Science.gov

Sample records for crystal nial deformed

  1. The temperature and strain rate dependence of the flow stress of single crystal NiAl deformed along <110>

    SciTech Connect

    Maloy, S.A.; Gray, G.T. III

    1995-12-31

    Single crystal NiAl and Ni-49.75Al-0.25Fe have been deformed along <110> at temperatures of 77, 298 and 773K and strain rates of 0.001/s, and 2000/s. The flow stress of <110> NiAl is rate and temperature sensitive. The 0.25 at.% Fe addition resulted in a small increase in flow stress at strain rates of 0.001 and 0.1/s at 298 and 77K. A significant decrease in the work hardening rate is observed after deformation at 77K and a strain rate of 2000/s. Coarse [110] slip traces are observed after deformation at a strain rate of 2000/s at 77K, while no slip traces were observed after deformation under all other conditions. TEM observations reveal distinct [110] slip bands after deformation at 77K and a strain rate of 2000/s.

  2. Elevated Temperature Creep Deformation in Solid Solution <001> NiAL-3.6Ti Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Noebe, Ronald D.; Darolia, Ram

    2003-01-01

    The 1100 to 1500 K slow plastic strain rate compressive properties of <001> oriented NiAl-3.6Ti single crystals have been measured, and the results suggests that two deformation processes exist. While the intermediate temperature/faster strain rate mechanism is uncertain, plastic flow at elevated temperature/slower strain rates in NiAl-3.6Ti appears to be controlled by solute drag as described by the Cottrell-Jaswon solute drag model for gliding b = a(sub 0)<101> dislocations. While the calculated activation energy of deformation is much higher (approximately 480 kJ/mol) than the activation energy for diffusion (approximately 290 kJ/mol) used in the Cottrell-Jaswon creep model, a forced temperature compensated - power law fit using the activation energy for diffusion was able to adequately (greater than 90%) predict the observed creep properties. Thus we conclude that the rejection of a diffusion controlled mechanism can not be simply based on a large numerical difference between the activation energies for deformation and diffusion.

  3. Sessile dislocations by reactions in NiAl severely deformed at room temperature

    SciTech Connect

    Geist, D.; Gammer, C.; Rentenberger, C.; Karnthaler, H. P.

    2015-02-05

    B2 ordered NiAl is known for its poor room temperature (RT) ductility; failure occurs in a brittle like manner even in ductile single crystals deforming by single slip. In the present study NiAl was severely deformed at RT using the method of high pressure torsion (HPT) enabling the hitherto impossible investigation of multiple slip deformation. Methods of transmission electron microscopy were used to analyze the dislocations formed by the plastic deformation showing that as expected dislocations with Burgers vector a(100) carry the plasticity during HPT deformation at RT. In addition, we observe that they often form a(110) dislocations by dislocation reactions; the a(110) dislocations are considered to be sessile based on calculations found in the literature. It is therefore concluded that the frequently encountered 3D dislocation networks containing sessile a(110) dislocations are pinned and lead to deformation-induced embrittlement. In spite of the severe deformation, the chemical order remains unchanged.

  4. Monitoring of deformation induced microcracking in polycrystalline NiAl

    SciTech Connect

    Wanner, A.; Schietinger, B.; Bidlingmaier, T.; Zalkind, H.; Arzt, E.

    1995-08-01

    Microcracking in polycrystalline near-stoichiometric NiAl produced by room temperature plastic deformation under uniaxial compression was investigated by means of optical microscopy, velocity of sound measurements, and acoustic emission monitoring. Results show that strains greater than 2% are required to produce microcrack populations which can be evaluated by microscopical investigation or velocity of sound measurements. However, acoustic emission monitoring during compression testing indicates that microcracking starts at about 0.7% compressive plastic strain which is identical with the typical tensile fracture strain for NiAl. Thus it is concluded that there is little or no stable microcracking prior to failure in tension. Acoustic emission results show also that the process of microcracking does not primarily occur during the applied compressive deformation. A considerable fraction of the microcracking takes place during the quasi-elastic unloading following deformation.

  5. Reliability analysis of single crystal NiAl turbine blades

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan; Noebe, Ronald; Wheeler, Donald R.; Holland, Fred; Palko, Joseph; Duffy, Stephen; Wright, P. Kennard

    1995-01-01

    As part of a co-operative agreement with General Electric Aircraft Engines (GEAE), NASA LeRC is modifying and validating the Ceramic Analysis and Reliability Evaluation of Structures algorithm for use in design of components made of high strength NiAl based intermetallic materials. NiAl single crystal alloys are being actively investigated by GEAE as a replacement for Ni-based single crystal superalloys for use in high pressure turbine blades and vanes. The driving force for this research lies in the numerous property advantages offered by NiAl alloys over their superalloy counterparts. These include a reduction of density by as much as a third without significantly sacrificing strength, higher melting point, greater thermal conductivity, better oxidation resistance, and a better response to thermal barrier coatings. The current drawback to high strength NiAl single crystals is their limited ductility. Consequently, significant efforts including the work agreement with GEAE are underway to develop testing and design methodologies for these materials. The approach to validation and component analysis involves the following steps: determination of the statistical nature and source of fracture in a high strength, NiAl single crystal turbine blade material; measurement of the failure strength envelope of the material; coding of statistically based reliability models; verification of the code and model; and modeling of turbine blades and vanes for rig testing.

  6. Sessile dislocations by reactions in NiAl severely deformed at room temperature

    DOE PAGES

    Geist, D.; Gammer, C.; Rentenberger, C.; Karnthaler, H. P.

    2015-02-05

    B2 ordered NiAl is known for its poor room temperature (RT) ductility; failure occurs in a brittle like manner even in ductile single crystals deforming by single slip. In the present study NiAl was severely deformed at RT using the method of high pressure torsion (HPT) enabling the hitherto impossible investigation of multiple slip deformation. Methods of transmission electron microscopy were used to analyze the dislocations formed by the plastic deformation showing that as expected dislocations with Burgers vector a(100) carry the plasticity during HPT deformation at RT. In addition, we observe that they often form a(110) dislocations by dislocationmore » reactions; the a(110) dislocations are considered to be sessile based on calculations found in the literature. It is therefore concluded that the frequently encountered 3D dislocation networks containing sessile a(110) dislocations are pinned and lead to deformation-induced embrittlement. In spite of the severe deformation, the chemical order remains unchanged.« less

  7. Deformation mechanisms of NiAl cyclicly deformed near the brittle-to-ductile transformation temperature

    NASA Technical Reports Server (NTRS)

    Antolovich, Stephen D.; Saxena, Ashok; Cullers, Cheryl

    1992-01-01

    One of the ongoing challenges of the aerospace industry is to develop more efficient turbine engines. Greater efficiency entails reduced specific strength and larger temperature gradients, the latter of which means higher operating temperatures and increased thermal conductivity. Continued development of nickel-based superalloys has provided steady increases in engine efficiency and the limits of superalloys have probably not been realized. However, other material systems are under intense investigation for possible use in high temperature engines. Ceramic, intermetallic, and various composite systems are being explored in an effort to exploit the much higher melting temperatures of these systems. NiAl is considered a potential alternative to conventional superalloys due to its excellent oxidation resistance, low density, and high melting temperature. The fact that NiAl is the most common coating for current superalloy turbine blades is a tribute to its oxidation resistance. Its density is one-third that of typical superalloys and in most temperature ranges its thermal conductivity is twice that of common superalloys. Despite these many advantages, NiAl requires more investigation before it is ready to be used in engines. Binary NiAl in general has poor high-temperature strength and low-temperature ductility. On-going research in alloy design continues to make improvements in the high-temperature strength of NiAl. The factors controlling low temperature ductility have been identified in the last few years. Small, but reproducible ductility can now be achieved at room temperature through careful control of chemical purity and processing. But the mechanisms controlling the transition from brittle to ductile behavior are not fully understood. Research in the area of fatigue deformation can aid the development of the NiAl system in two ways. Fatigue properties must be documented and optimized before NiAl can be applied to engineering systems. More importantly though

  8. The Influence of C and Si on the Flow Behavior of NiAl Single Crystals

    NASA Technical Reports Server (NTRS)

    Weaver, M. L.; Noebe, R. D.; Kaufman, M. J.

    1996-01-01

    Alloys based on the intermetallic compound NiAl are considered potential replacements for Ni and Co-based superalloys in high temperature structural applications due to their excellent oxidation resistance, low densities, high thermal conductivities, and increased melting points. Unfortunately, NiAl exhibits low tensile ductility at room temperature and low strengths at elevated temperatures which have combined to hinder its development. Recent efforts, have revealed that NiAl in the presence of sufficient solute levels, is subject to the phenomenon of strain aging which manifests itself as: sharp yield points, abnormally low strain rate sensitivities (SRS), plateaus or peaks in yield stress and work hardening rate as a function of temperature, flow stress transients upon an upward change in strain rate, reduced tensile elongations at elevated temperatures, and serrated stress-strain curves. Though recent efforts via either alloying or the removal of interstitial impurities, have resulted in consistent room-temperature tensile elongations exceeding 5% and the elimination of serrated flow, the effects of particular substitutional and interstitial elements and the mechanisms by which they might enhance or hinder the mechanical properties remain unknown. Consequently, the purpose of the present paper is to provide a preliminary assessment of the influence of common substitutional and interstitial impurities on the deformation behavior of NiAl. To accomplish this goal a series of NiAl single crystal alloys containing various interstitial solutes were prepared and their mechanical properties were evaluated between 77 and 1100 K. Because Si is a common impurity in conventional purity single crystals grown by the Bridgman method, Si concentrations were also varied in order to determine the influence of this element.

  9. Deformation and fracture of a directionally solidified NiAl-28Cr-6Mo eutectic alloy

    NASA Technical Reports Server (NTRS)

    Chen, X. F.; Johnson, D. R.; Noebe, R. D.; Oliver, B. F.

    1995-01-01

    A directionally solidified alloy based on the NiAl-(Cr, Mo) eutectic was examined by transmission and scanning electron microscopy to characterize the microstructure and room temperature deformation and fracture behavior. The microstructure consisted of a lamellar morphology with a group of zone axes (111) growth direction for both the NiAl and (Cr, Mo) phases. The interphase boundary between the eutectic phases was semicoherent and composed of a well-defined dislocation network. In addition, a fine array of coherent NiAl precipitates was dispersed throughout the (Cr, Mo) phase. The eutectic morphology was stable at 1300 K with only coarsening of the NiAl precipitates occurring after heat treatment for 1.8 ks (500 h). Fracture of the aligned eutectic is characterized primarily by a crack bridging/renucleation mechanism and is controlled by the strength of the semicoherent interface between the two phases. However, contributions to the toughness of the eutectic may arise from plastic deformation of the NiAl phase and the geometry associated with the fracture surface.

  10. Deformation and fracture of a directionally solidified NiAl-28Cr-6Mo eutectic alloy

    SciTech Connect

    Chen, X.F.; Johnson, D.R.; Noebe, R.D.; Oliver, B.F.

    1995-05-01

    A directionally solidified alloy based on the NiAl-(Cr, Mo) eutectic was examined by transmission and scanning electron microscopy to characterize the microstructure and room temperature deformation and fracture behavior. The microstructure consisted of a lamellar morphology with a group of zone axes (111) growth direction for both the NiAl and (Cr, Mo) phases. The interphase boundary between the eutectic phases was semicoherent and composed of a well-defined dislocation network. In addition, a fine array of coherent NiAl precipitates was dispersed throughout the (Cr, Mo) phase. The eutectic morphology was stable at 1300 K with only coarsening of the NiAl precipitates occurring after heat treatment for 1.8 ks (500 h). Fracture of the aligned eutectic is characterized primarily by a crack bridging/renucleation mechanism and is controlled by the strength of the semicoherent interface between the two phases. However, contributions to the toughness of the eutectic may arise from plastic deformation of the NiAl phase and the geometry associated with the fracture surface.

  11. Mechanisms of elevated-temperature deformation in the B2 aluminides NiAl and CoAl

    NASA Technical Reports Server (NTRS)

    Yaney, D. L.; Nix, W. D.

    1988-01-01

    A strain rate change technique, developed previously for distinguishing between pure-metal and alloy-type creep behavior, was used to study the elevated-temperature deformation behavior of the intermetallic compounds NiAl and CoAl. Tests on NiAl were conducted at temperatures between 1100 and 1300 K while tests on CoAl were performed at temperatures ranging from 1200 to 1400 K. NiAl exhibits pure-metal type behavior over the entire temperature range studied. CoAl, however, undergoes a transition from pure-metal to alloy-type deformation behavior as the temperature is decreased from 1400 to 1200 K. Slip appears to be inherently more difficult in CoAl than in NiAl, with lattice friction effects limiting the mobility of dislocations at a much higher tmeperature in CoAl than in NiAl. The superior strength of CoAl at elevated temperatures may, therefore, be related to a greater lattice friction strengthening effect in CoAl than in NiAl.

  12. Deformation mechanisms of NiAl cyclicly deformed near the brittle-to-ductile transition temperature

    NASA Technical Reports Server (NTRS)

    Cullers, Cheryl L.; Antolovich, Stephen D.

    1993-01-01

    The intermetallic compound NiAl is one of many advanced materials which is being scrutinized for possible use in high temperature, structural applications. Stoichiometric NiAl has a high melting temperature, excellent oxidation resistance, and good thermal conductivity. Past research has concentrated on improving monotonic properties. The encouraging results obtained on binary and micro-alloyed NiAl over the past ten years have led to the broadening of NiAl experimental programs. The purpose of this research project was to determine the low cycle fatigue properties and dislocation mechanisms of stoichiometric NiAl at temperatures near the monotonic brittle-to-ductile transition. The fatigue properties were found to change only slightly in the temperature range of 600 to 700 K; a temperature range over which monotonic ductility and fracture strength increase markedly. The shape of the cyclic hardening curves coincided with the changes observed in the dislocation structures. The evolution of dislocation structures did not appear to change with temperature.

  13. Creep Properties of NiAl-1Hf Single Crystals Re-Investigated

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Locci, Ivan E.; Darolia, Ram; Bowman, Randy R.

    2000-01-01

    NiAl-1Hf single crystals have been shown to be quite strong at 1027 C, with strength levels approaching those of advanced Ni-based superalloys. Initial testing, however, indicated that the properties might not be reproducible. Study of the 1027 C creep behavior of four different NiAl-1Hf single-crystal ingots subjected to several different heat treatments indicated that strength lies in a narrow band. Thus, we concluded that the mechanical properties are reproducible. Recent investigations of the intermetallic NiAl have confirmed that minor alloying additions combined with single-crystal growth technology can produce elevated temperature strength levels approaching those of Ni-based superalloys. For example, General Electric alloy AFN 12 {Ni-48.5(at.%) Al-0.5Hf-1Ti-0.05Ga} has a creep rupture strength equivalent to Rene 80 combined with a approximately 30-percent lower density, a fourfold improvement in thermal conductivity, and the ability to form a self-protective alumina scale in aggressive environments. Although the compositions of strong NiAl single crystals are relatively simple, the microstructures are complex and vary with the heat treatment and with small ingot-toingot variations in the alloy chemistry. In addition, initial testing suggested a strong dependence between microstructure and creep strength. If these observations were true, the ability to utilize NiAl single-crystal rotating components in turbine machinery could be severely limited. To investigate the possible limitations in the creep response of high-strength NiAl single crystals, the NASA Glenn Research Center at Lewis Field initiated an in depth investigation of the effect of heat treatment on the microstructure and subsequent 1027 C creep behavior of [001]-oriented NiAl-1Hf with a nominal chemistry of Ni-47.5Al-1Hf-0.5Si. This alloy was selected since four ingots, grown over a number of years and possessing slightly different compositions, were available for study. Specimens taken from the

  14. Manifestations of Dynamic Strain Aging in Soft-Oriented NiAl Single Crystals

    NASA Technical Reports Server (NTRS)

    Weaver, M. L.; Kaufman, M. J.; Noebe, R. D.

    1996-01-01

    The tensile and compressive properties of six NiAl-base single-crystal alloys have been investigated at temperatures between 77 and 1200 K. The normalized critical resolved shear stresses (CRSS/E) and work-hardening rates (Theta/E) for these alloys generally decreased with increasing temperature. However, anomalous peaks or plateaus for these properties were observed in conventional purity (CPNiAl), Si-doped (NiAl-Si), C-doped low Si (UF-NiAl1), and Mo-doped (NiAl-Mo) alloys at intermediate temperatures (600 to 1000 K). This anomalous behavior was not observed in high-purity, low interstitial material (HP-NiAl). Low or negative strain-rate sensitivities (SRS) also were observed in all six alloys in this intermediate temperature range. Coincident with the occurrence of negative strain-rate sensitivities was the observation of serrated stress-strain curves in the CPNiAl and NiAl-Si alloys. These phenomena have been attributed to dynamic strain aging (DSA). Chemical analysis of the alloys used in this study suggests that the main specie responsible for strain aging in NiAl is C but indicate that residual Si impurities can enhance the strain aging effects. The corresponding dislocation microstructures at low temperatures (300 to 600 K) were composed of well-defined cells. At intermediate temperatures (600 to 900 K), either poorly defined cells or coarse bands of localized slip, reminiscent of the vein structures observed in low-cycle fatigue specimens deformed in the DSA regime, were observed in conventional purity, Si-doped, and in Mo-doped alloys. In contrast, a well-defined cell structure persisted in the low interstitial, high-purity alloy. At elevated temperatures (greater than or equal to 1000 K), more uniformly distributed dislocations and sub-boundaries were observed in all alloys. These observations are consistent with the occurrence of DSA in NiAl single-crystal alloys at intermediate temperatures.

  15. Deformation and Phase Transformations During Cyclic Oxidation of Ni-Al and Ni-Pt-Al

    SciTech Connect

    Pint, Bruce A; Speakman, Scott A; Rawn, Claudia J; Zhang, Ying

    2006-01-01

    The reversible high-temperature {gamma}' to {beta} phase transformation may be critical to explaining the unusual high-temperature oxidation behavior of (Ni,Pt)Al alloys and coatings. During high-temperature, high-frequency (1 h) cyclic oxidation in dry, flowing O{sub 2}, unprecedented macroscopic deformation was observed in two-phase ({gamma}'+{beta}) cast specimens of Hf-doped Ni-Al at 1,150 C and Hf-doped Ni-Pt-Al at 1,100 and 1,150 C, Outside of this two-phase field or when the cycle frequency was decreased to 100h, no deformation was observed. Using high-temperature x-ray diffraction in an inert environment, the {beta}-to-{gamma}' phase ratio was observed to increase above 1,000 C, causing a 2.5% volume change. The addition of platinum appeared to lower the transformation temperature consistent with the deformation observed in castalloys and rumpling of simple and platinum-modified aluminide coatings.

  16. Effect of Hf-Rich Particles on the Creep Life of a High-strength Nial Single Crystal Alloy

    NASA Technical Reports Server (NTRS)

    Garg, A.; Raj, S. V.; Darolia, R.

    1995-01-01

    Additions of small amounts of Hf and Si to NiAl single crystals significantly improve their high-temperature strength and creep properties. However, if large Hf-rich dendritic particles formed during casting of the alloyed single crystals are not dissolved completely during homogenization heat treatment, a large variation in creep rupture life can occur. This behavior, observed in five samples of a Hf containing NiAl single crystal alloy tested at 1144 K under an initial stress of 241.4 MPa, is described in detail highlighting the role of interdendritic Hf-rich particles in limiting creep rupture life.

  17. Room Temperature Cyclic Deformation Behavior of Cast and Extruded NiAl

    NASA Technical Reports Server (NTRS)

    Noebe, R. D.; Lerch, B. A.

    1992-01-01

    The fully reversed, strain controlled fatigue behavior of cast and extruded NiAl was evaluated at room temperature for plastic strain ranges of 0.0006 to 0.0002 to provide baseline data on the fatigue life of NiAl and to investigate whether the low ductility of NiAl would result in poor low-cycle fatigue behavior. Except at the smallest plastic strain range investigated, NiAl work hardened continuously until failure with a final fracture stress under cyclic conditions which was at least 60 percent greater than the monotonic fracture strength of NiAl. Fatigue fracture initiation occurred at large internal tear-shaped pores, and fatigue life was controlled or limited by the presence of these processing-related defects. Even with the processing defects present in this material and the limited ductility of NiAl in general, cast and extruded NiAl exhibited much greater fatigue life at room temperature than comparable B2 ordered compounds when compared on a strain range basis.

  18. High temperature deformation of NiAl and CoAl

    NASA Technical Reports Server (NTRS)

    Nix, W. D.

    1982-01-01

    The high temperature mechanical properties of the aluminides are reviewed with respect to their potential as high temperature structural materials. It is shown that NiAl and CoAl are substantially stronger than the pure metals Ni and Co at high temperatures and approach the strength of some superalloys, particularly when those superalloys are tested in "weak" directions. The factors that limit and control the high temperature strengths of NiAl and CoAl are examined to provide a basis for the development of intermetallic alloys of this type.

  19. Al-doping influence on crystal growth of Ni-Al alloy: Experimental testing of a theoretical model

    NASA Astrophysics Data System (ADS)

    Rong, Xi-Ming; Chen, Jun; Li, Jing-Tian; Zhuang, Jun; Ning, Xi-Jing

    2015-12-01

    Recently, a condensing potential model was developed to evaluate the crystallization ability of bulk materials [Ye X X, Ming C, Hu Y C and Ning X J 2009 J. Chem. Phys. 130 164711 and Peng K, Ming C, Ye X X, Zhang W X, Zhuang J and Ning X J 2011 Chem. Phys. Lett. 501 330], showing that the best temperature for single crystal growth is about 0.6Tm, where Tm is the melting temperature, and for Ni-Al alloy, more than 6 wt% of Al-doping will badly reduce the crystallization ability. In order to verify these predictions, we fabricated Ni-Al films with different concentrations of Al on Si substrates at room temperature by pulsed laser deposition, and post-annealed the films at 833, 933, 1033 (˜ 0.6Tm), 1133, and 1233 K in vacuum furnace, respectively. The x-ray diffraction spectra show that annealing at 0.6Tm is indeed best for larger crystal grain formation, and the film crystallization ability remarkably declines with more than 6-wt% Al doping. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20130071110018) and the National Natural Science Foundation of China (Grant No. 11274073).

  20. Crystallography of the NiHfSi Phase in a NiAl (0.5 Hf) Single-Crystal Alloy

    NASA Technical Reports Server (NTRS)

    Garg, A.; Noebe, R. D.; Darolia, R.

    1996-01-01

    Small additions of Hf to conventionally processed NiAl single crystals result in the precipitation of a high density of cuboidal G-phase along with a newly identified silicide phase. Both of these phases form in the presence of Si which is not an intentional alloying addition but is a contaminant resulting from contact with the ceramic shell molds during directional solidification of the single-crystal ingots. The morphology, crystal structure and Orientation Relationship (OR) of the silicide phase in a NiAl (0.5 at.%Hf) single-crystal alloy have been determined using transmission electron microscopy, electron microdiffraction and energy dispersive X-ray spectroscopy. Qualitative elemental analysis and indexing of the electron microdiffraction patterns from the new phase indicate that it is an orthorhombic NiHfSi phase with unit cell parameters, a = 0.639 nm, b = 0.389 nm and c = 0.72 nm, and space group Pnma. The NiHfSi phase forms as thin rectangular plates on NiAl/111/ planes with an OR that is given by NiHfSi(100))(parallel) NiAl(111) and NiHfSi zone axes(010) (parallel) NiAl zone axes (101). Twelve variants of the NiHfSi phase were observed in the alloy and the number of variants and rectangular morphology of NiHfSi plates are consistent with symmetry requirements. Quenching experiments indicate that nucleation of the NiHfSi phase in NiAI(Hf) alloys is aided by the formation of NiAl group of zone axes (111) vacancy loops that form on the NiAl /111/ planes.

  1. Microstructure and Phase Stability of Single Crystal NiAl Alloyed with Hf and Zr

    NASA Technical Reports Server (NTRS)

    Locci, I. E.; Dickerson, R. M.; Garg, A.; Noebe, R. D.; Whittenberger, J. D.; Nathal, M. V.; Darolia, R.

    1996-01-01

    Six near stoichiometric, NiAl single-crystal alloys, with 0.05-1.5 at.% of Hf and Zr additions plus Si impurities, were microstructurally analyzed in the as-cast, homogenized, and aged conditions. Hafnium-rich interdendritic regions, containing the Heusler phase (Ni2AlHf), were found in all the as-cast alloys containing Hf. Homogenization heat treatments partially reduced these interdendritic segregated regions. Transmission electron microscopy (TEM) observations of the as-cast and homogenized microstructures revealed the presence of a high density of fine Hf (or Zr) and Si-rich precipitates. These were identified as G-phase, Nil6X6Si7, or as an orthorhombic NiXSi phase, where X is Hf or Zr. Under these conditions the expected Heusler phase (beta') was almost completely absent. The Si responsible for the formation of the G and NiHfSi phases is the result of molten metal reacting with the Si-containing crucible used during the casting process. Varying the cooling rates after homogenization resulted in the refinement or complete suppression of the G and NiHfSi phases. In some of the alloys studied, long-term aging heat treatments resulted in the formation of Heusler precipitates, which were more stable at the aging temperature and coarsened at the expense of the G-phase. In other alloys, long-term aging resulted in the formation of the NiXSi phase. The stability of the Heusler or NiXSi phases can be traced to the reactive element (Hf or Zr) to silicon ratio. If the ratio is high, then the Heusler phase appears stable after long time aging. If the ratio is low, then the NiHfSi phase appears to be the stable phase.

  2. Strong crystal size effect on deformation twinning.

    PubMed

    Yu, Qian; Shan, Zhi-Wei; Li, Ju; Huang, Xiaoxu; Xiao, Lin; Sun, Jun; Ma, Evan

    2010-01-21

    Deformation twinning in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium's ideal strength. We develop a 'stimulated slip' model to explain the strong size dependence of deformation twinning. The sample size in transition is relatively large and easily accessible in experiments, making our understanding of size dependence relevant for applications.

  3. Strong crystal size effect on deformation twinning.

    PubMed

    Yu, Qian; Shan, Zhi-Wei; Li, Ju; Huang, Xiaoxu; Xiao, Lin; Sun, Jun; Ma, Evan

    2010-01-21

    Deformation twinning in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium's ideal strength. We develop a 'stimulated slip' model to explain the strong size dependence of deformation twinning. The sample size in transition is relatively large and easily accessible in experiments, making our understanding of size dependence relevant for applications. PMID:20090749

  4. Liquid Crystal Research Shows Deformation By Drying

    NASA Technical Reports Server (NTRS)

    2003-01-01

    These images, from David Weitz's liquid crystal research, show ordered uniform sized droplets (upper left) before they are dried from their solution. After the droplets are dried (upper right), they are viewed with crossed polarizers that show the deformation caused by drying, a process that orients the bipolar structure of the liquid crystal within the droplets. When an electric field is applied to the dried droplets (lower left), and then increased (lower right), the liquid crystal within the droplets switches its alignment, thereby reducing the amount of light that can be scattered by the droplets when a beam is shone through them.

  5. Deformation of ⊥m single quartz crystals

    NASA Astrophysics Data System (ADS)

    Krasner, P.; Holyoke, C. W., III; Kronenberg, A. K.

    2015-12-01

    The rheology of quartz deformed by dislocation creep is essential to understanding the strength of the mid to lower continental crust. Our current understanding of quartz rheology is derived primarily from studies of polycrystalline quartz and little is known about the temperature, strain rate, or water dependence of the individual quartz slip systems. In order to better understand the rheology of quartz slip systems, we have deformed synthetic quartz single crystals with the prism oriented at 45° to the compression direction (⊥m orientation). We converted the gel-type water found in synthetic quartz crystals to free water fluid inclusions, similar to water observed in milky quartz crystals, by annealing the crystals at 900°C/0.1 MPa for 24 hours. The single crystals were deformed at a confining pressure of 1.5 GPa with temperatures of 850 to 1000°C and strain rates of 10-6 to 10-4/s. FTIR measurements of water concentrations in the starting material, annealed synthetic crystals and deformed synthetic quartz crystals indicate that the water concentrations (125-300 H/106Si) are not affected by the annealing process or deformation. However, the spectra in the annealed and deformed samples are similar to those of natural milky quartz rather than those of synthetic quartz. Results of temperature and strain rate stepping experiments indicate that the strength of the crystals decreases with increasing temperature and/or decreasing strain rate. Undulatory extinction is the predominant microstructure observed in deformed samples, which is consistent with deformation by dislocation creep. The strength of the ⊥m oriented quartz crystals deformed in this study with free water is greater than those of the studies of synthetic quartz with gel type water (Linker and Kirby, 1981 and Muto et al., 2011).

  6. On the deformation mechanisms in single crystal Hadfield manganese steels

    SciTech Connect

    Karaman, I.; Sehitoglu, H.; Gall, K.; Chumlyakov, Y.I.

    1998-02-13

    Austenitic manganese steel, so called Hadfield manganese steel, is frequently used in mining and railroad frog applications requiring excessive deformation and wear resistance. Its work hardening ability is still not completely understood. Previous studies attributed the work-hardening characteristics of this material to dynamic strain aging or an imperfect deformation twin, a so-called pseudotwin. Unfortunately, these previous studies have all focused on polycrystalline Hadfield steels. To properly study the mechanisms of deformation in the absence of grain boundary or texture effects, single crystal specimens are required. The purpose of this work is the following: (1) observe the inelastic stress-strain behavior of Hadfield single crystals in orientations where twinning and slip are individually dominating or when they are competing deformation mechanisms; and (2) determine the microyield points of Hadfield single crystals and use micro-mechanical modeling to predict the stress-strain response of a single crystal undergoing micro-twinning.

  7. Phyllotactic transformations as plastic deformations of tubular crystals with defects

    NASA Astrophysics Data System (ADS)

    Beller, Daniel; Nelson, David

    Tubular crystals are 2D lattices in cylindrical topologies, which could be realized as assemblies of colloidal particles, and occur naturally in biological microtubules and in single-walled carbon nanotubes. Their geometry can be understood in the language of phyllotaxis borrowed from botany. We study the mechanics of plastic deformations in tubular crystals in response to tensile stress, as mediated by the formation and separation of dislocation pairs in a triangular lattice. Dislocation motion allows the growth of one phyllotactic arrangement at the expense of another, offering a low-energy, stepwise mode of plastic deformation in response to external stresses. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, dislocation glide. The crystal's bending modulus is found to produce simple but important corrections to the tube's deformation mechanics.

  8. Deformation of single crystal Hadfield steel by twinning and slip

    SciTech Connect

    Karaman, I.; Sehitoglu, H.; Gall, K.; Chumlyakov, Y.I.; Maier, H.J.

    2000-04-03

    The stress-strain behavior of Hadfield steel (Fe, 12.34 Mn, 1.03 C, in wt%) single crystals was studied for selected crystallographic orientations ([{bar 1}11 ], [001] and [{bar 1}23]) under tension and compression. The overall stress-strain response was strongly dependent on the crystallographic orientation and applied stress direction. Transmission electron microscopy and in situ optical microscopy demonstrated that twinning is the dominant deformation mechanism in [{bar 1}11] crystals subjected to tension, and [001] crystals subjected to compression at the onset of inelastic deformation. In the orientations that experience twinning, the activation of multiple twinning systems produces a higher strain-hardening coefficient than observed in typical f.c.c. alloys. Based on these experimental observations, a model is presented that predicts the orientation and stress direction effects on the critical stress for initiating twinning. The model incorporates the role of local pile-up stresses, stacking fault energy, the influence of the applied stress on the separation of partial dislocations, and the increase in the friction stress due to a high solute concentration. On the other hand, multiple slip was determined to be the dominant deformation mechanism in [{bar 1}11] crystals subjected to compression, and [001] crystals deformed under tension. Furthermore, the [{bar 1}23] crystals experience single slip in both tension and compression with planar type dislocations. Using electron back-scattered diffraction patterns, macroscopic shear bands (MSBs) were identified with a misorientation of 9 {degree} in the compressed [{bar 1}11] single crystals at strains as low as 1%.

  9. Deformation and failure of curved colloidal crystal shells

    PubMed Central

    Negri, Carlotta; Sellerio, Alessandro L.; Zapperi, Stefano

    2015-01-01

    Designing and controlling particle self-assembly into robust and reliable high-performance smart materials often involves crystalline ordering in curved spaces. Examples include carbon allotropes like graphene, synthetic materials such as colloidosomes, or biological systems like lipid membranes, solid domains on vesicles, or viral capsids. Despite the relevance of these structures, the irreversible deformation and failure of curved crystals is still mostly unexplored. Here, we report simulation results of the mechanical deformation of colloidal crystalline shells that illustrate the subtle role played by geometrically necessary topological defects in controlling plastic yielding and failure. We observe plastic deformation attributable to the migration and reorientation of grain boundary scars, a collective process assisted by the intermittent proliferation of disclination pairs or abrupt structural failure induced by crack nucleating at defects. Our results provide general guiding principles to optimize the structural and mechanical stability of curved colloidal crystals. PMID:26553975

  10. Deformation and failure of curved colloidal crystal shells.

    PubMed

    Negri, Carlotta; Sellerio, Alessandro L; Zapperi, Stefano; Miguel, M Carmen

    2015-11-24

    Designing and controlling particle self-assembly into robust and reliable high-performance smart materials often involves crystalline ordering in curved spaces. Examples include carbon allotropes like graphene, synthetic materials such as colloidosomes, or biological systems like lipid membranes, solid domains on vesicles, or viral capsids. Despite the relevance of these structures, the irreversible deformation and failure of curved crystals is still mostly unexplored. Here, we report simulation results of the mechanical deformation of colloidal crystalline shells that illustrate the subtle role played by geometrically necessary topological defects in controlling plastic yielding and failure. We observe plastic deformation attributable to the migration and reorientation of grain boundary scars, a collective process assisted by the intermittent proliferation of disclination pairs or abrupt structural failure induced by crack nucleating at defects. Our results provide general guiding principles to optimize the structural and mechanical stability of curved colloidal crystals. PMID:26553975

  11. Nanoscale anisotropic plastic deformation in single crystal GaN.

    PubMed

    Huang, Jun; Xu, Ke; Fan, Ying Min; Niu, Mu Tong; Zeng, Xiong Hui; Wang, Jian Feng; Yang, Hui

    2012-01-01

    Elasto-plastic mechanical deformation behaviors of c-plane (0001) and nonpolar GaN single crystals are studied using nanoindentation, cathodoluminescence, and transmission electron microscopy. Nanoindentation tests show that c-plane GaN is less susceptible to plastic deformation and has higher hardness and Young's modulus than the nonpolar GaN. Cathodoluminescence and transmission electron microscopy characterizations of indent-induced plastic deformation reveal that there are two primary slip systems for the c-plane GaN, while there is only one most favorable slip system for the nonplane GaN. We suggest that the anisotropic elasto-plastic mechanical properties of GaN are relative to its anisotropic plastic deformation behavior.PACS: 62.20.fq; 81.05.Ea; 61.72.Lk.

  12. Friction and deformation behavior of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Friction and deformation studies were conducted with single-crystal silicon carbide in sliding contact with diamond. When the radius of curvature of the spherical diamond rider was large (0.3), deformation of silicon carbide was primarily elastic. Under these conditions the friction coefficient was low and did not show a dependence on the silicon carbide orientation. Further, there was no detectable cracking of the silicon carbide surfaces. When smaller radii of curvature of the spherical diamond riders (0.15 and 0.02 mm) or a conical diamond rider was used, plastic grooving occured and the silicon carbide exhibited anisotropic friction and deformation behavior. Under these conditions the friction coefficient depended on load. Anisotropic friction and deformation of the basal plane of silicon carbide was controlled by the slip system. 10101120and cleavage of1010.

  13. Nature of the deformation crystallization of iron-based amorphous alloys upon megaplastic deformation

    NASA Astrophysics Data System (ADS)

    Sundeev, P. V.; Glezer, A. M.; Shalimova, A. V.; Umnova, N. V.; Nosova, G. I.

    2014-10-01

    Specific features of the crystallization of amorphous alloys Fe83Cr13B4, Fe80B13Si7, Fe76Cr16Zr4.5B3C0.5, Fe58Ni25B17, Fe57Co24Cr16B3, and Fe50Ni33B17 during megaplastic deformation (MPD) in a Bridgman chamber have been studied at room temperature. It is found that the volume fraction of the crystalline phase formed in each of the amorphous alloys during deformation increases when its crystallization temperature decreases. The obtained results are explained on the assumption of adiabatic heating in a shear band and also the hypothesis regarding an increase in the concentration of excess free volume regions in shear bands during deformation.

  14. High temperature dispersion strengthening of NiAl

    NASA Technical Reports Server (NTRS)

    Sherman, M.; Vedula, K.

    1986-01-01

    A potential high temperature strengthening mechanism for alloys based on the intermetallic compound NiAl was investigated. This study forms part of an overall program at NASA Lewis Research Center for exploring the potential of alloys based on NiAl for high temperature applications. An alloy containing 2.26 at% Nb and produced by hot extrusion of blended powders was examined in detail using optical and electron microscopy. Interdiffusion between the blended Nb and NiAl powders results in the formation of intermediate phases. A fine dispersion of precipitates of a hexagonal, ordered NiAlNb phases in a matrix of NiAl can be produced and this results in strengthening of the alloy by interfering with dislocation motion at high temperature. These precipitates are, however, found to coarsen during the high temperature (1300 K) deformation at slow strain rates and this may impose some limitatioins on the use of this strengthening mechanism.

  15. Deformation mechanisms in tungsten single crystals in ballistic impact experiments

    NASA Astrophysics Data System (ADS)

    Bruchey, W. J., Jr.; Herring, R. N.; Kingman, P. W.; Horwath, E. J.

    1993-05-01

    The performance of tungsten single crystals in ballistic impact varies strongly as a function of crystallographic orientation. The deformation structure of recovered single crystal rods fired in ballistic environments has been characterized by optical microscopy, SEM and TEM, and x-ray diffraction. The observed microstructures are varied and provide substantial insights into the factors governing the penetration and flow behavior under ballistic conditions. Crystallographic orientation influences the potential for developing shear which enhances material flow, and this enhancement ultimately maximizes the energy available for target penetration. Microstructural analysis elucidates the various mechanisms occuring during the flow process for single crystals of high-symmetry orientations, and suggests possible analogies between the penetration behavior of the tungsten single crystals and other materials.

  16. Water weakening in experimentally deformed milky quartz single crystals

    NASA Astrophysics Data System (ADS)

    Stunitz, H.; Thust, A.; Kilian, R.; Heilbronner, R.; Behrens, H.; Tarantola, A.; Fitz Gerald, J. D.

    2015-12-01

    Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of <150 H/106Si) with fluid inclusions (FI). During pressurization many FI´s decrepitate. Cracks heal and small neonate FI´s form, increasing the number of FI´s drastically. During subsequent deformation, the size of FI´s is further reduced (down to ~10 nm). Sample deformation occurs by dominant dislocation glide on selected slip systems, accompanied by some dynamic recovery. Strongly deformed regions show FTIR spectra with a pointed broad absorption band in the ~3400 cm-1 region as a superposition of molecular H2O bands and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions. The 3585 cm-1 band is reduced or even disappears after annealing. This band is polarized and represents structurally bound H, its H-content is estimated to be 1-3% of the total H2O-content and appears to be associated with dislocations. The H2O weakening effect in our FI-bearing natural quartz crystals is assigned to the processes of dislocation generation and multiplication at small FI´s. The deformation processes in these crystals represent a recycling of H2O between FI´s, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FI´s during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.

  17. Deformation of Single Crystal Molybdenum at High Pressure

    SciTech Connect

    Bonner, B P; Aracne, C; Farber, D L; Boro, C O; Lassila, D H

    2004-02-24

    Single crystal samples of micron dimensions oriented in the [001] direction were shortened 10 to 40% in uniaxial compression with superposed hydrostatic pressure to begin investigation of how the onset of yielding evolves with pressure. A testing machine based on opposed anvil geometry with precision pneumatic control of the applied force and capability to measure sub micron displacements was developed to produce shape changing deformation at pressure. The experiments extend observations of pressure dependent deformation to {approx}5Gpa at shortening rates of {approx}2*10{sup -4}. Samples have been recovered for post run characterization and analysis to determine if deformation mechanisms are altered by pressure. Experiments under hydrostatic pressure provide insight into the nature of materials under extreme conditions, and also provide a means for altering deformation behavior in a controlled fashion. The approach has a long history demonstrating that pressure enhances ductility in general, and produces enhanced hardening relative to that expected from normal cold work in the BCC metals Mo, Ta and Nb{sup 2}. The pressure hardening is in excess of that predicted from the measured increase in shear modulus at pressure, and therefore is likely due to a dislocation mechanism, such as suppression of kink pair formation or the interaction of forest dislocation cores, and not from lattice resistance. The effect has not been observed in FCC metals, suggesting a fundamental difference between deformation mechanisms at pressure for the two classes. The purpose of this letter is to investigate the origin of pressure hardening with new experiments that extend the pressure range beyond 3 GPa, the upper limit of conventional large sample (1cm{sup 3}) testing methods. Most previous high pressure deformation studies have been on poly crystals, relying on model dependent analysis to infer the maximum deviatoric stress that a deformed sample can support. In one experiment, a

  18. Plastic Deformation of Aluminum Single Crystals at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Johnson, R D; Young, A P; Schwope, A D

    1956-01-01

    This report describes the results of a comprehensive study of plastic deformation of aluminum single crystals over a wide range of temperatures. The results of constant-stress creep tests have been reported for the temperature range from 400 degrees to 900 degrees F. For these tests, a new capacitance-type extensometer was designed. This unit has a range of 0.30 inch over which the sensitivity is very nearly linear and can be varied from as low a sensitivity as is desired to a maximum of 20 microinches per millivolt with good stability. Experiments were carried out to investigate the effect of small amounts of prestraining, by two different methods, on the creep and tensile properties of these aluminum single crystals. From observations it has been concluded that plastic deformation takes place predominantly by slip which is accompanied by the mechanisms of kinking and polygonization.

  19. Flextensional Single Crystal Piezoelectric Actuators for Membrane Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Sahul, Raffi; Hackenberger, Wesley S.

    2006-01-01

    Large aperture and light weight space telescopes requires adaptive optics with deformable mirrors capable of large amplitude aberration corrections at a broad temperature range for space applications including NASA missions such as SAFIR, TPF, Con-X, etc. The single crystal piezoelectric actuators produced at TRS offer large stroke, low hysteresis, and an excellent cryogenic strain response. Specifically, the recently developed low profile, low voltage flextensional single crystal piezoelectric actuators with dimensions of 18 x 5 x 1 mm showed stroke larger than 95 microns under 300 V. Furthermore, flextensional actuator retained approx. 40-50% of its room temperature strain at liquid Nitrogen environment. In this paper, ATILA FEM design of flextensional actuators, actuator fabrication, and characterization results will be presented for the future work on membrane deformable mirror.

  20. Plastically deformed region around indentations on Si angle crystal

    NASA Astrophysics Data System (ADS)

    Yoshioka, M.

    1994-12-01

    Expansion of a hemispherical shell by inner pressure has been widely applied for the model of the deformation by an indentation on a flat surface; however, the deformed region is not necessarily spherically symmetric, especially in anisotropic materials such as single crystals. Therefore, whether the spherical model is applicable in an indentation process for objective materials must always be kept in mind. Indentations have been made on the (111) surface of silicon crystal at various temperatures. The three-dimensional shape of the plastically deformed region was experimentally measured by means of an etching technique and its difference from the hemisphere was observed. It was never spherical but much more complicated, similar to a bottle gourd. The slip mechanism, which resulted in the observed shape of the plastic region, is discussed further. The plastic region was analytically obtained also on the assumption that the stress distribution was spherically symmetrical. The result is approximately in accordance with the observed shape. It is therefore concluded that the stress distribution is nearly spherical although the plastic region is far from it. The yield strength of silicon crystals and their temperature dependence were obtained based on the spherical model.

  1. Deformation of Diopside Single Crystal at Mantle Pressure 2 TEM Characterization of Deformation Microstructures

    SciTech Connect

    E Amiguet; P Cordier; P Raterron

    2011-12-31

    The dislocation microstructures of diopside single crystals deformed at high-pressure (4 {<=} P {<=} 9 GPa), high-temperature (1100{sup o} {<=} T {<=} 1400 {sup o}C) using a Deformation-DIA high-pressure apparatus (D-DIA) have been characterized by transmission electron microscopy using weak-beam dark-field (WBDF), precession electron diffraction (PED), large-angle convergent-beam electron diffraction (LACBED) and the thickness-fringe method. Dislocation glide is the dominant deformation mechanism under these conditions. The 1/2<110>{l_brace}110{r_brace} glide is controlled by lattice friction on the edge segments and shows extensive cross-slip. The [001] glide occurs mostly on {l_brace}110{r_brace}; no evidence for [001](010) glide has been found. The [100] dislocations bear a strong lattice friction probably due to complex (out of glide) core structures.

  2. Large anisotropic deformation of skyrmions in strained crystal.

    PubMed

    Shibata, K; Iwasaki, J; Kanazawa, N; Aizawa, S; Tanigaki, T; Shirai, M; Nakajima, T; Kubota, M; Kawasaki, M; Park, H S; Shindo, D; Nagaosa, N; Tokura, Y

    2015-07-01

    Mechanical control of magnetism is an important and promising approach in spintronics. To date, strain control has mostly been demonstrated in ferromagnetic structures by exploiting a change in magnetocrystalline anisotropy. It would be desirable to achieve large strain effects on magnetic nanostructures. Here, using in situ Lorentz transmission electron microscopy, we demonstrate that anisotropic strain as small as 0.3% in a chiral magnet of FeGe induces very large deformations in magnetic skyrmions, as well as distortions of the skyrmion crystal lattice on the order of 20%. Skyrmions are stabilized by the Dzyaloshinskii-Moriya interaction, originating from a chiral crystal structure. Our results show that the change in the modulation of the strength of this interaction is amplified by two orders of magnitude with respect to changes in the crystal lattice due to an applied strain. Our findings may provide a mechanism to achieve strain control of topological magnetic structures based on the Dzyaloshinskii-Moriya interaction. PMID:26030654

  3. NiAl powder alloys: II. Compacting of NiAl powders produced by various methods

    NASA Astrophysics Data System (ADS)

    Skachkov, O. A.; Povarova, K. B.; Drozdov, A. A.; Morozov, A. E.

    2012-05-01

    The technological properties of granulated NiAl powders produced by gas spraying of melts and NiAl powders produced by calcium hydride reduction (CHR) of mixtures of nickel and aluminum oxides are compared. The possibilities of production of compact workpieces from these powders using hydrostatic pressing, hot pressing, hot isostatic pressing, and hot extrusion are estimated. To improve compressibility, preliminary milling and/or mechanical activation of the powders are proposed. The strength properties of NiAl rods with a diameter of 20 mm extruded from a temperature of 1100°C and made from the granulated powders are slightly higher than those made from the CHR powders. At temperatures higher than 800°C the properties becomes similar. Transition point t d.b from the ductile to brittle state of samples made from powders sprayed in nitrogen and argon is 100-150°C higher than those made from the CHR powders. The difference in the mechanical properties is caused by the structural and chemical microheterogeneity of granules (microingots), which is inherited in the rods after hot deformation and annealing at 1200-1400°C and is (0.67-0.88) T m NiAl ( T m is the melting point, K).

  4. Plastic deformation of tubular crystals by dislocation glide

    NASA Astrophysics Data System (ADS)

    Beller, Daniel A.; Nelson, David R.

    2016-09-01

    Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.

  5. Monoclinic deformation of calcite crystals at ambient conditions

    NASA Astrophysics Data System (ADS)

    Przeniosło, R.; Fabrykiewicz, P.; Sosnowska, I.

    2016-09-01

    High resolution synchrotron radiation powder diffraction shows that the average crystal structure of calcite at ambient conditions is described with the trigonal space group R 3 bar c but there is a systematic hkl-dependent Bragg peak broadening. A modelling of this anisotropic peak broadening with the microstrain model from Stephens (1999) [15] is presented. The observed lattice parameters' correlations can be described by assuming a monoclinic-type deformation of calcite crystallites. A quantitative model of this monoclinic deformation observed at ambient conditions is described with the space group C 2 / c . The monoclinic unit cell suggested at ambient conditions is related with the monoclinic unit cell reported in calcite at high pressure (Merrill and Bassett (1975) [10]).

  6. Annealing of deformed olivine single-crystals under 'dry' conditions

    NASA Astrophysics Data System (ADS)

    Blaha, Stephan; Katsura, Tomoo

    2013-04-01

    Knowledge of rheological properties of Earth's materials is essential to understand geological processes. Open questions are the water content and crystallographic orientation dependences of dislocation creep rate, because the dominant slip system changes with increasing water content, which suggest different dislocations have different water content dependence. This project focuses on olivine, which is the most abundant mineral of the upper mantle. It is also considered to be the weakest phase and hence should control the rheology of the upper mantle. Several slip systems were reported for olivine, which are [100](010), [001](010), [001](100) and [100](001), each of which appear under different water content and stress conditions [1]. For this purpose we started to obtain data for 'dry' conditions, providing basic knowledge to understand the effect of water. Variation in dislocation creep rate according to change in physical conditions can be estimated by dislocation recovery experiments [2]. In this technique, deformed crystals are annealed, in which the dislocation density is expected to decrease due to coalescence of two dislocations. Dislocation densities are measured before and after the annealing. Dislocation mobility, which should be directly proportional to the dislocation creep rate, is estimated based on the change in dislocation density and duration of annealing. This technique has significant advantages partly because informations of strain rate and deviatoric stress, which are difficult to measure, are unnecessary, and partly because dislocation annealing is conducted under quasi-hydrostatic conditions, which allows wide ranges of P and T conditions. The first step of the experiments is to deform a single crystal of olivine. For this purpose, we developed an assembly, which deforms a single crystal in simple-shear geometry and prevent breakage, sub-grain formation and recrystallization of the crystal. Olivine single-crystals were placed in the high

  7. Experimental Deformation of Diopside Single Crystals at Mantle P and T: Mechanical Data and Deformation Microstructures

    NASA Astrophysics Data System (ADS)

    Amiguet, E.; Raterron, P.; Cordier, P.; Couvy, H.; Chen, J.

    2009-04-01

    Clinopyroxenes (cpx) are major constituents of eclogites and are present in excess of 10 vol.% at most depths in the pyrolitic upper mantle. Among mantle minerals, they exhibit the strongest anisotropy for seismic wave propagation. Cpx plastic properties may thus significantly affect both mantle rheology and seismic anisotropy. Yet, no study of cpx rheology at high-pressure (typically P > 3 GPa) has been reported so far, while recent developments in high-pressure deformation devices coupled with synchrotron radiation allow now investigating the rheology of mantle minerals and aggregates at the extreme pressure and temperature (T) of their natural occurrence in the Earth. In order to investigate the effect of P on cpx rheology, steady state deformation experiments were carried out on gem quality oriented diopside crystals in the Deformation-DIA apparatus (D-DIA, see Wang et al., 2003, Rev. Scientific Instr., 74, 3002) that equipped the X17B2 beamline of the NSLS (Upton, NY, USA), at P ranging from 3.8 to 8.8 GPa, T in the range 1100˚ -1400˚ C, and with differential stress () ranging between 0.2 and 1.7 GPa. Three compression directions were chosen in order to activate either 1 •2 {1¯10} dislocation slip (duplex) systems together, or [100](010) and [010](100) systems together, or again [001] dislocation slip in (100), (010) and {110} planes. Constant and specimen strain rates (ɛ˙) were monitored in situ using time-resolved synchrotron X-ray diffraction and radiography, respectively. Transmission electron microscopy (TEM) investigation of the run products revealed that dislocation creep was responsible for sample deformation. Comparison of the present high-P deformation data with data obtained at room-P - on similar diopside crystals deformed at comparable T- conditions (Raterron and Jaoul, 1991, JGR, 96, 14277) - allows quantifying the effect of P on the activity of 1 •2 {1¯10} duplex systems. This translates into an activation volume V * = 17 ± 6 cm

  8. Light-induced deformation in a liquid crystal elastomer photonic crystal

    NASA Astrophysics Data System (ADS)

    Krishnan, D.; Johnson, H. T.

    2014-01-01

    Elastomer materials can undergo large, reversible elastic deformation, and offer novel possibilities for coupled optomechanical behavior when light itself is used to induce that deformation. This phenomenology is especially interesting to consider when photonic bandstructure effects and mechanical instabilities are present over the same length scales. Here we investigate a novel, coupled optomechanical material behavior whereby complex deformation, with the potential to occur cyclically, occurs in a soft photonic crystal structure due to a mechanical instability, as a result of constant, uniform illumination by normally incident light. We suppose that the base material for the structure is a material that responds to light by undergoing a microstructural change. Such a behavior is observed, for example, in a liquid crystal elastomer containing azobenzene moieties attached to the liquid crystal main-chains (Finkelmann et al., 2001) transformational strain generated by the effect of localized light energy on the isomerization of the azobenzene moieties can be calculated from an order-parameter based model (Hogan et al., 2002). Under uniform exposure to constant illumination, the interaction between the light, the material, and the deforming structure lead to a complex, reversible deformation sequence. We analyze the electromagnetic energy distribution inside this photonic crystal structure by solving Maxwells equations for the electromagnetic problem of light transmittance using finite element analysis. First, upon contraction of the structure due to isomerization in the uniformly illuminated material, the photonic bandstructure shifts, thereby significantly reducing the average illumination of material within the structure. The locally reduced illumination allows for a relaxation of the strain in some parts of the structure, due to the reversible isomerization at room temperature. Then, as a result of this relaxation, the structure is subjected to uniaxial stress

  9. Physical and mechanical metallurgy of NiAl

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Bowman, Randy R.; Nathal, Michael V.

    1994-01-01

    Considerable research has been performed on NiAl over the last decade, with an exponential increase in effort occurring over the last few years. This is due to interest in this material for electronic, catalytic, coating and especially high-temperature structural applications. This report uses this wealth of new information to develop a complete description of the properties and processing of NiAl and NiAl-based materials. Emphasis is placed on the controlling fracture and deformation mechanisms of single and polycrystalline NiAl and its alloys over the entire range of temperatures for which data are available. Creep, fatigue, and environmental resistance of this material are discussed. In addition, issues surrounding alloy design, development of NiAl-based composites, and materials processing are addressed.

  10. Modeling crystal and molecular deformation in regenerated cellulose fibers.

    PubMed

    Eichhorn, Stephen J; Young, Robert J; Davies, Geoffrey R

    2005-01-01

    Experimental deformation micromechanics of regenerated cellulose fibers using Raman spectroscopy have been widely reported. Here we report on computer modeling simulations of Raman band shifts in modes close to the experimentally observed 1095 cm(-1) band, which has previously been shown to shift toward a lower wavenumber upon application of external fiber deformation. A molecular mechanics approach is employed using a previously published model structure of cellulose II. Changing the equilibrium c-spacing of this structure and then performing a minimization routine mimics tensile deformation. Normal-mode analysis is then performed on the minimized structure to predict the Raman-intensive vibrations. By using a dot-product analysis on the predicted eigenvectors it is shown that some Raman active modes close to the 1095 cm(-1) band interchange at certain strain levels. Nevertheless, when this is taken into account it is shown that it is possible to find reasonable agreement between theory and experiment. The effect of the experimentally observed broadening of the Raman bands is discussed in terms of crystalline and amorphous regions of cellulose, and this is compared to the lack of X-ray broadening to explain why discrepancies between theory and experiment are present. A hybrid model structure with a series-parallel arrangement of amorphous and misaligned amorphous-crystalline domains is proposed which is shown to agree with what is observed experimentally. Finally, the theoretical crystal modulus for cellulose II is reported as 98 GPa, which is shown to be in agreement with other studies and with an experimental measurement using synchrotron X-ray diffraction.

  11. Quantum effect on the nucleation of plastic deformation carriers and destruction in crystals

    SciTech Connect

    Khon, Yury A. Kaminskii, Petr P.

    2015-10-27

    New concepts on the irreversible crystal deformation as a structure transformation caused by a change in interatomic interactions at fluctuations of the electron density under loading are described. The change in interatomic interactions lead to the excitation of dynamical displacements of atoms. A model and a theory of a deformable pristine crystal taking into account the excitation of thermally activated and dynamical displacements of atoms are suggested. New mechanisms of the nucleation of plastic deformation carriers and destruction in pristine crystals at the real value of the deforming stress are studied.

  12. Fluid inclusions and microstructures in experimentally deformed quartz single crystals

    NASA Astrophysics Data System (ADS)

    Thust, A.; Tarantola, A.; Heilbronner, R.; Stünitz, H.

    2009-04-01

    The "H2O-weakening" effect that reduces the strength of quartz dramatically (e.g. Griggs & Blacic 1965) is still not understood. For example, Kronenberg & Tullis (1984) conclude that the weakening effect is pressure dependent while Paterson (1989) infers a glide and recovery control of water. Obviously, the spatial distribution and transport of H2O are important factors (Kronenberg et al. 1986, FitzGerald et al. 1991). We have carried out experiments on milky quartz in a Griggs deformation apparatus. Cylinders (6.5 mm in diameter, 12-13 mm in length) from a milky zone of a natural quartz single crystal have been cored in orientations (1) normal to one of the prism planes and (2) 45˚ to and 45˚ to (O+orientation). At 1 GPa confining pressure, 900˚ C and 10-6s-1, the flow strength is 150 MPa for samples with orientation (1). Further experiments are needed to establish the flow strength for orientation (2). FTIR measurements on double-polished thick sections (200-500 μm) in the undeformed quartz material yield an average H2O content of approximately 100 H/106Si. The water is heterogeneously distributed in the sample. Direct measurements on fluid inclusions yield a H2O content of more than 25 000 H/106Si. Thus, the H2O in the undeformed material is predominantly present in fluid inclusions of size from tens to hundred microns. Micro-thermometric measurements at low temperature indicate the presence of different salts in the fluid inclusions. The ice melting temperature, between -6.9 and -7.4˚ C, indicate an average salinity of 10.5 wt% NaCl. After deformation the distribution of H2O is more homogeneous throughout the sample. The majority of the big inclusions have disappeared and very small inclusions of several microns to sub-micron size have formed. FTIR measurements in zones of undulatory extinction and shear bands show an average H2O content of approximately 3000 H/106Si. Moreover, the larger fluid inclusions are characterized by a higher salinity (12 wt%) due

  13. Deformation of olivine single crystals under lithospheric conditions

    NASA Astrophysics Data System (ADS)

    Demouchy, S.; Tommasi, A.; Cordier, P.

    2012-12-01

    The rheology of mantle rocks at lithospheric temperatures (<1000°C) remains poorly constrained, in contrast to the extensive experimental data on creep of olivine single crystals and polycrystalline aggregates at high temperature (T > 1200°C). Consequently, we have performed tri-axial compression experiments on oriented single crystals and polycrystalline aggregates of San Carlos olivine at temperatures ranging from 800° to 1090°C. The experiments were carried out at a confining pressure of 300 MPa in a high-resolution gas-medium mechanical testing apparatus at constant strain rates ranging from 7 × 10-6 s-1 to 1 × 10-4 s-1 . Compression was applied along three different crystallographic directions: [101]c, [110]c and [011]c, to activate the several slip systems. Yield differential stresses range from 88 to 1076 MPa. To constrain hardening, stick-and-slip, or strain localization behaviors, all samples were deformed at constant displacement rate for finite strains between 4 to 23 %. Hardening was observed in all experiments and the maximum differential stress often overcame the confining pressure. EBSD mapping highlights macroscale bending of the crystalline network in three crystals. TEM observations on several samples show dislocations with [100] and [001] Burgers vectors in all samples, but dislocation arrangements vary. The results from the present study permit to refining the power-law expressing the strain rate dependence on stress and temperature for olivine, allowing its application to the lithospheric mantle. Our experiments confirm that previous published high-temperature power flow laws overestimate the strength of lithospheric mantle and that the transition to low-temperature creep occurs at higher temperatures than it has previously been established.

  14. NiAl alloys for structural uses

    NASA Technical Reports Server (NTRS)

    Koss, D. A.

    1991-01-01

    Alloys based on the intermetallic compound NiAl are of technological interest as high temperature structural alloys. These alloys possess a relatively low density, high melting temperature, good thermal conductivity, and (usually) good oxidation resistance. However, NiAl and NiAl-base alloys suffer from poor fracture resistance at low temperatures as well as inadequate creep strength at elevated temperatures. This research program explored macroalloying additions to NiAl-base alloys in order to identify possible alloying and processing routes which promote both low temperature fracture toughness and high temperature strength. Initial results from the study examined the additions of Fe, Co, and Hf on the microstructure, deformation, and fracture resistance of NiAl-based alloys. Of significance were the observations that the presence of the gamma-prime phase, based on Ni3Al, could enhance the fracture resistance if the gamma-prime were present as a continuous grain boundary film or 'necklace'; and the Ni-35Al-20Fe alloy was ductile in ribbon form despite a microstructure consisting solely of the B2 beta phase based on NiAl. The ductility inherent in the Ni-35Al-20Fe alloy was explored further in subsequent studies. Those results confirm the presence of ductility in the Ni-35Al-20Fe alloy after rapid cooling from 750 - 1000 C. However exposure at 550 C caused embrittlement; this was associated with an age-hardening reaction caused by the formation of Fe-rich precipitates. In contrast, to the Ni-35Al-20Fe alloy, exploratory research indicated that compositions in the range of Ni-35Al-12Fe retain the ordered B2 structure of NiAl, are ductile, and do not age-harden or embrittle after thermal exposure. Thus, our recent efforts have focused on the behavior of the Ni-35Al-12Fe alloy. A second parallel effort initiated in this program was to use an alternate processing technique, mechanical alloying, to improve the properties of NiAl-alloys. Mechanical alloying in the

  15. Angular distribution of positrons in coherent pair production in deformed crystals.

    PubMed

    Parazian, V V

    2009-05-01

    We investigate the angular distribution of positrons in the coherent process electron-positron pair creation process by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross section is derived for an arbitrary deformation field. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for SiO(2) and diamond single crystals and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by an acoustic wave of S-type.

  16. Deformation and phase transformation in nano single crystals - when will nano crystals start to behave strangely?

    NASA Astrophysics Data System (ADS)

    Qi, Yue

    2002-03-01

    Single nanocrystals exhibit thermodynamic and mechanical properties that markedly differ from bulk materials due to the large free surface and small size. To highlight some key differences between these materials, we conducted molecular dynamics (MD) studies of a phase transformation process in Ni clusters and high strain rate deformation of Ni, NiCu, and NiAu nanowires. For our phase transformation studies, we examined Ni nanoclusters, ranging from one hundred atoms up to 8007 atoms. We found a transition from nanoscrystalline behavior (where bulk and surface properties are well defined) to molecular behavior between clusters of 750 atoms and 300 atoms. Cooling from the melt led to FCC grains for clusters with N>500, and an icosahedral structure for smaller clusters. For our nanowire deformation studies, we considered pure Ni, NiCu and NiAu alloys under high uniaxial tensile strain rates. We found that deformation proceeds through twinning and coherent slipping mechanisms at lower strain rates, and amorphization at higher strain rates. We also found that the critical strain rate, beyond which the crystal transforms to a glassy state, depends on the glass formability of the alloy. Thus, a new process for forming amorphous metals, which involves the application of rapid strain rates, is proposed.

  17. Plastic deformation and self diffusion in Y-CSZ single crystal

    SciTech Connect

    Cheong, Deock-Soo.

    1989-01-01

    Plastic deformation of Y{sub 2}O{sub 3}-stabilized cubic ZrO{sub 2} (Y-CSZ) single crystals was studied using the load-interruption technique during compression tests at 1400{degree}C. The crystals were oriented to activate the single slip system, (001)<110>. Slip trace analysis, dislocation etch pits and dislocation structure analysis gave the complete explanation of plastic behavior of this crystal. The very high work-hardening in the microplasticity region resulted from formation of sessile dipoles and loops. The yield drop in this crystal occurred by dislocation multiplication via the activation of secondary dislocation rather than by conventional dislocation multiplication. The plastic deformation continued by activating additional slip systems without appreciable work hardening at 1400{degree}C. Finally in the zero work hardening region, the dislocation nucleation rate was competitive with the annihilation rate keeping the constant dislocation density. The effect of temperature on the plastic deformation of this crystal was studied by compression tests between 1200 and 1500{degree}C. The results were in agreements with that of 1400{degree}C in that similar dislocation structures formed. However, the lower temperatures induced higher dislocation densities due to lower dislocation annihilation. The single crystals were also deformed using the different orientations to activate other slip systems. The effect of strain rate on the plastic deformation was studied at two different strain rates. Plastic deformation of Y-CSZ single crystals is strongly dependent on temperature, strain-rate, and orientation.

  18. Elevated Temperature Compressive Properties of Zr-Modified Nial

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Noebe, R. D.

    1996-01-01

    Small Zr additions are known to substantially affect the deformation behavior and strength of polycrystalline NiAl, yet little information is currently available regarding the high-temperature properties of such alloys. Utilizing prealloyed powder technology, a series of four NiAl alloys have been produced containing from 0.05 to 0.7 at. pct Zr. The creep behavior of these alloys was characterized in compression between 1000 and 1400 K at strain rates ranging from approx. O.1 to 10(exp -9)/ sec. All the Zr-modified alloys were significantly stronger than binary NiAl under lower temperature and faster strain-rate conditions; however, the single-phase materials (Zr less than or equal to 0.1 at. pct) and binary NiAl had similar strengths at high temperatures and slow strain rates. The two-phase NiAl-Ni, AlZr alloys containing 0.3 and 0.7 at. pct Zr had nearly identical strengths. While the two-phase alloys were stronger than the single-phase materials at all test conditions, the degree of microstructural damage in the two-phase alloys due to internal oxidation during testing appeared to increase with Zr level. Balancing the poor oxidation behavior with the consistent strength advantage of the two-phase alloys, it is concluded that optimum elevated-temperature properties could be obtained in Heusler-strengthened NiAl containing between 0.1 and 0.3 at. pct Zr.

  19. Inelastic behavior of potassium hydrogen phthalate single crystals under ultrasonic deformation

    NASA Astrophysics Data System (ADS)

    Koldaeva, M. V.; Bushueva, G. V.; Zinenkova, G. M.; Naimi, E. K.; Turskaya, T. N.

