated Float Zone

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.; Frazier, Donald O.; Lehoczky, Sandor; Vlasse, Marcus; Facemire, Barbara

    1987-01-01

    Suitably chosen liquid encapsulant placed around melt zone in float-zone crystal-growth system performs four important functions enhancing purity and reducing strains and dislocations in final crystal. In new technique, grow dislocation-free crystals with precisely controlled composition even from materials not amenable to conventional float-zone crystal-growth method. Support provided by encapsulant make it practical to process materials of low surface tension.

  13. Vapor Crystal Growth International Microgravity Laboratory (IML-1)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Vapor Crystal Growth System developed in IML-1, Mercuric Iodide Crystal grown in microgravity FES/VCGS (Fluids Experiment System/Vapor Crystal Growth Facility). During the mission, mercury iodide source material was heated, vaporized, and transported to a seed crystal where the vapor condensed. Mercury iodide crystals have practical uses as sensitive X-ray and gamma-ray detectors. In addition to their excellent optical properties, these crystals can operate at room temperature, which makes them useful for portable detector devices for nuclear power plant monitoring, natural resource prospecting, biomedical applications, and astronomical observing.

  14. Growth of urea crystals by physical vapor transport

    NASA Technical Reports Server (NTRS)

    Feigelson, R. S.; Route, R. K.; Kao, T.-M.

    1985-01-01

    This work demonstrates that high optical quality crystals of urea can be grown by the physical vapor transport method. The unique features of this method are compared with growth from methanol/water solutions. High growth rates, exceeding 2.5 mm/day, were achieved, and cm-size optical quality single crystals were obtained. Details of the growth technique and the physical properties of the crystals are presented.

  15. Growth of urea crystals by physical vapor transport

    NASA Technical Reports Server (NTRS)

    Feigelson, R. S.; Route, R. K.; Kao, T.-M.

    1985-01-01

    This work demonstrates that high optical quality crystals of urea can be grown by the physical vapor transport method. The unique features of this method are compared with growth from methanol/water solutions. High growth rates, exceeding 2.5 mm/day, were achieved, and cm-size optical quality single crystals were obtained. Details of the growth technique and the physical properties of the crystals are presented.

  16. Volume Diffusion Growth Kinetics and Step Geometry in Crystal Growth

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan

    1998-01-01

    The role of step geometry in two-dimensional stationary volume diff4sion process used in crystal growth kinetics models is investigated. Three different interface shapes: a) a planar interface, b) an equidistant hemispherical bumps train tAx interface, and c) a train of right angled steps, are used in this comparative study. The ratio of the super-saturation to the diffusive flux at the step position is used as a control parameter. The value of this parameter can vary as much as 50% for different geometries. An approximate analytical formula is derived for the right angled steps geometry. In addition to the kinetic models, this formula can be utilized in macrostep growth models. Finally, numerical modeling of the diffusive and convective transport for equidistant steps is conducted. In particular, the role of fluid flow resulting from the advancement of steps and its contribution to the transport of species to the steps is investigated.

  17. Volume Diffusion Growth Kinetics and Step Geometry in Crystal Growth

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan

    1998-01-01

    The role of step geometry in two-dimensional stationary volume diff4sion process used in crystal growth kinetics models is investigated. Three different interface shapes: a) a planar interface, b) an equidistant hemispherical bumps train tAx interface, and c) a train of right angled steps, are used in this comparative study. The ratio of the super-saturation to the diffusive flux at the step position is used as a control parameter. The value of this parameter can vary as much as 50% for different geometries. An approximate analytical formula is derived for the right angled steps geometry. In addition to the kinetic models, this formula can be utilized in macrostep growth models. Finally, numerical modeling of the diffusive and convective transport for equidistant steps is conducted. In particular, the role of fluid flow resulting from the advancement of steps and its contribution to the transport of species to the steps is investigated.

  18. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth

    NASA Astrophysics Data System (ADS)

    Foster, Jonathan A.; Piepenbrock, Marc-Oliver M.; Lloyd, Gareth O.; Clarke, Nigel; Howard, Judith A. K.; Steed, Jonathan W.

    2010-12-01

    We describe the use of low-molecular-weight supramolecular gels as media for the growth of molecular crystals. Growth of a range of crystals of organic compounds, including pharmaceuticals, was achieved in bis(urea) gels. Low-molecular-weight supramolecular gelators allow access to an unlimited range of solvent systems, in contrast to conventional aqueous gels such as gelatin and agarose. A detailed study of carbamazepine crystal growth in four different bis(urea) gelators, including a metallogelator, is reported. The crystallization of a range of other drug substances, namely sparfloxacin, piroxicam, theophylline, caffeine, ibuprofen, acetaminophen (paracetamol), sulindac and indomethacin, was also achieved in supramolecular gel media without co-crystal formation. In many cases, crystals can be conveniently recovered from the gels by using supramolecular anion-triggered gel dissolution; however, crystals of substances that themselves bind to anions are dissolved by them. Overall, supramolecular gel-phase crystallization offers an extremely versatile new tool in pharmaceutical polymorph screening.

  19. Viewing the Observable Protein Crystal Growth Apparatus (OPCGA)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Joel Kearns viewing a laboratory demonstration of the Observable Protein Crystal Growth Apparatus (OPCGA) experiment module. Principal Investigator is Alexander McPherson. First flight plarned for ISS.

  20. Growth rate dispersion of single potassium alum crystals

    NASA Astrophysics Data System (ADS)

    Lacmann, Rolf; Tanneberger, Ulrike

    1995-01-01

    The dispersion of growth rates is a lively discussed matter. However, still no acceptable explanation exists for the reason of the phenomenon describing that crystals of the same size growing under the same constant environmental conditions (as supersaturation, temperature and hydrodynamics) might grow with different rates. The individual face-specific growth rates of potassium aluminium alum crystals (diameter 1-3 mm) have been directly determined at different supersaturations ( σ = 0.5-5%). It was found that the order of growth rates of the appearing faces of unhurt and hurt crystals is {111} < {100{ < {110{. Further experiments have shown that face-specific growth rates of unhurt crystals (out of evaporation crystallization) are lower than those of hurt crystals (out of batch crystallization experiments).

  1. Calcium oxalate crystal growth in human urinary stones

    SciTech Connect

    Kim, K.M.; Johnson, F.B.

    1981-01-01

    Calcium oxalate stones are very common and increasing. Crystal growth is no less important than the crystal nucleation in the pathogenesis of stone formation. The crystal growth was studied in human calcium oxalate stones by a combined electron microscopy and x-ray diffraction. The main mode of weddellite growth was interpenetration twinning of tetrahedral bipyramids. Bipyramids may form as initial crystal seeds, develop from anhedral crystals (crystals which lack flat symmetric faces) of spherular or mulberry shape, develop on the surface of preformed bipyramids by spiral dislocation mechanisms, or develop on whewellite crystal by heterogeneous nucleation and epitaxy. Heterogeneous nucleations of whewellite on weddellite, and calcium apatite on whewellite were also observed. Whewellite grew mainly by parallel twinning. Interpenetration twinning was exceptional. Transformation of anhedral to euhedral (completely bounded by flat faces that are set ar fixed angles to one another) whewellite occurred by parallel fissurations followed by brick wall like stacking of the crystals, while euhedral transformation of weddellite occurred by protrusion of bipyramids frm anhedral crystal surface. Occasionally, an evidence of crystal dissolution was noted. Although an aggregation of crystals is believed to play a pivotal role in stone nidus formation, growth in size of the formed crystals, and twinning and epitactic crystal intergrowth apparently play a significant role in the obstructive urinary stone formation.

  2. Morphological stability and kinetics in crystal growth from vapors

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1990-01-01

    The following topics are discussed: (1) microscopy image storage and processing system; (2) growth kinetics and morphology study with carbon tetrabromide; (3) photothermal deflection vapor growth setup; (4) bridgman growth of iodine single crystals; (5) vapor concentration distribution measurement during growth; and (6) Monte Carlo modeling of anisotropic growth kinetics and morphology. A collection of presentations and publications of these results are presented.

  3. The influence of precipitant concentration on macromolecular crystal growth mechanisms

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Yu. G.; Malkin, A. J.; McPherson, A.

    2001-11-01

    Atomic force microscopy was applied to investigate the influence of protein and precipitant (sodium-potassium tartrate) concentration on thaumatin crystal growth mechanisms. At constant protein concentration, a decrease of salt concentration from 0.8 to 0.085 M caused a transition of the crystal growth mechanism from two-dimensional nucleation to dislocation growth. At different, fixed concentrations of salt, the protein concentration, which does not induce multiple crystal nucleation, was increased from 8 to 60 mg/ml with corresponding increases in the tangential velocity of growth steps from 5 to 17.5 nm/s. Results from these experiments suggest that a highly concentrated protein solution, as might be found in a protein rich phase, may not induce crystal nucleation, but can promote crystal growth if screw dislocations are present in the crystal.

  4. Crystal growth in zinc borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Kullberg, Ana T. G.; Lopes, Andreia A. S.; Veiga, João P. B.; Monteiro, Regina C. C.

    2017-01-01

    Glass samples with a molar composition (64+x)ZnO-(16-x)B2O3-20SiO2, where x=0 or 1, were successfully synthesized using a melt-quenching technique. Based on differential thermal analysis data, the produced glass samples were submitted to controlled heat-treatments at selected temperatures (610, 615 and 620 °C) during various times ranging from 8 to 30 h. The crystallization of willemite (Zn2SiO4) within the glass matrix was confirmed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Under specific heat-treatment conditions, transparent nanocomposite glass-ceramics were obtained, as confirmed by UV-vis spectroscopy. The influence of temperature, holding time and glass composition on crystal growth was investigated. The mean crystallite size was determined by image analysis on SEM micrographs. The results indicated an increase on the crystallite size and density with time and temperature. The change of crystallite size with time for the heat-treatments at 615 and 620 °C depended on the glass composition. Under fixed heat-treatment conditions, the crystallite density was comparatively higher for the glass composition with higher ZnO content.

  5. Protein Crystal Growth Activities on STS-42

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Protein Crystal Growth (PCG) middeck payload is currently manifested to fly on STS-42 in January 1992. This payload is a joint effort between NASA s Office of Commercial Programs (OCP) and Office of Space Science and Applications (OSSA). The PCG experiments are managed by the Center for Macromolecular Crystallography (CMC), a NASA Center for the Commercial Development of Space (CCDS) based at the University of Alabama at Birmingham (UAB). This is the eighth flight of a payload in the PCG program that is jointly sponsored by the OCP and the OSSA. The flight hardware for STS-42 includes six Vapor Diffusion Apparatus (VDA) trays stored in two Refrigerator/Incubator Modules (R/TM s). The VDA trays will simultaneously conduct 120 experiments involving 15 different protein compounds, four of which are sponsored by the OCP, the UAB CCDS, and four co-investigators.

  6. Crystal Growth Rate Dispersion: A Predictor of Crystal Quality in Microgravity?

    NASA Technical Reports Server (NTRS)

    Kephart, Richard D.; Judge, Russell A.; Snell, Edward H.; vanderWoerd, Mark J.

    2003-01-01

    In theory macromolecular crystals grow through a process involving at least two transport phenomena of solute to the crystal surface: diffusion and convection. In absence of standard gravitational forces, the ratio of these two phenomena can change and explain why crystal growth in microgravity is different from that on Earth. Experimental evidence clearly shows, however, that crystal growth of various systems is not equally sensitive to reduction in gravitational forces, leading to quality improvement in microgravity for some crystals but not for others. We hypothesize that the differences in final crystal quality are related to crystal growth rate dispersion. If growth rate dispersion exists on Earth, decreases in microgravity, and coincides with crystal quality improvements then this dispersion is a predictor for crystal quality improvement. In order to test this hypothesis, we will measure growth rate dispersion both in microgravity and on Earth and will correlate the data with previously established data on crystal quality differences for the two environments. We present here the first crystal growth rate measurement data for three proteins (lysozyme, xylose isomerase and human recombinant insulin), collected on Earth, using hardware identical to the hardware to be used in microgravity and show how these data correlate with crystal quality improvements established in microgravity.

  7. Crystal Growth Rate Dispersion: A Predictor of Crystal Quality in Microgravity?

    NASA Technical Reports Server (NTRS)

    Kephart, Richard D.; Judge, Russell A.; Snell, Edward H.; vanderWoerd, Mark J.

    2003-01-01

    In theory macromolecular crystals grow through a process involving at least two transport phenomena of solute to the crystal surface: diffusion and convection. In absence of standard gravitational forces, the ratio of these two phenomena can change and explain why crystal growth in microgravity is different from that on Earth. Experimental evidence clearly shows, however, that crystal growth of various systems is not equally sensitive to reduction in gravitational forces, leading to quality improvement in microgravity for some crystals but not for others. We hypothesize that the differences in final crystal quality are related to crystal growth rate dispersion. If growth rate dispersion exists on Earth, decreases in microgravity, and coincides with crystal quality improvements then this dispersion is a predictor for crystal quality improvement. In order to test this hypothesis, we will measure growth rate dispersion both in microgravity and on Earth and will correlate the data with previously established data on crystal quality differences for the two environments. We present here the first crystal growth rate measurement data for three proteins (lysozyme, xylose isomerase and human recombinant insulin), collected on Earth, using hardware identical to the hardware to be used in microgravity and show how these data correlate with crystal quality improvements established in microgravity.

  8. Crystal growth in fluid flow: Nonlinear response effects

    NASA Astrophysics Data System (ADS)

    Peng, H. L.; Herlach, D. M.; Voigtmann, Th.

    2017-08-01

    We investigate crystal-growth kinetics in the presence of strong shear flow in the liquid, using molecular-dynamics simulations of a binary-alloy model. Close to the equilibrium melting point, shear flow always suppresses the growth of the crystal-liquid interface. For lower temperatures, we find that the growth velocity of the crystal depends nonmonotonically on the shear rate. Slow enough flow enhances the crystal growth, due to an increased particle mobility in the liquid. Stronger flow causes a growth regime that is nearly temperature-independent, in striking contrast to what one expects from the thermodynamic and equilibrium kinetic properties of the system, which both depend strongly on temperature. We rationalize these effects of flow on crystal growth as resulting from the nonlinear response of the fluid to strong shearing forces.

  9. Nucleation and crystal growth in laser patterned lines in glasses

    NASA Astrophysics Data System (ADS)

    Komatsu, Takayuki; Honma, Tsuyoshi

    2016-07-01

    Laser-induced crystallization is a new method for the design and control of the crystallization of glasses and opens a new door in the study of nucleation and crystal growth in glasses. Nonlinear optical Sm-doped -BaB2O4 (-BBO) crystal lines were patterned by continuous wave Yb:YVO4 fiber laser (wavelength 1080 nm) in 8Sm2O3-42BaO-50B2O3 glass as an example, and nucleation and crystal growth behaviors in the laser-patterned bending and crossing lines were examined. It was confirmed that the growth of c-axis oriented -BBO crystals follows along the laser scanning direction even if laser scanning direction changes. The model of self-organized homo-epitaxial crystal growth was demonstrated for the orientation of -BBO crystals at the crossing point of two lines, in which the first crystal line at the crossing point acts as nucleation site for the second crystal line. This study proposes a new crystal growth technology.

  10. Stability of melt crystal growth under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Tatarchenko, V. A.

    The conception of dynamic stability of melt crystal growth has been developed. The method based on the Lyapunov stability theory has been used to the study stability of crystallization by capillary shaping techniques including Czokhralsky, Stepanov, Kiropoulos, Verneuil and floating zone methods. Preliminary results of the stability analysis of crystallization by floating zone technique under microgravity conditions are presented here.

  11. Protein Crystal Growth With the Aid of Microfluidics

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark

    2003-01-01

    Protein crystallography is one of three well-known methods to obtain the structure of proteins. A major rate limiting step in protein crystallography is protein crystal nucleation and growth, which is still largely a process conducted by trial-and-error methods. Many attempts have been made to improve protein crystal growth by performing growth in microgravity. Although the use of microgravity appears to improve crystal quality in some attempts, this method has been inefficient because several reasons: we lack a fundamental understanding of macromolecular crystal growth in general and of the influence of microgravity in particular, we have to start with crystal growth conditions in microgravity based on conditions on the ground and finally the hardware does not allow for experimental iteration without reloading samples on the ground. To partially accommodate the disadvantages of the current hardware, we have used microfluidic technology (Lab-on-a-Chip devices) to design the concept of a more efficient crystallization device, suitable for use on the International Space Station and in high-throughput applications on the ground. The concept and properties of microfluidics, the application design process, and the advances in protein crystal growth hardware will be discussed in this presentation. Some examples of proteins crystallized in the new hardware will be discussed, including the differences between conventional crystallization versus crystallization in microfluidics.

  12. Protein Crystal Growth With the Aid of Microfluidics

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark

    2003-01-01

    Protein crystallography is one of three well-known methods to obtain the structure of proteins. A major rate limiting step in protein crystallography is protein crystal nucleation and growth, which is still largely a process conducted by trial-and-error methods. Many attempts have been made to improve protein crystal growth by performing growth in microgravity. Although the use of microgravity appears to improve crystal quality in some attempts, this method has been inefficient because several reasons: we lack a fundamental understanding of macromolecular crystal growth in general and of the influence of microgravity in particular, we have to start with crystal growth conditions in microgravity based on conditions on the ground and finally the hardware does not allow for experimental iteration without reloading samples on the ground. To partially accommodate the disadvantages of the current hardware, we have used microfluidic technology (Lab-on-a-Chip devices) to design the concept of a more efficient crystallization device, suitable for use on the International Space Station and in high-throughput applications on the ground. The concept and properties of microfluidics, the application design process, and the advances in protein crystal growth hardware will be discussed in this presentation. Some examples of proteins crystallized in the new hardware will be discussed, including the differences between conventional crystallization versus crystallization in microfluidics.

  13. Preliminary investigations of protein crystal growth using the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Delucas, L. J.; Suddath, F. L.; Snyder, R.; Naumann, R.; Broom, M. B.; Pusey, M.; Yost, V.; Herren, B .; Carter, D.

    1986-01-01

    Four preliminary Shuttle experiments are described which have been used to develop prototype hardware for a more advanced system that will evaluate effects of gravity on protein crystal growth. The first phase of these experiments has centered on the development of micromethods for protein crystal growth by vapor-diffusion techniques (using a space version of the hanging-drop method) and on dialysis using microdialysis cells. Results suggest that the elimination of density-driven sedimentation can effect crystal morphology. In the dialysis experiment, space-grown crystals of concanavalin B were three times longer and 1/3 the thickness of earth-grown crystals.

  14. Unstable vicinal crystal growth from cellular automata

    NASA Astrophysics Data System (ADS)

    Krasteva, A.; Popova, H.; KrzyŻewski, F.; Załuska-Kotur, M.; Tonchev, V.

    2016-03-01

    In order to study the unstable step motion on vicinal crystal surfaces we devise vicinal Cellular Automata. Each cell from the colony has value equal to its height in the vicinal, initially the steps are regularly distributed. Another array keeps the adatoms, initially distributed randomly over the surface. The growth rule defines that each adatom at right nearest neighbor position to a (multi-) step attaches to it. The update of whole colony is performed at once and then time increases. This execution of the growth rule is followed by compensation of the consumed particles and by diffusional update(s) of the adatom population. Two principal sources of instability are employed - biased diffusion and infinite inverse Ehrlich-Schwoebel barrier (iiSE). Since these factors are not opposed by step-step repulsion the formation of multi-steps is observed but in general the step bunches preserve a finite width. We monitor the developing surface patterns and quantify the observations by scaling laws with focus on the eventual transition from diffusion-limited to kinetics-limited phenomenon. The time-scaling exponent of the bunch size N is 1/2 for the case of biased diffusion and 1/3 for the case of iiSE. Additional distinction is possible based on the time-scaling exponents of the sizes of multi-step Nmulti, these are 0.36÷0.4 (for biased diffusion) and 1/4 (iiSE).

  15. Simulation of jet cooling effects on Czochralski crystal growth

    NASA Technical Reports Server (NTRS)

    Srivastava, R. K.; Ramachandran, P. A.; Dudukovic, M. P.

    1986-01-01

    The effects of cooling the crystal side surface by blowing a jet of an inert gas are examined in detail for Czochralski crystal growth. A combined model of the crystal + melt, which incorporates the detailed radiation calculations, the shape of the melt-gas meniscus, predicts the growth rate and the crystal-melt interface shape, is used for this study. The convective heat transfer coefficient for the jet is estimated from the correlation available in the literature. The effect of the jet cooling on the interface shape and the pulling rate is significant. The crystal diameter as well as the interface shape tend to be more stable in the environment of the rapid cooling of the crystal by the jet. The crystal diameter or the interface shape can be easily controlled by adjusting the gas flow rate through the jet. This gives the Czochralski pulling an additional degree of freedom facilitating the control of crystal diameter and interface shape.

  16. Simulation of jet cooling effects on Czochralski crystal growth

    NASA Technical Reports Server (NTRS)

    Srivastava, R. K.; Ramachandran, P. A.; Dudukovic, M. P.

    1986-01-01

    The effects of cooling the crystal side surface by blowing a jet of an inert gas are examined in detail for Czochralski crystal growth. A combined model of the crystal + melt, which incorporates the detailed radiation calculations, the shape of the melt-gas meniscus, predicts the growth rate and the crystal-melt interface shape, is used for this study. The convective heat transfer coefficient for the jet is estimated from the correlation available in the literature. The effect of the jet cooling on the interface shape and the pulling rate is significant. The crystal diameter as well as the interface shape tend to be more stable in the environment of the rapid cooling of the crystal by the jet. The crystal diameter or the interface shape can be easily controlled by adjusting the gas flow rate through the jet. This gives the Czochralski pulling an additional degree of freedom facilitating the control of crystal diameter and interface shape.

  17. Inorganic and protein crystal growth - Similarities and differences

    NASA Technical Reports Server (NTRS)

    Rosenberger, F.

    1986-01-01

    Transport and interface kinetic concepts for the design and control of inorganic crystal growth experiments are reviewed, and their applications and limitations in protein crystal growth are considered. It is suggested that the interfacial concentration gradients are steeper for faster crystallization, and that the interfacial concentration distributions for the protein and the precipitant can differ significantly. Results show that uniformity in crystal composition and steady-state conditions in growth kinetics are favored by larger sample size, since surface-tension gradients drive strong in microgravity experiments and in small samples on earth.

  18. Space manufacturing in an automated crystal growth facility

    NASA Technical Reports Server (NTRS)

    Quinn, Alberta W.; Herrmann, Melody C.; Nelson, Pamela J.

    1989-01-01

    An account is given of a Space Station Freedom-based robotic laboratory system for crystal growth experiments; the robot must interface with both the experimental apparatus and such human input as may be required for control and display. The goal of the system is the simultaneous growth of several hundred protein crystals in microgravity. The robot possesses six degrees-of-freedom, allowing it to efficiently manipulate the cultured crystals as well as their respective growth cells; the crystals produced are expected to be of sufficiently high quality for complete structural determination on the basis of XRD.

  19. Preparation for microgravity science investigation of compound semiconductor crystal growth

    NASA Technical Reports Server (NTRS)

    Fripp, A. L.; Debnam, W. J.; Clark, I. O.; Crouch, R. K.; Carlson, F. M.

    1985-01-01

    Preparatory work on Bridgman directional solidification (BDS) of PbSnTe crystals prior to microgravity crystal growth experiments on Shuttle flights are reported. Gravitational effects become important in crystal growth when density gradients are present. The situation is critical in BDS of PbSnTe because of the necessity of obtaining homogeneous compositional distributions, which can be disturbed when convective processes occur. Numerical models have been defined which quantify the effects of convection in the crystal growth solution. The models were verified by earth-based crystal-growth tests in a two-zone furnace using equal concentrations of each of the elements. Data are provided to demonstrate the differences in composition among crystals grown at different orientations to the gravitational field vector.

  20. Taylor vortices formed in the melt during paratellurite crystal growth

    SciTech Connect

    Kolesnikov, A. I. Grechishkin, R. M.; Tret'yakov, S. A.; Gritsunova, O. V.; Vorontsova, E. Yu.

    2008-12-15

    The hydrodynamics of tellurium dioxide melt during Czochralski growth of paratellurite crystals with a diameter up to 80 mm was experimentally investigated. The images of the melt surface during crystal growth are obtained. It is shown that a stable system of Taylor vortices in the form of two convection cells is formed at definite Reynolds numbers.

  1. Holographic instrumentation for monitoring crystal growth in space

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Lal, Ravindra B.; Batra, Ashok K.

    1990-01-01

    Measurement requirements and candidates for measuring crystal growth in space are described, emphasizing holographic instrumentation. Existing instrumentation planned for the IML-1 Spaceflight is described along with advanced concepts for future application which incorporate diode lasers, fiber optics, and holographic optical elements. Particle image displacement velocimetry in crystal growth chambers is described.

  2. Issues in the growth of bulk crystals of infrared materials

    NASA Technical Reports Server (NTRS)

    Bachmann, K. J.; Golowsky, H.

    1987-01-01

    Attention is given to the relevant criteria governing materials choice in the growth of IR optoelectronic bulk single crystals of III-V and II-VI alloy and I-III-VI2 compound types. The most important considerations concern the control of crystal purity, microstructural perfection, stoichiometry, and uniformity during crystal growth, as well as the control of surface properties in wafer fabrication. Specific examples are given to illustrate the problems encountered and their preferred solutions.

  3. Crystal growth in fused solvent systems. [in space environment

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.; Noval, B. A.; White, W. B.; Spear, K. E.; Henry, E. C.

    1974-01-01

    The successful nucleation of bismuth germanate, B12GeO20 on a high quality seed and the growth of regions of single crystals of the same orientation of the seed are reported. Lead germanate, Pb5Ge3O11 was also identified as a ferroelectric crystal with large electrooptic and nonlinear optic constants. Solvent criteria, solvent/development, and crystal growth are discussed, and recommendations for future studies are included.

  4. Growth rate changes of sodium chlorate crystals independent of growth conditions

    NASA Astrophysics Data System (ADS)

    Mitrović, M. M.; Žekić, A. A.; Baroš, Z. Z.

    2008-10-01

    Results of investigations of the growth rate changes inherent to the crystal are presented. It is shown that, in initial growth stage, there exist crystal growth rate changes independent of experimental conditions, with tendency to level during the time. Time evolution of sodium chlorate crystals growth rate dispersion is also presented. The results obtained show that these changes must be included in the interpretations of the growth rate changes affected by various parameters (supersaturation, temperature, fields, stress, impurities, etc.), which have not previously been taken into account. These results may improve the current crystal growth theories.

  5. Effect of impurities on crystal growth rate of ammonium pentaborate

    NASA Astrophysics Data System (ADS)

    Şahin, Ö.; Özdemir, M.; Genli, N.

    2004-01-01

    The effect of sodium chloride, borax and boric acid of different concentrations on the growth rate of ammonium pentaborate octahydrate crystals (APBO) was measured and was found to depend on supersaturation in a fluidized bed crystallizer. The presence of impurities in APBO solution increases the growth rate compared with growth from pure solution. It was found that the presence of sodium chloride, borax and boric acid decreases the reaction rate constant kr, while it increases the mass-transfer coefficient, K, of APBO crystals. In pure aqueous solution, the crystal growth rate of APBO is mainly controlled by diffusion. However, both diffusion and integration steps affect the growth rate of APBO crystals in the presence of sodium chloride, borax and boric acid. The mass-transfer coefficient, K, reaction rate constant, kr and reaction order, r were calculated from general mass-transfer equation by using genetic algorithm method making no assumption.

  6. Hard sphere crystal nucleation and growth near large spherical impurities

    NASA Astrophysics Data System (ADS)

    de Villeneuve, V. W. A.; Verboekend, D.; Dullens, R. P. A.; Aarts, D. G. A. L.; Kegel, W. K.; Lekkerkerker, H. N. W.

    2005-11-01

    We report how large spherical impurities affect the nucleation and growth of hard sphere colloidal crystals. Both the impurities and the colloids are fluorescently labelled polymethylmetacrylate particles and are dispersed in an optically and density matching solvent mixture. Crystal growth, initiated either at the impurity surface, or at the sample bottom, was studied by imaging sequences of two-dimensional xy-slices in the plane of the impurity's centre of mass with a laser scanning confocal microscope. At least two factors determine whether a large impurity can function as a seed for heterogeneous nucleation: timescales and impurity curvature. The curvature needs to be sufficiently low for crystal nuclei to form on the impurity surface. If bulk crystal growth has already approached the impurity, bulk growth is dominant over growth of crystallites on the impurity surface. Such surface crystallites eventually reorient to adapt to the overall bulk crystal symmetry.

  7. Shallow melt apparatus for semicontinuous czochralski crystal growth

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  8. Kinetic Roughening Transition and Energetics of Tetragonal Lysozyme Crystal Growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    Interpretation of lysozyme crystal growth rates using well-established physical theories enabled the discovery of a phenomenon possibly indicative of kinetic roughening. For example, lysozyme crystals grown above a critical supersaturation sigma, (where supersaturation sigma = ln c/c(sub eq), c = the protein concentration and c(sub eq) = the solubility concentration) exhibit microscopically rough surfaces due to the continuous addition of growth units anywhere on the surface of a crystal. The rate of crystal growth, V(sub c), for the continuous growth process is determined by the continuous flux of macromolecules onto a unit area of the crystal surface, a, from a distance, xi, per unit time due to diffusion, and a probability of attachment onto the crystal surface, expressed. Based upon models applied, the energetics of lysozyme crystal growth was determined. The magnitudes of the energy barriers of crystal growth for both the (110) and (101) faces of tetragonal lysozyme crystals are compared. Finally, evidence supportive of the kinetic roughening hypothesis is presented.

  9. Kinetic Roughening Transition and Energetics of Tetragonal Lysozyme Crystal Growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    Interpretation of lysozyme crystal growth rates using well-established physical theories enabled the discovery of a phenomenon possibly indicative of kinetic roughening. For example, lysozyme crystals grown above a critical supersaturation sigma, (where supersaturation sigma = ln c/c(sub eq), c = the protein concentration and c(sub eq) = the solubility concentration) exhibit microscopically rough surfaces due to the continuous addition of growth units anywhere on the surface of a crystal. The rate of crystal growth, V(sub c), for the continuous growth process is determined by the continuous flux of macromolecules onto a unit area of the crystal surface, a, from a distance, xi, per unit time due to diffusion, and a probability of attachment onto the crystal surface, expressed. Based upon models applied, the energetics of lysozyme crystal growth was determined. The magnitudes of the energy barriers of crystal growth for both the (110) and (101) faces of tetragonal lysozyme crystals are compared. Finally, evidence supportive of the kinetic roughening hypothesis is presented.

  10. Determination of relative growth rates of natural quartz crystals

    PubMed

    Ihinger; Zink

    2000-04-20

    Although the theory describing crystal growth in the geological environment is well established, there are few quantitative studies that delimit the absolute time involved in the growth of natural crystals. The actual mechanisms responsible for the variation in size and shape of individual crystal faces are, in fact, not well understood. Here we describe a micro-infrared spectroscopic study of a single, gem-quality quartz crystal that allows us to measure the size, shape and relative growth rate of each of the crystal faces that are active throughout its growth history. We demonstrate that the abundances of hydrogen-bearing impurities can serve as 'speedometers' to monitor the growth rate of advancing crystal faces. Our technique can be applied to crystals from a variety of geological environments to determine their growth histories. Within the electronics industry, the technique might facilitate the production of defect-free synthetic crystals required for high-quality resonators and, ultimately, might allow determination of the absolute time involved in geological processes such as the crystallization of magmas, fluid flow in metamorphism and the sealing of open cracks in earthquake rupture zones.

