Kobler, Aaron; Kübel, Christian
2018-01-01
To relate the internal structure of a volume (crystallite and phase boundaries) to properties (electrical, magnetic, mechanical, thermal), a full 3D reconstruction in combination with in situ testing is desirable. In situ testing allows the crystallographic changes in a material to be followed by tracking and comparing the individual crystals and phases. Standard transmission electron microscopy (TEM) delivers a projection image through the 3D volume of an electron-transparent TEM sample lamella. Only with the help of a dedicated TEM tomography sample holder is an accurate 3D reconstruction of the TEM lamella currently possible. 2D crystal orientation mapping has become a standard method for crystal orientation and phase determination while 3D crystal orientation mapping have been reported only a few times. The combination of in situ testing with 3D crystal orientation mapping remains a challenge in terms of stability and accuracy. Here, we outline a method to 3D reconstruct the crystal orientation from a superimposed diffraction pattern of overlapping crystals without sample tilt. Avoiding the typically required tilt series for 3D reconstruction enables not only faster in situ tests but also opens the possibility for more stable and more accurate in situ mechanical testing. The approach laid out here should serve as an inspiration for further research and does not make a claim to be complete.
NASA Astrophysics Data System (ADS)
Peetermans, S.; Bopp, M.; Vontobel, P.; Lehmann, E. H.
Common neutron imaging uses the full polychromatic neutron beam spectrum to reveal the material distribution in a non-destructive way. Performing it with a reduced energy band, i.e. energy-selective neutron imaging, allows access to local variation in sample crystallographic properties. Two sample categories can be discerned with different energy responses. Polycrystalline materials have an energy-dependent cross-section featuring Bragg edges. Energy-selective neutron imaging can be used to distinguish be- tween crystallographic phases, increase material sensitivity or penetration, improve quantification etc. An example of the latter is shown by the examination of copper discs prior to machining them into linear accelerator cavity structures. The cross-section of single crystals features distinct Bragg peaks. Based on their pattern, one can determine the orientation of the crystal, as in a Laue pattern, but with the tremendous advantage that the operation can be performed for each pixel, yielding crystal orientation maps at high spatial resolution. A wholly different method to investigate such samples is also introduced: neutron diffraction imaging. It is based on projections formed by neutrons diffracted from the crystal lattice out of the direct beam. The position of these projections on the detector gives information on the crystal orientation. The projection itself can be used to reconstruct the crystal shape. A three-dimensional mapping of local Bragg reflectivity or a grain orientation mapping can thus be obtained.
Viladot, D; Véron, M; Gemmi, M; Peiró, F; Portillo, J; Estradé, S; Mendoza, J; Llorca-Isern, N; Nicolopoulos, S
2013-10-01
A recently developed technique based on the transmission electron microscope, which makes use of electron beam precession together with spot diffraction pattern recognition now offers the possibility to acquire reliable orientation/phase maps with a spatial resolution down to 2 nm on a field emission gun transmission electron microscope. The technique may be described as precession-assisted crystal orientation mapping in the transmission electron microscope, precession-assisted crystal orientation mapping technique-transmission electron microscope, also known by its product name, ASTAR, and consists in scanning the precessed electron beam in nanoprobe mode over the specimen area, thus producing a collection of precession electron diffraction spot patterns, to be thereafter indexed automatically through template matching. We present a review on several application examples relative to the characterization of microstructure/microtexture of nanocrystalline metals, ceramics, nanoparticles, minerals and organics. The strengths and limitations of the technique are also discussed using several application examples. ©2013 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.
Electromigration and Thermomechanical Fatigue Behavior of Sn0.3Ag0.7Cu Solder Joints
NASA Astrophysics Data System (ADS)
Zuo, Yong; Bieler, Thomas R.; Zhou, Quan; Ma, Limin; Guo, Fu
2017-12-01
The anisotropy of Sn crystal structures greatly affects the electromigration (EM) and thermomechanical fatigue (TMF) of solder joints. The size of solder joint shrinkage in electronic systems further makes EM and TMF an inseparably coupled issue. To obtain a better understanding of failure under combined moderately high (2000 A/cm2) current density and 10-150°C/1 h thermal cycling, analysis of separate, sequential, and concurrent EM and thermal cycling (TC) was imposed on single shear lap joints, and the microstructure and crystal orientations were incrementally characterized using electron backscatter diffraction (EBSD) mapping. First, it was determined that EM did not significantly change the crystal orientation, but the formation of Cu6Sn5 depended on the crystal orientation, and this degraded subsequent TMF behavior. Secondly, TC causes changes in crystal orientation. Concurrent EM and TC led to significant changes in crystal orientation by discontinuous recrystallization, which is facilitated by Cu6Sn5 particle formation. The newly formed Cu6Sn5 often showed its c-axis close to the direction of electron flow.
Electromigration and Thermomechanical Fatigue Behavior of Sn0.3Ag0.7Cu Solder Joints
NASA Astrophysics Data System (ADS)
Zuo, Yong; Bieler, Thomas R.; Zhou, Quan; Ma, Limin; Guo, Fu
2018-03-01
The anisotropy of Sn crystal structures greatly affects the electromigration (EM) and thermomechanical fatigue (TMF) of solder joints. The size of solder joint shrinkage in electronic systems further makes EM and TMF an inseparably coupled issue. To obtain a better understanding of failure under combined moderately high (2000 A/cm2) current density and 10-150°C/1 h thermal cycling, analysis of separate, sequential, and concurrent EM and thermal cycling (TC) was imposed on single shear lap joints, and the microstructure and crystal orientations were incrementally characterized using electron backscatter diffraction (EBSD) mapping. First, it was determined that EM did not significantly change the crystal orientation, but the formation of Cu6Sn5 depended on the crystal orientation, and this degraded subsequent TMF behavior. Secondly, TC causes changes in crystal orientation. Concurrent EM and TC led to significant changes in crystal orientation by discontinuous recrystallization, which is facilitated by Cu6Sn5 particle formation. The newly formed Cu6Sn5 often showed its c-axis close to the direction of electron flow.
Burch, Matthew J.; Fancher, Chris M.; Patala, Srikanth; ...
2016-11-18
A novel technique, which directly and nondestructively maps polar domains using electron backscatter diffraction (EBSD) is described and demonstrated. Through dynamical diffraction simulations and quantitative comparison to experimental EBSD patterns, the absolute orientation of a non-centrosymmetric crystal can be determined. With this information, the polar domains of a material can be mapped. The technique is demonstrated by mapping the non-ferroelastic, or 180°, ferroelectric domains in periodically poled LiNbO 3 single crystals. Furthermore, the authors demonstrate the possibility of mapping polarity using this technique in other polar materials system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Sabrina N.; Zhai, Yao; van der Zande, Arend M.
Two-dimensional (2D) atomic materials such as graphene and transition metal dichalcogenides (TMDCs) have attracted significant research and industrial interest for their electronic, optical, mechanical, and thermal properties. While large-area crystal growth techniques such as chemical vapor deposition have been demonstrated, the presence of grain boundaries and orientation of grains arising in such growths substantially affect the physical properties of the materials. There is currently no scalable characterization method for determining these boundaries and orientations over a large sample area. We here present a second-harmonic generation based microscopy technique for rapidly mapping grain orientations and boundaries of 2D TMDCs. We experimentallymore » demonstrate the capability to map large samples to an angular resolution of ±1° with minimal sample preparation and without involved analysis. A direct comparison of the all-optical grain orientation maps against results obtained by diffraction-filtered dark-field transmission electron microscopy plus selected-area electron diffraction on identical TMDC samples is provided. This rapid and accurate tool should enable large-area characterization of TMDC samples for expedited studies of grain boundary effects and the efficient characterization of industrial-scale production techniques.« less
Simultaneous orientation and thickness mapping in transmission electron microscopy
Tyutyunnikov, Dmitry; Özdöl, V. Burak; Koch, Christoph T.