    2016-01-01

    The effect of ultrasonic deformation on the inelastic behavior of potassium hydrogen phthalate single-crystal samples with different crystallographic orientations at frequencies of ˜105 Hz has been investigated. It has been shown that the inelastic behavior of potassium hydrogen phthalate single crystals during the ultrasonic deformation is determined not by the dislocation mechanisms. It has been found that the main mechanism responsible for energy losses of mechanical vibrations in these crystals is the mechanism of ionicrelaxation polarization. The characteristic relaxation times of this process have been determined and varied in the range from 10-8 to 10-7 s.

  20. Friction, deformation and fracture of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Friction experiments were conducted with hemispherical and conical diamond riders sliding on the basal plane of silicon carbide. The results indicate that, when deformation is primarily elastic, the friction does not depend on crystallographic orientation and there is no detectable fracture or cracking. When, however, plastic deformation occurs, silicon carbide exhibits anisotropic friction and deformation behavior. Surface fracture crack patterns surrounding wear tracks are observed to be of three types. The crack-geometries of two types are generally independent of orientation, the third crack, however, depends on the orientation. All surface cracks extend into subsurface. Anisotropic friction, deformation and fracture on the basal plane are primarily controlled by the slip system and cleavage.

  1. Segmentation Effect on Inhomogeneity of [110]-Single Crystal Deformation

    NASA Astrophysics Data System (ADS)

    Lychagin, D. V.; Nesterenko, E. A. Alfyorova V. P.

    2016-08-01

    This work presents a detailed analysis of segmentation process in FCC single crystals with compression axis [110] and side faces( ̅110) and (001) considering effect of octahedral shear crystal-geometry and basic stress concentrators. Sequence of meso-band systems formation on side faces is determined. Macro-segmentation patterns are specified, that are common to the FCC single crystals under investigation. It is proved that rectangular shape of highly compressed crystals, elongated in direction of operating planes, is conditioned by orientation symmetry of compression axis, single crystal side faces and shears directions, which are characteristic for the given orientation. The specified patterns are characteristic only for the samples with initial height-to-width ratio equal to 2. When varying sample height relative to the initial one, segmentation patterns will also vary due to crystal geometry variations.

  2. Directionally tunable and mechanically deformable ferroelectric crystals from rotating polar globular ionic molecules.

    PubMed

    Harada, Jun; Shimojo, Takafumi; Oyamaguchi, Hideaki; Hasegawa, Hiroyuki; Takahashi, Yukihiro; Satomi, Koichiro; Suzuki, Yasutaka; Kawamata, Jun; Inabe, Tamotsu

    2016-10-01

    Ferroelectrics are used in a wide range of applications, including memory elements, capacitors and sensors. Recently, molecular ferroelectric crystals have attracted interest as viable alternatives to conventional ceramic ferroelectrics because of their solution processability and lack of toxicity. Here we show that a class of molecular compounds-known as plastic crystals-can exhibit ferroelectricity if the constituents are judiciously chosen from polar ionic molecules. The intrinsic features of plastic crystals, for example, the rotational motion of molecules and phase transitions with lattice-symmetry changes, provide the crystals with unique ferroelectric properties relative to those of conventional molecular crystals. This allows a flexible alteration of the polarization axis direction in a grown crystal by applying an electric field. Owing to the tunable nature of the crystal orientation, together with mechanical deformability, this type of molecular crystal represents an attractive functional material that could find use in a diverse range of applications. PMID:27657871

  3. Study of deformed quasi-periodic Fibonacci two dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    Ben Abdelaziz, K.; Bouazzi, Y.; Kanzari, M.

    2015-09-01

    Quasi-periodic photonic crystals are not periodic structures. These structures are generally obtained by the arrangement of layers according to a recursive rule. Properties of these structures make more attention the researchers especially in the case when applying defects. So, photonic crystals with defects present localized modes in the band gap leading to many potential applications such light localization. The objective of this work is to study by simulation the effect of the global deformation introduced in 2D quasiperiodic photonic crystals. Deformation was introduced by applying a power law, so that the coordinates y of the deformed object were determined through the coordinates x of the non-deformed structure in accordance with the following rule: y = x1+k. Here k is the coefficient defining the deformation. Therefore, the objective is to study the effect of this deformation on the optical properties of 2D quasiperiodic photonic crystals, constructed by Fibonacci generation. An omnidirectional mirror was obtained for optimization Fibonacci iteration in a part of visible spectra.

  4. Deformation, Stress Relaxation, and Crystallization of Lithium Silicate Glass Fibers Below the Glass Transition Temperature

    NASA Technical Reports Server (NTRS)

    Ray, Chandra S.; Brow, Richard K.; Kim, Cheol W.; Reis, Signo T.

    2004-01-01

    The deformation and crystallization of Li(sub 2)O (center dot) 2SiO2 and Li(sub 2)O (center dot) 1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range -50 to -150 C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100 C below T (sub)g, and they crystallize significantly at temperatures close to, but below T,, about 150 C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams-Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, E, (about 400 kJ/mol) near T, for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below T,

  5. Crystal orientation dependence of band matching in all-B2-trilayer current-perpendicular-to-plane giant magnetoresistance pseudo spin-valves using Co{sub 2}Fe(Ge{sub 0.5}Ga{sub 0.5}) Heusler alloy and NiAl spacer

    SciTech Connect

    Chen, Jiamin; Hono, K.; Furubayashi, T.; Takahashi, Y. K.; Sasaki, T. T.

    2015-05-07

    We have experimentally investigated the crystal orientation dependence of band matching in current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo-spin-valves using Co{sub 2}Fe(Ge{sub 0.5}Ga{sub 0.5}) (CFGG) Heusler alloy ferromagnetic layer and NiAl spacer. The high quality epitaxial CFGG/NiAl/CFGG all-B2-trilayers structure devices were fabricated on both MgO(001) and sapphire (112{sup ¯}0) single crystal substrates to create (001) and (110) crystal orientations. Same magneto-transport properties were observed from these two differently orientated devices indicating that there is no or little orientation dependence of band matching on MR output. We also found that all-B2-trilayer structure was free of lattice matching influence depending on the crystal orientation, which made it a good candidate for CPP-GMR device.

  6. Crystal orientation dependence of band matching in all-B2-trilayer current-perpendicular-to-plane giant magnetoresistance pseudo spin-valves using Co2Fe(Ge0.5Ga0.5) Heusler alloy and NiAl spacer

    NASA Astrophysics Data System (ADS)

    Chen, Jiamin; Furubayashi, T.; Takahashi, Y. K.; Sasaki, T. T.; Hono, K.

    2015-05-01

    We have experimentally investigated the crystal orientation dependence of band matching in current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo-spin-valves using Co2Fe(Ge0.5Ga0.5) (CFGG) Heusler alloy ferromagnetic layer and NiAl spacer. The high quality epitaxial CFGG/NiAl/CFGG all-B2-trilayers structure devices were fabricated on both MgO(001) and sapphire (11 2 ¯ 0 ) single crystal substrates to create (001) and (110) crystal orientations. Same magneto-transport properties were observed from these two differently orientated devices indicating that there is no or little orientation dependence of band matching on MR output. We also found that all-B2-trilayer structure was free of lattice matching influence depending on the crystal orientation, which made it a good candidate for CPP-GMR device.

  7. Directionally tunable and mechanically deformable ferroelectric crystals from rotating polar globular ionic molecules

    NASA Astrophysics Data System (ADS)

    Harada, Jun; Shimojo, Takafumi; Oyamaguchi, Hideaki; Hasegawa, Hiroyuki; Takahashi, Yukihiro; Satomi, Koichiro; Suzuki, Yasutaka; Kawamata, Jun; Inabe, Tamotsu

    2016-10-01

    Ferroelectrics are used in a wide range of applications, including memory elements, capacitors and sensors. Recently, molecular ferroelectric crystals have attracted interest as viable alternatives to conventional ceramic ferroelectrics because of their solution processability and lack of toxicity. Here we show that a class of molecular compounds—known as plastic crystals—can exhibit ferroelectricity if the constituents are judiciously chosen from polar ionic molecules. The intrinsic features of plastic crystals, for example, the rotational motion of molecules and phase transitions with lattice-symmetry changes, provide the crystals with unique ferroelectric properties relative to those of conventional molecular crystals. This allows a flexible alteration of the polarization axis direction in a grown crystal by applying an electric field. Owing to the tunable nature of the crystal orientation, together with mechanical deformability, this type of molecular crystal represents an attractive functional material that could find use in a diverse range of applications.

  8. On the elastic–plastic decomposition of crystal deformation at the atomic scale

    SciTech Connect

    Stukowski, Alexander; Arsenlis, A.

    2012-03-02

    Given two snapshots of an atomistic system, taken at different stages of the deformation process, one can compute the incremental deformation gradient field, F, as defined by continuum mechanics theory, from the displacements of atoms. However, such a kinematic analysis of the total deformation does not reveal the respective contributions of elastic and plastic deformation. We develop a practical technique to perform the multiplicative decomposition of the deformation field, F = FeFp, into elastic and plastic parts for the case of crystalline materials. The described computational analysis method can be used to quantify plastic deformation in a material due to crystal slip-based mechanisms in molecular dynamics and molecular statics simulations. The knowledge of the plastic deformation field, Fp, and its variation with time can provide insight into the number, motion and localization of relevant crystal defects such as dislocations. As a result, the computed elastic field, Fe, provides information about inhomogeneous lattice strains and lattice rotations induced by the presence of defects.

  9. On the elastic–plastic decomposition of crystal deformation at the atomic scale

    DOE PAGES

    Stukowski, Alexander; Arsenlis, A.

    2012-03-02

    Given two snapshots of an atomistic system, taken at different stages of the deformation process, one can compute the incremental deformation gradient field, F, as defined by continuum mechanics theory, from the displacements of atoms. However, such a kinematic analysis of the total deformation does not reveal the respective contributions of elastic and plastic deformation. We develop a practical technique to perform the multiplicative decomposition of the deformation field, F = FeFp, into elastic and plastic parts for the case of crystalline materials. The described computational analysis method can be used to quantify plastic deformation in a material due tomore » crystal slip-based mechanisms in molecular dynamics and molecular statics simulations. The knowledge of the plastic deformation field, Fp, and its variation with time can provide insight into the number, motion and localization of relevant crystal defects such as dislocations. As a result, the computed elastic field, Fe, provides information about inhomogeneous lattice strains and lattice rotations induced by the presence of defects.« less

  10. Viscoplastic Deformation of Crystal-like Dusty Plasma Structures

    SciTech Connect

    Fortov, V. E.; Gavrikov, A. V.; Goranskaya, D. N.; Ivanov, A. S.; Petrov, O. F.; Timirkhanov, R. A.

    2008-09-07

    The experimental investigation of a dusty plasma liquid without shearing forces is presented. The boundary value of coupling parameter was determinated, at which clusters began to form. The possible explanation of non-Newtonian behavior of dusty plasma liquid was suggested. The second part of the present work is devoted to the experimental study of viscoplastic flow in the dusty plasma crystal. It was for the first time the viscoplastic flow of dusty plasma crystal was obtained. The threshold type of this viscoplastic flow was demonstrated.

  11. Evaluation of the Effect of Microalloying on Cleavage of Monocrystalline NiAl Using a Miniaturized Disk-Bend Test

    NASA Technical Reports Server (NTRS)

    Ardell, Alan J.

    1997-01-01

    It was originally proposed to investigate the effect of microalloying on the ductility of monocrystalline NiAl. The idea was to deposit selected elements on oriented crystals of NiAl using magnetron sputtering, followed by annealing at high temperatures to produce the doped specimens. The project was terminated before that stage of the research was reached, but useful results needed for that study were obtained during the lifetime of the program. Those results are described in this report.

  12. Evaluation of the Effect of Microalloying on Cleavage of Monocrystalline NiAl using a Miniaturized Disk-Bend Test

    NASA Technical Reports Server (NTRS)

    Ardell, Alan J.

    1997-01-01

    It was originally proposed to investigate the effect of microalloying on the ductility of monocrystalline NiAl. The idea was to deposit selected elements on oriented crystals of NiAl using magnetron sputtering, followed by annealing at high temperatures to produce the doped specimens. The project was terminated before that stage of the research was reached, but useful results needed for that study were obtained during the lifetime of the program. Those results are described in this resort.

  13. The microstructure and properties of rapidly solidified, dispersion-strengthened NiAl

    NASA Technical Reports Server (NTRS)

    Jha, S. C.; Ray, R.

    1990-01-01

    An advanced rapid solidification technology for processing reactive and refractory alloys, utilized to produce large quantities of melt-spun filaments of NiAl, is presented. The melt-spun filaments are pulverized to fine particle sizes, and subsequently consolidated by hot extrusion or hot isostatic pressing. Rapid solidification process gives rise to very fine-grained microstructures. However, exposure to elevated temperature during hot consolidation leads to grain growth. Alloying agents such as borides, carbides, and tungsten can pin the grain boundaries and retard the grain growth. Various alloy compositions are investigated. The eventual goal is to utilize the hot-extruded and forged stock to grow single-crystal NiAl blades for advanced gas-turbine engine applications. Single-crystal NiAl, containing a uniform dispersion of carbide strengthening precipitates, is expected to lead to highly creep-resistant turbine blades, and is of considerable interest to the aerospace propulsion industry.

  14. The effect of aluminum alloying on strength properties and deformation mechanisms of the <123> Hadfield steel single crystals

    NASA Astrophysics Data System (ADS)

    Astafurova, E. G.; Tukeev, M. S.; Chumlyakov, Yu. I.

    2007-10-01

    The role of aluminum alloying on strength properties and deformation mechanisms (slip, twinning) of <123> single crystals of Hadfield steel under tensile loading at T = 300 K is demonstrated. It is found out that aluminum alloying suppresses twinning deformation in the <123> single crystals and, during slip, results in a dislocation structure change from a uniform dislocation distribution to a planar dislocation structure.

  15. Deformation twinning in small-sized face-centred cubic single crystals: Experiments and modelling

    NASA Astrophysics Data System (ADS)

    Liang, Z. Y.; Huang, M. X.

    2015-12-01

    Small-sized crystals generally show deformation behaviour distinct from their bulk counterparts. In addition to dislocation slip, deformation twinning in small-sized face-centred cubic (FCC) single crystals has been reported to follow a different mechanism which involves coherent emission of partial dislocations on successive { 111 } planes from free surface. The present work employed a twinning-induced plasticity (TWIP) steel with a low stacking fault energy to systematically investigate the twin evolution in small-sized FCC single crystals. Micrometre-sized single crystal pillars of TWIP steel were fabricated by focus ion beam and then strained to different levels by compression experiments. Detailed transmission electron microscopy characterization was carried out to obtain a quantitative evaluation of the deformation twins, which contribute to most of the plastic strain. Emissions of partial dislocations from free surface (surface sources) and pre-existing perfect dislocations inside the pillar (inner sources) are found as the essential processes for the formation of deformation twins. Accordingly, a physically-based model, which integrates source introduction methods and source activation criterions for partial dislocation emission, is developed to quantitatively predict the twin evolution. The model is able to reproduce the experimental twin evolution, in terms of the total twin formation, the twin morphology and the occurrence of twinning burst.

  16. Crystallographically controlled crystal-plastic deformation of zircon in shear zones

    NASA Astrophysics Data System (ADS)

    Kovaleva, Elizaveta; Klötzli, Urs

    2014-05-01

    Plastically-deformed zircons from various types of strained natural metamorphic rocks have been investigated in-situ by electron backscatter diffraction analysis (EBSD), allowing crystallographic orientation mapping at high spatial resolution. Plastic deformation often forms under the control of grain-internal heterogeneities. At the crystal structure scale deformation is controlled by the physical anisotropy of the lattice. Three most common slip systems in zircon are [100]{010}, [010]{001} and [001]{010} (Leroux et. al., 1999; Reddy et. al., 2007). They are genetically connected with the main zircon crystallographic directions: [001] (c-axis), [100] and [010] (a and b axes). Atomic models show weak planes normal to these directions that preferably evolve to glide planes in the deforming crystal. The visualization of seismic (elastic) properties of zircon with the MATLAB toolbox MTEX shows a similar pattern. The slowest S-wave velocities are observed in directions parallel to [100], [010] and [001] crystallographic directions. The highest Young's modulus values lie in the same directions. In natural zircon grains, the common slip systems are preferably activated when zircon is hosted by rheologically comparatively weaker phases or a fine-grained matrix. In these cases zircon behaves as a rigid clast. During progressive deformation high deviatoric stresses together with high strain rates concentrate at crystal tips, as shown by numerical modeling. Softer host phases allow more degrees of freedom for zircon to be deformed according to its crystallographic and internal properties. These conclusions are supported by the misorientation axes density distribution maps, derived with MTEX. Deformed zircon hosted by a relatively soft phase (mostly biotite) develops a crystallographic preferred orientation (CPO), which has not been documented for zircon before. At the same time deformation of zircon hosted by a rheologically stronger matrix causes the activation of less

  17. Deformation-induced crystallization and associated morphology development of carbon nanotube-PVDF nanocomposites.

    PubMed

    Mago, Gaurav; Fisher, Frank T; Kalyon, Dilhan M

    2009-05-01

    Poly(vinylidene fluoride) (PVDF) is a semicrystalline thermoplastic polymer that is of interest for sensor, actuator and biomedical applications because of its piezoelectric and pyroelectric properties, as well as outstanding mechanical and chemical properties. Although it is known that the shear-induced crystallization behavior of nanocomposites can be significantly affected by the presence of nanoparticles, the effects of the incorporation of carbon nanotubes on the deformation-induced crystallization and associated morphology development of PVDF have not been previously investigated. Here the dynamics of the shear-induced crystallization of carbon nanotubes incorporated in PVDF were investigated using simple shear flow. The shear-induced crystallization behavior was affected by the deformation rate, temperature, and the concentration of the carbon nanotubes. Time-dependence of linear viscoelastic properties indicated that the presence of multi-walled carbon nanotubes (MWNTs) in PVDF greatly altered the shear-induced crystallization kinetics of PVDF, while no significant changes in crystallization behavior were observed for pure PVDF samples sheared under similar conditions. Upon increase of the concentration of the MWNTs the crystal size of PVDF decreased while its rate of crystallization increased in conjunction with an increase of the beta phase crystallization. Overall, these findings suggest that the shear-induced crystallization of PVDF nanocomposites (and in general flow-induced crystallization effects associated with the thermo-mechanical history experienced by the nanocomposite during processing) should be integral parts of attempts to generate a comprehensive understanding of the development of the microstructural distributions and the coupled ultimate properties of polymer nanocomposites.

  18. Deformation and fracture of LLM-105 molecular crystals studied by nanoindentation

    NASA Astrophysics Data System (ADS)

    Kucheyev, S. O.; Gash, A. E.; Lorenz, T.

    2014-04-01

    Mechanical deformation of crystalline high explosives plays an important role in both the fabrication of polymer-bonded explosives and controlling their sensitivity to mechanically-induced decomposition. Here, we study the deformation behavior of (010)-oriented LLM-105 and β-HMX molecular crystals by nanoindentation with pyramidal (Berkovich) and spherical (19 μm-diameter) indenters. Results reveal indentation elastic moduli of 21 and 18 GPa and Berkovich hardness of 0.73 and 0.65 GPa for LLM-105 and HMX, respectively. For LLM-105 (but not for HMX), indentation stress remains essentially unchanged for spherical indentation strains of ˜10-25%, suggesting that inelastic deformation above a certain strain proceeds via flow at constant stress. Both materials exhibit highly anisotropic surface fracture patterns after Berkovich and spherical indentation, consistent with fracture along (011) cleavage planes. No deformation-induced material decomposition is observed in either material for the indentation conditions used.

  19. Simulation and experimental analysis of nanoindentation and mechanical properties of amorphous NiAl alloys.

    PubMed

    Wang, Chih-Hao; Fang, Te-Hua; Cheng, Po-Chien; Chiang, Chia-Chin; Chao, Kuan-Chi

    2015-06-01

    This paper used numerical and experimental methods to investigate the mechanical properties of amorphous NiAl alloys during the nanoindentation process. A simulation was performed using the many-body tight-binding potential method. Temperature, plastic deformation, elastic recovery, and hardness were evaluated. The experimental method was based on nanoindentation measurements, allowing a precise prediction of Young's modulus and hardness values for comparison with the simulation results. The indentation simulation results showed a significant increase of NiAl hardness and elastic recovery with increasing Ni content. Furthermore, the results showed that hardness and Young's modulus increase with increasing Ni content. The simulation results are in good agreement with the experimental results. Adhesion test of amorphous NiAl alloys at room temperature is also described in this study. PMID:26037150

  20. The Influence of Grain Size and Crystal Content on Rheology and Deformation of Pyroclastic Material

    NASA Astrophysics Data System (ADS)

    Paquereau-Lebti, P.; Robert, G.; Grunder, A. L.; Russell, K. J.

    2007-12-01

    Pyroclastic deposits undergo variable degrees of sintering, viscous deformation of particles and loss of pore space, which combine to produce the dramatic textural variations that define welded facies. We here investigate the effects of grain size and crystal content on the rheology and welding of pyroclastic material.Uniaxial deformation experiments were conducted using sintered cores of natural rhyolite ash under conditions consistent with welding. Experiments were done in the University of British Columbia Volcanology Deformation Rig (VDR). This apparatus is designed to run experiments relevant to volcanology, by supporting low-load, high temperature, deformation experiments (Quane et al., 2004). We ran experiments at constant displacement rate (2.5.10-6 m.s-1), under ambient water pressure ("Dry"), at temperatures of 850 and 900°C and to maximal strain of 50%. Grain-size effect was investigated using sintered cores from three different sieving fractions of Rattlesnake Tuff (RST, Eastern Oregon, USA) ash: fine ash (grain size < 0.6 mm), coarse ash (0.6 to 2mm) and row unsieved ash. The effect of crystal content was explored using cores of sintered unsieved RST ash, variably enriched in crystals of feldspars and quartz.Unsieved and fine ash cores suffered higher total porosity reduction than coarse ash cores during deformation experiments. For cores of unsieved ash, porosity loss is facilitated by mechanical compaction, which includes orientation and organisation of different size clasts to a compact assemblage, without any deformation of individual particles. Isolated porosity decreases faster than connected porosity in coarse and fine ash cores, whereas cores of raw ash mainly loose connected porosity. This is also consistent with mechanical compaction for cores of unsieved ash, in which isolated porosity of weakly deformed individual pumice clasts or glass shards is maintained. Increasing strain causes a reduction in porosity and correlates with increase in

  1. Effect of crystallographic orientation on plastic deformation of single crystal nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Westbrooke, Eboni F.

    Nickel-base superalloys, with gamma/gamma' microstructure, are the primary material used in turbines for aerospace applications. The blades in the hottest region of the turbine engine are made of single crystal Ni-base superalloys. It has been shown that the critical resolved shear stress (CRSS) of these materials is orientation dependent (also known as non-Schmid effect). The purpose of this research was to investigate the plastic deformation mechanisms of single crystal Ni-base superalloys as a function of crystallographic orientation in order to understand the factors that contribute to the non-Schmid effect. The superalloys in this study possessed alloying elements in amounts which defined them as 1st and 2nd generation superalloys. Tensile samples of various orientations were loaded to different strain levels. The mechanisms of plastic deformation were characterized by optical and scanning electron microscopy (SEM) observations of deformation bands as well as the dislocation structures using transmission electron microscopy (TEM). It was confirmed that the CRSS of the single crystals did not follow Schmid's law and the near <111> specimens showed the lowest values. The degree of non-Schmid behavior in the <111> specimens was diminished by HIP'ing, which resulted in closure of solidification pores. Furthermore, it was shown that the CRSS for the <100> loaded samples was smallest when loaded along the secondary dendrite arms. The slip analysis by optical microscopy showed that the deformation bands did not follow the expected {111} slip planes for all samples. Studies in SEM proved that those slip bands that followed the {111} planes were associated with extensive shearing of gamma' particles. In addition, it was found that the presence of tri-axial stress states within the macrostructure influenced the deformation path significantly. The TEM observations of deformed specimens revealed that plastic deformation took place mainly in the gamma channels in specimens

  2. Nial and Nial-Based Composites Directionally Solidified by a Containerless Zone Process. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Joslin, Steven M.

    1995-01-01

    A containerless electromagnetically levitated zone (CELZ) process has been used to directionally solidify NiAl and NiAl-based composites. The CELZ processing results in single crystal NiAl (HP-NiAl) having higher purity than commercially pure NiAl grown by a modified Bridgman process (CP-NiAl). The mechanical properties, specifically fracture toughness and creep strength, of the HP-NiAl are superior to binary CP-NiAl and are used as a base-line for comparison with the composite materials subsequently studied. Two-phase composite materials (NiAl-based eutectic alloys) show improvement in room temperature fracture toughness and 1200 to 1400 K creep strength over that of binary HP-NiAl. Metallic phase reinforcements produce the greatest improvement in fracture toughness, while intermetallic reinforcement produces the largest improvement in high temperature strength. Three-phase eutectic alloys and composite materials were identified and directionally solidified with the intent to combine the improvements observed in the two-phase alloys into one alloy. The room temperature fracture toughness and high temperature strength (in air) serve as the basis for comparison between all of the alloys. Finally, the composite materials are discussed in terms of dominant fracture mechanism observed by fractography.

  3. Mechanical Response of DNA–Nanoparticle Crystals to Controlled Deformation

    PubMed Central

    2016-01-01

    The self-assembly of DNA-conjugated nanoparticles represents a promising avenue toward the design of engineered hierarchical materials. By using DNA to encode nanoscale interactions, macroscale crystals can be formed with mechanical properties that can, at least in principle, be tuned. Here we present in silico evidence that the mechanical response of these assemblies can indeed be controlled, and that subtle modifications of the linking DNA sequences can change the Young’s modulus from 97 kPa to 2.1 MPa. We rely on a detailed molecular model to quantify the energetics of DNA–nanoparticle assembly and demonstrate that the mechanical response is governed by entropic, rather than enthalpic, contributions and that the response of the entire network can be estimated from the elastic properties of an individual nanoparticle. The results here provide a first step toward the mechanical characterization of DNA–nanoparticle assemblies, and suggest the possibility of mechanical metamaterials constructed using DNA. PMID:27725959

  4. Rheological transition during large strain deformation of melting and crystallizing metapelites

    NASA Astrophysics Data System (ADS)

    Misra, Santanu; Burg, Jean-Pierre; Vigneresse, Jean-Louis; Mainprice, David

    2014-05-01

    Torsion experiments (γ>˙ =3 × 10-4 s-1) were performed to investigate the large strain (γmax = 15) rheology on quartz-muscovite aggregate as analogue to pelitic rocks undergoing melting and crystallization during deformation at 300 MPa confining pressure and 750°C temperature. Microstructures reveal four distinct but gradational stages of crystal-melt interactions during deformation—(a) solid state deformation, (b) initiation and domination of partial melting, (c) simultaneous partial melting and crystallization, and (d) domination of crystallization. The microstructural stages are linked to the rheology of the deforming samples. Partial melting starts at relatively low finite shear strains (γ = 1-3) showing approximately 60% strain softening. At γ = 4-10 the partially molten bulk material shows a steady state flow at low stress. Further crystallization of new crystals at the expense of melt between γ = 10 and 15 causes weak strain hardening until the material fails by developing brittle fractures. The stress exponent (n), calculated at γ = 1, 5, and 10, increases from ˜ 3 to ˜ 43, indicating a transition from power to power law breakdown or exponential flow of the bulk system. Hydrostatic experiments for equivalent times and conditions of the torsion experiments were also conducted to evaluate the reaction kinetics and microstructures under static conditions. The new experimental data establish that partially molten rock does not flow according to a constant strain rate-dependent power law (steady state) rheology. The rheological transition from strain rate sensitive to strain rate insensitive flow is interpreted as a function of melt-crystal ratio, their mutual interactions, and the evolution of microstructures in the partially molten rock.

  5. Integrated experimental and computational studies of deformation of single crystal copper at high strain rates

    NASA Astrophysics Data System (ADS)

    Rawat, S.; Chandra, S.; Chavan, V. M.; Sharma, S.; Warrier, M.; Chaturvedi, S.; Patel, R. J.

    2014-12-01

    Quasi-static (0.0033 s-1) and dynamic (103 s-1) compression experiments were performed on single crystal copper along ⟨100⟩ and ⟨110⟩ directions and best-fit parameters for the Johnson-Cook (JC) material model, which is an important input to hydrodynamic simulations for shock induced fracture, have been obtained. The deformation of single crystal copper along the ⟨110⟩ direction showed high yield strength, more strain hardening, and less strain rate sensitivity as compared to the ⟨100⟩ direction. Although the JC model at the macro-scale is easy to apply and describes a general response of material deformation, it lacks physical mechanisms that describe the influence of texture and initial orientation on the material response. Hence, a crystal plasticity model based on the theory of thermally activated motion of dislocations was used at the meso-scale, in which the evolution equations permit one to study and quantify the influence of initial orientation on the material response. Hardening parameters of the crystal plasticity model show less strain rate sensitivity along the ⟨110⟩ orientation as compared to the ⟨100⟩ orientation, as also shown by the JC model. Since the deformation process is inherently multiscale in nature, the shape changes observed in the experiments due to loading along ⟨100⟩ and ⟨110⟩ directions are also validated by molecular dynamics simulations at the nano-scale.

  6. Dislocation generation, slip systems, and dynamic recrystallization in experimentally deformed plagioclase single crystals

    NASA Astrophysics Data System (ADS)

    Stünitz, H.; Fitz Gerald, J. D.; Tullis, J.

    2003-09-01

    Three samples of gem quality plagioclase crystals of An60 were experimentally deformed at 900 °C, 1 GPa confining pressure and strain rates of 7.5-8.7×10 -7 s -1. The starting material is effectively dislocation-free so that all observed defects were introduced during the experiments. Two samples were shortened normal to one of the principal slip planes (010), corresponding to a "hard" orientation, and one sample was deformed with a Schmid factor of 0.45 for the principal slip system [001](010), corresponding to a "soft" orientation. Several slip systems were activated in the "soft" sample: dislocations of the [001](010) and <110>(001) system are about equally abundant, whereas <110>{111} and [101] in (1¯31) to (2¯42) are less common. In the "soft" sample plastic deformation is pervasive and deformation bands are abundant. In the "hard" samples the plastic deformation is concentrated in rims along the sample boundaries. Deformation bands and shear fractures are common. Twinning occurs in close association with fracturing, and the processes are clearly interrelated. Glissile dislocations of all observed slip systems are associated with fractures and deformation bands indicating that deformation bands and fractures are important sites of dislocation generation. Grain boundaries of tiny, defect-free grains in healed fracture zones have migrated subsequent to fracturing. These grains represent former fragments of the fracture process and may act as nuclei for new grains during dynamic recrystallization. Nucleation via small fragments can explain a non-host-controlled orientation of recrystallized grains in plagioclase and possibly in other silicate materials which have been plastically deformed near the semi-brittle to plastic transition.

  7. Photo-Induced Deformations of Liquid Crystal Elastomers

    NASA Astrophysics Data System (ADS)

    Dawson, Nathan; Kuzyk, Mark; Neal, Jeremy; Luchette, Paul; Palffy-Muhoray, Peter

    2010-10-01

    Over a century ago, Alexander Graham Bell transmitted mechanical information on a beam of light using the ``photophone.'' We report on the use of a Fabry-Perot interferometer to encode and detect mechanical information of an illuminated liquid crystal elastomer (LCE) that is placed at a critical point between the reflectors. Furthermore, we show that cascading of macroscopic LCE-interferometer devices is possible. These are the first steps in the creation of ultra smart materials. Such applications require materials with a large photomechanical response. Thus, understanding the underlying mechanisms is critical. Only limited studies of the mechanisms of photomechanical effects have been studied in azo-dye-doped LCEs. The focus of our present work is to use the Fabry-Perot transducer geometry to study the underlying mechanisms and to determine the relevant material parameters that are used to develop theoretical models of the response. We use various intensity-modulated optical wave forms to determine the frequency response of the material, which are used to predict the material response in the time domain.

  8. Mechanisms of Photo-Induced Deformations of Liquid Crystal Elastomers

    NASA Astrophysics Data System (ADS)

    Dawson, Nathan; Kuzyk, Mark; Neal, Jeremy; Luchette, Paul; Palffy-Muhoray, Peter

    2010-03-01

    Over a century ago, Alexander Graham Bell invented the photophone, which he used to transmit mechanical information on a beam of light. We report on the use of an active Fabry-Perot interferometer to encode and detect mechanical information using the photomechanical effect of a liquid crystal elastomer (LCE) that is placed at a critical point between the reflectors. These are the first steps in the creation of ultra smart materials which require a large photomechanical response. Thus, understanding the underlying mechanisms is critical. Only limited studies of the mechanisms of the photomechanical effect, such as photo-isomerization, photo-reorientation and thermal effects have been studied in azo-dye-doped LCEs and in azo-dye-doped polymer fibers have been reported. The focus of our present work is to use the Fabry-Perot transducer geometry to study the underlying mechanisms and to determine the relevant material parameters that are used to develop theoretical models of the response. We use various intensity-modulated optical wave forms to determine the frequency response of the material, which are used to predict the material response.

  9. Elastic deformation of nanometer-sized metal crystals in graphitic shells

    NASA Astrophysics Data System (ADS)

    Sun, L.; Rodríguez-Manzo, J. A.; Banhart, F.

    2006-12-01

    The elastic deformation of nanometer-sized metal crystals is achieved by encapsulating them in carbon nanotubes or carbon onions. Electron irradiation of these core-shell particles leads to high pressure in their center due to a shrinkage of the graphitic shells. Pressures in the range of 10-30GPa are found by measuring the decrease in lattice spacings in the encapsulated metal crystals. Hence, it is quantitatively shown how closed graphitic shells can be applied as compression cells on the nanoscale.

  10. Kerr effect and Kerr constant enhancement in vertically aligned deformed helix ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Shi, Liangyu; Srivastava, Abhishek Kumar; Chigrinov, Vladimir G.; Kwok, Hoi-Sing

    2016-09-01

    In this article, we review recently achieved Kerr effect progress in novel liquid crystal (LC) material: vertically aligned deformed helix ferroelectric liquid crystal (VADHFLC). With an increasing applied electric field, the induced inplane birefringence of LCs shows quadratic nonlinearity. The theoretical calculations and experimental details are illustrated. With an enhanced Kerr constant to 130 nm/V2, this VADHFLC cell can achieve a 2π modulation by a small efficient electric field with a fast response around 100 μs and thus can be employed in both display and photonics devices.

  11. Infrared absorption band in deformed qtz crystals analyzed by combining different microstructural methods

    NASA Astrophysics Data System (ADS)

    Stunitz, Holger; Thust, Anja; Behrens, Harald; Heilbronner, Renee; Kilian, Ruediger

    2016-04-01

    Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of <150 H/106Si) with fluid inclusions (FI). During pressurization many FÍs decrepitate. Cracks heal and small neonate FÍs form, increasing the number of FÍs drastically. During subsequent deformation, the size of FÍs is further reduced (down to ~10 nm). Sample deformation occurs by dominant dislocation glide on selected slip systems, accompanied by some dynamic recovery. Strongly deformed regions show FTIR spectra with a pointed broad absorption band in the ~3400 cm-1 region as a superposition of molecular H2O bands and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions. The 3585 cm-1 band is reduced or even disappears after annealing. This band is polarized and represents structurally bound H, its H-content is estimated to be 1-3% of the total H2O-content and appears to be associated with dislocations. The H2O weakening effect in our FI-bearing natural quartz crystals is assigned to the processes of dislocation generation and multiplication at small FÍs. The deformation processes in these crystals represent a recycling of H2O between FÍs, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FÍs during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.

  12. Yielding and deformation behavior of the single crystal nickel-base superalloy PWA 1480

    NASA Technical Reports Server (NTRS)

    Milligan, W. W., Jr.

    1986-01-01

    Interrupted tensile tests were conducted to fixed plastic strain levels in 100 ordered single crystals of the nickel based superalloy PWA 1480. Testing was done in the range of 20 to 1093 C, at strain rate of 0.5 and 50%/min. The yield strength was constant from 20 to 760 C, above which the strength dropped rapidly and became a stong function of strain rate. The high temperature data were represented very well by an Arrhenius type equation, which resulted in three distinct temperature regimes. The deformation substructures were grouped in the same three regimes, indicating that there was a fundamental relationship between the deformation mechanisms and activation energies. Models of the yielding process were considered, and it was found that no currently available model was fully applicable to this alloy. It was also demonstrated that the initial deformation mechanism (during yielding) was frequently different from that which would be inferred by examining specimens which were tested to failure.

  13. Electron Emission as a Probe of Plastic Deformation in Single Crystal Metals

    SciTech Connect

    J. Thomas Dickinson

    2007-09-28

    Work under this grant focused on the use of photoelectron emission as a probe of deformation processes in metals, principally single crystal and polycrystalline aluminum. Dislocations intersecting the surface produce patches of low work function metal which emit electrons when illuminated with the appropriate ultraviolet radiation. We have shown that changes in the photoemission signals during deformation can be used to identify the onset of strain localization. In some systems, the photoelectron kinetic energy distribution reflects the distribution of surface orientations, which depends on the competition between grain rotation and slip. Photoemission electron microscope images of shape memory alloys and thin films show marked changes in intensity and surface topography as the materal passes through its transition temperature. Photoelectron emission provides important information on the temporal progress of deformation processes that complements the spatial information provided by other techniques.

  14. Dynamics of Helfrich-Hurault deformations in smectic-A liquid crystals.

    PubMed

    Mirantsev, L V

    2015-09-01

    A dynamics of the Helfrich-Hurault deformations in the SmA sample in the case of a rigid homeotropic anchoring has been theoretically investigated. It has been found that, unlike the Freedericksz transition, in the nematic liquid crystals, both the switching-on and switching-off characteristic times for this phenomenon are linearly proportional to the SmA sample thickness, and the switching-off process is much faster than the switching-on one.

  15. Dislocation Multiplication in the Early Stage of Deformation in Mo Single Crystals

    SciTech Connect

    Hsiung, L.; Lassila, D.H.

    2000-03-02

    Initial dislocation structure in annealed high-purity Mo single crystals and deformation substructure in a crystal subjected to 1% compression have been examined and studied using transmission electron microscopy (TEM) techniques in order to investigate dislocation multiplication mechanisms in the early stage of plastic deformation. The initial dislocation density is in a range of 10{sup 6} {approx} 10{sup 7} cm{sup -2}, and the dislocation structure is found to contain many grown-in superjogs along dislocation lines. The dislocation density increases to a range of 10{sup 8} {approx} 10{sup 9} cm{sup -2}, and the average jog height is also found to increase after compressing for a total strain of 1%. It is proposed that the preexisting jogged screw dislocations can act as (multiple) dislocation multiplication sources when deformed under quasi-static conditions. The jog height can increase by stress-induced jog coalescence, which takes place via the lateral migration (drift) of superjogs driven by unbalanced line-tension partials acting on link segments of unequal lengths. The coalescence of superjogs results in an increase of both link length and jog height. Applied shear stress begins to push each link segment to precede dislocation multiplication when link length and jog height are greater than critical lengths. This ''dynamic'' dislocation multiplication source is suggested to be crucial for the dislocation multiplication in the early stage of plastic deformation in Mo.

  16. Study of anticlastic deformation in a silicon crystal for channeling experiments

    SciTech Connect

    Guidi, V.; Mazzolari, A.; Lanzoni, L.

    2010-06-15

    Anticlastic deformation (AD) is an established mechanical property of isotropic solid bodies, which has been recently used to steer particle beams through channeling in Si crystals. An analysis of AD in an anisotropic material, such as Si, has been worked out with particular emphasis to the cases used in channeling experiments. Both a theoretical model and finite element simulations were developed and compared to experimental data achieved by optical profilometry on bent Si crystals. A quantifier of the extent of AD, namely the ratio between primary and secondary curvature radii, has been found to be orientation dependent and determined analytically. The realistic case of crystal bending by a mechanical holder has been studied for applications. We addressed the case of the holder with a crystal at the energy currently under operation in the CERN super proton synchrotron and its possible extension to higher energy cases such as for the large hadron collider. Anisotropy-driven torsion of the crystal was investigated, determining a limitation to the portion of the crystal suitable for channeling. The geometry of the jaws clamping the crystal was considered too.

  17. Elevated temperature slow plastic deformation of NiAl-TiB2 particulate composites at 1200 and 1300 K

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Viswanadham, R. K.; Mannan, S. K.; Sprissler, B.

    1990-01-01

    Elevated temperature compression testing has been conducted in air at 1200 and 1300 K with strain rates varying from about 10 to the -4th to about 10 to the -7th/sec on NiAl-TiB2 particulate composites. These materials, which consisted of a B2 crystal structure intermetallic Ni-50 at. pct Al matrix and from 0 to 30 vol pct of approximately 1- micron diameter TiB2 particles, were fabricated by XD synthesis and hot pressed to full density. Flow strength of the composites increased with volume fraction of the strengthening phase with NiAl-30TiB2 being approximately three times stronger than NiAl. Comparison of the light optical and TEM microstructures of as-received and tested samples revealed that reactions did not occur between the two phases, and NiAl-TiB2 interfaces were not cracked during deformation. Additional TEM indicated that the particles stabilize a vastly different microstructure in the NiAl matrix of the composites than that formed in unreinforced NiAl.

  18. Deformation Microstructure Under Micro-Indents In Cu Single Crystals Using X-Ray Microbeam Diffraction*

    NASA Astrophysics Data System (ADS)

    Yang, Wenge; Larson, B. C.; Pharr, G. M.; Ice, G. E.; Budai, J. D.; Tischler, J. Z.

    2004-03-01

    The three dimensional microstructure associated with plastic deformation introduced by Berkovich, conical, and spherical micro-indents has been studied using 3D x-ray structural microscopy using the UNI-CAT 34 ID-E beamline at the Advanced Photon Source (APS). The recently developed differential-aperture x-ray structural microscopy technique was used. This technique provides non-destructive, submicron resolution measurements of local orientations and rotation axes, from which the local dislocation tensor and geometrically necessary dislocation (GND) distributions accommodating the plastic deformation can be determined. Local lattice rotations and GND distributions will be presented for off-center slices through the plastic deformation fields below 100 mN Berkovich, conical, and spherical indents in <111> oriented single crystal Cu. The deformation microstructures for the three indent tip geometries will compared and discussed in relation to deformation modeling possibilities. *Research supported by the DOE Office of Science, Division of Materials Sciences under contract with ORNL, managed by UT-Battelle, LLC; UNI-CAT is supported by UIUC, ORNL, NIST and UOP Res., Inc; APS is supported by the DOE.

  19. Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals.

    PubMed

    Wang, Zhang-Jie; Li, Qing-Jie; Cui, Yi-Nan; Liu, Zhan-Li; Ma, Evan; Li, Ju; Sun, Jun; Zhuang, Zhuo; Dao, Ming; Shan, Zhi-Wei; Suresh, Subra

    2015-11-01

    When microscopic and macroscopic specimens of metals are subjected to cyclic loading, the creation, interaction, and accumulation of defects lead to damage, cracking, and failure. Here we demonstrate that when aluminum single crystals of submicrometer dimensions are subjected to low-amplitude cyclic deformation at room temperature, the density of preexisting dislocation lines and loops can be dramatically reduced with virtually no change of the overall sample geometry and essentially no permanent plastic strain. This "cyclic healing" of the metal crystal leads to significant strengthening through dramatic reductions in dislocation density, in distinct contrast to conventional cyclic strain hardening mechanisms arising from increases in dislocation density and interactions among defects in microcrystalline and macrocrystalline metals and alloys. Our real-time, in situ transmission electron microscopy observations of tensile tests reveal that pinned dislocation lines undergo shakedown during cyclic straining, with the extent of dislocation unpinning dependent on the amplitude, sequence, and number of strain cycles. Those unpinned mobile dislocations moving close enough to the free surface of the thin specimens as a result of such repeated straining are then further attracted to the surface by image forces that facilitate their egress from the crystal. These results point to a versatile pathway for controlled mechanical annealing and defect engineering in submicrometer-sized metal crystals, thereby obviating the need for thermal annealing or significant plastic deformation that could cause change in shape and/or dimensions of the specimen.

  20. Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals.

    PubMed

    Wang, Zhang-Jie; Li, Qing-Jie; Cui, Yi-Nan; Liu, Zhan-Li; Ma, Evan; Li, Ju; Sun, Jun; Zhuang, Zhuo; Dao, Ming; Shan, Zhi-Wei; Suresh, Subra

    2015-11-01

    When microscopic and macroscopic specimens of metals are subjected to cyclic loading, the creation, interaction, and accumulation of defects lead to damage, cracking, and failure. Here we demonstrate that when aluminum single crystals of submicrometer dimensions are subjected to low-amplitude cyclic deformation at room temperature, the density of preexisting dislocation lines and loops can be dramatically reduced with virtually no change of the overall sample geometry and essentially no permanent plastic strain. This "cyclic healing" of the metal crystal leads to significant strengthening through dramatic reductions in dislocation density, in distinct contrast to conventional cyclic strain hardening mechanisms arising from increases in dislocation density and interactions among defects in microcrystalline and macrocrystalline metals and alloys. Our real-time, in situ transmission electron microscopy observations of tensile tests reveal that pinned dislocation lines undergo shakedown during cyclic straining, with the extent of dislocation unpinning dependent on the amplitude, sequence, and number of strain cycles. Those unpinned mobile dislocations moving close enough to the free surface of the thin specimens as a result of such repeated straining are then further attracted to the surface by image forces that facilitate their egress from the crystal. These results point to a versatile pathway for controlled mechanical annealing and defect engineering in submicrometer-sized metal crystals, thereby obviating the need for thermal annealing or significant plastic deformation that could cause change in shape and/or dimensions of the specimen. PMID:26483463

  1. Effect of mechanical deformation on the electrical properties of organic single crystals

    NASA Astrophysics Data System (ADS)

    Reyes-Martinez, Marcos; Crosby, Alfred; Briseno, Alejandro

    2014-03-01

    Despite efforts in the flexible electronics field, relatively little research quantified the effects of mechanical strain on the electrical properties of organic single crystals (OSCs) and their device performance in deformed geometries. Single crystals of organic semiconductors are ideal systems for the elucidation of these effects without having to account for imperfections, grain boundaries and other defects. The aim of this presentation is to bring new understanding of the effects of mechanical strain in charge transport phenomena on OSCs. First, the existence of a piezoresistive effect in rubrene crystals is demonstrated and experimentally quantified by the application of in-plane strain along its [010] axis. A piezoresistive coefficient approximately 50 is determined. Second, the effect of local mechanical deformation on the conductive channel is investigated in rubrene single-crystal field-effect transistors. A wrinkling instability is used as a technique to apply local strains of different magnitudes to the conducting channel of field-effect transistors. All devices maintain excellent transistor behavior, and small, reversible changes in performance are observed during wrinkling. This work provides useful knowledge for the effective application of organic semiconductors in strain intensive applications such as pressure sensors, electronic skins and strained-channel organic transistors.

  2. Characterization of dislocation structures and deformation mechanisms in as-grown and deformed directionally solidified NiAl–Mo composites

    DOE PAGES

    Kwon, J.; Bowers, M. L.; Brandes, M. C.; McCreary, V.; Robertson, Ian M.; Phani, P. Sudaharshan; Bei, H.; Gao, Y. F.; Pharr, George M.; George, Easo P.; et al

    2015-02-26

    In this paper, directionally solidified (DS) NiAl–Mo eutectic composites were strained to plastic strain values ranging from 0% to 12% to investigate the origin of the previously observed stochastic versus deterministic mechanical behaviors of Mo-alloy micropillars in terms of the development of dislocation structures at different pre-strain levels. The DS composites consist of long, [1 0 0] single-crystal Mo-alloy fibers with approximately square cross-sections embedded in a [1 0 0] single-crystal NiAl matrix. Scanning transmission electron microscopy (STEM) and computational stress state analysis were conducted for the current study. STEM of the as-grown samples (without pre-straining) reveal no dislocations inmore » the investigated Mo-alloy fibers. In the NiAl matrix, on the other hand, a(1 0 0)-type dislocations exist in two orthogonal orientations: along the [1 0 0] Mo fiber axis, and wrapped around the fiber axis. They presumably form to accommodate the different thermal contractions of the two phases during cool down after eutectic solidification. At intermediate pre-strain levels (4–8%), a/2(1 1 1)-type dislocations are present in the Mo-alloy fibers and the pre-existing dislocations in the NiAl matrix seem to be swept toward the interphase boundary. Some of the dislocations in the Mo-alloy fibers appear to be transformed from a(1 0 0)-type dislocations present in the NiAl matrix. Subsequently, the transformed dislocations in the fibers propagate through the NiAl matrix as a(1 1 1) dislocations and aid in initiating additional slip bands in adjacent fibers. Thereafter, co-deformation presumably occurs by (1 1 1) slip in both phases. With a further increase in the pre-strain level (>10%), multiple a/2(1 1 1)-type dislocations are observed in many locations in the Mo-alloy fibers. Interactions between these systems upon subsequent deformation could lead to stable junctions and persistent dislocation sources. Finally, the transition from stochastic to

  3. Characterization of dislocation structures and deformation mechanisms in as-grown and deformed directionally solidified NiAl–Mo composites

    SciTech Connect

    Kwon, J.; Bowers, M. L.; Brandes, M. C.; McCreary, V.; Robertson, Ian M.; Phani, P. Sudaharshan; Bei, H.; Gao, Y. F.; Pharr, George M.; George, Easo P.; Mills, M. J.

    2015-02-26

    In this paper, directionally solidified (DS) NiAl–Mo eutectic composites were strained to plastic strain values ranging from 0% to 12% to investigate the origin of the previously observed stochastic versus deterministic mechanical behaviors of Mo-alloy micropillars in terms of the development of dislocation structures at different pre-strain levels. The DS composites consist of long, [1 0 0] single-crystal Mo-alloy fibers with approximately square cross-sections embedded in a [1 0 0] single-crystal NiAl matrix. Scanning transmission electron microscopy (STEM) and computational stress state analysis were conducted for the current study. STEM of the as-grown samples (without pre-straining) reveal no dislocations in the investigated Mo-alloy fibers. In the NiAl matrix, on the other hand, a(1 0 0)-type dislocations exist in two orthogonal orientations: along the [1 0 0] Mo fiber axis, and wrapped around the fiber axis. They presumably form to accommodate the different thermal contractions of the two phases during cool down after eutectic solidification. At intermediate pre-strain levels (4–8%), a/2(1 1 1)-type dislocations are present in the Mo-alloy fibers and the pre-existing dislocations in the NiAl matrix seem to be swept toward the interphase boundary. Some of the dislocations in the Mo-alloy fibers appear to be transformed from a(1 0 0)-type dislocations present in the NiAl matrix. Subsequently, the transformed dislocations in the fibers propagate through the NiAl matrix as a(1 1 1) dislocations and aid in initiating additional slip bands in adjacent fibers. Thereafter, co-deformation presumably occurs by (1 1 1) slip in both phases. With a further increase in the pre-strain level (>10%), multiple a/2(1 1 1)-type dislocations are observed in many locations in the Mo-alloy fibers. Interactions between these systems upon subsequent deformation could lead to stable junctions and persistent dislocation sources. Finally, the transition from stochastic to

  4. The effects of undercooling and deformation rates on the crystallization kinetics of Stromboli and Etna basalts

    NASA Astrophysics Data System (ADS)

    Vona, A.; Romano, C.

    2013-08-01

    We have investigated the effect of undercooling and deformation on the evolution of the texture and the crystallization kinetics of remelted basaltic material from Stromboli (pumice from the March 15, 2007 paroxysmal eruption) and Etna (1992 lava flow). Isothermal crystallization experiments were conducted at different degrees of undercooling and different applied strain rate ( T = 1,157-1,187 °C and dot{γ }i for Stromboli; T = 1,131-1,182 °C and dot{γ }i for Etna). Melt viscosity increased due to the decrease in temperature and the increase in crystal content. The mineralogical assemblage comprises Sp + Plg (dominant) ± Cpx with an overall crystal fraction ( ϕ) between 0.06 and 0.27, increasing with undercooling and flow conditions. Both degree of undercooling and deformation rate deeply affect the kinetics of the crystallization process. Plagioclase nucleation incubation time strongly decreases with increasing Δ T and flow, while slow diffusion-limited growth characterizes low Δ T—low deformation rate experiments. Both Stromboli (high strain rate) and Etna (low strain rate) plagioclase growth rates ( G) display relative small variations with Stromboli showing higher values (4.8 ± 1.9 × 10-9 m s-1) compared to Etna (2.1 ± 1.6 × 10-9 m s-1). Plagioclase average nucleation rates J continuously increase with undercooling from 1.4 × 106 to 6.7 × 106 m-3 s-1 for Stromboli and from 3.6 × 104 to 4.0 × 106 m-3 s-1 for Etna. The extremely low value of 3.6 × 104 m-3 s-1 recorded at the lowest undercooling experiment for Etna (Δ T = 20 °C) indicates that the crystallization process is growth-dominated and that possible effects of textural coarsening occur. G values obtained in this paper are generally one or two orders of magnitude higher compared to those obtained in the literature for equivalent undercooling conditions. Stirring of the melt, simulating magma flow or convective conditions, facilitates nucleation and growth of crystals via mechanical

  5. Deformation and Fracture Behavior of Metallic Glassy Alloys and Glassy-Crystal Composites

    NASA Astrophysics Data System (ADS)

    Louzguine-Luzgin, D. V.; Vinogradov, A.; Li, S.; Kawashima, A.; Xie, G.; Yavari, A. R.; Inoue, A.

    2011-06-01

    The present work demonstrates the deformation behavior of Zr-Cu-Ni-Al bulk glassy alloys and Zr-Ni-Cu-Al-Pd glassy foils as well as Ni-Cu-Ti-Zr bulk crystal-glassy composites. Fracture of Zr60Cu16Ni14Al10 and Zr64.13Ni10.12Cu15.75Al10 bulk glassy alloys is featured by nearly equal fraction areas of cleavage-like and vein-type relief. The observed pattern of alternating cleavage-like and vein-type patterns illustrates a result of dynamically self-organizing shear propagation at the final catastrophic stage. The deformation behavior of Zr64.13Ni10.12Cu15.75Al10 alloy has also been tested at LN2 temperature. The strength of the sample decreases with temperature, and no clear serrated flow typical for bulk glassy samples tested at room temperature is observed in the case of the samples tested at LN2 temperature. We also studied the deformation behavior of Zr-Ni-Cu-Al-Pd glassy foils thinned to electron transparency in situ in tension in a transmission electron microscope. We also present a Ni-Cu-Ti-Zr crystal-glassy composite material having a superior strength paired with a considerable ductility exceeding 10 pct. The metastable cP2 crystalline phase promotes a strain-induced martensitic transformation leading to pseudoelastic behavior as well as enhanced plasticity at room temperature. Underlying mechanisms of plastic deformation are discussed in terms of the interplay between the dislocation slip in the crystalline phase and the shear deformation in the glassy matrix.

  6. Semantic modeling of the structural and process entities during plastic deformation of crystals and rocks

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan; Davarpanah, Armita

    2016-04-01

    We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive

  7. The effect of various metallurgical parameters on the flow and fracture behavior of polycrystalline NiAl near the brittle-to-ductile transition

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.

    1994-01-01

    An investigation of the effect of various metallurgical parameters such as interfaces, allowing additions, test temperature, and strain rate on the flow and fracture behavior of polycrystalline NiAl is summarized. From this study, a more complete understanding of the deformation and fracture behavior of polycrystalline NiAl near the brittle-to-ductile transition temperature has been developed. A mechanism for the BDTT is proposed that is based on the operation of localized dislocation climb processes that operate within the vicinity of the grain boundaries and provide the additional deformation mechanisms necessary for grain-to-grain compatibility during plastic deformation. Finally, methods for improving the low temperature mechanical behavior of NiAl were considered and reviewed within the context of the present knowledge of NiAl-based materials and the operative deformation and fracture mechanisms determined in this study. Special emphasis was placed on the use of second phases for improving low temperature properties.

  8. Experimental characterization and crystal plasticity modeling of heterogeneous deformation in polycrystalline -Ti

    SciTech Connect

    Wang, Leyun; Barabash, Rozaliya; Yang, Y; Bieler, Prof T R; Crimp, Prof M A; Eisenlohr, P; Liu, W.; Ice, Gene E

    2011-01-01

    Grain-level heterogeneous deformation was studied in a polycrystalline {alpha}-Ti specimen deformed by four-point bending. Dislocation slip activity in the microstructure was investigated by surface slip trace analysis. Three-dimensional-X-ray diffraction (3D-XRD) was used to investigate subsurface lattice rotations and to identify geometrically necessary dislocations (GNDs). The slip systems of local GNDs were analyzed by studying the streaking directions of reflections in corresponding Laue patterns. The analysis performed in one grain indicated that the subsurface GNDs were from the same slip system identified using slip trace analysis in backscattered electron images. A crystal plasticity finite element (CPFE) model was used to simulate deformation of the same microstructural region. The predictions of dislocation slip activity match the general aspects of the experimental observations, including the ability to simulate the activation of different slip systems in grains where multiple slip systems were activated. Prediction of local crystal rotations, however, was the least accurate aspect of the CPFE model.

  9. Experimental characterization and crystal plasticity modeling of heterogeneous deformation in polycrystalline {alpha}-Ti.

    SciTech Connect

    Wang, L.; Barabash, R. I.; Yang, Y.; Bieler, T. R.; Crimp, M. A.; Eisenlohr, P.; Liu, W.; Ice, G. E.

    2011-03-01

    Grain-level heterogeneous deformation was studied in a polycrystalline {alpha}-Ti specimen deformed by four-point bending. Dislocation slip activity in the microstructure was investigated by surface slip trace analysis. Three-dimensional-X-ray diffraction (3D-XRD) was used to investigate subsurface lattice rotations and to identify geometrically necessary dislocations (GNDs). The slip systems of local GNDs were analyzed by studying the streaking directions of reflections in corresponding Laue patterns. The analysis performed in one grain indicated that the subsurface GNDs were from the same slip system identified using slip trace analysis in backscattered electron images. A crystal plasticity finite element (CPFE) model was used to simulate deformation of the same microstructural region. The predictions of dislocation slip activity match the general aspects of the experimental observations, including the ability to simulate the activation of different slip systems in grains where multiple slip systems were activated. Prediction of local crystal rotations, however, was the least accurate aspect of the CPFE model.

  10. AFM study of the plastic deformation of polysynthetically-twinned (PST) TiAl crystals in soft orientation.

    PubMed

    Chen, Yali; Pope, David P

    2006-05-01

    PST TiAl samples with a nominal composition of Ti52Al48 were deformed at room temperature with compression axis inclined to the lamellar interfaces by 45 degrees and one of the side surface normal directions set to be (112). The deformation structures on the free surfaces of the deformed samples were investigated using Atomic Force Microscope (AFM). It was found that in-plane shear (shear in planes parallel to lamellar interfaces) is the dominant deformation mode in all gamma domains and most of the deformation traces on the free surfaces are parallel to lamellar interfaces. Out-of-plane shear (shear in planes inclined to lamellar interfaces) also occurs but contributes much less to the macroscopic strain. This selective activation of deformation modes leads to a highly anisotropic deformation behavior in PST crystals with this orientation. PMID:16646014

  11. Grain boundary sliding in aluminum nano-bi-crystals deformed at room temperature.

    PubMed

    Aitken, Zachary H; Jang, Dongchan; Weinberger, Christopher R; Greer, Julia R

    2014-01-15

    Room-temperature uniaxial compressions of 900-nm-diameter aluminum bi-crystals, each containing a high-angle grain boundary with a plane normal inclined at 24° to the loading direction, revealed frictional sliding along the boundary plane to be the dominant deformation mechanism. The top crystallite sheared off as a single unit in the course of compression instead of crystallographic slip and extensive dislocation activity, as would be expected. Compressive stress strain data of deforming nano bicrystals was continuous, in contrast to single crystalline nano structures that show a stochastic stress strain signature, and displayed a peak in stress at the elastic limit of ~ 176 MPa followed by gradual softening and a plateau centered around ~ 125 MPa. An energetics-based physical model, which may explain observed room-temperature grain boundary sliding, in presented, and observations are discussed within the framework of crystalline nano-plasticity and defect microstructure evolution.

  12. Grain boundary sliding in aluminum nano-bi-crystals deformed at room temperature.

    PubMed

    Aitken, Zachary H; Jang, Dongchan; Weinberger, Christopher R; Greer, Julia R

    2014-01-15

    Room-temperature uniaxial compressions of 900-nm-diameter aluminum bi-crystals, each containing a high-angle grain boundary with a plane normal inclined at 24° to the loading direction, revealed frictional sliding along the boundary plane to be the dominant deformation mechanism. The top crystallite sheared off as a single unit in the course of compression instead of crystallographic slip and extensive dislocation activity, as would be expected. Compressive stress strain data of deforming nano bicrystals was continuous, in contrast to single crystalline nano structures that show a stochastic stress strain signature, and displayed a peak in stress at the elastic limit of ~ 176 MPa followed by gradual softening and a plateau centered around ~ 125 MPa. An energetics-based physical model, which may explain observed room-temperature grain boundary sliding, in presented, and observations are discussed within the framework of crystalline nano-plasticity and defect microstructure evolution. PMID:23873787

  13. Crystal preferred orientation of an amphibole experimentally deformed by simple shear

    PubMed Central

    Ko, Byeongkwan; Jung, Haemyeong

    2015-01-01

    Seismic anisotropy has been widely observed in crust and mantle materials and plays a key role in the understanding of structure and flow patterns. Although seismic anisotropy can be explained by the crystal preferred orientation (CPO) of highly anisotropic minerals in the crust, that is, amphibole, experimental studies on the CPO of amphibole are limited. Here we present the results of novel experiments on simple shear deformation of amphibolite at high pressure and temperatures (1 GPa, 480–700 °C). Depending on the temperature and stress, the deformed amphibole produced three types of CPOs and resulted in a strong seismic anisotropy. Our data provide a new understanding of the observed seismic anisotropy. The seismic data obtained from the amphibole CPOs revealed that anomalous seismic anisotropy observed in the deep crust, subducting slab and mantle wedge can be attributed to the CPO of amphibole. PMID:25858349

  14. Crystal plasticity finite element analysis of deformation behaviour in SAC305 solder joint

    NASA Astrophysics Data System (ADS)

    Darbandi, Payam

    Due to the awareness of the potential health hazards associated with the toxicity of lead (Pb), actions have been taken to eliminate or reduce the use of Pb in consumer products. Among those, tin (Sn) solders have been used for the assembly of electronic systems. Anisotropy is of significant importance in all structural metals, but this characteristic is unusually strong in Sn, making Sn based solder joints one of the best examples of the influence of anisotropy. The effect of anisotropy arising from the crystal structure of tin and large grain microstructure on the microstructure and the evolution of constitutive responses of microscale SAC305 solder joints is investigated. Insights into the effects of key microstructural features and dominant plastic deformation mechanisms influencing the measured relative activity of slip systems in SAC305 are obtained from a combination of optical microscopy, orientation imaging microscopy (OIM), slip plane trace analysis and crystal plasticity finite element (CPFE) modeling. Package level SAC305 specimens were subjected to shear deformation in sequential steps and characterized using optical microscopy and OIM to identify the activity of slip systems. X-ray micro Laue diffraction and high energy monochromatic X-ray beam were employed to characterize the joint scale tensile samples to provide necessary information to be able to compare and validate the CPFE model. A CPFE model was developed that can account for relative ease of activating slip systems in SAC305 solder based upon the statistical estimation based on correlation between the critical resolved shear stress and the probability of activating various slip systems. The results from simulations show that the CPFE model developed using the statistical analysis of activity of slip system not only can satisfy the requirements associated with kinematic of plastic deformation in crystal coordinate systems (activity of slip systems) and global coordinate system (shape changes

  15. Three sets of fine extinction bands in a tectonically deformed vein-quartz single crystal

    NASA Astrophysics Data System (ADS)

    Derez, Tine; Van der Donck, Tom; Pennock, Gill; Drury, Martyn; Sintubin, Manuel

    2014-05-01

    Intracrystalline fine extinction bands (FEBs) in quartz, are narrow (less than 5µm thick), planar microstructures with a misorientation up to 5° with respect to the host crystal, occurring in closely spaced sets (spacing of 4-5μm). FEBs have been commonly attributed to a large range of brittle and/or crystal-plastic mechanisms, revealing considerable disagreement on the responsible crystal-plastic slip systems and the ambient conditions. Another question that arises, is whether or not the FEBs rotate from a basal plane orientation to orientations ranging between the basal and prism planes. Usually only one set of FEBs occurs in a single crystal, though two sets are observed, in particular with increasing strain. Tentatively, a maximum of two sets of sub-basal FEBs has been postulated to develop in a single quartz crystal in a tectonic context. However, we identified several crystals in naturally deformed vein-quartz containing three sets of FEBs. The vein-quartz has been deformed under sub-greenschist metamorphic conditions, during the late Palaeozoic Variscan orogeny, in the High-Ardenne slate belt (Belgium). The vein-quartz has been subjected to bulging dynamic recrystallisation and shows a high degree of undulatory extinction, abundant subgrains and wide extinction bands sub-parallel to the c-axis. We attempted to characterise these three sets of FEBs by means of light microscopy, EBSD-OIM and universal stage microscopy. In both cases studied the c-axis is inclined less than 8° with respect to the thin-section plane. The different sets of FEBs show a consistent orientation with respect to the c-axis. One set of FEBs deviates maximum 10° from the basal plane. The other two sets deviate between 15 and 35° from a basal plane orientation. Corresponding FEBs, at the same angle with respect to the c-axis, have similar morphologies. In relative EBSD orientation maps FEBs show a maximum misorientation of 3°, and have a lower pattern quality than the host crystal

  16. Deformation, recrystallization, strength, and fracture of press-forged ceramic crystals.

    NASA Technical Reports Server (NTRS)

    Rice, R. W.