  11. Needs and Opportunities in Crystal Growth.

    ERIC Educational Resources Information Center

    Mroczkowski, Stanley

    1980-01-01

    Presents a survey of the scientific basis for single crystals production, discussing some of the theoretical and experimental advances in the area. Future prospects for semiconductors, magnetic lasers, nonlinear optics, piezoelectrics, and other crystals are surveyed. (Author/CS)

  12. Needs and Opportunities in Crystal Growth.

    ERIC Educational Resources Information Center

    Mroczkowski, Stanley

    1980-01-01

    Presents a survey of the scientific basis for single crystals production, discussing some of the theoretical and experimental advances in the area. Future prospects for semiconductors, magnetic lasers, nonlinear optics, piezoelectrics, and other crystals are surveyed. (Author/CS)

  13. Protein and virus crystal growth on international microgravity laboratory-2.

    PubMed Central

    Koszelak, S; Day, J; Leja, C; Cudney, R; McPherson, A

    1995-01-01

    Two T = 1 and one T = 3 plant viruses, along with a protein, were crystallized in microgravity during the International Microgravity Laboratory-2 (IML-2) mission in July of 1994. The method used was liquid-liquid diffusion in the European Space Agency's Advanced Protein Crystallization Facility (APCF). Distinctive alterations in the habits of Turnip Yellow Mosaic Virus (TYMV) crystals and hexagonal canavalin crystals were observed. Crystals of cubic Satellite Tobacco Mosaic Virus (STMV) more than 30 times the volume of crystals grown in the laboratory were produced in microgravity. X-ray diffraction analysis demonstrated that both crystal forms of canavalin and the cubic STMV crystals diffracted to significantly higher resolution and had superior diffraction properties as judged by relative Wilson plots. It is postulated that the establishment of quasi-stable depletion zones around crystals growing in microgravity are responsible for self-regulated and more ordered growth. Images FIGURE 1 FIGURE 2 FIGURE 6 PMID:7669890

  14. [Crystal growth and spectroscopy of Er/Yb:KGW crystal].

    PubMed

    Zhu, Zhao-jie; Tu, Chao-yang; Li, Jian-fu; Wu, Bai-chang; Huang, Yan

    2005-09-01

    The Er3 /Yb3+:KGW crystal with the dimensions of 30 mm x 25 mm x 15 mm was grown from K2W2O7 solvent by modified Czochralski method. The absorption spectrum was measured at room temperature and its absorption peaks were assigned. The emission spectrum was obtained under the excitation of 980 nm. There are two broad emission bands at 1024 and 1535 nm, whose FHWM are 60 and 36 nm respectively. It shows that this crystal is suitable for InGaAs LD pumping, and may be a promising laser crystal tunable at near 1 024 and 1 535 nm.

  15. Enhanced Crystal Growth in Binary Lennard-Jones Mixtures

    NASA Astrophysics Data System (ADS)

    Radu, M.; Kremer, K.

    2017-02-01

    We study the crystal growth in binary Lennard-Jones mixtures by molecular dynamics simulations. Growth dynamics, the structure of the liquid-solid interfaces as well as droplet incorporation into the crystal vary with solution properties. For demixed systems we observe a strongly enhanced crystal growth at the cost of enclosed impurities. Furthermore, we find different interface morphologies depending on solubility. We relate our observations to growth mechanisms based on the Gibbs-Thomson effect as well as to predictions of the Kardar-Parisi-Zhang theory in 2 +1 dimensions.

  16. Physical phenomena related to crystal growth in the space environment

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1973-01-01

    The mechanism of crystal growth which may be affected by the space environment was studied. Conclusions as to the relative technical and scientific advantages of crystal growth in space over earth bound growth, without regard to economic advantage, were deduced. It was concluded that the crucibleless technique will most directly demonstrate the unique effects of the greatly reduced gravity in the space environment. Several experiments, including crucibleless crystal growth using solar energy and determination of diffusion coefficients of common dopants in liquid silicon were recommended.

  17. Enhanced Crystal Growth in Binary Lennard-Jones Mixtures.

    PubMed

    Radu, M; Kremer, K

    2017-02-03

    We study the crystal growth in binary Lennard-Jones mixtures by molecular dynamics simulations. Growth dynamics, the structure of the liquid-solid interfaces as well as droplet incorporation into the crystal vary with solution properties. For demixed systems we observe a strongly enhanced crystal growth at the cost of enclosed impurities. Furthermore, we find different interface morphologies depending on solubility. We relate our observations to growth mechanisms based on the Gibbs-Thomson effect as well as to predictions of the Kardar-Parisi-Zhang theory in 2+1 dimensions.

  18. Characterization of the Bridgman crystal growth process by radiographic imaging

    NASA Technical Reports Server (NTRS)

    Fripp, Archibald L.; Debnam, W. J.; Woodell, G. W.; Berry, R. F.; Simchick, R. T.; Sorokach, S. K.; Barber, P. G.

    1991-01-01

    Elemental (Ge) and alloy (PbSnTe) crystal growth that is monitored via radiography to reveal both the interface position and the shape in real time is discussed for both seeded and unseeded growth. It is concluded that the interface position and the actual growth rate of a Bridgman grown crystal is dependent on the growth conditions. The actual growth rate which is a strong function of the degree of supercooling exceeded the pull rate by a factor of greater than two. The interface shape changed from concave to flat to convex during the growth.

  19. Characterization of the Bridgman crystal growth process by radiographic imaging

    NASA Technical Reports Server (NTRS)

    Fripp, Archibald L.; Debnam, W. J.; Woodell, G. W.; Berry, R. F.; Simchick, R. T.; Sorokach, S. K.; Barber, P. G.

    1991-01-01

    Elemental (Ge) and alloy (PbSnTe) crystal growth that is monitored via radiography to reveal both the interface position and the shape in real time is discussed for both seeded and unseeded growth. It is concluded that the interface position and the actual growth rate of a Bridgman grown crystal is dependent on the growth conditions. The actual growth rate which is a strong function of the degree of supercooling exceeded the pull rate by a factor of greater than two. The interface shape changed from concave to flat to convex during the growth.

  20. Specific features of seeding and growth of bulk polar crystals

    NASA Astrophysics Data System (ADS)

    Tsvetkov, E. G.; Tyurikov, V. I.

    2000-07-01

    Formal analysis of seeding and growth of crystals exhibiting spontaneous polarization has been attempted using lithium iodate (α-LiIO 3) and barium metaborate (β-BaB 2O 4) as representative materials grown from aqueous and high-temperature solutions, respectively. We suggest that the specific growth features of nonlinear optical α-LiIO 3 and β-BaB 2O 4 crystals are being determined by formation and evolutionary restructuring of a double electric layer (DEL) at the growth interface. Both composition and structure of the DEL are governed by potential-determining ions of the growth medium as well as by the nature of crystal polarization and its properties. We have found that the composition and structure of the DEL together with the magnitude and direction of spontaneous polarization of the seed (crystal) predetermine the macrotwinning boundaries during seeding and subsequent stages of crystal growth as well as the formation of microtwin structures of various sizes. Similar reasoning is applied to possible crystal asymmetry, cellular growth, extinction of growth, etc. Model concepts of seeding and growth of bulk polar crystals are discussed.

  1. Passive particle dosimetry. [silver halide crystal growth

    NASA Technical Reports Server (NTRS)

    Childs, C. B.

    1977-01-01

    Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.

  2. Nucleation and Convection Effects in Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Vekilow, Peter G.

    1998-01-01

    Our work under this grant has significantly contributed to the goals of the NASA supported protein crystallization program. We have achieved the main objectives of the proposed work, as outlined in the original proposal: (1) We have provided important insight into protein nucleation and crystal growth mechanisms to facilitate a rational approach to protein crystallization; (2) We have delineated the factors that currently limit the x-ray diffraction resolution of protein crystals, and their correlation to crystallization conditions; (3) We have developed novel technologies to study and monitor protein crystal nucleation and growth processes, in order to increase the reproducibility and yield of protein crystallization. We have published 17 papers in peer-reviewed scientific journals and books and made more than 15 invited and 9 contributed presentations of our results at international and national scientific meetings.

  3. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.; Watring, D. A.

    1999-01-01

    The solidification of a solid solution semiconductor, having a wide separation between liquidus and serious has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; mercury cadmium telluride with 80.0 mole percent of HgTe and 84.8 mole percent respectively. These alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed of residual acceleration effects. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system by a previously processed sample, the sample was not received until May 1998, and the preliminary analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. Early results are indicating that the sample may not accomplish the desired objectives. As with the USMP-2 mission, the results of the ground based experiments were compared with the crystal grown in orbit under microgravity conditions. On the earth, it has been demonstrated that the

  4. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.; Watring, D. A.

    1999-01-01

    The solidification of a solid solution semiconductor, having a wide separation between liquidus and serious has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; mercury cadmium telluride with 80.0 mole percent of HgTe and 84.8 mole percent respectively. These alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed of residual acceleration effects. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system by a previously processed sample, the sample was not received until May 1998, and the preliminary analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. Early results are indicating that the sample may not accomplish the desired objectives. As with the USMP-2 mission, the results of the ground based experiments were compared with the crystal grown in orbit under microgravity conditions. On the earth, it has been demonstrated that the

  5. Calcite crystal growth rate inhibition by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  6. Numerical computations of faceted pattern formation in snow crystal growth.

    PubMed

    Barrett, John W; Garcke, Harald; Nürnberg, Robert

    2012-07-01

    Faceted growth of snow crystals leads to a rich diversity of forms with remarkable sixfold symmetry. Snow crystal structures result from diffusion-limited crystal growth in the presence of anisotropic surface energy and anisotropic attachment kinetics. It is by now well understood that the morphological stability of ice crystals strongly depends on supersaturation, crystal size, and temperature. Until very recently it was very difficult to perform numerical simulations of this highly anisotropic crystal growth. In particular, obtaining facet growth in combination with dendritic branching is a challenging task. We present numerical simulations of snow crystal growth in two and three spacial dimensions using a computational method recently introduced by the present authors. We present both qualitative and quantitative computations. In particular, a linear relationship between tip velocity and supersaturation is observed. In our computations, surface energy effects, although small, have a pronounced effect on crystal growth. We compute solid plates, solid prisms, hollow columns, needles, dendrites, capped columns, and scrolls on plates. Although all these forms appear in nature, it is a significant challenge to reproduce them with the help of numerical simulations for a continuum model.

  7. Crystal Growth of Germanium-Silicon Alloys on the ISS

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Croell, A.

    2015-01-01

    A series of Ge(1-x)Si(x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The experiments are part of the investigation "Influence of Containment on the Growth of Silicon-Germanium" (ICESAGE). The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. This meniscus can exist over a much larger range of processing parameters in microgravity and the meniscus is more stable under microgravity conditions. The plans for the flight experiments will be described.

  8. An assessment of calcite crystal growth mechanisms based on crystal size distributions

    USGS Publications Warehouse

    Kile, D.E.; Eberl, D.D.; Hoch, A.R.; Reddy, M.M.

    2000-01-01

    Calcite crystal growth experiments were undertaken to test a recently proposed model that relates crystal growth mechanisms to the shapes of crystal size distributions (CSDs). According to this approach, CSDs for minerals have three basic shapes: (1) asymptotic, which is related to a crystal growth mechanism having constant-rate nucleation accompanied by surface-controlled growth; (2) lognormal, which results from decaying-rate nucleation accompanied by surface-controlled growth; and (3) a theoretical, universal, steady-state curve attributed to Ostwald ripening. In addition, there is a fourth crystal growth mechanism that does not have a specific CSD shape, but which preserves the relative shapes of previously formed CSDs. This mechanism is attributed to supply-controlled growth. All three shapes were produced experimentally in the calcite growth experiments by modifying nucleation conditions and solution concentrations. The asymptotic CSD formed when additional reactants were added stepwise to the surface of solutions that were supersaturated with respect to calcite (initial Ω = 20, where Ω = 1 represents saturation), thereby leading to the continuous nucleation and growth of calcite crystals. Lognormal CSDs resulted when reactants were added continuously below the solution surface, via a submerged tube, to similarly supersaturated solutions (initial Ω = 22 to 41), thereby leading to a single nucleation event followed by surface-controlled growth. The Ostwald CSD resulted when concentrated reactants were rapidly mixed, leading initially to high levels of supersaturation (Ω >100), and to the formation and subsequent dissolution of very small nuclei, thereby yielding CSDs having small crystal size variances. The three CSD shapes likely were produced early in the crystallization process, in the nanometer crystal size range, and preserved during subsequent growth. Preservation of the relative shapes of the CSDs indicates that a supply-controlled growth mechanism

  9. Crystal growth mechanisms of the (0 1 0) face of α-lactose monohydrate crystals

    NASA Astrophysics Data System (ADS)

    Dincer, T. D.; Ogden, M. I.; Parkinson, G. M.

    2009-04-01

    The growth rates of the (0 1 0) face of α-lactose monohydrate crystals were measured at 30, 40 and 50 °C in the relative supersaturation range 0.55-2.33 in aqueous solutions. The mechanisms of growth were investigated. Spiral growth was found to be the mechanism of growth up to a critical relative supersaturation ( s-1) crit=1.9 at 30 °C. Above the critical relative supersaturation, the crystal growth mechanisms were predicted to change. All growth models fit equally well to the growth rates. No two-dimensional nucleation was observed above critical supersaturation by AFM. On the other hand increased step height and roughness on the edges of steps were observed. It was concluded that the growth mechanism of the (0 1 0) face of α-lactose monohydrate crystal is spiral growth. A parabolic relationship was obtained below critical supersaturation followed by a linear relationship with relative supersaturation.

  10. Colloidal Crystal Growth Monitored By Bragg Diffraction Interference Fringes

    PubMed Central

    Bohn, Justin J.; Tikhonov, Alexander; Asher, Sanford A.

    2010-01-01

    We monitor the crystal growth kinetics of crystallization of a shear melted crystalline colloidal array (CCA). The fcc CCA heterogeneously nucleates at the flow cell wall surface. We examined the evolution of the (111) Bragg diffraction peak, and, for the first time, quantitatively monitored growth by measuring the temporal evolution of the Bragg diffraction interference fringes. Modeling of the evolution of the fringe patterns exposes the time dependence of the increasing crystal thickness. The initial diffusion driven linear growth is followed by ripening-driven growth. Between 80 to 90 μM NaCl concentrations the fcc crystals first linearly grow at rates between 1.9 and 4.2 μm/sec until they contact homogeneously nucleated crystals in the bulk. At lower salt concentrations interference fringes are not visible because the strong electrostatic interactions between particles result in high activation barriers, preventing defect annealing and leading to a lower crystal quality. The fcc crystals melt to a liquid phase at >90 μM NaCl concentrations. Increasing NaCl concentrations slows the fcc CCA growth rate consistent with the expectation of the classical Wilson-Frenkel growth theory. The final thickness of wall nucleated CCA is determined by the competition between growth of heterogeneously and homogenously nucleated CCA and increases with higher NaCl concentrations. PMID:20542277

  11. MOLECULAR ORBITALS AND ELECTRON-TRANSFER SPECTRA IN RUTILE. GROWTH OF CRYSTALS BY FLAME FUSION,

    DTIC Science & Technology

    CRYSTAL GROWTH , *TITANIUM COMPOUNDS, *ABSORPTION, SINGLE CRYSTALS , OXIDES, MEASUREMENT, ELECTRON TRANSITIONS, SPECTROPHOTOMETERS, ULTRAVIOLET...RADIATION, POLARIZATION, CRYSTAL STRUCTURE, SYMMETRY(CRYSTALLOGRAPHY), YTTRIUM COMPOUNDS, ALUMINUM COMPOUNDS.

  12. Universality classes for unstable crystal growth.

    PubMed

    Biagi, Sofia; Misbah, Chaouqi; Politi, Paolo

    2014-06-01

    Universality has been a key concept for the classification of equilibrium critical phenomena, allowing associations among different physical processes and models. When dealing with nonequilibrium problems, however, the distinction in universality classes is not as clear and few are the examples, such as phase separation and kinetic roughening, for which universality has allowed to classify results in a general spirit. Here we focus on an out-of-equilibrium case, unstable crystal growth, lying in between phase ordering and pattern formation. We consider a well-established 2+1-dimensional family of continuum nonlinear equations for the local height h(x,t) of a crystal surface having the general form ∂_{t}h(x,t)=-∇·[j(∇h)+∇(∇^{2}h)]: j(∇h) is an arbitrary function, which is linear for small ∇h, and whose structure expresses instabilities which lead to the formation of pyramidlike structures of planar size L and height H. Our task is the choice and calculation of the quantities that can operate as critical exponents, together with the discussion of what is relevant or not to the definition of our universality class. These aims are achieved by means of a perturbative, multiscale analysis of our model, leading to phase diffusion equations whose diffusion coefficients encapsulate all relevant information on dynamics. We identify two critical exponents: (i) the coarsening exponent, n, controlling the increase in time of the typical size of the pattern, L∼t^{n}; (ii) the exponent β, controlling the increase in time of the typical slope of the pattern, M∼t^{β}, where M≈H/L. Our study reveals that there are only two different universality classes, according to the presence (n=1/3, β=0) or the absence (n=1/4, β>0) of faceting. The symmetry of the pattern, as well as the symmetry of the surface mass current j(∇h) and its precise functional form, is irrelevant. Our analysis seems to support the idea that also space dimensionality is irrelevant.

  13. Growth and defects of explosives crystals

    NASA Astrophysics Data System (ADS)

    Cady, H. H.

    Large single crystals of PETN, RDX, and TNT can be grown easily from evaporating ethyl acetate solutions. The crystals all share a similar type of defect that may not be commonly recognized. The defect generates conical faces, ideally mosaic crystals, and may account for the 'polymorphs' of TNT and detonator grades of PETN. TATB crystals manufactured by the amination of trichlorotrinitrobenzene in dry toluene entrain two forms of ammonium chloride. One of these forms causes 'worm holes' in the TATB crystals that may be the reason for its unusually low failure diameters. Strained HMX crystals form mechanical twins that can spontaneously revert back to the untwinned form when the straining force is removed. Large strains or temperatures above 100 C lock in the mechanical twins.

  14. Growth of zeolite crystals in the microgravity environment of space

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Sand, L. B.; Collette, D.; Dieselman, K.; Crowley, J.; Feitelberg, A.

    1986-01-01

    Zeolites are hydrated, crystalline aluminosilicates with alkali and alkaling earth metals substituted into cation vacancies. Typically zeolite crystals are 3 to 8 microns. Larger cyrstals are desirable. Large zeolite crystals were produced (100 to 200 microns); however, they have taken restrictively long times to grow. It was proposed if the rate of nucleation or in some other way the number of nuclei can be lowered, fewer, larger crystals will be formed. The microgravity environment of space may provide an ideal condition to achieve rapid growth of large zeolite crystals. The objective of the project is to establish if large zeolite crystals can be formed rapidly in space.

  15. Determining the Molecular Growth Mechanisms of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Li, Huayu; Nadarajah, Arunan; Konnert, John H.; Pusey, Marc L.

    1998-01-01

    Studies of the growth of tetragonal lysozyme crystals employing atomic force microscopy (AFM) have shown the advantages of this technique in investigating the growth mechanisms of protein crystals [1]. The resolution of these studies was in the micron range, which revealed surface features such as the occurrence of dislocations and 2D nucleation islands, similar to those found in inorganic systems. They clearly showed that the crystals grew by these surface growth mechanisms. However, the studies also revealed some surprising features, such as bimolecular growth step heights and pronounced growth anisotropies on the (110) face, which could not be explained. In previous studies we employed Periodic Bond Chain (PBC) theory to tetragonal lysozyme crystal growth and found that the crystals were constructed by strongly bonded molecular chains forming helices about the 43 axes [2,3]. The helices were connected to each other with weaker bonds. The growth process was shown to proceed by the formation of these 43 helices, resulting in bimolecular growth steps on the (110) face. It was also shown to explain many other observations on tetragonal lysozyme crystal growth. Although PBC analysis is not a new technique [4], it has not been widely used as the mechanisms predicted from it could not be experimentally verified. In this study the growth process of these crystals was investigated, particularly for the (110) face, employing some newly developed high resolution AFM techniques. These techniques allowed individual lysozyme molecules on the crystal faces to be resolved and predictions from PBC analyses to be tested. The analyses had shown that of the two possible packing arrangements on (110) faces, only one would actually occur. Employing the first of the newly developed techniques, these faces were scanned by high resolution AFM. The resulting images were then compared with the theoretically constructed images for the two possible packing arrangements on the (110) face

  16. Method For Growth of Crystal Surfaces and Growth of Heteroepitaxial Single Crystal Films Thereon

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony (Inventor); Larkin, David J. (Inventor); Neudeck, Philip G. (Inventor); Matus, Lawrence G. (Inventor)

    2000-01-01

    A method of growing atomically-flat surfaces and high quality low-defect crystal films of semiconductor materials and fabricating improved devices thereon is discussed. The method is also suitable for growing films heteroepitaxially on substrates that are different than the film. The method is particularly suited for growth of elemental semiconductors (such as Si), compounds of Groups III and V elements of the Periodic Table (such as GaN), and compounds and alloys of Group IV elements of the Periodic Table (such as SiC).

  17. Michelson interferometric studies of protein and virus crystal growth

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Yu. G.; Malkin, A. J.; Greenwood, A.; McPherson, A.

    1996-09-01

    In situ laser Michelson interferometry was utilized to investigate the growth kinetics and surface morphology in canavalin, thaumatin, and turnip yellow mosaic virus (TYMV) crystallization. Interferometric patterns and kinetic measurements from growing macromolecular crystals as small as 20 μm were obtained. This study shows that for the crystallization of canavalin, dislocations are the sources of growth steps on the surfaces of growing crystals. Supersaturation dependencies of the normal growth rates, tangential growth step velocities, and the slopes of the dislocation hillocks were determined. The kinetic coefficient β was estimated for canavalin grown from two different precipitant systems to be 3.2 × 10 -4 and 5.3 × 10 -4 cm s -1, respectively. The change in activities of dislocation sources under different growth conditions was analyzed.

  18. Control of Protein Crystal Nucleation and Growth Using Stirring Solution

    NASA Astrophysics Data System (ADS)

    Niino, Ai; Adachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Kinoshita, Takayoshi; Warizaya, Masaichi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

    2004-11-01

    We have previously developed a protein crystallization technique using a stirring protein solution and revealed that (i) continuous stirring prevents excess spontaneous nucleation and accelerates the growth of protein crystals and (ii) prestirring (solution stirring in advance) promotes the crystal nucleation of hen egg-white lysozyme. In bovine adenosine deaminase (ADA) crystallization, continuous stirring improves the crystal quality but elongates the nucleation time. In this paper, in order to control both the crystal nucleation and growth of ADA using a Micro-Stirring technique, we carried out five different stirring patterns such as (i) no stirring, (ii) continuous stirring, (iii) prestirring, (iv) poststirring (stirring late in the growth period) and (v) restirring (combined pre- and poststirring). The results showed that high-quality well-shaped crystals were obtained under the continuous stirring and restirring conditions and the nucleation time under the prestirring and restirring conditions was shorter than that under the continuous stirring and poststirring conditions. Consequently, high-quality crystals were promptly obtained under the restirring condition. These results suggest that we are able to control both the nucleation and growth of protein crystals with the stirring techniques.

  19. Method of Promoting Single Crystal Growth During Melt Growth of Semiconductors

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua (Inventor)

    2013-01-01

    The method of the invention promotes single crystal growth during fabrication of melt growth semiconductors. A growth ampoule and its tip have a semiconductor source material placed therein. The growth ampoule is placed in a first thermal environment that raises the temperature of the semiconductor source material to its liquidus temperature. The growth ampoule is then transitioned to a second thermal environment that causes the semiconductor source material in the growth ampoule's tip to attain a temperature that is below the semiconductor source material's solidus temperature. The growth ampoule so-transitioned is then mechanically perturbed to induce single crystal growth at the growth ampoule's tip.

  20. Applications of Atomic Force Microscopy in Macromolecular Crystal Growth

    NASA Astrophysics Data System (ADS)

    McPherson, Alexander

    1997-03-01

    A series of protein and virus crystals was investigated, in situ, using atomic force microscopy. Most of the crystals grew principally on steps generated by two dimensional nucleation on surfaces, though some, such as canavalin, grew by development of spiral dislocations. Apoferritin grew by a rarely encountered mechanism, normal growth, usually associated only with melt or vapor phase crystallization. Cubic crystals of satellite tobacco mosaic virus (STMV) grew, at moderate to high levels of supersaturation, by the direct addition of three- dimensional nuclei followed by their rapid normal growth and lateral expansion, a mechanism not previously described to promote controlled and reproducible crystal growth from solutions. Biological macromolecules apparently utilize a more diverse range of growth mechanisms in their crystallization than any previously studied material. High resolution AFM analyses have allowed us to record the first, real time, in situ atomic force microscope images, on the nanometer scale, of the incorporation of molecules into the growth steps of crystals grown from solution. The molecular structure of the growth step edge and surface layer on the (101) faces of tetragonal thaumatin crystals were resolved. It was shown that, although the growth step height corresponds to the unit cell containing eight thaumatin molecules, its advancement occurs by the addition of individual protein molecules rather than molecular clusters. Models for the packing of molecules on the surface layer, and of the structure of the step edge were developed which agree well with experimental data. Again, using high resolution, in situ atomic force microscopy, the initial stages of the formation and development of two- and three-dimensional nuclei on the surface of protein crystals were recorded. From these we conclude that non crystalline aggregates, with short range order, present both on the crystal-solution interface, and in the volume of the solution, give rise to

  1. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.

    2001-01-01

    The solidification of a solid solution semiconductor, having a wide separation between liquidus and solidus has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; with 80.0 mole percent of HgTe and 84.8 mole percent of HgTe respectively, the remainder being cadmium telluride. Such alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed correlating composition variations to measured residual acceleration. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system, analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. The results indicate that the sample did accomplish the desired objectives.

  2. Crystal growth methods dedicated to low solubility actinide oxalates

    SciTech Connect

    Tamain, C.; Arab-Chapelet, B.; Rivenet, M.; Grandjean, S.; Abraham, F.

    2016-04-15

    Two novel crystal growth syntheses dedicated to low solubility actinide-oxalate systems and adapted to glove box handling are described. These methods based on the use of precursors of either actinide metal or oxalic acid have been optimized on lanthanide systems (analogue of actinides(III)) and then assessed on real actinide systems. They allow the synthesis of several actinide oxalate single crystals, Am{sub 2}(C{sub 2}O{sub 4}){sub 3}(H{sub 2}O){sub 3}·xH{sub 2}O, Th(C{sub 2}O{sub 4}){sub 2}·6H{sub 2}O, M{sub 2+x}[Pu{sup IV}{sub 2−x}Pu{sup III}{sub x}(C{sub 2}O{sub 4}){sub 5}]·nH{sub 2}O and M{sub 1−x}[Pu{sup III}{sub 1−x}Pu{sup IV}{sub x}(C{sub 2}O{sub 4}){sub 2}·H{sub 2}O]·nH{sub 2}O. It is the first time that these well-known compounds are formed by crystal growth methods, thus enabling direct structural studies on transuranic element systems and acquisition of basic data beyond deductions from isomorphic (or not) lanthanide compounds. Characterizations by X-ray diffraction, UV–visible solid spectroscopy, demonstrate the potentialities of these two crystal growth methods to obtain oxalate compounds. - Graphical abstract: Two new single crystal growth methods dedicated to actinide oxalate compounds. - Highlights: • Use of diester as oxalate precursor for crystal growth of actinide oxalates. • Use of actinide oxide as precursor for crystal growth of actinide oxalates. • Crystal growth of Pu(III) and Am(III) oxalates. • Crystal growth of mixed Pu(III)/Pu(IV) oxalates.

  3. Ames Lab 101: Single Crystal Growth

    SciTech Connect

    Schlagel, Deborah

    2013-09-27

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  4. Growth of shaped single crystals of proteins

    NASA Astrophysics Data System (ADS)

    Moreno, Abel; Rondón, Deyanira; García-Ruiz, Juan Ma.

    1996-09-01

    We present a procedure for obtaining protein single crystals that fill the capillary tubes in which they grow. The implementation was typical of the gel acupuncture method and the four different proteins are used as examples: lysozyme (HEW), thaumatin I, ferritin and insulin. Rod- and prismatic-shaped protein single crystals of these four proteins were grown inside capillary tubes of 0.2, 0.3, 0.5 mm in diameter and, for the case of lysozyme, up to 1.2 mm in diameter. The maximum length measured along the long axes of the rod crystals was 1.6 mm again for lysozyme crystals. It was observed that, once the capillary tube was filled, the crystal continues to grow by diffusion of the precipitating agent throughout the porous network formed by the protein crystal structure. We also discuss the possibility of growing these cylinders of crystalline proteins by the addition of protein solution to the mother liquor through the upper end of the glass capillary while the precipitating agent diffuses through the protein crystal itself. X-ray diffraction patterns confirm the single crystal character of the protein rods.

  5. Ames Lab 101: Single Crystal Growth

    ScienceCinema

    Schlagel, Deborah

    2016-07-12

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  6. Crystal growth by solvent evaporation and characterization of metronidazole

    NASA Astrophysics Data System (ADS)

    Ramukutty, S.; Ramachandran, E.

    2012-07-01

    Single crystals of metronidazole were crystallized by the slow solvent evaporation method and used as seeds to grow bulk crystals of size 8.0×6.5×2.0 mm3 using top-seeded submerged solution growth. The crystals were characterized using single crystal X-ray diffraction. Fourier transform infrared spectral analysis was made for the absorption bands of various functional groups present in the crystal. UV-vis absorption spectrum was used to identify the presence of nitroimidazole in metronidazole. Morphology study revealed that the growth is prominent along the c-axis and the prominent face is {010}. Thermal stability and thermal decomposition were analyzed using thermo calorimetry.

  7. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Pusey, M.; Snell, E.; Judge, R.; Chayen, N.; Boggon, T.; Helliwell, J.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The molecular structure of biological macromolecules is important in understanding how these molecules work and has direct application to rational drug design for new medicines and for the improvement and development of industrial enzymes. In order to obtain the molecular structure, large, well formed, single macromolecule crystals are required. The growth of macromolecule crystals is a difficult task and is often hampered on the ground by fluid flows that result from the interaction of gravity with the crystal growth process. One such effect is the bulk movement of the crystal through the fluid due to sedimentation. A second is buoyancy driven convection close to the crystal surface. On the ground the crystallization process itself induces both of these flows.

  8. Development of novel growth methods for halide single crystals

    NASA Astrophysics Data System (ADS)

    Yokota, Yuui; Kurosawa, Shunsuke; Shoji, Yasuhiro; Ohashi, Yuji; Kamada, Kei; Yoshikawa, Akira

    2017-03-01

    We developed novel growth methods for halide scintillator single crystals with hygroscopic nature, Halide micro-pulling-down [H-μ-PD] method and Halide Vertical Bridgman [H-VB] method. The H-μ-PD method with a removable chamber system can grow a single crystal of halide scintillator material with hygroscopicity at faster growth rate than the conventional methods. On the other hand, the H-VB method can grow a large bulk single crystal of halide scintillator without a quartz ampule. CeCl3, LaBr3, Ce:LaBr3 and Eu:SrI2 fiber single crystals could be grown by the H-μ-PD method and Eu:SrI2 bulk single crystals of 1 and 1.5 inch in diameter could be grown by the H-VB method. The grown fiber and bulk single crystals showed comparable scintillation properties to the previous reports using the conventional methods.

  9. Large-volume protein crystal growth for neutron macromolecular crystallography

    DOE PAGES

    Ng, Joseph D.; Baird, James K.; Coates, Leighton; ...

    2015-03-30

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for themore » growth of crystals to significant dimensions that are now relevant to NMC are revisited. We report that these include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.« less

  10. Large-volume protein crystal growth for neutron macromolecular crystallography

    SciTech Connect

    Ng, Joseph D.; Baird, James K.; Coates, Leighton; Garcia-Ruiz, Juan M.; Hodge, Teresa A.; Huang, Sijay

    2015-03-30

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. We report that these include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.

  11. Large-volume protein crystal growth for neutron macromolecular crystallography

    PubMed Central

    Ng, Joseph D.; Baird, James K.; Coates, Leighton; Garcia-Ruiz, Juan M.; Hodge, Teresa A.; Huang, Sijay

    2015-01-01

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations. PMID:25849493

  12. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Pusey, M.; Snell, E.; Judge, R.; Chayen, N.; Boggon, T.; Helliwell, J.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The molecular structure of biological macromolecules is important in understanding how these molecules work and has direct application to rational drug design for new medicines and for the improvement and development of industrial enzymes. In order to obtain the molecular structure, large, well formed, single macromolecule crystals are required. The growth of macromolecule crystals is a difficult task and is often hampered on the ground by fluid flows that result from the interaction of gravity with the crystal growth process. One such effect is the bulk movement of the crystal through the fluid due to sedimentation. A second is buoyancy driven convection close to the crystal surface. On the ground the crystallization process itself induces both of these flows.

