Science.gov

Sample records for crystal nonequilibrium molecular

  1. Non-equilibrium molecular dynamics simulations of spall in single crystal tantalum

    NASA Astrophysics Data System (ADS)

    Hahn, Eric N.; Germann, Timothy C.; Ravelo, Ramon J.; Hammerberg, James E.; Meyers, Marc A.

    2017-01-01

    Ductile tensile failure of tantalum is examined through large scale non-equilibrium molecular dynamics simulations. Several loading schemes including flyer plate impact, decaying shock loading via a frozen piston, and quasi-isentropic (constant strain-rate) expansion are employed to span tensile strain-rates of 108 to 1014 per second. Single crystals of <001> orientation are specifically evaluated to eliminate grain boundary effects. Heterogeneous void nucleation occurs principally at the intersection of deformation twins in single crystals. At high strain rates, multiple spall events occur throughout the material and voids continue to nucleate until relaxation waves arrive from adjacent events. At ultra-high strain rates, those approaching or exceeding the atomic vibrational frequency, spall strength saturates near the maximum theoretical spall strength.

  2. Nonequilibrium molecular dynamics

    SciTech Connect

    Hoover, W.G. . Dept. of Applied Science Lawrence Livermore National Lab., CA )

    1990-11-01

    The development of nonequilibrium molecular dynamics is described, with emphasis on massively-parallel simulations involving the motion of millions, soon to be billions, of atoms. Corresponding continuum simulations are also discussed. 14 refs., 8 figs.

  3. Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Merabia, Samy; Termentzidis, Konstantinos

    2012-09-01

    In this article, we compare the results of nonequilibrium (NEMD) and equilibrium (EMD) molecular dynamics methods to compute the thermal conductance at the interface between solids. We propose to probe the thermal conductance using equilibrium simulations measuring the decay of the thermally induced energy fluctuations of each solid. We also show that NEMD and EMD give generally speaking inconsistent results for the thermal conductance: Green-Kubo simulations probe the Landauer conductance between two solids which assumes phonons on both sides of the interface to be at equilibrium. On the other hand, we show that NEMD give access to the out-of-equilibrium interfacial conductance consistent with the interfacial flux describing phonon transport in each solid. The difference may be large and reaches typically a factor 5 for interfaces between usual semiconductors. We analyze finite size effects for the two determinations of the interfacial thermal conductance, and show that the equilibrium simulations suffer from severe size effects as compared to NEMD. We also compare the predictions of the two above-mentioned methods—EMD and NEMD—regarding the interfacial conductance of a series of mass mismatched Lennard-Jones solids. We show that the Kapitza conductance obtained with EMD can be well described using the classical diffuse mismatch model (DMM). On the other hand, NEMD simulation results are consistent with an out-of-equilibrium generalization of the acoustic mismatch model (AMM). These considerations are important in rationalizing previous results obtained using molecular dynamics, and help in pinpointing the physical scattering mechanisms taking place at atomically perfect interfaces between solids, which is a prerequisite to understand interfacial heat transfer across real interfaces.

  4. Non-Equilibrium Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Ciccotti, Giovanni; Kapral, Raymond; Sergi, Alessandro

    Statistical mechanics provides a well-established link between microscopic equilibrium states and thermodynamics. If one considers systems out of equilibrium, the link between microscopic dynamical properties and non-equilibrium macroscopic states is more difficult to establish [1,2]. For systems lying near equilibrium, linear response theory provides a route to derive linear macroscopic laws and the microscopic expressions for the transport properties that enter the constitutive relations. If the system is displaced far from equilibrium, no fully general theory exists to treat such systems. By restricting consideration to a class of non-equilibrium states which arise from perturbations (linear or non-linear) of an equilibrium state, methods can be developed to treat non-equilibrium states. Furthermore, non-equilibrium molecular dynamics (NEMD) simulation methods can be devised to provide estimates for the transport properties of these systems.

  5. Nonequilibrium molecular dynamics: The first 25 years

    SciTech Connect

    Hoover, W.G. |

    1992-08-01

    Equilibrium Molecular Dynamics has been generalized to simulate Nonequilibrium systems by adding sources of thermodynamic heat and work. This generalization incorporates microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress, and augments atomistic forces with special boundary, constraint, and driving forces capable of doing work on, and exchanging heat with, an otherwise Newtonian system. The underlying Lyapunov instability of these nonequilibrium equations of motion links microscopic time-reversible deterministic trajectories to macroscopic time-irreversible hydrodynamic behavior as described by the Second Law of Thermodynamics. Green-Kubo linear-response theory has been checked. Nonlinear plastic deformation, intense heat conduction, shockwave propagation, and nonequilibrium phase transformation have all been simulated. The nonequilibrium techniques, coupled with qualitative improvements in parallel computer hardware, are enabling simulations to approximate real-world microscale and nanoscale experiments.

  6. Cell list algorithms for nonequilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Dobson, Matthew; Fox, Ian; Saracino, Alexandra

    2016-06-01

    We present two modifications of the standard cell list algorithm that handle molecular dynamics simulations with deforming periodic geometry. Such geometry naturally arises in the simulation of homogeneous, linear nonequilibrium flow modeled with periodic boundary conditions, and recent progress has been made developing boundary conditions suitable for general 3D flows of this type. Previous works focused on the planar flows handled by Lees-Edwards or Kraynik-Reinelt boundary conditions, while the new versions of the cell list algorithm presented here are formulated to handle the general 3D deforming simulation geometry. As in the case of equilibrium, for short-ranged pairwise interactions, the cell list algorithm reduces the computational complexity of the force computation from O(N2) to O(N), where N is the total number of particles in the simulation box. We include a comparison of the complexity and efficiency of the two proposed modifications of the standard algorithm.

  7. Molecular rheology of perfluoropolyether lubricant via nonequilibrium molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Guo, Qian; Chung, Pil Seung; Chen, Haigang; Jhon, Myung S.

    2006-04-01

    Molecular rheology of perfluoropolyether (PFPE) systems is particularly important in designing effective lubricants that control the friction and wear in tribological applications. Using the coarse-grained, bead-spring model, equilibrium molecular dynamics based on the Langevin equation in a quiescent flow was first employed to examine the nanostructure of PFPE. Further, by integrating the modified Langevin equation and imposing the Lees-Edwards boundary condition, nonequilibrium molecular dynamics of steady shear was investigated. We observe that the shear viscosity of PFPE system depends strongly on molecular architecture (e.g., molecular weight and endgroup functionality) and external conditions (e.g., temperature and shear rate). Our study of the flow activation energy/entropy and their correlations with nanostructure visualization showed that the PFPE structure was substantially modified.

  8. Density Functional Theory for Steady-State Nonequilibrium Molecular Junctions

    PubMed Central

    Liu, Shuanglong; Nurbawono, Argo; Zhang, Chun

    2015-01-01

    We present a density functional theory (DFT) for steady-state nonequilibrium quantum systems such as molecular junctions under a finite bias. Based on the steady-state nonequilibrium statistics that maps nonequilibrium to an effective equilibrium, we show that ground-state DFT (GS-DFT) is not applicable in this case and two densities, the total electron density and the density of current-carrying electrons, are needed to uniquely determine the properties of the corresponding nonequilibrium system. A self-consistent mean-field approach based on two densities is then derived. The theory is implemented into SIESTA computational package and applied to study nonequilibrium electronic/transport properties of a realistic carbon-nanotube (CNT)/Benzene junction. Results obtained from our steady-state DFT (SS-DFT) are compared with those of conventional GS-DFT based transport calculations. We show that SS-DFT yields energetically more stable nonequilibrium steady state, predicts significantly lower electric current, and is able to produce correct electronic structures in local equilibrium under a limiting case. PMID:26472080

  9. On the theory of steady-state crystallization with a non-equilibrium mushy layer

    NASA Astrophysics Data System (ADS)

    Alexandrov, D. V.; Alexandrova, I. V.; Ivanov, A. A.

    2016-12-01

    Complete analytical solutions of nonlinear equations describing the steady-state directional crystallization of binary melts with a nonequilibrium mushy layer, where the processes of nucleation and growth of crystals occur, are constructed.

  10. Smoothed-particle hydrodynamics and nonequilibrium molecular dynamics

    SciTech Connect

    Hoover, W. G.; Hoover, C. G.

    1993-08-01

    Gingold, Lucy, and Monaghan invented a grid-free version of continuum mechanics ``smoothed-particle hydrodynamics,`` in 1977. It is a likely contributor to ``hybrid`` simulations combining atomistic and continuum simulations. We describe applications of this particle-based continuum technique from the closely-related standpoint of nonequilibrium molecular dynamics. We compare chaotic Lyapunov spectra for atomistic solids and fluids with those which characterize a two-dimensional smoothed-particle fluid system.

  11. Smoothed-particle hydrodynamics and nonequilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Hoover, W. G.; Hoover, C. G.

    1993-08-01

    Gingold, Lucy, and Monaghan invented a grid-free version of continuum mechanics 'smoothed-particle hydrodynamics,' in 1977. It is a likely contributor to 'hybrid' simulations combining atomistic and continuum simulations. We describe applications of this particle-based continuum technique from the closely-related standpoint of nonequilibrium molecular dynamics. We compare chaotic Lyapunov spectra for atomistic solids and fluids with those which characterize a two-dimensional smoothed-particle fluid system.

  12. Non-equilibrium phase transitions in a liquid crystal.

    PubMed

    Dan, K; Roy, M; Datta, A

    2015-09-07

    The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min(-1), consistent with a glass transition, a clear peak for β ≤ 5 K min(-1) and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the

  13. Non-equilibrium phase transitions in a liquid crystal

    NASA Astrophysics Data System (ADS)

    Dan, K.; Roy, M.; Datta, A.

    2015-09-01

    The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min-1, consistent with a glass transition, a clear peak for β ≤ 5 K min-1 and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the

  14. Simulations of a molecular plasma in collisional-radiative nonequilibrium

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc; Moreau, Stephane

    1993-01-01

    A code for the simulation of nonequilibrium plasmas is being developed, with the capability to couple the plasma fluid-dynamics for a single fluid with a collisional-radiative model, where electronic states are treated as separate species. The model allows for non-Boltzmann distribution of the electronic states. Deviations from the Boltzmann distributions are expected to occur in the rapidly ionizing regime behind a strong shock or in the recombining regime during a fast expansion. This additional step in modeling complexity is expected to yield more accurate predictions of the nonequilibrium state and the radiation spectrum and intensity. An attempt at extending the code to molecular plasma flows is presented. The numerical techniques used, the thermochemical model, and the results of some numerical tests are described.

  15. On determining continuum quantities of non-equilibrium processes via molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Fu, Yao

    In this dissertation, a high-fidelity atomistic-to-continuum link for highly non-equilibrium processes has been established by making several modifications to Hardy's theory. Although Hardy's thermomechanical quantities were derived analytically to conserve mass, momentum and energy, they have not been rigorously tested and validated numerically in the past. Hence the first task was to investigate the effectiveness of ensemble averaging in removing thermal fluctuations and compare with conventional time averaging for fcc crystals simulated using both equilibrium and non-equilibrium molecular dynamics (MD) simulations, where the non-equilibrium process was introduced by a shock impact. It has been found that the ensemble averaging has better convergence than time averaging due to the statistical independence of the thermomechanical quantities computed using ensemble averaging. The second task was to test the validity of Hardy's theory by checking if it is able to conserve mass, momentum and energy numerically. A few highly non-equilibrium processes were simulated using MD, including Gaussian wave and shock impact propagation in 1D and 3D fcc crystals. Based on the test results, a new normalization rule has been proposed so that the computed thermomechanical quantities can conserve the fundamental properties more accurately. To a large extent, Hardy's theory has been found to be valid regardless of the width of the localization function, the interatomic potential and crystal structure, and with and without ensemble averaging. To further test the validity of Hardy's theory for more complex non-equilibrium processes, where plastic deformation is accomplished through dislocation glide and slip band emission, a crack propagation problem in iron crystal with a pre-created center crack is simulated using MD. The computed Hardy's thermomechanical quantities can generally conserve mass, momentum and energy. Exceptions have been found around the crack region, where the

  16. Molecular Simulation Of Nonequilibrium Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Schwartzentruber, T. E.; Valentini, P.; Tump, P.

    2011-05-01

    Large-scale conventional time-driven molecular dynamics (MD) simulations of normal shock waves are performed for monatomic argon and argon-helium mixtures. For pure argon, near perfect agreement between MD and direct simulation Monte Carlo (DSMC) results using the variable-hard-sphere model are found for density and temperature profiles as well as for velocity distribution functions throughout the shock. MD simulation results for argon are also in excellent agreement with experimental shock thickness data. Preliminary MD simulation results for argon-helium mixtures are in qualitative agreement with experimental density and temperature profile data, where separation between argon and helium density profiles due to disparate atomic mass is observed. Since conventional time-driven MD simulation of dilute gases is computationally inefficient, a combined Event-Driven/Time-Driven MD algorithm is presented. The ED/TD-MD algorithm computes impending collisions and advances molecules directly to their next collision while evaluating the collision using conventional time-driven MD with an arbitrary interatomic potential. The method timestep thus approaches the mean-collision- time in the gas, while also detecting and simulating multi-body collisions with a small approximation. Extension of the method to diatomic and small polyatomic molecules is detailed, where center-of-mass velocities and extended cutoff radii are used to advance molecules to impend- ing collisions. Only atomic positions are integrated during collisions and molecule sorting algorithms are em- ployed to determine if atoms are bound in a molecule after a collision event. Rotational relaxation to equilibrium for a low density diatomic gas is validated by comparison with large-scale conventional time-driven MD simulation, where the final rotational distribution function is verified to be the correct Boltzmann rotational energy distribution.

  17. Thermal Conductivity of GaN Nanotubes Simulated by Nonequilibrium Molecular Dynamics

    SciTech Connect

    Wang, Zhiguo; Gao, Fei; Crocombette, J.-P.; Zu, Xiaotao; Yang, Li; Weber, William J.

    2007-04-15

    Thermal conductivity of GaN nanotubes along the tube axis is investigated over the temperature range of 600K-2300K using homogeneous nonequilibrium molecular dynamics. In general, the thermal conductivity of nanotubes is smaller than that for the bulk GaN single crystal. The thermal conductivity is also found to decrease with temperature and increase with increasing wall thickness of the nanotubes. The change of phonon spectrum and surface inelastic scattering may account for the reduction of thermal conductivity in the nanotubes, while thermal softening and high frequency phonon interactions at high temperatures may provide an explanation for its decrease with increasing temperature.

  18. Vibrational energy transfer in shocked molecular crystals.

    PubMed

    Hooper, Joe

    2010-01-07

    We consider the process of establishing thermal equilibrium behind an ideal shock front in molecular crystals and its possible role in initiating chemical reaction at high shock pressures. A new theory of equilibration via multiphonon energy transfer is developed to treat the scattering of shock-induced phonons into internal molecular vibrations. Simple analytic forms are derived for the change in this energy transfer at different Hugoniot end states following shock compression. The total time required for thermal equilibration is found to be an order of magnitude or faster than proposed in previous work; in materials representative of explosive molecular crystals, equilibration is predicted to occur within a few picoseconds following the passage of an ideal shock wave. Recent molecular dynamics calculations are consistent with these time scales. The possibility of defect-induced temperature localization due purely to nonequilibrium phonon processes is studied by means of a simple model of the strain field around an inhomogeneity. The specific case of immobile straight dislocations is studied, and a region of enhanced energy transfer on the order of 5 nm is found. Due to the rapid establishment of thermal equilibrium, these regions are unrelated to the shock sensitivity of a material but may allow temperature localization at high shock pressures. Results also suggest that if any decomposition due to molecular collisions is occurring within the shock front itself, these collisions are not enhanced by any nonequilibrium thermal state.

  19. Improved molecular collision models for nonequilibrium rarefied gases

    NASA Astrophysics Data System (ADS)

    Parsons, Neal

    The Direct Simulation Monte Carlo (DSMC) method typically used to model thermochemical nonequilibrium rarefied gases requires accurate total collision cross sections, reaction probabilities, and molecular internal energy exchange models. However, the baseline total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, reaction probabilities are defined such that experimentally determined equilibrium reaction rates are replicated, and internal energy relaxation models are phenomenological in nature. Therefore, these models have questionable validity in modeling strongly nonequilibrium gases with temperatures greater than those possible in experimental test facilities. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method can be used to accurately compute total collision cross sections, reaction probabilities, and internal energy exchange models based on first principles for hypervelocity collision conditions. In this thesis, MD/QCT-based models were used to improve simulations of two unique nonequilibrium rarefied gas systems: the Ionian atmosphere and hypersonic shocks in Earth's atmosphere. The Jovian plasma torus flows over Io at ≈ 57 km/s, inducing high-speed collisions between atmospheric SO2 and the hypervelocity plasma's O atoms and ions. The DSMC method is well-suited to model the rarefied atmosphere, so MD/QCT studies are therefore conducted to improve DSMC collision models of the critical SO2-O collision pair. The MD/QCT trajectory simulations employed a new potential energy surface that was developed using a ReaxFF fit to a set of ab initio calculations. Compared to the MD/QCT results, the baseline DSMC models are found to significantly under-predict total cross sections, use reaction probabilities that are unrealistically high, and give unphysical internal energies above the dissociation energy for non-reacting inelastic collisions and under-predicts post

  20. Effects of Molecular Dynamics Thermostats on Descriptions of Chemical Nonequilibrium.

    PubMed

    Page, Alister J; Isomoto, Tetsushi; Knaup, Jan M; Irle, Stephan; Morokuma, Keiji

    2012-11-13

    The performance of popular molecular dynamics (MD) thermostat algorithms in constant temperature simulations of equilibrium systems is well-known. This is not the case, however, in the context of nonequilibrium chemical systems, such as chemical reactions or nanoscale self-assembly processes. In this work, we investigate the effect of popular thermostat algorithms on the "natural" (i.e., Hamiltonian) dynamics of a nonequilibrium, chemically reacting system. By comparing constant-temperature quantum mechanical MD (QM/MD) simulations of carbon vapor condensation using velocity scaling, Berendsen, Andersen, Langevin, and Nosé-Hoover chain thermostat algorithms with natural NVE simulations, we show that efficient temperature control and reliable reaction dynamics are mutually exclusive in such a system. This problem may be circumvented, however, by placing the reactive system in an inert He atmosphere, which is itself described using NVT MD. We demonstrate that both realistic temperature control and dynamics consistent with natural NVE dynamics can then be obtained simultaneously. In essence, the thermal energy created by the natural dynamics of the NVE subsystem is drained by the thermostat acting on the NVT atmosphere, without adversely affecting the dynamics of the reactive system itself.

  1. Efficiency in nonequilibrium molecular dynamics Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Radak, Brian K.; Roux, Benoît

    2016-10-01

    Hybrid algorithms combining nonequilibrium molecular dynamics and Monte Carlo (neMD/MC) offer a powerful avenue for improving the sampling efficiency of computer simulations of complex systems. These neMD/MC algorithms are also increasingly finding use in applications where conventional approaches are impractical, such as constant-pH simulations with explicit solvent. However, selecting an optimal nonequilibrium protocol for maximum efficiency often represents a non-trivial challenge. This work evaluates the efficiency of a broad class of neMD/MC algorithms and protocols within the theoretical framework of linear response theory. The approximations are validated against constant pH-MD simulations and shown to provide accurate predictions of neMD/MC performance. An assessment of a large set of protocols confirms (both theoretically and empirically) that a linear work protocol gives the best neMD/MC performance. Finally, a well-defined criterion for optimizing the time parameters of the protocol is proposed and demonstrated with an adaptive algorithm that improves the performance on-the-fly with minimal cost.

  2. Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulation

    SciTech Connect

    Holian, B.L.

    1998-03-01

    Nonequilibrium molecular dynamics (NEMD) simulations of shock waves in single crystals have shown that, above a threshold strength, strongly shocked crystals deform in a very simple way. Rather than experiencing massive deformation, a simple slippage occurs at the shock front, relieving the peak shear stress, and leaving behind a stacking fault. Later calculations quantified the apparent threshold strength, namely the yield strength of the perfect crystal. Subsequently, pulsed x-ray experiments on shocked single crystals showed relative shifts in diffraction peaks, confirming the authors NEMD observations of stacking faults produced by shockwave passage. With the advent of massively parallel computers, the authors have been able to simulate shock waves in 10-million atom crystals with cross sectional dimensions of 100 x 100 fcc unit cells (compared to earlier 6 x 6 systems). They have seen that the increased cross-section allows the system to slip along all of the available {l_brace}111{r_brace} slip planes, in different places along the now non-planar shock front. These simulations conclusively eliminate the worry that the kind of slippage they have observed is somehow an artifact of transverse periodic boundary conditions. Moreover, they have introduced a piston face that is no longer perfectly flat, mimicking a line or surface inhomogeneity in the unshocked material, and show that for weaker shock waves (below the perfect crystal yield strength), stacking faults can be nucleated by preexisting extended defects.

  3. The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Ju, Jianzhu; Yang, Junsheng; Ma, Zhe; Liu, Dong; Cui, Kunpeng; Yang, Haoran; Chang, Jiarui; Huang, Ningdong; Li, Liangbin

    2016-09-01

    Combining extensional rheology with in-situ synchrotron ultrafast x-ray scattering, we studied flow-induced phase behaviors of polyethylene (PE) in a wide temperature range up to 240 °C. Non-equilibrium phase diagrams of crystallization and melting under flow conditions are constructed in stress-temperature space, composing of melt, non-crystalline δ, hexagonal and orthorhombic phases. The non-crystalline δ phase is demonstrated to be either a metastable transient pre-order for crystallization or a thermodynamically stable phase. Based on the non-equilibrium phase diagrams, nearly all observations in flow-induced crystallization (FIC) of PE can be well understood. The interplay of thermodynamic stabilities and kinetic competitions of the four phases creates rich kinetic pathways for FIC and diverse final structures. The non-equilibrium flow phase diagrams provide a detailed roadmap for precisely processing of PE with designed structures and properties.

  4. The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene

    PubMed Central

    Wang, Zhen; Ju, Jianzhu; Yang, Junsheng; Ma, Zhe; Liu, Dong; Cui, Kunpeng; Yang, Haoran; Chang, Jiarui; Huang, Ningdong; Li, Liangbin

    2016-01-01

    Combining extensional rheology with in-situ synchrotron ultrafast x-ray scattering, we studied flow-induced phase behaviors of polyethylene (PE) in a wide temperature range up to 240 °C. Non-equilibrium phase diagrams of crystallization and melting under flow conditions are constructed in stress-temperature space, composing of melt, non-crystalline δ, hexagonal and orthorhombic phases. The non-crystalline δ phase is demonstrated to be either a metastable transient pre-order for crystallization or a thermodynamically stable phase. Based on the non-equilibrium phase diagrams, nearly all observations in flow-induced crystallization (FIC) of PE can be well understood. The interplay of thermodynamic stabilities and kinetic competitions of the four phases creates rich kinetic pathways for FIC and diverse final structures. The non-equilibrium flow phase diagrams provide a detailed roadmap for precisely processing of PE with designed structures and properties. PMID:27609305

  5. Non-equilibrium phase behavior and friction of confined molecular films under shear: A non-equilibrium molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Maćkowiak, Sz.; Heyes, D. M.; Dini, D.; Brańka, A. C.

    2016-10-01

    The phase behavior of a confined liquid at high pressure and shear rate, such as is found in elastohydrodynamic lubrication, can influence the traction characteristics in machine operation. Generic aspects of this behavior are investigated here using Non-equilibrium Molecular Dynamics (NEMD) simulations of confined Lennard-Jones (LJ) films under load with a recently proposed wall-driven shearing method without wall atom tethering [C. Gattinoni et al., Phys. Rev. E 90, 043302 (2014)]. The focus is on thick films in which the nonequilibrium phases formed in the confined region impact on the traction properties. The nonequilibrium phase and tribological diagrams are mapped out in detail as a function of load, wall sliding speed, and atomic scale surface roughness, which is shown can have a significant effect. The transition between these phases is typically not sharp as the external conditions are varied. The magnitude of the friction coefficient depends strongly on the nonequilibrium phase adopted by the confined region of molecules, and in general does not follow the classical friction relations between macroscopic bodies, e.g., the frictional force can decrease with increasing load in the Plug-Slip (PS) region of the phase diagram owing to structural changes induced in the confined film. The friction coefficient can be extremely low (˜0.01) in the PS region as a result of incommensurate alignment between a (100) face-centered cubic wall plane and reconstructed (111) layers of the confined region near the wall. It is possible to exploit hysteresis to retain low friction PS states well into the central localization high wall speed region of the phase diagram. Stick-slip behavior due to periodic in-plane melting of layers in the confined region and subsequent annealing is observed at low wall speeds and moderate external loads. At intermediate wall speeds and pressure values (at least) the friction coefficient decreases with increasing well depth of the LJ potential

  6. Nonequilibrium transport on a quantum molecular chain in terms of the complex Liouvillian spectrum.

    PubMed

    Tanaka, Satoshi; Kanki, Kazuki; Petrosky, Tomio

    2011-05-01

    The transport process in a molecular chain in a nonequilibrium stationary state is theoretically investigated. The molecule is interacting at both ends with thermal baths of different temperatures, while no dissipation mechanism is contained inside the molecular chain. We have first obtained the nonequilibrium stationary state outside the Hilbert space in terms of the complex spectral representation of Liouvillian. The nonequilibrium stationary state is obtained as an eigenstate of the Liouvillian, which is constructed through the collision invariant of the kinetic equation. The eigenstate of the Liouvillian contains information on the spatial correlation between the molecular chain and the thermal baths. While energy flow in the nonequilibrium state which is due to the first-order correlation can be described by the Landauer formula, the particle current due to the second-order correlation cannot be described by the Landauer formula. The present method provides a simple way to evaluate the energy transport in a molecular chain in a nonequilibrium situation.

  7. Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ripmeester, J. A.

    2010-04-01

    Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.

  8. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states

    NASA Astrophysics Data System (ADS)

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2016-04-01

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited state molecular dynamics. In this work, we describe methods of simulating nonequilibrium solvent effects in excited state molecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.

  9. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states

    SciTech Connect

    Bjorgaard, Josiah August; Velizhanin, Kirill A.; Tretiak, Sergei

    2016-04-15

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited state molecular dynamics. In this paper, we describe methods of simulating nonequilibrium solvent effects in excited state molecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Finally, molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.

  10. Note: Local thermal conductivities from boundary driven non-equilibrium molecular dynamics simulations

    SciTech Connect

    Bresme, F.; Armstrong, J.

    2014-01-07

    We report non-equilibrium molecular dynamics simulations of heat transport in models of molecular fluids. We show that the “local” thermal conductivities obtained from non-equilibrium molecular dynamics simulations agree within numerical accuracy with equilibrium Green-Kubo computations. Our results support the local equilibrium hypothesis for transport properties. We show how to use the local dependence of the thermal gradients to quantify the thermal conductivity of molecular fluids for a wide range of thermodynamic states using a single simulation.

  11. Molecular-Based Optical Diagnostics for Hypersonic Nonequilibrium Flows

    NASA Technical Reports Server (NTRS)

    Danehy, Paul; Bathel, Brett; Johansen, Craig; Winter, Michael; O'Byrne, Sean; Cutler, Andrew

    2015-01-01

    This presentation package consists of seven different talks rolled up into one. These talks are all invited orals presentations in a special session at the Aviation 2015 conference and represent contributions that were made to a recent AIAA book that will be published entitled 'Hypersonic Nonequilibrium Flows: Fundamentals and Recent Advances'. Slide 5 lists the individual presentations that will be given during the special session.

  12. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states.

    PubMed

    Bjorgaard, J A; Velizhanin, K A; Tretiak, S

    2016-04-21

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited statemolecular dynamics. In this work, we describe methods of simulating nonequilibrium solvent effects in excited statemolecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.

  13. The molecular photo-cell: quantum transport and energy conversion at strong non-equilibrium.

    PubMed

    Ajisaka, Shigeru; Žunkovič, Bojan; Dubi, Yonatan

    2015-02-09

    The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system.

  14. The Molecular Photo-Cell: Quantum Transport and Energy Conversion at Strong Non-Equilibrium

    PubMed Central

    Ajisaka, Shigeru; Žunkovič, Bojan; Dubi, Yonatan

    2015-01-01

    The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system. PMID:25660494

  15. Microwave-driven zeolite-guest systems show athermal effects from nonequilibrium molecular dynamics.

    PubMed

    Blanco, Cristian; Auerbach, Scott M

    2002-06-05

    Nonequilibrium molecular dynamics simulations show that steady-state systems obtained by microwave heating are qualitatively different from those at thermal equilibrium. This difference arises because energy transfer from hotter to colder species is not efficient enough to equilibrate the distribution of energy. Under nonequilibrium conditions, we found that microwave radiation can selectively heat methanol in a binary mixture of methanol-benzene adsorbed in faujasite zeolite. The difference in steady-state temperatures follows the trend Tmethanol > Tbenzene > Tzeolite, which is qualitatively consistent with recent experimental results.

  16. Ultrasonic attenuation in molecular crystals

    NASA Astrophysics Data System (ADS)

    Perrin, Bernard

    1981-11-01

    It is now well established from an experimental point of view that, concerning the ultrasonic attenuation, molecular crystals exhibit a specific behavior among dielectric crystals. This fact suggests the presence of a relaxation process. Liebermann, who has introduced this field, has proposed a way to analyze this problem and in particular has given an expression for the ultrasonic absorption coefficient in terms of a relaxation time and some thermodynamic quantities. In contrast to Liebermann's approach, a solid-state viewpoint is presented here, and it is shown that this ultrasonic relaxation can be taken into account in the framework of Akhieser's theory. A general expression of the ultrasonic absorption coefficient is calculated in terms of the phonon collision operator using the Boltzmann-equation approach of Woodruff and Ehrenreich. The collision-time approximation widely used in dielectric crystals fails in molecular crystals for which the presence of slow relaxation times in the collision operator prevents the thermalization of the whole set of phonons and gives rise to an ultrasonic relaxation. Thus a more suitable approximation is suggested here, which leads to a new expression of the ultrasonic attenuation valid in molecular crystals. Different forms of this expression are discussed, and comparison with Liebermann's expression used in most of the previous papers shows that the present treatment takes better account of the anisotropy of the solid state. The fit of experimental results obtained for some ionic-molecular crystals also shows that the expression derived here gives better agreement than does Liebermann's. Finally, it is shown that in the framework of the present treatment and under rather general conditions, the anisotropy affects primarily the magnitude of the ultrasonic absorption due to the molecular relaxation, but it does not affect its frequency dependence.

  17. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states

    DOE PAGES

    Bjorgaard, Josiah August; Velizhanin, Kirill A.; Tretiak, Sergei

    2016-04-15

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited state molecular dynamics. In this paper, we describe methods of simulating nonequilibrium solvent effects in excited state molecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Finally, molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibriummore » due to photoexcitation and emission.« less

  18. Nonequilibrium molecular dynamics simulations of heat flow in one-dimensional lattices

    PubMed

    Zhang; Isbister; Evans

    2000-04-01

    We study the use of the Evans nonequilibrium molecular dynamics (NEMD) heat flow algorithm for the computation of the heat conductivity in one-dimensional lattices. For the well-known Fermi-Pasta-Ulam model, it is shown that when the heat field strength is greater than a certain critical value (which depends on the system size) solitons can be generated in molecular dynamics simulations starting from random initial conditions. Such solitons are stable and travel with supersonic speeds. For smaller heat fields, no solitons are generated in the molecular dynamics simulations; the heat conductivity obtained via the NEMD algorithm increases monotonically with the size of the system.

  19. Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations.

    PubMed

    Soddemann, Thomas; Dünweg, Burkhard; Kremer, Kurt

    2003-10-01

    We discuss dissipative particle dynamics as a thermostat to molecular dynamics, and highlight some of its virtues: (i) universal applicability irrespective of the interatomic potential; (ii) correct and unscreened reproduction of hydrodynamic correlations; (iii) stabilization of the numerical integration of the equations of motion; and (iv) the avoidance of a profile bias in boundary-driven nonequilibrium simulations of shear flow. Numerical results on a repulsive Lennard-Jones fluid illustrate our arguments.

  20. Nanoscopic spontaneous motion of liquid trains: Nonequilibrium molecular dynamics simulation.

    PubMed

    Bahrami, Amir Houshang; Jalali, Mir Abbas

    2010-01-14

    Macroscale experiments show that a train of two immiscible liquid drops, a bislug, can spontaneously move in a capillary tube because of surface tension asymmetries. We use molecular dynamics simulation of Lennard-Jones fluids to demonstrate this phenomenon for NVT ensembles in submicron tubes. We deliberately tune the strength of intermolecular forces and control the velocity of bislug in different wetting and viscosity conditions. We compute the velocity profile of particles across the tube and explain the origin of deviations from the classical parabolae. We show that the self-generated molecular flow resembles the Poiseuille law when the ratio of the tube radius to its length is less than a critical value.

  1. Nonequilibrium chemistry in shocked molecular clouds. [interstellar gases

    NASA Technical Reports Server (NTRS)

    Iglesias, E. R.; Silk, J.

    1978-01-01

    The gas-phase chemistry is studied behind a 10-km/s shock propagating into a dense molecular cloud. The principal conclusions are that: the concentrations of certain molecules (CO, NH3, HCN, N2) are unperturbed by the shock; other molecules (H2CO, CN, HCO(+)) are greatly decreased in abundance; and substantial amounts of H2O, HCO, and CH4 are produced. Approximately 1 million yr (independent of the density) must elapse after shock passage before chemical equilibrium is attained.

  2. Classical molecular dynamics simulations for non-equilibrium correlated plasmas

    NASA Astrophysics Data System (ADS)

    Ferri, S.; Calisti, A.; Talin, B.

    2017-03-01

    A classical molecular dynamics model was recently extended to simulate neutral multi-component plasmas where various charge states of the same atom and electrons coexist. It is used to investigate the plasma effects on the ion charge and on the ionization potential in dense plasmas. Different simulated statistical properties will show that the concept of isolated particles is lost in such correlated plasmas. The charge equilibration is discussed for a carbon plasma at solid density and investigation on the charge distribution and on the ionization potential depression (IPD) for aluminum plasmas is discussed with reference to existing experiments.

  3. Constant-pH Hybrid Nonequilibrium Molecular Dynamics–Monte Carlo Simulation Method

    PubMed Central

    2016-01-01

    A computational method is developed to carry out explicit solvent simulations of complex molecular systems under conditions of constant pH. In constant-pH simulations, preidentified ionizable sites are allowed to spontaneously protonate and deprotonate as a function of time in response to the environment and the imposed pH. The method, based on a hybrid scheme originally proposed by H. A. Stern (J. Chem. Phys.2007, 126, 164112), consists of carrying out short nonequilibrium molecular dynamics (neMD) switching trajectories to generate physically plausible configurations with changed protonation states that are subsequently accepted or rejected according to a Metropolis Monte Carlo (MC) criterion. To ensure microscopic detailed balance arising from such nonequilibrium switches, the atomic momenta are altered according to the symmetric two-ends momentum reversal prescription. To achieve higher efficiency, the original neMD–MC scheme is separated into two steps, reducing the need for generating a large number of unproductive and costly nonequilibrium trajectories. In the first step, the protonation state of a site is randomly attributed via a Metropolis MC process on the basis of an intrinsic pKa; an attempted nonequilibrium switch is generated only if this change in protonation state is accepted. This hybrid two-step inherent pKa neMD–MC simulation method is tested with single amino acids in solution (Asp, Glu, and His) and then applied to turkey ovomucoid third domain and hen egg-white lysozyme. Because of the simple linear increase in the computational cost relative to the number of titratable sites, the present method is naturally able to treat extremely large systems. PMID:26300709

  4. Constant-pH Hybrid Nonequilibrium Molecular Dynamics-Monte Carlo Simulation Method.

    PubMed

    Chen, Yunjie; Roux, Benoît

    2015-08-11

    A computational method is developed to carry out explicit solvent simulations of complex molecular systems under conditions of constant pH. In constant-pH simulations, preidentified ionizable sites are allowed to spontaneously protonate and deprotonate as a function of time in response to the environment and the imposed pH. The method, based on a hybrid scheme originally proposed by H. A. Stern (J. Chem. Phys. 2007, 126, 164112), consists of carrying out short nonequilibrium molecular dynamics (neMD) switching trajectories to generate physically plausible configurations with changed protonation states that are subsequently accepted or rejected according to a Metropolis Monte Carlo (MC) criterion. To ensure microscopic detailed balance arising from such nonequilibrium switches, the atomic momenta are altered according to the symmetric two-ends momentum reversal prescription. To achieve higher efficiency, the original neMD-MC scheme is separated into two steps, reducing the need for generating a large number of unproductive and costly nonequilibrium trajectories. In the first step, the protonation state of a site is randomly attributed via a Metropolis MC process on the basis of an intrinsic pKa; an attempted nonequilibrium switch is generated only if this change in protonation state is accepted. This hybrid two-step inherent pKa neMD-MC simulation method is tested with single amino acids in solution (Asp, Glu, and His) and then applied to turkey ovomucoid third domain and hen egg-white lysozyme. Because of the simple linear increase in the computational cost relative to the number of titratable sites, the present method is naturally able to treat extremely large systems.

  5. Synthesis of calcium oxalate crystals in culture medium irradiated with non-equilibrium atmospheric-pressure plasma

    NASA Astrophysics Data System (ADS)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Yamanishi, Yoko; Hori, Masaru

    2016-09-01

    Octahedral particulates several tens of microns in size were synthesized in a culture medium irradiated through contact with a plume of non-equilibrium atmospheric-pressure plasma (NEAPP). The particulates were identified in the crystalline phase as calcium oxalate dihydrate (COD). The original medium contained constituents such as NaCl, d-glucose, CaCl2, and NaHCO3 but not oxalate or oxalic acid. The oxalate was clearly synthesized and crystallized in the medium as thermodynamically unstable COD crystals after the NEAPP irradiation.

  6. Verification of Onsager's reciprocal relations for evaporation and condensation using non-equilibrium molecular dynamics.

    PubMed

    Xu, J; Kjelstrup, S; Bedeaux, D; Røsjorde, A; Rekvig, L

    2006-07-01

    Non-equilibrium molecular dynamic (NEMD) simulations have been used to study heat and mass transfer across a vapor-liquid interface for a one-component system using a Lennard-Jones spline potential. It was confirmed that the relation between the surface tension and the surface temperature in the non-equilibrium system was the same as in equilibrium (local equilibrium). Interfacial transfer coefficients were evaluated for the surface, which expressed the heat and mass fluxes in temperature and chemical potential differences across the interfacial region (film). In this analysis it was assumed that the Onsager reciprocal relations were valid. In this paper we extend the number of simulations such that we can calculate all four interface film transfer coefficients along the whole liquid-vapor coexistence curve. We do this analysis both for the case where we use the measurable heat flux on the vapor side and for the case where we use the measurable heat flux on the liquid side. The most important result we found is that the coupling coefficients within the accuracy of the calculation are equal. This is the first verification of the validity of the Onsager relations for transport through a surface using molecular dynamics. The interfacial film transfer coefficients are found to be a function of the surface temperature alone. New expressions are given for the kinetic theory values of these coefficients which only depend on the surface temperature. The NEMD values were found to be in good agreement with these expressions.

  7. Generalized Metropolis acceptance criterion for hybrid non-equilibrium molecular dynamics—Monte Carlo simulations

    SciTech Connect

    Chen, Yunjie; Roux, Benoît

    2015-01-14

    A family of hybrid simulation methods that combines the advantages of Monte Carlo (MC) with the strengths of classical molecular dynamics (MD) consists in carrying out short non-equilibrium MD (neMD) trajectories to generate new configurations that are subsequently accepted or rejected via an MC process. In the simplest case where a deterministic dynamic propagator is used to generate the neMD trajectories, the familiar Metropolis acceptance criterion based on the change in the total energy ΔE, min[1,  exp( − βΔE)], guarantees that the hybrid algorithm will yield the equilibrium Boltzmann distribution. However, the functional form of the acceptance probability is more complex when the non-equilibrium switching process is generated via a non-deterministic stochastic dissipative propagator coupled to a heat bath. Here, we clarify the conditions under which the Metropolis criterion remains valid to rigorously yield a proper equilibrium Boltzmann distribution within hybrid neMD-MC algorithm.

  8. Mesoscale modeling of dislocations in molecular crystals

    NASA Astrophysics Data System (ADS)

    Lei, Lei; Koslowski, Marisol

    2011-02-01

    Understanding the inelastic deformation of molecular crystals is of fundamental importance to the modeling of the processing of drugs in the pharmaceutical industry as well as to the initiation of detonation in high energy density materials. In this work, we present dislocation dynamics simulations of the deformation of two molecular crystals of interest in the pharmaceutical industry, sucrose and paracetamol. The simulations calculate the yield stress of sucrose and paracetamol in good agreement with experimental observation and predict the anisotropy in the mechanical response observed in these materials. Our results show that dislocation dynamics is an effective tool to study plastic deformation in molecular crystals.

  9. Nonequilibrium processes.

    PubMed

    Polanyi, J C

    1971-08-01

    Nonequilibrium phenomena have been studied for over half a century, particularly as a means to understanding the mechanism of energy transfer. Application of the insights and techniques of molecular physics to chemistry has resulted in a view of chemistry as constituting an aspect of the study of strong collisions, and chemical reaction as a special type of energy transfer. Increasing use has been made in experimental work of nonequilibrium environments for the study of chemical processes. The nature and purpose of such experiments are reviewed here, very briefly, and an attempt is made to point to areas that appear ripe for development over the coming decade.

  10. Molecular tectonics: from crystals to crystals of crystals.

    PubMed

    Marinescu, Gabriela; Ferlay, Sylvie; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2013-12-11

    The in situ combination of M(II) cations (Co, Ni, Cu or Zn) with 2,4,6-pyridinetricarboxylic acid as a ligand, a bisamidinium dication as a H-bond donor tecton and NaOH leads to the formation of anionic metal complexes ML2(2-) and their interconnection into isomorphous 3D H-bonded networks displaying different colours which were used as preformed seed crystals for the formation of crystals of crystals by 3D epitaxial growth.

  11. A nonequilibrium molecular dynamics method for thermal conductivities based on thermal noise

    NASA Astrophysics Data System (ADS)

    Terao, Takamichi; Müller-Plathe, Florian

    2005-02-01

    We developed a nonequilibrium molecular dynamics (NEMD) method for calculating thermal conductivities. In contrast to other NEMD algorithms, here only the heat sink is localized, whereas the heat source can be uniformly distributed throughout the system. The noise due to cutting off the pair forces or to integration errors is such a uniform heat source. In traditional NEMD methods it is normally considered a nuisance factor. The new algorithm accounts for it and uses it. The algorithm is easy to derive, analyse and implement. Moreover, it circumvents the need to calculate energy fluxes. It is tested on the enhanced simple-point charge model for liquid water and reproduces the known thermal conductivity of this model liquid of 0.81Wm-1K-1. It can be generalized to situations, where the thermal noise is replaced by another uniform heat source, or to the inverse situation, where the heat source is localized but the heat sink extends over the entire system.

  12. A nonequilibrium molecular dynamics method for thermal conductivities based on thermal noise.

    PubMed

    Terao, Takamichi; Müller-Plathe, Florian

    2005-02-22

    We developed a nonequilibrium molecular dynamics (NEMD) method for calculating thermal conductivities. In contrast to other NEMD algorithms, here only the heat sink is localized, whereas the heat source can be uniformly distributed throughout the system. The noise due to cutting off the pair forces or to integration errors is such a uniform heat source. In traditional NEMD methods it is normally considered a nuisance factor. The new algorithm accounts for it and uses it. The algorithm is easy to derive, analyse and implement. Moreover, it circumvents the need to calculate energy fluxes. It is tested on the enhanced simple-point charge model for liquid water and reproduces the known thermal conductivity of this model liquid of 0.81 W m(-1) K(-1). It can be generalized to situations, where the thermal noise is replaced by another uniform heat source, or to the inverse situation, where the heat source is localized but the heat sink extends over the entire system.

  13. Thermal diode in gas-filled nanogap with heterogeneous surfaces using nonequilibrium molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Avanessian, T.; Hwang, G.

    2016-10-01

    A thermal diode serves as a basic building block to design advanced thermal management systems in energy-saving applications. However, the main challenges of existing thermal diodes are poor steady-state performance, slow transient response, and/or extremely difficult manufacturing. In this study, the thermal diode is examined by employing an argon gas-filled nanogap with heterogeneous surfaces in the Knudsen regime, using nonequilibrium molecular dynamics simulation. The asymmetric gas pressure and thermal accommodation coefficients changes are found due to asymmetric adsorptions onto the heterogeneous nanogap with respect to the different temperature gradient directions, and these in turn result in the thermal diode. The maximum degree of diode (or rectification) is Rmax ˜ 7, at the effective gas-solid interaction ratio between the two surfaces of ɛ*= 0.75. This work could pave the way to designing advanced thermal management systems such as thermal switches (transistors).

  14. Molecular dynamics on nonequilibrium motion of a colloidal particle driven by an external torque

    NASA Astrophysics Data System (ADS)

    Yoo, Donghwan; Jung, Youngkyun; Kwon, Chulan

    2017-03-01

    We investigate the motion of a colloidal particle driven out of equilibrium by an external torque. We use molecular dynamics simulation as an alternative to the Langevin dynamics. We prepare a heat bath composed of thousands of particles interacting with each other through the Lennard–Jones potential and impose the Langevin thermostat to maintain the heat bath in equilibrium. We consider a single colloidal particle interacting with with the particles of the heat bath also by the Lennard–Jones potential, without applying any types of dissipative or fluctuating forces used in Langevin dynamics. We set up simulation protocol fit for the overdamped limit as in real experiments, by increasing the size and mass of the colloidal particle. We study nonequilibrium fluctuations for work and heat produced incessantly in time and compare the results with those obtained from the previous studies via the overdamped Langevin dynamics. We confirm the Gallavotti–Cohen symmetry and the fluctuation theorem.

  15. Negative Ion Crystal Formation in Nonequilibrium Dusty Plasma at a Gas Evacuation from Technological Devices for Vacuum Support

    NASA Astrophysics Data System (ADS)

    Azarenkov, Nikolai A.; Egorov, Alexei M.; Maslov, Vasyl I.; Onishchenko, Ivan N.; Frolova, Darya Yu.

    2002-11-01

    Plasma crystal formation (or so called ion crystal formation) are investigated now intensively (see, for example, [1-5]). In particular, the formation of the plasma crystals has been observed in experiments at providing of nonequilibrium state. If in equilibrium dusty plasma there was no plasma crystal but at providing of nonequilibrium state at a gas evacuation from devices for vacuum support in a dusty plasma in experiment an ion crystal has been formed. In this case at gas evacuation the plasma flow has been appeared due to gradient of the pressure. The flow excites the perturbations of large amplitudes. The generalised equation is derived for the spatial distribution of field of any amplitude. It is shown that these perturbations of large amplitude lead to spatial ordering of heavy negative ions. It is shown that the crystal is almost motionless, because heavy negative ions are trapped by chain of perturbations formed due to instability development on generalised dusty-ion-acoustic mode with velocity equal almost zero. 1.H.M.Thomas, G.E. Morfill. Nature. 379 (1996) 806. 2.R.K.Varma, P.K.Shukla. Physica Scripta. 51 (1995) 522. 3.M.Nambu, S.V.Vladimirov, P.K.Shukla. Phys. Lett. A. 203 (1995) 40. 4.A.Melzer, A.Piel et al. Proc. Int. Top. Conf. on Plasma Physics. Trieste. Italy. 2000. 5.V.E.Fortov, A.P.Nefedov et al. Proc. Int. Conf. on Plasma Physics. Trieste. Italy. 2000. 6.D.A.Law, B.M.Annaratone, J.E.Allen et al. Dust Particle Interaction in RF Plasma Sheaths.

  16. Influence of Al content on non-equilibrium solidification behavior of Ni-Al-Ta model single crystal alloys

    NASA Astrophysics Data System (ADS)

    Ai, Cheng; Zhou, Jian; Zhang, Heng; Zhao, Xinbao; Pei, Yanling; Li, Shusuo; Gong, Shengkai

    2016-01-01

    The non-equilibrium solidification behaviors of five Ni-Al-Ta ternary model single crystal alloys with different Al contents were investigated by experimental analysis and theoretical calculation (by JMatPro) in this study. These model alloys respectively represented the γ' phase with various volume fractions (100%, 75%, 50%, 25% and 0%) at 900 °C. It was found that with decreasing Al content, liquidus temperature of experimental alloys first decreased and then increased. Meanwhile, the solidification range showed a continued downward trend. In addition, with decreasing Al content, the primary phases of non-equilibrium solidified model alloys gradually transformed from γ' phase to γ phase, and the area fraction of which first decreased and then increased. Moreover, the interdendritic/intercellular precipitation of model alloys changed from β phase (for 100% γ') to (γ+γ')Eutectic (for 75% γ'), (γ+γ')Eutectic+γ' (for 50% γ' and 25% γ') and none interdendritic precipitation (for 0% γ'), and the last stage non-equilibrium solidification sequence of model alloys was determined by the nominal Al content and different microsegregation behaviors of Al element.

  17. Reverse Non-Equilibrium Molecular Dynamics Demonstrate That Surface Passivation Controls Thermal Transport at Semiconductor-Solvent Interfaces.

    PubMed

    Hannah, Daniel C; Gezelter, J Daniel; Schaller, Richard D; Schatz, George C

    2015-06-23

    We examine the role played by surface structure and passivation in thermal transport at semiconductor/organic interfaces. Such interfaces dominate thermal transport in semiconductor nanomaterials owing to material dimensions much smaller than the bulk phonon mean free path. Utilizing reverse nonequilibrium molecular dynamics simulations, we calculate the interfacial thermal conductance (G) between a hexane solvent and chemically passivated wurtzite CdSe surfaces. In particular, we examine the dependence of G on the CdSe slab thickness, the particular exposed crystal facet, and the extent of surface passivation. Our results indicate a nonmonotonic dependence of G on ligand-grafting density, with interfaces generally exhibiting higher thermal conductance for increasing surface coverage up to ∼0.08 ligands/Å(2) (75-100% of a monolayer, depending on the particular exposed facet) and decreasing for still higher coverages. By analyzing orientational ordering and solvent penetration into the ligand layer, we show that a balance of competing effects is responsible for this nonmonotonic dependence. Although the various unpassivated CdSe surfaces exhibit similar G values, the crystal structure of an exposed facet nevertheless plays an important role in determining the interfacial thermal conductance of passivated surfaces, as the density of binding sites on a surface determines the ligand-grafting densities that may ultimately be achieved. We demonstrate that surface passivation can increase G relative to a bare surface by roughly 1 order of magnitude and that, for a given extent of passivation, thermal conductance can vary by up to a factor of ∼2 between different surfaces, suggesting that appropriately tailored nanostructures may direct heat flow in an anisotropic fashion for interface-limited thermal transport.

  18. Engineering crystals by the strategy of molecular tectonics.

    PubMed

    Wuest, James D

    2005-12-21

    Detailed structures of molecular crystals cannot yet be predicted with consistent accuracy, but the strategy of molecular tectonics offers crystal engineers a powerful tool for designing molecules that are predisposed to form crystals with particular structural features and properties.

  19. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations.

    PubMed

    Kannam, Sridhar Kumar; Todd, B D; Hansen, J S; Daivis, Peter J

    2012-01-14

    Data for the flow rate of water in carbon nanopores is widely scattered, both in experiments and simulations. In this work, we aim at precisely quantifying the characteristic large slip length and flow rate of water flowing in a planar graphene nanochannel. First, we quantify the slip length using the intrinsic interfacial friction coefficient between water and graphene, which is found from equilibrium molecular dynamics (EMD) simulations. We then calculate the flow rate and the slip length from the streaming velocity profiles obtained using non-equilibrium molecular dynamics (NEMD) simulations and compare with the predictions from the EMD simulations. The slip length calculated from NEMD simulations is found to be extremely sensitive to the curvature of the velocity profile and it possesses large statistical errors. We therefore pose the question: Can a micrometer range slip length be reliably determined using velocity profiles obtained from NEMD simulations? Our answer is "not practical, if not impossible" based on the analysis given as the results. In the case of high slip systems such as water in carbon nanochannels, the EMD method results are more reliable, accurate, and computationally more efficient compared to the direct NEMD method for predicting the nanofluidic flow rate and hydrodynamic boundary condition.

  20. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure.

    PubMed

    Wang, Luying; Dumont, Randall S; Dickson, James M

    2012-07-28

    Nonequilibrium molecular dynamics (NEMD) simulations are used to investigate pressure-driven water flow passing through carbon nanotube (CNT) membranes at low pressures (5.0 MPa) typical of real nanofiltration (NF) systems. The CNT membrane is modeled as a simplified NF membrane with smooth surfaces, and uniform straight pores of typical NF pore sizes. A NEMD simulation system is constructed to study the effects of the membrane structure (pores size and membrane thickness) on the pure water transport properties. All simulations are run under operating conditions (temperature and pressure difference) similar to a real NF processes. Simulation results are analyzed to obtain water flux, density, and velocity distributions along both the flow and radial directions. Results show that water flow through a CNT membrane under a pressure difference has the unique transport properties of very fast flow and a non-parabolic radial distribution of velocities which cannot be represented by the Hagen-Poiseuille or Navier-Stokes equations. Density distributions along radial and flow directions show that water molecules in the CNT form layers with an oscillatory density profile, and have a lower average density than in the bulk flow. The NEMD simulations provide direct access to dynamic aspects of water flow through a CNT membrane and give a view of the pressure-driven transport phenomena on a molecular scale.

  1. A localized momentum constraint for non-equilibrium molecular dynamics simulations.

    PubMed

    Smith, E R; Heyes, D M; Dini, D; Zaki, T A

    2015-02-21

    A method which controls momentum evolution in a sub-region within a molecular dynamics simulation is derived from Gauss's principle of least constraint. The technique for localization is founded on the equations by Irving and Kirkwood [J. Chem. Phys. 18, 817 (1950)] expressed in a weak form according to the control volume (CV) procedure derived by Smith et al. [Phys. Rev. E. 85, 056705 (2012)]. A term for the advection of molecules appears in the derived constraint and is shown to be essential in order to exactly control the time evolution of momentum in the subvolume. The numerical procedure converges the total momentum in the CV to the target value to within machine precision in an iterative manner. The localized momentum constraint can prescribe essentially arbitrary flow fields in non-equilibrium molecular dynamics simulations. The methodology also forms a rigorous mathematical framework for introducing coupling constraints at the boundary between continuum and discrete systems. This functionality is demonstrated with a boundary-driven flow test case.

  2. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressurea)

    NASA Astrophysics Data System (ADS)

    Wang, Luying; Dumont, Randall S.; Dickson, James M.

    2012-07-01

    Nonequilibrium molecular dynamics (NEMD) simulations are used to investigate pressure-driven water flow passing through carbon nanotube (CNT) membranes at low pressures (5.0 MPa) typical of real nanofiltration (NF) systems. The CNT membrane is modeled as a simplified NF membrane with smooth surfaces, and uniform straight pores of typical NF pore sizes. A NEMD simulation system is constructed to study the effects of the membrane structure (pores size and membrane thickness) on the pure water transport properties. All simulations are run under operating conditions (temperature and pressure difference) similar to a real NF processes. Simulation results are analyzed to obtain water flux, density, and velocity distributions along both the flow and radial directions. Results show that water flow through a CNT membrane under a pressure difference has the unique transport properties of very fast flow and a non-parabolic radial distribution of velocities which cannot be represented by the Hagen-Poiseuille or Navier-Stokes equations. Density distributions along radial and flow directions show that water molecules in the CNT form layers with an oscillatory density profile, and have a lower average density than in the bulk flow. The NEMD simulations provide direct access to dynamic aspects of water flow through a CNT membrane and give a view of the pressure-driven transport phenomena on a molecular scale.

  3. Nanoindentation in crystal engineering: quantifying mechanical properties of molecular crystals.

    PubMed

    Varughese, Sunil; Kiran, M S R N; Ramamurty, Upadrasta; Desiraju, Gautam R

    2013-03-04

    Nanoindentation is a technique for measuring the elastic modulus and hardness of small amounts of materials. This method, which has been used extensively for characterizing metallic and inorganic solids, is now being applied to organic and metal-organic crystals, and has also become relevant to the subject of crystal engineering, which is concerned with the design of molecular solids with desired properties and functions. Through nanoindentation it is possible to correlate molecular-level properties such as crystal packing, interaction characteristics, and the inherent anisotropy with micro/macroscopic events such as desolvation, domain coexistence, layer migration, polymorphism, and solid-state reactivity. Recent developments and exciting opportunities in this area are highlighted in this Minireview.

  4. F 3 - molecular ions in fluoride crystals

    NASA Astrophysics Data System (ADS)

    Radzhabov, E. A.

    2016-02-01

    The UV absorption spectra of F 3 - molecular ions in LaF3, SrF2, CaF2, and BaF2 crystals doped with rare-earth elements are studied. Comparison of radiation-colored and additively colored crystals reveals the absorption bands of F 3 - hole centers in the region near 6 eV. Nonempirical calculations of optical transitions agree well with experimental results.

  5. Molecular-weight-dependent changes in morphology of solution-grown polyethylene single crystals.

    PubMed

    Zhang, Bin; Chen, Jingbo; Baier, Moritz C; Mecking, Stefan; Reiter, Renate; Mülhaupt, Rolf; Reiter, Günter

    2015-01-01

    Polymer single crystals consisting of folded chains are always in a nonequilibrium state, even if they are faceted with a well-defined envelope reflecting the parameters of the crystal unit cell. Heterogeneities like small variations in the degree of chain folding within such crystals are responsible for a rather broad range in melting temperature. Consequently, upon annealing at a given temperature, some parts may be above and some below their respective melting temperatures, inducing a lamellar thickening process, which may vary locally. To emphasize such variations, controlled annealing experiments are performed at comparatively low temperatures and for long times. For single crystals of low-molecular-weight polyethylene, the formation of the well-known "Swiss-cheese"-like morphology with randomly distributed holes of varying sizes within the annealed single crystal is observed. However, for high-molecular-weight polyethylene, a regular pattern appeared upon annealing, characterized by branches of equal width that are oriented perpendicular to the crystal edge. All branches end at the nucleation site. Interestingly, the resulting pattern depends sensitively on both crystallization and annealing conditions. These thermally induced regular patterns within a single crystal are attributed to a stable crystalline framework formed within polyethylene single crystals in the course of growth.

  6. Computationally efficient dielectric calculations of molecular crystals

    SciTech Connect

    Schwarz, Kathleen A.; Sundararaman, Ravishankar; Arias, T. A.

    2015-06-07

    The microscopic dielectric response is a key quantity for electronic materials such as organic semiconductors. Calculations of this response for molecular crystals are currently either expensive or rely on extreme simplifications such as multipole expansions which lack microscopic detail. We present an alternate approach using a microscopic analogue of the Clausius-Mossotti equation, which constructs the dielectric response of a crystal from an eigenvalue decomposition of the dielectric response of individual molecules. This method can potentially be used to examine the effects of defects, disorder, and surfaces on the dielectric properties of molecular solids.

  7. Collective sliding states for colloidal molecular crystals

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia

    2008-01-01

    We study the driving of colloidal molecular crystals over periodic substrates such as those created with optical traps. The n-merization that occurs in the colloidal molecular crystal states produces a remarkably rich variety of distinct dynamical behaviors, including polarization effects within the pinned phase and the formation of both ordered and disordered sliding phases. Using computer simulations, we map the dynamic phase diagrams as a function of substrate strength for dimers and trimers on a triangular substrate, and correlate features on the phase diagram with transport signatures.

  8. Habit of long-chain molecular crystals

    NASA Astrophysics Data System (ADS)

    Egorov, V. M.; Marikhin, V. A.

    2016-11-01

    The quantitative analysis of the temperature dependence of the heat capacity of molecular crystals with chains of different lengths was performed using the theory of diffuse first-order phase transitions. The same chemical structure of the "core" of molecular crystals of {CH3(CH2) n CH3} normal paraffins, {COH(CH2) n COH} diols, {CH3(CH2) n COH} normal alcohols, and {CH3(CH2) n COOH} saturated carboxylic and {COOH(CH2) n COOH} dicarboxylic acids enabled the comparative analysis of phase transition parameters.

  9. Nonequilibrium Molecular Dynamics Simulations of Steady-State Heat and Mass Transport in Condensation. II. Transfer Coefficients.

    PubMed

    Røsjorde, A.; Kjelstrup, S.; Bedeaux, D.; Hafskjold, B.

    2001-08-01

    We present coefficients for transfer of heat and mass across the liquid-vapor interface of a one-component fluid. The coefficients are defined for the Gibbs surface from nonequilibrium thermodynamics and determined by nonequilibrium molecular dynamics simulations. The main conductivity coefficients are found to become large near the critical point, consistent with the disappearance of the surface in this limit. The resistivities of transfer found by molecular dynamics simulations are compared to the values predicted by kinetic theory. The main resistivity to heat transfer is found to agree from the triple point to about halfway to the critical point. The resistivity to mass transfer was used to determine the condensation coefficient, which was found to be practically constant with a value of about 0.82. The resistivity coupling coefficient predicted by simulations also agrees with values predicted by kinetic theory from the triple point until about halfway to the critical point. Copyright 2001 Academic Press.

  10. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes.

    PubMed

    Wang, Luying; Dumont, Randall S; Dickson, James M

    2013-03-28

    Nonequilibrium molecular dynamics (NEMD) simulations are presented to investigate the effect of water-membrane interactions on the transport properties of pressure-driven water flow passing through carbon nanotube (CNT) membranes. The CNT membrane is modified with different physical properties to alter the van der Waals interactions or the electrostatic interactions between water molecules and the CNT membranes. The unmodified and modified CNT membranes are models of simplified nanofiltration (NF) membranes at operating conditions consistent with real NF systems. All NEMD simulations are run with constant pressure difference (8.0 MPa) temperature (300 K), constant pore size (0.643 nm radius for CNT (12, 12)), and membrane thickness (6.0 nm). The water flow rate, density, and velocity (in flow direction) distributions are obtained by analyzing the NEMD simulation results to compare transport through the modified and unmodified CNT membranes. The pressure-driven water flow through CNT membranes is from 11 to 21 times faster than predicted by the Navier-Stokes equations. For water passing through the modified membrane with stronger van der Waals or electrostatic interactions, the fast flow is reduced giving lower flow rates and velocities. These investigations show the effect of water-CNT membrane interactions on water transport under NF operating conditions. This work can help provide and improve the understanding of how these membrane characteristics affect membrane performance for real NF processes.

  11. Non-equilibrium molecular dynamics simulation of the unstirred layer in the osmotically driven flow

    NASA Astrophysics Data System (ADS)

    Konno, Keito; Itano, Tomoaki; Seki, Masako

    2015-11-01

    We studied the solvent flows driven by the osmotic pressure difference across the semi-permeable membrane. The flow penetrating from the low concentration side transports away solutes adjacent of the membrane, so that the concentration is reduced significantly only at the vicinity of the membrane. It is expected that the relatively low solute concentration develops into a thin boundary layer in the vicinity of the membrane in the case of absence of external stirring process, which is termed as un-stirred layer (USL). To investigate concentration distribution in USL, we carried out non-equilibrium molecular dynamics simulations. The flows driven by th osmotic pressure are idealized as 2 dimensional hard disk model, which is composed of solvent and solute molecules. The membrane is modeled as a medium composed of stationary parallel rods distributed by a spatial interval, which is less than the diameter of the solute molecules. The following results were obtained from the numerical simulation. First, the thickness of USL, which was estimated from the obtained concentration distribution, is on the order of a length determined by mean free path. Second, USL was semicircle the center of which is on the end of pore of membrane.

  12. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes

    NASA Astrophysics Data System (ADS)

    Wang, Luying; Dumont, Randall S.; Dickson, James M.

    2013-03-01

    Nonequilibrium molecular dynamics (NEMD) simulations are presented to investigate the effect of water-membrane interactions on the transport properties of pressure-driven water flow passing through carbon nanotube (CNT) membranes. The CNT membrane is modified with different physical properties to alter the van der Waals interactions or the electrostatic interactions between water molecules and the CNT membranes. The unmodified and modified CNT membranes are models of simplified nanofiltration (NF) membranes at operating conditions consistent with real NF systems. All NEMD simulations are run with constant pressure difference (8.0 MPa) temperature (300 K), constant pore size (0.643 nm radius for CNT (12, 12)), and membrane thickness (6.0 nm). The water flow rate, density, and velocity (in flow direction) distributions are obtained by analyzing the NEMD simulation results to compare transport through the modified and unmodified CNT membranes. The pressure-driven water flow through CNT membranes is from 11 to 21 times faster than predicted by the Navier-Stokes equations. For water passing through the modified membrane with stronger van der Waals or electrostatic interactions, the fast flow is reduced giving lower flow rates and velocities. These investigations show the effect of water-CNT membrane interactions on water transport under NF operating conditions. This work can help provide and improve the understanding of how these membrane characteristics affect membrane performance for real NF processes.

  13. On the domain size effect of thermal conductivities from equilibrium and nonequilibrium molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wang, Zuyuan; Ruan, Xiulin

    2017-01-01

    Equilibrium molecular dynamics (EMD) simulations with the Green-Kubo formula and nonequilibrium molecular dynamics (NEMD) simulations with the Fourier's Law are two widely used methods for calculating thermal conductivities of materials. It is well known that both methods suffer from domain size effects, especially for NEMD. But the underlying mechanisms and their comparison have not been much quantitatively studied before. In this paper, we investigate their domain size effects by using crystalline silicon at 1000 K, graphene at 300 K, and silicene at 300 K as model material systems. The thermal conductivity of silicon from EMD simulations increases normally with the increasing domain size and converges at a size of around 4 ×4 ×4 nm3 . The converging trend agrees well with the wavelength-accumulated thermal conductivity. The thermal conductivities of graphene and silicene from EMD simulations decrease abnormally with the increasing domain size and converge at a size of around 10 ×10 nm2 . We ascribe the anomalous size effect to the fact that as the domain size increases, the effect of more phonon scattering processes (particularly the flexural phonons) dominates over the effect of more phonon modes contributing to the thermal conductivity. The thermal conductivities of the three material systems from NEMD simulations all show normal domain size effects, although their dependences on the domain size differ. The converging trends agree with the mean free path accumulation of thermal conductivity. This study provides new insights that other than some exceptions, the domain size effects of EMD and NEMD are generally associated with wavelength and mean free path accumulations of thermal conductivity, respectively. Since phonon wavelength spans over a much narrower range than mean free path, EMD usually has less significant domain size effect than NEMD.