2014-12-04
In this paper we introduce an approach for simultaneous thickness and orientation mapping of crystalline samples by means of transmission electron microscopy. We show that local thickness and orientation values can be extracted from experimental dark-field (DF) image data acquired at different specimen tilts. The method has been implemented to automatically acquire the necessary data and then map thickness and crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a commercial semiconductor device, containing multiple 22 nm technology transistor structures. The performance and limitations of our method are discussed and comparedmore » to those of other techniques available.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yao; Wan, Liang; Chen, Kai
An automated method has been developed to characterize the type and spatial distribution of twinning in crystal orientation maps from synchrotron X-ray Laue microdiffraction results. The method relies on a look-up table approach. Taking into account the twin axis and twin plane for plausible rotation and reflection twins, respectively, and the point group symmetry operations for a specific crystal, a look-up table listing crystal-specific rotation angle–axis pairs, which reveal the orientation relationship between the twin and the parent lattice, is generated. By comparing these theoretical twin–parent orientation relationships in the look-up table with the measured misorientations, twin boundaries are mappedmore » automatically from Laue microdiffraction raster scans with thousands of data points. Finally, taking advantage of the high orientation resolution of the Laue microdiffraction method, this automated approach is also applicable to differentiating twinning elements among multiple twinning modes in any crystal system.« less
Li, Yao; Wan, Liang; Chen, Kai
2015-04-25
An automated method has been developed to characterize the type and spatial distribution of twinning in crystal orientation maps from synchrotron X-ray Laue microdiffraction results. The method relies on a look-up table approach. Taking into account the twin axis and twin plane for plausible rotation and reflection twins, respectively, and the point group symmetry operations for a specific crystal, a look-up table listing crystal-specific rotation angle–axis pairs, which reveal the orientation relationship between the twin and the parent lattice, is generated. By comparing these theoretical twin–parent orientation relationships in the look-up table with the measured misorientations, twin boundaries are mappedmore » automatically from Laue microdiffraction raster scans with thousands of data points. Finally, taking advantage of the high orientation resolution of the Laue microdiffraction method, this automated approach is also applicable to differentiating twinning elements among multiple twinning modes in any crystal system.« less
Reciprocal space mapping and single-crystal scattering rods.
Smilgies, Detlef M; Blasini, Daniel R; Hotta, Shu; Yanagi, Hisao
2005-11-01
Reciprocal space mapping using a linear gas detector in combination with a matching Soller collimator has been applied to map scattering rods of well oriented organic microcrystals grown on a solid surface. Formulae are provided to correct image distortions in angular space and to determine the required oscillation range, in order to measure properly integrated scattering intensities.
Pletnev, Sergei; Subach, Fedor V; Verkhusha, Vladislav V; Dauter, Zbigniew
2014-01-01
The rotational order-disorder (OD) structure of the reversibly photoswitchable fluorescent protein rsTagRFP is discussed in detail. The structure is composed of tetramers of 222 symmetry incorporated into the lattice in two different orientations rotated 90° with respect to each other around the crystal c axis and with tetramer axes coinciding with the crystallographic twofold axes. The random distribution of alternatively oriented tetramers in the crystal creates the rotational OD structure with statistically averaged I422 symmetry. Despite order-disorder pathology, the structure of rsTagRFP has electron-density maps of good quality for both non-overlapping and overlapping parts of the model. The crystal contacts, crystal internal architecture and a possible mechanism of rotational OD crystal formation are discussed.
On three-dimensional misorientation spaces.
Krakow, Robert; Bennett, Robbie J; Johnstone, Duncan N; Vukmanovic, Zoja; Solano-Alvarez, Wilberth; Lainé, Steven J; Einsle, Joshua F; Midgley, Paul A; Rae, Catherine M F; Hielscher, Ralf
2017-10-01
Determining the local orientation of crystals in engineering and geological materials has become routine with the advent of modern crystallographic mapping techniques. These techniques enable many thousands of orientation measurements to be made, directing attention towards how such orientation data are best studied. Here, we provide a guide to the visualization of misorientation data in three-dimensional vector spaces, reduced by crystal symmetry, to reveal crystallographic orientation relationships. Domains for all point group symmetries are presented and an analysis methodology is developed and applied to identify crystallographic relationships, indicated by clusters in the misorientation space, in examples from materials science and geology. This analysis aids the determination of active deformation mechanisms and evaluation of cluster centres and spread enables more accurate description of transformation processes supporting arguments regarding provenance.
On three-dimensional misorientation spaces
NASA Astrophysics Data System (ADS)
Krakow, Robert; Bennett, Robbie J.; Johnstone, Duncan N.; Vukmanovic, Zoja; Solano-Alvarez, Wilberth; Lainé, Steven J.; Einsle, Joshua F.; Midgley, Paul A.; Rae, Catherine M. F.; Hielscher, Ralf
2017-10-01
Determining the local orientation of crystals in engineering and geological materials has become routine with the advent of modern crystallographic mapping techniques. These techniques enable many thousands of orientation measurements to be made, directing attention towards how such orientation data are best studied. Here, we provide a guide to the visualization of misorientation data in three-dimensional vector spaces, reduced by crystal symmetry, to reveal crystallographic orientation relationships. Domains for all point group symmetries are presented and an analysis methodology is developed and applied to identify crystallographic relationships, indicated by clusters in the misorientation space, in examples from materials science and geology. This analysis aids the determination of active deformation mechanisms and evaluation of cluster centres and spread enables more accurate description of transformation processes supporting arguments regarding provenance.
On three-dimensional misorientation spaces
Bennett, Robbie J.; Vukmanovic, Zoja; Solano-Alvarez, Wilberth; Lainé, Steven J.; Einsle, Joshua F.; Midgley, Paul A.; Rae, Catherine M. F.; Hielscher, Ralf
2017-01-01
Determining the local orientation of crystals in engineering and geological materials has become routine with the advent of modern crystallographic mapping techniques. These techniques enable many thousands of orientation measurements to be made, directing attention towards how such orientation data are best studied. Here, we provide a guide to the visualization of misorientation data in three-dimensional vector spaces, reduced by crystal symmetry, to reveal crystallographic orientation relationships. Domains for all point group symmetries are presented and an analysis methodology is developed and applied to identify crystallographic relationships, indicated by clusters in the misorientation space, in examples from materials science and geology. This analysis aids the determination of active deformation mechanisms and evaluation of cluster centres and spread enables more accurate description of transformation processes supporting arguments regarding provenance. PMID:29118660
On the use of SEM correlative tools for in situ mechanical tests.
Shi, Qiwei; Roux, Stéphane; Latourte, Félix; Hild, François; Loisnard, Dominique; Brynaert, Nicolas
2018-01-01
In situ SEM mechanical tests are key to study crystal plasticity. In particular, imaging and diffraction (EBSD) allow microstructure and surface kinematics to be monitored all along the test. However, to get a full benefit from different modalities, it is necessary to register all images and crystallographic orientation maps from EBSD into the same frame. Different correlative approaches tracking either Pt surface markings, crystal orientations or grain boundaries, allow such registrations to be performed and displacement as well as rotation fields to be measured, a primary information for crystal plasticity identification. However, the different contrasts that are captured in different modalities and unavoidable stage motions also give rise to artifacts that are to be corrected to register the different information onto the same material points. The same image correlation tools reveal very powerful to correct such artifacts. Illustrated by an in situ uniaxial tensile test performed on a bainitic-ferritic steel sample, recent advances in image correlation techniques are reviewed and shown to provide a comprehensive picture of local strain and rotation maps. Copyright © 2017 Elsevier B.V. All rights reserved.
EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels.
Zaefferer, S; Romano, P; Friedel, F
2008-06-01
Bainite is thought to play an important role for the chemical and mechanical stabilization of metastable austenite in low-alloyed TRIP steels. Therefore, in order to understand and improve the material properties, it is important to locate and quantify the bainitic phase. To this aim, electron backscatter diffraction-based orientation microscopy has been employed. The main difficulty herewith is to distinguish bainitic ferrite from ferrite because both have bcc crystal structure. The most important difference between them is the occurrence of transformation induced geometrically necessary dislocations in the bainitic phase. To determine the areas with larger geometrically necessary dislocation density, the following orientation microscopy maps were explored: pattern quality maps, grain reference orientation deviation maps and kernel average misorientation maps. We show that only the latter allow a reliable separation of the bainitic and ferritic phase. The kernel average misorientation threshold value that separates both constituents is determined by an algorithm that searches for the smoothness of the boundaries between them.