  13. Mechanisms of protein and virus crystal growth: An atomic force microscopy study of Canavalin crystallization

    SciTech Connect

    Land, T.A.; De Yoreo, J.J.; Malkin, A.J.; Kutznesov, Y.G.; McPherson, A.

    1995-03-10

    The evolution of surface morphology and step dynamics during growth of single crystals of the protein Canavalin and of the cubic satellite tobacco mosaic virus crystals (STMV) have been investigated by in situ atomic force microscopy. These two crystals were observed to grow by very different mechanisms. Growth of Canavalin occurs on complex vicinal hillocks formed by multiple, independently acting screw dislocations. Small cluster were observed on the terraces. STMV on the other hand, was observed to grow by 2D nucleation of islands. No dislocations were found on the crystal. The results are used to determine the growth mechanisms and estimate fundamental materials parameters. The images also illustrate the important mechanism of defect incorporation and provide insight to the processes that limit the growth rate and uniformity of these crystals.

  14. Growth dynamics of isotactic polypropylene single crystals during isothermal crystallization from a miscible polymeric solvent.

    PubMed

    Mehta, Rujul; Keawwattana, Wirunya; Kyu, Thein

    2004-02-22

    The present article presents a spatiotemporal growth of isotactic polypropylene (iPP) single crystals, melt crystallized from a polymeric solvent, i.e., poly (ethylene octene) copolymer that is known to be miscible with iPP. Optical and atomic force microscopic investigations reveal that the melt grown single crystals of iPP develop in the form of two parallel rows of crystal lamellae, but these crystals merge at the tips. To elucidate the mechanism of these emerging parallel rows of iPP crystals, a phase field model pertaining to solidification phenomena has been employed that involves a nonconserved crystal order parameter and a chain-tilting angle. This phase field model is based on the free energy of crystallization, having an asymmetric double well, and a tensorial surface free energy of the crystal interface coupled with a curvature elastic free energy that is possessed by the solid-liquid interface. The spatiotemporal simulation of iPP single crystal growth has been carried out on a square lattice based on the finite difference method for spatial steps and an explicit method for temporal steps with a periodic boundary condition. The appearance of the seemingly twin crystal is captured in the simulation, which may be attributed to the sector demarcation that is taking place in the anisotropically growing single crystal of iPP.

  15. Growth dynamics of isotactic polypropylene single crystals during isothermal crystallization from a miscible polymeric solvent

    NASA Astrophysics Data System (ADS)

    Mehta, Rujul; Keawwattana, Wirunya; Kyu, Thein

    2004-02-01

    The present article presents a spatiotemporal growth of isotactic polypropylene (iPP) single crystals, melt crystallized from a polymeric solvent, i.e., poly (ethylene octene) copolymer that is known to be miscible with iPP. Optical and atomic force microscopic investigations reveal that the melt grown single crystals of iPP develop in the form of two parallel rows of crystal lamellae, but these crystals merge at the tips. To elucidate the mechanism of these emerging parallel rows of iPP crystals, a phase field model pertaining to solidification phenomena has been employed that involves a nonconserved crystal order parameter and a chain-tilting angle. This phase field model is based on the free energy of crystallization, having an asymmetric double well, and a tensorial surface free energy of the crystal interface coupled with a curvature elastic free energy that is possessed by the solid-liquid interface. The spatiotemporal simulation of iPP single crystal growth has been carried out on a square lattice based on the finite difference method for spatial steps and an explicit method for temporal steps with a periodic boundary condition. The appearance of the seemingly twin crystal is captured in the simulation, which may be attributed to the sector demarcation that is taking place in the anisotropically growing single crystal of iPP.

  16. Reinvestigation of growth of 'L-valine zinc sulphate' crystal.

    PubMed

    Srinivasan, Bikshandarkoil R; Jyai, Rita N

    2014-01-01

    A reinvestigation of the growth of l-valine zinc sulphate crystal is reported. The slow evaporation of an aqueous solution containing l-valine and zinc sulphate heptahydrate results in the fractional crystallization of l-valine and not the organic inorganic hybrid nonlinear optical l-valine zinc sulphate crystal, as reported by Puhal Raj and Ramachandra Raja (2012). Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Protein Crystal Movements and Fluid Flows During Microgravity Growth

    NASA Technical Reports Server (NTRS)

    Boggon, Titus J.; Chayen, Naomi E.; Snell, Edward H.; Dong, Jun; Lautenschlager, Peter; Potthast, Lothar; Siddons, D. Peter; Stojanoff, Vivian; Gordon, Elspeth; Thompson, Andrew W.; hide

    1997-01-01

    The growth of protein crystals suitable for X-ray crystal structure analysis is an important topic. The methods of protein crystal growth are under increasing study whereby different methods are being compared via diagnostic monitoring including Charge Coupled Device (CCD) video and interferometry. The quality (perfection) of protein crystals is now being evaluated by mosaicity analysis (rocking curves) and X-ray topographic images as well as the diffraction resolution limit and overall data quality. Choice of a liquid-liquid linear crystal growth geometry and microgravity can yield a spatial stability of growing crystals and fluid, as seen in protein crystallization experiments on the unmanned platform EURICA. A review is given here of existing results and experience over several microgravity missions. The results include CCD video as well as interferometry during the mission, followed, on return to earth, by rocking curve experiments and full X-ray data collection on LMS and earth control lysozyme crystals. Diffraction data recorded from LMS and ground control apocrustacyanin C(sub 1) crystals are also described.

  18. Zeolite Crystal Growth (ZCG) Flight on USML-2

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Bac, Nurcan; Warzywoda, Juliusz; Guray, Ipek; Marceau, Michelle; Sacco, Teran L.; Whalen, Leah M.

    1997-01-01

    The extensive use of zeolites and their impact on the world's economy has resulted in many efforts to characterize their structure, and improve the knowledge base for nucleation and growth of these crystals. The zeolite crystal growth (ZCG) experiment on USML-2 aimed to enhance the understanding of nucleation and growth of zeolite crystals, while attempting to provide a means of controlling the defect concentration in microgravity. Zeolites A, X, Beta, and Silicalite were grown during the 16 day - USML-2 mission. The solutions where the nucleation event was controlled yielded larger and more uniform crystals of better morphology and purity than their terrestrial/control counterparts. The external surfaces of zeolite A, X, and Silicalite crystals grown in microgravity were smoother (lower surface roughness) than their terrestrial controls. Catalytic studies with zeolite Beta indicate that crystals grown in space exhibit a lower number of Lewis acid sites located in micropores. This suggests fewer structural defects for crystals grown in microgravity. Transmission electron micrographs (TEM) of zeolite Beta crystals also show that crystals grown in microgravity were free of line defects while terrestrial/controls had substantial defects.

  19. Estimated effects of silicone glue on protein crystal growth

    NASA Astrophysics Data System (ADS)

    Maruyama, Mihoko; Shimizu, Noriko; Sugiyama, Shigeru; Takahashi, Yoshinori; Adachi, Hiroaki; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Matsumura, Hiroyoshi; Mori, Yusuke

    2010-09-01

    Silicone glue (modified silicone polymer) is widely used for both experiments involving inorganic crystal growth and those involving organic materials like proteins. This material is very useful for building a hand-made experiment setup or for fixing protein crystals to specific locations. Though silicone glue is regarded as harmful to proteins, no systematic verification was performed to investigate its impurity effects on protein crystal growth. We focused on and estimated the impurity effects of silicone glue on protein crystal growth. Hen egg white lysozyme (HEWL) was used as a model protein. Surface morphology and step velocity of tetragonal lysozyme crystals in the presence and absence of silicone glue were investigated by laser confocal interference contrast microscopy (LCM-DIM). The surface morphology of a tetragonal lysozyme crystal in the presence of silicone glue corresponded to that grown in a lysozyme solution without silicone glue. The dependency of step velocities on supersaturation in the presence of silicone glue also exhibited the same tendency as that of a glue-free system. These two phenomena indicate that the silicone glue did not act as an impurity on lysozyme crystals. Therefore, we conclude that silicone glue is an effective material for various unique experiments involving protein crystals or for applying new methods to create large, high-quality protein crystals.

  20. A Multiscale simulation method for ice crystallization and frost growth

    NASA Astrophysics Data System (ADS)

    Yazdani, Miad

    2015-11-01

    Formation of ice crystals and frost is associated with physical mechanisms at immensely separated scales. The primary focus of this work is on crystallization and frost growth on a cold plate exposed to the humid air. The nucleation is addressed through Gibbs energy barrier method based on the interfacial energy of crystal and condensate as well as the ambient and surface conditions. The supercooled crystallization of ice crystals is simulated through a phase-field based method where the variation of degree of surface tension anisotropy and its mode in the fluid medium is represented statistically. In addition, the mesoscale width of the interface is quantified asymptotically which serves as a length-scale criterion into a so-called ``Adaptive'' AMR (AAMR) algorithm to tie the grid resolution at the interface to local physical properties. Moreover, due to the exposure of crystal to humid air, a secondary non-equilibrium growth process contributes to the formation of frost at the tip of the crystal. A Monte-Carlo implementation of Diffusion Limited Aggregation method addresses the formation of frost during the crystallization. Finally, a virtual boundary based Immersed Boundary Method (IBM) is adapted to address the interaction of ice crystal with convective air during its growth.

  1. Protein Crystal Movements and Fluid Flows During Microgravity Growth

    NASA Technical Reports Server (NTRS)

    Boggon, Titus J.; Chayen, Naomi E.; Snell, Edward H.; Dong, Jun; Lautenschlager, Peter; Potthast, Lothar; Siddons, D. Peter; Stojanoff, Vivian; Gordon, Elspeth; Thompson, Andrew W.; Zagalsky, Peter F.; Bi, Ru-Chang; Helliwell, John R.

    1997-01-01

    The growth of protein crystals suitable for X-ray crystal structure analysis is an important topic. The methods of protein crystal growth are under increasing study whereby different methods are being compared via diagnostic monitoring including Charge Coupled Device (CCD) video and interferometry. The quality (perfection) of protein crystals is now being evaluated by mosaicity analysis (rocking curves) and X-ray topographic images as well as the diffraction resolution limit and overall data quality. Choice of a liquid-liquid linear crystal growth geometry and microgravity can yield a spatial stability of growing crystals and fluid, as seen in protein crystallization experiments on the unmanned platform EURICA. A review is given here of existing results and experience over several microgravity missions. The results include CCD video as well as interferometry during the mission, followed, on return to earth, by rocking curve experiments and full X-ray data collection on LMS and earth control lysozyme crystals. Diffraction data recorded from LMS and ground control apocrustacyanin C(sub 1) crystals are also described.

  2. Imaging and interferometric analysis of protein crystal growth

    NASA Astrophysics Data System (ADS)

    Raghunandan, Ranjini; Gupta, Anamika Sethia; Muralidhar, K.

    2008-04-01

    Protein crystals are grown under controlled temperature, concentration and vapor pressure conditions, usually by vapor diffusion, liquid-liquid diffusion and dialysis techniques. The present study examines the effects of protein concentration, drop size and reservoir height on the crystal growth of Hen Egg White Lysozyme (HEWL). Crystals are grown by the hanging drop vapor diffusion method using Modular VDX TM Plates. Due to the vapor pressure difference created between the protein drop and the reservoir, evaporation takes place till equilibrium is attained. Crystal formation takes place after a certain level of supersaturation is attained when the protein precipitates out in crystalline form. The observations revealed that the growth is faster for higher lysozyme concentration, smaller drop sizes and larger reservoir heights. The morphology of the crystals is viewed during the growth process using stereomicroscope. The number of crystals formed is the maximum for higher concentrations, drop sizes and reservoir heights. When the number of crystals formed is less, the size of the crystals is comparatively larger. The effect of evaporation of water vapor from the protein drop into the reservoir is studied using Mach-Zehnder interferometry. The recorded interferograms and shadowgraph images indicate the diffusion of condensed water into the reservoir. The radius of the drop is determined using the shadowgraph images of the growth process. The radius decreases with evaporation and the rate of decrease of radius is highest for higher protein concentrations, smaller drop sizes and larger reservoir heights.

  3. Crystal growth and roughening of solid D{sub 2}

    SciTech Connect

    Kozioziemski, B.J.; Collins, G.W.; Bernat, T.P.

    1997-03-26

    Near the triple point, growth shapes of vapor deposited hexagonal close packed D{sub 2} crystals reveal two crystal orientations contain facets which persist up to the melt. This observation is in contrast with previous experiments on rare gas solids and H{sub 2} where the highest T{sub r} measured is 0.8 T{sub tp}.

  4. An automatic system for crystal growth studies at constant supersaturation

    PubMed Central

    March, J. G.; Costa-Bauzá, A.; Grases, F.; Söhnel, O.

    1992-01-01

    An automatic system for growing crystals from seeded supersaturated solutions at constant supersaturation is described. Control of burettes and data acquisition are controlled by computer. The system was tested with a study of the calcium oxalate kinetics of crystal growth. PMID:18924950

  5. Containerless protein crystal growth technology: Electrostatic multidrop positioner

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu

    1990-01-01

    A brief discussion of containerless protein crystal growth in space and a diagram of the electrostatic multidrop positioner are presented. A picture of lysome crystals growing in a drop and a graph of levitation voltage versus time (minutes) are also presented.

  6. Crystal growth of SiC for electronic applications

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony

    1989-01-01

    The development of SiC as a high temperature semiconductor material is discussed, focusing on the epitaxial growth of single crystal SiC films on inexpensive single crystal silicon wafers. Progress in the improvement of film morphology and the elimination of antiphase disorder is examined. Potential candidate materials for high temperature semiconductor devices are compared and SiC films are evaluated.

  7. Nucleation and structural growth of cluster crystals.

    PubMed

    Leitold, Christian; Dellago, Christoph

    2016-08-21

    We study the nucleation of crystalline cluster phases in the generalized exponential model with exponent n = 4. Due to the finite value of this pair potential for zero separation, at high densities the system forms cluster crystals with multiply occupied lattice sites. Here, we investigate the microscopic mechanisms that lead to the formation of cluster crystals from a supercooled liquid in the low-temperature region of the phase diagram. Using molecular dynamics and umbrella sampling, we calculate the free energy as a function of the size of the largest crystalline nucleus in the system, and compare our results with predictions from classical nucleation theory. Employing bond-order parameters based on a Voronoi tessellation to distinguish different crystal structures, we analyze the average composition of crystalline nuclei. We find that even for conditions where a multiply occupied fcc crystal is the thermodynamically stable phase, the nucleation into bcc cluster crystals is strongly preferred. Furthermore, we study the particle mobility in the supercooled liquid and in the cluster crystal. In the cluster crystal, the motion of individual particles is captured by a simple reaction-diffusion model introduced previously to model the kinetics of hydrogen bonds.

  8. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Astrophysics Data System (ADS)

    Wilson, Lori J.

    1994-10-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  9. Growth of bulk single crystals of urea for photonic applications

    NASA Astrophysics Data System (ADS)

    Saranraj, Arumugam; Sathiyadhas, Sahaya Jude Dhas; Jose, Michael; Martin Britto Dhas, Sathiyadhas Amalapusham

    2017-08-01

    We report the growth of technologically important urea crystals of record size (48 × 16 × 8 mm3) by doping sulfuric acid and employing slow evaporation technique. The grown crystal was identified by single crystal X-Ray diffraction and FTIR spectral analysis. Optical properties of the grown crystal were analyzed by UV-Vis spectrum and the presence of H2SO4 was confirmed by EDAX analysis. Thermogravimetric analysis, Differential Scanning Calorimetry and Photo acoustic studies were also carried out to determine the thermal properties of the grown crystal. The dielectric properties for wide range of frequencies (1 Hz to 1 MHz) at different temperatures (35, 40, 60, 80, 100 °C) were analyzed. The second harmonic conversion efficiency of the grown H2SO4 doped urea crystal was found to be 3.75 times higher than the commercially available KDP crystals. [Figure not available: see fulltext.

  10. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Technical Reports Server (NTRS)

    Wilson, Lori J.

    1994-01-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  11. Chamber Design For Slow Nucleation Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Pusey, Marc Lee

    1995-01-01

    Multiple-chamber dialysis apparatus grows protein crystals on Earth or in microgravity with minimum of intervention by technician. Use of multiple chambers provides gradation of nucleation and growth rates.

  12. (PCG) Protein Crystal Growth HIV Reverse Transcriptase

    NASA Technical Reports Server (NTRS)

    1992-01-01

    HIV Reverse Transcriptase crystals grown during the USML-1 (STS-50) mission using Commercial Refrigerator/Incubator Module (CR/IM) at 4 degrees C and the Vapor Diffusion Apparatus (VDA). Reverse transcriptase is an enzyme responsible for copying the nucleic acid genome of the AIDS virus from RNA to DNA. Studies indicated that the space-grown crystals were larger and better ordered (beyond 4 angstroms) than were comparable Earth-grown crystals. Principal Investigators were Charles Bugg and Larry DeLucas.

  13. (PCG) Protein Crystal Growth HIV Reverse Transcriptase

    NASA Technical Reports Server (NTRS)

    1992-01-01

    HIV Reverse Transcriptase crystals grown during the USML-1 (STS-50) mission using Commercial Refrigerator/Incubator Module (CR/IM) at 4 degrees C and the Vapor Diffusion Apparatus (VDA). Reverse transcriptase is an enzyme responsible for copying the nucleic acid genome of the AIDS virus from RNA to DNA. Studies indicated that the space-grown crystals were larger and better ordered (beyond 4 angstroms) than were comparable Earth-grown crystals. Principal Investigators were Charles Bugg and Larry DeLucas.

  14. A kinetic model to simulate protein crystal growth in an evaporation-based crystallization platform

    SciTech Connect

    Talreja, S.; Kenis, P; Zukoski, C

    2007-01-01

    The quality, size, and number of protein crystals grown under conditions of continuous solvent extraction are dependent on the rate of solvent extraction and the initial protein and salt concentration. An increase in the rate of solvent extraction leads to a larger number of crystals. The number of crystals decreases, however, when the experiment is started with an initial protein concentration that is closer to the solubility boundary. Here we develop a kinetic model capable of predicting changes in the number and size of protein crystals as a function of time under continuous evaporation. Moreover, this model successfully predicts the initial condition of drops that will result in gel formation. We test this model with experimental crystal growth data of hen egg white lysozyme for which crystal nucleation and growth rate parameters are known from other studies. The predicted and observed rates of crystal growth are in excellent agreement, which suggests that kinetic constants for nucleation and crystal growth for different proteins can be extracted by applying a kinetic model in combination with observations from a few evaporation-based crystallization experiments.

  15. Definition study for temperature control in advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Nyce, Thomas A.; Rosenberger, Franz; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules.

  16. Transport modes during crystal growth in a centrifuge

    NASA Technical Reports Server (NTRS)

    Arnold, William A.; Wilcox, William R.; Carlson, Frederick; Chait, Arnon; Regel', Liia L.

    1992-01-01

    Flow modes arising under average acceleration in centrifugal crystal growth, the gradient of acceleration, and the Coriolis force are investigated using a fully nonlinear three-dimensional numerical model for a centrifugal crystal growth experiment. The analysis focuses on an examination of the quasi-steady state flow modes. The importance of the gradient acceleration is determined by the value of a new nondimensional number, Ad.

  17. Definition study for temperature control in advanced protein crystal growth

    NASA Astrophysics Data System (ADS)

    Nyce, Thomas A.; Rosenberger, Franz; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-09-01

    Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules.

  18. Crystal growth from the vapor in low gravity environments

    SciTech Connect

    Santandrea, R.P.

    1985-01-01

    Effects of earth's gravity on fluids and gases are discussed. Crystal growth in microgravity has been studied since the first Skylab mission. Crystal growth from the vapor has been accomplished in space using the chemical vapor transport method, and the principles behind this method and the results obtained in space are discussed, particularly in the germanium chalcogenide systems. Chemical vapor deposition in space offer promising applications. (DLC)

  19. Kinetics of the growth of filamentary KH2PO4 crystals on a seed crystal

    NASA Astrophysics Data System (ADS)

    Titaeva, E. K.; Kuritsyn, M. S.; Noskova, A. N.; Portnov, V. N.

    2017-08-01

    At oversaturations exceeding the inert range end for face {101} due to the presence of admixture Al(NO3)3 · 9H2O, a new phase is observed during the growth of this face in the form of filamentary crystals. Some experimental dependences of the growth rate of filamentary potassium dihydrophosphate (KH2PO4) crystals on the oversaturation have been obtained at different admixture concentrations. The growth of filamentary crystals occurs by the mechanism of two-dimensional nucleation. Their formation is governed by the effect of [AlHPO4]+ complexes in the form of Cabrera and Vermilyea stoppers.

  20. Theory of the intermediate stage of crystal growth with applications to insulin crystallization

    NASA Astrophysics Data System (ADS)

    Barlow, D. A.

    2017-07-01

    A theory for the intermediate stage of crystal growth, where two defining equations one for population continuity and another for mass-balance, is used to study the kinetics of the supersaturation decay, the homogeneous nucleation rate, the linear growth rate and the final distribution of crystal sizes for the crystallization of bovine and porcine insulin from solution. The cited experimental reports suggest that the crystal linear growth rate is directly proportional to the square of the insulin concentration in solution for bovine insulin and to the cube of concentration for porcine. In a previous work, it was shown that the above mentioned system could be solved for the case where the growth rate is directly proportional to the normalized supersaturation. Here a more general solution is presented valid for cases where the growth rate is directly proportional to the normalized supersaturation raised to the power of any positive integer. The resulting expressions for the time dependent normalized supersaturation and crystal size distribution are compared with experimental reports for insulin crystallization. An approximation for the maximum crystal size at the end of the intermediate stage is derived. The results suggest that the largest crystal size in the distribution at the end of the intermediate stage is maximized when nucleation is restricted to be only homogeneous. Further, the largest size in the final distribution depends only weakly upon the initial supersaturation.

  1. Liquid nitrogen dewar for protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Gaseous Nitrogen Dewar apparatus developed by Dr. Alex McPherson of the University of California, Irvine for use aboard Mir and the International Space Station allows large quantities of protein samples to be crystallized in orbit. The specimens are contained either in plastic tubing (heat-sealed at each end). Biological samples are prepared with a precipitating agent in either a batch or liquid-liquid diffusion configuration. The samples are then flash-frozen in liquid nitrogen before crystallization can start. On orbit, the Dewar is placed in a quiet area of the station and the nitrogen slowly boils off (it is taken up by the environmental control system), allowing the proteins to thaw to begin crystallization. The Dewar is returned to Earth after one to four months on orbit, depending on Shuttle flight opportunities. The tubes then are analyzed for crystal presence and quality

  2. Growth and characterization of lead bromide crystals

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Gottlieb, M.; Henningsen, T.; Hopkins, R. H.; Mazelsky, R.; Glicksman, M. E.; Coriell, S. R.; Santoro, G. J.; Duval, W. M. B.

    1992-01-01

    Lead(II) bromide was purified by a combination of directional freezing and zone-refining methods. Differential thermal analysis of the lead bromide showed that a destructive phase transformation occurs below the melting temperature. This transformation causes extensive cracking, making it very difficult to grow a large single crystal. Energy of phase transformation for pure lead bromide was determined to be 24.67 cal/g. To circumvent this limitation, crystals were doped by silver bromide which decreased the energy of phase transformation. The addition of silver helped in achieving the size, but enhanced the inhomogeneity in the crystal. The acoustic attenuation constant was almost identical for the pure and doped (below 3000 ppm) crystals.

  3. Liquid nitrogen dewar for protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Gaseous Nitrogen Dewar apparatus developed by Dr. Alex McPherson of the University of California, Irvine for use aboard Mir and the International Space Station allows large quantities of protein samples to be crystallized in orbit. The specimens are contained either in plastic tubing (heat-sealed at each end). Biological samples are prepared with a precipitating agent in either a batch or liquid-liquid diffusion configuration. The samples are then flash-frozen in liquid nitrogen before crystallization can start. On orbit, the Dewar is placed in a quiet area of the station and the nitrogen slowly boils off (it is taken up by the environmental control system), allowing the proteins to thaw to begin crystallization. The Dewar is returned to Earth after one to four months on orbit, depending on Shuttle flight opportunities. The tubes then are analyzed for crystal presence and quality

  4. Growth and characterization of lead bromide crystals

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Gottlieb, M.; Henningsen, T.; Hopkins, R. H.; Mazelsky, R.; Glicksman, M. E.; Coriell, S. R.; Santoro, G. J.; Duval, W. M. B.

    1992-01-01

    Lead(II) bromide was purified by a combination of directional freezing and zone-refining methods. Differential thermal analysis of the lead bromide showed that a destructive phase transformation occurs below the melting temperature. This transformation causes extensive cracking, making it very difficult to grow a large single crystal. Energy of phase transformation for pure lead bromide was determined to be 24.67 cal/g. To circumvent this limitation, crystals were doped by silver bromide which decreased the energy of phase transformation. The addition of silver helped in achieving the size, but enhanced the inhomogeneity in the crystal. The acoustic attenuation constant was almost identical for the pure and doped (below 3000 ppm) crystals.

  5. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1992-01-01

    A study is presented of the crystallization of isocitrate lyase (ICL) and the influence of the lack of thermal solutal convection in microgravity on the morphology of ICL crystals is discussed. The latest results of studies with thermonucleation are presented. These include the nucleation of a protein with retrograde solubility and an unknown solubility curve. A new design for a more microgravity compatible thermonuclear is presented.

  6. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE PAGES

    Godinho, Jose R. A.; Stack, Andrew G.

    2015-03-30

    Here we investigate the growth kinetics and morphology of barite (BaSO4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overall growth ratemore » of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m-2∙h-1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl2, respectively.« less

  7. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    SciTech Connect

    Godinho, Jose R. A.; Stack, Andrew G.

    2015-03-30

    Here we investigate the growth kinetics and morphology of barite (BaSO4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overall growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m-2∙h-1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl2, respectively.

  8. Follow up on the crystal growth experiments of the LDEF

    NASA Technical Reports Server (NTRS)

    Nielsen, K. F.; Lind, M. D.

    1993-01-01

    The results of the 4 solution growth experiments on the LDEF have been published elsewhere. Both the crystals of CaCO3, which were large and well shaped, and the much smaller TTF-TCNQ crystals showed unusual morphological behavior. The follow up on these experiments was begun in 1981, when ESA initiated a 'Concept Definition Study' on a large, 150 kg, Solution Growth Facility (SGF) to be included in the payload of EURECA-1, the European Retrievable Carrier. This carrier was a continuation of the European Spacelab and at that time planned for launch in 1987. The long delay of the LDEF retrieval and of subsequent missions brought about reflections both on the concept of crystal growth in space and on the choice of crystallization materials that had been made for the LDEF. Already before the LDEF retrieval, research on TTF-TCNQ had been stopped, and a planned growth experiment with TTF-TCNQ on the SGF/EURECA had been cancelled. The target of the SGF investigation is now more fundamental in nature. None of the crystals to be grown here are, like TTF-TCNQ, in particular demand by science or industry, and the crystals only serve the purpose of model crystals. The real purpose of the investigation is to study the growth behavior. One of the experiments, the Soret Coefficient Measurement experiment is not growing crystals at all, but has it as its sole purpose to obtain accurate information on thermal diffusion, a process of importance in crystal growth from solution.

  9. Crystal quality and differential crystal-growth behaviour of three proteins crystallized in gel at high hydrostatic pressure.

    PubMed

    Kadri, A; Lorber, B; Charron, C; Robert, M-C; Capelle, B; Damak, M; Jenner, G; Giegé, R

    2005-06-01

    Pressure is a non-invasive physical parameter that can be used to control and influence protein crystallization. It is also found that protein crystals of superior quality can be produced in gel. Here, a novel crystallization strategy combining hydrostatic pressure and agarose gel is described. Comparative experiments were conducted on hen and turkey egg-white lysozymes and the plant protein thaumatin. Crystals could be produced under up to 75-100 MPa (lysozymes) and 250 MPa (thaumatin). Several pressure-dependent parameters were determined, which included solubility and supersaturation of the proteins, number, size and morphology of the crystals, and the crystallization volume. Exploration of three-dimensional phase diagrams in which pH and pressure varied identified growth conditions where crystals had largest size and best morphology. As a general trend, nucleation and crystal-growth kinetics are altered and nucleation is always enhanced under pressure. Further, solubility of the lysozymes increases with pressure while that of thaumatin decreases. Likewise, changes in crystallization volumes at high and atmospheric pressure are opposite, being positive for the lysozymes and negative for thaumatin. Crystal quality was estimated by analysis of Bragg reflection profiles and X-ray topographs. While the quality of lysozyme crystals deteriorates as pressure increases, that of thaumatin crystals improves, with more homogeneous crystal morphology suggesting that pressure selectively dissociates ill-formed nuclei. Analysis of the thaumatin structure reveals a less hydrated solvent shell around the protein when pressure increases, with approximately 20% less ordered water molecules in crystals grown at 150 MPa when compared with those grown at atmospheric pressure (0.1 MPa). Noticeably, the altered water distribution is seen in depressurized crystals, indicating that pressure triggers a stable structural alteration on the protein surface while its polypeptide backbone

  10. Imaging System For Measuring Macromolecule Crystal Growth Rates in Microgravity

    NASA Technical Reports Server (NTRS)

    Corder, Eric L.; Briscoe, Jeri

    2004-01-01

    In order to determine how macromolecule crystal quality improvement in microgravity is related to crystal growth characteristics, a team of scientists and engineers at NASA's Marshal Space Flight Center (MSFC) developed flight hardware capable of measuring the crystal growth rates of a population of crystals growing under the same conditions. As crystal growth rate is defined as the change or delta in a defined dimension or length (L) of crystal over time, the hardware was named Delta-L. Delta-L consists of three sub assemblies: a fluid unit including a temperature-controlled growth cell, an imaging unit, and a control unit (consisting of a Data Acquisition and Control Unit (DACU), and a thermal control unit). Delta-L will be used in connection with the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) inside the Microgravity Science Glovebox (MSG), onboard the International Space Station. This paper will describe the Delta-L imaging system. The Delta-L imaging system was designed to locate, resolve, and capture images of up to 10 individual crystals ranging in size from 10 to 500 microns with a point-to-point accuracy of +/- 2.0 microns within a quartz growth cell observation area of 20 mm x 10 mm x 1 mm. The optical imaging system is comprised of a video microscope camera mounted on computer controlled translation stages. The 3-axis translation stages and control units provide crewmembers the ability to search throughout the growth cell observation area for crystals forming in size of approximately 10 microns. Once the crewmember has selected ten crystals of interest, the growth of these crystals is tracked until the size reaches approximately 500 microns. In order to resolve these crystals an optical system with a magnification of 10X was designed. A black and white NTSC camera was utilized with a 20X microscope objective and a 0.5X custom designed relay lens with an inline light to meet the magnification requirement. The design allows a 500 pm

  11. Influence of Polymers on the Crystal Growth Rate of Felodipine: Correlating Adsorbed Polymer Surface Coverage to Solution Crystal Growth Inhibition.

    PubMed

    Schram, Caitlin J; Taylor, Lynne S; Beaudoin, Stephen P

    2015-10-20

    The bioavailability of orally administered drugs that exhibit poor aqueous solubility can be enhanced with the use of supersaturating dosage forms. Stabilization of these forms by preventing or inhibiting crystallization in solution is an important area of study. Polymers can be used to stabilize supersaturated systems; however, the properties that impact their effectiveness as crystal growth rate inhibitors are not yet fully understood. In this study, the impact of various polymers on the crystal growth rate of felodipine and the conformation of these polymers adsorbed to crystalline felodipine was investigated in order to gain a mechanistic understanding of crystal growth inhibition. It was determined that polymer hydrophobicity impacted polymer adsorption as well as adsorbed polymer conformation. Polymer conformation impacts its surface coverage, which was shown to directly correlate to the polymer's effectiveness as a growth rate inhibitor. By modeling this correlation, it is possible to predict polymer effectiveness given the surface coverage of the polymer.

  12. Growth of Sb-Bi gradient single crystals

    SciTech Connect

    Kozhemyakin, G. N. Lutskiy, D. V.; Rom, M. A.; Mateychenko, P. V.

    2008-12-15

    The growth conditions and structural quality of Sb-Bi gradient single crystals with Bi content from 2 to 18 at %, grown by the Czochralski method with solid phase feed, are investigated. Bi distribution in the crystals along their pulling direction are studied by electron probe microanalysis and the change in the interplanar spacing is analyzed by double-crystal X-ray diffraction. It is established that the pulling rate and feed mass affect the Bi distribution in Sb-Bi single crystals.