    1972-01-01

    Sapphire and ruby were very difficult to press-forge because they deformed without cracking only in a limited temperature range before they melted. Spinel crystals were somewhat easier and MgO, CaO, and TiC crystals much easier to forge. The degree of recrystallization that occurred during forging (which was related to the ease and type of slip intersections) varied from essentially zero in Al2O3 to complete (i.e., random polycrystalline bodies were produced) in CaO. Forging of bi- and polycrystalline bodies produced incoherent bodies as a result of grain-boundary sliding. Strengths of the forged crystals were comparable to those of dense polycrystalline bodies of similar grain size. However, forged and recrystallized CaO crystals were ductile at lower temperatures than dense hot-pressed CaO. This behavior is attributed to reduced grain-boundary impurities and porosity. Fracture origins could be located, indicating that fracture in the CaO occurs internally as a result of surface work hardening caused by machining.-

  17. Zinc Single Crystal Deformation Experiments using a "6 Degrees of Freedom" Apparatus

    SciTech Connect

    Lassila, D H; LeBlanc, M M; Florando, J N

    2006-05-11

    A new experimental technique to study crystallographic slip system activity in metallic single crystals deformed under a condition of uniaxial stress is applied to study the behavior of Zn single crystals. The experimental apparatus allows essentially unconstrained shape change of inherently anisotropic materials under a condition of uniaxial stress by allowing 3 translational and 3 rotational degrees of freedom during compression; hence we have named the experiment 6 degrees of freedom (6DOF). The experiments also utilize a 3-D digital image correlation system to measure full-field displacement fields, which are used to calculate strain and make direct observations of slip system activity. We show that the experimental results associated with a pristine zinc single crystal are precisely consistent with the theoretical predicted shape change (sample distortion) assuming that the most favored slip system on the basal plane is the only one that is active. Another experiment was performed on a processed and annealed Zn single crystal to investigate slip that is inconsistent with the critical resolved shear stress (CRSS) theory. These experiments on zinc illustrate the ability of the 6DOF experiment, together with image correlation (IC) data, to measure slip system activity with a high degree of fidelity.

  18. The effect of aluminium on mechanical properties and deformation mechanisms of hadfield steel single crystals

    NASA Astrophysics Data System (ADS)

    Zakharova, E. G.; Kireeva, I. V.; Chumlyakov, Y. I.; Shul'Mina, A. A.; Sehitoglu, H.; Karaman, I.

    2004-06-01

    On single crystals of Hadfield steel (Fe-13Mn-1.3C, Fe-13Mn-2.7Al-1.3C, wt.%) the systematical investigations of deformation mechanisms - slip and twinning, stages of plastic flow, strain hardening coefficient depending on orientation of tensile axis have been carried out by methods of optical and electron microscopy, x-ray analysis. Is has been shown that the combination of low stacking fault energy (γ{SF}=0.03J/m^2) with high concentration of carbon atoms in aluminium-free steel results in development of the mechanical twinning at room temperature in all crystal orientations. The new type of twinning with formation of extrinsic stacking fault has been found out in [001] single crystals. Experimentally it has been established that alloying with aluminium leads to increase of stacking fault energy of Hadfield steel and suppresses twinning in all orientations of crystals at preservation of high values of strain-hardening coefficients θ.

  19. Oxidation-driven surface dynamics on NiAl(100)

    PubMed Central

    Qin, Hailang; Chen, Xidong; Li, Liang; Sutter, Peter W.; Zhou, Guangwen

    2015-01-01

    Atomic steps, a defect common to all crystal surfaces, can play an important role in many physical and chemical processes. However, attempts to predict surface dynamics under nonequilibrium conditions are usually frustrated by poor knowledge of the atomic processes of surface motion arising from mass transport from/to surface steps. Using low-energy electron microscopy that spatially and temporally resolves oxide film growth during the oxidation of NiAl(100) we demonstrate that surface steps are impermeable to oxide film growth. The advancement of the oxide occurs exclusively on the same terrace and requires the coordinated migration of surface steps. The resulting piling up of surface steps ahead of the oxide growth front progressively impedes the oxide growth. This process is reversed during oxide decomposition. The migration of the substrate steps is found to be a surface-step version of the well-known Hele-Shaw problem, governed by detachment (attachment) of Al atoms at step edges induced by the oxide growth (decomposition). By comparing with the oxidation of NiAl(110) that exhibits unimpeded oxide film growth over substrate steps we suggest that whenever steps are the source of atoms used for oxide growth they limit the oxidation process; when atoms are supplied from the bulk, the oxidation rate is not limited by the motion of surface steps. PMID:25548155

  20. Oxidation-driven surface dynamics on NiAl(100)

    SciTech Connect

    Qin, Hailang; Chen, Xidong; Li, Liang; Sutter, Peter W.; Zhou, Guangwen

    2014-12-29

    Atomic steps, a defect common to all crystal surfaces, can play an important role in many physical and chemical processes. However, attempts to predict surface dynamics under nonequilibrium conditions are usually frustrated by poor knowledge of the atomic processes of surface motion arising from mass transport from/to surface steps. Using low-energy electron microscopy that spatially and temporally resolves oxide film growth during the oxidation of NiAl(100) we demonstrate that surface steps are impermeable to oxide film growth. The advancement of the oxide occurs exclusively on the same terrace and requires the coordinated migration of surface steps. The resulting piling up of surface steps ahead of the oxide growth front progressively impedes the oxide growth. This process is reversed during oxide decomposition. The migration of the substrate steps is found to be a surface-step version of the well-known Hele-Shaw problem, governed by detachment (attachment) of Al atoms at step edges induced by the oxide growth (decomposition). As a result, by comparing with the oxidation of NiAl(110) that exhibits unimpeded oxide film growth over substrate steps, we suggest that whenever steps are the source of atoms used for oxide growth they limit the oxidation process; when atoms are supplied from the bulk, the oxidation rate is not limited by the motion of surface steps.

  1. Oxidation-driven surface dynamics on NiAl(100)

    DOE PAGES

    Qin, Hailang; Chen, Xidong; Li, Liang; Sutter, Peter W.; Zhou, Guangwen

    2014-12-29

    Atomic steps, a defect common to all crystal surfaces, can play an important role in many physical and chemical processes. However, attempts to predict surface dynamics under nonequilibrium conditions are usually frustrated by poor knowledge of the atomic processes of surface motion arising from mass transport from/to surface steps. Using low-energy electron microscopy that spatially and temporally resolves oxide film growth during the oxidation of NiAl(100) we demonstrate that surface steps are impermeable to oxide film growth. The advancement of the oxide occurs exclusively on the same terrace and requires the coordinated migration of surface steps. The resulting piling upmore » of surface steps ahead of the oxide growth front progressively impedes the oxide growth. This process is reversed during oxide decomposition. The migration of the substrate steps is found to be a surface-step version of the well-known Hele-Shaw problem, governed by detachment (attachment) of Al atoms at step edges induced by the oxide growth (decomposition). As a result, by comparing with the oxidation of NiAl(110) that exhibits unimpeded oxide film growth over substrate steps, we suggest that whenever steps are the source of atoms used for oxide growth they limit the oxidation process; when atoms are supplied from the bulk, the oxidation rate is not limited by the motion of surface steps.« less

  2. Deformation and fracture of single-crystal and sintered polycrystalline silicon carbide produced by cavitation

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Hattori, Shuji; Okada, Tsunenori; Buckley, Donald H.

    1989-01-01

    An investigation was conducted to examine the deformation and fracture behavior of single-crystal and sintered polycrystalline SiC surfaces exposed to cavitation. Cavitation erosion experiments were conducted in distilled water at 25 C by using a magnetostrictive oscillator in close proximity (1 mm) to the surface of SiC. The horn frequency was 20 kHz, and the double amplitude of the vibrating disk was 50 microns. The results of the investigation indicate that the SiC (0001) surface could be deformed in a plastic manner during cavitation. Dislocation etch pits were formed when the surface was chemically etched. The number of defects, including dislocations in SiC (0001) surface, increased with increasing exposure time to cavitation. The presence of intrinsic defects such as voids in the surficial layers of the sintered polycrystalline SiC determined the zones at which fractured grains and fracture pits (pores) were generated. Single-crystal SiC had superior erosion resistance to that of sintered polycrystalline SiC.

  3. Deformation and fracture of single-crystal and sintered polycrystalline silicon carbide produced by cavitation

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Hattori, Shuji; Okada, Tsunenori; Buckley, Donald H.

    1987-01-01

    An investigation was conducted to examine the deformation and fracture behavior of single-crystal and sintered polycrystalline SiC surfaces exposed to cavitation. Cavitation erosion experiments were conducted in distilled water at 25 C by using a magnetostrictive oscillator in close proximity (1 mm) to the surface of SiC. The horn frequency was 20 kHz, and the double amplitude of the vibrating disk was 50 microns. The results of the investigation indicate that the SiC (0001) surface could be deformed in a plastic manner during cavitation. Dislocation etch pits were formed when the surface was chemically etched. The number of defects, including dislocations in the SiC (0001) surface, increased with increasing exposure time to cavitation. The presence of intrinsic defects such as voids in the surficial layers of the sintered polycrystalline SiC determined the zones at which fractured grains and fracture pits (pores) were generated. Single-crystal SiC had superior erosion resistance to that of sintered polycrystalline SiC.

  4. Anomalous hexagonal superstructure of aluminum oxide layer grown on NiAl(110) surface

    NASA Astrophysics Data System (ADS)

    Krukowski, Pawel; Chaunchaiyakul, Songpol; Minagawa, Yuto; Yajima, Nami; Akai-Kasaya, Megumi; Saito, Akira; Kuwahara, Yuji

    2016-11-01

    A modified method for the fabrication of a highly crystallized layer of aluminum oxide on a NiAl(110) surface is reported. The fabrication method involves the multistep selective oxidation of aluminum atoms on a NiAl(110) surface resulting from successive oxygen deposition and annealing. The surface morphology and local electronic structure of the novel aluminum oxide layer were investigated by high-resolution imaging using scanning tunneling microscopy (STM) and current imaging tunneling spectroscopy. In contrast to the standard fabrication method of aluminum oxide on a NiAl(110) surface, the proposed method produces an atomically flat surface exhibiting a hexagonal superstructure. The superstructure exhibits a slightly distorted hexagonal array of close-packed bright protrusions with a periodicity of 4.5 ± 0.2 nm. Atomically resolved STM imaging of the aluminum oxide layer reveals a hexagonal arrangement of dark contrast spots with a periodicity of 0.27 ± 0.02 nm. On the basis of the atomic structure of the fabricated layer, the formation of α-Al2O3(0001) on the NiAl(110) surface is suggested.

  5. Containerless drop tube solidification and grain refinement of NiAl3

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Curreri, P. A.; Kelly, M.; Workman, G.; Smith, A. M.; Bond, R.

    1984-01-01

    The possibility of undercooling Ni-Al alloys below the liquidus in order to produce a single phase peritectic structure by containerless drop tube solidification was studied. Containerless process is a technique for both high purity contamination free studies as well as for investigating the undercooling and rapid solidification of alloys by suppression of heterogeneous nucleation on container walls. In order to achieve large undercoolings one must avoid heterogeneous nucleation of crystallization. It was shown that the Marshall Space Flight Center drop tubes ae unique facilities for containerless solidification experiments and large undercoolings are possible with some alloys. The original goal of undercooling the liquid metal well below the liquidus to the peritectic temperature during containerless free to form primarily NiAl3 was achieved. The microstructures were interesting from another point of view. The microstructure from small diameter samples is greatly refined. Small dendrite arm spacings such as these could greatly facilitate the annealing and solid state transformation of the alloy to nearly 10% NiAl3 by reducing the distance over which diffusion needs to occur. This could minimize annealing time and might make it economically feasible to produce NiAl3 alloy.

  6. Modulating two-dimensional non-close-packed colloidal crystal arrays by deformable soft lithography.

    PubMed

    Li, Xiao; Wang, Tieqiang; Zhang, Junhu; Yan, Xin; Zhang, Xuemin; Zhu, Difu; Li, Wei; Zhang, Xun; Yang, Bai

    2010-02-16

    We report a simple method to fabricate two-dimensional (2D) periodic non-close-packed (ncp) arrays of colloidal microspheres with controllable lattice spacing, lattice structure, and pattern arrangement. This method combines soft lithography technique with controlled deformation of polydimethylsiloxane (PDMS) elastomer to convert 2D hexagonal close-packed (hcp) silica microsphere arrays into ncp ones. Self-assembled 2D hcp microsphere arrays were transferred onto the surface of PDMS stamps using the lift-up technique, and then their lattice spacing and lattice structure could be adjusted by solvent swelling or mechanical stretching of the PDMS stamps. Followed by a modified microcontact printing (microcp) technique, the as-prepared 2D ncp microsphere arrays were transferred onto a flat substrate coated with a thin film of poly(vinyl alcohol) (PVA). After removing the PVA film by calcination, the ncp arrays that fell on the substrate without being disturbed could be lifted up, deformed, and transferred again by another PDMS stamp; therefore, the lattice feature could be changed step by step. Combining isotropic solvent swelling and anisotropic mechanical stretching, it is possible to change hcp colloidal arrays into full dimensional ncp ones in all five 2D Bravais lattices. This deformable soft lithography-based lift-up process can also generate patterned ncp arrays of colloidal crystals, including one-dimensional (1D) microsphere arrays with designed structures. This method affords opportunities and spaces for fabrication of novel and complex structures of 1D and 2D ncp colloidal crystal arrays, and these as-prepared structures can be used as molds for colloidal lithography or prototype models for optical materials. PMID:19715332

  7. Modulating two-dimensional non-close-packed colloidal crystal arrays by deformable soft lithography.

    PubMed

    Li, Xiao; Wang, Tieqiang; Zhang, Junhu; Yan, Xin; Zhang, Xuemin; Zhu, Difu; Li, Wei; Zhang, Xun; Yang, Bai

    2010-02-16

    We report a simple method to fabricate two-dimensional (2D) periodic non-close-packed (ncp) arrays of colloidal microspheres with controllable lattice spacing, lattice structure, and pattern arrangement. This method combines soft lithography technique with controlled deformation of polydimethylsiloxane (PDMS) elastomer to convert 2D hexagonal close-packed (hcp) silica microsphere arrays into ncp ones. Self-assembled 2D hcp microsphere arrays were transferred onto the surface of PDMS stamps using the lift-up technique, and then their lattice spacing and lattice structure could be adjusted by solvent swelling or mechanical stretching of the PDMS stamps. Followed by a modified microcontact printing (microcp) technique, the as-prepared 2D ncp microsphere arrays were transferred onto a flat substrate coated with a thin film of poly(vinyl alcohol) (PVA). After removing the PVA film by calcination, the ncp arrays that fell on the substrate without being disturbed could be lifted up, deformed, and transferred again by another PDMS stamp; therefore, the lattice feature could be changed step by step. Combining isotropic solvent swelling and anisotropic mechanical stretching, it is possible to change hcp colloidal arrays into full dimensional ncp ones in all five 2D Bravais lattices. This deformable soft lithography-based lift-up process can also generate patterned ncp arrays of colloidal crystals, including one-dimensional (1D) microsphere arrays with designed structures. This method affords opportunities and spaces for fabrication of novel and complex structures of 1D and 2D ncp colloidal crystal arrays, and these as-prepared structures can be used as molds for colloidal lithography or prototype models for optical materials.

  8. Experimental deformation of chalcopyrite single crystals at 200°C

    NASA Astrophysics Data System (ADS)

    Hennig-Michaeli, Christa; Siemes, Heinrich

    1987-04-01

    Prismatic specimens of chalcopyrite, CuFeS 2, cut from a large natural crystal were experimentally deformed at 200°C, 300 MPa confining pressure and a strain rate of approximately 4·10 -6 s -1. Orientation determinations discriminating [001] and [100] within the pseudocubic crystal structure, were carried out by X-ray texture goniometry using 103-reflections. Eight different orientations—[001], [100], [110], [111], [021], [221], [421], [821]—were tested by compression. The specimens were subjected to permanent axial shortenings of between 0.7% and 2.3%. After deformation, pre-polished specimen surfaces were inspected by means of interference contrast methods. Two-surface analysis of glide line orientations and of the sense of glide steps allows determination of the glide plane and assignment of the glide direction to a specific quadrant within a stereographic projection that is drawn from the top surface of the crystal. The height of slip steps further confines the glide directions which are assumed to be along low index lattice lines. The main deformation mechanism in all specimens, except the [001]-sample, was by slip on {112}. Coarse slip bands and fine slip lines of remarkably straight character often extend throughout the crystal indicating a planar slip behaviour. They all agree with {112}<31¯1¯> slip and {112}<3¯11> slip, respectively. The two slip modes are not crystallographically equivalent but the critical resolved shear stresses are similar, about 80 MPa. The Burgers vector {1}/{2<311>} = 0.986 nm is large and it is expected that the dislocations would undergo a complex dissociation into partials. The formerly predicted, "sphalerite-like", slip directions <11¯0>, <02¯1> are not consistent with the recent observations. In the [001]-specimen {112}<111¯> twinning was the main glide mode. The twins exhibit a pronounced wavy character in sections across n1 and are straight in sections along n1. The twinning shear stress was 115 MPa.

  9. A combined crystal plasticity and graph-based vertex model of dynamic recrystallization at large deformations

    NASA Astrophysics Data System (ADS)

    Mellbin, Y.; Hallberg, H.; Ristinmaa, M.

    2015-06-01

    A mesoscale model of microstructure evolution is formulated in the present work by combining a crystal plasticity model with a graph-based vertex algorithm. This provides a versatile formulation capable of capturing finite-strain deformations, development of texture and microstructure evolution through recrystallization. The crystal plasticity model is employed in a finite element setting and allows tracing of stored energy build-up in the polycrystal microstructure and concurrent reorientation of the crystal lattices in the grains. This influences the progression of recrystallization as nucleation occurs at sites with sufficient stored energy and since the grain boundary mobility and energy is allowed to vary with crystallographic misorientation across the boundaries. The proposed graph-based vertex model describes the topological changes to the grain microstructure and keeps track of the grain inter-connectivity. Through homogenization, the macroscopic material response is also obtained. By the proposed modeling approach, grain structure evolution at large deformations as well as texture development are captured. This is in contrast to most other models of recrystallization which are usually limited by assumptions of one or the other of these factors. In simulation examples, the model is in the present study shown to capture the salient features of dynamic recrystallization, including the effects of varying initial grain size and strain rate on the transitions between single-peak and multiple-peak oscillating flow stress behavior. Also the development of recrystallization texture and the influence of different assumptions on orientation of recrystallization nuclei are investigated. Further, recrystallization kinetics are discussed and compared to classical JMAK theory. To promote computational efficiency, the polycrystal plasticity algorithm is parallelized through a GPU implementation that was recently proposed by the authors.

  10. The effect of hydrogenation on strain hardening and deformation mechanisms in <113> single crystals of Hadfield steel

    NASA Astrophysics Data System (ADS)

    Astafurova, Elena; Maier, Galina; Melnikov, Eugene; Koshovkina, Vera; Moskvina, Valentina; Smirnov, Alexander; Bataev, Vladimir

    2015-10-01

    The effect of hydrogenation on the strain-hardening behavior and the deformation mechanisms of <113>-oriented single crystals of Hadfield steel was investigated under tension at room temperature. The stages of plastic flow and deformation mechanisms for hydrogen-charged specimens are similar to one in hydrogen-free state: slip → slip + single twinning → slip + multiple twinning. Hydrogen alloying favors to mechanical twinning, micro- and macrolocalization of plastic flow.

  11. Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals

    NASA Astrophysics Data System (ADS)

    Xia, Shengxu; El-Azab, Anter

    2015-07-01

    We present a continuum dislocation dynamics model that predicts the formation of dislocation cell structure in single crystals at low strains. The model features a set of kinetic equations of the curl type that govern the space and time evolution of the dislocation density in the crystal. These kinetic equations are coupled to stress equilibrium and deformation kinematics using the eigenstrain approach. A custom finite element method has been developed to solve the coupled system of equations of dislocation kinetics and crystal mechanics. The results show that, in general, dislocations self-organize in patterns under their mutual interactions. However, the famous dislocation cell structure has been found to form only when cross slip is implemented in the model. Cross slip is also found to lower the yield point, increase the hardening rate, and sustain an increase in the dislocation density over the hardening regime. Analysis of the cell structure evolution reveals that the average cell size decreases with the applied stress, which is consistent with the similitude principle.

  12. Mesoscale Heterogeneity in the Plastic Deformation of a Copper Single Crystal

    SciTech Connect

    Magid, K R; Florando, J N; Lassila, D H; LeBlanc, M M; Tamura, N; Morris Jr., J W

    2007-02-21

    The work reported here is part of a 'multiscale characterization' study intended to clarify the deformation pattern in a Cu single crystal deformed in compression. A copper single crystal was oriented for single slip in the (111)[{bar 1}01] slip system and tested to {approx}10% strain in uniaxial compression, using a specifically designed '6 degree of freedom' compressive test device to achieve uniaxial strain. The macroscopic strain field was monitored during the test by optical 'image correlation' methods that mapped the strain field with a spatial resolution of about 100 {micro}m. The strain field was measured on orthogonal surfaces, one of which (the x-face) was oriented perpendicular to [1{bar 2}1] and contained the [{bar 1}01] direction of the preferred slip system. The macroscopic strain produced is an inhomogeneous pattern of broad, crossed shear bands in the x-face. One, the primary band, lay parallel to (111). The second, the 'conjugate' band, was oriented perpendicular to (111) and contains no common slip plane of the fcc crystal. The mesoscopic structure of the inhomogeneous macroscopic deformation pattern was explored with selected area diffraction, using a focused synchrotron radiation polychromatic beam with a resolution of 1-3 {micro}m. Areas within the primary, conjugate and primary + conjugate strain regions of the x-face were identified and mapped for their orientation, excess defect density and shear stress. The mesoscopic defect structure consisted of broad, somewhat irregular primary bands that lay nominally parallel to (111) in a almost periodic distribution with a period of about 30 {micro}m. These primary bands were dominant even in the region of conjugate strain. There were also broad conjugate defect bands, almost precisely perpendicular to the primary bands that tended to bridge primary bands and terminate at them. The residual shear stresses were large (ranging to well above 500 MPa) and strongly correlated with the primary shear bands

  13. Crystal Plasticity Analysis of Texture Evolution of Pure Aluminum During Processing by a New Severe Plastic Deformation Technique

    NASA Astrophysics Data System (ADS)

    Khajezade, Ali; Parsa, Mohammad Habibi; Mirzadeh, Hamed

    2016-02-01

    Texture evolution in a newly developed severe plastic deformation technique, named multi-axial incremental forging and shearing (MAIFS), was studied applying the visco-plastic self-consistent crystal plasticity formulation by consideration of macroscopic deformation history. The simulated texture evolutions revealed that although shear-like texture had developed by the MAIFS process, texture components rotated around normal to mid-plane section. This could be ascribed to the complex deformation history that naturally develops during processing by the MAIFS process. The increased complexity of the deformation history in the MAIFS process, compared to the techniques that are solely based on the simple shear deformation, causes more activated slip planes, which in turn can result in an enhanced grain refinement ability of this processing technique.

  14. High-resolution microdiffraction study of notch-tip deformation in Mo single crystals using x-ray synchrotron radiation

    SciTech Connect

    Ice, G.; Habenschuss, A.; Bilello, J.C.; Rebonato, R.

    1989-12-31

    A new technique is presented for the determination of strain fields in single crystals, based on the simultaneous recording of the energy and position of a diffracted beam, with a resolution of 25 micrometers under current experimental conditions. The technique can be profitably used for perfect to highly deformed crystals, in materials as highly absorbing as Molybdenum, and allows a spatial resolution of one part in 10{sup 4}. Indications are given as to possible refinements and improvements of the method.

  15. High-resolution microdiffraction study of notch-tip deformation in Mo single crystals using x-ray synchrotron radiation

    SciTech Connect

    Ice, G.; Habenschuss, A. ); Bilello, J.C. ); Rebonato, R. . Physical Chemistry Lab.)

    1989-01-01

    A new technique is presented for the determination of strain fields in single crystals, based on the simultaneous recording of the energy and position of a diffracted beam, with a resolution of 25 micrometers under current experimental conditions. The technique can be profitably used for perfect to highly deformed crystals, in materials as highly absorbing as Molybdenum, and allows a spatial resolution of one part in 10{sup 4}. Indications are given as to possible refinements and improvements of the method.

  16. Recrystallization and grain growth in NiAl

    NASA Technical Reports Server (NTRS)

    Haff, G. R.; Schulson, E. M.

    1982-01-01

    Aluminide intermetallics, because of their strength, microstructural stability, and oxidation resistance at elevated temperatures, represent potential structural materials for use in advanced energy conversion systems. This inherent potential of the intermetallics can currently not be realized in connection with the general brittleness of the materials under ambient conditions. It is pointed out, however, that brittleness is not an inherent characteristic. Single crystals are ductile and polycrystals may be, too, if their grains are fine enough. The present investigation is concerned with an approach for reducing material brittleness, taking into account thermal-mechanically induced grain refinement in NiAl, a B2 aluminide which melts at 1638 C and which retains complete order to its melting point. Attention is given to the kinetics of recrystallization and grain growth of warm-worked, nickel-rich material.

  17. Two-dimensional photonic crystals with anisotropic unit cells imprinted from PDMS membranes under elastic deformation

    NASA Astrophysics Data System (ADS)

    Zhu, Xuelian; Zhang, Ying; Chandra, Dinesh; Cheng, Shih-Chieh; Kikkawa, James M.; Yang, Shu

    2009-02-01

    We study structural symmetries of two-dimensional (2D) photonic crystals with anisotropic unit cells, including square- and rectangular-lattices with orientationally modulated elliptic motifs, a compound structure consisting of circles with 6-fold rotational symmetry and elliptical lines with 2-fold symmetry, and a rectangular lattice of aligned ovals, which are created through elastic deformation of an elastomeric membrane with circular pores. We then investigate the photonic bandgap (PBG) properties of the corresponding 2D Si posts, and their tolerance to the structural deviation. We find that in the compound structure the overall PBGs are dominated by the sublattice with a higher symmetry, while the total symmetry is determined by the one with a lower symmetry.

  18. Multiscale modeling of upper mantle plasticity: From single-crystal rheology to multiphase aggregate deformation

    NASA Astrophysics Data System (ADS)

    Raterron, Paul; Detrez, Fabrice; Castelnau, Olivier; Bollinger, Caroline; Cordier, Patrick; Merkel, Sébastien

    2014-03-01

    We report a first application of an improved second-order (SO) viscoplastic self-consistent model for multiphase aggregates, applied to an olivine + diopside aggregate as analogue for a dry upper mantle peridotite deformed at 10-15 s-1 shear strain rate along a 20-Ma ocean geotherm. Beside known dislocation slip systems, this SO-model version accounts for an isotropic relaxation mechanism representing ‘diffusion-related’ creep mechanisms in olivine. Slip-system critical resolved shear stress (CRSS) are evaluated in both phases - as functions of P, T, oxygen fugacity (fO2) and strain rate - from previously reported experimental data obtained on single crystals and first-principle calculations coupled with the Peierls-Nabarro model for crystal plasticity; and the isotropic-mechanism dependence on T and P matches that of Si self-diffusion in olivine, while its relative activity is constrained by reported data. The model reproduces well the olivine and diopside lattice preferred orientations (LPO) produced experimentally and observed in naturally deformed rocks, as well as observed sensitivities of multiphase aggregate strength to the volume fraction of the hard phase (here diopside). It shows a significant weakening of olivine LPO with increasing depth, which results from the combined effects of the P-induced [1 0 0]/[0 0 1] dislocation-slip transition and the increasing activity with T of ‘diffusion-related’ creep. This work thus provides a first quantification of the respective effects of [1 0 0]/[0 0 1] slip transition and diffusion creep on the olivine LPO weakening inducing the seismic anisotropy attenuation observed in the upper mantle.

  19. Light modulation in planar aligned short-pitch deformed-helix ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Kotova, Svetlana P.; Samagin, Sergey A.; Pozhidaev, Evgeny P.; Kiselev, Alexei D.

    2015-12-01

    We study both experimentally and theoretically modulation of light in a planar aligned deformed-helix ferroelectric liquid crystal (DHFLC) cell with subwavelength helix pitch, which is also known as a short-pitch DHFLC. In our experiments, the azimuthal angle of the in-plane optical axis and electrically controlled parts of the principal in-plane refractive indices are measured as a function of voltage applied across the cell. Theoretical results giving the effective optical tensor of a short-pitch DHFLC expressed in terms of the smectic tilt angle and the refractive indices of the ferroelectric liquid crystal (FLC) are used to fit the experimental data. The optical anisotropy of the FLC material is found to be weakly biaxial. For both the transmissive and reflective modes, the results of fitting are applied to model the phase and amplitude modulation of light in the DHFLC cell. We demonstrate that if the thickness of the DHFLC layer is about 50 μ m , the detrimental effect of field-induced rotation of the in-plane optical axes on the characteristics of an axicon designed using the DHFLC spatial light modulator in the reflective mode is negligible.

  20. Deformation twinning evolution from a single crystal in a face-centered-cubic ternary alloy.

    PubMed

    Zhang, Zhenyu; Yang, Song; Guo, Dongming; Yuan, Boya; Guo, Xiaoguang; Zhang, Bi; Huo, Yanxia

    2015-01-01

    Deformation twinning evolution from a single crystal is conducted by molecular dynamics simulations, to elucidate a twinned face-centered-cubic alloy in an experiment with hardness up to 100 times as that of single crystals, and with ductility simultaneously. Critical twinning stress of cadmium zinc telluride (CdZnTe or CZT) calculated is 1.38 GPa. All the twin boundaries are along the (11-1) orientation, except the one with the (-111) plane that supports the indentation, interpreting the unidirectional and boundary-free characteristics, confirmed in the experiment. Three twin thicknesses after unloading are 3.2, 3.5, and 16 nm, which is consistent with the experimentally repeated pattern of a lamellar twin with thickness larger than 12.7 nm, followed by one or several twins with thicknesses smaller than 12.7 nm. An inverse triangle of a twin combining with three twins generate a synergistic strengthening effect through the hardening and softening functions, illuminating the ultrahigh hardness demonstrated in the experiment. Twinning takes place in loading, and detwinning occurs in unloading, which expounds the high ductility observed in the experiment. PMID:26060979

  1. Deformation twinning evolution from a single crystal in a face-centered-cubic ternary alloy

    PubMed Central

    Zhang, Zhenyu; Yang, Song; Guo, Dongming; Yuan, Boya; Guo, Xiaoguang; Zhang, Bi; Huo, Yanxia

    2015-01-01

    Deformation twinning evolution from a single crystal is conducted by molecular dynamics simulations, to elucidate a twinned face-centered-cubic alloy in an experiment with hardness up to 100 times as that of single crystals, and with ductility simultaneously. Critical twinning stress of cadmium zinc telluride (CdZnTe or CZT) calculated is 1.38 GPa. All the twin boundaries are along the (11-1) orientation, except the one with the (-111) plane that supports the indentation, interpreting the unidirectional and boundary-free characteristics, confirmed in the experiment. Three twin thicknesses after unloading are 3.2, 3.5, and 16 nm, which is consistent with the experimentally repeated pattern of a lamellar twin with thickness larger than 12.7 nm, followed by one or several twins with thicknesses smaller than 12.7 nm. An inverse triangle of a twin combining with three twins generate a synergistic strengthening effect through the hardening and softening functions, illuminating the ultrahigh hardness demonstrated in the experiment. Twinning takes place in loading, and detwinning occurs in unloading, which expounds the high ductility observed in the experiment. PMID:26060979

  2. Light modulation in planar aligned short-pitch deformed-helix ferroelectric liquid crystals.

    PubMed

    Kotova, Svetlana P; Samagin, Sergey A; Pozhidaev, Evgeny P; Kiselev, Alexei D

    2015-12-01

    We study both experimentally and theoretically modulation of light in a planar aligned deformed-helix ferroelectric liquid crystal (DHFLC) cell with subwavelength helix pitch, which is also known as a short-pitch DHFLC. In our experiments, the azimuthal angle of the in-plane optical axis and electrically controlled parts of the principal in-plane refractive indices are measured as a function of voltage applied across the cell. Theoretical results giving the effective optical tensor of a short-pitch DHFLC expressed in terms of the smectic tilt angle and the refractive indices of the ferroelectric liquid crystal (FLC) are used to fit the experimental data. The optical anisotropy of the FLC material is found to be weakly biaxial. For both the transmissive and reflective modes, the results of fitting are applied to model the phase and amplitude modulation of light in the DHFLC cell. We demonstrate that if the thickness of the DHFLC layer is about 50μm, the detrimental effect of field-induced rotation of the in-plane optical axes on the characteristics of an axicon designed using the DHFLC spatial light modulator in the reflective mode is negligible. PMID:26764706

  3. Acoustic Wave Correlation of Elementary Deformation Events in a Low-Stability Crystal Lattice of FCC-Metals

    NASA Astrophysics Data System (ADS)

    Makarov, S. V.; Plotnikov, V. A.; Potekaev, A. I.; Grinkevich, L. S.

    2015-04-01

    A discrete pattern of the low-frequency acoustic emission spectrum under conditions of high-temperature plastic deformation of aluminum is analyzed. It is attributed to re-distribution of vibrational energy of the primary acoustic signal over resonant vibrations of standing waves of the resonators. In a low-stability crystal medium, standing-wave oscillations initiate elementary deformation displacements in a certain material volume. The linear dimensions of this volume are related to the length of the standing wave, thus determining the macroscopic scale of correlation. The correlated deformation displacements in turn generate acoustic signals, whose interference results in the formation of a single acoustic signal of abnormally high amplitude. In a low-stability state of the crystal lattice, activation of the elementary plastic shears could result from a combined action of static forces, thermal fluctuations and dynamic forces of standing acoustic waves.

  4. Structure and magnetic properties of a Ni3(Al, Fe, Cr) single crystal subjected to high-temperature deformation

    NASA Astrophysics Data System (ADS)

    Kazantseva, N. V.; Rigmant, M. B.; Stepanova, N. N.; Davydov, D. I.; Shishkin, D. A.; Terent'ev, P. B.; Vinogradova, N. I.

    2016-05-01

    The structure and magnetic properties of the Ni3(Al, Fe, Cr) single crystal subjected to high-temperature tensile deformation to failure at 850-900°C have been studied. No recrystallized grains and metastable phases were found. The rupture zone of the alloy subjected to deformation (at 900°C) to the highest degree demonstrates the fragmentation accompanied by rotation of atomic layers and changes of the chemical composition in the nickel and aluminum sublattices. Magnetic studies of the alloy have shown the existence of two Curie temperatures for samples cut from the rupture zone. Samples cut away from the rupture zone exhibit no additional magnetic transitions; twines and planar stacking faults in the alloy structure. The alloy deformed to the lower degree of deformation (at 850°C) also demonstrates twins; no ferromagnetic state was found to form.

  5. Atomic-scale configurations of synchroshear-induced deformation twins in the ionic MnS crystal

    PubMed Central

    Zhou, Y. T.; Xue, Y. B.; Chen, D.; Wang, Y. J.; Zhang, B.; Ma, X. L.

    2014-01-01

    Deformation twinning was thought as impossible in ionic compounds with rock-salt structure due to the charge effect on {111} planes. Here we report the presence and formation mechanism of deformation {111} twins in the rock-salt manganese sulphide (MnS) inclusions embedded in a hot-rolled stainless steel. Based on the atomic-scale mapping under aberration-corrected scanning transmission electron microscopy, a dislocation-based mechanism involved two synchronized shear on adjacent atomic layers is proposed to describe the dislocation glide and consequently twinning formation. First-principles calculations of the energy barriers for twinning formation in MnS and comparing with that of PbS and MgO indicate the distinct dislocation glide scheme and deformation behaviors for the rock-salt compounds with different ionicities. This study may improve our understanding of the deformation mechanisms of rock-salt crystals and other ionic compounds. PMID:24874022

  6. Mapping mesoscale heterogeneity in the plastic deformation of a copper single crystal

    SciTech Connect

    Magid, K. R.; Florando, J.N.; Lassila, D.H.; Leblanc, M.M.; Tamura, N.; Morris Jr, J. W.

    2008-10-01

    The work reported here is part of a 'multiscale characterization' study of heterogeneous deformation patterns in metals. A copper single crystal was oriented for single slip in the (111)[{bar 1}01] slip system and tested to {approx}10% strain in roughly uniaxial compression. The macroscopic strain field was monitored during the test by optical 'image correlation'. The strain field was measured on orthogonal surfaces, one of which (the x-face) was oriented perpendicular to [1{bar 2}1] and contained the [{bar 1}01] direction of the preferred slip system. The macroscopic strain developed in an inhomogeneous pattern of broad, crossed shear bands in the x-face. One, the primary band, lay parallel to (111). The second, the 'conjugate' band, was oriented perpendicular to (111) with an overall ({bar 1}01) habit that contains no common slip plane of the fcc crystal. The mesoscopic deformation pattern was explored with selected area diffraction, using a focused synchrotron radiation polychromatic beam with a resolution of 1-3 {micro}m. Areas within the primary, conjugate and mixed (primary + conjugate) strain regions of the x-face were identified and mapped for their orientation, excess defect density and shear stress. The mesoscopic defect structure was concentrated in broad, somewhat irregular primary bands that lay nominally parallel to (111) in an almost periodic distribution with a period of about 30 {micro}m. These primary bands were dominant even in the region of conjugate strain. There were also broad conjugate defect bands, almost precisely perpendicular to the primary bands, that tended to bridge primary bands and terminate at them. The residual shear stresses were large (ranging to well above 500 MPa) and strongly correlated with the primary shear bands; interband stresses were small. The maximum resolved shear stresses within the primary bands were oriented out of the plane of the bands, and, hence, could not recover the dislocation structure in the bands. The

  7. Simple models for intermittent deformation and slip avalanches: from crystals to granular materials and earthquakes

    NASA Astrophysics Data System (ADS)

    Dahmen, K.; Ben-Zion, Y.; Uhl, J.

    2011-12-01

    Slowly sheared solid or densely packed granular materials often deform in an intermittent way with slip avalanches. The distribution of sizes follows often a power law over a broad range of sizes. In these cases, universal (i.e. detail-independent) scaling behavior governs the statistics of the slip-avalanches. Under some conditions, there are also "characteristic" statistics associated with enhanced occurrence of system-size events, and long-term mode switching between power law and characteristic behavior. These dynamic regimes can be understood with basic micromechanical model for deformation of solids with only two tuning parameter: weakening and dissipation of elastic stress transfer. For granular materials the packing fraction plays the role of the dissipation parameter and it sets the size of the largest slip avalanche. The model can reproduce observed stress-strain curves, power spectra of acoustic emissions, statistics of slip avalanches, and geometrical properties of slip, with a continuous phase transition from brittle to ductile behavior. Exact universal predictions for the power law exponents of the avalanche size distributions, durations, power spectra of acoustic emissions, and scaling functions are extracted using an analytical mean field theory and renormalization group tools. For granular materials a dynamic phase diagram with solid-like behavior and large slip avalanches at large packing fractions, and fluid-like behavior at lower packing fractions is obtained. The results agree with recent experimental observations and simulations of the statistics of dislocation dynamics in sheared crystals such as ice [1], slip avalanches in sheared granular materials [2], and avalanches in magnetic and fault systems [3,4]. [1] K. A. Dahmen, Y. Ben-Zion, and J.T. Uhl, "A micromechanical model for deformation in solids with universal predictions for stress strain curves and slip avalanches", Physical Review Letters 102, 175501/1-4 (2009). [2] K. A. Dahmen, Y

  8. The influence of severe plastic deformation by high pressure torsion on structure and mechanical properties of Hadfield steel single crystals

    NASA Astrophysics Data System (ADS)

    Zakharova, G. G.; Astafurova, E. G.

    2010-07-01

    Hadfield steel single crystals have been deformed by high pressure torsion at room temperature (P=5GPa) for 1, 2, 3 revolutions. The resulting microstructure has been studied by means of transmission electron microscopy (TEM) and X-ray analysis. The size of fragments decreases with increasing number of revolutions due to interaction of slip dislocations, microbands and thin twins. As a result of severe plastic deformation, the microhardness of the Hadfield steel has been increased, and a portion of epsilon, α' martensite has been found.

  9. Plasticity of single-grain icosahedral Al-Pd-Mn quasi-crystals deformed at room temperature

    SciTech Connect

    Mompiou, F.; Caillard, D

    2004-07-12

    Transmission electron microscopy observations have been performed on icosahedral Al-Pd-Mn quasi-crystal samples deformed at 20 deg. C under a high confining pressure. They reveal a large density of wavy walls from which several climbing dislocations are emitted. Near-screw dislocations have been found at the wall terminations with a Burgers vector contained in the wall plane. Careful plane determinations and dislocation analyses are not consistent with a glide and cross-slip mechanism. The results can be better interpreted as a deformation by cracks in mode III followed by a re-healing process.

  10. Assessing smectic liquid-crystal continuum models for elastic bilayer deformations

    PubMed Central

    Lee, Kyu; Pastor, Richard W.; Andersen, Olaf S.; Im, Wonpil

    2013-01-01

    For four decades, since W. Helfrich’s pioneering study of smectic A liquid crystals in 1973, continuum elastic models (CEMs) have been employed as tools to understand the energetics of protein-induced lipid bilayer deformations. Among the assumptions underlying this use is that all relevant protein–lipid interactions can be included in the continuum representation of the protein–bilayer interactions through the physical parameters determined for protein-free bilayers and the choice of boundary conditions at the protein/bilayer interface. To better understand this assumption, we review the general structure of CEMs, examine how different choices of boundary conditions and physical moduli profiles alter the predicted bilayer thickness profiles around gramicidin A (gA) and mitochondrial voltage-dependent anion channels (VDAC), respectively, and compare these profiles with those obtained from all-atom molecular dynamics simulations. We find that the profiles differ qualitatively in the first lipid shell around the channels, indicating that the CEMs do not capture accurately the consequences of the protein-induced local changes in lipid bilayer dynamics. Therefore, one needs to be careful when interpreting the results of CEM-based analyses of lipid bilayer-membrane protein interactions. PMID:23348553

  11. Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper.

    PubMed

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun

    2015-12-01

    Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.

  12. Structural deformations on fluorophlogopite crystals of a pre-heated and experimentally shocked mica glass-ceramic

    SciTech Connect

    Hiltl, M.; Hornemann, U.

    1998-07-10

    Shock experiments with the reflection method were carried out at room (T{sub room})- and pre-shock (T{sub pre}) temperatures of 300 and 600 deg. C at pressures ranging from 30 to 75 GPa to investigate the structural deformation on fluorophlogopite (KMg{sub 3}(Si{sub 3}AlO{sub 10})F{sub 2}) crystals of the Macor glass-ceramic. The recovered samples were examined by means of X-ray diffraction, SEM and TEM with respect to their microstructure. The examination shows that with increasing shock pressures and temperatures the crystals loose their morphology and undergo a transition into an amorphous state.

  13. Review of the physical and mechanical properties and potential applications of the B2 compound NiAl: Unabridged version of a paper published in International materials review

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Bowman, Randy R.; Nathal, Michael V.

    1992-01-01

    Considerable work has been performed on NiAl over the last three decades, with an extremely rapid growth in research on this intermetallic occurring in the last few years due to recent interest in this material for electronic and high temperature structural applications. However, many physical properties and the controlling fracture and deformation mechanisms over certain temperature regimes are still in question. Part of this problem lies in the incomplete characterization of many of the alloys previously investigated. Fragmentary data on processing conditions, chemistry, microstructure and the apparent difficulty in accurately measuring composition has made direct comparison between individual studies sometimes tenuous. Therefore, the purpose of this review is to summarize all available mechanical and pertinent physical properties on NiAl, stressing the most recent investigations, in an attempt to understand the behavior of NiAl and its alloys over a broad temperature range.

  14. 3D-Modeling of deformed halite hopper crystals: Object based image analysis and support vector machine, a first evaluation

    NASA Astrophysics Data System (ADS)

    Leitner, Christoph; Hofmann, Peter; Marschallinger, Robert

    2014-05-01

    Halite hopper crystals are thought to develop by displacive growth in unconsolidated mud (Gornitz & Schreiber, 1984). The Alpine Haselgebirge, but also e.g. the salt deposits of the Rhine graben (mined at the beginning of the 20th century), comprise hopper crystals with shapes of cuboids, parallelepipeds and rhombohedrons (Görgey, 1912). Obviously, they deformed under oriented stress, which had been tried to reconstruct with respect to the sedimentary layering (Leitner et al., 2013). In the present work, deformed halite hopper crystals embedded in mudrock were automated reconstructed. Object based image analysis (OBIA) has been used successfully in remote sensing for 2D images before. The present study represents the first time that the method was used for reconstruction of three dimensional geological objects. First, manually a reference (gold standard) was created by redrawing contours of the halite crystals on each HRXCT scanning slice. Then, for OBIA, the computer program eCognition was used. For the automated reconstruction a rule set was developed. Thereby, the strength of OBIA was to recognize all objects similar to halite hopper crystals and in particular to eliminate cracks. In a second step, all the objects unsuitable for a structural deformation analysis were dismissed using a support vector machine (SVM) (clusters, polyhalite-coated crystals and spherical halites) The SVM simultaneously drastically reduced the number of halites. From 184 OBIA-objects 67 well shaped remained, which comes close to the number of pre-selected 52 objects. To assess the accuracy of the automated reconstruction, the result before and after SVM was compared to the reference, i.e. the gold standard. State-of the art per-scene statistics were extended to a per-object statistics. Görgey R (1912) Zur Kenntnis der Kalisalzlager von Wittelsheim im Ober-Elsaß. Tschermaks Mineral Petrogr Mitt 31:339-468 Gornitz VM, Schreiber BC (1981) Displacive halite hoppers from the dead sea

  15. Microstructure of Ni-Al powder and Ni-Al composite coatings prepared by twin-wire arc spraying

    NASA Astrophysics Data System (ADS)

    Wang, Ji-xiao; Wang, Gui-xian; Liu, Jing-shun; Zhang, Lun-yong; Wang, Wei; Li, Ze; Wang, Qi-xiang; Sun, Jian-fei

    2016-07-01

    Ni-Al powder and Ni-Al composite coatings were fabricated by twin-wire arc spraying (TWAS). The microstructures of Ni-5wt%Al powder and Ni-20wt%Al powder were characterized by scanning electronic microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the obtained particle size ranged from 5 to 50 μm. The morphology of the Ni-Al powder showed that molten particles were composed of Ni solid solution, NiAl, Ni3Al, Al2O3, and NiO. The Ni-Al phase and a small amount of Al2O3 particles changed the composition of the coating. The microstructures of the twin-wire-arc-sprayed Ni-Al composite coatings were characterized by SEM, EDS, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results showed that the main phase of the Ni-5wt%Al coating consisted of Ni solid solution and NiAl in addition to a small amount of Al2O3. The main phase of the Ni-20wt%Al coating mainly consisted of Ni solid solution, NiAl, and Ni3Al in addition to a small amount of Al and Al2O3, and NiAl and Ni3Al intermetallic compounds effectively further improved the final wear property of the coatings. TEM analysis indicated that fine spherical NiAl3 precipitates and a Ni-Al-O amorphous phase formed in the matrix of the Ni solid solution in the original state.

  16. A new high-sensitivity X-ray diffraction technique for determining local deformations of a crystal surface using "bending interference fringes"

    NASA Astrophysics Data System (ADS)

    Suvorov, E. V.; Smirnova, I. A.

    2016-09-01

    A new high-sensitivity X-ray diffraction technique for studying local surface deformations caused by crystal defects is described. The method is based on analysis of the shape of "bending interference fringes" (BIFs) in the Bragg geometry of X-ray diffraction. The obtained results show that the BIF method allows one to qualitatively assess very weak local deformations of a crystal surface with local bending radii of crystallographic planes from several dozen to several hundred meters.

  17. Sites of the N1 nitrogen paramagnetic centers in natural diamond crystals: Dissymmetrization of the structure as a result of plastic deformation

    NASA Astrophysics Data System (ADS)

    Titkov, S. V.; Mineeva, R. M.; Ryabchikov, I. D.; Speransky, A. V.

    2016-05-01

    Using the method of EPR spectroscopy, it is shown that the N1 nitrogen centers (N-C-N+) are unevenly distributed over possible sites in natural brown crystals of plastically deformed diamonds. The influence of deformational dissymmetrization of the structure on the anisotropy of some physical properties of natural diamonds is discussed.

  18. Strain Aging Behavior in NiAl Microalloyed with Interstitial and Substitutional Solutes

    NASA Technical Reports Server (NTRS)

    Weaver, M. L.; Noebe R. D.; Kaufman, M. J.

    1997-01-01

    Dynamic strain aging has been investigated in polycrystalline NiAl alloys containing combined additions of interstitial and substitutional impurities. The results indicate that strain aging can be enhanced in polycrystalline alloys containing concentrations of silicon or iron in excess of 0.15 at.% in addition to conventional levels of carbon. This co-doping leads to very dramatic strain aging events, comparable to those typically observed in single crystals. This effect will be discussed with respect to conventional theories of strain aging.

  19. Influence of fabrication technique on the fiber pushout behavior in a sapphire-reinforced NiAl matrix composite

    NASA Astrophysics Data System (ADS)

    Asthana, R.; Tewari, S. N.; Bowman, R. R.

    1995-01-01

    Directional solidification (DS) of “powder-cloth” (PC) processed sapphire-NiAl composites was carried out to examine the influence of fabrication technique on the fiber-matrix interfacial shear strength, measured using a fiber-pushout technique. The DS process replaced the fine, equiaxed NiAl grain structure of the PC composites with an oriented grain structure comprised of large columnar NiAl grains aligned parallel to the fiber axis, with fibers either completely engulfed within the NiAl grains or anchored at one to three grain boundaries. The load-displacement behavior during the pushout test exhibited an initial “pseudoelastic” response, followed by an “inelastic” response, and finally a “frictional” sliding response. The fiber-matrix interfacial shear strength and the fracture behavior during fiber pushout were investigated using an interrupted pushout test and fractography, as functions of specimen thickness (240 to 730 μm) and fabrication technique. The composites fabricated using the PC and the DS techniques had different matrix and interface structures and appreciably different interfacial shear strengths. In the DS composites, where the fiber-matrix interfaces were identical for all the fibers, the interfacial debond shear stresses were larger for the fibers embedded completely within the NiAl grains and smaller for the fibers anchored at a few grain boundaries. The matrix grain boundaries coincident on sapphire fibers were observed to be the preferred sites for crack formation and propagation. While the frictional sliding stress appeared to be independent of the fabrication technique, the interfacial debond shear stresses were larger for the DS composites compared to the PC composites. The study highlights the potential of the DS technique to grow single-crystal NiAl matrix composites reinforced with sapphire fibers, with fiber-matrix interfacial shear strength appreciably greater than that attainable by the current solid

  20. Formation of NiAl Intermetallic Compound by Cold Spraying of Ball-Milled Ni/Al Alloy Powder Through Postannealing Treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Li, Chang-Jiu; Wang, Xiu-Ru; Ren, Zhi-Liang; Li, Cheng-Xin; Yang, Guan-Jun

    2008-12-01

    Ni/Al alloy powders were synthesized by ball milling of nickel-aluminum powder mixture with a Ni/Al atomic ratio of 1:1. Ni/Al alloy coating was deposited by cold spraying using N2 as accelerating gas. NiAl intermetallic compound was evolved in situ through postspray annealing treatment of cold-sprayed Ni/Al alloy coating. The effect of annealing temperature on the phase transformation behavior from Ni/Al mechanical alloy to intermetallics was investigated. The microstructure of the mechanically alloying Ni/Al powder and NiAl coatings was characterized by scanning electron microscopy and x-ray diffraction analysis. The results show that a dense Ni/Al alloy coating can be successfully deposited by cold spraying using the mechanically alloyed powder as feedstocks. The as-sprayed alloy coating exhibited a laminated microstructure retained from the mechanically alloying powder. The annealing of the subsequent Ni/Al alloy coating at a temperature higher than 850 °C leads to complete transformation from Ni/Al alloy to NiAl intermetallic compound.

  1. Deformation mechanisms of olivine single crystals compressed at 300 MPa and 800-1100°C

    NASA Astrophysics Data System (ADS)

    Cordier, Patrick; Demouchy, Sylvie; Mussi, Alexandre; Tommasi, Andrea

    2013-04-01

    Rheology of mantle rocks at lithospheric temperatures remains poorly constrained, since most experimental studies on creep mechanisms of olivine single crystals ((MgFe)2SiO4, Pbnm) and polycrystalline olivine aggregates were performed at high-temperatures (T >> 1200oC). In this study, we have performed deformation experiments on oriented single crystals of San Carlos olivine and polycrystalline olivine aggregate at temperatures relevant of the uppermost mantle (ranging from 800o to 1090oC) in tri-axial compression. The experiments were carried out at a confining pressure of 300 MPa in a high-resolution gas-medium mechanical testing apparatus at various constant strain rates (from 7 × 10-6 s-1 to 1 × 10-4 s-1). Mechanical tests yield differential stresses ranging from 88 to 1076 MPa. All samples were deformed at constant displacement rate and for finite strains ranging from 4 to 23 %, to provide insight into possible effects of hardening, softening or stick-and-slip. The single crystals were compressed along several crystallographic directions to test the possibility of activating different slip systems (e.g. [100](001), [001](100), [001](010) and [100](010)). We will present the characterization of the dislocation microstructures performed in the TEM.

  2. Cyclic deformation of NI/sub 3/(Al,Nb) single crystals at ambient and elevated temperatures

    SciTech Connect

    Bonda, N.R.

    1985-01-01

    Cyclic tests were performed on Ni/sub 3/(Al,Nb) (..gamma..' phase) single crystals by using a servo-hydraulic machine under fully reversed plastic strain control at a frequency of 0.1-0.2 Hz at room temperature, 400/sup 0/C and 700/sup 0/C. Since the monotonic behavior is orientation dependent, three orientations were studied. Asymmetry in tensile and compressive stresses was observed in the cyclic hardening curves of specimens tested at these temperatures and they were discussed with regard to the model suggested by Paider et al for monotonic behavior. The stress levels in the cyclic stress-strain curves (CSSC) at room temperature depended on orientation and cyclic history. No CSSCs were established at 400/sup 0/C and 700/sup 0/C. The deformation in cyclic tests at small plastic strain amplitudes was found to be different from that in monotonic tests in the microplastic regions in which the deformation is believed to be carried by a small density of edge dislocations. But in cyclic deformation, to and from motion of dislocations trap the edge dislocations into dipoles and therefore screw dislocations will be forced to participate in the deformation. Cracks on the surfaces of specimens tested at room temperature and 400/sup 0/C were found to be of stage I type, whereas at 700/sup 0/C, they were of stage II type.

  3. Ni-Al2O3 and Ni-Al composite high-aspect-ratio microstructures

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Sorrell, Melford; Kelly, Kevin W.; Ma, Evan

    1998-09-01

    High-aspect-ratio microstructures (HARMs) have a variety of potential applications in heat transfer, fluid mechanics, catalysts and other microelectromechanical systems (MEMS). The aim of this work is to demonstrate the feasibility to fabricate high performance particulate metal-matrix composite and intermetallic micromechanical structures using the LIGA process. Well-defined functionally graded Ni-Al2O3 and Ni-Al high-aspect-ratio microposts were electroformed into lithographically patterned PMMA holes from a nickel sulfamate bath containing submicron alumina and a diluted Watts bath containing microsized aluminum particles, respectively. SEM image analysis showed that the volume fraction of the alumina reached up to around 30% in the Ni-Al2O3 deposit. The Vickers microhardness of these composites is in the range of 418 through 545, which is higher than those of nickel microstructures from a similar particle-free bath and other Ni-based electrodeposits. In the work on Ni-Al electroplating, a newly developed diluted Watts bath was used to codeposit micron-sized aluminum particles. The intermetallic compound Ni3Al was formed by the reaction of nickel matrices and aluminum particles through subsequent annealing at 630 degrees Celsius. WDS and XRD analyses confirmed that the annealed coating is a two-phase (Ni-Ni3Al) composite. The maximum aluminum volume fraction reached 19% at a cathode current density of 12 mA cm-2, and the Vickers microhardness of the as-deposited coatings is in the range 392 - 515 depending on the amount of aluminum incorporated.

  4. Experimental Deformation of Olivine Single Crystal at Mantle P and T: Pressure Effect on Olivine Dislocation Slip-System Activities

    NASA Astrophysics Data System (ADS)

    Paul, R.; Girard, J.; Chen, J.; Amiguet, E.

    2008-12-01

    Seismic velocity anisotropies observed in the upper mantle are interpreted from lattice preferred orientations (LPO) produced experimentally in olivine, which depends on the dominant dislocation slip systems. At low pressure P<3 GPa, mantle temperature (T) and in dry conditions, olivine [100] dislocation slip dominates the less active [001] slip. This tends to align crystal fast velocity [100] axis with the principal shear direction. Yet recent high-pressure deformation experiments (Couvy et al., 2004, EJM, 16, 877; Raterron et al., 2007, Am. Min., 92, 1436; Raterron et al., 2008, Phys. Earth Planet. Int., doi:10.1016/j.pepi.2008.07.026) show that [001](010) slip system dominates [100](010) system in the (P,T) range of the deep upper mantle. This may promote a shear-parallel slow-velocity [001] axis and may explain the seismic-velocity attenuation observed at depth >200 km (Mainprice et al., 2005, Nature, 433, 731). In order to further constrain the effect of P on olivine slip system activities, which is classically quantified by the activation volume V* in power creep laws, deformation experiments were carried out in poor water condition, at P>5 GPa and T=1400°C, on pure forsterite (Fo100) and San Carlos olivine crystals, using the Deformation-DIA apparatus at the X17B2 beamline of the NSLS (Upton, NY). Ten crystals were oriented in order to active either [100] slip alone or [001] slip alone in (010) plane, or both [100](001) and [001](100) systems together. Constant applied stress σ <300 MPa and specimen strain rates were monitored in situ using time-resolved x-ray diffraction and radiography, respectively, for a total of 27 investigated steady state conditions. The obtained rheological data were compared with data previously obtained in comparable T and σ conditions, but at room P, by Darot and Gueguen (1981, JGR, 86, 6219) for Fo100 and by Bai et al. (1991, JGR, 96, 2441) for San Carlos olivine. This new set of data confirms previous deformation data

  5. Features of the uniaxial elastic deformation of X-ray-irradiated p-Si crystals

    SciTech Connect

    Pavlyk, B. V.; Lys, R. M. Didyk, R. I.; Shykorjak, J. A.

    2015-05-15

    Changes in the conductivity of p-Si single-crystals irradiated at room temperature during their mechanical compression and stress relief are studied. It is shown that irradiation is accompanied by the generation of point defects in silicon, which play the role of stoppers for dislocation motion. The effect of “radiation memory” in “electronic” silicon crystals is detected.

  6. Effect of orientations on in situ tensile deformation and fracture behaviours of nickel-base single-crystal superalloys

    NASA Astrophysics Data System (ADS)

    Li, P.; Zhou, B. M.; Zhou, Y. Z.; Li, J. G.; Jin, T.; Sun, X. F.; Zhang, Z. F.

    2014-07-01

    After systematically investigating in situ tensile deformation and fracture behaviours of nickel-base single-crystal superalloys with four different orientations, their slip and fracture modes in relation to the orientations are obtained and shown as follows. In [0 0 1] oriented specimen, four slip systems were activated and the crack initiated along the interactive location between the third slip bands (SBs) and deformation bands in priority. The crack propagation involves all three crack opening types of I, II and III. [0 1 1] oriented specimens exhibited obvious low strain hardening rate and high ductility, which can be attributed to the balance between the softening caused by the propagation of SBs and the latent hardening caused by the propagation of deformation bands. Except for ? case, the critical resolved shear stress (CRSS) of the other oriented superalloys at room temperature is approximate, which is due to non-Schmid behaviour in superalloys. Lall-Chin-Pope model is used to explain the orientation dependence of CRSS. Furthermore, the fracture modes of different oriented specimens depend on the intensity of intrusion and extrusion and the degree of match between normal stress and shear stress. The shear stress is beneficial to the crack initiation and the normal stress contributes to the crack propagation.

  7. Cyclic Plastic Deformation, Fatigue, and the Associated Micro-Mechanisms in Magnesium: From Single Crystal to Polycrystal

    NASA Astrophysics Data System (ADS)

    Yu, Qin

    Magnesium and its alloys have received substantial interests as the government initiatives on energy saving and environment protection demand an increasing use of lightweight materials in structural parts, especially in transportation industries. A good understanding of fatigue behavior in magnesium is critical to ensure the reliability and durability of the magnesium components. Unlike the body centered cubic and face centered cubic metals, fundamental knowledge concerning the cyclic deformation and fatigue in hexagonal close packed magnesium is limited. The current research aims at a better understanding of the micro-mechanisms associated with the cyclic deformation and fatigue of magnesium. Magnesium single crystal was chosen to study the fundamental twinning/detwinning process while extruded polycrystalline pure magnesium was studied for the fatigue damage mechanisms. Cyclic deformation and the corresponding morphology evolution of {1 0 1¯ 2} twinning-detwinning-retwinning are, for the first time, characterized in magnesium single crystal under fully reserved strain-controlled tension-compression utilizing in situ optical microscopy. As loading cycles are increased, the activity of twinning-detwinning-retwinning gradually decreases. Microscopy after fatigue shows that the matrix region having experienced repeated twinning-detwinning cannot be completely detwinned to its original crystal orientation. Fragmented secondary tension twins are found to result from twin-twin interactions. Various twin-twin interaction structures exist in fatigued magnesium single crystal: quilted-looking twin structure, "apparent crossing" twin structure, and double tension twin structure. According to the crystallography of magnesium, twin-twin interactions are classified into Type I for two twin variants sharing the same zone axis and Type II for two twins with different zone axes. For Type I twin-twin interactions, one twin does not transmit across the twin boundary and into the

  8. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses

    SciTech Connect

    Sedighi, Sina; Kirk, Donald Walter; Singh, Chandra Veer Thorpe, Steven John

    2015-09-21

    Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal–transition metal and transition metal–metalloid (TM–M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties of equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM–M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator.

  9. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses

    NASA Astrophysics Data System (ADS)

    Sedighi, Sina; Kirk, Donald Walter; Singh, Chandra Veer; Thorpe, Steven John

    2015-09-01

    Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal-transition metal and transition metal-metalloid (TM-M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties of equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM-M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator.

  10. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses.

    PubMed

    Sedighi, Sina; Kirk, Donald Walter; Singh, Chandra Veer; Thorpe, Steven John

    2015-09-21

    Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal-transition metal and transition metal-metalloid (TM-M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties of equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM-M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator.

  11. Crystallization-aided extraordinary plastic deformation in nanolayered crystalline Cu/amorphous Cu-Zr micropillars

    PubMed Central

    Zhang, J. Y.; Liu, G.; Sun, J.

    2013-01-01

    Metallic glasses are lucrative engineering materials owing to their superior mechanical properties such as high strength and great elastic strain. However, the Achilles' heel of metallic amorphous materials — low plasticity caused by instantaneous catastrophic shear banding, significantly undercut their structural applications. Here, the nanolayered crystalline Cu/amorphous Cu-Zr micropillars with equal layer thickness spanning from 20–100 nm are uniaxially compressed and it is found that the Cu/Cu-Zr micropillars exhibit superhigh homogeneous deformation (≥ 30% strain) rather than localized shear banding at room temperature. This extraordinary plasticity is aided by the deformation-induced devitrification via absorption/annihilation of abundant dislocations, triggering the cooperative shearing of shear transformation zones in glassy layers, which simultaneously renders the work-softening. The synthesis of such heterogeneous nanolayered structure not only hampers shear band generation but also provides a viable route to enhance the controllability of plastic deformation in metallic glassy composites via deformation-induced devitrification mechanism. PMID:23900595

  12. Crystallization-aided extraordinary plastic deformation in nanolayered crystalline Cu/amorphous Cu-Zr micropillars.

    PubMed

    Zhang, J Y; Liu, G; Sun, J

    2013-01-01

    Metallic glasses are lucrative engineering materials owing to their superior mechanical properties such as high strength and great elastic strain. However, the Achilles' heel of metallic amorphous materials - low plasticity caused by instantaneous catastrophic shear banding, significantly undercut their structural applications. Here, the nanolayered crystalline Cu/amorphous Cu-Zr micropillars with equal layer thickness spanning from 20-100 nm are uniaxially compressed and it is found that the Cu/Cu-Zr micropillars exhibit superhigh homogeneous deformation (≥ 30% strain) rather than localized shear banding at room temperature. This extraordinary plasticity is aided by the deformation-induced devitrification via absorption/annihilation of abundant dislocations, triggering the cooperative shearing of shear transformation zones in glassy layers, which simultaneously renders the work-softening. The synthesis of such heterogeneous nanolayered structure not only hampers shear band generation but also provides a viable route to enhance the controllability of plastic deformation in metallic glassy composites via deformation-induced devitrification mechanism. PMID:23900595

  13. Reversible crystal deformation of a single-crystal host of copper(II) 1-naphthoate-pyrazine through crystal phase transition induced by methanol vapor sorption.

    PubMed

    Takasaki, Yuichi; Takamizawa, Satoshi

    2015-03-25

    A novel microporous single crystal of [Cu(II)2(1-NA)4(pyz)]n (1-NA: 1-naphthoate, pyz: pyrazine) exhibited bending and straightening action on a macroscopic scale during the first-order crystal phase transition induced by methanol vapor sorption.

  14. Characterization and modeling of mechanical behavior of single crystal titanium deformed by split-Hopkinson pressure bar

    DOE PAGES

    Morrow, B. M.; Lebensohn, R. A.; Trujillo, C. P.; Martinez, D. T.; Addessio, F. L.; Bronkhorst, C. A.; Lookman, T.; Cerreta, E. K.

    2016-03-28

    Single crystal titanium samples were dynamically loaded using split-Hopkinson pressure bar (SHPB) and the resulting microstructures were examined. Characterization of the twins and dislocations present in the microstructure was conducted to understand the pathway for observed mechanical behavior. Electron backscatter diffraction (EBSD) was used to measure textures and quantify twinning. Microstructures were profusely twinned after loading, and twin variants and corresponding textures were different as a function of initial orientation. Focused ion beam (FIB) foils were created to analyze dislocation content using transmission electron microscopy (TEM). Large amounts of dislocations were present, indicating that plasticity was achieved through slip andmore » twinning together. Viscoplastic self-consistent (VPSC) modeling was used to confirm the complex order of operations during deformation. The activation of different mechanisms was highly dependent upon crystal orientation. For [0001] and View the MathML source[101¯1]-oriented crystals, compressive twinning was observed, followed by secondary tensile twinning. Furthermore, dislocations though prevalent in the microstructure, contributed to final texture far less than twinning.« less

  15. The deformation micro-structures and the relationships of crystal orientation between olivine and antigorite in serpentinized peridotite from Toba area, SW Japan

    NASA Astrophysics Data System (ADS)

    Soda, Y.; Morishita, T.; Wenk, H.-R.