NASA Astrophysics Data System (ADS)
Brown, Delilah A.; Morgan, Sean; Peldzinski, Vera; Brüning, Ralf
2017-11-01
Copper films for printed circuit board applications have to be fine-grained to achieve even filling of vias. Electroplated Cu films on roll annealed Cu substrates may have unacceptably large epitaxial crystals. Here galvanic films were plated on oriented single-crystal Cu substrates from an additive-free electrolyte, as well as DC plating and pulse reverse (PR) plating with additives. The distribution of crystallite orientations was mapped with XRD and compared with the microstructure determined by SEM. For the additive-free bath on [1 1 1] and [1 0 0] oriented surfaces a gradual transition from epitaxial to polycrystalline is seen, while films on [1 1 0] substrates are persistently epitaxial. Without bath additives, twinning is the main mechanism for the transition to polycrystalline texture. For DC plating, additives (carriers, accelerators and levelers) promote fine-grained films with isotropic grain orientations, with films on [1 1 0] substrates being partially isotropic. Plating with carriers and accelerators (no leveler) yields films with many distinct crystallite orientations. These orientations result from up to five steps of recursive twinning. PR plating produces isotropic films with no or very few twins (〈1 1 1〉 and 〈1 0 0〉 substrates, respectively), while on 〈1 1 0〉 oriented surfaces the deposits are about 20% epitaxial.
NASA Astrophysics Data System (ADS)
Tan, T. T.; Li, S.; Oh, J. T.; Gao, W.; Liu, H. K.; Dou, S. X.
2001-02-01
It is believed that grain boundaries act as weak links in limiting the critical current density (Jc) of bulk high-Tc superconductors. The weak-link problem can be greatly reduced by elimination or minimization of large-angle grain boundaries. It has been reported that the distribution of the Jc in (Bi, Pb)2Sr2Ca2Cu3O10+x (Bi2223) superconductor tapes presents a parabolic relationship in the transverse cross section of the tapes, with the lowest currents occurring at the centre of the tapes. It was proposed that the Jc distribution is strongly dependent on the local crystallographic orientation distribution of the Bi2223 oxides. However, the local three-dimensional crystallographic orientation distribution of Bi2223 crystals in (Bi, Pb)2Sr2Ca2Cu3O10+x superconductor tapes has not yet been experimentally determined. In this work, the electron backscattered diffraction technique was employed to map the crystallographic orientation distribution, determine the misorientation of grain boundaries and also map the misorientation distribution in Bi2223 superconductor tapes. Through crystallographic orientation mapping, the relationship between the crystallographic orientation distribution, the boundary misorientation distribution and the fabrication parameters may be understood. This can be used to optimize the fabrication processes thus increasing the critical current density in Bi2223 superconductor tapes.
NASA Astrophysics Data System (ADS)
Cantu-Valle, Jesus; Ruiz-Zepeda, Francisco; Sanchez, John Eder; Mendoza-Santoyo, Fernando; Ponnce, Arturo; UTSA Team
2015-03-01
We report the magnetic imaging and crystalline structure of high aspect ratio cobalt nanowires. Experimental results of magnetization reversal in cobalt nanowires are presented to illustrate the functionality of the in situ magnetization process through the manipulation of the objective lens. By making use of this applicability, we measure the magnetization and show experimental evidence of the magnetic flux distribution in polycrystalline cobalt nanowires using off-axis electron holography. The retrieved phase map can distinguishes the magnetic contribution from the crystalline contribution with high accuracy. To determine the size and orientation of the grains within the Co nanowires, PED-assisted orientation mapping was performed. Finally, the magnetic analysis performed at individual nanowires was correlated with the crystalline orientation map, obtained by PED-assisted crystal phase orientation mapping. The large shape anisotropy determines the mayor magnetization direction rather than the magneto-crystalline anisotropy in the studied nanowires. The combination of the two techniques allowed us to directly visualize the effects of the crystallographic texture on the magnetization of the nanowire. The authors would like to acknowledge Dr. B.J.H. Stadler for providing the samples and financial support from NSF PREM #DMR 0934218, CONACYT, #215762 and Department of Defense #64756-RT-REP.
Mapping residual stress fields from Vickers hardness indents using Raman microprobe spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparks, R.G.; Enloe, W.S.; Paesler, M.A.
Micro-Raman spectroscopy is used to map the residual stress fields in the vicinity of Vickers hardness indents. Both 514.5 and 488.0 nm, light is used to excite the effect and the resulting shifted and broadened Raman peaks are analyzed using computer deconvolution. Half-wave plates are used to vary the orientation of the incident later light`s polarization state with respect to crystal orientation. The Raman scattered light is then analyzed for polarization dependences which are indicative of the various components of the Raman scattering tensor. Such studies can yield valuable information about the orientation of stress components in a well knownmore » stress field. The results can then be applied to the determination of stress components in machined semiconductor materials.« less
NASA Astrophysics Data System (ADS)
Zhu, Xiaoli; Todeschini, Matteo; Bastos da Silva Fanta, Alice; Liu, Lintao; Jensen, Flemming; Hübner, Jörg; Jansen, Henri; Han, Anpan; Shi, Peixiong; Ming, Anjie; Xie, Changqing
2018-09-01
The applications of Au thin films and their adhesion layers often suffer from a lack of sufficient information about the chemical states of adhesion layers and about the high-lateral-resolution crystallographic morphology of Au nanograins. Here, we demonstrate the in-depth evolution of the chemical states of adhesive layers at the interfaces and the crystal orientation mapping of gold nanograins with a lateral resolution of less than 10 nm in a Ti/Au/Cr tri-layer thin film system. Using transmission electron microscopy, the variation in the interdiffusion at Cr/Au and Ti/Au interfaces was confirmed. From X-ray photoelectron spectroscopy (XPS) depth profiling, the chemical states of Cr, Au and Ti were characterized layer by layer, suggesting the insufficient oxidation of the adhesive layers. At the interfaces the Au 4f peaks shift to higher binding energies and this behavior can be described by a proposed model based on electron reorganization and substrate-induced final-state neutralization in small Au clusters supported by the partially oxidized Ti layer. Utilizing transmission Kikuchi diffraction (TKD) in a scanning electron microscope, the crystal orientation of Au nanograins between two adhesion layers was non-destructively characterized with sub-10 nm spatial resolution. The results provide nanoscale insights into the Ti/Au/Cr thin film system and contribute to our understanding of its behavior in nano-optic and nano-electronic devices.
Low Temperature Photoluminescence of PVT Grown ZnSe and ZnSeTe
NASA Technical Reports Server (NTRS)
Wang, Ling Jun; Su, Ching-Hua; Lehoczky, S. L.
1999-01-01
ZnSe and ZnSeTe single crystals were grown by physical vapor transport (PVT) technique horizontally and vertically. The grown ZnSe and ZnSeTe single crystals were characterized by low temperature photoluminescence at 5 to 10 K using the 3.4 eV emission of an argon laser. The intensity of the sharp near band edge defect lines at 2.799, 2.783 eV and the intrinsic free exciton line at 2.802 eV were mapped on various crystal surfaces with different orientations to the gravitational field. The results show the effects of gravity vector orientation on the defect segregation. Comparison of the photoluminescence spectra of the ZeSe crystal before and after annealing in the Zn vapor shows that the 2.783 eV line of ZnSe crystal is related to the zinc vacancy. The photoluminescence spectra of the ternary ZnSeTe crystal were characterized by a single broad band from 2.2 to 2.4 eV, with a Full Width at Half Maximum (FWHM) of about 100 meV. The temperature dependence of the peak position and intensity were determined from 7 to 150 K.
Quantitative microstructural imaging by scanning Laue x-ray micro- and nanodiffraction
Chen, Xian; Dejoie, Catherine; Jiang, Tengfei; ...
2016-06-08
We present that local crystal structure, crystal orientation, and crystal deformation can all be probed by Laue diffraction using a submicron x-ray beam. This technique, employed at a synchrotron facility, is particularly suitable for fast mapping the mechanical and microstructural properties of inhomogeneous multiphase polycrystalline samples, as well as imperfect epitaxial films or crystals. As synchrotron Laue x-ray microdiffraction enters its 20th year of existence and new synchrotron nanoprobe facilities are being built and commissioned around the world, we take the opportunity to overview current capabilities as well as the latest technical developments. Fast data collection provided by state-of-the-art areamore » detectors and fully automated pattern indexing algorithms optimized for speed make it possible to map large portions of a sample with fine step size and obtain quantitative images of its microstructure in near real time. Lastly, we extrapolate how the technique is anticipated to evolve in the near future and its potential emerging applications at a free-electron laser facility.« less
Mechanical Twinning and Microstructures in Experimentally Stressed Quartzite
NASA Astrophysics Data System (ADS)
Minor, A.; Sintubin, M.; Wenk, H. R.; Rybacki, E.