  14. Efficient hybrid non-equilibrium molecular dynamics--Monte Carlo simulations with symmetric momentum reversal.

    PubMed

    Chen, Yunjie; Roux, Benoît

    2014-09-21

    Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct

  15. Picosecond infrared laser-induced all-atom nonequilibrium molecular dynamics simulation of dissociation of viruses.

    PubMed

    Hoang Man, Viet; Van-Oanh, Nguyen-Thi; Derreumaux, Philippe; Li, Mai Suan; Roland, Christopher; Sagui, Celeste; Nguyen, Phuong H

    2016-04-28

    Since the discovery of the plant pathogen tobacco mosaic virus as the first viral entity in the late 1800s, viruses traditionally have been mainly thought of as pathogens for disease-resistances. However, viruses have recently been exploited as nanoplatforms with applications in biomedicine and materials science. To this aim, a large majority of current methods and tools have been developed to improve the physical stability of viral particles, which may be critical to the extreme physical or chemical conditions that viruses may encounter during purification, fabrication processes, storage and use. However, considerably fewer studies are devoted to developing efficient methods to degrade or recycle such enhanced stability biomaterials. With this in mind, we carry out all-atom nonequilibrium molecular dynamics simulation, inspired by the recently developed mid-infrared free-electron laser pulse technology, to dissociate viruses. Adopting the poliovirus as a representative example, we find that the primary step in the dissociation process is due to the strong resonance between the amide I vibrational modes of the virus and the tuned laser frequencies. This process is determined by a balance between the formation and dissociation of the protein shell, reflecting the highly plasticity of the virus. Furthermore, our method should provide a feasible approach to simulate viruses, which is otherwise too expensive for conventional equilibrium all-atom simulations of such very large systems. Our work shows a proof of concept which may open a new, efficient way to cleave or to recycle virus-based materials, provide an extremely valuable tool for elucidating mechanical aspects of viruses, and may well play an important role in future fighting against virus-related diseases.

  16. Molecular Models of Liquid Crystal Elastomers

    NASA Astrophysics Data System (ADS)

    Rajshekhar

    Liquid crystal elastomers combine the elastic properties of conventional rubbers with the optical properties of liquid crystals. This dual nature gives rise to unusual physical properties, including the stress induced transition from a polydomain state, consisting of multiple nematic regions with independent orientations, to a monodomain state consisting of a single nematic region with a uniform director. We propose several molecular-scale coarse-grained models of liquid crystal elastomers with varying degrees of resolution. The models employ the Gay-Berne soft potential, and exhibit the chain connectivity of a diamond network. Simulation results show that these models are able to capture the polydomain state exhibited by liquid crystal elastomers in the absence of any external stress. When subjected to uniaxial stress, our models exhibit a polydomain to monodomain transition. We explain that the polydomain state occurs through the aggregation of liquid crystal molecules assisted by crosslinking sites, and conclude that the transition mechanism to the monodomain state is based on the reorientation of nematic domains along the direction of applied stress. Our modeling efforts are primarily focused on three models. The first two models consider the effects of rigid and flexible crosslinkers in liquid crystal elastomers with a diamond topology for chain connectivity. The third model deviates from the diamond network topology and adopts a random network topology.

  17. Preferential Enrichment of DL-Leucine Using Cocrystal Formation With Oxalic Acid Under Nonequilibrium Crystallization Conditions.

    PubMed

    Manoj, Kochunnoonny; Takahashi, Hiroki; Morita, Yoko; Gonnade, Rajesh G; Iwama, Sekai; Tsue, Hirohito; Tamura, Rui

    2015-07-01

    By utilizing the preferential enrichment (PE) technique, we achieved an improved enantiomeric resolution of DL-leucine (Leu) using a 1:1 cocrystal (DL-) of DL-Leu and oxalic acid. The crystal structure analysis of DL- indicated the occurrence of a novel type of phase transition and subsequent preferential redissolution of one enantiomer from the resulting crystals into solution.

  18. Molecular structural property and potential energy dependence on nonequilibrium-thermodynamic state point of liquid n-hexadecane under shear

    NASA Astrophysics Data System (ADS)

    Tseng, Huan-Chang; Chang, Rong-Yeu; Wu, Jiann-Shing

    2011-01-01

    Extensive computer experiments have been conducted in order to shed light on the macroscopic shear flow behavior of liquid n-hexadecane fluid under isobaric-isothermal conditions through the nonequilibrium molecular dynamic methodology. With respect to shear rates, the accompanying variations in structural properties of the fluid span the microscopic range of understanding from the intrinsic to extrinsic characteristics. As drawn from the average value of bond length and bond angle, the distribution of dihedral angle, and the radius distribution function of intramolecular and intermolecular van der Waals distances, these intrinsic structures change with hardness, except in the situation of extreme shear rates. The shear-induced variation of thermodynamic state curve along with the shear rate studied is shown to consist of both the quasiequilibrium state plateau and the nonequilibrium-thermodynamic state slope. Significantly, the occurrence of nonequilibrium-thermodynamic state behavior is attributed to variations in molecular potential energies, which include bond stretching, bond bending, bond torsion, and intra- and intermolecular van der Waals interactions. To unfold the physical representation of extrinsic structural deformation, under the aggressive influence of a shear flow field, the molecular dimension and appearance can be directly described via the squared radius of gyration and the sphericity angle, Rg2 and φ, respectively. In addition, a specific orientational order Sx defines the alignment of the molecules with the flow direction of the x-axis. As a result, at low shear rates, the overall molecules are slightly stretched and shaped in a manner that is increasingly ellipsoidal. Simultaneously, there is an obvious enhancement in the order. In contrast to high shear rates, the molecules spontaneously shrink themselves with a decreased value of Rg2, while their shape and order barely vary with an infinite value of φ and Sx. It is important to note that

  19. Nonequilibrium phenomena in N{sub 2}-cluster-surface collisions: A molecular-dynamics study of fragmentation, lateral jetting, and nonequilibrium energy distributions

    SciTech Connect

    Zimmermann, Steffen; Urbassek, Herbert M.

    2006-12-15

    Using molecular-dynamics simulation, we study the impact of (N{sub 2}){sub 2869} clusters on a flat rigid wall. We study the cluster fragmentation process, the formation of lateral jets, the energy redistribution among the resulting fragments, and the ratio of internal and translational energy of the emerging free molecules as a function of cluster impact energy in the range of 0.076-1520 meV/molecule. We find the fragmentation threshold energy to be in agreement with that found previously for (N{sub 2}){sub 13} clusters; the (scaled) number of fragments, however, increases more slowly with impact energy. Also the energy redistribution of the cluster impact energy among the internal and translational energy of the fragments is similar to that found for the small cluster. This means in particular that free molecules show a strong nonequilibrium energy partitioning in which the internal degrees of freedom are considerably less excited than the translational degrees of freedom. We also find that at impact energies above the fragmentation threshold the angular distribution of fragments is peaked parallel to the surface--i.e., the formation of lateral surface jets.

  20. A study of some non-equilibrium driven models and their contribution to the understanding of molecular motors

    NASA Astrophysics Data System (ADS)

    Mazilu, Irina; Gonzalez, Joshua

    2008-03-01

    From the point of view of a physicist, a bio-molecular motor represents an interesting non-equilibrium system and it is directly amenable to an analysis using standard methods of non-equilibrium statistical physics. We conduct a rigorous Monte Carlo study of three different driven lattice gas models that retain the basic behavior of three types of cytoskeletal molecular motors. Our models incorporate novel features such as realistic dynamics rules and complex motor-motor interactions. We are interested to have a deeper understanding of how various parameters influence the macroscopic behavior of these systems, what is the density profile and if the system undergoes a phase transition. On the analytical front, we computed the steady-state probability distributions exactly for the one of the models using the matrix method that was established in 1993 by B. Derrida et al. We also explored the possibilities offered by the ``Bethe ansatz'' method by mapping some well studied spin models into asymmetric simple exclusion models (already analyzed using computer simulations), and to use the results obtained for the spin models in finding an exact solution for our problem. We have exhaustive computational studies of the kinesin and dynein molecular motor models that prove to be very useful in checking our analytical work.

  1. Diffusion behavior in a liquid-liquid interfacial crystallization by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kitayama, Akira; Yamanaka, Shinya; Kadota, Kazunori; Shimosaka, Atsuko; Shirakawa, Yoshiyuki; Hidaka, Jusuke

    2009-11-01

    Interfacial crystallization, such as surface crystallization in solution (solid-liquid) and liquid-liquid crystallization, gives us an asymmetric reaction field and is a technique for morphology control of crystals. In the liquid-liquid crystallization, the concentration distribution of solute ions and solvent molecules at the liquid-liquid interface directly relates to nucleation, crystal growth, and crystal morphology. Nonequilibrium molecular dynamics (MD) simulations have been performed at interfaces in NaCl solution/1-butanol and KCl solution/1-butanol system in order to clarify diffusion behavior of solute ions and solvent molecules. As simulation results, the hydrated solute ions were dehydrated with the diffusion of water from solution phase into 1-butanol phase. The different dehydration behaviors between NaCl and KCl solution can be also obtained from MD simulation results. Aggregated ions or clusters were formed by the dehydration near the solution/1-butanol interface. By comparison on the normalized number of total solute ions, the size and number of generated cluster in KCl solution/1-butanol interface are larger than those in the NaCl system. This originates in the difference hydration structures in the each solute ion.

  2. Non-equilibrium molecular simulations of simple fluid transport at fluid-solid interfaces and fluidic behaviors at nanoscale

    NASA Astrophysics Data System (ADS)

    Yong, Xin

    Nano fluidics has shown promising potential for applications that could significantly impact our daily life, such as energy harvest, lab on a chip, desalination, etc. Current techniques to realize nano fluidic ideas are still very limited due to manufacturing technology. Although sub-micron fabrication techniques are undergoing rapid development recently, scientists and engineers are still not able to access actual nanometric systems. This reason prompts the development of computational tools to reveal physical principles underlying nano fluidic phenomena. Among various numerical approaches ranging from macroscopic to microscopic, molecular dynamics stands out because of its ability to faithfully model both equilibrium and non-equilibrium nanosystems by involving an appropriate amount of molecular details. The results from molecular dynamics simulations could elucidate essential physics and benefit designs of practical nano fluidic systems. This thesis attempts to provide the theoretical foundation for modeling nano fluidic systems, by investigating nanoscale fluid behaviors and nanoscale fluid-solid interfacial physics and transport for simple fluids via molecular dynamics simulations. Boundary-driven-shear, homogeneous-shear and reverse non-equilibrium molecular dynamics methods are implemented to generate non-equilibrium systems. The fundamental fluid behaviors such as velocity profile, temperature distribution and rheological material functions under steady planar shear are explored comprehensively by each method corresponding to different perspectives. The influences of nanoscale confinement are analyzed from the comparison among these methods. The advantages and disadvantages of each method are clarified, which provide guidance to conduct appropriate molecular dynamics simulations for nano fluidics. Further studies on the intrinsic slip of smooth solid surfaces is realized by the boundary-driven-shear method. Inspired by previous hypothesis of momentum

  3. Pressure-induced transformations in molecular crystals

    SciTech Connect

    Taylor, R.D.; Hearne, G.R. |; Pasternak, M.P.

    1995-09-01

    A review is given on the unique features of the Moessbauer spectroscopy (MS) which by virtue of the quadrupole interaction and the lattice dynamics allows one to characterize some structural properties in the pressure-induced amorphous state of molecular crystals. Experiments were performed in GeI{sub 4}, SnI{sub 4} and SnBr{sub 4} by means of {sup 119}Sn and {sup 129}I MS with pressures to 35 GPa at cryogenic temperatures using diamond anvil cells.

  4. Modeling magma flow in volcanic conduit with non-equilibrium crystallization

    NASA Astrophysics Data System (ADS)

    Yulia, Tsvetkova

    2010-05-01

    Modeling magma flow in volcanic conduit including with non -equilibrium crystallization There is a set of models of magma flow in volcanic conduits which predicts oscillations in magma discharge during extrusion of lava domes. These models neglect heating of surrounding rocks and use 1D approximation of the flow in the conduit. Here magma flow is investigated with an account of heat exchange between surrounding rocks and magma and different dependences viscosity on temperature and crystal concentration. Stick-slip conditions were applied at the wall. The flow is assumed to be quasi-static and quasi 1D. Only vertical component of velocity vector is present, thus, we do not consider horizontal momentum balance. At the top of the conduit the pressure is assumed to be fixed, chamber pressure changes according with magma influx and outflux. First set of simulation was made for the viscosity that depends on cross-section average crystal concentration and parabolic velocity profile. In earlier models that account for crystal growth kinetics the temperature was allowed to change only due to the release of latent heat of crystallization. Heat transfer leads to cooling of the outer parts of the conduit leading to high crystal contents and high magma viscosities. Changes in viscosity result in changes in discharge rate. For the non-isothermal case there is no motion during most part of the cycle and a portion of magma solidifies at the top of the conduit forming a plug. During repose period chamber pressure is growing due to influx of fresh magma, and magma discharge rate starts to increase. Influx of hot magma into the conduit leads to decrease in friction resulting in a jump in discharge rate that lead to depressurization of magma chamber. Discharge rate decreases and magma solidifies again. For isothermal model with the same parameters discharge rate monotonically tends to the value of Qin. Simulation reveal that crystal content changes significantly across the conduit

  5. Transport properties of dense fluid mixtures using nonequilibrium molecular dynamics. Final report, September 15, 1987--March 14, 1997

    SciTech Connect

    Murad, S.

    1997-05-01

    Computer Simulation Studies were carried out using the method of equilibrium and nonequilibrium molecular dynamics (NEMD) to examine a wide range of transport processes in both fluids and fluid mixtures. This included testing a wide range of mixing rules for thermal conductivity and viscosity. In addition a method was developed to calculate the internal rotational contributions to thermal conductivity and the accuracy of current methods for predicting these contributions were examined. These comparisons were then used to suggest possible ways of improving these theories. The method of NEMD was also used to examine the critical enhancements of thermal conductivity. Finally, molecular simulations were carried out to study the various transport coefficients of fluids confined by membranes, as well as important transport processes such as osmosis, and reverse osmosis.

  6. Vibrational mean free paths and thermal conductivity of amorphous silicon from non-equilibrium molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sääskilahti, K.; Oksanen, J.; Tulkki, J.; McGaughey, A. J. H.; Volz, S.

    2016-12-01

    The frequency-dependent mean free paths (MFPs) of vibrational heat carriers in amorphous silicon are predicted from the length dependence of the spectrally decomposed heat current (SDHC) obtained from non-equilibrium molecular dynamics simulations. The results suggest a (frequency)- 2 scaling of the room-temperature MFPs below 5 THz. The MFPs exhibit a local maximum at a frequency of 8 THz and fall below 1 nm at frequencies greater than 10 THz, indicating localized vibrations. The MFPs extracted from sub-10 nm system-size simulations are used to predict the length-dependence of thermal conductivity up to system sizes of 100 nm and good agreement is found with independent molecular dynamics simulations. Weighting the SDHC by the frequency-dependent quantum occupation function provides a simple and convenient method to account for quantum statistics and provides reasonable agreement with the experimentally-measured trend and magnitude.

  7. Elastic moduli and instability in molecular crystals

    NASA Astrophysics Data System (ADS)

    Shpakov, V. P.; Tse, J. S.; Belosludov, V. R.; Belosludov, R. V.

    1997-07-01

    The phenomenon of instability in pressurized molecular crystals is studied using the lattice-dynamics approach. General expressions for the elastic moduli are obtained taking into account both short-range and long-range (electrostatic) interactions within the framework of the quasi-harmonic approximation. The behaviour of a system under changing pressure and temperature conditions and the Born stability criteria are investigated. Two types of instabilities, dynamical and thermodynamical, associated with the elastic moduli are presented. The dynamical instability occurs when the instability of acoustic modes of the phonon Hamiltonian occurs in the q = 0 region. The nature of thermodynamical stability implies that the equilibrium state of the crystal becomes thermodynamically unstable with respect to a small homogeneous deformation of the crystal lattice when the Born stability criteria are violated for isothermal or adiabatic moduli. These types of instabilities are illustrated in a series of calculations for ice Ic using the SPC potential for water's interactions. The results show that one of the stability conditions for the isothermal (adiabatic) moduli 0953-8984/9/27/015/img7 is violated at 0953-8984/9/27/015/img8 kbar and, as a consequence, thermodynamical instability occurs. In contrast, the dynamical instability of the phonon spectrum occurs at a significantly higher pressure, about 20 kbar.

  8. New zinc-glycine-iodide complexes as a product of equilibrium and non-equilibrium crystallization in the Gly - ZnI2 - H2O system

    NASA Astrophysics Data System (ADS)

    Tepavitcharova, S.; Havlíček, D.; Matulková, I.; Rabadjieva, D.; Gergulova, R.; Plocek, J.; Němec, I.; Císařová, I.

    2016-09-01

    Equilibrium crystallization of two anhydrous complex compounds, [Zn(gly)2I2] and [Zn(gly)I2], and non-equilibrium crystallization of the [Zn3(H2O)4(μ-gly)2I6] complex have been observed in the Gly - ZnI2 - H2O system at 25°C. Different mixed zinc-glycine-iodide-aqua complexes exist in the studied solutions and those with the highest activity are responsible for the crystallization process. The stable [ZnI2O2(2Gly)]0 complexes are responsible for the large equilibrium crystallization field of the compound [Zn(gly)2I2] (monoclinic system, C2/c space group), in whose crystal structure they are incorporated as discrete distorted electroneutral tetrahedra. In zinc-iodide solutions with a low water activity it is more probable that the glycine zwitterions act as bidentate ligands and form polynuclear complexes. We assume the [ZnI2O2(2/2Gly)]0 infinite chains build the compound [Zn(gly)I2], for which we have found a narrow equilibrium crystallization field. We have failed to describe the crystal structure of this compound because of its limited stability in the air. Non-equilibrium crystallization of [Zn3(H2O)4(μ-gly)2I6] (triclinic system, P-1 space group) was demonstrated, with crystal structure built by trinuclear complexes [ZnI3O(1/2Gly)] [ZnO4(4H2O)O2(2/2Gly)(trans)][ZnI3O(1/2Gly)]. The FTIR and Raman spectra and also the thermal behaviour of the three compounds were discussed.

  9. Nonlinear vibrational excitations in molecular crystals molecular mechanics calculations

    NASA Astrophysics Data System (ADS)

    Pumilia, P.; Abbate, S.; Baldini, G.; Ferro, D. R.; Tubino, R.

    1992-03-01

    The coupling constant for vibrational solitons χ has been examined in a molecular mechanics model for acetanilide (ACN) molecular crystal. According to A.C. Scott, solitons can form and propagate in solid acetanilide over a threshold energy value. This can be regarded as a structural model for the spines of hydrogen bond chains stabilizing the α helical structure of proteins. A one dimensional hydrogen bond chain of ACN has been built, for which we have found that, even though experimental parameters are correctly predicted, the excessive rigidity of the isolated chain prevents the formation of a localized distortion around the excitation. Yet, C=O coupling value with softer lattice modes could be rather high, allowing self-trapping to take place.

  10. Curl flux, coherence, and population landscape of molecular systems: nonequilibrium quantum steady state, energy (charge) transport, and thermodynamics.

    PubMed

    Zhang, Zhedong; Wang, Jin; Zhang, Z D; Wang, J

    2014-06-28

    We established a theoretical framework in terms of the curl flux, population landscape, and coherence for non-equilibrium quantum systems at steady state, through exploring the energy and charge transport in molecular processes. The curl quantum flux plays the key role in determining transport properties and the system reaches equilibrium when flux vanishes. The novel curl quantum flux reflects the degree of non-equilibriumness and the time-irreversibility. We found an analytical expression for the quantum flux and its relationship to the environmental pumping (non-equilibriumness quantified by the voltage away from the equilibrium) and the quantum tunneling. Furthermore, we investigated another quantum signature, the coherence, quantitatively measured by the non-zero off diagonal element of the density matrix. Populations of states give the probabilities of individual states and therefore quantify the population landscape. Both curl flux and coherence depend on steady state population landscape. Besides the environment-assistance which can give dramatic enhancement of coherence and quantum flux with high voltage at a fixed tunneling strength, the quantum flux is promoted by the coherence in the regime of small tunneling while reduced by the coherence in the regime of large tunneling, due to the non-monotonic relationship between the coherence and tunneling. This is in contrast to the previously found linear relationship. For the systems coupled to bosonic (photonic and phononic) reservoirs the flux is significantly promoted at large voltage while for fermionic (electronic) reservoirs the flux reaches a saturation after a significant enhancement at large voltage due to the Pauli exclusion principle. In view of the system as a quantum heat engine, we studied the non-equilibrium thermodynamics and established the analytical connections of curl quantum flux to the transport quantities such as energy (charge) transfer efficiency, chemical reaction efficiency, energy

  11. Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics: a systematic study of several common force fields.

    PubMed

    Trinh, Thuat T; Vlugt, Thijs J H; Kjelstrup, Signe

    2014-10-07

    We report a systematic investigation of the thermal conductivity of various three-site models of carbon dioxide (CO2) using nonequilibrium molecular dynamics in the temperature range 300-1000 K and for pressures up to 200 MPa. A direct comparison with experimental data is made. Three popular CO2 force fields (MSM, EPM2, and TraPPE) and two flexible models (based on EPM2) were investigated. All rigid force fields accurately predict the equation of state for carbon dioxide for the given range of variables. They can also reproduce the thermal conductivity of CO2 at room temperature and predict a decrease of the thermal conductivity with increasing temperature. At high temperatures, the rigid models underestimate the thermal conductivity.

  12. Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics: A systematic study of several common force fields

    NASA Astrophysics Data System (ADS)

    Trinh, Thuat T.; Vlugt, Thijs J. H.; Kjelstrup, Signe

    2014-10-01

    We report a systematic investigation of the thermal conductivity of various three-site models of carbon dioxide (CO2) using nonequilibrium molecular dynamics in the temperature range 300-1000 K and for pressures up to 200 MPa. A direct comparison with experimental data is made. Three popular CO2 force fields (MSM, EPM2, and TraPPE) and two flexible models (based on EPM2) were investigated. All rigid force fields accurately predict the equation of state for carbon dioxide for the given range of variables. They can also reproduce the thermal conductivity of CO2 at room temperature and predict a decrease of the thermal conductivity with increasing temperature. At high temperatures, the rigid models underestimate the thermal conductivity.

  13. Nonequilibrium molecular dynamics study of electric and low-frequency microwave fields on hen egg white lysozyme

    NASA Astrophysics Data System (ADS)

    English, Niall J.; Solomentsev, Gleb Y.; O'Brien, Paul

    2009-07-01

    Nonequilibrium molecular dynamics simulations of various mutants of hen egg white lysozyme have been performed at 300 K and 1 bar in the presence of both external static electric and low-frequency microwave (2.45 GHz) fields of varying intensity. Significant nonthermal field effects were noted, such as marked changes in the protein's secondary structure relative to the zero-field state, depending on the field conditions, mutation, and orientation with respect to the applied field. This occurred primarily as a consequence of alignment of the protein's total dipole moment with the external field, although the dipolar alignment of water molecules in both the solvation layer and the bulk was also found to be influential. Substantial differences in behavior were found for proteins with and without overall net charges, particularly with respect to translational motion. Localized motion and perturbation of hydrogen bonds were also found to be evident for charged residues.

  14. Near-microsecond human aquaporin 4 gating dynamics in static and alternating external electric fields: Non-equilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    English, Niall J.; Garate, José-A.

    2016-08-01

    An extensive suite of non-equilibrium molecular-dynamics simulation has been performed for ˜0.85-0.9 μs of human aquaporin 4 in the absence and presence of externally applied static and alternating electric fields applied along the channels (in both axial directions in the static case, taken as the laboratory z-axis). These external fields were of 0.0065 V/Å (r.m.s.) intensity (of the same order as physiological electrical potentials); alternating fields ranged in frequency from 2.45 to 500 GHz. In-pore gating dynamics was studied, particularly of the relative propensities for "open" and "closed" states of the conserved arginines in the arginine/aromatic area (itself governed in no small part by external-field response of the dipolar alignment of the histidine-201 residue in the selectivity filter). In such a manner, the intimate connection of field-response governing "two-state" histidine states was established statistically and mechanistically. Given the appreciable size of the energy barriers for histidine-201 alignment, we have also performed non-equilibrium metadynamics/local-elevation of static fields applied along both directions to construct the free-energy landscape thereof in terms of external-field direction, elucidating the importance of field direction on energetics. We conclude from direct measurement of deterministic molecular dynamics in conjunction with applied-field metadynamics that the intrinsic electric field within the channel points along the +z-axis, such that externally applied static fields in this direction serve to "open" the channel in the selectivity-filter and the asparagine-proline-alanine region.

  15. Molecular wires from discotic liquid crystals

    NASA Astrophysics Data System (ADS)

    Park, Ji Hyun; Labardi, Massimiliano; Scalia, Giusy

    2014-02-01

    Discotic liquid crystal (LC) can arrange in columnar structures along which electrical conduction occurs via π-π interaction between adjacent molecular cores. The efficiency of the conductivity is strongly dependent on the overlap of the orbitals of neighbor molecules and, in general, on the structural arrangements. The understanding of the factors that influence the organization is crucial for the optimization of the final conductive properties of the self-assembled columns. In this paper we present a study on the self-organization into molecular wires of a discotic LC using a solution based method. In particular, we focus on the effect of solvents used for preparing the LC solution. The resulting morphologies were investigated by atomic force microscopy (AFM) and optical microscopy, showing that diverse structures result from different solvents. With suitable conditions, we were able to induce very long fibers, with several tents of micrometer in length that, in turn, self-organize assuming a common orientation on a macroscopic scale.

  16. Control of vibrational distribution functions in nonequilibrium molecular plasmas and high-speed flows

    NASA Astrophysics Data System (ADS)

    Frederickson, Kraig; Hung, Yi-Chen; Lempert, Walter R.; Adamovich, Igor V.

    2017-01-01

    The control of the vibrational distribution of nitrogen by energy transfer to CO2 is studied in two closely related experiments. In the first experiment, the time-resolved N2(v  =  0-3) vibrational level populations and temperature in the afterglow of a diffuse filament nanosecond pulse discharge are measured using broadband coherent anti-Stokes Raman spectroscopy. The rotational-translational temperature in the afterglow is inferred from the partially rotationally resolved structure of the N2(v  =  0) band. The measurements are performed in nitrogen, dry air, and their mixtures with CO2. N2 vibrational excitation in the discharge occurs by electron impact, with subsequent vibration-vibration (V-V) energy transfer within the N2 vibrational manifold, vibration-translation (V-T) relaxation, and near-resonance V-V‧ energy transfer from the N2 to CO2 asymmetric stretch vibrational mode. The results show that rapid V-V‧ energy transfer to CO2, followed by collisional intramolecular energy redistribution to the symmetric stretch and bending modes of CO2 and their V-T relaxation, accelerate the net rate of energy thermalization and temperature increase in the afterglow. In the second experiment, injection of CO2 into a supersonic flow of vibrationally excited nitrogen demonstrates the effect of accelerated vibrational relaxation on a supersonic shear layer. The nitrogen flow is vibrationally excited in a repetitive nanosecond pulse/DC sustainer electric discharge in the plenum of a nonequilibrium flow supersonic wind tunnel. A transient pressure increase as well as an upward displacement of the shear layer between the supersonic N2 flow and the subsonic CO2 injection flow are detected when the source of N2 vibrational excitation is turned on. CO2 injection leads to the reduction of the N2 vibrational temperature in the shear layer, demonstrating that its displacement is caused by accelerated N2 vibrational relaxation by CO2, which produces a static

  17. Origin and structure of polar domains in doped molecular crystals

    PubMed Central

    Meirzadeh, E.; Azuri, I.; Qi, Y.; Ehre, D.; Rappe, A. M.; Lahav, M.; Kronik, L.; Lubomirsky, I.

    2016-01-01

    Doping is a primary tool for the modification of the properties of materials. Occlusion of guest molecules in crystals generally reduces their symmetry by the creation of polar domains, which engender polarization and pyroelectricity in the doped crystals. Here we describe a molecular-level determination of the structure of such polar domains, as created by low dopant concentrations (<0.5%). The approach comprises crystal engineering and pyroelectric measurements, together with dispersion-corrected density functional theory and classical molecular dynamics calculations of the doped crystals, using neutron diffraction data of the host at different temperatures. This approach is illustrated using centrosymmetric α-glycine crystals doped with minute amounts of different L-amino acids. The experimentally determined pyroelectric coefficients are explained by the structure and polarization calculations, thus providing strong support for the local and global understanding of how different dopants influence the properties of molecular crystals. PMID:27824050

  18. THE ABUNDANCE OF MOLECULAR HYDROGEN AND ITS CORRELATION WITH MIDPLANE PRESSURE IN GALAXIES: NON-EQUILIBRIUM, TURBULENT, CHEMICAL MODELS

    SciTech Connect

    Mac Low, Mordecai-Mark; Glover, Simon C. O. E-mail: glover@uni-heidelberg.de

    2012-02-20

    Observations of spiral galaxies show a strong linear correlation between the ratio of molecular to atomic hydrogen surface density R{sub mol} and midplane pressure. To explain this, we simulate three-dimensional, magnetized turbulence, including simplified treatments of non-equilibrium chemistry and the propagation of dissociating radiation, to follow the formation of H{sub 2} from cold atomic gas. The formation timescale for H{sub 2} is sufficiently long that equilibrium is not reached within the 20-30 Myr lifetimes of molecular clouds. The equilibrium balance between radiative dissociation and H{sub 2} formation on dust grains fails to predict the time-dependent molecular fractions we find. A simple, time-dependent model of H{sub 2} formation can reproduce the gross behavior, although turbulent density perturbations increase molecular fractions by a factor of few above it. In contradiction to equilibrium models, radiative dissociation of molecules plays little role in our model for diffuse radiation fields with strengths less than 10 times that of the solar neighborhood, because of the effective self-shielding of H{sub 2}. The observed correlation of R{sub mol} with pressure corresponds to a correlation with local gas density if the effective temperature in the cold neutral medium of galactic disks is roughly constant. We indeed find such a correlation of R{sub mol} with density. If we examine the value of R{sub mol} in our local models after a free-fall time at their average density, as expected for models of molecular cloud formation by large-scale gravitational instability, our models reproduce the observed correlation over more than an order-of-magnitude range in density.

  19. A steady-state non-equilibrium molecular dynamics approach for the study of evaporation processes

    NASA Astrophysics Data System (ADS)

    Zhang, Jianguo; Müller-Plathe, Florian; Yahia-Ouahmed, Méziane; Leroy, Frédéric

    2013-10-01

    Two non-equilibrium methods (called bubble method and splitting method, respectively) have been developed and tested to study the steady state evaporation of a droplet surrounded by its vapor, where the evaporation continuously occurs at the vapor-liquid interface while the droplet size remains constant. In the bubble method, gas molecules are continuously reinserted into a free volume (represented by a bubble) located at the centre of mass of the droplet to keep the droplet size constant. In the splitting method, a molecule close to the centre of mass of the droplet is split into two: In this way, the droplet size is also maintained during the evaporation. By additional local thermostats confined to the area of insertion, the effect of frequent insertions on properties such as density and temperature can be limited to the immediate insertion area. Perturbations are not observed in other parts of the droplet. In the end, both the bubble method and the splitting method achieve steady-state droplet evaporation. Although these methods have been developed using an isolated droplet, we anticipate that they will find a wide range of applications in the study of the evaporation of isolated films and droplets or thin films on heated substrates or under confinement. They can in principle also be used to study the steady-state of other physical processes, such as the diffusion or permeation of gas molecules or ions in a pressure gradient or a concentration gradient.

  20. Flow alignment phenomena in liquid crystals studied by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Sarman, Sten; Laaksonen, Aatto

    2009-10-01

    The flow alignment of a nematic liquid crystal has been studied as a function of temperature, beginning at high temperature in the nematic phase and down to the nematic-smectic A phase transition. The alignment angle is obtained by estimating the twist viscosities by nonequilibrium molecular dynamics (NEMD) methods. These estimates are cross-checked by evaluating the corresponding equilibrium fluctuation relations. As a further comparison, shear flow simulations are carried out by application of the SLLOD equations of motion (so named because of their close relationship to the Doll's equation of motion, which can be derived from the Doll's tensor Hamiltonian), whereby the alignment angle is obtained directly. All these methods give consistent results for the alignment angle. At low temperatures near the nematic-smectic A transition the system becomes flow unstable. In this region the alignment angle has been calculated as a function of time.

  1. Non-equilibrium quantum transport of spin-polarized electrons and back action on molecular magnet tunnel-junction

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Yao, Hui; Nie, Yi-Hang; Liang, J.-Q.

    2016-11-01

    We investigate the non-equilibrium quantum transport through a single-molecule magnet embedded in a tunnel junction with ferromagnetic electrodes, which generate spin-polarized electrons. The lead magnetization direction is non-collinear with the uniaxial anisotropy easy-axis of molecule-magnet. Based on the Pauli rate-equation approach we demonstrate the magnetization reversion of molecule-magnet induced by the back action of spin-polarized current in the sequential tunnel regime. The asymptotic magnetization of molecular magnet and spin-polarization of transport current are obtained as functions of time by means of time-dependent solution of the rate equation. It is found that the antiparallel configuration of the ferromagnetic electrodes and molecular anisotropy easy-axis is an effective structure to reverse both the magnetization of molecule-magnet and spin-polarization of the transport current. Particularly the non-collinear angle dependence provides useful knowledge for the quantum manipulation of molecule-magnet and spin polarized electron-transport.

  2. In Silico Determination of Gas Permeabilities by Non-Equilibrium Molecular Dynamics: CO2 and He through PIM-1

    PubMed Central

    Frentrup, Hendrik; Hart, Kyle E.; Colina, Coray M.; Müller, Erich A.

    2015-01-01

    We study the permeation dynamics of helium and carbon dioxide through an atomistically detailed model of a polymer of intrinsic microporosity, PIM-1, via non-equilibrium molecular dynamics (NEMD) simulations. This work presents the first explicit molecular modeling of gas permeation through a high free-volume polymer sample, and it demonstrates how permeability and solubility can be obtained coherently from a single simulation. Solubilities in particular can be obtained to a very high degree of confidence and within experimental inaccuracies. Furthermore, the simulations make it possible to obtain very specific information on the diffusion dynamics of penetrant molecules and yield detailed maps of gas occupancy, which are akin to a digital tomographic scan of the polymer network. In addition to determining permeability and solubility directly from NEMD simulations, the results shed light on the permeation mechanism of the penetrant gases, suggesting that the relative openness of the microporous topology promotes the anomalous diffusion of penetrant gases, which entails a deviation from the pore hopping mechanism usually observed in gas diffusion in polymers. PMID:25764366

  3. Manifestations of two-dimensional electron gas in molecular crystals

    NASA Astrophysics Data System (ADS)

    Kuklja, Maija M.; Sharia, Onise; Tsyshevsky, Roman

    2017-03-01

    The existence of two-dimensional electron gas in molecular materials has not been reported or discussed. Intriguing properties of two-dimensional electron gas observed on interfaces of polar and nonpolar oxides spurred oxide electronics and advanced nanotechnology. Here we discover how an electrostatic instability occurs on polar surfaces of molecular crystals and explore its manifestations, chemical degradation of surfaces, charge separation, electrical conductivity, optical band-gap closure and surface metallization. A thin layer of polar surface of a dielectric molecular crystal becomes metallic due to interactions of polar molecules. Our findings are illustrated with two polymorphs of cyclotetramethylene-tetranitramine crystals, the polar δ-phase and nonpolar β-phase. Our theory offers an explanation to a relative stability of the β-phase versus the explosive reactivity of δ-phase and to the experimentally observed difference in conductivity of these crystals. We predict that the electrostatic instability takes place on all polar molecular materials.

  4. An efficient nonequilibrium Green's function formalism combined with density functional theory approach for calculating electron transport properties of molecular devices with quasi-one-dimensional electrodes.

    PubMed

    Qian, Zekan; Li, Rui; Hou, Shimin; Xue, Zengquan; Sanvito, Stefano

    2007-11-21

    An efficient self-consistent approach combining the nonequilibrium Green's function formalism with density functional theory is developed to calculate electron transport properties of molecular devices with quasi-one-dimensional (1D) electrodes. Two problems associated with the low dimensionality of the 1D electrodes, i.e., the nonequilibrium state and the uncertain boundary conditions for the electrostatic potential, are circumvented by introducing the reflectionless boundary conditions at the electrode-contact interfaces and the zero electric field boundary conditions at the electrode-molecule interfaces. Three prototypical systems, respectively, an ideal ballistic conductor, a high resistance tunnel junction, and a molecular device, are investigated to illustrate the accuracy and efficiency of our approach.

  5. Screened dipolar interactions in some molecular crystals

    NASA Astrophysics Data System (ADS)

    Munn, R. W.; Hurst, M.

    1990-10-01

    Screened dipole energies and dipole electric fields are calculated for the crystals of HCN, meta- and para-nitroaniline, the nonlinear optical compounds POM, MAP and DAN, meta-dinitrobenzene, and acetanilide. Only para-nitroaniline is centrosymmetric, but all the crystals have significant negative dipole energies (of the order of -20 kJ mol -1) except for POM and metadinitrobenzene, where they are positive but small in magnitude. Local dipole fields are of the order of 10 GV m -1. The results assume that surface charge annuls any macroscopic dipole field. It is speculated that the observed preponderance of centrosymmetric crystals of polar molecules may reflect a favourable dipole energy in the initial crystal nucleus rather than the macroscopic crystal.

  6. Thermal and Mechanical Non-Equilibrium Effects on Turbulent Flows: Fundamental Studies of Energy Exchanges Through Direct Numerical Simulations, Molecular Simulations and Experiments

    DTIC Science & Technology

    2016-02-26

    AFRL-AFOSR-VA-TR-2016-0104 Thermal and mechanical non-equilibrium effects on turbulent flows:fundamental studies of energy exchanges through direct ...flows: fundamental studies of energy exchanges through direct numerical simulations, molecular simulations and experiments 5a.  CONTRACT NUMBER 5b...control of basic fluid dynamic processes is of direct relevance to AFOSR scientific objectives especially for turbulence flows. The very limited

  7. Modelling of ion permeation in K+ channels by nonequilibrium molecular dynamics simulations: I. Permeation energetics and structure stability.

    PubMed

    Neamţu, A; Suciu, Daniela

    2004-01-01

    Because of the great importance of physiological and pathophysiological processes in which ion channels are involved and because their operation is described by physicochemical laws, there have been many attempts to develop physical models able to describe the membrane permeability and also the structural and functional properties of the channel protein structures. In this study (in two parts) we present a series of simulations on a K+ channel model (KcsA) using Nonequilibrium Molecular Dynamics simulations (NEMD), in order to follow structure stability, permeation energetics and the possibility of obtaining quantitative information about the permeation process using the Linear Response Theory (LRT). On K+ ions were applied external forces to determine them to pass through the channel in a relatively small amount of time, accessible computationally. We ascertained a high resistance of the protein to deformation even in conditions when great forces were applied on ions (the system was far from equilibrium). The estimation of energy profiles in the course of ions passage through the channel demonstrates that these proteins create a conductivity pathway with no energetic barriers for ions movement across the channel (which could be present due to ions dehydration). The dynamic model used demonstrates (as proposed before in the literature after the examination of the static KcsA structure obtained by X-Ray crystallography) that this is due to the interaction of ions with the negatively charged carbonyl oxygens of the main polypeptide chain in the selectivity filter region.

  8. Soft-spring wall based non-periodic boundary conditions for non-equilibrium molecular dynamics of dense fluids

    SciTech Connect

    Ghatage, Dhairyashil; Tomar, Gaurav Shukla, Ratnesh K.

    2015-03-28

    Non-equilibrium molecular dynamics (MD) simulations require imposition of non-periodic boundary conditions (NPBCs) that seamlessly account for the effect of the truncated bulk region on the simulated MD region. Standard implementation of specular boundary conditions in such simulations results in spurious density and force fluctuations near the domain boundary and is therefore inappropriate for coupled atomistic-continuum calculations. In this work, we present a novel NPBC model that relies on boundary atoms attached to a simple cubic lattice with soft springs to account for interactions from particles which would have been present in an untruncated full domain treatment. We show that the proposed model suppresses the unphysical fluctuations in the density to less than 1% of the mean while simultaneously eliminating spurious oscillations in both mean and boundary forces. The model allows for an effective coupling of atomistic and continuum solvers as demonstrated through multiscale simulation of boundary driven singular flow in a cavity. The geometric flexibility of the model enables straightforward extension to nonplanar complex domains without any adverse effects on dynamic properties such as the diffusion coefficient.

  9. Nonequilibrium all-atom molecular dynamics simulation of the bubble cavitation and application to dissociate amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Hoang Viet, Man; Derreumaux, Philippe; Nguyen, Phuong H.

    2016-11-01

    The cavitation of gas bubbles in liquids has been applied to different disciplines in life and natural sciences, and in technologies. To obtain an appropriate theoretical description of effects induced by the bubble cavitation, we develop an all-atom nonequilibrium molecular-dynamics simulation method to simulate bubbles undergoing harmonic oscillation in size. This allows us to understand the mechanism of the bubble cavitation-induced liquid shear stress on surrounding objects. The method is then employed to simulate an Aβ fibril model in the presence of bubbles, and the results show that the bubble expansion and contraction exert water pressure on the fibril. This yields to the deceleration and acceleration of the fibril kinetic energy, facilitating the conformational transition between local free energy minima, and leading to the dissociation of the fibril. Our work, which is a proof-of-concept, may open a new, efficient way to dissociate amyloid fibrils using the bubble cavitation technique, and new venues to investigate the complex phenomena associated with amyloidogenesis.

  10. Between Crystal and Glass: Thermal Transport in C60 Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Lu, Simon; Kumar, Sushant; McGaughey, Alan

    Molecular crystals of the fullerene C60 and its derivatives [e.g., phenyl-C61-butyric acid methyl ester (PCBM)] are candidate materials for use in photovoltaics and thermoelectrics. In thermoelectrics, their usefulness is due in part to their exceptionally low thermal conductivities (0.4 W/m-K for C60 and 0.05 W/m-K for PCBM) at room temperature. Little is known regarding the microscopic physics underlying these low thermal conductivities. An important question is whether thermal transport in the C60 molecular crystal is (i) crystal-like, where energy is transported as collective vibrations of the centers of mass of the molecules, or (ii) amorphous-like, where energy diffuses from molecule to molecule. We use molecular dynamics (MD) simulations and the Green-Kubo method to probe this question by predicting the relative contributions of crystal-like and amorphous-like transport to the thermal conductivity of the C60 molecular crystal. To isolate crystal-like transport, we perform simulations on C60 crystals where molecular rotations and intra-molecular vibrations are prohibited. To isolate amorphous-like transport, we fix the centers of mass of the molecules. We compare the MD results to predictions from a fully diffusive network resistance model. This work is supported by the National Science Foundation (Grant DMR-1507325).

  11. Variable timestep algorithm for molecular dynamics simulation of non-equilibrium processes

    NASA Astrophysics Data System (ADS)

    Marks, Nigel A.; Robinson, Marc

    2015-06-01

    A simple, yet robust variable timestep algorithm is developed for use in molecular dynamics simulations of energetic processes. Single-particle Kepler orbits are studied to study the relationship between trajectory properties and the critical timestep for constant integration error. Over a wide variety of conditions the magnitude of the maximum force is found to correlate linearly with the inverse critical timestep. Other quantities used in the literature such as the time derivative of the force and the product of the velocity and force also show reasonable correlations, but not to the same extent. Application of the corresponding metric | |Fmax | | Δt in molecular dynamics simulation of radiation damage in graphite shows that the scheme is both straightforward to implement and effective. In tests on a 1 keV cascade the timestep varies by over two orders of magnitude with minimal loss of energy conservation.

  12. A general set of order parameters for molecular crystals

    NASA Astrophysics Data System (ADS)

    Santiso, Erik E.; Trout, Bernhardt L.

    2011-02-01

    Crystallization is fundamental to many aspects of physics and chemistry in addition to being of technological relevance, for example, in the chemical, food, and pharmaceutical industries. However, the design of crystalline materials and crystallization processes is often challenging due to the many variables that can influence the process. As a part of an effort to gain a molecular-level understanding of the way molecules aggregate and organize themselves into crystal structures, in this work we present a new method to construct order parameters suitable for the study of crystallization and polymorph transformations in molecular systems. Our order parameters can be systematically defined for complex systems using information that can be obtained from simple molecular dynamics simulations of the crystals. We show how to construct the order parameters for the study of three different systems: the formation of α-glycine crystals in solution, the crystallization of benzene from the melt, and the polymorph transformation of terephthalic acid. Finally, we suggest how these order parameters could be used to study order-disorder transitions in molecular systems.

  13. Evolution of molecular crystal optical phonons near structural phase transitions

    NASA Astrophysics Data System (ADS)

    Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea

    Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.

  14. Molecular Dynamics Simulations of Homogeneous Crystallization in Polymer Melt

    NASA Astrophysics Data System (ADS)

    Kong, Bin

    2015-03-01

    Molecular mechanisms of homogeneous nucleation and crystal growth from the melt of polyethylene-like polymer were investigated by molecular dynamics simulations. The crystallinity was determined by using the site order parameter method (SOP), which described local order degree around an atom. Snapshots of the simulations showed evolution of the nucleation and the crystal growth through SOP images clearly. The isothermal crystallization kinetics was determined at different temperatures. The rate of crystallization, Kc, and the Avrami exponents, n, were determined as a function of temperature. The forming of nucleis was traced to reveal that the nucleis were formed with more ordered cores and less ordered shells. A detailed statistical analysis of the MD snapshots and trajectories suggested conformations of the polymer chains changed smoothly from random coil to chain folded lamella in the crystallization processes.

  15. Quantum dissipative effects on non-equilibrium transport through a single-molecular transistor: The Anderson-Holstein-Caldeira-Leggett model

    NASA Astrophysics Data System (ADS)

    Raju, Ch. Narasimha; Chatterjee, Ashok

    2016-01-01

    The Anderson-Holstein model with Caldeira-Leggett coupling with environment is considered to describe the damping effect in a single molecular transistor (SMT) which comprises a molecular quantum dot (with electron-phonon interaction) mounted on a substrate (environment) and coupled to metallic electrodes. The electron-phonon interaction is first eliminated using the Lang-Firsov transformation and the spectral density function, charge current and differential conductance are then calculated using the non-equilibrium Keldysh Green function technique. The effects of damping rate, and electron-electron and electron-phonon interactions on the transport properties of SMT are studied at zero temperature.

  16. Quantum dissipative effects on non-equilibrium transport through a single-molecular transistor: The Anderson-Holstein-Caldeira-Leggett model

    PubMed Central

    Raju, Ch. Narasimha; Chatterjee, Ashok

    2016-01-01

    The Anderson-Holstein model with Caldeira-Leggett coupling with environment is considered to describe the damping effect in a single molecular transistor (SMT) which comprises a molecular quantum dot (with electron-phonon interaction) mounted on a substrate (environment) and coupled to metallic electrodes. The electron-phonon interaction is first eliminated using the Lang-Firsov transformation and the spectral density function, charge current and differential conductance are then calculated using the non-equilibrium Keldysh Green function technique. The effects of damping rate, and electron-electron and electron-phonon interactions on the transport properties of SMT are studied at zero temperature. PMID:26732725

  17. Charge dynamics in molecular junctions: Nonequilibrium Green's function approach made fast

    NASA Astrophysics Data System (ADS)

    Latini, S.; Perfetto, E.; Uimonen, A.-M.; van Leeuwen, R.; Stefanucci, G.

    2014-02-01

    Real-time Green's function simulations of molecular junctions (open quantum systems) are typically performed by solving the Kadanoff-Baym equations (KBE). The KBE, however, impose a serious limitation on the maximum propagation time due to the large memory storage needed. In this work we propose a simplified Green's function approach based on the generalized Kadanoff-Baym ansatz (GKBA) to overcome the KBE limitation on time, significantly speed up the calculations, and yet stay close to the KBE results. This is achieved through a twofold advance: First, we show how to make the GKBA work in open systems and then construct a suitable quasiparticle propagator that includes correlation effects in a diagrammatic fashion. We also provide evidence that our GKBA scheme, although already in good agreement with the KBE approach, can be further improved without increasing the computational cost.

  18. Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale

    PubMed Central

    Juette, Manuel F.; Terry, Daniel S.; Wasserman, Michael R.; Altman, Roger B.; Zhou, Zhou; Zhao, Hong; Blanchard, Scott C.

    2016-01-01

    Molecular recognition is often driven by transient processes beyond the reach of detection. Single-molecule fluorescence microscopy methods are uniquely suited for detecting such non-accumulating intermediates, yet achieving the time resolution and statistics to realize this potential has proven challenging. Here, we present a single-molecule fluorescence resonance energy transfer (smFRET) imaging and analysis platform leveraging advances in scientific complementary metal-oxide semiconductor (sCMOS) detectors that enable the imaging of more than 10,000 individual molecules simultaneously at millisecond rates. The utility of this advance is demonstrated through quantitative measurements of previously obscured processes relevant to the fidelity mechanism in protein synthesis. PMID:26878382

  19. The Crystal and Molecular Structure of Dianhydrogossypol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dianhydrogossypol (4,4'-dihydroxy-5,5'-diisopropyl-7,7'-dimethyl-bis(3H-naphtho[1,8-bc]furan-3-one)) was made by refluxing gossypol in m-xylene. Proton NMR confirmed that complete conversion was achieved over several hours. Single crystals were obtained by slow evaporation of the product from dichl...

  20. Non-equilibrium dynamics in disordered materials: Ab initio molecular dynamics simulations

    SciTech Connect

    Ohmura, Satoshi; Nagaya, Kiyonobu; Yao, Makoto; Shimojo, Fuyuki

    2015-08-17

    The dynamic properties of liquid B{sub 2}O{sub 3} under pressure and highly-charged bromophenol molecule are studied by using molecular dynamics (MD) simulations based on density functional theory (DFT). Diffusion properties of covalent liquids under high pressure are very interesting in the sense that they show unexpected pressure dependence. It is found from our simulation that the magnitude relation of diffusion coefficients for boron and oxygen in liquid B{sub 2}O{sub 3} shows the anomalous pressure dependence. The simulation clarified the microscopic origin of the anomalous diffusion properties. Our simulation also reveals the dissociation mechanism in the coulomb explosion of the highly-charged bromophenol molecule. When the charge state n is 6, hydrogen atom in the hydroxyl group dissociates at times shorter than 20 fs while all hydrogen atoms dissociate when n is 8. After the hydrogen dissociation, the carbon ring breaks at about 100 fs. There is also a difference on the mechanism of the ring breaking depending on charge states, in which the ring breaks with expanding (n = 6) or shrink (n = 8)

  1. Non-equilibrium dynamics in disordered materials: Ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ohmura, Satoshi; Nagaya, Kiyonobu; Shimojo, Fuyuki; Yao, Makoto

    2015-08-01

    The dynamic properties of liquid B2O3 under pressure and highly-charged bromophenol molecule are studied by using molecular dynamics (MD) simulations based on density functional theory (DFT). Diffusion properties of covalent liquids under high pressure are very interesting in the sense that they show unexpected pressure dependence. It is found from our simulation that the magnitude relation of diffusion coefficients for boron and oxygen in liquid B2O3 shows the anomalous pressure dependence. The simulation clarified the microscopic origin of the anomalous diffusion properties. Our simulation also reveals the dissociation mechanism in the coulomb explosion of the highly-charged bromophenol molecule. When the charge state n is 6, hydrogen atom in the hydroxyl group dissociates at times shorter than 20 fs while all hydrogen atoms dissociate when n is 8. After the hydrogen dissociation, the carbon ring breaks at about 100 fs. There is also a difference on the mechanism of the ring breaking depending on charge states, in which the ring breaks with expanding (n = 6) or shrink (n = 8).

  2. Rotational defects and plastic deformation in molecular crystal RDX

    NASA Astrophysics Data System (ADS)

    Pal, Anirban; Picu, Catalin

    2013-03-01

    Defects in molecular crystals differ in many aspects from their atomic counterparts. Molecules in the crystal lattice can undergo conformational changes or twist and rotate into various configurations during deformation. These processes play an important role in the mechanics at a larger scale by controlling critical parameters like dislocation mobility. We present a computational study of such processes in cyclo-trimethylene-trinitramine (RDX), an energetic molecular crystal. Conformational changes, rotational defects and their role in the deformation mechanics of RDX is investigated using molecular dynamics simulations. Structure and mobility of dislocations are also presented and role of conformational and rotational defects in dislocation mobility is discussed. The authors acknowledge discussions with the Army Research Laboratory, and gratefully acknowledge the support from the Army Research Office

  3. Superconductivity in molecular crystals induced by charge injection.

    PubMed

    Schön, J H; Kloc, C; Batlogg, B

    2000-08-17

    Progress in the field of superconductivity is often linked to the discovery of new classes of materials, with the layered copper oxides being a particularly impressive example. The superconductors known today include a wide spectrum of materials, ranging in complexity from simple elemental metals, to alloys and binary compounds of metals, to multi-component compounds of metals and chalcogens or metalloids, doped fullerenes and organic charge-transfer salts. Here we present a new class of superconductors: insulating organic molecular crystals that are made metallic through charge injection. The first examples are pentacene, tetracene and anthracene, the last having the highest transition temperature, at 4 K. We anticipate that many other organic molecular crystals can also be made superconducting by this method, which will lead to surprising findings in the vast composition space of molecular crystals.

  4. From crystal morphology to molecular and scale crystallography

    NASA Astrophysics Data System (ADS)

    Janner, A.; Janssen, T.

    2015-08-01

    A number of topics, ranging from morphology of aperiodic crystals to indexed enclosing forms of axial-symmetric proteins, nucleic acids and viruses, have been selected among those investigated by the authors in 50 years of research. The basic symmetries involved in fields like superspace, molecular and scale crystallography, are considered from a personal point of view in their time evolution. A number of specific subjects follow, chosen among a few highlights and presented according to the experience of the authors: snow crystals, calaverite {{AuTe}}2, the incommensurately modulated crystals {{Rb}}2{{ZnBr}}4, {[{N}{({{CH}}3)}4]}2{{ZnCl}}4 and the mitochondrial ferritin.

  5. Defect-induced solid state amorphization of molecular crystals

    NASA Astrophysics Data System (ADS)

    Lei, Lei; Carvajal, Teresa; Koslowski, Marisol

    2012-04-01

    We investigate the process of mechanically induced amorphization in small molecule organic crystals under extensive deformation. In this work, we develop a model that describes the amorphization of molecular crystals, in which the plastic response is calculated with a phase field dislocation dynamics theory in four materials: acetaminophen, sucrose, γ-indomethacin, and aspirin. The model is able to predict the fraction of amorphous material generated in single crystals for a given applied stress. Our results show that γ-indomethacin and sucrose demonstrate large volume fractions of amorphous material after sufficient plastic deformation, while smaller amorphous volume fractions are predicted in acetaminophen and aspirin, in agreement with experimental observation.

  6. Molecular modifiers reveal a mechanism of pathological crystal growth inhibition

    NASA Astrophysics Data System (ADS)

    Chung, Jihae; Granja, Ignacio; Taylor, Michael G.; Mpourmpakis, Giannis; Asplin, John R.; Rimer, Jeffrey D.

    2016-08-01

    Crystalline materials are crucial to the function of living organisms, in the shells of molluscs, the matrix of bone, the teeth of sea urchins, and the exoskeletons of coccoliths. However, pathological biomineralization can be an undesirable crystallization process associated with human diseases. The crystal growth of biogenic, natural and synthetic materials may be regulated by the action of modifiers, most commonly inhibitors, which range from small ions and molecules to large macromolecules. Inhibitors adsorb on crystal surfaces and impede the addition of solute, thereby reducing the rate of growth. Complex inhibitor-crystal interactions in biomineralization are often not well elucidated. Here we show that two molecular inhibitors of calcium oxalate monohydrate crystallization—citrate and hydroxycitrate—exhibit a mechanism that differs from classical theory in that inhibitor adsorption on crystal surfaces induces dissolution of the crystal under specific conditions rather than a reduced rate of crystal growth. This phenomenon occurs even in supersaturated solutions where inhibitor concentration is three orders of magnitude less than that of the solute. The results of bulk crystallization, in situ atomic force microscopy, and density functional theory studies are qualitatively consistent with a hypothesis that inhibitor-crystal interactions impart localized strain to the crystal lattice and that oxalate and calcium ions are released into solution to alleviate this strain. Calcium oxalate monohydrate is the principal component of human kidney stones and citrate is an often-used therapy, but hydroxycitrate is not. For hydroxycitrate to function as a kidney stone treatment, it must be excreted in urine. We report that hydroxycitrate ingested by non-stone-forming humans at an often-recommended dose leads to substantial urinary excretion. In vitro assays using human urine reveal that the molecular modifier hydroxycitrate is as effective an inhibitor of nucleation

  7. Elastic Barrier Dynamical Freezing in Free Energy Calculations: A Way To Speed Up Nonequilibrium Molecular Dynamics Simulations by Orders of Magnitude.

    PubMed

    Giovannelli, Edoardo; Cardini, Gianni; Chelli, Riccardo

    2016-03-08

    An important issue concerning computer simulations addressed to free energy estimates via nonequilibrium work theorems, such as the Jarzynski equality [Phys. Rev. Lett. 1997, 78, 2690], is the computational effort required to achieve results with acceptable accuracy. In this respect, the dynamical freezing approach [Phys. Rev. E 2009, 80, 041124] has been shown to improve the efficiency of this kind of simulations, by blocking the dynamics of particles located outside an established mobility region. In this report, we show that dynamical freezing produces a systematic spurious decrease of the particle density inside the mobility region. As a consequence, the requirements to apply nonequilibrium work theorems are only approximately met. Starting from these considerations, we have developed a simulation scheme, called "elastic barrier dynamical freezing", according to which a stiff potential-energy barrier is enforced at the boundaries of the mobility region, preventing the particles from leaving this region of space during the nonequilibrium trajectories. The method, tested on the calculation of the distance-dependent free energy of a dimer immersed into a Lennard-Jones fluid, provides an accuracy comparable to the conventional steered molecular dynamics, with a computational speedup exceeding a few orders of magnitude.

  8. Engineering molecular crystals with abnormally weak cohesion.

    PubMed

    Maly, Kenneth E; Gagnon, Eric; Wuest, James D

    2011-05-14

    Adding astutely placed methyl groups to hexaphenylbenzene increases molecular weight but simultaneously weakens key C-H···π interactions, thereby leading to decreased enthalpies of sublimation and showing that materials with abnormally weak cohesion can be made by identifying and then obstructing interactions that help control association.

  9. Model for photoinduced bending of slender molecular crystals.

    PubMed

    Nath, Naba K; Pejov, Ljupčo; Nichols, Shane M; Hu, Chunhua; Saleh, Na'il; Kahr, Bart; Naumov, Panče

    2014-02-19

    The growing realization that photoinduced bending of slender photoreactive single crystals is surprisingly common has inspired researchers to control crystal motility for actuation. However, new mechanically responsive crystals are reported at a greater rate than their quantitative photophysical characterization; a quantitative identification of measurable parameters and molecular-scale factors that determine the mechanical response has yet to be established. Herein, a simple mathematical description of the quasi-static and time-dependent photoinduced bending of macroscopic single crystals is provided. This kinetic model goes beyond the approximate treatment of a bending crystal as a simple composite bilayer. It includes alternative pathways for excited-state decay and provides a more accurate description of the bending by accounting for the spatial gradient in the product/reactant ratio. A new crystal form (space group P21/n) of the photoresponsive azo-dye Disperse Red 1 (DR1) is analyzed within the constraints of the aforementioned model. The crystal bending kinetics depends on intrinsic factors (crystal size) and external factors (excitation time, direction, and intensity).

  10. Molecular Dynamics Simulations of Spinodal-Assisted Polymer Crystallization

    SciTech Connect

    Gee, R H; Lacevic, N M; Fried, L

    2005-07-08

    Large scale molecular dynamics simulations of bulk melts of polar (poly(vinylidene fluoride) (pVDF)) polymers are utilized to study chain conformation and ordering prior to crystallization under cooling. While the late stages of polymer crystallization have been studied in great detail, recent theoretical and experimental evidence indicates that there are important phenomena occurring in the early stages of polymer crystallization that are not understood to the same degree. When the polymer melt is quenched from a temperature above the melting temperature to the crystallization temperature, crystallization does not occur instantaneously. This initial interval without crystalline order is characterized as an induction period. It has been thought of as a nucleation period in the classical theories of polymer crystallization, but recent experiments, computer simulations, and theoretical work suggest that the initial period in polymer crystallization is assisted by a spinodal decomposition type mechanism. In this study we have achieved physically realistic length scales to study early stages of polymer ordering, and show that spinodal-assisted ordering prior to crystallization is operative in polar polymers suggesting general applicability of this process.

  11. Perturbation of hydration layer in solvated proteins by external electric and electromagnetic fields: Insights from non-equilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Nandi, Prithwish K.; Futera, Zdenek; English, Niall J.

    2016-11-01

    Given the fundamental role of water in governing the biochemistry of enzymes, and in regulating their wider biological activity (e.g., by local water concentration surrounding biomolecules), the influence of extraneous electric and electromagnetic (e/m) fields thereon is of central relevance to biophysics and, more widely, biology. With the increase in levels of local and atmospheric microwave-frequency radiation present in modern life, as well as other electric-field exposure, the impact upon hydration-water layers surrounding proteins, and biomolecules generally, becomes a particularly pertinent issue. Here, we present a (non-equilibrium) molecular-dynamics-simulation study on a model protein (hen egg-white lysozyme) hydrated in water, in which we determine, inter alia, translational self-diffusivities for both hen egg-white lysozyme and its hydration layer together with relaxation dynamics of the hydrogen-bond network between the protein and its hydration-layer water molecules on a residue-per-residue basis. Crucially, we perform this analysis both above and below the dynamical-transition temperature (at ˜220 K), at 300 and 200 K, respectively, and we compare the effects of external static-electric and e/m fields with linear-response-régime (r.m.s.) intensities of 0.02 V/Å. It was found that the translational self-diffusivity of hen egg-white lysozyme and its hydration-water layer are increased substantially in static fields, primarily due to the induced electrophoretic motion, whilst the water-protein hydrogen-bond-network-rearrangement kinetics can also undergo rather striking accelerations, primarily due to the enhancement of a larger-amplitude local translational and rotational motion by charged and dipolar residues, which serves to promote hydrogen-bond breakage and re-formation kinetics. These external-field effects are particularly evident at 200 K, where they serve to induce the protein- and solvation-layer-response effects redolent of dynamical

  12. Perturbation of hydration layer in solvated proteins by external electric and electromagnetic fields: Insights from non-equilibrium molecular dynamics.

    PubMed

    Nandi, Prithwish K; Futera, Zdenek; English, Niall J

    2016-11-28

    Given the fundamental role of water in governing the biochemistry of enzymes, and in regulating their wider biological activity (e.g., by local water concentration surrounding biomolecules), the influence of extraneous electric and electromagnetic (e/m) fields thereon is of central relevance to biophysics and, more widely, biology. With the increase in levels of local and atmospheric microwave-frequency radiation present in modern life, as well as other electric-field exposure, the impact upon hydration-water layers surrounding proteins, and biomolecules generally, becomes a particularly pertinent issue. Here, we present a (non-equilibrium) molecular-dynamics-simulation study on a model protein (hen egg-white lysozyme) hydrated in water, in which we determine, inter alia, translational self-diffusivities for both hen egg-white lysozyme and its hydration layer together with relaxation dynamics of the hydrogen-bond network between the protein and its hydration-layer water molecules on a residue-per-residue basis. Crucially, we perform this analysis both above and below the dynamical-transition temperature (at ∼220 K), at 300 and 200 K, respectively, and we compare the effects of external static-electric and e/m fields with linear-response-régime (r.m.s.) intensities of 0.02 V/Å. It was found that the translational self-diffusivity of hen egg-white lysozyme and its hydration-water layer are increased substantially in static fields, primarily due to the induced electrophoretic motion, whilst the water-protein hydrogen-bond-network-rearrangement kinetics can also undergo rather striking accelerations, primarily due to the enhancement of a larger-amplitude local translational and rotational motion by charged and dipolar residues, which serves to promote hydrogen-bond breakage and re-formation kinetics. These external-field effects are particularly evident at 200 K, where they serve to induce the protein- and solvation-layer-response effects redolent of dynamical

  13. Modelling transient heat conduction in solids at multiple length and time scales: A coupled non-equilibrium molecular dynamics/continuum approach

    SciTech Connect

    Jolley, Kenny; Gill, Simon P.A.

    2009-10-20

    A method for controlling the thermal boundary conditions of non-equilibrium molecular dynamics simulations is presented. The method is simple to implement into a conventional molecular dynamics code and independent of the atomistic model employed. It works by regulating the temperature in a thermostatted boundary region by feedback control to achieve the desired temperature at the edge of an inner region where the true atomistic dynamics are retained. This is necessary to avoid intrinsic boundary effects in non-equilibrium molecular dynamics simulations. Three thermostats are investigated: the global deterministic Nose-Hoover thermostat and two local stochastic thermostats, Langevin and stadium damping. The latter thermostat is introduced to avoid the adverse reflection of phonons that occurs at an abrupt interface. The method is then extended to allow atomistic/continuum models to be thermally coupled concurrently for the analysis of large steady state and transient heat conduction problems. The effectiveness of the algorithm is demonstrated for the example of heat flow down a three-dimensional atomistic rod of uniform cross-section subjected to a variety of boundary conditions.

  14. Polymer Alignment Behavior with Molecular Switching of Ferroelectric Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Murashige, Takeshi; Fujikake, Hideo; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio

    2007-01-01

    This paper describes the molecular alignment behavior of polymer networks with switching of a ferroelectric liquid crystal (FLC) in a molecularly aligned FLC/polymer composite film. The polymer alignment in the composite film, which was slowly formed by photopolymerization-induced phase separation of a heated nematic-phase solution of FLC and monomers, was observed by polarization Raman spectral microscopy. Raman peak intensities originating from the polymers were changed with those from the FLC, when the applied voltage polarity was changed. The trace patterns of the Raman peak intensity with in-plane rotation of the composite film indicated that the formed flexible polymers can follow FLC molecular switching.