  13. Growth of 450 mm diameter semiconductor grade silicon crystals

    NASA Astrophysics Data System (ADS)

    Lu, Zheng; Kimbel, Steven

    2011-03-01

    Research and development of the next generation 450 mm semiconductor grade silicon crystal and related technology have been carried out in MEMC following the company's philosophy to stay one generation ahead on research and development. The first 450 mm dislocation free crystal was grown in early 2009 and the first 450 mm semiconductor wafer was produced shortly after. General challenges in crystal growth process, puller, and hot zone designs, as well as control, automation, and handling are discussed in this paper. General considerations on working with customers and equipment manufacturers on fundamental crystal and wafer quality characteristics are also discussed.

  14. Skylab experiments on semiconductors and alkali halides. [single crystal growth

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A.

    1974-01-01

    The space processing experiments performed during the Skylab missions included one on single crystal growth of germanium selenide and telluride, one on pure and doped germanium crystals, two on pure and doped indium antimonide, one on gallium-indium-antimony systems, and one on a sodium chloride-sodium fluoride eutectic. In each experiment, three ampoules of sample were processed in the multipurpose electric furnace within the Skylab Materials Processing Facility. All were successful in varying degrees and gave important information about crystal growth removed from the effects of earth surface gravity.

  15. Growth and characterization of CdS crystals

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Lehoczky, S. L.; Szofran, F. R.

    1990-01-01

    A growth method for the physical vapor transport of compound semiconductors in closed ampoules is described. With the unique techniques applied in the heat treatment of the starting materials and the temperature profiles provided by the three-zone translational furnace, large crystals of CdS have been grown successfully by the method at lower temperatures than previously used. Both unseeded and seeded growth have been investigated. The CdS crystals were examined using optical and scanning electron microscopies (SEM) to study the microstructure and the dislocation etch-pits. The crystals were further characterized by infrared (IR) and ultraviolet (UV) transmission measurements.

  16. Crocodile: An automated apparatus for organic crystal growth from solution

    NASA Astrophysics Data System (ADS)

    Gonzalez, F.; Cunisse, M.; Perigaud, A.

    CROCODILE ( CROissance de Cristaux Organiques par DIffusion Liquide dans l' Espace) is a space instrument dedicated to crystal growth from solution. The selected material N (4 nitrophenyl) (L) prolinol (NPP) is the result of studies on organic crystal in the frame of an extended program initiated by CNES for many years. The apparatus was flown aboard PHOTON, an automatic satellite, in April 1990, for a flight duration of more than 15 days. This paper describes the instrument design, with emphasis on specific and original technology well adapted to crystal growth from solution, and extendable to any space experiment on fluids. Preliminary details of the flight campaign will also be discussed.

  17. Crystal growth of pyrochlore rare-earth stannates

    NASA Astrophysics Data System (ADS)

    Prabhakaran, D.; Wang, S.; Boothroyd, A. T.

    2017-06-01

    We report crystal growth of several rare-earth stannates RE2Sn2O7 (RE=Pr, Tb, Ho, Dy, Yb and Lu) using the flux technique. Different combinations of flux were tried, and a Na2B4O7-NaF (1.2:1) mixture was found to be suitable for crystal growth. X-ray diffraction and thermal characterisation data are presented, as well as some initial measurements of magnetic and thermodynamic properties of the crystals. Little effect was observed with changing oxygen content by Sc substitution for Sn.

  18. Dendritic Growth of Hard-Sphere Crystals. Experiment 34

    NASA Technical Reports Server (NTRS)

    Russel, W. B.; Chaikin, P. M.; Zhu, Ji-Xiang; Meyer, W. V.; Rogers, R.

    1998-01-01

    Recent observations of the disorder-order transition for colloidal hard spheres under microgravity revealed dendritic crystallites roughly 1-2 mm in size for samples in the coexistence region of the phase diagram. Order-of-magnitude estimates rationalize the absence of large or dendritic crystals under normal gravity and their stability to annealing in microgravity. A linear stability analysis of the Ackerson and Schaetzel model for crystallization of hard spheres establishes the domain of instability for diffusion-limited growth at small supersaturations. The relationship between hard-sphere and molecular crystal growth is established and exploited to relate the predicted linear instability to the well-developed dendrites observed.

  19. CROCODILE: an automated apparatus for organic crystal growth from solution.

    PubMed

    Gonzalez, F; Cunisse, M; Perigaud, A

    1991-12-01

    CROCODILE (CROissance de Cristaux Organiques par DIffusion Liquide dans l'Espace) is a space instrument dedicated to crystal growth from solution. The selected material N (4 nitrophenyl) (L) prolinol (NPP) is the result of studies on organic crystal in the frame of an extended program initiated by CNES for many years. The apparatus was flown aboard PHOTON, an automatic satellite, in April 1990, for a flight duration of more than 15 days. This paper describes the instrument design, with emphasis on specific and original technology well adapted to crystal growth from solution, and extendible to any space experiment on fluids. Preliminary details of the flight campaign will also be discussed.

  20. Analysis of Monomer Aggregation and Crystal Growth Rates of Lysozyme

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan

    1996-01-01

    This project was originally conceived to analyze the extensive data of tetragonal lysozyme crystal growth rates collected at NASA/MSFC by Dr. Marc L. Pusey's research group. At that time the lack of analysis of the growth rates was hindering progress in understanding the growth mechanism of tetragonal lysozyme and other protein crystals. After the project was initiated our initial analysis revealed unexpected complexities in the growth rate behavior. This resulted in an expansion in the scope of the project to include a comprehensive investigation of the growth mechanisms of tetragonal lysozyme crystals. A discussion of this research is included as well a list of presentations and publications resulting from the research. This project contributed significantly toward the education of several students and fostered extensive collaborations between investigators.

  1. Growth kinematics of the regeneration surfaces of crystals

    NASA Astrophysics Data System (ADS)

    Gavryushkin, P. N.; Thomas, V. G.

    2009-03-01

    A formula for the propagation velocity of the regeneration surface front is derived under the assumption of equal growth rates of the polyhedral crystal faces and the corresponding faces forming subindividuals of the regeneration surface. It is shown that both sharp minima (increase of the face) and sharp maxima (decrease of the face) can correspond to faces in the growth rate diagram. An experimental diagram of the growth rates of the [110] zone of potash alum crystals is constructed which confirms the analytical conclusions. It is established that the regeneration surface growth rate decreases with time. This effect is caused by the disappearance of rapidly growing faces from subindividual faceting. The faceting of a regenerating crystal changes in the direction of successive disappearance of sharp maxima in the growth rate diagram.

  2. Advanced protein crystal growth flight hardware for the Space Station

    NASA Technical Reports Server (NTRS)

    Herrmann, Frederick T.

    1988-01-01

    The operational environment of the Space Station will differ considerably from the previous short term missions such as the Spacelabs. Limited crew availability combined with the near continuous operation of Space Station facilities will require a high degree of facility automation. This paper will discuss current efforts to develop automated flight hardware for advanced protein crystal growth on the Space Station. Particular areas discussed will be the automated monitoring of key growth parameters for vapor diffusion growth and proposed mechanisms for control of these parameters. A history of protein crystal growth efforts will be presented in addition to the rationale and need for improved protein crystals for X-ray diffraction. The facility will be capable of simultaneously processing several hundred protein samples at various temperatures, pH's, concentrations etc., and provide allowances for real time variance of growth parameters.

  3. Thermal effects in the anomalous growth of helium crystals

    SciTech Connect

    Tsymbalenko, V. L.

    2006-12-15

    Variations in pressure and thermal response have been synchronously measured beginning from the moment of nucleation of a helium crystal, at the onset of anomalously fast growth and during this growth, and in the course of relaxation to the normal kinetics. The measurements were performed at temperatures within 0.4-0.7 K in a range of pressures from the boundary of the anomalous growth region up to an overpressure of {delta}P {approx} 25 mbar. A superconductor bolometer with an rms noise of about 10 {mu}K was used as the fast-response thermal sensor. Temperature variations related to changes in the pressure and the heat dissipation during crystal growth were observed. The upper boundary of possible variations in the internal energy of the crystal is estimated as 1-20% of the excess energy of the system prior to the onset of anomalous growth.

  4. Fluid mechanics in crystal growth - The 1982 Freeman scholar lecture

    NASA Technical Reports Server (NTRS)

    Ostrach, S.

    1983-01-01

    An attempt is made to unify the current state of knowledge in crystal growth techniques and fluid mechanics. After identifying important fluid dynamic problems for such representative crystal growth processes as closed tube vapor transport, open reactor vapor deposition, and the Czochralski and floating zone melt growth techniques, research results obtained to date are presented. It is noted that the major effort to date has been directed to the description of the nature and extent of bulk transport under realistic conditions, where bulk flow determines the heat and solute transport which strongly influence the temperature and concentration fields in the vicinity of the growth interface. Proper treatment of near field, or interface, problems cannot be given until the far field, or global flow, involved in a given crystal growth technique has been adequately described.

  5. Advanced protein crystal growth flight hardware for the Space Station

    NASA Technical Reports Server (NTRS)

    Herrmann, Frederick T.

    1988-01-01

    The operational environment of the Space Station will differ considerably from the previous short term missions such as the Spacelabs. Limited crew availability combined with the near continuous operation of Space Station facilities will require a high degree of facility automation. This paper will discuss current efforts to develop automated flight hardware for advanced protein crystal growth on the Space Station. Particular areas discussed will be the automated monitoring of key growth parameters for vapor diffusion growth and proposed mechanisms for control of these parameters. A history of protein crystal growth efforts will be presented in addition to the rationale and need for improved protein crystals for X-ray diffraction. The facility will be capable of simultaneously processing several hundred protein samples at various temperatures, pH's, concentrations etc., and provide allowances for real time variance of growth parameters.

  6. Fluid mechanics in crystal growth - The 1982 Freeman scholar lecture

    NASA Technical Reports Server (NTRS)

    Ostrach, S.

    1983-01-01

    An attempt is made to unify the current state of knowledge in crystal growth techniques and fluid mechanics. After identifying important fluid dynamic problems for such representative crystal growth processes as closed tube vapor transport, open reactor vapor deposition, and the Czochralski and floating zone melt growth techniques, research results obtained to date are presented. It is noted that the major effort to date has been directed to the description of the nature and extent of bulk transport under realistic conditions, where bulk flow determines the heat and solute transport which strongly influence the temperature and concentration fields in the vicinity of the growth interface. Proper treatment of near field, or interface, problems cannot be given until the far field, or global flow, involved in a given crystal growth technique has been adequately described.

  7. Growth and characterization of diammonium copper disulphate hexahydrate single crystal

    SciTech Connect

    Siva Sankari, R.; Perumal, Rajesh Narayana

    2014-03-01

    Graphical abstract: Diammonium copper disulphate hexahydrate (DACS) is one of the most promising inorganic dielectric crystals with exceptional mechanical properties. Good quality crystals of DACS were grown by using solution method in a period of 30 days. The grown crystals were subjected to single crystal X-ray diffraction analysis in order to establish their crystalline nature. Thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis were performed for the crystal. Several solid state physical parameters have been determined for the grown crystals. The dielectric constant and the dielectric loss and AC conductivity of the grown crystal were studied as a function of frequency and temperature has been calculated and plotted. - Highlights: • Diammonium copper disulphate is grown for the first time and CCDC number obtained. • Thermal analysis is done to see the stability range of the crystals. • Band gap and UV cut off wavelength of the crystal are determined to be 2.4 eV and 472.86 nm, respectively. • Dielectric constant, dielectric loss and AC conductivity are plotted as a function of applied field. - Abstract: Diammonium copper disulphate hexahydrate is one of the most promising inorganic crystals with exceptional dielectric properties. A good quality crystal was harvested in a 30-day period using solution growth method. The grown crystal was subjected to various characterization techniques like single crystal X-ray diffraction analysis, thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis. Unit cell dimensions of the grown crystal have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Thermal stability of the samples was checked by TG/DTA studies. Band gap of the crystal was calculated. The dielectric constant and dielectric loss were studied as a function of frequency of the applied field. AC conductivity was plotted as a function

  8. Protein crystal growth and the International Space Station

    NASA Technical Reports Server (NTRS)

    DeLucas, L. J.; Moore, K. M.; Long, M. M.

    1999-01-01

    Protein structural information plays a key role in understanding biological structure-function relationships and in the development of new pharmaceuticals for both chronic and infectious diseases. The Center for Macromolecular Crystallography (CMC) has devoted considerable effort studying the fundamental processes involved in macromolecular crystal growth both in a 1-g and microgravity environment. Results from experiments performed on more than 35 U.S. space shuttle flights have clearly indicated that microgravity can provide a beneficial environment for macromolecular crystal growth. This research has led to the development of a new generation of pharmaceuticals that are currently in preclinical or clinical trials for diseases such as cutaneous T-cell lymphoma, psoriasis, rheumatoid arthritis, AIDS, influenza, stroke and other cardiovascular complications. The International Space Station (ISS) provides an opportunity to have complete crystallographic capability on orbit, which was previously not possible with the space shuttle orbiter. As envisioned, the x-ray Crystallography Facility (XCF) will be a complete facility for growing protein crystals; selecting, harvesting, and mounting sample crystals for x-ray diffraction; cryo-freezing mounted crystals if necessary; performing x-ray diffraction studies; and downlinking the data for use by crystallographers on the ground. Other advantages of such a facility include crystal characterization so that iterations in the crystal growth conditions can be made, thereby optimizing the final crystals produced in a three month interval on the ISS.

  9. Protein crystal growth and the International Space Station

    NASA Technical Reports Server (NTRS)

    DeLucas, L. J.; Moore, K. M.; Long, M. M.

    1999-01-01

    Protein structural information plays a key role in understanding biological structure-function relationships and in the development of new pharmaceuticals for both chronic and infectious diseases. The Center for Macromolecular Crystallography (CMC) has devoted considerable effort studying the fundamental processes involved in macromolecular crystal growth both in a 1-g and microgravity environment. Results from experiments performed on more than 35 U.S. space shuttle flights have clearly indicated that microgravity can provide a beneficial environment for macromolecular crystal growth. This research has led to the development of a new generation of pharmaceuticals that are currently in preclinical or clinical trials for diseases such as cutaneous T-cell lymphoma, psoriasis, rheumatoid arthritis, AIDS, influenza, stroke and other cardiovascular complications. The International Space Station (ISS) provides an opportunity to have complete crystallographic capability on orbit, which was previously not possible with the space shuttle orbiter. As envisioned, the x-ray Crystallography Facility (XCF) will be a complete facility for growing protein crystals; selecting, harvesting, and mounting sample crystals for x-ray diffraction; cryo-freezing mounted crystals if necessary; performing x-ray diffraction studies; and downlinking the data for use by crystallographers on the ground. Other advantages of such a facility include crystal characterization so that iterations in the crystal growth conditions can be made, thereby optimizing the final crystals produced in a three month interval on the ISS.

  10. Effects of Solution Stirring on Protein Crystal Growth

    NASA Astrophysics Data System (ADS)

    Yaoi, Mari; Aadachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

    2004-05-01

    We report the influence of solution stirring on the growth of hen egg white lysozyme crystals. Solution stirring rate was controlled by varying the rotation speed of a rotary shaker. A range of precipitation agent (sodium chloride) concentrations was also investigated. The time required for crystal nucleation to occur was observed to be much greater in stirred samples than in unstirred samples. Solution stirring resulted in a reduced number of crystals (at sodium chloride concentrations from 6 to 9%). These crystals were larger and of a higher quality. However, the time required for nucleation to occur was reduced by gentle stirring (25 and 50 rpm) in a 12.5% sodium chloride concentration solution, suggesting that stirring can stimulate nucleation. These results indicate that the optimization of solution stirring rates is a useful technique for controlling protein crystal growth.

  11. Hydrothermal crystal growth of the potassium niobate and potassium tantalate family of crystals

    SciTech Connect

    Mann, Matthew; Jackson, Summer; Kolis, Joseph

    2010-11-15

    Single crystals of KNbO{sub 3} (KN), KTaO{sub 3} (KT), and KTa{sub 1-x}Nb{sub x}O{sub 3} (x=0.44, KTN) have been prepared by hydrothermal synthesis in highly concentrated KOH mineralizer solutions. The traditional problems of inhomogeneity, non-stoichiometry, crystal striations and crystal cracking resulting from phase transitions associated with this family compounds are minimized by the hydrothermal crystal growth technique. Crystals of good optical quality with only minor amounts of metal ion reduction can be grown this way. Reactions were also designed to provide homogeneous distribution of tantalum and niobium metal centers throughout the KTN crystal lattice to maximize its electro-optic properties. Synthesis was performed at relatively low (500-660 {sup o}C) temperatures in comparison to the flux and Czochralski techniques. This work represents the largest crystals of this family of compounds grown by hydrothermal methods to date. -- Graphical Abstract:

  12. The growth and dissolution of sodium perborate crystals in a fluidized bed crystallizer

    NASA Astrophysics Data System (ADS)

    Chianese, A.; Condò, A.; Mazzarotta, B.

    1989-09-01

    The growth and dissolution rates of sodium perborate (SPB) crystals in aqueous solutions were measured by means of a fluidized bed apparatus. The influence on the overall growth rate of the concentration of sodium metaborate (SMB) in aqueous solutions, in the range 0-4.7 wt%, of the temperature, between 18 and 28° C, and of the crystal size, in the range 0.27-0.72 mm was investigated. By determining properly the surface-volume shape factor of the crystals, markedly dendritic, the independence of the overall growth rate on the crystal size results, whereas both the dissolution and growth phenomenon are greatly affected by the presence of SMB in solution.

  13. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1983-01-01

    GaAs device technology has recently reached a new phase of rapid advancement, made possible by the improvement of the quality of GaAs bulk crystals. At the same time, the transition to the next generation of GaAs integrated circuits and optoelectronic systems for commercial and government applications hinges on new quantum steps in three interrelated areas: crystal growth, device processing and device-related properties and phenomena. Special emphasis is placed on the establishment of quantitative relationships among crystal growth parameters-material properties-electronic properties and device applications. The overall program combines studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and investigation of electronic properties and phenomena controlling device applications and device performance.

  14. Growth rate enhancement of potash alum crystals by microcrystals

    NASA Astrophysics Data System (ADS)

    Matsuoka, Masakuni; Kamada, Toyohiro; Takiyama, Hiroshi

    1996-01-01

    During the steady growth of a single crystal of potash alum fixed in a clear supersaturated solution, secondary nucleation was intentionally induced by adding ground potash alum crystals and the resulting changes in the growth rate and the solution concentration were measured. The growth rates after the nucleation were found to abruptly increase by a factor of up to 3, and to gradually return to the steady growth rates or to some constant values. At the same time, the solution concentration started to decrease at the moment of the nucleation. As a measure of the growth rate increase the enhancement coefficient, ɛ 0, was introduced which was defined as the ratio of the growth rates in the presence to the absence of microcrystals at the same supersaturation. The values of ɛ 0 were found to be almost independent of the growth rate in the absence of microcrystals, i.e. the solution supersaturation.

  15. Modeling the Growth Rates of Tetragonal Lysozyme Crystal Faces

    NASA Technical Reports Server (NTRS)

    Li, Meirong; Nadarajah, Arunan; Pusey, Marc L.

    1998-01-01

    The measured macroscopic growth rates of the (110) and (101) faces of tetragonal lysozyme show an unexpectedly complex dependence on the supersaturation. The growth rates decay asymptotically to zero when the supersaturation is lowered to zero and increase rapidly when the supersaturation is increased. When supersaturations are increased still further the growth rates attain a maximum before starting to decrease. However, growth of these crystals is known to proceed by the classical dislocation and 2D nucleation growth mechanisms. This anomaly can be explained if growth is assumed to occur not by monomer units but by lysozyme aggregates. Analysis of the molecular packing of these crystals revealed that they were constructed of strongly bonded 4(sub 3) helices, while weaker bonds were responsible for binding the helices to each other. It follows that during crystal growth the stronger bonds are formed before the weaker ones. Thus, the growth of these crystals could be viewed as a two step process: aggregate growth units corresponding to the 4(sub 3) helix are first formed in the bulk solution by stronger intermolecular bonds and then attached to the crystal face by weaker bonds on dislocation hillocks or 2D islands. This will lead to a distribution of aggregates in the solution with monomers and lower order aggregates being predominant at low supersaturations and higher order aggregates being predominant at high supersaturations. If the crystal grows mostly by higher order aggregates, such as tetramers and octamers, it would explain the anomalous dependence of the growth rates on the supersaturation. Besides the analysis of molecular packing, a comprehensive analysis of the measured (110) and (101) growth rates was also undertaken in this study. The distribution of aggregates in lysozyme nutrient solutions at various solution conditions were determined from reversible aggregation reactions at equilibrium. The supersaturation was defined for each aggregate species

  16. Space-based crystal growth and thermocapillary flow

    NASA Technical Reports Server (NTRS)

    Shen, Yong-Hong

    1994-01-01

    The demand for larger crystals is increasing especially in applications associated with the electronic industry, where large and pure electronic crystals (notably silicon) are the essential material to make high-performance computer chips. Crystal growth under weightless conditions has been considered an ideal way to produce bigger and hopefully better crystals. One technique which may benefit from a microgravity environment is the float-zone crystal-growth process, a containerless method for producing high-quality electronic material. In this method, a rod of material to be refined is moved slowly through a heating device which melts a portion of it. Ideally, as the melt resolidifies it does so as a single crystal which is then used as substrate for building microelectronic devices. The possibility of contamination by contact with other material is reduced because of the 'float' configuration. However, since the weight of the material contained in the zone is supported by the surface-tension force, the size of the resulting crystal is limited in Earth-based productions; in fact, some materials have properties which prevent this process from being used to manufacture crystals of reasonable size. Consequently, there has been a great deal of interest in exploiting the microgravity environment of space to grow larger size crystals of electronic material using the float-zone method. In addition to allowing larger crystals to be grown, a microgravity environment would also significantly reduce the magnitude of convection induced by buoyancy forces during the melting state. This type of convection was once thought to be at least partially responsible for the presence of undesirable nonuniformities--called striations--in material properties observed in float-zone material. However, past experiments on crystal growth under weightless conditions found that even with the absence of gravity, the float-zone method sometimes still results striations. It is believed that another

  17. Czochralski growth of gallium indium antimonide alloy crystals

    SciTech Connect

    Tsaur, S.C.

    1998-02-01

    Attempts were made to grow alloy crystals of Ga{sub 1{minus}x}In{sub x}Sb by the conventional Czochralski process. A transparent furnace was used, with hydrogen purging through the chamber during crystal growth. Single crystal seeds up to about 2 to 5 mole% InSb were grown from seeds of 1 to 2 mole% InSb, which were grown from essentially pure GaSb seeds of the [111] direction. Single crystals were grown with InSb rising from about 2 to 6 mole% at the seed ends to about 14 to 23 mole% InSb at the finish ends. A floating-crucible technique that had been effective in reducing segregation in doped crystals, was used to reduce segregation in Czochralski growth of alloy crystals of Ga{sub 1{minus}x}In{sub x}Sb. Crystals close to the targeted composition of 1 mole% InSb were grown. However, difficulties were encountered in reaching higher targeted InSb concentrations. Crystals about 2 mole% were grown when 4 mole% was targeted. It was observed that mixing occurred between the melts rendering the compositions of the melts; and, hence, the resultant crystal unpredictable. The higher density of the growth melt than that of the replenishing melt could have triggered thermosolutal convection to cause such mixing. It was also observed that the floating crucible stuck to the outer crucible when the liquidus temperature of the replenishing melt was significantly higher than that of the growth melt. The homogeneous Ga{sub 1{minus}x}In{sub x}Sb single crystals were grown successfully by a pressure-differential technique. By separating a quartz tube into an upper chamber for crystal growth and a lower chamber for replenishing. The melts were connected by a capillary tube to suppress mixing between them. A constant pressure differential was maintained between the chambers to keep the growth melt up in the growth chamber. The method was first tested with a low temperature alloy Bi{sub 1{minus}x}Sb{sub x}. Single crystals of Ga{sub 1{minus}x}In{sub x}Sb were grown with uniform

  18. Crystal Growth and Characterization of Bil3

    NASA Technical Reports Server (NTRS)

    Hayes, Julia; Chen, Kuo-Tong; Burger, Arnold

    1997-01-01

    Bismuth tri-iodide (BiI3) have been grown by physical vapor transport (PVT), and by the Bridgman (melt) method. These crystals along with pure and stoichiometric BiI3 powder have been investigated by differential scanning calorimetry (DSC). The DSC results show that pure BiI3 powder has no phase transition and melts around 408 C. While we found no evidence for the high temperature dissociation of BiI3, the DSC measurements show that crystals grown from melt method contain a significantly large amount of Bi-rich phases than crystals grown from PVT method, as indicated by phase transition detected at 270, 285, 298 and 336 C.

  19. High Thermal Conducting Boron Arsenide: Crystal Growth and Characterization

    NASA Astrophysics Data System (ADS)

    Lv, Bing; Lan, Yucheng; Wang, Xiqu; Zhang, Qian; Hu, Yongjie; Jacobson, Allan J.; Broido, David; Chen, Gang; Ren, Zhifeng; Chu, Ching-Wu

    2015-03-01

    Intrigued by recent calculations [Phys. Rev. Lett. 111, 025901(2013)] which predict a remarkably high thermal conductivity of ~ 2,000 Wm-1K-1 , comparable to that of diamond, in cubic boron arsenide (BAs) crystals, we have succeeded in synthesizing single crystals of BAs with a zinc blende structure and lattice parameters of a = 4.7830(7) Å characterized by X-ray single crystal diffraction and transmission electron microscopy (TEM). A relatively high thermal conductivity is obtained but still smaller than the predicted value. We attribute the difference of thermal conductivity value to the defect scattering associated with crystal twinning and As vacancies, verified both from experimental evidence and theoretical calculations. The predicted super-thermal-conductivity may be achieved in BAs single crystals with further improvement of crystal growth by removing the defects. Lawrence Berkeley National Laboratory, Berkeley California 94720.

  20. Growth of crystals for synchrotron radiation Mössbauer investigation

    NASA Astrophysics Data System (ADS)

    Kotrbova, M.; Hejduk, J.; Malnev, V. V.; Seleznev, V. N.; Yagupov, S. V.; Andronova, N. V.; Chechin, A. I.; Mikhailov, A. Yu.

    1991-10-01

    Iron borate crystals (FeBO 3) were flux grown at the Physical Institute (Prague) and at Simferopol State University. During the crystal growth procedure the temperature regime was held constant to 0.1°C accuracy. Crystals were investigated with the help of a double crystal X-ray diffractometer DRON-2 (SiO 2(30 overline33)FeBO 3(444), MoK α 1 radiation). The rocking curve measurements were carried out in a constant magnetic field of 1kG. Most of the crystal surface has a rocking curve 10″-15″ wide. Some parts of some crystals with the area 1 × 1 mm 2 have rocking curves of 3″-4″ width and can be considered ideal.

  1. A novel method for measurement of crystal growth rate

    NASA Astrophysics Data System (ADS)

    Kim, Do Yeon; Yang, Dae Ryook

    2013-06-01

    A new method for measurement of crystal growth rate is proposed, in an attempt to make the measuring of growth rate more convenient than the existing methods. In this newly proposed method, the point of nucleation under a constant cooling rate condition was measured as changing the amount of seeds. The growth kinetics parameters were then estimated using the experimental data to match the points of nucleation. Experiments were performed with potash alum in the water system and growth kinetic parameters were estimated. Compared with existing results, the proposed method showed tolerable discrepancy in the growth kinetic parameters. The proposed method can be an alternative technique for measurement of growth rate.

  2. The dependence of the measurement of crystal growth on the state of crystal aggregation: implications for urolithiasis research

    NASA Astrophysics Data System (ADS)

    Ryall, Rosemary L.; Ryall, Richard G.; Doyle, Ian R.; Marshall, Villis R.

    1993-10-01

    Two different methods for the analysis of data produced by a Coulter counter were used to obtain rates of calcium oxalate crystal growth and aggregation occuring in a seeded crystallization system: (1) crystal growth was expressed as the increase in crystal volume, and aggregation as the decrease in crystal numbers observed by the Coulter counter; (2) crystal growth was expressed as the linear increase in crystal diameter, calculated using a computer model which, when calculating extents of aggregation, takes account of any crystals moving into and out of the field of view of the instrument. Data from experiments using different concentrations of seed crystal were analysed by these two methods. Expressing crystal growth as the increase in volume showed growth rates to be directly proportional to the total surface of seed crystals present, while expressing the same growth as the linear increase in crystal diameter showed growth rates to be independent of this variable. This difference in expression of experimental data became important when urine was included in the experimental system, and varying degrees of crystal aggregation affected the amount of surface area available for crystal growth. Expressing growth as the increase in crystal volume, and aggregation as the uncorrected decrease in crystal number, resulted in overestimation of inhibitory activities of urine towards crystal growth and aggregation by 60% and 40%, respectively. Calculation of crystal growth rates from the linear increase in crystal diameter, and aggregation rates from data corrected for the crystals moving through the field of view of the particle counter, are essential for the valid interpretation of such data.

  3. Commercial Protein Crystal Growth: Protein Crystallization Facility (CPCG-H)

    NASA Astrophysics Data System (ADS)

    DeLucas, Lawrence J.

    2002-12-01

    Within the human body, there are thousands of different proteins that serve a variety of different functions, such as making it possible for red blood cells to carry oxygen in our bodies. Yet proteins can also be involved in diseases. Each protein has a particular chemical structure, which means it has a unique shape. It is this three-dimensional shape that allows each protein to do its job by interacting with chemicals or binding with other proteins. If researchers can determine the shape, or shapes, of a protein, they can learn how it works. This information can then be used by the pharmaceutical industry to develop new drugs or improve the way medications work. The NASA Commercial Space Center sponsoring this experiment - the Center for Biophysical Sciences and Engineering at the University of Alabama at Birmingham - has more than 60 industry and academic partners who grow protein crystals and use the information in drug design projects.

  4. Macromolecular crystal growth experiments on International Microgravity Laboratory--1.

    PubMed Central

    Day, J.; McPherson, A.

    1992-01-01

    Macromolecular crystal growth experiments, using satellite tobacco mosaic virus (STMV) and canavalin from jack beans as samples, were conducted on a US Space Shuttle mission designated International Microgravity Laboratory--1 (IML-1), flown January 22-29, 1992. Parallel experiments using identical samples were carried out in both a vapor diffusion-based device (PCG) and a liquid-liquid diffusion-based instrument (CRYOSTAT). The experiments in each device were run at 20-22 degrees C and at colder temperatures. Crystals were grown in virtually every trial, but the characteristics of the crystals were highly dependent on the crystallization technique employed and the temperature experience of the sample. In general, very good results, based on visual inspection of the crystals, were obtained in both PCG and CRYOSTAT. Unusually impressive results were, however, achieved for STMV in the CRYOSTAT instrument. STMV crystals grown in microgravity by liquid-liquid diffusion were more than 10-fold greater in total volume than any STMV crystals previously grown in the laboratory. X-ray diffraction data collected from eight STMV crystals grown in CRYOSTAT demonstrated a substantial improvement in diffraction quality over the entire resolution range when compared to data from crystals grown on Earth. In addition, the extent of the diffraction pattern for the STMV crystals grown in space extended to 1.8 A resolution, whereas the best crystals that were ever grown under conditions of Earth's gravity produced data limited to 2.3 A resolution. Other observations indicate that the growth of macromolecular crystals is indeed influenced by the presence or absence of gravity. These observations further suggest, consistent with earlier results, that the elimination of gravity provides a more favorable environment for such processes. PMID:1303744

  5. Center for the development of commercial crystal growth in space

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.

    1989-01-01

    The second year of operation of the Center for Commercial Crystal Growth in Space is described. This center is a consortium of businesses, universities and national laboratories. The primary goal of the Center's research is the development of commercial crystal growth in space. A secondary goal is to develop scientific understanding and technology which will improve commercial crystal growth on earth. In order to achieve these goals the Center's research is organized into teams by growth technique; melt growth, solution growth, and vapor growth. The melt growth team is working on solidification and characterization of bulk crystals of gallium arsenide and cadmium telluride. They used high resolution X-ray topography performed at the National Synchrotron Light Source at Brookhaven National Laboratory. Streak-like features were found in the diffraction images of semi-insulating undoped LEC GaAs. These were shown to be (110) antiphase boundaries, which have not been reported before but appear to be pervasive and responsible for features seen via less-sensitive characterization methods. The results on CdTe were not as definitive, but indicate that antiphase boundaries may also be responsible for the double peaks often seen in X-ray rocking curves of this material. A liquid encapsulated melt zone system for GaAs has been assembled and techniques for casting feed rods developed. It was found that scratching the inside of the quartz ampoules with silicon carbide abrasive minimized sticking of the GaAs to the quartz. Twelve floating zone experiments were done.