    2012-04-01

    Foliated serpentinite with lattice preferred orientation (LPO) has strong elastic anisotropy, and is considered as a cause for seismic anisotropy observed in subduction zones (Katayama et al., 2009; Jung, 2011). However, deformation mechanisms of antigorite LPO are unclear. We measured crystal orientation of antigorite and olivine, to clarify the chronological relations between shear deformation and formation of antigorite LPO. The crystal orientations are measured by the U-stage optically. In addition, we try to measure the antigorite orientations by EBSD. The studied samples are from lenticular serpentinite bodies intruded in a Jurassic accretionary complex, Toba area, southwest Japan. Shear zones (

  16. Phase-field-crystal modeling of glass-forming liquids: spanning time scales during vitrification, aging, and deformation.

    PubMed

    Berry, Joel; Grant, Martin

    2014-06-01

    Two essential elements required to generate a glass transition within phase-field-crystal (PFC) models are outlined based on observed freezing behaviors in various models of this class. The central dynamic features of glass formation in simple binary liquids are qualitatively reproduced across 12 orders of magnitude in time by applying a physically motivated time scaling to previous PFC simulation results. New aspects of the equilibrium phase behavior of the same binary model system are also outlined, aging behavior is explored in the moderate and deeply supercooled regimes, and aging exponents are extracted. General features of the elastic and plastic responses of amorphous and crystalline PFC solids under deformation are also compared and contrasted. PMID:25019772

  17. Phase-field-crystal modeling of glass-forming liquids: spanning time scales during vitrification, aging, and deformation.

    PubMed

    Berry, Joel; Grant, Martin

    2014-06-01

    Two essential elements required to generate a glass transition within phase-field-crystal (PFC) models are outlined based on observed freezing behaviors in various models of this class. The central dynamic features of glass formation in simple binary liquids are qualitatively reproduced across 12 orders of magnitude in time by applying a physically motivated time scaling to previous PFC simulation results. New aspects of the equilibrium phase behavior of the same binary model system are also outlined, aging behavior is explored in the moderate and deeply supercooled regimes, and aging exponents are extracted. General features of the elastic and plastic responses of amorphous and crystalline PFC solids under deformation are also compared and contrasted.

  18. Thermal deformation of cryogenically cooled silicon crystals under intense X-ray beams: measurement and finite-element predictions of the surface shape

    PubMed Central

    Zhang, Lin; Sánchez del Río, Manuel; Monaco, Giulio; Detlefs, Carsten; Roth, Thomas; Chumakov, Aleksandr I.; Glatzel, Pieter

    2013-01-01

    X-ray crystal monochromators exposed to white-beam X-rays in third-generation synchrotron light sources are subject to thermal deformations that must be minimized using an adequate cooling system. A new approach was used to measure the crystal shape profile and slope of several cryogenically cooled (liquid nitrogen) silicon monochromators as a function of beam power in situ and under heat load. The method utilizes multiple angular scans across the Bragg peak (rocking curve) at various vertical positions of a narrow-gap slit downstream from the monochromator. When increasing the beam power, the surface of the liquid-nitrogen-cooled silicon crystal deforms from a concave shape at low heat load to a convex shape at high heat load, passing through an approximately flat shape at intermediate heat load. Finite-element analysis is used to calculate the crystal thermal deformations. The simulated crystal profiles and slopes are in excellent agreement with experiments. The parameters used in simulations, such as material properties, absorbed power distribution on the crystal and cooling boundary conditions, are described in detail as they are fundamental for obtaining accurate results. PMID:23765298

  19. Plastic-Strain-Amplitude Dependence of Dislocation Structures in Cyclically Deformed <112>-Oriented Cu-7 at. pct Al Alloy Single Crystals

    NASA Astrophysics Data System (ADS)

    Li, X. W.; Peng, N.; Wu, X. M.; Wang, Z. G.

    2014-08-01

    Dislocation structures in Cu-7 at. pct Al alloy single crystals cyclically deformed at different plastic strain amplitudes were investigated by transmission electron microscope (TEM) and compared with the results of Cu single crystals. It is found that the plastic strain amplitude γ pl has an obvious effect on the slip deformation mode, and consequently on the cyclic hardening behavior of Cu-7 at. pct Al alloy single crystals with an intermediate stacking fault energy. For instance, a high slip planarity ( i.e., only formation of planar-slip bands) contributes to the occurrence of a gentle cyclic hardening with a much lower saturation stress at a low γ pl of 4.5 × 10-4. A mixed planar/wavy-slip mode ( e.g., persistent Lüder's bands/wall-like microstructures) at an intermediate γ pl of 2.2 × 10-3 causes an obvious cyclic hardening up to a comparable saturation stress to that for the Cu single crystal. In contrast, the deformation mode is dominated by wavy slip ( e.g., ill-defined dislocation cells and walls) at the highest γ pl of 7.2 × 10-3, causing that its cyclic hardening curve is quite similar to that for the Cu single crystal; in this case, a slightly higher saturation stress level than that for the Cu single crystal is reached due to the additional solid solution strengthening.

  20. Designing electronic properties of two-dimensional crystals through optimization of deformations

    NASA Astrophysics Data System (ADS)

    Jones, Gareth W.; Pereira, Vitor M.

    2014-09-01

    One of the enticing features common to most of the two-dimensional (2D) electronic systems that, in the wake of (and in parallel with) graphene, are currently at the forefront of materials science research is the ability to easily introduce a combination of planar deformations and bending in the system. Since the electronic properties are ultimately determined by the details of atomic orbital overlap, such mechanical manipulations translate into modified (or, at least, perturbed) electronic properties. Here, we present a general-purpose optimization framework for tailoring physical properties of 2D electronic systems by manipulating the state of local strain, allowing a one-step route from their design to experimental implementation. A definite example, chosen for its relevance in light of current experiments in graphene nanostructures, is the optimization of the experimental parameters that generate a prescribed spatial profile of pseudomagnetic fields (PMFs) in graphene. But the method is general enough to accommodate a multitude of possible experimental parameters and conditions whereby deformations can be imparted to the graphene lattice, and complies, by design, with graphene's elastic equilibrium and elastic compatibility constraints. As a result, it efficiently answers the inverse problem of determining the optimal values of a set of external or control parameters (such as substrate topography, sample shape, load distribution, etc) that result in a graphene deformation whose associated PMF profile best matches a prescribed target. The ability to address this inverse problem in an expedited way is one key step for practical implementations of the concept of 2D systems with electronic properties strain-engineered to order. The general-purpose nature of this calculation strategy means that it can be easily applied to the optimization of other relevant physical quantities which directly depend on the local strain field, not just in graphene but in other 2D

  1. Low- cycle fatigue behavior of polycrystalline nial at 1000 k

    NASA Astrophysics Data System (ADS)

    Lerch, B. A.; Noebe, R. D.

    1994-02-01

    The low-cycle fatigue behavior of polycrystalline NiAl was determined at 1000 K, a temperature above the monotonic brittle-to-ductile transition temperature (BDTT). Fully reversed, plastic strain-controlled fatigue tests were conducted on B2 intermetallic samples prepared by two fab-rication techniques: hot isostatic pressing (HIP) of prealloyed powders and extrusion of vacuum induction-melted [cast plus extruded (C+E)] castings. At 1000 K, in an air environment both the hot-isostatically pressed (“hipped”) and C + E samples cyclically softened throughout most of their fatigue lives, though the absolute change in stress was no greater than about 35 MPa. At this temperature, samples were insensitive to processing defects, which were a source of failure initiation in room-temperature tests. The processing method had a small effect on fatigue life; the lives of the hipped samples were about a factor of 3 shorter than the fatigue lives of the C+E NiAl. The C+E material also underwent dynamic grain growth during testing, while the hipped NiAl maintained a constant grain size. Stable fatigue-crack growth in both materials was intergranular in nature, while final fracture by tensile overload occurred by transgranular cleavage. However, at plastic strain ranges below 0.3 pct, the fatigue lives of the hipped NiAl were controlled by intergranular cavitation and creep processes such that the fatigue lives were shorter than anticipated. Finally, hipped samples tested in vacuum had a factor of 3 longer life than specimens tested in air. A comparison of NiAl to typical superalloys (which it may replace) showed that NiAl exhibited a superior fatigue life on a plastic strain basis but was inferior to most superalloys on a stress basis.

  2. Multiscale Characterization of bcc Crystals Deformed to Large Extents of Strain

    SciTech Connect

    Florando, J; LeBlanc, M; Lassila, D; Bulatov, V; Rhee, M; Arsenlis, A; Becker, R; Jr., J M; Magid, K

    2007-02-20

    In an effort to help advance the predictive capability of LLNL's multiscale modeling program a new experimental technique has been developed to provide high fidelity data on metallic single crystals out to relatively large extents of strain. The technique uses a '6 Degrees of Freedom' testing apparatus in conjunction with a 3-D image correlation system. Utilizing this technique, a series of experiments have been performed that reveal unexpected behavior which cannot be explained using traditional crystal plasticity theory. In addition, analysis and characterization techniques have also been developed to help quantify the unexpected behavior. Interactions with multiscale modelers include the development of a possible mechanism that might explain the anomalous behavior, as well as the discovery of a new 4-node dislocation junction.

  3. Electrically controlled relaxation at twist deformation of a dual-frequency nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Vasil'Ev, V. N.; Konshina, E. A.; Fedorov, M. A.; Amosova, L. P.

    2010-06-01

    The relaxation of a dual-frequency liquid crystal at the twist effect and the influence of the external electrical circuit parameters on the relaxation process in the case of a large initial inclination angle (44) of the director are studied. It is found that oscillation arising at the trailing edge of the modulator’s electro-optic response considerably increases the time of relaxation due to the action of a high-frequency electric field. The influence of the electric field on the relaxation time is stronger, the thinner the liquid crystal layer. It is experimentally shown that the duration of the interval between the removal of low-frequency voltage from and the application of high-frequency voltage to the modulator affects the relaxation time.

  4. Anisotropic friction, deformation, and fracture of single-crystal silicon carbide at room temperature

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Anisotropic friction, deformation, and fracture studies were conducted with /0001/, /10(-1)0/, and /11(-2)0/ silicon carbide surfaces in sliding contact with diamond. The experiments were conducted with loads of 0.1, 0.2, and 0.3 N at a sliding velocity of 3 mm/min in mineral oil or in dry argon at room temperature. The 1010 direction on the basal /0001/ plane exhibits the lowest coefficient of friction and the greatest resistance to abrasion for silicon carbide. Anisotropic friction and deformation of the /0001/, /10(-1)0/, and /11(-2)0/ silicon carbide surfaces are primarily controlled by the slip system /10(-1)0/ 11(-2)0. The anisotropic fracture during sliding on the basal plane is due to surface cracking along /10(-1)0/ and subsurface cracking along /0001/. The fracture during sliding on the /11(-2)0/ or /10(-1)0/ surfaces is due to surface cracking along /0001/ and /11(-2)0/ or /10(-1)-1 and to subsurface cracking along /10(-1)0/.

  5. Observations of Static Strain-Aging in Polycrystalline NiAl

    NASA Technical Reports Server (NTRS)

    Weaver, M. L.; Noebe, R. D.; Lewandowski, J. J.; Oliver, B. F.; Kaufman, M. J.

    1996-01-01

    Static strain-aging has been investigated in eight polycrystalline NiAl alloys. After annealing at 1100 K for 7200 s followed by furnace cooling, high-purity, nitrogen-doped, and titanium-doped alloys exhibited continuous yielding, while conventional-purity and carbon-doped alloys exhibited distinct upper yield points and Luders strains. Either water quenching from 1100 K or prestraining via hydrostatic pressurization suppressed the yield points in the latter alloys, but they could be reintroduced by further annealing treatments. Yield points could be reintroduced more rapidly if the specimens were prestrained uniaxially rather than hydrostatically, owing to the arrangement of dislocations into cell structures during uniaxial deformation. Chemical analysis suggests that the species responsible for strain-aging is interstitial carbon.

  6. Physicochemical investigation of NiAl with small molybdenum additions

    NASA Technical Reports Server (NTRS)

    Troshkina, V. A.; Kucherenko, L. A.; Fadeeva, V. I.; Aristova, N. M.

    1982-01-01

    Specimens of four cast NiAl alloys, three of them containing 0.5, 1.0 and 1.5 at. % Mo., were homogenized for 10, 10, and 140 hr at 1373, 1523 and 1273 K, respectively, then kept at 1073, 1173 and 1323 K for 60, 120 and 3 hr, respectively, and quenched in icy water. The precipitation of a metastable Ni3Mo phase was observed at temperatures between 1073 and 1523 K. Molybdenum substituted for nickel was found to inhibit the lattice disordering in NiAl at 1073 and 1523 K.

  7. The effect of hydrogen on the deformation behavior of a single crystal nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Walston, W. S.; Thompson, A. W.; Bernstein, I. M.

    1989-01-01

    The effect of hydrogen on the tensile deformation behavior of PWA 1480 is presented. Tensile tests were interrupted at different plastic strain levels to observe the development of the dislocation structure. Transmission electron microscopy (TEM) foils were cut perpendicular to the tensile axis to allow the deformation of both phases to be simultaneously observed as well as parallel to zone axes (III) to show the superdislocations on their slip planes. Similar to other nickel-base superalloys, hydrogen was detrimental to the room temperature tensile properties of PWA 1480. There was little effect on strength, however the material was severely embrittled. Even without hydrogen, the elongation-to-failure was only approximately 3 percent. The tensile fracture surface was made up primarily of ductile voids with regions of cleavage fracture. These cleavage facets are the eutectic (gamma') in the microstructure. It was shown by quantitative fractography that hydrogen embrittles the eutectic (gamma') and causes the crack path to seek out and fracture through the eutectic (gamma'). There was two to three times the amount of cleavage on the fracture surface of the hydrogen-charged samples than on the surface of the uncharged samples. The effect of hydrogen can also be seen in the dislocation structure. There is a marked tendency for dislocation trapping in the gamma matrix with and without hydrogen at all plastic strain levels. Without hydrogen there is a high dislocation density in the gamma matrix leading to strain exhaustion in this region and failure through the matrix. The dislocation structure at failure with hydrogen is slightly different. The TEM foils cut parallel to zone axes (III) showed dislocations wrapping around gamma precipitates. Zone axes (001) foils show that there is a lower dislocation density in the gamma matrix which can be linked to the effects of hydrogen on the fracture behavior. The primary activity in the gamma precipitates is in the form of

  8. Spatial organization of plastic deformation in single crystals with different structure of slip dislocation

    SciTech Connect

    Kunitsyna, T. S.; Teplyakova, L. A. Koneva, N. A.; Poltaranin, M. A.

    2015-10-27

    It is established that different structure of slip dislocation at the end of the linear hardening stage results in different distribution of dislocation charges in the volume of a single crystal. In the alloy with a near atomic order the slip of single dislocations leads to formation of planar structures—layers with the excess density of dislocations. In the alloy with long-range atomic order the slip of superdislocations brings the formation of the system of parallel rod-like charged dislocation linking.

  9. The high temperature deformation in cyclic loading of a single crystal nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Welsch, G.

    1989-01-01

    The high temperature cyclic stress softening response of the single crystal nickel-base superalloy PWA 1480 was investigated. Specimens oriented near the 001- and 111-lines were tested at 1050 C in low-cycle fatigue and then microstructurally evaluated. The 001- and 111-line specimens had dissimilar flow behavior in monotonic tensile tests, but comparable softening in low-cycle fatigue. This softening was accompanied by rapid generation of dislocation networks at the gamma-gamma-prime interfaces and by a slower time-dependent coarsening of gamma-prime precipitates. Due to the rapid formation of a dislocation substructure at the gamma-gamma-prime interfaces, the cyclic stress softening could be modeled with an existing theory which related cyclic stress to the evolving microstructure and dislocation structure.

  10. Tensile Creep of Polycrystalline Near-Stoichiometric NiAl

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2002-01-01

    Long term tensile creep studies were conducted on binary NiAl in the temperature range 700-1200 K with the objectives of characterizing and understanding the creep mechanisms. Inverse and normal primary creep curves were observed depending on stress and temperature. It was concluded that the creep of NiAl is limited by dislocation mobility. The stress exponent for creep, n, increased from 5.5 at 1200 K to 13.9 at 700 K. The true activation energy for creep, Qc, was constant and equal to about 400 kJ per mole between 20 and 50 MPa but decreased to a constant value of 250 kJ per mole between 50 and 110 MPa. The activation energy was observed to be stress dependent above 110 MPa. The tensile creep results reported in this investigation were compared with compression creep data reported in the literature. A detailed discussion of the probable dislocation creep mechanisms governing compressive and tensile creep of NiAl is presented. It is concluded that the non-conservative motion of jogs on screw dislocations influenced the nature of the primary creep curves, where the climb of these jogs involves either the next nearest neighbor or the six-jump cycle vacancy diffusion mechanism. The probable nature of the atom vacancy exchange that occur within the core of an edge dislocation undergoing climb in NiAl are schematically examined.

  11. The specifics of radiative annihilation of self-trapped excitons in a KI-Tl crystal under low-temperature deformation

    NASA Astrophysics Data System (ADS)

    Shunkeyev, K. Sh.; Zhanturina, N. N.; Aimaganbetova, Z. K.; Barmina, A. A.; Myasnikova, L. N.; Sagymbaeva, Sh. Zh.; Sergeyev, D. M.

    2016-07-01

    The effect of low-temperature uniaxial deformation on the self-trapping-limited mean free path of excitons in a KI-Tl crystal was revealed from x-ray luminescence spectra. The analysis of the dependence of the intensity ratio of the Tl-center emission (2.85 eV) and the luminescence of self-trapped excitons (π-component; 3.3 eV) on the extent of low-temperature deformation showed that in the KI-Tl crystal (3 × 10-3 mol. %) the self-trapping-limited mean free path of excitons is comparable with the distance between Tl atoms (20-27)a under a deformation ɛ = 2%. As the compression increases to ɛ ≥ 2%-5%, the mean free path drops to (27-5.35)a. The results of modeling based on the continuum approximation showed that with increasing temperature and the degree of low-temperature deformation the height of the potential barrier for the exciton self-trapping drops, which is consistent with the reduction of the mean free path of excitons in the KI-Tl crystal.

  12. Large-scale three-dimensional phase field simulation of γ '-rafting and creep deformation

    NASA Astrophysics Data System (ADS)

    Zhou, Ning; Shen, Chen; Mills, Michael; Wang, Yunzhi

    2010-01-01

    Three-dimensional phase field simulations of coupled γ/γ ‧ microstructural evolution and plastic deformation in single crystal Ni-Al are carried out at micrometer scales. Coherent γ/γ ‧ microstructures and plastic deformation in γ-channels are described using a single, consistent methodology based on Khachaturyan's phase field microelasticity approach to coherent precipitates and dislocations. In particular, a new set of phase fields is introduced to characterize local density of dislocations from individual active slip systems. To increase the length scale of the phase field simulations, the Kim-Kim-Suzuki (KKS) treatment of γ/γ ‧ interfaces was adopted. The rafting kinetics, precipitate-matrix inversion process and the corresponding creep deformation are characterized with respect to parameters such as applied stress and lattice misfit. The simulation results on γ ‧-rafting kinetics and morphological evolution of the γ/γ ‧ microstructures are compared with available experiment. The model can be used to carry out parametric studies of the effects of material and processing parameters such as alloy composition, external stress and working temperature on γ ‧-rafting kinetics, morphological evolution and the corresponding creep deformation.

  13. Interfacial Shear Strength of Cast and Directionally Solidified Nial-Sapphire Fiber Composites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Asthana, R.; Noebe, R. D.

    1993-01-01

    The feasibility of fabricating intermetallic NiAl-sapphire fiber composites by casting and zone directional solidification has been examined. The fiber-matrix interfacial shear strengths measured using a fiber push-out technique in both cast and directionally solidified composites are greater than the strengths reported for composites fabricated by powder cloth process using organic binders. Microscopic examination of fibers extracted from cast, directionally solidified (DS), and thermally cycled composites, and the high values of interfacial shear strengths suggest that the fiber-matrix interface does not degrade due to casting and directional solidification. Sapphire fibers do not pin grain boundaries during directional solidification, suggesting that this technique can be used to fabricate sapphire fiber reinforced NiAl composites with single crystal matrices.

  14. Molecular dynamics simulation of the martensitic phase transformation in NiAl alloys.

    PubMed

    Pun, G P Purja; Mishin, Y

    2010-10-01

    Using molecular dynamics simulations with an embedded-atom interatomic potential, we study the effect of chemical composition and uniaxial mechanical stresses on the martensitic phase transformation in Ni-rich NiAl alloys. The martensitic phase has a tetragonal crystal structure and can contain multiple twins arranged in domains and plates. The transformation is reversible and is characterized by a significant temperature hysteresis. The magnitude of the hysteresis depends on the chemical composition and stress. We show that applied compressive and tensile stresses reduce and can even eliminate the hysteresis. Crystalline defects such as free surfaces, dislocations and anti-phase boundaries reduce the martensitic transformation temperature and affect the microstructure of the martensite. Their effect can be explained by heterogeneous nucleation of the new phase in defected regions.

  15. Effect of Processing Route on Strain Controlled Low Cycle Fatigue Behavior of Polycrystalline NiAl

    NASA Technical Reports Server (NTRS)

    Rao, K. Bhanu Sankara; Lerch, B. A.; Noebe, R. D.

    1995-01-01

    The present investigation examines the effects of manufacturing process on the total axial strain controlled low cycle fatigue behavior of polycrystalline NiAl at 1000 K, a temperature above the monotonic Brittle-to-Ductile Transition Temperature (BDTT). The nickel aluminide samples were produced by three different processing routes: hot isostatic pressing of pre- alloyed powders, extrusion of prealloyed powders, and extrusion of vacuum induction melted ingots. The LCF behavior of the cast plus extruded material was also determined at room temperature (below the BD77) for comparison to the high temperature data. The cyclic stress response, cyclic stress-strain behavior, and strain-life relationships were influenced by the alloy preparation technique and the testing temperature. Detailed characterization of the LCF tested samples was conducted by optical and electron microscopy to determine the variations in fracture and deformation modes and to determine any microstructural changes that occurred during LCF testing. The dependence of LCF properties on processing route was rationalized on the basis of starting microstructure, brittle-to-ductile transition temperature, deformation induced changes in the basic microstructure, deformation substructure, and synergistic interaction between the damage modes.

  16. Possible influence of layer deformation and chiral segregation on dielectric modes in the dark conglomerate liquid crystal.

    PubMed

    Bhat, Deepa G; Selvaraj, Radhika; Kapanipathaiya, Sadashiva B; Ramarao, Pratibha

    2015-03-16

    Dielectric spectroscopy is used to investigate the structure, molecular dynamics, and relaxation phenomena in electric-field-induced switchable dark conglomerate (DC) phases in a bent-core liquid crystal. The DC phases are obtained by applying a high-frequency ac electric field in the B1rev phase or by cooling under a dc or an ac field from the isotropic phase. Although the DC phases exhibit good electro-optic switching properties, the dielectric parameters are different from those observed in typical lamellar SmCP phases and similar to those obtained in a non-switchable DC phase. We therefore propose that the dielectric response and reduced intensity of the relaxation modes may be a general feature in DC phases and may owe its origin to the deformed layer structure in which certain molecular motions are impeded. Further, we find that in the field-induced DC phases derived from the isotropic phase, the dielectric modes are affected by chiral segregation promoted by the applied field.

  17. The effect of hydrogen on deformation substructure, flow and fracture in a nickel-base single crystal superalloy

    NASA Technical Reports Server (NTRS)

    Dollar, M.; Bernstein, I. M.

    1988-01-01

    The room temperature flow and fracture of a nickel-base single crystal gamma/gamma-/prime superalloy in the presence and absence of hydrogen is explored. The procedure of hydrogen-charging employed in this study provides a very high and uniform hydrogen concentration of the order of 5000 at.-ppm in the material. It is shown that the most compelling hydrogen-induced changes in deformation behavior are enhanced dislocation accumulation in the gamma matrix and extensive cross-slip of super-dislocations. The explanation of these changes is proposed. Both effects contribute to the increase of flow stress and the notable work hardening that occurs prior to fracture. Hydrogen enhanced strain localization in the gamma matrix leads to the dramatic loss of ductility and premature cracking, which manifests as failure macroscopically parallel to the 100-plane-oriented faces of gamma-prime precipitates. On the microscale, cracking, while limited to the gamma matrix, occurs parallel to multiple 111-plane-oriented slip systems.

  18. The effect of hydrogen on the deformation and fracture behavior of a single crystal nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Walston, W. S.; Thompson, A. W.; Bernstein, I. M.

    1990-01-01

    The room temperature and 300 C tensile behavior of a single crystal superalloy, PWA 1480, has been studied as a function of internal hydrogen concentration and microstructure. Hydrogen is trapped at the porosity and eutectic gamma/gamma in the microstructure, and the effect of these trapping sites on the tensile behavior will be discussed. There is no effect of hydrogen on strength, however, the strain to failure decreases steadily with increasing hydrogen content up to 200 ppm. Cleavage of the eutectic gamma/gamma occurs without hydrogen, but the presence of internal hydrogen causes cracking in the eutectic gamma/gamma at a much earlier stage of deformation leading to a small total strain. In contrast to many superalloys with a high volume fraction of gamma precipitates, there was no evidence of shearing of the gamma, and it was found that at all strains the dislocations are trapped in the gamma matrix. The effect of hydrogen on this behavior and its relation to fracture is described.

  19. Dating deformation - Lifetimes of phases vs. lifetimes of crystals and pulsed motion along fault zones

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sumit

    2016-04-01

    The timing of movement in a fault zone may be obtained either by dating minerals that grow in these zones or by determining the pressure - temperature - time history of the blocks lying on either side of the zone. Interpreting dates of minerals in the fault zone itself requires the assumption that the minerals grew during or close to the timing of movement, that there was a single pulse of movement, or that the ages have not been reset by later pulses of movement. Determining the P-T-t history of the overlying and underlying blocks, on the other hand, may provide a more comprehensive history but it is essential to determine exactly what stage of a P-T history is dated by a given isotopic system. In addition, information on lateral contiguity is missing from such data. Strengths and weaknesses of both approaches may be illustrated using a case study from the MCT zone in the Sikkim Himalaya. Lu-Hf dates of garnets from the underlying lesser Himalayan (LH) and overlying higher Himalayan (HH) rocks yield a systematic picture (Anczkiewicz et al., 2015), but the significance of these dates using the same isotopic system and same mineral are different in the two blocks. In the lower grade lesser Himalayan rocks, fractionated trace element patterns formed during growth of garnet are preserved. As a result, bulk of the Lu occurs at the cores of garnets and the well-defined ages mark the initiation of garnet growth along the prograde path rather than the peak of metamorphism in these rocks. In the higher grade HH rocks, although metamorphic temperatures were higher (750 - 800 °C) they did not cross the closure temperature of Lu and/or Hf diffusion in garnet. In these pelitic bulk compositions, growth of garnet is expected to have occurred at garnet grade conditions (~ 500 °C). Nevertheless, in the presence of melt and deformation, there is evidence that the garnet grains recrystallized and Lu was more homogeneously distributed within the grain. Therefore, the ages from

  20. Effect of dynamic plastic deformation on the fluctuation stage of creep in single-crystal β-tin at 1.6 K

    NASA Astrophysics Data System (ADS)

    Kyrichenko, G. I.; Soldatov, V. P.

    2014-08-01

    Plastic deformation is studied in single-crystal β-tin oriented for plastic slip in the (100) <010> system. Cases are examined in which the logarithmic low-temperature creep curves are preceded by dynamic movement of dislocations. For this purpose an attachment was developed for the deformation machine that made it possible to change the external load in a standard way over identical times on the order of 0.1 s. A computer was used to record the creep process with a time resolution of 0.04 s. The logarithmic creep coefficient α is found to decrease dramatically when the preceding dynamic component of the deformation increment is increased. Thus, correct study of low-temperature logarithmic creep and its mechanisms requires a correct choice of the experimental conditions that excludes the dynamic stage when possible.

  1. The mechanisms of plastic strain accommodation during the high strain rate collapse of corrugated Ni-Al laminate cylinders

    NASA Astrophysics Data System (ADS)

    Olney, K. L.; Chiu, P. H.; Higgins, A.; Serge, M.; Weihs, T. P.; Fritz, G. M.; Stover, A. K.; Benson, D. J.; Nesterenko, V. F.

    2014-09-01

    The Thick-Walled Cylinder method was used on corrugated Ni-Al reactive laminates to examine how their mesostructures accommodate large strain, high strain rate plastic deformation and to examine the potential for intermetallic reaction initiation due to mechanical stimuli. Three main mesoscale mechanisms of large plastic strain accommodation were observed in addition to the bulk distributed uniform plastic flow: (a) the extrusion of wedge-shaped regions into the interior of the cylinder along planes of easy slip provided by angled layers, (b) the development of trans-layer shear bands in the layers with orientation close to radial and (c) the cooperative buckling of neighbouring layers perpendicular to the radius. These mesoscale mechanisms acted to block the development of periodic patterns of multiple, uniformly distributed, shear bands that have been observed in all previously examined solid homogeneous materials and granular materials. The high-strain plastic flow within the shear bands resulted in the dramatic elongation and fragmentation of Ni and Al layers. The quenched reaction between Al and Ni was observed inside these trans-layer shear bands and in a number of the interfacial extruded wedge-shaped regions. The reaction initiated in these spots did not ignite the bulk of the material, demonstrating that these mesostructured Ni-Al laminates are able to withstand high-strain, high-strain rate deformation without reaction. Numerical simulations of the explosively collapsed samples were performed using the digitized geometry of corrugated laminates and predictions of the final, deformed mesostructures agree with the observed deformation patterns.

  2. Simulation of high-temperature superlocalization of plastic deformation in single-crystals of alloys with an L12 superstructure

    NASA Astrophysics Data System (ADS)

    Solov'eva, Yu. V.; Fakhrutdinova, Ya. D.; Starenchenko, V. A.

    2015-01-01

    The processes of the superlocalization of plastic deformation in L12 alloys have been studied numerically based on a combination of the model of the dislocation kinetics of the deformation-induced and heat-treatment-induced strengthening of an element of a deformable medium with the model of the mechanics of microplastic deformation described in terms of elastoplastic medium. It has been shown that the superlocalization of plastic deformation is determined by the presence of stress concentrators and by the nonmonotonic strengthening of the elements of the deformable medium. The multiple nonmonotonicity of the process of strengthening of the elementary volume of the medium can be responsible for the multiplicity of bands of microplastic localization of deformation.

  3. Dislocations and crowdions in two-dimensional crystals. Part III: Plastic deformation of the crystal as a result of defect movement and defect interaction with the field of elastic stresses

    NASA Astrophysics Data System (ADS)

    Natsik, V. D.; Smirnov, S. N.

    2016-03-01

    A continuation of the theoretical study of the intrinsic properties of dislocation and crowdion structural defects in 2D crystals [V. D. Natsik and S. N. Smirnov, Fiz. Nizk. Temp. 40, 1366 (2014) and V. D. Natsik and S. N. Smirnov, Fiz. Nizk. Temp. 41, 271 (2015)]. The atomic lattice model of conservative (glide) and non-conservative (climb) defect movement is discussed in detail. It is shown that given a continuum description of the 2D crystal, an individual defect can be examined as a point carrier of plastic deformation, its value being determined by the topological charge, which is compliant with the crystal geometry defect parameters. It is found that the strain rate depends on the rate at which the defect center moves, as well as its topological charge. The elastic forces acting on the dislocation and crowdion centers in the field of applied mechanical stresses, and the forces of elastic interaction between defects, are calculated in terms of the linear theory of elasticity of a 2D crystal. The non-linear effect pertaining to the interaction between defects and bending deformation of the crystalline membrane, which is specific to 2D crystals, is also discussed.

  4. Alloys based on NiAl for high temperature applications

    NASA Technical Reports Server (NTRS)

    Vedula, K. M.; Pathare, V.; Aslanidis, I.; Titran, R. H.

    1984-01-01

    The NiAl alloys for potential high temperature applications were studied. Alloys were prepared by powder metallurgy techniques. Flow stress values at slow strain rates and high temperatures were measured. Some ternary alloying additions (Hf, Ta and Nb) were identified. The mechanism of strengthening in alloys containing these additions appears to be a form of particle dislocation interaction. The effects of grain size and stoichiometry in binary alloys are also presented.

  5. Compression and Tensile Creep of Binary NiAl

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2005-01-01

    Compression creep and long term tensile creep studies were conducted on cast and extruded binary NiAl in the temperature range 700-1200 K with the objectives of characterizing and understanding the creep mechanisms. Inverse and normal primary creep curves were observed in both compression and tension creep depending on stress and temperature although an asymmetrical response was observed under these two stress states. It was concluded that the primary creep of NiAl is limited by dislocation mobility. The stress exponents, n, for compression and tensile creep were similar varying between about 5 and 14. However, there were significant differences in the stress dependence of the activation energies for compression and tensile creep. The true activation energy for tensile creep, Q(sub c), was constant and equal to about 400 kJ/mol between 20 and 50 MPa but decreased to a constant value of 250 kJ/mol between 50 and 110 MPa. The activation energy was observed to be inversely stress dependent above 110 MPa. In contrast, Q(sub c) = 300 kJ/mol for compression creep was constant between 25 and 70 MPa and inversely dependent on the true stress above 70 MPa. A detailed discussion of the probable dislocation creep mechanisms governing compressive and tensile creep of NiAl is presented. It is concluded that the non-conservative motion of jogs on screw dislocations influenced the nature of the primary creep curves, where the climb of these jogs involves either the next nearest neighbor or the six-jump cycle vacancy diffusion mechanism. The probable natures of the atom-vacancy exchange that occur within the core of an edge dislocation undergoing climb in NiAl are schematically examined.

  6. Deformation twinning in single crystals of a D0{sub 19} compound with an off-stoichiometric composition (Ti-36.5at.%Al)

    SciTech Connect

    Kishida, K. . E-mail: Kishida.Kyosuke@nims.go.jp; Takahama, Y.; Inui, H.

    2004-09-20

    The characteristics of deformation twinning in single crystals of a D0{sub 19} compound Ti{sub 3}Al with off-stoichiometric composition (Ti-36.5at.%Al) have been studied in detail by trace analysis and transmission electron microscopy. Deformation twinning is operative only at high temperatures above 1000 deg. C when the compression axis is parallel to and close to the hexagonal c-axis. All observed deformation twins are assigned to be of the type II and the twinning elements are determined as: K1:'{l_brace}2-bar 1210-bar 3{r_brace}',K2:{l_brace}202-bar 1-bar {r_brace},{eta}1:<51-bar 4-bar 6-bar >,{eta}2:'<1-bar 32-bar 2>',s=0.346. The critical resolved shear stress for the '{l_brace}2-bar 1210-bar 3{r_brace}' twin is estimated to be about 50 MPa at 1000 deg. C and it gradually decreases with increasing temperature. The possible atom movements by the deformation twinning are described and the reasons why twinning of this type occurs only under a limited condition (i.e., off-stoichiometric compositions, high temperatures and compression axis being close to the c-axis) are discussed in the light of the atom movements by the deformation twinning.

  7. Microstructural investigation of the interaction and interdependence of cataclastic and plastic mechanisms in Feldspar crystals deformed in the semi-brittle field

    NASA Astrophysics Data System (ADS)

    McLaren, A. C.; Pryer, L. L.

    2001-06-01

    Plagioclase feldspar (An 50) single crystals from the Hogarth Range, NSW, Australia, have been deformed in the brittle-to-semi-brittle regime at 500-800 °C, 90-300 MPa effective pressure, and strain rate between 10 -5 and 10 -6. This gem quality feldspar is both macroscopically and microscopically devoid of any microstructure other than very rare growth twins, so all microstructures produced by experimental deformation can be easily identified. The specimens were deformed to failure, which occurred at strains of <4%, and exhibit microstructures of interacting albite twins and microcracks. The shear stress at the tip of a propagating shear fracture is relieved through the production of mechanical twins. Similarly, the elastic strain in a twin is replaced by a microcrack. In addition to the very important role of relieving stress at the tips of shear fractures, groups of twins also accommodate lattice misorientations of several degrees, typical of those seen in subgrains that have been produced by dislocation climb. These observations suggest that the deformation progressed by an alternation of twinning and microfracturing, each process initiating the other in turn. Tangled and isolated dislocations were also observed in and near partially healed cracks. Since, in other materials, dislocation tangles have been observed to nucleate cracks, our observations suggest that in general, deformation to higher strains in the semi-brittle regime is probably controlled, not by the simple superposition of brittle and plastic processes operating independently, but by their interaction and interdependence.

  8. Strain Partitioning into Dry and Wet Zones, and the Formation of Calcic Myrmekites in Syntectonic Syenites During High-T Crystallization/Deformation

    NASA Astrophysics Data System (ADS)

    De Toni, G. B.; Bitencourt, M. D. F.; Nardi, L. V. S.

    2014-12-01

    Myrmekites are fine intergrowths of (generally Na-rich) plagioclase and vermicular quartz developed on K-feldspar. The myrmekite-forming reaction is intimately related to deformation as it results in volume decrease and finer grainsize, thus enhancing plastic behaviour. In south Brazil, myrmekites are described in 642 Ma syntectonic syenites intrusive in a ca. 650 Ma collisional thrust pile comprised of granulite-facies gneisses. Syenites are porphyritic or fine-grained equigranular, with biotite, clinopyroxene (Cpx) and amphibole as mafic phases. They are variably deformed, and disposed in alternating m- to cm-thick layers. Within low-strain zones, well-developed magmatic foliation and lineation are marked by shape alignment of K-feldspar (Kf) and mafic minerals. Subgrains and recrystallized grains (ca. 0,5 mm) are common features at the border of Kf megacrysts, developed to different degrees. In highly deformed sites, the strain softening promoted by the inflow of late-magmatic fluids has lead to deformation partitioning into wet and dry zones, where different end-products are formed from a single syenite protolith. Within the dry zones, high-T recrystallization is abundant in both Kf and Cpx, but primary mineralogy is preserved. Within the wet zones the rock contains biotite and minor amphibole, but no Cpx. Kf megacrysts are progressively invaded by myrmekite (An38-43) mantles, especially along foliation-parallel faces. In their pressure shadows, 5mm-sized, subhedral plagioclase crystals (An44-48) containing irregular quartz inclusions are interpreted as crystallized from Ca-enriched, late-magmatic fluids which have destabilized Cpx. Large plagioclase crystals and myrmekite aggregates are further recrystallized, and the process has eventually lead to the formation of plagioclase-rich rocks restricted to m-thick bands. Deformation partitioning into dry and wet zones, and the fact that myrmekites are restricted to the latter demonstrate that fluids are the

  9. Creep Deformation of B2 Alumindes

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.

    1991-01-01

    The creep resistance and elevated temperature deformation mechanisms in CoAl, FeAl, and NiAl are reviewed. The stress and temperature dependencies of the steady state creep rate, the primary creep behavior, the dislocation substructure, and the response during transient tests are used as the main indicators of the deformation processes. In single phase intermetallics, the influence of grain size, stoichiometry, and solid solution hardening have been examined. In addition, the effect of adding dispersoids, precipitates, and other types of reinforcements to improve creep strength are compared.

  10. The 1200 K compressive properties of N-containing NiAl

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Noebe, R. D.; Wheeler, D. R.

    1995-01-01

    As part of a series of experiments to understand the role of N on the strength of NiAl, a heat of NiAl was enriched with N by melting and atomization to powder in a nitrogen atmosphere. Following consolidation of the powder by hot extrusion, 1200 K compressive properties were measured in air. Within the range of strain rates examined, 10(exp -3) to 10(exp -9) s(exp -1), the strength of the N-enriched NiAl was greater than that of a simple 15 micron grain size polycrystalline, binary NiAl alloy. For the most part the overall improvement in strength is ascribed to the fine grain size of the N-doped NiAl rather than the alloy chemistry; however, the alloy displayed a complex behavior exhibiting both weakening effects as well as strengthening ones.

  11. Processing, physical metallurgy and creep of NiAl + Ta and NiAl + Nb alloys. Ph.D. Thesis. Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Pathare, Viren M.

    1988-01-01

    Powder processed NiAl + Ta alloys containing 1, 2, and 4.5 at percent tantalum and NiAl + Nb alloys containing 1 and 2 at percent niobium were developed for improved creep properties. In addition, a cast alloy with 5 at percent tantalum was also studied. Hot extrusion parameters for processing alloys with 1 and 2 at percent of tantalum or niobium were designed. The NiAl + 4.5 at percent Ta alloy could be vacuum hot pressed successfully, even though it could not be extruded. All the phases in the multiphase alloys were identified and the phase transformations studied. The Ni2AlTa in NiAl + 4.5 at percent Ta alloy transforms into a liquid phase above 1700 K. Solutionizing and annealing below this temperature gives rise to a uniform distribution of fine second phase precipitates. Compressive creep properties were evaluated at 1300 K using constant load and constant velocity tests. In the higher strain rate region single phase NiAl + 1 at percent Ta and NiAl + 1 at percent Nb alloys exhibit a stress exponent of 5 characteristic of climb controlled dislocation creep. In slower strain rate regime diffusional creep becomes important. The two phase alloys containing 2 to 5 at percent Ta and 2 at percent Nb show considerable improvement over binary NiAl and single phase alloys. Loose dislocation networks and tangles stabilized by the precipitates were found in the as crept microstructure. The cast alloy which has larger grains and a distribution of fine precipitates shows the maximum improvement over binary NiAl.

  12. Temperature-dependent phase-specific deformation mechanisms in a directionally solidified NiAl-Cr(Mo) lamellar composite

    SciTech Connect

    Yu, Dunji; An, Ke; Chen, Xu; Bei, Hongbin

    2015-10-09

    Phase-specific thermal expansion and mechanical deformation behaviors of a directionally solidified NiAl–Cr(Mo) lamellar in situ composite were investigated by using real-time in situ neutron diffraction during compression at elevated temperatures up to 800 °C. Tensile and compressive thermal residual stresses were found to exist in the NiAl phase and Crss (solid solution) phase, respectively. Then, based on the evolution of lattice spacings and phase stresses, the phase-specific deformation behavior was analyzed qualitatively and quantitatively. Moreover, estimates of phase stresses were derived by Hooke's law on the basis of a simple method for the determination of stress-free lattice spacing in in situ composites. During compressive loading, the NiAl phase yields earlier than the Crss phase. The Crss phase carries much higher stress than the NiAl phase, and displays consistent strain hardening at all temperatures. The NiAl phase exhibits strain hardening at relatively low temperatures and softening at high temperatures. During unloading, the NiAl phase yields in tension whereas the Crss phase unloads elastically. Additionally, post-test microstructural observations show phase-through cracks at room temperature, micro cracks along phase interfaces at 600 °C and intact lamellae kinks at 800 °C, which is due to the increasing deformability of both phases as temperature rises.

  13. Temperature-dependent phase-specific deformation mechanisms in a directionally solidified NiAl-Cr(Mo) lamellar composite

    DOE PAGES

    Yu, Dunji; An, Ke; Chen, Xu; Bei, Hongbin

    2015-10-09

    Phase-specific thermal expansion and mechanical deformation behaviors of a directionally solidified NiAl–Cr(Mo) lamellar in situ composite were investigated by using real-time in situ neutron diffraction during compression at elevated temperatures up to 800 °C. Tensile and compressive thermal residual stresses were found to exist in the NiAl phase and Crss (solid solution) phase, respectively. Then, based on the evolution of lattice spacings and phase stresses, the phase-specific deformation behavior was analyzed qualitatively and quantitatively. Moreover, estimates of phase stresses were derived by Hooke's law on the basis of a simple method for the determination of stress-free lattice spacing in inmore » situ composites. During compressive loading, the NiAl phase yields earlier than the Crss phase. The Crss phase carries much higher stress than the NiAl phase, and displays consistent strain hardening at all temperatures. The NiAl phase exhibits strain hardening at relatively low temperatures and softening at high temperatures. During unloading, the NiAl phase yields in tension whereas the Crss phase unloads elastically. Additionally, post-test microstructural observations show phase-through cracks at room temperature, micro cracks along phase interfaces at 600 °C and intact lamellae kinks at 800 °C, which is due to the increasing deformability of both phases as temperature rises.« less

  14. Tribological Performance of NiAl Self-lubricating Matrix Composite with Addition of Graphene at Different Loads

    NASA Astrophysics Data System (ADS)

    Xiao, Yecheng; Shi, Xiaoliang; Zhai, Wenzheng; Yao, Jie; Xu, Zengshi; Chen, Long; Zhu, Qingshuai

    2015-08-01

    This research was carried out on the beneficial effect of graphene additive in self-lubricating composites for use at different loads of tribological application. The dry friction and wear behaviors of NiAl self-lubricating matrix composite with graphene (NSMG) were investigated at different loads at room temperature. Finite element method served as aided method to analyze the stress condition of contact pair, which would provide another perspective to comprehend the relationship between tribological behaviors and different degrees of load-induced deformation. In the load range of 2-16 N, the results indicated that NSMG showed excellent tribological performance at load of 16 N due to the formation of anti-friction tribo-film on the worn surface. Moreover, suitable load would lead to the contact situation transfer from multi-point contact to area contact, which could contribute to the beneficial effect on friction behavior of NSMG.

  15. The role of microstructure on strength and ductility of hot-extruded mechanically alloyed NiAl

    NASA Astrophysics Data System (ADS)

    Dollar, M.; Dymek, S.; Hwang, S. J.; Nash, P.

    1993-09-01

    Mechanical alloying followed by hot extrusion has been used to produce very fine-grained NiAl-based alloys containing oxide dispersoids. The dispersoids affect the progress of recrystallization during hot extrusion and contribute to the preservation of the <110> deformation fiber texture. The <110> texture enables the activation of <110> <100> and 110 <110> slip systems. The occurrence of <100> and <110> slip dislocations satisfies the von Mises criterion for general plasticity and is postulated to contribute to notable room-temperature compressive ductility of the mechanically alloyed (MA) materials. Another factor likely affecting the compressive ductility is the predominant occurrence of low-angle grain boundaries. The attractive dislocation — dispersoid interactions lead to a ductility trough observed at 800 K in the MA materials. The MA NiAl materials are strong at both ambient and elevated temperatures due to fine grain and the presence of dispersoids and interstitial atoms.

  16. The effect of nanoscratching direction on the plastic deformation and surface morphology of InP crystals

    SciTech Connect

    Huang, J. Y.; Ponce, F. A.; Caldas, P. G.; Prioli, R.; Almeida, C. M.

    2013-11-28

    The microstructure of (001) InP crystals scratched with a sharp diamond tip depends strongly on the scratching direction. The scratch surface is found to conform to the radius of curvature of the tip (∼60 nm) by the formation of atomic crystal steps produced by dislocation glide along (111) planes. 〈110〉 scratches lead to coherent local crystal lattice movement and rotation causing deep dislocation propagation into the crystal and irregular pileups at the sides of the scratch surface. 〈100〉 scratches lead to incoherent lattice movement causing dislocation locking that inhibits their propagation and results in regular pileups.

  17. Characteristics of an Elevated Temperature ALN Particulate Reinforced NiAl

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1993-01-01

    High energy milling of NiAl in liquid nitrogen (cryomilling) leads to the formation of a discontinuously AlN particle reinforced aluminide which has shown good potential as a high strength oxidation resistant material. Experiments have demonstrated that cryomilling is repeatable, and materials with reproducible chemistries and mechanical properties result. Furthermore, it is possible to vary the AlN content through control of the milling parameters. Tensile creep as well as compressive creep testing has been undertaken on a lot of NiAl-AlN. While this material is weaker in tension than compression, the tensile strength is respectable: for example, the creep rupture life exceeds 2700 h at 1300 K, 50 MPa. Heat treatment of the particulate reinforced aluminide at 1600 K promotes AlN growth which weakens the material but does not change the deformation mechanism. Cyclic oxidation testing of lots of NiAl-AlN which were cryomilled with and without yttria reveal that Y2O3 promotes better oxidation resistance. However, the presence or absence of yttria had no affect on the mechanical properties.

  18. Elevated temperature creep properties of NiAl cryomilled with and without Y2O3

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Luton, Michael J.

    1995-01-01

    The creep properties of lots of NiAl cryomilled with and without Y2O3 have been determined in compression and tension. Although identical cryomilling procedures were used, differences in composition were found between the lot ground with 0.5 vol% yttria and the lot ground without Y2O3. Compression testing between 1000 and 1300 K yielded similar creep strengths for both materials, while tensile creep rupture testing indicated that the yttria-containing alloy was slightly stronger than the Y2O3-free version. Both compression and tensile testing showed two deformation regimes; whereas the stress state did not affect the high stress exponent (n approximately equals 10) mechanism, the low stress exponent regime n was approximately 6 in tension and approximately 2 in compression. The strengths in tension were somewhat less than those measured in compression, but the estimated activation energies (Q) of approximately 600 kJ/mol for tensile testing were closer to the previously measured values (approximately 700 kJ/mol) for NiAl-AlN and very different from the Q's of 400 and 200 kJ/mol for compression tests in the high and low stress exponent regimes, respectively. A Larson-Miller comparison indicated that cryomilling can produce an alloy with long-term, high-temperature strength at least equal to conventional superalloys.

  19. Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading

    DOE PAGES

    Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; Strachan, Alejandro

    2014-10-16

    We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ≲ 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion andmore » fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ≳ 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.« less

  20. Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading

    SciTech Connect

    Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; Strachan, Alejandro

    2014-10-16

    We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ≲ 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion and fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ≳ 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.

  1. Size Effect on Deformation Mode in Micron-Sized Ti-5Al Single Crystal Loaded Along [2 /line 1 /line 1 0] and [0001

    NASA Astrophysics Data System (ADS)

    Xiao, Lin; Yu, Qian; Sun, Qiaoyan; Sun, Jun

    Free-standing sub-micron Ti-5Al single crystal square pillars were fabricated along [2 /line 1 /line 1 0] double slip and [0001] twinning orientations using FIB fabrication processes. Samples in range of 0.4 to 2.0µm were compressed. The yield stress increases much higher than their bulk counterpart as the specimen width decreases. The tendency of "smaller is stronger" is displayed in Ti-5Al single crystals loaded along [2 /line 1 /line 1 0] and [0001] orientations. The number of slip systems is restricted by specimen physical size as it declines from 2µm to 0.5µm, when the specimens were subjected to double slip loading. Meanwhile, when sample size is less than 1.0µm, micro-pillars along twinning orientation have to compensate the incomplete twinning deformation via shearing due to geometrical restriction and dislocation starvation effects. This variation of deformation mode could be attributed to the starvation effect of dislocations.

  2. Observations of Dynamic Strain Aging in Polycrystalline NiAl

    NASA Technical Reports Server (NTRS)

    Weaver, M. L.; Noebe, R. D.; Kaufman, M. J.

    1996-01-01

    Dynamic strain aging has been investigated at temperatures between 77 and 1100 K in eight polycrystalline NiAl alloys. The 0.2% offset yield stress and work hardening rates for these alloys generally decreased with increasing temperature. However, local plateaus or maxima were observed in conventional purity and carbon doped alloys at intermediate temperatures (600-900 K). This anomalous behavior was not observed in low interstitial high-purity, nitrogen doped, or in titanium doped materials. Low or negative strain rate sensitivities (SRS) were also observed in all eight alloys in this intermediate temperature range. Coincident with the occurrence of negative SRS was the occurrence of serrated flow in conventional purity alloys containing high concentrations of Si in addition to C. These phenomena have been attributed to dynamic strain aging (DSA). Chemical analysis of the alloys used in this study suggests that the main species causing strain aging in polycrystalline NiAl is C but indicate that residual Si impurities can enhance the strain aging effect.

  3. Strain-rate dependence for Ni/Al hybrid foams

    NASA Astrophysics Data System (ADS)

    Jung, Anne; Larcher, Martin; Jirousek, Ondrej; Koudelka, Petr; Solomos, George

    2015-09-01

    Shock absorption often needs stiff but lightweight materials that exhibit a large kinetic energy absorption capability. Open-cell metal foams are artificial structures, which due to their plateau stress, including a strong hysteresis, can in principle absorb large amounts of energy. However, their plateau stress is too low for many applications. In this study, we use highly novel and promising Ni/Al hybrid foams which consist of standard, open-cell aluminium foams, where nanocrystalline nickel is deposited by electrodeposition as coating on the strut surface. The mechanical behaviour of cellular materials, including their behaviour under higher strain-rates, is governed by their microstructure due to the properties of the strut material, pore/strut geometry and mass distribution over the struts. Micro-inertia effects are strongly related to the microstructure. For a conclusive model, the exact real microstructure is needed. In this study a micro-focus computer tomography (μCT) system has been used for the analysis of the microstructure of the foam samples and for the development of a microstructural Finite Element (micro-FE) mesh. The microstructural FE models have been used to model the mechanical behaviour of the Ni/Al hybrid foams under dynamic loading conditions. The simulations are validated by quasi-static compression tests and dynamic split Hopkinson pressure bar tests.

  4. Reaction synthesis of Ni-Al based particle composite coatings

    SciTech Connect

    SUSAN,DONALD F.; MISIOLEK,WOICECK Z.; MARDER,ARNOLD R.

    2000-02-11

    Electrodeposited metal matrix/metal particle composite (EMMC) coatings were produced with a nickel matrix and aluminum particles. By optimizing the process parameters, coatings were deposited with 20 volume percent aluminum particles. Coating morphology and composition were characterized using light optical microscopy (LOM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). Differential thermal analysis (DTA) was employed to study reactive phase formation. The effect of heat treatment on coating phase formation was studied in the temperature range 415 to 1,000 C. Long-time exposure at low temperature results in the formation of several intermetallic phases at the Ni matrix/Al particle interfaces and concentrically around the original Al particles. Upon heating to the 500--600 C range, the aluminum particles react with the nickel matrix to form NiAl islands within the Ni matrix. When exposed to higher temperatures (600--1,000 C), diffusional reaction between NiAl and nickel produces ({gamma})Ni{sub 3}Al. The final equilibrium microstructure consists of blocks of ({gamma}{prime})Ni{sub 3}Al in a {gamma}(Ni) solid solution matrix, with small pores also present. Pore formation is explained based on local density changes during intermetallic phase formation and microstructural development is discussed with reference to reaction synthesis of bulk nickel aluminides.

  5. Formation of Intermetallic Ni-Al Coatings by Mechanical Alloying with Different Intensities

    NASA Astrophysics Data System (ADS)

    Zadorozhnyy, V. Yu.; Kaloshkin, S. D.; Churyukanova, M. N.; Borisova, Yu. V.

    2013-04-01

    Intermetallic Ni-Al coatings on the Ni substrate were prepared by the mechanical alloying (MA) method in mechanical activators of vibratory and planetary type. It was found that coatings that were fabricated in a high-energy (planetary) activator in comparison with those fabricated in a low-energy (vibratory) activator are more homogeneous, have higher density, and experience better adhesion to the substrate. It was shown that different intermetallic phases (NiAl, NiAl3, and Ni2Al3) can form directly during the MA treatment in the planetary activator.

  6. Surface dynamics dominated by bulk thermal defects -- the case of NiAl (110).

    SciTech Connect

    Nobel, J. A.; McCarty, Kevin F.; Bartelt, Norman Charles

    2004-09-01

    We find that small temperature changes cause steps on the NiAl(110) surface to move. We show that this step motion occurs because mass is transferred between the bulk and the surface as the concentration of bulk thermal defects (i.e., vacancies) changes with temperature. Since the change in an island's area with a temperature change is found to scale strictly with the island's step length, the thermally generated defects are created (annihilated) very near the surface steps. To quantify the bulk/surface exchange, we oscillate the sample temperature and measure the amplitude and phase lag of the system response, i.e., the change in an island's area normalized to its perimeter. Using a one-dimensional model of defect diffusion through the bulk in a direction perpendicular to the surface, we determine the migration and formation energies of the bulk thermal defects. During surface smoothing, we show that there is no flow of material between islands on the same terrace and that all islands in a stack shrink at the same rate. We conclude that smoothing occurs by mass transport through the bulk of the crystal rather than via surface diffusion. Based on the measured relative sizes of the activation energies for island decay, defect migration, and defect formation, we show that attachment/detachment at the steps is the rate-limiting step in smoothing.

  7. 1100 to 1500 K Slow Plastic Compressive Behavior of NiAl-xCr Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Darolia, Ram

    2003-01-01

    The compressive properties of near <001> and <111> oriented NiAl-2Cr single crystals and near <011> oriented NiAl-6Cr samples have been measured between 1100 and 1500 K. The 2Cr addition produced significant solid solution strengthening in NiAl, and the <111> and <001> single crystals possessed similar strengths. The 6Cr crystals were not stronger than the 2Cr versions. At 1100 and 1200 K plastic flow in all three Cr-modified materials was highly dependent on stress with exponents > 10. The <011> oriented 6Cr alloy exhibited a stress exponent of about 8 at 1400 and 1500 K; whereas both <001> and <111> NiAl-2Cr crystals possessed stress exponents near 3 which is indicative of a viscous dislocation glide creep mechanism. While the Cottrell-Jaswon solute drag model predicted creep rates within a factor of 3 at 1500 K for <001>-oriented NiAl-2Cr; this mechanism greatly over predicted creep rates for other orientations and at 1400 K for <001> crystals.

  8. Modulus measurements in ordered Co-Al, Fe-Al, and Ni-Al alloys

    NASA Technical Reports Server (NTRS)

    Harmouche, M. R.; Wolfenden, A.

    1985-01-01

    The composition and/or temperature dependence of the dynamic Young's modulus for the ordered B2 Co-Al, Fe-Al, and Ni-Al aluminides has been investigated using the piezoelectric ultrasonic composite oscillator technique (PUCOT). The modulus has been measured in the composition interval 48.49 to 52.58 at. pct Co, 50.87 to 60.2 at. pct Fe, and 49.22 to 55.95 at. pct Ni for Co-Al, Fe-Al, and Ni-Al, respectively. The measured values for Co-Al are in the temperature interval 300 to 1300 K, while those for the other systems are for ambient temperature only. The data points show that Co-Al is stiffer than Fe-Al, which is stiffer than Ni-Al. The data points for Fe-Al and Ni-Al are slightly higher than those reported in the literature.

  9. Molecular dynamics simulation of surface segregation, diffusion and reaction phenomena in equiatomic Ni-Al systems

    NASA Astrophysics Data System (ADS)

    Evteev, A. V.; Levchenko, E. V.; Belova, I. V.; Murch, G. E.

    2012-12-01

    The molecular dynamics method is used to provide fundamental insights into surface segregation, bulk diffusion and alloying reaction phenomena in equiatomic Ni-Al systems. This knowledge can serve as a guide for the search and development of economic routes for controlling microstructure and properties of the intermetallic compound NiAl. This paper gives an overview of recent molecular dynamics simulations in the area along with other theoretical calculations and experimental measurements.

  10. Ni/Al Multilayers Produced by Accumulative Roll Bonding and Sputtering

    NASA Astrophysics Data System (ADS)

    Simões, S.; Ramos, A. S.; Viana, F.; Emadinia, O.; Vieira, M. T.; Vieira, M. F.

    2016-08-01

    Ni/Al multilayers are known to transform into NiAl in a highly exothermic and self-sustaining reaction. The fact that this reaction has a high heat release rate and can be triggered by an external impulse, are reasons why it has already attracted much research attention. There is a huge potential in the use of Ni/Al multilayers as a controllable and localized heat source for joining temperature-sensitive materials such as microelectronic components. The heat released and the phases resulting from the reaction of Ni and Al multilayers depend on the production methods, their composition, as well as the bilayer thickness and annealing conditions. The present research aims to explore the influence of these variables on the reaction of different multilayers, namely those produced by accumulative roll bonding (ARB) and sputtering. Structural evolution of Ni/Al multilayers with temperature was studied by differential scanning calorimetry, x-ray diffraction and scanning electron microscopy. Phase evolution, heat release rate and NiAl final grain size are controlled by the ignition method used to trigger the reaction of Ni and Al. The potential use of these multilayers in the diffusion bonding of TiAl was analyzed. The ARB multilayers allow the production of joints with higher strength than the joints produced with commercial multilayers (NanoFoil®) produced by sputtering. However, the formation of brittle intermetallic phases (Ni3Al, Ni2Al3 and NiAl3) compromises the mechanical properties of the joint.

  11. Alloying effects on mechanical and metallurgical properties of NiAl

    SciTech Connect

    Liu, C.T.; Horton, J.A.; Lee, E.H.; George, E.P.

    1993-06-01

    Alloying effects were investigated in near-stoichiometric NiAl for improving its mechanical and metallurgical properties. Ternary additions of 19 elements at levels up to 10 at. % were added to NiAl; among them, molybdenum is found to be most effective in improving the room-temperature ductility and high-temperature strength. Alloying with 1.0 {plus_minus} 0.6% molybdenum almost doubles the room-temperature tensile ductility of NiAl and triples its yield strength at 1000C. The creep properties of molybdenum-modified NiAl alloys can be dramatically improved by alloying with up to 1% of niobium or tantalum. Because of the low solubilities of molybdenum and niobium in NiAl, the beneficial effects mainly come from precipitation hardening. Fine and coarse precipitates are revealed by both transmission electron microscopy (TEM) and electron microprobe analyses. Molybdenum-containing alloys possess excellent oxidation resistance and can be fabricated into rod stock by hot extrusion at 900 to 1050C. This study of alloying effects provides a critical input for the alloy design of ductile and strong NiAl aluminide alloys for high-temperature structural applications.

  12. Ni/Al Multilayers Produced by Accumulative Roll Bonding and Sputtering

    NASA Astrophysics Data System (ADS)

    Simões, S.; Ramos, A. S.; Viana, F.; Emadinia, O.; Vieira, M. T.; Vieira, M. F.

    2016-10-01

    Ni/Al multilayers are known to transform into NiAl in a highly exothermic and self-sustaining reaction. The fact that this reaction has a high heat release rate and can be triggered by an external impulse, are reasons why it has already attracted much research attention. There is a huge potential in the use of Ni/Al multilayers as a controllable and localized heat source for joining temperature-sensitive materials such as microelectronic components. The heat released and the phases resulting from the reaction of Ni and Al multilayers depend on the production methods, their composition, as well as the bilayer thickness and annealing conditions. The present research aims to explore the influence of these variables on the reaction of different multilayers, namely those produced by accumulative roll bonding (ARB) and sputtering. Structural evolution of Ni/Al multilayers with temperature was studied by differential scanning calorimetry, x-ray diffraction and scanning electron microscopy. Phase evolution, heat release rate and NiAl final grain size are controlled by the ignition method used to trigger the reaction of Ni and Al. The potential use of these multilayers in the diffusion bonding of TiAl was analyzed. The ARB multilayers allow the production of joints with higher strength than the joints produced with commercial multilayers (NanoFoil®) produced by sputtering. However, the formation of brittle intermetallic phases (Ni3Al, Ni2Al3 and NiAl3) compromises the mechanical properties of the joint.

  13. Atomistic Simulations of Ti Additions to NiAl

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Garg, Anita; Ferrante, John; Amador, Carlos

    1997-01-01

    The development of more efficient engines and power plants for future supersonic transports depends on the advancement of new high-temperature materials with temperature capabilities exceeding those of Ni-based superalloys. Having theoretical modelling techniques to aid in the design of these alloys would greatly facilitate this development. The present paper discusses a successful attempt to correlate theoretical predictions of alloy properties with experimental confirmation for ternary NiAl-Ti alloys. The B.F.S. (Bozzolo-Ferrante-Smith) method for alloys is used to predict the solubility limit and site preference energies for Ti additions of 1 to 25 at.% to NiAl. The results show the solubility limit to be around 5% Ti, above which the formation of Heusler precipitates is favored. These results were confirmed by transmission electron microscopy performed on a series of NiAl-Ti alloys.

  14. The oxidation of Ni-rich Ni-Al intermetallics

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph; Smialek, James L.; Barrett, Charles A.

    1988-01-01

    The oxidation of Ni-Al intermetallic alloys in the beta-NiAl phase field and in the two phase beta-NiAl/gamma'-Ni3Al phase field has been studied between 1000 and 1400 C. The stoichiometric beta-NiAl alloy doped with Zr was superior to other alloy compositions under cyclic and isothermal oxidation. The isothermal growth rates did not increase monotonically as the alloy Al content was decreased. The characteristically ridged alpha-Al2O3 scale morphology, consisting of cells of thin, textured oxide with thick growth ridges at cell boundaries, forms on oxidized beta-NiAl alloys. The correlation of scale features with isothermal growth rates indicates a predominant grain boundary diffusion growth mechanism. The 1200 C cyclic oxidation resistance decreases near the lower end of the beta-NiAl phase field.

  15. Creep and Toughness of Cryomilled NiAl Containing Cr

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Aikin, Beverly; Salem, Jon

    2000-01-01

    NiAl-AlN + Cr composites were produced by blending cryomilled NiAl powder with approx. 10 vol % Cr flakes. In comparison to the as-consolidated matrices, hot isostatically pressed Cr-modified materials did not demonstrate any significant improvement in toughness. Hot extruded NiAl-AlN+10.5Cr, however, possessed a toughness twice that determine for the base NiAl-AlN alloy. Measurement of the 1200 to 1400 K plastic flow properties revealed that the strength of the composites was completely controlled by the properties of the NiAl-AlN matrices. This behavior could be successfully modeled by the Rule-of-Mixtures, where load is shed from the weak Cr to the strong matrix.

  16. Inelastic deformation in crystalline rocks

    NASA Astrophysics Data System (ADS)

    Rahmani, H.; Borja, R. I.