  15. Molecular dynamics of polymer crystallization revisited: Crystallization from the melt and the glass in longer polyethylene

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takashi

    2013-08-01

    Molecular mechanisms of the steady-state growth of the chain folded lamella and the cold crystallization across the glass transition temperature Tg are investigated by molecular dynamics simulation for a system of long polyethylene (PE)-like polymers made of 512 united atoms C512. The present paper aims to reconsider results of our previous simulations for short PE-like polymers C100 by carrying out very long simulations up to 1 μs for more realistic systems of much longer chains, thereby to establish the firm molecular image of chain-folded crystallization and clarify the specific molecular process of cold crystallization. We observe that the chain-folded lamella shows fast thickening-growth keeping marked tapered growth front. Despite the fast growth in much longer chains, the fold-surface is found to be predominantly of adjacent-reentry. Detailed inspections of the molecular pathway give an insightful image that can explain the apparently contradicting results. In addition, the fold-structure with specific spatial heterogeneity is found to give rise to heterogeneous mobility within the crystalline region. On the other hand, investigations of the cold crystallization during slow heating of the glassy film across Tg is found to give a granular texture made of small crystallites. The crystallites are found to nucleate preferentially near the free surfaces having lower Tg, and to be dominantly edge-on showing a definite tendency to orient their chain axes parallel to the free surface.

  16. Mixing of molecular excitation in a uniaxial liquid crystal

    SciTech Connect

    Aver`yanov, E.M.

    1995-07-01

    The influence of the mixing of molecular excitations due to local-field effects on the dielectric and spectral properties of uniaxial liquid crystals is investigated. The general properties of the spectrum of transverse optical excitations of the medium, viz, the sum rules for the oscillator strengths, frequencies, and damping constants of the dielectric function resonances, are established. The restricted applicability of the idea of a back ground polarizability (dielectric function) in the analysis of the mixing of molecular excitations is demonstrated. Mixing is taken into account in deriving new dispersion formulas for the imaginary and real parts of the dielectric tensor, which differ significantly from those used in the literature. A range of applicability has been established for the latter. Qualitative and quantitative interpretations of controversial experimental data for an extensive list of objects are given. The occurrence of mixing of dipole-active molecular vibrations, whose intensity has been found to be strongest for polyphilic objects that form nonchiral ferroelectric phases, has been demonstrated for molecular liquids and uniaxial liquid crystals from various chemical classes for the first time. The mixing of molecular excitations is considered as a possible mechanism for {open_quotes}polarization catastrophe{close_quotes} in liquid crystals having a soft mode in hthespectrum of transverse optical modes of vibration for the high-temperature phase. 53 refs., 1 fig.

  17. suPAR: The Molecular Crystal Ball

    PubMed Central

    Thunø, Maria; Macho, Betina; Eugen-Olsen, Jesper

    2009-01-01

    soluble urokinase Plasminogen Activator Receptor (suPAR) levels reflect inflammation and elevated suPAR levels are found in several infectious diseases and cancer. suPAR exists in three forms; suPARI-III, suPARII-III and suPARI which show different properties due to structural differences. Studies suggest that full-length suPAR is a regulator of uPAR/uPA by acting as uPA-scavenger, whereas the cleaved suPARII-III act as a chemotactic agent promoting the immune response via the SRSRY sequence in the linker-region. This review focus on the various suPAR fragments and their involvement in inflammation and pathogenic processes. We focus on the molecular mechanisms of the suPAR fragments and the link to the inflammatory process, as this could lead to medical applications in infectious and pathological conditions. PMID:19893210

  18. Theoretical characterization of charge transport in organic molecular crystals

    NASA Astrophysics Data System (ADS)

    Sanchez-Carrera, Roel S.

    The rapid growth in the interest to explore new synthetic crystalline organic semiconductors and their subsequent device characterization has revived the debate on the development of theoretical models to better understand the intrinsic charge transport mechanisms in organic materials. At the moment, several charge-transport theories for organic molecular crystals have been proposed and have observed a comparable agreement with experimental results. However, these models are limited in scope and restricted to specific ranges of microscopic parameters and temperatures. A general description that is applicable in all parameter regimes is still unavailable. The first step towards a complete understanding of the problem associated with the charge transport in organic molecular crystals includes the development of a first-principles theoretical methodology to evaluate with high accuracy the main microscopic charge-transport parameters and their respective couplings with intra- and intermolecular vibrational degrees of freedom. In this thesis, we have developed a first-principles methodology to investigate the impact of electron-phonon interactions on the charge-carrier mobilities in organic molecular crystals. Well-known organic materials such as oligoacene and oligothienoacene derivatives were studied in detail. To predict the charge-transport phenomena in organic materials, we rely on the Marcus theory of electron-transfer reactions. Within this context, the nature of the intramolecular vibronic coupling in oligoacenes was studied using an approach that combines high-resolution gas-phase photo-electron spectroscopy measurements with first-principles quantum-mechanical calculations. This further led to investigation of the electron interactions with optical phonons in oligoacene single crystals. The lattice phonon modes were computed at both density functional theory (DFT) and empirical force field levels. The low-frequency optical modes are found to play a significant

  19. Design of ferroelectric organic molecular crystals with ultrahigh polarization.

    PubMed

    Chen, Shuang; Zeng, Xiao Cheng

    2014-04-30

    Inspired by recent successful synthesis of room-temperature ferroelectric supramolecular charge-transfer complexes, i.e., tetrathiafulvalene (TTF)- and pyromellitic diimide (PMDI)-based crystals (Tayi et al. Nature 2012, 488, 485-489), three new ferroelectric two-component organic molecular crystals are designed based on the TTF and PMDI motifs and an extensive polymorph search. To achieve energetically favorable packing structures for the crystals, a newly developed computational approach that combines polymorph predictor with density functional theory (DFT) geometry optimization is employed. Tens of thousands of packing structures for the TTF- and PMDI-based crystals are first generated based on the limited number of asymmetric units in a unit cell as well as limited common symmetry groups for organocarbon crystals. Subsequent filtering of these packing structures by comparing with the reference structures yields dozens of promising crystal structures. Further DFT optimizations allow us to identify several highly stable packing structures that possess the space group of P2₁ as well as high to ultrahigh spontaneous polarizations (23-127 μC/cm(2)) along the crystallographic b axis. These values are either comparable to or much higher than the computed value (25 μC/cm(2)) or measured value (55 μC/cm(2)) for the state-of-the-art organic supramolecular systems. The high polarization arises from the ionic displacement. We further construct surface models to derive the electric-field-switched low-symmetry structures of new TTF- and PMDI-based crystals. By comparing the high-symmetry and low-symmetry crystal structures, we find that the ferroelectric polarization of the crystals is very sensitive to atomic positions, and a small molecular displacement may result in relatively high polarizations along the a and c axes, polarity reversal, and/or electronic contribution to polarization. If these newly designed TTF- and PMDI-based crystals with high polarizations are

  20. Molecular dynamics simulation of triclinic lysozyme in a crystal lattice.

    PubMed

    Janowski, Pawel A; Liu, Chunmei; Deckman, Jason; Case, David A

    2016-01-01

    Molecular dynamics simulations of crystals can enlighten interpretation of experimental X-ray crystallography data and elucidate structural dynamics and heterogeneity in biomolecular crystals. Furthermore, because of the direct comparison against experimental data, they can inform assessment of molecular dynamics methods and force fields. We present microsecond scale results for triclinic hen egg-white lysozyme in a supercell consisting of 12 independent unit cells using four contemporary force fields (Amber ff99SB, ff14ipq, ff14SB, and CHARMM 36) in crystalline and solvated states (for ff14SB only). We find the crystal simulations consistent across multiple runs of the same force field and robust to various solvent equilibration schemes. However, convergence is slow compared with solvent simulations. All the tested force fields reproduce experimental structural and dynamic properties well, but Amber ff14SB maintains structure and reproduces fluctuations closest to the experimental model: its average backbone structure differs from the deposited structure by 0.37Å; by contrast, the average backbone structure in solution differs from the deposited by 0.65Å. All the simulations are affected by a small progressive deterioration of the crystal lattice, presumably due to imperfect modeling of hydrogen bonding and other crystal contact interactions; this artifact is smallest in ff14SB, with average lattice positions deviating by 0.20Å from ideal. Side-chain disorder is surprisingly low with fewer than 30% of the nonglycine or alanine residues exhibiting significantly populated alternate rotamers. Our results provide helpful insight into the methodology of biomolecular crystal simulations and indicate directions for future work to obtain more accurate energy models for molecular dynamics.

  1. Nonequilibrium molecular dynamics of the rheological and structural properties of linear and branched molecules. Simple shear and poiseuille flows; instabilities and slip.

    PubMed

    Castillo-Tejas, Jorge; Alvarado, Juan F J; González-Alatorre, Guillermo; Luna-Bárcenas, Gabriel; Sanchez, Isaac C; Macias-Salinas, Ricardo; Manero, Octavio

    2005-08-01

    Nonequilibrium molecular-dynamics simulations are performed for linear and branched chain molecules to study their rheological and structural properties under simple shear and Poiseuille flows. Molecules are described by a spring-monomer model with a given intermolecular potential. The equations of motion are solved for shear and Poiseuille flows with Lees and Edward's [A. W. Lees and S. F. Edwards, J. Phys. C 5, 1921 (1972)] periodic boundary conditions. A multiple time-scale algorithm extended to nonequilibrium situations is used as the integration method, and the simulations are performed at constant temperature using Nose-Hoover [S. Nose, J. Chem. Phys. 81, 511 (1984)] dynamics. In simple shear, molecules with flow-induced ellipsoidal shape, having significant segment concentrations along the gradient and neutral directions, exhibit substantial flow resistance. Linear molecules have larger zero-shear-rate viscosity than that of branched molecules, however, this behavior reverses as the shear rate is increased. The relaxation time of the molecules is associated with segment concentrations directed along the gradient and neutral directions, and hence it depends on structure and molecular weight. The results of this study are in qualitative agreement with other simulation studies and with experimental data. The pressure (Poiseuille) flow is induced by an external force F(e) simulated by confining the molecules in the region between surfaces which have attractive forces. Conditions at the boundary strongly influence the type of the slip flow predicted. A parabolic velocity profile with apparent slip on the wall is predicted under weakly attractive wall conditions, independent of molecular structure. In the case of strongly attractive walls, a layer of adhered molecules to the wall produces an abrupt distortion of the velocity profile which leads to slip between fluid layers with magnitude that depends on the molecular structure. Finally, the molecular deformation

  2. Shear-strain-induced chemical reactivity of layered molecular crystals

    SciTech Connect

    M. M. Kuklja; Sergey N. Rashkeev

    2007-04-01

    A density-functional-theory study of shear-related dissociation of two molecular crystals, diamino-dinitroethylene (FOX-7) and triamino-trinitrobenzine (TATB), is presented. A detailed explanation is proposed for the fact that FOX-7 is more sensitive than TATB while their sensitivities to initiation of chemistry have been expected to be comparable. We suggest that shear plays a crucial role in dissociation of molecules in organic energetic crystals and may be imperative in providing specific recommendations on ways for materials design.

  3. Molecular simulations of solute transport in xylose isomerase crystals.

    PubMed

    Malek, Kourosh; Coppens, Marc-Olivier

    2008-02-07

    Cross-linked enzyme crystals (CLECs) enclose an extensive regular matrix of chiral solvent-filled nanopores, via which ions and solutes travel in and out. Several cross-linked enzyme crystals have recently been used for chiral separation and as biocatalysts. We studied the dynamics of solute transport in orthorhombic d-xylose isomerase (XI) crystals by means of Brownian dynamics (BD) and molecular dynamics (MD) simulations, which show how the protein residues influence the dynamics of solute molecules in confined regions inside the lattice. In the BD simulations, coarse-grained beads represent solutes of different sizes. The diffusion of S-phenylglycine molecules inside XI crystals is investigated by long-time MD simulations. The computed diffusion coefficients within a crystal are found to be orders of magnitude lower than in bulk water. The simulation results are compared to the recent experimental studies of diffusion and reaction inside XI crystals. The insights obtained from simulations allow us to understand the nature of solute-protein interactions and transport phenomena in CLECs, which is useful for the design of novel nanoporous biocatalysts and bioseparations based on CLECs.

  4. Controlling Molecular Growth between Fractals and Crystals on Surfaces.

    PubMed

    Zhang, Xue; Li, Na; Gu, Gao-Chen; Wang, Hao; Nieckarz, Damian; Szabelski, Paweł; He, Yang; Wang, Yu; Xie, Chao; Shen, Zi-Yong; Lü, Jing-Tao; Tang, Hao; Peng, Lian-Mao; Hou, Shi-Min; Wu, Kai; Wang, Yong-Feng

    2015-12-22

    Recent studies demonstrate that simple functional molecules, which usually form two-dimensional (2D) crystal structures when adsorbed on solid substrates, are also able to self-assemble into ordered openwork fractal aggregates. To direct and control the growth of such fractal supramolecules, it is necessary to explore the conditions under which both fractal and crystalline patterns develop and coexist. In this contribution, we study the coexistence of Sierpiński triangle (ST) fractals and 2D molecular crystals that were formed by 4,4″-dihydroxy-1,1':3',1″-terphenyl molecules on Au(111) in ultrahigh vacuum. Growth competition between the STs and 2D crystals was realized by tuning substrate and molecular surface coverage and changing the functional groups of the molecular building block. Density functional theory calculations and Monte Carlo simulations are used to characterize the process. Both experimental and theoretical results demonstrate the possibility of steering the surface self-assembly to generate fractal and nonfractal structures made up of the same molecular building block.

  5. High Throughput Profiling of Molecular Shapes in Crystals

    NASA Astrophysics Data System (ADS)

    Spackman, Peter R.; Thomas, Sajesh P.; Jayatilaka, Dylan

    2016-02-01

    Molecular shape is important in both crystallisation and supramolecular assembly, yet its role is not completely understood. We present a computationally efficient scheme to describe and classify the molecular shapes in crystals. The method involves rotation invariant description of Hirshfeld surfaces in terms of of spherical harmonic functions. Hirshfeld surfaces represent the boundaries of a molecule in the crystalline environment, and are widely used to visualise and interpret crystalline interactions. The spherical harmonic description of molecular shapes are compared and classified by means of principal component analysis and cluster analysis. When applied to a series of metals, the method results in a clear classification based on their lattice type. When applied to around 300 crystal structures comprising of series of substituted benzenes, naphthalenes and phenylbenzamide it shows the capacity to classify structures based on chemical scaffolds, chemical isosterism, and conformational similarity. The computational efficiency of the method is demonstrated with an application to over 14 thousand crystal structures. High throughput screening of molecular shapes and interaction surfaces in the Cambridge Structural Database (CSD) using this method has direct applications in drug discovery, supramolecular chemistry and materials design.

  6. Determining the Molecular Growth Mechanisms of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Li, Huayu; Nadarajah, Arunan; Konnert, John H.; Pusey, Marc L.

    1998-01-01

    Studies of the growth of tetragonal lysozyme crystals employing atomic force microscopy (AFM) have shown the advantages of this technique in investigating the growth mechanisms of protein crystals [1]. The resolution of these studies was in the micron range, which revealed surface features such as the occurrence of dislocations and 2D nucleation islands, similar to those found in inorganic systems. They clearly showed that the crystals grew by these surface growth mechanisms. However, the studies also revealed some surprising features, such as bimolecular growth step heights and pronounced growth anisotropies on the (110) face, which could not be explained. In previous studies we employed Periodic Bond Chain (PBC) theory to tetragonal lysozyme crystal growth and found that the crystals were constructed by strongly bonded molecular chains forming helices about the 43 axes [2,3]. The helices were connected to each other with weaker bonds. The growth process was shown to proceed by the formation of these 43 helices, resulting in bimolecular growth steps on the (110) face. It was also shown to explain many other observations on tetragonal lysozyme crystal growth. Although PBC analysis is not a new technique [4], it has not been widely used as the mechanisms predicted from it could not be experimentally verified. In this study the growth process of these crystals was investigated, particularly for the (110) face, employing some newly developed high resolution AFM techniques. These techniques allowed individual lysozyme molecules on the crystal faces to be resolved and predictions from PBC analyses to be tested. The analyses had shown that of the two possible packing arrangements on (110) faces, only one would actually occur. Employing the first of the newly developed techniques, these faces were scanned by high resolution AFM. The resulting images were then compared with the theoretically constructed images for the two possible packing arrangements on the (110) face

  7. Anisotropy of the thermal conductivity in a crystalline polymer: Reverse nonequilibrium molecular dynamics simulation of the δ phase of syndiotactic polystyrene

    NASA Astrophysics Data System (ADS)

    Rossinsky, Eddie; Müller-Plathe, Florian

    2009-04-01

    The thermal conductivity of the crystalline δ phase of syndiotactic polystyrene has been investigated by reverse nonequilibrium molecular dynamics simulations. The results are in the expected range. An anisotropy is found for the thermal conductivity, with the component in chain direction being 2.5-3 larger than perpendicular to it. Any increase in the density causes an increase also in the thermal conductivity, particularly in the perpendicular directions. As side results, the simulations confirm an earlier finding on the force field dependence of the thermal conductivity: The thermal conductivity has a tendency to decrease when the number of active degrees of freedom in the system is reduced by the introduction of constraints. This dependence is, however, weaker and more erratic than previously found for molecular liquids and amorphous polymers.

  8. Molecular View of Protein Crystal Growth: Molecular Interactions, Surface Reconstruction and Growth Mechanism

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan; Li, Huayu; Konnert, John H.; Pusey, Marc L.

    2000-01-01

    Studies of the growth and molecular packing of tetragonal lysozyme crystals suggest that there is an underlying molecular growth mechanism, in addition to the classical one involving screw dislocation/2D) nucleation growth. These crystals are constructed by strongly bonded molecular chains forming helices about the 43 axes. The helices are connected to each other by weaker bonds. Crystal growth proceeds by the formation of these 4(sub 3) helices, which would explain some unexpected observations by earlier investigators, such as bimolecular growth steps on the (110) face. Another consequence of these molecular considerations is that only one of two possible packing arrangements could occur on the crystal faces and that their growth unit was at least a tetramer corresponding to the 4(sub 3) helix. Two new high resolution atomic force microscopy (AFM) techniques were developed to directly confirm these predictions on tetragonal lysozyme crystals. Most earlier investigations of protein crystal growth with AFM were in the low resolution mode which is adequate to investigate the classical growth mechanisms, but cannot resolve molecular features and mechanisms. Employing the first of the newly developed techniques, high resolution AFM images of the (110) face were compared with the theoretically constructed images for the two possible packing arrangements on this face. The prediction that the molecular packing arrangement of these faces corresponded to that for complete 4(sub 3) helices was confirmed in this manner. This investigation also showed the occurrence of surface reconstruction on protein crystals. The molecules on the surface of the (110) face were found to pack closer along the 4(sub 3) axes than those in the interior. The second new AFM technique was used to follow the growth process by measuring the dimensions of individual growth units on the (110) face. Linescans across a growth step, performed near the saturation limit of the crystals, allowed the growth

  9. Calculating Hugoniots for molecular crystals from first principles.

    SciTech Connect

    Mattsson, Ann Elisabet; Wixom, Ryan R.; Mattsson, Thomas Kjell Rene

    2010-03-01

    Density Functional Theory (DFT) has over the last few years emerged as an indispensable tool for understanding the behavior of matter under extreme conditions. DFT based molecular dynamics simulations (MD) have for example confirmed experimental findings for shocked deuterium, enabled the first experimental evidence for a triple point in carbon above 850 GPa, and amended experimental data for constructing a global equation of state (EOS) for water, carrying implications for planetary physics. The ability to perform high-fidelity calculations is even more important for cases where experiments are impossible to perform, dangerous, and/or prohibitively expensive. For solid explosives, and other molecular crystals, similar success has been severely hampered by an inability of describing the materials at equilibrium. The binding mechanism of molecular crystals (van der Waals forces) is not well described within traditional DFT. Among widely used exchange-correlation functionals, neither LDA nor PBE balances the strong intra-molecular chemical bonding and the weak inter-molecular attraction, resulting in incorrect equilibrium density, negatively affecting the construction of EOS for undetonated high explosives. We are exploring a way of bypassing this problem by using the new Armiento-Mattsson 2005 (AM05) exchange-correlation functional. The AM05 functional is highly accurate for a wide range of solids, in particular in compression. In addition, AM05 does not include any van der Waals attraction, which can be advantageous compared to other functionals: Correcting for a fictitious van der Waals like attraction with unknown origin can be harder than correcting for a complete absence of all types of van der Waals attraction. We will show examples from other materials systems where van der Waals attraction plays a key role, where this scheme has worked well, and discuss preliminary results for molecular crystals and explosives.

  10. Collective aspects of singlet fission in molecular crystals

    SciTech Connect

    Teichen, Paul E.; Eaves, Joel D.

    2015-07-28

    We present a model to describe collective features of singlet fission in molecular crystals and analyze it using many-body theory. The model we develop allows excitonic states to delocalize over several chromophores which is consistent with the character of the excited states in many molecular crystals, such as the acenes, where singlet fission occurs. As singlet states become more delocalized and triplet states more localized, the rate of singlet fission increases. We also determine the conditions under which the two triplets resulting from fission are correlated. Using the Bethe Ansatz and an entanglement measure for indistinguishable bipartite systems, we calculate the triplet-triplet entanglement as a function of the biexciton interaction strength. The biexciton interaction can produce bound biexciton states and provides a source of entanglement between the two triplets even when the triplets are spatially well separated. Significant entanglement between the triplet pair occurs well below the threshold for bound pair formation. Our results paint a dynamical picture that helps to explain why fission has been observed to be more efficient in molecular crystals than in their covalent dimer analogues and have consequences for photovoltaic efficiency models that assume that the two triplets can be extracted independently.

  11. Non-equilibrium Dynamics of DNA Nanotubes

    NASA Astrophysics Data System (ADS)

    Hariadi, Rizal Fajar

    Can the fundamental processes that underlie molecular biology be understood and simulated by DNA nanotechnology? The early development of DNA nanotechnology by Ned Seeman was driven by the desire to find a solution to the protein crystallization problem. Much of the later development of the field was also driven by envisioned applications in computing and nanofabrication. While the DNA nanotechnology community has assembled a versatile tool kit with which DNA nanostructures of considerable complexity can be assembled, the application of this tool kit to other areas of science and technology is still in its infancy. This dissertation reports on the construction of non-equilibrium DNA nanotube dynamic to probe molecular processes in the areas of hydrodynamics and cytoskeletal behavior. As the first example, we used DNA nanotubes as a molecular probe for elongational flow measurement in different micro-scale flow settings. The hydrodynamic flow in the vicinity of simple geometrical objects, such as a rigid DNA nanotube, is amenable to rigorous theoretical investigation. We measured the distribution of elongational flows produced in progressively more complex settings, ranging from the vicinity of an orifice in a microfluidic chamber to within a bursting bubble of Pacific ocean water. This information can be used to constrain theories on the origin of life in which replication involves a hydrodynamically driven fission process, such as the coacervate fission proposed by Oparin. A second theme of this dissertation is the bottom-up construction of a de novo artificial cytoskeleton with DNA nanotubes. The work reported here encompasses structural, locomotion, and control aspects of non-equilibrium cytoskeletal behavior. We first measured the kinetic parameters of DNA nanotube assembly and tested the accuracy of the existing polymerization models in the literature. Toward recapitulation of non-equilibrium cytoskeletal dynamics, we coupled the polymerization of DNA

  12. Contribution of molecular flexibility to the elastic-plastic properties of molecular crystal α-RDX

    NASA Astrophysics Data System (ADS)

    Pal, Anirban; Picu, Catalin R.

    2017-01-01

    We show in this work that the mechanical properties of molecular crystals are strongly affected by the flexibility of the constituent molecules. To this end, we explore several kinematically restrained models of the molecular crystal cyclotrimethylene trinitramine in the α phase. We evaluate the effect of gradually removing the flexibility of the molecule on various crystal-scale parameters such as the elastic constants, the lattice parameters, the thermal expansion coefficients, the stacking fault energy and the critical stress for the motion of a dislocation (the Peierls-Nabarro stress). The values of these parameters evaluated with the fully refined, fully flexible atomistic model of the crystal are taken as reference. It is observed that the elastic constants, the lattice parameters and their dependence on pressure, and the thermal expansion coefficient can be accurately predicted with models that consider the NO2 and CH2 groups rigid, and the N-N bonds and the bonds of the triazine ring inextensible. Eliminating the dihedral flexibility of the ring leads to larger errors. The model in which the entire molecule is considered rigid or is mapped to a blob leads to even larger errors. Only the fully flexible, reference model provides accurate values for the stacking fault energy and the Peierls-Nabarro critical stress. Removing any component of the molecular flexibility leads to large errors in these parameters. These results also provide guidance for the development of coarse grained models of molecular crystals.

  13. Comment on ``Modified nonequilibrium molecular dynamics for fluid flows with energy conservation'' [J. Chem. Phys. 106, 5615 (1997)

    NASA Astrophysics Data System (ADS)

    Evans, Denis J.; Searles, Debra J.; Hoover, Wm. G.; Hoover, C. G.; Holian, Brad Lee; Posch, Harald A.; Morriss, Gary P.

    1998-03-01

    In their recent paper and the associated Response to this Comment, Tuckerman et al. dispute the form of the Liouville equation, as proposed by Liouville in 1838. They go on to introduce a definition of the entropy which is at variance with Boltzmann's H-function and with Gibbs' definition of entropy. They argue that their "entropy" is a constant of the motion, equal to its initial equilibrium value regardless of the imposition of external fields. We argue that the analysis of Tuckerman et al. is incorrect and that issues raised by Tuckerman et al. are not at all new but have already been correctly incorporated into nonequilibrium statistical mechanics.

  14. Enhanced heat transfer through filler-polymer interface by surface-coupling agent in heat-dissipation material: A non-equilibrium molecular dynamics study

    SciTech Connect

    Tanaka, Kouichi; Ogata, Shuji; Kobayashi, Ryo; Tamura, Tomoyuki; Kitsunezuka, Masashi; Shinma, Atsushi

    2013-11-21

    Developing a composite material of polymers and micrometer-sized fillers with higher heat conductance is crucial to realize modular packaging of electronic components at higher densities. Enhancement mechanisms of the heat conductance of the polymer-filler interfaces by adding the surface-coupling agent in such a polymer composite material are investigated through the non-equilibrium molecular dynamics (MD) simulation. A simulation system is composed of α-alumina as the filler, bisphenol-A epoxy molecules as the polymers, and model molecules for the surface-coupling agent. The inter-atomic potential between the α-alumina and surface-coupling molecule, which is essential in the present MD simulation, is constructed to reproduce the calculated energies with the electronic density-functional theory. Through the non-equilibrium MD simulation runs, we find that the thermal resistance at the interface decreases significantly by increasing either number or lengths of the surface-coupling molecules and that the effective thermal conductivity of the system approaches to the theoretical value corresponding to zero thermal-resistance at the interface. Detailed analyses about the atomic configurations and local temperatures around the interface are performed to identify heat-transfer routes through the interface.

  15. The photoluminescence response to structural changes of Yb implanted ZnO crystals subjected to non-equilibrium processing

    NASA Astrophysics Data System (ADS)

    Ratajczak, R.; Prucnal, S.; Guziewicz, E.; Mieszczynski, C.; Snigurenko, D.; Stachowicz, M.; Skorupa, W.; Turos, A.

    2017-02-01

    In this paper, we present the detailed study of optical and structural properties of Yb implanted single ZnO crystals. Hydrothermally grown wurtzite (0001) ZnO crystals were implanted with 150 keV Yb ions to fluencies of 5 × 1014 and 1 × 1015 at/cm2. After ion implantation, two different types of annealing were performed: rapid thermal annealing (RTA) and millisecond range flash lamp annealing (FLA). Crystalline quality, damage recovery, and Yb lattice site location were evaluated by the Channeling Rutherford Backscattering Spectrometry (RBS/c). It is shown that independent of the used annealing technique, defects formed in ZnO during ion implantation can be removed. Upon RTA performed at the temperature higher than 800 °C, strong out-diffusion of implanted Yb atoms and precipitation on the surface takes place. Consequently, the degradation of the photoluminescence (PL) efficiency is observed. The diffusion of implanted Yb during millisecond range FLA does not occur for such experimental conditions. Moreover, FLA treatment for 20 ms leads to the formation of single crystalline ZnO layer with Yb incorporated in the substitutional lattice sites. According to RBS/c and PL data, Yb atoms substituted in the Zn sublattice are predominantly in the 2+ oxidation state. The most intensive PL has been observed after annealing at 800 °C for 20 min which is accompanied with the reduction of Yb substitutional fraction and formation of octahedron Yb-oxygen clusters within ZnO.

  16. Communication: Energy-dependent resonance broadening in symmetric and asymmetric molecular junctions from an ab initio non-equilibrium Green's function approach

    SciTech Connect

    Liu, Zhen-Fei; Neaton, Jeffrey B.

    2014-10-07

    The electronic structure of organic-inorganic interfaces often features resonances originating from discrete molecular orbitals coupled to continuum lead states. An example is molecular junction, individual molecules bridging electrodes, where the shape and peak energy of such resonances dictate junction conductance, thermopower, I-V characteristics, and related transport properties. In molecular junctions where off-resonance coherent tunneling dominates transport, resonance peaks in the transmission function are often assumed to be Lorentzian functions with an energy-independent broadening parameter Γ. Here we define a new energy-dependent resonance broadening function, Γ(E), based on diagonalization of non-Hermitian matrices, which can describe resonances of a more complex, non-Lorentzian nature and can be decomposed into components associated with the left and right leads, respectively. We compute this quantity via an ab initio non-equilibrium Green's function (NEGF) approach based on density functional theory (DFT) for both symmetric and asymmetric molecular junctions, and show that our definition of Γ(E), when combined with Breit-Wigner formula, reproduces the transmission calculated from DFT-NEGF. Through a series of examples, we illustrate how this approach can shed new light on experiments and understanding of junction transport properties in terms of molecular orbitals.

  17. Communication: Energy-dependent resonance broadening in symmetric and asymmetric molecular junctions from an ab initio non-equilibrium Green's function approach

    NASA Astrophysics Data System (ADS)

    Liu, Zhen-Fei; Neaton, Jeffrey B.

    2014-10-01

    The electronic structure of organic-inorganic interfaces often features resonances originating from discrete molecular orbitals coupled to continuum lead states. An example is molecular junction, individual molecules bridging electrodes, where the shape and peak energy of such resonances dictate junction conductance, thermopower, I-V characteristics, and related transport properties. In molecular junctions where off-resonance coherent tunneling dominates transport, resonance peaks in the transmission function are often assumed to be Lorentzian functions with an energy-independent broadening parameter Γ. Here we define a new energy-dependent resonance broadening function, Γ(E), based on diagonalization of non-Hermitian matrices, which can describe resonances of a more complex, non-Lorentzian nature and can be decomposed into components associated with the left and right leads, respectively. We compute this quantity via an ab initio non-equilibrium Green's function (NEGF) approach based on density functional theory (DFT) for both symmetric and asymmetric molecular junctions, and show that our definition of Γ(E), when combined with Breit-Wigner formula, reproduces the transmission calculated from DFT-NEGF. Through a series of examples, we illustrate how this approach can shed new light on experiments and understanding of junction transport properties in terms of molecular orbitals.

  18. Tampering with molecular cohesion in crystals of hexaphenylbenzenes.

    PubMed

    Gagnon, Eric; Halperin, Shira D; Métivaud, Valérie; Maly, Kenneth E; Wuest, James D

    2010-01-15

    Hexaphenylbenzene (HPB) and analogous compounds have properties of broad utility in science and technology, including conformationally well-defined molecular structures, high thermal stability, high HOMO-LUMO gaps, little self-association, inefficient packing, and high solubilities. Previous structural studies of HPB and its analogues have revealed persistent involvement of the central aromatic ring in strong C-H...pi interactions. These interactions can be blocked by adding simple ortho alkyl substituents to the peripheral phenyl groups. Comparison of the structures of HPB and a series of ortho-substituted derivatives has shown systematic changes in molecular cohesion and packing, as measured by packing indices, densities, solubilities, temperatures of sublimation, melting points, and ratios of H...H, C...H, and C...C contacts. These results illustrate how crystal engineering can guide the search for improved materials by identifying small but telling molecular alterations that thwart established patterns of association.

  19. Absorbate-induced piezochromism in a porous molecular crystal

    DOE PAGES

    Hendon, Christopher H.; Wittering, Kate E.; Chen, Teng -Hao; ...

    2015-02-23

    Atmospherically stable porous frameworks and materials are interesting for heterogeneous solid–gas applications. One motivation is the direct and selective uptake of pollutant/hazardous gases, where the material produces a measurable response in the presence of the analyte. In this report, we present a combined experimental and theoretical rationalization for the piezochromic response of a robust and porous molecular crystal built from an extensively fluorinated trispyrazole. The electronic response of the material is directly determined by analyte uptake, which provokes a subtle lattice contraction and an observable bathochromic shift in the optical absorption onset. Selectivity for fluorinated absorbates is demonstrated, and toluenemore » is also found to crystallize within the pore. Lastly, we demonstrate the application of electronic structure calculations to predict a physicochemical response, providing the foundations for the design of electronically tunable porous solids with the chemical properties required for development of novel gas-uptake media.« less

  20. Absorbate-induced piezochromism in a porous molecular crystal

    SciTech Connect

    Hendon, Christopher H.; Wittering, Kate E.; Chen, Teng -Hao; Kaveevivitchai, Watchareeya; Popov, Ilya; Butler, Keith T.; Wilson, Chick C.; Cruickshank, Dyanne L.; Miljanic, Ognjen S.; Walsh, Aron

    2015-02-23

    Atmospherically stable porous frameworks and materials are interesting for heterogeneous solid–gas applications. One motivation is the direct and selective uptake of pollutant/hazardous gases, where the material produces a measurable response in the presence of the analyte. In this report, we present a combined experimental and theoretical rationalization for the piezochromic response of a robust and porous molecular crystal built from an extensively fluorinated trispyrazole. The electronic response of the material is directly determined by analyte uptake, which provokes a subtle lattice contraction and an observable bathochromic shift in the optical absorption onset. Selectivity for fluorinated absorbates is demonstrated, and toluene is also found to crystallize within the pore. Lastly, we demonstrate the application of electronic structure calculations to predict a physicochemical response, providing the foundations for the design of electronically tunable porous solids with the chemical properties required for development of novel gas-uptake media.

  1. Crystal and molecular structures of new enantiopure quinuclidines.

    PubMed

    Kania, Iwona; Stadnicka, Katarzyna; Oleksyn, Barbara J

    2004-03-01

    X-ray crystal structure analysis was performed on single crystals of two diastereomeric enantiopure quinuclidines, (3R,8R)-3-vinyl-8-hydroxymethyl-quinuclidine (quincoridine, QCD) and (3R,8S)-3-vinyl-8-hydroxymethyl-quinuclidine (quincorine, QCI) as their salts with tartaric and p-toluenesulphonate anions, respectively. The molecules of these quinuclidine derivatives are considered here as fragments of the Cinchona alkaloids, quinidine and quinine. A comparison of the conformational features of QCD, QCI, and Cinchona alkaloids in the crystalline state shows that the molecular geometry of the title compounds is similar to that of threo-alkaloids (e.g., R,R isomer of epicinchonine) rather than to quinidine and quinine. The packing of the molecules in both structures is dominated by intermolecular hydrogen bonds.

  2. Excitonic couplings between molecular crystal pairs by a multistate approximation

    SciTech Connect

    Aragó, Juan Troisi, Alessandro

    2015-04-28

    In this paper, we present a diabatization scheme to compute the excitonic couplings between an arbitrary number of states in molecular pairs. The method is based on an algebraic procedure to find the diabatic states with a desired property as close as possible to that of some reference states. In common with other diabatization schemes, this method captures the physics of the important short-range contributions (exchange, overlap, and charge-transfer mediated terms) but it becomes particularly suitable in presence of more than two states of interest. The method is formulated to be usable with any level of electronic structure calculations and to diabatize different types of states by selecting different molecular properties. These features make the diabatization scheme presented here especially appropriate in the context of organic crystals, where several excitons localized on the same molecular pair may be found close in energy. In this paper, the method is validated on the tetracene crystal dimer, a well characterized case where the charge transfer (CT) states are closer in energy to the Frenkel excitons (FE). The test system was studied as a function of an external electric field (to explore the effect of changing the relative energy of the CT excited state) and as a function of different intermolecular distances (to probe the strength of the coupling between FE and CT states). Additionally, we illustrate how the approximation can be used to include the environment polarization effect.

  3. Study on Properties of Energy Spectra of the Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-Feng; Chen, Xiang-Rong

    The energy-spectra of nonlinear vibration of molecular crystals such as acetanilide have been calculated by using discrete nonlinear Schrödinger equation appropriate to the systems, containing various interactions. The energy levels including higher excited states are basically consistent with experimental values obtained by infrared absorption and Raman scattering in acetanilide. We further give the features of distribution of the energy-spectra for the acetanilide. Using the energy spectra we also explained well experimental results obtained by Careri et al..

  4. Relation between photochromic properties and molecular structures in salicylideneaniline crystals.

    PubMed

    Johmoto, Kohei; Ishida, Takashi; Sekine, Akiko; Uekusa, Hidehiro; Ohashi, Yuji

    2012-06-01

    The crystal structures of the salicylideneaniline derivatives N-salicylidene-4-tert-butyl-aniline (1), N-3,5-di-tert-butyl-salicylidene-3-methoxyaniline (2), N-3,5-di-tert-butyl-salicylidene-3-bromoaniline (3), N-3,5-di-tert-butyl-salicylidene-3-chloroaniline (4), N-3,5-di-tert-butyl-salicylidene-4-bromoaniline (5), N-3,5-di-tert-butyl-salicylidene-aniline (6), N-3,5-di-tert-butyl-salicylidene-4-carboxyaniline (7) and N-salicylidene-2-chloroaniline (8) were analyzed by X-ray diffraction analysis at ambient temperature to investigate the relationship between their photochromic properties and molecular structures. A clear correlation between photochromism and the dihedral angle of the two benzene rings in the salicylideneaniline derivatives was observed. Crystals with dihedral angles less than 20° were non-photochromic, whereas those with dihedral angles greater than 30° were photochromic. Crystals with dihedral angles between 20 and 30° could be either photochromic or non-photochromic. Inhibition of the pedal motion by intra- or intermolecular steric hindrance, however, can result in non-photochromic behaviour even if the dihedral angle is larger than 30°.

  5. Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer.

    PubMed

    Zhang, Yue; Barnes, George L; Yan, Tianying; Hase, William L

    2010-05-07

    Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott, Science, 2007, 317, 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface, and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly, much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM, perpendicular to the interface, results in nearly identical temperatures for the CH(2) and CH(3) groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate, the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM, there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.

  6. Enhanced Sampling of an Atomic Model with Hybrid Nonequilibrium Molecular Dynamics-Monte Carlo Simulations Guided by a Coarse-Grained Model.

    PubMed

    Chen, Yunjie; Roux, Benoît

    2015-08-11

    Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up

  7. A novel characterization of organic molecular crystal structures for the purpose of crystal engineering.

    PubMed

    Thomas, Noel W

    2015-08-01

    A novel analytical approach is proposed for the characterization of organic molecular crystal structures where close packing is an important factor. It requires the identification of a unique reference axis within the crystal, along which three-dimensional space is divided into close-packed blocks (CPB) and junction zones (JZ). The degree of close packing along the reference axis is quantified by a two-dimensional packing function, ϕ2D, of symmetry determined by the space group. Values of ϕ2D reflect the degree of area-filling in planes perpendicular to this axis. The requirement of close packing within CPB allows the planar structures perpendicular to the reference axis to be analysed as tessellations of area-filling molecular-based cells (MBC), which are generally hexagonal. The form of these cells reflects the molecular shape in the cross-section, since their vertices are given by the centres of the voids between molecules. There are two basic types of MBC, Type 1, of glide or pseudo-glide symmetry, and Type 2, which is formed by lattice translations alone and generally requires a short unit-cell axis. MBC at layers of special symmetry are used to characterize the structures in terms of equivalent ellipses with parameters aell, bell and χell. The ratio aell/bell allows the established α, β, γ classification to be integrated into the current framework. The values of parameters aell and bell arising from all the structures considered, polynuclear aromatic hydrocarbons (PAH), substituted anthracenes and anthraquinones (SAA) and 2-benzyl-5-benzylidene (BBCP) are mapped onto a universal curve. The division of three-dimensional space into CPB and JZ is fundamentally useful for crystal engineering, since the structural perturbations brought about by substitution at hydrogen positions located within JZ are minimal. A contribution is also made to ongoing debate concerning the adoption of polar space groups, isomorphism and polymorphism.

  8. Infrared Space Observatory Observations of Molecular Hydrogen in HH 54: Measurement of a Nonequilibrium Ratio of Ortho- to Para-H2

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Melnick, Gary J.; Harwit, Martin

    1998-01-01

    We have detected the S(1), S(2), S(3), S(4), and S(5) pure rotational lines of molecular hydrogen toward the outflow source HH 54 using the Short Wavelength Spectrometer on board the Infrared Space Observatory. The observed H2 line ratios indicate the presence of warm molecular gas with an H2 density of at least 10(sup 5) /cc and a temperature approximately 650 K in which the ratio of ortho- to para-H2 is only 1.2 -+ 0.4, significantly smaller than the equilibrium ratio of 3 expected in gas at that temperature. These observations imply that the measured ratio of ortho- to para-H2 is the legacy of an earlier stage in the thermal history of the gas when the gas had reached equilibrium at a temperature approximately 90 K. Based upon the expected timescale for equilibration, we argue that the nonequilibrium ratio of ortho- to para-H2 observed in HH 54 serves as a chronometer that places a conservative upper limit of approximately 5000 yr on the period for which the emitting gas has been warm. The S(2)/,S(l) and S(3)/S(1) H2 line ratios measured toward HH 54 are consistent with recent theoretical models of Timmermann for the conversion of para- to ortho-H2 behind slow, C-type shocks, but only if the preshock ratio of ortho- to para-H2 was approximately < 0.2.

  9. Molecular dynamics simulations of alkyl substituted nanographene crystals

    NASA Astrophysics Data System (ADS)

    Ziogos, Orestis George; Theodorou, Doros Nicolas

    2015-09-01

    Discotic polyaromatic molecules, similar to nanometric graphene flakes, constitute an interesting class of materials for organic electronic applications. Grafting flexible side chains around the periphery of such molecules enhances their processability and gives rise to diverse behaviours, such as the manifestation of liquid-crystalline character and anisotropic mechanical response. In this work, we examine by means of molecular dynamics simulations the properties of molecular crystals comprised of alkyl-substituted hexa-peri-hexabenzocoronene mesogens. Pristine and mono-substituted systems by hydrogen or iodine atoms are modelled, with variable side chain length. A general structural and mechanical robustness to peripheral substitution is reported, with the mesogens forming tightly packed molecular wires even at elevated temperature and pressure. In their discotic ordering, the molecules present relatively low translational mobility, a beneficial phenomenon for charge transport. A thermotropic dependence of the mechanical response is identified, with the systems behaving differently in their room-temperature crystalline phase and in their liquid-crystalline phase at elevated temperatures. The melting process is also examined, elucidating an initial negative expansion along a high symmetry direction and the existence of a metastable state, before falling into the final liquid-crystalline state. Dedicated to Professor Jean-Pierre Hansen, with deepest appreciation of his outstanding contributions to liquid and soft matter theory.

  10. Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors.

    PubMed

    Emir Diltemiz, Sibel; Keçili, Rüstem; Ersöz, Arzu; Say, Rıdvan

    2017-02-24

    Molecularly imprinted polymers (MIPs) as artificial antibodies have received considerable scientific attention in the past years in the field of (bio)sensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values, etc.). On the other hand, the Quartz Crystal Microbalance (QCM) is an analytical tool based on the measurement of small mass changes on the sensor surface. QCM sensors are practical and convenient monitoring tools because of their specificity, sensitivity, high accuracy, stability and reproducibility. QCM devices are highly suitable for converting the recognition process achieved using MIP-based memories into a sensor signal. Therefore, the combination of a QCM and MIPs as synthetic receptors enhances the sensitivity through MIP process-based multiplexed binding sites using size, 3D-shape and chemical function having molecular memories of the prepared sensor system toward the target compound to be detected. This review aims to highlight and summarize the recent progress and studies in the field of (bio)sensor systems based on QCMs combined with molecular imprinting technology.

  11. Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors

    PubMed Central

    Emir Diltemiz, Sibel; Keçili, Rüstem; Ersöz, Arzu; Say, Rıdvan

    2017-01-01

    Molecularly imprinted polymers (MIPs) as artificial antibodies have received considerable scientific attention in the past years in the field of (bio)sensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values, etc.). On the other hand, the Quartz Crystal Microbalance (QCM) is an analytical tool based on the measurement of small mass changes on the sensor surface. QCM sensors are practical and convenient monitoring tools because of their specificity, sensitivity, high accuracy, stability and reproducibility. QCM devices are highly suitable for converting the recognition process achieved using MIP-based memories into a sensor signal. Therefore, the combination of a QCM and MIPs as synthetic receptors enhances the sensitivity through MIP process-based multiplexed binding sites using size, 3D-shape and chemical function having molecular memories of the prepared sensor system toward the target compound to be detected. This review aims to highlight and summarize the recent progress and studies in the field of (bio)sensor systems based on QCMs combined with molecular imprinting technology. PMID:28245588

  12. Solvothermal Molecular Precursor Routes to Semiconductor Film and Crystal Growth

    NASA Astrophysics Data System (ADS)

    Gillan, Edward G.

    2002-08-01

    This research project explored the utility of molecular precursor decomposition in superheated non-aqueous solvents directed towards semiconductor crystal growth. Reactions were run in toluene, THF, and under solvent free conditions. An in situ precursor synthesis and decomposition resulted in GaN nanoparticles from simple starting materials (GaCl(3) and NaN(3)). Particle sizes range from about 10 to hundreds of nanometers. Upon annealing to 1000 degrees C, the poorly crystalline products ordered into crystalline hexagonal GaN and luminescence. The conversion of synthesized organometallic dimeric gallium amino precursors to GaN was less successful; however they showed some utility in vapor phase film growth. Silver and silver sulfide nanoparticles were also produced in a solvothermal system via silver azide decomposition producing particles in the 100 mn to micron size regime.

  13. InPBi single crystals grown by molecular beam epitaxy.

    PubMed

    Wang, K; Gu, Y; Zhou, H F; Zhang, L Y; Kang, C Z; Wu, M J; Pan, W W; Lu, P F; Gong, Q; Wang, S M

    2014-06-26

    InPBi was predicted to be the most robust infrared optoelectronic material but also the most difficult to synthesize within In-VBi (V = P, As and Sb) 25 years ago. We report the first successful growth of InPBi single crystals with Bi concentration far beyond the doping level by gas source molecular beam epitaxy. The InPBi thin films reveal excellent surface, structural and optical qualities making it a promising new III-V compound family member for heterostructures. The Bi concentration is found to be 2.4 ± 0.4% with 94 ± 5% Bi atoms at substitutional sites. Optical absorption indicates a band gap of 1.23 eV at room temperature while photoluminescence shows unexpectedly strong and broad light emission at 1.4-2.7 μm which can't be explained by the existing theory.

  14. Understanding water: Molecular dynamics simulations of solubilized and crystallized myoglobin

    SciTech Connect

    Wei Gu; Garcia, A.E.; Schoenborn, B.P.

    1994-12-31

    Molecular dynamics simulations were performed on CO myoglobin to evaluate the stability of the bound water molecules as determined in a neutron diffraction analysis. The myoglobin structure derived from the neutron analysis provided the starting coordinate set used in the simulations. The simulations show that only a few water molecules are tightly bound to protein atoms, while most solvent molecules are labile, breaking and reforming hydrogen bonds. Comparison between myoglobin in solution and in a single crystal highlighted some of the packing effects on the solvent structure and shows that water solvent plays an indispensable role in protein dynamics and structural stability. The described observations explain some of the differences in the experimental results of protein hydration as observed in NMR, neutron and X-ray diffraction studies.

  15. Collective and molecular relaxation in ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Wrobel, S.; Marzec, M.; Godlewska, Malgorzata; Gestblom, B.; Hiller, Steffen; Haase, Wolfgang

    1995-08-01

    Ferroelectric liquid crystals are molecular ferroelectrics showing up in the tilted liquid crystalline systems (SmC*, SmI*, SmF*) composed of chiral molecules. In this work, we present the dielectric, electro-optic, and calorimetric studies of a single component system: 3-octyloxy-6[2-fluor-4-(2-fluoroctyloxy)phenyl]-pyridine showing interesting ferroelectric properties. The compound exhibits a first order N*- SmC* phase transition which leads to a qualitatively new behavior, for instance the relaxation frequency of the soft mode below TC seems to be temperature independent. The high frequency relaxation process, connected with the reorientation around the long axis, is practically undisturbed at the N*-SmC* transition. Yet, it was found that in the SmC* phase, the best fit was obatined with two Cole-Cole functions yielding two relaxation times to describe a biased reorientation of molecules in the SmC* phase.

  16. Progress in organic molecular single crystal FET electronics

    NASA Astrophysics Data System (ADS)

    Butko, Vladimir; Chi, Xiaoliu; Ramirez, Arthur

    2004-03-01

    Semiconducting organic materials have received increased attention because they promise bulk processing of flexible, large-area electronic devices. Field Effect Transistors (FETs) provide a powerful method of investigating two-dimensional properties of these materials. We report on fabrication and characterization of FETs on organic molecular single-crystals of pentacene and tetracene [1,2]. The FETs exhibit hole conductivity with room temperature record effective mobility, up to 2 -3 cm^2/Vs and on/off ratios up to 2*10^7. We were able to suppress an activation energy of pentacene down to ˜ 30 mK by applying gate voltage of 45 V. 1. V.Y. Butko, X. Chi, D. V. Lang and A. P. Ramirez, Applied Physics Letters, v.83, #23, pp. 4773-4775, December 8, 2003 2. V.Y. Butko, X. Chi, A. P. Ramirez , Solid State Communications, v. 128/11, pp. 431, 2003

  17. Crystal and molecular structure of three biologically active nitroindazoles

    NASA Astrophysics Data System (ADS)

    Cabildo, Pilar; Claramunt, Rosa M.; López, Concepción; García, M. Ángeles; Pérez-Torralba, Marta; Pinilla, Elena; Torres, M. Rosario; Alkorta, Ibon; Elguero, José

    2011-01-01

    3-Bromo-1-methyl-7-nitro-1 H-indazole ( 1), 3-bromo-2-methyl-7-nitro-2 H-indazole ( 2) and 3,7-dinitro-1(2) H-indazole ( 3) have been synthesized and characterized by X-ray diffraction, 13C and 15N NMR spectroscopy in solution and in solid-state. The dihedral angles obtained in the crystal structures are in good agreement with the molecular parameters calculated using DFT B3LYP calculations employing the 6-311++G(d,p) basis set. Compounds 1 and 2 present intermolecular halogen bonds between the bromine and the oxygen atoms of the nitro group and in compound 3 inter- and intramolecular hydrogen bonding exists.

  18. Detection of organophosphorus compounds using a molecularly imprinted photonic crystal.

    PubMed

    Liu, Feng; Huang, Shuyue; Xue, Fei; Wang, Yifei; Meng, Zihui; Xue, Min

    2012-02-15

    A label free molecularly imprinted photonic crystal (MIPC) was developed to detect the degradation product of nerve agents. Mono-dispersed poly-methyl methacrylate colloidal particles with the diameter of 280 nm were used to fabricate a closely packed colloidal crystal array (CCA), and a methyl phosphonic acid (MPA) imprinted hydrogel was prepared within the CCA using 2-hydroxyethyl-methacrylate and N-isopropylacrylamide as monomers, ethyleneglycol dimethacrylate and N, N'-methylenebisacrylamide as cross-linkers, a mixture of n-octanol and acetonitrile as porogen. The diffraction intensity of the MIPC decreased significantly upon the MPA adsorption with a limit of detection (LOD) of 10(-6) molL(-1). Furthermore, the diffraction intensity decreased and blue shifted with the increase of temperature, decreased and red shifted with the increase of ionic strength. At higher pH, the diffraction intensity increased without obvious diffraction shift. The MIPC provides an indirect path to detect nerve agents (Sarin, Soman, VX and R-VX) by monitoring the MPA released from the hydrolysis of nerve agents, with LODs of 3.5 × 10(-6) molL(-1), 2.5 × 10(-5) molL(-1), 7.5 × 10(-5) molL(-1) and 7.5 × 10(-5) molL(-1) for Sarin, Soman, VX and R-VX, respectively.

  19. Crystallization force--a density functional theory concept for revealing intermolecular interactions and molecular packing in organic crystals.

    PubMed

    Li, Tonglei; Ayers, Paul W; Liu, Shubin; Swadley, Matthew J; Aubrey-Medendorp, Clare

    2009-01-01

    Organic molecules are prone to polymorphic formation in the solid state due to the rich diversity of functional groups that results in comparable intermolecular interactions, which can be greatly affected by the selection of solvent and other crystallization conditions. Intermolecular interactions are typically weak forces, such as van der Waals and stronger short-range ones including hydrogen bonding, that are believed to determine the packing of organic molecules during the crystal-growth process. A different packing of the same molecules leads to the formation of a new crystal structure. To disclose the underlying causes that drive the molecule to have various packing motifs in the solid state, an electronic concept or function within the framework of conceptual density functional theory has been developed, namely, crystallization force. The concept aims to describe the local change in electronic structure as a result of the self-assembly process of crystallization and may likely quantify the locality of intermolecular interactions that directs the molecular packing in a crystal. To assess the applicability of the concept, 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile, so-called ROY, which is known to have the largest number of solved polymorphs, has been examined. Electronic calculations were conducted on the seven available crystal structures as well as on the single molecule. The electronic structures were analyzed and crystallization force values were obtained. The results indicate that the crystallization forces are able to reveal intermolecular interactions in the crystals, in particular, the close contacts that are formed between molecules. Strong correlations exist between the total crystallization force and lattice energy of a crystal structure, further suggesting the underlying connection between the crystallization force and molecular packing.

  20. Molecular structure and elastic properties of thermotropic liquid crystals: integrated molecular dynamics--statistical mechanical theory vs molecular field approach.

    PubMed

    Ilk Capar, M; Nar, A; Ferrarini, A; Frezza, E; Greco, C; Zakharov, A V; Vakulenko, A A

    2013-03-21

    The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio.

  1. Molecular structure and elastic properties of thermotropic liquid crystals: Integrated molecular dynamics—Statistical mechanical theory vs molecular field approach

    NASA Astrophysics Data System (ADS)

    Capar, M. Ilk; Nar, A.; Ferrarini, A.; Frezza, E.; Greco, C.; Zakharov, A. V.; Vakulenko, A. A.

    2013-03-01

    The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio.

  2. Molecular Dynamics Modeling of PPTA Crystals in Aramid Fibers

    SciTech Connect

    Mercer, Brian Scott

    2016-05-19

    In this work, molecular dynamics modeling is used to study the mechanical properties of PPTA crystallites, which are the fundamental microstructural building blocks of polymer aramid bers such as Kevlar. Particular focus is given to constant strain rate axial loading simulations of PPTA crystallites, which is motivated by the rate-dependent mechanical properties observed in some experiments with aramid bers. In order to accommodate the covalent bond rupture that occurs in loading a crystallite to failure, the reactive bond order force eld ReaxFF is employed to conduct the simulations. Two major topics are addressed: The rst is the general behavior of PPTA crystallites under strain rate loading. Constant strain rate loading simulations of crystalline PPTA reveal that the crystal failure strain increases with increasing strain rate, while the modulus is not a ected by the strain rate. Increasing temperature lowers both the modulus and the failure strain. The simulations also identify the C N bond connecting the aromatic rings as weakest primary bond along the backbone of the PPTA chain. The e ect of chain-end defects on PPTA micromechanics is explored, and it is found that the presence of a chain-end defect transfers load to the adjacent chains in the hydrogen-bonded sheet in which the defect resides, but does not in uence the behavior of any other chains in the crystal. Chain-end defects are found to lower the strength of the crystal when clustered together, inducing bond failure via stress concentrations arising from the load transfer to bonds in adjacent chains near the defect site. The second topic addressed is the nature of primary and secondary bond failure in crystalline PPTA. Failure of both types of bonds is found to be stochastic in nature and driven by thermal uctuations of the bonds within the crystal. A model is proposed which uses reliability theory to model bonds under constant strain rate loading as components with time-dependent failure rate

  3. Petascale Molecular Dynamics Simulations of Polymers and Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Nguyen, Trung Dac; Carrillo, Jan-Michael; Brown, W. Michael

    2014-03-01

    The availability of faster and larger supercomputers and more efficient parallel algorithms now enable us to perform unprecedented simulations approaching experimental scales. Here we present two examples of our latest large-scale molecular dynamics simulations using the Titan supercomputer in the Oak Ridge Leadership Computing Facility (OLCF). In the first study, we address the rupture origin of liquid crystal thin films wetting a solid substrate. Our simulations show the key signatures of spinodal instability in isotropic and nematic films on top of thermal nucleation. Importantly, we found evidence of a common rupture mechanism independent of initial thickness and LC orientational ordering. In the second study, we used coarse-grained molecular dynamics to simulate the thermal annealing of poly(3-hexylthiophene) (P3HT) and Phenyl-C61-butyric acid methyl ester (PCBM) blends in the presence of a silicon substrate found in organic solar cells. Our simulations show different phase segregated morphologies dependent on the P3HT chain length and PCBM volume fraction in the blend. Furthermore, the ternary blend of short and long P3HT chains with PCBM affects the vertical phase segregation of PCBM decreasing its concentration in the vicinity of the substrate. U.S. DOE Contract No. DE-AC05-00OR22725.

  4. Non-equilibrium molecular dynamics simulations of the transient Ludwig-Soret effect in a binary Lennard-Jones/spline mixture.

    PubMed

    Hafskjold, Bjørn

    2017-01-01

    A binary isotope mixture of Lennard-Jones/spline particles at equilibrium was perturbed by a sudden change in the system's boundary temperatures. The system's response was determined by non-equilibrium molecular dynamics (NEMD). Three transient processes were studied: 1) The propagation of a pressure (shock) wave, 2) heat diffusivity and conduction, and 3) thermal diffusion (the Ludwig-Soret effect). These three processes occur at different time scales, which makes it possible to separate them in one single NEMD run. The system was studied in liquid, supercritical, and dense gas states with various forms and strengths of the thermal perturbation. The results show that heat was initially transported by two separate mechanisms: 1) heat diffusion as described by the transient heat equation and 2) as a consequence of a pressure wave. The pressure wave travelled faster than the speed of sound, generating a shock wave in the system. Local equilibrium was found in the transient phase, even with very strong perturbations and in the shock front. Although the mass separation due to the Ludwig-Soret effect developed much slower than the pressure and temperature fields in the system at large, it was found that the Soret coefficient could be accurately determined from the initial phase of the transient and close to the heat source. This opens the possibility of a new way to analyse results from transient experiments and thereby minimize effects of gravity and convection due to buoyancy.

  5. Infrared Space Observatory Observations of Molecular Hydrogen in HH 54: Measurement of a Nonequilibrium Ratio of Ortho- to Para-H2

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Melnick, Gary J.; Harwit, Martin

    1998-01-01

    We have detected the S(1), S(2), S(3), S(4), and S(5) pure rotational lines of molecular hydrogen toward the outflow source HH 54 using the Short Wavelength Spectrometer on board the Infrared Space Observatory. The observed H2 line ratios indicate the presence of warm molecular gas with an H2 density of at least 10(exp 5) cm(exp -3) and a temperature approximately 650 K in which the ratio of ortho- to para-H2 is only 1.2 +/- 0.4, significantly smaller than the equilibrium ratio of 3 expected in gas at that temperature. These observations imply that the measured ratio of ortho- to para-H2 is the legacy of an earlier stage in the thermal history of the gas when the gas had reached equilibrium at a temperature approximately less than 90 K. Based upon the expected timescale for equilibration, we argue that the nonequilibrium ratio of ortho- to para-H2 observed in HH 54 serves as a chronometer that places a conservative upper limit of approximately 5000 yr on the period for which the emitting gas has been warm. The S(2)/S(1) and S(3)/S(1) H2 line ratios measured toward HH 54 are consistent with recent theoretical models of Timmermann for the conversion of para- to ortho-H2 behind slow, C-type shocks, but only if the preshock ratio of ortho- to para-H2 was approximately less than 0.2.

  6. Crystal and molecular structure of the antimalarial agent enpiroline.

    PubMed Central

    Karle, J M; Karle, I L

    1989-01-01

    To identify common spatial and structural features of amino alcohol antimalarial agents with the eventual goal of designing more effective drugs and a better understanding of the mechanism of action of this class of antimalarial agents, the three-dimensional crystal and molecular structure of enpiroline, a new antimalarial agent active against chloroquine-resistant Plasmodium falciparum, was determined by X-ray crystallography and compared with the crystal structures of the cinchona alkaloids and of the new antimalarial agent WR 194,965. The aromatic rings of the phenyl-pyridine ring system of enpiroline are twisted from each other by approximately 18 degrees. The intramolecular aliphatic N-O distance in enpiroline was 2.80 A (1 A = 0.1 nm), which is close to the N-O distance found in the antimalarial cinchona alkaloids. Enpiroline contains both an intramolecular hydrogen bond between the aliphatic nitrogen and oxygen atoms and an intermolecular hydrogen bond between the aliphatic nitrogen and oxygen atoms of two neighboring molecules. One enantiomer of enpiroline superimposed best with quinine, and the other enantiomer of enpiroline superimposed best with quinidine, suggesting that both enantiomers of enpiroline possess antimalarial activity. Since a common feature of the crystal structures of the amino alcohol antimalarial agents is the formation of intermolecular hydrogen bonds, the common spatial direction of hydrogen bond formation indicates the potential ability of these antimalarial agents to bind to a common receptor site. The crystallographic parameters were as follows: C19H18F6N5O; Mr = 404.3; symmetry of unit cell, monoclinic; space group, P2(1)/a; parameters of unit cell---a = 9.454 +/- 0.004 A, b = 18.908 +/- 0.008 A, c = 10.300 +/- 0.004 A, and beta = 96.55 +/- 0.03 degrees: V (volume of unit cell) = 1829.2 A3; Z (number of molecules per unit cell) = 4; Dchi (calculated density) = 1.46 g cm-3; source of radiation, CuK alpha (lambda = 1.54178 A); mu

  7. CO/sub 2/ laser absorption and saturation studies of molecular impurities in alkali halide crystals

    SciTech Connect

    Sievers, A.J.

    1980-12-01

    The objective of this research program has been to explore the equilibrium and non-equilibrium dynamical properties of ReO/sub 4//sup -/ molecules embedded in alkali halide lattices using electromagnetic radiation. Both incoherent sources and CO/sub 2/ laser radiation have been used to explore the full dynamic range of the molecular vibrational modes. To achieve this objective stable molecular dopant - alkali halide combinations have been fabricated which have vibrational modes near the CO/sub 2/ laser frequencies. In order to uncouple the molecular modes from the lattice modes, to simplify the analysis as much as possible, low temperature spectroscopic measurements were required. In general, it was found that the molecular vibrational modes in the low temperature quiescent lattice had extremely narrow linewidths (less than 0.1 cm/sup -1/) so that most of the coincidences with the CO/sub 2/ laser lines were eliminated.

  8. Molecular dynamics simulations of polymer crystallization via self-seeding

    NASA Astrophysics Data System (ADS)

    Luo, Chuanfu; Sommer, Jens-Uwe

    2010-03-01

    We use large scale molecular dynamics (MD) to simulate the processes of polymer crystallization with a coarse-grained model. In total we are able to simulate 1000 polymer chains made of 1000 monomers each, a system large enough to compare to experimental relevant, entangled melts. It is found that some micro crystalline domains (MCDs) can survive slightly above the apparent melting temperature after a consistent cooling and reheating cycle. We chose the stablest MCD as a baby seed and let it grow at a constant quenched temperature. A single lamella can be formed via this self-seeding process. We observe the growth pathway and analyze the chain dynamics especially at the growth front.[4pt] [1] C. Luo and J. Sommer, Comp Phys. Comm. 180, 1382 (2009)[0pt] [2] C. Luo and J. Sommer, Phys. Rev. Lett. 102, 147801 (2009)[0pt] [3] J-J. Xu, Y. Ma, W.B. Hu, M. Rehahn and G. Reiter, Nature Materials 8, 348 (2009)

  9. Structural and electronic properties of Diisopropylammonium bromide molecular ferroelectric crystal

    NASA Astrophysics Data System (ADS)

    Alsaad, A.; Qattan, I. A.; Ahmad, A. A.; Al-Aqtash, N.; Sabirianov, R. F.

    2015-10-01

    We report the results of ab-initio calculations based on Generalized Gradient Approximation (GGA) and hybrid functional (HSE06) of electronic band structure, density of states and partial density of states to get a deep insight into structural and electronic properties of P21 ferroelectric phase of Diisopropylammonium Bromide molecular crystal (DIPAB). We found that the optical band gap of the polar phase of DIPAB is ∼ 5 eV confirming it as a good dielectric. Examination of the density of states and partial density of states reveal that the valence band maximum is mainly composed of bromine 4p orbitals and the conduction band minimum is dominated by carbon 2p, carbon 2s, and nitrogen 2s orbitals. A unique aspect of P21 ferroelectric phase is the permanent dipole within the material. We found that P21 DIPAB has a spontaneous polarization of 22.64 consistent with recent findings which make it good candidate for the creation of ferroelectric tunneling junctions (FTJs) which have the potential to be used as memory devices.