2015-12-01
Since Dauphiné twins in quartz have been identified as a stress-related intracrystalline microstructure, several electron backscatter diffraction (EBSD) studies revealed that Dauphiné twins are present in naturally deformed quartz-bearing rocks in a wide range of tectono-metamorphic conditions. EBSD studies on experimentally stressed quartzite showed that crystals with particular crystallographic orientations contain many Dauphiné twin boundaries, while neighboring crystals with different orientations are largely free of twin boundaries. To understand the relationship between stress direction and orientation of Dauphiné twinned quartz crystals, a detailed EBSD study was performed on experimentally stressed quartzite samples and compared with an undeformed reference sample. We stressed 4 cylindrical samples in triaxial compression in a Paterson type gas deformation apparatus at GFZ Potsdam. Experimental conditions were 300MPa confining pressure, 500°C temperature and axial stresses of 145MPa, 250MPa and 460MPa for about 30 hours, resulting in a minor strain <0.04%. EBSD scans were obtained with a Zeiss Evo scanning electron microscope and TSL software at UC Berkeley. The EBSD maps show that Dauphiné twinning is present in the starting material as well as in experimentally stressed samples. Pole figures of the bulk orientation of the reference sample compared with stressed samples show a significant difference regarding the distribution for the r and z directions. The reference sample shows an indistinct maximum for r and z, whereas the stressed samples show a maximum for r poles and a minimum for z poles in the axial stress direction. EBSD scans of the reference and stressed samples were further analyzed manually to identify the orientations of single grains, which are free of twin boundaries and those, which contain twin boundaries. This analysis aims to quantify the relationship of crystal orientation and stress magnitude to initiate mechanical twinning.
Ukar, Estibalitz; Laubach, Stephen E.; Marrett, Randall
2016-03-09
Here, we evaluate a published model for crystal growth patterns in quartz cement in sandstone fractures by comparing crystal fracture-spanning predictions to quartz c-axis orientation distributions measured by electron backscatter diffraction (EBSD) of spanning quartz deposits. Samples from eight subvertical opening-mode fractures in four sandstone formations, the Jurassic– Cretaceous Nikanassin Formation, northwestern Alberta Foothills (Canada), Cretaceous Mesaverde Group (USA; Cozzette Sandstone Member of the Iles Formation), Piceance Basin, Colorado (USA), and upper Jurassic–lower Cretaceous Cotton Valley Group (Taylor sandstone) and overlying Travis Peak Formation, east Texas, have similar quartzose composition and grain size but contain fractures with different temperature historiesmore » and opening rates based on fluid inclusion assemblages and burial history. Spherical statistical analysis shows that, in agreement with model predictions, bridging crystals have a preferred orientation with c-axis orientations at a high angle to fracture walls. The second form of validation is for spanning potential that depends on the size of cut substrate grains. Using measured cut substrate grain sizes and c-axis orientations of spanning bridges, we calculated the required orientation for the smallest cut grain to span the maximum gap size and the required orientation of the crystal with the least spanning potential to form overgrowths that span across maximum measured gap sizes. We find that within a 10° error all spanning crystals conform to model predictions. Using crystals with the lowest spanning potential based on crystallographic orientation (c-axis parallel to fracture wall) and a temperature range for fracture opening measured from fluid inclusion assemblages, we calculate maximum fracture opening rates that allow crystals to span. These rates are comparable to those derived independently from fracture temperature histories based on burial history and multiple sequential fluid inclusion assemblages. Results support the R. Lander and S. Laubach model, which predicts that for quartz deposited synchronously with fracture opening, spanning potential, or likelihood of quartz deposits that are thick enough to span between fracture walls, depends on temperature history, fracture opening rate, size of opening increments, and size, mineralogy, and crystallographic orientation of substrates in the fracture wall (transected grains). Results suggest that EBSD maps, which can be more rapidly acquired than measurement of tens to hundreds of fluid inclusion assemblages, can provide a useful measure of relative opening rates within populations of quartz-filled fractures formed under sedimentary basin conditions. Such data are useful for evaluating fracture pattern development models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ukar, Estibalitz; Laubach, Stephen E.; Marrett, Randall
Here, we evaluate a published model for crystal growth patterns in quartz cement in sandstone fractures by comparing crystal fracture-spanning predictions to quartz c-axis orientation distributions measured by electron backscatter diffraction (EBSD) of spanning quartz deposits. Samples from eight subvertical opening-mode fractures in four sandstone formations, the Jurassic– Cretaceous Nikanassin Formation, northwestern Alberta Foothills (Canada), Cretaceous Mesaverde Group (USA; Cozzette Sandstone Member of the Iles Formation), Piceance Basin, Colorado (USA), and upper Jurassic–lower Cretaceous Cotton Valley Group (Taylor sandstone) and overlying Travis Peak Formation, east Texas, have similar quartzose composition and grain size but contain fractures with different temperature historiesmore » and opening rates based on fluid inclusion assemblages and burial history. Spherical statistical analysis shows that, in agreement with model predictions, bridging crystals have a preferred orientation with c-axis orientations at a high angle to fracture walls. The second form of validation is for spanning potential that depends on the size of cut substrate grains. Using measured cut substrate grain sizes and c-axis orientations of spanning bridges, we calculated the required orientation for the smallest cut grain to span the maximum gap size and the required orientation of the crystal with the least spanning potential to form overgrowths that span across maximum measured gap sizes. We find that within a 10° error all spanning crystals conform to model predictions. Using crystals with the lowest spanning potential based on crystallographic orientation (c-axis parallel to fracture wall) and a temperature range for fracture opening measured from fluid inclusion assemblages, we calculate maximum fracture opening rates that allow crystals to span. These rates are comparable to those derived independently from fracture temperature histories based on burial history and multiple sequential fluid inclusion assemblages. Results support the R. Lander and S. Laubach model, which predicts that for quartz deposited synchronously with fracture opening, spanning potential, or likelihood of quartz deposits that are thick enough to span between fracture walls, depends on temperature history, fracture opening rate, size of opening increments, and size, mineralogy, and crystallographic orientation of substrates in the fracture wall (transected grains). Results suggest that EBSD maps, which can be more rapidly acquired than measurement of tens to hundreds of fluid inclusion assemblages, can provide a useful measure of relative opening rates within populations of quartz-filled fractures formed under sedimentary basin conditions. Such data are useful for evaluating fracture pattern development models.« less
Orientation-resolved domain mapping in tetragonal SrTiO 3 using polarized Raman spectroscopy
Gray, Jr., Dodd J.; Merz, Tyler A.; Hikita, Yasuyuki; ...
2016-12-16
Here, we present microscopically resolved, polarized spectroscopy of Raman scattering collected from tetragonal SrTiO 3. The anisotropic response of first-order Raman peaks within a single tetragonal domain has been measured. From these data, we assign symmetries to the phonons seen in the first-order Raman spectrum which is normally complicated by uncontrolled domain structure. Using a translation stage, we map the local domain orientation of a 3–μm 3 crystal volume near the laser focus and compare it to wide-field polarized images. This technique can be performed with readily available instruments and is relevant to the study of a wide range ofmore » related materials, interfaces, and devices.« less
Orientation Dependence of the Deformation Microstructure of Ta-4%W after Cold-Rolling
NASA Astrophysics Data System (ADS)
Zhang, J.; Ma, G. Q.; Godfrey, A.; Shu, D. Y.; Chen, Q.; Wu, G. L.
2017-07-01
One of the common features of deformed face-centered cubic metals with medium to high stacking fault energy is the formation of geometrically necessary dislocation boundaries. The dislocation boundary arrangements in refractory metals with body-centered cubic crystal structure are, however, less well known. To address this issue a Ta-4%W alloy was cold rolled up to 70% in thickness in the present work. The resulting deformation microstructures were characterized by electron back-scattering diffraction and the dislocation boundary arrangements in each grain were revealed using sample-frame misorientation axis maps calculated using an in-house code. The maps were used to analyze the slip pattern of individual grains after rolling, revealing an orientation dependence of the slip pattern.
Lattice-Rotation Vortex at the Charged Monoclinic Domain Boundary in a Relaxor Ferroelectric Crystal
NASA Astrophysics Data System (ADS)
Shao, Yu-Tsun; Zuo, Jian-Min
2017-04-01
We present evidence of lattice-rotation vortices having an average radius of ˜7 nm at the ferroelectric domain boundary of (1 -x )Pb (Zn1 /3Nb2 /3)O3-xPbTiO3 (x =0.08 ). Maps of crystal orientations and domain symmetry breaking are obtained using scanning convergent beam electron diffraction, which show fractional rotation vortices near the 50° monoclinic domain walls. The merging of 2D and 1D topological defects is consistent with inhomogeneous boundary charge and expected to have a large impact on the domain-switching mechanisms in relaxor ferroelectric crystals and ferroelectric devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zweiacker, K. W.; Liu, Can; Gordillo, M. A.