    2011-12-01

    The elasto-plastic behavior of crystalline rocks, such as evaporites, igneous rocks, or metamorphic rocks, is highly dependent on the behavior of their individual crystals. Previous studies indicate that crystal plasticity can be one of the dominant micro mechanisms in the plastic deformation of crystal aggregates. Deformation bands and pore collapse are examples of plastic deformation in crystalline rocks. In these cases twinning within the grains illustrate plastic deformation of crystal lattice. Crystal plasticity is governed by the plastic deformation along potential slip systems of crystals. Linear dependency of the crystal slip systems causes singularity in the system of equations solving for the plastic slip of each slip system. As a result, taking the micro-structure properties into account, while studying the overall behavior of crystalline materials, is quite challenging. To model the plastic deformation of single crystals we use the so called `ultimate algorithm' by Borja and Wren (1993) implemented in a 3D finite element framework to solve boundary value problems. The major advantage of this model is that it avoids the singularity problem by solving for the plastic slip explicitly in sub steps over which the stress strain relationship is linear. Comparing the results of the examples to available models such as Von Mises we show the significance of considering the micro-structure of crystals in modeling the overall elasto-plastic deformation of crystal aggregates.

  17. Elevated Temperature Compressive Strength Properties of Oxide Dispersion Strengthened NiAl After Cryo-milling and Roasting in Nitrogen

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Grahle, Peter; Arzt, Eduard; Hebsur, Mohan

    1998-01-01

    In an effort to superimpose two different elevated temperature strengthening mechanisms in NiAl, several lots of oxide dispersion strengthened (ODS) NiAl powder have been cryo-milled in liquid nitrogen to introduce AlN particles at the grain boundaries. As an alternative to cryo-milling, one lot of ODS NiAl was roasted in nitrogen to produce AlN. Both techniques resulted in hot extruded AlN-strengthened, ODS NiAl alloys which were stronger than the base ODS NiAl between 1200 and 1400 K. However, neither the cryo-milled nor the N2-roasted ODS NiAl alloys were as strong as cryo-milled binary NiAl containing like amounts of AlN. The reason(s) for the relative weakness of cryo-milled ODS NiAl is not certain; however the lack of superior strength in N2-roasted ODS NiAl is probably due to its relatively large AlN particles.

  18. Large aperture deformable mirror with a transferred single-crystal silicon membrane actuated using large-stroke PZT Unimorph Actuators

    NASA Technical Reports Server (NTRS)

    Hishinumat, Yoshikazu; Yang, Eui - Hyeok (EH)

    2005-01-01

    We have demonstrated a large aperture (50 mm x 50 mm) continuous membrane deformable mirror (DM) with a large-stroke piezoelectric unimorph actuator array. The DM consists of a continuous, large aperture, silicon membrane 'transferred' in its entirety onto a 20 x 20 piezoelectric unimorph actuator array. A PZT unimorph actuator, 2.5 mm in diameter with optimized PZT/Si thickness and design showed a deflection of 5.7 [m at 20V. An assembled DM showed an operating frequency bandwidth of 30 kHz and influence function of approximately 30%.

  19. Effect of hydrothermal treatment on properties of Ni-Al layered double hydroxides and related mixed oxides

    SciTech Connect

    Kovanda, Frantisek Rojka, Tomas; Bezdicka, Petr; Jiratova, Kveta; Obalova, Lucie; Pacultova, Katerina; Bastl, Zdenek; Grygar, Tomas

    2009-01-15

    The Ni-Al layered double hydroxides (LDHs) with Ni/Al molar ratio of 2, 3, and 4 were prepared by coprecipitation and treated under hydrothermal conditions at 180 deg. C for times up to 20 h. Thermal decomposition of the prepared samples was studied using thermal analysis and high-temperature X-ray diffraction. Hydrothermal treatment increased significantly the crystallite size of coprecipitated samples. The characteristic LDH diffraction lines disappeared completely at ca. 350 deg. C and a gradual crystallization of NiO-like mixed oxide was observed at higher temperatures. Hydrothermal treatment improved thermal stability of the Ni2Al and Ni3Al LDHs but only a slight effect of hydrothermal treatment was observed with the Ni4Al sample. The Rietveld refinement of powder XRD patterns of calcination products obtained at 450 deg. C showed a formation of Al-containing NiO-like oxide and a presence of a considerable amount of Al-rich amorphous component. Hydrothermal aging of the LDHs resulted in decreasing content of the amorphous component and enhanced substitution of Al cations into NiO-like structure. The hydrothermally treated samples also exhibited a worse reducibility of Ni{sup 2+} components. The NiAl{sub 2}O{sub 4} spinel and NiO still containing a marked part of Al in the cationic sublattice were detected in the samples calcined at 900 deg. C. The Ni2Al LDHs hydrothermally treated for various times and related mixed oxides obtained at 450 deg. C showed an increase in pore size with increasing time of hydrothermal aging. The hydrothermal treatment of LDH precursor considerably improved the catalytic activity of Ni2Al mixed oxides in N{sub 2}O decomposition, which can be explained by suppressing internal diffusion effect in catalysts grains. - Graphical Abstract: Hydrothermal treatment of Ni-Al LDH precursors influenced the porous structure of related mixed oxides and considerably improved their catalytic activity in N{sub 2}O decomposition; the higher catalytic

  20. Experimental Deformation of San Carlos Olivine Single Crystal at Mantle P and T: Evidences for a Slip-System Transition with increasing P.

    NASA Astrophysics Data System (ADS)

    Raterron, P.; Amiguet, E.; Chen, J.; Li, L.; Weidner, D.; Cordier, P.

    2007-12-01

    Seismic velocity anisotropies observed in the shallow upper mantle are interpreted from lattice preferred orientations (LPO) produced experimentally in olivine, which depends on the dominant dislocation slip systems. At low pressure P<3 GPa, mantle temperature (T), and in dry conditions, olivine [100] dislocation slip dominates the less active [001] slip. This tends to align crystal fast velocity [100] axis with the principal shear direction. Yet recent deformation experiments carried out at P>3 GPa (Couvy et al., 2004, EJM, 16, 877; Raterron et al., 2007, Am. Min., 92, 1436), as well as a theoretical study based on first-principle calculations (Durinck et al., 2005, PCM, 32, 646), show that, in forsterite, [001] slip may be dominant in the (P,T) range of the deep upper mantle. This would promote a shear-parallel slow-velocity [001] axis and may explain the seismic-velocity attenuation with depth observed at depth >200 km (Mainprice et al., 2005, Nature, 433, 731). Although such [100]-slip/[001]-slip transition has previously been attributed to the presence of water (e.g., Jung et al., 2006, Tectonophysics, 421, 1), evidences for shear parallel [001] axis are observed in nature at high P>4 GPa in dry subduction context (Xu et al., Tectonophysics, 421, 111). Whether such pressure-induced slip transition is an important process in the deep upper mantle is still debated in the literature (see, Karato, 2007, Tectonophysics, 429, 287, and Ji et al., 2007, Tectonophysics , 429, 291), and this debate has strong implications for our understanding of upper mantle convective flows. In order to determine the P effect on Fe-bearing olivine [100] and [001] slip activities, deformation experiments were carried out on San Carlos olivine oriented crystals at P>3 GPa and 1100° 2O content < 50 ppm). Two orientations were tested in order to activate either [100](010) or [001](010) slip system alone. Specimens with different orientations were loaded in each cell, thus experiencing

  1. Plastic deformation of ordered intermetallic alloys: Fundamental aspects

    SciTech Connect

    Yoo, M.H.

    1994-10-01

    Fundamental aspects of plastic deformation in ordered intermetallic alloys are reviewed by directly comparing the temperature-dependent yield stresses of Ni{sub 3}Al and Ni{sub 3}Si (the L1{sub 2} structure), NiAl and FeAl (the B2 structure), and TiAl and Ti{sub 3}Al (non-cubic L1{sub 0} and D0{sub 19} structures, respectively). While the yield strength anomaly observed in Ni{sub 3}Al is consistent with the prevailing dislocation models, that found in stoichiometric Ni{sub 3}Si is not. The strong plastic anisotropy observed in NiAl stems from the high antiphase boundary energy, and that found in two-phase {gamma}-TiAl/{alpha}{sub 2}-Ti{sub 3}Al is due to the exceptionally high compressive yield strength along the c-axis of Ti{sub 3}Al.

  2. Microstructural changes of CM186LC single-crystal superalloy during creep deformation at 750 degrees C.

    PubMed

    Dubiel, B; Czyrska-Filemonowicz, A

    2006-10-01

    The microstructure of creep-tested CM186LC Ni-base single-crystal alloy was studied to assess its suitability for use in the gas turbine environment. Creep tests were conducted at 750 degrees C and at stresses of 560 and 675 MPa up to 11 440 h. The microstructure of fractured and terminated specimens was investigated by light microscopy, scanning electron microscopy and analytical transmission electron microscopy. Microstructural analysis revealed the differences in the microstructure of creep-tested CM186LC depending on the stress applied during creep at 750 degrees C. PMID:17100893

  3. Anisotropic behavior of exchange bias effect in tensile-deformed Pt{sub 3}Fe single crystal

    SciTech Connect

    Kobayashi, Satoru Morita, Ryo

    2015-05-07

    Plastic strain in Pt{sub 3}Fe causes changes in the atomic arrangement around the (111) glide plane and induces ferromagnetism even at room temperature. We have performed detailed magnetization measurements on a Pt{sub 3}Fe single crystal with plastic strains of 11.6% under magnetic fields in various directions with respect to the [100] strain axis in order to elucidate the reversal mechanism of induced ferromagnetic domains. We observed that by decreasing the angle between the magnetization direction and strain axis, hysteresis loops are strongly sheared, which is associated with a large increase in coercivity. We also observed that an exchange bias effect appears for all field orientations, but the exchange field maximizes for an intermediate field direction. On the other hand, both phenomena are insensitive to magnetic fields perpendicular to the [100] strain axis. These observations were explained by a single-domain model with uniaxial anisotropy along the [100] strain axis.

  4. The effect of hydrogen and microstructure on the deformation and fracture behavior of a single crystal nickel-base superalloy. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Walston, William S.

    1990-01-01

    A study was conducted on the effects of internal hydrogen and microstructure on the deformation and fracture of a single crystal nickel-base superalloy. In particular, room temperature plane strain fracture toughness and tensile tests were performed on hydrogen-free and hydrogen charged samples of PWA 1480. The role of microstructure was incorporated by varying the levels of porosity and eutectic gamma/gamma prime through hot isostatic pressing and heat treatment. The room temperature behavior of PWA 1480 was unusual because precipitate shearing was not the primary deformation mechanism at all strains. At strains over 1 percent, dislocations were trapped in the gamma matrix and an attempt was made to relate this behavior to compositional differences between PWA 1480 and other superalloys. Another unique feature of the tensile behavior was cleavage of the eutectic gamma/gamma prime, which is believed to initiate the failure process. Fracture occurred on (111) planes and is likely a result of shear localization along these planes. Elimination of the eutectic gamma/gamma prime greatly improved the tensile ductility, but pososity had no effect on tensile properties. Large quantities of hydrogen (1.74 at. percent) were gas-phase charged into the material, but surprisingly this was not a function of the amount of porosity or eutectic gamma/gamma prime present. Desorption experiments suggest that the vast majority of hydrogen is at reversible lattice trapping sites. This large, uniform concentration of hydrogen dramatically reduced the tensile strain to failure, but only slightly affected the reduction in area. Available hydrogen embrittlement models were examined in light of these results and it was found that the hydrogen enhanced localized plasticity model can explain much of the tensile behavior. K(IC) fracture toughness tests were conducted, but it was necessary to also perform J(IC) tests to provide valid data.

  5. Surface-phonon dispersion of NiAl(110)

    NASA Astrophysics Data System (ADS)

    Wuttig, M.; Hoffmann, W.; Preuss, E.; Franchy, R.; Ibach, H.; Chen, Y.; Xu, M. L.; Tong, S. Y.

    1990-09-01

    We have measured the surface-phonon dispersion for the (110) face of the ordered alloy NiAl using high-resolution electron-energy-loss spectroscopy (EELS) with ΔE=20-45 cm-1 both in the [100] (Γ¯-Y¯) and in the [110] (Γ¯-X¯) directions. To identify and fit the observed branches, lattice-dynamical calculations employing a Born-von Kármán model up to third-nearest neighbors were performed. Good agreement between the experimental and calculated dispersion curves is obtained when the force constant between first-layer nickel atoms and second-layer aluminum atoms is increased by 50% and the force constant between first-layer aluminum atoms and second-layer nickel atoms is decreased by 20%. These force-constant changes indicate a surface rippling, where first-layer nickel atoms are displaced inwards and first-layer aluminum atoms are displaced outwards. This is consistent with a structural model based on low-energy electron diffraction (LEED) I-V data of Noonan and Davis [Phys. Rev. Lett. 59, 1714 (1987)] and a medium-energy ion-scattering (MEIS) study by Yalisove and Graham [Surf. Sci. 183, 556 (1987)].

  6. Accelerated fatigue crack growth behavior of PWA 1480 single crystal alloy and its dependence on the deformation mode

    NASA Technical Reports Server (NTRS)

    Telesman, Jack; Ghosn, Louis J.

    1988-01-01

    An investigation of the fatigue crack growth (FCG) behavior of PWA 1480 single crystal nickel base superalloy was conducted. Typical Paris region behavior was observed above a delta K of 8 MPa sq rt of m. However, below that stress intensity range, the alloy exhibited highly unusual behavior. This behavior consisted of a region where the crack growth rate became essentially independent of the applied stress intensity. The transition in the FCG behavior was related to a change in the observed crack growth mechanisms. In the Paris region, fatigue failure occurred along (111) facets; however, at the lower stress intensities, (001) fatigue failure was observed. A mechanism was proposed, based on barriers to dislocation motion, to explain the changes in the observed FCG behavior. The FCG data were also evaluated in terms of a recently proposed stress intensity parameter, K sub rss. This parameter, based on the resolved shear stresses on the slip planes, quantified the crack driving force as well as the mode I delta K, and at the same time was also able to predict the microscopic crack path under different stress states.

  7. UV photoreaction cross sections of CO and D2O on NiAl(110)

    NASA Astrophysics Data System (ADS)

    Nagai, Kenta; Watanabe, Kazuo

    2016-01-01

    Adsorption states and photoreactions of CO and D2O adsorbed on NiAl(110) at 90 K were studied by temperature-programmed desorption (TPD). Coverage dependence of TPD spectra showed growth behavior of adlayers of these molecules consistent with the literature, but a new path of thermal dissociation of D2O upon adsorption at 90 K was found. The photoreaction cross sections of CO and D2O at 4.7 eV were estimated in the order of 10- 21 cm2 and 10- 20 cm2, respectively. This result suggests that photoexcitation of the NiAl(110) substrate itself, a typical substrate used in supported model catalyst studies, will induce only negligible photoreactions of molecules adsorbed at surfaces of metal nanoparticles supported on ultrathin alumina films formed on NiAl(110).

  8. Theoretical studies of Ni/sub 3/Al and NiAl with impurities

    SciTech Connect

    Chen, S.P.; Voter, A.F.; Boring, A.M.; Albers, R.C.; Hay, P.J.

    1988-01-01

    Intermetallic compound has been extensively studied because of their superior properties in strength, low creep rate, and high melting point. But most of the systems have room temperature ductility problems, like Ll/sub 2/ and B2 compounds. Both Ll/sub 2/ Ni/sub 3/Al and B2 NiAl exhibit intergranular fracture mode. Understanding grain boundaries in these materials is of particular importance since intergranular fracture limits the applicability of these otherwise promising material. In an effort trying to understand the fracture mechanism, we have used embedded atom potentials to study the properties of Ni/sub 3/Al and NiAl. We also consider the effect of boron, sulfur, and nickel segregation on the strength of grain boundaries in Ni/sub 3/Al and NiAl. 22 refs., 2 figs.

  9. Role of defect coordination environment on point defects formation energies in Ni-Al intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Tennessen, Emrys; Rondinelli, James

    We present a relationship among the point defect formation energies and the bond strengths, lengths, and local coordination environment for Ni-Al intermetallic alloys based on density functional calculations, including Ni3Al, Ni5Al3, NiAl,Ni3Al4, Ni2Al3 and NiAl3. We find the energetic stability of vacancy and anti-site defects for the entire family can be attributed primarily to changes in interactions among first nearest neighbors, owing to spatially localized charge density reconstructions in the vicinity of the defect site. We also compare our interpretation of the local coordination environment with a DFT-based cluster expansion and discuss the performance of each approach in predicting defect stability in the Ni-Al system.

  10. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications

    NASA Astrophysics Data System (ADS)

    Bochenek, Kamil; Basista, Michal

    2015-11-01

    Over the last few decades intermetallic compounds such as NiAl have been considered as potential high temperature structural materials for aerospace industry. A large number of investigations have been reported describing complex fabrication routes, introducing various reinforcing/alloying elements along with theoretical analyses. These research works were mainly focused on the overcoming of main disadvantage of nickel aluminides that still restricts their application range, i.e. brittleness at room temperature. In this paper we present an overview of research on NiAl processing and indicate methods that are promising in solving the low fracture toughness issue at room temperature. Other material properties relevant for high temperature applications are also addressed. The analysis is primarily done from the perspective of NiAl application in aero engines in temperature regimes from room up to the operating temperature (over 1150 °C) of turbine blades.

  11. Blanch Resistant and Thermal Barrier NiAl Coating Systems for Advanced Copper Alloys

    NASA Technical Reports Server (NTRS)

    Raj, Sai V. (Inventor)

    2005-01-01

    A method of forming an environmental resistant thermal barrier coating on a copper alloy is disclosed. The steps include cleansing a surface of a copper alloy, depositing a bond coat on the cleansed surface of the copper alloy, depositing a NiAl top coat on the bond coat and consolidating the bond coat and the NiAl top coat to form the thermal barrier coating. The bond coat may be a nickel layer or a layer composed of at least one of copper and chromium-copper alloy and either the bond coat or the NiAl top coat or both may be deposited using a low pressure or vacuum plasma spray.

  12. Thermodynamic analysis of compatibility of several reinforcement materials with beta phase NiAl alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Chemical compatibility of several reinforcement materials with beta phase NiAl alloys within the concentration range 40 to 50 at. percent Al have been analyzed from thermodynamic considerations at 1373 and 1573 K. The reinforcement materials considered in this study include carbides, borides, oxides, nitrides, beryllides, and silicides. Thermodynamic data for NiAl alloys have been reviewed and activity of Ni and Al in the beta phase have been derived at 1373 and 1573 K. Criteria for chemical compatibility between the reinforcement material and the matrix have been defined and several chemically compatible reinforcement materials have been defined.

  13. Interfacial shear behavior of sapphire-reinforced NiAl composites

    NASA Technical Reports Server (NTRS)

    Moose, C. A.; Koss, D. A.; Hellmann, J. R.

    1990-01-01

    The interfacial shear behavior in near-equiatomic NiAl reinforced by sapphire filaments has been examined at room temperature using a fiber pushout test technique. The load-displacement data indicate a large variability in the initial interface failure stress, although reverse push behavior indicates a comparatively constant interfacial sliding friction stress. The observed behavior suggests that the presence of asperities on the fiber surfaces and nonuniformities in fiber diameter require constrained plastic flow within the NiAl matrix in order for interfacial shear to occur. The location, shape, severity, and distribution of fiber asperities as well as the uniformity of fiber diameter are critical to the interfacial shear process.

  14. Formation of intermetallics at the interface of explosively welded Ni-Al multilayered composites during annealing

    NASA Astrophysics Data System (ADS)

    Ogneva, T. S.; Lazurenko, D. V.; Bataev, I. A.; Mali, V. I.; Esikov, M. A.; Bataev, A. A.

    2016-04-01

    The Ni-Al multilayer composite was fabricated using explosive welding. The zones of mixing of Ni and Al are observed at the composite interfaces after the welding. The composition of these zones is inhomogeneous. Continuous homogeneous intermetallic layers are formed at the interface after heat treatment at 620 °C during 5 h These intermetallic layers consist of NiAl3 and Ni2Al3 phases. The presence of mixed zones significantly accelerates the growth rate of intermetallic phases at the initial stages of heating.

  15. Modeling of Ternary Element Site Substitution in NiAl

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Honecy, Frank

    2000-01-01

    It is well recognized that ternary alloying additions can have a dramatic impact on the behavior of ordered intermetallic alloys such as nickel aluminides. Properties as diverse as yield strength, fracture strength, fracture mode, cyclic oxidation resistance, creep strength, and thermal and electrical diffusivity can change by orders of magnitude when a few percent or less of a ternary element is added. Yet our understanding of the resulting point defect structures and the simple site preferences of ternary alloying additions is poor because these are extremely difficult characteristics to determine. This disconnection between the understanding of the structure and properties in ordered alloys is at least in part responsible for the limited development and commercialization of these materials. Theoretical methods have provided useful but limited insight in this area, since most techniques suffer from constraints in the type of elements and the crystallographic structures that can be modeled. In an effort to overcome these limitations, the Bozzolo-Ferrante-Smith (BFS) method for alloys was designed. After a brief description of this approximate quantum mechanical approach, we use BFS to investigate the energetics of Si, Ti, V, Cr, Fe, Co, Cu, Zr, Nb, Mo, Ru, Hf, Ta and W additions to B2-ordered, stoichiometric NiAl. In addition to determining the site preference for these alloying additions over a range of compositions, we include results for the concentration dependence of the lattice parameter. In this introductory paper, we performed our analyses in the absence of constitutional and thermal vacancies for alloys of the form Ni50(Al,X)50. Where data exist, a comparison between experimental, theoretical, and BFS results is also included.

  16. Dual-energy X-ray micro-CT imaging of hybrid Ni/Al open-cell foam

    NASA Astrophysics Data System (ADS)

    Fíla, T.; Kumpová, I.; Koudelka, P.; Zlámal, P.; Vavřík, D.; Jiroušek, O.; Jung, A.

    2016-01-01

    In this paper, we employ dual-energy X-ray microfocus tomography (DECT) measurement to develop high-resolution finite element (FE) models that can be used for the numerical assessment of the deformation behaviour of hybrid Ni/Al foam subjected to both quasi-static and dynamic compressive loading. Cubic samples of hybrid Ni/Al open-cell foam with an edge length of [15]mm were investigated by the DECT measurement. The material was prepared using AlSi7Mg0.3 aluminium foam with a mean pore size of [0.85]mm, coated with nanocrystalline nickel (crystallite size of approx. [50]nm) to form a surface layer with a theoretical thickness of [0.075]mm. CT imaging was carried out using state-of-the-art DSCT/DECT X-ray scanner developed at Centre of Excellence Telč. The device consists of a modular orthogonal assembly of two tube-detector imaging pairs, with an independent geometry setting and shared rotational stage mounted on a complex 16-axis CNC positioning system to enable unprecedented measurement variability for highly-detailed tomographical measurements. A sample of the metal foam was simultaneously irradiated using an XWT-240-SE reflection type X-ray tube and an XWT-160-TCHR transmission type X-ray tube. An enhanced dual-source sampling strategy was used for data acquisition. X-ray images were taken using XRD1622 large area GOS scintillator flat panel detectors with an active area of [410 × 410]mm and resolution [2048 × 2048]pixels. Tomographic scanning was performed in 1,200 projections with a 0.3 degree angular step to improve the accuracy of the generated models due to the very complex microstructure and high attenuation of the investigated material. Reconstructed data was processed using a dual-energy algorithm, and was used for the development of a 3D model and voxel model of the foam. The selected parameters of the models were compared with nominal parameters of the actual foam and showed good correlation.

  17. Microalloying Improves the Low-Cycle Fatigue Behavior of Powder-Extruded NiAl

    NASA Technical Reports Server (NTRS)

    1996-01-01

    There is considerable interest in developing new structural materials in which high use temperatures and strength, coupled with low density, are the minimum requirements. The goal for these new materials is to provide operation well beyond the working range of conventional superalloys. Of the many intermetallics under consideration, NiAl is one of the few systems that has emerged as a promising candidate for further development. This is because of a number of property advantages--including low density, high melting temperature, high thermal conductivity, and excellent environmental resistance. However, binary NiAl lacks strength and creep resistance at elevated temperatures. Also, its poor high-temperature strength results in worse-than-predicted low-cycle fatigue (LCF) lives at low strain ranges at 727 C (1341 F) because of accelerated creep damage mechanisms that result in significant intergranular cracking. One approach for improving these properties involves microalloying NiAl with either Zr or N. As an integral part of this alloy-development program at the NASA Lewis Research Center, the low-cycle fatigue behavior of Zr- and N-doped nickel aluminides produced by extrusion of prealloyed powders was investigated and compared with similarly processed binary NiAl.

  18. Influences of Al particles on the microstructure and property of electrodeposited Ni-Al composite coatings

    NASA Astrophysics Data System (ADS)

    Cai, Fei; Jiang, Chuanhai

    2014-02-01

    Ni-Al composite coatings with different contents of Al microparticles were prepared from a conventional Watt bath. The influences of Al particle loadings in the bath on the surface morphology, composition, texture, grain size, microstrain, residual stress and anti-corrosion of the Ni-Al composite coating were investigated. The friction coefficients of the coatings at 200 °C were also evaluated by a pin-on-disctribometer. The results showed that the surface morphology of the coatings changed from pyramid + colonied structure to colonied structure with increasing Al particle loadings. The (2 0 0) preferred orientation for pure Ni coating evolved to random orientation with increasing Al particle loadings. The grain size obtained the minimum value of 72.28 nm at Al particle loading of 100 g/L and the microstrain of the coating increased with increasing the Al particle loadings. The incorporation of Al particles decreased the residual stress of the electro-deposited coating and all the coatings deposited at different Al particle loadings possessed low residual stress. As the Al particle loading increased, the anti-corrosion of the Ni-Al coatings increased owing to the combined effect of increasing Al content in the coatings and the texture evolution from (2 0 0) plane to (1 1 1) plane. The wear result suggested that the increasing Al particle content did not improve the wear performance of the Ni-Al composite coatings.

  19. Method For Making Electronic Circuits Having Nial And Ni3al Substrates

    DOEpatents

    Deevi, Seetharama C.; Sikka, Vinod K.

    2001-01-30

    A method for making electronic circuit component having improved mechanical properties and thermal conductivity comprises steps of providing NiAl and/or Ni.sub.3 Al, and forming an alumina layer thereupon prior to applying the conductive elements. Additional layers of copper-aluminum alloy or copper further improve mechanical strength and thermal conductivity.

  20. Streak spectroscopy and velocimetry of electrically exploded Ni/Al laminates

    NASA Astrophysics Data System (ADS)

    Morris, Christopher J.; Wilkins, Paul R.; May, Chadd M.

    2013-01-01

    We present an experimental and theoretical study of electrically exploded nickel-aluminum (Ni/Al) laminates, lithographically patterned into bow-tie bridge regions, and encapsulated with parylene. The exothermic nature of Ni/Al reactions is well-known at typical self-heating rates of 103-106 K/s, but electrical heating allows the interrogation of phenomena at heating rates which are five to six orders of magnitude higher. The use of time-resolved streak camera emission spectroscopy revealed that Ni/Al laminates heated at these higher rates exhibited brighter emission during the first 150 ns of emission than samples composed of either Al or Ni alone, suggesting an exothermic effect which rapidly started and persisted for at least this length of time. We also measured the transduction of electrical energy into kinetic energy through velocity measurements of encapsulation layers ejected from the bridge region. An empirical model using experimental power curves and one empirical fitting parameter successfully predicted these velocities. This model agreed well with experiments from different Al and Ni samples using the same fitting parameter, but an apparent 1.2 J/mg of additional energy from the mixing of Ni and Al was necessary to accurately predict velocities from Ni/Al laminate samples. This energy quantity corresponded to a reference value for the enthalpy of mixing Ni and Al, and likely contributed to both brighter emission and higher than expected velocities observed.

  1. Formation and Stability of Ni-Al Hydroxide Phases in Soils

    SciTech Connect

    Peltier, E.; Van Der Lelie, D; Sparks, D

    2010-01-01

    The formation of mixed metal-aluminum hydroxide surface precipitates is a potentially significant uptake route for trace metals (including Co, Ni, and Zn) in environmental systems. This paper investigates the effect of mixed Ni-Al hydroxide precipitate formation and aging on Ni solubility and bioavailability in laboratory contaminated soils. Two Delaware agricultural soils were reacted with a 3 mM Ni solution for 12 months at pH's above and below the threshold for mixed Ni-Al hydroxide formation. Ni speciation was determined at 1, 6, and 12 months using X-ray absorption spectroscopy (XAS). Precipitate solubility was examined through desorption experiments using HNO{sub 3} and EDTA as desorbing agents, whereas metal bioavailability was assessed using a Ni-specific bacterial biosensor. For both soils, the formation of Ni-Al hydroxide surface precipitates resulted in a reduction in the fraction of desorbed and bioavailable Ni. However, precipitate dissolution was greater, particularly with EDTA, than in published studies on isolated soil clay fractions, and less affected by aging processes. These results suggest that mixed Ni-Al hydroxide phases forming in real world environments may be both longer-lasting and more susceptible to ligand-promoted dissolution than previously expected.

  2. Electronic circuits having NiAl and Ni.sub.3 Al substrates

    DOEpatents

    Deevi, Seetharama C.; Sikka, Vinod K.

    1999-01-01

    An electronic circuit component having improved mechanical properties and thermal conductivity comprises NiAl and/or Ni.sub.3 Al, upon which an alumina layer is formed prior to applying the conductive elements. Additional layers of copper-aluminum alloy or copper further improve mechanical strength and thermal conductivity.

  3. Low cycle fatigue behavior of polycrystalline NiAl at 300 and 1000 K

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Noebe, Ronald D.

    1993-01-01

    The low cycle fatigue behavior of polycrystalline NiAl was determined at 300 and 1000 K - temperatures below and above the brittle- to-ductile transition temperature (BDTT). Fully reversed, plastic strain-controlled fatigue tests were conducted on two differently fabricated alloy samples: hot isostatically pressed (HIP'ed) prealloyed powder and hot extruded castings. HIP'ed powder (HP) samples were tested only at 1000 K, whereas the more ductile cast-and-extruded (C+E) NiAl samples were tested at both 1000 and 300 K. Plastic strain ranges of 0.06 to 0.2 percent were used. The C+E NiAl cyclically hardened until fracture, reaching stress levels approximately 60 percent greater than the ultimate tensile strength of the alloy. Compared on a strain basis, NiAl had a much longer fatigue life than other B2 ordered compounds in which fracture initiated at processing-related defects. These defects controlled fatigue life at 300 K, with fracture occurring rapidly once a critical stress level was reached. At 1000 K, above the BDTT, both the C+E and HP samples cyclically softened during most of the fatigue tests in air and were insensitive to processing defects. The processing method did not have a major effect on fatigue life; the lives of the HP samples were about a factor of three shorter than the C+E NiAl, but this was attributed to the lower stress response of the C+E material. The C+E NiAl underwent dynamic grain growth, whereas the HP material maintained a constant grain size during testing. In both materials, fatigue life was controlled by intergranular cavitation and creep processes, which led to fatigue crack growth that was primarily intergranular in nature. Final fracture by overload was transgranular in nature. Also, HP samples tested in vacuum had a life three times longer than their counterparts tested in air and, in contrast to those tested in air, hardened continuously over half of the sample life, thereby indicating an environmentally assisted fatigue damage

  4. Rupture Orientation and Strain-induced Crystallization of Polymer Chain and Network in Vulcanized Polyisoprene During Uniaxial Deformation by in-situ Electron Spin Resonance(ESR) and Synchrotron X-ray Analysis

    SciTech Connect

    S Toki; R Takagi; M Ito; B Hsiao

    2011-12-31

    Different network structures of vulcanized polyisoprene rubbers were studied by in-situ ESR and synchrotron X-ray during deformation to analyze the rupture, orientation, and strain-induced crystallization of polymer chains and network points. Rupture of network points occur, depending on network structure, and create an un-reversible change in vulcanized rubber. The flexibility of network points affects the possibility of rupture, polymer orientation and strain-induced crystallization. Peroxide vulcanized network is rigid and un-rupturable. Poly-sulfide rich vulcanized network is more flexible and less rupturable than mono-sulfide rich vulcanized network. Chain flexibility and rupturability of network points affect the strain-induced crystallization and stress-strain relation.

  5. First-principles investigation of mechanical behavior of B2 type aluminides: FeAl and NiAl

    SciTech Connect

    Fu, C.L.; Yoo, M.H.

    1990-01-01

    First-principles calculations of the elastic constants, shear fault energies, and cleavage strength of NiAl and FeAl are presented. For NiAl, we find that the dissociation of {l angle}111{r angle} superdislocation into partial dislocations is unlikely, due to a high antiphase boundary energy and a weak repulsive elastic force between partial dislocations. FeAl has a high ideal cleavage strength as a result of the directional d-bond formation at the Fe sites. The strong ordering behavior of NiAl is explained in terms of the Al-to-Ni charge transfer and the repulsive interaction between Al atoms. The spontaneous glide decomposition of the {l angle}111{r angle} superdislocation in NiAl is also discussed. 8 refs., 2 figs., 2 tabs.

  6. Haglund's Deformity

    MedlinePlus

    ... Is Haglund’s Deformity? Haglund’s deformity is a bony enlargement on the back of the heel. The soft ... the Achilles tendon becomes irritated when the bony enlargement rubs against shoes. This often leads to painful ...

  7. Prospects for Ductility and Toughness Enhancement of Nial by Ductile Phase Reinforcement

    NASA Technical Reports Server (NTRS)

    Noebe, R. D.; Ritzert, F. J.; Misra, A.; Gibala, R.

    1991-01-01

    The use of NiAl as a structural material has been hindered by the fact that this ordered intermetallic does not exhibit significant tensile ductility or toughness at room temperature. A critical review of the operative flow and fracture mechanisms in monolithic NiAl has thus established the need for ductile phase toughening in this order system. Progress in ductile phase reinforced intermetallic systems in general and specifically NiAl-based materials has been reviewed. In addition, further clarification of the primary mechanisms involved in the flow and fracture of ductile phase reinforced alloys has evolved from ongoing investigations of several model NiAl-based materials. The mechanical behavior of these model directionally-solidified alloys (Ni-30Al and Ni-30Fe-20Al) are discussed. Finally, the prospects for developing a ductile phase toughened NiAl-based alloy and the shortcomings presently inherent in these systems are analyzed.

  8. Influence of hydrothermal modification on the properties of Ni/Al 2O 3 catalyst

    NASA Astrophysics Data System (ADS)

    Xiang, L.; Gong, Y. L.; Li, J. C.; Wang, Z. W.

    2004-12-01

    An advanced hydrothermal modification method was developed to synthesis Ni/Al 2O 3 catalyst with perfect activity. SEM, XRD, DTA-TG and XPS were used to characterize the textural properties of the materials obtained after each synthesis step. The experimental results indicated that the modification of the impregnation samples at elevated temperatures enhanced the absorption of Ni(NO 3) 2· xH 2O on the surface of supporters which were composed mainly of Al(OH) 3 and AlOOH, leading to the formation of the porous sintering products (NiAl 2O 4/Al 2O 3) with bigger specific surface areas and higher Ni contents. The conversion of CH 4 increased a lot by using the hydrothermal-modified catalyst instead of using the catalyst prepared via the traditional impregnation-sintering route.

  9. Assessment of microalloying effects on the high temperature fatigue behavior of NiAl

    NASA Technical Reports Server (NTRS)

    Noebe, R. D.; Lerch, B. A.; Rao, K. B. S.

    1995-01-01

    Binary NiAl suffers from a lack of strength and poor creep properties at and above 1000 K. Poor creep resistance in turn affects low cycle fatigue (LCF) lives at low strain ranges due to the additional interactions of creep damage. One approach for improving these properties involved microalloying with either Zr or N. As an integral part of a much larger alloying program the low cycle fatigue behavior of Zr and N doped nickel aluminides produced by extrusion of prealloyed powders has been investigated. Strain controlled LCF tests were performed in air at 1000 K. The influence of these microalloying additions on the fatigue life and cyclic stress response of polycrystalline NiAl are discussed.

  10. Creep Behavior of Near-Stoichiometric Polycrystalline Binary NiAl

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2002-01-01

    New and published constant load creep and constant engineering strain rate data on near-stoichiometric binary NiAl in the intermediate temperature range 700 to 1300 K are reviewed. Both normal and inverse primary creep curves are observed depending on stress and temperature. Other characteristics relating to creep of NiAl involving grain size, stress and temperature dependence are critically examined and discussed. At stresses below 25 MPa and temperatures above 1000 K, a new grain boundary sliding mechanism was observed with n approx. 2, Qc approx. 100 kJ/ mol and a grain size exponent of about 2. It is demonstrated that Coble creep and accommodated grain boundary sliding models fail to predict the experimental creep rates by several orders of magnitude.

  11. CVD Fiber Coatings for Al2O3/NiAl Composites

    NASA Technical Reports Server (NTRS)

    Boss, Daniel E.

    1995-01-01

    While sapphire-fiber-reinforced nickel aluminide (Al2O3/NiAl) composites are an attractive candidate for high-temperature structures, the significant difference in the coefficient of thermal expansion between the NiAl matrix and the sapphire fiber creates substantial residual stresses in the composite. This study seeks to produce two fiber-coating systems with the potential to reduce the residual stresses in the sapphire/NiAl composite system. Chemical vapor deposition (CVD) was used to produce both the compensating and compliant-fiber coatings for use in sapphire/NiAl composites. A special reactor was designed and built to produce the FGM and to handle the toxic nickel precursors. This process was successfully used to produce 500-foot lengths of fiber with coating thicknesses of approximately 3 microns, 5 microns, and 10 microns.

  12. Effects of diffusion on aluminum depletion and degradation of NiAl coatings

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Lowell, C. E.

    1973-01-01

    Experiments were performed to critically demonstrate the effects of diffusion on the aluminum depletion and degradation of NiAl coatings on superalloys. Pack aluminized IN 100 and Mar-M200 were diffusion annealed in 0.0005 torr vacuum at 1100 C for 300 hours. Aluminum losses due to oxidation and vaporization were minimal. Metallographic and electron microprobe analyses showed considerable interdiffusion of the coating with the substrate, which caused a large decrease in the original aluminum level of the coating. Subsequent cyclic furnace oxidation tests were performed at 1100 C using 1 hour cycles on pre-diffused and as-coated specimens. The pre-diffusion treatment decreased the oxidation protection for both alloys, but more dramatically for IN 100. Identical oxidation tests of bulk NiAl, where such diffusion effects are precluded, showed no signs of degradation at twice the time needed to degrade the coated superalloys.

  13. Investigation of the electrochemical and photoelectrochemical properties of Ni-Al LDH photocatalysts.

    PubMed

    Iguchi, Shoji; Kikkawa, Soichi; Teramura, Kentaro; Hosokawa, Saburo; Tanaka, Tsunehiro

    2016-05-18

    Layered double hydroxide (LDH) photocatalysts, including Ni-Al LDH, are active for the photocatalytic conversion of CO2 in water under UV light irradiation. In this study, we found that a series of LDHs exhibited anodic photocurrent which is a characteristic feature corresponding to n-type materials. Also, we estimated the potentials of photogenerated electrons and holes for LDHs, which are responsible for the photocatalytic reactions, using electrochemical techniques. The flat band potential of the Ni-Al LDH photocatalyst was estimated to be -0.40 V vs. NHE (pH = 0), indicating that the potential of the photogenerated electron is sufficient to reduce CO2 to CO. Moreover, we revealed that the flat band potentials of M(2+)-M(3+) LDH are clearly influenced by the type of trivalent metal (M(3+)) components. PMID:27145887

  14. Kinetics of phase formation in binary thin films: The Ni/Al case

    SciTech Connect

    Garcia, V.H.; Mors, P.M.; Scherer, C.

    2000-03-14

    The growth and/or dissociation of the intermetallic phases which are produced by interdiffusion in metallic thin film multilayers is studied by an approach based on a concentration-dependent diffusivity. No assumption is made on the a priori presence of seed layers of the phases that are expected to grow. Application to the Ni/Al system gives a good agreement with the experimental data reported in the literature.

  15. Study of the Ni NiAl2O4 YSZ cermet for its possible application as an anode in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Reyes-Rojas, A.; Esparza-Ponce, H. E.; Reyes-Gasga, J.

    2006-05-01

    Nanocrystalline Ni-NiAl2O4-YSZ cermet with a possible application as anode in solid oxide fuel cells (SOFCs) has been developed. The powders were prepared by using an alternative solid-state method that includes the use of nickel acetylacetonate as an inorganic precursor to obtain a highly porous material after sintering at 1400 °C and oxide reduction ({\\mathrm {NiO\\mbox {--}Al_{2}O_{3}\\mbox {--}YSZ}} \\to {\\mathrm {Ni\\mbox {--}NiAl_{2}O_{4}\\mbox {--}YSZ}} ) at 800 °C for 8 h in a tubular reactor furnace using 10% H2/N2. Eight samples with 45% Ni and 55% Al2O3-YSZ in concentrations of Al2O3 oxides from 10 to 80 wt% of were mixed to obtain the cermets. The obtained material was compressed using unidirectional axial pressing and calcinations from room temperature to 800 °C. Good results were registered using a heating rate of 1 °C min-1 and a special ramp to avoid anode cracking. Thermal expansion, electrical conductivity, and structural characterization by thermo-mechanical analyser (TMA) techniques/methods, the four-point probe method for conductivity, scanning electron microscopy (SEM), x-ray energy dispersive spectroscopy (EDS), x-ray diffraction (XRD), and the Rietveld method were carried out. Cermets in the range 5.5 to 11% Al2O3 present a crystal size around 200 nm. An inversion degree (I) in the NiAl2O4 spinel structure of the cermets Ni-NiAl2O4-YSZ was found after the sintering and reduction processes. Good electrical conductivity and thermal expansion coefficient were obtained for the cermet with 12 wt% of spinel structure formation.

  16. Tribological Characterization of NiAl Self-Lubricating Composites Containing V2O5 Nanowires

    NASA Astrophysics Data System (ADS)

    Huang, Yuchun; Ibrahim, Ahmed Mohamed Mahmoud; Shi, Xiaoliang; Radwan, Amr Rady; Zhai, Wenzheng; Yang, Kang; Xue, Bing

    2016-09-01

    In order to improve the tribological properties of NiAl self-lubricating composites, V2O5 nanowires with average width of 39 nm were synthesized by hydrothermal method. Furthermore, NiAl self-lubricating composites containing V2O5 nanowires (NAV) were successfully fabricated using spark plasma sintering technique. The tribological characteristics and wear mechanisms of NAV were evaluated at different sliding speeds, counterface ball materials and elevated temperatures. The results revealed that the frictional properties of NAV improved slightly with adding V2O5 nanowires at room temperature if compared to NiAl self-lubricating composites without solid lubricant as investigated in previous studies, while the wear mechanisms of NAV change widely with the change of the counterface ball materials and sliding velocities. V2O5 nanowires showed a beneficial effect on tribological performance of NAV at high temperatures owing to the formation of the V2O5-enriched glaze film at temperatures above 700 °C, which acts as the lubricous and protective mask against the severe wear.

  17. Impact Ignition of Low Density Mechanically Activated and Multilayer Foil Ni/Al

    NASA Astrophysics Data System (ADS)

    Beason, Matthew; Mason, B.; Son, Steven; Groven, Lori

    2013-06-01

    Mechanical activation (MA) via milling of reactive materials provides a means of lowering the ignition threshold of shock initiated reactions. This treatment provides a finely mixed microstructure with wide variation in the resulting scales of the intraparticle microstructure that makes model validation difficult. In this work we consider nanofoils produced through vapor deposition with well defined periodicity and a similar degree of fine scale mixing. This allows experiments that may be easier to compare with computational models. To achieve this, both equimolar Ni/Al powder that has undergone MA using high energy ball milling and nanofoils milled into a powder using low energy ball milling were used. The Asay Shear impact experiment was conducted on both MA Ni/Al and Ni/Al nanofoil-based powders at low densities (<60%) to examine their impact response and reaction behavior. Scanning electron microscopy and energy-dispersive x-ray spectroscopy were used to verify the microstructure of the materials. The materials' mechanical properties were evaluated using nano-indentation. Onset temperatures were evaluated using differential thermal analysis/differential scanning calorimetry. Impact ignition thresholds, burning rates, temperature field, and ignition delays are reported. Funding from the Defense Threat Reduction Agency (DTRA) Grant Number HDTRA1-10-1-0119. Counter-WMD basic research program, Dr. Suhithi M. Peiris, program director is gratefully acknowledged.

  18. Properties Evaluation and Studying Production Mechanism of Nanocrystalline NiAl Intermetallic Compound by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Khajesarvi, Ali; Akbari, Golamhossein

    2016-04-01

    Ni50Al50 intermetallic compound was synthesized by mechanical alloying (MA) of elemental mixtures of Ni and Al powders in a planetary ball mill. After 16 hours of milling and obtaining crystallites with a critical size, the initial NiAl compound was formed along with the combustive reaction after opening the vial lid. In the time interval of 16 to 128 hours, the reaction from combustive state reached the explosive state. Finally, after 128 hours of milling, the initial powders were wholly transformed into NiAl before completion of the milling time. Structural changes of powder particles during MA were studied by X-ray diffractometry and scanning electron microscopy. The crystallite size measurements revealed that the grain size of the NiAl phase decreased from 155 to 26 nm with increasing MA time from 8 to 128 hours. Microhardness for nanocrystalline Ni50Al50 intermetallic compound produced after 128 hours of milling was measured as about 350 Hv.

  19. Tensile Creep Fracture of Polycrystalline Near-Stoichiometric NiAl

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2004-01-01

    Tensile creep fracture behavior of polycrystalline near-stoichiometric NiAl has been studied between 700 and 1200 K under initial applied stresses varying between 10 and 200 MPa. The stress exponent for fracture varied between 5.0 and 10.7 while the activation energy for fracture was 250 +/- 22 kJ/mol. The fracture life was inversely proportional to the secondary creep rate in accordance with the Monkman-Grant relation although there was extensive scatter in the data. This observation suggests that the fracture life for near-stoichiometric NiAl was influenced by creep under these stress and temperature conditions. Several different fracture morphologies were observed. Transgranular ductile cleavage fracture occurs at 700 K and at the higher stresses at 800 K. The fracture mode transitions to transgranular creep fracture at 900 and 1000 K and at lower stresses at 800 K, while plastic rupture and grain boundary cavitation occur at 1100 and 1200 K. An experimental fracture mechanism map is constructed for near-stoichiometric NiAl.

  20. Molecular dynamics simulations of the melting curve of NiAl alloy under pressure

    SciTech Connect

    Zhang, Wenjin; Peng, Yufeng; Liu, Zhongli

    2014-05-15

    The melting curve of B2-NiAl alloy under pressure has been investigated using molecular dynamics technique and the embedded atom method (EAM) potential. The melting temperatures were determined with two approaches, the one-phase and the two-phase methods. The first one simulates a homogeneous melting, while the second one involves a heterogeneous melting of materials. Both approaches reduce the superheating effectively and their results are close to each other at the applied pressures. By fitting the well-known Simon equation to our melting data, we yielded the melting curves for NiAl: 1783(1 + P/9.801){sup 0.298} (one-phase approach), 1850(1 + P/12.806){sup 0.357} (two-phase approach). The good agreement of the resulting equation of states and the zero-pressure melting point (calc., 1850 ± 25 K, exp., 1911 K) with experiment proved the correctness of these results. These melting data complemented the absence of experimental high-pressure melting of NiAl. To check the transferability of this EAM potential, we have also predicted the melting curves of pure nickel and pure aluminum. Results show the calculated melting point of Nickel agrees well with experiment at zero pressure, while the melting point of aluminum is slightly higher than experiment.

  1. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    SciTech Connect

    Ohmi, Tatsuya; Matsuura, Kiyotaka; Iguchi, Manabu; Mizuma, Kiminori

    2008-02-15

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen.

  2. PLASMA SPRAYED Ni-Al COATINGS FOR SAFE ENDING HEAT EXCHANGER TUBES

    SciTech Connect

    ALLAN,M.L.; OTTERSON,D.; BERNDT,C.C.

    1998-11-01

    Brookhaven National Laboratory (BNL) has developed thermally conductive composite liners for corrosion and scale protection in heat exchanger tubes exposed to geothermal brine. The liners cannot withstand roller expansion to connect the tubes to the tubesheet. It is not possible to line the ends of the tubes with the same material after roller expansion due to the nature of the current liner application process. It was requested that BNL evaluate plasma sprayed Ni-Al coatings for safe ending heat exchanger tubes exposed to geothermal brine. The tubes of interest had an internal diameter of 0.875 inches. It is not typical to thermal spray small diameter components or use such small standoff distances. In this project a nozzle extension was developed by Zatorski Coating Company to spray the tube ends as well as flat coupons for testing. Four different Ni-Al coatings were investigated. One of these was a ductilized Ni-AIB material developed at Oak Ridge National Laboratory. The coatings were examined by optical and scanning electron microscopy. In addition, the coatings were analyzed by X-ray diffraction and subjected to corrosion, tensile adhesion, microhardness and field tests in a volcanic pool in New Zealand. It was determined that the Ni-Al coatings could be applied to a depth of two inches on the tube ends. When sprayed on flat coupons the coatings exhibited relatively high adhesion strength and microhardness. Polarization curves showed that the coating performance was variable. Measured corrosion potentials indicated that the Ni-Al coatings are active towards steel coated with thermally conductive polymers, thereby suggesting preferential corrosion. Corrosion also occurred on the coated coupons tested in the volcanic pool. This may have been exacerbated by the difficulty in applying a uniform coating to the coupon edges. The Ni-Al coatings applied to the tubes had significant porosity and did not provide adequate corrosion protection. This is associated with

  3. Elevated and Low Temperature Deformation of Cast Depleted Uranium

    SciTech Connect

    Vogel, Sven C.

    2015-02-20

    Goals: Understand crystal structure and micro-structure changes during high and low temperature deformation of uranium, in particular texture, and develop constitutive micro-structure based model for uranium deformation. Deliverables achieved: Completed texture measures for 11 pre- and post-dU compression samples, quantified texture pre- and post-deformation, and provided data to constrain deformation models.

  4. Realization of high quality epitaxial current- perpendicular-to-plane giant magnetoresistive pseudo spin-valves on Si(001) wafer using NiAl buffer layer

    NASA Astrophysics Data System (ADS)

    Chen, Jiamin; Liu, J.; Sakuraba, Y.; Sukegawa, H.; Li, S.; Hono, K.

    2016-05-01

    In this letter, we report a NiAl buffer layer as a template for the integration of epitaxial current-perpendicular-plane-giant magnetoresistive (CPP-GMR) devices on a Si(001) single crystalline substrate. By depositing NiAl on a Si wafer at an elevated temperature of 500 °C, a smooth and epitaxial B2-type NiAl(001) layer was obtained. The surface roughness was further improved by depositing Ag on the NiAl layer and applying subsequent annealing process. The epitaxial CPP-GMR devices grown on the buffered Si(001) substrate present a large magnetoresistive output comparable with that of the devices grown on an MgO(001) substrate, demonstrating the possibility of epitaxial spintronic devices with a NiAl templated Si wafer for practical applications.

  5. Soft mode behavior in Ni--Al alloys

    SciTech Connect

    Shapiro, S.M.; Yang, B.X.; Shirane, G.; Larese, J.Z.; Tanner, L.E.; Moss, S.C.

    1988-06-01

    Inelastic neutron scattering experiments performed on carefully prepared single crystals of Ni/sub x/Al/sub 1/minus/x/ (x /equals/ 50, 58, 62.5 at. percent) reveal an anomaly in the //zeta//zeta/0)-TA mode whose position in /zeta/ depends linearly on x. The temperature dependent studies of the 62.5/percent/ alloy show marked softening of the phonon energy at /zeta/ /equals/ 1/6. At the same temperatures, an elastic central peak develops. At T/sub M/ /equals/ 80K a new structure develops which exhibits a modulation at nearly, but not exactly, /zeta/ /equals/ 1/7. 11 refs., 2 figs.

  6. Transformation to Ni5Al3 in a 63.0 at. pct Ni-Al alloy

    NASA Technical Reports Server (NTRS)

    Khadkikar, P. S.; Locci, I. E.; Vedula, K.; Michal, G. M.

    1993-01-01

    Microstructures of 63 at. pct P/M Ni-Al alloys with a composition close to the stoichiometry of the Ni5Al3 phase were investigated using homogenized and quenched specimens aged at low temperatures for various times. Results of analyses of XRD data and electron microscopy observations were used for quantitative phase analysis, performed to calculate the (NiAl + Ni5Al3)/Ni5Al3 phase boundary locations. The measured lattice parameters of Ni5Al3 phase formed at 823, 873, and 923 K indicated an increase in tetragonality of the phase with increasing nickel content.

  7. Thermodynamic analysis of compatibility of several reinforcement materials with beta phase NiAl alloys. Final report

    SciTech Connect

    Misra, A.K.

    1988-11-01

    Chemical compatibility of several reinforcement materials with beta phase NiAl alloys within the concentration range 40 to 50 at. percent Al have been analyzed from thermodynamic considerations at 1373 and 1573 K. The reinforcement materials considered in this study include carbides, borides, oxides, nitrides, beryllides, and silicides. Thermodynamic data for NiAl alloys have been reviewed and activity of Ni and Al in the beta phase have been derived at 1373 and 1573 K. Criteria for chemical compatibility between the reinforcement material and the matrix have been defined and several chemically compatible reinforcement materials have been defined.

  8. Fabrication and fracture behavior of metallic fiber reinforced NiAl matrix composites

    SciTech Connect

    Chang, S.Y.; Lin, S.J.

    1997-07-01

    NiAl intermetallic is recently of considerable interest as the high temperature structure material because of its high melting point, high specific stiffness, better oxidation and creep resistance. However, the low-temperature brittleness of the NiAl intermetallic remained a main reason for its unpopularity for industrial applications. Composite ductile phase toughening approaches have been utilized by many researchers to improve the fracture toughness of intermetallics. In liquid metallurgy, pressure casting or infiltration of molten nickel aluminide into a preform is the usual method for the fabrication of nickel aluminide intermetallic composites. But generally, it is not useful for metallic reinforcements because of the drastic reactions between the molten nickel aluminide and the metallic preform, and the difficulty in sustaining the performance of the metallic preform at a high temperature. In solid metallurgy, this process is based on reactive powder metallurgy and hot pressing, hot extrusion and hot isostatic pressing (HIP). High processing temperature and pressure, generally at a temperature of at least 1,200 C, are necessary conditions for hot pressing, hot extrusion and HIP. Hence the processes require sophisticated manufacturing equipment and considerable energy and render the application of nickel aluminide intermetallic composites unpopular. Work on reactive hot pressing(RHP) at a low temperature near the melting point of aluminum is reconsidered again. Efforts indicated that by combining the spontaneous reaction of the electrically coated nickel film and the aluminum foils, and hot pressing at a temperature about 500 C lower than previously accomplished by HIP, would overcome the fabrication problem of NiAl intermetallic composites reinforced with the uniformly distributed metallic fibers.

  9. An Introduction to the BFS Method and Its Use to Model Binary NiAl Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, J.; Amador, C.

    1998-01-01

    We introduce the Bozzolo-Ferrante-Smith (BFS) method for alloys as a computationally efficient tool for aiding in the process of alloy design. An intuitive description of the BFS method is provided, followed by a formal discussion of its implementation. The method is applied to the study of the defect structure of NiAl binary alloys. The groundwork is laid for a detailed progression to higher order NiAl-based alloys linking theoretical calculations and computer simulations based on the BFS method and experimental work validating each step of the alloy design process.

  10. Computer Simulations of Martensitic Transformations in FeNi and NiAl alloys

    NASA Astrophysics Data System (ADS)

    Meyer, Ralf; Kadau, Kai; Entel, Peter

    1998-03-01

    We have studied the martensitic transformation in FeNi and NiAl alloys by molecular dynamics simulations. The simulations have been done with the help of embedded-atom method potentials which made it possible for us to run simulations with up to 250000 atoms. Our results show the formation of a microstructure during the structural phase transition which possesses a characteristic length-scale leading to significant finite-size effects. Moreover we present phonon spectra and free energy curves obtained from the molecular dynamics simulations of smaller systems.

  11. Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study

    SciTech Connect

    Alfonso, Dominic R.; Tafen, De Nyago

    2015-04-28

    The atomic diffusion in fcc NiAl binary alloys was studied by kinetic Monte Carlo simulation. The environment dependent hopping barriers were computed using a pair interaction model whose parameters were fitted to relevant data derived from electronic structure calculations. Long time diffusivities were calculated and the effect of composition change on the tracer diffusion coefficients was analyzed. These results indicate that this variation has noticeable impact on the atomic diffusivities. A reduction in the mobility of both Ni and Al is demonstrated with increasing Al content. As a result, examination of the pair interaction between atoms was carried out for the purpose of understanding the predicted trends.

  12. ALCHEMI of Fe-doped B2-ordered NiAl alloys with different doping levels

    SciTech Connect

    Anderson, I.M.; Bentley, J.; Duncan, A.J.

    1994-09-01

    The ALCHEMI technique yields exact expressions for best-fit parameters in terms of ionization localization constants and site distributions of 3 elements distributed over two sublattices. In this paper, a graphical plotting technique is applied to Fe-doped NiAl B2-ordered alloys Ni{sub 0.5-x}Fe{sub x}Al{sub 0.5}, with x=0.02 or 0.10. The thin foil samples were examined in an electron microscope with an x-ray spectrometer.

  13. A systematic ALCHEMI study of Fe-doped NiAl alloys

    SciTech Connect

    Anderson, I.M.; Bentley, J.; Duncan, A.J.

    1995-06-01

    ALCHEMI site-occupation studies of alloying additions to ordered aluminide intermetallic alloys have been performed with varying degrees of success, depending on the ionization delocalization correction. This study examines the variation in the site-occupancy of Fe in B2-ordered NiAl vs solute concentration and alloy stoichiometry. The fraction of Fe on the `Ni` site is plotted vs Fe concentration. The good separation among the data from alloys of the three stoichiometries shows that the site occupancy of iron depends on the relative concentrations of the Ni and Al host elements; however a preference for the `Ni` site is clearly indicated.

  14. Spinal deformity.

    PubMed

    Bunnell, W P

    1986-12-01

    Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis. PMID:3786010

  15. Rumpling phenomenon in platinum modified Ni-Al alloys

    SciTech Connect

    Zimmerman, Benjamin Joseph

    2005-05-01

    Surface undulations known as rumpling have been shown to develop at the surface of bond coats used in advanced thermal barrier coating systems. Rumpling can result in cracking and eventual spallation of the top coat. Many mechanisms to explain rumpling have been proposed, and among them is a martensitic transformation. High-temperature x-ray diffraction, differential scanning calorimetry and potentiometry were used to investigate the nature of the martensitic transformation in bulk platinum-modified nickel aluminides. It was found that the martensitic transformation has strong time dependence and can form over a range of temperatures. Cyclic oxidation experiments were performed on the bulk alloys to investigate the effect of the martensitic transformation on surface rumpling. It was found that the occurrence of rumpling was associated with the martensitic transformation. The degree of rumpling was found to increase with an increasing number of cycles and was independent of the heating and cooling rates used. The thickness of the oxide layer at the surface of the samples had a significant impact on the amplitude of the resulting undulations, with amplitude increasing with increasing oxide-layer thickness. Rumpling was also observed in an alloy based on the γ-γ' region of the nickel-aluminum-platinum phase diagram. Rumpling in this alloy was found to occur during isothermal oxidation and is associated with a subsurface layer containing a platinum-rich phase known as a. Rumpling in both alloy systems may be explained by creep deformation of a weakened subsurface layer in response to the compressive stresses in the thermally grown oxide layer.

  16. Brittle-ductile deformation effects on zircon crystal-chemistry and U-Pb ages: an example from the Finero Mafic Complex (Ivrea-Verbano Zone, western Alps)

    NASA Astrophysics Data System (ADS)

    Langone, Antonio; José Alberto, Padrón-Navarta; Zanetti, Alberto; Mazzucchelli, Maurizio; Tiepolo, Massimo; Giovanardi, Tommaso; Bonazzi, Mattia

    2016-04-01

    A detailed structural, geochemical and geochronological survey was performed on zircon grains from a leucocratic dioritic dyke discordantly intruded within meta-diorites/gabbros forming the External Gabbro unit of the Finero Mafic Complex. This latter is nowadays exposed as part of a near complete crustal section spanning from mantle rocks to upper crustal metasediments (Val Cannobina, Ivrea-Verbano Zone, Italy). The leucocratic dyke consists mainly of plagioclase (An18-24Ab79-82Or0.3-0.7) with subordinate amounts of biotite, spinel, zircon and corundum. Both the leucocratic dyke and the surrounding meta-diorites show evidence of ductile deformation occurred under amphibolite-facies conditions. Zircon grains (up to 2 mm in length) occur mainly as euhedral grains surrounded by fine grained plagioclase-dominated matrix and pressure shadows, typically filled by oxides. Fractures and cracks within zircon are common and can be associated with grain displacement or they can be filled by secondary minerals (oxides and chlorite). Cathodoluminescence (CL) images show that zircon grains have internal features typical of magmatic growth, but with local disturbances. However EBSD maps on two selected zircon grains revealed a profuse mosaic texture resulting in an internal misorientation of ca. 10o. The majority of the domains of the mosaic texture are related to parting and fractures, but some domains show no clear relation with brittle features. Rotation angles related to the mosaic texture are not crystallographically controlled. In addition, one of the analysed zircons shows clear evidence of plastic deformation at one of its corners due to indentation. Plastic deformation results in gradual misorientations of up to 12o, which are crystallographically controlled. Trace elements and U-Pb analyses were carried out by LA-ICP-MS directly on petrographic thin sections and designed to cover the entire exposed surface of selected grains. Such investigations revealed a strong

  17. Brittle-ductile deformation effects on zircon crystal-chemistry and U-Pb ages: an example from the Finero Mafic Complex (Ivrea-Verbano Zone, western Alps)

    NASA Astrophysics Data System (ADS)

    Langone, Antonio; José Alberto, Padrón-Navarta; Zanetti, Alberto; Mazzucchelli, Maurizio; Tiepolo, Massimo; Giovanardi, Tommaso; Bonazzi, Mattia

    2016-04-01

    A detailed structural, geochemical and geochronological survey was performed on zircon grains from a leucocratic dioritic dyke discordantly intruded within meta-diorites/gabbros forming the External Gabbro unit of the Finero Mafic Complex. This latter is nowadays exposed as part of a near complete crustal section spanning from mantle rocks to upper crustal metasediments (Val Cannobina, Ivrea-Verbano Zone, Italy). The leucocratic dyke consists mainly of plagioclase (An18‑24Ab79‑82Or0.3‑0.7) with subordinate amounts of biotite, spinel, zircon and corundum. Both the leucocratic dyke and the surrounding meta-diorites show evidence of ductile deformation occurred under amphibolite-facies conditions. Zircon grains (up to 2 mm in length) occur mainly as euhedral grains surrounded by fine grained plagioclase-dominated matrix and pressure shadows, typically filled by oxides. Fractures and cracks within zircon are common and can be associated with grain displacement or they can be filled by secondary minerals (oxides and chlorite). Cathodoluminescence (CL) images show that zircon grains have internal features typical of magmatic growth, but with local disturbances. However EBSD maps on two selected zircon grains revealed a profuse mosaic texture resulting in an internal misorientation of ca. 10o. The majority of the domains of the mosaic texture are related to parting and fractures, but some domains show no clear relation with brittle features. Rotation angles related to the mosaic texture are not crystallographically controlled. In addition, one of the analysed zircons shows clear evidence of plastic deformation at one of its corners due to indentation. Plastic deformation results in gradual misorientations of up to 12o, which are crystallographically controlled. Trace elements and U-Pb analyses were carried out by LA-ICP-MS directly on petrographic thin sections and designed to cover the entire exposed surface of selected grains. Such investigations revealed a strong

  18. Phase and structural stability in Ni-Al systems from first principles

    NASA Astrophysics Data System (ADS)

    Goiri, Jon Gabriel; Van der Ven, Anton

    2016-09-01

    We report on a comprehensive first-principles study of phase stability in the Ni-Al binary, both at zero Kelvin and at finite temperature. First-principles density functional theory calculations of the energies of enumerated orderings on fcc and the sublattices of B2 not only predict the stability of known phases, but also reveal the stability of a family of ordered phases that combine features of L 12 and L 10 in different ratios to adjust their overall composition. The calculations also confirm the stability of vacancy ordered B2 derivatives that are stable in the Al-rich half of the phase diagram. We introduce strain order parameters to systematically analyze instabilities with respect to the Bain path connecting the fcc and bcc lattices. Many unstable orderings on both fcc and bcc are predicted around compositions of xNi=0.625 , where a martensitic phase transformation is known to occur. Cluster expansion techniques together with Monte Carlo simulations were used to calculate a finite-temperature-composition phase diagram of the Ni-Al binary. The calculated phase diagram together with an analysis of Bain instabilities reveals the importance of anharmonicity in determining the phase bounds between the B2 based β phase and the L 12 based γ' phase, as well as properties related to martensitic transformations that are observed upon quenching Ni-rich β .

  19. Nial-base composite containing high volume fraction of AlN for advanced engines

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G. (Inventor); Whittenberger, John D. (Inventor); Lowell, Carl E. (Inventor)

    1997-01-01

    A particulate reinforced NiAl-AlN composite alloy has a NiAl matrix and greater than about 13 volume percent fine particles of AlN within the matrix. The particles preferably have a diameter from about 15 nanometers to about 50 nanometers. The particulate reinforced NiAl-AlN composite alloy may be prepared by cryomilling prealloyed NiAl in liquid nitrogen using grinding media having a diameter of from about 2 mm to about 6 mm at an impeller speed of from about 450 RPM to about 800 RPM. The cryomilling may be done for a duration of from about 4 hours to about 20 hours to obtain a cryomilled powder. The cryomilled powder may be consolidated to form the particulate reinforced NiAl-AlN composite alloy. The particulate reinforced alloy can further include a toughening alloy. The toughening alloy may include NiCrAlY, FeCrAY and FeAl.