  6. Crystallization of lysozyme from lysozyme - ovalbumin mixtures: Separation potential and crystal growth kinetics

    NASA Astrophysics Data System (ADS)

    Maosoongnern, Somchai; Flood, Chalongsri; Flood, Adrian E.; Ulrich, Joachim

    2017-07-01

    Lysozyme was successfully separated from mixtures of lysozyme and ovalbumin by crystallization. The purity of the lysozyme product is more than 98%, the remaining activity is greater than 97%, and the yields of the crystal products were greater than 80%. The experimental conditions used were varied to study the effect of the operating parameters on the growth kinetics of lysozyme crystal and the separation ability of the process. The growth rates of lysozyme are second order with respect to the relative supersaturation. Therefore the growth kinetics of the crystallization process is controlled by the surface integration mechanism. The calculated growth rate constants were 5.4×10-6 cm/h and 2.5×10-6 cm/h for the crystallization process at 20 °C and 10 °C, respectively. There is no significant effect of the ovalbumin impurity up to the concentration of 67.5% ovalbumin (based on total protein) on the growth kinetics of lysozyme. Changing the NaCl concentration from 4% to 3% had no effect on the growth kinetics of lysozyme, although this does change the solubility and therefore the yield. The calculated activation energy was 53.08 kJ/mol which supports the hypothesis that the crystallization process is controlled by the surface integration mechanism.

  7. Growth Mechanism of the (110) Face of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan; Li, Meirong; Pusey, Marc L.

    1997-01-01

    The measured macroscopic growth rates of the (110) face of tetragonal lysozyme show an unexpectedly complex dependence on the supersaturation. In earlier studies it has been shown that an aggregate growth unit could account for experimental growth-rate trends. In particular molecular packing and interactions in the growth of the crystal were favored by completion of the helices along the 4, axes. In this study the molecular orientations of the possible growth units and the molecular growth mechanism were identified. This indicated that growth was a two-step process: aggregate growth units corresponding to the 4, helix are first formed in the bulk solution by stronger intermolecular bonds and then attached to the crystal face by weaker bonds. A more comprehensive analysis of the measured (110) growth rates was also undertaken. They were compared with the predicted growth rates from several dislocation and two-dimensional nucleation growth models, employing tetramer and Octamer growth units in polydisperse solutions and monomer units in monodisperse solutions. The calculations consistently showed that the measured growth rates followed the expected model relations with octamer growth units, in agreement with the predictions from the molecular level analyses.

  8. A Model for Tetragonal Lysozyme Crystal Nucleation and Growth

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Macromolecular crystallization is a complex process, involving a system that typically has 5 or more components (macromolecule, water, buffer + counter ion, and precipitant). Whereas small molecules have only a few contacts in the crystal lattice, macromolecules generally have 10's or even 100's of contacts between molecules. These can range from hydrogen bonds (direct or water-mediated), through van der Waals, hydrophobic, salt bridges, and ion-mediated contacts. The latter interactions are stronger and require some specificity in the molecular alignment, while the others are weaker, more prevalent, and more promiscuous, i.e., can be readily broken and reformed between other sites. Formation of a consistent, ordered, 3D structure may be difficult or impossible in the absence of any or presence of too many strong interactions. Further complicating the process is the inherent structural asymmetry of monomeric (single chain) macromolecules. The process of crystal nucleation and growth involves the ordered assembly of growth units into a defined 3D lattice. We suggest that for many macromolecules, particularly those that are monomeric, this involves a preliminary solution-phase assembly process into a growth unit having some symmetry prior to addition to the lattice, recapitulating the initial stages of the nucleation process. If this model is correct then fluids and crystal growth models assuming a strictly monodisperse nutrient solution need to be revised. This model has been developed from experimental evidence based upon face growth rate, AFM, and fluorescence energy transfer data for the nucleation and growth of tetragonal lysozyme crystals.

  9. A Model for Tetragonal Lysozyme Crystal Nucleation and Growth

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Macromolecular crystallization is a complex process, involving a system that typically has 5 or more components (macromolecule, water, buffer + counter ion, and precipitant). Whereas small molecules have only a few contacts in the crystal lattice, macromolecules generally have 10's or even 100's of contacts between molecules. These can range from hydrogen bonds (direct or water-mediated), through van der Waals, hydrophobic, salt bridges, and ion-mediated contacts. The latter interactions are stronger and require some specificity in the molecular alignment, while the others are weaker, more prevalent, and more promiscuous, i.e., can be readily broken and reformed between other sites. Formation of a consistent, ordered, 3D structure may be difficult or impossible in the absence of any or presence of too many strong interactions. Further complicating the process is the inherent structural asymmetry of monomeric (single chain) macromolecules. The process of crystal nucleation and growth involves the ordered assembly of growth units into a defined 3D lattice. We suggest that for many macromolecules, particularly those that are monomeric, this involves a preliminary solution-phase assembly process into a growth unit having some symmetry prior to addition to the lattice, recapitulating the initial stages of the nucleation process. If this model is correct then fluids and crystal growth models assuming a strictly monodisperse nutrient solution need to be revised. This model has been developed from experimental evidence based upon face growth rate, AFM, and fluorescence energy transfer data for the nucleation and growth of tetragonal lysozyme crystals.

  10. High-thermal-gradient Superalloy Crystal Growth

    NASA Technical Reports Server (NTRS)

    Pearson, D. D.; Anton, D. L.; Giamei, A. F.

    1985-01-01

    Single, (001)-oriented crystals of PWA 1480 were processed in alumina/silica shell molds in a laboratory high gradient furnace. The furnace employs a graphite resistance heated element, a radiation baffle, and a water cooled radiation trap below the baffle. All crystals were grown in vacuum (10 torr) and all heat transfer was radiative. The element is constructed with a variable cross section that is tapered just above the baffle to maximize heat input and therefore thermal gradient. A maximum alloy temperature of 1600 C was used. A thermal gradient of 130 deg C/cm was recorded at 1370 C just above the solidus of the PWA 1480 alloys. Crystal bars with 14.4 and 17.5 mm diameters were grown in alumina/silica shell molds. Each crystal was started from a 1.6 mm pencil seed at a rate of 76 mm/hr and slowly accelerated to a rate of 200 mm/hr under computer control. Volume percent porosity and average pore size were measured as functions of distance in representative bars. Low cycle fatigue behavior and stress rupture properties were determined.

  11. A Critical Assessment of Protein Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Pusey, Marc

    1997-01-01

    Experiments to grow higher diffraction quality protein crystals in the microgravity environment of an orbiting spacecraft are one of the most frequently flown space experiments. Ground-based research has shown that convective flows occur even about protein crystals growing in the Earth's gravitational field. Further, this research has shown that the resultant flow velocities can cause growth cessation, and probably affect the measured X-ray data quality obtained. How flow deleteriously affects protein crystal growth (PCG) is still not known, and is the subject of ongoing research. Failing a rational method for ameliorating flow effects on Earth, one can, through NASA and other nations space agency sponsored programs, carry out protein crystal growth in the microgravity environment of an orbiting spacecraft. Early first generation PCG hardware was characterized by a very low success rate and a steep design learning curve. Subsequent hardware designs have improved upon their predecessors. Now the crystal grower has a wide variety of hardware configurations and crystal growth protocols to choose from, many of which implement "standard" laboratory protein crystal growth methods. While many of these are first or early second generation hardware the success rate, defined as growing crystals giving data better than has been obtained on Earth, is at least 20% overall and may be considerably higher if one only considers latter experiments. There are a large number of protein crystals grown every year, with hundreds of structures determined. Those crystallized in microgravity represent a small proportion of this total, and there is concern that the costs of the microgravity PCG program(s) do not justify such limited returns. Empirical evidence suggests that optimum crystal growth conditions in microgravity differ from those determined on Earth, further exacerbating the chances of success. Microgravity PCG is probably best suited for "mature" crystallizations, where one has

  12. A Critical Assessment of Protein Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Pusey, Marc

    1997-01-01

    Experiments to grow higher diffraction quality protein crystals in the microgravity environment of an orbiting spacecraft are one of the most frequently flown space experiments. Ground-based research has shown that convective flows occur even about protein crystals growing in the Earth's gravitational field. Further, this research has shown that the resultant flow velocities can cause growth cessation, and probably affect the measured X-ray data quality obtained. How flow deleteriously affects protein crystal growth (PCG) is still not known, and is the subject of ongoing research. Failing a rational method for ameliorating flow effects on Earth, one can, through NASA and other nations space agency sponsored programs, carry out protein crystal growth in the microgravity environment of an orbiting spacecraft. Early first generation PCG hardware was characterized by a very low success rate and a steep design learning curve. Subsequent hardware designs have improved upon their predecessors. Now the crystal grower has a wide variety of hardware configurations and crystal growth protocols to choose from, many of which implement "standard" laboratory protein crystal growth methods. While many of these are first or early second generation hardware the success rate, defined as growing crystals giving data better than has been obtained on Earth, is at least 20% overall and may be considerably higher if one only considers latter experiments. There are a large number of protein crystals grown every year, with hundreds of structures determined. Those crystallized in microgravity represent a small proportion of this total, and there is concern that the costs of the microgravity PCG program(s) do not justify such limited returns. Empirical evidence suggests that optimum crystal growth conditions in microgravity differ from those determined on Earth, further exacerbating the chances of success. Microgravity PCG is probably best suited for "mature" crystallizations, where one has

  13. Ice Crystal Growth Rates Under Upper Troposphere Conditions

    NASA Technical Reports Server (NTRS)

    Peterson, Harold S.; Bailey, Matthew; Hallett, John

    2010-01-01

    Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 m, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

  14. Shallow Melt Apparatus for Semicontinuous Czochralski Crystal Growth

    DOEpatents

    Wang, T.; Ciszek, T. F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  15. Novel protein crystal growth technology: Proof of concept

    NASA Technical Reports Server (NTRS)

    Nyce, Thomas A.; Rosenberger, Franz

    1989-01-01

    A technology for crystal growth, which overcomes certain shortcomings of other techniques, is developed and its applicability to proteins is examined. There were several unknowns to be determined: the design of the apparatus for suspension of crystals of varying (growing) diameter, control of the temperature and supersaturation, the methods for seeding and/or controlling nucleation, the effect on protein solutions of the temperature oscillations arising from the circulation, and the effect of the fluid shear on the suspended crystals. Extensive effort was put forth to grow lysozyme crystals. Under conditions favorable to the growth of tetragonal lysozyme, spontaneous nucleation could be produced but the number of nuclei could not be controlled. Seed transfer techniques were developed and implemented. When conditions for the orthorhombic form were tried, a single crystal 1.5 x 0.5 x 0.2 mm was grown (after in situ nucleation) and successfully extracted. A mathematical model was developed to predict the flow velocity as a function of the geometry and the operating temperatures. The model can also be used to scaleup the apparatus for growing larger crystals of other materials such as water soluble non-linear optical materials. This crystal suspension technology also shows promise for high quality solution growth of optical materials such as TGS and KDP.

  16. Polymer crystallization in a temperature gradient field with controlled crystal growth rate

    NASA Technical Reports Server (NTRS)

    Hansen, D.; Taskar, A. N.; Casale, O.

    1971-01-01

    A method is described for studying the influence of a temperature gradient on the crystallization of quiescent polymer melts. The apparatus used consists of two brass plates with embedded electrical resistance heaters and cooling coils. The crystallizations experiments were conducted by placing polymer specimens between the paltes, and manually adjusting heaters and cooling fluids for temperature control. Linear polyethylene, isotactic polyprophylene, and a high density polyethylene were used. It is concluded that the role of a temperature gradient in producing oriented crystallization is in producing conditions which lead the spherulitic growth pattern to proceed primarily in one direction. Steep gradients diminish the penetration of supercooling and favors oriented growth.

  17. Molecular modifiers reveal a mechanism of pathological crystal growth inhibition

    NASA Astrophysics Data System (ADS)

    Chung, Jihae; Granja, Ignacio; Taylor, Michael G.; Mpourmpakis, Giannis; Asplin, John R.; Rimer, Jeffrey D.

    2016-08-01

    Crystalline materials are crucial to the function of living organisms, in the shells of molluscs, the matrix of bone, the teeth of sea urchins, and the exoskeletons of coccoliths. However, pathological biomineralization can be an undesirable crystallization process associated with human diseases. The crystal growth of biogenic, natural and synthetic materials may be regulated by the action of modifiers, most commonly inhibitors, which range from small ions and molecules to large macromolecules. Inhibitors adsorb on crystal surfaces and impede the addition of solute, thereby reducing the rate of growth. Complex inhibitor-crystal interactions in biomineralization are often not well elucidated. Here we show that two molecular inhibitors of calcium oxalate monohydrate crystallization—citrate and hydroxycitrate—exhibit a mechanism that differs from classical theory in that inhibitor adsorption on crystal surfaces induces dissolution of the crystal under specific conditions rather than a reduced rate of crystal growth. This phenomenon occurs even in supersaturated solutions where inhibitor concentration is three orders of magnitude less than that of the solute. The results of bulk crystallization, in situ atomic force microscopy, and density functional theory studies are qualitatively consistent with a hypothesis that inhibitor-crystal interactions impart localized strain to the crystal lattice and that oxalate and calcium ions are released into solution to alleviate this strain. Calcium oxalate monohydrate is the principal component of human kidney stones and citrate is an often-used therapy, but hydroxycitrate is not. For hydroxycitrate to function as a kidney stone treatment, it must be excreted in urine. We report that hydroxycitrate ingested by non-stone-forming humans at an often-recommended dose leads to substantial urinary excretion. In vitro assays using human urine reveal that the molecular modifier hydroxycitrate is as effective an inhibitor of nucleation

  18. Protein Crystal Movements and Fluid Flows During Microgravity Growth

    NASA Technical Reports Server (NTRS)

    Boggon, Titus J.; Chayen, Naomi E.; Snell, Edward H.; Dong, Jun; Lautenschlager, Peter; Potthast, Lothar; Siddons, D. Peter; Stojanoff, Vivian; Gordon, Elspeth; Thompson, Andrew W.; hide

    1998-01-01

    The growth of protein crystals suitable for x-ray crystal structure analysis is an important topic. The quality (perfection) of protein crystals is now being evaluated by mosaicity analysis (rocking curves) and x-ray topographic images as well as the diffraction resolution limit and overall data quality. In yet another study, use of hanging drop vapour diffusion geometry on the IML-2 shuttle mission showed, again via CCD video monitoring, growing apocrustacyanin C(sub 1) protein crystal executing near cyclic movement, reminiscent of Marangoni convection flow of fluid, the crystals serving as "markers" of the fluid flow. A review is given here of existing results and experience over several microgravity missions. Some comment is given on gel protein crystal growth in attempts to 'mimic' the benefits of microgravity on Earth. Finally, the recent new results from our experiments on the shuttle mission LMS are described. These results include CCD video as well as interferometry during the mission, followed, on return to Earth, by reciprocal space mapping at the NSLS, Brookhaven, and full X-ray data collection on LMS and Earth control lysozyme crystals. Diffraction data recorded from LMS and ground control apocrustacyanin C(sub 1) crystals are also described.

  19. A Microfluidic, High Throughput Protein Crystal Growth Method for Microgravity

    PubMed Central

    Carruthers Jr, Carl W.; Gerdts, Cory; Johnson, Michael D.; Webb, Paul

    2013-01-01

    The attenuation of sedimentation and convection in microgravity can sometimes decrease irregularities formed during macromolecular crystal growth. Current terrestrial protein crystal growth (PCG) capabilities are very different than those used during the Shuttle era and that are currently on the International Space Station (ISS). The focus of this experiment was to demonstrate the use of a commercial off-the-shelf, high throughput, PCG method in microgravity. Using Protein BioSolutions’ microfluidic Plug Maker™/CrystalCard™ system, we tested the ability to grow crystals of the regulator of glucose metabolism and adipogenesis: peroxisome proliferator-activated receptor gamma (apo-hPPAR-γ LBD), as well as several PCG standards. Overall, we sent 25 CrystalCards™ to the ISS, containing ~10,000 individual microgravity PCG experiments in a 3U NanoRacks NanoLab (1U = 103 cm.). After 70 days on the ISS, our samples were returned with 16 of 25 (64%) microgravity cards having crystals, compared to 12 of 25 (48%) of the ground controls. Encouragingly, there were more apo-hPPAR-γ LBD crystals in the microgravity PCG cards than the 1g controls. These positive results hope to introduce the use of the PCG standard of low sample volume and large experimental density to the microgravity environment and provide new opportunities for macromolecular samples that may crystallize poorly in standard laboratories. PMID:24278480

  20. Protein Crystal Movements and Fluid Flows During Microgravity Growth

    NASA Technical Reports Server (NTRS)

    Boggon, Titus J.; Chayen, Naomi E.; Snell, Edward H.; Dong, Jun; Lautenschlager, Peter; Potthast, Lothar; Siddons, D. Peter; Stojanoff, Vivian; Gordon, Elspeth; Thompson, Andrew W.; Zagalsky, Peter F.; Bi, Ru-Chang; Helliwell, John R.

    1998-01-01

    The growth of protein crystals suitable for x-ray crystal structure analysis is an important topic. The quality (perfection) of protein crystals is now being evaluated by mosaicity analysis (rocking curves) and x-ray topographic images as well as the diffraction resolution limit and overall data quality. In yet another study, use of hanging drop vapour diffusion geometry on the IML-2 shuttle mission showed, again via CCD video monitoring, growing apocrustacyanin C(sub 1) protein crystal executing near cyclic movement, reminiscent of Marangoni convection flow of fluid, the crystals serving as "markers" of the fluid flow. A review is given here of existing results and experience over several microgravity missions. Some comment is given on gel protein crystal growth in attempts to 'mimic' the benefits of microgravity on Earth. Finally, the recent new results from our experiments on the shuttle mission LMS are described. These results include CCD video as well as interferometry during the mission, followed, on return to Earth, by reciprocal space mapping at the NSLS, Brookhaven, and full X-ray data collection on LMS and Earth control lysozyme crystals. Diffraction data recorded from LMS and ground control apocrustacyanin C(sub 1) crystals are also described.

  1. Single crystal growth and anisotropic crystal-fluid interfacial free energy in soft colloidal systems.

    PubMed

    Nguyen, Van Duc; Hu, Zhibing; Schall, Peter

    2011-07-01

    We measure the anisotropy of the crystal-fluid interfacial free energy in soft colloidal systems. A temperature gradient is used to direct crystal nucleation and control the growth of large single crystals in order to achieve well-equilibrated crystal-fluid interfaces. Confocal microscopy is used to follow both the growth process and the equilibrium crystal-fluid interface at the particle scale: heterogeneous crystal nucleation, the advancing interface, and the stationary equilibrium interface. We use the measured growth velocity to determine the chemical potential difference between crystal and fluid phases. Well-equilibrated, large crystal-fluid interfaces are then used to determine the interfacial free energy and its anisotropy directly from thermally excited interface fluctuations. We find that while the measured average interfacial free energy is in good agreement with values found in simulations, the anisotropy is significantly larger than simulation values. Finally, we investigate the effect of impurities on the advancing interface. We determine the critical force needed to overcome impurity particles from the local interface curvature.

  2. Containerless protein crystal growth in rotating levitated drops

    NASA Astrophysics Data System (ADS)

    Chung, Sang K.; Trinh, Eugene H.

    1998-01-01

    A method for growing protein crystals in a containerless environment using an ultrasonic-electrostatic hybrid levitator is evaluated. In this approach, a single protein solution droplet bearing a surface charge is electrostatically levitated and acoustically rotated along a horizontal axis during the crystal nucleation and growth phases. Sample rotation is induced by ultrasonic streaming and radiation pressure applied in addition to the electrostatic levitation force. This unique approach is developed in order to create controlled crystal growth conditions which would reproduce some of the aspects of the low-gravity environment. We present the outcome of a development effort and feasibility study showing the successful growth of lysozyme and thaumatin crystals suspended within the bulk of quiescent liquid protein solutions inside rotating droplets also containing a very small concentration of agarose. Even though the crystals are not growing in a completely gelled medium and rotation is required for their long-term suspension, there are indications that a convectionless crystal growth environment has been obtained within the rotating drop, and that artificial flow can be introduced in a controlled manner by imposing drop shape oscillations.

  3. Synthesis, crystal growth and characterization of nonlinear optical organic crystal: p-Toluidinium p-toluenesulphonate

    SciTech Connect

    Vijayakumar, P.; Anandha Babu, G.; Ramasamy, P.

    2012-04-15

    Graphical abstract: p-Toluidinium p-toluenesulphonate (p-TTS) an organic nonlinear optical crystal has been grown from the aqueous solution by slow evaporation solution growth technique. Single crystal X-ray diffraction analysis reveals that p-TTS crystallizes in monoclinic crystal system. p-TTS single crystal belongs to negative birefringence crystal. Second harmonic conversion efficiency of p-TTS has been found to be 1.3 times higher than that of KDP. Multiple shot surface laser damage threshold is determined to be 0.30 GW/cm{sup 2} at 1064 nm laser radiation. Highlights: Black-Right-Pointing-Pointer It deals with the synthesis, growth and characterization of p-TTS an organic NLO crystal. Black-Right-Pointing-Pointer Wide optical transparency window between 280 nm and 1100 nm. Black-Right-Pointing-Pointer Negative birefringence crystal and dispersion of birefringence is negligibly small. Black-Right-Pointing-Pointer Thermal study reveals that the grown crystal is stable up to 210 Degree-Sign C. Black-Right-Pointing-Pointer Multiple shot surface laser damage threshold is 0.30 GW/cm{sup 2} at 1064 nm laser radiation. -- Abstract: p-Toluidinium p-toluenesulphonate (p-TTS) an organic nonlinear optical crystal has been grown from the aqueous solution by slow evaporation solution growth technique. Single crystal X-ray diffraction analysis reveals that p-TTS crystallizes in monoclinic crystal system. The structural perfection of the grown p-TTS single crystal has been analyzed by high-resolution X-ray diffraction rocking curve measurements. Fourier transform infrared spectral studies have been performed to identify the functional groups. The optical transmittance window and the lower cutoff wavelength of the grown crystals have been identified by UV-vis-IR studies. Birefringence of p-TTS crystal has been studied using channel spectrum measurement. The laser damage threshold value was measured using Nd:YAG laser. The second harmonic conversion efficiency of p-TTS has

  4. Crystallization of transmembrane proteins in cubo: mechanisms of crystal growth and defect formation.

    PubMed

    Qutub, Yasser; Reviakine, Ilya; Maxwell, Carrie; Navarro, Javier; Landau, Ehud M; Vekilov, Peter G

    2004-11-05

    Crystallization of membrane proteins is a major stumbling block en route to elucidating their structure and understanding their function. The novel concept of membrane protein crystallization from lipidic cubic phases, "in cubo", has yielded well-ordered crystals and high-resolution structures of several membrane proteins, yet progress has been slow due to the lack of understanding of the molecular mechanisms of protein transport, crystal nucleation, growth, and defect formation in cubo. Here, we examine at molecular and mesoscopic resolution with atomic force microscopy the morphology of in cubo grown bacteriorhodopsin crystals in inert buffers and during etching by detergent. The results reveal that crystal nucleation occurs following local rearrangement of the highly curved lipidic cubic phase into a lamellar structure, which is akin to that of the native membrane. Crystals grow within the bulk cubic phase surrounded by such lamellar structures, whereby transport towards a growing crystalline layer is constrained to within an individual lamella. This mechanism leads to lack of dislocations, generation of new crystalline layers at numerous locations, and to voids and block boundaries. The characteristic macroscopic lengthscale of these defects suggests that the crystals grow by attachment of single molecules to the nuclei. These insights into the mechanisms of nucleation, growth and transport in cubo provide guidance en route to a rational design of membrane protein crystallization, and promise to further advance the field.

  5. Growth of Single Crystal Beta Silicon Carbide

    DTIC Science & Technology

    1992-12-01

    components with GaAs MMIC’s, needed for next-generation compact radar systems. He accomplished LPE growth of Bi-YIG and Ba- hexaferrite needed for magneto...N.B. and Hopkins, R.H., J. AppL Phys., 6S, 827 (1988). "Investigation of Growth Conditions for the Liquid Phase Epitaxy of Hexaferrite Films Using Bi20

  6. Interaction between Convection and Heat Transfer in Crystal Growth

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Crystals are integral components in some of our most sophisticated and rapidly developing industries. Single crystals are solids with the most uniform structures that can be obtained on an atomic scale. Because of their structural uniformity, crystals can transmit acoustic and electromagnetic waves and charged particles with essentially no scattering or interferences. This transparency, which can be selectively modified by controlled additions of impurities known as dopants, is the foundation of modern electronic industry. It has brought about widespread application of crystals in transistors, lasers, microwave devices, infrared detectors, magnetic memory devices, and many other magnets and electro-optic components. The performance of a crystal depends strongly on its compositional homogeneity. For instance, in modern microcircuitry, compositional variations of a few percent (down to a submicron length scale) can seriously jeopardize predicted yields. Since crystals are grown by carefully controlled phase transformations, the compositional adjustment in the solid is often made during growth from the nutrient. Hence, a detailed understanding of mass transfer in the nutrient is essential. Moreover, since mass transfer is often the slowest process during growth, it is usually the rate limiting mechanism. Crystal growth processes are usually classified according to the nature of the parent phase. Nevertheless, whether the growth occurs by solidification from a melt (melt growth), nucleation from a solution (solution growth), condensation from a vapor (physical vapor transport) or chemical reaction of gases (chemical vapor deposition), the parent phase is a fluid. As is with most non-equilibrium processes involving fluids, liquid or vapor, fluid motion plays an important role, affecting both the concentration and temperature gradients at the soli-liquid interface.

  7. Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2014-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). There are two sections of the flight experiment: (I) crystal growth of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT) and (II) melt growth of CdZnTe by directional solidification. The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  8. Small Device for Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Daniel Carter (center), president of New Century Pharmaceuticals, and Dr. Joseph Ho (right), vice president, examine a diffusion Controlled Apparatus for Microgravity (DCAM). At left, Dr. John Ruble, a senior scientist, examines some specimens. The plastic DCAM has two chambers joined by a porous plug through which fluids can diffuse at a controlled rate. This allows researchers to mix protein solutions on Earth and load them aboard the Space Shuttle shortly before launch. The diffusion and crystallization processes are already under way, but at such a slow pace that crystals do not start growing before the DCAM is in orbit aboard the Shuttle or a space station. Dozens of DCAM units can be flown in a small volume and require virtually no crew attention. Specimens are returned to Earth for analysis. Photo credit: NASA/Marshall Space Flight Center

  9. Small Device for Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Daniel Carter (center), president of New Century Pharmaceuticals, and Dr. Joseph Ho (right), vice president, examine a diffusion Controlled Apparatus for Microgravity (DCAM). At left, Dr. John Ruble, a senior scientist, examines some specimens. The plastic DCAM has two chambers joined by a porous plug through which fluids can diffuse at a controlled rate. This allows researchers to mix protein solutions on Earth and load them aboard the Space Shuttle shortly before launch. The diffusion and crystallization processes are already under way, but at such a slow pace that crystals do not start growing before the DCAM is in orbit aboard the Shuttle or a space station. Dozens of DCAM units can be flown in a small volume and require virtually no crew attention. Specimens are returned to Earth for analysis. Photo credit: NASA/Marshall Space Flight Center

  10. Growth of lithium triborate crystals. II. Experimental results

    NASA Astrophysics Data System (ADS)

    Parfeniuk, C.; Samarasekera, I. V.; Weinberg, F.; Edel, J.; Fjeldsted, K.; Lent, B.

    1996-02-01

    In Part I [C. Parfeniuk, I.V. Samarasekera and F. Weinberg, J. Crystal Growth 158 (1996) 514], a mathematical model of the flux growth of lithium triborate (LBO) crystals was used to calculate the temperature distribution and fluid flow in the melt during growth. In this report the model results are related to experimental observations. Temperature measurements in the melt, for different crucible rotation rates, are compared to the corresponding temperatures determined from the model. Direct observations of fluid flow in the melt, using a transparent glycerol/water solution as a physical model, are related to the calculated flow paths and velocities. As the LBO crystal grows, the rejected MoO 3 flux concentrates ahead of the interface leading to the formation of eutectic phases. The factors leading to the formation of these phases are examined, using flow velocity values determined from the model. A number of LBO crystals were grown, first using convenient growth parameters, and then using parameters determined from the model results. The size and quality of the crystals obtained are discussed and related to the growth conditions.

  11. Crystal Growth in Alumina/poly(ethylene terephthalate) Nanocomposite Films

    SciTech Connect

    Yang,H.; Bhimaraj, P.; Yang, L.; Siegel, R.; Schadler, L.

    2007-01-01

    The crystal growth and morphology in 150-nm-thick PET nanocomposite thin films with alumina (Al{sub 2}O{sub 3}) nanoparticle fillers (38 nm size) were investigated for nanoparticle loadings from 0 to 5 wt%. Transmission electron microscopy of the films showed that at 1 wt% Al{sub 2}O{sub 3}, the nanoparticles were well dispersed in the film and the average size was close to the reported 38 nm. Above 2 wt% Al{sub 2}O{sub 3}, the nanoparticles started to agglomerate. The crystal growth and morphological evolution in the PET nanocomposite films kept at an isothermal temperature of 217 C were monitored as a function of the holding time using in situ atomic force microscopy. It was found that the crystal nucleation and growth of PET was strongly dependent on the dispersed particles in the films. At 1 wt% Al{sub 2}O{sub 3}, the overall crystal growth rate of PET lamellae was slower than that of the PET homopolymer films. Above 2 wt% Al{sub 2}O{sub 3}, the crystal growth rate increased with nanoparticle loading because of heterogeneous nucleation. In addition, in these PET nanocomposite thin films, the Al{sub 2}O{sub 3} nanoparticles induced preferentially oriented edge-on lamellae with respect to the surface, which was not the case in unfilled PET as determined by grazing-incidence X-ray diffraction.

  12. Vapor crystal growth technology development: Application to cadmium telluride

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Banish, Michael; Duval, Walter M. B.

    1991-01-01

    Growth of bulk crystals by physical vapor transport was developed and applied to cadmium telluride. The technology makes use of effusive ampoules, in which part of the vapor contents escapes to a vacuum shroud through defined leaks during the growth process. This approach has the advantage over traditional sealed ampoule techniques that impurity vapors and excess vapor constituents are continuously removed from the vicinity of the growing crystal. Thus, growth rates are obtained routinely at magnitudes that are rather difficult to achieve in closed ampoules. Other advantages of this effusive ampoule physical vapor transport (EAPVT) technique include the predetermination of transport rates based on simple fluid dynamics and engineering considerations, and the growth of the crystal from close to congruent vapors, which largely alleviates the compositional nonuniformities resulting from buoyancy driven convective transport. After concisely reviewing earlier work on improving transport rates, nucleation control, and minimization of crystal wall interactions in vapor crystal growth, a detail account is given of the largely computer controlled EAPVT experimentation.