Rmore » apid solidification can produce metastable phases and unusual microstructure modifications in multi-component alloys during additive manufacturing or laser beam welding. Composition and phase mapping by transmission electron microscopy have been used in this paper to characterize the morphologically distinct zones developing in hypoeutectic Al-4 at.% Cu alloy after pulsed laser melting for different crystal growth rate regimes. Deviations of the compositions of the alloy phases from equilibrium predictions and unique orientation relationships between the solidification transformation products have been determined. Specifically, for the columnar growth zone at solidification rates of 0.8 m s - 1 < v < v a = 1.8 m s - 1 , two distinct orientation relationships were established between the concomitantly forming non-equilibrium phases, supersaturated α-Al solid solution and the discontinuously distributed α-Al 2Cu-based θ'-phase, which can be described as {110} θ ∥ {001} α, [001] θ ∥ [110] α and {001} θ ∥ {001} α, [100] θ ∥ [100] α. These orientation relationships permit formation of coherent interphase interfaces with low interfacial free energy. Finally, this endows a kinetic advantage to the thermodynamically less stable θ'-Al 2Cu phase relative to the more stable equilibrium θ-Al 2Cu phase during formation of the morphologically modified eutectic of the columnar growth zone grains, since repeated nucleation is required to establish the discontinuous distribution of θ'-Al 2Cu phase.« less
Zweiacker, K. W.; Liu, Can; Gordillo, M. A.; ...
2017-12-05
Rmore » apid solidification can produce metastable phases and unusual microstructure modifications in multi-component alloys during additive manufacturing or laser beam welding. Composition and phase mapping by transmission electron microscopy have been used in this paper to characterize the morphologically distinct zones developing in hypoeutectic Al-4 at.% Cu alloy after pulsed laser melting for different crystal growth rate regimes. Deviations of the compositions of the alloy phases from equilibrium predictions and unique orientation relationships between the solidification transformation products have been determined. Specifically, for the columnar growth zone at solidification rates of 0.8 m s - 1 < v < v a = 1.8 m s - 1 , two distinct orientation relationships were established between the concomitantly forming non-equilibrium phases, supersaturated α-Al solid solution and the discontinuously distributed α-Al 2Cu-based θ'-phase, which can be described as {110} θ ∥ {001} α, [001] θ ∥ [110] α and {001} θ ∥ {001} α, [100] θ ∥ [100] α. These orientation relationships permit formation of coherent interphase interfaces with low interfacial free energy. Finally, this endows a kinetic advantage to the thermodynamically less stable θ'-Al 2Cu phase relative to the more stable equilibrium θ-Al 2Cu phase during formation of the morphologically modified eutectic of the columnar growth zone grains, since repeated nucleation is required to establish the discontinuous distribution of θ'-Al 2Cu phase.« less
NASA Astrophysics Data System (ADS)
Muslimin, A. N.; Sugiarti, E.; Aritonang, T.; Purawiardi, R. I.; Desiati, R. D.
2018-03-01
Ni-based superalloy is widely used for high performance components in power generation turbine due to its excellent mechanical properties. However, Ni-based superalloy has low oxidation resistantance. Therefore, surface coating is required to improve oxidation resistance at high temperatures. Al-Si as a coting material was successfully co-deposited on Ni-based substrate by pack cementation method at 900 °C for about 4 hours. The oxidation test was carried out at high temperature of 1000 °C for 100 hours. Micro structural characterization and analysis on crystal orientation were perfomed by using Field Emission Scanning Electron Microscope (FE-SEM) and Electron Back Scatter Diffraction (EBSD) technique, respectively. The results showed that the coating layer with a homogenous layer and had a thickness of 53 μm consisting of β-NiAl with cubic structure and Ni2Al3 with hexagonal structure. TGO layer was developed after oxidation and had a thickness of about 5 μm consisting of α-Al2O3 and spinel NiCr2O4. The phase composition map and crystal orientation acquired by EBSD technique was also discussed both in TGO and coating layers.
NASA Astrophysics Data System (ADS)
Shin, Junsoo; Goyal, Amit; Jesse, Stephen; Kim, Dae Ho
2009-06-01
Epitaxial, c-axis oriented BaTiO3 thin films were deposited using pulsed laser ablation on flexible, polycrystalline Ni alloy tape with biaxially textured oxide buffer multilayers. The high quality of epitaxial BaTiO3 thin films with P4mm group symmetry was confirmed by x-ray diffraction. The microscopic ferroelectric domain structure and the piezoelectric domain switching in these films were confirmed via spatially resolved piezoresponse mapping and local hysteresis loops. Macroscopic measurements demonstrate that the films have well-saturated hysteresis loops with a high remanent polarization of ˜11.5 μC/cm2. Such high-quality, single-crystal-like BaTiO3 films on low-cost, polycrystalline, flexible Ni alloy substrates are attractive for applications in flexible lead-free ferroelectric devices.
Mark, A F; Li, W; Sharples, S; Withers, P J
2017-07-01
Our aim was to establish the capability of spatially resolved acoustic spectroscopy (SRAS) to map grain orientations and the anisotropy in stiffness at the sub-mm to micron scale by comparing the method with electron backscatter diffraction (EBSD) undertaken within a scanning electron microscope. In the former the grain orientations are deduced by measuring the spatial variation in elastic modulus; conversely, in EBSD the elastic anisotropy is deduced from direct measurements of the crystal orientations. The two test-cases comprise mapping the fusion zones for large TIG and MMA welds in thick power plant austenitic and ferritic steels, respectively; these are technologically important because, among other things, elastic anisotropy can cause ultrasonic weld inspection methods to become inaccurate because it causes bending in the paths of sound waves. The spatial resolution of SRAS is not as good as that for EBSD (∼100 μm vs. ∼a few nm), nor is the angular resolution (∼1.5° vs. ∼0.5°). However the method can be applied to much larger areas (currently on the order of 300 mm square), is much faster (∼5 times), is cheaper and easier to perform, and it could be undertaken on the manufacturing floor. Given these advantages, particularly to industrial users, and the on-going improvements to the method, SRAS has the potential to become a standard method for orientation mapping, particularly in cases where the elastic anisotropy is important over macroscopic/component length scales. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Oriented attachment by enantioselective facet recognition in millimeter-sized gypsum crystals.
Viedma, Cristóbal; Cuccia, Louis A; McTaggart, Alicia; Kahr, Bart; Martin, Alexander T; McBride, J Michael; Cintas, Pedro
2016-09-22
Crystal growth by oriented attachment involves the spontaneous self-assembly of adjoining crystals with common crystallographic orientations. Herein, we report the oriented attachment of gypsum crystals on agitation to form stereoselective mesoscale aggregates.
Preliminary observations of the effect of solutal convection on crystal morphology
NASA Technical Reports Server (NTRS)
Broom, M. Beth H.; Witherow, William K.; Snyder, Robert S.; Carter, Daniel C.
1988-01-01
Studies to examine the effect of solutal convection on crystal morphology using sucrose as a model system were initiated. Aspect ratios, defined as the width of the 100-plane-oriented face over the width of the 001-plane-oriented face, were determined for oriented crystals which were grown with either the 001-oriented or the 100-oriented face perpendicular to the convective flow. The dependence of the crystal morphology on orientation is much greater for crystals grown with one face occluded than for crystals grown suspended in solution. Many factors appear to interact in a complex fashion to influence crystal morphology.
Liss, K D; Royer, A; Tschentscher, T; Suortti, P; Williams, A P
1998-03-01
High-energy X-rav diffraction by means of triple-crystal techniques is a powerful tool for investigating dislocations and strain in bulk materials. Radiation with an energy typically higher than 80 keV combines the advantage of low attenuation with high resolution at large momentum transfers. The triple-crystal diffractometer at the High Energy Beamline of the European Synchrotron Radiation Facility is described. It is shown how the transverse and longitudinal resolution depend on the choice of the crystal reflection, and how the orientation of a reciprocal-lattice distortion in an investigated sample towards the resolution element of the instrument can play an important role. This effect is demonstrated on a single crystal of silicon where a layer of macro pores reveals satellites around the Bragg reflection. The resulting longitudinal distortion can be investigated using the high transverse resolution of the instrument when choosing an appropriate reflection.