  10. Laser synthesis of a copper-single-walled carbon nanotube nanocomposite via molecular-level mixing and non-equilibrium solidification

    NASA Astrophysics Data System (ADS)

    Tu, Jay F.; Rajule, Nilesh; Molian, Pal; Liu, Yi

    2016-12-01

    A copper-single-walled carbon nanotube (Cu-SWCNT) metal nanocomposite could be an ideal material if it can substantially improve the strength of copper while preserving the metal’s excellent thermal and electrical properties. However, synthesis of such a nanocomposite is highly challenging, because copper and SWCNTs do not form intermetallic compounds and are insoluble; as a result, there are serious issues regarding wettability and fine dispersion of SWCNTs within the copper matrix. In this paper we present a novel wet process, called the laser surface implantation process (LSI), to synthesize Cu-SWCNT nanocomposites by mixing SWCNTs into molten copper. The LSI process includes drilling several microholes on a copper substrate, filling the microholes with SWCNTs suspended in solution, and melting the copper substrate to create a micro-well of molten copper. The molten copper advances radially outward to engulf the microholes with pre-deposited SWCNTs to form the Cu-SWCNT implant upon solidification. Rapid and non-equilibrium solidification is achieved due to copper’s excellent heat conductivity, so that SWCNTs are locked in position within the copper matrix without agglomerating into large clusters. This wet process is very different from the typical dry processes used in powder metallurgy. Very high hardness improvement, up to 527% over pure copper, was achieved, confirmed by micro-indentation tests, with only a 0.23% SWCNT volume fraction. The nanostructure of the nanocomposite was characterized by TEM imaging, energy-dispersive x-ray spectroscopy mapping and spectroscopy measurements. The SWCNTs were found to be finely dispersed within the copper matrix with cluster sizes in the range of nanometers, achieving the goal of molecular-level mixing.

  11. Molecular dynamics study of non-equilibrium energy transport from a cylindrical track: Part II. Spike models for sputtering yield

    NASA Astrophysics Data System (ADS)

    Bringa, E. M.; Johnson, R. E.; Dutkiewicz, Ł .

    1999-05-01

    Thermal spike models have been used to calculate the yields for electronic sputtering of condensed-gas solids by fast ions. In this paper molecular dynamics (MD) calculations are carried out to describe the evolution of solid Ar and O 2 following the excitation of a cylindrical track in order to test spike models. The calculated sputtering yields were found to depend linearly on the energy deposition per unit path length, d E/d x, at the highest d E/d x. This is in contrast to the spike models and the measured yields for a number of condensed-gas solids which depend quadratically on d E/d x at high d E/d x. In paper I [E.M. Bringa, R.E. Johnson, Nucl. Instr. and Meth. B 143 (1998) 513] we showed that the evolution of energy from the cylindrical track was, typically, not diffusive, as assumed in the spike models. Here we show that it is the description of the radial transport and the absence of energy transport to the surface, rather than the treatment of the ejection process, that accounts for the difference between the analytic spike models and the MD calculations. Therefore, the quadratic dependence on d E/d x of the measured sputtering yield reflects the nature of the energizing process rather than the energy transport. In this paper we describe the details of the sputtering process and compare the results here for crystalline samples to the earlier results for amorphous solids.

  12. Nonequilibrium is different

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, T. R.; Dorfman, J. R.

    2015-08-01

    Nonequilibrium and equilibrium fluid systems differ due to the existence of long-range correlations in nonequilibrium that are not present in equilibrium, except at critical points. Here we examine fluctuations of the temperature, of the pressure tensor, and of the heat current in a fluid maintained in a nonequilibrium stationary state (NESS) with a fixed temperature gradient, a system in which the nonequilibrium correlations are especially long-ranged. For this particular NESS, our results show that (i) the mean-squared fluctuations in nonequilibrium differ markedly in their system-size scaling compared to their equilibrium counterparts, and (ii) there are large, nonlocal correlations of the normal stress in this NESS. These terms provide important corrections to the fluctuating normal stress in linearized Landau-Lifshitz fluctuating hydrodynamics.

  13. Molecular motor-driven abrupt anisotropic shape change in a single crystal of a Ni complex.

    PubMed

    Yao, Zi-Shuo; Mito, Masaki; Kamachi, Takashi; Shiota, Yoshihito; Yoshizawa, Kazunari; Azuma, Nobuaki; Miyazaki, Yuji; Takahashi, Kazuyuki; Zhang, Kuirun; Nakanishi, Takumi; Kang, Soonchul; Kanegawa, Shinji; Sato, Osamu

    2014-12-01

    Many molecular machines with controllable molecular-scale motors have been developed. However, transmitting molecular movement to the macroscopic scale remains a formidable challenge. Here we report a single crystal of a Ni complex whose shape changes abruptly and reversibly in response to thermal changes at around room temperature. Variable-temperature single-crystal X-ray diffraction studies show that the crystalline shape change is induced by an unusual 90° rotation of uniaxially aligned oxalate molecules. The oxalate dianions behave as molecular-scale rotors, with their movement propagated through the entire crystalline material via intermolecular hydrogen bonding. Consequently, the subnanometre-scale changes in the oxalate molecules are instantly amplified to a micrometre-scale contraction or expansion of the crystal, accompanied by a thermal hysteresis loop. The shape change in the crystal was clearly detected under an optical microscope. The large directional deformation and prompt response suggest a role for this material in microscale or nanoscale thermal actuators.

  14. Molecular motor-driven abrupt anisotropic shape change in a single crystal of a Ni complex

    NASA Astrophysics Data System (ADS)

    Yao, Zi-Shuo; Mito, Masaki; Kamachi, Takashi; Shiota, Yoshihito; Yoshizawa, Kazunari; Azuma, Nobuaki; Miyazaki, Yuji; Takahashi, Kazuyuki; Zhang, Kuirun; Nakanishi, Takumi; Kang, Soonchul; Kanegawa, Shinji; Sato, Osamu

    2014-12-01

    Many molecular machines with controllable molecular-scale motors have been developed. However, transmitting molecular movement to the macroscopic scale remains a formidable challenge. Here we report a single crystal of a Ni complex whose shape changes abruptly and reversibly in response to thermal changes at around room temperature. Variable-temperature single-crystal X-ray diffraction studies show that the crystalline shape change is induced by an unusual 90° rotation of uniaxially aligned oxalate molecules. The oxalate dianions behave as molecular-scale rotors, with their movement propagated through the entire crystalline material via intermolecular hydrogen bonding. Consequently, the subnanometre-scale changes in the oxalate molecules are instantly amplified to a micrometre-scale contraction or expansion of the crystal, accompanied by a thermal hysteresis loop. The shape change in the crystal was clearly detected under an optical microscope. The large directional deformation and prompt response suggest a role for this material in microscale or nanoscale thermal actuators.

  15. Real-time molecular scale observation of crystal formation.

    PubMed

    Schreiber, Roy E; Houben, Lothar; Wolf, Sharon G; Leitus, Gregory; Lang, Zhong-Ling; Carbó, Jorge J; Poblet, Josep M; Neumann, Ronny

    2017-04-01

    How molecules in solution form crystal nuclei, which then grow into large crystals, is a poorly understood phenomenon. The classical mechanism of homogeneous crystal nucleation proceeds via the spontaneous random aggregation of species from liquid or solution. However, a non-classical mechanism suggests the formation of an amorphous dense phase that reorders to form stable crystal nuclei. So far it has remained an experimental challenge to observe the formation of crystal nuclei from five to thirty molecules. Here, using polyoxometallates, we show that the formation of small crystal nuclei is observable by cryogenic transmission electron microscopy. We observe both classical and non-classical nucleation processes, depending on the identity of the cation present. The experiments verify theoretical studies that suggest non-classical nucleation is the lower of the two energy pathways. The arrangement in just a seven-molecule proto-crystal matches the order found by X-ray diffraction of a single bulk crystal, which demonstrates that the same structure was formed in each case.

  16. Molecular Basis of Urolithiasis: Role of Crystal Retention

    NASA Astrophysics Data System (ADS)

    Koul, Hari K.; Koul, Sweaty

    2008-09-01

    Urolithiasis is a multifactorial disorder, and it is unlikely that a single cause is responsible for entire spectrum of this disorder. Nonetheless, increased concentrations of various urinary constituents (e.g., calcium and/or oxalate) have been associated with a majority of stone formers. Irrespective of the underlying metabolic conditions, crystal precipitation and crystal retention along the urinary tract are two essential pre-requisites for urinary tract stone formation. In this chapter we summarize underlying metabolic abnormalities associated with various subsets of stone formers. We will also present evidence in support of our hypothesis that crystal formation is a normal physiological process of eliminating toxic wastes as solid complexes, and that pathological events begin with crystal retention. In the end we present evidence supporting various mechanisms of crystal retention.

  17. Polymer crystallization under nano-confinement of droplets studied by molecular simulations.

    PubMed

    Hu, Wenbing; Cai, Tao; Ma, Yu; Hobbs, Jamie K; Farrance, O; Reiter, Günter

    2009-01-01

    Fabrication of polymer nano-crystals proceeds usually through hierarchical ordering of the different-scale structures. Nano-scale patterns are produced first, which serve as a spatial template for subsequent polymer crystallization under nano-confinement. We begin with a survey of the effects of nano-confinement on polymer crystallization, mainly on the basis of the knowledge obtained from molecular simulations. After that, we report dynamic Monte Carlo simulations of polymer crystallization confined in nano-droplets. We observed that the shape of droplets on a solid substrate appears as a pancake, and both initiation and development of crystallization are depressed with the decrease of droplet size. Surface-induced crystal nucleation guides the dominant edge-on crystal orientation at high temperatures; however, its contribution to nucleation rates is not much greater than crystal nucleation in the volume of the droplet. At low temperatures, edge-on crystals are frequent at both substrate/polymer and polymer/air interfaces. In conclusion, molecular simulations can shed light on the microscopic mechanisms of polymer crystallization under nano-confinement.

  18. Molecular alignment enhancement phenomenon of polymer formed from a liquid crystal monomer in a liquid crystal solvent

    NASA Astrophysics Data System (ADS)

    Fujikake, Hideo; Murashige, Takeshi; Sato, Hiroto; Kawakita, Masahiro; Kikuchi, Hiroshi

    2003-03-01

    We report an abnormal alignment enhancement phenomenon of polymer molecules. The alignment order of a rigid-skeleton polymer made from a liquid crystalline monomer in a low-molecular-weight liquid crystal solvent was drastically enhanced with increasing temperature, even though the alignment order of the solution of the liquid crystal and monomer decreased. From polymer molecular alignment observations using polarizing Raman scattering microscopy, it was found that the polymer alignment order was three times greater than that of the original aligned monomer and polymer. This super alignment technique of polymer using a molecular-scaled self-assembly mechanism is applicable to the formation of electrically and/or optically functional nanopolymer wires.

  19. Raman study of uniaxial deformation of single-crystal mats of ultrahigh molecular weight linear polyethylene

    NASA Astrophysics Data System (ADS)

    Zavgorodnev, Yu V.; Chvalun, S. N.; Nikolaeva, G. Yu; Sagitova, E. A.; Pashinin, P. P.; Gordeyev, S. A.; Prokhorov, K. A.

    2015-03-01

    We present for the first time a Raman spectroscopic study of the deformation process of solution-crystallized single-crystal mats of ultrahigh molecular weight linear polyethylene (UHMW PE). We study the deformed regions of the films, drawn only until the formation of the neck, and the films of much higher draw ratios, just before rupture starts. For comparison, we have also carried out Raman investigations of films produced by compression of UHMW PE powder. We have found that the uniaxial molecular orientation in the neck region of the single-crystal mat films develops more slowly as compared to the films, prepared by compression of the UHMW PE powder.

  20. Dielectric spectroscopy and simulation of cryptophane and metal-organic framework crystals containing internal molecular rotors

    NASA Astrophysics Data System (ADS)

    Winston, Erick B.

    With recent advances in chemistry and crystal engineering, it is now possible to flexibly synthesize stable crystals with internal molecular electric dipole rotors. This represents a nanoscale design approach to the creation of new materials. Potential applications of such systems include electro-optic materials, new ferroelectrics and dielectrics, and perhaps even information storage. In this thesis, the rotational dynamics of molecular rotors in single crystals is investigated by dielectric spectroscopy. Using X-ray crystallography in combination with molecular mechanics or ab initio calculations, the influence of the local crystal environment on the observed dynamics is ascertained. Additionally, the atomic coordinates from the X-ray structure, and molecular dipole moments determined from ab initio calculations, are used to create an approximate model for a Monte Carlo study of the significance of the dipole-dipole interactions among the rotors. The systems studied here represent two different families of synthetic approaches to creating molecular rotors in crystals. One approach consists of synthesizing inclusion compounds in which molecular crystals have internal cavities capable of hosting small molecular guests. Specifically, we look at the globular cryptophane complexes and find that iodomethane rotates in cryptophane-A with remarkably low barriers near 2 kcal·mol-1 (1000 K), in agreement with the molecular mechanics calculations. The other approach consists of synthesizing covalent crystals where the rotor elements are themselves part of the covalently bonded network. We study metal-organic open frameworks (MOFs), in particular IRMOF-2, and find rotation with a single barrier near 7 kcal·mol-1 (3500 K). The barrier is in approximate agreement with ab initio calculations. Statistical analysis of an MC simulation of IRMOF-2 suggests a dipolar phase change at lower temperatures. The residual dielectric effects of the dipole-dipole interaction above the

  1. Determining the Molecular Packing Arrangements on Protein Crystal Faces by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Li, Huayu; Perozzo, Mary A.; Konnert, John H.; Nadarajan, Arunan; Pusey, Marc L.

    1998-01-01

    Periodic Bond Chain (PBC) analysis of the packing of tetragonal lysozyme crystals have revealed that there are two possible molecular packing arrangements for the crystal faces. The analysis also predicted that only one of these, involving the formation of helices about the 4(sub 3) axes, would prevail during crystal growth. In this study high resolution atomic force microscopy (AFM) was employed to verify these predictions for the (110) crystal face. A computer program was developed which constructs the expected AFM image for a given tip shape for each possible molecular packing arrangement. By comparing the actual AFM image with the predicted images the correct packing arrangement was determined. The prediction of an arrangement involving 4(sub 3) helices was confirmed in this manner,"while the alternate arrangement was not observed. The investigation also showed the protein molecules were packed slightly closer about the 4(sub 3) axes than in the crystallographic arrangement of the crystal interior. This study demonstrates a new approach for determining the molecular packing arrangements on protein crystal faces. It also shows the power of combining a theoretical PBC analysis with experimental high resolution AFM techniques in probing protein crystal growth processes at the molecular level.

  2. Study of spectroscopic and thermal characteristics of nonlinear optical molecular crystals based on 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Pavlovetc, I. M.; Fokina, M. I.

    2016-08-01

    The paper presents the results of study of spectroscopic and thermal characteristics of molecular co-crystals: 2-aminopyridine-4-nitrophenol-4-mtrophenolate (2AP4N) and 2,6- diaminopyridine-4-nitrophenol-4nitrophenolate (26DAP4N). Crystals were successfully grown by slow evaporation technique. Optical transparency in the region of 190-1100 was found to be suitable for applications with cut off wavelengths 420 and 430 nm respectively. Thermogravimetric and differential thermal analysis show good quality and thermal stability for studied crystals. Kurtz and Perry powder technique proves that the crystals are acentric and have significant nonlinear optical response.

  3. Molecular insights into the heterogeneous crystal growth of si methane hydrate.

    PubMed

    Vatamanu, Jenel; Kusalik, Peter G

    2006-08-17

    In this paper we report a successful molecular simulation study exploring the heterogeneous crystal growth of sI methane hydrate along its [001] crystallographic face. The molecular modeling of the crystal growth of methane hydrate has proven in the past to be very challenging, and a reasonable framework to overcome the difficulties related to the simulation of such systems is presented. Both the microscopic mechanisms of heterogeneous crystal growth as well as interfacial properties of methane hydrate are probed. In the presence of the appropriate crystal template, a strong tendency for water molecules to organize into cages around methane at the growing interface is observed; the interface also demonstrates a strong affinity for methane molecules. The maximum growth rate measured for a hydrate crystal is about 4 times higher than the value previously determined for ice I in a similar framework (Gulam Razul, M. S.; Hendry, J. G.; Kusalik, P. G. J. Chem. Phys. 2005, 123, 204722).

  4. The use of photolithography on molecular orientation of the liquid crystals

    NASA Astrophysics Data System (ADS)

    Yilmaz, Suleyman

    2017-02-01

    The photolithography was used on molecular orientation of liquid crystals as an alternative to other conventional methods. Either planar or homeotropic orientation were provided with surface anchoring energy for the molecular alignment. The photolithography were applied to provide micro-grooving on the film surface, which is including polyimide coatings, UV exposure, chemical etching and thermal curing process, respectively. Three type liquid crystal cells were made by provided rubbing and photolithography for planar alignment and also homeotropic alignment. Electro-optical properties of the liquid crystals were examined under the electric field at phase transition region for three type liquid crystal cells. It was observed that the photolithographic method was the more effective and acceptable results than the other conventional methods on the molecular orientations.

  5. Assembling of three-dimensional crystals by optical depletion force induced by a single focused laser beam.

    PubMed

    Deng, Hai-Dong; Li, Guang-Can; Liu, Hai-Ying; Dai, Qiao-Feng; Wu, Li-Jun; Lan, Sheng; Gopal, Achanta Venu; Trofimov, Vyacheslav A; Lysak, Tatiana M

    2012-04-23

    We proposed a method to assemble microspheres into a three-dimensional crystal by utilizing the giant nonequilibrium depletion force produced by nanoparticles. Such assembling was demonstrated in a colloid formed by suitably mixing silica microspheres and magnetic nanoparticles. The giant nonequilibrium depletion force was generated by quickly driving magnetic nanoparticles out of the focusing region of a laser light through both optical force and thermophoresis. The thermophoretic binding of silica beads is so tight that a colloidal photonic crystal can be achieved after complete evaporation of solvent. This technique could be employed for fabrication of colloidal photonic crystals and molecular sieves.

  6. Shock-Induced Shear Bands in an Energetic Molecular Crystal: Application of Shock-Front Absorbing Boundary Conditions to Molecular Dynamics Simulations

    DTIC Science & Technology

    2008-07-17

    equations of motion. The SFABC method and its application to a crystalline solid are described in detail in Sec. III. Other methods for the absorption of...this type are based on the linear wave equation and for this reason are not suited to the absorption of shock waves. II. NONEQUILIBRIUM MOLECULAR...Cady, Comportement des Milieux Denses sous Hautes Pressions Dynamiques Commissariat à l’Energie Atomique , Paris, 1978, p. 4. 31 E. Jaramillo and T. D

  7. Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals.

    PubMed

    Asmadi, Aldi; Neumann, Marcus A; Kendrick, John; Girard, Pascale; Perrin, Marc-Antoine; Leusen, Frank J J

    2009-12-24

    In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure.

  8. Structural, magnetic and optical properties of two concomitant molecular crystals

    NASA Astrophysics Data System (ADS)

    Silva, Manuela Ramos; Milne, Bruce; Coutinho, Joana T.; Pereira, Laura C. J.; Martín-Ramos, Pablo; Pereira da Silva, Pedro S.; Martín-Gil, Jesús

    2016-03-01

    A new 1D complex has been prepared and characterized. X-ray single crystal structure confirms that the Cu(II) ions assemble in alternating chains with Cu … Cu distances of 2.5685(4) and 3.1760(4) Å. The temperature dependence of the magnetic susceptibility reveals an antiferromagnetic interaction between the paddle-wheel copper centers with an exchange of -300 cm-1. The exchange integral was also determined by quantum chemical ab-initio calculations, using polarised and unpolarised basis sets reproducing well the experimental value. The second harmonic generation efficiency of a concomitantly crystallized material was evaluated and was found to be comparable to urea.

  9. Molecular motion, dielectric response, and phase transition of charge-transfer crystals: acquired dynamic and dielectric properties of polar molecules in crystals.

    PubMed

    Harada, Jun; Ohtani, Masaki; Takahashi, Yukihiro; Inabe, Tamotsu

    2015-04-08

    Molecules in crystals often suffer from severe limitations on their dynamic processes, especially on those involving large structural changes. Crystalline compounds, therefore, usually fail to realize their potential as dielectric materials even when they have large dipole moments. To enable polar molecules to undergo dynamic processes and to provide their crystals with dielectric properties, weakly bound charge-transfer (CT) complex crystals have been exploited as a molecular architecture where the constituent polar molecules have some freedom of dynamic processes, which contribute to the dielectric properties of the crystals. Several CT crystals of polar tetrabromophthalic anhydride (TBPA) molecules were prepared using TBPA as an electron acceptor and aromatic hydrocarbons, such as coronene and perylene, as electron donors. The crystal structures and dielectric properties of the CT crystals as well as the single-component crystal of TBPA were investigated at various temperatures. Molecular reorientation of TBPA molecules did not occur in the single-component crystal, and the crystal did not show a dielectric response due to orientational polarization. We have found that the CT crystal formation provides a simple and versatile method to develop molecular dielectrics, revealing that the molecular dynamics of the TBPA molecules and the dielectric property of their crystals were greatly changed in CT crystals. The TBPA molecules underwent rapid in-plane reorientations in their CT crystals, which exhibited marked dielectric responses arising from the molecular motion. An order-disorder phase transition was observed for one of the CT crystals, which resulted in an abrupt change in the dielectric constant at the transition temperature.

  10. A Computer Simulation of Detonation within an Energetic Molecular Crystal.

    DTIC Science & Technology

    1986-07-11

    desired condition or time. A nonhomogeneous crystal of diatomic molecules was monitored to discover the atomic interactions during detonation. A Lennard ... Jones potential equation was used to represent the exothermic reaction between diatomic hydrogen and chlorine molecules. This is the first project to

  11. Molecular tectonics: tubular crystals with controllable channel size and orientation.

    PubMed

    Lin, Mei-Jin; Jouaiti, Abdelaziz; Pocic, David; Kyritsakas, Nathalie; Planeix, Jean-Marc; Hosseini, Mir Wais

    2010-01-07

    The combination of flexible neutral organic tectons based on two pyridines interconnected by a thioether or thioester type spacer with an inorganic ZnSiF(6) pillar leads to the formation of 2-D coordination networks and the packing of the latter generates crystals offering controllable tubular channels with imposed orientation along the pillar axis.

  12. Solid state amorphization of organic molecular crystals using a vibrating mill

    NASA Astrophysics Data System (ADS)

    Tsukushi, Itaru; Yamamuro, Osamu; Matsuo, Takasuke

    1995-06-01

    The solid-state amorphization of organic molecular crystals was studied by differential scanning calorimetry (DSC) and X-ray powder diffraction. Two clathrate compounds of tri- O-methyl-β-cyclodextrin (TMCD) containing p-nitrobenzoic acid (NBA) and p-hydroxybenzoic acid (HBA), and seven other organic compounds, sucrose (SUC), salicin (SAL), phenolphthalein (PP), 1,3,5-tri-α-naphthylbenzene (TNB), p-quaterphenyl ( p-QP), p-terphenyl ( p-TP) and 1,3,5-triphenylbenzene (TPB) were ground for 2-16 h with a vibrating mill at room temperature. A halo diffraction pattern and exothermic effect due to the crystallization were observed in TMCD-NBA, TMCD-HBA, SUC, SAL, PP and TNB, indicating amorphization of these crystals. The ability of solid-state amorphization in organic molecular crystals was discussed from a thermodynamic point of view.

  13. Molecular Surface Chemistry by Metal Single Crystals and Nanoparticles from Vacuum to High Pressure.

    SciTech Connect

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-04-05

    Model systems for studying molecular surface chemistry have evolved from single crystal surfaces at low pressure to colloidal nanoparticles at high pressure. Low pressure surface structure studies of platinum single crystals using molecular beam surface scattering and low energy electron diffraction techniques probe the unique activity of defects, steps and kinks at the surface for dissociation reactions (H-H, C-H, C-C, O{double_bond}O bonds). High-pressure investigations of platinum single crystals using sum frequency generation vibrational spectroscopy have revealed the presence and the nature of reaction intermediates. High pressure scanning tunneling microscopy of platinum single crystal surfaces showed adsorbate mobility during a catalytic reaction. Nanoparticle systems are used to determine the role of metal-oxide interfaces, site blocking and the role of surface structures in reactive surface chemistry. The size, shape and composition of nanoparticles play important roles in determining reaction activity and selectivity.

  14. Crystal Properties and Radiation Effects in Solid Molecular Hydrogens

    SciTech Connect

    Kozioiziemski, B

    2000-09-01

    The crystal lattice structure, growth shapes and helium generated by beta-decay of solid deuterium-tritium (D-T) mixtures have been studied. Understanding of these D-T properties is important for predicting and optimizing the target design of the National Ignition Facility (NIF). Raman spectroscopy showed the D-T crystal structure is hexagonal close packed, common to the non-tritiated isotopes. The isotopic mixtures of both tritiated and non-tritiated species broadens the rotational transitions, especially of the lighter species in the mixture. The vibrational frequencies of each isotope is shifted to higher energy in the mixture than the pure components. The J = 1-0 population decreases exponentially with a 1/e time constant which rapidly increases above 10.5 K for both D{sub 2} and T{sub 2} in D-T. The conversion rate is nearly constant from 5 K to 10 K for both D{sub 2} and T{sub 2} at 7.1 hours and 2.1 hours, respectively. The smoothing of D-T layers by beta decay heating is limited by the crystal surface energy. Deuterium and hydrogen-deuteride crystals were grown at a number of temperatures below the triple point to determine the surface energy and roughening transition. Several distinct crystal shapes were observed on a number of different substrates. The a facet roughens between 0.9 T{sub TP} and T{sub TP}, while the c facet persists up to the melting temperature. This is very different from the behavior of the other rare gas crystals which grow completely rounded above 0.8 T{sub TP}. Helium bubbles formed as a product of the beta decay were observed using optical microscopy and the diffusion of smaller bubbles measured with dynamic light scattering. Bubble diffusion coefficients as high as 2.0 x 10{sup -16} m{sup 2}/s were measured for 10-50 nm bubbles. The bubbles move in response to a thermal gradient, with speeds between 1 {micro}m/hour and 100 {micro}m/hour for thermal gradients and temperatures appropriate to NIF targets.

  15. Equilibrium sampling by reweighting nonequilibrium simulation trajectories.

    PubMed

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  16. Equilibrium sampling by reweighting nonequilibrium simulation trajectories

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  17. Structural and energy properties of interstitial molecular hydrogen in single-crystal silicon

    SciTech Connect

    Melnikov, V. V.

    2015-06-15

    The structural and energy characteristics of interstitial molecular hydrogen in single-crystal silicon are theoretically studied. The dependence of the potential energy of the system on the position and orientation of the interstitial defect is investigated, and the mechanism of interaction of a hydrogen molecule with a silicon crystal is considered. A three-dimensional model is employed to calculate the energy spectrum of H{sub 2} in Si, and the obtained dispersion law is analyzed.

  18. Conformation of the umifenovir cation in the molecular and crystal structures of four carboxylic acid salts

    NASA Astrophysics Data System (ADS)

    Orola, Liana; Sarcevica, Inese; Kons, Artis; Actins, Andris; Veidis, Mikelis V.

    2014-01-01

    The umifenovir salts of maleic, salicylic, glutaric, and gentisic acid as well as the chloroform solvate of the salicylate were prepared. Single crystals of the five compounds were obtained and their molecular and crystal structures determined by X-ray diffraction. In each structure the conformation of phenyl ring with respect to the indole group of the umifenovir moiety is different. The water solubility and melting points of the studied umifenovir salts have been determined.

  19. Protein crystallization screens developed at the MRC Laboratory of Molecular Biology.

    PubMed

    Gorrec, Fabrice

    2016-05-01

    In order to solve increasingly challenging protein structures with crystallography, crystallization reagents and screen formulations are regularly investigated. Here, we briefly describe 96-condition screens developed at the MRC Laboratory of Molecular Biology: the LMB sparse matrix screen, Pi incomplete factorial screens, the MORPHEUS grid screens and the ANGSTROM optimization screen. In this short review, we also discuss the difficulties and advantages associated with the development of protein crystallization screens.

  20. Molecular Recognition Directed Self-Assembly of Supramolecular Liquid Crystals

    DTIC Science & Technology

    1994-06-30

    supramolecular (generated via H-bonding, ionic and electrostatic interactions) and molecular " polymer backbones" will be made. The formation of columnar hexagonal...electrostatic interactions) and molecular " polymer backbones" will be made. The formation of columnar hexagonal (0h), nematic and re-entrant isotropic phases by...trihydroxybenzoate with either bromoalkanes or with alkoxybenzyloxybenzyl chloride. Variants of these taper shaped side groups were attached to polymer

  1. Solid solution hardening of molecular crystals: tautomeric polymorphs of omeprazole.

    PubMed

    Mishra, Manish Kumar; Ramamurty, Upadrasta; Desiraju, Gautam R

    2015-02-11

    In the context of processing of molecular solids, especially pharmaceuticals, hardness is an important property that often determines the manufacturing steps employed. Through nanoindentation studies on a series of omeprazole polymorphs, in which the proportions of the 5- and 6-methoxy tautomers vary systematically, we demonstrate that solid-solution strengthening can be effectively employed to engineer the hardness of organic solids. High hardness can be attained by increasing lattice resistance to shear sliding of molecular layers during plastic deformation.

  2. Nonequilibrium diagrammatic technique for Hubbard Green functions

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Ochoa, Maicol A.; Galperin, Michael

    2017-03-01

    We introduce diagrammatic technique for Hubbard nonequilibrium Green functions. The formulation is an extension of equilibrium considerations for strongly correlated lattice models to description of current carrying molecular junctions. Within the technique intra-system interactions are taken into account exactly, while molecular coupling to contacts is used as a small parameter in perturbative expansion. We demonstrate the viability of the approach with numerical simulations for a generic junction model of quantum dot coupled to two electron reservoirs.

  3. Computational Protocol for Modeling Thermochromic Molecular Crystals: Salicylidene Aniline As a Case Study.

    PubMed

    Presti, Davide; Labat, Fréderic; Pedone, Alfonso; Frisch, Michael J; Hratchian, Hrant P; Ciofini, Ilaria; Menziani, Maria Cristina; Adamo, Carlo

    2014-12-09

    A computational protocol that combines periodic and QM/QM' calculations has been applied to investigate the structural (geometrical and electronic) and photophysical absorption properties of the salicylidene aniline (SA) thermochromic molecular crystal. The protocol consists of three different steps, namely (i) the description of the molecular crystal using a periodic approach taking into account dispersion interactions, (ii) the identification of reliable finite models (clusters), and (iii) the calculation of vertical transition energies including environmental effects through the use of an electronic embedding model (QM/QM' ONIOM approach). The encouraging results obtained in this work for the β polymorph of SA, both in terms of accuracy and computational cost, open the way to the simulation and the prediction of the photophysical behavior of other molecular crystals, especially those much less well characterized experimentally.

  4. Gas permeation in a molecular crystal and space expansion.

    PubMed

    Takasaki, Yuichi; Takamizawa, Satoshi

    2014-05-14

    A novel single-crystal membrane [Cu(II)2(4-F-bza)4(2-mpyz)]n (4-F-bza = 4-fluorobenzoate; 2-mpyz = 2-methylpyrazine) was synthesized and its identical permeability in any crystal direction in the correction for tortuosity proved that gas diffuses inside the channels without detour. H2 permeated by 1.18 × 10(-12) mol m m(-2) s(-1) Pa(-1) with a high selectivity (Fα: 23.5 for H2/CO and 48.0 for H2/CH4) through its 2D-channels having a minimum diameter of 2.6 Å, which is narrower than the Lennard-Jones diameter of H2 (2.827 Å), CO (3.690 Å), and CH4 (3.758 Å). The high rate of permeation was well explained by a modified Knudsen diffusion model based on the space expansion effect, which agrees with the observed permselectivity enhanced for smaller gases in considering the expansion of a channel resulting from the collision of gas molecules or atoms onto the channel wall. An analysis of single-crystal X-ray data showed the expansion order to be H2 > Ar > CH4, which was expected from the permeation analysis. The permselectivity of a porous solid depends on the elasticity of the pores as well as on the diameter of the vacant channel and the size of the target gas.

  5. Nonequilibrium Floquet States in Topological Kondo Insulators

    DTIC Science & Technology

    2016-02-04

    proposed state: the non-equilibrium Floquet topological metal. The main idea relies on the knowledge that the low - temperature insulating state of SmB6...is readily transformed to a metallic state by application of external pressure [Cooley 1995]. With low - temperature topological conduction occurring...reflecting on years of experience in performing low - temperature ultrasound measurements on single-crystal samples, both the Sapporo and UMD groups agree

  6. Molecular mechanism of crystallization impacting calcium phosphate cements

    SciTech Connect

    Giocondi, J L; El-Dasher, B S; Nancollas, G H; Orme, C A

    2009-05-31

    In summary, SPM data has shown that (1) Mg inhibits growth on all steps but relatively high Mg/Ca ratios are needed. Extracting the mechanism of interaction requires more modeling of the kinetic data, but step morphology is consistent with incorporation. (2) Citrate has several effects depending on the citrate/Ca ratio. At the lowest concentrations, citrate increases the step free energy without altering the step kinetics; at higher concentrations, the polar step is slowed. (3) Oxalate also slows the polar step but additionally stabilizes a new facet, with a [100]{sub Cc} step. (4) Etidronate has the greatest kinetic impact of the molecules studied. At 7{micro}M concentrations, the polar step slows by 60% and a new polar step appears. However, at the same time the [10-1]{sub Cc} increases by 67%. It should be noted that all of these molecules complex calcium and can effect kinetics by altering the solution supersaturation or the Ca to HPO{sub 4}{sup 2-} ratio. For the SPM data shown, this effect was corrected for to distinguish the effect of the molecule at the crystal surface from the effect of the molecule on the solution speciation. The goal of this paper is to draw connections between fundamental studies of atomic step motion and potential strategies for materials processing. It is not our intent to promote the utility of SPM for investigating processes in cement dynamics. The conditions are spectacularly different in many ways. The data shown in this paper are fairly close to equilibrium (S=1.6) whereas the nucleation of cements is initiated at supersaturation ratios in the thousands to millions. Of course, after the initial nucleation phase, the growth will occur at more modest supersaturations and as the cement evolves towards equilibrium certainly some of the growth will occur in regimes such as shown here. In addition to the difference in supersaturation, cements tend to have lower additive to calcium ratios. As an example, the additive to Ca ratio is

  7. A mixed quantum-classical molecular dynamics study of the hydroxyl stretch in methanol/carbon tetrachloride mixtures III: nonequilibrium hydrogen-bond dynamics and infrared pump-probe spectra.

    PubMed

    Kwac, Kijeong; Geva, Eitan

    2013-06-27

    We present a mixed quantum-classical molecular dynamics study of the nonequilibrium hydrogen-bond dynamics following vibrational energy relaxation of the hydroxyl stretch in a 10 mol % methanol/carbon tetrachloride mixture and pure methanol. The ground and first-excited energy levels and wave functions are identified with the eigenvalues and eigenfunctions of the hydroxyl's adiabatic Hamiltonian and as such depend parametrically on the configuration of the remaining, classically treated, degrees of freedom. The dynamics of the classical degrees of freedom are in turn governed by forces obtained by taking the expectation value of the force with respect to the ground or excited vibrational wave functions. Polarizable force fields and nonlinear mapping relations between the hydroxyl transition frequencies and dipole moments and the electric field along the hydroxyl bond are used, which were previously shown to quantitatively reproduce the experimental infrared steady-state absorption spectra and excited state lifetime [Kwac, K.; Geva, E. J. Phys. Chem. B 2011, 115, 9184; 2012, 116, 2856]. The relaxation from the first-excited state to the ground state is treated as a nonadiabatic transition. Within the mixed quantum-classical treatment, relaxation from the excited state to the ground state is accompanied by a momentum-jump in the classical degrees of freedom, which is in turn dictated by the nonadiabatic coupling vector. We find that the momentum jump leads to breaking of hydrogen bonds involving the relaxing hydroxyl, thereby blue-shifting the transition frequency by more than the Stokes shift between the steady-state emission and absorption spectra. The subsequent nonequilibrium relaxation toward equilibrium on the ground state potential energy surface is thereby accompanied by red shifting of the transition frequency. The signature of this nonequilibrium relaxation process on the pump-probe spectrum is analyzed in detail. The calculated pump-probe spectrum is found

  8. Towards first-principles molecular design of liquid crystal-based chemoresponsive systems

    NASA Astrophysics Data System (ADS)

    Roling, Luke T.; Scaranto, Jessica; Herron, Jeffrey A.; Yu, Huaizhe; Choi, Sangwook; Abbott, Nicholas L.; Mavrikakis, Manos

    2016-11-01

    Nematic liquid crystals make promising chemoresponsive systems, but their development is currently limited by extensive experimental screening. Here we report a computational model to understand and predict orientational changes of surface-anchored nematic liquid crystals in response to chemical stimuli. In particular, we use first-principles calculations to evaluate the binding energies of benzonitrile, a model for 4'-pentyl-4-biphenylcarbonitrile, and dimethyl methylphosphonate to metal cation models representing the substrate chemical sensing surface. We find a correlation between these quantities and the experimental response time useful for predicting the response time of cation-liquid crystal combinations. Consideration of charge donation from chemical species in the surface environment is critical for obtaining agreement between theory and experiment. Our model may be extended to the design of improved chemoresponsive liquid crystals for selectively detecting other chemicals of practical interest by choosing appropriate combinations of metal cations with liquid crystals of suitable molecular structure.

  9. Molecular structures and crystal packings of 2-styrylquinoline and its derivatives

    SciTech Connect

    Kuz'mina, L. G.; Sitin, A. G.; Gulakova, E. N.; Fedorova, O. A.; Lermontova, E. Kh.; Churakov, A. V.

    2011-07-15

    The crystal and molecular structures of five styrylheterocycles of the quinoline series are studied. All molecules are planar. The double bond in the ethylene fragment is essentially localized. In the molecule of 2-(4-methylstyryl)quinoline, the ethylene fragment is disordered by the bicycle-pedal pattern. In four of the five compounds, the crystal packings do not contain stacking dimers prearranged for the [2+2] photocycloaddition (PCA) reaction. In the crystal of 2-(3-nitrostyryl)quinoline, pairs of crystallographically independent molecules form stacking dimers. In a dimer, the ethylene fragments have a twist orientation, which is incompatible with the PCA reaction. An attempt to initiate a temperature-dependent process of bicyclepedal isomerization in the crystal and, as a consequence, the PCA reaction by means of simultaneous irradiation and heating of a single crystal is unsuccessful.

  10. The role of flexibility and molecular shape in the crystallization of proteins by surface mutagenesis

    PubMed Central

    Devedjiev, Yancho D.

    2015-01-01

    Proteins are dynamic systems and interact with their environment. The analysis of crystal contacts in the most accurately determined protein structures (d < 1.5 Å) reveals that in contrast to current views, static disorder and high side-chain entropy are common in the crystal contact area. These observations challenge the validity of the theory that presumes that the occurrence of well ordered patches of side chains at the surface is an essential prerequisite for a successful crystallization event. The present paper provides evidence in support of the approach for understanding protein crystallization as a process dependent on multiple factors, each with its relative contribution, rather than a phenomenon driven by a few dominant physicochemical characteristics. The role of the molecular shape as a factor in the crystallization of proteins by surface mutagenesis is discussed. PMID:25664789

  11. A test of improved force field parameters for urea: molecular-dynamics simulations of urea crystals.

    PubMed

    Özpınar, Gül Altınbaş; Beierlein, Frank R; Peukert, Wolfgang; Zahn, Dirk; Clark, Timothy

    2012-08-01

    Molecular-dynamics (MD) simulations of urea crystals of different shapes (cubic, rectangular prismatic, and sheet) have been performed using our previously published force field for urea. This force field has been validated by calculating values for the cohesive energy, sublimation temperature, and melting point from the MD data. The cohesive energies computed from simulations of cubic and rectangular prismatic urea crystals in vacuo at 300 K agreed very well with the experimental sublimation enthalpies reported at 298 K. We also found very good agreement between the melting points as observed experimentally and from simulations. Annealing the crystals just below the melting point leads to reconstruction to form crystal faces that are consistent with experimental observations. The simulations reveal a melting mechanism that involves surface (corner/edge) melting well below the melting point, and rotational disordering of the urea molecules in the corner/edge regions of the crystal, which then facilitates the translational motion of these molecules.

  12. Towards first-principles molecular design of liquid crystal-based chemoresponsive systems

    PubMed Central

    Roling, Luke T.; Scaranto, Jessica; Herron, Jeffrey A.; Yu, Huaizhe; Choi, Sangwook; Abbott, Nicholas L.; Mavrikakis, Manos

    2016-01-01

    Nematic liquid crystals make promising chemoresponsive systems, but their development is currently limited by extensive experimental screening. Here we report a computational model to understand and predict orientational changes of surface-anchored nematic liquid crystals in response to chemical stimuli. In particular, we use first-principles calculations to evaluate the binding energies of benzonitrile, a model for 4′-pentyl-4-biphenylcarbonitrile, and dimethyl methylphosphonate to metal cation models representing the substrate chemical sensing surface. We find a correlation between these quantities and the experimental response time useful for predicting the response time of cation–liquid crystal combinations. Consideration of charge donation from chemical species in the surface environment is critical for obtaining agreement between theory and experiment. Our model may be extended to the design of improved chemoresponsive liquid crystals for selectively detecting other chemicals of practical interest by choosing appropriate combinations of metal cations with liquid crystals of suitable molecular structure. PMID:27804955

  13. Polarizability of acetanilide and RDX in the crystal: effect of molecular geometry

    NASA Astrophysics Data System (ADS)

    Tsiaousis, D.; Munn, R. W.; Smith, P. J.; Popelier, P. L. A.

    2004-10-01

    Density-functional theory with the B3LYP functional at the 6-311++G** level is used to calculate the dipole moment and the static polarizability for acetanilide and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) in their in-crystal structures. For acetanilide the dipole moment is 2{1}/{2}% larger than for the gas-phase structure and for RDX (where there is a gross geometry change) it is 15% larger. The polarizability for the in-crystal structure is smaller than for the gas-phase structure by 3% for both species, whereas the in-crystal effective optical polarizability is larger than the gas-phase static polarizability for both crystals. Hence, effects in addition to the molecular geometry change in the crystal must be considered in order to interpret the effective polarizability completely.

  14. X-Ray Diffraction From Shocked Crystals: Experiments and Predications of Molecular Dynamics Simulations

    SciTech Connect

    Rosolankova, K; Kalantar, D H; Belak, J F; Bringa, E M; Caturla, M J; Hawreliak, J; Holian, B L; Kadau, K; Lomdahl, P S; Germann, T C; Ravelo, R; Sheppard, J; Wark, J S

    2003-09-24

    When a crystal is subjected to shock compression beyond its Hugoniot Elastic Limit (HEL), the deformation it undergoes is composed of elastic and plastic strain components. In situ time-dependent X-ray diffraction, which allows direct measurement of lattice spacings, can be used to investigate such phenomena. This paper presents recent experimental results of X-ray diffraction from shocked fcc crystals. Comparison is made between experimental data and simulated X-ray diffraction using a post-processor to Molecular Dynamics (MD) simulations of shocked fcc crystals.

  15. Molecular interactions in bis(2-aminopyridinium) malonate: A crystal isostructural to bis(2-aminopyridinium) maleate crystal

    NASA Astrophysics Data System (ADS)

    Chitra, R.; Choudhury, R. R.; Thiruvenkatam, Vijay; Hosur, M. V.; Guru Row, T. N.

    2012-02-01

    Crystals of a new salt in 2:1 ratio of 2-aminopyridine and malonic acid are grown by slow evaporation. These crystals of bis(2-aminopyridinium) malonate are orthorhombic and belong to the non-centrosymmetric space group, Fdd2 with parameters a = 22.0786(6), b = 23.0218(6), c = 5.5595(1) Å and Z = 8 at 300 K. The crystals are isostructural to those of bis(2-aminopyridinium) maleate, which is a NLO material. The isostructurality index between bis(2-aminopyridinium) maleate and bis(2-aminopyridinium) malonate was also calculated. The hyperpolarizability calculated using semi empirical method MOPAC2009 showed that bis(2-aminopyridinium) malonate has slightly higher β value compared to that of bis(2-aminopyridinium) maleate.

  16. Molecular design, crystal packing and TFT performance of novel polythiophenes

    NASA Astrophysics Data System (ADS)

    Pan, Hualong

    This thesis presents the design, synthesis and thin-film-transistor performance of a novel series of polythiophenes. The work can be divided into two parts: (1) study of crystal packing of the alkyl side chains in single crystals of model oligothiophene compounds for soluble polythiophenes; (2) exploration of a new series of polythiophenes to achieve favorable crystal packing and hense high mobility for use in organic thin-film-transistors. The first part is based on the crystal packing of a series of compounds derived from the monomer of a high-performance semiconductor, poly(3,3"didodecylquarter-thiophene), PQT-12. A unique conformational polymorphism arising from side chains was observed when the conjugation of backbone of PQT-monomer was extended with phenyl, methyl-phenyl, trifluoromethyl-phenyl. The alkyl side chains preferred tilting towards the middle and then being parallel with the backbones when crystallized from a poor solvent, whereas, the side chains extended out vertically to the backbones when crystallized from a good solvent. The conformational polymorphism of the side chains in the dip-coated film was also studied. The following chapters focus on the design, characterization and TFT performance test of novel polymer semiconductors. A novel and symmetrical poly(4,8-didodecylbenzo[1,2-b:4,5-b']dithiophene) with alkyl side chains tethered to the middle of the large fused backbone was synthesized from 2,6-dibromo-4,8-didodecylbenzo[1,2-b:4,5-b']dithiophene by a dehalogenative coupling polymerization. The thin-film transistors made from this polymer as a semiconductor produced a field-effect mobility of 0.012 cm2V-1s-1 and current on/off ratio ˜2.5x105 after thermal annealing at 140°C. The performance was greatly enhanced (field-effect mobility ˜0.15 cm 2V-1s-1 and current on/off ratio x10 6) when two 3-methyl-thienylenes were incorporated into the backbone, poly(4,8-dodecyl-2,6-bis-(3-methylthiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene). Such good

  17. A mixed quantum-classical molecular dynamics study of anti-tetrol and syn-tetrol dissolved in liquid chloroform II: infrared emission spectra, vibrational excited-state lifetimes, and nonequilibrium hydrogen-bond dynamics.

    PubMed

    Kwac, Kijeong; Geva, Eitan

    2013-11-21

    The effect of vibrational excitation and relaxation of the hydroxyl stretch on the hydrogen-bond structure and dynamics of stereoselectively synthesized syn-tetrol and anti-tetrol dissolved in deuterated chloroform are investigated via a mixed quantum-classical molecular dynamics simulation. Emphasis is placed on the changes in hydrogen-bond structure upon photoexcitation and the nonequilibrium hydrogen-bond dynamics that follows the subsequent relaxation from the excited to the ground vibrational state. The propensity to form hydrogen bonds is shown to increase upon photoexcitation of the hydroxyl stretch, thereby leading to a sizable red-shift of the infrared emission spectra relative to the corresponding absorption spectra. The vibrational excited state lifetimes are calculated within the framework of Fermi's golden rule and the harmonic-Schofield quantum correction factor, and found to be sensitive reporters of the underlying hydrogen-bond structure. The energy released during the relaxation from the excited to the ground state is shown to break hydrogen bonds involving the relaxing hydroxyl. The spectral signature of this nonequilibrium relaxation process is analyzed in detail.

  18. Crystal and mol-ecular structure of aflatrem.

    PubMed

    Lenta, Bruno N; Ngatchou, Jules; Kenfack, Patrice T; Neumann, Beate; Stammler, Hans-Georg; Sewald, Norbert

    2015-11-01

    The crystal structure of the title compound, C32H39NO4, confirms the absolute configuration of the seven chiral centres in the mol-ecule. The molecule has a 1,1-dimethylprop-2-enyl substituent on the indole nucleus and this nucleus shares one edge with the five-membered ring which is, in turn, connected to a sequence of three edge-shared fused rings. The skeleton is completed by the 7,7-trimethyl-6,8-dioxabi-cyclo-[3.2.1]oct-3-en-2-one group connected to the terminal cyclohexene ring. The two cyclohexane rings adopt chair and half-chair conformations, while in the dioxabi-cyclo-[3.2.1]oct-3-en-2-one unit, the six-membered ring has a half-chair conformation. The indole system of the mol-ecule exhibits a tilt of 2.02 (1)° between its two rings. In the crystal, O-H⋯O hydrogen bonds connect mol-ecules into chains along [010]. Weak N-H⋯π inter-actions connect these chains, forming sheets parallel to (10-1).

  19. A molecular dynamics study of the effect of thermal boundary conductance on thermal transport of ideal crystal of n-alkanes with different number of carbon atoms

    NASA Astrophysics Data System (ADS)

    Rastgarkafshgarkolaei, Rouzbeh; Zeng, Yi; Khodadadi, J. M.

    2016-05-01

    Phase change materials such as n-alkanes that exhibit desirable characteristics such as high latent heat, chemical stability, and negligible supercooling are widely used in thermal energy storage applications. However, n-alkanes have the drawback of low thermal conductivity values. The low thermal conductivity of n-alkanes is linked to formation of randomly oriented nano-domains of molecules in their solid structure that is responsible for excessive phonon scattering at the grain boundaries. Thus, understanding the thermal boundary conductance at the grain boundaries can be crucial for improving the effectiveness of thermal storage systems. The concept of the ideal crystal is proposed in this paper, which describes a simplified model such that all the nano-domains of long-chain n-alkanes are artificially aligned perfectly in one direction. In order to study thermal transport of the ideal crystal of long-chain n-alkanes, four (4) systems (C20H42, C24H50, C26H54, and C30H62) are investigated by the molecular dynamics simulations. Thermal boundary conductance between the layers of ideal crystals is determined using both non-equilibrium molecular dynamics (NEMD) and equilibrium molecular dynamics (EMD) simulations. Both NEMD and EMD simulations exhibit no significant change in thermal conductance with the molecular length. However, the values obtained from the EMD simulations are less than the values from NEMD simulations with the ratio being nearly three (3) in most cases. This difference is due to the nature of EMD simulations where all the phonons are assumed to be in equilibrium at the interface. Thermal conductivity of the n-alkanes in three structures including liquid, solid, and ideal crystal is investigated utilizing NEMD simulations. Our results exhibit a very slight rise in thermal conductivity values as the number of carbon atoms of the chain increases. The key understanding is that thermal transport can be significantly altered by how the molecules and the

  20. Effect of Defects on Mechanisms of Initiation and Energy Release in Energetic Molecular Crystals

    DTIC Science & Technology

    2011-02-10

    thermal stability, electronic structure, and chemical and physical properties of the solid DADNE matrix. The resulting conclusions may have implications...Shear-strain-induced structural and electronic modifications of the molecular crystal 1,1-diamino- 2,2-dinitroethylene: Slip-plane flow and band gap...induced inelastic effects in the electron transport through multisite molecular bridges,” J. Chem. Phys., 131, 114703 (2009). 41. A.V.Kimmel, P.V.Sushko

  1. Crystal and molecular structure of sodium paratungstate 26 hydrate

    SciTech Connect

    Cruywagen, J.J.; Nassibemi, L.R.; Niven, M.L.; Vander Merwe, I.F.

    1986-08-01

    On standing, an acid solution of tungstate yields single crystals of the paratungstate salt Na/sub 10/(H/sub 2/W/sub 12/O/sub 42/ /SUB sd/ /SUP ./ 26H/sub 2/O. The space group is P1, (No. 2), a 11.811(2), b = 12.486(2), c = 12.206(2) A, ..cap alpha.. = 82.29(1), ..beta.. = 115.12(1), ..gamma.. = 113.76(1) /sup 0/, V = 1485.6 A/sup 3/, Z = 1. The structure was solved by direct methods and refined to R = 0.0397, R /SUB w/ = 0.0403 (w = (sigma/sup 2/F)/sup -1/). The 12 WO/sub 6/ octahedra (shared edges and vertices) are distorted from regular geometry; one of the sodium ions exhibits disorder and there is extensive hydrogen bonding between the water molecules and the oxygens of the paratungstate anion.

  2. Crystallized and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates

    PubMed Central

    Liu, Chao-Fei; Fan, Heng; Gou, Shih-Chuan; Liu, Wu-Ming

    2014-01-01

    Vortex is a topological defect with a quantized winding number of the phase in superfluids and superconductors. Here, we investigate the crystallized (triangular, square, honeycomb) and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates (BECs) by using the damped projected Gross-Pitaevskii equation. The amorphous vortices are the result of the considerable deviation induced by the interaction of atomic-molecular vortices. By changing the atom-molecule interaction from attractive to repulsive, the configuration of vortices can change from an overlapped atomic-molecular vortices to carbon-dioxide-type ones, then to atomic vortices with interstitial molecular vortices, and finally into independent separated ones. The Raman detuning can tune the ratio of the atomic vortex to the molecular vortex. We provide a phase diagram of vortices in rotating atomic-molecular BECs as a function of Raman detuning and the strength of atom-molecule interaction. PMID:24573303

  3. The calculation of electrostatic interactions and their role in determining the energies and geometries of explosive molecular crystals

    SciTech Connect

    Ritchie, J.P.; Kober, E.M.; Copenhaver, A.S.

    1993-01-01

    Three different procedures were used to calculate electrostatic interactions in explosive molecular crystals. The use of Potential Derived Charges (PDC's) and atom-centered multipole expansions (ACME's) provides reasonable fits of the molecular electrostatic potential. The ability of these approaches to reproduce observed crystal structures was also evaluated.

  4. Molecular Optics Nonlinear Optical Processes in Organic and Polymeric Crystals and Films

    DTIC Science & Technology

    1988-04-01

    LAr 9B L Appr 1~ forjIbi1893 2 8 I I IE2 Molecular Optics: Nonlinear Optical Processes in Organic and Polymeric Crystals and Films i Professor A. F...frequency dependent local field factors. While there are various prevalent models (Lorentz- Lorenz, Onsager ) all of them give the field factors in terms of

  5. Energy Minimization of Molecular Features Observed on the (110) Face of Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Perozzo, Mary A.; Konnert, John H.; Li, Huayu; Nadarajah, Arunan; Pusey, Marc

    1999-01-01

    Molecular dynamics and energy minimization have been carried out using the program XPLOR to check the plausibility of a model lysozyme crystal surface. The molecular features of the (110) face of lysozyme were observed using atomic force microscopy (AFM). A model of the crystal surface was constructed using the PDB file 193L, and was used to simulate an AFM image. Molecule translations, van der Waals radii, and assumed AFM tip shape were adjusted to maximize the correlation coefficient between the experimental and simulated images. The highest degree of 0 correlation (0.92) was obtained with the molecules displaced over 6 A from their positions within the bulk of the crystal. The quality of this starting model, the extent of energy minimization, and the correlation coefficient between the final model and the experimental data will be discussed.

  6. Effect of the Crystal Environment on Side-Chain Conformational Dynamics in Cyanovirin-N Investigated through Crystal and Solution Molecular Dynamics Simulations

    PubMed Central

    Ahlstrom, Logan S.; Vorontsov, Ivan I.; Shi, Jun; Miyashita, Osamu

    2017-01-01

    Side chains in protein crystal structures are essential for understanding biochemical processes such as catalysis and molecular recognition. However, crystal packing could influence side-chain conformation and dynamics, thus complicating functional interpretations of available experimental structures. Here we investigate the effect of crystal packing on side-chain conformational dynamics with crystal and solution molecular dynamics simulations using Cyanovirin-N as a model system. Side-chain ensembles for solvent-exposed residues obtained from simulation largely reflect the conformations observed in the X-ray structure. This agreement is most striking for crystal-contacting residues during crystal simulation. Given the high level of correspondence between our simulations and the X-ray data, we compare side-chain ensembles in solution and crystal simulations. We observe large decreases in conformational entropy in the crystal for several long, polar and contacting residues on the protein surface. Such cases agree well with the average loss in conformational entropy per residue upon protein folding and are accompanied by a change in side-chain conformation. This finding supports the application of surface engineering to facilitate crystallization. Our simulation-based approach demonstrated here with Cyanovirin-N establishes a framework for quantitatively comparing side-chain ensembles in solution and in the crystal across a larger set of proteins to elucidate the effect of the crystal environment on protein conformations. PMID:28107510

  7. Controlling crystal phases in GaAs nanowires grown by Au-assisted molecular beam epitaxy.

    PubMed

    Dheeraj, D L; Munshi, A M; Scheffler, M; van Helvoort, A T J; Weman, H; Fimland, B O

    2013-01-11

    Control of the crystal phases of GaAs nanowires (NWs) is essential to eliminate the formation of stacking faults which deteriorate the optical and electronic properties of the NWs. In addition, the ability to control the crystal phase of NWs provides an opportunity to engineer the band gap without changing the crystal material. We show that the crystal phase of GaAs NWs grown on GaAs(111)B substrates by molecular beam epitaxy using the Au-assisted vapor-liquid-solid growth mechanism can be tuned between wurtzite (WZ) and zinc blende (ZB) by changing the V/III flux ratio. As an example we demonstrate the realization of WZ GaAs NWs with a ZB GaAs insert that has been grown without changing the substrate temperature.

  8. Uncovering molecular details of urea crystal growth in the presence of additives.

    PubMed

    Salvalaglio, Matteo; Vetter, Thomas; Giberti, Federico; Mazzotti, Marco; Parrinello, Michele

    2012-10-17

    Controlling the shape of crystals is of great practical relevance in fields like pharmacology and fine chemistry. Here we examine the paradigmatic case of urea which is known to crystallize from water with a needle-like morphology. To prevent this undesired effect, inhibitors that selectively favor or discourage the growth of specific crystal faces can be used. In urea the most relevant faces are the {001} and the {110} which are known to grow fast and slow, respectively. The relevant growth speed difference between these two crystal faces is responsible for the needle-like structure of crystals grown in water solution. To prevent this effect, additives are used to slow down the growth of one face relative to another, thus controlling the shape of the crystal. We study the growth of fast {001} and slow {110} faces in water solution and the effect of shape controlling inhibitors like biuret. Extensive sampling through molecular dynamics simulations provides a microscopic picture of the growth mechanism and of the role of the additives. We find a continuous growth mechanism on the {001} face, while the slow growing {110} face evolves through a birth and spread process, in which the rate-determining step is the formation on the surface of a two-dimensional crystalline nucleus. On the {001} face, growth inhibitors like biuret compete with urea for the adsorption on surface lattice sites; on the {110} face instead additives cannot interact specifically with surface sites and play a marginal sterical hindrance of the crystal growth. The free energies of adsorption of additives and urea are evaluated with advanced simulation methods (well-tempered metadynamics) allowing a microscopic understanding of the selective effect of additives. Based on this case study, general principles for the understanding of the anisotropic growth of molecular crystals from solutions are laid out. Our work is a step toward a rational development of novel shape-affecting additives.

  9. Molecular mechanisms of crystallization impacting calcium phosphate cements

    PubMed Central

    Giocondi, Jennifer L.; El-Dasher, Bassem S.; Nancollas, George H.; Orme, Christine A.

    2010-01-01

    The biomineral calcium hydrogen phosphate dihydrate (CaHPO4·2H2O), known as brushite, is a malleable material that both grows and dissolves faster than most other calcium minerals, including other calcium phosphate phases, calcium carbonates and calcium oxalates. Within the body, this ready formation and dissolution can play a role in certain diseases, such as kidney stone and plaque formation. However, these same properties, along with brushite’s excellent biocompatibility, can be used to great benefit in making resorbable biomedical cements. To optimize cements, additives are commonly used to control crystallization kinetics and phase transformation. This paper describes the use of in situ scanning probe microscopy to investigate the role of several solution parameters and additives in brushite atomic step motion. Surprisingly, this work demonstrates that the activation barrier for phosphate (rather than calcium) incorporation limits growth kinetics and that additives such as magnesium, citrate and bisphosphonates each influence step motion in distinctly different ways. Our findings provide details of how, and where, molecules inhibit or accelerate kinetics. These insights have the potential to aid in designing molecules to target specific steps and to guide synergistic combinations of additives. PMID:20308110

  10. Molecular and crystal structure of anhydrous zirconium perchlorate

    SciTech Connect

    Genkina, E.A.; Babaeva, V.P.; Rosolovskii, V.Ya.

    1985-08-01

    An x-ray diffraction investigation (diffractometer, Mo K..cap alpha.., graphite monochromator, omega scan technique, Theta less than or equal to 30/sup 0/, 1060 reflections, least-squares method in the anisotropic approximation to R = 0.058) of anhydrous zirconium perchlorate has been carried out. The crystals of Zr(Cl0/sub 4/)/sub 4/ are monoclinic: ..cap alpha.. = 12.899(3), b = 13.188(7), c = 7.937(3) A, ..gamma.. = 107.91/sup 0/, Z = 4, space group Bb. The structure has an island character and is built up from isolated Zr(ClO/sub 4/)/sub 4/ molecules. The Zr atom is surrounded by eight O atoms in four bidentate perchlorato groups. The Zr-O distances lie in the range from 2.13 to 2.23 A, averaging 2.19 A. The eight-vertex polyhedron around Zr is the mmmm steroisomer of a dodecahedron. The centers of the perchlorato groups are located at the vertices of flattened tetrahedron. The ClO/sub 4/ groups have a distorted tetrahedral structure, and the mean length of the Cl-O/sub b/ bonds (1.50 A) is 0.11 A greater than the mean length of the Cl-O/sub t/ bonds, pointing out the essentially covalent character of the bonds of the perchlorato groups with the central Zr atom.

  11. Direct evidence of the molecular interaction propagation in the phase transition of liquid crystals

    NASA Astrophysics Data System (ADS)

    Katayama, Kenji; Sato, Takahiro; Kuwahara, Shota

    2016-09-01

    The molecular interaction sometimes propagates in a collective manner, reaching for a long distance on the order of millimeters. Such interactions have been well known in the field of strongly-correlated electron systems in a beautiful crystal interleaved by donor and acceptor layers, induced by photo-stimulus. The other examples can be found in liquid crystals (LCs), which could be found in many places in nature such as bio-membrane. Different from crystals, LCs features "softness", which enables it to be a curved structure such as a cell. In LCs, even a small molecular change would trigger the overall structural change by the propagation of the molecular interaction. Here we will show, for the first time, how long and how fast the molecular interaction propagates in LCs. The patterned phase transition was induced in a LC, causing the phase transition propagation in a controlled way and the propagation was measured with an time-resolved optical technique, called the transient grating. A LC sample doped with azobenzene was put into a thermally controlled LC cell. A grating pattern of a pulse light with 355 nm was impinged to the LC cell, and the light was absorbed by the dyes, releasing heat or photomechanical motion. We could observe the fringe spacing dependence on the phase transition response, which indicates that phase transition was delayed as the fringe spacing due to the delay by the phase transition propagation. This is the first direct evidence of the molecular interaction propagation of the LC molecules.

  12. Putting pressure on aromaticity along with in situ experimental electron density of a molecular crystal

    PubMed Central

    Casati, Nicola; Kleppe, Annette; Jephcoat, Andrew P.; Macchi, Piero

    2016-01-01

    When pressure is applied, the molecules inside a crystal undergo significant changes of their stereoelectronic properties. The most interesting are those enhancing the reactivity of systems that would be otherwise rather inert at ambient conditions. Before a reaction can occur, however, a molecule must be activated, which means destabilized. In aromatic compounds, molecular stability originates from the resonance between two electronic configurations. Here we show how the resonance energy can be decreased in molecular crystals on application of pressure. The focus is on syn-1,6:8,13-Biscarbonyl[14]annulene, an aromatic compound at ambient conditions that gradually localizes one of the resonant configurations on compression. This phenomenon is evident from the molecular geometries measured at several pressures and from the experimentally determined electron density distribution at 7.7 GPa; the observations presented in this work are validated by periodic DFT calculations. PMID:26979750

  13. Molecular imprinted photonic crystal hydrogels for the rapid and label-free detection of imidacloprid.

    PubMed

    Wang, Xuan; Mu, Zhongde; Liu, Ran; Pu, Yuepu; Yin, Lihong

    2013-12-15

    A novel sensor for the rapid and label-free detection of imidacloprid was developed based on the combination of a colloidal crystal templating method and a molecular imprinting technique. The molecular imprinted photonic hydrogel film was prepared with methacrylic acid as monomers, ethylene glycol dimethylacrylate as cross-linkers and imidacloprid as imprinting template molecules. When the colloidal crystal template and the molecularly imprinted template was removed, the resulted MIPH film possessed a highly ordered three-dimensional macroporous structure with nanocavities. The response of the MIPH film to imidacloprid in aqueous solution can be detected through a readable Bragg diffraction red shift. When the concentration of imidacloprid increased from 10(-13) to 10(-7) g/mL, the Bragg diffraction peak shifted from 551 to 589 nm, while there were no obvious peak shifts for thiamethoxam and acetamiprid. This sensor which comprises of no label techniques and expensive instruments has potential application for the detection of trace imidacloprid.

  14. Nonequilibrium radiative hypersonic flow simulation

    NASA Astrophysics Data System (ADS)

    Shang, J. S.; Surzhikov, S. T.

    2012-08-01

    Nearly all the required scientific disciplines for computational hypersonic flow simulation have been developed on the framework of gas kinetic theory. However when high-temperature physical phenomena occur beneath the molecular and atomic scales, the knowledge of quantum physics and quantum chemical-physics becomes essential. Therefore the most challenging topics in computational simulation probably can be identified as the chemical-physical models for a high-temperature gaseous medium. The thermal radiation is also associated with quantum transitions of molecular and electronic states. The radiative energy exchange is characterized by the mechanisms of emission, absorption, and scattering. In developing a simulation capability for nonequilibrium radiation, an efficient numerical procedure is equally important both for solving the radiative transfer equation and for generating the required optical data via the ab-initio approach. In computational simulation, the initial values and boundary conditions are paramount for physical fidelity. Precise information at the material interface of ablating environment requires more than just a balance of the fluxes across the interface but must also consider the boundary deformation. The foundation of this theoretic development shall be built on the eigenvalue structure of the governing equations which can be described by Reynolds' transport theorem. Recent innovations for possible aerospace vehicle performance enhancement via an electromagnetic effect appear to be very attractive. The effectiveness of this mechanism is dependent strongly on the degree of ionization of the flow medium, the consecutive interactions of fluid dynamics and electrodynamics, as well as an externally applied magnetic field. Some verified research results in this area will be highlighted. An assessment of all these most recent advancements in nonequilibrium modeling of chemical kinetics, chemical-physics kinetics, ablation, radiative exchange

  15. Topological defects in liquid crystals as templates for molecular self-assembly

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoguang; Miller, Daniel S.; Bukusoglu, Emre; de Pablo, Juan J.; Abbott, Nicholas L.