  20. Electrodeposition of Ni-Al2O3 nano composite coating and evaluation of wear characteristics

    NASA Astrophysics Data System (ADS)

    Raghavendra, C. R.; Basavarajappa, S.; Sogalad, Irappa

    2016-09-01

    Electrodeposition is one of the most technologically feasible and economically superior technique for producing metallic coating. The advancement in the application of nano particles has grabbed the attention in all fields of engineering. In this present study an attempt has been made on the nano particle composite coating on aluminium substrate by electrodeposition process. The aluminium surface requires a specific pre-treatment for better adherence of coating. In light of this a thin zinc layer is coated on the aluminium substrate by electroless process. This layer offers protection against oxidation thus prevents the formation of a native oxide layer. In this work Ni-Al2O3 composite coating were successfully coated by varying the process parameters such as bath temperature, current density and particle loading. The experimentation was performed using central composite design based 20 trials of experiments. The effect of process parameters on surface morphology and wear behavior was studied. The results shown a better wear resistance of Ni-Al2O3 composite electrodeposited coating compared to Ni coating. The particle loading and interaction effect of current density with temperature has greater significant effect on wear rate followed by the bath temperature. The decrease in wear rate was observed with the increased current density and temperature.

  1. Defect Structure of Beta NiAl Using the BFS Method for Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Amador, Carlos; Ferrante, John; Noebe, Ronald D.

    1996-01-01

    The semiempirical BFS method for alloys is generalized by replacing experimental input with first-principles results thus allowing for the study of complex systems. In order to examine trends and behavior of a system in the vicinity of a given point of the phase diagram a search procedure based on a sampling of selected configurations is employed. This new approach is applied to the study of the beta phase of the Ni-Al system, which exists over a range of composition from 45-60 at.% Ni. This methodology results in a straightforward and economical way of reproducing and understanding the basic features of this system. At the stoichiometric composition, NiAl should exist in a perfectly ordered B2 structure. Ni-rich alloys are characterized by antisite point defects (with Ni atoms in the Al sites) with a decrease in lattice parameters. On the Al-rich side of stoichiometry there is a steep decrease in lattice parameter and density with increasing Al content. The presence of vacancies in Ni sites would explain such behavior. Recent X-ray diffraction experiments suggest a richer structure: the evidence, while strongly favoring the presence of vacancies in Ni sites, also suggests the possibility of some vacancies in Al sites in a 3:1 ratio. Moreover, local ordering of vacant sites may be preferred over a random distribution of individual point defects.

  2. Plasma Sprayed Ni-Al Coatings for Safe Ending Heat Exchanger Tubes

    SciTech Connect

    Allen, M.L.; Berndt, C.C.; Otterson, D.

    1998-11-01

    Brookhaven National Laboratory (BNL) has developed thermally conductive composite liners for corrosion and scale protection in heat exchanger tubes exposed to geothermal brine. The liners cannot withstand roller expansion to connect the tubes to the tubesheet. It is not possible to line the ends of the tubes with the same material after roller expansion due to the nature of the current liner application process. It was requested that BNL evaluate plasma sprayed Ni-Al coatings for safe ending heat exchanger tubes exposed to geothermal brine. The tubes of interest had an internal diameter of 0.875 inches. It is not typical to thermal spray small diameter components or use such small standoff distances. In this project a nozzle extension was developed by Zatorski Coating Company to spray the tube ends as well as flat coupons for testing. Four different Ni-Al coatings were investigated. One of these was a ductilized Ni-AlB material developed at Oak Ridge National Laboratory. The coatings were examined by optical and scanning electron microscopy. In addition, the coatings were analyzed by X-ray diffraction and subjected to corrosion, tensile adhesion, microhardness and field tests in a volcanic pool in New Zealand.

  3. Numerical simulation of shock initiation of Ni/Al multilayered composites

    SciTech Connect

    Sraj, Ihab; Knio, Omar M.; Specht, Paul E.; Thadhani, Naresh N.; Weihs, Timothy P.

    2014-01-14

    The initiation of chemical reaction in cold-rolled Ni/Al multilayered composites by shock compression is investigated numerically. A simplified approach is adopted that exploits the disparity between the reaction and shock loading timescales. The impact of shock compression is modeled using CTH simulations that yield pressure, strain, and temperature distributions within the composites due to the shock propagation. The resulting temperature distribution is then used as initial condition to simulate the evolution of the subsequent shock-induced mixing and chemical reaction. To this end, a reduced reaction model is used that expresses the local atomic mixing and heat release rates in terms of an evolution equation for a dimensionless time scale reflecting the age of the mixed layer. The computations are used to assess the effect of bilayer thickness on the reaction, as well as the impact of shock velocity and orientation with respect to the layering. Computed results indicate that initiation and evolution of the reaction are substantially affected by both the shock velocity and the bilayer thickness. In particular, at low impact velocity, Ni/Al multilayered composites with thick bilayers react completely in 100 ms while at high impact velocity and thin bilayers, reaction time was less than 100 μs. Quantitative trends for the dependence of the reaction time on the shock velocity are also determined, for different bilayer thickness and shock orientation.

  4. Ni adsorption and Ni-Al LDH precipitation in a sandy aquifer: an experimental and mechanistic modeling study.

    PubMed

    Regelink, Inge C; Temminghoff, Erwin J M

    2011-03-01

    Mining activities and industries have created nickel (Ni) contaminations in many parts of the world. The objective of this study is to increase our understanding of Ni adsorption and Nickel-Aluminium Layered Double Hydroxide (Ni-Al LDH) precipitation to reduce Ni mobility in a sandy soil aquifer. At pH ≥ 7.2 both adsorption and Ni-Al LDH precipitation occurred. In batch experiments with the sandy soil up to 70% of oxalate-extractable Al was taken up in LDH formation during 56 days. In a long term column experiment 99% of influent Ni was retained at pH 7.5 due to Ni adsorption (≈ 34%) and Ni-Al LDH precipitation (≈ 66%) based on mechanistic reactive transport modeling. The subsequent leaching at pH 6.5 could be largely attributed to desorption. Our results show that even in sandy aquifers with relatively low Al content, Ni-Al LDH precipitation is a promising mechanism to immobilize Ni. PMID:21186070

  5. Ni adsorption and Ni-Al LDH precipitation in a sandy aquifer: an experimental and mechanistic modeling study.

    PubMed

    Regelink, Inge C; Temminghoff, Erwin J M

    2011-03-01

    Mining activities and industries have created nickel (Ni) contaminations in many parts of the world. The objective of this study is to increase our understanding of Ni adsorption and Nickel-Aluminium Layered Double Hydroxide (Ni-Al LDH) precipitation to reduce Ni mobility in a sandy soil aquifer. At pH ≥ 7.2 both adsorption and Ni-Al LDH precipitation occurred. In batch experiments with the sandy soil up to 70% of oxalate-extractable Al was taken up in LDH formation during 56 days. In a long term column experiment 99% of influent Ni was retained at pH 7.5 due to Ni adsorption (≈ 34%) and Ni-Al LDH precipitation (≈ 66%) based on mechanistic reactive transport modeling. The subsequent leaching at pH 6.5 could be largely attributed to desorption. Our results show that even in sandy aquifers with relatively low Al content, Ni-Al LDH precipitation is a promising mechanism to immobilize Ni.

  6. Quaternary deformation

    SciTech Connect

    Brown, R.D. Jr.

    1990-01-01

    Displaced or deformed rock units and landforms record the past 2 m.y. of faulting, folding, uplift, and subsidence in California. Properly interpreted, such evidence provides a quantitative basis for predicting future earthquake activity and for relating many diverse structures and landforms to the 5 cm/yr of horizontal motion at the boundary between the North American and Pacific plates. Modern techniques of geologic dating and expanded research on earthquake hazards have greatly improved our knowledge of the San Andreas fault system. Much of this new knowledge has been gained since 1965, and that part which concerns crustal deformation during the past 2 m.y. is briefly summarized here.

  7. Closed field unbalanced magnetron sputtering ion plating of Ni/Al thin films: influence of the magnetron power.

    PubMed

    Said, R; Ahmed, W; Gracio, J

    2010-04-01

    In this study NiAl thin films have been deposited using closed field unbalanced magnetron sputtering Ion plating (CFUBMSIP). The influence of magnetron power has been investigated using dense and humongous NiAl compound targets onto stainless steel and glass substrates. Potential applications include tribological, electronic media and bond coatings in thermal barrier coatings system. Several techniques has been used to characterise the films including surface stylus profilometry, energy dispersive spectroscopy (EDAX), X-Ray diffraction (XRD) Composition analysis of the samples was carried out using VGTOF SIMS (IX23LS) and Atomic force microscopy (AFM). Scratch tester (CSM) combined with acoustic emission singles during loading in order to compare the coating adhesion. The acoustic emission signals emitted during the indentation process were used to determine the critical load, under which the film begins to crack and/or break off the substrate. The average thickness of the films was approximately 1 um. EDAX results of NiAl thin films coating with various magnetron power exhibited the near equal atomic% Ni:Al. The best result being obtained using 300 W and 400 W DC power for Ni and Al targets respectively. XRD revealed the presence of beta NiAl phase for all the films coatings. AFM analysis of the films deposited on glass substrates exhibited quite a smooth surface with surface roughness values in the nanometre range. CSM results indicate that best adhesion was achieved at 300 W for Ni, and 400 W for Al targets compared to sample other power values. SIMS depth profile showed a uniform distribution of the Ni and Al component from the surface of the film to the interface.

  8. 1300 K Creep Behavior of [001] Oriented Ni-49Al-1Hf (at.%) Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Locci, I. E.; Darolia, Ram; Bowman, R.

    1999-01-01

    A study of the 1300 K compressive and tensile creep properties of [001]-oriented NiAl-1Hf (D209) single crystals has been undertaken. Neither post homogenization cooling treatment, minor chemical variations within an ingot or from ingot-to-ingot, nor testing procedure had a significant effect on mechanical behavior; however a heat treatment which dissolved the initial G-phase precipitates and promoted formation of Heusler particles led to a strength reduction. Little primary creep was found utilizing direct measurement of strain, and a misorientation of 18 deg from the [001] did not reduce the creep strength. The effects of heat treatments on properties and a comparison of the flow stress-strain rate data to those predicted by the Jaswon-Cottrell solid solution hardening model indicate that the 1300 K strength in NiAl-1Hf single crystals is mainly due to precipitation hardening mechanisms.

  9. Cubic Wavefunction Deformation of Compressed Atoms

    NASA Astrophysics Data System (ADS)

    Portela, Pedro Calvo; Llanes-Estrada, Felipe J.

    2015-05-01

    We hypothesize that in a non-metallic crystalline structure under extreme pressures, atomic wavefunctions deform to adopt a reduced rotational symmetry consistent with minimizing interstitial space in the crystal. We exemplify with a simple numeric variational calculation that yields the energy cost of this deformation for Helium to 25 %. Balancing this with the free energy gained by tighter packing we obtain the pressures required to effect such deformation. The consequent modification of the structure suggests a decrease in the resistance to tangential stress, and an associated decrease of the crystal's shear modulus. The atomic form factor is also modified. We also compare with neutron matter in the interior of compact stars.

  10. Mechanism of abnormally slow crystal growth of CuZr alloy

    SciTech Connect

    Yan, X. Q.; Lü, Y. J.

    2015-10-28

    Crystal growth of the glass-forming CuZr alloy is shown to be abnormally slow, which suggests a new method to identify the good glass-forming alloys. The crystal growth of elemental Cu, Pd and binary NiAl, CuZr alloys is systematically studied with the aid of molecular dynamics simulations. The temperature dependence of the growth velocity indicates the different growth mechanisms between the elemental and the alloy systems. The high-speed growth featuring the elemental metals is dominated by the non-activated collision between liquid-like atoms and interface, and the low-speed growth for NiAl and CuZr is determined by the diffusion across the interface. We find that, in contrast to Cu, Pd, and NiAl, a strong stress layering arisen from the density and the local order layering forms in front of the liquid-crystal interface of CuZr alloy, which causes a slow diffusion zone. The formation of the slow diffusion zone suppresses the interface moving, resulting in much small growth velocity of CuZr alloy. We provide a direct evidence of this explanation by applying the compressive stress normal to the interface. The compression is shown to boost the stress layering in CuZr significantly, correspondingly enhancing the slow diffusion zone, and eventually slowing down the crystal growth of CuZr alloy immediately. In contrast, the growth of Cu, Pd, and NiAl is increased by the compression because the low diffusion zones in them are never well developed.

  11. 1300 K compressive properties of several dispersion strengthened NiAl materials

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Gaydosh, D. J.; Kumar, K. S.

    1990-01-01

    To examine the potential of rapid solidification technology (RST) as a means to fabricate dispersion-strengthened aluminides, cylindrical compression samples were machined from the gauge section of their tensile specimens and tested in air at 1300 K. While microscopy indicates that RST can produce fine dispersions of TiB2, TiC and HfC in a NiAl matrix, the mechanical property data reveal that only HfC successfully strengthens the intermetallic matrix. The high stress exponents (above 10) and/or independence of strain rate on stress for NiAl-HfC materials suggest elevated temperature mechanical behavior similar to that found in oxide dispersion-strengthened alloys. Furthermore, an apparent example of departure side pinning has been observed, and as such, it is indicative of a threshold stress for creep.

  12. Ductility enhancement in NiAl (B2)-base alloys by microstructural control

    NASA Astrophysics Data System (ADS)

    Ishida, K.; Kainuma, R.; Ueno, N.; Nishizawa, T.

    1991-02-01

    An attempt to improve ductility of NiAl (B2)-base alloys has been made by the addition of alloying elements and the control of microstructure. It has been found that a small amount of fcc γ phase formed by the addition of Fe, Co, and Cr has a drastic effect not only on the hot workability but also on the tensile ductility at room temperature. The enhancement in ductility is mainly due to the modification of Β-phase grains by the coexistence of γ phase. The effect of alloying elements on the hot forming ability is strongly related to the phase equilibria and partition behavior among γ, γ' (L12 structure), and Β phases in the Ni-Al-X alloy systems. The ductility-enhancement method shows promise for expanding the practical application of nickel aluminide.

  13. Comparison of Tribological Properties of NiAl Matrix Composites Containing Graphite, Carbon Nanotubes, or Graphene

    NASA Astrophysics Data System (ADS)

    Xu, Zengshi; Zhang, Qiaoxin; Shi, Xiaoliang; Zhai, Wenzheng; Zhu, Qingshuai

    2015-05-01

    To better understand respective lubrication effects and mechanisms of graphite, multi-walled carbon nanotubes (MWNTs), and multilayer graphene (MLG), comparison of tribological properties of NiAl matrix composites (NAMC) containing graphite, MWNTs, or MLG is investigated. Tribological results clearly indicate that the incorporation of solid lubricant remarkably improves the tribological properties of NAMC. NAMC containing MWNTs have better tribological properties than that containing graphite. NAMC containing MLG have the best tribological properties. EPMA, AFM, and FESEM analyses of worn surfaces suggest that the discontinuous island-like solid lubricant-rich films with different compacting extent forms on the worn surfaces of NAMC containing solid lubricant. The worn surface of NAM shows the slighter delamination and comparatively more compact films than that of NAC; in contrast, the worn surface of NAG presents the slightest delamination and the most compact films. It is concluded that graphite, MWNTs, and MLG indeed possess different lubrication effects and mechanisms.

  14. Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study

    DOE PAGES

    Alfonso, Dominic R.; Tafen, De Nyago

    2015-04-28

    The atomic diffusion in fcc NiAl binary alloys was studied by kinetic Monte Carlo simulation. The environment dependent hopping barriers were computed using a pair interaction model whose parameters were fitted to relevant data derived from electronic structure calculations. Long time diffusivities were calculated and the effect of composition change on the tracer diffusion coefficients was analyzed. These results indicate that this variation has noticeable impact on the atomic diffusivities. A reduction in the mobility of both Ni and Al is demonstrated with increasing Al content. As a result, examination of the pair interaction between atoms was carried out formore » the purpose of understanding the predicted trends.« less

  15. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approx. 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  16. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33 Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approximately 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  17. Rapid fabrication and characterization of superhydrophobic tri-dimensional Ni/Al coatings

    NASA Astrophysics Data System (ADS)

    Guo, Xiaogang; Li, Xueming; Wei, Zhibo; Li, Xiaolin; Niu, Lidan

    2016-11-01

    Superhydrophobic tri-dimensional Ni/Al coatings (3DNACs) with great application value have been successfully fabricated via a simple two-step method combined with hydrogen bubble dynamic template and electrophoretic deposition technique after 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane treatment. The surface morphologies and chemical compositions were analyzed by FE-SEM, EDS, XRD, AFM and FT-IR in detail. The water contact angle of superhydrophobic 3DNACs surface was as high as 156 ± 2° (>150) much larger than that of unmodified samples. Moreover, the obtained samples exhibited great thermal properties and combustion performance. Thus, the superhydrophobic 3DNACs with prominent exothermic capability turn out to be a promising novel energy in field of mirco/nano energy materials for longer-term storage or transportation, especially in high humid environment.

  18. Point defect concentrations and solid solution hardening in NiAl with Fe additions

    SciTech Connect

    Pike, L.M.; Chang, Y.A.; Liu, C.T.

    1997-08-01

    The solid solution hardening behavior exhibited when Fe is added to NiAl is investigated. This is an interesting problem to consider since the ternary Fe additions may choose to occupy either the Ni or the Al sublattice, affecting the hardness at differing rates. Moreover, the addition of Fe may affect the concentrations of other point defects such as vacancies and Ni anti-sites. As a result, unusual effects ranging from rapid hardening to solid solution softening are observed. Alloys with varying amounts of Fe were prepared in Ni-rich (40 at. % Al) and stoichiometric (50 at. % Al) compositions. Vacancy concentrations were measured using lattice parameter and density measurements. The site occupancy of Fe was determined using ALCHEMI. Using these two techniques the site occupancies of all species could be uniquely determined. Significant differences in the defect concentrations as well as the hardening behavior were encountered between the Ni-rich and stoichiometric regimes.

  19. Crustal deformation

    NASA Astrophysics Data System (ADS)

    Larson, Kristine M.

    1995-07-01

    Geodetic measurements of crustal deformation provide direct tests of geophysical models which are used to describe the dynamics of the Earth. Although geodetic observations have been made throughout history, only in the last several hundred years have they been sufficiently precise for geophysical studies. In the 19th century, these techniques included leveling and triangulation. Approximately 25 years ago, trilateration measurements were initiated by the USGS (United States Geological Survey) to monitor active faults in the United States. Several years later, NASA (National Aeronautics and Space Administration) begin an effort to measure plate tectonic motions on a global scale, using space geodetic techniques, VLBI (Very Long Baseline Interferometry) and SLR (Satellite Laser Ranging). The period covered by this report to the IUGG, 1991-1994, was a transition period in the field of crustal deformation. Trilateration measurements (previously the backbone of measurements across plate boundaries in the western United States and Alaska) have been abandoned. This system was labor-intensive, involved highly trained crews to carry out the observations, and only measured the length between sites. In addition, NASA drastically cut the budgets for VLBI and SLR during this period. Fixed site VLBI systems are still operational, but mobile VLBI measurements in North America have ceased. SLR measurements continue on a global scale, but the remaining crustal deformation measurements are now being made with the Global Positioning System (GPS). Nonetheless, because of the time scales involved, older geodetic data (including leveling, triangulation, and trilateration) continue to be important for many geophysical studies.

  20. Microstructure characterization and room temperature deformation of a rapidly solidified NiAl-based eutectic alloy containing trace Dy

    NASA Astrophysics Data System (ADS)

    Li, Hutian; Guo, Jianting; Huai, Kaiwen; Ye, Hengqiang

    2006-04-01

    The microstructure and room temperature compressive deformation behavior of a rapidly solidified NiAl-Cr(Mo)-Dy eutectic alloy fabricated by water-cooled copper mold method were studied by a combination of SEM, EDS and compressive tests. The morphology stability after hot isostatic pressing (HIP) treatment was evaluated. Rapid solidification resulted in a shift in the coupled zone for the eutectic growth towards the Cr(Mo) phase, indicating a hypoeutectic composition, hence increasing the volume fraction of primary dendritic NiAl. Meanwhile, significantly refined microstructure and lamellar/rod-like Cr(Mo) transition were observed due to trace rare earth (RE) element Dy addition and rapid solidification effects. Compared with the results in literature [H.E. Cline, J.L. Walter, Metall. Trans. 1(1970)2907-2917; P. Ferrandini, W.W. Batista, R. Caram, J. Alloys Comp. 381(2004)91-98], an interesting phenomenon, viz., NiAl halos around the primary Cr(Mo) dendrites in solidified NiAl-Cr(Mo) hypereutectic alloy, was not observed in this study. This difference was interpreted in terms of their different reciprocal nucleation ability. In addition, it was proposed that the localized destabilization of morphology after HIP treatment is closely related to the presence of primary NiAl dendrites. The improved mechanical properties can be attributed to the synergistic effects of rapid solidification and Dy addition, which included refined microstructure, suppression of the crack development along eutectic grain boundaries, enhancement of density of geometrically necessary dislocations located at NiAl/Cr(Mo) interfaces and the Cr solubility extension in NiAl.

  1. CO2 reforming of CH4 over CeO2-doped Ni/Al2O3 nanocatalyst treated by non-thermal plasma.

    PubMed

    Rahemi, Nader; Haghighi, Mohammad; Babaluo, Ali Akbar; Jafari, Mahdi Fallah; Estifaee, Pooya

    2013-07-01

    Ni/Al2O3 and Ni/Al2O3-CeO2 nanocatalysts have been prepared with impregnation method, treated with non-thermal plasma, characterized and tested for dry reforming of methane. For catalyst characterization, the following techniques have been used: XRD, FESEM, TEM, EDX dot mapping, BET, FTIR, TG-DTG, and XPS techniques. According to XRD and XPS, Ni in all catalysts exists as NiO and NiAl2O4 that existence of NiAl2O4 reveals strong interaction between active phase and support. Catalyst particles had smaller average particle size in plasma treated Ni/Al2O3-CeO2 nanocatalyst with less agglomeration. Homogenous dispersion of active phase, narrower particle size distribution, and uniform morphology has been observed in ceria containing plasma treated catalyst. The plasma treated Ni/Al2O3-CeO2 nanocatalyst showed bigger NiAl2O4/NiO ratio in XPS analysis that is indicative of stronger interaction between Ni and Al2O3 in the presence of CeO2. The dry reforming of methane was carried out at 550-850 degrees C using a mixture of CH4:CO2 (0.5:2). Improved morphology of the plasma treated Ni/Al2O3-CeO2 nanocatalyst, resulted from both CeO2 and plasma treatment, caused higher ability of catalyst in H2 and CO production. Product yield decreased at higher GHSVs, due to the fact that mass transport limitations will be more severe at low residence time, but this reduction would be less noticeable in the plasma treated Ni/Al2O3-CeO2 nanocatalyst. In addition, the plasma treated Ni/Al2O3-CeO2 nanocatalyst can keep the reactivity without deactivation for either CH4 or CO2 conversion better than other investigated catalysts.

  2. Growth and characterisation of NiAl and N-doped NiAl films deposited by closed field unbalanced magnetron sputtering ion plating using elemental ni and Al targets.

    PubMed

    Said, R; Ahmed, W; Abuain, T; Abuazza, A; Gracio, J

    2010-04-01

    Closed Field Unbalanced Magnetron Sputtering Ion Plating (CFUBMSIP) has been used to deposit undoped and nitrogen doped NiAI thin films onto glass and stainless steel 316 substrates. These films have potential applications in tribological, electronic media and thermal barrier coatings. The surface characteristics, composition, mechanical and structural properties have been investigated using stylus profilometry, X-ray diffraction (XRD), Energy dispersive spectroscopy (EDAX), Atomic force microscopy (AFM) and nanoindentation. The average thickness of the films was approximately 1 microm. The X-ray diffraction spectra revealed the presence of the beta NiAl phase. The EDAX results revealed that all of the undoped and nitrogen doped NiAl thin films exhibited the near equiatomic NiAl composition with the best results being achieved using 300 Watts DC power for Ni and 400 Watts DC power for Al targets respectively. AFM results of both types of films deposited on glass samples exhibited a surface roughness of less than 100 nm. The nanoindenter results for coatings on glass substrates displayed hardness and elastic modulus of 7.7 GPa and 100 GPa respectively. The hardest coatings obtained were obtained at 10% of nitrogen.

  3. Theoretical analysis of compatibility of several reinforcement materials with NiAl and FeAl matrices

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1989-01-01

    Several potential reinforcement materials were assessed for their chemical, coefficient of thermal expansion (CTE), and mechanical compatibility with the intermetallic matrices based on NiAl and FeAl. Among the ceramic reinforcement materials, Al2O3, TiC, and TiB2, appear to be the optimum choices for NiAl and FeAl matrices. However, the problem of CTE mismatch with the matrix needs to be solved for these three reinforcement materials. Beryllium-rich intermetallic compounds can be considered as potential reinforcement materials provided suitable reaction barrier coatings can be developed for these. Based on preliminary thermodynamic calculations, Sc2O3 and TiC appear to be suitable as reaction barrier coatings for the beryllides. Several reaction barrier coatings are also suggested for the currently available SiC fibers.

  4. Interdiffusion and intrinsic diffusion in the NiAl /delta/ phase of the Al-Ni system

    NASA Technical Reports Server (NTRS)

    Shankar, S.; Seigle, L. L.

    1978-01-01

    Interdiffusion coefficients at 950 to 1150 C and the ratio of intrinsic diffusion coefficients at 1100 C were measured as functions of composition in the NiAl (delta) phase of the Al-Ni system, using a vapor-solid technique. Diffusivity values were also obtained for the Ni3Al (epsilon) and Ni (Al) solid solution (zeta) phases from 950 to 1150 C. The interdiffusion coefficient in NiAl (delta) varies several orders of magnitude over the delta phase field with a deep minimum in the diffusivity-composition curve at 48 to 49 at% Al. The ratio of intrinsic diffusion coefficients DNi/DAl, in the delta phase also varies with composition from a value of 3 to 3.5 below 50 at% Al to 0.1 or less above 50 at% Al.

  5. Atomistic Simulations and Experimental Analysis of the Effect of Ti Additions on the Structure of NiAl

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, John; Garg, Anita; Amador, Carlos

    1997-01-01

    The Bozzolo-Ferrante-Smith (BFS) semiempirical method for alloy energetics is applied to the study of ternary additions to NiAl alloys. A detailed description of the method and its application to alloy design is given. Two different approaches are used in the analysis of the effect of Ti additions to NiAl. First, a thorough analytical study is performed, where the energy of formation, lattice parameter and bulk modulus are calculated for hundreds of possible atomic distributions of Ni, Al and Ti. Substitutional site preference schemes and formation of precipitates are thus predicted and analyzed. The second approach used consists of the determination of temperature effects on the final results, as obtained by performing a number of large scale numerical simulations using the Monte Carlo - Metropolis procedure and BFS for the calculation of the energy at every step in the simulation. The results indicate a sharp preference of Ti for Al sites in Ni-rich NiAl alloys and the formation of ternary Heusler precipitates beyond the predicted solubility limit of 5 at. % Ti. Experimental analysis of three NiAl+Ti alloys confirms the theoretical predictions.

  6. BFS Simulation and Experimental Analysis of the Effect of Ti Additions on the Structure of NiAl

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante,John; Garg, Anita; Honecy, Frank S.; Amador, Carlos

    1999-01-01

    The Bozzolo-Ferrante-Smith (BFS) method for alloy energetics is applied to the study of ternary additions to NiAl. A description of the method and its application to alloy design is given. Two different approaches are used in the analysis of the effect of Ti additions to NiAl. First, a thorough analytical study is performed, where the energy of formation, lattice parameter and bulk modulus are calculated for a large number of possible atomic distributions of Ni, Al and Ti. Substitutional site preference schemes and formation of precipitates are thus predicted and analyzed. The second approach used consists of the determination of temperature effects on the final results, as obtained by performing a number of large scale numerical simulations using the Monte Carlo-Metropolis procedure and BFS for the calculation of the energy at every step in the simulation. The results indicate a sharp preference of Ti for Al sites in Ni-rich NiAl alloys and the formation of ternary Heusler precipitates beyond the predicted solubility limit of 5 at. % Ti. Experimental analysis of three Ni-Al-Ti alloys confirms the theoretical predictions.

  7. Plastic Deformations in Complex Plasmas

    SciTech Connect

    Durniak, C.; Samsonov, D.

    2011-04-29

    Complex plasmas are macroscopic model systems of real solids and liquids, used to study underdamped dynamics and wave phenomena. Plastic deformations of complex plasma crystals under slow uniaxial compression have been studied experimentally and numerically. It is shown that the lattice becomes locally sheared and that this strain is relaxed by shear slips resulting in global uniform compression and heat generation. Shear slips generate pairs of dislocations which move in opposite directions at subsonic speeds.

  8. Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms

    NASA Astrophysics Data System (ADS)

    Kaercher, P. M.; Zepeda-Alarcon, E.; Prakapenka, V.; Kanitpanyacharoen, W.; Smith, J.; Sinogeikin, S. V.; Wenk, H. R.

    2014-12-01

    The crystal structure of the high pressure SiO2 polymorph stishovite has been studied in detail, yet little is known about its deformation mechanisms. Information about how stishovite deforms under stress is important for understanding subduction of quartz-bearing crustal rocks into the mantle. Particularly, stishovite is elastically anisotropic and thus development of crystallographic preferred orientation (CPO) during deformation may contribute to seismic anomalies in the mantle. We converted a natural sample of flint to stishovite in a laser heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. Diffraction patterns were collected in situ in radial geometry at the Advanced Light Source (ALS) and the Advanced Photon Source (APS) to examine development of CPO during deformation. We find that (001) poles preferentially align with the compression direction and infer deformation mechanisms leading to the observed CPO with visco-plastic self consistent (VPSC) polycrystal plasticity models. Our results show pyramidal and basal slip are most likely active at high pressure and ambient temperature, in agreement with transmission electron microscopy (TEM) studies of rutile (TiO2) and paratellurite (TeO2), which are isostructural to stishovite. Conversely other TEM studies of stishovite done at higher temperature suggest dominant prismatic slip. This indicates that a variety of slip systems may be active in stishovite, depending on conditions. As a result, stishovite's contribution to the seismic signature in the mantle may vary as a function of pressure and temperature and thus depth.

  9. Self-assembly preparation of SiO2@Ni-Al layered double hydroxide composites and their enhanced electrorheological characteristics

    PubMed Central

    Ji, Xuqiang; Zhang, Wenling; Shan, Lei; Tian, Yu; Liu, Jingquan

    2015-01-01

    The core-shell structured SiO2@Ni-Al layered double hydroxide (LDH) composites were prepared via self-assembly of Ni-Al LDH on the surface of SiO2 spheres. Only coating a layer of ultrathin Ni-Al LDH sheet, the resulting SiO2@Ni-Al LDH composites exhibit significantly enhanced electrorheological (ER) characteristics compared to conventional bare SiO2 spheres. The monodispersed SiO2 spheres with average diameters of 260 nm were synthesized by the hydrolysis of tetraethyl orthosilicate (TEOS), while the shell part, Ni-Al LDH sheet was prepared by the hydrothermal procedure. The morphology of the samples was investigated via scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure of the samples was characterized by X-ray diffraction (XRD). The species and distribution of elements in samples were confirmed by X-ray photoelectron spectroscopy (XPS), Energy dispersive analysis of X-ray (EDX) and elemental mapping in STEM. Subsequently, the ER characteristics of the composites dispersed in insulating oil were characterized by a rotational rheometer. The electric field-stimulated rheological performances (yield stress, viscosity, modulus, etc.) were observed under an external electric field, which is different from the Newtonian state in the free electric field. PMID:26670467

  10. Self-assembly preparation of SiO2@Ni-Al layered double hydroxide composites and their enhanced electrorheological characteristics.

    PubMed

    Ji, Xuqiang; Zhang, Wenling; Shan, Lei; Tian, Yu; Liu, Jingquan

    2015-01-01

    The core-shell structured SiO2@Ni-Al layered double hydroxide (LDH) composites were prepared via self-assembly of Ni-Al LDH on the surface of SiO2 spheres. Only coating a layer of ultrathin Ni-Al LDH sheet, the resulting SiO2@Ni-Al LDH composites exhibit significantly enhanced electrorheological (ER) characteristics compared to conventional bare SiO2 spheres. The monodispersed SiO2 spheres with average diameters of 260 nm were synthesized by the hydrolysis of tetraethyl orthosilicate (TEOS), while the shell part, Ni-Al LDH sheet was prepared by the hydrothermal procedure. The morphology of the samples was investigated via scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure of the samples was characterized by X-ray diffraction (XRD). The species and distribution of elements in samples were confirmed by X-ray photoelectron spectroscopy (XPS), Energy dispersive analysis of X-ray (EDX) and elemental mapping in STEM. Subsequently, the ER characteristics of the composites dispersed in insulating oil were characterized by a rotational rheometer. The electric field-stimulated rheological performances (yield stress, viscosity, modulus, etc.) were observed under an external electric field, which is different from the Newtonian state in the free electric field. PMID:26670467

  11. Interface considerations in Al2O3/NiAl composite

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1993-01-01

    The fiber-matrix interface requirements in an Al2O3/NiAl composite were examined from theoretical considerations. Several factors that influence the interface bonding requirements were analyzed. These include: (1) residual stresses due to fiber-matrix coefficient of thermal expansion (CTE) mismatch; (2) matrix cracking stress at room temperature; (3) fracture toughness at room temperature; (4) load transfer from the matrix to the fiber and ultimate tensile strength at the use temperature; and (5) creep resistance at high temperature. A relatively weak fiber-matrix bond, with an interfacial shear strength of approximately 15-20 MPa, might be sufficient for attaining the desired mechanical properties in the fiber direction at the use temperature. A weak fiber-matrix bond is also beneficial for increasing the fracture toughness of the composite at room temperature. In contrast, a strong fiber-matrix bond is required to withstand some of the residual stresses resulting from the fiber-matrix CTE mismatch, which are not likely to be reduced significantly by interface coatings. A relatively strong bond is also beneficial in increasing the matrix cracking stress at room temperature. Various interface coating options to accommodate the conflicting bonding requirements were reviewed. One viable coating option is to incorporate a thick, ductile interface layer well bonded to both the fiber and the matrix.

  12. Molecular-dynamics simulation of tweed structure and the [omega] phase in Ni-Al

    SciTech Connect

    Becquart, C.S.; Clapp, P.C.; Rifkin, J.A. )

    1993-07-01

    Using computer molecular dynamics (CMD) we have studied the occurrence of tweed structure and of the [omega] phase in Ni[sub 62.5]Al[sub 37.5]. Tweed is a mottled structure that is observed prior to transformations such as martensitic transformations. In some cases, it has been found to accompany [omega]-phase formation. The characteristic features of tweed have been simulated. To achieve the 62.5--37.5 composition we started with a 50%-50% stoichiometry in which some aluminum atoms were replaced by nickel. Two different lattices were used: one where the nickel atoms were distributed at random on the aluminum sublattice (referred to as the disordered [ital B]2 array) and one where they were arranged in an ordered manner (ordered supercell bcc). To describe the forces that interact between the atoms an embedded-atom method was chosen with an interatomic potential derived by Voter and Chen [1] [in [ital Characterization] [ital of] [ital Defects] [ital in] [ital Materials], edited by R. W. Siegal, J. R. Weertman, and R. Sinclair, MRS Symposia Proceedings No. 82 (Materials Research Society, Pittsburgh, 1987)], which has been designed to fit some properties of Ni[sub 3]Al, and some of NiAl, while maintaining good behavior for compositions in between.

  13. Cold-Sprayed Ni-Al2O3 Coatings for Applications in Power Generation Industry

    NASA Astrophysics Data System (ADS)

    Sevillano, F.; Poza, P.; Múnez, C. J.; Vezzù, S.; Rech, S.; Trentin, A.

    2013-06-01

    Cermets coatings are extensively used in energy applications both because of their high wear resistance as required, for example, in components like gas turbine sealants, and because of their specific functionality as required in solar absorbers. So far, high-temperature thermal spraying and physical vapor deposition have traditionally been used to deposit this kind of coatings. In this study, Ni-Al2O3 coatings have been deposited using a Kinetic®3000 cold-spray system starting from Ni and Al2O3 powders blend; five blends have been prepared setting the alumina content in the feedstock to 10, 25, 50, 75, and 90 wt.%. The embedded alumina ranges between a few percent weight up to 16 and 31 wt.%, while the microhardness shows a deep increase from 175 Vickers in the case of pure Ni coatings up to 338 Vickers. The spray and coating growth mechanism have been discussed, with special attention to the fragmentation of the ceramic particles during the impact. Finally, the coating behavior at high temperature was analyzed by oxidation tests performed in air at 520 °C emphasizing a good oxidation resistance that could represent a very promising basis for application in power generation systems.

  14. Mineralogy and deformation in some lunar samples.

    PubMed

    Douglas, J A; Dence, M R; Plant, A G; Traill, R J

    1970-01-30

    Observations on the mineralogy and deformation in samples of crystalline rocks, breccias, and fines from Tranquillity Base provide evidence for magmatic and impact processes. Overall homogeneity, igneous textures, and absence of xenoliths in the crystalline rocks indicate derivation from a common titanium-rich magma by internal, anorogenic volcanism rather than by impact. Crystallization conditions allowed strong compositional variation in pyroxenes, olivine, and plagioclase and the growth of a new mineral, the iron analog of pyroxmangite. Subsequently, impact produced breccias containing shock-deformed crystals and glasses of varying compositions.

  15. Deformation twinning: Influence of strain rate

    SciTech Connect

    Gray, G.T. III

    1993-11-01

    Twins in most crystal structures, including advanced materials such as intermetallics, form more readily as the temperature of deformation is decreased or the rate of deformation is increased. Both parameters lead to the suppression of thermally-activated dislocation processes which can result in stresses high enough to nucleate and grow deformation twins. Under high-strain rate or shock-loading/impact conditions deformation twinning is observed to be promoted even in high stacking fault energy FCC metals and alloys, composites, and ordered intermetallics which normally do not readily deform via twinning. Under such conditions and in particular under the extreme loading rates typical of shock wave deformation the competition between slip and deformation twinning can be examined in detail. In this paper, examples of deformation twinning in the intermetallics TiAl, Ti-48Al-lV and Ni{sub 3}A as well in the cermet Al-B{sub 4}C as a function of strain rate will be presented. Discussion includes: (1) the microstructural and experimental variables influencing twin formation in these systems and twinning topics related to high-strain-rate loading, (2) the high velocity of twin formation, and (3) the influence of deformation twinning on the constitutive response of advanced materials.

  16. Effects of Minor Alloying Additions on the Microstructure, Toughness, and Creep Strength of Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Raj, S. V.; Locci, I. E.; Salem, J. A.

    2001-01-01

    A study of the effects of small (0.25 to 1.0 at%) fifth element additions to the structure and mechanical properties of directionally solidified (DS) NiAl-31Cr-3Mo has been undertaken. Essentially all the additions changed the as-DS'ed microstructure from lamellar eutectic grains to cells and, in some cases, introduced NiAl dendrites and/or third phases. In general the alloying additions did not improve strength or toughness over that possessed by the base composition; only Hf and, perhaps Ti, gave a minor increase in elevated temperature creep resistance. The lack of improvement in creep properties is probably due to inability to precipitation harden NiAl.

  17. Site preferences and effects of X (X = Mn, Fe, Co, Cu) on the properties of NiAl: A first-principles study

    NASA Astrophysics Data System (ADS)

    Li, Hongshan; Cao, Yong; Zhou, Shenggang; Zhu, Peixian; Zhu, Jingchuan

    2016-03-01

    The site preference of X (X = Mn, Fe, Co, Cu) in NiAl and its effects on structural, electronic and elastic properties were investigated by performing first-principles calculations using density functional theory (DFT). Formation enthalpy calculations show that adding X increases the formation enthalpy of NiAl, indicating that X addition reduces the stability of system. The site preference was investigated by calculating the transfer energy of NiAl alloys with X. The results further exhibit that Mn, Fe and Cu show no site preference, but Co tends to occupy Ni site. By analyzing electronic density of states, Mulliken population, overlap population and valence charge density, the electronic property and bond characters were discussed. The elastic property calculation shows that only substitution of Ni by Cu increased the plasticity of alloy, while in the other cases the plasticity was decreased.

  18. The 1200 C cyclic oxidation behavior of two nickel-aluminum alloys (Ni3AL and NiAl) with additions of chromium, silicon, and titanium

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Santoro, G. J.

    1972-01-01

    The alloys Ni3Al and NiAl with and without 1 and 3 atomic percent chromium, silicon, and titanium replacing the aluminum were cyclically oxidized at 1200 C for times to 200 hours, and the results were compared with those obtained with the alloy B-1900 subjected to the same oxidation process. The evaluation was based on metal recession, specific weight change, metallography, electron microprobe analysis, and X-ray diffraction. The oxidation resistance of Ni3Al was improved by Si, unaffected by Ti, and degraded by Cr. The oxidation resistance of NiAl was slightly improved by Ti, unaffected by Si, and degraded by Cr. The oxidation resistance of Ni3Al with 1 atomic percent Si was nearly equal to that of NiAl. Alloy B-1900 exhibited oxidation resistance comparable to that of Ni3Al + Cr compositions.

  19. Computational strain gradient crystal plasticity

    NASA Astrophysics Data System (ADS)

    Niordson, Christian F.; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale.

  20. Cold work hardening of Al from shear deformation up to large strains

    SciTech Connect

    Les, P.; Zehetbauer, M.; Kopacz, I.; Rauch, E.F.

    1999-08-06

    Several deformation modes have been applied so far which exhibited stage IV and stage V hardening in large strain cold working. However, some deformation modes especially if applied to single crystals failed (1) because of limited deformation (tensile test and compression), (2) inhomogeneous deformation (torsion), (3) iterative deformation (wire drawing, rolling) allowing for recovery processes in between small deformation steps. Moreover, except for torsion test, none of the deformation modes is capable of measuring the strain rate sensitivity up to large strains at low deformation temperatures. Thus it was the aim of the present work to deform single and polycrystalline samples of Al 99.99% in a simple shear test which has been shown to achieve also the late stages of deformation. Moreover, it should make possible strain rate sensitivity measurements in parallel to the shear stress-strain characteristics. For single crystals at room temperature the shear test seems to be the only method which can provide such data.

  1. Microstructure of deformed graywacke sandstones

    SciTech Connect

    Dengler, L.A.

    1980-03-05

    Microsctures in low-permeability graywacke sandstones were studied by optical and scanning electron microscopy (SEM). SEM specimens were prepared by ion-bombardment of thick polished samples. The undeformed rock contains grains in a matrix composed primarily of authigenic chlorite and kaolinite. Chlorite platelets are randomly arranged in face-to-edge relation to one another. Kaolinite occurs as pseudohexagonal crystals stacked face-to-face in pore filling books. Uniaxial-stress experiments covered a range of confining pressures from .1 to 600 MPa. Below 50 MPa confining pressure, intergranular fracturing occurs within the fault zone and near the sample's cylindrical surface. Between 100 and 300 MPa confining pressure, fault zones contain highly fractured grains, gauge and slickensides on grain surfaces. At 600 MPa, the sample contains a diffuse shear zone of highly fractured grains and no well-defined fault. In all samples, the distribution of microcracks is heterogeneous. Different clay minerals exhibit different modes of deformation. Chlorite structure responds to applied stress by compaction, reducing both pore size and volume. Chlorite platelets are plastically deformed in even the least strained samples. Kaolinite does not deform plastically in any of the samples examined. Deformation of kaolinite is restricted to toppling of the book structure. Dilatant crack growth was studied in two samples unloaded prior to failure. Uniaxially-strained samples deform primarily along grain boundaries, producing intergranular cracks and realignment of chlorite platelets. Intragranular crack density is linearly related to axial-strain, although grains are less fractured than in uniaxially-stressed samples tested at equivalent mean pressures. Cracks are rarely longer than a grain diameter. Nuclear-explosively deformed samples were recovered after the Rio Blanco gas stimulation experiment. (JGB)

  2. Deformation Twinning of a Silver Nanocrystal under High Pressure

    SciTech Connect

    Huang, Xiaojing; Yang, Wenge; Harder, Ross; Sun, Yugang; Liu, Ming; Chu, Yong S.; Robinson, Ian K.; Mao, Ho-kwang

    2015-11-01

    Within a high-pressure environment, crystal deformation is controlled by complex processes such as dislocation motion, twinning, and phase transitions, which change materials' microscopic morphology and alter their properties. Understanding a crystal's response to external stress provides a unique opportunity for rational tailoring of its functionalities. It is very challenging to track the strain evolution and physical deformation from a single nanoscale crystal under high-pressure stress. Here, we report an in situ three-dimensional mapping of morphology and strain evolutions in a single-crystal silver nanocube within a high-pressure environment using the Bragg Coherent Diffractive Imaging (CDI) method. We observed a continuous lattice distortion, followed by a deformation twining process at a constant pressure. The ability to visualize stress-introduced deformation of nanocrystals with high spatial resolution and prominent strain sensitivity provides an important route for interpreting and engineering novel properties of nanomaterials.

  3. Deformation Twinning of a Silver Nanocrystal under High Pressure.

    PubMed

    Huang, Xiaojing; Yang, Wenge; Harder, Ross; Sun, Yugang; Lu, Ming; Chu, Yong S; Robinson, Ian K; Mao, Ho-Kwang

    2015-11-11

    Within a high-pressure environment, crystal deformation is controlled by complex processes such as dislocation motion, twinning, and phase transitions, which change materials' microscopic morphology and alter their properties. Understanding a crystal's response to external stress provides a unique opportunity for rational tailoring of its functionalities. It is very challenging to track the strain evolution and physical deformation from a single nanoscale crystal under high-pressure stress. Here, we report an in situ three-dimensional mapping of morphology and strain evolutions in a single-crystal silver nanocube within a high-pressure environment using the Bragg Coherent Diffractive Imaging (CDI) method. We observed a continuous lattice distortion, followed by a deformation twining process at a constant pressure. The ability to visualize stress-introduced deformation of nanocrystals with high spatial resolution and prominent strain sensitivity provides an important route for interpreting and engineering novel properties of nanomaterials. PMID:26484941

  4. Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms

    NASA Astrophysics Data System (ADS)

    Kaercher, Pamela M.; Zepeda-Alarcon, Eloisa; Prakapenka, Vitali B.; Kanitpanyacharoen, Waruntorn; Smith, Jesse S.; Sinogeikin, Stanislav; Wenk, Hans-Rudolf

    2015-04-01

    Although the crystal structure of the high-pressure SiO2 polymorph stishovite has been studied in detail, little is known about the development of crystallographic preferred orientation (CPO) during deformation in stishovite. Insight into CPO and associated deformation mechanics of stishovite would provide important information for understanding subduction of quartz-bearing crustal rocks into the mantle. To study CPO development, we converted a natural sample of flint to stishovite in a laser-heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. We collected diffraction patterns in radial geometry to examine in situ development of crystallographic preferred orientation and find that (001) poles preferentially align with the compression direction. Viscoplastic self-consistent modeling suggests the most likely slip systems at high pressure and ambient temperature are pyramidal and basal slip.

  5. Self-assembly and dynamics of oxide nano-rods on NiAl(110).

    SciTech Connect

    Pierce, John P.; McCarty, Kevin F.

    2004-10-01

    We observe the spontaneous formation of parallel oxide rods upon exposing a clean NiAl(110) surface to oxygen at elevated temperatures (850-1350 K). By following the self-assembly of individual nanorods in real time with low-energy electron microscopy (LEEM), we are able to investigate the processes by which the rods lengthen along their axes and thicken normal to the surface of the substrate. At a fixed temperature and O{sub 2} pressure, the rods lengthen along their axes at a constant rate. The exponential temperature dependence of this rate yields an activation energy for growth of 1.2 {+-} 0.1 eV. The rod growth rates do not change as their ends pass in close proximity (<40 nm) to each other, which suggests that they do not compete for diffusing flux in order to elongate. Both LEEM and scanning tunneling microscopy (STM) studies show that the rods can grow vertically in layer-by-layer fashion. The heights of the rods are extremely bias dependent in STM images, but occur in integer multiples of approximately 2-{angstrom}-thick oxygen-cation layers. As the rods elongate from one substrate terrace to the next, we commonly see sharp changes in their rates of elongation that result from their tendency to gain (lose) atomic layers as they descend (climb) substrate steps. Diffraction analysis and dark-field imaging with LEEM indicate that the rods are crystalline, with a lattice constant that is well matched to that of the substrate along their length. We discuss the factors that lead to the formation of these highly anisotropic structures.

  6. Performance through Deformation and Instability

    NASA Astrophysics Data System (ADS)

    Bertoldi, Katia

    2015-03-01

    Materials capable of undergoing large deformations like elastomers and gels are ubiquitous in daily life and nature. An exciting field of engineering is emerging that uses these compliant materials to design active devices, such as actuators, adaptive optical systems and self-regulating fluidics. Compliant structures may significantly change their architecture in response to diverse stimuli. When excessive deformation is applied, they may eventually become unstable. Traditionally, mechanical instabilities have been viewed as an inconvenience, with research focusing on how to avoid them. Here, I will demonstrate that these instabilities can be exploited to design materials with novel, switchable functionalities. The abrupt changes introduced into the architecture of soft materials by instabilities will be used to change their shape in a sudden, but controlled manner. Possible and exciting applications include materials with unusual properties such negative Poisson's ratio, phononic crystals with tunable low-frequency acoustic band gaps and reversible encapsulation systems.

  7. TEM Study of Precipitation in a NiAl-3Ti-0.5Hf Single-Crystal Alloy

    NASA Technical Reports Server (NTRS)

    Garg, A.; Noebe, R. D.; Howe, J. M.; Wilson, A. W.; Levit, V.

    1996-01-01

    Samples for transmission electron microscopy (TEM) were prepared from 3 mm diameter cylinders electro-discharge machined from the heat-treated ingots. Slices sectioned from the cylinders were mechanically ground and electrochemically thinned in a twinjet Tenupol-3 polisher. Microstructural and energy-dispersive X-ray spectroscopy (EDXS) studies were conducted in a Philips 400T TEM equipped with a double tilt goniometer and a KEVEX Si/Li X-ray detector.

  8. Synthesis of nanocrystalline (Co, Ni)Al2O4 spinel powder by mechanical milling of quasicrystalline materials.

    PubMed

    Yadav, T P; Mukhopadhyay, N K; Tiwari, R S; Srivastava, O N

    2007-02-01

    In the present study, attempts have been made to synthesize the nano-crystalline (Co, Ni)Al2O4 spinel powders by ball milling and subsequent annealing. An alloy of Al70Co15Ni15, exhibiting the formation of a complex intermetallic compound known as decagonal quasicrystal is selected as the starting material for mechanical milling. It is interesting to note that this alloy is close to the stoichiometry of aluminum and transition metal atoms required to form the aluminate spinel. The milling was carried out in an attritor mill at 400 rpm for 40 hours with ball to powder ratio of 20 : 1 in hexane medium. Subsequent to this annealing was performed in an air ambience for 10, 20, and 40 h at 600 degrees C in side the furnace in order to oxidize the decagonal phase and finally to form the spinel structure. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the formation of nano-sized decagonal phase after milling and then (Co, Ni)Al2O4 spinel type phase after annealing. The XRD studies reveal the lattice parameter to be 8.075 angstroms and the lattice strain as 0.6%. The XRD and TEM explorations of spinel phase indicate the average grain size to be approximately 40 nm.

  9. Computational and Experimental Investigation of the Shock Compression Response of Cold-Rolled Ni/Al Multilayers

    NASA Astrophysics Data System (ADS)

    Specht, Paul; Thadhani, Naresh; Weihs, Timothy

    2013-06-01

    Heterogeneities at the meso-scale strongly influence the shock compression response of composite materials. In reactive material mixtures, such as Ni and Al, these heterogeneities greatly affect material mixing, heating, and activation, often initiating a reaction. Cold-rolled multilayered composites of Ni and Al provide a unique and potentially beneficial reactive material system, due to their full density, periodic layering, and intimate particle contacts. The shock-compression response of cold-rolled Ni/Al multilayers was investigated under uniaxial strain loading conditions using plate-impact experiments. Time-resolved diagnostics, including VISAR, PDV, and PVDF stress gauges, were used to obtain the equilibrium Hugoniot response of the multilayers. The experimental results were coupled with a computational investigation using the multi-material, finite-volume, Eulerian hydrocode CTH, developed by Sandia National Laboratories. The computations employed real, heterogeneous microstructures, obtained from optical microscopy, enabling their correlation with the experimental results to provide validation of the models and computational method used for describing the response of the cold-rolled Ni/Al multilayers. Research funded by ONR/MURI grant No. N00014-07-1-0740.

  10. Influence of Cr and W alloying on the fiber-matrix interfacial shear strength in cast and directionally solidified sapphire NiAl composites

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Tiwari, R.; Tewari, S. N.

    1995-01-01

    Sapphire-reinforced NiAl matrix composites with chromium or tungsten as alloying additions were synthesized using casting and zone directional solidification (DS) techniques and characterized by a fiber pushout test as well as by microhardness measurements. The sapphire-NiAl(Cr) specimens exhibited an interlayer of Cr rich eutectic at the fiber-matrix interface and a higher interfacial shear strength compared to unalloyed sapphire-NiAl specimens processed under identical conditions. In contrast, the sapphire-NiAl(W) specimens did not show interfacial excess of tungsten rich phases, although the interfacial shear strength was high and comparable to that of sapphire-NiAl(Cr). The postdebond sliding stress was higher in sapphire-NiAl(Cr) than in sapphire-NiAl(W) due to interface enrichment with chromium particles. The matrix microhardness progressively decreased with increasing distance from the interface in both DS NiAl and NiAl(Cr) specimens. The study highlights the potential of casting and DS techniques to improve the toughness and strength of NiAl by designing dual-phase microstructures in NiAl alloys reinforced with sapphire fibers.

  11. Microstructure and mechanical properties of twin-wire arc sprayed Ni-Al composite coatings on 6061-T6 aluminum alloy sheet

    NASA Astrophysics Data System (ADS)

    Wang, Ji-xiao; Liu, Jing-shun; Zhang, Lun-yong; Sun, Jian-fei; Wang, Zhi-ping

    2014-05-01

    We have systematically studied the microstructure and mechanical properties of Ni-5wt%Al and Ni-20wt%Al composite coatings fabricated on 6061-T6 aluminum alloy sheet by twin-wire arc spraying under different experimental conditions. The abrasive wear behavior and interface diffusion behavior of the composite coatings were evaluated by dry/wet rubber wheel abrasive wear tests and heat treatment, respectively. Experimental results indicate that the composite coatings exhibit features of adhesive wear. Besides, the Vickers microhardness of NiAl and Ni3Al intermetallic compounds is relatively larger than that of the substrate, which is beneficial for enhancing the wear resistance. With the increase of annealing temperature and time, the interface diffusion area between the Ni-Al coating and the substrate gradually expands with the formation of NiAl3 and Ni2Al3 phases, and is controlled by diffusion of aluminum atoms. The grain growth exponent n of diffusion kinetics of the Ni-Al coating, calculated via a high-temperature diffusion model at 400, 480, and 550°C, is between 0.28 and 0.38. This satisfies the cubic law, which is consistent with the general theoretical relationship of high-temperature diffusion.

  12. Identification of a kinetic length scale which dictates alloy phase composition in Ni-Al interfaces on annealing at low temperatures

    NASA Astrophysics Data System (ADS)

    Swain, Mitali; Singh, Surendra; Basu, Saibal; Bhattacharya, Debarati; Gupta, Mukul

    2014-12-01

    Ni-aluminides are an important class of intermetallics from technological point of view. Ni-Al phase diagram has been studied in detail experimentally as well as theoretically. It is known that if annealed at low temperature, the first alloy phase is usually NiAl3 according to Bené's rule. It is also understood that heat of formation may get modified by local densities of the constituents forming the alloy. In this regard, it is important to identify a kinetic length scale for defining "local density" in a system. We have deposited ultrathin multilayers of Ni and Al of layer thickness in tens of nanometres with Ni:Al stoichiometric ratio as 3:1 and 1:3, respectively. Considering these stoichiometry, Ni3Al and NiAl3 are the thermodynamically favoured alloy phases in these samples. We used x-ray reflectivity, polarized neutron reflectivity, x-ray diffraction, and secondary ion mass spectroscopy to follow the alloy formation after annealing and identified the alloy phases at interfaces with nanometre resolution. Diffusion length of Ni and Al was obtained using Darken's law. Our results predict that `diffusion length' is the unique length scale that connects kinetics to local density. In another interesting observation, using "virtual Kirkendall markers" at the interfaces, we showed asymmetry in consumption of Al for alloy formation, at Al on Ni (Al/Ni) and Ni on Al (Ni/Al) interfaces by comparing as-deposited and annealed states with respect to the markers.

  13. Molecular-dynamics simulation of tweed structure and the ω phase in Ni-Al

    NASA Astrophysics Data System (ADS)

    Becquart, C. S.; Clapp, P. C.; Rifkin, J. A.

    1993-07-01

    Using computer molecular dynamics (CMD) we have studied the occurrence of tweed structure and of the ω phase in Ni62.5Al37.5. Tweed is a mottled structure that is observed prior to transformations such as martensitic transformations. In some cases, it has been found to accompany ω-phase formation. The characteristic features of tweed have been simulated. To achieve the 62.5-37.5 composition we started with a 50%-50% stoichiometry in which some aluminum atoms were replaced by nickel. Two different lattices were used: one where the nickel atoms were distributed at random on the aluminum sublattice (referred to as the disordered B2 array) and one where they were arranged in an ordered manner (ordered supercell bcc). To describe the forces that interact between the atoms an embedded-atom method was chosen with an interatomic potential derived by Voter and Chen [1] [in Characterization of Defects in Materials, edited by R. W. Siegal, J. R. Weertman, and R. Sinclair, MRS Symposia Proceedings No. 82 (Materials Research Society, Pittsburgh, 1987)], which has been designed to fit some properties of Ni3Al, and some of NiAl, while maintaining good behavior for compositions in between. In the case of the disordered B2 array, diffuse streakings were observed in the diffraction patterns of the structures obtained from the CMD simulations, mainly along the <110>* directions but some also along the <112>* direction. The <112>* streaking is usually associated with the formation of the ω phase. However, with the ordered array, virtually no streaking appeared, strongly suggesting that heterogeneous defects (such as compositional disorder) are necessary to induce both tweed structure and the ω phase. The main type of streaking is typically seen on diffraction patterns of materials displaying tweed. By plotting the positions of the atoms and their displacements after the CMD runs we also noticed <110>\\{100\\} shears, again in the disordered lattice. The influence of temperature on

  14. Mesoscale modeling of dislocations in molecular crystals

    NASA Astrophysics Data System (ADS)

    Lei, Lei; Koslowski, Marisol

    2011-02-01

    Understanding the inelastic deformation of molecular crystals is of fundamental importance to the modeling of the processing of drugs in the pharmaceutical industry as well as to the initiation of detonation in high energy density materials. In this work, we present dislocation dynamics simulations of the deformation of two molecular crystals of interest in the pharmaceutical industry, sucrose and paracetamol. The simulations calculate the yield stress of sucrose and paracetamol in good agreement with experimental observation and predict the anisotropy in the mechanical response observed in these materials. Our results show that dislocation dynamics is an effective tool to study plastic deformation in molecular crystals.

  15. Chemical etching of deformation sub-structures in quartz

    NASA Astrophysics Data System (ADS)

    Wegner, M. W.; Christie, J. M.

    1983-02-01

    Chemical etching of dislocations has been studied in natural and synthetic quartz single crystals, in deformed synthetic quartz and in naturally and experimentally deformed quartzites. The ability of different etchants to produce polished or preferentially etched surfaces on quartz is described. Dislocation etching was achieved on all crystal planes examined by using a saturated solution of ammonium bifluoride as the etchant. Appropriate etching times were determined for etching quartzites for grain size, subgrain boundaries, deformation lamellae, dislocations and twins. Growth and polished surfaces of synthetic single crystal quartz were similarly etched and dislocation etch pits, characteristic of various orientations were found. The use of ammonium bifluoride proved to be expecially advantageous for the basal plane, producing a polished surface with etch pits, suitable for dislocation etch pit counting. “Double” etch pits have been found on Dauphiné twin boundaries on the basal plane and the first order prism, using this etchant. Slip lines and deformation bands were suitably etched on deformed synthetic crystal surfaces for identification of the slip planes. Other acidic etchants have been explored and their application to the study of deformation structures in quartz crystals is discussed.

  16. Two-step crystal growth mechanism during crystallization of an undercooled Ni50Al50 alloy

    NASA Astrophysics Data System (ADS)

    An, Simin; Li, Jiahao; Li, Yang; Li, Shunning; Wang, Qi; Liu, Baixin

    2016-08-01

    Crystallization processes are always accompanied by the emergence of multiple intermediate states, of which the structures and transition dynamics are far from clarity, since it is difficult to experimentally observe the microscopic pathway. To insight the structural evolution and the crystallization dynamics, we perform large-scale molecular dynamics simulations to investigate the time-dependent crystallization behavior of the NiAl intermetallic upon rapid solidification. The simulation results reveal that the crystallization process occurs via a two-step growth mechanism, involving the formation of initial non-equilibrium long range order (NLRO) regions and of the subsequent equilibrium long range order (ELRO) regions. The formation of the NLRO regions makes the grains rather inhomogeneous, while the rearrangement of the NLRO regions into the ELRO regions makes the grains more ordered and compact. This two-step growth mechanism is actually controlled by the evolution of the coordination polyhedra, which are characterized predominantly by the transformation from five-fold symmetry to four-fold and six-fold symmetry. From liquids to NLRO and further to ELRO, the five-fold symmetry of these polyhedra gradually fades, and finally vanishes when B2 structure is distributed throughout the grain bulk. The energy decrease along the pathway further implies the reliability of the proposed crystallization processes.

  17. Two-step crystal growth mechanism during crystallization of an undercooled Ni50Al50 alloy

    PubMed Central

    An, Simin; Li, Jiahao; Li, Yang; Li, Shunning; Wang, Qi; Liu, Baixin

    2016-01-01

    Crystallization processes are always accompanied by the emergence of multiple intermediate states, of which the structures and transition dynamics are far from clarity, since it is difficult to experimentally observe the microscopic pathway. To insight the structural evolution and the crystallization dynamics, we perform large-scale molecular dynamics simulations to investigate the time-dependent crystallization behavior of the NiAl intermetallic upon rapid solidification. The simulation results reveal that the crystallization process occurs via a two-step growth mechanism, involving the formation of initial non-equilibrium long range order (NLRO) regions and of the subsequent equilibrium long range order (ELRO) regions. The formation of the NLRO regions makes the grains rather inhomogeneous, while the rearrangement of the NLRO regions into the ELRO regions makes the grains more ordered and compact. This two-step growth mechanism is actually controlled by the evolution of the coordination polyhedra, which are characterized predominantly by the transformation from five-fold symmetry to four-fold and six-fold symmetry. From liquids to NLRO and further to ELRO, the five-fold symmetry of these polyhedra gradually fades, and finally vanishes when B2 structure is distributed throughout the grain bulk. The energy decrease along the pathway further implies the reliability of the proposed crystallization processes. PMID:27486073

  18. Two-step crystal growth mechanism during crystallization of an undercooled Ni50Al50 alloy.

    PubMed

    An, Simin; Li, Jiahao; Li, Yang; Li, Shunning; Wang, Qi; Liu, Baixin

    2016-01-01

    Crystallization processes are always accompanied by the emergence of multiple intermediate states, of which the structures and transition dynamics are far from clarity, since it is difficult to experimentally observe the microscopic pathway. To insight the structural evolution and the crystallization dynamics, we perform large-scale molecular dynamics simulations to investigate the time-dependent crystallization behavior of the NiAl intermetallic upon rapid solidification. The simulation results reveal that the crystallization process occurs via a two-step growth mechanism, involving the formation of initial non-equilibrium long range order (NLRO) regions and of the subsequent equilibrium long range order (ELRO) regions. The formation of the NLRO regions makes the grains rather inhomogeneous, while the rearrangement of the NLRO regions into the ELRO regions makes the grains more ordered and compact. This two-step growth mechanism is actually controlled by the evolution of the coordination polyhedra, which are characterized predominantly by the transformation from five-fold symmetry to four-fold and six-fold symmetry. From liquids to NLRO and further to ELRO, the five-fold symmetry of these polyhedra gradually fades, and finally vanishes when B2 structure is distributed throughout the grain bulk. The energy decrease along the pathway further implies the reliability of the proposed crystallization processes. PMID:27486073

  19. Surface dislocation nucleation controlled deformation of Au nanowires

    SciTech Connect

    Roos, B.; Kapelle, B.; Volkert, C. A.; Richter, G.

    2014-11-17

    We investigate deformation in high quality Au nanowires under both tension and bending using in-situ transmission electron microscopy. Defect evolution is investigated during: (1) tensile deformation of 〈110〉 oriented, initially defect-free, single crystal nanowires with cross-sectional widths between 30 and 300 nm, (2) bending deformation of the same wires, and (3) tensile deformation of wires containing coherent twin boundaries along their lengths. We observe the formation of twins and stacking faults in the single crystal wires under tension, and storage of full dislocations after bending of single crystal wires and after tension of twinned wires. The stress state dependence of the deformation morphology and the formation of stacking faults and twins are not features of bulk Au, where deformation is controlled by dislocation interactions. Instead, we attribute the deformation morphologies to the surface nucleation of either leading or trailing partial dislocations, depending on the Schmid factors, which move through and exit the wires producing stacking faults or full dislocation slip. The presence of obstacles such as neutral planes or twin boundaries hinder the egress of the freshly nucleated dislocations and allow trailing and leading partial dislocations to combine and to be stored as full dislocations in the wires. We infer that the twins and stacking faults often observed in nanoscale Au specimens are not a direct size effect but the result of a size and obstacle dependent transition from dislocation interaction controlled to dislocation nucleation controlled deformation.

  20. Deformational characteristics of thermoplastic elastomers

    NASA Astrophysics Data System (ADS)

    Indukuri, Kishore K.