Suturin, S M; Fedorov, V V; Korovin, A M; Valkovskiy, G A; Konnikov, S G; Tabuchi, M; Sokolov, N S
2013-08-01
In this work epitaxial growth of cobalt on CaF 2 (111), (110) and (001) surfaces has been extensively studied. It has been shown by atomic force microscopy that at selected growth conditions stand-alone faceted Co nanoparticles are formed on a fluorite surface. Grazing-incidence X-ray diffraction (GIXD) and reflection high-energy electron diffraction (RHEED) studies have revealed that the particles crystallize in the face-centered cubic lattice structure otherwise non-achievable in bulk cobalt under normal conditions. The particles were found to inherit lattice orientation from the underlying CaF 2 layer. Three-dimensional reciprocal space mapping carried out using X-ray and electron diffraction has revealed that there exist long bright 〈111〉 streaks passing through the cobalt Bragg reflections. These streaks are attributed to stacking faults formed in the crystal lattice of larger islands upon coalescence of independently nucleated smaller islands. Distinguished from the stacking fault streaks, crystal truncation rods perpendicular to the {111} and {001} particle facets have been observed. Finally, grazing-incidence small-angle X-ray scattering (GISAXS) has been applied to decouple the shape-related scattering from that induced by the crystal lattice defects. Particle faceting has been verified by modeling the GISAXS patterns. The work demonstrates the importance of three-dimensional reciprocal space mapping in the study of epitaxial nanoparticles.
Suturin, S. M.; Fedorov, V. V.; Korovin, A. M.; Valkovskiy, G. A.; Konnikov, S. G.; Tabuchi, M.; Sokolov, N. S.
2013-01-01
In this work epitaxial growth of cobalt on CaF2(111), (110) and (001) surfaces has been extensively studied. It has been shown by atomic force microscopy that at selected growth conditions stand-alone faceted Co nanoparticles are formed on a fluorite surface. Grazing-incidence X-ray diffraction (GIXD) and reflection high-energy electron diffraction (RHEED) studies have revealed that the particles crystallize in the face-centered cubic lattice structure otherwise non-achievable in bulk cobalt under normal conditions. The particles were found to inherit lattice orientation from the underlying CaF2 layer. Three-dimensional reciprocal space mapping carried out using X-ray and electron diffraction has revealed that there exist long bright 〈111〉 streaks passing through the cobalt Bragg reflections. These streaks are attributed to stacking faults formed in the crystal lattice of larger islands upon coalescence of independently nucleated smaller islands. Distinguished from the stacking fault streaks, crystal truncation rods perpendicular to the {111} and {001} particle facets have been observed. Finally, grazing-incidence small-angle X-ray scattering (GISAXS) has been applied to decouple the shape-related scattering from that induced by the crystal lattice defects. Particle faceting has been verified by modeling the GISAXS patterns. The work demonstrates the importance of three-dimensional reciprocal space mapping in the study of epitaxial nanoparticles. PMID:24046491
Ye, Changhuai; Wang, Chao; Wang, Jing; ...
2017-08-17
Crystal orientation in semi-crystalline polymers tends to enhance their performance, such as increased yield strength and modulus, along the orientation direction. Zone annealing (ZA) orients the crystal lamellae through a sharp temperature gradient that effectively directs the crystal growth, but the sweep rate (V ZA) of this gradient significantly impacts the extent of crystal orientation. Here in this work, we demonstrate rotational zone annealing (RZA) as an efficient method to elucidate the influence of V ZA on the crystal morphology of thin films in a single experiment using isotactic poly(1-butene), PB-1, as a model semi-crystalline polymer. These RZA results aremore » confirmed using standard, serial linear ZA to tune the structure from an almost unidirectional oriented morphology to weakly oriented spherulites. The overall crystallinity is only modestly changed in comparison to isothermal crystallization (maximum of 55% from ZA vs. 48% for isothermal crystallization). However, the average grain size increases and the spherulites become anisotropic from ZA. Due to these structural changes, the Young's modulus of the oriented films, both parallel and perpendicular to the spherulite orientation direction, is significantly increased by ZA. The modulus does become anisotropic after ZA due to the directionality in the crystal structure, with more than a threefold increase in the modulus parallel to the orientation direction for the highest oriented film in comparison to the modulus from isothermal crystallization. Lastly, RZA enables rapid identification of conditions to maximize orientation of crystals in thin polymer films, which could find utility in determining conditions to improve crystallinity and performance in organic electronics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Changhuai; Wang, Chao; Wang, Jing
Crystal orientation in semi-crystalline polymers tends to enhance their performance, such as increased yield strength and modulus, along the orientation direction. Zone annealing (ZA) orients the crystal lamellae through a sharp temperature gradient that effectively directs the crystal growth, but the sweep rate (V ZA) of this gradient significantly impacts the extent of crystal orientation. Here in this work, we demonstrate rotational zone annealing (RZA) as an efficient method to elucidate the influence of V ZA on the crystal morphology of thin films in a single experiment using isotactic poly(1-butene), PB-1, as a model semi-crystalline polymer. These RZA results aremore » confirmed using standard, serial linear ZA to tune the structure from an almost unidirectional oriented morphology to weakly oriented spherulites. The overall crystallinity is only modestly changed in comparison to isothermal crystallization (maximum of 55% from ZA vs. 48% for isothermal crystallization). However, the average grain size increases and the spherulites become anisotropic from ZA. Due to these structural changes, the Young's modulus of the oriented films, both parallel and perpendicular to the spherulite orientation direction, is significantly increased by ZA. The modulus does become anisotropic after ZA due to the directionality in the crystal structure, with more than a threefold increase in the modulus parallel to the orientation direction for the highest oriented film in comparison to the modulus from isothermal crystallization. Lastly, RZA enables rapid identification of conditions to maximize orientation of crystals in thin polymer films, which could find utility in determining conditions to improve crystallinity and performance in organic electronics.« less
Goniometer-based femtosecond crystallography with X-ray free electron lasers
Cohen, Aina E.; Soltis, S. Michael; González, Ana; ...
2014-10-31
The emerging method of femtosecond crystallography (FX) may extend the diffraction resolution accessible from small radiation-sensitive crystals and provides a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzymes. Automated goniometer-based instrumentation developed for use at the Linac Coherent Light Source enabled efficient and flexible FX experiments to be performed on a variety of sample types. In the case of rod-shaped Cpl hydrogenase crystals, only five crystals and about 30 min of beam time were used to obtain the 125 still diffraction patterns used to produce a 1.6-Å resolution electron density map. With smaller crystals, high-density grids were usedmore » to increase sample throughput; 930 myoglobin crystals mounted at random orientation inside 32 grids were exposed, demonstrating the utility of this approach. Screening results from cryocooled crystals of β 2-adrenoreceptor and an RNA polymerase II complex indicate the potential to extend the diffraction resolution obtainable from very radiation-sensitive samples beyond that possible with undulator-based synchrotron sources.« less
Goniometer-based femtosecond crystallography with X-ray free electron lasers
Cohen, Aina E.; Soltis, S. Michael; González, Ana; Aguila, Laura; Alonso-Mori, Roberto; Barnes, Christopher O.; Baxter, Elizabeth L.; Brehmer, Winnie; Brewster, Aaron S.; Brunger, Axel T.; Calero, Guillermo; Chang, Joseph F.; Chollet, Matthieu; Ehrensberger, Paul; Eriksson, Thomas L.; Feng, Yiping; Hattne, Johan; Hedman, Britt; Hollenbeck, Michael; Holton, James M.; Keable, Stephen; Kobilka, Brian K.; Kovaleva, Elena G.; Kruse, Andrew C.; Lemke, Henrik T.; Lin, Guowu; Lyubimov, Artem Y.; Manglik, Aashish; Mathews, Irimpan I.; McPhillips, Scott E.; Nelson, Silke; Peters, John W.; Sauter, Nicholas K.; Smith, Clyde A.; Song, Jinhu; Stevenson, Hilary P.; Tsai, Yingssu; Uervirojnangkoorn, Monarin; Vinetsky, Vladimir; Wakatsuki, Soichi; Weis, William I.; Zadvornyy, Oleg A.; Zeldin, Oliver B.; Zhu, Diling; Hodgson, Keith O.