    2016-01-01

    Topological defects in liquid crystals (LCs) have been widely used to organize colloidal dispersions and template polymerization, leading to a range of assemblies, elastomers and gels. However, little is understood about molecular-level assembly processes within defects. Here, we report that nanoscopic environments defined by LC topological defects can selectively trigger processes of molecular self-assembly. By using fluorescence microscopy, cryogenic transmission electron microscopy and super-resolution optical microscopy, we observed signatures of molecular self-assembly of amphiphilic molecules in topological defects, including cooperativity, reversibility and controlled growth. We also show that nanoscopic o-rings synthesized from Saturn-ring disclinations and other molecular assemblies templated by defects can be preserved by using photocrosslinkable amphiphiles. Our results reveal that, in analogy to other classes of macromolecular templates such as polymer-surfactant complexes, topological defects in LCs are a versatile class of three-dimensional, dynamic and reconfigurable templates that can direct processes of molecular self-assembly.

  16. Interplay between Long-Range Crystal Order and Short-Range Molecular Interactions Tunes Carrier Mobility in Liquid Crystal Dyes

    PubMed Central

    2017-01-01

    We investigated the influence of molecular packing on the optical and electrical properties of the liquid crystalline dye 4,7-bis[5-(2-fluoro-4-pentyl-phenyl)-2-thienyl]-2,1,3-benzothiadiazole (FPPTB). FPPTB is crystalline at room temperature, exhibits a nematic phase at temperatures above 149 °C and is in an isotropic melt at temperatures above 230 °C. Solution processed FPPTB films were subject to thermal annealing through these phase transition temperatures and characterized with X-ray diffraction and polarized optical microscopy. Cooling FPPTB films from the nematic and isotropic phases increased crystal domain size, but also induced local structural variations in the molecular packing of crystalline FPPTB. The decrease in long-range order was correlated with an increase in short-range π–π interactions, leading to changes in molecular aggregation which persisted even when the FPPTB films were cooled to room temperature. Annealing-induced changes in molecular aggregation were confirmed with optical spectroscopy. The carrier mobility in FPPTB films increased over 2 orders of magnitude from (2.2 ± 0.4) × 10–5 cm2 V–1 s–1 in as-spun films to μ = (5.0 ± 0.8) × 10–3 cm2 V–1 s–1 in films cooled from the isotropic melt. We discuss the relationship between thermal stability and high carrier mobility values in terms of the interplay between long-range molecular order and increased π–π interactions between molecular pairs in the FPPTB film. PMID:28139915

  17. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics.

    PubMed

    Pyzer-Knapp, Edward O; Thompson, Hugh P G; Day, Graeme M

    2016-08-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%.

  18. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics

    PubMed Central

    Pyzer-Knapp, Edward O.; Thompson, Hugh P. G.; Day, Graeme M.

    2016-01-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370

  19. The nature of singlet excitons in oligoacene molecular crystals

    SciTech Connect

    Yamagata, H.; Norton, J.; Hontz, E.; Olivier, Y.; Beljonne, D.; Bredas, J. L.; Silbey, R. J.; Spano, F. C.

    2011-01-01

    A theory for polarized absorption in crystalline oligoacenes is presented, which includes Frenkel exciton coupling, the coupling between Frenkel and charge-transfer (CT) excitons, and the coupling of all neutral and ionic excited states to the dominant ring-breathing vibrational mode. For tetracene, spectra calculated using all Frenkel couplings among the five lowest energy molecular singlet states predict a Davydov splitting (DS) of the lowest energy (0–0) vibronic band of only -32 cm-1, far smaller than the measured value of 631 cm-1 and of the wrong sign--a negative sign indicating that the polarizations of the lower and upper Davydov components are reversed from experiment. Inclusion of Frenkel-CT coupling dramatically improves the agreement with experiment, yielding a 0–0 DS of 601 cm-1 and a nearly quantitative reproduction of the relative spectral intensities of the 0–n vibronic components. Our analysis also shows that CT mixing increases with the size of the oligoacenes. We discuss the implications of these results on exciton dissociation and transport.

  20. Crystal and molecular structure of 1α-hydroxylated analogs of vitamins D

    NASA Astrophysics Data System (ADS)

    Kolodziejski, Waclaw; Woźniak, Krzysztof; Herold, Joanna; Dominiak, Paulina M.; Kutner, Andrzej

    2005-01-01

    Structures of two 1α-hydroxylated analogs of vitamins D, 1α-hydroxycholecalciferol and 1α-hydroxyergocalciferol, were solved and refined using single crystal X-ray diffraction. Crystallographic results are verified by 13C CP/MAS NMR. This method provided also information on molecular mobility of analogs. In the crystal state, both molecules adopt exclusively a chair β-conformation of the 6-member ring A. It has been suggested that this conformation is preferred, when vitamin D molecules participate in hydrogen bonding. This is consistent with the earlier hypothesis that the β-conformers are involved in the interaction of vitamins D with their receptors.

  1. Simulating Picosecond X-ray Diffraction from shocked crystals by Post-processing Molecular Dynamics Calculations

    SciTech Connect

    Kimminau, G; Nagler, B; Higginbotham, A; Murphy, W; Park, N; Hawreliak, J; Kadau, K; Germann, T C; Bringa, E M; Kalantar, D; Lorenzana, H; Remington, B; Wark, J

    2008-06-19

    Calculations of the x-ray diffraction patterns from shocked crystals derived from the results of Non-Equilibrium-Molecular-Dynamics (NEMD) simulations are presented. The atomic coordinates predicted by the NEMD simulations combined with atomic form factors are used to generate a discrete distribution of electron density. A Fast-Fourier-Transform (FFT) of this distribution provides an image of the crystal in reciprocal space, which can be further processed to produce quantitative simulated data for direct comparison with experiments that employ picosecond x-ray diffraction from laser-irradiated crystalline targets.

  2. Tracking and Motion Analysis of Crack Propagations in Crystals for Molecular Dynamics

    SciTech Connect

    Tsap, L V; Duchaineau, M; Goldgof, D B

    2001-05-14

    This paper presents a quantitative analysis for a discovery in molecular dynamics. Recent simulations have shown that velocities of crack propagations in crystals under certain conditions can become supersonic, which is contrary to classical physics. In this research, they present a framework for tracking and motion analysis of crack propagations in crystals. It includes line segment extraction based on Canny edge maps, feature selection based on physical properties, and subsequent tracking of primary and secondary wavefronts. This tracking is completely automated; it runs in real time on three 834-image sequences using forty 250 MHZ processors. Results supporting physical observations are presented in terms of both feature tracking and velocity analysis.

  3. Four- and five-component molecular solids: crystal engineering strategies based on structural inequivalence.

    PubMed

    Mir, Niyaz A; Dubey, Ritesh; Desiraju, Gautam R

    2016-03-01

    A synthetic strategy is described for the co-crystallization of four- and five-component molecular crystals, based on the fact that if any particular chemical constituent of a lower cocrystal is found in two different structural environments, these differences may be exploited to increase the number of components in the solid. 2-Methylresorcinol and tetramethylpyrazine are basic template molecules that allow for further supramolecular homologation. Ten stoichiometric quaternary cocrystals and one quintinary cocrystal with some solid solution character are reported. Cocrystals that do not lend themselves to such homologation are termed synthetic dead ends.

  4. Molecular Dynamics in a Liquid Crystal with Reentrant Mesophases

    NASA Astrophysics Data System (ADS)

    Sebastião, P. J.; Ribeiro, A. C.; Nguyen, H. T.; Noack, F.

    1995-11-01

    It is well known that liquid crystalline compounds with a cyano terminal group can present peculiar polymorphisms in particular different types of smectic A mesophases and a reentrant behaviour for both nematic and smectic A mesophases. In this work we study by proton NMR relaxation the influence of these features on the molecular dynamics of the compound 4-cyanobenzoate-4'-octylbenzoyloxyphenyl (DB8CN Sym) in its nematic (N), partial bilayer smectic A (SAd), reentrant nematic (Nre) and reentrant smectic A (SA1) mesophases. Standard and fast field-cycling techniques were used for our spin-lattice relaxation's study over a broad frequency range of 6 decades (200 Hz up to 300 MHz). It was found that the molecular dynamics in the nematic mesophases is rather different from the molecular dynamics in the smectic A mesophases. However, the reentrant aspect present in both nematic and smectic A states is not associated to a major difference on the molecular dynamics of the nematic and reentrant nematic or smectic and reentrant smectic A mesophases. Order director fluctuations and rotations/reorientations are the most important relaxation mechanisms in the nematic mesophases in the lower and higher frequency limits, respectively, while self-diffusion has a very small contribution to the overall relaxation. As for the smectic A mesophases, self-diffusion and rotations/reorientations are the predominant relaxation mechanisms for frequencies above 20 kHz. The collective motions, which for these mesophases have to be associated with layer undulations with the frequency law T_1sim ν, are only important to the spin-lattice relaxation on the low part of the frequency spectrum (ν<10 kHz). The inclusion in the relaxation study of a contribution from the cross-relaxation between protons and nitrogen nuclei improves the quality of the 1/T_1 data fits in both kinds of mesophases. The combined study of the molecular dynamics in the N, SAd, Nre and SA1 mesophases of DB8CN Sym reveals

  5. In situ observation of mono-molecular growth steps on aqueous solution grown crystals and the transport of molecules to the crystals

    NASA Technical Reports Server (NTRS)

    Tsukamoto, Katsuo

    1987-01-01

    Direct in situ observation of mono-molecular growth steps on a crystal growing in an aqueous solution became possible. The combination of this method with high resolution Schlieren methods or interferometry, permits the growth mechanism of crystals to be investigated directly. Since the observation of growth steps on crystals is the most direct and sensitive way for investigating a crystal growth mechanism, it would contribute to revealing fundamental differences between the growth in space and on Earth. The method was recently extended to in situ observation of the growth processes at high temperatures (1800K).

  6. Evaluating the effects of loading parameters on single-crystal slip in tantalum using molecular mechanics

    NASA Astrophysics Data System (ADS)

    Alleman, Coleman; Ghosh, Somnath; Luscher, D. J.; Bronkhorst, Curt A.

    2014-01-01

    This study is aimed at developing a physics-based crystal plasticity finite element model for body-centred cubic (BCC) metals, through the introduction of atomic-level deformation information from molecular dynamics (MD) investigations of dislocation motion at the onset of plastic flow. In this study, three critical variables governing crystal plasticity mediated by dislocation motion are considered. MD simulations are first performed across a range of finite temperatures up to 600K to quantify the temperature dependence of critical stress required for slip initiation. An important feature of slip in BCC metals is that it is not solely dependent on the Schmid law measure of resolved shear stress, commonly employed in crystal plasticity models. The configuration of a screw dislocation and its subsequent motion is studied under different load orientations to quantify these non-Schmid effects. Finally, the influence of strain rates on thermal activation is studied by inducing higher stresses during activation at higher applied strain rates. Functional dependence of the critical resolved shear stress on temperature, loading orientation and strain rate is determined from the MD simulation results. The functional forms are derived from the thermal activation mechanisms that govern the plastic behaviour and quantification of relevant deformation variables. The resulting physics-based rate-dependent crystal plasticity model is implemented in a crystal plasticity finite element code. Uniaxial simulations reveal orientation-dependent tension-compression asymmetry of yield that more accurately represents single-crystal experimental results than standard models.

  7. Exchange-Hole Dipole Dispersion Model for Accurate Energy Ranking in Molecular Crystal Structure Prediction.

    PubMed

    Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R

    2017-02-14

    Accurate energy ranking is a key facet to the problem of first-principles crystal-structure prediction (CSP) of molecular crystals. This work presents a systematic assessment of B86bPBE-XDM, a semilocal density functional combined with the exchange-hole dipole moment (XDM) dispersion model, for energy ranking using 14 compounds from the first five CSP blind tests. Specifically, the set of crystals studied comprises 11 rigid, planar compounds and 3 co-crystals. The experimental structure was correctly identified as the lowest in lattice energy for 12 of the 14 total crystals. One of the exceptions is 4-hydroxythiophene-2-carbonitrile, for which the experimental structure was correctly identified once a quasi-harmonic estimate of the vibrational free-energy contribution was included, evidencing the occasional importance of thermal corrections for accurate energy ranking. The other exception is an organic salt, where charge-transfer error (also called delocalization error) is expected to cause the base density functional to be unreliable. Provided the choice of base density functional is appropriate and an estimate of temperature effects is used, XDM-corrected density-functional theory is highly reliable for the energetic ranking of competing crystal structures.

  8. Phenomenological model of spin crossover in molecular crystals as derived from atom-atom potentials.

    PubMed

    Sinitskiy, Anton V; Tchougréeff, Andrei L; Dronskowski, Richard

    2011-08-07

    The method of atom-atom potentials, previously applied to the analysis of pure molecular crystals formed by either low-spin (LS) or high-spin (HS) forms (spin isomers) of Fe(II) coordination compounds (Sinitskiy et al., Phys. Chem. Chem. Phys., 2009, 11, 10983), is used to estimate the lattice enthalpies of mixed crystals containing different fractions of the spin isomers. The crystals under study were formed by LS and HS isomers of Fe(phen)(2)(NCS)(2) (phen = 1,10-phenanthroline), Fe(btz)(2)(NCS)(2) (btz = 5,5',6,6'-tetrahydro-4H,4'H-2,2'-bi-1,3-thiazine), and Fe(bpz)(2)(bipy) (bpz = dihydrobis(1-pyrazolil)borate, and bipy = 2,2'-bipyridine). For the first time the phenomenological parameters Γ pertinent to the Slichter-Drickamer model (SDM) of several materials were independently derived from the microscopic model of the crystals with use of atom-atom potentials of intermolecular interaction. The accuracy of the SDM was checked against the numerical data on the enthalpies of mixed crystals. Fair semiquantitative agreement with the experimental dependence of the HS fraction on temperature was achieved with use of these values. Prediction of trends in Γ values as a function of chemical composition and geometry of the crystals is possible with the proposed approach, which opens a way to rational design of spin crossover materials with desired properties.

  9. Predicting Molecular Crystal Properties from First Principles: Finite-Temperature Thermochemistry to NMR Crystallography.

    PubMed

    Beran, Gregory J O; Hartman, Joshua D; Heit, Yonaton N

    2016-11-15

    Molecular crystals occur widely in pharmaceuticals, foods, explosives, organic semiconductors, and many other applications. Thanks to substantial progress in electronic structure modeling of molecular crystals, attention is now shifting from basic crystal structure prediction and lattice energy modeling toward the accurate prediction of experimentally observable properties at finite temperatures and pressures. This Account discusses how fragment-based electronic structure methods can be used to model a variety of experimentally relevant molecular crystal properties. First, it describes the coupling of fragment electronic structure models with quasi-harmonic techniques for modeling the thermal expansion of molecular crystals, and what effects this expansion has on thermochemical and mechanical properties. Excellent agreement with experiment is demonstrated for the molar volume, sublimation enthalpy, entropy, and free energy, and the bulk modulus of phase I carbon dioxide when large basis second-order Møller-Plesset perturbation theory (MP2) or coupled cluster theories (CCSD(T)) are used. In addition, physical insight is offered into how neglect of thermal expansion affects these properties. Zero-point vibrational motion leads to an appreciable expansion in the molar volume; in carbon dioxide, it accounts for around 30% of the overall volume expansion between the electronic structure energy minimum and the molar volume at the sublimation point. In addition, because thermal expansion typically weakens the intermolecular interactions, neglecting thermal expansion artificially stabilizes the solid and causes the sublimation enthalpy to be too large at higher temperatures. Thermal expansion also frequently weakens the lower-frequency lattice phonon modes; neglecting thermal expansion causes the entropy of sublimation to be overestimated. Interestingly, the sublimation free energy is less significantly affected by neglecting thermal expansion because the systematic

  10. Non-equilibrium dynamics from RPMD and CMD.

    PubMed

    Welsch, Ralph; Song, Kai; Shi, Qiang; Althorpe, Stuart C; Miller, Thomas F

    2016-11-28

    We investigate the calculation of approximate non-equilibrium quantum time correlation functions (TCFs) using two popular path-integral-based molecular dynamics methods, ring-polymer molecular dynamics (RPMD) and centroid molecular dynamics (CMD). It is shown that for the cases of a sudden vertical excitation and an initial momentum impulse, both RPMD and CMD yield non-equilibrium TCFs for linear operators that are exact for high temperatures, in the t = 0 limit, and for harmonic potentials; the subset of these conditions that are preserved for non-equilibrium TCFs of non-linear operators is also discussed. Furthermore, it is shown that for these non-equilibrium initial conditions, both methods retain the connection to Matsubara dynamics that has previously been established for equilibrium initial conditions. Comparison of non-equilibrium TCFs from RPMD and CMD to Matsubara dynamics at short times reveals the orders in time to which the methods agree. Specifically, for the position-autocorrelation function associated with sudden vertical excitation, RPMD and CMD agree with Matsubara dynamics up to O(t(4)) and O(t(1)), respectively; for the position-autocorrelation function associated with an initial momentum impulse, RPMD and CMD agree with Matsubara dynamics up to O(t(5)) and O(t(2)), respectively. Numerical tests using model potentials for a wide range of non-equilibrium initial conditions show that RPMD and CMD yield non-equilibrium TCFs with an accuracy that is comparable to that for equilibrium TCFs. RPMD is also used to investigate excited-state proton transfer in a system-bath model, and it is compared to numerically exact calculations performed using a recently developed version of the Liouville space hierarchical equation of motion approach; again, similar accuracy is observed for non-equilibrium and equilibrium initial conditions.

  11. Non-equilibrium dynamics from RPMD and CMD

    NASA Astrophysics Data System (ADS)

    Welsch, Ralph; Song, Kai; Shi, Qiang; Althorpe, Stuart C.; Miller, Thomas F.

    2016-11-01

    We investigate the calculation of approximate non-equilibrium quantum time correlation functions (TCFs) using two popular path-integral-based molecular dynamics methods, ring-polymer molecular dynamics (RPMD) and centroid molecular dynamics (CMD). It is shown that for the cases of a sudden vertical excitation and an initial momentum impulse, both RPMD and CMD yield non-equilibrium TCFs for linear operators that are exact for high temperatures, in the t = 0 limit, and for harmonic potentials; the subset of these conditions that are preserved for non-equilibrium TCFs of non-linear operators is also discussed. Furthermore, it is shown that for these non-equilibrium initial conditions, both methods retain the connection to Matsubara dynamics that has previously been established for equilibrium initial conditions. Comparison of non-equilibrium TCFs from RPMD and CMD to Matsubara dynamics at short times reveals the orders in time to which the methods agree. Specifically, for the position-autocorrelation function associated with sudden vertical excitation, RPMD and CMD agree with Matsubara dynamics up to O (t4) and O (t1) , respectively; for the position-autocorrelation function associated with an initial momentum impulse, RPMD and CMD agree with Matsubara dynamics up to O (t5) and O (t2) , respectively. Numerical tests using model potentials for a wide range of non-equilibrium initial conditions show that RPMD and CMD yield non-equilibrium TCFs with an accuracy that is comparable to that for equilibrium TCFs. RPMD is also used to investigate excited-state proton transfer in a system-bath model, and it is compared to numerically exact calculations performed using a recently developed version of the Liouville space hierarchical equation of motion approach; again, similar accuracy is observed for non-equilibrium and equilibrium initial conditions.

  12. Investigation of the linear and second-order nonlinear optical properties of molecular crystals within the local field theory.

    PubMed

    Seidler, Tomasz; Stadnicka, Katarzyna; Champagne, Benoît

    2013-09-21

    In this paper it is shown that modest calculations combining first principles evaluations of the molecular properties with electrostatic interaction schemes to account for the crystal environment effects are reliable for predicting and interpreting the experimentally measured electric linear and second-order nonlinear optical susceptibilities of molecular crystals within the experimental error bars. This is illustrated by considering two molecular crystals, namely: 2-methyl-4-nitroaniline and 4-(N,N-dimethylamino)-3-acetamidonitrobenzene. Three types of surrounding effects should be accounted for (i) the polarization due to the surrounding molecules, described here by static electric fields originating from their electric dipoles or charge distributions, (ii) the intermolecular interactions, which affect the geometry and particularly the molecular conformation, and (iii) the screening of the external electric field by the constitutive molecules. This study further highlights the role of electron correlation on the linear and nonlinear responses of molecular crystals and the challenge of describing frequency dispersion.

  13. The Crystal and Molecular Structure of Acetatochlorobis(4-methylpyridine)oxovanadium (IV)

    NASA Technical Reports Server (NTRS)

    Schupp, John D.; Hepp, Aloysius F.; Duraj, Stan A.; Richman, Robert M.; Fanwick, Phillip E.; Hakimzadeh, Roshanak (Technical Monitor)

    2001-01-01

    The crystal and molecular structure of the title compound, VOCl(O2CCH3)(4-CH3C5H4N)2, has been determined by single-crystal x-ray diffraction. The material crystallizes in the space group P 1(bar) (#2) with a = 7.822(2), b = 8.023(l), c = 14.841(2) Angstroms, alpha = 99.73(l), beta = 91.41(l), and gamma = 117.13(l). The coordination geometry around the vanadium is a highly distorted octahedron. The molecule is remarkable for being a monomeric oxovanadium (IV) carboxylate. A generalized synthetic strategy is proposed for the preparation of oxovanadium (IV) monomers.

  14. Reflection of light by anisotropic molecular crystals including exciton-polaritons and spatial dispersion.

    PubMed

    Meskers, Stefan C J; Lakhwani, Girish

    2016-11-21

    A theory for the reflection of light by molecular crystals is described, which reproduces the minimum within the reflection band that is observed experimentally. The minimum in reflection is related to the excitation of polaritons in the crystal. The theory involves reformulation of the boundary conditions for electromagnetic waves at the interface between vacuum and material. The material is modeled by a cubic lattice of oriented Lorentz oscillators. By requiring uniformity of gauge of the electromagnetic potential across the interface between vacuum and the dipole lattice, the need for additional boundary conditions is obviated. The frequency separation between the maxima in reflectance on both sides of the minimum allows for the extraction of a plasma frequency. The plasma frequencies extracted from reflection spectra are compared to the plasma frequencies calculated directly from structural data on the crystals and the oscillator strengths of the constituent molecules. A good agreement between extracted and calculated plasma frequency is obtained for a set of 11 dye molecules.

  15. Formation of the molecular crystal structure during the vacuum sublimation of paracetamol

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.

    2015-04-01

    The results from structural and thermal studies on the formation of molecular crystals during the vacuum sublimation of paracetamol from its vapor phase are given. It is established that the vapor-crystal phase transition proceeds in a complicated way as the superposition of two phase transitions: a first-order phase transition with a change in density, and a second-order phase transition with a change in ordering. It is shown that the latter is a smeared phase transition that proceeds with the formation of a pretransitional phase that is irreversibly dissipated during phase transformation, leading to the formation of crystals of the rhombic syngony. Data from differential scanning calorimetry and X-ray diffraction analysis are presented along with microphotographs.

  16. Crystallization characteristics in supercooled liquid zinc during isothermal relaxation: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Zhou, Li-Li; Liu, Rang-Su; Tian, Ze-An; Liu, Hai-Rong; Hou, Zhao-Yang; Peng, Ping

    2016-08-01

    The crystallization characteristics in supercooled liquid Zn during isothermal relaxation were investigated using molecular dynamics simulations by adopting the cluster-type index method (CTIM) and the tracing method. Results showed that the crystallization process undergo three different stages. The size of the critical nucleus was found to be approximately 90-150 atoms in this system; the growth of nuclei proceeded via the successive formation of hcp and fcc structures with a layered distribution; and finally, the system evolved into a much larger crystal with a distinct layered distribution of hcp and fcc structures with an 8R stacking sequence of ABCBACAB by adjusting all of the atoms in the larger clusters according to a certain rule.

  17. Schiff bases or glycosylamines: crystal and molecular structures of four derivatives of D-mannose.

    PubMed

    Ojala, W H; Ostman, J M; Ojala, C R

    2000-06-02

    Crystal and molecular structures of four derivatives of D-mannose are described. Each could exist as either an open-chain Schiff base or as a glycosylamine in the solid state. The derivative formed upon reaction of D-mannose with hydroxylamine is an open-chain oxime, but those formed upon reaction with semicarbazide, aniline, and p-chloroaniline are glycosylamines. The oxime, which crystallizes as the syn-(E) isomer, has a fully extended carbon chain. The glycosylamines are all beta-pyranoses. The packing arrangement of the oxime involves 'head-to-tail' hydrogen bonding. The semicarbazide derivative, which crystallizes as a dihydrate, features a hydrogen-bonded intramolecular bridge formed by the two water molecules and linking O-6 to the carbonyl oxygen atom. The packing arrangements of the aniline and p-chloroaniline derivatives differ from each other but are nevertheless closely related by similar hydrogen-bonding interactions.

  18. Molecular rotation-vibration dynamics of low-symmetric hydrate crystal in the terahertz region.

    PubMed

    Fu, Xiaojian; Wu, Hongya; Xi, Xiaoqing; Zhou, Ji

    2014-01-16

    The rotational and vibrational dynamics of molecules in copper sulfate pentahydrate crystal are investigated with terahertz dielectric spectra. It is shown that the relaxation-like dielectric dispersion in the low frequency region is related to the reorientation of water molecules under the driving of terahertz electric field, whereas the resonant dispersion can be ascribed to lattice vibration. It is also found that, due to the hydrogen-bond effect, the vibrational mode at about 1.83 THz along [-111] direction softens with decreasing temperature, that is, the crystal expands in this direction when cooled. On the contrary, the mode hardens in the direction perpendicular to [-111] during the cooling process. This contributes to the further understanding of the molecular structure and bonding features of hydrate crystals.

  19. Crystallization characteristics in supercooled liquid zinc during isothermal relaxation: A molecular dynamics simulation study

    PubMed Central

    Zhou, Li-li; Liu, Rang-su; Tian, Ze-an; Liu, Hai-rong; Hou, Zhao-yang; Peng, Ping

    2016-01-01

    The crystallization characteristics in supercooled liquid Zn during isothermal relaxation were investigated using molecular dynamics simulations by adopting the cluster-type index method (CTIM) and the tracing method. Results showed that the crystallization process undergo three different stages. The size of the critical nucleus was found to be approximately 90–150 atoms in this system; the growth of nuclei proceeded via the successive formation of hcp and fcc structures with a layered distribution; and finally, the system evolved into a much larger crystal with a distinct layered distribution of hcp and fcc structures with an 8R stacking sequence of ABCBACAB by adjusting all of the atoms in the larger clusters according to a certain rule. PMID:27526660

  20. Molecular dynamics modeling of polymer crystallization; from simple polymers to helical ones.

    PubMed

    Yamamoto, Takashi; Orimi, Naohiko; Urakami, Naohiko; Sawada, Kaoru

    2005-01-01

    Crystallization of helical polymers is a very big challenge for molecular simulation. It involves many significant issues, such as folding in biomolecules and molecular recognition during crystal growth. Though direct molecular simulations of the process still involve very difficult problems, we here report our recent efforts toward better understanding of the crystallization in helical polymers. We begin with a brief review of our former studies on simple polyethylene-like polymers, and then we introduce several helical polymer models which are systematically made more complicated. We have already reported that a simple polyethylene-like polymer crystallizes very fast into chain folded lamellae from the melt. A slight modification of this simple polymer model by introducing proper bond angle and dihedral angle potentials gives one of the present models of the helical polymer. This helical polymer model is devised to be relatively rigid but mobile, to show easy helix-reversals, and to have a definite preference for gauche bonds. We find that this highly mobile helical polymer shows quick chain folded crystallization and forms approximate 4/1 helical structure. The intra- and the intermolecular order grow quite simultaneously suggesting highly cooperative nature of the phenomena. Further elaboration of the helical model, giving pendant side groups and higher energy barrier to the helix reversals, leads us to a realistic united atom model of iPP. The conventional and the multi-canonical Monte Carlo simulations are applied to find probable modes of chain folding and the ground state conformations. Though a very short chain readily forms a regular 3/1 helix of alternating trans and gauche bonds, much longer chains of 30- and 50-propylene units are not found to have energetic ground states in the regularly folded conformations.

  1. Double-hybrid density-functional theory applied to molecular crystals

    NASA Astrophysics Data System (ADS)

    Sharkas, Kamal; Toulouse, Julien; Maschio, Lorenzo; Civalleri, Bartolomeo

    2014-07-01

    We test the performance of a number of two- and one-parameter double-hybrid approximations, combining semilocal exchange-correlation density functionals with periodic local second-order Møller-Plesset (LMP2) perturbation theory, for calculating lattice energies of a set of molecular crystals: urea, formamide, ammonia, and carbon dioxide. All double-hybrid methods perform better on average than the corresponding Kohn-Sham calculations with the same functionals, but generally not better than standard LMP2. The one-parameter double-hybrid approximations based on the PBEsol density functional give lattice energies per molecule with an accuracy of about 6 kJ/mol, which is similar to the accuracy of LMP2. This conclusion is further verified on molecular dimers and on the hydrogen cyanide crystal.

  2. The effects of Raman scattering accompanied by the soliton excitation occurring in molecular crystals

    NASA Astrophysics Data System (ADS)

    Pang, X. F.

    2001-06-01

    A theoretical research is made for the effects of Raman scattering caused by the soliton excitation occurring in the organic molecular crystals, e.g., acetanilide, on the basis of vibration model of amide-I. The energy gap between the soliton state and the vibron state have been found by partial diagonalized method in second quantized representation, which is 18.1-33 cm -1. This result is approximately consistent with the red shift value obtained from the experiments, 16 cm -1. The differential cross-section of the Raman scattering, arising from the soliton excitation, has also been obtained. Finally, we derive some properties of the Raman scattering in such a case. This result establishes spectral signatures of the soliton in the molecular crystals, which may be observed in the experiment.

  3. Direct induction of molecular alignment in liquid crystal polymer network film by photopolymerization

    NASA Astrophysics Data System (ADS)

    Hisano, K.; Aizawa, M.; Ishizu, M.; Kurata, Y.; Shishido, A.

    2016-09-01

    Liquid crystal (LC) is the promising material for the fabrication of high-performance soft, flexible devices. The fascinating and useful properties arise from their cooperative effect that inherently allows the macroscopic integration and control of molecular alignment through various external stimuli. To date, light-matter interaction is the most attractive stimuli and researchers developed photoalignment through photochemical or photophysical reactions triggered by linearly polarized light. Here we show the new choice based on molecular diffusion by photopolymerization. We found that photopolymerization of a LC monomer and a crosslinker through a photomask enables to direct molecular alignment in the resultant LC polymer network film. The key generating the molecular alignment is molecular diffusion due to the difference of chemical potentials between irradiated and unirradiated regions. This concept is applicable to various shapes of photomask and two-dimensional molecular alignments can be fabricated depending on the spatial design of photomask. By virtue of the inherent versatility of molecular diffusion in materials, the process would shed light on the fabrication of various high-performance flexible materials with molecular alignment having controlled patterns.

  4. Non-equilibrium control of complex solids by nonlinear phononics

    NASA Astrophysics Data System (ADS)

    Mankowsky, Roman; Först, Michael; Cavalleri, Andrea

    2016-06-01

    We review some recent advances in the use of optical fields at terahertz frequencies to drive the lattice of complex materials. We will focus on the control of low energy collective properties of solids, which emerge on average when a high frequency vibration is driven and a new crystal structure induced. We first discuss the fundamentals of these lattice rearrangements, based on how anharmonic mode coupling transforms an oscillatory motion into a quasi-static deformation of the crystal structure. We then discuss experiments, in which selectively changing a bond angle turns an insulator into a metal, accompanied by changes in charge, orbital and magnetic order. We then address the case of light induced non-equilibrium superconductivity, a mysterious phenomenon observed in some cuprates and molecular materials when certain lattice vibrations are driven. Finally, we show that the dynamics of electronic and magnetic phase transitions in complex-oxide heterostructures follow distinctly new physical pathways in case of the resonant excitation of a substrate vibrational mode.

  5. An Analysis of the NEXAFS Spectra of a molecular crystal: alpha-Glycine

    SciTech Connect

    Schwartz, Craig P.; Saykally, Richard J.; Prendergast, David

    2010-06-18

    The nitrogen K-edge Near Edge X-ray Absorption Fine Structure (NEXAFS) spectrum of alpha-crystalline glycine has been calculated for temperatures ranging from 0 K to 450 K. Significant temperature dependent spectral changes are predicted. The calculated room temperature spectrum is in good agreement with experiment. At high temperatures, molecular motions strongly influence the spectrum, as any unique spectrum from an individual instantaneous configuration does not resemble the experimental result or the average calculated spectrum; complex coupled motions in this prototypical molecular crystal underlie the observed spectral changes.

  6. Light quasiparticles dominate electronic transport in molecular crystal field-effect transistors

    SciTech Connect

    Li, Z. Q.; Podzorov, V.; Sai, N.; Martin, Michael C.; Gershenson, M. E.; Di Ventra, M.; Basov, D. N.

    2007-03-01

    We report on an infrared spectroscopy study of mobile holes in the accumulation layer of organic field-effect transistors based on rubrene single crystals. Our data indicate that both transport and infrared properties of these transistors at room temperature are governed by light quasiparticles in molecular orbital bands with the effective masses m[small star, filled]comparable to free electron mass. Furthermore, the m[small star, filled]values inferred from our experiments are in agreement with those determined from band structure calculations. These findings reveal no evidence for prominent polaronic effects, which is at variance with the common beliefs of polaron formation in molecular solids.

  7. A molecular-field approximation for quantum crystals. Ph.D. Thesis; [considering ground state properties

    NASA Technical Reports Server (NTRS)

    Danilowicz, R.

    1973-01-01

    Ground-state properties of quantum crystals have received considerable attention from both theorists and experimentalists. The theoretical results have varied widely with the Monte Carlo calculations being the most successful. The molecular field approximation yields ground-state properties which agree closely with the Monte Carlo results. This approach evaluates the dynamical behavior of each pair of molecules in the molecular field of the other N-2 molecules. In addition to predicting ground-state properties that agree well with experiment, this approach yields data on the relative importance of interactions of different nearest neighbor pairs.

  8. Polarization Raman Microscopic Study of Molecular Alignment Behavior in Liquid Crystal/Polymer Composite Films

    NASA Astrophysics Data System (ADS)

    Murashige, Takeshi; Fujikake, Hideo; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio

    2005-12-01

    We clarified that the molecular alignment of aggregated polymers is partially synchronized with liquid crystal (LC) director reorientation in an LC/polymer composite film. The molecular alignment behavior in composite films with LC- and polymer-rich regions formed by photopolymerization-induced phase separation was investigated using polarization Raman spectral microscopy. Raman scattering intensity induced by aligned side chains of polymers in the LC-rich region changed with LC director reorientation when voltage was applied to the composite film. It was confirmed for the first time that polymers capable of movement are formed in the LC-rich region.

  9. Examination of surface nucleation during the growth of long alkane crystals by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Bourque, Alexander; Rutledge, Gregory

    2015-03-01

    Crystal growth from the melt of n-pentacontane (C50) was studied by molecular dynamics simulation using a validated united atom model. By quenching below the melting temperature of C50 (370 K), propagation of the crystal growth front into the C50 melt from a crystalline polyethylene surface was observed. By tracking the location of the midpoint in the orientational order parameter profile between the crystal and melt, crystal growth rates between 0.015-0.040 m/s were observed, for quench depths of 10 to 70 K below the melting point. In this work, surface nucleation is identified with the formation of 2D clusters of crystalline sites within layers parallel to the propagating growth front, by analogy to the formation of 3D clusters in primary, homogeneous nucleation. These surface nucleation events were tracked over several layers and numerous simulations, and a mean first passage time analysis was employed to estimate critical nucleus sizes, induction times and rates for surface nucleation. Based on new insights provided by the detailed molecular trajectories obtained from simulation, the classical theory proposed by Lauritzen and Hoffman is re-examined.

  10. Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations

    PubMed Central

    2016-01-01

    The nucleation of crystals in liquids is one of nature’s most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insights into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that, in the past few decades, have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state-of-the-art computational methods by reviewing simulations of such processes as ice nucleation and the crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insights into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that, as a result, the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that, by improving (i) existing interatomic potentials and (ii) currently available enhanced sampling methods, the community can move toward accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments. PMID:27228560

  11. Molecular Environment Modulates Conformational Differences between Crystal and Solution States of Human β-Defensin 2.

    PubMed

    Li, Jianguo; Hu, Zhongqiao; Beuerman, Roger; Verma, Chandra

    2017-04-06

    Human β-defensin 2 is a cysteine-rich antimicrobial peptide. In the crystal state, the N-terminal segment (residues 1-11) exhibits a helical conformation. However, a truncated form, with four amino acids removed from the N-terminus, adopts nonhelical conformations in solution, as shown by NMR. To explore the molecular origins of these different conformations, we performed Hamiltonian replica exchange molecular dynamics simulations of the peptide in solution and in the crystal state. It is found that backbone hydration and specific protein-protein interactions are key parameters that determine the peptide conformation. The helical conformation in the crystal state mainly arises from reduced hydration as well as a salt bridge between the peptide and a symmetry-related neighboring monomer in the crystal. When the extent of hydration is reduced and the salt bridge is reintroduced artificially, the peptide is successfully folded back to the helical conformation in solution. The findings not only shed light on the development of accurate force field parameters for protein molecules but also provide practical guidance in the design of functional proteins and peptides.

  12. Liquid crystal alignment with a molecular template of imprinted polymer layer during phase separation

    NASA Astrophysics Data System (ADS)

    Kim, Hak-Rin; Jung, Jong-Wook; Lee, You-Jin; Kim, Jae-Hoon

    2006-03-01

    We developed a liquid crystal (LC) alignment method using a molecular template of an imprinted polymer layer during polymerization-induced phase separation. Our results showed that the nematic ordering of LC is transferred to the polymer chain ordering during an anisotropic phase separation, which produces an anisotropic azimuthal surface anchoring. Using in-plane field treatment during phase separation, a twisted nematic cell is demonstrated.

  13. Nonequilibrium interfaces in colloidal fluids

    NASA Astrophysics Data System (ADS)

    Bier, Markus; Arnold, Daniel

    2013-12-01

    The time-dependent structure, interfacial tension, and evaporation of an oversaturated colloid-rich (liquid) phase in contact with an undersaturated colloid-poor (vapor) phase of a colloidal dispersion is investigated theoretically during the early-stage relaxation, where the interface is relaxing towards a local equilibrium state while the bulk phases are still out of equilibrium. Since systems of this type exhibit a clear separation of colloidal and solvent relaxation time scales with typical times of interfacial tension measurements in between, they can be expected to be suitable for analogous experimental studies, too. The major finding is that, irrespective of how much the bulk phases differ from two-phase coexistence, the interfacial structure and the interfacial tension approach those at two-phase coexistence during the early-stage relaxation process. This is a surprising observation since it implies that the relaxation towards global equilibrium of the interface is not following but preceding that of the bulk phases. Scaling forms for the local chemical potential, the flux, and the dissipation rate exhibit qualitatively different leading order contributions depending on whether an equilibrium or a nonequilibrium system is considered. The degree of nonquilibrium between the bulk phases is found to not influence the qualitative relaxation behavior (i.e., the values of power-law exponents), but to determine the quantitative deviation of the observed quantities from their values at two-phase coexistence. Whereas the underlying dynamics differs between colloidal and molecular fluids, the behavior of quantities such as the interfacial tension approaching the equilibrium values during the early-stage relaxation process, during which nonequilibrium conditions of the bulk phases are not changed, can be expected to occur for both types of systems.

  14. Role of supramolecular synthons in the formation of the supramolecular architecture of molecular crystals revisited from an energetic viewpoint.

    PubMed

    Shishkin, Oleg V; Zubatyuk, Roman I; Shishkina, Svitlana V; Dyakonenko, Viktoriya V; Medviediev, Volodymyr V

    2014-04-14

    Analysis of the strengths and directionality of intermolecular interactions in the crystals containing only one type of supramolecular synthon allows the suggestion of a general classification of molecular crystals depending on type of their basic structural motifs. All crystals may be divided on four classes namely (I) crystals with isotropic packing of the building units; (II) columnar crystals where the basic structural motif (BSM) is a chain/column; (III) layered crystals with layers as the BSM; (IV) columnar-layered crystals containing chains/columns as the primary basic structural motif and layers as the secondary BSM. Taking into account the participation of different supramolecular synthons in the formation of different levels of the organization of molecular crystals, they may be considered as basic (responsible for the formation of molecular complexes as building units of crystals), primary, secondary and auxiliary, which are involved in the agglomeration of molecules in primary or secondary basic structural motifs or in the packing of these motifs, respectively. The ranking of supramolecular synthons depends on values of energies of intermolecular interactions and it is individual for each crystal.

  15. Role of molecule flexibility on the nucleation of dislocations in molecular crystals

    NASA Astrophysics Data System (ADS)

    Munday, Lynn B.; Mitchell, Robert L.; Knap, Jaroslaw; Chung, Peter W.

    2013-10-01

    We show that a molecule's flexibility described by changes to its conformation and orientation during deformation is vital for the proper representation of dislocation nucleation in molecular crystals. This is shown for the molecular crystal hexahydro-1,3,5-trinitro-s-triazine (RDX) by comparing direct atomistic simulations to two alternate forms of a continuum dislocation nucleation model for a crack tip loaded in pure shear. The atomistic simulations show the emission of partial dislocations. These are compared to continuum dislocation nucleation models based on generalized stacking fault (GSF) energy surfaces where the molecules are allowed to be either rigid or flexible. The rigid molecules are unable to represent the partial dislocations whereas the flexible molecules agree with the direct atomistic model to within 17% of the stress intensity factor for emission of the first partial dislocation and to within 1% for the second partial. This agreement first indicates that the molecule flexibility serves a critical role in the ductile behavior of the molecular crystal and, second, the continuum dislocation nucleation model represents the correct atomistic behavior, showing two partial dislocations connected by a stacking fault, when parameterized with GSF energy surfaces that account for the molecule flexibility.

  16. Molecular Dynamics Simulations of Shock Wave Propagation across the Nitromethane Crystal-Melt Interface

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Sewell, Thomas D.; Thompson, Donald L.

    2015-06-01

    We are interested in understanding the fundamental processes that occur during propagation of shock waves across the crystal-melt interface in molecular substances. We have carried out molecular dynamics simulations of shock passage from the nitromethane (100)-oriented crystal into the melt and vice versa using the fully flexible, non-reactive Sorescu, Rice, and Thompson force field. A stable interface was established for a temperature near the melting point by using a combination of isobaric-isothermal (NPT) and isochoric-isothermal (NVT) simulations. The equilibrium bulk and interfacial regions were characterized using spatial-temporal distributions of molecular number density, kinetic and potential energy, and C-N bond orientations. Those same properties were calculated as functions of time during shock propagation. As expected, the local temperatures (intermolecular, intramolecular, and total) and stress states differed significantly between the liquid and crystal regions and depending on the direction of shock propagation. Substantial differences in the spatial distribution of shock-induced defect structures in the crystalline region were observed depending on the direction of shock propagation. Research supported by the U.S. Army Research Office.

  17. The Role of Many-Body Dispersion Interactions in Molecular Crystal Polymorphism

    NASA Astrophysics Data System (ADS)

    Leiserowitz, Leslie; Marom, Noa; Distasio, Robert A., Jr.; Atalla, Viktor; Levchenko, Sergey; Kapishnikov, Sergey; Chelikowsky, James R.; Tkatchenko, Alexandre

    2012-02-01

    Molecular crystals often have several polymorphs that are close in energy (few meV per molecule), but possess very different physical and chemical properties. Treating polymorphism from first principles has been a long standing problem because conventional density-functional theory (DFT) lacks a proper description of long-range dispersion interactions that govern the structure and energetics of molecular crystals. Here we assess the effect of the many-body dispersion (MBD) energy on the structure and relative energies of the polymorphs of benchmark molecular crystals: glycine, alanine, and para-diiodobenzene. This is accomplished by using the recently developed first-principles DFT+MBD method [A. Tkatchenko, R.A. DiStasio Jr., R. Car, M. Scheffler, submitted], based on the earlier Tkatchenko-Scheffler (TS) dispersion correction [PRL 102, 073005 (2009)]. We show that the non-additive MBD energy plays a crucial role in making qualitatively and quantitatively accurate predictions for the structure and relative energies of polymorphs.

  18. Non-equilibrium in low-temperature plasmas

    NASA Astrophysics Data System (ADS)

    Taccogna, Francesco; Dilecce, Giorgio

    2016-11-01

    The wide range of applications of cold plasmas originates from their special characteristic of being a physical system out of thermodynamic equilibrium. This property enhances its reactivity at low gas temperature and allows to obtain macroscopic effects with a moderate energy consumption. In this review, the basic concepts of non-equilibrium in ionized gases are treated by showing why and how non-equilibrium functions of the degrees of freedom are formed in a variety of natural and man-made plasmas with particular emphasis on the progress made in the last decade. The modern point of view of a molecular basis of non-equilibrium and of a state-to-state kinetic approach is adopted. Computational and diagnostic techniques used to investigate the non-equilibrium conditions are also surveyed.

  19. Capillary crystallization and molecular-replacement solution of haemoglobin II from the clam Lucina pectinata

    SciTech Connect

    Gavira, José A.; Jesus, Walleska de; Camara-Artigas, Ana; López-Garriga, Juan; García-Ruiz, Juan M.

    2006-03-01

    The haemoglobin II from the clam L. pectinata has been crystallized using counter-diffusion in single capillary in the presence of agarose to improve crystal quality. Initial phases have been obtained by molecular replacement. Haemoglobin II is one of three haemoglobins present in the cytoplasm of the Lucina pectinata mollusc that inhabits the Caribbean coast. Using HBII purified from its natural source, crystallization screening was performed using the counter-diffusion method with capillaries of 0.2 mm inner diameter. Crystals of HbII suitable for data collection and structure determination were grown in the presence of agarose at 0.1%(w/v) in order to improve their quality. The crystals belong to the tetragonal space group P4{sub 2}2{sub 1}2, with unit-cell parameters a = b = 73.92, c = 152.35 Å, and diffracted X-rays to a resolution of better than 2.0 Å. The asymmetric unit is a homodimer with a corresponding Matthews coefficient (V{sub M}) of 3.15 Å{sup 3} Da{sup −1} and a solvent content of 61% by volume.

  20. Crystallization studies on avian eggshell membranes: implications for the molecular factors controlling eggshell formation.

    PubMed

    Wu, T M; Rodriguez, J P; Fink, D J; Carrino, D A; Blackwell, J; Caplan, A I; Heuer, A H

    1995-02-01

    The avian eggshell is a natural biopolymer and mineral composite. It is a very useful model for biomimetic mineralization, since it is among the fastest forming hard tissues known. Isolated eggshell membranes, which were demineralized in vitro, were used to investigate the in vitro modulation of CaCO3 crystal deposition by organic matrix materials. Crystallization on the demineralized eggshell membrane occurred almost exclusively at the peripheries of residual calcium reserve assemblies, which contain a high concentration of sulfur. Similar structures are observed for eggshell membranes after natural demineralization. The characteristic rhombohedral crystal morphologies of the calcite crystals grown in this in vitro system are much less regular when grown in the presence of organic matrix or partially purified dermatan sulfate proteoglycans obtained from the eggshell. The effect of these macromolecules on the morphology and size of CaCO3 crystals is concentration-dependent. These studies indicate the complexity of the molecular and ionic interactions involved in the initiation and formation of the eggshell, with the focus on the role of the organic matrix.

  1. Protein crystallization and biosensor applications of hydrogel-based molecularly imprinted polymers.

    PubMed

    Reddy, Subrayal M; Phan, Quan T; El-Sharif, Hazim; Govada, Lata; Stevenson, Derek; Chayen, Naomi E

    2012-12-10

    We have characterized the imprinting capability of a family of acrylamide polymer-based molecularly imprinted polymers (MIPs) for bovine hemoglobin (BHb) and trypsin (Tryp) using spectrophotometric and quartz crystal microbalance (QCM) sensor techniques. Bulk gel characterization on acrylamide (AA), N-hydroxymethylacrylamide (NHMA), and N-isopropylacrylamide (NiPAM) gave varied selectivities when compared with nonimprinted polymers. We have also harnessed the ability of the MIPs to facilitate protein crystallization as a means of evaluating their selectivity for cognate and noncognate proteins. Crystallization trials indicated improved crystal formation in the order NiPAMcrystallization studies validated the hydrophilic efficacy of MIPS indicated in the QCM studies.

  2. Investigating rare events with nonequilibrium work measurements. II. Transition and reaction rates.

    PubMed

    Moradi, Mahmoud; Sagui, Celeste; Roland, Christopher

    2014-01-21

    We present a formalism for investigating transition pathways and transition probabilities for rare events in biomolecular systems. The formalism is based on combining Transition Path Theory with the results of nonequilibrium work relations, and shows that the equilibrium and nonequilibrium transition rates are in fact related. Aside from its fundamental importance, this allows for the calculation of relative equilibrium reaction rates with driven nonequilibrium simulations such as Steered Molecular Dynamics. The workings of the formalism are illustrated with a few typical numerical examples.

  3. Molecular theory of smectic ordering in liquid crystals with nanoscale segregation of different molecular fragments

    NASA Astrophysics Data System (ADS)

    Gorkunov, M. V.; Osipov, M. A.; Kapernaum, N.; Nonnenmacher, D.; Giesselmann, F.

    2011-11-01

    A molecular statistical theory of the smectic A phase is developed taking into account specific interactions between different molecular fragments which enables one to describe different microscopic scenario of the transition into the smectic phase. The effects of nanoscale segregation are described using molecular models with different combinations of attractive and repulsive sites. These models have been used to calculate numerically coefficients in the mean filed potential as functions of molecular model parameters and the period of the smectic structure. The same coefficients are calculated also for a conventional smectic with standard Gay-Berne interaction potential which does not promote the segregation. The free energy is minimized numerically to calculate the order parameters of the smectic A phases and to study the nature of the smectic transition in both systems. It has been found that in conventional materials the smectic order can be stabilized only when the orientational order is sufficiently high, In contrast, in materials with nanosegregation the smectic order develops mainly in the form of the orientational-translational wave while the nematic order parameter remains relatively small. Microscopic mechanisms of smectic ordering in both systems are discussed in detail, and the results for smectic order parameters are compared with experimental data for materials of various molecular structure.

  4. Nonequilibrium Interlayer Transport in Pulsed Laser Deposition

    SciTech Connect

    Tischler, Jonathan Zachary; Eres, Gyula; Larson, Ben C; Rouleau, Christopher M; Zschack, P.; Lowndes, Douglas H

    2006-01-01

    We use time-resolved surface x-ray diffraction measurements with microsecond range resolution to study the growth kinetics of pulsed laser deposited SrTiO3. Time-dependent surface coverages corresponding to single laser shots were determined directly from crystal truncation rod intensity transients. Analysis of surface coverage evolution shows that extremely fast nonequilibrium interlayer transport, which occurs concurrently with the arrival of the laser plume, dominates the deposition process. A much smaller fraction of material, which is governed by the dwell time between successive laser shots, is transferred by slow, thermally driven interlayer transport processes.

  5. INTRODUCTION: Nonequilibrium Processes in Plasmas

    NASA Astrophysics Data System (ADS)

    Petrović, Zoran; Marić, Dragana; Malović, Gordana

    2009-07-01

    lead to new fundamental understanding is illustrated well in the paper by Uwe Czarnetzki which describes a new method for separate control of flux and energy of ions reaching the surface of electrodes. Deborah O'Connell from Belfast has shown space and phase resolved mode transitions in rf inductively coupled plasmas obtained by optical emission measurements. At the same time an application of a similar rf discharge for the treatment of paper was presented by Irina Filatova from Belarus. Many applications of non-equilibrium plasmas depend on the development of plasma sources operating at atmospheric pressure and one such source that promises to be prominent in medicine is described by Timo Gans. In a similar way, practical considerations require studies of the injection of liquids into plasmas and progress on the development of one such source is described by Mathew Goeckner and his colleagues from Dallas. From the Institute Jožef Štefan in Slovenia and the group of Miran Mozetič we have a detailed review of their work on functionalization of organic materials by oxygen plasmas. Even higher density plasmas, where the collective phenomena dominate, show different degrees of non-equilibrium and one example presented here by Zoltan Donko deals with two dimensional plasma dust crystals and liquids, while the lecture by Jovo Vranješ from Belgium deals with the treatment of collisions in multicomponent plasmas. Finally we have papers on the transport of pollutants. The association of the two fields started initially through joint interest in some of the methods for removal of NOx and SOx, from electrostatic precipitation of industrial dust to dielectric barrier discharges. The joint work continued on the application of flowing afterglow plasma combined with a hollow cathode discharge in order to achieve a proton transfer mass analysis of organic volatile compounds and also on the possibilities of applying similar methods for solving transport equations. In this volume we

  6. Crystal and molecular structure of alpha-iodo-beta-chlorovinyl phenyl sulfone and ,US -dibromovinyl phenyl sulfone

    SciTech Connect

    Bel'skii, V.K.; Shainyan, B.A.; Mirskova, A.N.

    1986-09-01

    The authors discuss rearrangement and isomerization procedures occurring in the bromination, iodination, and chlorination of the title sulfones and assess their crystal and molecular structure using NMR spectroscopy and x-ray diffraction.

  7. Molecular simulation of homogeneous nucleation of crystals of an ionic liquid from the melt.

    PubMed

    He, Xiaoxia; Shen, Yan; Hung, Francisco R; Santiso, Erik E

    2015-09-28

    The homogeneous nucleation of crystals of the ionic liquid [dmim(+)][Cl(-)] from its supercooled liquid phase in the bulk (P = 1 bar, T = 340 K, representing a supercooling of 58 K) was studied using molecular simulations. The string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] was used in combination with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [E. E. Santiso and B. L. Trout, J. Chem. Phys. 134, 064109 (2011)] to sketch a minimum free energy path connecting the supercooled liquid and the monoclinic crystal phases, and to determine the free energy and the rates involved in the homogeneous nucleation process. The physical significance of the configurations found along this minimum free energy path is discussed with the help of calculations based on classical nucleation theory and with additional simulation results obtained for a larger system. Our results indicate that, at a supercooling of 58 K, the liquid has to overcome a free energy barrier of the order of 60 kcal/mol and to form a critical nucleus with an average size of about 3.6 nm, before it reaches the thermodynamically stable crystal phase. A simulated homogeneous nucleation rate of 5.0 × 10(10) cm(-3) s(-1) was obtained for our system, which is in reasonable agreement with experimental and simulation rates for homogeneous nucleation of ice at similar degrees of supercooling. This study represents our first step in a series of studies aimed at understanding the nucleation and growth of crystals of organic salts near surfaces and inside nanopores.

  8. Molecular simulation of homogeneous nucleation of crystals of an ionic liquid from the melt

    SciTech Connect

    He, Xiaoxia; Shen, Yan; Hung, Francisco R.; Santiso, Erik E.

    2015-09-28

    The homogeneous nucleation of crystals of the ionic liquid [dmim{sup +}][Cl{sup −}] from its supercooled liquid phase in the bulk (P = 1 bar, T = 340 K, representing a supercooling of 58 K) was studied using molecular simulations. The string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] was used in combination with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589–2594 (2009)] and order parameters for molecular crystals [E. E. Santiso and B. L. Trout, J. Chem. Phys. 134, 064109 (2011)] to sketch a minimum free energy path connecting the supercooled liquid and the monoclinic crystal phases, and to determine the free energy and the rates involved in the homogeneous nucleation process. The physical significance of the configurations found along this minimum free energy path is discussed with the help of calculations based on classical nucleation theory and with additional simulation results obtained for a larger system. Our results indicate that, at a supercooling of 58 K, the liquid has to overcome a free energy barrier of the order of 60 kcal/mol and to form a critical nucleus with an average size of about 3.6 nm, before it reaches the thermodynamically stable crystal phase. A simulated homogeneous nucleation rate of 5.0 × 10{sup 10} cm{sup −3} s{sup −1} was obtained for our system, which is in reasonable agreement with experimental and simulation rates for homogeneous nucleation of ice at similar degrees of supercooling. This study represents our first step in a series of studies aimed at understanding the nucleation and growth of crystals of organic salts near surfaces and inside nanopores.

  9. New AFM Techniques for Investigating Molecular Growth Mechanisms of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Li, Huayu; Nadarajah, Arunan; Konnert, John H.; Pusey, Marc L.

    1998-01-01

    Atomic Force Microscopy (AFM) has emerged as a powerful technique for investigating protein crystal growth. Earlier AFM studies were among the first to demonstrate that these crystals grew by dislocation and 2D nucleation growth mechanisms [1]. These investigations were restricted to the micron range where only surface features, such as dislocation hillocks and 2D islands are visible. Most AFM instruments can scan at higher resolutions and have the potential to resolve individual protein molecules at nanometer ranges. Such scans are essential for determining the molecular packing arrangements on crystal faces and for probing the growth process at the molecular level. However, at this resolution the AFM tip influences the image produced, with the resulting image being a convolution of the tip shape and the surface morphology [2]. In most studies this problem is resolved by deconvoluting the image to obtain the true surface morphology. Although deconvolution routines work reasonably well for simple one- dimensional shapes, for complex surfaces this approach does not produce accurate results. In this study we devised a new approach which takes advantage of the precise molecular order of crystal surfaces, combined with the knowledge of individual molecular shapes from the crystallographic data of the protein and the AFM tip shape. This information is used to construct expected theoretical AFM images by convoluting the tip shape with the constructed crystal surface shape for a given surface packing arrangement. By comparing the images from actual AFM scans with the constructed ones for different possible surface packing arrangements, the correct packing arrangement can be conclusively determined. This approach was used in this study to determine the correct one from two possible packing arrangements on (I 10) faces of tetragonal lysozyme crystals. Another novel AFM technique was also devised to measure the dimension of individual growth units of the crystal faces

  10. Topological defects in liquid crystals as templates for molecular self-assembly

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoguang; Miller, Daniel; Bukusoglu, Emre; de Pablo, Juan; Abbott, Nicholas

    Topological defects in liquid crystals (LCs) have been widely used to organize colloidal dispersions and template polymerizations, leading to a range of elastomers and gels with complex mechanical and optical properties. However, little is understood about molecular-level assembly processes within defects. This presentation will describe an experimental study that reveals that nanoscopic environments defined by LC defects can selectively trigger processes of molecular self-assembly. By using fluorescence microscopy, cryogenic transmission electron microscopy and super-resolution optical microscopy, key signatures of molecular self-assembly of amphiphilic molecules in topological defects are observed - including cooperativity, reversibility, and controlled growth of the molecular assemblies. By using polymerizable amphiphiles, we also demonstrate preservation of molecular assemblies templated by defects, including nanoscopic o-rings synthesized from Saturn-ring disclinations. Our results reveal that topological defects in LCs are a versatile class of three-dimensional, dynamic and reconfigurable templates can direct processes of molecular self-assembly in a manner that is strongly analogous to other classes of macromolecular templates.

  11. Effects of molecular geometry on the properties of compressed diamondoid crystals

    SciTech Connect

    Yang, Fan; Lin, Yu; Baldini, Maria; Dahl, Jeremy E. P.; Carlson, Robert M. K.; Mao, Wendy L.

    2016-11-01

    Diamondoids are an intriguing group of carbon-based nanomaterials, which combine desired properties of inorganic nanomaterials and small hydrocarbon molecules with atomic-level uniformity. In this Letter, we report the first comparative study on the effect of pressure on a series of diamondoid crystals with systematically varying molecular geometries and shapes, including zero-dimensional (0D) adamantane; one-dimensional (1D) diamantane, [121]tetramantane, [123]tetramantane, and [1212]pentamantane; two-dimensional (2D) [12312]hexamantane; and three-dimensional (3D) triamantane and [1(2,3)4]pentamantane. We find the bulk moduli of these diamondoid crystals are strongly dependent on the diamondoids’ molecular geometry with 3D [1(2,3)4]pentamantane being the least compressible and 0D adamantane being the most compressible. These diamondoid crystals possess excellent structural rigidity and are able to sustain large volume deformation without structural failure even after repetitive pressure loading cycles. These properties are desirable for constructing cushioning devices. Furthermore, we also demonstrate that lower diamondoids outperform the conventional cushioning materials in both the working pressure range and energy absorption density.

  12. Effects of molecular geometry on the properties of compressed diamondoid crystals

    DOE PAGES

    Yang, Fan; Lin, Yu; Baldini, Maria; ...

    2016-11-01

    Diamondoids are an intriguing group of carbon-based nanomaterials, which combine desired properties of inorganic nanomaterials and small hydrocarbon molecules with atomic-level uniformity. In this Letter, we report the first comparative study on the effect of pressure on a series of diamondoid crystals with systematically varying molecular geometries and shapes, including zero-dimensional (0D) adamantane; one-dimensional (1D) diamantane, [121]tetramantane, [123]tetramantane, and [1212]pentamantane; two-dimensional (2D) [12312]hexamantane; and three-dimensional (3D) triamantane and [1(2,3)4]pentamantane. We find the bulk moduli of these diamondoid crystals are strongly dependent on the diamondoids’ molecular geometry with 3D [1(2,3)4]pentamantane being the least compressible and 0D adamantane being the most compressible.more » These diamondoid crystals possess excellent structural rigidity and are able to sustain large volume deformation without structural failure even after repetitive pressure loading cycles. These properties are desirable for constructing cushioning devices. Furthermore, we also demonstrate that lower diamondoids outperform the conventional cushioning materials in both the working pressure range and energy absorption density.« less

  13. Determining the Molecular Growth Mechanisms of Protein Crystal faces by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Li, Huayu; Nadarajah, Arunan; Pusey, Marc L.

    1998-01-01

    A high resolution atomic force microscopy (AFM) study had shown that the molecular packing on the tetragonal lysozyme (110) face corresponded to only one of two possible packing arrangements, suggesting that growth layers on this face were of bimolecular height (Li et al., 1998). Theoretical analyses of the packing had also indicated that growth of this face should proceed by the addition of growth units of at least tetramer size corresponding to the 43 helices in the crystal. In this study an AFM linescan technique was devised to measure the dimensions of individual growth units on protein crystal faces. The growth process of tetragonal lysozyme crystals was slowed down by employing very low supersaturations. As a result images of individual growth events on the (110) face were observed, shown by jump discontinuities in the growth step in the linescan images. The growth unit dimension in the scanned direction was obtained by suitably averaging these images. A large number of scans in two directions on the (110) face were performed and the distribution of lysozyme aggregate sizes were obtained. A variety of growth units, all of which were 43 helical lysozyme aggregates, were shown to participate in the growth process with a 43 tetramer being the minimum observed size. This technique represents a new application for AFM allowing time resolved studies of molecular process to be carried out.

  14. Determining the Molecular Growth Mechanisms of Protein Crystal Faces by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan; Li, Huayu; Pusey, Marc L.

    1999-01-01

    A high resolution atomic force microscopy (AFM) study had shown that the molecular packing on the tetragonal lysozyme (110) face corresponded to only one of two possible packing arrangements, suggesting that growth layers on this face were of bimolecular height. Theoretical analyses of the packing also indicated that growth of this face should proceed by the addition of growth units of at least tetramer size corresponding to the 43 helices in the crystal. In this study an AFM linescan technique was devised to measure the dimensions of individual growth units on protein crystal faces as they were being incorporated into the lattice. Images of individual growth events on the (110) face of tetragonal lysozyme crystals were observed, shown by jump discontinuities in the growth step in the linescan images as shown in the figure. The growth unit dimension in the scanned direction was obtained from these images. A large number of scans in two directions on the (110) face were performed and the distribution of lysozyme growth unit sizes were obtained. A variety of unit sizes corresponding to 43 helices, were shown to participate in the growth process, with the 43 tetramer being the minimum observed size. This technique represents a new application for AFM allowing time resolved studies of molecular process to be carried out.

  15. Comparative study of crystallization process in metallic melts using ab initio molecular dynamics simulations.

    PubMed

    Debela, Tekalign T; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z

    2017-03-14

    The crystallization process of liquid metals is studied using ab initio molecular dynamics simulations. The evolution of short-range order during quenching in Pb and Zn liquids is compared with body-centered cubic (bcc) Nb and V, and hexagonal closed-packed (hcp) Mg. We found that the fraction and type of the short-range order depends on the system under consideration, in which the icosahedral symmetry seems to dominate in the body-centered cubic metals. Although the local atomic structures in stable liquids are similar, liquid hcp-like Zn, bcc-like Nb and V can be deeply supercooled far below its melting point before crystallization while the supercooled temperature range in liquid Pb is limited. Further investigations into the nucleation process reveal the process of polymorph selection. In the body-centered cubic systems, the polymorph selection occurs in the supercooled state before the nucleation is initiated, while in the closed-packed systems it starts at the time of onset of crystallization. Atoms with bcc-like lattices in all studied supercooled liquids are always detected before the polymorph selection. It is also found that the bond orientational ordering is strongly correlated with the crystallization process in supercooled Zn and Pb liquids.

  16. Dissolution of Alkali Fluoride and Chloride Crystals in Water Studied by Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Fukushima, N.; Tamura, Y.; Ohtaki, H.

    1991-02-01

    The dissolution of cubic crystals of NaF, KF, CsF, LiCl, NaCl, and KCl consisting of 32 cations and 32 anions in an isolated box containing 216 water molecules was studied at 298 K by molecular dynamics simulations. The ion-ion, ion-water and water-water interactions were described in terms of the Tosi-Fumi, Kistenmacher-Popkie-Clementi, and Matsuoka-Clementi-Yoshimine potentials, respectively. During the simulation periods of 12 ps for NaF, CsF and LiCl and 20 ps for KF, NaCl and KCl cations did not dissolve, while anions dissolved from the CsF, LiCl and NaCl crystals but not from the NaF, KF and KCl crystals. The mass effect in the dissolution of CsF was examined by giving the ceasium ions the atomic weight of the fluoride ion (18.998). In case of the "light" caesium ions in the crystal fluctuated less far and again fluoride ions but no caesium ions were dissolved.

  17. Terahertz pulse generation in an organic crystal by optical rectification and resonant excitation of molecular charge transfer

    NASA Astrophysics Data System (ADS)

    Carey, John J.; Bailey, Ray T.; Pugh, D.; Sherwood, J. N.; Cruickshank, F. R.; Wynne, Klaas

    2002-12-01

    Organic molecular crystals that are extremely efficient at terahertz-pulse generation are in- vestigated. Terahertz pulses produced by optical rectification at 800 nm in (-)2-(α-methylbenzyl-amino)-5-nitropyridine have an order of magnitude higher power than those generated in the commonly used inorganic crystal ZnTe. The organic molecular crystals were also found to generate terahertz pulses when excited on resonance at 400 nm. This may pave the way for studying ultrafast charge-transport dynamics in three dimensions.