    This thesis focuses primarily on the structure-property relationships of poly (styrene-ethylene-butylene-styrene) triblock copolymer TPEs. First evidence for strain-induced crystallization occurring in certain SEBS block copolymers has been established using unique techniques like deformation calorimetry, combined in-situ small angle X-ray and wide angle X-ray diffraction (SAXD/WAXD). Also the ramifications of such strain-induced crystallization on the mechanical properties like cyclic hysteresis, stress relaxation/creep retention of these SEBS systems have been studied. In addition, the structural changes in the morphology of these systems on deformation have been investigated using combined SAXD/WAXD setup. Small angle X-ray diffraction probed the changes at the nano-scale of polystyrene (PS) cylinders, while wide angle X-ray diffraction probed the changes at molecular length scales of the amorphous/crystalline domains of the elastomeric mid-block in these systems. New structural features at both these length scales have been observed and incorporated into the overall deformation mechanisms of the material. Continuous processing techniques like extrusion have been used to obtain ultra long-range order and orientation in these SEBS systems. Thus well ordered crystal like hexagonal packing of cylinders, where in each element in this hexagonal lattice can be individually addressed without any grain boundaries can be realized using these robust techniques. The effect of long-range order/orientation on the mechanical properties has been studied. In addition, these well ordered systems serve as model systems for evaluating deformation mechanisms of these SEBS systems, where the relative contributions of each of the phases can be estimated. EPDM/i-PP thermoplastic vulcanizates (TPVs) have micron size scale phase separated morphologies of EPDM rubber dispersed in a semicrystalline i-PP matrix as a result of the dynamic vulcanization process. Confocal microscopy studies

  1. The nanostructured origin of deformation twinning.

    PubMed

    Yu, Qian; Qi, Liang; Chen, Kai; Mishra, Raja K; Li, Ju; Minor, Andrew M

    2012-02-01

    We have revealed the fundamental embryonic structure of deformation twins using in situ mechanical testing of magnesium single crystals in a transmission electron microscope. This structure consists of an array of twin-related laths on the scale of several nanometers. A computational model demonstrates that this structure should be a generic feature at the incipient stage of deformation twinning when there are correlated nucleation events. Our results shed light on the origin of twinning-induced plasticity and transformation toughening, critical to the development of advanced structural alloys with high strength, ductility, and toughness.

  2. Tensile Deformation of Polyethylenes: Crystallinity Effects

    NASA Astrophysics Data System (ADS)

    Crist, Buckley; Metaxas, Costas

    2004-03-01

    The crystalline fraction of polyethylene can be reduced by increasing the cooling rate, the molecular weight or the fraction of comonomer. All three methods have been used in this study of tensile deformation which shows that true stress - true strain behavior depends systematically on morphology. The dependence of uniaxial yield stress on crystal thickness is well understood in terms of dislocation nucleation. Post yield flow is dominated by the strain hardening rate that is larger in polyethylenes of lower crystallinity. Noncrystalline polymer evidently reduces the plastic compliance while providing for elastic (reversible) strains. These observations are examined in terms of old and new theories for deformation of semicrystalline polymers.

  3. Effects of surface features on sulfur dioxide adsorption on calcined NiAl hydrotalcite-like compounds.

    PubMed

    Zhao, Ling; Li, Xinyong; Quan, Xie; Chen, Guohua

    2011-06-15

    The hydrotalcite-based NiAl mixed oxides were synthesized by coprecipitation and urea hydrolysis approaches and employed for SO₂ removal. The samples were well characterized by inductively coupled plasma (ICP) elemental analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and N₂ adsorption/desorption isotherm analyses. The acid-base properties were characterized by pyridine chemisorption and CO₂ temperature-programmed desorption (TPD). The calcined NiAlO from the urea method showed excellent SO₂ adsorption and its adsorption equilibrium showed a type I isotherm, which significantly improved the adsorption performance for low-concentration SO₂. Both the physical structure and the acidic-basic sites were found to play important roles in the SO₂ adsorption process. In situ Fourier transform infrared spectroscopy (FTIR) investigation revealed that adsorbed SO₂ molecules formed surface bisulfite, sulfite, and bidentate binuclear sulfate. The mechanisms for SO₂ adsorption and transformation are discussed in detail. PMID:21609013

  4. Microstructure and High-Temperature Oxidation Behavior of Cold Gas-sprayed Ni-Al2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Sirvent, P.; Cruz, D.; Múnez, C. J.; Poza, P.

    2016-04-01

    Cermet coatings are widely used for high-temperature industrial applications. This study investigates the effect of high-temperature oxidation on cold gas dynamic-sprayed Ni-Al2O3 coatings. For this purpose, high-temperature oxidation tests were performed at 520 and 640 °C. The selected exposure times were 24, 48, 72, 168, and 336 h. The microstructural evolution during exposure at high temperature was analyzed by scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), and x-ray diffraction (XRD). The oxidation kinetics was estimated by thickness measurements. The results show that the coatings protect the substrates against oxidation. In order to study possible changes in the mechanical properties of the system, Vickers microhardness experiments on the coatings and on the 10CrMo9-10 steel substrates were conducted. It was observed that hardness decreased by exposing the specimens to high temperature.

  5. Atomistic modeling of the reordering process of γ‧ disordered particles in Ni-Al alloys

    NASA Astrophysics Data System (ADS)

    Martínez, Enrique; Soisson, Frédéric; Caro, Alfredo; Uberuaga, Blas P.

    2016-09-01

    Ni-based alloys are used in nuclear applications, including as a window material at isotope production facilities, withstanding high fluxes of different energetic particles like protons. Irradiation disorders the γ‧ precipitates that in large extent confer the mechanical properties characterizing these materials. Upon disordering, the γ‧ phase transforms into oversaturated γ, degrading the materials properties. Experimentally it is observed that disordering might take place at fairly low irradiation doses. Once the particles are disordered, a competition between dissolution, due to strong concentration gradients in an oversaturated solid solution, and reordering appears. Here, we examine this competition in a model Ni-Al alloy under thermal conditions for different precipitates sizes and temperatures. We observe Al interdiffusion from the supersaturated particle to the matrix. Also, stochasticity appears as an important factor in to where precipitates locate. Stress relaxation seems to modify the precipitation process, with a stronger interface effect compared to rigid lattice simulations.

  6. Wetting of cholesteric liquid crystals.

    PubMed

    Silvestre, Nuno M; Figueirinhas Pereira, Maria Carolina; Bernardino, Nelson R; Telo da Gama, Margarida M

    2016-02-01

    We investigate theoretically the wetting properties of cholesteric liquid crystals at a planar substrate. If the properties of substrate and of the interface are such that the cholesteric layers are not distorted, the wetting properties are similar to those of a nematic liquid crystal. If, on the other hand, the anchoring conditions force the distortion of the liquid crystal layers the wetting properties are altered, the free cholesteric-isotropic interface is non-planar and there is a layer of topological defects close to the substrate. These deformations can either promote or hinder the wetting of the substrate by a cholesteric, depending on the properties of the cholesteric liquid crystal.

  7. Acoustic emission and the plasticity of crystals

    NASA Astrophysics Data System (ADS)

    Pawelek, Andrzej; Malecki, Ignacy

    This treatise is mainly devoted to a discussion of the application of acoustic emission in basic research on the plastic deformation mechanisms of metal and alloy single crystals. The acoustic emission method also provides the possibility of obtaining additional information on the nature of these mechanisms. Knowledge of the basic relationships between acoustic emission and deformation mechanisms will also facilitate the use of acoustic emission in industrial conditions (for industrial process control and for early problem detection). The material contained in this article is divided into three sections. The first section discusses the basic types of plastic deformation mechanisms in metal single crystals with simple crystal structures. The rest of this section is devoted to the problem of locating deformations, which is currently one of the most important problems in plastic deformation mechanics. The next section is based on extant literature and presents experiment data on measurements of acoustic emission during the plastic deformation of single crystals. The authors also use the results of their own research in a discussion of the most frequently encountered models and theoretical concepts concerning the causes of acoustic emission during the plastic deformation of crystals. The final section describes the basic mathematics behind these concepts and a brief attempt to assess the consistency of theoretical results and extant experimental results.

  8. Deformable bearing seat

    NASA Technical Reports Server (NTRS)

    Moreman, O. S., III (Inventor)

    1977-01-01

    A deformable bearing seat is described for seating a bearing assembly in a housing. The seat includes a seating surface in the housing having a first predetermined spheroidal contour when the housing is in an undeformed mode. The seating surface is deformable to a second predetermined spherically contoured surface when the housing is in a deformed mode. The seat is particularly adaptable for application to a rotating blade and mounting ring assembly in a gas turbine engine.

  9. Deformed discrete symmetries

    NASA Astrophysics Data System (ADS)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2016-09-01

    We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.

  10. Fluctuations as stochastic deformation

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.

  11. Fluctuations as stochastic deformation.

    PubMed

    Kazinski, P O

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.

  12. Single-Crystal NiAl-X Alloys Tested for Hot Corrosion

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    1999-01-01

    Single-crystal nickel aluminide (NiAl) has been investigated extensively throughout the last several years as a potential structural material in aero-gas turbine engines. The attractive features of NiAl in comparison to Ni-base superalloys include a higher melting point, lower density, higher thermal conductivity, and excellent oxidation resistance. However, NiAl suffers from a lack of ductility and fracture toughness at low temperatures and a low creep strength at high temperatures. Alloying additions of hafnium (Hf), gallium (Ga), titanium (Ti), and chromium (Cr) have each shown some benefit to the mechanical properties over that of the binary alloy. However, the collective effect of these alloying additions on the environmental resistance of NiAl-X was unclear. Hence, the present study was undertaken to examine the hot corrosion behavior of these alloys. A companion study examined the cyclic oxidation resistance of these alloys. Several single-crystal NiAl-X alloys (where X is Hf, Ti, Cr, or Ga) underwent hot corrosion testing in a Mach 0.3 burner rig at the NASA Lewis Research Center. Samples were tested for up to 300 1-hr cycles at a temperature of 900 C. It was found that increasing the Ti content from 1 to 5 at.% degraded the hot corrosion behavior. This decline in the behavior was reflected in high weight gains and large corrosion mound formation during testing (see the figures). However, the addition of 1 to 2 at.% Cr to alloys containing 4 to 5 at.% Ti appeared to greatly reduce the susceptibility of these alloys to hot corrosion attack and negated the deleterious effect of the increased Ti addition.

  13. Resurgent deformation quantisation

    SciTech Connect

    Garay, Mauricio; Goursac, Axel de; Straten, Duco van

    2014-03-15

    We construct a version of the complex Heisenberg algebra based on the idea of endless analytic continuation. The algebra would be large enough to capture quantum effects that escape ordinary formal deformation quantisation. -- Highlights: •We construct resurgent deformation quantisation. •We give integral formulæ. •We compute examples which show that hypergeometric functions appear naturally in quantum computations.

  14. Deformation mechanisms in experimentally deformed Boom Clay

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  15. Polychromatic microdiffraction characterization of defect gradients in severely deformed materials.

    PubMed

    Barabash, Rozaliya I; Ice, Gene E; Liu, Wenjun; Barabash, Oleg M

    2009-01-01

    This paper analyzes local lattice rotations introduced in severely deformed polycrystalline titanium by friction stir welding. Nondestructive three-dimensional (3D) spatially resolved polychromatic X-ray microdiffraction, is used to resolve the local crystal structure of the restructured surface from neighboring local structures in the sample material. The measurements reveal strong gradients of strain and geometrically necessary dislocations near the surface and illustrate the potential of polychromatic microdiffraction for the study of deformation in complex materials systems.

  16. Aqueous-phase reforming of n-BuOH over Ni/Al 2O 3 and Ni/CeO 2 catalysts

    NASA Astrophysics Data System (ADS)

    Roy, B.; Sullivan, H.; Leclerc, C. A.

    The aqueous-phase reforming (APR) of n-butanol (n-BuOH) over Ni(20 wt%) loaded Al 2O 3 and CeO 2 catalysts has been studied in this paper. Over 100 h of run time, the Ni/Al 2O 3 catalyst showed significant deactivation compared to the Ni/CeO 2 catalyst, both in terms of production rates and the selectivity to H 2 and CO 2. The Ni/CeO 2 catalyst demonstrated higher selectivity for H 2 and CO 2, lower selectivity to alkanes, and a lower amount of C in the liquid phase compared to the Ni/Al 2O 3 sample. For the Ni/Al 2O 3 catalyst, the selectivity to CO increased with temperature, while the Ni/CeO 2 catalyst produced no CO. For the Ni/CeO 2 catalyst, the activation energies for H 2 and CO 2 production were 146 and 169 kJ mol -1, while for the Ni/Al 2O 3 catalyst these activation energies were 158 and 175 kJ mol -1, respectively. The difference of the active metal dispersion on Al 2O 3 and CeO 2 supports, as measured from H 2-pulse chemisorption was not significant. This indicates deposition of carbon on the catalyst as a likely cause of lower activity of the Ni/Al 2O 3 catalyst. It is unlikely that carbon would build up on the Ni/CeO 2 catalyst due to higher oxygen mobility in the Ni doped non-stoichiometric CeO 2 lattice. Based on the products formed, the proposed primary reaction pathway is the dehydrogenation of n-BuOH to butaldehyde followed by decarbonylation to propane. The propane then partially breaks down to hydrogen and carbon monoxide through steam reforming, while CO converts to CO 2 mostly through water gas shift. Ethane and methane are formed via Fischer-Tropsch reactions of CO/CO 2 with H 2.

  17. NiAl Coatings Investigated for Use in Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Ghosn, Louis J.; Barrett, Charles A.

    2003-01-01

    As part of its major investment in the area of advanced space transportation, NASA is developing new technologies for use in the second- and third-generation designs of reusable launch vehicles. Among the prototype rocket engines being considered for these launch vehicles are those designed to use liquid hydrogen as the fuel and liquid oxygen as the oxidizer. Advanced copper alloys, such as copper-chromium-niobium (Cu-8(at.%)Cr- 4(at.%)Nb, also referred to as GRCop-84), which was invented at the NASA Glenn Research Center, are being considered for use as liner materials in the combustion chambers and nozzle ramps of these engines. However, previous experience has shown that, in rocket engines using liquid hydrogen and liquid oxygen, copper alloys are subject to a process called blanching, where the material undergoes environmental attack under the action of the combustion gases. In addition, the copper alloy liners undergo thermomechanical fatigue, which often results in an initially square cooling channel deforming into a dog-house shape. Clearly, there is an urgent need to develop new coatings to protect copper liners from environmental attack inside rocket chambers and to lower the temperature of the liners to reduce the probability of deformation and failure by thermomechanical fatigue.

  18. Crystal Creations.

    ERIC Educational Resources Information Center

    Whipple, Nona; Whitmore, Sherry

    1989-01-01

    Presents a many-faceted learning approach to the study of crystals. Provides instructions for performing activities including crystal growth and patterns, creating miniature simulations of crystal-containing rock formations, charcoal and sponge gardens, and snowflakes. (RT)

  19. Macrodeformation Twins in Single-Crystal Aluminum.

    PubMed

    Zhao, F; Wang, L; Fan, D; Bie, B X; Zhou, X M; Suo, T; Li, Y L; Chen, M W; Liu, C L; Qi, M L; Zhu, M H; Luo, S N

    2016-02-19

    Deformation twinning in pure aluminum has been considered to be a unique property of nanostructured aluminum. A lingering mystery is whether deformation twinning occurs in coarse-grained or single-crystal aluminum at scales beyond nanotwins. Here, we present the first experimental demonstration of macrodeformation twins in single-crystal aluminum formed under an ultrahigh strain rate (∼10^{6}  s^{-1}) and large shear strain (200%) via dynamic equal channel angular pressing. Large-scale molecular dynamics simulations suggest that the frustration of subsonic dislocation motion leads to transonic deformation twinning. Deformation twinning is rooted in the rate dependences of dislocation motion and twinning, which are coupled, complementary processes during severe plastic deformation under ultrahigh strain rates. PMID:26943543

  20. Ballistic penetration phenomenology of high symmetry single crystals

    NASA Astrophysics Data System (ADS)

    Kingman, Pat W.; Herring, Rodney A.

    1995-02-01

    The ballistic performance of tungsten single crystal penetrators is known to be a function of crystallographic symmetry. The macroscopic deformation geometry of both single crystal and polycrystal tungsten penetrators is a continuous eversion of the rod into a hollow tube. The differences in energy partitioning leading to these variations in ballistic performance must therefore be accounted for by detailed material deformation processes governed by crystallographic orientation. Inferences about these processes have been drawn from microstructural characterization of recovered penetrators. Residual penetrators of both 011 and 111 orientations were found to have repeatedly deformed and recrystalized, but the actual operative processes led to quite different macrostructures, microstructures, and penetration depths. The 001 orientation deformed by a unique process which allowed very efficient deformation, resulting in maximum penetration depth. These single crystal experiments demonstrate the critical role of detailed deformation processes in determining the final penetration depths even when similar macroscopic material flow geometry occurs.

  1. A study of reactant interfaces in Ni+Al particle systems during shock wave propagation

    NASA Astrophysics Data System (ADS)

    Austin, Ryan A.; McDowell, David L.; Horie, Yasuyuki; Benson, David J.

    2007-06-01

    Macro-scale responses of energetic materials during shock compression are influenced strongly by thermo-mechano-chemical processes occurring at the level of the microstructure. For example, it is believed that the propagation of chemical reactions in reactive particle systems is intimately linked to conditions at reactant interfaces such as surface temperature, phase changes, defect density, and mass mixing due to inelastic deformation. To provide explicit resolution of such interfacial conditions, numerical models are constructed. The finite element method is used to numerically solve the differential equations that govern the coupled thermomechanical response of micron-size particle mixtures of Ni and Al during shock wave propagation (interface chemistry is not yet modeled). The size and temperature distributions of contiguous reactant contact surfaces are quantified for a range of shock strengths. A parametric study of mixture attributes is undertaken to assess the sensitivity of the aforementioned distributions to variations of the microstructure.

  2. First-principles investigations of Ni3Al(111) and NiAl(110) surfaces at metal dusting conditions

    SciTech Connect

    Saadi, Souheil

    2011-03-01

    We investigate the structure and surface composition of the {gamma}{prime}-Ni{sub 3}Al(111) and {beta}-NiAl(110) alloy surfaces at conditions relevant for metal dusting corrosion related to catalytic steam reforming of natural gas. In regular service as protective coatings, nickel-aluminum alloys are protected by an oxide scale, but in case of oxide scale spallation, the alloy surface may be directly exposed to the reactive gas environment and vulnerable to metal dusting. By means of density functional theory and thermochemical calculations for both the Ni{sub 3}Al and NiAl surfaces, the conditions under which CO and OH adsorption is to be expected and under which it is inhibited, are mapped out. Because CO and OH are regarded as precursors for nucleating graphite or oxide on the surfaces, phase diagrams for the surfaces provide a simple description of their stability. Specifically, this study shows how the CO and OH coverages depend on the steam to carbon ratio (S/C) in the gas and thereby provide a ranking of the carbon limits on the different surface phases.

  3. Ni-Al Nanoscale Energetic Materials: Phenomena Involved During the Manufacturing of Bulk Samples by Cold Spray

    NASA Astrophysics Data System (ADS)

    Bacciochini, A.; Bourdon-Lafleur, S.; Poupart, C.; Radulescu, M.; Jodoin, B.

    2014-10-01

    It has been shown that the cold-gas dynamic spraying process, or simply cold spray, is a suitable technique to manufacture nanoscale energetic materials with high reactivity and low porosity. The current study focuses on the Ni-Al system, for which the reactivity has been increased by an initial mechanical activation achieved by the ball-milling technique, leading to lamellar nanostructured composite particles. The consolidation of this nanoscale energetic material using the cold-gas dynamic spray technique permits to retain the feedstock powder nanoscale structure in the coatings, which in turn retain the high reactivity features of the powder. However, it has been noticed that the stagnation temperature during the spray can lead to partial reaction of the highly reactive feedstock powder, which directly influences the reactivity of the coatings. In this study, different stages of the spray process were investigated: (i) the in-flight behavior of the nanoscale energetic material (powder) at different stagnation temperatures (from 300 to 800 °C); (ii) the substrate-temperature evolution as the function of gas temperature; and (iii) the impact of the powder on the substrate, related to particle's velocity and its influence on the nanostructure of the particles.

  4. Atomistic modeling of the reordering process of γ‧ disordered particles in Ni-Al alloys

    NASA Astrophysics Data System (ADS)

    Martínez, Enrique; Soisson, Frédéric; Caro, Alfredo; Uberuaga, Blas P.

    2016-09-01

    Ni-based alloys are used in nuclear applications, including as a window material at isotope production facilities, withstanding high fluxes of different energetic particles like protons. Irradiation disorders the γ‧ precipitates that in large extent confer the mechanical properties characterizing these materials. Upon disordering, the γ‧ phase transforms into oversaturated γ, degrading the materials properties. Experimentally it is observed that disordering might take place at fairly low irradiation doses. Once the particles are disordered, a competition between dissolution, due to strong concentration gradients in an oversaturated solid solution, and reordering appears. Here, we examine this competition in a model Ni-Al alloy under thermal conditions for different precipitates sizes and temperatures. We observe Al interdiffusion from the supersaturated particle to the matrix. Also, stochasticity appears as an important factor in to where precipitates locate. Stress relaxation seems to modify the precipitation process, with a stronger interface effect compared to rigid lattice simulations.

  5. Atomic force microscopy identification of Al-sites on ultrathin aluminum oxide film on NiAl(110).

    PubMed

    Li, Yan Jun; Brndiar, J; Naitoh, Y; Sugawara, Y; Štich, I

    2015-12-18

    Ultrathin alumina film formed by oxidation of NiAl(110) was studied by non-contact atomic force microscopy in an ultra high vacuum at room temperature with the quest to provide the ultimate understanding of structure and bonding of this complicated interface. Using a very stiff Si cantilever with significantly improved resolution, we have obtained images of this system with unprecedented resolution, surpassing all the previous results. In particular, we were able to unambiguously resolve all the differently coordinated aluminum atoms. This is of importance as the previous images provide very different image patterns, which cannot easily be reconciled with the existing structural models. Experiments are supported by extensive density functional theory modeling. We find that the system is strongly ionic and the atomic force microscopy images can reliably be understood from the electrostatic potential which provides an image model in excellent agreement with the experiments. However, in order to resolve the finer contrast features we have proposed a more sophisticated model based on more realistic approximants to the incommensurable alumina interface.

  6. Slurry Erosion Performance of Ni-Al2O3 Based Thermal-Sprayed Coatings: Effect of Angle of Impingement

    NASA Astrophysics Data System (ADS)

    Grewal, H. S.; Agrawal, Anupam; Singh, H.; Shollock, B. A.

    2014-02-01

    In this paper, slurry erosion performance of high velocity flame-sprayed Ni-Al2O3 based coatings was evaluated. The coatings were deposited on a hydroturbine steel (CA6NM) by varying the content of Al2O3 in Ni. Using jet-type test rig, erosion behavior of coatings and bare steel was evaluated at different impingement angles. Detailed investigation of the surface morphology of the eroded specimens was undertaken using SEM/EDS to identify potential erosion mechanism. A parameter named "erosion mechanism identifier" (ξ) was used to predict the mode of erosion. It was observed that the coating prepared using 40 wt.% of Al2O3 showed a highest resistance to erosion. This coating enhanced the erosion resistance of the steel by 2 to 4 times. Spalling in the form of splats and chunks of material (formed by interlinking of cracks) along with fracture of Al2O3 splats were identified as primary mechanisms responsible for the loss of coating material. The erosion mechanism of coatings and bare steel predicted by ξ was in good agreement with that observed experimentally. Among different parameters,, a function of fracture toughness ( K IC) and hardness ( H) showed excellent correlation with erosion resistance of coatings at both the impingement angles.

  7. Atomic force microscopy identification of Al-sites on ultrathin aluminum oxide film on NiAl(110).

    PubMed

    Li, Yan Jun; Brndiar, J; Naitoh, Y; Sugawara, Y; Štich, I

    2015-12-18

    Ultrathin alumina film formed by oxidation of NiAl(110) was studied by non-contact atomic force microscopy in an ultra high vacuum at room temperature with the quest to provide the ultimate understanding of structure and bonding of this complicated interface. Using a very stiff Si cantilever with significantly improved resolution, we have obtained images of this system with unprecedented resolution, surpassing all the previous results. In particular, we were able to unambiguously resolve all the differently coordinated aluminum atoms. This is of importance as the previous images provide very different image patterns, which cannot easily be reconciled with the existing structural models. Experiments are supported by extensive density functional theory modeling. We find that the system is strongly ionic and the atomic force microscopy images can reliably be understood from the electrostatic potential which provides an image model in excellent agreement with the experiments. However, in order to resolve the finer contrast features we have proposed a more sophisticated model based on more realistic approximants to the incommensurable alumina interface. PMID:26588437

  8. Principles of rock deformation

    SciTech Connect

    Nicolas, A.

    1987-01-01

    This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.

  9. Polygonal deformation bands

    NASA Astrophysics Data System (ADS)

    Antonellini, Marco; Mollema, Pauline Nella

    2015-12-01

    We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.

  10. Polygonal deformation bands

    NASA Astrophysics Data System (ADS)

    Antonellini, Marco; Mollema, Pauline Nella

    2015-12-01

    We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.

  11. Modeling liquid crystal polymeric devices

    NASA Astrophysics Data System (ADS)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  12. Reverse Kirner's deformity: case report.

    PubMed

    Lau, Yeong J; Tonkin, Michael A

    2009-03-01

    Kirner's deformity is a rare congenital deformity, usually of the little finger, with volar and radial bowing of the distal phalanx. The etiology of this deformity is unclear. We describe a case of a 9-year-old girl with radiographic changes classic for Kirner's deformity but with the curvature and nail changes in the dorsal direction.

  13. Aluminizing a Ni sheet through severe plastic deformation induced by ball collisions

    NASA Astrophysics Data System (ADS)

    Romankov, S.; Shchetinin, I. V.; Park, Y. C.

    2015-07-01

    Aluminizing a Ni sheet was performed through severe plastic deformation induced by ball collisions. The Ni sheet was fixed in the center of a mechanically vibrated vial between two connected parts. The balls were loaded into the vial on both sides of the Ni disk. Al disks, which were fixed on the top and the bottom of the vial, served as the sources of Al contamination. During processing, the Ni sheet was subject to intense ball collisions. The Al fragments were transferred and alloyed to the surface of the Ni sheet by these collisions. The combined effects of deformation-induced plastic flow, mechanical intermixing, and grain refinement resulted in the formation of a dense, continuous nanostructured Al layer on the Ni surface on both sides of the sheet. The Al layer consisted of Al grains with an average size of about 40 nm. The Al layer was reinforced with nano-sized Ni flakes that were introduced from the Ni surface during processing. The local amorphization at the Ni/Al interface revealed that the bonding between Ni and Al was formed by mechanical intermixing of atomic layers at the interface. The hardness of the fabricated Al layer was 10 times that of the initial Al plate. The ball collisions destroyed the initial rolling texture of the Ni sheet and induced the formation of the mixed [1 0 0] + [1 1 1] fiber texture. The laminar rolling structure of the Ni was transformed into an ultrafine grain structure.

  14. Temporal evolution of photothermal-induced Rayleigh wave and plate deformation as an interference in the transient kinetics of photoinduced carrier recombination of a rutile titanium dioxide single crystal.

    PubMed

    Zhu, Gangbei; Zhu, Ming; Weng, Yuxiang

    2014-01-01

    The dynamic properties of photothermal processes occurring after the initial photogenerated carrier recombination in the flash photolysis of a semiconductor plate sample probed with a reflected infrared beam are reported in this work. Transient kinetics pertaining to the photothermal processes always appear as interfering signals in that of the photogenerated carrier recombination and should be distinguished and excluded. We observed that the photothermal-induced Rayleigh wave occurs immediately after the photogenerated carrier recombination that is then followed by the photothermal-induced flexural vibration of the sample substrate with a set of intrinsic frequencies as reported in our previous work (Appl. Spectrosc. 2013. 67(5): 506-512). When these two faster types of waves decay, the transient decaying signal from the plate deformation due to the inhomogeneous temperature field remains for much longer than 22 ms. Thus, all three types of the photothermal dynamic processes of different temporal properties induced by the pulsed laser on an absorbing semiconductor thin plate are clearly identified.

  15. Plastic Deformation of Quartz: Unfinished business?

    NASA Astrophysics Data System (ADS)

    Paterson, M. S.

    2011-12-01

    Starting at Harvard in the mid-1930's, David Griggs built a series of high pressure machines for experimental rock deformation. One persistent aim was to achieve the plastic deformation of quartz. Each time he built a new machine for higher pressure and/or temperature, one of the first materials he tested would be quartz. This search went on through a 500 MPa liquid-medium machine at temperatures up to 300°C, then with a gas-medium machine for temperatures up to 800°C, and finally with a solid-medium machine for higher pressures and temperatures. Quartz proved stubbornly resistant to deformation except at extremely high stresses until, finally and somewhat serendipitously, it was found possible to deform quartz at relatively low stresses in the presence of water under special conditions. The breakthrough came in an experiment in a 1500 MPa solid-medium apparatus in which talc was used as pressure medium. At the temperature of the experiment, the talc dehydrated and so released water. Under these conditions, natural quartz proved to be very weak and to readily undergo plastic deformation, a phenomenon that became known as "hydrolytic weakening". Soon after this discovery, it was also found that certain synthetic single crystals could be easily deformed ab initio. These crystals were from a particular set that had been grown rapidly under hydrothermal conditions and had incorporated water during growth. Attempts in our laboratory to weaken crystals in a gas-medium apparatus at around 300 MPa by cooking dry quartz in the presence of added water were all unsuccessful, although we could deform wet synthetic crystals. There was considerable speculation about a role of high pressure in promoting hydrolytic weakening, but the dilemma was eventually clarified by electron microscope studies by Fitz Gerald and coworkers. These studies showed that crystals that had been subjected to high pressure and temperature in the solid-medium apparatus were extensively microcracked

  16. Fluctuations and Scaling in Creep Deformation

    NASA Astrophysics Data System (ADS)

    Rosti, Jari; Koivisto, Juha; Laurson, Lasse; Alava, Mikko J.

    2010-09-01

    The spatial fluctuations of deformation are studied in the creep in Andrade’s power law and the logarithmic phases, using paper samples. Measurements by the digital image correlation technique show that the relative strength of the strain rate fluctuations increases with time, in both creep regimes. In the Andrade creep phase characterized by a power-law decay of the strain rate γt˜t-θ, with θ≈0.7, the fluctuations obey Δγt˜t-γ, with γ≈0.5. The local deformation follows a data collapse appropriate for a phase transition. Similar behavior is found in a crystal plasticity model, with a jamming or yielding transition.

  17. Effect of Mo Dispersion Size and Water Vapor on Oxidation of Two-Phase Directionally Solidified NiAl-9Mo In-Situ Composites

    SciTech Connect

    Brady, Michael P; Bei, Hongbin; Meisner, Roberta Ann; Lance, Michael J; Tortorelli, Peter F

    2014-01-01

    Oxidation of two-phase NiAl-9Mo eutectics with 3 different growth rates/2nd phase Mo dispersion sizes were investigated at 900 C in air and air with 10% water vapor. Good oxidation resistance via alumina formation was observed in dry air, with Mo volatilization loss minimized by fine submicron Mo dispersions. However, extensive Mo volatilization and in-place internal oxidation of prior Mo phase regions was observed in wet air oxidation. Ramifications of this phenomenon for the development of multi-phase high-temperature alloys are discussed

  18. Crystal plasticity and grain crushing in high-porosity rocks

    NASA Astrophysics Data System (ADS)

    Rahmani, H.; Tjioe, M.; Borja, R. I.

    2012-12-01

    Previous studies show the significance of considering microstructure of individual crystals in modeling the inelastic behavior of high-porosity rocks. Plastic deformation of high-porosity crystalline rocks, exemplified by limestone, is mainly attributed to crystal plasticity and cataclastic flow. Crystal plasticity is defined as the plastic deformation along potential slip systems within the crystal lattice. In the context of continuum mechanics this micro-mechanism is modeled by a nonlinear relationship between stresses and strains. Two types of nonlinearity characterize the inelastic behavior of the crystal grains: material nonlinearity and geometric nonlinearity. Material nonlinearity defines the changes in stiffness matrix due to plastic slip along slip systems. Geometric nonlinearity contributes to the changes in stiffness matrix due to changes in the geometry of the crystal grains. Geometric nonlinearity is modeled using theory of finite deformation, which assumes the geometry of slip systems to be a function of crystal deformation. This type of nonlinearity is very important in modeling crystal deformation mainly because of plastic spin induced by anisotropy in the crystal structure. However, considering the geometry of slip systems as a function of crystal slip makes the equations highly nonlinear. As a result, many studies either ignore geometric nonlinearity or make other assumptions to simplify the equations. Cataclastic flow, on the other hand, is characterized by pervasive grain crushing in which larger grains are converted into smaller ones. We model cataclastic flow as strong discontinuity in the grain scale via an assumed enhanced strain method formulated within the context of nonlinear finite elements. The method allows the individual finite elements, identified to be in critical condition, to break into two pieces along a plane identified by theory of bifurcation. We show that modeling cataclastic flow combined with finite deformation crystal

  19. Interfacial Bubble Deformations

    NASA Astrophysics Data System (ADS)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  20. Crustal deformation and earthquakes

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1984-01-01

    The manner in which the Earth's surface deforms during the cycle of stress accumulation and release along major faults is investigated. In an investigation of the crustal deformation associated with a thin channel asthenosphere displacements are reduced from those computed for a half space asthenosphere. A previous finding by other workers that displacements are enhanced when flow is confined to a thin channel is based on several invalid approximations. The major predictions of the finite element model are that the near field postseismic displacements and strain rates are less than those for a half space asthenosphere and that the postseismic strain rates at intermediate distances are greater (in magnitude). The finite width of the asthenosphere ceases to have a significant impact on the crustal deformation pattern when its magnitude exceeds about three lithosphere thicknesses.

  1. Creep deformation mechanism mapping in nickel base disk superalloys

    DOE PAGES

    Smith, Timothy M.; Unocic, Raymond R.; Deutchman, Hallee; Mills, Michael J.

    2016-05-10

    We investigated the creep deformation mechanisms at intermediate temperature in ME3, a modern Ni-based disk superalloy, using diffraction contrast imaging. Both conventional transmission electron microscopy (TEM) and scanning TEM were utilised. Distinctly different deformation mechanisms become operative during creep at temperatures between 677-815 °C and at stresses ranging from 274 to 724 MPa. Both polycrystalline and single-crystal creep tests were conducted. The single-crystal tests provide new insight into grain orientation effects on creep response and deformation mechanisms. Creep at lower temperatures (≤760 °C) resulted in the thermally activated shearing modes such as microtwinning, stacking fault ribbons and isolated superlattice extrinsicmore » stacking faults. In contrast, these faulting modes occurred much less frequently during creep at 815 °C under lower applied stresses. Instead, the principal deformation mode was dislocation climb bypass. In addition to the difference in creep behaviour and creep deformation mechanisms as a function of stress and temperature, it was also observed that microstructural evolution occurs during creep at 760 °C and above, where the secondary coarsened and the tertiary precipitates dissolved. Based on this work, a creep deformation mechanism map is proposed, emphasising the influence of stress and temperature on the underlying creep mechanisms.« less

  2. Plate motion and deformation

    SciTech Connect

    Minster, B.; Prescott, W.; Royden, L.

    1991-02-01

    Our goal is to understand the motions of the plates, the deformation along their boundaries and within their interiors, and the processes that control these tectonic phenomena. In the broadest terms, we must strive to understand the relationships of regional and local deformation to flow in the upper mantle and the rheological, thermal and density structure of the lithosphere. The essential data sets which we require to reach our goal consist of maps of current strain rates at the earth's surface and the distribution of integrated deformation through time as recorded in the geologic record. Our success will depend on the effective synthesis of crustal kinematics with a variety of other geological and geophysical data, within a quantitative theoretical framework describing processes in the earth's interior. Only in this way can we relate the snapshot of current motions and earth structure provided by geodetic and geophysical data with long-term processes operating on the time scales relevant to most geological processes. The wide-spread use of space-based techniques, coupled with traditional geological and geophysical data, promises a revolution in our understanding of the kinematics and dynamics of plate motions over a broad range of spatial and temporal scales and in a variety of geologic settings. The space-based techniques that best address problems in plate motion and deformation are precise space-geodetic positioning -- on land and on the seafloor -- and satellite acquisition of detailed altimetric and remote sensing data in oceanic and continental areas. The overall science objectives for the NASA Solid Earth Science plan for the 1990's, are to Understand the motion and deformation of the lithosphere within and across plate boundaries'', and to understand the dynamics of the mantle, the structure and evolution of the lithosphere, and the landforms that result from local and regional deformation. 57 refs., 7 figs., 2 tabs.

  3. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2010-04-06

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  4. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2009-04-14

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  5. Deformed Quantum Statistics

    NASA Astrophysics Data System (ADS)

    Inomata, Akira

    1997-03-01

    To understand possible physical consequences of quantum deformation, we investigate statistical behaviors of a quon gas. The quon is an object which obeys the minimally deformed commutator (or q-mutator): a a† - q a†a=1 with -1≤ q≤ 1. Although q=1 and q=-1 appear to correspond respectively to boson and fermion statistics, it is not easy to create a gas which unifies the boson gas and the fermion gas. We present a model which is able to interpolates between the two limits. The quon gas shows the Bose-Einstein condensation near the Boson limit in two dimensions.

  6. Lobster claw deformity.

    PubMed

    Agrawal, Ashish; Agrawal, Rahul; Singh, Rajat; Agrawal, Romi; Agrawal, Seema

    2014-01-01

    Endogenous erythroid colony (EEC) syndrome comprise of three cardinal features, i.e. ectrodactyly, ectodermal dysplasia and cleft lip. EEC itself has three different forms. Ectrodactyly (absence of one or more digits) can be present with clefting in the proximal portion of hand or foot known as split hand foot malformation (SHFM) or lobster claw deformity. SHFM can be of four types depending upon the different responsible chromosomal loci. SHFM-4 can be present as pure limb malformation (non-syndromic form). In this article, describes a rare case report of lobster claw deformity patient.

  7. Lobster claw deformity.

    PubMed

    Agrawal, Ashish; Agrawal, Rahul; Singh, Rajat; Agrawal, Romi; Agrawal, Seema

    2014-01-01

    Endogenous erythroid colony (EEC) syndrome comprise of three cardinal features, i.e. ectrodactyly, ectodermal dysplasia and cleft lip. EEC itself has three different forms. Ectrodactyly (absence of one or more digits) can be present with clefting in the proximal portion of hand or foot known as split hand foot malformation (SHFM) or lobster claw deformity. SHFM can be of four types depending upon the different responsible chromosomal loci. SHFM-4 can be present as pure limb malformation (non-syndromic form). In this article, describes a rare case report of lobster claw deformity patient. PMID:24992861

  8. Embedded-atom-method study of structural, thermodynamic, and atomic-transport properties of liquid Ni-Al alloys

    SciTech Connect

    Asta, M.; Morgan, D.; Hoyt, J.J.; Sadigh, B.; Althoff, J.D.; de Fontaine, D.; Foiles, S.M.

    1999-06-01

    Structural, thermodynamic, and atomic-transport properties of liquid Ni-Al alloys have been studied by Monte Carlo and molecular-dynamics simulations based upon three different embedded-atom method (EAM) interatomic potentials, namely those due to Foiles and Daw (FD) [J. Mater. Res. {bold 2}, 5 (1987)], Voter and Chen (VC) [in {ital Characterization of Defects in Materials}, edited by R. W. Siegel {ital et al.} MRS Symposia Proceedings. No. 82 (Materials Research Society, Pittsburgh, 1987), p.175] and Ludwig and Gumbsch (LG) [Model. Simul. Mater. Sci. Eng. {bold 3}, 533 (1995)]. We present detailed comparisons between calculated results and experimental data for structure factors, atomic volumes, enthalpies of mixing, activities, and viscosities. Calculated partial structure factors are found to be in semiquantitative agreement with published neutron scattering measurements for Ni{sub 20}Al{sub 80} alloys, indicating that short-range order in the liquid phase is qualitatively well described. Calculated thermodynamic properties of mixing are found to agree very well with experimental data for Ni compositions greater than 75 atomic {percent}, while for alloys richer in Al the magnitudes of the enthalpies and entropies of mixing are significantly underestimated. The VC and LG potentials give atomic densities and viscosities in good agreement with experiment for Ni-rich compositions, while FD potentials consistently underestimate both properties at all concentrations. The results of this study demonstrate that VC and LG potentials provide a realistic description of the thermodynamic and atomic transport properties for Ni{sub x}Al{sub 1{minus}x} liquid alloys with x{ge}0.75, and point to the limitations of EAM potentials for alloys richer in Al. {copyright} {ital 1999} {ital The American Physical Society}

  9. Embedded-atom-method study of structural, thermodynamic, and atomic-transport properties of liquid Ni-Al alloys

    NASA Astrophysics Data System (ADS)

    Asta, Mark; Morgan, Dane; Hoyt, J. J.; Sadigh, Babak; Althoff, J. D.; de Fontaine, D.; Foiles, S. M.

    1999-06-01

    Structural, thermodynamic, and atomic-transport properties of liquid Ni-Al alloys have been studied by Monte Carlo and molecular-dynamics simulations based upon three different embedded-atom method (EAM) interatomic potentials, namely those due to Foiles and Daw (FD) [J. Mater. Res. 2, 5 (1987)], Voter and Chen (VC) [in Characterization of Defects in Materials, edited by R. W. Siegel et al. MRS Symposia Proceedings. No. 82 (Materials Research Society, Pittsburgh, 1987), p.175] and Ludwig and Gumbsch (LG) [Model. Simul. Mater. Sci. Eng. 3, 533 (1995)]. We present detailed comparisons between calculated results and experimental data for structure factors, atomic volumes, enthalpies of mixing, activities, and viscosities. Calculated partial structure factors are found to be in semiquantitative agreement with published neutron scattering measurements for Ni20Al80 alloys, indicating that short-range order in the liquid phase is qualitatively well described. Calculated thermodynamic properties of mixing are found to agree very well with experimental data for Ni compositions greater than 75 atomic %, while for alloys richer in Al the magnitudes of the enthalpies and entropies of mixing are significantly underestimated. The VC and LG potentials give atomic densities and viscosities in good agreement with experiment for Ni-rich compositions, while FD potentials consistently underestimate both properties at all concentrations. The results of this study demonstrate that VC and LG potentials provide a realistic description of the thermodynamic and atomic transport properties for NixAl1-x liquid alloys with x>=0.75, and point to the limitations of EAM potentials for alloys richer in Al.

  10. Optically induced switching of nematic deformations

    NASA Astrophysics Data System (ADS)

    Kavitha, L.; Venkatesh, M.; Dhamayanthi, S.; Parasuraman, E.; Gopi, D.

    2013-12-01

    We consider a two coupled partial differential equations (PDEs) governing the dynamics of the self-focusing of laser light in a nematic liquid crystal system. This paraxial PDE models the interaction between optics and nematic by the propagation of a wave in a nonlinear medium. We invoke the Jacobi elliptic function method to solve the coupled PDE for solitary wave solutions. We establish the essential coupling between optical refraction and nematic deformation and evinces two of the most intriguing of the experimentally observed features undulation and filamentation of the beam. The play role of nematic anisotropy on the stability of the profile of solitons is explored.

  11. Glassy features of crystal plasticity

    NASA Astrophysics Data System (ADS)

    Lehtinen, Arttu; Costantini, Giulio; Alava, Mikko J.; Zapperi, Stefano; Laurson, Lasse

    2016-08-01

    Crystal plasticity occurs by deformation bursts due to the avalanchelike motion of dislocations. Here we perform extensive numerical simulations of a three-dimensional dislocation dynamics model under quasistatic stress-controlled loading. Our results show that avalanches are power-law distributed and display peculiar stress and sample size dependence: The average avalanche size grows exponentially with the applied stress, and the amount of slip increases with the system size. These results suggest that intermittent deformation processes in crystalline materials exhibit an extended critical-like phase in analogy to glassy systems instead of originating from a nonequilibrium phase transition critical point.

  12. Ni-Al Protective Coating of Steel Electrodes in Dc Electrolysis for Hydrogen Production / Ni-Al Pārklājuma Ietekme Uz Tērauda Elektrodiem Līdzstrāvas Elektrolīzē Ūdeņraža Ražošanai

    NASA Astrophysics Data System (ADS)

    Aizpurietis, P.; Vanags, M.; Kleperis, J.; Bajars, G.

    2013-04-01

    Hydrogen can be a good alternative to fossil fuels under the conditions of world's crisis as an effective energy carrier derived from renewable resources. Among all the known methods of hydrogen production, water electrolysis gives the ecologically purest hydrogen, so it is of importance to maximize the efficiency of this process. The authors consider the influence of plasma sprayed Ni-Al protective coating of 316L steel anode-cathode electrodes in DC electrolysis. In a long-term (24 h) process the anode corrodes strongly, losing Cr and Ni ions which are transferred to the electrolyte, while only minor corrosion of the cathode occurs. At the same time, the composition of anode and cathode electrodes protected by Ni-Al coating changes only slightly during a prolonged electrolysis. As the voltammetry and Tafel plots evidence, the Ni-Al coating protects both the anode and cathode from the corrosion and reduces the potential of hydrogen evolution. The results obtained show that such a coating works best in the case of steel electrodes. Darbā pētīts, kā līdzstrāvas elektrolīzē tērauda 316L elektrodus (anods un katods) ietekmē ar plazmas izputināšanas metodi iegūts Ni-Al pārklājums. Tikko uznestam pārklājumam ir mikrostrukturēta virsma, kas kodināšanas laikā mainās, gan pēc reljefa, gan elementu sastāva. Veicot ilgstošu (24 stundas elektrolīzi), atrasts, ka tikai tērauda elektrods anoda lomā intensīvi korodē un zaudē hroma un niķeļa jonus, kas pāriet elektrolītā, turpretī katods mainās relatīvi maz. Pārklājums Ni-Al pēc uznešanas tiek kodināts karstā sārmā, kad tiek izšķīdināta daļa sastāvā esošo elementu (Al, Si, Cd), bet ilgstošas elektrolīzes laikā pārklājuma sastāvs mainās maz gan anodam, gan katodam. Elektrodu elektroķīmiskie raksturlielumi noteikti ar voltamperometrijas un Tāfeļa līkņu analīzes metodēm. Atrasts, ka Ni-Al pārklājums aizsargā gan anodu, gan katodu no korozijas un samazina

  13. MEMS Actuated Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Walton, C; Cohn, M

    2005-11-10

    This ongoing work concerns the creation of a deformable mirror by the integration of MEMS actuators with Nanolaminate foils through metal compression boning. These mirrors will use the advantages of these disparate technologies to achieve dense actuation of a high-quality, continuous mirror surface. They will enable advanced adaptive optics systems in large terrestrial telescopes. While MEMS actuators provide very dense actuation with high precision they can not provide large forces typically necessary to deform conventional mirror surfaces. Nanolaminate foils can be fabricated with very high surface quality while their extraordinary mechanical properties enable very thin, flexible foils to survive the rigors of fabrication. Precise metal compression bonding allows the attachment of the fragile MEMS actuators to the thin nanolaminate foils without creating distortions at the bond sites. This paper will describe work in four major areas: (1) modeling and design, (2) bonding development, (3) nanolaminate foil development, (4) producing a prototype. A first-principles analytical model was created and used to determine the design parameters. A method of bonding was determined that is both strong, and minimizes the localized deformation or print through. Work has also been done to produce nanolaminate foils that are sufficiently thin, flexible and flat to be deformed by the MEMS actuators. Finally a prototype was produced by bonding thin, flexible nanolaminate foils to commercially available MEMS actuators.

  14. Transfer involving deformed nuclei

    SciTech Connect

    Rasmussen, J.O.; Guidry, M.W.; Canto, L.F.

    1985-03-01

    Results are reviewed of 1- and 2-neutron transfer reactions at near-barrier energies for deformed nuclei. Rotational angular momentum and excitation patterns are examined. A strong tendency to populating high spin states within a few MeV of the yrast line is noted, and it is interpreted as preferential transfer to rotation-aligned states. 16 refs., 12 figs.

  15. Crystal Systems.

    ERIC Educational Resources Information Center

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  16. Virtual Crystallizer

    SciTech Connect

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  17. Crystal growing

    NASA Technical Reports Server (NTRS)

    Neville, J. P.

    1990-01-01

    One objective is to demonstrate the way crystals grow and how they affect the behavior of material. Another objective is to compare the growth of crystals in metals and nonmetals. The procedures, which involve a supersaturated solution of a salt that will separate into crystals on cooling and the pouring off of an eutectic solution to expose the crystals formed by a solid solution when an alloy of two metals forms a solid and eutectic solution on cooling, are described.

  18. Solvothermal synthesis of NiAl double hydroxide microspheres on a nickel foam-graphene as an electrode material for pseudo-capacitors

    SciTech Connect

    Momodu, Damilola; Bello, Abdulhakeem; Dangbegnon, Julien; Barzeger, Farshad; Taghizadeh, Fatimeh; Fabiane, Mopeli; Manyala, Ncholu; Johnson, A. T. Charlie

    2014-09-15

    In this paper, we demonstrate excellent pseudo-capacitance behavior of nickel-aluminum double hydroxide microspheres (NiAl DHM) synthesized by a facile solvothermal technique using tertbutanol as a structure-directing agent on nickel foam-graphene (NF-G) current collector as compared to use of nickel foam current collector alone. The structure and surface morphology were studied by X-ray diffraction analysis, Raman spectroscopy and scanning and transmission electron microscopies respectively. NF-G current collector was fabricated by chemical vapor deposition followed by an ex situ coating method of NiAl DHM active material which forms a composite electrode. The pseudocapacitive performance of the composite electrode was investigated by cyclic voltammetry, constant charge–discharge and electrochemical impedance spectroscopy measurements. The composite electrode with the NF-G current collector exhibits an enhanced electrochemical performance due to the presence of the conductive graphene layer on the nickel foam and gives a specific capacitance of 1252 F g{sup −1} at a current density of 1 A g{sup −1} and a capacitive retention of about 97% after 1000 charge–discharge cycles. This shows that these composites are promising electrode materials for energy storage devices.

  19. A photoelectron spectroscopy and thermal desorption study of CO on FeAl(110) and polycrystalline TiAl and NiAl

    NASA Astrophysics Data System (ADS)

    Gleason, N. R.; Strongin, D. R.

    1993-10-01

    Research presented in this paper investigates the electronic properties and surface reactivity of FeAl(110) and polycrystalline TiAl and NiAl toward carbon monoxide. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) have been used to characterize the electronic structure of the clean and CO-exposed surfaces. Temperature programmed desorption (TPD) shows CO desorption states below 470 K on all the aluminide surfaces. UPS shows that CO adsorption is molecular on FeAl(110) and NiAl at 130 and 200 K, respectively. The majority of CO is found to be dissociated on TiAl at 200 K. Adsorption of CO on FeAl(110) at 315 K results in both molecular and dissociated species, as determined by XPS. Heating this CO/FeAl(110) system results in further dissociation and CO desorption near 430 K. XPS data suggests that surface oxygen, resulting from CO dissociation, preferentially binds to the aluminum component.

  20. Effects of preparation method on the performance of Ni/Al(2)O(3) catalysts for hydrogen production by bio-oil steam reforming.

    PubMed

    Li, Xinbao; Wang, Shurong; Cai, Qinjie; Zhu, Lingjun; Yin, Qianqian; Luo, Zhongyang

    2012-09-01

    Steam reforming of bio-oil derived from the fast pyrolysis of biomass is an economic and renewable process for hydrogen production. The main objective of the present work has been to investigate the effects of the preparation method of Ni/Al(2)O(3) catalysts on their performance in hydrogen production by bio-oil steam reforming. The Ni/Al(2)O(3) catalysts were prepared by impregnation, co-precipitation, and sol-gel methods. XRD, XPS, H(2)-TPR, SEM, TEM, TG, and N(2) physisorption measurements were performed to characterize the texture and structure of the catalysts obtained after calcination and after their subsequent use. Ethanol and bio-oil model compound were selected for steam reforming to evaluate the catalyst performance. The catalyst prepared by the co-precipitation method was found to display better performance than the other two. Under the optimized reaction conditions, an ethanol conversion of 99% and a H(2) yield of 88% were obtained. PMID:21562805

  1. Effects of preparation method on the performance of Ni/Al(2)O(3) catalysts for hydrogen production by bio-oil steam reforming.

    PubMed

    Li, Xinbao; Wang, Shurong; Cai, Qinjie; Zhu, Lingjun; Yin, Qianqian; Luo, Zhongyang

    2012-09-01

    Steam reforming of bio-oil derived from the fast pyrolysis of biomass is an economic and renewable process for hydrogen production. The main objective of the present work has been to investigate the effects of the preparation method of Ni/Al(2)O(3) catalysts on their performance in hydrogen production by bio-oil steam reforming. The Ni/Al(2)O(3) catalysts were prepared by impregnation, co-precipitation, and sol-gel methods. XRD, XPS, H(2)-TPR, SEM, TEM, TG, and N(2) physisorption measurements were performed to characterize the texture and structure of the catalysts obtained after calcination and after their subsequent use. Ethanol and bio-oil model compound were selected for steam reforming to evaluate the catalyst performance. The catalyst prepared by the co-precipitation method was found to display better performance than the other two. Under the optimized reaction conditions, an ethanol conversion of 99% and a H(2) yield of 88% were obtained.

  2. Bertram Hopkinson's pioneering work and the dislocation mechanics of high rate deformations and mechanically induced detonations.

    PubMed

    Armstrong, Ronald W

    2014-05-13

    Bertram Hopkinson was prescient in writing of the importance of better measuring, albeit better understanding, the nature of high rate deformation of materials in general and, in particular, of the importance of heat in initiating detonation of explosives. This report deals with these subjects in terms of post-Hopkinson crystal dislocation mechanics applied to high rate deformations, including impact tests, Hopkinson pressure bar results, Zerilli-Armstrong-type constitutive relations, shock-induced deformations, isentropic compression experiments, mechanical initiation of explosive crystals and shear banding in metals.

  3. q-Deformed and c-Deformed Harmonic Oscillators

    NASA Astrophysics Data System (ADS)

    Sogami, I. S.; Koizumi, K.; Mir-Kasimov, R. M.

    2003-10-01

    Hamilton functions of classical deformed oscillators (c-deformed oscillators) are derived from Hamiltonians of q-deformed oscillators of the Macfarlane and Dubna types. A new scale parameter, lq, with the dimension of length, is introduced to relate a dimensionless parameter characterizing the deformation with the natural length of the harmonic oscillator. Contraction from q-deformed oscillators to c-deformed oscillators is accomplished by keeping lq finite while taking the limit hbar → 0. The c-deformed Hamilton functions for both types of oscillators are found to be invariant under discrete translations: the step of the translation for the Dubna oscillator is half of that for the Macfarlane oscillator. The c-deformed oscillator of the Macfarlane type has propagating solutions in addition to localized ones. Reinvestigation of the q-deformed oscillator carried out in the light of these findings for the c-deformed systems proves that the q-deformed systems are invariant under the same translation symmetries as the c-deformed systems and have propagating waves of the Bloch type.

  4. Deformation compatibility in a single crystalline Ni superalloy

    PubMed Central

    Zhang, Tiantian; Dunne, Fionn P. E.

    2016-01-01

    Deformation in materials is often complex and requires rigorous understanding to predict engineering component lifetime. Experimental understanding of deformation requires utilization of advanced characterization techniques, such as high spatial resolution digital image correlation (HR-DIC) and high angular resolution electron backscatter diffraction (HR-EBSD), combined with clear interpretation of their results to understand how a material has deformed. In this study, we use HR-DIC and HR-EBSD to explore the mechanical behaviour of a single-crystal nickel alloy and to highlight opportunities to understand the complete deformations state in materials. Coupling of HR-DIC and HR-EBSD enables us to precisely focus on the extent which we can access the deformation gradient, F, in its entirety and uncouple contributions from elastic deformation gradients, slip and rigid body rotations. Our results show a clear demonstration of the capabilities of these techniques, found within our experimental toolbox, to underpin fundamental mechanistic studies of deformation in polycrystalline materials and the role of microstructure. PMID:26997901

  5. Deformation twinning of a silver nanocrystal under high pressure. Supplementary materials

    SciTech Connect

    Huang, X. J.; Yang, W. G.; Harder, R.; Sun, Y.; Lu, M.; Chu, Y. S.; Robinson, I. K.; Mao, H. K.

    2015-10-20

    Within a high-pressure environment, crystal deformation is controlled by complex processes such as dislocation motion, twinning, and phase transitions, which change materials’ microscopic morphology and alter their properties. Likewise, understanding a crystal’s response to external stress provides a unique opportunity for rational tailoring of its functionalities. It is very challenging to track the strain evolution and physical deformation from a single nanoscale crystal under high-pressure stress. Here, we report an in situ three-dimensional mapping of morphology and strain evolutions in a single-crystal silver nanocube within a high-pressure environment using the Bragg Coherent Diffractive Imaging (CDI) method. We also observed a continuous lattice distortion, followed by a deformation twining process at a constant pressure. The ability to visualize stress-introduced deformation of nanocrystals with high spatial resolution and prominent strain sensitivity provides an important route for interpreting and engineering novel properties of nanomaterials.

  6. Deformation twinning of a silver nanocrystal under high pressure. Supplementary materials

    DOE PAGES

    Huang, X. J.; Yang, W. G.; Harder, R.; Sun, Y.; Lu, M.; Chu, Y. S.; Robinson, I. K.; Mao, H. K.

    2015-10-20

    Within a high-pressure environment, crystal deformation is controlled by complex processes such as dislocation motion, twinning, and phase transitions, which change materials’ microscopic morphology and alter their properties. Likewise, understanding a crystal’s response to external stress provides a unique opportunity for rational tailoring of its functionalities. It is very challenging to track the strain evolution and physical deformation from a single nanoscale crystal under high-pressure stress. Here, we report an in situ three-dimensional mapping of morphology and strain evolutions in a single-crystal silver nanocube within a high-pressure environment using the Bragg Coherent Diffractive Imaging (CDI) method. We also observed amore » continuous lattice distortion, followed by a deformation twining process at a constant pressure. The ability to visualize stress-introduced deformation of nanocrystals with high spatial resolution and prominent strain sensitivity provides an important route for interpreting and engineering novel properties of nanomaterials.« less

  7. [Babies with cranial deformity].

    PubMed

    Feijen, Michelle M W; Claessens, Edith A W M Habets; Dovens, Anke J Leenders; Vles, Johannes S; van der Hulst, Rene R W J

    2009-01-01

    Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet therapy. During the last two decades the incidence of positional plagiocephaly has increased in the Netherlands. This increase is due to the recommendation that babies be laid on their backs in order to reduce the risk of sudden infant death syndrome. We suggest the following: in cases of positional preference of the infant, referral to a physiotherapist is indicated. In cases of unacceptable deformity of the cranium at the age 5 months, moulding helmet therapy is a possible treatment option. PMID:19857299

  8. Probing deformed quantum commutators

    NASA Astrophysics Data System (ADS)

    Rossi, Matteo A. C.; Giani, Tommaso; Paris, Matteo G. A.

    2016-07-01

    Several quantum gravity theories predict a minimal length at the order of magnitude of the Planck length, under which the concepts of space and time lose their physical meaning. In quantum mechanics, the insurgence of such a minimal length can be described by introducing a modified position-momentum commutator, which in turn yields a generalized uncertainty principle, where the uncertainty on position measurements has a lower bound. The value of the minimal length is not predicted by theories and must be estimated experimentally. In this paper, we address the quantum bound to the estimability of the minimal uncertainty length by performing measurements on a harmonic oscillator, which is analytically solvable in the deformed algebra induced by the deformed commutation relations.

  9. Deformed wing virus.

    PubMed

    de Miranda, Joachim R; Genersch, Elke

    2010-01-01

    Deformed wing virus (DWV; Iflaviridae) is one of many viruses infecting honeybees and one of the most heavily investigated due to its close association with honeybee colony collapse induced by Varroadestructor. In the absence of V.destructor DWV infection does not result in visible symptoms or any apparent negative impact on host fitness. However, for reasons that are still not fully understood, the transmission of DWV by V.destructor to the developing pupae causes clinical symptoms, including pupal death and adult bees emerging with deformed wings, a bloated, shortened abdomen and discolouration. These bees are not viable and die soon after emergence. In this review we will summarize the historical and recent data on DWV and its relatives, covering the genetics, pathobiology, and transmission of this important viral honeybee pathogen, and discuss these within the wider theoretical concepts relating to the genetic variability and population structure of RNA viruses, the evolution of virulence and the development of disease symptoms.

  10. Congenital idiopathic clubfoot deformities.

    PubMed

    Kyzer, S P; Stark, S L

    1995-03-01

    Clubfoot is a birth defect that is marked primarily by a deformed talus (ie, ankle) and calcaneous (ie, heel) that give the foot a characteristic "club-like" appearance. In congenital idiopathic clubfoot (ie, talipes equinovarus), the infant's foot points downward (ie, equinus) and turns inward (ie, varus), while the forefoot curls toward the heel (ie, adduction). This congenital disorder has an incidence of 1 in 400 live births, with boys affected twice as often as girls. Unilateral clubfoot is somewhat more common than bilateral clubfoot and may occur as an isolated defect or in association with other disorders (eg, chromosomal aberrations, cerebral palsy, spina bifida, arthrogryposis). Infantile clubfoot deformity is painless and is correctable with early diagnosis and prompt treatment. PMID:7778903

  11. Partially segmented deformable mirror

    DOEpatents

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  12. Partially segmented deformable mirror

    DOEpatents

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  13. Covariant deformed oscillator algebras

    NASA Technical Reports Server (NTRS)

    Quesne, Christiane

    1995-01-01

    The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.

  14. Postlaminectomy cervical deformity.

    PubMed

    Deutsch, Harel; Haid, Regis W; Rodts, Gerald E; Mummaneni, Praveen V

    2003-09-15

    Postlaminectomy cervical kyphosis is an important consideration when performing surgery. Identifying factors predisposing to postoperative deformity is essential. The goal is to prevent postlaminectomy cervical kyphosis while exposing the patient to minimal additional morbidity. When postlaminectomy kyphosis does occur, surgical correction is often required and performed via an anterior, posterior, or combined approach. The authors discuss the indications for surgical approaches as well as clinical results. PMID:15347223

  15. Generalized scaling of misorientation angle distributions at meso-scale in deformed materials.

    PubMed

    Gurao, N P; Suwas, Satyam

    2014-01-01

    Scaling behaviour has been observed at mesoscopic level irrespective of crystal structure, type of boundary and operative micro-mechanisms like slip and twinning. The presence of scaling at the meso-scale accompanied with that at the nano-scale clearly demonstrates the intrinsic spanning for different deformation processes and a true universal nature of scaling. The origin of a ½ power law in deformation of crystalline materials in terms of misorientation proportional to square root of strain is attributed to importance of interfaces in deformation processes. It is proposed that materials existing in three dimensional Euclidean spaces accommodate plastic deformation by one dimensional dislocations and their interaction with two dimensional interfaces at different length scales. This gives rise to a ½ power law scaling in materials. This intrinsic relationship can be incorporated in crystal plasticity models that aim to span different length and time scales to predict the deformation response of crystalline materials accurately. PMID:25879587

  16. Deformation of wrinkled graphene.

    PubMed

    Li, Zheling; Kinloch, Ian A; Young, Robert J; Novoselov, Kostya S; Anagnostopoulos, George; Parthenios, John; Galiotis, Costas; Papagelis, Konstantinos; Lu, Ching-Yu; Britnell, Liam

    2015-04-28

    The deformation of monolayer graphene, produced by chemical vapor deposition (CVD), on a polyester film substrate has been investigated through the use of Raman spectroscopy. It has been found that the microstructure of the CVD graphene consists of a hexagonal array of islands of flat monolayer graphene separated by wrinkled material. During deformation, it was found that the rate of shift of the Raman 2D band wavenumber per unit strain was less than 25% of that of flat flakes of mechanically exfoliated graphene, whereas the rate of band broadening per unit strain was about 75% of that of the exfoliated material. This unusual deformation behavior has been modeled in terms of mechanically isolated graphene islands separated by the graphene wrinkles, with the strain distribution in each graphene island determined using shear lag analysis. The effect of the size and position of the Raman laser beam spot has also been incorporated in the model. The predictions fit well with the behavior observed experimentally for the Raman band shifts and broadening of the wrinkled CVD graphene. The effect of wrinkles upon the efficiency of graphene to reinforce nanocomposites is also discussed. PMID:25765609

  17. Deformation of Wrinkled Graphene

    PubMed Central

    2015-01-01

    The deformation of monolayer graphene, produced by chemical vapor deposition (CVD), on a polyester film substrate has been investigated through the use of Raman spectroscopy. It has been found that the microstructure of the CVD graphene consists of a hexagonal array of islands of flat monolayer graphene separated by wrinkled material. During deformation, it was found that the rate of shift of the Raman 2D band wavenumber per unit strain was less than 25% of that of flat flakes of mechanically exfoliated graphene, whereas the rate of band broadening per unit strain was about 75% of that of the exfoliated material. This unusual deformation behavior has been modeled in terms of mechanically isolated graphene islands separated by the graphene wrinkles, with the strain distribution in each graphene island determined using shear lag analysis. The effect of the size and position of the Raman laser beam spot has also been incorporated in the model. The predictions fit well with the behavior observed experimentally for the Raman band shifts and broadening of the wrinkled CVD graphene. The effect of wrinkles upon the efficiency of graphene to reinforce nanocomposites is also discussed. PMID:25765609

  18. Deformable micro torque swimmer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takuji; Tanaka, Tomoyuki; Omori, Toshihiro; Imai, Yohsuke

    2015-11-01

    We investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modeled as a capsule with a hyper elastic membrane enclosing Newtonian fluid. Thrust forces due to the ciliary beat were modeled as torques distributed above the cell body. Effects of the membrane elasticity, the aspect ratio of cell's reference shape and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like heart shape when Capillary number (Ca) was sufficiently large, and the swimming velocity decreased as Ca was increased. The gravity effect on the membrane tension suggested that the upwards and downwards swimming velocities of Paramecium might be reglated by the calcium ion channels distributed locally around the anterior end. Moreover, the gravity induced deformation made a cell directed vertically downwards, which resulted in a positive geotaxis like behavior with physical origin. These results are important to understand physiology of ciliate's biological responses to mechanical stimuli.