2014-01-01
The emerging method of femtosecond crystallography (FX) may extend the diffraction resolution accessible from small radiation-sensitive crystals and provides a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzymes. Automated goniometer-based instrumentation developed for use at the Linac Coherent Light Source enabled efficient and flexible FX experiments to be performed on a variety of sample types. In the case of rod-shaped Cpl hydrogenase crystals, only five crystals and about 30 min of beam time were used to obtain the 125 still diffraction patterns used to produce a 1.6-Å resolution electron density map. For smaller crystals, high-density grids were used to increase sample throughput; 930 myoglobin crystals mounted at random orientation inside 32 grids were exposed, demonstrating the utility of this approach. Screening results from cryocooled crystals of β2-adrenoreceptor and an RNA polymerase II complex indicate the potential to extend the diffraction resolution obtainable from very radiation-sensitive samples beyond that possible with undulator-based synchrotron sources. PMID:25362050
Video-rate terahertz electric-field vector imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takai, Mayuko; Takeda, Masatoshi; Sasaki, Manabu
We present an experimental setup to dramatically reduce a measurement time for obtaining spatial distributions of terahertz electric-field (E-field) vectors. The method utilizes the electro-optic sampling, and we use a charge-coupled device to detect a spatial distribution of the probe beam polarization rotation by the E-field-induced Pockels effect in a 〈110〉-oriented ZnTe crystal. A quick rotation of the ZnTe crystal allows analyzing the terahertz E-field direction at each image position, and the terahertz E-field vector mapping at a fixed position of an optical delay line is achieved within 21 ms. Video-rate mapping of terahertz E-field vectors is likely to bemore » useful for achieving real-time sensing of terahertz vector beams, vector vortices, and surface topography. The method is also useful for a fast polarization analysis of terahertz beams.« less
Rectifiability of Line Defects in Liquid Crystals with Variable Degree of Orientation
NASA Astrophysics Data System (ADS)
Alper, Onur
2018-04-01
In [2], H ardt, L in and the author proved that the defect set of minimizers of the modified Ericksen energy for nematic liquid crystals consists locally of a finite union of isolated points and Hölder continuous curves with finitely many crossings. In this article, we show that each Hölder continuous curve in the defect set is of finite length. Hence, locally, the defect set is rectifiable. For the most part, the proof closely follows the work of D e L ellis et al. (Rectifiability and upper minkowski bounds for singularities of harmonic q-valued maps, arXiv:1612.01813, 2016) on harmonic Q-valued maps. The blow-up analysis in A lper et al. (Calc Var Partial Differ Equ 56(5):128, 2017) allows us to simplify the covering arguments in [11] and locally estimate the length of line defects in a geometric fashion.
Shock and Microstructural Characterization of the α-ω Phase Transition in Titanium Crystals
NASA Astrophysics Data System (ADS)
Morrow, Benjamin M.; Rigg, Paulo A.; Jones, David R.; Addessio, Francis L.; Trujillo, Carl P.; Saavedra, Ramon A.; Martinez, Daniel T.; Cerreta, Ellen K.
2017-12-01
A multicrystal comprised of a small number of large crystals of high-purity titanium and a [0001] oriented high-purity single crystal titanium sample were shock loaded using gas gun plate impact experiments. Tests were performed at stresses above the α {-}ω phase transition stress (for high-purity polycrystalline specimens) to observe the behavior of oriented crystals under similar conditions. Post-mortem characterization of the shocked microstructure was conducted on the single crystal sample to measure textures, and quantify phases and twinning. The apparent activation of plastic and transformation mechanisms was dependent upon crystal orientation. Specifically, the [0001] crystal showed a higher Hugoniot elastic limit than the [10\\bar{1}0] or [3\\bar{1}\\bar{4}4] orientations. The slope of velocity as a function of time was lower in the [0001] orientation than the other orientations during plastic deformation, indicating sluggish transformation kinetics for the α to ω phase transition for the [0001] oriented crystal. Microtexture measurements of a recovered [0001] oriented single crystal revealed the presence of retained ω phase after unloading, with orientations of the constituent phase fractions indicative of the forward α → ω transition, rather than the reverse ω → α transition, suggesting that the material never achieved a state of 100% ω phase.
Evidence for a Hematite Ore Body on Mars
NASA Technical Reports Server (NTRS)
Morris, Richard V.; Lane, M. D.; Christensen, P. R.
2000-01-01
The Mars Global Surveyor (MGS) spacecraft was launched from Cape Kennedy in November 1996. MGS was put into orbit around Mars in September of 1997 and has since been sending back data from a suite of instruments, including the Thermal Emission Spectrometer (TES). The TES instrument is an interferometric spectrometer designed to map the surface mineralogy of Mars by measuring the midinfrared emitted radiation over the spectral region of about 1600 to 200 cm(exp -1) (about 6 to 50 microns). This mineralogically sensitive technique utilizes the characteristic intra- and inter-molecular vibrations of minerals that are manifested in the midinfrared spectra. These spectral "fingerprints" are unique because they are dependent upon chemical composition, crystal structure, crystal orientation, and other factors. Midinfrared spectral data received from the MGS-TES instrument have indicated the presence of a large deposit of hematite (alpha-Fe2O3) in Sinus Meridiani, Mars. This hematite ore body, that is accompanied by basalt, is really extensive, encompassing an area about 350 by 500 km. To better understand the geologic context of this large deposit, a detailed laboratory spectroscopic investigation was conducted using more than 20 hematite samples so that their spectra could be compared to the martian spectra. The samples included red and gray polycrystaline hand samples, gray single-crystal hand samples, and red and gray fine- and coarse-grained particulates. The laboratory analyses provided thermal emissivity spectra that, when compared to the hematite emissivity spectra from Mars, suggest the Sinus Meridiani hematite is possibly an exposure of oriented hematite grains. These grains are likely coarser that 10 microns (and may be much larger) and gray in color. The characteristic of oriented grains is suggested by the apparent crystal axis-dependence of the energy emitted from the surface of Mars. The strong degree of crystal alignment exhibited in the emissivity spectra of Mars suggests that these oriented hematite crystals most likely occur as bedrock of aligned specular hematite grains (possibly schistose in texture) or as a secondary coating on bedrock, rather than as discrete particles. We are investigating the nature of this vast hematite deposit in order to understand better the geologic setting and infer past conditions and geological evolution on Mars.
Evidence for a Hematite Ore Body on Mars
NASA Technical Reports Server (NTRS)
Lane, M. D.; Christensen, P. R.
2000-01-01
The Mars Global Surveyor (MGS) spacecraft was launched from Cape Kennedy in November 1996. MGS was put into orbit around Mars in September of 1997 and has since been sending back data from a suite of instruments, including the Thermal Emission Spectrometer (TES). The TES instrument is an interferometric spectrometer designed to map the surface mineralogy of Mars by measuring the midinfrared emitted radiation over the spectral region of approximately 1600 to 200 per centimeter (appjroximately 6 to 50 microns). This mineralogically sensitive technique utilizes the characteristic intra- and inter-molecular vibrations of minerals that are manifested in the midinfrared spectra. These spectral "fingerprints" are unique because they are dependent upon chemical composition, crystal structure, crystal orientation, and other factors. Midinfrared spectral data received from the MGS-TES instrument have indicated the presence of a large deposit of hematite (alpha-Fe2O3) in Sinus Meridiani, Mars. This hematite ore body, that is accompanied by basalt, is areally extensive, encompassing and area approximately 350 by 500 km. To better understand the geologic context of this large deposit, a detailed laboratory spectroscopic investigation was conducted using more than 20 hematite samples so that their spectra could be compared to the martian spectra. The samples included red and gray polycrystaline hand samples, gray single-crystal hand samples, and red and gray fine- and coarse-grained particulates. The laboratory analyses provided thermal emissivity spectra that, when compared to the hematite emissivity spectra from Mars, suggest the Sinus Meridiani hematite is possibly an exposure of oriented hematite grains. These grains are likely coarser that 10 microns (and may be much larger) and gray in color The characteristic of oriented grains is suggested by the apparent crystal axis-dependence of the energy emitted from the surface of Mars. The strong degree of crystal alignment exhibited in the emissivity spectra of Mars suggests that these oriented hematite crystals most likely occur as bedrock of aligned specular hematite grains (possibly schistose in texture) or as a secondary coating on bedrock, rather than as discrete particles. We are investigating the nature of this vast hematite deposit in order to understand better the geologic setting and infer past conditions and geological evolution on Mars.