  18. Comparison of the crystal structure and molecular models of N,N-diisobutyl-2-(octylphenylphosphinyl)acetamide (CMPO)

    SciTech Connect

    Rogers, R.D.; Rollins, A.N.; Gatrone, R.C.; Horwitz, E.P.

    1994-06-01

    The compound crystallizes in the space group P2{sub 1}/c with a=13. 446(6), b=22.280(7) {Angstrom}, b=92.07(4){degrees}, and D{sub calc}=1.05 g/cm{sup 3} for Z=8 (@20{degrees}C). Molecular mechanics, molecular dynamics, and MNDO calculations were also performed on CMPO utilizing the SYBYL{sup 2} suite of programs. Results from these calculations are compared to the crystal structure and to similar calculations performed on CMPO using ALCHEMY. The calculations agree fairly well with the crystal structure.

  19. Use of X-ray diffraction, molecular simulations, and spectroscopy to determine the molecular packing in a polymer-fullerene bimolecular crystal.

    PubMed

    Miller, Nichole Cates; Cho, Eunkyung; Junk, Matthias J N; Gysel, Roman; Risko, Chad; Kim, Dongwook; Sweetnam, Sean; Miller, Chad E; Richter, Lee J; Kline, R Joseph; Heeney, Martin; McCulloch, Iain; Amassian, Aram; Acevedo-Feliz, Daniel; Knox, Christopher; Hansen, Michael Ryan; Dudenko, Dmytro; Chmelka, Bradley F; Toney, Michael F; Brédas, Jean-Luc; McGehee, Michael D

    2012-11-27

    The molecular packing in a polymer: fullerene bimolecular crystal is determined using X-ray diffraction (XRD), molecular mechanics (MM) and molecular dynamics (MD) simulations, 2D solid-state NMR spectroscopy, and IR absorption spectroscopy. The conformation of the electron-donating polymer is significantly disrupted by the incorporation of the electron-accepting fullerene molecules, which introduce twists and bends along the polymer backbone and 1D electron-conducting fullerene channels.

  20. High breakdown single-crystal GaN p-n diodes by molecular beam epitaxy

    SciTech Connect

    Qi, Meng; Zhao, Yuning; Yan, Xiaodong; Li, Guowang; Verma, Jai; Fay, Patrick; Nomoto, Kazuki; Zhu, Mingda; Hu, Zongyang; Protasenko, Vladimir; Song, Bo; Xing, Huili Grace; Jena, Debdeep; Bader, Samuel

    2015-12-07

    Molecular beam epitaxy grown GaN p-n vertical diodes are demonstrated on single-crystal GaN substrates. A low leakage current <3 nA/cm{sup 2} is obtained with reverse bias voltage up to −20 V. With a 400 nm thick n-drift region, an on-resistance of 0.23 mΩ cm{sup 2} is achieved, with a breakdown voltage corresponding to a peak electric field of ∼3.1 MV/cm in GaN. Single-crystal GaN substrates with very low dislocation densities enable the low leakage current and the high breakdown field in the diodes, showing significant potential for MBE growth to attain near-intrinsic performance when the density of dislocations is low.

  1. First principles calculation of the mechanical compression of two organic molecular crystals.

    PubMed

    Zerilli, Frank J; Kuklja, Maija M

    2006-04-20

    The mechanical compression curves for the organic molecular crystals 1,1-diamino-2,2-dinitroethylene and beta-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (beta-HMX) are calculated using the Hartree-Fock approximation to the solutions of the many-body Schrödinger equation for a periodic system as implemented in the computer program CRYSTAL. No correction was made for basis set superposition error. The equilibrium lattice parameters are reproduced to within 1% of reported experimental values. Pressure values on the isotherm also agree well with reported experimental values. To obtain accurate results, the relaxation of all the atomic coordinates as well as the lattice parameters under a fixed volume constraint was required.

  2. Accurate force fields and methods for modelling organic molecular crystals at finite temperatures.

    PubMed

    Nyman, Jonas; Pundyke, Orla Sheehan; Day, Graeme M

    2016-06-21

    We present an assessment of the performance of several force fields for modelling intermolecular interactions in organic molecular crystals using the X23 benchmark set. The performance of the force fields is compared to several popular dispersion corrected density functional methods. In addition, we present our implementation of lattice vibrational free energy calculations in the quasi-harmonic approximation, using several methods to account for phonon dispersion. This allows us to also benchmark the force fields' reproduction of finite temperature crystal structures. The results demonstrate that anisotropic atom-atom multipole-based force fields can be as accurate as several popular DFT-D methods, but have errors 2-3 times larger than the current best DFT-D methods. The largest error in the examined force fields is a systematic underestimation of the (absolute) lattice energy.

  3. Tailoring molecular specificity toward a crystal facet: a lesson from biorecognition toward Pt{111}.

    PubMed

    Ruan, Lingyan; Ramezani-Dakhel, Hadi; Chiu, Chin-Yi; Zhu, Enbo; Li, Yujing; Heinz, Hendrik; Huang, Yu

    2013-02-13

    Surfactants with preferential adsorption to certain crystal facets have been widely employed to manipulate morphologies of colloidal nanocrystals, while mechanisms regarding the origin of facet selectivity remain an enigma. Similar questions exist in biomimetic syntheses concerning biomolecular recognition to materials and crystal surfaces. Here we present mechanistic studies on the molecular origin of the recognition toward platinum {111} facet. By manipulating the conformations and chemical compositions of a platinum {111} facet specific peptide, phenylalanine is identified as the dominant motif to differentiate {111} from other facets. The discovered recognition motif is extended to convert nonspecific peptides into {111} specific peptides. Further extension of this mechanism allows the rational design of small organic molecules that demonstrate preferential adsorption to the {111} facets of both platinum and rhodium nanocrystals. This work represents an advance in understanding the organic-inorganic interfacial interactions in colloidal systems and paves the way to rational and predictable nanostructure modulations for many applications.

  4. Photoinduced reversible switching of porosity in molecular crystals based on star-shaped azobenzene tetramers.

    PubMed

    Baroncini, Massimo; d'Agostino, Simone; Bergamini, Giacomo; Ceroni, Paola; Comotti, Angiolina; Sozzani, Piero; Bassanetti, Irene; Grepioni, Fabrizia; Hernandez, Taylor M; Silvi, Serena; Venturi, Margherita; Credi, Alberto

    2015-08-01

    The development of solid materials that can be reversibly interconverted by light between forms with different physico-chemical properties is of great interest for separation, catalysis, optoelectronics, holography, mechanical actuation and solar energy conversion. Here, we describe a series of shape-persistent azobenzene tetramers that form porous molecular crystals in their E-configuration, the porosity of which can be tuned by changing the peripheral substituents on the molecule. Efficient E→Z photoisomerization of the azobenzene units takes place in the solid state and converts the crystals into a non-porous amorphous melt phase. Crystallinity and porosity are restored upon Z→E isomerization promoted by visible light irradiation or heating. We demonstrate that the photoisomerization enables reversible on/off switching of optical properties such as birefringence as well as the capture of CO2 from the gas phase. The linear design, structural versatility and synthetic accessibility make this new family of materials potentially interesting for technological applications.

  5. Critical CuI buffer layer surface density for organic molecular crystal orientation change

    SciTech Connect

    Ahn, Kwangseok; Kim, Jong Beom; Lee, Dong Ryeol; Kim, Hyo Jung; Lee, Hyun Hwi

    2015-01-21

    We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 −2) by a CuI buffer layer with a very low surface density, so low that a large proportion of the substrate surface is bare.

  6. Bond length estimates for oxide crystals with a molecular power law expression

    NASA Astrophysics Data System (ADS)

    Gibbs, G. V.; Ross, Nancy L.; Cox, David F.

    2015-07-01

    A molecular power law bond length regression expression, R(M-O) = 1.39( s/ r)-0.22, defined in terms of the quotient, s/ r, where s is the averaged Pauling bond strength for the bonded interaction comprising a given molecular coordination polyhedron and r is the periodic table row number for the M atom, serves to replicate the bulk of the 470 individual experimental M-O average bond lengths estimated with Shannon's (Acta Crystallogr A 32(5):751-767, 1976) crystal radii for oxides to within 0.10 Å. The success of the molecular expression is ascribed to a one-to-one deep-seated connection that obtains between the electron density accumulated between bonded pairs of atoms and the average Pauling bond strength. It also implies that the bonded interactions that constitute oxide crystals are governed in large part by local forces. Although the expression reproduces the bond lengths involving rare earth atoms typically to within ~0.05 Å, it does not reproduce the lanthanide ionic radius contraction. It also fails to reproduce the experimental bond lengths for selected transition cations like Cu1+, Ag1+ and VILSFe2+ and for cations like IVK+, VIBa2+ and IIU6+.

  7. Anisotropy in surface-initiated melting of the triclinic molecular crystal 1,3,5-triamino-2,4,6-trinitrobenzene: A molecular dynamics study.

    PubMed

    Mathew, N; Sewell, Thomas D; Thompson, Donald L

    2015-09-07

    Surface-initiated melting of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), a triclinic molecular crystal, was investigated using molecular dynamics simulations. Simulations were performed for the three principal crystallographic planes exposed to vacuum, with the normal vectors to the planes given by b × c, c × a, and a × b (where a, b, and c define the edge vectors of the unit cell), denoted as (100), (010), and (001), respectively. The best estimate of the normal melting temperature for TATB is 851 ± 5 K. The nature and extent of disordering of the crystal-vacuum interface depend on the exposed crystallographic face, with the (001) face exhibiting incomplete melting and superheating. This is attributed to the anisotropy of the inter-molecular hydrogen bonding and the propensity of the crystal to form stacking faults in directions approximately perpendicular to the (100) and (010) faces. For all three crystal orientations, formation of molecular vacancies in the lattice at the crystal-vacuum (or crystal-quasi-liquid layer) interface precedes the complete loss of order at the interface.

  8. Molecular characterization and genetic diversity of insecticidal crystal protein genes in native Bacillus thuringiensis isolates.

    PubMed

    Mahadeva Swamy, H M; Asokan, R; Mahmood, Riaz; Nagesha, S N

    2013-04-01

    The Western Ghats of Karnataka natural ecosystem are among the most diverse and is one of the eight hottest hotspots of biological diversity in the world, that runs along the western part of India through four states including Karnataka. Bacillus thuringiensis (Bt) strains were isolated from soils of Western Ghats of Karnataka and characterized by molecular and analytical methods as a result of which 28 new Bt-like isolates were identified. Bt strains were isolated from soil samples using sodium acetate selection method. The morphology of crystals was studied using light and phase contrast microscopy. Isolates were further characterized for insecticidal cry gene by PCR, composition of toxins in bacterial crystals by SDS-PAGE cloning, sequencing and evaluation of toxicity was done. As a result 28 new Bt-like isolates were identified. Majority of the isolates showed the presence of a 55 kDa protein bands on SDS-PAGE while the rest showed 130, 73, 34, and 25 kDa bands. PCR analysis revealed predominance of Coleopteran-active cry genes in these isolates. The variations in the nucleotide sequences, crystal morphology, and mass of crystal protein(s) purified from the Bt isolates revealed genetic and molecular diversity. Three strains containing Coleopteran-active cry genes showed higher activity against larvae Myllocerus undecimpustulatus undatus Marshall (Coleoptera: Curculionidae) than B. thuringiensis subsp. Morrisoni. Results indicated that Bt isolates could be utilized for bioinsecticide production, aiming to reduce the use of chemical insecticide which could be useful to use in integrated pest management to control agriculturally important pests for sustainable crop production.

  9. [Structure of crambin in solution, crystal and in the trajectories of molecular dynamics simulations].

    PubMed

    Abaturov, L V; Nosova, N G

    2013-01-01

    The mechanisms of the three-dimensional crambin structure alterations in the crystalline environments and in the trajectories of the molecular dynamics simulations in the vacuum and crystal surroundings have been analyzed. In the crystalline state and in the solution the partial regrouping of remote intramolecular packing contacts, involved in the formation and stabilization of the tertiary structure of the crambin molecule, occurs in NMR structures. In the crystalline state it is initiated by the formation of the intermolecular contacts, the conformational influence of its appearance is distributed over the structure. The changes of the conformations and positions of the residues of the loop segments, where the intermolecular contacts of the crystal surroundings are preferably concentrated, are most observable. Under the influence of these contacts the principal change of the regular secondary structure of crambin is taking place: extension of the two-strand beta structure to the three-strand structure with the participation of the single last residue N46 of the C-terminal loop. In comparison with the C-terminal loop the more profound changes are observed in the conformation and the atomic positions of the backbone atoms and in the solvent accessibility of the residues of the interhelical loop. In the solution of the ensemble of the 8 NMR structures relative accessibility to the solvent differs more noticeably also in the region of the loop segments and rather markedly in the interhelical loop. In the crambin cryogenic crystal structures the positions of the atoms of the backbone and/or side chain of 14-18 of 46 residues are discretely disordered. The disorganizations of at least 8 of 14 residues occur directly in the regions of the intermolecular contacts and another 5 residues are disordered indirectly through the intramolecular contacts with the residues of the intermolecular contacts. Upon the molecular dynamics simulation in the vacuum surrounding as in the

  10. Ab initio derivation of multi-orbital extended Hubbard model for molecular crystals

    NASA Astrophysics Data System (ADS)

    Tsuchiizu, Masahisa; Omori, Yukiko; Suzumura, Yoshikazu; Bonnet, Marie-Laure; Robert, Vincent

    2012-01-01

    From configuration interaction (CI) ab initio calculations, we derive an effective two-orbital extended Hubbard model based on the gerade (g) and ungerade (u) molecular orbitals (MOs) of the charge-transfer molecular conductor (TTM-TTP)I3 and the single-component molecular conductor [Au(tmdt)2]. First, by focusing on the isolated molecule, we determine the parameters for the model Hamiltonian so as to reproduce the CI Hamiltonian matrix. Next, we extend the analysis to two neighboring molecule pairs in the crystal and we perform similar calculations to evaluate the inter-molecular interactions. From the resulting tight-binding parameters, we analyze the band structure to confirm that two bands overlap and mix in together, supporting the multi-band feature. Furthermore, using a fragment decomposition, we derive the effective model based on the fragment MOs and show that the staking TTM-TTP molecules can be described by the zig-zag two-leg ladder with the inter-molecular transfer integral being larger than the intra-fragment transfer integral within the molecule. The inter-site interactions between the fragments follow a Coulomb law, supporting the fragment decomposition strategy.

  11. Excitation of rotons in parahydrogen crystals: The laser-induced-molecular-alignment mechanism

    NASA Astrophysics Data System (ADS)

    Lindgren, Johan; Kiljunen, Toni

    2013-10-01

    Solid parahydrogen (p-H2) is known to support long-lived coherences, of the order of 100 ps, which enables high-resolution spectroscopy in the time domain. Rotational Raman-type excitations to sublevels of J=2 are delocalized due to electric-quadrupole-quadrupole coupling in p-H2 crystals, and the resulting states can be characterized as rotons. Wave packets of rotons exhibit molecular alignment with respect to laboratory coordinates. Here the concept of field-free molecular alignment, induced by strong ultrashort laser pulses, is extended into a molecular solid case. We derive a solid-state analog for the gas-phase alignment measure and illustrate the time-dependent alignment degree in p-H2 crystals by numerical simulations. To underscore the Raman gain effect of the solid, general properties of the field-free alignment are revisited by comparing gaseous p-H2 with N2. The interplay between the polarization direction of the excitation pulses and the axis directionality of the crystal is shown to affect the alignment dynamics via the spatial (M=0,±1,±2) composition of the roton wave packets. We simulate experimental traces by incorporating the induced alignment degree in the calculation of heterodyne-detected realization of femtosecond pump-probe optical Kerr effect spectroscopy. With the help of dispersed, two-dimensional resolved images of the calculated signal we reproduce the experiment as a whole. To that end, the effects of probe chirp, shape, and power must be explored in detail. We find good agreement with previous experiments and unravel the ambiguity of tracing back the wave-packet composition from the signal; in particular, we find that the effect of quantum phase factors of all the components should be taken into account when explaining the signal properties.

  12. MOLECULAR ORBITALS AND ELECTRON-TRANSFER SPECTRA IN RUTILE. GROWTH OF CRYSTALS BY FLAME FUSION,

    DTIC Science & Technology

    CRYSTAL GROWTH , *TITANIUM COMPOUNDS, *ABSORPTION, SINGLE CRYSTALS , OXIDES, MEASUREMENT, ELECTRON TRANSITIONS, SPECTROPHOTOMETERS, ULTRAVIOLET...RADIATION, POLARIZATION, CRYSTAL STRUCTURE, SYMMETRY(CRYSTALLOGRAPHY), YTTRIUM COMPOUNDS, ALUMINUM COMPOUNDS.

  13. How the Molecular Packing Affects the Room Temperature Phosphorescence in Pure Organic Compounds: Ingenious Molecular Design, Detailed Crystal Analysis, and Rational Theoretical Calculations.

    PubMed

    Xie, Yujun; Ge, Yuwei; Peng, Qian; Li, Conggang; Li, Qianqian; Li, Zhen

    2017-02-21

    Long-lived phosphorescence at room temperature (RTP) from pure organic molecules is rare. Recent research reveals various crystalline organic molecules can realize RTP with lifetimes extending to the magnitude of second. There is little research on how molecular packing affecting RTP. Three compounds are designed with similar optical properties in solution, but tremendously different solid emission characteristics. By investigating the molecular packing arrangement in single crystals, it is found that the packing style of the compact face to face favors of long phosphorescence lifetime and high photoluminescence efficiency, with the lifetime up to 748 ms observed in the crystal of CPM ((9H-carbazol-9-yl)(phenyl)methanone). Theoretical calculation analysis also reveals this kind of packing style can remarkably reduce the singlet excited energy level and prompt electron communication between dimers. Surprisingly, CPM has two very similar single crystals, labeled as CPM and CPM-A, with almost identical crystal data, and the only difference is that molecules in CPM-A crystal take a little looser packing arrangement. X-ray diffraction and cross-polarization under magic spinning (13) C NMR spectra double confirm that they are different crystals. Interestingly, CPM-A crystal shows negligible RTP compared to the CPM crystal, once again proving that the packing style is critical to the RTP property.

  14. Molecular packing and magnetic properties of lithium naphthalocyanine crystals: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen

    PubMed Central

    Pandian, Ramasamy P.; Dolgos, Michelle; Marginean, Camelia; Woodward, Patrick M.; Hammel, P. Chris; Manoharan, Periakaruppan T.; Kuppusamy, Periannan

    2009-01-01

    The synthesis, structural framework, magnetic and oxygen-sensing properties of a lithium naphthalocyanine (LiNc) radical probe are presented. LiNc was synthesized in the form of a microcrystalline powder using a chemical method and characterized by electron paramagnetic resonance (EPR) spectroscopy, magnetic susceptibility, powder X-ray diffraction analysis, and mass spectrometry. X-Ray powder diffraction studies revealed a structural framework that possesses long, hollow channels running parallel to the packing direction. The channels measured approximately 5.0 × 5.4 Å2 in the two-dimensional plane perpendicular to the length of the channel, enabling diffusion of oxygen molecules (2.9 × 3.9 Å2) through the channel. The powdered LiNc exhibited a single, sharp EPR line under anoxic conditions, with a peak-to-peak linewidth of 630 mG at room temperature. The linewidth was sensitive to surrounding molecular oxygen, showing a linear increase in pO2 with an oxygen sensitivity of 31.2 mG per mmHg. The LiNc microcrystals can be further prepared as nano-sized crystals without the loss of its high oxygen-sensing properties. The thermal variation of the magnetic properties of LiNc, such as the EPR linewidth, EPR intensity and magnetic susceptibility revealed the existence of two different temperature regimes of magnetic coupling and hence differing columnar packing, both being one-dimensional antiferromagnetic chains but with differing magnitudes of exchange coupling constants. At a temperature of ∼50 K, LiNc crystals undergo a reversible phase transition. The high degree of oxygen-sensitivity of micro- and nano-sized crystals of LiNc, combined with excellent stability, should enable precise and accurate measurements of oxygen concentration in biological systems using EPR spectroscopy. PMID:19809598

  15. Detection of Non-Equilibrium Fluctuations in Active Gels

    NASA Astrophysics Data System (ADS)

    Bacanu, Alexandru; Broedersz, Chase; Gladrow, Jannes; Mackintosh, Fred; Schmidt, Christoph; Fakhri, Nikta

    Active force generation at the molecular scale in cells can result in stochastic non-equilibrium dynamics on mesoscpopic scales. Molecular motors such as myosin can drive steady-state stress fluctuations in cytoskeletal networks. Here, we present a non-invasive technique to probe non-equilibrium fluctuations in an active gel using single-walled carbon nanotubes (SWNTs). SWNTs are semiflexible polymers with intrinsic fluorescence in the near infrared. Both thermal and active motor-induced forces in the network induce transverse fluctuations of SWNTs. We demonstrate that active driven shape fluctuations of the SWNTs exhibit dynamics that reflect the non-equilibrium activity, in particular the emergence of correlations between the bending modes. We discuss the observation of breaking of detailed balance in this configurational space of the SWNT probes. Supported by National Defense Science and Engineering Graduate Student Fellowship (NDSEG).

  16. Multiferroicity in TTF-CA Organic Molecular Crystals Predicted through Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Giovannetti, Gianluca; Kumar, Sanjeev; Stroppa, Alessandro; van den Brink, Jeroen; Picozzi, Silvia

    2009-12-01

    We show by means of ab initio calculations that the organic molecular crystal TTF-CA is multiferroic: it has an instability to develop spontaneously both ferroelectric and magnetic ordering. Ferroelectricity is driven by a Peierls transition of the TTF-CA in its ionic state. Subsequent antiferromagnetic ordering strongly enhances the opposing electronic contribution to the polarization. It is so large that it switches the direction of the total ferroelectric moment. Within an extended Hubbard model, we capture the essence of the electronic interactions in TTF-CA, confirm the presence of a multiferroic groundstate, and clarify how this state develops microscopically.

  17. Experiments with phase transitions at very high pressure. [compressed solidifed gases, semiconductors, superconductors, and molecular crystals

    NASA Technical Reports Server (NTRS)

    Spain, I. L.

    1983-01-01

    Diamond cells were constructed for use to 1 Mbar. A refrigerator for cooling diamond cells was adapted for studies between 15 and 300 K. A cryostat for superconductivity studies between 1.5 to 300 K was constructed. Optical equipment was constructed for fluorescence, transmission, and reflectance studies. X-ray equipment was adapted for use with diamond cells. Experimental techniques were developed for X-ray diffraction studies using synchrotron radiation. AC susceptibility techniques were developed for detecting superconducting transitions. The following materials were studied: compressed solidified gases (Xe, Ar), semiconductors (Ge, Si, GaAs), superconductors (Nb3Ge, Nb3Si, Nb3As, CuCl), molecular crystals (I).

  18. Definitive molecular level characterization of defects in UiO-66 crystals.

    PubMed

    Trickett, Christopher A; Gagnon, Kevin J; Lee, Seungkyu; Gándara, Felipe; Bürgi, Hans-Beat; Yaghi, Omar M

    2015-09-14

    The identification and characterization of defects, on the molecular level, in metal-organic frameworks (MOFs) remain a challenge. With the extensive use of single-crystal X-ray diffraction (SXRD), the missing linker defects in the zirconium-based MOF UiO-66, Zr6 O4 (OH)4 (C8 H4 O4 )6 , have been identified as water molecules coordinated directly to the zirconium centers. Charge balancing is achieved by hydroxide anions, which are hydrogen bonded within the pores of the framework. Furthermore, the precise nature of the defects and their concentration can be manipulated by altering the starting materials, synthesis conditions, and post-synthetic modifications.

  19. Molecular dynamic simulation for nanometric cutting of single-crystal face-centered cubic metals

    PubMed Central

    2014-01-01

    In this work, molecular dynamics simulations are performed to investigate the influence of material properties on the nanometric cutting of single crystal copper and aluminum with a diamond cutting tool. The atomic interactions in the two metallic materials are modeled by two sets of embedded atom method (EAM) potential parameters. Simulation results show that although the plastic deformation of the two materials is achieved by dislocation activities, the deformation behavior and related physical phenomena, such as the machining forces, machined surface quality, and chip morphology, are significantly different for different materials. Furthermore, the influence of material properties on the nanometric cutting has a strong dependence on the operating temperature. PMID:25426007

  20. Vacuum Ultraviolet Radiation Desorption of Molecular Contaminants Deposited on Quartz Crystal Microbalances

    NASA Technical Reports Server (NTRS)

    Albyn, Keith; Burns, Dewitt

    2006-01-01

    Recent quartz crystal microbalance measurements made in the Marshall Space Flight Center, Photo-Deposition Facility, for several materials, recorded a significant loss of deposited contaminants when the deposition surface of the microbalance was illuminated by a deuterium lamp. These measurements differ from observations made by other investigators in which the rate of deposition increased significantly when the deposition surface was illuminated with vacuum ultraviolet radiation. These observations suggest that the accelerated deposition of molecular contaminants on optically sensitive surfaces is dependant upon the contaminant being deposited and must be addressed during the materials selection process by common material screening techniques.

  1. CL-20/DNB co-crystal based PBX with PEG: molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Jiang; Gao, Pei; Xiao, Ji Jun; Zhao, Feng; Xiao, He Ming

    2016-12-01

    Molecular dynamics simulation was carried out for CL-20/DNB co-crystal based PBX (polymer-bonded explosive) blended with polymer PEG (polyethylene glycol). In this paper, the miscibility of the PBX models is investigated through the calculated binding energy. Pair correlation function (PCF) analysis is applied to study the interaction of the interface structures in the PBX models. The mechanical properties of PBXs are also discussed to understand the change of the mechanical properties after adding the polymer. Moreover, the calculated diffusion coefficients of the interfacial explosive molecules are used to discuss the dispersal ability of CL-20 and DNB molecules in the interface layer.

  2. Surface energetics of freely suspended fluid molecular monolayer and multilayer smectic liquid crystal films

    PubMed Central

    Nguyen, Zoom Hoang; Park, Cheol Soo; Pang, Jinzhong; Clark, Noel A.

    2012-01-01

    A study of the surface energetics of the thinnest substrate-free liquid films, fluid molecular monolayer and multilayer smectic liquid crystal films suspended in air, is reported. In films having monolayer and multilayer domains, the monolayer areas contract, contrary to predictions from the van der Waals disjoining pressure of thin uniform slabs. This discrepancy is accounted for by modeling the environmental asymmetry of the surface layers in multilayer films, leading to the possibility that preferential end-for-end polar ordering of the rod shaped molecules can reduce the surface energy of multilayers relative to that of the monolayer, which is inherently symmetric. PMID:22826264

  3. Properties of Energy Spectra of Molecular Crystals Investigated by Nonlinear Theory

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-Feng; Zhang, Huai-Wu

    We calculate the quantum energy spectra of molecular crystals, such as acetanilide, by using discrete nonlinear Schrodinger equation, containing various interactions, appropriate to the systems. The energy spectra consist of many energy bands, in each energy band there are a lot of energy levels including some higher excited states. The result of energy spectrum is basically consistent with experimental values obtained by infrared absorption and Raman scattering in acetanilide and can also explain some experimental results obtained by Careri et al. Finally, we further discuss the influences of variously characteristic parameters on the energy spectra of the systems.

  4. Rupture mechanism of liquid crystal thin films realized by large-scale molecular simulations

    NASA Astrophysics Data System (ADS)

    Nguyen, Trung Dac; Carrillo, Jan-Michael Y.; Matheson, Michael A.; Brown, W. Michael

    2014-02-01

    The ability of liquid crystal (LC) molecules to respond to changes in their environment makes them an interesting candidate for thin film applications, particularly in bio-sensing, bio-mimicking devices, and optics. Yet the understanding of the (in)stability of this family of thin films has been limited by the inherent challenges encountered by experiment and continuum models. Using unprecedented large-scale molecular dynamics (MD) simulations, we address the rupture origin of LC thin films wetting a solid substrate at length scales similar to those in experiment. Our simulations show the key signatures of spinodal instability in isotropic and nematic films on top of thermal nucleation, and importantly, for the first time, evidence of a common rupture mechanism independent of initial thickness and LC orientational ordering. We further demonstrate that the primary driving force for rupture is closely related to the tendency of the LC mesogens to recover their local environment in the bulk state. Our study not only provides new insights into the rupture mechanism of liquid crystal films, but also sets the stage for future investigations of thin film systems using peta-scale molecular dynamics simulations.The ability of liquid crystal (LC) molecules to respond to changes in their environment makes them an interesting candidate for thin film applications, particularly in bio-sensing, bio-mimicking devices, and optics. Yet the understanding of the (in)stability of this family of thin films has been limited by the inherent challenges encountered by experiment and continuum models. Using unprecedented large-scale molecular dynamics (MD) simulations, we address the rupture origin of LC thin films wetting a solid substrate at length scales similar to those in experiment. Our simulations show the key signatures of spinodal instability in isotropic and nematic films on top of thermal nucleation, and importantly, for the first time, evidence of a common rupture mechanism

  5. Molecular and crystal structure of 2-{( E)-[(4-Methylphenyl)imino]methyl}-4-nitrophenol: A redetermination

    NASA Astrophysics Data System (ADS)

    Kaynar, Nihal Kan; Tanak, Hasan; Şahin, Songul; Dege, Necmi; Ağar, Erbil; Yavuz, Metin

    2016-03-01

    The crystal structure of the title compound, C14H12N2O3, was recently determined as a mixture of its neutral (OH containing) and zwitterionic (NH containing) forms, in a 0.60 (4): 0.40 (4) ratio using the X-ray determination. In this study, the title compound has been characterized by FT-IR and X-ray diffraction. The redetermination showed that the title compound has only enol (OH) form because of lack of the NH stretching vibration in FT-IR spectrum. In addition, the molecular structure and tautomerism of the title compound have been discussed.

  6. Nonequilibrium thermodynamics of spacetime.

    PubMed

    Eling, Christopher; Guedens, Raf; Jacobson, Ted

    2006-03-31

    It has previously been shown that the Einstein equation can be derived from the requirement that the Clausius relation dS=deltaQ/T hold for all local acceleration horizons through each spacetime point, where is one-quarter the horizon area change in Planck units and deltaQ and T are the energy flux across the horizon and the Unruh temperature seen by an accelerating observer just inside the horizon. Here we show that a curvature correction to the entropy that is polynomial in the Ricci scalar requires a nonequilibrium treatment. The corresponding field equation is derived from the entropy balance relation dS=deltaQ/T+diS, where diS is a bulk viscosity entropy production term that we determine by imposing energy-momentum conservation. Entropy production can also be included in pure Einstein theory by allowing for shear viscosity of the horizon.

  7. First principles nonequilibrium plasma mixing

    NASA Astrophysics Data System (ADS)

    Ticknor, C.; Herring, S. D.; Lambert, F.; Collins, L. A.; Kress, J. D.

    2014-01-01

    We have performed nonequilibrium classical and quantum-mechanical molecular dynamics simulations that follow the interpenetration of deuterium-tritium (DT) and carbon (C) components through an interface initially in hydrostatic and thermal equilibrium. We concentrate on the warm, dense matter regime with initial densities of 2.5-5.5 g/cm3 and temperatures from 10 to 100 eV. The classical treatment employs a Yukawa pair-potential with the parameters adjusted to the plasma conditions, and the quantum treatment rests on an orbital-free density functional theory at the Thomas-Fermi-Dirac level. For times greater than about a picosecond, the component concentrations evolve in accordance with Fick's law for a classically diffusing fluid with the motion, though, described by the mutual diffusion coefficient of the mixed system rather than the self-diffusion of the individual components. For shorter times, microscopic processes control the clearly non-Fickian dynamics and require a detailed representation of the electron probability density in space and time.

  8. PREFACE: International Symposium on Non-Equilibrium Soft Matter 2010 International Symposium on Non-Equilibrium Soft Matter 2010

    NASA Astrophysics Data System (ADS)

    Kawakatsu, T.; Matsuyama, A.; Ohta, T.; Tanaka, H.; Tanaka, S.

    2011-07-01

    Soft matter is a rapidly growing interdisciplinary research field covering a range of subject areas including physics, chemistry, biology, mathematics and engineering. Some of the important universal features of these materials are their mesoscopic structures and their dynamics. Due to the existence of such large-scale structures, which nevertheless exhibit interactions of the order of the thermal energy, soft matter can readily be taken out of equilibrium by imposing a weak external field such as an electric field, a mechanical stress or a shear flow. The importance of the coexistence of microscopic molecular dynamics and the mesoscopic/macroscopic structures and flows requires us to develop hierarchical approaches to understand the nonlinear and nonequilibrium phenomena, which is one of the central issues of current soft matter research. This special section presents selected contributions from the 'International Symposium on Non-Equilibrium Soft Matter 2010' held from 17-20 August 2010 in Nara, Japan, which aimed to describe recent advances in soft matter research focusing especially on its nonequilibrium aspects. The topics discussed cover statics and dynamics of a wide variety of materials ranging from traditional soft matter like polymers, gels, emulsions, liquid crystals and colloids to biomaterials such as biopolymers and biomembranes. Among these studies, we highlighted the physics of biomembranes and vesicles, which has attracted great attention during the last decade; we organized a special session for this active field. The work presented in this issue deals with (1) structure formation in biomembranes and vesicles, (2) rheology of polymers and gels, (3) mesophases in block copolymers, (4) mesoscopic structures in liquid crystals and ionic liquids, and (5) nonequilibrium dynamics. This symposium was organized as part of a research project supported by the Grant-in-Aid for the priority area 'Soft Matter Physics' (2006-2010) from the Ministry of Education

  9. Crystal structure and molecular dynamics studies of L-amino acid oxidase from Bothrops atrox.

    PubMed

    Feliciano, Patricia R; Rustiguel, Joane K; Soares, Ricardo O S; Sampaio, Suely V; Cristina Nonato, M

    2017-03-15

    L-amino acid oxidases (LAAOs) are dimeric flavoproteins that catalyze the deamination of L-amino acid to α-keto acid, producing ammonia and hydrogen peroxide. In this study, we report the crystal structure and molecular dynamics simulations of LAAO from the venom of Bothrops atrox (BatroxLAAO). BatroxLAAO presents several biological and pharmacological properties with promising biomedical applications. BatroxLAAO structure contains the highly conserved structural pattern of LAAOs comprising a FAD-binding domain, substrate-binding domain and helical domain, and a dimeric arrangement that can be stabilized by zinc. Also, molecular dynamics results show an asymmetric behavior, and a direct communication between FAD- and substrate-binding domains of counterpart subunits. These findings shed light on the structural role of dimerization to catalytic mechanism of SV-LAAOs.

  10. Exceptionally stiff two-dimensional molecular crystal by substrate-confinement.

    PubMed

    Zhang, Jun; Yuan, Bingkai; Chen, Pengcheng; Cheng, Zhihai; Ji, Wei; Qiu, Xiaohui

    2014-11-25

    We demonstrated an approach to effectively apply in-plane pressures to molecular layers by utilizing the substrate confinement effect. The compressed crystal structure and mechanical behaviors of carbon monoxide (CO) monolayer subjected to the confinement of Cu(100) substrate were jointly investigated by low temperature scanning tunneling microscopy experiments and first-principles density functional theory calculations. By increasing molecular coverage, an exceptionally large Young's modulus of 33 GPa was derived for the constrained CO monolayer film. This extreme in-plane pressure leads to site-specific tilting geometries, polymeric-like electronic states, and vibrational behaviors of CO molecules in the compressed phases. These results provide an extended understanding of the physical and chemical properties of intermolecular interactions in this fundamental system.

  11. Charge carrier mobilities in organic semiconductors: crystal engineering and the importance of molecular contacts.

    PubMed

    Bashir, Asif; Heck, Alexander; Narita, Akimitsu; Feng, Xinliang; Nefedov, Alexei; Rohwerder, Michael; Müllen, Klaus; Elstner, Marcus; Wöll, Christof

    2015-09-14

    We have conducted a combined experimental and theoretical study on the optimization of hexa-peri-hexabenzocoronene (HBC) as organic semiconductor. While orientations with high electronic coupling are unfavorable in the native liquid crystalline phase of HBC, we enforced such orientations by applying external constraints. To this end, self-assembled monolayers (SAMs) were formed by a non-conventional preparation method on an Au-substrate using electrochemical control. Within these SAMs the HBC units are forced into favorable orientations that cannot be achieved by unconstrained crystallization. For simulating the charge transport we applied a recently developed approach, where the molecular structure and the charge carrier are propagated simultaneously during a molecular dynamics simulation. Experiments as well as simulations are mutually supportive of an improved mobility in these novel materials. The implication of these findings for a rational design of future organic semiconductors will be discussed.

  12. Synthesis, crystal structure, and in vitro and in silico molecular docking of novel acyl thiourea derivatives

    NASA Astrophysics Data System (ADS)

    Haribabu, Jebiti; Subhashree, Govindarajulu Rangabashyam; Saranya, Sivaraj; Gomathi, Kannayiram; Karvembu, Ramasamy; Gayathri, Dasararaju

    2015-08-01

    In the present study, a series of six biologically active substituted acyl thiourea compounds (1-6) has been synthesized from cyclohexanecarbonyl isothiocyanate and various primary amines (2-methyl aniline, aniline, 4-methoxy aniline, 4-ethoxy aniline, benzyl amine and 2-methoxy aniline). The synthesized compounds were characterized by elemental analyses, UV-Visible, FT-IR, 1H & 13C NMR and mass spectroscopic techniques. Three dimensional molecular structure of two compounds (1 and 5) was determined by single crystal X-ray crystallography. All the synthesized compounds show good anti-oxidant and anti-haemolytic activities. In silico molecular docking studies were performed to screen against DprE1 and HSP90 enzymes targeting tuberculosis and cancer respectively.

  13. Discotic columnar liquid crystal studied in the bulk and nanoconfined states by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Busselez, Rémi; Cerclier, Carole V.; Ndao, Makha; Ghoufi, Aziz; Lefort, Ronan; Morineau, Denis

    2014-10-01

    A prototypical Gay Berne discotic liquid crystal was studied by means of molecular dynamics simulations both in the bulk state and under confinement in a nanoporous channel. The phase behavior of the confined system strongly differs from its bulk counterpart: the bulk isotropic-to-columnar transition is replaced by a continuous ordering from a paranematic to a columnar phase. Moreover, a new transition is observed at a lower temperature in the confined state, which corresponds to a reorganization of the intercolumnar order. It reflects the competing effects of pore surface interaction and genuine hexagonal packing of the columns. The translational molecular dynamics in the different phases has been thoroughly studied and discussed in terms of collective relaxation modes, non-Gaussian behavior, and hopping processes.

  14. Electronic excitation transport in photosynthesis and crystal and molecular structures of porphyrin compounds

    SciTech Connect

    Yang, Shumei.

    1991-04-22

    The excitation energy transfer in three photosynthetic organism samples, Bacteriochlorophyll a-protein from Prosthecochloris aestuarii, and enriched photosystem I particles from spinach chloroplasts, have been investigated by pump-probe ultrafast spectroscopy. The isotropic photobleaching profiles were best described by two exponential decay components in one Bchl a-protein complex, and three exponential decay components in another. The experimental results from the three samples show that nonrandom chromophore orientations exist and Sauer's pebble mosaic'' model is an appropriate one for excitation transfer in these samples. The polarized pump-probe transients have been analyzed in terms of an exciton hopping model that incorporates the known geometry of the Bchl a-protein. The crystal and molecular structures of four metalloporphyrins have been determined by X-ray diffraction and molecular mechanics. 207 refs., 44 figs., 15 tabs.

  15. Temperature-induced crystallization in concentrated suspensions of multiarm star polymers: a molecular dynamics study.

    PubMed

    Rissanou, Anastassia N; Yiannourakou, Marianna; Economou, Ioannis G; Bitsanis, Ioannis A

    2006-01-28

    In this work, we study temperature-induced crystallization in dense suspensions of multiarm star polymers. This is a continuation of a previous study, which identified and studied the emergence of "glassy" amorphous states, in accordance with experimental observations. We performed molecular dynamics simulations on two types of star polymers: 128-arm stars and 64-arm stars dissolved in n-decane in the temperature range of 20-60 degrees C. These supramolecules are modeled as "soft spheres" interacting via a theoretically developed potential of mean field. Both systems attain a crystalline structure with the characteristics of a face-centered-cubic (fcc) crystal beyond a certain temperature. Kinetics is sensitive on initial configuration. Interestingly, kinetic trapping in "temporary" energy wells leads to highly crystalline structures, yet less ordered than their genuine equilibrium fcc structure. This complication illustrates the difficulty in reaching the equilibrium state, which is crystalline at high temperatures. A structural analysis of the final conformations is presented. The effect of size dispersity and star functionality of soft spheres on microstructure is also examined. Both factors influence crystallization and their effect is quantified by our study.

  16. Inorganic bromine in organic molecular crystals: Database survey and four case studies

    NASA Astrophysics Data System (ADS)

    Nemec, Vinko; Lisac, Katarina; Stilinović, Vladimir; Cinčić, Dominik

    2017-01-01

    We present a Cambridge Structural Database and experimental study of multicomponent molecular crystals containing bromine. The CSD study covers supramolecular behaviour of bromide and tribromide anions as well as halogen bonded dibromine molecules in crystal structures of organic salts and cocrystals, and a study of the geometries and complexities in polybromide anion systems. In addition, we present four case studies of organic structures with bromide, tribromide and polybromide anions as well as the neutral dibromine molecule. These include the first observed crystal with diprotonated phenazine, a double salt of phenazinium bromide and tribromide, a cocrystal of 4-methoxypyridine with the neutral dibromine molecule as a halogen bond donor, as well as bis(4-methoxypyridine)bromonium polybromide. Structural features of the four case studies are in the most part consistent with the statistically prevalent behaviour indicated by the CSD study for given bromine species, although they do exhibit some unorthodox structural features and in that indicate possible supramolecular causes for aberrations from the statistically most abundant (and presumably most favourable) geometries.

  17. Accelerating MP2C dispersion corrections for dimers and molecular crystals

    NASA Astrophysics Data System (ADS)

    Huang, Yuanhang; Shao, Yihan; Beran, Gregory J. O.

    2013-06-01

    The MP2C dispersion correction of Pitonak and Hesselmann [J. Chem. Theory Comput. 6, 168 (2010)], 10.1021/ct9005882 substantially improves the performance of second-order Møller-Plesset perturbation theory for non-covalent interactions, albeit with non-trivial computational cost. Here, the MP2C correction is computed in a monomer-centered basis instead of a dimer-centered one. When applied to a single dimer MP2 calculation, this change accelerates the MP2C dispersion correction several-fold while introducing only trivial new errors. More significantly, in the context of fragment-based molecular crystal studies, combination of the new monomer basis algorithm and the periodic symmetry of the crystal reduces the cost of computing the dispersion correction by two orders of magnitude. This speed-up reduces the MP2C dispersion correction calculation from a significant computational expense to a negligible one in crystals like aspirin or oxalyl dihydrazide, without compromising accuracy.

  18. Self-assembled molecular wires of discotic liquid crystal formed with the crucial contribution of solvents

    NASA Astrophysics Data System (ADS)

    Park, Ji Hyun; Kim, Kyung Ho; Sosa Vargas, Lydia; Takanishi, Yoichi; Kim, Youn Sang; Yamamoto, Jun; Shimizu, Yo; Park, Yung Woo; Lagerwall, Jan Pf; Scalia, Giusy

    The self-organization of discotic liquid crystal molecules allows the spontaneous formation of well-aligned and tens of micrometer long molecular wires. In this work, we present a study based on hexapentyloxytriphenylene (HAT5) to investigate the molecular wire formation mechanism induced by solvents with selected characteristics, including chemical structure, boiling point, vapor pressure, and surface tension. The aromaticity in solvents such as toluene and benzene promotes the assembly into very long and thin wires entering into the structures, while chain-like solvents promotes more disordered structures. This finding allows a guided formation of different nanostructures from the same type of molecules just by choosing the type of solvent according to the need. Raman spectroscopy supports the idea of an active role of aromatic solvents entering into the molecular structure between discotic molecules with good quality intermolecular order. Highly aligned molecular wires bridging electrodes on SiO2 substrate show a clearly higher electrical conductivity compared to disorganized aggregates and bare HAT5. DLS and X-ray scattering were also used to investigate films and solutions. We finally discuss possible mechanisms behind the hierarchical assembly of the nanowires. NRF.

  19. Near-surface controls on the composition of growing crystals: Car-Parrinello molecular dynamics (CPMD) simulations of Ti energetics and diffusion in alpha quartz

    NASA Astrophysics Data System (ADS)

    Lanzillo, N. A.; Watson, E. B.; Thomas, J. B.; Nayak, S. K.; Curioni, A.

    2014-04-01

    Ab initio molecular dynamics simulations were used to explore changes in the vacancy-formation energy for Ti atoms and Ti-O bond characteristics in the outermost monolayers of the (1 0 0) and (0 1 0) prism faces of α quartz. Within 2 or 3 polyhedral layers of the crystal surface, the Ti vacancy-formation energy is substantially smaller than the bulk-lattice value of 11.8 eV. This is true of both oxygen-terminated surfaces and the geologically more realistic case in which the outermost oxygens are bonded to hydrogen. A key additional finding is that the Ti vacancy-formation energy near the H-terminated (1 0 0) surface differs by 1-2 eV from that near the H-terminated (0 1 0) surface. This difference means that the energy change accompanying Ti ↔ Si exchange between the bulk lattice and the near surface is also different for (1 0 0) and (0 1 0). Ultimately, therefore, the equilibrium concentrations of Ti near these two prism faces will not be the same. During crystal growth, this compositional difference may be “captured” by the quartz lattice and preserved as sectoral variation in Ti content-a feature commonly observed in both synthetic and natural α quartz. In this respect, the MD simulations provide direct support for the growth entrapment model (GEM; Watson, 2004) for non-equilibrium uptake of trace elements. To complement the vacancy-formation energy results, we used the first-principles metadynamics method to calculate diffusion pathways and free energy barriers for Ti diffusion in the bulk α quartz lattice and in the near-surface region. The computed estimate of the bulk-lattice activation energy compares favorably with the experimentally determined value of 2.8 eV (Cherniak et al., 2007), lending credence to the method. Diffusion results for the near-surface reveal a steep decrease in the activation energy for Ti diffusion approaching the surface in the outermost 2-3 polyhedral layers of the crystal. This finding implies depth-dependent Ti diffusion

  20. Quartz crystal microbalance sensor for organic vapor detection based on molecularly imprinted polymers.

    PubMed

    Fu, Yi; Finklea, Harry O

    2003-10-15

    Molecularly imprinted polymers on quartz crystal microbalances (QCM) are examined for their ability to detect vapors of small organic molecules with greater sensitivity and selectivity than the traditional amorphous polymer coatings. Hydroquinone and phenol serve as noncovalently bound templates that generate shape-selective cavities in a poly(acrylic) or poly(methacrylic) polymer matrix. The imprinted polymers are immobilized on the piezoelectric crystal surface via a precoated poly(isobutylene) layer. The behavior of the imprinted polymer films is characterized by the dynamic and steady-state response of the QCM frequency to pulses of organic vapors in dry air. The apparent partition coefficients are determined for imprinted and nonimprinted polymers prepared by two synthetic methods and for varying mole ratios of template to monomer. The hydroquinone-imprinted polymers and, to a lesser extent, the phenol-imprinted polymers exhibit greater sensitivity and higher selectivity than the nonimprinted polymers toward organic vapors that are structurally related to the templates. These results indicate that molecularly imprinted polymers are promising for the development of selective piezoelectric sensors for organic vapor detection.

  1. How important is thermal expansion for predicting molecular crystal structures and thermochemistry at finite temperatures?

    PubMed

    Heit, Yonaton N; Beran, Gregory J O

    2016-08-01

    Molecular crystals expand appreciably upon heating due to both zero-point and thermal vibrational motion, yet this expansion is often neglected in molecular crystal modeling studies. Here, a quasi-harmonic approximation is coupled with fragment-based hybrid many-body interaction calculations to predict thermal expansion and finite-temperature thermochemical properties in crystalline carbon dioxide, ice Ih, acetic acid and imidazole. Fragment-based second-order Möller-Plesset perturbation theory (MP2) and coupled cluster theory with singles, doubles and perturbative triples [CCSD(T)] predict the thermal expansion and the temperature dependence of the enthalpies, entropies and Gibbs free energies of sublimation in good agreement with experiment. The errors introduced by neglecting thermal expansion in the enthalpy and entropy cancel somewhat in the Gibbs free energy. The resulting ∼ 1-2 kJ mol(-1) errors in the free energy near room temperature are comparable to or smaller than the errors expected from the electronic structure treatment, but they may be sufficiently large to affect free-energy rankings among energetically close polymorphs.

  2. Wurtzite Al xGa 1- xN bulk crystals grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Staddon, C. R.; Powell, R. E. L.; Akimov, A. V.; Luckert, F.; Edwards, P. R.; Martin, R. W.; Kent, A. J.; Foxon, C. T.

    2011-05-01

    We have studied the growth of wurtzite GaN and Al xGa 1- xN layers and bulk crystals by molecular beam epitaxy (MBE). MBE is normally regarded as an epitaxial technique for the growth of very thin layers with monolayer control of their thickness. However, we have used the MBE technique for bulk crystal growth and have produced 2 in diameter wurtzite Al xGa 1- xN layers up to 10 μm in thickness. Undoped wurtzite Al xGa 1- xN films were grown on GaAs (1 1 1)B substrates by a plasma-assisted molecular beam epitaxy (PA-MBE) method and were removed from the GaAs substrate after the growth. The fact that free-standing ternary Al xGa 1- xN wafers can be grown is very significant for the potential future production of wurtzite Al xGa 1- xN substrates optimized for AlGaN-based device structures.

  3. Repackaging photon energy using exciton fission and fusion in molecular crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bardeen, Christopher J.

    2016-09-01

    The ability to downconvert (1 photon to 2 photons) and upconvert (2 photons to 1 photon) energy can boost solar energy conversion efficiencies by 30% or more. Downconversion can be accomplished through exciton fission, in which an initially created high energy singlet exciton spontaneously splits into a pair of lower energy triplet excitons. In organic semiconductors like tetracene and rubrene, the Frenkel character of the excitons leads to energetically separate singlet and triplet bands, providing an ideal set of energy levels for both processes to take place. In this talk, our efforts to understand the basic photophysics of singlet fission using time-resolved transient absorption, photoluminescence and magnetic field effects will be described. The role of molecular packing in controlling the fission rate will be emphasized. Upconversion occurs via the reverse process, where a pair of triplet excitons fuse into a high-energy singlet state. While most approaches to upconversion require a sensitizer to populate the dark triplet states, an alternate approach is to take advantage of low-energy intermolecular states in organic crystals to sensitize triplet states. We show that this process can be surprisingly efficient in certain molecular crystals, even in the absence of sensitizers. The exciton interactions responsible for this process are investigated using steady-state and time-resolved spectroscopy.

  4. Rupture mechanism of liquid crystal thin films realized by large-scale molecular simulations

    SciTech Connect

    Nguyen, Trung D; Carrillo, Jan-Michael Y; Brown, W Michael; Matheson, Michael A

    2014-01-01

    The ability of liquid crystal (LC) molecules to respond to changes in their environment makes them an interesting candidate for thin film applications, particularly in bio-sensing, bio-mimicking devices, and optics. Yet the understanding of the (in)stability of this family of thin films has been limited by the inherent challenges encountered by experiment and continuum models. Using unprecedented largescale molecular dynamics (MD) simulations, we address the rupture origin of LC thin films wetting a solid substrate at length scales similar to those in experiment. Our simulations show the key signatures of spinodal instability in isotropic and nematic films on top of thermal nucleation, and importantly, for the first time, evidence of a common rupture mechanism independent of initial thickness and LC orientational ordering. We further demonstrate that the primary driving force for rupture is closely related to the tendency of the LC mesogens to recover their local environment in the bulk state. Our study not only provides new insights into the rupture mechanism of liquid crystal films, but also sets the stage for future investigations of thin film systems using peta-scale molecular dynamics simulations.

  5. First principles investigations of vinazene molecule and molecular crystal: a prospective candidate for organic photovoltaic applications.

    PubMed

    Mohamad, Mazmira; Ahmed, Rashid; Shaari, Amirudin; Goumri-Said, Souraya

    2015-02-01

    Escalating demand for sustainable energy resources, because of the rapid exhaustion of conventional energy resources as well as to maintain the environmental level of carbon dioxide (CO2) to avoid its adverse effect on the climate, has led to the exploitation of photovoltaic technology manifold more than ever. In this regard organic materials have attracted great attention on account of demonstrating their potential to harvest solar energy at an affordable rate for photovoltaic technology. 2-vinyl-4,5-dicyanoimidazole (vinazene) is considered as a suitable material over the fullerenes for photovoltaic applications because of its particular chemical and physical nature. In the present study, DFT approaches are employed to provide an exposition of optoelectronic properties of vinazene molecule and molecular crystal. To gain insight into its properties, different forms of exchange correlation energy functional/potential such as LDA, GGA, BLYP, and BL3YP are used. Calculated electronic structure of vinazene molecule has been displayed via HOMO-LUMO isosurfaces, whereas electronic structure of the vinazene molecular crystal, via electronic band structure, is presented. The calculated electronic and optical properties were analyzed and compared as well. Our results endorse vinazene as a suitable material for organic photovoltaic applications.

  6. Comparative study of local structure of two cyanobiphenyl liquid crystals by molecular dynamics method

    SciTech Connect

    Gerts, Egor D. Komolkin, Andrei V.; Burmistrov, Vladimir A.; Alexandriysky, Victor V.; Dvinskikh, Sergey V.

    2014-08-21

    Fully-atomistic molecular dynamics simulations were carried out on two similar cyanobiphenyl nematogens, HO-6OCB and 7OCB, in order to study effects of hydrogen bonds on local structure of liquid crystals. Comparable length of these two molecules provides more evident results on the effects of hydrogen bonding. The analysis of radial and cylindrical distribution functions clearly shows the differences in local structure of two mesogens. The simulations showed that anti-parallel alignment is preferable for the HO-6OCB. Hydrogen bonds between OH-groups are observed for 51% of HO-6OCB molecules, while hydrogen bonding between CN- and OH-groups occurs only for 16% of molecules. The lifetimes of H-bonds differ due to different mobility of molecular fragments (50 ps for N⋅⋅⋅H–O and 41 ps for O⋅⋅⋅H–O). Although the standard Optimized Potentials for Liquid Simulations - All-Atom force field cannot reproduce some experimental parameters quantitatively (order parameters are overestimated, diffusion coefficients are not reproduced well), the comparison of relative simulated results for the pair of mesogens is nevertheless consistent with the same relative experimental parameters. Thus, the comparative study of simulated and experimental results for the pair of similar liquid crystals still can be assumed plausible.

  7. X-Ray crystal structure and molecular dynamics simulations of silver hake parvalbumin (Isoform B).

    PubMed Central

    Richardson, R. C.; King, N. M.; Harrington, D. J.; Sun, H.; Royer, W. E.; Nelson, D. J.

    2000-01-01

    Parvalbumins constitute a class of calcium-binding proteins characterized by the presence of several helix-loop-helix (EF-hand) motifs. In a previous study (Revett SP, King G, Shabanowitz J, Hunt DF, Hartman KL, Laue TM, Nelson DJ, 1997, Protein Sci 7:2397-2408), we presented the sequence of the major parvalbumin isoform from the silver hake (Merluccius bilinearis) and presented spectroscopic and structural information on the excised "EF-hand" portion of the protein. In this study, the X-ray crystal structure of the silver hake major parvalbumin has been determined to high resolution, in the frozen state, using the molecular replacement method with the carp parvalbumin structure as a starting model. The crystals are orthorhombic, space group C2221, with a = 75.7 A, b = 80.7 A, and c = 42.1 A. Data were collected from a single crystal grown in 15% glycerol, which served as a cryoprotectant for flash freezing at -188 degrees C. The structure refined to a conventional R-value of 21% (free R 25%) for observed reflections in the range 8 to 1.65 A [1 > 2sigma(I)]. The refined model includes an acetylated amino terminus, 108 residues (characteristic of a beta parvalbumin lineage), 2 calcium ions, and 114 water molecules per protein molecule. The resulting structure was used in molecular dynamics (MD) simulations focused primarily on the dynamics of the ligands coordinating the Ca2+ ions in the CD and EF sites. MD simulations were performed on both the fully Ca2+ loaded protein and on a Ca2+ deficient variant, with Ca2+ only in the CD site. There was substantial agreement between the MD and X-ray results in addressing the issue of mobility of key residues in the calcium-binding sites, especially with regard to the side chain of Ser55 in the CD site and Asp92 in the EF site. PMID:10739249

  8. X-Ray crystal structure and molecular dynamics simulations of silver hake parvalbumin (Isoform B).

    PubMed

    Richardson, R C; King, N M; Harrington, D J; Sun, H; Royer, W E; Nelson, D J

    2000-01-01

    Parvalbumins constitute a class of calcium-binding proteins characterized by the presence of several helix-loop-helix (EF-hand) motifs. In a previous study (Revett SP, King G, Shabanowitz J, Hunt DF, Hartman KL, Laue TM, Nelson DJ, 1997, Protein Sci 7:2397-2408), we presented the sequence of the major parvalbumin isoform from the silver hake (Merluccius bilinearis) and presented spectroscopic and structural information on the excised "EF-hand" portion of the protein. In this study, the X-ray crystal structure of the silver hake major parvalbumin has been determined to high resolution, in the frozen state, using the molecular replacement method with the carp parvalbumin structure as a starting model. The crystals are orthorhombic, space group C2221, with a = 75.7 A, b = 80.7 A, and c = 42.1 A. Data were collected from a single crystal grown in 15% glycerol, which served as a cryoprotectant for flash freezing at -188 degrees C. The structure refined to a conventional R-value of 21% (free R 25%) for observed reflections in the range 8 to 1.65 A [1 > 2sigma(I)]. The refined model includes an acetylated amino terminus, 108 residues (characteristic of a beta parvalbumin lineage), 2 calcium ions, and 114 water molecules per protein molecule. The resulting structure was used in molecular dynamics (MD) simulations focused primarily on the dynamics of the ligands coordinating the Ca2+ ions in the CD and EF sites. MD simulations were performed on both the fully Ca2+ loaded protein and on a Ca2+ deficient variant, with Ca2+ only in the CD site. There was substantial agreement between the MD and X-ray results in addressing the issue of mobility of key residues in the calcium-binding sites, especially with regard to the side chain of Ser55 in the CD site and Asp92 in the EF site.

  9. Non-equilibrium phase transitions of aqueous starch systems.

    PubMed

    Biliaderis, C G

    1991-01-01

    Experimental data on phase transitions of aqueous starch systems, obtained by thermal analysis (TA) methods, are often indicative of irreversible (non-equilibrium) processes involving various metastable states. The thermal responses usually reflect composite effects from contributions of several opposing processes [e.g. annealing, melting, and (re)crystallization] taking place concurrently during TA. It is important, therefore, to recognize the temperature- and time-dependence of the structure of starch materials, if non-isothermal techniques are used for their characterization. Identifying the pertinent morphological features (supermolecular structure) of each particular system, as well as recognizing the role of water as a plasticizer which depresses the Tg of the amorphous domains, is essential to predict heat/moisture-mediated transformations of this biopolymer. The phase transition behaviour of granular starch and amylose-lipid complexes, as revealed by Differential Scanning Calorimetry and Thermomechanical Analysis, and the metastability of these materials are considered herein with respect to the effects of water and low molecular weight solutes.

  10. Available Energy via Nonequilibrium Thermodynamics.

    ERIC Educational Resources Information Center

    Woollett, E. L.

    1979-01-01

    Presents basic relations involving the concept of available energy that are derived from the local equations of nonequilibrium thermodynamics. The equations and applications of the local thermodynamic equilibrium LTD model are also presented. (HM)

  11. Molecular dynamics simulations of shock waves in oriented nitromethane single crystals

    NASA Astrophysics Data System (ADS)

    He, Lan; Sewell, Thomas D.; Thompson, Donald L.

    2011-03-01

    The structural relaxation of crystalline nitromethane initially at T = 200 K subjected to moderate (˜15 GPa) supported shocks on the (100), (010), and (001) crystal planes has been studied using microcanonical molecular dynamics with the nonreactive Sorescu-Rice-Thompson force field [D. C. Sorescu, B. M. Rice, and D. L. Thompson, J. Phys. Chem. B 104, 8406 (2000)]. The responses to the shocks were determined by monitoring the mass density, the intermolecular, intramolecular, and total temperatures (average kinetic energies), the partitioning of total kinetic energy among Cartesian directions, the radial distribution functions for directions perpendicular to those of shock propagation, the mean-square displacements in directions perpendicular to those of shock propagation, and the time dependence of molecular rotational relaxation as a function of time. The results show that the mechanical response of crystalline nitromethane strongly depends on the orientation of the shock wave. Shocks propagating along [100] and [001] result in translational disordering in some crystal planes but not in others, a phenomenon that we refer to as plane-specific disordering; whereas for [010] the shock-induced stresses are relieved by a complicated structural rearrangement that leads to a paracrystalline structure. The plane-specific translational disordering is more complete by the end of the simulations (˜6 ps) for shock propagation along [001] than along [100]. Transient excitation of the intermolecular degrees of freedom occurs in the immediate vicinity of the shock front for all three orientations; the effect is most pronounced for the [010] shock. In all three cases excitation of molecular vibrations occurs more slowly than the intermolecular excitation. The intermolecular and intramolecular temperatures are nearly equal by the end of the simulations, with 400-500 K of net shock heating. Results for two-dimensional mean-square molecular center-of-mass displacements, calculated

  12. Comparison of the crystal structure and molecular models of N,N-dissobutyl-2-(octylphenylphosphinyl)acetamide(CMPO).

    SciTech Connect

    Rogers, R. D.; Rollins, A. N.; Gatrone, R. C.; Horwitz, E. P.; Chemistry; Northern Illinois Univ.

    1995-01-01

    The crystal structure of N,N-diisobutyl-2-(octylphenylphosphinyl)acetamide, or CMPO was recently determined. The compound crystallizes in the space group P2{sub 1}/c with a=13.446(6),b=22.280(7),c=17.217(7) Angstroms, {beta}=92.07(4) degrees, and D{sub calc}=1.05 g/cm3 for Z=8 @20 C. Molecular mechanics, molecular dynamics, and MNDO calculations were also performed on CMPO utilizing the SYBYL suite of programs. The results from these calculations are compared to the crystal structure and to similar calculations performed on CMPO using ALCHEMY. In general, the results from the calculations agree fairly well with the parameters from the crystal structure.

  13. PREFACE: Progress in Nonequilibrium Green's Functions IV

    NASA Astrophysics Data System (ADS)

    Bonitz, Michael; Balzer, Karsten

    2010-04-01

    This is the fourth volume1 of articles on the theory of Nonequilibrium Green's functions (NEGF) and their modern application in various fields such as plasma physics, semiconductor physics, molecular electronics and high energy physics. It contains 23 articles written by experts in many-body theory and quantum transport who summarize recent progress in their respective area of research. The articles are based on talks given at the interdisciplinary conference Progress in Nonequilibrium Green's functions IV which was held 17-21 August 2009 at the University of Glasgow, Scotland. This conference continues the tradition of the previous meetings which started in 1999 and which aimed at an informal exchange across field boundaries. The previous meetings and the earlier proceedings proved to be very stimulating not only for young researchers but also for experienced scientists, and we are convinced that this fourth volume will be as successful as the previous ones. As before, this volume includes only extended review-type papers which are written in a way that they are understandable to a broad interdisciplinary audience. All papers published in this volume of Journal of Physics: Conference Series have been peer reviewed through processes administrated by the Editors assuring highest scientific standards. In the review process some papers were substantially revised and improved and some were rejected. This conference would not have been possible without the remarkable work of the local organizing team around John Barker and Scott Roy and the generous financial support from the University of Glasgow and the Deutsche Forschungsgemeinschaft via SFB-Transregio 24. Michael Bonitz and Karsten Balzer Kiel, February 2010 1 The first two volumes are Progress in Nonequilibrium Green's functions, M Bonitz (ed) and Progress in Nonequilibrium Green's functions II, M Bonitz and D Semkat (eds), which were published by World Scientific (Singapore), in 2000 and 2003, respectively (ISBN

  14. Realizing A Mid-Infrared Optically Pumped Molecular Gas Laser Inside Hollow-Core Photonic Crystal Fiber

    DTIC Science & Technology

    2012-01-01

    REALIZING A MID-INFRARED OPTICALLY PUMPED MOLECULAR GAS LASER INSIDE HOLLOW-CORE PHOTONIC CRYSTAL FIBER by ANDREW MICHAEL JONES... Laser Inside Hollow-Core Photonic Crystal Fiber 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...optical fibers . These novel lasers are appealing for a variety of applications including frequency metrology in the midinfrared,free-space

  15. Time Dependent Hartree Fock Equation: Gateway to Nonequilibrium Plasmas

    SciTech Connect

    James W. Dufty

    2007-04-28

    This is the Final Technical Report for DE-FG02-2ER54677 award “Time Dependent Hartree Fock Equation - Gateway to Nonequilibrium Plasmas”. Research has focused on the nonequilibrium dynamics of electrons in the presence of ions, both via basic quantum theory and via semi-classical molecular dynamics (MD) simulation. In addition, fundamental notions of dissipative dynamics have been explored for models of grains and dust, and for scalar fields (temperature) in turbulent edge plasmas. The specific topics addressed were Quantum Kinetic Theory for Metallic Clusters, Semi-classical MD Simulation of Plasmas , and Effects of Dissipative Dynamics.

  16. Nonequilibrium thermodynamics of nucleation

    SciTech Connect

    Schweizer, M.; Sagis, L. M. C.

    2014-12-14

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.

  17. Nonequilibrium thermodynamics of nucleation.

    PubMed

    Schweizer, M; Sagis, L M C

    2014-12-14

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.

  18. Nonequilibrium thermodynamics of nucleation

    NASA Astrophysics Data System (ADS)

    Schweizer, M.; Sagis, L. M. C.

    2014-12-01

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.