  19. Treatment of Madelung's deformity.

    PubMed

    Saffar, P; Badina, A

    2015-12-01

    Treatment of Madelung's deformity is still controversial. We reviewed retrospectively 19 patients with Madelung's deformity (two bilateral, 21 cases) who underwent surgery to the radius and ulna to improve range of motion, decrease pain and improve appearance of the wrist. Nineteen patients underwent 21 distal radial osteotomy procedures using three different techniques: subtraction, addition or dome osteotomy. Ulnar shortening and redirection of the distal ulna was performed in 12 cases; a long oblique osteotomy was used in 10 of these cases. The Sauvé-Kapandji technique was performed in five cases, an ulnar distal epiphysiodesis in two cases and a combination of osteotomy and epiphysiodesis in one case. The aim was to reduce the distal radial slope and to restore the orientation and congruity of the distal radio-ulnar joint and to improve its function. Pain was reduced as a result of the procedure: more than 75% of the cases had no or intermittent pain at the review. Pronation improved from 63° to 68° (P=0.467, not significant) and supination improved from 48° to 72° on average (P=0.034, significant). Grip strength increased from 11 to 18 kgf (P=0.013, significant). Madelung's deformity is not always a benign condition and it responds well to corrective osteotomies. PMID:26525609

  20. The influence of internal crystal perfection on growth rate dispersion in a continuous suspension crystallizer

    NASA Astrophysics Data System (ADS)

    Zacher, U.; Mersmann, A.

    1995-01-01

    The objective of the work presented here is to demonstrate the influence of induced lattice strain on growth behaviour of potassium alum crystals in a continuously operated mixed suspension mixed product removal (MSMPR) crystallizer. Therefore crystal size distributions in the crystallizer and individual growth velocities, especially of small particles (initial size 20-60 μm) in a flow-through cell, were simultaneously determined. Moreover Laue diffraction patterns of crystals withdrawn from the MSMPR crystallizer were carried out indicating lattice deformation and strain. Most crystals exhibit constant crystal growth (CCG) behaviour with significant growth rate dispersion. The mean growth rate of small particles in the sub-sieve size range is considerably smaller than the mean rate of product sized crystals at constant supersaturation. Small potash alum crystals show a clear tendency of increased lattice strain with increasing supersaturation which can be explained by the refaceting process of attrition nuclei in the crystallizer. The average amount of induced strain in crystals having the same growth history is obviously related to crystal size. Only slightly strained particles with sufficiently high growth rates will reach the product size range in the MSMPR crystallizer.

  1. Brittle-viscous deformation of vein quartz under fluid-rich lower greenschist facies conditions

    NASA Astrophysics Data System (ADS)

    Kjøll, H. J.; Viola, G.; Menegon, L.; Sørensen, B. E.

    2015-06-01

    We studied by Electron BackScatter Diffraction (EBSD) and optical microscopy a coarse-grained (ca. 0.5-6 mm) quartz vein embedded in a phyllonitic matrix to gain insights into the recrystallization mechanisms and the processes of strain localization in quartz deformed under lower greenschist facies conditions, broadly coincident with the brittle-viscous transition. The vein deformed during faulting along a phyllonitic thrust of Caledonian age within the Porsa Imbricate Stack in the Paleoproterozoic Repparfjord Tectonic Window in northern Norway. The phyllonite hosting the vein formed at the expense of a metabasaltic protolith through feldspar breakdown to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the quartz vein acted as a relatively rigid body. Viscous deformation in the vein was initially accommodated by quartz basal slip. Under the prevailing deformation conditions, however, dislocation glide- and possibly creep-accommodated deformation of quartz was inefficient, and this resulted in localized strain hardening. In response to the (1) hardening, (2) progressive and cyclic increase of the fluid pressure, and (3) increasing competence contrast between the vein and the weakly foliated host phyllonite, vein quartz crystals began to deform by brittle processes along specific, suitably oriented lattice planes, creating microgouges along microfractures. Nucleated new grains rapidly sealed these fractures as fluids penetrated the actively deforming system. The grains grew initially by solution precipitation and later by grain boundary migration. We suggest that the different initial orientation of the vein crystals led to strain accommodation by different mechanisms in the individual crystals, generating remarkably different microstructures. Crystals suitably oriented for basal slip, for example, accommodated strain mainly viscously and experienced only minor fracturing. Instead, crystals

  2. Lysozyme Crystal

    NASA Technical Reports Server (NTRS)

    2004-01-01

    To the crystallographer, this may not be a diamond but it is just as priceless. A Lysozyme crystal grown in orbit looks great under a microscope, but the real test is X-ray crystallography. The colors are caused by polarizing filters. Proteins can form crystals generated by rows and columns of molecules that form up like soldiers on a parade ground. Shining X-rays through a crystal will produce a pattern of dots that can be decoded to reveal the arrangement of the atoms in the molecules making up the crystal. Like the troops in formation, uniformity and order are everything in X-ray crystallography. X-rays have much shorter wavelengths than visible light, so the best looking crystals under the microscope won't necessarily pass muster under the X-rays. In order to have crystals to use for X-ray diffraction studies, crystals need to be fairly large and well ordered. Scientists also need lots of crystals since exposure to air, the process of X-raying them, and other factors destroy them. Growing protein crystals in space has yielded striking results. Lysozyme's structure is well known and it has become a standard in many crystallization studies on Earth and in space.

  3. On the geometric relationship between deformation microstructures in zircon and the kinematic framework of the shear zone

    NASA Astrophysics Data System (ADS)

    Kovaleva, Elizaveta; Klötzli, Urs; Habler, Gerlinde

    2016-10-01

    We present novel microstructural analyses of zircon from a variety of strained rocks. For the first time, multiple plastically deformed zircon crystals were analyzed in a kinematic context of the respective host shear zones. Our aim was to derive how the orientation of zircon grains in a shear zone affects their deformation, based on careful in situ observations. For sampling, we selected zircon-bearing rocks that were deformed by simple shear. Samples covered a range of P-T conditions and lithologies, including various meta-igneous and meta-sedimentary gneisses. Microstructural analyses of zircon crystals in situ with scanning electron backscatter diffraction mapping show strong geometrical relationships between orientations of: (i) the long axes of plastically deformed zircon crystals, (ii) the crystallographic orientation of misorientation axes in plastically deformed zircon crystals and (iii) the foliation and lineation directions of the respective samples. We assume that zircon crystals did not experience post-deformation rigid body rotation, and thus the true geometric link can be observed. The relationships are the following: (a) plastically deformed zircon crystals usually have long axes parallel to the mylonitic foliation plane; (b) crystals with < c > axes oriented at an angle > 15° to the foliation plane are undeformed or fractured. Zircon crystals that have < c > axes aligned parallel or normal to the stretching lineation within the foliation plane develop misorientation and rotation axes parallel to the [001] crystallographic direction. Zircon grains with the < c > axis aligned at 30-60° to the lineation within the foliation plane often develop either two low Miller indices misorientation axes or one high Miller indices misorientation axis. Host phases have a significant influence on deformation mechanisms. In a relatively soft matrix, zircon is more likely to develop low Miller indices misorientation axes than in a relatively strong matrix. These

  4. Deformation of the Dirac equation

    NASA Astrophysics Data System (ADS)

    Faizal, Mir; Kruglov, Sergey I.

    2016-10-01

    In this paper, we will first clarify the physical meaning of having a minimum measurable time. Then we will combine the deformation of the Dirac equation due to the existence of minimum measurable length and time scales with its deformation due to the doubly special relativity. We will also analyze this deformed Dirac equation in curved spacetime, and observe that this deformation of the Dirac equation also leads to a nontrivial modification of general relativity. Finally, we will analyze the stochastic quantization of this deformed Dirac equation on curved spacetime.

  5. Nanoscale Deformable Optics

    NASA Technical Reports Server (NTRS)

    Strauss, Karl F.; Sheldon, Douglas J.

    2011-01-01

    Several missions and instruments in the conceptual design phase rely on the technique of interferometry to create detectable fringe patterns. The intimate emplacement of reflective material upon electron device cells based upon chalcogenide material technology permits high-speed, predictable deformation of the reflective surface to a subnanometer or finer resolution with a very high degree of accuracy. In this innovation, a layer of reflective material is deposited upon a wafer containing (perhaps in the millions) chalcogenic memory cells with the reflective material becoming the front surface of a mirror and the chalcogenic material becoming a means of selectively deforming the mirror by the application of heat to the chalcogenic material. By doing so, the mirror surface can deform anywhere from nil to nanometers in spots the size of a modern day memory cell, thereby permitting realtime tuning of mirror focus and reflectivity to mitigate aberrations caused elsewhere in the optical system. Modern foundry methods permit the design and manufacture of individual memory cells having an area of or equal to the Feature (F) size of the design (assume 65 nm). Fabrication rules and restraints generally require the instantiation of one memory cell to another no closer than 1.5 F, or, for this innovation, 90 nm from its neighbor in any direction. Chalcogenide is a semiconducting glass compound consisting of a combination of chalcogen ions, the ratios of which vary according to properties desired. It has been shown that the application of heat to cells of chalcogenic material cause a large alteration in resistance to the range of 4 orders of magnitude. It is this effect upon which chalcogenidebased commercial memories rely. Upon removal of the heat source, the chalcogenide rapidly cools and remains frozen in the excited state. It has also been shown that the chalcogenide expands in volume because of the applied heat, meaning that the coefficient of expansion of chalcogenic

  6. Large Area Stress Distribution in Crystalline Materials Calculated from Lattice Deformation Identified by Electron Backscatter Diffraction

    PubMed Central

    Shao, Yongliang; Zhang, Lei; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Tian, Yuan; Huo, Qin

    2014-01-01

    We report a method to obtain the stress of crystalline materials directly from lattice deformation by Hooke's law. The lattice deformation was calculated using the crystallographic orientations obtained from electron backscatter diffraction (EBSD) technology. The stress distribution over a large area was obtained efficiently and accurately using this method. Wurtzite structure gallium nitride (GaN) crystal was used as the example of a hexagonal crystal system. With this method, the stress distribution of a GaN crystal was obtained. Raman spectroscopy was used to verify the stress distribution. The cause of the stress distribution found in the GaN crystal was discussed from theoretical analysis and EBSD data. Other properties related to lattice deformation, such as piezoelectricity, can also be analyzed by this novel approach based on EBSD data. PMID:25091314

  7. Deformation and fatigue behavior of SSME turbopump blade materials

    NASA Technical Reports Server (NTRS)

    Milligan, Walter W.; Antolovich, Stephen D.

    1987-01-01

    Directionally solidified and single crystal superalloys which are intended for use as turbopump blade materials are anisotropic both elastically and plastically. Therefore, isotropic constitutive models must be modified. Several models which are now being developed are based on metallurgical theories of deformation in these types of alloys. However, these theories have not been fully justified, and the temperature and strain regimes over which they may be valid are poorly defined. The objective of this work is to study the deformation behavior of the alloys, in order to determine the validity of these models and to thereby support the ongoing research efforts in solid mechanics.

  8. RNA Crystallization

    NASA Technical Reports Server (NTRS)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  9. Micro-deformation and texture in engineering materials

    NASA Astrophysics Data System (ADS)

    Kiwanuka, Robert

    This DPhil project is set in the context of single crystal elasticity-plasticity finite element modelling. Its core objective was to develop and implement a methodology for predicting the evolution of texture in single and dual-phase material systems. This core objective has been successfully achieved. Modelling texture evolution entails essentially modelling large deformations (as accurately as possible) and taking account of the deformation mechanisms that cause texture to change. The most important deformation mechanisms are slip and twinning. Slip has been modelled in this project and care has been taken to explore conditions where it is the dominant deformation mechanism for the materials studied. Modelling slip demands that one also models dislocations since slip is assumed to occur by the movement of dislocations. In this project a model for geometrically necessary dislocations has been developed and validated against experimental measurements.A texture homogenisation technique which relies on interpretation of EBSD data in order to allocate orientation frequencies based on representative area fractions has been developed. This has been coupled with a polycrystal plasticity RVE framework allowing for arbitrarily sized RVEs and corresponding allocation of crystallographic orientation. This has enabled input of experimentally measured initial textures into the CPFE model allowing for comparison of predictions against measured post-deformation textures, with good agreement obtained. The effect of texture on polycrystal physical properties has also been studied. It has been confirmed that texture indeed has a significant role in determining the average physical properties of a polycrystal.The thesis contributes to the following areas of micro-mechanics materials research: (i) 3D small deformation crystal plasticity finite element (CPFE) modelling, (ii) geometrically necessary dislocation modelling, (iii) 3D large deformation CPFE modelling, (iv) texture

  10. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation

    DOE PAGES

    Gerbig, Yvonne B.; Michaels, C. A.; Bradby, Jodie E.; Haberl, Bianca; Cook, Robert F.

    2015-12-17

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique (IIT). The occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were observed. Furthermore, the obtained experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a model for the deformation behavior of a-Si under indentation loading.

  11. Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  12. Structural transformations in single-crystalline titanium under high-pressure cold and cryogenic deformation

    NASA Astrophysics Data System (ADS)

    Pilyugin, V. P.; Khlebnikova, Yu. V.; Egorova, L. Yu.; Suaridze, T. R.; Resnina, N. N.; Patselov, A. M.

    2015-12-01

    The structure of an iodide titanium pseudo-single crystal subjected to severe plastic deformation in Bridgman anvils under a pressure of 8 GPa at room (293 K) and cryogenic (80 K) temperatures has been examined using methods of X-ray diffraction analysis and electron microscopy. It has been shown that, in the course of deformation, the original α titanium pseudo-single crystal undergoes the α→ ω transition. A decrease in the temperature of deformation to 80 K leads to the activation of twinning. At degrees of deformation lower than e = 6 titanium deformed at 293 K experiences more substantial strain hardening. In the course of subsequent deformation at 293 K, when e > 6, dynamic recrystallization begins, which is accompanied by the softening of the titanium. A decrease in the temperature of deformation to 80 K suppresses the recrystallization; therefore, the titanium deformed in liquid nitrogen shows a higher increase in the microhardness at degrees of deformation 6 < e < 10.

  13. Computational crystallization.

    PubMed

    Altan, Irem; Charbonneau, Patrick; Snell, Edward H

    2016-07-15

    Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed.

  14. Spatial fluctuations in transient creep deformation

    NASA Astrophysics Data System (ADS)

    Laurson, Lasse; Rosti, Jari; Koivisto, Juha; Miksic, Amandine; Alava, Mikko J.

    2011-07-01

    We study the spatial fluctuations of transient creep deformation of materials as a function of time, both by digital image correlation (DIC) measurements of paper samples and by numerical simulations of a crystal plasticity or discrete dislocation dynamics model. This model has a jamming or yielding phase transition, around which power law or Andrade creep is found. During primary creep, the relative strength of the strain rate fluctuations increases with time in both cases—the spatially averaged creep rate obeys the Andrade law epsilont ~ t - 0.7, while the time dependence of the spatial fluctuations of the local creep rates is given by Δepsilont ~ t - 0.5. A similar scaling for the fluctuations is found in the logarithmic creep regime that is typically observed for lower applied stresses. We review briefly some classical theories of Andrade creep from the point of view of such spatial fluctuations. We consider these phenomenological, time-dependent creep laws in terms of a description based on a non-equilibrium phase transition separating evolving and frozen states of the system when the externally applied load is varied. Such an interpretation is discussed further by the data collapse of the local deformations in the spirit of absorbing state/depinning phase transitions, as well as deformation-deformation correlations and the width of the cumulative strain distributions. The results are also compared with the order parameter fluctuations observed close to the depinning transition of the 2d linear interface model or the quenched Edwards-Wilkinson equation.

  15. Superplastic deformation in carbonate apatite ceramics under constant compressive loading for near-net-shape production of bioresorbable bone substitutes.

    PubMed

    Adachi, Masanori; Wakamatsu, Nobukazu; Doi, Yutaka

    2008-01-01

    To produce carbonate apatite (CAP) ceramics with the desired complex shapes using superplastic deformation, deformation behavior of CAP ceramics under constant loading as well as physical properties after deformation were evaluated. Sintered CAP ceramics were plastically deformed in an electric furnace attached to a universal hydraulic testing machine under a constant load. CAP ceramics subjected to an initial compressive pressure of 10 MPa showed an appreciable amount of plastic deformation at temperatures ranging from 720 to 800 degrees C. Plastic deformation increased with increasing temperature from about 10% to 70% after two hours of loading. X-ray diffraction analysis and SEM observation further revealed that some CAP crystals were elongated and aligned with the c-axis normal to the loading direction during superplastic deformation. It was thus concluded that a marked plastic deformation of about 70% at 800 degrees C would be sufficient for near-net-shape production of bioresorbable CAP bone substitutes with complex shapes.

  16. Assembling an alkyl rotor to access abrupt and reversible crystalline deformation of a cobalt(II) complex

    PubMed Central

    Su, Sheng-Qun; Kamachi, Takashi; Yao, Zi-Shuo; Huang, You-Gui; Shiota, Yoshihito; Yoshizawa, Kazunari; Azuma, Nobuaki; Miyazaki, Yuji; Nakano, Motohiro; Maruta, Goro; Takeda, Sadamu; Kang, Soonchul; Kanegawa, Shinji; Sato, Osamu

    2015-01-01

    Harnessing molecular motion to reversibly control macroscopic properties, such as shape and size, is a fascinating and challenging subject in materials science. Here we design a crystalline cobalt(II) complex with an n-butyl group on its ligands, which exhibits a reversible crystal deformation at a structural phase transition temperature. In the low-temperature phase, the molecular motion of the n-butyl group freezes. On heating, the n-butyl group rotates ca. 100° around the C–C bond resulting in 6–7% expansion of the crystal size along the molecular packing direction. Importantly, crystal deformation is repeatedly observed without breaking the single-crystal state even though the shape change is considerable. Detailed structural analysis allows us to elucidate the underlying mechanism of this deformation. This work may mark a step towards converting the alkyl rotation to the macroscopic deformation in crystalline solids. PMID:26531811

  17. Assembling an alkyl rotor to access abrupt and reversible crystalline deformation of a cobalt(II) complex.

    PubMed

    Su, Sheng-Qun; Kamachi, Takashi; Yao, Zi-Shuo; Huang, You-Gui; Shiota, Yoshihito; Yoshizawa, Kazunari; Azuma, Nobuaki; Miyazaki, Yuji; Nakano, Motohiro; Maruta, Goro; Takeda, Sadamu; Kang, Soonchul; Kanegawa, Shinji; Sato, Osamu

    2015-01-01

    Harnessing molecular motion to reversibly control macroscopic properties, such as shape and size, is a fascinating and challenging subject in materials science. Here we design a crystalline cobalt(II) complex with an n-butyl group on its ligands, which exhibits a reversible crystal deformation at a structural phase transition temperature. In the low-temperature phase, the molecular motion of the n-butyl group freezes. On heating, the n-butyl group rotates ca. 100° around the C-C bond resulting in 6-7% expansion of the crystal size along the molecular packing direction. Importantly, crystal deformation is repeatedly observed without breaking the single-crystal state even though the shape change is considerable. Detailed structural analysis allows us to elucidate the underlying mechanism of this deformation. This work may mark a step towards converting the alkyl rotation to the macroscopic deformation in crystalline solids.

  18. Crystal Data

    National Institute of Standards and Technology Data Gateway

    SRD 3 NIST Crystal Data (PC database for purchase)   NIST Crystal Data contains chemical, physical, and crystallographic information useful to characterize more than 237,671 inorganic and organic crystalline materials. The data include the standard cell parameters, cell volume, space group number and symbol, calculated density, chemical formula, chemical name, and classification by chemical type.

  19. Modification of Ni state to promote the stability of Ni-Al2O3 catalyst in methane decomposition to produce hydrogen and carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Chen, Jiuling; Qiao, Yuanhua; Li, Yongdan

    2012-07-01

    The methodology was illustrated for modifying the state of Ni to promote the stability of the coprecipitated Ni-Al2O3 catalyst via incorporating ZnO and Cu in methane decomposition to produce hydrogen and carbon nanofibers. The influences of the incorporation on the state of Ni were examined with XRD, TPR, XPS and TEM. For the incorporation of ZnO, ZnAl2O4 spinel-like structure could be formed in the interface between ZnO and Al2O3. The interaction between Ni and the ZnAl2O4 structure can promote both the activity and the stability of Ni in methane decomposition. The formation of a Ni-Cu alloy from Ni and the incorporated Cu decreases the activity of Ni, however, promotes the stability pronouncedly.

  20. Ultrasoft, highly deformable microgels.

    PubMed

    Bachman, Haylee; Brown, Ashley C; Clarke, Kimberly C; Dhada, Kabir S; Douglas, Alison; Hansen, Caroline E; Herman, Emily; Hyatt, John S; Kodlekere, Purva; Meng, Zhiyong; Saxena, Shalini; Spears, Mark W; Welsch, Nicole; Lyon, L Andrew

    2015-03-14

    Microgels are colloidally stable, hydrogel microparticles that have previously been used in a range of (soft) material applications due to their tunable mechanical and chemical properties. Most commonly, thermo and pH-responsive poly(N-isopropylacrylamide) (pNIPAm) microgels can be fabricated by precipitation polymerization in the presence of the co-monomer acrylic acid (AAc). Traditionally pNIPAm microgels are synthesized in the presence of a crosslinking agent, such as N,N'-methylenebisacrylamide (BIS), however, microgels can also be synthesized under 'crosslinker free' conditions. The resulting particles have extremely low (<0.5%), core-localized crosslinking resulting from rare chain transfer reactions. AFM nanoindentation of these ultralow crosslinked (ULC) particles indicate that they are soft relative to crosslinked microgels, with a Young's modulus of ∼10 kPa. Furthermore, ULC microgels are highly deformable as indicated by a high degree of spreading on glass surfaces and the ability to translocate through nanopores significantly smaller than the hydrodynamic diameter of the particles. The size and charge of ULCs can be easily modulated by altering reaction conditions, such as temperature, monomer, surfactant and initiator concentrations, and through the addition of co-monomers. Microgels based on the widely utilized, biocompatible polymer polyethylene glycol (PEG) can also be synthesized under crosslinker free conditions. Due to their softness and deformability, ULC microgels are a unique base material for a wide variety of biomedical applications including biomaterials for drug delivery and regenerative medicine.

  1. Effect of plastic deformation on the magnetic properties and dislocation luminescence of isotopically enriched silicon {sup 29}Si:B

    SciTech Connect

    Koplak, O. V.; Shteynman, E. A.; Tereschenko, A. N.; Morgunov, R. B.

    2015-09-15

    A correlation between the temperature dependences of the D1-line intensity of dislocation luminescence and the magnetic moment of plastically deformed isotopically enriched crystals {sup 29}Si:B is found. It is established that the magnetic susceptibility of the deformed crystals obtained by integration of the spectra of electron spin resonance and the D1-line intensity undergo similar nonmonotonic variations with temperature varying in the range of 20–32 K.

  2. Plastic strain arrangement in copper single crystals in sliding

    SciTech Connect

    Chumaevskii, Andrey V. Lychagin, Dmitry V.; Tarasov, Sergei Yu.

    2014-11-14

    Deformation of tribologically loaded contact zone is one of the wear mechanisms in spite of the fact that no mass loss may occur during this process. Generation of optimal crystallographic orientations of the grains in a polycrystalline materials (texturing) may cause hardening and reducing the deformation wear. To reveal the orientation dependence of an individual gain and simplify the task we use copper single crystals with the orientations of the compression axis along [111] and [110]. The plastic deformation was investigated by means of optical, scanning electron microscopy and EBSD techniques. It was established that at least four different zones were generated in the course of sliding test, such as non-deformed base metal, plastic deformation layer sliding, crystalline lattice reorientation layer and subsurface grain structure layer. The maximum plastic strain penetration depth was observed on [110]-single crystals. The minimum stability of [111]-crystals with respect to rotation deformation mode as well as activation of shear in the sliding contact plane provide for rotation deformation localization below the worn surface. The high-rate accumulation of misorientations and less strain penetration depth was observed on [111]-crystals as compared to those of [110]-oriented ones.

  3. Redistribution of Water During Deformation of Milky Quartz

    NASA Astrophysics Data System (ADS)

    Kronenberg, A. K.; Lamb, W. M.; Luo, Z.; Neal, L. A.

    2001-12-01

    Dislocation creep of quartz is facilitated by the presence of water, and many key observations regarding mechanisms of water weakening can be attributed to the elegant studies of Mervyn Paterson, his colleagues, and his students. In particular, Paterson and Kekulawala (1979) and Kekulawala et al. (1978, 1981) showed that creep strengths of quartz single crystals depend on the character and distribution of extended water defects and clusters. By comparing mechanical properties and infrared (IR) spectra of hydrothermally grown synthetic quartz, dry natural quartz, amethyst, heat-treated synthetic quartz, and natural milky quartz, they demonstrated a correspondence between the chemical weakening effect of water and the broad, non-freezable OH stretching band expressed most clearly by wet synthetic crystals. However, they also showed that natural milky quartz crystals with freezable fluid inclusions exhibit strengths that are intermediate to those of dry natural and wet synthetic crystals. Micro-IR studies of naturally deformed tectonites have since shown that water is incorporated as coarse, freezable fluid inclusions that may decorate dislocations, subgrain walls, and grain boundaries. Non-freezable OH bands have not been detected in natural quartzites. Following the lead of Paterson and colleagues, we have shortened single crystals of milky quartz at 45° to a and c at T = 800° C, ɛ = 10-5 s-1 and confining pressures ranging from 400 to 1820 MPa, and we report on the results of (1) micro-thermometry of fluid inclusions before and after deformation, (2) IR absorption measurements of water content, and (3) transmission electron microscopy (TEM) of fine-scale inclusions, subgrain boundaries, and dislocations. Flow strengths measured for Arkansas milky quartz crystals are highly variable (from 300 to 800 MPa at low strains, 5%) and exhibit variable strain softening, corresponding to the heterogeneous initial distribution of fluid inclusions and variations in bulk

  4. Deformable elastic network refinement for low-resolution macromolecular crystallography

    SciTech Connect

    Schröder, Gunnar F.; Levitt, Michael; Brunger, Axel T.

    2014-09-01

    An overview of applications of the deformable elastic network (DEN) refinement method is presented together with recommendations for its optimal usage. Crystals of membrane proteins and protein complexes often diffract to low resolution owing to their intrinsic molecular flexibility, heterogeneity or the mosaic spread of micro-domains. At low resolution, the building and refinement of atomic models is a more challenging task. The deformable elastic network (DEN) refinement method developed previously has been instrumental in the determinion of several structures at low resolution. Here, DEN refinement is reviewed, recommendations for its optimal usage are provided and its limitations are discussed. Representative examples of the application of DEN refinement to challenging cases of refinement at low resolution are presented. These cases include soluble as well as membrane proteins determined at limiting resolutions ranging from 3 to 7 Å. Potential extensions of the DEN refinement technique and future perspectives for the interpretation of low-resolution crystal structures are also discussed.

  5. Investigation of features of plastic deformation and fracture of fine-crystalline V-4Ti-4Cr alloy

    SciTech Connect

    Grinyaev, Konstantin V. Tyumentsev, Alexander N.; Ditenberg, Ivan A.; Smirnov, Ivan V.; Chernov, Vyacheslav M. E-mail: mmp@bochvar.ru; Potapenko, Mikhail M. E-mail: mmp@bochvar.ru

    2014-11-14

    With the use of transmission electron microscopy the investigation of defect substructure was carried out in the V-4Ti-4Cr-(C, N, O) alloy with disperse strengthening (by nanoparticles of oxy-carbo-nitride phase) after deformation by active tension at temperatures of 20 and 800 °C. It has been shown that an important feature of plastic deformation is deformation localization with crystal lattice reorientation.

  6. Note: Dynamic meso-scale full field surface deformation measurement of heterogeneous materials.

    PubMed

    Ravindran, S; Tessema, A; Kidane, A

    2016-03-01

    A dynamic experiment at mesoscale is developed to measure local deformation and strain in granular materials at high temporal and spatial resolutions. The experimental setup is comprised of a high-speed camera along with a high magnification extension tube. The method is demonstrated by measuring the full field strain across and in the boundary of the crystals at a high temporal resolution in polymer bonded sugar crystals and glass beads filled epoxy particulate composite specimens under dynamic loading. In both cases, the local strain heterogeneity is captured successfully. The measured strain and deformation field can be further used to obtain the relative motion of each crystal, crystal rotation, and the relative displacement between the polymer interface and the crystal, which are very critical to understand the local failure mechanisms in heterogeneous materials. PMID:27036841

  7. Note: Dynamic meso-scale full field surface deformation measurement of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Ravindran, S.; Tessema, A.; Kidane, A.

    2016-03-01

    A dynamic experiment at mesoscale is developed to measure local deformation and strain in granular materials at high temporal and spatial resolutions. The experimental setup is comprised of a high-speed camera along with a high magnification extension tube. The method is demonstrated by measuring the full field strain across and in the boundary of the crystals at a high temporal resolution in polymer bonded sugar crystals and glass beads filled epoxy particulate composite specimens under dynamic loading. In both cases, the local strain heterogeneity is captured successfully. The measured strain and deformation field can be further used to obtain the relative motion of each crystal, crystal rotation, and the relative displacement between the polymer interface and the crystal, which are very critical to understand the local failure mechanisms in heterogeneous materials.

  8. Shape Determination for Deformed Cavities

    SciTech Connect

    Lee, Lie-Quan; Akcelik, Volkan; Chen, Sheng; Ge, Lixin; Li, Zenghai; Ng, Cho; Xiao, Liling; Ko, Kwok; Ghattas, Omar; /Texas U.

    2006-10-04

    A realistic superconducting RF cavity has its shape deformed comparing to its designed shape due to the loose tolerance in the fabrication process and the frequency tuning for its accelerating mode. A PDE-constrained optimization problem is proposed to determine the deformation of the cavity. A reduce space method is used to solve the PDE-constrained optimization problem where design sensitivities were computed using a continuous adjoint approach. A proof-of-concept example is given in which the deformation parameters of a single cavity-cell with two different types of deformation were computed.

  9. Aftereffect in rocks caused by preexisting irreversible deformations

    SciTech Connect

    Stavrogin, A.N.; Shirkes, O.A.

    1987-05-01

    In this paper, rock specimens cut as cores of a diameter of 30 mm, 80 mm in length, were subjected to irreversible deformation in a high hydrostatic pressure chamber according to Karman's procedure. The types of rocks investigated were white Koelga marble, non-burst-hazardous (NBH) sandstone from Donets Basin, limestone from Estonslanets deposit and brown coal from Shurab coal deposit. Marble specimens were subjected to the most extensive studies. The aftereffect curves are shown for each type of rock studied. Aftereffect deformations of rocks are basically creep flows occurring under the effect of residual stresses introduced into the rock material on the course of its irreversible deformation by a high hydrostatic pressure, according to the authors. The physical nature of the residual stresses in the rocks and the mechanism of their creation are examined at the level of structural elements (grains or crystals).

  10. Defect-induced solid state amorphization of molecular crystals

    NASA Astrophysics Data System (ADS)

    Lei, Lei; Carvajal, Teresa; Koslowski, Marisol

    2012-04-01

    We investigate the process of mechanically induced amorphization in small molecule organic crystals under extensive deformation. In this work, we develop a model that describes the amorphization of molecular crystals, in which the plastic response is calculated with a phase field dislocation dynamics theory in four materials: acetaminophen, sucrose, γ-indomethacin, and aspirin. The model is able to predict the fraction of amorphous material generated in single crystals for a given applied stress. Our results show that γ-indomethacin and sucrose demonstrate large volume fractions of amorphous material after sufficient plastic deformation, while smaller amorphous volume fractions are predicted in acetaminophen and aspirin, in agreement with experimental observation.

  11. Strain and mosaic deformation in laser irradiated silicon

    SciTech Connect

    Gupta, Mukul; Arora, V.; Bagchi, S.; Gupta, Ajay; Chakera, J. A.; Naik, P. A.; Chaddah, P.; Gupta, P. D.

    2012-06-05

    The effect of moderately intense ({approx}GWcm{sup -2} The effect of moderately intense ({approx}GWcm-2), 200 ps laser pulse irradiation on silicon single crystal is reported. The x-ray diffraction measurements performed on the irradiated samples reveal irreversible structural deformations. Raman spectroscopic measurements reveal substantial shift of the peak position as well as an overall broadening, pointing towards the presence of residual strain and formation of micromosaic structures on the laser induced shock recovered samples.

  12. The effect of dynamic recrystallization and LPO formation on deformation mechanisms in experimentally deformed plagioclase aggregates

    NASA Astrophysics Data System (ADS)

    Meyers, C. D.; Hirth, G.; Cross, A. J.; Prior, D. J.

    2013-12-01

    We performed a series of deformation experiments on intermediate plagioclase aggregates (An60) that explored the role of dynamic recrystallization and LPO formation on the deformation mechanisms active and their effect on the mechanical strength of the aggregates. Our experiments were executed using a molten salt cell in a Tullis-modified Griggs Rig at 1 GPa, temperatures between 950-1100 C. These experiments were run in both axial compression and general shear geometries at both constant strain rates and with strain rate steps. The imposed strain rates ranged from 10^-4 to 5*10^-7 s^-1. The sample aggregates were prepared by sintering powders ranging from 20-45 micron at experimental P-T conditions prepared from pulverized single crystals of labradorite. We observed a strong dependence of strength on the strain-rate history of the experiment. Initially the samples weaken dramatically as the grain-size is reduced in the sample aggregate. During strain-rate stepping experiments, used to calculate the stress exponent, we observe variation in the strain-rate dependence of the strength related to whether there is an increasing or decreasing strain rate. Increasing the strain-rate tends to show stress exponent close to n=3, consistent with deformation by dislocation creep. Decreasing the strain-rate tends to decrease the stress exponent towards n=1, consistent with deformation by diffusion creep. Further, analysis using electron backscatter diffraction (EBSD) revealed distinctive LPOs that were different between larger relict porphryclast grains (>20 micron) and smaller recrystallized grains (1-4 micron). Larger relict grains have an LPO with {001} poles perpendicular to the shear plane, while smaller recrystallized grains have an LPO with {010} poles perpendicular to the shear plane. This is evidence that the processes that facilitate deformation are different between the relict and recrystallized grains. We also observe grain scale shear bands oriented roughly 30

  13. Constitutive Law and Flow Mechanism in Diamond Deformation

    DOE PAGES

    Yu, Xiaohui; Raterron, Paul; Zhang, Jianzhong; Lin, Zhijun; Wang, Liping; Zhao, Yusheng

    2012-11-19

    Constitutive laws and crystal plasticity in diamond deformation have been the subjects of substantial interest since synthetic diamond was made in 1950's. To date, however, little is known quantitatively regarding its brittle-ductile properties and yield strength at high temperatures. In this paper, we report, for the first time, the strain-stress constitutive relations and experimental demonstration of deformation mechanisms under confined high pressure. The deformation at room temperature is essentially brittle, cataclastic, and mostly accommodated by fracturing on {111} plane with no plastic yielding at uniaxial strains up to 15%. At elevated temperatures of 1000°C and 1200°C diamond crystals exhibit significantmore » ductile flow with corresponding yield strength of 7.9 and 6.3 GPa, indicating that diamond starts to weaken when temperature is over 1000°C. Finally, at high temperature the plastic deformation and ductile flow is meditated by the <110>{111} dislocation glide and a very active {111} micro-twinning.« less

  14. Constitutive Law and Flow Mechanism in Diamond Deformation

    SciTech Connect

    Yu, Xiaohui; Raterron, Paul; Zhang, Jianzhong; Lin, Zhijun; Wang, Liping; Zhao, Yusheng

    2012-11-19

    Constitutive laws and crystal plasticity in diamond deformation have been the subjects of substantial interest since synthetic diamond was made in 1950's. To date, however, little is known quantitatively regarding its brittle-ductile properties and yield strength at high temperatures. In this paper, we report, for the first time, the strain-stress constitutive relations and experimental demonstration of deformation mechanisms under confined high pressure. The deformation at room temperature is essentially brittle, cataclastic, and mostly accommodated by fracturing on {111} plane with no plastic yielding at uniaxial strains up to 15%. At elevated temperatures of 1000°C and 1200°C diamond crystals exhibit significant ductile flow with corresponding yield strength of 7.9 and 6.3 GPa, indicating that diamond starts to weaken when temperature is over 1000°C. Finally, at high temperature the plastic deformation and ductile flow is meditated by the <110>{111} dislocation glide and a very active {111} micro-twinning.

  15. Experimental deformation of rocksalt

    NASA Astrophysics Data System (ADS)

    Handin, J.; Russell, J. E.; Carter, N. L.

    Using newly designed apparatus for triaxial-compression testing of 10 by 20-cm cores of Avery Island rocksalt at constant strain-rates between 10-4 and 10-6/s, temperatures between 100° and 200°C, and confining pressures of 3.4 and 20 MPa, comparing our data with those of other workers on the same material, and observing natural deformations of rocksalt, we find that (1) constant-strain-rate and quasi-constant stress-rate tests (both often called quasi-static compression tests) yield essentially similar stress-strain relations, and these depend strongly on strain rate and temperature, but not confining pressure; (2) fracture excluded, the deformation mechanisms observed for differential stresses between 0.5 and 20 MPa are intracrystal-line slip (dislocation glide and cross-slip) and polygonization (dislocation glide and climb by ion-vacancy pipe diffusion); (3) the same steady-state strain rate ɛ., and flow stress are reached at the same temperature in both constant-strain-rate and constant-stress (creep) tests, but the strain-time data from transient creep tests do not match the strain-hardening data unless the initial strain, ɛ0 (time-dependent in rocksalt) is accounted for; in creep tests the clock is not started until the desired constant stress is reached; (4) because the stress-strain curve contains the entire history of the deformation, the constant-strain-rate test rather than the creep test may well be preferred as the source of constitutive data; (5) furthermore, if the stress or temperature of the creep test is too low to achieve the steady state in laboratory time, one cannot predict the steady-state flow stress or strain rate from the transient response alone, whereas we can estimate them rather well from constant-strain-rate data even when strain rates are too high or temperatures too low to reach the steady state within a few hours; (6) the so-called "baseline creep law", giving creep strain, ɛ = ea[1-exp(-ξt)]+ɛ. ss t, where ea, ξ, and

  16. Microfluidic crystallization.

    PubMed

    Leng, Jacques; Salmon, Jean-Baptiste

    2009-01-01

    Microfluidics offers a wide range of new tools that permit one to revisit the formation of crystals in solution and yield insights into crystallization processes. We review such recent microfluidic devices and particularly emphasize lab-on-chips dedicated to the high-throughput screening of crystallization conditions of proteins with nanolitre consumption. We also thoroughly discuss the possibilities offered by the microfluidic tools to acquire thermodynamic and kinetic data that may improve industrial processes and shed a new light on nucleation and growth mechanisms.

  17. Crystal Furnace

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A "melt recharging" technique which eliminates the cooldown and heating periods in a crystal "growing" crucible, resulted from a Jet Propulsion Laboratory (JPL)/Kayex Corporation program. Previously, the cost of growing the silicon solar cells had been very high. The JPL/Kayex system improved productivity by serially growing crystals from the same crucible using a melt recharger which made it possible to add raw silicon to an operating crucible. An isolation value, developed by Kayex, allowed the hopper to be lowered into the crucible without disturbing the inert gas atmosphere. The resulting product, a CG6000 crystal growing furnace, has become the company's major product.

  18. IBA in deformed nuclei

    SciTech Connect

    Casten, R.F.; Warner, D.D.

    1982-01-01

    The structure and characteristic properties and predictions of the IBA in deformed nuclei are reviewed, and compared with experiment, in particular for /sup 168/Er. Overall, excellent agreement, with a minimum of free parameters (in effect, two, neglecting scale factors on energy differences), was obtained. A particularly surprising, and unavoidable, prediction is that of strong ..beta.. ..-->.. ..gamma.. transitions, a feature characteristically absent in the geometrical model, but manifest empirically. Some discrepancies were also noted, principally for the K=4 excitation, and the detailed magnitudes of some specific B(E2) values. Considerable attention is paid to analyzing the structure of the IBA states and their relation to geometric models. The bandmixing formalism was studied to interpret both the aforementioned discrepancies and the origin of the ..beta.. ..-->.. ..gamma.. transitions. The IBA states, extremely complex in the usual SU(5) basis, are transformed to the SU(3) basis, as is the interaction Hamiltonian. The IBA wave functions appear with much simplified structure in this way as does the structure of the associated B(E2) values. The nature of the symmetry breaking of SU(3) for actual deformed nuclei is seen to be predominantly ..delta..K=0 mixing. A modified, and more consistent, formalism for the IBA-1 is introduced which is simpler, has fewer free parameters (in effect, one, neglecting scale factors on energy differences), is in at least as good agreement with experiment as the earlier formalism, contains a special case of the 0(6) limit which corresponds to that known empirically, and appears to have a close relationship to the IBA-2. The new formalism facilitates the construction of contour plots of various observables (e.g., energy or B(E2) ratios) as functions of N and chi/sub Q/ which allow the parameter-free discussion of qualitative trajectories or systematics.

  19. Crystallographic Fabrics, Grain Boundary Microstructure and Shape Preferred Orientation of Deformed Banded Iron Formations and their Significance for Deformation Interpretation

    NASA Astrophysics Data System (ADS)

    Ávila, Carlos Fernando; Graça, Leonardo; Lagoeiro, Leonardo; Ferreira, Filippe

    2016-04-01

    The characterization of grain boundaries and shapes along with crystallographic preferred orientations (CPOs) are a key aspect of investigations of rock microstructures for their correlation with deformation mechanisms. Rapid developments have occurred in the studying rock microstructures due to recent improvements in analytical techniques such as Electron Backscatter Diffraction (EBSD). EBSD technique allows quick automated microtextural characteritzation. The deformed banded iron formations (BIFs) occurring in the Quadrilátero Ferrífero (QF) province in Brazil have been studied extensively with EBSD. All studies have focused mainly in CPOs. The general agreement is that dislocation creep was the dominant process of deformation, for the strong c-axis fabric of hematite crystals. This idea is substantiated by viscoplastic self-consistent models for deformation of hematite. However there are limitations to analyzing natural CPOs alone, or those generated by deformation models. The strong c-axis fabric could be taken as equally powerful an evidence for other known deformation mechanisms. Some grain boundary types in BIFs of the QF are irregular and comprise equant grains in granoblastic texture (Figure 1a). CPOs for this kind are strong and consistent with a predominance of dislocation creep. Others are very regular and long parallel to basal planes of hematites forming large elongated crystals (lepidoblastic texture, Figure 1b). Such crystals are called specularite, and their formation has been previously attributed to dislocation creep. This is erroneous because of the high strains which would be required. Their shape must be due to anisotropic grain growth. Other types lie between the above end-textures. Both types of grain shape microstructures have the same core deformation mechanism. Describing their genetic differences is crucial, since specularite owe its shape to anisotropic grain growth. It is not possible yet to confirm that dislocation creep was the

  20. Crystallographic Fabrics, Grain Boundary Microstructure and Shape Preferred Orientation of Deformed Banded Iron Formations and their Significance for Deformation Interpretation

    NASA Astrophysics Data System (ADS)

    Avila, C. F.; Lagoeiro, L. E., Sr.; Ferreira, F. O.; Graça, L. M.

    2015-12-01

    The characterization of grain boundaries and shapes along with crystallographic preferred orientations (CPOs) are a key aspect of investigations of rock microstructures for their correlation with deformation mechanisms. Rapid developments have occurred in the studying rock microstructures due to recent improvements in analytical techniques such as Electron Backscatter Diffraction (EBSD). EBSD technique allows quick automated microtextural characteritzation. The deformed banded iron formations (BIFs) occurring in the Quadrilátero Ferrífero (QF) province in Brazil have been studied extensively with EBSD. All studies have focused mainly in CPOs. The general agreement is that dislocation creep was the dominant process of deformation, for the strong c-axis fabric of hematite crystals. This idea is substantiated by viscoplastic self-consistent models for deformation of hematite. However there are limitations to analyzing natural CPOs alone, or those generated by deformation models. The strong c-axis fabric could be taken as equally powerful an evidence for other known deformation mechanisms. Some grain boundary types in BIFs of the QF are irregular and comprise equant grains in granoblastic texture (Figure 1a). CPOs for this kind are strong and consistent with a predominance of dislocation creep. Others are very regular and long parallel to basal planes of hematites forming large elongated crystals (lepidoblastic texture, Figure 1b). Such crystals are called specularite, and their formation has been previously attributed to dislocation creep. This is erroneous because of the high strains which would be required. Their shape must be due to anisotropic grain growth. Other types lie between the above end-textures. Both types of grain shape microstructures have the same core deformation mechanism. Describing their genetic differences is crucial, since specularite owe its shape to anisotropic grain growth. It is not possible yet to confirm that dislocation creep was the

  1. Deformation twinning in a polycrystalline magnesium alloy during dynamic compression

    NASA Astrophysics Data System (ADS)

    Hustedt, Caleb; Lloyd, Jeffrey; Lambert, Paul; Kannan, Vignesh; Casem, Daniel; Ramesh, K. T.; Sinclair, Nicholas; Becker, Richard; Hufnagel, Todd

    We report the results of combined in situ x-ray diffraction studies and crystal plasticity modeling of deformation twinning in polycrystalline magnesium during dynamic compression. Diffraction experiments were conducted at the Dynamic Compression Sector (DCS) of the Advanced Photon Source, on magnesium alloy (AZ31B) specimens (with various crystallographic textures) loaded at strain rates of ~1000 s-1 in a compression Kolsky bar. The diffraction patterns, recorded with temporal resolution of 5-10 microseconds, provide information about the evolution of crystallographic texture during deformation, which we interpret in terms of the twinning mechanism (so-called ``extension'' or ``tensile'' twinning). We compare our observations quantitatively with predictions of the evolution of crystallographic texture from an efficient reduced crystal plasticity model. This model explicitly accounts for basal slip and extension twinning on a rate-independent basis, but treats other mechanisms (pyramidal and prismatic slip) as isotropic, rate-dependent functions. This combination yields substantial improvements in efficiency over full crystal-plasticity models while retaining key aspects of the most important deformation mechanisms.

  2. Elevated temperature deformation of thoria dispersed nickel-chromium

    NASA Technical Reports Server (NTRS)

    Kane, R. D.; Ebert, L. J.

    1974-01-01

    The deformation behavior of thoria nickel-chromium (TD-NiCr) was examined over the temperature range 593 C (1100 F) to 1260 C (2300 F) in tension and compression and at 1093 C (2000 F) in creep. Major emphasis was placed on: (1) the effects of the material and test related variables (grain size, temperature, stress and strain rate) on the deformation process; and (2) the evaluation of single crystal TD-NiCr material produced by a directional recrystallization process. Elevated temperature yield strength levels and creep activation enthalpies were found to increase with increasing grain size reaching maximum values for the single crystal TD-NiCr. Stress exponent of the steady state creep rate was also significantly higher for the single crystal TD-NiCr as compared to that determined for the polycrystalline materials. The elevated temperature deformation of TD-NiCr was analyzed in terms of two concurrent, parallel processes: diffusion controlled grain boundary sliding, and dislocation motion.

  3. Diatexite Deformation and Magma Extraction on Kangaroo Island, South Australia

    NASA Astrophysics Data System (ADS)

    Hasalova, Pavlina; Weinberg, Roberto; Ward, Lindsay; Fanning, Mark

    2013-04-01

    ). Both reveal continuous age spread of ca. 490-470Ma with two dominant age groups of ca. 485Ma and ca. 470Ma corresponding to monazite rims and cores, respectively. The age range is interpreted to indicate the duration of anatexis (order of 20Ma) with the two peaks marking individual magma batch crystallization during D1 and D4 deformation event.

  4. Limitations on the NMR determination of structural corrections for correlated deformation of partially oriented linear molecules

    NASA Astrophysics Data System (ADS)

    Wasser, R.; Diehl, P.

    The dipolar couplings of partially oriented acetylene and biacetylene have been measured in various liquid crystal solvents. The results confirm the theoretical prediction that in linear molecules, due to the interdependence of the direct couplings, the information is drastically reduced and the structures corrected for the correlated deformation cannot be determined. Measured couplings corrected for harmonic vibration fulfill with excellent precision an additivity relation. This indicates that higher-order terms in the theory of correlated deformation can safely be neglected.

  5. [Spectrum research on metamorphic and deformation of tectonically deformed coals].

    PubMed

    Li, Xiao-Shi; Ju, Yi-Wen; Hou, Quan-Lin; Lin, Hong

    2011-08-01

    The structural and compositive evolution of tectonically deformed coals (TDCs) and their influencing factors were investigated and analyzed in detail through Fourier transform infrared spectroscopy (FTIR) and laser Raman spectra analysis. The TDC samples (0.7% < Ro,max <3.1%) were collected from Huaibei coalfield with different deformation mechanisms and intensity. The FTIR of TDCs shows that the metamorphism and the deformation affect the degradation and polycondensation process of macromolecular structure to different degree. The Raman spectra analysis indicates that secondary structure defects can be produced mainly by structural deformation, also the metamorphism influences the secondary structure defects and aromatic structure. Through comprehensive analysis, it was discussed that the ductile deformation could change to strain energy through the increase and accumulation of dislocation in molecular structure units of TDC, and it could make an obvious influence on degradation and polycondensation. While the brittle deformation could change to frictional heat energy and promote the metamorphism and degradation of TDC structure, but has less effect on polycondensation. Furthermore, degradation is the main reason for affecting the structural evolution of coal in lower metamorphic stage, and polycondensation is the most important controlling factor in higher metamorphic stage. Under metamorphism and deformation, the small molecules which break and fall off from the macromolecular tructure of TDC are preferentially replenished and embedded into the secondary structure defects or the residual aromatic rings were formed into aromatic structure by polycondensation. This process improved the stability of coal structure. It is easier for ductile deformation of coal to induce the secondary structure defects than brittle deformation.

  6. [Spectrum research on metamorphic and deformation of tectonically deformed coals].

    PubMed

    Li, Xiao-Shi; Ju, Yi-Wen; Hou, Quan-Lin; Lin, Hong

    2011-08-01

    The structural and compositive evolution of tectonically deformed coals (TDCs) and their influencing factors were investigated and analyzed in detail through Fourier transform infrared spectroscopy (FTIR) and laser Raman spectra analysis. The TDC samples (0.7% < Ro,max <3.1%) were collected from Huaibei coalfield with different deformation mechanisms and intensity. The FTIR of TDCs shows that the metamorphism and the deformation affect the degradation and polycondensation process of macromolecular structure to different degree. The Raman spectra analysis indicates that secondary structure defects can be produced mainly by structural deformation, also the metamorphism influences the secondary structure defects and aromatic structure. Through comprehensive analysis, it was discussed that the ductile deformation could change to strain energy through the increase and accumulation of dislocation in molecular structure units of TDC, and it could make an obvious influence on degradation and polycondensation. While the brittle deformation could change to frictional heat energy and promote the metamorphism and degradation of TDC structure, but has less effect on polycondensation. Furthermore, degradation is the main reason for affecting the structural evolution of coal in lower metamorphic stage, and polycondensation is the most important controlling factor in higher metamorphic stage. Under metamorphism and deformation, the small molecules which break and fall off from the macromolecular tructure of TDC are preferentially replenished and embedded into the secondary structure defects or the residual aromatic rings were formed into aromatic structure by polycondensation. This process improved the stability of coal structure. It is easier for ductile deformation of coal to induce the secondary structure defects than brittle deformation. PMID:22007412

  7. Kinetics of NiO and NiCl2 Hydrogen Reduction as Precursors and Properties of Produced Ni/Al2O3 and Ni-Pd/Al2O3 Catalysts

    PubMed Central

    Sokić, Miroslav; Kamberović, Željko; Nikolić, Vesna; Marković, Branislav; Korać, Marija; Anđić, Zoran; Gavrilovski, Milorad

    2015-01-01

    The objects of this investigation were the comparative kinetic analysis of the NiO and NiCl2 reduction by hydrogen during an induction period and elimination of the calcination during the synthesis of Ni/Al2O3 catalysts. The effect of temperature and time on NiO and NiCl2 reduction degrees was studied. Avrami I equation was selected as the most favorable kinetic model and used to determine activation energy of the NiO and NiCl2 reduction for the investigated temperature range (623–923 K) and time intervals (1–5 minutes). The investigation enabled reaching conclusions about the reaction ability and rate of the reduction processes. Afterward, Ni/Al2O3 catalysts were obtained by using oxide and chloride precursor for Ni. The catalysts were supported on alumina-based foam and prepared via aerosol route. Properties of the samples before and after low-temperature hydrogen reduction (633 K) were compared. Obtained results indicated that the synthesis of Ni/Al2O3 catalysts can be more efficient if chloride precursor for Ni is directly reduced by hydrogen during the synthesis process, without the calcination step. In addition, Ni-Pd/Al2O3 catalysts with different metal content were prepared by using chloride precursors. Lower reduction temperature was utilized and the chlorides were almost completely reduced at 533 K. PMID:25789335

  8. Rejuvenation effects during plastic deformation of Zircon: geochronological implications

    NASA Astrophysics Data System (ADS)

    Kovaleva, Elizaveta; Klötzli, Urs

    2013-04-01

    Zircon is one of the most stable accessory minerals known on the Earth; it was believed that zircon isotopic ages mostly record primary igneous crystallization events. It is true until the mineral is not affected by plastic deformation or other disturbing events during its life after crystallization. Zircon may deform by the recovery/subgrain rotation recrystallisation that indicates formation and migration of dislocations under crustal conditions. Deformation occurs at depth due to stresses associated with collision of the phases, and forms such microstructures as low-angle boundaries (Reddy et al., 2007). Low-angle boundaries act as fluid migration paths and elements diffusion paths. Facilitating Pb, Ti, U, Th and trace elements mobility in the crystalline zircon, these structures can change chemical, REE and isotopic composition of certain grain's parts (Reddy and Timms, 2010) and lead to isotopic resetting in the mineral domains. Since the isotopic age of the domains of single crystal can vary, it should be possible to recognize and interpret this variation and distinguish the timing of different high-temperature deformation events. Zircon can preserve low-angle boundaries and associated age disturbance under lower-crust temperatures for billions of years (Moser et al., 2009). Electron backscatter diffraction (EBSD) allows us to make microstructural-crystallographic analyses in order to measure the crystallographic orientations in crystalline material. EBSD mapping is supposed to be able to constrain potential diffusion pathways in minerals. It can indicate areas of damaged crystalline structure, helps to examine substructures of minerals used in radiometric dating and to assess the potential for resetting of ages by deformation events (Reddy et al., 2007). In this research we are trying to answer a list of questions, related to isotopic resetting due to deformation: What is the behavior of zircons which were plastically deformed during metamorphic-deformation

  9. Deformation-Induced Amorphization of Copper-Titanium Intermetallics

    NASA Astrophysics Data System (ADS)

    Askenazy, Philip Douglas

    Two methods of inducing amorphization in Cu-Ti intermetallic compounds by mechanical means have been investigated. Ingots of compositions Cu_{35}Ti _{65} and Cu_ {33.3}Ti_{66.7} were rapidly quenched into ribbons. The microstructure consisted largely of microcrystals in an amorphous matrix, which were either quenched in or grown by annealing. The ribbons were cold-rolled, which reduced their effective thickness by a factor of about 8. The status of the intermetallic compound CuTi_2 was monitored by x-ray diffraction and transmission electron microscopy (TEM). The crystals were found to amorphize as rolling progressed. This behavior was not reproduced in polycrystalline samples that had no amorphous matrix present initially. The presence of the amorphous phase is thus necessary for amorphization of the crystal: it eliminates the need to nucleate the new glass, and it prevents the ribbon from disintegrating at high deformation stages. It may also change the deformation mechanism that occurs in the crystals, retarding the onset of amorphization. Diffuse scattering in close-packed directions is similar to that seen in electron irradiation experiments. It is postulated that the chemical disorder present in antiphase boundaries caused by deformation raises the free energy of the crystal higher than that of the amorphous phase. Ingots of the same compound were worn against each other in a custom-built wear apparatus. The design eliminates iron contamination of the wear sample and requires relatively small quantities of material. Alteration of the surface structure was monitored by plane-view and cross -sectional TEM. Larger subsurface crystals exhibit diffuse scattering, similar to that found in the rolled samples. A wide range of grain sizes was observed, due to the inhomogeneous nature of the wear process. An unusual phase was observed at the surface, consisting of a nanometer-scale mixture of aligned nanocrystalline regions and disordered areas. Some amorphous phase is

  10. Diatexite Deformation and Magma Extraction on Kangaroo Island, South Australia

    NASA Astrophysics Data System (ADS)

    Hasalova, P.; Weinberg, R. F.; Ward, L.; Fanning, C. M.

    2012-12-01

    Migmatite terranes are structurally complex. We have investigated the relationships between deformation and magma extraction in migmatites formed during the Delamerian orogeny on Kangaroo Island. Several phases of deformation occurred in the presence of melt (D1-D4) and we describe how magma segregation, accumulation and extraction changes with deformation style. During an early upright folding event (D2), magma was channelled towards the hinge of antiforms. Funnel-shaped networks of leucosomes form a root that link towards a central axial planar channel, marking the main magma extraction paths. Extraction was associated with limb collapse, and antiformal hinge disruption. During a later deformation phase (D4), diatexites were sheared so that schollen were disaggregated into smaller blocks and schlieren, and deformed into asymmetric, sigmoidal shapes. Foliations in the magmatic matrix and schollen asymmetry indicate dextral shearing. During flow, magma accumulated in shear planes, indicating a dilational component during shearing (transtension) and on strain shadows of schollen. As deformation waned (post-D4), magma extraction from these diatexites gave rise to steeply dipping, funnel-shaped channels, similar to those developed during folding. The funnel-shape networks are interpreted as magma extraction networks and indicate magma flow direction. Structures developed during this phase are comparable with those developed during dewatering of soft sediments. The magmatic rocks from migmatites formed early, during folding, and formed late after deformation waned were dated. Both have two monazite (U-Pb, SHRIMP) age groups of ~490Ma and ~505-520Ma. The older sample has a well-defined peak at 505-510Ma and trails into the younger ages. The younger sample has the opposite, with few old spots and a well-defined young peak at ~490Ma. The age range indicates the duration of anatexis, and well-defined peaks are interpreted to mark the age of individual magma batch

  11. Dynamical focusing by bent, asymmetrically cut perfect crystals in Laue geometry.

    PubMed

    Guigay, J P; Ferrero, C

    2016-07-01

    A semi-analytical approach based on the influence functions of a point source located on the crystal surface has been adopted to show that the focusing ability of cylindrically bent Laue crystals may be strongly enhanced by replacing symmetrically cut crystals with asymmetrically cut crystals. This approach is generally applicable to any distance between the X-ray source and the focusing bent crystal. A mathematically straightforward method to simplify the derivation of the already known expression of the influence functions in the case of deformed crystals with a constant strain gradient (e.g. cylindrically bent crystals) is also presented. PMID:27357851

  12. Dynamical focusing by bent, asymmetrically cut perfect crystals in Laue geometry.

    PubMed

    Guigay, J P; Ferrero, C

    2016-07-01

    A semi-analytical approach based on the influence functions of a point source located on the crystal surface has been adopted to show that the focusing ability of cylindrically bent Laue crystals may be strongly enhanced by replacing symmetrically cut crystals with asymmetrically cut crystals. This approach is generally applicable to any distance between the X-ray source and the focusing bent crystal. A mathematically straightforward method to simplify the derivation of the already known expression of the influence functions in the case of deformed crystals with a constant strain gradient (e.g. cylindrically bent crystals) is also presented.

  13. Brittle-viscous deformation of vein quartz under fluid-rich low greenschist facies conditions

    NASA Astrophysics Data System (ADS)

    Kjøll, H. J.; Viola, G.; Menegon, L.; Sørensen, B. E.

    2015-01-01

    A coarse grained, statically crystallized quartz vein, embedded in a phyllonitic matrix, was studied by EBSD and optical microscopy to gain insights into the processes of strain localization in quartz deformed under low-grade conditions, broadly coincident with the frictional-viscous transition. The vein is from a high strain zone at the front of the Porsa Imbricate Stack in the Paleoproterozoic Repparfjord Tectonic Window in northern Norway. The vein was deformed under lower greenschist facies conditions during deformation along a large out-of-sequence phyllonitic thrust of Caledonian age. The host phyllonite formed at the expense of metabasalt wherein feldspar broke down to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the studied quartz vein acted as a relatively rigid body deforming mainly by coaxial strain. Viscous deformation was initially accommodated by basal ⟨a⟩ slip of quartz during the development of a mesoscopic pervasive extensional crenulation cleavage. Under the prevailing boundary conditions, however, dislocation glide-accommodated deformation of quartz resulted inefficient and led to dislocation tangling and strain hardening of the vein. In response to hardening, to the progressive increase of fluid pressure and the increasing competence contrast between the vein and the weak foliated host phyllonite, quartz crystals began to deform frictionally along specific, optimally oriented lattice planes, creating microgouges along microfractures. These were, however, rapidly sealed by nucleation of new grains as transiently over pressured fluids penetrated the deforming system. The new nucleated grains grew initially by solution-precipitation and later by grain boundary migration. Due to the random initial orientation of the vein crystals, strain was accommodated differently in the individual crystals, leading to the development of remarkably different microstructures. Crystals

  14. Deforming the hippocampal map.

    PubMed

    Touretzky, David S; Weisman, Wendy E; Fuhs, Mark C; Skaggs, William E; Fenton, Andre A; Muller, Robert U

    2005-01-01

    To investigate conjoint stimulus control over place cells, Fenton et al. (J Gen Physiol 116:191-209, 2000a) recorded while rats foraged in a cylinder with 45 degrees black and white cue cards on the wall. Card centers were 135 degrees apart. In probe trials, the cards were rotated together or apart by 25 degrees . Firing field centers shifted during these trials, stretching and shrinking the cognitive map. Fenton et al. (2000b) described this deformation with an ad hoc vector field equation. We consider what sorts of neural network mechanisms might be capable of accounting for their observations. In an abstract, maximum likelihood formulation, the rat's location is estimated by a conjoint probability density function of landmark positions. In an attractor neural network model, recurrent connections produce a bump of activity over a two-dimensional array of cells; the bump's position is influenced by landmark features such as distances or bearings. If features are chosen with appropriate care, the attractor network and maximum likelihood models yield similar results, in accord with previous demonstrations that recurrent neural networks can efficiently implement maximum likelihood computations (Pouget et al. Neural Comput 10:373-401, 1998; Deneve et al. Nat Neurosci 4:826-831, 2001). PMID:15390166

  15. Theory of radial X-ray Diffraction from a Polycrystalline Sample Undergoing Plastic Deformation

    SciTech Connect

    S Karato

    2011-12-31

    Theory of lattice strain in a polycrystalline aggregate under deviatoric stress is extended to include the influence of ongoing plastic deformation. When deviatoric stress is applied to a polycrystalline material at high temperatures (or above the yield stress), applied macroscopic stress is redistributed to individual grains by plastic deformation according to their orientations with respect to the macroscopic stress and plastic anisotropy of a given crystal. This microstress causes elastic deformation of individual grains that can be measured by x-ray diffraction. Consequently, the observed lattice strain depends on two material properties, viscosity (plasticity) and elastic compliance as well as the applied macroscopic stress and the stress-strain distribution among various grains. The influence of plastic deformation on lattice strain is analyzed using an anisotropic and nonlinear power-law constitutive relationship. In this model, the dependence of inferred macroscopic stress on the crystallographic orientation of diffraction plane (hkl) comes from elastic and plastic anisotropy of a crystal. In many materials, plastic anisotropy dominates over elastic anisotropy. This explains the observed large dependence of inferred stress on the diffraction plane and means that the determination of elastic anisotropy is difficult when plastic deformation occurs with anisotropic plasticity. When elastic anisotropy is known, plastic anisotropy of single crystal and/or stress-strain distribution in a deformed polycrystal can be determined from radial x-ray diffraction using the present model. Some examples are presented using the data on MgO.

  16. STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS

    SciTech Connect

    Anter El-Azab

    2013-04-08

    The research under this project focused on a theoretical and computational modeling of dislocation dynamics of mesoscale deformation of metal single crystals. Specifically, the work aimed to implement a continuum statistical theory of dislocations to understand strain hardening and cell structure formation under monotonic loading. These aspects of crystal deformation are manifestations of the evolution of the underlying dislocation system under mechanical loading. The project had three research tasks: 1) Investigating the statistical characteristics of dislocation systems in deformed crystals. 2) Formulating kinetic equations of dislocations and coupling these kinetics equations and crystal mechanics. 3) Computational solution of coupled crystal mechanics and dislocation kinetics. Comparison of dislocation dynamics predictions with experimental results in the area of statistical properties of dislocations and their field was also a part of the proposed effort. In the first research task, the dislocation dynamics simulation method was used to investigate the spatial, orientation, velocity, and temporal statistics of dynamical dislocation systems, and on the use of the results from this investigation to complete the kinetic description of dislocations. The second task focused on completing the formulation of a kinetic theory of dislocations that respects the discrete nature of crystallographic slip and the physics of dislocation motion and dislocation interaction in the crystal. Part of this effort also targeted the theoretical basis for establishing the connection between discrete and continuum representation of dislocations and the analysis of discrete dislocation simulation results within the continuum framework. This part of the research enables the enrichment of the kinetic description with information representing the discrete dislocation systems behavior. The third task focused on the development of physics-inspired numerical methods of solution of the coupled

  17. Supersymmetric q-deformed quantum mechanics

    SciTech Connect

    Traikia, M. H.; Mebarki, N.

    2012-06-27

    A supersymmetric q-deformed quantum mechanics is studied in the weak deformation approximation of the Weyl-Heisenberg algebra. The corresponding supersymmetric q-deformed hamiltonians and charges are constructed explicitly.

  18. Involvement of valgus hindfoot deformity in hallux valgus deformity in rheumatoid arthritis.

    PubMed

    Yamada, Shutaro; Hirao, Makoto; Tsuboi, Hideki; Akita, Shosuke; Matsushita, Masato; Ohshima, Shiro; Saeki, Yukihiko; Hashimoto, Jun

    2014-09-01

    The involvement of valgus hindfoot deformity in hallux valgus deformity was confirmed in a rheumatoid arthritis case with a destructive valgus hindfoot deformity. Correction of severe valgus, calcaneal lateral offset, and pronated foot deformity instantly normalized hallux valgus deformities postoperatively. Thus, careful hindfoot status evaluation is important when assessing forefoot deformity, including hallux valgus, in rheumatoid arthritis cases.

  19. Perceptual transparency from image deformation.

    PubMed

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya

    2015-08-18

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation. PMID:26240313

  20. Liquid Crystals

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.