  13. Aluminum nitride bulk crystal growth in a resistively heated reactor

    NASA Astrophysics Data System (ADS)

    Dalmau, Rafael Federico

    A resistively heated reactor capable of temperatures in excess of 2300°C was used to grow aluminum nitride (AlN) bulk single crystals from an AlN powder source by physical vapor transport (PVT) in nitrogen atmosphere. AlN crystals were grown at elevated temperatures by two different methods. Self-seeded crystals were obtained by spontaneous nucleation on the crucible walls, while seeded growth was performed on singular and vicinal (0001) surfaces of silicon carbide (SiC) seeds. During self-seeded growth experiments a variety of crucible materials, such as boron nitride, tungsten, tantalum, rhenium, tantalum nitride, and tantalum carbide, were evaluated. These studies showed that the morphology of crystals grown by spontaneous nucleation strongly depends on the growth temperature and contamination in the reactor. Crucible selection had a profound effect on contamination in the crystal growth environment, influencing nucleation, coalescence, and crystal morphology. In terms of high-temperature stability and compatibility with the growth process, the best results for AlN crystal growth were obtained in crucibles made of sintered tantalum carbide or tantalum nitride. In addition, contamination from the commercially purchased AlN powder source was reduced by presintering the powder prior to growth, which resulted in a drastic reduction of nearly all impurities. Spontaneously grown single crystals up to 15 mm in size were characterized by x-ray diffraction, x-ray topography, glow discharge mass spectrometry, and secondary ion mass spectrometry. Average dislocation densities were on the order of 103 cm -3, with extended areas virtually free of dislocations. High resolution rocking curves routinely showed peak widths as narrow as 7 arcsec, indicating a high degree of crystalline perfection. Low-temperature partially polarized optical reflectance measurements were used to calculate the crystal-field splitting parameter of AlN, Deltacr = -230 meV, and a low-temperature (1

  14. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Helliwell, John R.; Snell, Edward H.; Chayen, Naomi E.; Judge, Russell A.; Boggon, Titus J.; Pusey, M. L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The first protein crystallization experiment in microgravity was launched in April, 1981 and used Germany's Technologische Experimente unter Schwerelosigkeit (TEXUS 3) sounding rocket. The protein P-galactosidase (molecular weight 465Kda) was chosen as the sample with a liquid-liquid diffusion growth method. A sliding device brought the protein, buffer and salt solution into contact when microgravity was reached. The sounding rocket gave six minutes of microgravity time with a cine camera and schlieren optics used to monitor the experiment, a single growth cell. In microgravity a strictly laminar diffusion process was observed in contrast to the turbulent convection seen on the ground. Several single crystals, approx 100micron in length, were formed in the flight which were of inferior but of comparable visual quality to those grown on the ground over several days. A second experiment using the same protocol but with solutions cooled to -8C (kept liquid with glycerol antifreeze) again showed laminar diffusion. The science of macromolecular structural crystallography involves crystallization of the macromolecule followed by use of the crystal for X-ray diffraction experiments to determine the three dimensional structure of the macromolecule. Neutron protein crystallography is employed for elucidation of H/D exchange and for improved definition of the bound solvent (D20). The structural information enables an understanding of how the molecule functions with important potential for rational drug design, improved efficiency of industrial enzymes and agricultural chemical development. The removal of turbulent convection and sedimentation in microgravity, and the assumption that higher quality crystals will be produced, has given rise to the growing number of crystallization experiments now flown. Many experiments can be flown in a small volume with simple, largely automated, equipment - an ideal combination for a microgravity experiment. The term "protein crystal growth

  15. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Helliwell, John R.; Snell, Edward H.; Chayen, Naomi E.; Judge, Russell A.; Boggon, Titus J.; Pusey, M. L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The first protein crystallization experiment in microgravity was launched in April, 1981 and used Germany's Technologische Experimente unter Schwerelosigkeit (TEXUS 3) sounding rocket. The protein P-galactosidase (molecular weight 465Kda) was chosen as the sample with a liquid-liquid diffusion growth method. A sliding device brought the protein, buffer and salt solution into contact when microgravity was reached. The sounding rocket gave six minutes of microgravity time with a cine camera and schlieren optics used to monitor the experiment, a single growth cell. In microgravity a strictly laminar diffusion process was observed in contrast to the turbulent convection seen on the ground. Several single crystals, approx 100micron in length, were formed in the flight which were of inferior but of comparable visual quality to those grown on the ground over several days. A second experiment using the same protocol but with solutions cooled to -8C (kept liquid with glycerol antifreeze) again showed laminar diffusion. The science of macromolecular structural crystallography involves crystallization of the macromolecule followed by use of the crystal for X-ray diffraction experiments to determine the three dimensional structure of the macromolecule. Neutron protein crystallography is employed for elucidation of H/D exchange and for improved definition of the bound solvent (D20). The structural information enables an understanding of how the molecule functions with important potential for rational drug design, improved efficiency of industrial enzymes and agricultural chemical development. The removal of turbulent convection and sedimentation in microgravity, and the assumption that higher quality crystals will be produced, has given rise to the growing number of crystallization experiments now flown. Many experiments can be flown in a small volume with simple, largely automated, equipment - an ideal combination for a microgravity experiment. The term "protein crystal growth

  16. Crystal growth furnace with trap doors

    DOEpatents

    Sachs, Emanual M.; Mackintosh, Brian H.

    1982-06-15

    An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

  17. Nucleation kinetics, crystal growth and optical studies on lithium hydrogen oxalate monohydrate single crystal

    NASA Astrophysics Data System (ADS)

    Chandran, Senthilkumar; Paulraj, Rajesh; Ramasamy, P.

    2017-06-01

    Semi-organic lithium hydrogen oxalate monohydrate non-linear optical single crystals have been grown by slow evaporation solution technique at 40 °C. The nucleation parameters such as critical radius, interfacial tension, and critical free energy change have been evaluated using the experimental data. The solubility and the nucleation curve of the crystal at different temperatures have been analyzed. The crystal has a positive temperature coefficient of solubility. The metastable zone width and induction period have been determined for the aqueous solution growth of lithium hydrogen oxalate monohydrate. The UV-vis-NIR spectrum showed this crystal has high transparency. The photoconductivity studies indicate lithium hydrogen oxalate monohydrate has positive photoconductivity behaviour. The low etch pit density observed on (0 0 1) crystal surface and the high resolution x-ray difraction analysis indicate the good quality of the grown crystals

  18. Control of nucleation and growth in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Meehan, Edward J.

    1988-01-01

    The potential advantages of nucleation and growth control through temperature, rather than the addition of precipitants or removal of solvent, are discussed. A simple light scattering arrangement for the characterization of nucleation and growth conditions in solutions is described. The temperature dependence of the solubility of low ionic strength lysozyme solutions is applied in preliminary nucleation and growth experiments.

  19. The effect of growth rate, diameter and impurity concentration on structure in Czochralski silicon crystal growth

    NASA Technical Reports Server (NTRS)

    Digges, T. G., Jr.; Shima, R.

    1980-01-01

    It is demonstrated that maximum growth rates of up to 80% of the theoretical limit can be attained in Czochralski-grown silicon crystals while maintaining single crystal structure. Attaining the other 20% increase is dependent on design changes in the grower, to reduce the temperature gradient in the liquid while increasing the gradient in the solid. The conclusions of Hopkins et al. (1977) on the effect of diameter on the breakdown of structure at fast growth rates are substantiated. Copper was utilized as the test impurity. At large diameters (greater than 7.5 cm), concentrations of greater than 1 ppm copper were attained in the solid (45,000 ppm in the liquid) without breakdown at maximum growth speeds. For smaller diameter crystals, the sensitivity of impurities is much more apparent. For solar cell applications, impurities will limit cell performance before they cause crystal breakdown for fast growth rates of large diameter crystals.

  20. The effect of growth rate, diameter and impurity concentration on structure in Czochralski silicon crystal growth

    NASA Technical Reports Server (NTRS)

    Digges, T. G., Jr.; Shima, R.

    1980-01-01

    It is demonstrated that maximum growth rates of up to 80% of the theoretical limit can be attained in Czochralski-grown silicon crystals while maintaining single crystal structure. Attaining the other 20% increase is dependent on design changes in the grower, to reduce the temperature gradient in the liquid while increasing the gradient in the solid. The conclusions of Hopkins et al. (1977) on the effect of diameter on the breakdown of structure at fast growth rates are substantiated. Copper was utilized as the test impurity. At large diameters (greater than 7.5 cm), concentrations of greater than 1 ppm copper were attained in the solid (45,000 ppm in the liquid) without breakdown at maximum growth speeds. For smaller diameter crystals, the sensitivity of impurities is much more apparent. For solar cell applications, impurities will limit cell performance before they cause crystal breakdown for fast growth rates of large diameter crystals.

  1. Hydrothermal crystal growth of oxides for optical applications

    NASA Astrophysics Data System (ADS)

    McMillen, Colin David

    2007-12-01

    The manipulation of light has proven to be an integral part of today's technology-based society. In particular, there is great interest in obtaining coherent radiation in all regions of the optical spectrum to advance technology in military, medical, industrial, scientific and consumer fields. Exploring new crystal growth techniques as well as the growth of new optical materials is critical in the advancement of solid state optics. Surprisingly, the academic world devotes little attention to the growth of large crystals. This shortcoming has left gaps in the optical spectrum inaccessible by solid state devices. This dissertation explores the hydrothermal crystal growth of materials that could fill two such gaps. The first gap exists in the deep-UV region, particularly below 200 nm. Some materials such as LiB3O5 and beta-BaB2O4 can generate coherent light at wavelengths as low as 205 nm. The growth of these materials was explored to investigate the feasibility of the hydrothermal method as a new technique for growing these crystals. Particular attention was paid to the descriptive chemistry surrounding these systems, and several novel structures were elucidated. The study was also extended to the growth of materials that could be used for the generation of coherent light as low as 155 nm. Novel synthetic schemes for Sr2Be2B2O7 and KBe2BO 3F2 were developed and the growth of large crystals was explored. An extensive study of the structures, properties and crystal growth of related compounds, RbBe2BO3F2 and CsBe2BO 3F2, was also undertaken. Optimization of a number of parameters within this family of compounds led to the hydrothermal growth of large, high quality single crystal at rates suitable for large-scale growth. The second gap in technology is in the area of high average power solid state lasers emitting in the 1 mum and eye-safe (>1.5 mum) regions. A hydrothermal technique was developed to grow high quality crystals of Sc 2O3 and Sc2O3 doped with suitable

  2. Crystal growth of energetic materials during high acceleration

    SciTech Connect

    Lanzerotti, M.Y.D.; Autera, J.; Borne, L.; Sharma, J.

    1996-07-01

    Studies of the growth of crystals of energetic materials under conditions of high acceleration in an ultracentrifuge are reported. When a saturated solution is accelerated in an ultracentrifuge, the solute molecules move individually through the solvent molecules to form a crystal at the outer edge of the tube if the solute is more dense than the solvent. Since there is no evaporation or temperature variation, convection currents caused by simultaneous movement of solvent and solute are minimized and crystal defects are potentially minimized. Crystal growth is controlled by the g-level of the acceleration. In addition, solution inclusions and bubbles migrate out of the saturated solution as a result of the pressure gradient induced by the g-force. The authors present results of TNT, RDX, and TNAZ grown at high g from various solutions.

  3. Reinvestigation of growth of thiourea urea zinc sulfate crystal

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bikshandarkoil R.; Naik, Teja A.; Tylczyński, Zbigniew; Priolkar, K. R.

    2014-01-01

    Reinvestigation of the growth of thiourea urea zinc sulfate crystal is reported. Aqueous reaction of thiourea, urea and zinc sulfate in 1:1:1 mol ratio results in the formation of the well known [Zn(tu)3(SO4)] (1) (tu = thiourea) crystal and not the 'so called' novel semiorganic nonlinear optical thiourea urea zinc sulfate (2) crystal, as claimed by Redrothu Hanumantha Rao, S. Kalainathan, Spectroscopic investigation, nucleation, growth, optical, thermal and second harmonic studies of novel semi-organic nonlinear optical crystal - Thiourea urea zinc sulfate, Spectrochim. Acta A97 (2012) 456-463. In this work, we demonstrate the usefulness of elemental analytical data, infrared and NMR spectra and X-ray powder pattern, for accurate product characterization.

  4. Reinvestigation of growth of thiourea urea zinc sulfate crystal.

    PubMed

    Srinivasan, Bikshandarkoil R; Naik, Teja A; Tylczyński, Zbigniew; Priolkar, K R

    2014-01-03

    Reinvestigation of the growth of thiourea urea zinc sulfate crystal is reported. Aqueous reaction of thiourea, urea and zinc sulfate in 1:1:1 mol ratio results in the formation of the well known [Zn(tu)3(SO4)] (1) (tu=thiourea) crystal and not the 'so called' novel semiorganic nonlinear optical thiourea urea zinc sulfate (2) crystal, as claimed by Redrothu Hanumantha Rao, S. Kalainathan, Spectroscopic investigation, nucleation, growth, optical, thermal and second harmonic studies of novel semi-organic nonlinear optical crystal - Thiourea urea zinc sulfate, Spectrochim. Acta A97 (2012) 456-463. In this work, we demonstrate the usefulness of elemental analytical data, infrared and NMR spectra and X-ray powder pattern, for accurate product characterization. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization

    PubMed Central

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-01-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8–133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared. PMID:26976527

  6. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization.

    PubMed

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-03-15

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8-133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared.

  7. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization

    NASA Astrophysics Data System (ADS)

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-03-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8-133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared.

  8. Crystal growth of organics for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Mazelsky, R.

    1993-01-01

    The crystal growth and characterization of organic and inorganic nonlinear optical materials were extensively studied. For example, inorganic crystals such as thallium arsenic selenide were studied in our laboratory for several years and crystals in sizes over 2.5 cm in diameter are available. Organic crystals are suitable for the ultraviolet and near infrared region, but are relatively less developed than their inorganic counterparts. Very high values of the second harmonic conversion efficiency and the electro-optic coefficient were reported for organic compounds. Single crystals of a binary organic alloy based on m.NA and CNA were grown and higher second harmonic conversion efficiency than the values reported for m.NA were observed.

  9. Crystal growth of organics for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Mazelsky, R.

    1993-01-01

    The crystal growth and characterization of organic and inorganic nonlinear optical materials were extensively studied. For example, inorganic crystals such as thallium arsenic selenide were studied in our laboratory for several years and crystals in sizes over 2.5 cm in diameter are available. Organic crystals are suitable for the ultraviolet and near infrared region, but are relatively less developed than their inorganic counterparts. Very high values of the second harmonic conversion efficiency and the electro-optic coefficient were reported for organic compounds. Single crystals of a binary organic alloy based on m.NA and CNA were grown and higher second harmonic conversion efficiency than the values reported for m.NA were observed.

  10. Fundamental Studies of Crystal Growth of Microporous Materials

    NASA Technical Reports Server (NTRS)

    Dutta, P.; George, M.; Ramachandran, N.; Schoeman, B.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (1) Nature of the molecular units responsible for the crystal nuclei formation; (2) Nature of the nuclei and nucleation process; (3) Growth process of the nuclei into crystal; (4) Morphological control and size of the resulting crystal; (5) Surface structure of the resulting crystals; (6) Transformation of frameworks into other frameworks or condensed structures. The NASA-funded research described in this report focuses to varying degrees on all of the above issues and has been described in several publications. Following is the presentation of the highlights of our current research program. The report is divided into five sections: (1) Fundamental aspects of the crystal growth process; (2) Morphological and Surface properties of crystals; (3) Crystal dissolution and transformations; (4) Modeling of Crystal Growth; (5) Relevant Microgravity Experiments.

  11. Fundamental Studies of Crystal Growth of Microporous Materials

    NASA Technical Reports Server (NTRS)

    Dutta, P.; George, M.; Ramachandran, N.; Schoeman, B.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (1) Nature of the molecular units responsible for the crystal nuclei formation; (2) Nature of the nuclei and nucleation process; (3) Growth process of the nuclei into crystal; (4) Morphological control and size of the resulting crystal; (5) Surface structure of the resulting crystals; (6) Transformation of frameworks into other frameworks or condensed structures. The NASA-funded research described in this report focuses to varying degrees on all of the above issues and has been described in several publications. Following is the presentation of the highlights of our current research program. The report is divided into five sections: (1) Fundamental aspects of the crystal growth process; (2) Morphological and Surface properties of crystals; (3) Crystal dissolution and transformations; (4) Modeling of Crystal Growth; (5) Relevant Microgravity Experiments.

  12. Growth of mercuric iodide single crystals from dimethylsulfoxide

    DOEpatents

    Carlston, Richard C.

    1976-07-13

    Dimethylsulfoxide is used as a solvent for the growth of red mercuric iodide (HgI.sub.2) crystals for use in radiation detectors. The hygroscopic property of the solvent allows controlled amounts of water to enter into the solvent phase and diminish the large solubility of HgI.sub.2 so that the precipitating solid collects as well-defined euhedral crystals which grow into a volume of several cc.

  13. Defect reduction in seeded aluminum nitride crystal growth

    DOEpatents

    Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.; Stack, Glen A.

    2017-04-18

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  14. Defect reduction in seeded aluminum nitride crystal growth

    DOEpatents

    Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.; Slack, Glen A.

    2017-06-06

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density .ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  15. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1980-01-01

    The apparatus and techniques used in effort to determine the relationships between crystal growth and electronic properties are described with emphasis on electroepitaxy and melt-grown gallium aresenide crystal. Applications of deep level transient spectroscopy, derivative photocapitance spectroscopy, and SEM-cathodoluminescene in characterizing wide bandgap semiconductors; determining photoionization in MOS, Schottky barriers, and p-n junctions; and for identifying inhomogeneities are examined, as well as the compensation of indium phosphide.

  16. Growth kinetics and bulk growth of inversely soluble lithium sulfate monohydrate single crystals and their characterization

    NASA Astrophysics Data System (ADS)

    Silambarasan, A.; Rajesh, P.; Ramasamy, P.

    2017-06-01

    To facilitate controlled nucleation rate to grow good quality inversely soluble LSMH single crystals, the nucleation kinetics was studied. The number of molecules in a critical nucleus and nucleation rate in LSMH crystallization process have been determined from experimentally measured induction period using classical nucleation theory. A good quality bulk size single crystal of Lithium sulfate monohydrate (LSMH) has been grown with higher growth rate by modified Sankaranarayanan - Ramasamy (SR) method. A systematic investigation on UV-Vis-NIR transmittance, second harmonic generation and thermoluminescence (TL) properties of LSMH single crystals has been carried out to evaluate the optical behavior of the LSMH single crystal. This work also investigates the third order nonlinear optical properties of the LSMH single crystals. Finally thermal behavior of the grown crystal was studied to know the first order phase transition in the grown LSMH single crystals.

  17. Computer-controlled float zone crystal growth

    NASA Technical Reports Server (NTRS)

    Chan, Y. T.; Mailloux, P. A.

    1993-01-01

    A PC-based computer control system to automate a high-temperature float zone growth of titanium carbide is reported. The control strategy of the computer control system relies on the relations derived from a combination of empirical relations and results from detailed mathematical analysis of the physical transports of the entire float zone assembly. A system control computer program was written to establish real-time determination of the size of the molten zone from a thermal image, control parameters from established relationships, and collected processed data to achieve control objectives. We found that the developed computer control allows the growth process to be operated nearer the stability limit. Any slight variations in growth conditions can be corrected in time to avoid any instability growth, which otherwise cannot be adjusted via manual control.

  18. Calcium oxalate crystal growth modification; investigations with confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    McMulkin, Calum J.; Massi, Massimiliano; Jones, Franca

    2017-06-01

    Confocal Raman Microscopy (CRM) in combination with a photophysical investigation has been employed to give insight into the interaction between calcium oxalate monohydrate (COM) and a series of tetrazole containing crystal growth modifier's (CGM's), in conjunction with characterisation of morphological changes using scanning electron and optical microscopy. The tetrazole CGM's were found to interact by surface adsorption with minimal morphological changes to the COM crystals however, significant interactions via chemisorption were observed; it was discovered that the chemisorption is sufficiently strong for aggregation of the tetrazole species to occur within the crystal during crystallisation.

  19. Zeolite crystal growth in space - What has been learned

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Thompson, R. W.; Dixon, A. G.

    1993-01-01

    Three zeolite crystal growth experiments developed at WPI have been performed in space in last twelve months. One experiment, GAS-1, illustrated that to grow large, crystallographically uniform crystals in space, the precursor solutions should be mixed in microgravity. Another experiment evaluated the optimum mixing protocol for solutions that chemically interact ('gel') on contact. These results were utilized in setting the protocol for mixing nineteen zeolite solutions that were then processed and yielded zeolites A, X and mordenite. All solutions in which the nucleation event was influenced produced larger, more 'uniform' crystals than did identical solutions processed on earth.

  20. The Growth of Berlinite (AlPO4) Single Crystals.

    DTIC Science & Technology

    1980-03-01

    0 u a) 00 1 4-) r4 - 0 xE x x oo " o 0 . 4 n 22 Figure 7. AIPO4 Seed Crystal - 23 - 2.8 Growth System 2.8.1 Tem-Pres Runs For small autoclave ...was about 300-3151C. For reasons of autoclave operation, the possibility of high quality, and - 37 - Figure 18 Close up of AlPO 4 Crystals -38- method...nutrient (#2) which was transported and recrystallized in the autoclaves , did not detect any sodium. As expected, the process of crystallization

  1. Vertical growth of cadmium sulfide crystals on a silicon substrate

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.

    2017-02-01

    The results of the technological and microscopy studies of the mechanisms of the vertical growth of cadmium sulfide crystals during vacuum synthesis from the vapor phase were reported. Whisker crystals with a diameter from 10 nm to a few micrometers and with a length of dozens of millimeters can be grown by the vacuum vapor phase synthesis in a quasi-closed volume. The results of studies are satisfactorily explained in terms of the classical vapor-liquid-crystal model. The SEM micrographs are presented.

  2. Growth and characterization of struvite-Na crystals

    NASA Astrophysics Data System (ADS)

    Chauhan, Chetan K.; Joshi, Mihirkumar J.

    2014-09-01

    Sodium magnesium phosphate heptahydrate [NaMgPO4·7H2O], also known as struvite-Na, is the sodium analog to struvite. Among phosphate containing bio-minerals, struvite has attracted considerable attention, because of its common occurrence in a wide variety of environments. Struvite and family crystals were found as urinary calculi in humans and animals. Struvite-Na crystals were grown by a single diffusion gel growth technique in a silica hydro gel medium. Struvite-Na crystals with different morphologies having transparent to translucent diaphaneity were grown with different growth parameters. The phenomenon of Liesegang rings was also observed with some particular growth parameters. The powder XRD study confirmed the structural similarity of the grown struvite-Na crystals with struvite and found that struvite-Na crystallized in the orthorhombic Pmn21 space group with unit cell parameters such as a= 6.893 Å, b=6.124 Å, c=11.150 Å, and α=β=γ=90°. FT-IR spectra of struvite-Na crystals revealed the presence of functional groups. The TGA, DTA and DSC were carried out simultaneously. The kinetic and thermodynamic parameters of dehydration/decomposition process were calculated. The variation of dielectric constant with frequency of applied field was studied in the range from 400 Hz to 100 kHz.

  3. Single crystal growth of organic semiconductors for field effect applications

    NASA Astrophysics Data System (ADS)

    Kloc, Christian

    2006-08-01

    Organic semiconductors attract considerable attention due to promising applications in organic light emitting diodes, field effect transistors, and organic solar cells. Moreover, solubility of some organic semiconductors in organic solvents favors them for printed large area OLED displays and inexpensive printed microelectronics. However, low mobility of carriers in organic semiconductors limits usability of organic semiconductors in integrated circuits and need to be overcome. For this reason, the knowledge of intrinsic properties achievable in very pure and perfect crystals is important. Therefore, we have carried out a program to grow high quality single crystals of organics. Solution growth, melt growth, solvothermal method and vapor transport crystal growth have been applied and will be reported. For research purpose, using a gas phase transport method, we have produced millimeter - sized crystals of numerous organic semiconductors with higher quality and purity. Structure quality has been evaluated by x-ray topography methods. Field effect transistors have been prepared on surfaces of single crystals. Some of organic semiconductors like rubrene, pentacene, copper phthalocyanine exhibit carrier mobilities comparable or even higher than amorphous silicon. However, characterization of starting materials, crystals, thin films and resulting devices remains the crucial issue. The relation between organic semiconductor properties, used device fabrication technologies and resulting device characteristics is the object of presented here studies.

  4. Crystal growth simulations of H(2)S hydrate.

    PubMed

    Liang, Shuai; Kusalik, Peter G

    2010-07-29

    In this paper, we report a molecular simulation study exploring the crystal growth behavior of H(2)S hydrates within two-phase (H(2)S hydrate crystal and H(2)S aqueous solution) and three-phase (H(2)S hydrate crystal, liquid H(2)S, and H(2)S aqueous solution) systems. The microscopic mechanisms of growth, as well as the interfacial properties during the heterogeneous crystal growth process, are probed. We find that the H(2)S hydrate can be grown at a higher rate than methane hydrates under comparable conditions (Vatamanu, J.; Kusalik, P. G. J. Phys. Chem. B 2006, 110, 15896). The three-phase simulations, which also allow us to identify the simulation conditions on the experimental phase diagram, demonstrate that the present models reasonably reproduce the phase behavior of this system. We find that the crystal interface has a strong affinity for water molecules. We observed a relatively low level of defects in the newly formed H(2)S hydrate crystal.

  5. Anomalous growth of single ice crystals in solution

    NASA Technical Reports Server (NTRS)

    Gill, W. N.

    1979-01-01

    It is shown that major discrepancies exist between experiments and theory for ice crystal growth from solution. Accurate data, taken in a microgravity environment, approximate analytical models, and exact (probably numerical) models all are needed to advance our understanding of ice crystal growth phenomena. A new approximate semi-empirical theory is presented which predicts that a relatively sharp transition from natural convection control to diffusion control for ice growth in pure water occurs at a subcooling of about 10 C (a reduced temperature difference of about 0.125). No reliable data exist to test this prediction. The theory also predicts qualitatively the growth of ice in NaCl solution in which maxima in the growth rates are observed at various levels of subcooling.

  6. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1985-01-01

    The present program has been aimed at solving the fundamental and technological problems associated with Crystal Growth of Device Quality in Space. The initial stage of the program was devoted strictly to ground-based research. The unsolved problems associated with the growth of bulk GaAs in the presence of gravitational forces were explored. Reliable chemical, structural and electronic characterization methods were developed which would permit the direct relation of the salient materials parameters (particularly those affected by zero gravity conditions) to the electronic characteristics of single crystal GaAs, in turn to device performance. These relationships are essential for the development of optimum approaches and techniques. It was concluded that the findings on elemental semiconductors Ge and Si regarding crystal growth, segregation, chemical composition, defect interactions, and materials properties-electronic properties relationships are not necessarily applicable to GaAs (and to other semiconductor compounds). In many instances totally unexpected relationships were found to prevail.

  7. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C.; Lagowski, Jacek

    1989-01-01

    The program on Crystal Growth of Device Quality GaAs in Space was initiated in 1977. The initial stage covering 1977 to 1984 was devoted strictly to ground-based research. By 1985 the program had evolved into its next logical stage aimed at space growth experiments; however, since the Challenger disaster, the program has been maintained as a ground-based program awaiting activation of experimentation in space. The overall prgram has produced some 80 original scientific publications on GaAs crystal growth, crystal characterization, and new approaches to space processing. Publication completed in the last three years are listed. Their key results are outlined and discussed in the twelve publications included as part of the report.

  8. Minimal physical requirements for crystal growth self-poisoning

    SciTech Connect

    Whitelam, Stephen; Dahal, Yuba Raj; Schmit, Jeremy D.

    2016-02-10

    Self-poisoning is a kinetic trap that can impair or prevent crystal growth in a wide variety of physical settings. In this paper, we use dynamic mean-field theory and computer simulation to argue that poisoning is ubiquitous because its emergence requires only the notion that a molecule can bind in two (or more) ways to a crystal; that those ways are not energetically equivalent; and that the associated binding events occur with sufficiently unequal probability. If these conditions are met then the steady-state growth rate is in general a non-monotonic function of the thermodynamic driving force for crystal growth, which is the characteristic of poisoning. Finally, our results also indicate that relatively small changes of system parameters could be used to induce recovery from poisoning.

  9. Minimal physical requirements for crystal growth self-poisoning

    DOE PAGES

    Whitelam, Stephen; Dahal, Yuba Raj; Schmit, Jeremy D.

    2016-02-10

    Self-poisoning is a kinetic trap that can impair or prevent crystal growth in a wide variety of physical settings. In this paper, we use dynamic mean-field theory and computer simulation to argue that poisoning is ubiquitous because its emergence requires only the notion that a molecule can bind in two (or more) ways to a crystal; that those ways are not energetically equivalent; and that the associated binding events occur with sufficiently unequal probability. If these conditions are met then the steady-state growth rate is in general a non-monotonic function of the thermodynamic driving force for crystal growth, which ismore » the characteristic of poisoning. Finally, our results also indicate that relatively small changes of system parameters could be used to induce recovery from poisoning.« less

  10. Influence of residual gravity on crystal growth processes

    NASA Technical Reports Server (NTRS)

    Rosenberger, F.; Alexander, J. I. D.; Nadarajah, A.; Ouazzani, J.

    1990-01-01

    The effects of steady and time-dependent residual accelerations on representative melt and solution crystal growth systems have been investigated using numerical models. For the melt growth system, it was found that the lateral nonuniformity in crystal composition, depending on the particular operating conditions, can be very sensitive to the orientation of the steady component of the residual gravity vector down to 10 to the -6th g. Oscillatory residual accelerations (g-jitter) were found to lead to transients in the dopant distribution. For the solution growth, longtime simulations showed that at 10 to the -5th g, and the cooling rates used in Spacelab 3 experiments, diffusive transport dominates only in the beginning. Convective transport becomes increasingly significant after 3 to 5 hours, depending on the orientation of the crystal in the residual gravity field.

  11. Preliminary terrestrial based experiments on gravity-affected crystal growth

    NASA Technical Reports Server (NTRS)

    Johnston, M. H.

    1970-01-01

    Tin was melted in a heating assembly secured to the arm of a centrifuge. The furnace was allowed to pivot and reach its equilibrium angle of swing for the gravity force being experienced. The crucible was cooled during rotation to allow the growth of single crystals. The crystals were etched for the purpose of observing the growth striations. Slices were removed from some of the crystals to permit observation of the striations in the interior. Visual analyses were made with a scanning electron microscope. Preliminary conclusions relating the appearance of the striations to gravity forces and the affected growth mechanisms are presented. Further experiments that will verify these conclusions and determine other gravity effects are proposed.

  12. Nucleation and Convection Effects in Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1997-01-01

    Work during the second year under this grant (NAG8-1161) resulted in several major achievements. We have characterized protein impurities as well as microheterogeneities in the proteins hen egg white lysozyme and horse spleen apoferritin, and demonstrated the effects of these impurities on nucleation and crystallization. In particular, the purification of apoferritin resulted in crystals with an X-ray diffraction resolution of better than 1.8 A, i.e. a 1 A improvement over earlier work on the cubic form. Furthermore, we have shown, in association with studies of liquid-liquid phase separation, that depending on the growth conditions, lysozyme can produce all growth morphologies that have been observed with other proteins. Finally, in connection with our experimental and simulation work on growth step bunching, we have developed a system-dependent criterion for advantages and disadvantages of crystallization from solution under reduced gravity. In the following, these efforts are described in some detail.

  13. Minimal physical requirements for crystal growth self-poisoning

    NASA Astrophysics Data System (ADS)

    Whitelam, Stephen; Dahal, Yuba Raj; Schmit, Jeremy D.

    2016-02-01

    Self-poisoning is a kinetic trap that can impair or prevent crystal growth in a wide variety of physical settings. Here we use dynamic mean-field theory and computer simulation to argue that poisoning is ubiquitous because its emergence requires only the notion that a molecule can bind in two (or more) ways to a crystal; that those ways are not energetically equivalent; and that the associated binding events occur with sufficiently unequal probability. If these conditions are met then the steady-state growth rate is in general a non-monotonic function of the thermodynamic driving force for crystal growth, which is the characteristic of poisoning. Our results also indicate that relatively small changes of system parameters could be used to induce recovery from poisoning.

  14. The mechanism of growth of quartz crystals into fused silica

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Hays, J. F.; Spaepen, F.; Turnbull, D.

    1980-01-01

    It is proposed that the growth of quartz crystals into fused silica is effected by a mechanism involving the breaking of an Si-O bond and its association with an OH group, followed by cooperative motion of the nonbridging oxygen and the hydroxyl group which results in the crystallization of a row of several molecules along a crystalline-amorphous interfacial ledge. This mechanism explains, at least qualitatively, all the results of the earlier experimental study of the dependence of quartz crystal growth upon applied pressure: large negative activation volume; single activation enthalpy below Si-O bond energy; growth velocity constant in time, proportional to the hydroxyl and chlorine content, decreasing with increasing degree of reduction, and enhanced by nonhydrostatic stresses; lower pre-exponential for the synthetic than for the natural silica.

  15. Stability limits for the horizontal ribbon growth of silicon crystals

    NASA Astrophysics Data System (ADS)

    Daggolu, Parthiv; Yeckel, Andrew; Bleil, Carl E.; Derby, Jeffrey J.