  19. Thermodynamic scaling of dynamic properties of liquid crystals: Verifying the scaling parameters using a molecular model

    NASA Astrophysics Data System (ADS)

    Satoh, Katsuhiko

    2013-08-01

    The thermodynamic scaling of molecular dynamic properties of rotation and thermodynamic parameters in a nematic phase was investigated by a molecular dynamic simulation using the Gay-Berne potential. A master curve for the relaxation time of flip-flop motion was obtained using thermodynamic scaling, and the dynamic property could be solely expressed as a function of TV^{γ _τ }, where T and V are the temperature and volume, respectively. The scaling parameter γτ was in excellent agreement with the thermodynamic parameter Γ, which is the logarithm of the slope of a line plotted for the temperature and volume at constant P2. This line was fairly linear, and as good as the line for p-azoxyanisole or using the highly ordered small cluster model. The equivalence relation between Γ and γτ was compared with results obtained from the highly ordered small cluster model. The possibility of adapting the molecular model for the thermodynamic scaling of other dynamic rotational properties was also explored. The rotational diffusion constant and rotational viscosity coefficients, which were calculated using established theoretical and experimental expressions, were rescaled onto master curves with the same scaling parameters. The simulation illustrates the universal nature of the equivalence relation for liquid crystals.

  20. Thermal behavior of disordered phase of caffeine molecular crystal: Insights from Monte Carlo simulation studies

    NASA Astrophysics Data System (ADS)

    Murugan, N. Arul; Sayeed, Ahmed

    2009-05-01

    We have studied the thermal behavior of orientationally disordered phase of caffeine molecular crystal using variable shape variable size Monte Carlo simulations in isothermal-isobaric ensemble. We have investigated the structure, especially the nature of orientational disorder of caffeine molecules as a function of temperature in the range of 400-550 K. Experimentally this system is known to undergo a phase transition at 426 K (considered to be an orientational order-disorder transition) and melt at 512 K. Our simulations reproduce these two transitions in excellent agreement with experiment. We find that the in-plane reorientational motion of molecules is restricted to small angles below 425 K, and above this temperature, molecules undergo essentially free rotations in molecular plane, and we find the melting to occur between 525 and 550 K. In the high temperature disordered phase, the disorder is mostly attributable to the in-plane orientational motion of the molecules. The potential energy profile for the in-plane reorientational rotation has six wells as a consequence of specific packing of molecules in the ab crystallographic plane. Also we find considerable out-of-plane reorientational disorder for the molecules in the high temperature disordered phase. We have also studied the structure and orientational disorder of the system that is quenched from 450 to 300 K. We find that in the quenched phase, the molecular orientational arrangement remains partially frozen.

  1. Graphene Nanocomposites with High Molecular Weight Poly(ε-caprolactone) Grafts: Controlled Synthesis and Accelerated Crystallization

    DOE PAGES

    Mondal, Titash; Ashkar, Rana; Butler, Paul; ...

    2016-02-08

    Grafting of high molecular weight polymers to graphitic nanoplatelets is a critical step toward the development of high performance graphene nanocomposites. However, designing such a grafting route has remained a major impediment. Herein, we report a "grafting to" synthetic pathway by which high molecular weight polymer, poly(e-caprolactone) (PCL), is tethered, at high grafting density, to highly anisotropic graphitic nanoplatelets. The efficacy of this tethering route and the resultant structural arrangements within the composite are confirmed by neutron and X-ray scattering measurements in the melt and solution phase. In the semicrystalline state, Xray analysis indicates that chain tethering onto the graphiticmore » nanoplatelets results in conformational changes of the polymer chains, which enhance the nucleation process and aid formation of PCL crystallites. This is corroborated by the superior thermal properties of the composite, manifested in accelerated crystallization kinetics and a significant increase in the thermal degradation temperature. Lastly, in principle, this synthesis route can be extended to a variety of high molecular weight polymers, which can open new avenues to solution-based processing of graphitic nanomaterials and the fabrication of complex 3D patterned graphitic nanocomposites.« less

  2. Graphene Nanocomposites with High Molecular Weight Poly(ε-caprolactone) Grafts: Controlled Synthesis and Accelerated Crystallization

    SciTech Connect

    Mondal, Titash; Ashkar, Rana; Butler, Paul; Bhowmick, Anil K.; Krishnamoorti, Ramanan

    2016-02-08

    Grafting of high molecular weight polymers to graphitic nanoplatelets is a critical step toward the development of high performance graphene nanocomposites. However, designing such a grafting route has remained a major impediment. Herein, we report a "grafting to" synthetic pathway by which high molecular weight polymer, poly(e-caprolactone) (PCL), is tethered, at high grafting density, to highly anisotropic graphitic nanoplatelets. The efficacy of this tethering route and the resultant structural arrangements within the composite are confirmed by neutron and X-ray scattering measurements in the melt and solution phase. In the semicrystalline state, Xray analysis indicates that chain tethering onto the graphitic nanoplatelets results in conformational changes of the polymer chains, which enhance the nucleation process and aid formation of PCL crystallites. This is corroborated by the superior thermal properties of the composite, manifested in accelerated crystallization kinetics and a significant increase in the thermal degradation temperature. Lastly, in principle, this synthesis route can be extended to a variety of high molecular weight polymers, which can open new avenues to solution-based processing of graphitic nanomaterials and the fabrication of complex 3D patterned graphitic nanocomposites.

  3. Effect of repeated cycled crystallization on digestibility and molecular structure of glutinous Bora rice starch.

    PubMed

    Borah, Pallab Kumar; Deka, Sankar Chandra; Duary, Raj Kumar

    2017-05-15

    The effects of repeated cycled crystallization on the digestibility and molecular structure of glutinous Bora rice starch were investigated. Temperature cycle 4/45°C; cycle duration 5d; time interval of cycles 24h; and starch to water ratio 1:2 were found to be optimum for SDS (slow digestible starch) product development. The SDS content increased from 18.01±2.11% to 82.81±2.34%. An increase in the resistance to digestion, crystallinity, molecular weight, polydispersity and molecular order was observed in the optimal SDS product. Notably, the FT-IR peak at 947cm(-1) and XRD peaks at 2θ≈13° and 20° in the optimal SDS product indicated the formation of V-type complexes even without the presence of co-polymers. Birefringence studies showed a loss of typical Maltese cross in the SDS product and revealed a reorientation of crystalline structures within starch granules, suggestive of imperfect crystallite development.

  4. High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering.

    PubMed

    Yang, Xuan; Shi, Chao; Wheeler, Damon; Newhouse, Rebecca; Chen, Bin; Zhang, Jin Z; Gu, Claire

    2010-05-01

    A high-sensitivity molecular sensor using a hollow-core photonic crystal fiber (HCPCF) based on surface-enhanced Raman scattering (SERS) has been experimentally demonstrated and theoretically analyzed. A factor of 100 in sensitivity enhancement is shown in comparison to direct sampling under the same conditions. With a silver nanoparticle colloid as the SERS substrate and Rhodamine 6G as a test molecule, the lowest detectable concentration is 10(-10) M with a liquid-core photonic crystal fiber (LCPCF) probe, and 10(-8) M for direct sampling. The high sensitivity provided by the LCPCF SERS probe is promising for molecular detection in various sensing applications.

  5. In command of non-equilibrium.

    PubMed

    Roduner, Emil; Radhakrishnan, Shankara Gayathri

    2016-05-21

    The second law of thermodynamics is well known for determining the direction of spontaneous processes in the laboratory, life and the universe. It is therefore often called the arrow of time. Less often discussed but just as important is the effect of kinetic barriers which intercept equilibration and preserve highly ordered, high energy non-equilibrium states. Examples of such states are many modern materials produced intentionally for technological applications. Furthermore, all living organisms fuelled directly by photosynthesis and those fuelled indirectly by living on high energy nutrition represent preserved non-equilibrium states. The formation of these states represents the local reversal of the arrow of time which only seemingly violates the second law. It has been known since the seminal work of Prigogine that the stabilisation of these states inevitably requires the dissipation of energy in the form of waste heat. It is this feature of waste heat dissipation following the input of energy that drives all processes occurring at a non-zero rate. Photosynthesis, replication of living organisms, self-assembly, crystal shape engineering and distillation have this principle in common with the well-known Carnot cycle in the heat engine. Drawing on this analogy, we subsume these essential and often sophisticated driven processes under the term machinery of life.

  6. Accommodative Behavior of Non-porous Molecular crystal at Solid-Gas and Solid-Liquid Interface

    PubMed Central

    Mande, Hemant M.; Ghalsasi, Prasanna S.

    2015-01-01

    Molecular crystals demonstrate drastically different behavior in solid and liquid state, mainly due to their difference in structural frameworks. Therefore, designing of unique structured molecular compound which can work at both these interfaces has been a challenge. Here, we present remarkable ‘molecular’ property by non-porous molecular solid crystal, dinuclear copper complex (C6H5CH(X)NH2)2CuCl2, to reversibly ‘adsorb’ HCl gas at solid-gas interface as well as ‘accommodate’ azide anion at solid-liquid interface with crystal to crystal transformation. The latter process is driven by molecular recognition, self-assembly, and anchimeric assistance. The observed transformations are feasible due to breathing of inner and outer coordination sphere around metal center resulting in change in metal polyhedra for ‘accommodating’ guest molecule. These transformations cause changes in optical, magnetic, and/or ferroelectric property offering diversity in ‘sensing’ application. With the proposed underlying principles in these exceptional reversible and cyclic transformations, we prepared a series of compounds, can facilitate designing of novel multifunctional molecular materials. PMID:26411980

  7. Molecular dynamics simulations of dislocations in TlBr crystals under an electrical field

    SciTech Connect

    Zhou, X. W.; Foster, M. E.; Yang, P.; Doty, F. P.

    2016-07-13

    TlBr crystals have superior radiation detection properties; however, their properties degrade in the range of hours to weeks when an operating electrical field is applied. To account for this rapid degradation using the widely-accepted vacancy migration mechanism, the vacancy concentration must be orders of magnitude higher than any conventional estimates. The present work has incorporated a new analytical variable charge model in molecular dynamics (MD) simulations to examine the structural changes of materials under electrical fields. Our simulations indicate that dislocations in TlBr move under electrical fields. As a result, this discovery can lead to new understanding of TlBr aging mechanisms under external fields.

  8. Comparison of Phase Field Crystal and Molecular Dynamics Simulations for a Shrinking Grain

    SciTech Connect

    Radhakrishnan, Balasubramaniam; Gorti, Sarma B; Nicholson, Don M

    2012-01-01

    The Phase-Field Crystal (PFC) model represents the atomic density as a continuous function, whose spatial distribution evolves at diffusional, rather than vibrational time scales. PFC provides a tool to study defect interactions at the atomistic level but over longer time scales than in molecular dynamics (MD). We examine the behavior of the PFC model with the goal of relating the PFC parameters to physical parameters of real systems, derived from MD simulations. For this purpose we model the phenomenon of the shrinking of a spherical grain situated in a matrix. By comparing the rate of shrinking of the central grain using MD and PFC we obtain a relationship between PFC and MD time scales for processes driven by grain boundary diffusion. The morphological changes in the central grain including grain shape and grain rotation are also examined in order to assess the accuracy of the PFC in capturing the evolution path predicted by MD.

  9. Molecular dynamics simulations of dislocations in TlBr crystals under an electrical field

    DOE PAGES

    Zhou, X. W.; Foster, M. E.; Yang, P.; ...

    2016-07-13

    TlBr crystals have superior radiation detection properties; however, their properties degrade in the range of hours to weeks when an operating electrical field is applied. To account for this rapid degradation using the widely-accepted vacancy migration mechanism, the vacancy concentration must be orders of magnitude higher than any conventional estimates. The present work has incorporated a new analytical variable charge model in molecular dynamics (MD) simulations to examine the structural changes of materials under electrical fields. Our simulations indicate that dislocations in TlBr move under electrical fields. As a result, this discovery can lead to new understanding of TlBr agingmore » mechanisms under external fields.« less

  10. Spectral densities for Frenkel exciton dynamics in molecular crystals: A TD-DFTB approach.

    PubMed

    Plötz, Per-Arno; Megow, Jörg; Niehaus, Thomas; Kühn, Oliver

    2017-02-28

    Effects of thermal fluctuations on the electronic excitation energies and intermonomeric Coulomb couplings are investigated for a perylene-tetracarboxylic-diimide crystal. To this end, time dependent density functional theory based tight binding (TD-DFTB) in the linear response formulation is used in combination with electronic ground state classical molecular dynamics. As a result, a parametrized Frenkel exciton Hamiltonian is obtained, with the effect of exciton-vibrational coupling being described by spectral densities. Employing dynamically defined normal modes, these spectral densities are analyzed in great detail, thus providing insight into the effect of specific intramolecular motions on excitation energies and Coulomb couplings. This distinguishes the present method from approaches using fixed transition densities. The efficiency by which intramolecular contributions to the spectral density can be calculated is a clear advantage of this method as compared with standard TD-DFT.

  11. Crystal Structures of Human and Staphylococcus aureus Pyruvate Carboxylase and Molecular Insights into the Carboxyltransfer Reaction

    SciTech Connect

    Xiang,S.; Tong, L.

    2008-01-01

    Pyruvate carboxylase (PC) catalyzes the biotin-dependent production of oxaloacetate and has important roles in gluconeogenesis, lipogenesis, insulin secretion and other cellular processes. PC contains the biotin carboxylase (BC), carboxyltransferase (CT) and biotin-carboxyl carrier protein (BCCP) domains. We report here the crystal structures at 2.8-Angstroms resolution of full-length PC from Staphylococcus aureus and the C-terminal region (missing only the BC domain) of human PC. A conserved tetrameric association is observed for both enzymes, and our structural and mutagenesis studies reveal a previously uncharacterized domain, the PC tetramerization (PT) domain, which is important for oligomerization. A BCCP domain is located in the active site of the CT domain, providing the first molecular insights into how biotin participates in the carboxyltransfer reaction. There are dramatic differences in domain positions in the monomer and the organization of the tetramer between these enzymes and the PC from Rhizobium etli.

  12. Atomic resolution ADF-STEM imaging of organic molecular crystal of halogenated copper phthalocyanine.

    PubMed

    Haruta, Mitsutaka; Yoshida, Kaname; Kurata, Hiroki; Isoda, Seiji

    2008-05-01

    Annular dark-field (ADF) scanning transmission electron microscopy (STEM) measurements are demonstrated for the first time to be applicable for acquiring Z-contrast images of organic molecules at atomic resolution. High-angle ADF imaging by STEM is a new technique that provides incoherent high-resolution Z-contrast images for organic molecules. In the present study, low-angle ADF-STEM is successfully employed to image the molecular crystal structure of hexadecachloro-Cu-phthalocyanine (Cl16-CuPc), an organic molecule. The structures of CuPc derivatives (polyhalogenated CuPc with Br and Cl) are determined quantitatively using the same technique to determine the occupancy of halogens at each chemical site. By comparing the image contrasts of atomic columns, the occupancy of Br is found to be ca. 56% at the inner position, slightly higher than that for random substitution and in good agreement with previous TEM results.

  13. Mapping molecular conformation and orientation of polyimide surfaces for homeotropicliquid crystal alignment by nonlinear optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Oh-E, Masahito; Yokoyama, Hiroshi; Kim, Doseok

    2004-05-01

    Surface-specific sum-frequency vibrational spectroscopy and second-harmonic generation were used to study the structures of polyimide (PI) surfaces for homeotropic liquid crystal (LC) alignment and the molecular orientation of LC adsobates on these surfaces. The imide ring was perpendicular to the surface with one of CO bonds protruding out of the surface and the other pointing into the bulk rather than flat on the surface. The ester CO bond in the side chain was sticking out of the surface with a tilt angle of about 45° 55° from the surface normal, indicating that the rigid side chain core was, more or less, along the surface normal. The part of alkyl chain on the top of the side chain followed the orientation of the side chain core and protruded out of the surface with some gauche defects. The cyano biphenyl LC molecules were adsorbed on the PI preferentially with the terminal cyano group facing the PI surface.

  14. Crystal structure of SP-PTP, a low molecular weight protein tyrosine phosphatase from Streptococcus pyogenes.

    PubMed

    Ku, Bonsu; Keum, Chae Won; Lee, Hye Seon; Yun, Hye-Yeoung; Shin, Ho-Chul; Kim, Bo Yeon; Kim, Seung Jun

    2016-09-23

    Streptococcus pyogenes, or Group A Streptococcus (GAS), is a pathogenic bacterium that causes a variety of infectious diseases. The GAS genome encodes one protein tyrosine phosphatase, SP-PTP, which plays an essential role in the replication and virulence maintenance of GAS. Herein, we present the crystal structure of SP-PTP at 1.9 Å resolution. Although SP-PTP has been reported to have dual phosphatase specificity for both phosphorylated tyrosine and serine/threonine, three-dimensional structural analysis showed that SP-PTP shares high similarity with typical low molecular weight protein tyrosine phosphatases (LMWPTPs), which are specific for phosphotyrosine, but not with dual-specificity phosphatases, in overall folding and active site composition. In the dephosphorylation activity test, SP-PTP consistently acted on phosphotyrosine substrates, but not or only minimally on phosphoserine/phosphothreonine substrates. Collectively, our structural and biochemical analyses verified SP-PTP as a canonical tyrosine-specific LMWPTP.

  15. Crystal and electronic structures of substituted halide perovskites based on density functional calculation and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Takaba, Hiromitsu; Kimura, Shou; Alam, Md. Khorshed

    2017-03-01

    Durability of organo-lead halide perovskite are important issue for its practical application in a solar cells. In this study, using density functional theory (DFT) and molecular dynamics, we theoretically investigated a crystal structure, electronic structure, and ionic diffusivity of the partially substituted cubic MA0.5X0.5PbI3 (MA = CH3NH3+, X = NH4+ or (NH2)2CH+ or Cs+). Our calculation results indicate that a partial substitution of MA induces a lattice distortion, resulting in preventing MA or X from the diffusion between A sites in the perovskite. DFT calculations show that electronic structures of the investigated partially substituted perovskites were similar with that of MAPbI3, while their bandgaps slightly decrease compared to that of MAPbI3. Our results mean that partial substitution in halide perovskite is effective technique to suppress diffusion of intrinsic ions and tune the band gap.

  16. High-resolution crystal structure reveals molecular details of target recognition by bacitracin

    PubMed Central

    Economou, Nicoleta J.; Cocklin, Simon; Loll, Patrick J.

    2013-01-01

    Bacitracin is a metalloantibiotic agent that is widely used as a medicine and feed additive. It interferes with bacterial cell-wall biosynthesis by binding undecaprenyl-pyrophosphate, a lipid carrier that serves as a critical intermediate in cell wall production. Despite bacitracin’s broad use, the molecular details of its target recognition have not been elucidated. Here we report a crystal structure for the ternary complex of bacitracin A, zinc, and a geranyl-pyrophosphate ligand at a resolution of 1.1 Å. The antibiotic forms a compact structure that completely envelopes the ligand’s pyrophosphate group, together with flanking zinc and sodium ions. The complex adopts a highly amphipathic conformation that offers clues to antibiotic function in the context of bacterial membranes. Bacitracin’s efficient sequestration of its target represents a previously unseen mode for the recognition of lipid pyrophosphates, and suggests new directions for the design of next-generation antimicrobial agents. PMID:23940351

  17. Spectral densities for Frenkel exciton dynamics in molecular crystals: A TD-DFTB approach

    NASA Astrophysics Data System (ADS)

    Plötz, Per-Arno; Megow, Jörg; Niehaus, Thomas; Kühn, Oliver

    2017-02-01

    Effects of thermal fluctuations on the electronic excitation energies and intermonomeric Coulomb couplings are investigated for a perylene-tetracarboxylic-diimide crystal. To this end, time dependent density functional theory based tight binding (TD-DFTB) in the linear response formulation is used in combination with electronic ground state classical molecular dynamics. As a result, a parametrized Frenkel exciton Hamiltonian is obtained, with the effect of exciton-vibrational coupling being described by spectral densities. Employing dynamically defined normal modes, these spectral densities are analyzed in great detail, thus providing insight into the effect of specific intramolecular motions on excitation energies and Coulomb couplings. This distinguishes the present method from approaches using fixed transition densities. The efficiency by which intramolecular contributions to the spectral density can be calculated is a clear advantage of this method as compared with standard TD-DFT.

  18. Molecular Dynamics Study of Interaction between Acrylamide Copolymers and Alumina Crystal

    NASA Astrophysics Data System (ADS)

    Wang, Feng-he; Wang, Feng-yun; Gong, Xue-dong

    2012-10-01

    Four acrylamide polymer flocculants, anionic polyacrylamide P(AA-co-AM), cationic polyacrylamide P(DMB-co-AM), nonionic polyacrylamide P(AM), and hydrophobical polyacrylamide P(OA-co-AM) have been prepared by copolymerizing with acrylic acid, cationic monomer dimethylethyl (acryloxyethyl) ammonium bromide (DMB) and hydrophobical monomer octadecyl acrylate with acrylamide. The interactions between the flocculants with the (012) surface of alumina crystal (Al2O3) have been simulated by molecular dynamics method. All the polymers can bind tightly with Al2O3 crystal, the interaction between the O of polymers and Al of the (012) surface of Al2O3 is significantly strong. The order of binding energy is as follows: P(DMB-co-AM)>P(OA-co-AM)>P(AA-co-AM)>P(AM), implying a better flocculation performance of P(DMB-co-AM) than the others. Analysis indicates that binding energy is mainly determined by Coulomb interaction. Bonds are found between the O atoms of the polymers and the Al atoms of Al2O3. The polymers' structures deform when they combine with Al2O3 crystal, but the deformation energies are low and far less than non-bonding energies. Flocculation experiments in suspension medium of 1%Kaolin show a transmittancy of 90.8% for 6 mg/L P(DMB-co-AM) and 73.0% for P(AM). The sequence of flocculation performance of four polymers is P(DMB-co-AM)>P(OA-co-AM)>P(AA-co-AM)>P(AM), which is in excellent agreement with the simulation results of binding energy.

  19. Assessment of biomolecular force fields for molecular dynamics simulations in a protein crystal.

    PubMed

    Hu, Zhongqiao; Jiang, Jianwen

    2010-01-30

    Different biomolecular force fields (OPLS-AA, AMBER03, and GROMOS96) in conjunction with SPC, SPC/E and TIP3P water models are assessed for molecular dynamics simulations in a tetragonal lysozyme crystal. The root mean square deviations for the C(a) atoms of lysozymes are about 0.1 to 0.2 nm from OPLS-AA and AMBER03, smaller than 0.4 nm from GROMOS96. All force fields exhibit similar pattern in B-factors, whereas OPLS-AA and AMBER03 accurately reproduce experimental measurements. Despite slight variations, the primary secondary structures are well conserved using different force fields. Water diffusion in the crystal is approximately ten-fold slower than in bulk phase. The directional and average water diffusivities from OPLS-AA and AMBER03 along with SPC/E model match fairly well with experimental data. Compared to GROMOS96, OPLS-AA and AMBER03 predict larger hydrophilic solvent-accessible surface area of lysozyme, more hydrogen bonds between lysozyme and water, and higher percentage of water in hydration shell. SPC, SPC/E and TIP3P water models have similar performance in most energetic and structural properties, but SPC/E outperforms in water diffusion. While all force fields overestimate the mobility and electrical conductivity of NaCl, a combination of OPLS-AA for lysozyme and the Kirkwood-Buff model for ions is superior to others. As attributed to the steric restraints and surface interactions, the mobility and conductivity in the crystal are reduced by one to two orders of magnitude from aqueous solution.

  20. Nonequilibrium fluctuation-dissipation inequality and nonequilibrium uncertainty principle.

    PubMed

    Fleming, C H; Hu, B L; Roura, Albert

    2013-07-01

    The fluctuation-dissipation relation is usually formulated for a system interacting with a heat bath at finite temperature, and often in the context of linear response theory, where only small deviations from the mean are considered. We show that for an open quantum system interacting with a nonequilibrium environment, where temperature is no longer a valid notion, a fluctuation-dissipation inequality exists. Instead of being proportional, quantum fluctuations are bounded below by quantum dissipation, whereas classically the fluctuations vanish at zero temperature. The lower bound of this inequality is exactly satisfied by (zero-temperature) quantum noise and is in accord with the Heisenberg uncertainty principle, in both its microscopic origins and its influence upon systems. Moreover, it is shown that there is a coupling-dependent nonequilibrium fluctuation-dissipation relation that determines the nonequilibrium uncertainty relation of linear systems in the weak-damping limit.

  1. Identifying self-interstitials of bcc and fcc crystals in molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bukkuru, S.; Bhardwaj, U.; Warrier, M.; Rao, A. D. P.; Valsakumar, M. C.

    2017-02-01

    Identification of self-interstitials in molecular dynamics (MD) simulations is of critical importance. There exist several criteria for identifying the self-interstitial. Most of the existing methods use an assumed cut-off value for the displacement of an atom from its lattice position to identify the self-interstitial. The results obtained are affected by the chosen cut-off value. Moreover, these chosen cut-off values are independent of temperature. We have developed a novel unsupervised learning algorithm called Max-Space Clustering (MSC) to identify an appropriate cut-off value and its dependence on temperature. This method is compared with some widely used methods such as effective sphere (ES) method and nearest neighbor sphere (NNS) method. The cut-off radius obtained using our method shows a linear variation with temperature. The value of cut-off radius and its temperature dependence is derived for five bcc (Cr, Fe, Mo, Nb, W) and six fcc (Ag, Au, Cu, Ni, Pd, Pt) crystals. It is seen that the ratio of the cut-off values "r" to the lattice constant "a" lies between 0.23 and 0.3 at 300 K and this ratio is on an average smaller for the fcc crystals. Collision cascade simulations are carried out for Primary knock-on Atom (PKA) energies of 5 keV in Fe (at 300 K and 1000 K) and W (at 300 K and 2500 K) and the results are compared using the various methods.

  2. Measurement of the pesticide methomyl by modified quartz crystal nanobalance with molecularly imprinted polymer.

    PubMed

    Mirmohseni, A; Houjaghan, M Rastgouy

    2013-01-01

    A simple and cost-effective analysis method based on quartz crystal nanobalance (QCN) coated with a molecularly imprinted polymer (MIP) for measurement of methomyl was investigated. In the first part of this study, a sensitive, selective and reliable quartz crystal nanobalance (QCN) sensor was designed for the selective determination of methomyl in aqueous solutions. In the second part, in order to demonstrate the applicability and performance of the fabricated sensor in the real world situation, it was successfully applied for the determination of methomyl residual in photo catalytic degradation by ZnO powders in aqueous solutions. The fabricated sensor presents a high selectivity and sensitivity (4.56 Hz per mg L(-1)) for methomyl and it can be used for determination of methomyl concentration ranged between 1 to 45 mg L(-1). Furthermore, good reproducibility, R.S.D. = 2.14% (n = 5) was observed. To investigate the performance of the sensor, the change in the insecticide concentration during the photocatalytic degradation of methomyl by ZnO was investigated by QCN and UV/Vis spectroscopy. Results obtained from QCN sensor and UV/Vis spectroscopy measurement are in good mutual agreement. So the fabricated sensor may provide an efficient, low cost, easy-to-use method for the in-field evaluation of specific targeted analytes in aqueous solutions which in turn may lead to improved food and water safety.

  3. Self-assembly of gold nanoparticles on functional organic molecular crystals.

    PubMed

    Trabattoni, Silvia; Moret, Massimo; Miozzo, Luciano; Campione, Marcello

    2011-08-15

    The utilization of metal nanoparticles (NPs) to fabricate metal electrodes under mild conditions is one of the most studied topic in recent years. In this work, colloidal Au NPs were deposited on two isostructural molecular crystals, namely 1,2,3,4-tetrafluoro-7-thiomethyl-acridine (MeSAcr) and 1,2,3,4-tetrafluoro-7-methoxy-acridine (MeOAcr), exposing S atoms and O atoms, respectively, at their largest crystal faces. The depositions were carried out mainly by drop casting under ambient conditions, increasing the contact time from 1 to 120 min, and the samples were then analyzed by atomic force microscopy (AFM) to evaluate the coverage. Thanks to the affinity between S and Au atoms, Au NPs are observed to adhere on the MeSAcr surface within 1-min contact time, whereas at least 1h is required to find NPs on the MeOAcr surface. NP adsorption is also affected by the substrate surface morphology; indeed, step edges represent preferential adsorption sites even in the absence of Au-S interaction. Experiments under different conditions were performed to maximize the coverage on MeSAcr, reaching values up to 13%. AFM equipped with fluid cell was also employed to simultaneously depositing and imaging NPs, achieving a better understanding of the adsorption mechanism.

  4. Phase transformation during silica cluster impact on crystal silicon substrate studied by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Chen, Ruling; Luo, Jianbin; Guo, Dan; Lu, Xinchun

    2008-07-01

    The process of a silica cluster impact on a crystal silicon substrate is studied by molecular dynamics simulation. At the impact loading stage, crystal silicon of the impact zone transforms to a locally ordered molten with increasing the local temperature and pressure of the impact zone. And then the transient molten forms amorphous silicon directly as the local temperature and pressure decrease at the impact unloading stage. Moreover, the phase behavior between the locally ordered molten and amorphous silicon exhibits the reversible structural transition. The transient molten contains not only lots of four-fold atom but also many three- and five-fold atoms. And the five-fold atom is similar to the mixture structure of semi-Si-II and semi-bct5-Si. The structure transformation between five- and four-fold atoms is affected by both pressure and temperature. The structure transformation between three- and four-fold atoms is affected mostly by temperature. The direct structure transformation between five- and three-fold atoms is not observed. Finally, these five- and three-fold atoms are also different from the usual five- and three-fold deficient atoms of amorphous silicon. In addition, according to the change of coordination number of atoms the impact process is divided into six stages: elastic, plastic, hysteresis, phase regressive, adhesion and cooling stages.

  5. 1H-NMR, dielectric and calorimetric studies of molecular motions in m-nitroaniline crystal

    NASA Astrophysics Data System (ADS)

    Szostak, M. Magdalena; Wójcik, Grażyna; Gallier, Jean; Bertault, Marcel; Freundlich, Piotr; Kołodziej, Hubert A.

    1998-04-01

    Spin-lattice relaxation time, T1, spin-lattice relaxation time in the rotating frame, T1 ρ, and the second moment of the resonance line measurements at 80 MHz and over the 190-380 K temperature range are reported for protons in the optically nonlinear material m-nitroaniline ( m-NA). T1 has also been measured for samples irradiated by low energy and low intensity radiation. The real and imaginary parts of electric permittivity as well as tan  δ have been recorded in the 80-380 K temperature range at frequencies ranging from 100 Hz to 1.0 MHz. DSC measurements have been performed in the 110-387 K temperature range. Two phase transitions have been found: A glassy to rotative transition at 160 K and a plastic to plastic transformation at 365 K. The main feature of the m-NA crystal is that its plasticity continues to grow as the temperature increases. The reorientations of phenyl rings, the -NH 2 group proton 180° jumps, the lattice distortions caused by anisotropic thermal expansion and the cooperative reorientations of big molecular aggregates are thought to be the reasons for phase transitions and for the subsequent intermolecular charge transfer. The results are discussed with respect to optical second harmonic generation and near-IR photochemical reaction found in the m-NA crystal.

  6. Molecular Dynamics Study on Nucleation Behavior and Lamellar Mergence of Polyethylene Globule Crystallization

    NASA Astrophysics Data System (ADS)

    Yang, Xiaozhen; Wang, Simiao

    2012-02-01

    The site order parameter (SOP) has been adopted to analyze various order structure formation and distribution during the crystallization of a multi-chain polyethylene globule simulated by molecular dynamics. We found that the nucleation relies on crystallinity fluctuation with increase of amplitude, and the baby nucleus in the fluctuation suddenly appears with different shape and increasing size. In the growth stage, a number of lamellar mergence was observed and their selective behaviors were suggested to be related to the orientation difference between the merging lamellae. We obtained that SOP distribution of all atoms in the system during crystallization appears with two peaks: one for the amorphous phase and the other for the crystalline phase. Mesomorphic structures with medium orders locate between the two peaks as an order promotion pathway. Obtained data show that the medium order structure fluctuates at the growth front and does not always be available; the medium order structure existing at the front is not always good for developing. It is possibly caused by chain entanglement.

  7. The crystal structure of sulfamethoxazole, interaction with DNA, DFT calculation, and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Das, Dipankar; Sahu, Nilima; Roy, Suman; Dutta, Paramita; Mondal, Sudipa; Torres, Elena L.; Sinha, Chittaranjan

    2015-02-01

    Sulfamethoxazole (SMX) [4-amino-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide] is structurally established by single crystal X-ray diffraction measurement. The crystal packing shows H-bonded 2D polymer through N(7)sbnd H(7A)---O(2), N(7)sbnd H(7B)---O(3), N(1)sbnd H(1)---N(2), C(5)sbnd H(5)---O(3)sbnd S(1) and N(7)sbnd (H7A)---O(2)sbnd S(1). Density Functional Theory (DFT) and Time Dependent-DFT (TD-DFT) computations of optimized structure of SMX determine the electronic structure and has explained the electronic spectral transitions. The interaction of SMX with CT-DNA has been studied by absorption spectroscopy and the binding constant (Kb) is 4.37 × 104 M-1. The in silico test of SMX with DHPS from Escherichia coli and Streptococcus pneumoniae helps to understand drug metabolism and accounts the drug-molecule interactions. The molecular docking of SMX-DNA also helps to predict the interaction feature.

  8. The crystal structure of sulfamethoxazole, interaction with DNA, DFT calculation, and molecular docking studies.

    PubMed

    Das, Dipankar; Sahu, Nilima; Roy, Suman; Dutta, Paramita; Mondal, Sudipa; Torres, Elena L; Sinha, Chittaranjan

    2015-02-25

    Sulfamethoxazole (SMX) [4-amino-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide] is structurally established by single crystal X-ray diffraction measurement. The crystal packing shows H-bonded 2D polymer through N(7)-H(7A)-O(2), N(7)-H(7B)-O(3), N(1)-H(1)-N(2), C(5)-H(5)-O(3)-S(1) and N(7)-(H7A)-O(2)-S(1). Density Functional Theory (DFT) and Time Dependent-DFT (TD-DFT) computations of optimized structure of SMX determine the electronic structure and has explained the electronic spectral transitions. The interaction of SMX with CT-DNA has been studied by absorption spectroscopy and the binding constant (Kb) is 4.37×10(4)M(-1). The in silico test of SMX with DHPS from Escherichia coli and Streptococcus pneumoniae helps to understand drug metabolism and accounts the drug-molecule interactions. The molecular docking of SMX-DNA also helps to predict the interaction feature.

  9. Coarse-Grained Molecular Monte Carlo Simulations of Liquid Crystal-Nanoparticle Mixtures

    NASA Astrophysics Data System (ADS)

    Neufeld, Ryan; Kimaev, Grigoriy; Fu, Fred; Abukhdeir, Nasser M.

    Coarse-grained intermolecular potentials have proven capable of capturing essential details of interactions between complex molecules, while substantially reducing the number of degrees of freedom of the system under study. In the domain of liquid crystals, the Gay-Berne (GB) potential has been successfully used to model the behavior of rod-like and disk-like mesogens. However, only ellipsoid-like interaction potentials can be described with GB, making it a poor fit for many real-world mesogens. In this work, the results of Monte Carlo simulations of liquid crystal domains using the Zewdie-Corner (ZC) potential are presented. The ZC potential is constructed from an orthogonal series of basis functions, allowing for potentials of essentially arbitrary shapes to be modeled. We also present simulations of mixtures of liquid crystalline mesogens with nanoparticles. Experimentally these mixtures have been observed to exhibit microphase separation and formation of long-range networks under some conditions. This highlights the need for a coarse-grained approach which can capture salient details on the molecular scale while simulating sufficiently large domains to observe these phenomena. We compare the phase behavior of our simulations with that of a recently presented continuum theory. This work was made possible by the Natural Sciences and Engineering Research Council of Canada and Compute Ontario.

  10. Molecular Dynamics Simulations of Dislocation Activity in Single-Crystal and Nanocrystalline Copper Doped with Antimony

    NASA Astrophysics Data System (ADS)

    Rajgarhia, Rahul K.; Spearot, Douglas E.; Saxena, Ashok

    2010-04-01

    Recent experimental and simulation results have indicated that high-temperature grain growth in nanocrystalline (NC) materials can be suppressed by introducing dopant atoms at the grain boundaries. However, the influence of grain boundary dopants on the mechanical behavior of stabilized NC materials is less clear. In this work, molecular dynamics (MD) simulations are used to study the impact of very low dopant concentrations (<1.0 at. pct Sb) on plastic deformation in single-crystal and NC Cu. A new interatomic potential for low Sb concentration Cu-Sb solid-solution alloys is used to model dopant/host and dopant/dopant interatomic interactions within the MD framework. In single-crystal models, the strained regions around the Sb atoms act as heterogeneous sources for partial dislocation nucleation; the stress associated with this process decreases with increasing Sb concentration. In NC models, MD simulations indicate that Sb dopants randomly dispersed at the grain boundaries cause an increase in the flow stress in NC Cu, implying that Sb atoms at the grain boundaries retard both grain boundary sliding and dislocation nucleation from grain boundary regions.

  11. Crystal and molecular structure, conformational, vibrational properties and DFT calculations of melaminium bis (hydrogen oxalate)

    NASA Astrophysics Data System (ADS)

    Sangeetha, V.; Govindarajan, M.; Kanagathara, N.; Gunasekaran, S.; Rajakumar, P. R.; Anbalagan, G.

    2014-06-01

    Single crystals of melaminium bis (hydrogen oxalate) (MOX) were grown by slow evaporation method. X-ray powder diffraction analysis indicates that MOX crystallizes in monoclinic system (space group C2/c) and the calculated lattice constants are a = 20.075 ± 0.123 Ǻ, b = 8.477 ± 0.045 Ǻ, c = 6.983 ± 0.015, α = γ 90° and β = 102.6 ± 0.33°. Thermal analysis confirms that MOX is thermally stable up to 250 °C. A detailed interpretation of the FT-IR, FT-Raman and NMR spectra were reported. The equilibrium geometry, bonding features, and harmonic vibrational frequencies have been investigated with the help of PM6, HF and DFT/B3LYP methods. The potential energy curve shows that MOX molecule has two stable structures and the computational results diagnose that Rot I is the most stable conformer. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge-Invariant Atomic Orbital (GIAO) method. Stability of the molecule, arising from hyperconjugative interactions and charge delocalization, has been analyzed using Natural Bond Orbital (NBO) analysis. The electronic properties, such as HOMO and LUMO energies, were calculated by Time-Dependent DFT (TD-DFT) approach. To estimate chemical reactivity of the molecule, the molecular electrostatic potential (MEP) surface map is calculated for the optimized geometry of the molecule.

  12. Concerted molecular displacements in a thermally-induced solid-state transformation in crystals of DL-norleucine.

    PubMed

    Anwar, Jamshed; Tuble, Sigrid C; Kendrick, John

    2007-03-07

    Martensitic transformations are of considerable technological importance, a particularly promising application being the possibility of using martensitic materials, possibly proteins, as tiny machines. For organic crystals, however, a molecular level understanding of such transformations is lacking. We have studied a martensitic-type transformation in crystals of the amino acid DL-norleucine using molecular dynamics simulation. The crystal structures of DL-norleucine comprise stacks of bilayers (formed as a result of strong hydrogen bonding) that translate relative to each other on transformation. The simulations reveal that the transformation occurs by concerted molecular displacements involving entire bilayers rather than on a molecule-by-molecule basis. These observations can be rationalized on the basis that at sufficiently high excess temperatures, the free energy barriers to concerted molecular displacements can be overcome by the available thermal energy. Furthermore, in displacive transformations, the molecular displacements can occur by the propagation of a displacement wave (akin to a kink in a carpet), which requires the molecules to overcome only a local barrier. Concerted molecular displacements are therefore considered to be a significant feature of all displacive transformations. This finding is expected to be of value toward developing strategies for controlling or modulating martensitic-type transformations.

  13. Role of the Strength of Drug-Polymer Interactions on the Molecular Mobility and Crystallization Inhibition in Ketoconazole Solid Dispersions.

    PubMed

    Mistry, Pinal; Mohapatra, Sarat; Gopinath, Tata; Vogt, Frederick G; Suryanarayanan, Raj

    2015-09-08

    The effects of specific drug-polymer interactions (ionic or hydrogen-bonding) on the molecular mobility of model amorphous solid dispersions (ASDs) were investigated. ASDs of ketoconazole (KTZ), a weakly basic drug, with each of poly(acrylic acid) (PAA), poly(2-hydroxyethyl methacrylate) (PHEMA), and polyvinylpyrrolidone (PVP) were prepared. Drug-polymer interactions in the ASDs were evaluated by infrared and solid-state NMR, the molecular mobility quantified by dielectric spectroscopy, and crystallization onset monitored by differential scanning calorimetry (DSC) and variable temperature X-ray diffractometry (VTXRD). KTZ likely exhibited ionic interactions with PAA, hydrogen-bonding with PHEMA, and weaker dipole-dipole interactions with PVP. On the basis of dielectric spectroscopy, the α-relaxation times of the ASDs followed the order: PAA > PHEMA > PVP. In addition, the presence of ionic interactions also translated to a dramatic and disproportionate decrease in mobility as a function of polymer concentration. On the basis of both DSC and VTXRD, an increase in strength of interaction translated to higher crystallization onset temperature and a decrease in extent of crystallization. Stronger drug-polymer interactions, by reducing the molecular mobility, can potentially delay the crystallization onset temperature as well as crystallization extent.

  14. Anomalous enhancement of proton conductivity for water molecular clusters stabilized in interstitial spaces of porous molecular crystals.

    PubMed

    Tadokoro, Makoto; Ohhata, Yuki; Shimazaki, Yuriko; Ishimaru, Shin'ichi; Yamada, Teppei; Nagao, Yuki; Sugaya, Tomoaki; Isoda, Kyosuke; Suzuki, Yuta; Kitagawa, Hiroshi; Matsui, Hiroshi

    2014-10-13

    In an investigation into the proton conductivity of crystallized water clusters confined within low-dimensional nanoporous materials, we have found that water-stable nanoporous crystals are formed by complementary hydrogen bonding between [Co(III) (H2 bim)3 ](3+) (H2 bim: 2,2'-biimidazole) and TATC(3-) (1,3,5- tricarboxyl-2,4,6-triazinate); the O atoms in the -COO(-) groups of TATC(3-) in the porous outer wall are strongly hydrogen bonded with H2 O, forming two types of WMCs (water molecular clusters): a spirocyclic tetramer chain (SCTC) that forms infinite open 1D channels, and an isolated cyclic tetramer (ICT) present in the void space. The ICT is constructed from four H2 O molecules as a novel C2 -type WMC, which are hydrogen bonded with four-, three-, and two-coordination spheres, respectively. The largest structural fluctuation is observed at elevated temperatures from the two-coordinated H2 O molecules, which begin to rapidly and isotropically fluctuate on heating. This behavior can be rationalized by a simple model for the elucidation of pre-melting phenomena, similar to those in ice surfaces as the temperature increases. Moreover, high proton conductivity of SCTCs (ca. 10(-5) S cm(-1) at 300 K with an activation energy of 0.30 eV) through a proton-hole mechanism was observed for pellet samples using the alternating impedance method. The proton conductivity exhibits a slight enhancement of about 0.1×10(-5) S cm(-1) at 274 K due to a structural transition upon approaching this temperature that elongates the unit cell along the b-axis. The proton-transfer route can be predicted in WMCs, as O(4) of an H2 O molecule at the center of an SCTC shows a motion that rotates the dipole in the b-axis direction, but not the c-axis; the thermal ellipsoids of O(4) based on anisotropic temperature factors obtained by X-ray crystallography reflect a structural fluctuation along the b-axis direction induced by [Co(III) (H2 bim)3 ](3+) .

  15. Surface-modified silica colloidal crystals: nanoporous films and membranes with controlled ionic and molecular transport.

    PubMed

    Zharov, Ilya; Khabibullin, Amir

    2014-02-18

    Nanoporous membranes are important for the study of the transport of small molecules and macromolecules through confined spaces and in applications ranging from separation of biomacromolecules and pharmaceuticals to sensing and controlled release of drugs. For many of these applications, chemists need to gate the ionic and molecular flux through the nanopores, which in turn depends on the ability to control the nanopore geometry and surface chemistry. Most commonly used nanoporous membrane materials are based on polymers. However, the nanostructure of polymeric membranes is not well-defined, and their surface is hard to modify. Inorganic nanoporous materials are attractive alternatives for polymers in the preparation of nanoporous membranes. In this Account, we describe the preparation and surface modification of inorganic nanoporous films and membranes self-assembled from silica colloidal spheres. These spheres form colloidal crystals with close-packed face centered cubic lattices upon vertical deposition from colloidal solutions. Silica colloidal crystals contain ordered arrays of interconnected three dimensional voids, which function as nanopores. We can prepare silica colloidal crystals as supported thin films on various flat solid surfaces or obtain free-standing silica colloidal membranes by sintering the colloidal crystals above 1000 °C. Unmodified silica colloidal membranes are capable of size-selective separation of macromolecules, and we can surface-modify them in a well-defined and controlled manner with small molecules and polymers. For the surface modification with small molecules, we use silanol chemistry. We grow polymer brushes with narrow molecular weight distribution and controlled length on the colloidal nanopore surface using atom transfer radical polymerization or ring-opening polymerization. We can control the flux in the resulting surface-modified nanoporous films and membranes by pH and ionic strength, temperature, light, and small molecule

  16. Fluorescence microscopy reveals molecular localisation at line defects in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Ohzono, Takuya; Katoh, Kaoru; Fukuda, Jun-Ichi

    2016-11-01

    Topological defects easily form in liquid crystals (LCs) as a result of frustrations in spatially dependent anisotropic molecular ordering, and have been regarded as promising tools for facilitating manipulation of relatively large non-LC materials such as colloids. However, it remains unclear whether low-molecular-weight (LMW) impurities that do not aggregate or self-assemble in bulk LCs because of the dominance of entropy can localise at LC defects. Here, by fluorescence microscopy, we directly show the localisation of LMW molecules at the topological line defects of a nematic LC. It is theoretically explained that excess free energy density of nematic ordering at the defect core allows LMW solutes to accumulate at a non-negligible level overcoming the entropy leading to their uniform distributions. Our results demonstrate the usefulness of LC defects as a bottom-up field that enables micromanipulation of LMW molecules and realisation of transformable three-dimensional micro-architectures composed of versatile small functional molecules.

  17. Structural and thermotropic peculiarities of hydrogen-bonded liquid crystals confined in mesoporous molecular sieves

    NASA Astrophysics Data System (ADS)

    Gnatyuk, I.; Gavrilko, T.; Yaroshchuk, O.; Holovina, N.; Shcherban, N.; Baran, J.; Drozd, M.

    2016-12-01

    The phase behaviour and structural organization of hydrogen-bonded liquid crystals were investigated under confinement to mesoporous molecular sieves. As such liquid crystalline compounds, 4-hexylbenzoic and 4-butylcyclohexanecarboxylic acids with different head group structure and alkyl chain length where selected and filled in the AlMCM-41 sieves. With FTIR spectroscopy it was found that some part of incorporated acid molecules, presumably located in the inner space of the AlMCM-41 pores, is in undissociated form of open dimers or chain associates and thus shows spectroscopic features characteristic to the bulk-like species. The other FTIR spectra components indicate strong interaction of the incorporated monomeric molecules with the pore surface. Two specific mechanisms are shown to be involved in molecular interactions at the interface: (1) deprotonation of monomeric acid molecules on the pore surface with formation of COO- carboxylate ions and (2) bonding of these ions to the pore surface by a coordinated bond R-COO-…Al+ with Lewis acid sites. Differential scanning calorimetry revealed that these near-surface processes lead to complete suppression of mesomorphic properties of the studied acids under confinement to nanopores.

  18. Visual detection of 2,4,6-trinitrotolune by molecularly imprinted colloidal array photonic crystal.

    PubMed

    Lu, Wei; Asher, Sanford A; Meng, Zihui; Yan, Zequn; Xue, Min; Qiu, Lili; Yi, Da

    2016-10-05

    We developed a photonic crystal (PhC) sensor for the quantification of 2,4,6-trinitrotoluene (TNT) in solution. Monodisperse (210nm in diameter) molecularly imprinted colloidal particles (MICs) for TNT were prepared by the emulsion polymerization of methyl methacrylate and acrylamide in the presence of TNT as a template. The MICs were then self-assembled into close-packed opal PhC films. The adsorption capacity of the MICs for TNT was 64mg TNT/g. The diffraction from the PhC depended on the TNT concentration in a methanol/water (3/2, v/v) potassium dihydrogen phosphate buffer solution (pH=7.0, 30mM). The limit of detection (LOD) of the sensor was 1.03μg. The color of the molecularly imprinted colloidal array (MICA) changed from green to red with an 84nm diffraction red shift when the TNT concentration increased to 20mM. The sensor response time was 3min. The PhC sensor was selective for TNT compared to similar compounds such as 2,4,6-trinitrophenol, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-nitromesitylene, 4-nitrotoluene, 2-nitrotoluene, 1,3-dinitrobenzene, methylbenzene, 4-nitrophenol, 2-nitroaniline, 3-aminophenol and 3-nitroaniline. The sensor showed high stability with little response change after three years storage. This sensor technology might be useful for the visual determination of TNT.

  19. Fluorescence microscopy reveals molecular localisation at line defects in nematic liquid crystals

    PubMed Central

    Ohzono, Takuya; Katoh, Kaoru; Fukuda, Jun-ichi

    2016-01-01

    Topological defects easily form in liquid crystals (LCs) as a result of frustrations in spatially dependent anisotropic molecular ordering, and have been regarded as promising tools for facilitating manipulation of relatively large non-LC materials such as colloids. However, it remains unclear whether low-molecular-weight (LMW) impurities that do not aggregate or self-assemble in bulk LCs because of the dominance of entropy can localise at LC defects. Here, by fluorescence microscopy, we directly show the localisation of LMW molecules at the topological line defects of a nematic LC. It is theoretically explained that excess free energy density of nematic ordering at the defect core allows LMW solutes to accumulate at a non-negligible level overcoming the entropy leading to their uniform distributions. Our results demonstrate the usefulness of LC defects as a bottom-up field that enables micromanipulation of LMW molecules and realisation of transformable three-dimensional micro-architectures composed of versatile small functional molecules. PMID:27812045

  20. Fracture of molecular glasses under tension and fracture-induced crystallization

    NASA Astrophysics Data System (ADS)

    Chen, Yinshan; Powell, Travis; Yu, Lian

    Molecular glasses are formed and fractured by cooling a liquid on a less thermally expansive substrate. In-plane tension is created by the mismatch of thermal expansion coefficients and accumulates to cause catastrophic network fracture. This simple experiment allowed the measurement of fracture toughness and the heat of fracture of molecular glasses for the first time. For the systems studied (o - terphenyl, indomethacin, and sucrose benzoate), the fracture condition is well described by recent theories and a material-specific energy release rate (fracture toughness) approximately 1 J/m2. The heat of fracture was found to be anomalously high relative to the value expected for the energy release rate and the surface area created. The large release of heat is caused by the reduction of heat capacity for a glass film constrained on a rigid substrate. Rapid crystal growth was observed along fracture surfaces. (Ref.: Powell, C. T.; Chen, Y.; Yu, L. J. Non-Crystalline Solids 2015, 429, 122-128)

  1. Local structure and molecular motions in imidazolium hydrogen malonate crystal as studied by 2H and 13C NMR

    NASA Astrophysics Data System (ADS)

    Mizuno, M.; Chizuwa, M.; Umiyama, T.; Kumagai, Y.; Miyatou, T.; Ohashi, R.; Ida, T.; Tansho, M.; Shimizu, T.

    2015-04-01

    The local structure and molecular motion of the imidazolium hydrogen malonate crystal were investigated using solid-state 2H and 13C NMR. The imidazolium ion undergoes isotropic rotation, which is correlated with a defect in the crystal, as observed by 2H NMR broadline spectra above 263 K. A 180∘ flip of the imidazolium ion in the regular site was observed from 2H NMR quadrupole Carr-Purcell-Meiboom-Gill (QCPMG) spectra. The Grotthuss mechanism was accompanied by a 180∘ flip of the imidazolium ion in regular sites. Moreover, the proton transfer associated with the imidazolium ion of the defective crystal is important for proton conductivity of the imidazolium hydrogen malonate crystal.

  2. Purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies of great cormorant (Phalacrocorax carbo) haemoglobin.

    PubMed

    Jagadeesan, G; Malathy, P; Gunasekaran, K; Harikrishna Etti, S; Aravindhan, S

    2014-11-01

    Haemoglobin is the iron-containing oxygen-transport metalloprotein that is present in the red blood cells of all vertebrates. In recent decades, there has been substantial interest in attempting to understand the structural basis and functional diversity of avian haemoglobins. Towards this end, purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies have been carried out on cormorant (Phalacrocorax carbo) haemoglobin. Crystals were grown by the hanging-drop vapour-diffusion method using PEG 3350, NaCl and glycerol as precipitants. The crystals belonged to the trigonal system P3₁21, with unit-cell parameters a=b=55.64, c=153.38 Å, β=120.00°; a complete data set was collected to a resolution of 3.5 Å. Matthews coefficient analysis indicated that the crystals contained a half-tetramer in the asymmetric unit.

  3. Crystal and molecular structure of an (S)-(+)-enantiomer of modafinil, a novel wake-promoting agent.

    PubMed

    In, Yasuko; Tomoo, Koji; Ishida, Toshimasa; Sakamoto, Yasuhiko

    2004-10-01

    The (+)-enantiomer of modafinil [(RS)-2-(diphenylmethylsulfinyl)acetamide], a novel wake-promoting agent, was clarified to be S-configuration by X-ray crystal structure analysis. The crystal consists of two crystallographically independent conformers that are different at the torsion angles around the sulfinylacetamide moiety, and this results from the molecular packing requirement to form a two-dimensional hydrogen-bonding network via neighboring amide groups in the crystal. The crystal structure is characterized by the formation of alternative hydrophobic and hydrophilic layers, which are formed among the symmetry-translated assemblies of diphenylmethyl and sulfinylacetamide moieties, respectively. The spatial orientation between the diphenyl and amide groups is believed to be important for the activity of modafinil.

  4. Nonequilibrium stationary states and entropy.

    PubMed

    Gallavotti, G; Cohen, E G D

    2004-03-01

    In transformations between nonequilibrium stationary states, entropy might not be a well defined concept. It might be analogous to the "heat content" in transformations in equilibrium which is not well defined either, if they are not isochoric (i.e., do involve mechanical work). Hence we conjecture that in a nonequilibrium stationary state the entropy is just a quantity that can be transferred or created, such as heat in equilibrium, but has no physical meaning as "entropy content" as a property of the system.

  5. Nonequilibrium detonation of composite explosives

    SciTech Connect

    Nichols III, A.L.

    1997-07-01

    The effect of nonequilibrium diffusional flow on detonation velocities in composite explosives is examined. Detonation conditions are derived for complete equilibrium, temperature and pressure equilibrium, and two forms of pressure equilibrium. Partial equilibria are associated with systems which have not had sufficient time for transport to smooth out the gradients between spatially separate regions. The nonequilibrium detonation conditions are implemented in the CHEQ equation of state code. We show that the detonation velocity decreases as the non-chemical degrees of freedom of the explosive are allowed to equilibrate. It is only when the chemical degrees of freedom are allowed to equilibrate that the detonation velocity increases.

  6. DFT study of the molecular and crystal structure and vibrational analysis of cisplatin.

    PubMed

    Georgieva, I; Trendafilova, N; Dodoff, N; Kovacheva, D

    2017-04-05

    DFT and periodic-DFT (PAW-PBE method, code VASP) calculations have been performed to study the structural and vibrational characteristics of cis-diamminedichloroplatinum(II) (cisplatin) at molecular and outside molecular level. To estimate the effect of the intermolecular interactions in crystal on the structural and vibrational properties of cisplatin, three theoretical models are considered in the present study: monomer (isolated molecule), hydrogen bonded dimer and periodic solid state structures. The work focused on the role of the theoretical models for correct modeling and prediction of geometrical and vibrational parameters of cisplatin. It has been found that the elaborate three-dimensional intermolecular hydrogen bonding network in the crystalline cisplatin significantly influences the structural and vibrational pattern of cisplatin and therefore the isolated cisplatin molecule is not the correct computational model regardless of the theoretical level used. To account for the whole intermolecular hydrogen bonding network in direction of both a and c axis and for more reliable calculations of structural and vibrational parameters periodic DFT calculations were carried out in the full crystalline periodic environment with the known lattice parameters for each cisplatin polymorph phase. The model calculations performed both at molecular level and for the periodic structures of alpha and beta cisplatin polymorph forms revealed the decisive role of the extended theoretical model for reliable prediction of the structural and vibrational characteristics of cisplatin. The powder diffraction pattern and the calculated IR and Raman spectra predicted beta polymorph form of our cisplatin sample freshly synthesized for the purposes of the present study using the Dhara's method. The various rotamers realized in the polymorph forms of cisplatin were explained by the low population of the large number of rotamers in solution as well as with the high rotamer

  7. DFT study of the molecular and crystal structure and vibrational analysis of cisplatin

    NASA Astrophysics Data System (ADS)

    Georgieva, I.; Trendafilova, N.; Dodoff, N.; Kovacheva, D.

    2017-04-01

    DFT and periodic-DFT (PAW-PBE method, code VASP) calculations have been performed to study the structural and vibrational characteristics of cis-diamminedichloroplatinum(II) (cisplatin) at molecular and outside molecular level. To estimate the effect of the intermolecular interactions in crystal on the structural and vibrational properties of cisplatin, three theoretical models are considered in the present study: monomer (isolated molecule), hydrogen bonded dimer and periodic solid state structures. The work focused on the role of the theoretical models for correct modeling and prediction of geometrical and vibrational parameters of cisplatin. It has been found that the elaborate three-dimensional intermolecular hydrogen bonding network in the crystalline cisplatin significantly influences the structural and vibrational pattern of cisplatin and therefore the isolated cisplatin molecule is not the correct computational model regardless of the theoretical level used. To account for the whole intermolecular hydrogen bonding network in direction of both a and c axis and for more reliable calculations of structural and vibrational parameters periodic DFT calculations were carried out in the full crystalline periodic environment with the known lattice parameters for each cisplatin polymorph phase. The model calculations performed both at molecular level and for the periodic structures of alpha and beta cisplatin polymorph forms revealed the decisive role of the extended theoretical model for reliable prediction of the structural and vibrational characteristics of cisplatin. The powder diffraction pattern and the calculated IR and Raman spectra predicted beta polymorph form of our cisplatin sample freshly synthesized for the purposes of the present study using the Dhara's method. The various rotamers realized in the polymorph forms of cisplatin were explained by the low population of the large number of rotamers in solution as well as with the high rotamer

  8. Unraveling Interactions in Molecular Crystals Using Dispersion Corrected Density Functional Theory: The Case of the Epoxydihydroarsanthrene Molecules.

    PubMed

    Otero-de-la-Roza, A; Luaña, Víctor; Tiekink, Edward R T; Zukerman-Schpector, Julio

    2014-11-11

    Noncovalent interactions are prevalent in crystal packing and supramolecular chemistry. Directional noncovalent interactions such as donor-acceptor bonds (e.g., hydrogen, chalcogen, and pnictogen bonds) as well as nondirectional forces (such as dispersion) come together to stabilize supramolecular assemblies by striking a delicate energetic balance. Typically, a two-pronged approach employing experimental X-ray structures and gas phase quantum chemical modeling has been used to understand and design supramolecular architectures. Drawing from recent advances in molecular crystal modeling with dispersion corrected density functional theory (DFT), we propose in this article a combination of qualitative noncovalent index (NCI) analysis and periodic and gas phase DFT calculations on substitutional crystal analogues to unravel the dominant interactions in a particular crystal packing. We illustrate the possibilities of this approach by studying three crystal packings of epoxydihydroarsanthrene analogues that present a complex combination of donor-acceptor interactions including pnictogen-pnictogen, pnictogen-π, and pnictogen-chalcogen. We show that, in these crystals, the chalcogen-pnictogen interaction dominates over the pnictogen-pnictogen and pnictogen-π. In the latter, the role of donor and acceptor is reversed depending on the interacting moieties. Multiple chalcogen-pnictogen interactions necessitate larger donor atoms, such as sulfur. These observations explain and rationalize the experimentally observed crystal structures.

  9. Molecular mechanisms of crystal-related kidney inflammation and injury. Implications for cholesterol embolism, crystalline nephropathies and kidney stone disease.

    PubMed

    Mulay, Shrikant R; Evan, Andrew; Anders, Hans-Joachim

    2014-03-01

    Crystals are particles of endogenous inorganic or organic composition that can trigger kidney injury when deposited or formed inside the kidney. While decades of research have focused on the molecular mechanisms of solute supersaturation and crystal formation, the pathomechanisms of crystal-induced renal inflammation remain largely unknown. The recent discovery of the intracellular NLRP3 inflammasome as a pattern recognition platform that translates crystal uptake into innate immune activation via secretion of IL-1β and IL-18 revised the pathogenesis of gout, silicosis, asbestosis, atherosclerosis and other crystal-related disorders. As a proof of concept, the NLRP3 inflammasome was now shown to trigger inflammation and acute kidney injury (AKI) in oxalate nephropathy. It seems likely that this and potentially other innate immunity mechanisms drive crystalline nephropathies (CNs) that are associated with crystals of calcium phosphate, uric acid, cysteine, adenine, certain drugs or contrast media, and potentially of myoglobin during rhabdomyolysis and of light chains in myeloma. Here, we discuss the proven and potential mechanisms of renal inflammation and kidney injury in crystal-related kidney disorders. In addition, we list topics for further research in that field. This perspective may also provide novel therapeutic options that can help to avoid progressive tissue remodeling and chronic kidney disease in patients with kidney stone disease or other CNs.

  10. Local equations of state in nonequilibrium heterogeneous physicochemical systems

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2017-03-01

    Equations describing local thermal and caloric equations of state in heterogeneous systems at any degree of their states' deviation from equilibrium are derived. The state of a system is described by equations of the transfer of mixture components; these generalize the equations of classical non-equilibrium thermodynamics for strongly nonequilibrium processes. The contributions from reactions and external fields are taken into account. The equations are derived using the lattice gas model with discrete molecular distributions in space (on a scale comparable to molecular dimensions) and continuous molecular distributions (at short distances inside cells) during their translational and vibrational motions. For simplicity, it is assumed that distinctions between the sizes of mixture components are small. Contributions from potential functions of intermolecular interaction (of the Lennard-Jones type) to some coordination spheres are considered. The theory provides a unified description of the dynamics of distributions of concentrations and pair functions of mixture components in three aggregate states, and at their interfaces. Universal expressions for the local components of the pressure tensor and internal energy inside multicomponent bulk phases and at their interfaces are obtained. Local components of the pressure tensor and the internal energy are universally expressed through local unary and pair distribution functions (DFs) in any nonequilibrium state. The time evolution of the unary and pair DFs themselves is determined from the derived system of equations of mass, momentum, and energy transfer that ensure the transition of the system from a strongly nonequilibrium state to both the local equilibrium state described within traditional nonequilibrium thermodynamics and the complete thermodynamic equilibrium state postulated by classical thermodynamics.

  11. Open problems in non-equilibrium physics

    SciTech Connect

    Kusnezov, D.

    1997-09-22

    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.

  12. Enantioselective piezoelectric quartz crystal sensor for d-methamphetamine based on a molecularly imprinted polymer.

    PubMed

    Arenas, Leveriza F; Ebarvia, Benilda S; Sevilla, Fortunato B

    2010-08-01

    A piezoelectric quartz crystal (PQC) sensor based on a molecularly imprinted polymer (MIP) has been developed for enantioselective and quantitative analysis of d-(+)-methamphetamine (d(+)-MA). The sensor was produced by bulk polymerization and the resulting MIP was then coated on the gold electrode of an AT-cut quartz crystal. Conditions such as volume of polymer coating, curing time, type of PQC, baseline solvent, pH, and buffer type were found to affect the sensor response and were therefore optimized. The PQC-MIP gave a stable response to different concentrations of d(+)-MA standard solutions (response time = 10 to 100 s) with good repeatability (RSD = 0.03 to 3.09%; n = 3), good reproducibility (RSD = 3.55%; n = 5), and good reversibility (RSD = 0.36%; n = 3). The linear range of the sensor covered five orders of magnitude of analyte concentration, ranging from 10(-5) to 10(-1) microg mL(-1), and the limit of detection was calculated as 11.9 pg d(+)-MA mL(-1) . The sensor had a highly enantioselective response to d(+)-MA compared with its response to l(-)-MA, racemic MA, and phentermine. The developed sensor was validated by applying it to human urine samples from drug-free individuals spiked with standard d(+)-MA and from a confirmed MA user. Use of the standard addition method (SAM) and samples spiked with d(+)-MA at levels ranging from 1 x 10(-3) to 1 x 10(-2) microg mL(-1) showed recovery was good (95.3 to 110.9%).

  13. Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) Simulations of the Molecular Crystal alphaRDX

    DTIC Science & Technology

    2013-08-01

    as elastic constants, minimized crystal structures from various loading conditions and generalized stacking fault energy surfaces of the minimized... structures . Detailed descriptions of Matlab scripts are also provided for post-processing the simulation data. These procedures are well suited to...minimization of the experimental crystal structure . Each step in the flowchart references the section containing the description of the files used

  14. Chaotic dynamics, fluctuations, nonequilibrium ensembles.

    PubMed

    Gallavotti, Giovanni

    1998-06-01

    The ideas and the conceptual steps leading from the ergodic hypothesis for equilibrium statistical mechanics to the chaotic hypothesis for equilibrium and nonequilibrium statistical mechanics are illustrated. The fluctuation theorem linear law and universal slope prediction for reversible systems is briefly derived. Applications to fluids are briefly alluded to. (c) 1998 American Institute of Physics.

  15. Non-equilibrium supramolecular polymerization.

    PubMed

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-03-28

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  16. Purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies of great cormorant (Phalacrocorax carbo) haemoglobin

    SciTech Connect

    Jagadeesan, G.; Malathy, P.; Gunasekaran, K.; Harikrishna Etti, S.; Aravindhan, S.

    2014-10-25

    The great cormorant hemoglobin has been isolated, purified and crystallized and the three dimensional structure is solved using molecular replacement technique. Haemoglobin is the iron-containing oxygen-transport metalloprotein that is present in the red blood cells of all vertebrates. In recent decades, there has been substantial interest in attempting to understand the structural basis and functional diversity of avian haemoglobins. Towards this end, purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies have been carried out on cormorant (Phalacrocorax carbo) haemoglobin. Crystals were grown by the hanging-drop vapour-diffusion method using PEG 3350, NaCl and glycerol as precipitants. The crystals belonged to the trigonal system P3{sub 1}21, with unit-cell parameters a = b = 55.64, c = 153.38 Å, β = 120.00°; a complete data set was collected to a resolution of 3.5 Å. Matthews coefficient analysis indicated that the crystals contained a half-tetramer in the asymmetric unit.

  17. Optical and resonant X-ray diffraction studies of molecular arrangements in several liquid crystals

    NASA Astrophysics Data System (ADS)

    Wang, Suntao

    Using optical and x-ray techniques, we have studied several selected liquid crystal compounds formed by three types of molecules: rod-like; hockey-stick-shaped and bent-core-shaped molecules. This thesis describes four research projects. The first one is a study of the molecular arrangements in freestanding films of three chiral compounds showing no-layer-shrinkage behavior above their bulk SmA-SmC* transition temperatures. Upon cooling under a proper electric field, novel nonplanar-anticlinic-synclinic and nonplanar-synclinic transitions have been observed in two compounds. Increasing electric field can induce a rare transition from a synclinic to an anticlinic structure. Results from both x-ray diffraction and optical studies indicate that different molecular packing arrangements exist within the Sm A phase window. The second project is to investigate three achiral meta-substituted three-ring compounds. These compounds exhibit two different tilted smectic phases, Sm C1 and SmC2. A recent paper has reported that mirror symmetry is broken in one of these compounds. However, no mirror symmetry breaking has been observed in our studies of the same compound. Our studies of another two compounds confirmed previous results that the Sm C1 and SmC2 phases are Sm C and SmCA, respectively. Thirdly, we confirmed the SM C*FI2 -SmC* phase sequence reversal in one liquid crystal compound and specially prepared binary mixtures. This phase sequence reversal was predicted by a recent phenomenological model. Moreover, the temperature range for the SM C*FI2 phase increases significantly in the mixture suggesting that such a phase sequence may exist in other compounds. The last project is to study the B2 phase formed by bent-core molecules using polarization-analyzed resonant x-ray diffraction. The B2 phase has three possible arrangements which show a two-layer unit cell. We analyzed the polarization of the resonant peaks at different Bragg orders. By comparing a theoretical

  18. Stagnation Point Nonequilibrium Radiative Heating and the Influence of Energy Exchange Models

    NASA Technical Reports Server (NTRS)

    Hartung, Lin C.; Mitcheltree, Robert A.; Gnoffo, Peter A.

    1991-01-01

    A nonequilibrium radiative heating prediction method has been used to evaluate several energy exchange models used in nonequilibrium computational fluid dynamics methods. The radiative heating measurements from the FIRE II flight experiment supply an experimental benchmark against which different formulations for these exchange models can be judged. The models which predict the lowest radiative heating are found to give the best agreement with the flight data. Examination of the spectral distribution of radiation indicates that despite close agreement of the total radiation, many of the models examined predict excessive molecular radiation. It is suggested that a study of the nonequilibrium chemical kinetics may lead to a correction for this problem.

  19. Tetrel Bonds in Infinite Molecular Chains by Electronic Structure Theory and Their Role for Crystal Stabilization.

    PubMed

    George, Janine; Dronskowski, Richard

    2017-02-16

    Intermolecular bonds play a crucial role in the rational design of crystal structures, dubbed crystal engineering. The relatively new term tetrel bonds (TBs) describes a long-known type of such interactions presently in the focus of quantum chemical cluster calculations. Here, we energetically explore the strengths and cooperativity of these interactions in infinite chains, a possible arrangement of such tetrel bonds in extended crystals, by periodic density functional theory. In the chains, the TBs are amplified due to cooperativity by up to 60%. Moreover, we computationally take apart crystals stabilized by infinite tetrel-bonded chains and assess the importance of the TBs for the crystal stabilization. Tetrel bonds can amount to 70% of the overall interaction energy within some crystals, and they can also be energetically decisive for the taken crystal structure; their individual strengths also compete with the collective packing within the crystal structures.

  20. Pressure-induced phase transitions in organic molecular crystals: a combination of x-ray single-crystal and powder diffraction, raman and IR-spectroscopy

    NASA Astrophysics Data System (ADS)

    Boldyreva, E. V.; Sowa, H.; Ahsbahs, H.; Goryainov, S. V.; Chernyshev, V. V.; Dmitriev, V. P.; Seryotkin, Y. V.; Kolesnik, E. N.; Shakhtshneider, T. P.; Ivashevskaya, S. N.; Drebushchak, T. N.

    2008-07-01

    The contribution summarizes the results of recent studies of phase transitions induced by high pressure in a number of molecular organic crystals, such as polymorphs of paracetamol, chlorpropamide, polymorphs of glycine, L- and DL-serine, β-alanine. The main attention is paid to the following topics: (1) Reversible / irreversible transformations; (2) Different behavior of single crystals / powders; (3) The role of pressure-transmitting liquid; (4) The role of the kinetic factors: phase transitions on decompression, or after a long storage at a selected pressure; (5) Isosymmetric phase transitions; (6) The role of the changes in the hydrogen bond networks / intramolecular conformational changes in the phase transitions; (7) Superstructures / nanostructures formed as a result of pressure-induced phase transitions.

  1. Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise

    ERIC Educational Resources Information Center

    Bindel, Thomas H.

    2008-01-01

    A crystal model laboratory exercise is presented that allows students to examine relations among the microscopic-macroscopic-symbolic levels, using crystalline mineral samples and corresponding crystal models. Students explore the relationship between solid-state structure and crystal form. Other structure-property relationships are explored. The…

  2. Effect of Low-Concentration Polymers on Crystal Growth in Molecular Glasses: A Controlling Role for Polymer Segmental Mobility Relative to Host Dynamics.

    PubMed

    Huang, Chengbin; Powell, C Travis; Sun, Ye; Cai, Ting; Yu, Lian

    2017-03-02

    Low-concentration polymers can strongly influence crystal growth in small-molecule glasses, a phenomenon important for improving physical stability against crystallization. We measured the velocity of crystal growth in two molecular glasses, nifedipine (NIF) and o-terphenyl (OTP), each doped with four or five different polymers. For each polymer, the concentration was fixed at 1 wt % and a wide range of molecular weights was tested. We find that a polymer additive can strongly alter the rate of crystal growth, from a 10-fold reduction to a 10-fold increase. For a given polymer, increasing molecular weight slows down crystal growth and the effect saturates around DP = 100, where DP is the degree of polymerization. For all the systems studied, the polymer effect on crystal growth rate forms a master curve in the variable (Tg,polymer - Tg,host)/Tcryst, where Tg is the glass transition temperature and Tcryst is the crystallization temperature. These results support the view that a polymer's effect on crystal growth is controlled by its segmental mobility relative to the host-molecule dynamics. In the proposed model, crystal growth rejects impurities and creates local polymer-rich regions, which must be traversed by host molecules to sustain crystal growth at rates determined by polymer segmental mobility. Our results do not support the view that host-polymer hydrogen bonding plays a controlling role in crystal growth inhibition.

  3. Strong and Anomalous Thermal Expansion Precedes the Thermosalient Effect in Dynamic Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Panda, Manas K.; Centore, Roberto; Causà, Mauro; Tuzi, Angela; Borbone, Fabio; Naumov, Panče

    2016-07-01

    The ability of thermosalient solids, organic analogues of inorganic martensites, to move by rapid mechanical reconfiguration or ballistic event remains visually appealing and potentially useful, yet mechanistically elusive phenomenon. Here, with a material that undergoes both thermosalient and non-thermosalient phase transitions, we demonstrate that the thermosalient effect is preceded by anomalous thermal expansion of the unit cell. The crystal explosion occurs as sudden release of the latent strain accumulated during the anisotropic, exceedingly strong expansion of the unit cell with αa = 225.9 × 10‑6 K‑1, αb = 238.8 × 10‑6 K‑1 and αc = ‑290.0 × 10‑6 K‑1, the latter being the largest negative thermal expansivity observed for an organic compound thus far. The results point out to the occurence of the thermosalient effect in phase transitions as means to identify new molecular materials with strong positive and/or negative thermal expansion which prior to this work could only be discovered serendipitously.

  4. Study of Friction between Liquid Crystals and Crystalline Surfaces by Molecular Dynamic Simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Wen; Chen, Xiao-Song; Chen, Wei

    2016-10-01

    The lubrication characteristics of liquid crystal (LC) molecules sheared between two crystalline surfaces obtained from molecular dynamics (MD) simulations are reported in this article. We consider a coarse-grained rigid bead-necklace model of the LC molecules confined between two atomic surfaces subject to different shearing velocities. A systematic study shows that the slip length of LC lubrication changes significantly as a function of the LC-surface interaction energy, which can be well described though a theoretical curve. The slip length increases as shear rate increases at high LC-surface interaction energy. However, this trend can not be observed for low interaction energy. The orientation of the LC molecules near the surface is found to be guided by the atomics surfaces. The influence of temperature on the lubrication characteristics is also discussed in this article. Supported by the National Natural Science Foundation of China under Grant Nos. 11504384 and 11121403 and computational resources provided by Supercomputing Center of Chinese Academy of Sciences (SCCAS)

  5. Strong and Anomalous Thermal Expansion Precedes the Thermosalient Effect in Dynamic Molecular Crystals.

    PubMed

    Panda, Manas K; Centore, Roberto; Causà, Mauro; Tuzi, Angela; Borbone, Fabio; Naumov, Panče

    2016-07-12

    The ability of thermosalient solids, organic analogues of inorganic martensites, to move by rapid mechanical reconfiguration or ballistic event remains visually appealing and potentially useful, yet mechanistically elusive phenomenon. Here, with a material that undergoes both thermosalient and non-thermosalient phase transitions, we demonstrate that the thermosalient effect is preceded by anomalous thermal expansion of the unit cell. The crystal explosion occurs as sudden release of the latent strain accumulated during the anisotropic, exceedingly strong expansion of the unit cell with αa = 225.9 × 10(-6) K(-1), αb = 238.8 × 10(-6) K(-1) and αc = -290.0 × 10(-6) K(-1), the latter being the largest negative thermal expansivity observed for an organic compound thus far. The results point out to the occurence of the thermosalient effect in phase transitions as means to identify new molecular materials with strong positive and/or negative thermal expansion which prior to this work could only be discovered serendipitously.

  6. Molecular dynamics in rod-like liquid crystals probed by muon spin resonance spectroscopy.

    PubMed

    McKenzie, Iain; Scheuermann, Robert; Sedlak, Kamil; Stoykov, Alexey

    2011-08-04

    Muoniated spin probes were produced by the addition of muonium (Mu) to two rod-like liquid crystals: N-(4-methoxybenzylidene)-4'-n-butylaniline (MBBA) and cholesteryl nonanoate (CN). Avoided level crossing muon spin resonance spectroscopy was used to characterize the muoniated spin probes and to probe dynamics at the molecular level. In MBBA Mu adds predominantly to the carbon of the bridging imine group and the muon and methylene proton hyperfine coupling constants (hfccs) of the resulting radical shift in the nematic phase due to the dipolar hyperfine coupling, the ordering of the molecules along the applied magnetic field and fluctuations about the local director. The amplitude of these fluctuations in in the nematic phase of MBBA is determined from the temperature dependence of the methylene proton hfcc. Mu adds to the double bond of the steroidal ring system of CN and the temperature dependence of the Δ(1) line width provides information about the amplitude of the fluctuations about the local director in the chiral nematic phase and the slow isotropic reorientation in the isotropic phase.

  7. Mol-ecular and crystal structure of gossypol tetra-methyl ether with an unknown solvate.

    PubMed

    Honkeldieva, Muhabbat; Talipov, Samat; Mardanov, Rustam; Ibragimov, Bakhtiyar

    2015-02-01

    The title compound, C34H38O8 (systematic name: 5,5'-diisopropyl-2,2',3,3'-tetra-meth-oxy-7,7'-dimethyl-2H,2'H-8,8'-bi-[naphtho-[1,8-bc]furan]-4,4'-diol), has been obtained from a gossypol solution in a mixture of dimethyl sulfate and methanol. The mol-ecule is situated on a twofold rotation axis, so the asymmetric unit contains one half-mol-ecule. In the mol-ecule, the hy-droxy groups are involved in intra-molecular O-H⋯O hydrogen bonds, and the two naphthyl fragments are inclined each to other by 83.8 (1)°. In the crystal, weak C-H⋯O and C-H⋯π inter-actions consolidate the packing, which exhibits channels with an approximate diameter of 6 Å extending along the c-axis direction. These channels are filled with highly disordered solvent mol-ecules, so their estimated scattering contribution was subtracted from the observed diffraction data using the SQUEEZE option in PLATON [Spek, A. L. (2015). Acta Cryst. C71, 9-18].

  8. Macroscopic birefringence in liquid crystals from novel cyanobacterial polysaccharide with an extremely high molecular weight

    NASA Astrophysics Data System (ADS)

    Okajima-Kaneko, Maiko; Hayasaka-Kaneko, Daisaku; Miyazato, Shinji; Kaneko, Tatsuo

    2007-05-01

    We report an efficient method for extraction of anionic polysaccharides (PS) from cyanobacteria, Aphanothece sacrum; we used a hot alkaline solution (0.01 N NaOH) as an elution solvent in the first step of the extraction and isopropanol as a precipitation solvent in the last step. Thin fibers of PS were obtained at a high yield (50-80 % to the weight of the raw cyanobacterial sample). The spectroscopy and elemental analyses indicated the PS contains fucose, uronic acids (14.2 % by a carbazole-sulfuric acid method), a sugar unit containing amides. The solution of PS with a concentration of 1 wt% showed a very high viscosity (80 000cps) implying a high molecular weight, and a strong macroscopic birefringence with a texture typical of nematic liquid crystals was confirmed by crossed-polarizing microscopy (more than 0.5 wt%). The PS from A. sacrum may form a special structure rigid-rod enough to show LC phase and macroscopic birefringence.

  9. Strong and Anomalous Thermal Expansion Precedes the Thermosalient Effect in Dynamic Molecular Crystals

    PubMed Central

    Panda, Manas K.; Centore, Roberto; Causà, Mauro; Tuzi, Angela; Borbone, Fabio; Naumov, Panče

    2016-01-01

    The ability of thermosalient solids, organic analogues of inorganic martensites, to move by rapid mechanical reconfiguration or ballistic event remains visually appealing and potentially useful, yet mechanistically elusive phenomenon. Here, with a material that undergoes both thermosalient and non-thermosalient phase transitions, we demonstrate that the thermosalient effect is preceded by anomalous thermal expansion of the unit cell. The crystal explosion occurs as sudden release of the latent strain accumulated during the anisotropic, exceedingly strong expansion of the unit cell with αa = 225.9 × 10−6 K−1, αb = 238.8 × 10−6 K−1 and αc = −290.0 × 10−6 K−1, the latter being the largest negative thermal expansivity observed for an organic compound thus far. The results point out to the occurence of the thermosalient effect in phase transitions as means to identify new molecular materials with strong positive and/or negative thermal expansion which prior to this work could only be discovered serendipitously. PMID:27403616

  10. Molecular disorder and translation/rotation coupling in the plastic crystal phase of hybrid perovskites.

    PubMed

    Even, J; Carignano, M; Katan, C

    2016-03-28

    The complexity of hybrid organic perovskites calls for an innovative theoretical view that combines usually disconnected concepts in order to achieve a comprehensive picture: (i) the intended applications of this class of materials are currently in the realm of conventional semiconductors, which reveal the key desired properties for the design of efficient devices. (ii) The reorientational dynamics of the organic component resembles that observed in plastic crystals, therefore requiring a stochastic treatment that can be done in terms of pseudospins and rotator functions. (iii) The overall structural similarity with all inorganic perovskites suggests the use of the high temperature pseudo cubic phase as the reference platform on which further refinements can be built. In this paper we combine the existing knowledge on these three fields to define a general scenario based on which we can continue the quest towards a fundamental understanding of hybrid organic perovskites. With the introduction of group theory as the main tool to rationalize the different ideas and with the help of molecular dynamics simulations, several experimentally observed properties are naturally explained with possible suggestions for future work.

  11. Quartz crystal microbalance for the detection of carbaryl using molecularly imprinted polymers as recognition element.

    PubMed

    Yao, Wei; Gao, Zhixian; Cheng, Yiyong

    2009-10-01

    A new piezoelectric quartz crystal sensor using molecularly imprinted polymers (MIPs) as recognition element has been prepared for the fast detection of carbaryl. The MIPs were prepared by precipitation polymerization in ACN, and then the polymer particles were fixed on the surface of the electrode. Computer simulation technology was employed to investigate the interaction between carbaryl and methacrylic acid (MAA) for elucidating the recognition mechanism. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to evaluate the obtained imprinted polymer particles and the MIP sensitive film coated on the electrode. The sensor developed exhibits a liner relationship between the frequency shift and carbaryl concentration in the range of 10-1000 ng/mL (y = 0.139 x + 2.99, r = 0.9981), and the detection limit was 12.5 ng/mL (S/N = 3). Furthermore, the influencing factors were investigated, and the experiments indicated that the obtained sensor has high sensitivity, excellent selectivity, good reproducibility, and reusable property.

  12. Non-equilibrium freezing behaviour of aqueous systems.

    PubMed

    MacKenzie, A P

    1977-03-29

    The tendencies to non-equilibrium freezing behaviour commonly noted in representative aqueous systems derive from bulk and surface properties according to the circumstances. Supercooling and supersaturation are limited by heterogeneous nucleation in the presence of solid impurities. Homogeneous nucleation has been observed in aqueous systems freed from interfering solids. Once initiated, crystal growth is ofter slowed and, very frequently, terminated with increasing viscosity. Nor does ice first formed always succeed in assuming its most stable crystalline form. Many of the more significant measurements on a given systeatter permitting the simultaneous representation of thermodynamic and non-equilibrium properties. The diagram incorporated equilibrium melting points, heterogeneous nucleation temperatures, homogeneous nucleation temperatures, glass transition and devitrification temperatures, recrystallization temperatures, and, where appropriate, solute solubilities and eutectic temperatures. Taken together, the findings on modle systems aid the identification of the kinetic and thermodynamic factors responsible for the freezing-thawing survival of living cells.

  13. Disorder and twinning in molecular crystals: impurity-induced effects in adipic acid.

    PubMed

    Williams-Seton, L; Davey, R J; Lieberman, H F; Pritchard, R G

    2000-03-01

    The variation in physical properties of crystals grown in the presence of additives or impurities have previously been attributed to lattice disorder developed during crystallization. Adipic acid crystallized in the presence of a variety of stereochemically related impurities typifies such behavior with disorder manifest in variations of dissolution rates and enthalpies of solution and fusion. In this case the most extreme habit, produced by the presence of added monoalkanoic acids, is a rounded dumbbell that was suggested previously to be a twinned crystal. In this contribution such crystals are fully characterized both through their external morphology and by means of single crystal X-ray diffraction. These techniques show that these particles are not twinned but rather are disordered single crystals comprising a small number of slightly misaligned domains. The interaction between additive and substrate is modeled and new additives selected that induce the formation of true mechanical twins in adipic acid.

  14. Crystal and molecular structures of trifluoromethyl derivatives of fullerenes C{sub 76} and C{sub 82}

    SciTech Connect

    Lanskikh, M. A.; Belova, Yu. M.; Tamm, N. B.; Chang, K.; Kemnitz, E.; Troyanov, S. I.

    2011-11-15

    Trifluoromethyl derivatives of C{sub 76} and C{sub 82} were synthesized by the reaction of a mixture of higher fullerenes with trifluoroiodomethane followed by the separation by high-performance liquid chromatography. The crystal and molecular structures of C{sub 76}(CF{sub 3}){sub 16} (two isomers) and crystal solvates of C{sub 76}(CF{sub 3}){sub 18}, C{sub 82}(CF{sub 3}){sub 16}, and C{sub 82}(CF{sub 3}){sub 18} were determined by single-crystal X-ray diffraction using synchrotron radiation. The addition patterns of CF{sub 3} groups in the C{sub 76}(CF{sub 3}){sub 14-18} and C{sub 82}(CF{sub 3}){sub 16-18} molecules are discussed.

  15. Molecular and crystal structure of 4-ethoxycarbonyloxy-1-oxo-1H-phthalazine-2-carboxylic acid ethyl ester

    SciTech Connect

    Deshmukh, M. B.

    2006-07-15

    The molecular and crystal structure of 4-ethoxycarbonyloxy-1-oxo-1H-phthalazine 2-carboxylic acid ethyl ester has been elucidated by X-ray diffraction methods. The compound crystallizes in the orthorhombic crystal system (space group Pc) with the unit cell parameters a = 10.758(9), b = 4.631(3), c = 14.957(7) A, {beta} = 107.30(6) deg. and Z = 2. The structure has been solved by direct methods and refined to a final R value of 0.060 for 870 observed reflections [F{sub o} > 4{sigma}(F{sub o})]. The presence of a large number of intra-and intermolecular interactions makes the molecule look like a four-ring structure. The structure is stabilized by C-H...O hydrogen bonds.

  16. Synthesis, structure, spectral, thermal and first-order molecular hyperpolarizability of 4-benzoylpyridine isonicotinyl hydrazone monohydrate single crystals.

    PubMed

    Meenatchi, V; Muthu, K; Rajasekar, M; Meenakshisundaram, S P

    2014-04-24

    Single crystals of 4-benzoylpyridine isonicotinyl hydrazone monohydrate were grown by slow evaporation solution growth technique from ethanol at room temperature. It belongs to triclinic system with space group P1¯ and the cell parameters are, a=8.9250(2) Å, b=9.1540(2) Å, c=10.87500(10) Å and V=797.88(3) Å(3). Powder XRD closely resembles with that of simulated pattern from single crystal XRD. The characteristic functional groups present in the molecule are confirmed by FT-IR and FT-Raman analyses. The crystal is transparent in the visible region having a lower optical cut-off at ∼420 nm and the band gap energies are estimated by the application of Kubelka-Munk algorithm. Thermal analysis by TG/DTA indicates the stability of the material. The scanning electron microscopy studies reveal the surface morphology of the as-grown crystal. Mass spectrometry provides information pertaining to the structure and molecular weight of the compound. Theoretical calculations were performed using Hartree-Fock method with 6-31G(d,p) as the basis set for to derive the optimized geometry, dipole moment and first-order molecular hyperpolarizality (β) values.

  17. Anharmonic and Quantum Fluctuations in Molecular Crystals: A First-Principles Study of the Stability of Paracetamol

    NASA Astrophysics Data System (ADS)

    Rossi, Mariana; Gasparotto, Piero; Ceriotti, Michele

    2016-09-01

    Molecular crystals often exist in multiple competing polymorphs, showing significantly different physicochemical properties. Computational crystal structure prediction is key to interpret and guide the search for the most stable or useful form, a real challenge due to the combinatorial search space, and the complex interplay of subtle effects that work together to determine the relative stability of different structures. Here we take a comprehensive approach based on different flavors of thermodynamic integration in order to estimate all contributions to the free energies of these systems with density-functional theory, including the oft-neglected anharmonic contributions and nuclear quantum effects. We take the two main stable forms of paracetamol as a paradigmatic example. We find that anharmonic contributions, different descriptions of van der Waals interactions, and nuclear quantum effects all matter to quantitatively determine the stability of different phases. Our analysis highlights the many challenges inherent in the development of a quantitative and predictive framework to model molecular crystals. However, it also indicates which of the components of the free energy can benefit from a cancellation of errors that can redeem the predictive power of approximate models, and suggests simple steps that could be taken to improve the reliability of ab initio crystal structure prediction.

  18. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of chlorite dismutase: a detoxifying enzyme producing molecular oxygen

    SciTech Connect

    Geus, Daniël C. de Thomassen, Ellen A. J.; Feltz, Clarisse L. van der; Abrahams, Jan Pieter

    2008-08-01

    Preliminary X-ray data collection and analysis for crystals of chlorite dismutase, a haem-based enzyme that very effectively reduces chlorite to chloride while producing molecular oxygen, is reported to 2.1 Å resolution. Chlorite dismutase, a homotetrameric haem-based protein, is one of the key enzymes of (per)chlorate-reducing bacteria. It is highly active (< 2 kU mg{sup −1}) in reducing the toxic compound chlorite to the innocuous chloride anion and molecular oxygen. Chlorite itself is produced as the intermediate product of (per)chlorate reduction. The chlorite dismutase gene in Azospira oryzae strain GR-1 employing degenerate primers has been identified and the active enzyme was subsequently overexpressed in Escherichia coli. Chlorite dismutase was purified, proven to be active and crystallized using sitting drops with PEG 2000 MME, KSCN and ammonium sulfate as precipitants. The crystals belonged to space group P2{sub 1}2{sub 1}2 and were most likely to contain six subunits in the asymmetric unit. The refined unit-cell parameters were a = 164.46, b = 169.34, c = 60.79 Å. The crystals diffracted X-rays to 2.1 Å resolution on a synchrotron-radiation source and a three-wavelength MAD data set has been collected. Determination of the chlorite dismutase structure will provide insights into the active site of the enzyme, for which no structures are currently available.

  19. Anharmonic and Quantum Fluctuations in Molecular Crystals: A First-Principles Study of the Stability of Paracetamol.

    PubMed

    Rossi, Mariana; Gasparotto, Piero; Ceriotti, Michele

    2016-09-09

    Molecular crystals often exist in multiple competing polymorphs, showing significantly different physicochemical properties. Computational crystal structure prediction is key to interpret and guide the search for the most stable or useful form, a real challenge due to the combinatorial search space, and the complex interplay of subtle effects that work together to determine the relative stability of different structures. Here we take a comprehensive approach based on different flavors of thermodynamic integration in order to estimate all contributions to the free energies of these systems with density-functional theory, including the oft-neglected anharmonic contributions and nuclear quantum effects. We take the two main stable forms of paracetamol as a paradigmatic example. We find that anharmonic contributions, different descriptions of van der Waals interactions, and nuclear quantum effects all matter to quantitatively determine the stability of different phases. Our analysis highlights the many challenges inherent in the development of a quantitative and predictive framework to model molecular crystals. However, it also indicates which of the components of the free energy can benefit from a cancellation of errors that can redeem the predictive power of approximate models, and suggests simple steps that could be taken to improve the reliability of ab initio crystal structure prediction.

  20. Hydrophilic-Hydrophobic Patterned Molecularly Imprinted Photonic Crystal Sensors for High-Sensitive Colorimetric Detection of Tetracycline.

    PubMed

    Hou, Jue; Zhang, Huacheng; Yang, Qiang; Li, Mingzhu; Jiang, Lei; Song, Yanlin

    2015-06-01

    A hydrophilic-hydrophobic patterned molecularly imprinted (MIP) photonic crystal (PC) sensor is fabricated for highly sensitive tetracycline detection. The relationship between the tetracycline concentration, its corresponding color of the sensor, and the diameter of MIP-PC dot is found using a fan-shaped color card. This work provides a new strategy to design the sensors with tunable detection ranges for practical applications.

  1. Crystal and molecular structures of 3-amino-4-hydroxy benzenesulfonamide and its hydrochloride: Quantum-chemical study of their tautomerism

    NASA Astrophysics Data System (ADS)

    Kovalchukova, O. V.; Strashnova, S. B.; Romashkina, E. P.; Strashnov, P. V.; Zaitsev, B. E.; Sergienko, V. S.

    2013-03-01

    3-amino-4-hydroxy benzenesulfonamide and its hydrochloride have been isolated in the crystalline state. Their crystal and molecular structures are determined by X-ray diffraction. The equilibrium between neutral tautomeric forms of the 3-amino-4-hydroxy benzenesulfonamide molecule is studied within the approximation of density functional theory (B3LYP/aug-cc-pVDZ). The constants of acid-base equilibrium of 3-amino-4-hydroxy benzenesulfonamide are deter-mined using spectrophotometry.

  2. Crystal and molecular structures of 3-amino-4-hydroxy benzenesulfonamide and its hydrochloride: Quantum-chemical study of their tautomerism

    SciTech Connect

    Kovalchukova, O. V. Strashnova, S. B.; Romashkina, E. P.; Strashnov, P. V.; Zaitsev, B. E.; Sergienko, V. S.

    2013-03-15

    3-amino-4-hydroxy benzenesulfonamide and its hydrochloride have been isolated in the crystalline state. Their crystal and molecular structures are determined by X-ray diffraction. The equilibrium between neutral tautomeric forms of the 3-amino-4-hydroxy benzenesulfonamide molecule is studied within the approximation of density functional theory (B3LYP/aug-cc-pVDZ). The constants of acid-base equilibrium of 3-amino-4-hydroxy benzenesulfonamide are deter-mined using spectrophotometry.

  3. Conformational analysis of flavonoids: crystal and molecular structures of morin hydrate and myricetin (1:2) triphenylphosphine oxide complex

    NASA Astrophysics Data System (ADS)

    Cody, Vivian; Luft, Joseph R.

    1994-01-01

    The crystal and molecular structures of morin (2',3,4',5,7-pentahydroxyflavone) hydrate ( I), and myricetin (3',4',5',3,5,7-hexahydroxyflavone) triphenylphosphine oxide (TPPO) (1:2) co-crystal complex ( II) have been studied by X-ray analysis and AM1 molecular orbital methods. The molecular conformation of the two flavones described by the torsion angle θ[C(3)-C(2)-C(1t')-C(2')] between the benzopyrone and phenyl ring is -43.3° and 51.0° for molecules A and B of morin, respectively, and -37.0° for myricetin. Minimum energy conformations from AM1 molecular orbital calculations have θ values of -38.2° for morin and -27.0° for myricetin. The energy profile for rotation about θ for morin has a 28 kcal mol -1 barrier at 0° due to steric interactions between the 2'-hydroxy and the 3-hydroxy group. There are two local minima near 30 and 140°, in good agreement with structural results. The profile for myricetin has two equivalent minima near 30 and 150° with a barrier of less than 2 kcal mol -1. In the crystal both flavones form extensive networks of intra- and intermolecular hydrogen bonds. In ( I), each morin conformer packs in alternating layers linked by water molecules, while in ( II), TPPO stabilizes the crystal by formation of short hydrogen bonds (2.58-2.65 Å) of the phosphoryl oxygen to the flavone. Myricetin also forms a two dimensional sheet-like packing in which myricetin molecules hydrogen bond to each other, as well as to TPPO. These conformational and hydrogen bonding patterns provide insight into specific types of ligand-receptor interactions and support structure activity data which suggest the importance of electronic and hydrogen bonding properties in the bioactivity of flavones.

  4. Nonequilibrium mesoscopic transport: a genealogy.

    PubMed

    Das, Mukunda P; Green, Frederick

    2012-05-09

    Models of nonequilibrium quantum transport underpin all modern electronic devices, from the largest scales to the smallest. Past simplifications such as coarse graining and bulk self-averaging served well to understand electronic materials. Such particular notions become inapplicable at mesoscopic dimensions, edging towards the truly quantum regime. Nevertheless a unifying thread continues to run through transport physics, animating the design of small-scale electronic technology: microscopic conservation and nonequilibrium dissipation. These fundamentals are inherent in quantum transport and gain even greater and more explicit experimental meaning in the passage to atomic-sized devices. We review their genesis, their theoretical context, and their governing role in the electronic response of meso- and nanoscopic systems.

  5. Nonequilibrium quantum fluctuations of work.

    PubMed

    Allahverdyan, A E

    2014-09-01

    The concept of work is basic for statistical thermodynamics. To gain a fuller understanding of work and its (quantum) features, it needs to be represented as an average of a fluctuating quantity. Here I focus on the work done between two moments of time for a thermally isolated quantum system driven by a time-dependent Hamiltonian. I formulate two natural conditions needed for the fluctuating work to be physically meaningful for a system that starts its evolution from a nonequilibrium state. The existing definitions do not satisfy these conditions due to issues that are traced back to noncommutativity. I propose a definition of fluctuating work that is free of previous drawbacks and that applies for a wide class of nonequilibrium initial states. It allows the deduction of a generalized work-fluctuation theorem that applies for an arbitrary (out-of-equilibrium) initial state.

  6. Introduction of a planar defect in a molecularly imprinted photonic crystal sensor for the detection of bisphenol A.

    PubMed

    Griffete, Nébéwia; Frederich, Hugo; Maître, Agnès; Schwob, Catherine; Ravaine, Serge; Carbonnier, Benjamin; Chehimi, Mohamed M; Mangeney, Claire

    2011-12-01

    This paper reports the preparation of a molecularly imprinted inverse opal hydrogel containing a 2D defect layer, by combining the Langmuir-Blodgett technique and the photonic crystal template method. By coupling the exceptional characteristics of molecularly imprinted polymers, sensitive to the presence of a target molecule, and those of photonic crystals in a single device, we could obtain a defect-embedded imprinted photonic polymer consisting in a three-dimensional, highly-ordered and interconnected macroporous array, where nanocavities complementary to analytes in shape and binding sites are distributed. As a proof of concept, we prepared a three-dimensional macroporous array of poly(methacrylic acid) (PMAA) containing molecular imprints of bisphenol A (BPA) and a planar defect layer consisting in macropores of different size. The optical properties of the resulting inverse opal were investigated using reflection spectroscopy. The defect layer was shown to enhance the sensitivity of the photonic crystal material, opening new possibilities towards the development smart optical sensing devices.

  7. Influence of nonequilibrium radiation and shape change on aerothermal environment of a Jovian entry body

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Subramanian, S. V.

    1981-01-01

    The influence of nonequilibrium radiative energy transfer and the effect of probe configuration changes on the flow phenomena around a Jovian entry body are investigated. The radiating shock layer flow is assumed to be axisymmetric, viscous, laminar and in chemical equilibrium. The radiative transfer equations are derived under nonequilibrium conditions which include multilevel energy transitions. The equilibrium radiative transfer analysis is performed with an existing nongray radiation model which accounts for molecular band, atomic line, and continuum transitions. The nonequilibrium results are obtained with and without ablation injection in the shock layer. The nonequilibrium results are found to be greatly influenced by the temperature distribution in the shock layer. In the absence of ablative products, the convective and radiative heating to the entry body are reduced under nonequilibrium conditions. The influence of nonequilibrium is found to be greater at higher entry altitudes. With coupled ablation and carbon phenolic injection, 16 chemical species are used in the ablation layer for radiation absorption. Equilibrium and nonequilibrium results are compared under peak heating conditions.

  8. [Protein conformational dynamics of crambin in crystal, solution and in the trajectories of molecular dynamics simulations].

    PubMed

    Abaturov, L V; Nosova, N G

    2013-01-01

    Atomic displacement parameters--B factors of the eight crambin crystal structures obtained at 0.54-1.5 angstroms resolution and temperatures of 100-293K have been analyzed. The comparable contributions to the B factor values are the intramolecular motions which are modeled by the harmonic vibration calculations and derived from the molecular dynamics simulation (MD) as well as rigid body changes in the position of a protein molecule as a whole. In solution for the average NMR structure of crambin the amplitudes of the backbone atomic fluctuations of the most residues of the segments with the regular backbone conformations are close to the amplitudes of the small scale harmonic vibrations. For the same residues the probability of the medium scale fluctuations fixed by the hydrogen exchange method is very low. The restricted conformational mobility of those segments is coupled with the depressed amplitudes of the fluctuation changes of the tertiary structure registered by the residue accessibility changes in an ensemble of NMR structures that forms the average NMR structure of crambin. The amplitudes of temperature fluctuations of backbone atoms and the tertiary structure raise in the segment with the irregular conformations, turn and loops. In the same segments the amplitudes of the calculated harmonic vibrations also increase, but to a lesser extent and especially in the interhelical loop with the most strong and complicated fluctuation changes of the backbone conformation. In solution for the NMR structure in this loop the conformational transitions occur between the conformational substates separated by the energy barriers, but they are not observed even in the long 100 ns trajectories from the MD simulation of crambin. These strong local fluctuation changes of the structure may play a key role in the protein functioning and modern performance improvements in the MD simulation techniques are oriented to increase the probability of protein appearance in the

  9. Reclassifying exciton-phonon coupling in molecular aggregates: evidence of strong nonadiabatic coupling in oligothiophene crystals.

    PubMed

    Spano, F C; Silvestri, L; Spearman, P; Raimondo, L; Tavazzi, S

    2007-11-14

    Exciton-phonon (EP) coupling in molecular aggregates is reexamined in cases where extended intermolecular interactions result in low-energy excitons with high effective masses. The analysis is based on a single intramolecular vibrational mode with frequency omega0 and Huang-Rhys factor lambda2. When the curvature Jc at the exciton band bottom is much smaller than the free-exciton Davydov splitting W, the strength of the EP coupling is determined by comparing the nuclear relaxation energy lambda2omega0 with the curvature. In this way, weak (lambda2omega0<4piJc), intermediate I (lambda2omega0 approximately 4piJc), and strong I (lambda2omega0>4piJc) coupling regimes are introduced. The conventional intermediate (lambda2omega0 approximately W) and strong (lambda2omega0>W) EP coupling regimes originally defined by Simpson and Peterson [J. Chem. Phys. 26, 588 (1957)] are based solely on the Davydov splitting and are referred to here as intermediate II and strong II regimes, respectively. Within the intermediate I and strong I regimes the near degeneracy of the low-energy excitons allows efficient nonadiabatic coupling, resulting in a spectral splitting between the b- and ac-polarized first replicas in the vibronic progression characterizing optical absorption. Such spectral signatures are clearly observed in OT4 thin films and crystals, where splittings for the lowest energy mode with omega0=161 cm(-1) are as large as 30 cm(-1) with a small variation due to sample disorder. Numerical calculations using a multiphonon BO basis set and a Hamiltonian including linear EP coupling yield excellent agreement with experiment.

  10. Dynamical characterization of inactivation path in voltage-gated Na(+) ion channel by non-equilibrium response spectroscopy.

    PubMed

    Pal, Krishnendu; Gangopadhyay, Gautam

    2016-11-01

    Inactivation path of voltage gated sodium channel has been studied here under various voltage protocols as it is the main governing factor for the periodic occurrence and shape of the action potential. These voltage protocols actually serve as non-equilibrium response spectroscopic tools to study the ion channel in non-equilibrium environment. In contrast to a lot of effort in finding the crystal structure based molecular mechanism of closed-state(CSI) and open-state inactivation(OSI); here our approach is to understand the dynamical characterization of inactivation. The kinetic flux as well as energetic contribution of the closed and open- state inactivation path is compared here for voltage protocols, namely constant, pulsed and oscillating. The non-equilibrium thermodynamic quantities used in response to these voltage protocols serve as improved characterization tools for theoretical understanding which not only agrees with the previously known kinetic measurements but also predict the energetically optimum processes to sustain the auto-regulatory mechanism of action potential and the consequent inactivation steps needed. The time dependent voltage pattern governs the population of the conformational states which when couple with characteristic rate parameters, the CSI and OSI selectivity arise dynamically to control the inactivation path. Using constant, pulsed and continuous oscillating voltage protocols we have shown that during depolarization the OSI path is more favored path of inactivation however, in the hyper-polarized situation the CSI is favored. It is also shown that the re-factorisation of inactivated sodium channel to resting state occurs via CSI path. Here we have shown how the subtle energetic and entropic cost due to the change in the depolarization magnitude determines the optimum path of inactivation. It is shown that an efficient CSI and OSI dynamical profile in principle can characterize the open-state drug blocking phenomena.

  11. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  12. Determination of crystal violet in seawater and seafood samples through off-line molecularly imprinted SPE followed by HPLC with diode-array detection.

    PubMed

    Lian, Ziru; Wang, Jiangtao

    2013-03-01

    A highly selective sample cleanup procedure combined with molecularly imprinted SPE was developed for the isolation of crystal violet from seawater and seafood samples. The molecularly imprinted polymer was prepared using crystal violet as the template molecule, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross-linker. The crystal violet-imprinted polymer was used as the selective sorbent for the SPE of crystal violet. An off-line molecularly imprinted SPE method followed by HPLC with diode-array detection for the analysis of crystal violet was also established. Good linearity on the molecularly imprinted SPE columns was obtained from 0 to 200 μg/L (R(2) > 0.99). The result demonstrated that the proposed method can be used for the direct determination of crystal violet in seawater and seafood samples. Finally, five samples were analyzed and the following crystal violet concentrations were obtained: 0.92 and 0.52 μg/L in two seawater samples, as well as 0.36 and 0.27 μg/kg in two seafood samples. There is no crystal violet detected in the third seawater sample.

  13. Nonequilibrium volumetric response of shocked polymers

    SciTech Connect

    Clements, B E

    2009-01-01

    Polymers are well known for their non-equilibrium deviatoric behavior. However, investigations involving both high rate shock experiments and equilibrium measured thermodynamic quantities remind us that the volumetric behavior also exhibits a non-equilibrium response. Experiments supporting the notion of a non-equilibrium volumetric behavior will be summarized. Following that discussion, a continuum-level theory is proposed that will account for both the equilibrium and non-equilibrium response. Upon finding agreement with experiment, the theory is used to study the relaxation of a shocked polymer back towards its shocked equilibrium state.

  14. Nonequilibrium conductivity at quantum critical points

    NASA Astrophysics Data System (ADS)

    Berridge, A. M.; Green, A. G.

    2013-12-01

    Quantum criticality provides an important route to revealing universal nonequilibrium behavior. A canonical example of a critical point is the Bose-Hubbard model, which we study under the application of an electric field. A Boltzmann transport formalism and ɛ expansion are used to obtain the nonequilibrium conductivity and current noise. This approach allows us to explicitly identify how a universal nonequilibrium steady state is maintained, by identifying the rate-limiting step in balancing Joule heating and dissipation to a heat bath. It also reveals that the nonequilibrium distribution function is very far from a thermal distribution.

  15. Molecular simulations for energy, environmental and pharmaceutical applications of nanoporous materials: from zeolites, metal-organic frameworks to protein crystals.

    PubMed

    Jiang, Jianwen; Babarao, Ravichandar; Hu, Zhongqiao

    2011-07-01

    Nanoporous materials have widespread applications in chemical industry, but the pathway from laboratory synthesis and testing to practical utilization of nanoporous materials is substantially challenging and requires fundamental understanding from the bottom up. With ever-growing computational resources, molecular simulations have become an indispensable tool for material characterization, screening and design. This tutorial review summarizes the recent simulation studies in zeolites, metal-organic frameworks and protein crystals, and provides a molecular overview for energy, environmental and pharmaceutical applications of nanoporous materials with increasing degree of complexity in building blocks. It is demonstrated that molecular-level studies can bridge the gap between physical and engineering sciences, unravel microscopic insights that are otherwise experimentally inaccessible, and assist in the rational design of new materials. The review is concluded with major challenges in future simulation exploration of novel nanoporous materials for emerging applications.

  16. Precise Characterisation of Molecular Orientation in a Single Crystal Field-Effect Transistor Using Polarised Raman Spectroscopy

    PubMed Central

    Wood, Sebastian; Rigas, Grigorios-Panagiotis; Zoladek-Lemanczyk, Alina; Blakesley, James C.; Georgakopoulos, Stamatis; Mas-Torrent, Marta; Shkunov, Maxim; Castro, Fernando A.

    2016-01-01

    Charge transport in organic semiconductors is strongly dependent on the molecular orientation and packing, such that manipulation of this molecular packing is a proven technique for enhancing the charge mobility in organic transistors. However, quantitative measurements of molecular orientation in micrometre-scale structures are experimentally challenging. Several research groups have suggested polarised Raman spectroscopy as a suitable technique for these measurements and have been able to partially characterise molecular orientations using one or two orientation parameters. Here we demonstrate a new approach that allows quantitative measurements of molecular orientations in terms of three parameters, offering the complete characterisation of a three-dimensional orientation. We apply this new method to organic semiconductor molecules in a single crystal field-effect transistor in order to correlate the measured orientation with charge carrier mobility measurements. This approach offers the opportunity for micrometre resolution (diffraction limited) spatial mapping of molecular orientation using bench-top apparatus, enabling a rational approach towards controlling this orientation to achieve optimum device performance. PMID:27619423

  17. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations.

    PubMed

    van de Streek, Jacco; Neumann, Marcus A

    2010-10-01

    This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.

  18. Approximating nonequilibrium processes using a collection of surrogate diffusion models

    NASA Astrophysics Data System (ADS)

    Calderon, Christopher P.; Chelli, Riccardo

    2008-04-01

    The surrogate process approximation (SPA) is applied to model the nonequilibrium dynamics of a reaction coordinate (RC) associated with the unfolding and refolding processes of a deca-alanine peptide at 300K. The RC dynamics, which correspond to the evolution of the end-to-end distance of the polypeptide, are produced by steered molecular dynamics (SMD) simulations and approximated using overdamped diffusion models. We show that the collection of (estimated) SPA models contain structural information "orthogonal" to the RC monitored in this study. Functional data analysis ideas are used to correlate functions associated with the fitted SPA models with the work done on the system in SMD simulations. It is demonstrated that the shape of the nonequilibrium work distributions for the unfolding and refolding processes of deca-alanine can be predicted with functional data analysis ideas using a relatively small number of simulated SMD paths for calibrating the SPA diffusion models.

  19. Optimal Control of Transitions between Nonequilibrium Steady States

    PubMed Central

    Zulkowski, Patrick R.; Sivak, David A.; DeWeese, Michael R.

    2013-01-01

    Biological systems fundamentally exist out of equilibrium in order to preserve organized structures and processes. Many changing cellular conditions can be represented as transitions between nonequilibrium steady states, and organisms have an interest in optimizing such transitions. Using the Hatano-Sasa Y-value, we extend a recently developed geometrical framework for determining optimal protocols so that it can be applied to systems driven from nonequilibrium steady states. We calculate and numerically verify optimal protocols for a colloidal particle dragged through solution by a translating optical trap with two controllable parameters. We offer experimental predictions, specifically that optimal protocols are significantly less costly than naive ones. Optimal protocols similar to these may ultimately point to design principles for biological energy transduction systems and guide the design of artificial molecular machines. PMID:24386112

  20. New molecular packing in a crystal of pseudoazurin from Alcaligenes faecalis: a double-helical arrangement of blue copper.

    PubMed

    Fukuda, Yohta; Mizohata, Eiichi; Inoue, Tsuyoshi

    2017-03-01

    Pseudoazurin from the denitrifying bacterium Alcaligenes faecalis (AfPAz) is a blue copper protein and functions as an electron donor to copper-containing nitrite reductase (CuNIR). Conventionally, AfPAz has been crystallized using highly concentrated ammonium sulfate as a precipitant. Here, a needle-like crystal of AfPAz grown in a solution containing a macromolecular precipitant, polyethylene glycol 8000 (PEG 8000), is reported. The crystal belonged to space group P61, with unit-cell parameters a = b = 68.7, c = 94.2 Å. The structure has been determined and refined at 2.6 Å resolution. The asymmetric unit contained two AfPAz molecules contacting each other on negatively charged surfaces. The molecular packing of the crystal showed a right-handed double-helical arrangement of AfPAz molecules and hence of blue copper sites. This structure provides insight into the excluded-volume effect of PEG and the manner of assembly of AfPAz.

  1. Photofabrication of two-dimensional quasi-crystal patterns on UV-curable molecular azo glass films.

    PubMed

    Guo, Miaocai; Xu, Zeda; Wang, Xiaogong

    2008-03-18

    In this work, two-dimensional surface quasi-crystal patterns were developed by using a novel azobenzene-containing amorphous material (IAC-4), which was newly synthesized for the application. IAC-4 contains a core of isosorbide moiety and two push-pull type azo chromophores as the inner part. The periphery of IAC-4 is functionalized with four cinnamate groups, which can undergo [2+2] photocycloaddition reaction upon UV light irradiation. The molecular design can allow IAC-4 to readily form surface relief structures upon Ar+ laser irradiation, and the formed structures can be further stabilized through a photo-cross-linking reaction induced by UV light irradiation. On the basis of the material, two-dimensional (2D) quasi-crystal structures with different rotation symmetries were successfully fabricated on the IAC-4 films by using the dual-beam multiple exposure technique. In contrast to the approach using photoresist, the quasi-crystal structures were fabricated through the photoinduced mass migration, and no subsequent wet-etch or dry-etch step was required in the process. The quasi-crystal structures with rotation symmetry as high as 60-fold could be feasibly fabricated through this approach. The surface patterns and fabrication method can be potentially applied in areas such as optics, communications, and security inspection.

  2. Crystal and molecular structure and spectroscopic behavior of isotypic synthetic analogs of the oxalate minerals stepanovite and zhemchuzhnikovite

    NASA Astrophysics Data System (ADS)

    Piro, Oscar E.; Echeverría, Gustavo A.; González-Baró, Ana C.; Baran, Enrique J.

    2016-04-01

    The crystal structure of synthetic stepanovite, Na[Mg(H2O)6][Fe(C2O4)3]·3H2O, and zhemchuzhnikovite, Na[Mg(H2O)6][Al0.55Fe0.45(C2O4)3]·3H2O, has been determined by single-crystal X-ray diffraction methods. The compounds are isotypic to each other and to the previously reported Na[Mg(H2O)6][M(C2O4)3]·3H2O (M: Cr, Al). They crystallize in the trigonal P3 c1 space group with Z = 6 molecules per unit cell and (hexagonal axes) a = 17.0483(4), c = 12.4218(4) Å for the iron compound, and a = 16.8852(5), c = 12.5368(5) Å for the Al/Fe solid solution. Comparison of our crystallographic results with previous X-ray diffraction and chemical data of type stepanovite and zhemchuzhnikovite minerals provides compelling evidence that these natural materials possess the same crystal and molecular structure as their synthetic counterparts. It is shown that the originally reported unit cell for stepanovite represents a pronounced sub-cell and that the correct unit cell and space group are based on weak superstructure reflections. The infrared and Raman spectra of both synthetic analogs were also recorded and are briefly discussed.

  3. On the variation of magnetic susceptibility of a molecular crystal with temperature: The 2,4,6-triphenylverdazyl system

    NASA Astrophysics Data System (ADS)

    Datta, Sambhu N.; Navada, Geetha K.

    2004-02-01

    Magnetic susceptibilities of spin-1/2 systems of orthorhombic and higher crystal symmetries have been numerically investigated while taking possible anisotropy in the coupling constants along different crystal axes into account. The work relies on the magnon-based theory of ferromagnetic (FM) and antiferromagnetic (AFM) crystal systems of types FFF, AFF, AAF, and AAA [J. Chem. Phys. 111, 9009 (1999)]. The AAF crystal, in particular, shows interesting changes in the temperature dependence of magnetic susceptibility when the ferromagnetic exchange coupling constant is varied. We especially show that the susceptibility anomalies of molecular crystals fit naturally within the framework of the extended magnon-theoretical formalism, and do not necessarily imply a FM→AFM or a reverse phase transition. A real system, molecular crystal of 2,4,6-triphenylverdazyl (2,4,6-TPV), has been investigated here. It was previously interpreted as an AAF system from observed susceptibility data [Tomiyoshi et al., Phys. Rev. B 49, 16031 (1994)]. The trend of the temperature dependence of magnetic susceptibility studied in the present work also indicates that the crystal belongs to the AAF category with a less prominent FM exchange coupling constant. To reinforce our conclusions, we have adopted a two-pronged strategy. First, the geometry of the 2,4,6-TPV monomer has been optimized here by ab initio unrestricted Hartree-Fock (UHF) calculations using the STO-3G basis set. The optimized geometry is almost planar. A subsequent calculation has been carried out with the phenyl rings twisted out of the plane of the nitrogen atoms. The STO-3G optimized geometry, and the same geometry except for the twisted phenyl rings, have been used to perform ab initio coupled-cluster (UCCSD-T) calculations with the same basis, and UHF as well as density-functional (UB3LYP) calculations using the 6-31G basis set. The calculated data can easily rationalize the twists while the species remains in crystal. The

  4. Nozzle flow with vibrational nonequilibrium

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Landry, J. G.

    1995-01-01

    This research concerns the modeling and numerical solutions of the coupled system of compressible Navier-Stokes equations in cylindrical coordinates under conditions of equilibrium and nonequilibrium thermodynamics. The problem considered was the modeling of a high temperature diatomic gas N2 flowing through a converging-diverging high expansion nozzle. The problem was modeled in two ways. The first model uses a single temperature with variable specific heats as functions of this temperature. For the second model we assume that the various degrees of freedom all have a Boltzmann distribution and that there is a continuous redistribution of energy among the various degrees of freedom as the gas passes through the nozzle. Each degree of freedom is assumed to have its own temperature and, consequently, each system state can be characterized by these temperatures. This suggests that formulation of a second model with a vibrational degree of freedom along with a rotational-translation degree of freedom, each degree of freedom having its own temperature. Initially the vibrational degree of freedom is excited by heating the gas to a high temperature. As the high temperature gas passes through the nozzle throat there is a sudden drop in temperature along with a relaxation time for the vibrational degree of freedom to achieve equilibrium with the rotational-translation degree of freedom. That is, we assume that the temperature change upon passing through the throat is so great that the changes in the vibrational degree of freedom occur at a much slower pace and consequently lags behind the rotational-translational energy changes. This lag results in a finite relaxation time. In this context the term nonequilibrium is used to denote the fact that the energy content of the various degrees of freedom are characterized by two temperatures. We neglect any chemical reactions which could also add nonequilibrium effects. We develop the energy equations for the nonequilibrium model

  5. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    NASA Astrophysics Data System (ADS)

    Raz, O.; Subaşı, Y.; Jarzynski, C.

    2016-04-01

    Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents. To generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters—also known as a stochastic pump (SP)—reaches a periodic state with nonvanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems, we establish a mapping between nonequilibrium stationary states and stochastic pumps. Given a NESS characterized by a particular set of stationary probabilities, currents, and entropy production rates, we show how to construct a SP with exactly the same (time-averaged) values. The mapping works in the opposite direction as well. These results establish a proof of principle: They show that stochastic pumps are able to mimic the behavior of nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics. Nonequilibrium steady states and stochastic pumps are often used to model, respectively, biomolecular motors driven by chemical reactions and artificial molecular machines steered by the variation of external, macroscopic parameters. Our results loosely suggest that anything a biomolecular machine can do, an artificial molecular machine can do equally well. We illustrate this principle by showing that kinetic proofreading, a NESS mechanism that explains the low error rates in biochemical reactions, can be effectively mimicked by a constrained periodic driving.

  6. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y.; Hsu, C.-H.

    2016-08-01

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  7. Equation of state calculations for two-dimensional dust coulomb crystal at near zero temperature by molecular dynamics simulations

    SciTech Connect

    Djouder, M. Kermoun, F.; Mitiche, M. D.; Lamrous, O.

    2016-01-15

    Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere.

  8. Molecular tectonics: crystal engineering of mixed valence Fe(II)/Fe(III) solid solutions.

    PubMed

    Dechambenoit, Pierre; Ferlay, Sylvie; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2010-02-14

    Based on isostructurality between crystals formed upon combining the dicationic tecton 2 with either M(3)Fe(III)(CN)(6) or M(4)Fe(II)(CN)(6) (M = Cs), a rare example of an H-bonded mixed valence Fe(ii)-Fe(iii) solid solution ((Cs(2)2(3)-[Fe(II)(CN)(6)](2))(0.83)(2(3)-[Fe(III)(CN)(6)](2))(0.17))) and curious necklace-like composite crystals were generated.

  9. Engineered complex molecular order in liquid crystals towards unusual optics and responsive mechanics

    NASA Astrophysics Data System (ADS)

    Sánchez-Somolinos, Carlos; de Haan, Laurens T.; Schenning, Albert P. H. J.; Bastiaansen, Cees W. M.; Broer, Dirk J.

    2013-03-01

    Defects in liquid crystals have been studied over decades to disclose information and knowledge on the structure of LC phases. More recently, LC defects have been identified as a tool to implement new physical functions useful in optical films for polarization conversion or mechanical actuators able to adopt novel exotic shapes. In the present paper we describe a general methodology to engineer different defect patterns by combining the use of linear photopolymerizable polymers and liquid crystals.

  10. Three-dimensional interactive Molecular Dynamics program for the study of defect dynamics in crystals

    NASA Astrophysics Data System (ADS)

    Patriarca, M.; Kuronen, A.; Robles, M.; Kaski, K.

    2007-01-01

    The study of crystal defects and the complex processes underlying their formation and time evolution has motivated the development of the program ALINE for interactive molecular dynamics experiments. This program couples a molecular dynamics code to a Graphical User Interface and runs on a UNIX-X11 Window System platform with the MOTIF library, which is contained in many standard Linux releases. ALINE is written in C, thus giving the user the possibility to modify the source code, and, at the same time, provides an effective and user-friendly framework for numerical experiments, in which the main parameters can be interactively varied and the system visualized in various ways. We illustrate the main features of the program through some examples of detection and dynamical tracking of point-defects, linear defects, and planar defects, such as stacking faults in lattice-mismatched heterostructures. Program summaryTitle of program:ALINE Catalogue identifier:ADYJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYJ_v1_0 Program obtainable from: CPC Program Library, Queen University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Computers:DEC ALPHA 300, Intel i386 compatible computers, G4 Apple Computers Installations:Laboratory of Computational Engineering, Helsinki University of Technology, Helsinki, Finland Operating systems under which the program has been tested:True64 UNIX, Linux-i386, Mac OS X 10.3 and 10.4 Programming language used:Standard C and MOTIF libraries Memory required to execute with typical data:6 Mbytes but may be larger depending on the system size No. of lines in distributed program, including test data, etc.:16 901 No. of bytes in distributed program, including test data, etc.:449 559 Distribution format:tar.gz Nature of physical problem:Some phenomena involving defects take place inside three-dimensional crystals at times which can be hardly predicted. For this reason they are

  11. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Olson Reichhardt, C. J.

    2017-02-01

    We review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.

  12. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: A review

    DOE PAGES

    Reichhardt, Charles; Olson Reichhardt, Cynthia Jane

    2016-12-20

    Here, we review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic andmore » plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming

  13. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: A review

    SciTech Connect

    Reichhardt, Charles; Olson Reichhardt, Cynthia Jane

    2016-12-20

    Here, we review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.

  14. New concept of solute distribution around a diffusive crystal-solution interface of a binary Lennard-Jones mixture from the viewpoint of molecular dynamics.

    PubMed

    Maeda, Kouji; Asakuma, Yusuke; Fukui, Keisuke

    2008-01-28

    Directional crystallization from a binary mixture was performed by pseudo-NpT ensemble molecular dynamics. The initial crystal phase having a face-centered-cubic (fcc) structure grew toward the whole cell according to the temperature gradient in the universal cell. The growing crystal phase was not planar even though the solute molecules grew in two-dimensional coordinates because the solvent molecules disturbed the crystallization of the solute molecules at the diffusive crystal-solution interface. This represented the essential phenomenon of solute distribution during crystallization. Consequently, the growing crystal phase still contained solvent molecules having a liquid structure. The time change of the solute composition in the early phase of crystal growth showed an increase in solute composition as the time step proceeded. The resulting solute composition in this early phase was considered at different temperature gradients in the universal cell and it increased as the temperature of the initial crystal-solution interface increased. A new distribution coefficient model was proposed as a function of the difference between the local solute composition and bulk solute composition in the solution around the crystal-solution interface. The impurity-solvent distribution coefficient could be represented by the new model for faster growth of the lower temperature's initial interface. As regards a better distribution coefficient, there was found to be a very dilute solution phase over the crystal phase. The new variable "distribution rate" instead of the ambiguous variable "growth rate" was considered as a function of temperature gradient in the universal cell.

  15. Investigating rare events with nonequilibrium work measurements. I. Nonequilibrium transition path probabilities.

    PubMed

    Moradi, Mahmoud; Sagui, Celeste; Roland, Christopher

    2014-01-21

    We have developed a formalism for investigating transition pathways and transition probabilities for rare events in biomolecular systems. In this paper, we set the theoretical framework for employing nonequilibrium work relations to estimate the relative reaction rates associated with different classes of transition pathways. Particularly, we derive an extension of Crook's transient fluctuation theorem, which relates the relative transition rates of driven systems in the forward and reverse directions, and allows for the calculation of these relative rates using work measurements (e.g., in Steered Molecular Dynamics). The formalism presented here can be combined with Transition Path Theory to relate the equilibrium and driven transition rates. The usefulness of this framework is illustrated by means of a Gaussian model and a driven proline dimer.

  16. Crystal and molecular structure of two geometrically restricted chemotactic tripeptides, analogues of formyl-methionine-leucine-phenylalanine.

    PubMed

    Michel, A G; Lajoie, G; Hassani, C A

    1990-12-01

    The crystal structures of HCO-Met-Leu-Phe-OC(CH3)3, (CH25H39N3O5S), fMLP-OtBu, and HCO-Met psi [CSNH]-Leu-Phe-OCH3, (C22H33N3O4S2), fMS LP-OMe, have been determined by single crystal X-ray diffraction, and their conformational properties investigated by molecular mechanics energy calculations. Crystals of fMLP-OtBu are monoclinic, space group P2(1), a = 12.027(4), b = 9.492(3), c = 12.660(4) A, beta = 101.99(3) degrees, Z = 2; those of fMS LP-OMe are orthorhombic, space group P2(1)2(1)2(1), a = 7.130(1), b = 12.097(2), c = 31.060(5) A, Z = 4. The first compounds fMLP-OtBu is the t-butyl ester of the tripeptide fMLP that represents one of the most potent compounds in inducing the lysozyme release from human neutrophils that reflects the chemotactic activity. From the crystal structure, it is shown that the orientation of the phenylalanine side chain is largely affected by the presence of the bulky group. fMSLP-OMe was shown to be inactive after thionation of the methionine residue in the original tripeptide. Nevertheless, the crystal structure does not reveal any influence of the presence of the thionated peptidic bond on the backbone conformation. The X-ray results have been used to generate parameters for empirical energy calculations. Subsequently, a strategy based on random generation of conformations followed by energy-minimization was applied to investigate the conformational space of thiopeptides, in comparison with normal peptides. From molecular free energy calculations, it is shown that the main influence of the introduction of a thioamide bond on the molecular structure is to prevent the existence of C7(eq) conformations involving the thiomethionine residue. Consequently, a larger number of conformers are found to form intramolecular hydrogen bonds involving the formyl group, reducing its availability to interact with the receptor. For the first time, the theoretical prediction of the existence of C7eq conformations for fMLP is made. The resulting

  17. Small fields: Nonequilibrium radiation dosimetry

    SciTech Connect

    Das, Indra J.; Ding, George X.; Ahnesjoe, Anders

    2008-01-15

    Advances in radiation treatment with beamlet-based intensity modulation, image-guided radiation therapy, and stereotactic radiosurgery (including specialized equipments like CyberKnife, Gamma Knife, tomotherapy, and high-resolution multileaf collimating systems) have resulted in the use of reduced treatment fields to a subcentimeter scale. Compared to the traditional radiotherapy with fields {>=}4x4 cm{sup 2}, this can result in significant uncertainty in the accuracy of clinical dosimetry. The dosimetry of small fields is challenging due to nonequilibrium conditions created as a consequence of the secondary electron track lengths and the source size projected through the collimating system that are comparable to the treatment field size. It is further complicated by the prolonged electron tracks in the presence of low-density inhomogeneities. Also, radiation detectors introduced into such fields usually perturb the level of disequilibrium. Hence, the dosimetric accuracy previously achieved for standard radiotherapy applications is at risk for both absolute and relative dose determination. This article summarizes the present knowledge and gives an insight into the future procedures to handle the nonequilibrium radiation dosimetry problems. It is anticipated that new miniature detectors with controlled perturbations and corrections will be available to meet the demand for accurate measurements. It is also expected that the Monte Carlo techniques will increasingly be used in assessing the accuracy, verification, and calculation of dose, and will aid perturbation calculations of detectors used in small and highly conformal radiation beams.

  18. A new approach to calculate charge carrier transport mobility in organic molecular crystals from imaginary time path integral simulations

    SciTech Connect

    Song, Linze; Shi, Qiang

    2015-05-07

    We present a new non-perturbative method to calculate the charge carrier mobility using the imaginary time path integral approach, which is based on the Kubo formula for the conductivity, and a saddle point approximation to perform the analytic continuation. The new method is first tested using a benchmark calculation from the numerical exact hierarchical equations of motion method. Imaginary time path integral Monte Carlo simulations are then performed to explore the temperature dependence of charge carrier delocalization and mobility in organic molecular crystals (OMCs) within the Holstein and Holstein-Peierls models. The effects of nonlocal electron-phonon interaction on mobility in different charge transport regimes are also investigated.

  19. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: Rotational viscosity of a liquid crystal mixture: a fully atomistic molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zhang, Ran; Peng, Zeng-Hui; Liu, Yong-Gang; Zheng, Zhi-Gang; Xuan, Li

    2009-10-01

    Fully atomistic molecular dynamics (MD) simulations at 293, 303 and 313 K have been performed for the four-component liquid crystal mixture, E7, using the software package Material Studio. Order parameters and orientational time correlation functions (TCFs) were calculated from MD trajectories. The rotational viscosity coefficients (RVCs) of the mixture were calculated using the Nemtsov-Zakharov and Fialkowski methods based on statistical-mechanical approaches. Temperature dependences of RVC and density were discussed in detail. Reasonable agreement between the simulated and experimental values was found.

  20. Molecular, crystal, and electronic structure of the cobalt(II) complex with 10-(2-benzothiazolylazo)-9-phenanthrol

    NASA Astrophysics Data System (ADS)

    Linko, R. V.; Sokol, V. I.; Polyanskaya, N. A.; Ryabov, M. A.; Strashnov, P. V.; Davydov, V. V.; Sergienko, V. S.

    2013-05-01

    The reaction of 10-(2-benzothiazolylazo)-9-phenanthrol (H L) with cobalt(II) acetate gives the coordination compound [Co L 2] · CHCl3 ( I). The molecular and crystal structure of I is determined by X-ray diffraction. The coordination polyhedron of the Co atom in complex I is an octahedron. The anion L acts as a tridentate chelating ligand and is coordinated to the Co atom through the phenanthrenequinone O1 atom and the benzothiazole N1 atom of the moieties L and the N3 atom of the azo group to form two five-membered metallocycles. The molecular and electronic structures of the compounds H L, L, and Co L 2 are studied at the density functional theory level. The results of the quantum-chemical calculations are in good agreement with the values determined by X-ray diffraction.