    2013-01-01

    A rigorous, thermal-capillary model, developed to couple heat transfer, melt convection and capillary physics, is employed to assess stability limits of the HRG system for growing silicon ribbons. Extending the prior understanding of this process put forth by Daggolu et al. [Thermal-capillary analysis of the horizontal ribbon growth of silicon crystals, Journal of Crystal Growth 355 (2012) 129-139], model results presented here identify additional failure mechanisms, including the bridging of crystal onto crucible, the spilling of melt from the crucible, and the undercooling of melt at the ribbon tip, that are consistent with prior experimental observations. Changes in pull rate, pull angle, melt height, and other parameters are shown to give rise to limits, indicating that only narrow operating windows exist in multi-dimensional parameter space for stable growth conditions that circumvent these failure mechanisms.

  16. The mechanism of growth of quartz crystals into fused silica

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Hays, J. F.; Spaepen, F.; Turnbull, D.

    1980-01-01

    It is proposed that the growth of quartz crystals into fused silica is effected by a mechanism involving the breaking of an Si-O bond and its association with an OH group, followed by cooperative motion of the nonbridging oxygen and the hydroxyl group which results in the crystallization of a row of several molecules along a crystalline-amorphous interfacial ledge. This mechanism explains, at least qualitatively, all the results of the earlier experimental study of the dependence of quartz crystal growth upon applied pressure: large negative activation volume; single activation enthalpy below Si-O bond energy; growth velocity constant in time, proportional to the hydroxyl and chlorine content, decreasing with increasing degree of reduction, and enhanced by nonhydrostatic stresses; lower pre-exponential for the synthetic than for the natural silica.

  17. Directed Growth of Orthorhombic Crystals in a Micropillar Array.

    PubMed

    Holzner, Gregor; Binder, Claudia; Kriel, Frederik H; Priest, Craig

    2017-02-14

    We report directed growth of orthorhombic crystals of potassium permanganate in spatial confinement of a micropillar array. The solution is introduced by spontaneous wicking to give a well-defined film (thickness 10-15 μm; volume ∼600 nL) and is connected to a reservoir (several microliters) that continuously "feeds" the evaporating film. When the film is supersaturated, crystals nucleate and preferentially grow in specific directions guided by one of several possible linear paths through the pillar lattice. Crystals that do not initially conform are stopped at an obstructing pillar, branch into another permitted direction, or spontaneously rotate to align with a path and continue to grow. Microspectroscopy is able to track the concentration of solute in a small region of interest (70 × 100 μm(2)) near to growing crystals, revealing that the solute concentration initially increases linearly beyond the solubility limit. Crystal growth near the region of interest resulted in a sharp decrease in the local solute concentration (which rapidly returns the concentration to the solubility limit), consistent with estimated diffusion time scales (<1 s for a 50 μm length scale). The ability to simultaneously track solute concentration and control crystal orientation in nanoliter samples will provide new insight into microscale dynamics of microscale crystallization.

  18. Modeling and Control of Transport Processes during Melt Crystal Growth

    NASA Astrophysics Data System (ADS)

    Zhang, Nan

    In this thesis, detailed, realistic, multi-scale numerical models are developed and employed to study various systems applied for the growth of crystals from melt, including the melt growth of single-crystal Cadmium Zinc Telluride(CZT) and Sapphire. . The melt growth of single-crystal Cadmium Zinc Telluride(CZT), a very promising high- value crystal widely used in radiation detectors and other applications, has been challenging to the crystal growers in terms of yield and quality. In order to address such challenges, a transient, coupled model has been developed to analyze the segregation of zinc in CZT grown in an electrodynamic gradient freeze (EDG) furnace used at Pacific Northwest National Laboratories and Washington State University. The coupled model consists of a local model that solves for time-dependent melt flow, heat transfer, melt-crystal interface position, and zinc distribution in both melt and solid phases and a quasi-steady-state global model that features realistic furnace heat transfer. Surprisingly, anomalous zinc segregation is predicted, featuring a non-monotonic axial concentration profile and several local minima and maxima across the boule. A mechanistic explanation is put forth based on the cumulative effect of changes in multi-cellular melt flow structures, a particularly susceptible occurrence for CZT systems. Furthermore, optimized EDG furnace profiles are developed that promote the growth of CZT crystals with a uniformly convex interface shape. Such interface shapes are expected to improve the single-crystalline yield of this material. These computations clearly show how interface shape modification can be put directly into practice simply by changing thermal set points in existing EDG growth systems. In addition, the quenching process for CZT crystals has also been investigated by global model. Finally, a similar model has also been applied to investigate the single-crystal growth of sapphire, a very important substrate material for

  19. Growth of large zeolite crystals in space

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Dixon, A.; Thompson, R.; Scott, G.; Ditr, J.

    1988-01-01

    Synthesis studies performed using close analogs of triethanolamine (TEA) have shown that all three hydroxyl groups and the amine group in this molecule are necessary to provide nucleation suppression. Studies using C-13 nuclear magnetic resonance (NMR) revealed that the hydroxyl ions and the amine group are involved in the formation of an aluminum complex. It was also shown that silicate species fo not interact this way with TEA in an alkaline solution. These results suggest that successful aluminum complexation leads to nucleation in zeolite-A crystallization.

  20. Growth of Tungsten Bronze Family Crystals

    DTIC Science & Technology

    1989-03-01

    work by Megumi et al indicated that Sr0 .6 Ba0 .4 Nb 20 6 (SBN:60) was congruently melting, and they succeeded in growing optical quality crystals...summarized in Table 1. Ce 3 + doping of SBN was originally reported by Megumi et al. The addition of Ce 3 + develops a distinct but wide absorption...in close agree- L, -o ’.t.. u), t piiarc,- 1iid2 ,-t iii dianteter ment with value reported by- Megumi et al" and exceeds (0- .ti -triatiintnf-e

  1. Analytics of crystal growth in space

    NASA Technical Reports Server (NTRS)

    Chang, C. E.; Lefever, R. A.; Wilcox, W. R.

    1975-01-01

    The variation of radial impurity distribution induced by surface tension driven flow increases as the zone length decreases in silicon crystals grown by floating zone melting. In combined buoyancy driven and surface tension driven convection at the gravity of earth, the buoyancy contribution becomes relatively smaller as the zone diameter decreases and eventually convection is dominated by the surface tension driven flow (in the case of silicon, for zones of less than about 0.8 cm in diameter). Preliminary calculations for sapphire suggest the presence of an oscillatory surface tension driven convection as a result of an unstable melt surface temperature that results when the zone is heated by a radiation heater.

  2. The 1990 Gordon Research Conference on Crystal Growth

    NASA Astrophysics Data System (ADS)

    Brown, Margaret

    1990-04-01

    The program was designed to present a range of topics and views within the broad theme of the conference. Sessions included papers on bulk and thin film crystal growth experiments and modeling, high T sub c superconductors (uses and crystal growth), II-VI compounds, and crystal characterization. Twenty full length papers were presented in eight sessions, chaired by acknowledged experts in the session field. Each session chair gave an introduction to his session and fostered discussions following the presentations. Two papers included impressive videotape displays of the theory and practice of crystal growth that greatly enhanced the understanding of the subjects verbally presented. The format of the Gordon conference allows ample unstructured time for informal discussion of program and other related topics, and participants remarked on how much they enjoyed these active discussion periods to pursue points brought up in the formal sessions. Students and newcomers to the crystal growth community gained much from interacting informally with experienced scientists and learning from them. One session devoted to short verbal presentations of posters, to introduce authors and topics to the audience, proved to be a very successful experiment. Poster viewing sessions followed later, when authors were able to discuss their work in more detail.

  3. Crystal growth of aragonite in the presence of phosphate

    NASA Astrophysics Data System (ADS)

    Tadier, Solène; Rokidi, Stamatia; Rey, Christian; Combes, Christèle; Koutsoukos, Petros G.

    2017-01-01

    The crystal growth of aragonite was investigated at pH 7.8, 37 °C and constant solution supersaturation from aragonite-seeded supersaturated solutions. The effect of the presence of orthophosphate ions in the supersaturated solution on the kinetics of crystallization of aragonite was investigated over the range of orthophosphate concentrations of 0.25 μM-1 mM. In the presence of orthophosphate in the range of 0.25 μM-8 μM, the crystal growth rate of aragonite decreased with increasing phosphate concentration. At orthophosphate concentration levels exceeding 2 μM, induction times were measured and were found to increase with orthophosphate concentration. At orthophosphate concentration levels >8 μM, the crystal growth of aragonite was inhibited, suggesting the blockage of the active growth sites by the adsorption of orthophosphate ions. Adsorption was confirmed by the investigation of orthophosphate uptake on aragonite, which was: i) found to depend on the equilibrium concentration of orthophosphate in aqueous solutions saturated with respect to aragonite; ii) not influenced by the ionic strength of the electrolyte up to 0.15 M NaCl, showing that electrostatic interactions between orthophosphate and CaCO3 did not play a significant role in this concentration range. Adsorption data of orthophosphate on the aragonite crystals gave satisfactory fit to the Langmuir adsorption model and was confirmed by XPS analysis.

  4. Hanging drop crystal growth apparatus and method

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Smith, Robbie E. (Inventor)

    1989-01-01

    An apparatus (10) is constructed having a cylindrical enclosure (16) within which a disc-shaped wicking element (18) is positioned. A well or recess (22) is cut into an upper side (24) of this wicking element, and a glass cover plate or slip (28) having a protein drop disposed thereon is sealably positioned on the wicking element (18), with drop (12) being positioned over well or recess (22). A flow of control fluid is generated by a programmable gradient former (16), with this control fluid having a vapor pressure that is selectively variable. This flow of control fluid is coupled to the wicking element (18) where control fluid vapor diffusing from walls (26) of the recess (22) is exposed to the drop (12), forming a vapor pressure gradient between the drop (12) and the control fluid vapor. Initially, this gradient is adjusted to draw solvent from the drop (12) at a relatively high rate, and as the critical supersaturation point is approached (the point at which crystal nucleation occurs), the gradient is reduced to more slowly draw solvent from the drop (12). This allows discrete protein molecules more time to orient themselves into an ordered crystalline lattice, producing protein crystals which, when processed by X-ray crystallography, possess a high degree of resolution.

  5. Molecular View of Protein Crystal Growth: Molecular Interactions, Surface Reconstruction and Growth Mechanism

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan; Li, Huayu; Konnert, John H.; Pusey, Marc L.

    2000-01-01

    Studies of the growth and molecular packing of tetragonal lysozyme crystals suggest that there is an underlying molecular growth mechanism, in addition to the classical one involving screw dislocation/2D) nucleation growth. These crystals are constructed by strongly bonded molecular chains forming helices about the 43 axes. The helices are connected to each other by weaker bonds. Crystal growth proceeds by the formation of these 4(sub 3) helices, which would explain some unexpected observations by earlier investigators, such as bimolecular growth steps on the (110) face. Another consequence of these molecular considerations is that only one of two possible packing arrangements could occur on the crystal faces and that their growth unit was at least a tetramer corresponding to the 4(sub 3) helix. Two new high resolution atomic force microscopy (AFM) techniques were developed to directly confirm these predictions on tetragonal lysozyme crystals. Most earlier investigations of protein crystal growth with AFM were in the low resolution mode which is adequate to investigate the classical growth mechanisms, but cannot resolve molecular features and mechanisms. Employing the first of the newly developed techniques, high resolution AFM images of the (110) face were compared with the theoretically constructed images for the two possible packing arrangements on this face. The prediction that the molecular packing arrangement of these faces corresponded to that for complete 4(sub 3) helices was confirmed in this manner. This investigation also showed the occurrence of surface reconstruction on protein crystals. The molecules on the surface of the (110) face were found to pack closer along the 4(sub 3) axes than those in the interior. The second new AFM technique was used to follow the growth process by measuring the dimensions of individual growth units on the (110) face. Linescans across a growth step, performed near the saturation limit of the crystals, allowed the growth

  6. Molecular View of Protein Crystal Growth: Molecular Interactions, Surface Reconstruction and Growth Mechanism

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan; Li, Huayu; Konnert, John H.; Pusey, Marc L.

    2000-01-01

    Studies of the growth and molecular packing of tetragonal lysozyme crystals suggest that there is an underlying molecular growth mechanism, in addition to the classical one involving screw dislocation/2D) nucleation growth. These crystals are constructed by strongly bonded molecular chains forming helices about the 43 axes. The helices are connected to each other by weaker bonds. Crystal growth proceeds by the formation of these 4(sub 3) helices, which would explain some unexpected observations by earlier investigators, such as bimolecular growth steps on the (110) face. Another consequence of these molecular considerations is that only one of two possible packing arrangements could occur on the crystal faces and that their growth unit was at least a tetramer corresponding to the 4(sub 3) helix. Two new high resolution atomic force microscopy (AFM) techniques were developed to directly confirm these predictions on tetragonal lysozyme crystals. Most earlier investigations of protein crystal growth with AFM were in the low resolution mode which is adequate to investigate the classical growth mechanisms, but cannot resolve molecular features and mechanisms. Employing the first of the newly developed techniques, high resolution AFM images of the (110) face were compared with the theoretically constructed images for the two possible packing arrangements on this face. The prediction that the molecular packing arrangement of these faces corresponded to that for complete 4(sub 3) helices was confirmed in this manner. This investigation also showed the occurrence of surface reconstruction on protein crystals. The molecules on the surface of the (110) face were found to pack closer along the 4(sub 3) axes than those in the interior. The second new AFM technique was used to follow the growth process by measuring the dimensions of individual growth units on the (110) face. Linescans across a growth step, performed near the saturation limit of the crystals, allowed the growth

  7. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1984-01-01

    The crystal growth, device processing and device related properties and phenomena of GaAs are investigated. Our GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor materials (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; (3) investigation of electronic properties and phenomena controlling device applications and device performance. The ground based program is developed which would insure successful experimentation with and eventually processing of GaAs in a near zero gravity environment.

  8. The Influence of Mechanical Stress on the Growth of Crystals

    DTIC Science & Technology

    2001-01-01

    crystal surface. In Fig. 7 we present interferograms taken at various points during the straining of a paracetamol crystal28. In Fig. 7 we show the overall...dependence of growth rate on stress. The curvature observed fits well with the nature of the material. Paracetamol shows a well-defined plastic...0 6.6 -0.3 S13.5 4-0.7 21 *1 Fig. 6. Interferograms of the growth of a (001) surface of paracetamol as a function of applied tensile strain. 2.0

  9. Crystal growth of sulfide materials from alkali polysulfide liquids

    NASA Technical Reports Server (NTRS)

    White, W. B.

    1979-01-01

    The fluids experiment system was designed for low temperature solution growth, nominally aqueous solution growth. The alkali polysulfides, compositions in the systems Na2S-S and K2S-S form liquids in the temperature range of 190 C to 400 C. These can be used as solvents for other important classes of materials such as transition metal and other sulfides which are not soluble in aqueous media. Among these materials are luminescent and electroluminescent crystals whose physical properties are sensitive functions of crystal perfection and which could, therefore, serve as test materials for perfection improvement under microgravity conditions.

  10. Crystal-growth Underground Breeding Extra-sensitive Detectors

    NASA Astrophysics Data System (ADS)

    Mei, Dongming

    2012-02-01

    CUBED (Center for Ultra-Low Background Experiments at DUSEL) collaborators from USD, SDSMT, SDSU, Sanford Lab, and Lawrence Berkeley National Laboratory are working on the development of techniques to manufacture crystals with unprecedented purity levels in an underground environment that may be used by experiments proposed for DUSEL. The collaboration continues to make significant progress toward its goal of producing high purity germanium crystals. High quality crystals are being pulled on a weekly basis at the temporary surface growth facility located on the USD campus. The characterization of the grown crystals demonstrates that the impurity levels are nearly in the range of the needed impurity level for detector-grade crystals. Currently, the crystals are being grown in high-purity hydrogen atmosphere. With an increase in purity due to the zone refining, the group expects to grow high-purity crystals by the end of 2011. The one third of the grown crystals will be manufactured to be detectors; the remaining will be fabricated in to wafers that have large applications in electro and optical devices as well as solar panels. This would allow the research to be connected to market and create more than 30 jobs and multi millions revenues in a few years.

  11. Protein crystal growth in microgravity: Temperature induced large scale crystallization of insulin

    NASA Technical Reports Server (NTRS)

    Long, Marianna M.; Delucas, Larry J.; Smith, C.; Carson, M.; Moore, K.; Harrington, Michael D.; Pillion, D. J.; Bishop, S. P.; Rosenblum, W. M.; Naumann, R. J.

    1994-01-01

    One of the major stumbling blocks that prevents rapid structure determination using x-ray crystallography is macro-molecular crystal growth. There are many examples where crystallization takes longer than structure determination. In some cases, it is impossible to grow useful crystals on earth. Recent experiments conducted in conjuction with NASA on various Space Shuttle missions have demonstrated that protein crystals often grow larger and display better internal molecular order than their earth-grown counterparts. This paper reports results from three Shuttle flights using the Protein Crystallization Facility (PCF). The PCF hardware produced large, high-quality insulin crystals by using a temperature change as the sole means to affect protein solubility and thus, crystallization. The facility consists of cylinders/containers with volumes of 500, 200, 100, and 50 ml. Data from the three Shuttle flights demonstrated that larger, higher resolution crystals (as evidenced by x-ray diffraction data) were obtained from the microgravity experiments when compared to earth-grown crystals.

  12. Iminodiacetic acid doped ferroelectric triglycine sulphate crystal: Crystal growth and characterization

    NASA Astrophysics Data System (ADS)

    Rai, Chitharanjan; Narayana Moolya, B.; Dharmaprakash, S. M.

    2011-01-01

    Single crystals of iminodiacetic acid (HN(CH 2COOH) 2) doped triglycine sulphate (IDATGS) crystals have been grown from aqueous solution containing 1-10 mol% of iminodiacetic acid at constant temperature by slow evaporation technique. The effects of different amounts of doping entities on the growth habit have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. The grown crystals were subjected to Fourier transform infrared (FTIR) spectroscopy studies to find the presence of various functional groups qualitatively. The dielectric permittivity has been studied as a function of temperature. An increase in the transition temperature (49.2-49.7 °C) of IDATGS crystals is observed. The dielectric constant ( ε‧ max) of IDATGS crystals vary in the range 922-2410 compared to pure TGS ( Tc=49.12 °C and ε‧ max=3050). Curie Weiss constants Cp and Cf in the paraelectric and ferroelectric phases were determined. The transition temperature ( Tc) is found to decrease with increase in dopant concentration. P- E hysteresis studies show the presence of internal bias field in the crystal. Piezoelectric measurements were also carried out at room temperature. Domain patterns on b-cut plates were observed using scanning electron microscope. The micro hardness studies reveal that the doped crystals are harder than the pure TGS crystals. The low dielectric constant, higher transition temperature, internal bias field and hardness suggest that IDATGS crystals could be a potential material for IR detectors.

  13. Protein crystal growth in microgravity: Temperature induced large scale crystallization of insulin

    NASA Technical Reports Server (NTRS)

    Long, Marianna M.; Delucas, Larry J.; Smith, C.; Carson, M.; Moore, K.; Harrington, Michael D.; Pillion, D. J.; Bishop, S. P.; Rosenblum, W. M.; Naumann, R. J.

    1994-01-01

    One of the major stumbling blocks that prevents rapid structure determination using x-ray crystallography is macro-molecular crystal growth. There are many examples where crystallization takes longer than structure determination. In some cases, it is impossible to grow useful crystals on earth. Recent experiments conducted in conjuction with NASA on various Space Shuttle missions have demonstrated that protein crystals often grow larger and display better internal molecular order than their earth-grown counterparts. This paper reports results from three Shuttle flights using the Protein Crystallization Facility (PCF). The PCF hardware produced large, high-quality insulin crystals by using a temperature change as the sole means to affect protein solubility and thus, crystallization. The facility consists of cylinders/containers with volumes of 500, 200, 100, and 50 ml. Data from the three Shuttle flights demonstrated that larger, higher resolution crystals (as evidenced by x-ray diffraction data) were obtained from the microgravity experiments when compared to earth-grown crystals.

  14. Thermal Optimization of Growth and Quality in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.

    1996-01-01

    Experimental evidence suggests that larger and higher quality crystals can be attained in the microgravity of space; however, the effect of growth rate on protein crystal quality is not well documented. This research is the first step towards providing strategies to grow crystals under constant rates of growth. Controlling growth rates at a constant value allows for direct one-to-one comparison of results obtained in microgravity and on earth. The overall goal of the project was to control supersaturation at a constant value during protein crystal growth by varying temperature in a predetermined manner. Applying appropriate theory requires knowledge of specific physicochemical properties of the protein solution including the effect of supersaturation on growth rates and the effect of temperature on protein solubility. Such measurements typically require gram quantities of protein and many months of data acquisition. A second goal of the project applied microcalorimetry for the rapid determination of these physicochemical properties using a minimum amount of protein. These two goals were successfully implemented on hen egg-white lysozyme. Results of these studies are described in the attached reprints.

  15. Dynamic control of vapor diffusion protein crystal growth

    SciTech Connect

    Bray, Terry L.; Powell, Deborah L.; DeLucas, Lawrence J.

    1997-01-10

    Two laboratory based systems have been constructed to demonstrate methods which will allow for dynamic control of protein crystal growth. The technologies developed in these systems will be incorporated into future flight hardware for use in microgravity studies. The first system uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from up to 40 different growth solutions simultaneously. A second system utilizes the key features of the first system with the addition of a static laser light scattering sensor which can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. This system also demonstrates that a Control/Follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the Control chamber. Results from experiments with both systems demonstrate that evaporation rate and dynamic control produce systematic effects on the size and number of crystals obtained. Both of these systems demonstrate significant advances in the ability of researchers to gain control of the protein crystal growth process and will provide tremendous opportunities for both terrestrial and microgravity research.

  16. Crystal growth by precipitation under microgravity

    NASA Technical Reports Server (NTRS)

    Authier, A.; Lefaucheux, F.; Robert, M. C.

    1979-01-01

    The importance of understanding the mechanisms associated with defect generation during growth and the influence of gravity is stressed. An experiment is described. The advantages of adapting this experiment to the FES are then discussed. A brief survey of the ground based research under way is given.

  17. The dynamic nature of crystal growth in pores

    DOE PAGES

    Godinho, Jose R. A.; Gerke, Kirill M.; Stack, Andrew G.; ...

    2016-09-12

    We report that the kinetics of crystal growth in porous media controls a variety of natural processes such as ore genesis and crystallization induced fracturing that can trigger earthquakes and weathering, as well as, sequestration of CO2 and toxic metals into geological formations. Progress on understanding those processes has been limited by experimental difficulties of dynamically studying the reactive surface area and permeability during pore occlusion. Here, we show that these variables cause a time-dependency of barite growth rates in microporous silica. The rate is approximately constant and similar to that observed on free surfaces if fast flow velocities predominatemore » and if the time-dependent reactive surface area is accounted for. As the narrower flow paths clog, local flow velocities decrease, which causes the progressive slowing of growth rates. We conclude that mineral growth in a microporous media can be estimated based on free surface studies when a) the growth rate is normalized to the time-dependent surface area of the growing crystals, and b) the local flow velocities are above the limit at which growth is transport-limited. Lastly, accounting for the dynamic relation between microstructure, flow velocity and growth rate is shown to be crucial towards understanding and predicting precipitation in porous rocks.« less

  18. The dynamic nature of crystal growth in pores

    SciTech Connect

    Godinho, Jose R. A.; Gerke, Kirill M.; Stack, Andrew G.; Lee, Peter D.

    2016-09-12

    We report that the kinetics of crystal growth in porous media controls a variety of natural processes such as ore genesis and crystallization induced fracturing that can trigger earthquakes and weathering, as well as, sequestration of CO2 and toxic metals into geological formations. Progress on understanding those processes has been limited by experimental difficulties of dynamically studying the reactive surface area and permeability during pore occlusion. Here, we show that these variables cause a time-dependency of barite growth rates in microporous silica. The rate is approximately constant and similar to that observed on free surfaces if fast flow velocities predominate and if the time-dependent reactive surface area is accounted for. As the narrower flow paths clog, local flow velocities decrease, which causes the progressive slowing of growth rates. We conclude that mineral growth in a microporous media can be estimated based on free surface studies when a) the growth rate is normalized to the time-dependent surface area of the growing crystals, and b) the local flow velocities are above the limit at which growth is transport-limited. Lastly, accounting for the dynamic relation between microstructure, flow velocity and growth rate is shown to be crucial towards understanding and predicting precipitation in porous rocks.

  19. The dynamic nature of crystal growth in pores

    NASA Astrophysics Data System (ADS)

    Godinho, Jose R. A.; Gerke, Kirill M.; Stack, Andrew G.; Lee, Peter D.

    2016-09-01

    The kinetics of crystal growth in porous media controls a variety of natural processes such as ore genesis and crystallization induced fracturing that can trigger earthquakes and weathering, as well as, sequestration of CO2 and toxic metals into geological formations. Progress on understanding those processes has been limited by experimental difficulties of dynamically studying the reactive surface area and permeability during pore occlusion. Here, we show that these variables cause a time-dependency of barite growth rates in microporous silica. The rate is approximately constant and similar to that observed on free surfaces if fast flow velocities predominate and if the time-dependent reactive surface area is accounted for. As the narrower flow paths clog, local flow velocities decrease, which causes the progressive slowing of growth rates. We conclude that mineral growth in a microporous media can be estimated based on free surface studies when a) the growth rate is normalized to the time-dependent surface area of the growing crystals, and b) the local flow velocities are above the limit at which growth is transport-limited. Accounting for the dynamic relation between microstructure, flow velocity and growth rate is shown to be crucial towards understanding and predicting precipitation in porous rocks.

  20. The dynamic nature of crystal growth in pores

    PubMed Central

    Godinho, Jose R. A.; Gerke, Kirill M.; Stack, Andrew G.; Lee, Peter D.

    2016-01-01

    The kinetics of crystal growth in porous media controls a variety of natural processes such as ore genesis and crystallization induced fracturing that can trigger earthquakes and weathering, as well as, sequestration of CO2 and toxic metals into geological formations. Progress on understanding those processes has been limited by experimental difficulties of dynamically studying the reactive surface area and permeability during pore occlusion. Here, we show that these variables cause a time-dependency of barite growth rates in microporous silica. The rate is approximately constant and similar to that observed on free surfaces if fast flow velocities predominate and if the time-dependent reactive surface area is accounted for. As the narrower flow paths clog, local flow velocities decrease, which causes the progressive slowing of growth rates. We conclude that mineral growth in a microporous media can be estimated based on free surface studies when a) the growth rate is normalized to the time-dependent surface area of the growing crystals, and b) the local flow velocities are above the limit at which growth is transport-limited. Accounting for the dynamic relation between microstructure, flow velocity and growth rate is shown to be crucial towards understanding and predicting precipitation in porous rocks. PMID:27615371

  1. Decomposition of crystal-growth equations in multicomponent melts

    NASA Astrophysics Data System (ADS)

    Dudorov, M. V.

    2014-06-01

    Using a variational approach, the macroscopic laws of the growth of a new-phase, multicomponent particle are compared to the physicochemical laws of processes in the “new phase - initial melt” system. A suitable equation-based method has been developed to calculate the growth of a new-phase particle under the conditions of diffusion growth and non-equilibrium solute trapping by the quickly growing front of a new phase. The laws of crystal growth have been studied while annealing the amorphous alloy FINEMET® Fe73.5Cu1Nb3Si13.5B9.

  2. Mechanism of habit change for atmospheric ice crystal growth

    NASA Astrophysics Data System (ADS)

    Lu, Qiu-Jiang

    The basic mechanism that controls the shape change of ice crystal with temperature and supersaturation, or so-called ice crystal habit change, was investigated. From the preliminary analysis of experimental data, it was found that surface kinetic processes on the crystal are responsible in controlling the habit change. Therefore, relevant surface factors and processes were identified first. One of the most important factors was the line tension, or the surface free energy on the side of the two-dimensional embryo. Based on the physical meaning of the line tension and the surface tension, their fundamental difference was clarified under ideal conditions. A method to represent the hexagonal ice crystal lattice under random hydrogen arrangement was developed. Applying this last method, the surface factors such as the line tension and the surface tension for the ideal ice crystal were computed by using the intermolecular potential of the water molecule. Roles of liquid-like layer, transitional liquid layer and interface roughening in the habit change was clarified. The ordinary Brunaeur-Emmett-Teller (BET) adsorption equation was modified to describe the ice crystal growth problem. Through these analyses, the origin of the habit change was traced to the unique characteristic of the hydrogen bond that expands during freezing of water. The same characteristic led to a minimum in the free energy of two-dimensional embryo formation on the crystal plane through the line tension, which was shown to be a function of chemical potential difference. The operation of the two-dimensional nucleation mechanism for ice crystal growth was thus confirmed. Semiquantitative simulation of the habit change process for ice crystals growing both in air and in vapor alone after considering various surface factors was carried out, and the results showed a reasonable agreement with experimental data.

  3. Mechanism of Habit Change for Atmospheric Ice Crystal Growth

    NASA Astrophysics Data System (ADS)

    Lu, Qiu-Jiang

    The basic mechanism that controls the shape change of ice crystal with temperature and supersaturation, or so-called "ice crystal habit change", has been investigated. From the preliminary analysis of experimental data, it was found that surface kinetic processes on the crystal are responsible in controlling the habit change. Therefore, relevant surface factors and processes were identified first. One of the most important factors was the line tension, or the surface free energy on the side of the two-dimensional embryo. Based on the physical meaning of the line tension and the surface tension, their fundamental difference was clarified under ideal conditions. A method to represent the hexagonal ice crystal lattice under random hydrogen arrangement was developed. Applying this method, the surface factors such as the line tension and the surface tension for the ideal ice crystal were computed by using the intermolecular potential of water molecule. Roles of liquid-like layer, transitional liquid layer and interface roughening in the habit change was clarified. The ordinary BET adsorption equation was modified to describe the ice crystal growth problem. Through these analyses, the origin of the habit change was traced to the unique characteristic of the hydrogen bond that expands during freezing of water. The same characteristic led to a minimum in the free energy of two-dimensional embryo formation on the crystal plane through the line tension, which was shown to be a function of chemical potential difference. The operation of the two-dimensional nucleation mechanism for ice crystal growth was thus confirmed. Semiquantitative simulation of the habit change process for ice crystals growing both in air and in vapor alone after considering various surface factors was carried out, and the results showed a reasonable agreement with experimental data.

  4. Vapor growth of mercuric iodide tetragonal prismatic crystals

    NASA Astrophysics Data System (ADS)

    Ariesanti, Elsa

    The effect of polyethylene addition on the growth of mercuric iodide (HgI2) tetragonal prismatic crystals is examined. Three types of polyethylene powder are utilized: low molecular weight (Mw ˜ 4 x 103), ultra high molecular weight (Mw ˜ 3-6 x 1066), and spectrophotometric grade polyethylenes. Among these types of polyethylene, the low molecular weight polyethylene produces the most significant change in HgI2 morphology, with {110} being the most prominent crystal faces. Thermal desorption - gas chromatography/ mass spectroscopy (TD-GC/MS) studies show that thermal desorption of the low molecular weight polyethylene at 100°C and 150°C produce isomers of alkynes, odd nalkanes, and methyl (even-n) alkyl ketones. HgI2 growth runs with n-alkanes, with either neicosane, n-tetracosane, or n-hexatriacontane, cannot replicate the crystal shapes produced during growth with the low molecular weight polyethylene, whereas HgI2 growth runs with ketones, with either 3-hexadecanone or 14-heptacosanone, produce HgI2 tetragonal prismatic crystals, similar to the crystals grown with the low molecular weight polyethylene. C-O double bond contained in any ketone is a polar bond and this polar bond may be attracted to the mercury atoms on the top-most layer of the {110} faces through dipoledipole interaction. As a result, the growth of the {110} faces is impeded, with the crystals elongated in the [001] direction and bounded by the {001} faces along with large, prismatic {110} faces.

  5. Growth of large detector crystals. CRADA final report

    SciTech Connect

    Boatner, L.A.; Samuelson, S.

    1997-06-18

    In the course of a collaborative research effort between L.A. Boatner of Oak Ridge National Laboratory and Prof. Alex Lempicki of the Department of Chemistry of Boston University, a new highly efficient and very fast scintillator for the detection of gamma-rays was discovered. This new scintillator consists of a single crystal of lutetium orthophosphate (LuPO{sub 4}) to which a small percentage of trivalent cerium is added as an activator ion. The new lutetium orthophosphate-cerium scintillator was found to be superior in performance to bismuth germanium oxide--a material that is currently widely used as a gamma-ray detector in a variety of medical, scientific, and technical applications. Single crystals of LuPO{sub 4} and related rare-earth orthophosphates had been grown for a number of years in the ORNL Solid State Division prior to the discovery of the efficient gamma-ray-scintillation response of LuPO{sub 4}:Ce. The high-temperature-solvent (flux-growth) method used for the growth of these crystals was capable of producing crystals in sizes that were adequate for research purposes but that were inadequate for commercial-scale production and widespread application. The CRADA between ORNL and Deltronic Crystal Industries of Dover, NJ was undertaken for the purpose of investigating alternate approaches, such as top-seeded-solution growth, to the growth of LuPO{sub 4}:Ce scintillator crystals in sizes significantly larger than those obtainable through the application of standard flux-growth methods and, therefore, suitable for commercial sales and applications.

  6. Crystal Growth and Spectroscopic Investigations of Tm(3+):Li₃Ba₂Gd₃(MoO₄)₈ Crystal.

    PubMed

    Song, Mingjun; Wang, Lintong; Zhang, Nana; Tai, Xishi; Wang, Guofu

    2014-01-17

    Tm(3+):Li₃Ba₂Gd₃(MoO₄)₈ crystal has been grown by the top seeded solution growth (TSSG) method from a Li₂MoO₄ flux. The room temperature polarized absorption spectra, fluorescence spectra, and fluorescence decay curves of the crystal were measured. Based on the Judd-Ofelt (J-O) theory, the main spectroscopic parameters of the crystal, including the spontaneous emission probabilities, fluorescence branching ratios, and radiative lifetimes were calculated and analyzed. The broad and strong absorption bands of the crystal show that it can be efficiently pumped by the diode laser, while the large emission cross-sections of the ³F₄ → ³H₆ transition indicate that the crystal is a promising candidate for tunable and short pulse lasers.

  7. Studying of crystal growth and overall crystallization of naproxen from binary mixtures.

    PubMed

    Kaminska, E; Madejczyk, O; Tarnacka, M; Jurkiewicz, K; Kaminski, K; Paluch, M

    2017-04-01

    Broadband dielectric spectroscopy (BDS) and differential scanning calorimetry (DSC) were applied to investigate the molecular dynamics and phase transitions in binary mixtures composed of naproxen (NAP) and acetylated saccharides: maltose (acMAL) and sucrose (acSUC). Moreover, the application of BDS method and optical microscopy enabled us to study both crystallization kinetics and crystal growth of naproxen from the solid dispersions with the highest content of modified carbohydrates (1:5wt ratio). It was found that the activation barriers of crystallization estimated from dielectric measurements are completely different for both studied herein mixtures. Much higher Ea (=205kJ/mol) was obtained for NAP-acMAL solid dispersion. It is probably due to simultaneous crystallization of both components of the mixture. On the other hand, lower value of Ea in the case of NAP-acSUC solid dispersion (81kJ/mol) indicated, that naproxen is the only crystallizing compound. This hypothesis was confirmed by X-ray diffraction studies. We also suggested that specific intermolecular dipole-dipole interactions between active substance and excipient may be an alternative explanation for the difference between activation barrier obtained for NAP-acMAL and NAP-acSUC binary mixtures. Furthermore, optical measurements showed that the activation energy for crystal growth of naproxen increases in binary mixtures. They also revealed that both excipients: acMAL and acSUC move the temperature of the maximum of crystal growth towards lower temperatures. Interestingly, this maximum occurs for nearly the same structural relaxation time, which is a good approximation of viscosity, for all samples. Finally, it was also noticed that although naproxen crystallizes to the same polymorphic form in both systems, there are some differences in morphology of obtained crystals. Thus, the observed behavior may have a significant impact on the bioavailability and dissolution rate of API produced in that way

  8. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1986-01-01

    It was established that the findings on elemental semiconductors Ge and Si regarding crystal growth, segregation, chemical composition, defect interactions, and materials properties-electronic properties relationships are not necessarily applicable to GaAs (and to other semiconductor compounds). In many instances totally unexpected relationships were found to prevail. It was further established that in compound semiconductors with a volatile constituent, control of stoichiometry is far more critical than any other crystal growth parameter. It was also shown that, due to suppression of nonstoichiometric fluctuations, the advantages of space for growth of semiconductor compounds extend far beyond those observed in elemental semiconductors. A novel configuration was discovered for partial confinement of GaAs melt in space which overcomes the two major problems associated with growth of semiconductors in total confinement. They are volume expansion during solidification and control of pressure of the volatile constituent. These problems are discussed in detail.

  9. Melt-growth dynamics in CdTe crystals

    DOE PAGES

    Zhou, X. W.; Ward, D. K.; Wong, B. M.; ...

    2012-06-01

    We use a new, quantum-mechanics-based bond-order potential (BOP) to reveal melt growth dynamics and fine scale defect formation mechanisms in CdTe crystals. Previous molecular dynamics simulations of semiconductors have shown qualitatively incorrect behavior due to the lack of an interatomic potential capable of predicting both crystalline growth and property trends of many transitional structures encountered during the melt → crystal transformation. Here, we demonstrate successful molecular dynamics simulations of melt growth in CdTe using a BOP that significantly improves over other potentials on property trends of different phases. Our simulations result in a detailed understanding of defect formation during themore » melt growth process. Equally important, we show that the new BOP enables defect formation mechanisms to be studied at a scale level comparable to empirical molecular dynamics simulation methods with a fidelity level approaching quantum-mechanical methods.« less

  10. 2D modeling of the regeneration surface growth on crystals

    NASA Astrophysics Data System (ADS)

    Thomas, V. G.; Gavryushkin, P. N.; Fursenko, D. A.

    2012-11-01

    A physical model is proposed to describe the growth of regeneration surfaces (flat crystal surfaces that are not parallel to any possible faces). According to this model, the change in the growth rate of a regeneration surface during its evolution and the decrease in the number of subindividuals forming the growth front can be explained by the implementation of two types of geometric selection: within each subindividual (the absorption of rapidly growing faces by slowly growing ones) and between subindividuals (when subindividuals absorb each other). A numerical modeling of the growth of the regeneration surface (30.30.19) of potassium alum crystals showed quantitative agreement between the model proposed and the experimental data.

  11. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Lagowski, J.

    1981-01-01

    Experimental and theoretical efforts in the development of crystal growth approaches, effective techniques for electronic characterization on a macro and microscale, and in the discovery of phenomena and processes relevant to GaAs device applications are reported. The growth of electron trap-free bulk GaAS with extremely low density of dislocations is described. In electroepitaxy, growth configuration which eliminates the substrate back-contact was developed. This configuration can be extended to the simultaneous growth on many substrates with a thin solution layer sandwiched between any two of them. The significant reduction of Joule heating effects in the configuration made it possible to realize the in situ measurement of the layer thickness and the growth velocity. Utilizing the advantages of electroepitaxy in achieving abrupt acceleration (or deceleration) of the growth it was shown that recombination centers are formed as a result of growth acceleration.

  12. Graphene Oxide Restricts Growth and Recrystallization of Ice Crystals.

    PubMed

    Geng, Hongya; Liu, Xing; Shi, Guosheng; Bai, Guoying; Ma, Ji; Chen, Jingbo; Wu, Zhuangyuan; Song, Yanlin; Fang, Haiping; Wang, Jianjun

    2017-01-19

    We show graphene oxide (GO) greatly suppresses the growth and recrystallization of ice crystals, and ice crystals display a hexagonal shape in the GO dispersion. Preferred adsorption of GO on the ice crystal surface in liquid water leads to curved ice crystal surface. Therefore, the growth of ice crystal is suppressed owing to the Gibbs-Thompson effect, that is, the curved surface lowers the freezing temperature. Molecular dynamics simulation analysis reveals that oxidized groups on the basal plane of GO form more hydrogen bonds with ice in comparison with liquid water because of the honeycomb hexagonal scaffold of graphene, giving a molecular-level mechanism for controlling ice formation. Application of GO for cryopreservation shows that addition of only 0.01 wt % of GO to a culture medium greatly increases the motility (from 24.3 % to 71.3 %) of horse sperms. This work reports the control of growth of ice with GO, and opens a new avenue for the application of 2D materials.

  13. Growth and characterization of terbium fumarate heptahydrate single crystals

    NASA Astrophysics Data System (ADS)

    Want, B.; Shah, M. D.

    2014-03-01

    The growth of terbium fumarate heptahydrate single crystals was achieved by single gel diffusion technique using silica gel as a medium of growth. The effect of various growth parameters on the nucleation rate of these crystals was studied. The crystals were characterized by different physico-chemical techniques of characterization. Powder X-ray diffraction pattern showed that terbium fumarate is a crystalline compound. Fourier transform infrared spectroscopy was performed for the identification of water and other functional groups present in the compound. UV-vis and photoluminescence spectrophotometric experiments were carried out to study the optical properties of the grown crystals. Elemental analysis suggested the chemical formula of the crystals to be Tb2(C4H2O4)3·7H2O. The presence of seven molecules of water was also supported by the thermogravimetric analysis. The hydrated compound was found to be thermally stable upto a temperature of about 110 °C and its anhydrous form up to the temperature of 410 °C. The thermal decomposition of the compound in the nitrogen atmosphere leads to the formation of terbium oxide as the final product. An attempt was made to relate the experimental results with the classical nucleation theory.

  14. Epitaxial Crystal Growth: Methods and Materials

    NASA Astrophysics Data System (ADS)

    Capper, Peter; Irvine, Stuart; Joyce, Tim

    The epitaxial growth of thin films of material for a wide range of applications in electronics and optoelectronics is a critical activity in many industries. The original growth technique used, in most instances, was liquid-phase epitaxy (LPE), as this was the simplest and often the cheapest route to producing device-quality layers. These days, while some production processes are still based on LPE, most research into and (increasingly) much of the production of electronic and optoelectronic devices now centers on metalorganic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE). These techniques are more versatile than LPE (although the equipment is more expensive), and they can readily produce multilayer structures with atomic-layer control, which has become more and more important in the type of nanoscale engineering used to produce device structures in as-grown multilayers. This chapter covers these three basic techniques, including some of their more common variants, and outlines the relative advantages and disadvantages of each. Some examples of growth in various important systems are also outlined for each of the three techniques.

  15. Accumulated distribution of material gain at dislocation crystal growth

    NASA Astrophysics Data System (ADS)

    Rakin, V. I.

    2016-05-01

    A model for slowing down the tangential growth rate of an elementary step at dislocation crystal growth is proposed based on the exponential law of impurity particle distribution over adsorption energy. It is established that the statistical distribution of material gain on structurally equivalent faces obeys the Erlang law. The Erlang distribution is proposed to be used to calculate the occurrence rates of morphological combinatorial types of polyhedra, presenting real simple crystallographic forms.

  16. Linking Crystal Populations to Dynamic States: Crystal Dissolution and Growth During an Open-System Event

    NASA Astrophysics Data System (ADS)

    Bergantz, G. W.; Schleicher, J.; Burgisser, A.

    2016-12-01

    The identification of shared characteristics in zoned crystals has motivated the definition of crystal populations. These populations reflect the simultaneous transport of crystals, heat and composition during open-system events. An obstacle to interpreting the emergence of a population is the absence of a way to correlate specific dynamic conditions with the characteristic attributes of a population. By combining a boundary-layer diffusion controlled model for crystal growth/dissolution with discrete-element magma dynamics simulations of crystal-bearing magmas, the creation of populations can be simulated. We have implemented a method that decomposes the chemical potential into the thermal and compositional contributions to crystal dissolution/growth. This allows for the explicit treatment of thermal inertia and thermal-compositional decoupling as fluid circulation stirs the system during an open-system event. We have identified three distinct dynamic states producing crystal populations. They are based on the volume fraction of crystals. In a mushy system, thermal and compositional states are tightly linked as the volume involved in the mixing is constrained by the so-called mixing bowl (Bergantz et al., 2015). The mixing bowl volume is a function of the visco-plastic response of the mush and the intrusion width, not by the progressive entrainment of the new intrusion as commonly assumed. Crystal dissolution is the dominate response to input of more primitive magma. At the other endmember, under very dilute conditions, thermal and compositional conditions can become decoupled, and the in-coming magma forms a double-diffusive low-Re jet. This can allow for both dissolution and growth as crystals circulate widely into an increasingly stratified system. A middle range of crystal concentration produces a very complex feedback, as sedimenting crystals form fingers and chains that interact with the incoming magma, break-up the entrainment with chaotic stirring and add

  17. The Growth of Protein Crystals Using McDUCK

    NASA Technical Reports Server (NTRS)

    Ewing, Felicia; Wilson, Lori; Nadarajah, Arunan; Pusey, Marc

    1998-01-01

    Most of the current microgravity crystal growth hardware is optimized to produce crystals within the limited time available on orbit. This often results in the actual nucleation and growth process being rushed or the system not coming to equilibrium within the limited time available. Longer duration hardware exists, but one cannot readily pick out crystals grown early versus those which nucleated and grew more slowly. We have devised a long duration apparatus, the Multi-chamber Dialysis Unit for Crystallization Kinetics, or McDUCK. This apparatus-is a series of protein chambers, stacked upon a precipitant reservoir chamber. All chambers are separated by a dialysis membrane, which serves to pass small molecules while retaining the protein. The volume of the Precipitant chamber is equal to the sum of the volumes of the protein chamber. In operation, the appropriate chambers are filled with precipitant solution or protein solution, and the McDUCK is placed standing upright, with the precipitant chamber on the bottom. The precipitant diffuses upwards over time, with the time to reach equilibration a function of the diffusivity of the precipitant and the overall length of the diffusion pathway. Typical equilibration times are approximately 2-4 months, and one can readily separate rapid from slow nucleation and growth crystals. An advantage on Earth is that the vertical precipitant concentration gradient dominates that of the solute, thus dampening out solute density gradient driven convective flows. However, large Earth-grown crystals have so far tended to be more two dimensional. Preliminary X-ray diffraction analysis of lysozyme crystals grown in McDUCK have indicated that the best, and largest, come from the middle chambers, suggesting that there is an optimal growth rate. Further, the improvements in diffraction resolution have been better signal to noise ratios in the low resolution data, not an increase in resolution overall. Due to the persistently large crystals

  18. The Growth of Protein Crystals Using McDUCK

    NASA Technical Reports Server (NTRS)

    Ewing, Felicia; Wilson, Lori; Nadarajah, Arunan; Pusey, Marc

    1998-01-01

    Most of the current microgravity crystal growth hardware is optimized to produce crystals within the limited time available on orbit. This often results in the actual nucleation and growth process being rushed or the system not coming to equilibrium within the limited time available. Longer duration hardware exists, but one cannot readily pick out crystals grown early versus those which nucleated and grew more slowly. We have devised a long duration apparatus, the Multi-chamber Dialysis Unit for Crystallization Kinetics, or McDUCK. This apparatus-is a series of protein chambers, stacked upon a precipitant reservoir chamber. All chambers are separated by a dialysis membrane, which serves to pass small molecules while retaining the protein. The volume of the Precipitant chamber is equal to the sum of the volumes of the protein chamber. In operation, the appropriate chambers are filled with precipitant solution or protein solution, and the McDUCK is placed standing upright, with the precipitant chamber on the bottom. The precipitant diffuses upwards over time, with the time to reach equilibration a function of the diffusivity of the precipitant and the overall length of the diffusion pathway. Typical equilibration times are approximately 2-4 months, and one can readily separate rapid from slow nucleation and growth crystals. An advantage on Earth is that the vertical precipitant concentration gradient dominates that of the solute, thus dampening out solute density gradient driven convective flows. However, large Earth-grown crystals have so far tended to be more two dimensional. Preliminary X-ray diffraction analysis of lysozyme crystals grown in McDUCK have indicated that the best, and largest, come from the middle chambers, suggesting that there is an optimal growth rate. Further, the improvements in diffraction resolution have been better signal to noise ratios in the low resolution data, not an increase in resolution overall. Due to the persistently large crystals

  19. Direct observation of crystal growth from solution using optical investigation of a growing crystal face

    NASA Technical Reports Server (NTRS)

    Lal, Ravindra

    1994-01-01

    The first technical report for the period 1 Jan. 1993 till 31 Dec. 1993 for the research entitled, 'Direct observation of crystal growth from solution using Optical Investigation of a growing crystal Face' is presented. The work on the project did not start till 1 June 1993 due to the non-availability of the required personnel. The progress of the work during the period 1 June 1993 till the end of 1993 is described. Significant progress was made for testing various optical diagnostic techniques for monitoring crystal solution. Some of the techniques that are being tested are: heterodyne detection technique, in which changes in phase are measured as a interferometric function of time/crystal growth; a conventional technique, in which a fringe brightness is measured as a function of crystal growth/time; and a Mach-Zehnder interferometric technique in which a fringe brightness is measured as a function of time to obtain information on concentration changes. During the second year it will be decided to incorporate the best interferometric technique along with the ellipsometric technique, to obtain real time in-situ growth rate measurements. A laboratory mock-up of the first two techniques were made and tested.

  20. Aluminium segregation of TiAl during single crystal growth

    SciTech Connect

    Bi, Y.J.; Abell, J.S.

    1997-09-15

    {gamma}-TiAl single crystals have been successfully prepared by an induction-heated cold crucible Czochralski technique which offers more flexibility than vertical float zoning. Compositional analysis of the Czochralski grown single crystals indicates a homogeneous composition after initial transition; and the average composition is close to the peritectic composition. However, {gamma}-TiAl single crystals prepared by vertical float zoning show a small aluminium segregation profile along the growth direction; and the average composition of the as-grown crystals is close to that of the starting alloy. Compositional analysis further demonstrated the banded structure with alternative single {gamma}-phase and {alpha}{sub 2} + {gamma} lamellar regions in the vertical float zoned Ti-54 at.% Al.

  1. Polymer-mediated growth of crystals and mesocrystals.

    PubMed

    Cölfen, Helmut

    2013-01-01

    Polymers are important additives for the control of mineralization reactions in both biological and bioinspired mineralization. The reason is that they allow for a number of interactions with the growing crystals and even amorphous minerals. These can substantially influence the way the mineral grows on several levels. Already in the prenucleation phase, polymers can control the formation of prenucleation clusters and subsequently the nucleation event. Also, polymers can control whether the further crystallization follows a classical or nonclassical particle-mediated growth path. In this chapter, the main ways in which polymers can be used to control a crystallization reaction will be highlighted. In addition, polymers that are useful for this purpose and the experimental conditions suitable for directing a crystallization reaction into the desired direction through the use of polymers will be described.

  2. In Situ μGISAXS: II. Thaumatin Crystal Growth Kinetic

    PubMed Central

    Gebhardt, Ronald; Pechkova, Eugenia; Riekel, Christian; Nicolini, Claudio

    2010-01-01

    The formation of thaumatin crystals by Langmuir-Blodgett (LB) film nanotemplates was studied by the hanging-drop technique in a flow-through cell by synchrotron radiation micrograzing-incidence small-angle x-ray scattering. The kinetics of crystallization was measured directly on the interface of the LB film crystallization nanotemplate. The evolution of the micrograzing-incidence small-angle x-ray scattering patterns suggests that the increase in intensity in the Yoneda region is due to protein incorporation into the LB film. The intensity variation suggests several steps, which were modeled by system dynamics based on first-order differential equations. The kinetic data can be described by two processes that take place on the LB film, a first, fast, process, attributed to the crystal growth and its detachment from the LB film, and a second, slower process, attributed to an unordered association and conversion of protein on the LB film. PMID:20713011

  3. Growth and Characterization of Lead-free Piezoelectric Single Crystals.

    PubMed

    Veber, Philippe; Benabdallah, Feres; Liu, Hairui; Buse, Gabriel; Josse, Michael; Maglione, Mario

    2015-11-24

    Lead-free piezoelectric materials attract more and more attention owing to the environmental toxicity of lead-containing materials. In this work, we review our first attempts of single crystal grown by the top-seeded solution growth method of BaTiO₃ substituted with zirconium and calcium (BCTZ) and (K0.5Na0.5)NbO₃ substituted with lithium, tantalum, and antimony (KNLSTN). The growth methodology is optimized in order to reach the best compositions where enhanced properties are expected. Chemical analysis and electrical characterizations are presented for both kinds of crystals. The compositionally-dependent electrical performance is investigated for a better understanding of the relationship between the composition and electrical properties. A cross-over from relaxor to ferroelectric state in BCTZ solid solution is evidenced similar to the one reported in ceramics. In KNLSTN single crystals, we observed a substantial evolution of the orthorhombic-to-tetragonal phase transition under minute composition changes.

  4. Crystal growth of clathrate hydrate in gas/liquid/liquid system: variations in crystal-growth behavior.

    PubMed

    Ishida, Yosuke; Sakemoto, Riki; Ohmura, Ryo

    2011-08-16

    This paper reports the visual observations of the formation and growth of structure-II hydrate crystals on a water droplet partially immersed in liquid cyclopentane and exposed to difluoromethane gas. Each of the experiments was performed under prescribed temperature and pressure conditions in the range from 281.7 to 297.0 K and from 0.12 to 1.10 MPa in order to investigate the effect of the driving force for the hydrate crystal growth. The experiments were conducted at 25 different temperature-pressure conditions. It was found that the behavior of the hydrate crystal growth in this three-component system can be classified into three modes, which we called "cover", "expansion" and "line", depending on the temperature and pressure. The descriptions of the three types are summarized as follows. "COVER": Hydrate crystals first formed on the water-droplet surface and then grew to form a polycrystalline layer covering the surface. After complete surface coverage, no more hydrate growth and little change in the shape of the hydrate-covered water droplet were observed. "EXPANSION": Like "cover", the first crystals were observed on the water-droplet surface. They grew not only along the surface, but also toward the gas phase, and then continued to grow for more than several tens of minutes after complete coverage. "LINE": Unlike the other two modes, hydrate crystals first formed at the three-phase interfacial line and grew along this line. The shape of the hydrate crystals eventually became like a doughnut, since the center of the water droplet collapsed when they grew.

  5. Protein crystal growth; Proceedings of the First International Conference, Stanford University, CA, August 14-16, 1985

    NASA Technical Reports Server (NTRS)

    Feigelson, R. S. (Editor)

    1986-01-01

    Papers are presented on mechanisms of nucleation and growth of protein crystals, the role of purification in the crystallization of proteins and nucleic acids, and the effect of chemical impurities in polyethylene glycol on macromolecular crystallization. Also considered are growth kinetics of tetragonal lysozyme crystals, thermodynamic and kinetic considerations for crystal growth of complex molecules from solution, protein single-crystal growth under microgravity, and growth of organic crystals in a microgravity environment. Papers are also presented on preliminary investigations of protein crystal growth using the Space Shuttle, convective diffusion in protein crystal growth, and the growth and characterization of membrane protein crystals.

  6. Protein crystal growth; Proceedings of the First International Conference, Stanford University, CA, August 14-16, 1985

    NASA Technical Reports Server (NTRS)

    Feigelson, R. S. (Editor)

    1986-01-01

    Papers are presented on mechanisms of nucleation and growth of protein crystals, the role of purification in the crystallization of proteins and nucleic acids, and the effect of chemical impurities in polyethylene glycol on macromolecular crystallization. Also considered are growth kinetics of tetragonal lysozyme crystals, thermodynamic and kinetic considerations for crystal growth of complex molecules from solution, protein single-crystal growth under microgravity, and growth of organic crystals in a microgravity environment. Papers are also presented on preliminary investigations of protein crystal growth using the Space Shuttle, convective diffusion in protein crystal growth, and the growth and characterization of membrane protein crystals.

  7. Transient natural convection heat and mass transfer in crystal growth

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1990-01-01

    A numerical analysis of transient combined heat and mass transfer across a rectangular cavity is performed. The physical parameters are selected to represent a range of possible crystal growth in solutions. Good agreements with measurement data are observed. It is found that the thermal and solute fields become highly oscillatory when the thermal and solute Grashof numbers are large.

  8. Morphological stability and fluid dynamics of vapor crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, F. E.

    1984-01-01

    Research on morphological stability and fluid dynamics of crystal growth is discussed. Interfacial heat and mass transfer research is discussed. The finding of surface roughening is a precursor to a solid-solid phase transition was further quantified. Progress was obtained with the mass spectroscopic characterization of GeSe-Ge I sub 4.

  9. Crewmember working on the mid deck Zeolite Crystal Growth experiment.

    NASA Technical Reports Server (NTRS)

    1992-01-01

    View showing Payload Specialist Bonnie Dunbar, in the mid deck, conducting the Zeolite Crystal Growth (ZCG) Experiment in the mid deck stowage locker work area. View shows assembly of zeolite sample in the metal autoclave cylinders prior to insertion into the furnace.

  10. Crewmember working on the spacelab Zeolite Crystal Growth experiment.

    NASA Technical Reports Server (NTRS)

    1992-01-01

    View showing Payload Specialists Bonnie Dunbar and Larry DeLucas in the aft section of the U. S. Microgravity Laboratory-1. Dunbar is preparing to load a sample in the Crystal Growth Furnace (CGF) Integrated Furnace Experiment Assembly (IFEA) in rack 9 of the Microgravity Laboratory. DeLucas is checking out the multi-purpose Glovebox Facility.

  11. Crystal Growth and Fluid Mechanics Problems in Directional Solidification

    NASA Technical Reports Server (NTRS)

    Tanveer, S.; Baker, G. R.; Foster, M. R.

    1996-01-01

    An investigation of a more complete theoretical understanding of convection effects in a vertical Bridgman apparatus is described. The aim is to develop a clear understanding of scalings of various features of dendritic crystal growth in the case that both the surface energy and undercooling are small.

  12. Solidification and crystal growth of solid solution semiconducting alloys

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1984-01-01

    Problems associated with the solidification and crytal growth of solid-solution semiconducting alloy crystals in a terrestrial environment are described. A detailed description is given of the results for the growth of mercury cadmium telluride (HgCdTe) alloy crystals by directional solidification, because of their considerable technological importance. A series of HgCdTe alloy crystals are grown from pseudobinary melts by a vertical Bridgman method using a wide range of growth rates and thermal conditions. Precision measurements are performed to establish compositional profiles for the crystals. The compositional variations are related to compositional variations in the melts that can result from two-dimensional diffusion or density gradient driven flow effects ahead of the growth interface. These effects are discussed in terms of the alloy phase equilibrium properties, the recent high temperature thermophysical data for the alloys and the highly unusual heat transfer characteristics of the alloy/ampule/furnace system that may readily lead to double diffusive convective flows in a gravitational environment.

  13. Astronaut Jan Davis monitors Commercial Protein Crystal Growth experiment

    NASA Image and Video Library

    1994-02-03

    STS060-21-031 (3-11 Feb 1994) --- Using a lap top computer, astronaut N. Jan Davis monitors systems for the Commercial Protein Crystal Growth (CPCG) experiment onboard the Space Shuttle Discovery. Davis joined four other NASA astronauts and a Russian cosmonaut for eight days in space aboard Discovery.

  14. Solidification and crystal growth of solid solution semiconducting alloys

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1984-01-01

    Problems associated with the solidification and crytal growth of solid-solution semiconducting alloy crystals in a terrestrial environment are described. A detailed description is given of the results for the growth of mercury cadmium telluride (HgCdTe) alloy crystals by directional solidification, because of their considerable technological importance. A series of HgCdTe alloy crystals are grown from pseudobinary melts by a vertical Bridgman method using a wide range of growth rates and thermal conditions. Precision measurements are performed to establish compositional profiles for the crystals. The compositional variations are related to compositional variations in the melts that can result from two-dimensional diffusion or density gradient driven flow effects ahead of the growth interface. These effects are discussed in terms of the alloy phase equilibrium properties, the recent high temperature thermophysical data for the alloys and the highly unusual heat transfer characteristics of the alloy/ampule/furnace system that may readily lead to double diffusive convective flows in a gravitational environment.

  15. Astronaut Wendy Lawrence monitors the Protein Crystal Growth experiment

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Wendy B. Lawrence, flight engineer and mission specialist for STS-67, scribbles notes on the margin of a checklist while monitoring an experiment on the Space Shuttle Endeavour's middeck. The experiment is the Protein Crystal Growth (PCG), which takes up locker space near the Commercial Materials Dispersion Apparatus Instruments Technology Associates Experiment (CMIX, see decal upper left).

  16. Device and method for screening crystallization conditions in solution crystal growth

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1995-01-01

    A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1g or microgravity environments comprising a housing, defining at least one pair of chambers for containing crystallization solutions is presented. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place, the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.

  17. Device and Method for Screening Crystallization Conditions in Solution Crystal Growth

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1997-01-01

    A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1 g or microgravity environments comprising a housing defining at least one pair of chambers for containing crystallization solutions. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place. the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.

  18. Improved Techniques for the Growth of High Quality Cadmium Telluride Crystals.

    DTIC Science & Technology

    1985-06-01

    Bridgman method. Growth parameters were systematically varied in order to determine the influence of seed orientation, thermal environment, and growth rate...ILLUSTRATIONS 1. Influence of Melt Vibrations on CdTe Crystals 2. Vertical Bridgman Growth Furnace 3. Vacuum-formed Quartz Growth Ampoule 4. Crystal...A. "Interface Studies during Vertical Bridgman CdTe Crystal Growth" by R. K. Route, M. Wolf and R. S. Feigelson B. "Etch Pit Studies in CdTe Crystals

  19. Studies Related to Crystal Growth Using Synchrotron Radiation Diffraction.

    NASA Astrophysics Data System (ADS)

    Rule, Robert J.

    1990-01-01

    Available from UMI in association with The British Library. Small crystals of ammonium dihydrogenphosphate (ADP), sodium chlorate and sucrose, generated by secondary nucleation in aqueous solution, have been grown under constant conditions of supersaturation. A wide dispersion of growth rates was observed for each material using optical microscopy. A number of individual crystals of known growth rate were successfully retrieved from solution for each system. An assessment of the mosaic spread of each crystal was made using synchrotron radiation Laue diffraction on station 9.7 at Daresbury laboratory. All of the crystals produced diffraction patterns comprising small, sharp spots, indicative of low mosaic spread (<0.5 ^circ), contrary to published work. No correlation was found between growth rate and mosaic spread for these simple, small-molecule materials. An explanation of the previously reported discrepancies has been provided. The susceptibility of these compounds to radiation damage has been systematically investigated; ADP proved highly robust whilst sucrose and sodium chlorate showed significant sensitivity to irradiation. The role of mosaic spread in the growth of more complex systems is discussed with specific reference to two materials possessing channel structures: chenodeoxycholic acid and SAPO-5. In each case, the directions of slow growth have been related to high mosaic spread. An order of magnitude calculation of the rate of absorption of energy has been made for a variety of materials in the SRS white beam. The associated theoretical heating capability of the beam has also been estimated. A crystal melting experiment using crystals of 2 bromobenzophenone has indicated that the heating rate under standard experimental conditions is of the order of 1-2^circ C per sec., substantially less than anticipated. A pilot study of the combined use of SR Laue diffraction and high resolution powder diffraction for microcrystal structure determination has been

  20. Crystal settling and crystal growth caused by Ostwald Ripening in a terrestrial magma ocean under rotation

    NASA Astrophysics Data System (ADS)

    Maas, C.; Moeller, A.; Hansen, U.

    2013-12-01

    at the bottom of the magma ocean. At the equator we find three regimes (see A. Möller, U. Hansen (2013)) depending on the rotation strength. At low rotation a high fraction of silicate crystals settle at the bottom. At higher rotation the crystals form a thick layer in the bottom 1/3 of box. At high rotation all crystals are suspended and we observe a ribbon structure in the middle of the box. With a second model we investigate growing and shrinking of crystals by Ostwald Ripening and include formation and melting. In general we observe the same behaviour and regimes as described above, however due to Ostwald Ripening the evolution of crystal radius with time depends on the strength of rotation and on the orientation of the rotation axis. Very first results show that at the pole the growth of the silicate crystals is limited. The resulting small radius leads to a slow crystal settling. At the equator the crystals are able to grow larger than at the pole and therefore settle faster. This could lead to an asymmetrical crystallization of the magma ocean. In an extreme case due to the different settling times this could lead to a well mixed mantle at the pole whereas at the equator the mantle could be strongly differentiated after the solidification of the magma ocean.