Control of liquid crystal molecular orientation using ultrasound vibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taniguchi, Satoki; Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321; Koyama, Daisuke
2016-03-07
We propose a technique to control the orientation of nematic liquid crystals using ultrasound and investigate the optical characteristics of the oriented samples. An ultrasonic liquid crystal cell with a thickness of 5–25 μm and two ultrasonic lead zirconate titanate transducers was fabricated. By exciting the ultrasonic transducers, the flexural vibration modes were generated on the cell. An acoustic radiation force to the liquid crystal layer was generated, changing the molecular orientation and thus the light transmission. By modulating the ultrasonic driving frequency and voltage, the spatial distribution of the molecular orientation of the liquid crystals could be controlled. The distributionmore » of the transmitted light intensity depends on the thickness of the liquid crystal layer because the acoustic field in the liquid crystal layer is changed by the orientational film.« less
Correlation of Thermally Induced Pores with Microstructural Features Using High Energy X-rays
NASA Astrophysics Data System (ADS)
Menasche, David B.; Shade, Paul A.; Lind, Jonathan; Li, Shiu Fai; Bernier, Joel V.; Kenesei, Peter; Schuren, Jay C.; Suter, Robert M.
2016-11-01
Combined application of a near-field High Energy Diffraction Microscopy measurement of crystal lattice orientation fields and a tomographic measurement of pore distributions in a sintered nickel-based superalloy sample allows pore locations to be correlated with microstructural features. Measurements were carried out at the Advanced Photon Source beamline 1-ID using an X-ray energy of 65 keV for each of the measurement modes. The nickel superalloy sample was prepared in such a way as to generate significant thermally induced porosity. A three-dimensionally resolved orientation map is directly overlaid with the tomographically determined pore map through a careful registration procedure. The data are shown to reliably reproduce the expected correlations between specific microstructural features (triple lines and quadruple nodes) and pore positions. With the statistics afforded by the 3D data set, we conclude that within statistical limits, pore formation does not depend on the relative orientations of the grains. The experimental procedures and analysis tools illustrated are being applied to a variety of materials problems in which local heterogeneities can affect materials properties.
Effect of orientation on deformation behavior of Fe nanowires: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Sainath, G.; Srinivasan, V. S.; Choudhary, B. K.; Mathew, M. D.; Jayakumar, T.
2014-04-01
Molecular dynamics simulations have been carried out to study the effect of crystal orientation on tensile deformation behaviour of single crystal BCC Fe nanowires at 10 K. Two nanowires with an initial orientation of <100>/{100} and <110>/{111} have been chosen for this study. The simulation results show that the deformation mechanisms varied with crystal orientation. The nanowire with an initial orientation of <100>/{100} deforms predominantly by twinning mechanism, whereas the nanowire oriented in <110>/{111}, deforms by dislocation plasticity. In addition, the single crystal oriented in <110>/{111} shows higher strength and elastic modulus than <100>/{100} oriented nanowire.
Study of Etching Pits in a Large-grain Single Cell Bulk Niobium Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xin; Ciovati, Gianluigi; Reece, Charles E.
2009-11-01
Performance of SRF cavities are limited by non-linear localized effects. The variation of local material characters between "hot" and "cold" spots is thus of intense interest. Such locations were identified in a BCP-etched large-grain single-cell cavity and removed for examination by high resolution electron microscopy (SEM), electron-back scattering diffraction microscopy (EBSD), optical microscopy, and 3D profilometry. Pits with clearly discernable crystal facets were observed in both "hotspot" and "coldspot" specimens. The pits were found in-grain, at bi-crystal boundaries, and on tri-crystal junctions. They are interpreted as etch pits induced by surface crystal defects (e.g. dislocations). All "coldspots" examined had qualitativelymore » low density of etching pits or very shallow tri-crystal boundary junction. EBSD revealed crystal structure surrounding the pits via crystal phase orientation mapping, while 3D profilometry gave information on the depth and size of the pits. In addition, a survey of the samples by energy dispersive X-ray analysis (EDX) did not show any significant contamination of the samples surface.« less
Infrared vibrational nanocrystallography and nanoimaging
Muller, Eric A.; Pollard, Benjamin; Bechtel, Hans A.; van Blerkom, Peter; Raschke, Markus B.
2016-01-01
Molecular solids and polymers can form low-symmetry crystal structures that exhibit anisotropic electron and ion mobility in engineered devices or biological systems. The distribution of molecular orientation and disorder then controls the macroscopic material response, yet it is difficult to image with conventional techniques on the nanoscale. We demonstrated a new form of optical nanocrystallography that combines scattering-type scanning near-field optical microscopy with both optical antenna and tip-selective infrared vibrational spectroscopy. From the symmetry-selective probing of molecular bond orientation with nanometer spatial resolution, we determined crystalline phases and orientation in aggregates and films of the organic electronic material perylenetetracarboxylic dianhydride. Mapping disorder within and between individual nanoscale domains, the correlative hybrid imaging of nanoscale heterogeneity provides insight into defect formation and propagation during growth in functional molecular solids. PMID:27730212
Elastic response of (001)-oriented PWA 1480 single crystal - The influence of secondary orientation
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Abdul-Azis, Ali; Mcgaw, Michael
1991-01-01
The influence of secondary orientation on the elastic response of a zone axis (001)-oriented nickel-base single-crystal superalloy, PWA 1480, was investigated under mechanical loading conditions by applying finite element techniques. Elastic stress analyses were performed with a commercially available finite element code. Secondary orientation of the single-crystal superalloy was offset with respect to the global coordinate system in increments from 0 to 90 deg and stresses developed within the single crystal were determined for each loading condition. The results indicated that the stresses were strongly influenced by the angular offset between the secondary crystal orientation and the global coordinate system. The degree of influence was found to vary with the type of loading condition (mechanical, thermal, or combined) imposed on the single-crystal superalloy.
Magnetic Control of MOF Crystal Orientation and Alignment.
Cheng, Fei; Marshall, Ellis S; Young, Adam J; Robinson, Peter J; Bouillard, Jean-Sebastien G; Adawi, Ali M; Vermeulen, Nicolaas A; Farha, Omar K; Reithofer, Michael R; Chin, Jia Min
2017-11-07
Most metal-organic frameworks (MOFs) possess anisotropic properties, the full exploitation of which necessitates a general strategy for the controllable orientation of such MOF crystals. Current methods largely rely upon layer-by-layer MOF epitaxy or tuning of MOF crystal growth on appropriate substrates, yielding MOFs with fixed crystal orientations. Here, the dynamic magnetic alignment of different MOF crystals (NH 2 -MIL-53(Al) and NU-1000) is shown. The MOFs were magnetized by electrostatic adsorption of iron oxide nanoparticles, dispersed in curable polymer resins (Formlabs 1+ clear resin/ Sylgard 184), magnetically oriented, and fixed by resin curing. The importance of crystal orientation on MOF functionality was demonstrated whereby magnetically aligned NU-1000/Sylgard 184 composite was excited with linearly polarized 405 nm light, affording an anisotropic fluorescence response dependent on the polarization angle of the excitation beam relative to NU-1000 crystal orientation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Feth, S.; Hirschfeld, D.; Smith, T. M.; Wang, Ling Jun; Volz, M. P.; Lehoczky, S. L.
1999-01-01
ZnSe crystals were grown by the physical vapor transport technique under horizontal and vertical (stabilized and destabilized) configurations. Secondary ion mass spectroscopy and photoluminescence measurements were performed on the grown ZnSe samples to map the distributions of [Si], [Fe], [Cu], [Al] and [Li or Na] impurities as well as Zn vacancy, [V (sub Zn)]. Annealings of ZnSe under controlled Zn pressures were studied to correlate the measured photoluminescence emission intensity to the equilibrium Zn partial pressure. In the horizontal grown crystals the segregations of [Si], [Fe], [Al] and [V (sub Zn)] were observed along the gravity vector direction whereas in the vertically stabilized grown crystal the segregation of these point defects was radially symmetrical. No apparent pattern was observed on the measured distributions in the vertically destabilized grown crystal. The observed segregations in the three growth configurations were interpreted based on the possible buoyancy-driven convection in the vapor phase.
Yoshioka, S.; Fujita, H.; Kinoshita, S.; Matsuhana, B.
2014-01-01
It is known that the wing scales of the emerald-patched cattleheart butterfly, Parides sesostris, contain gyroid-type photonic crystals, which produce a green structural colour. However, the photonic crystal is not a single crystal that spreads over the entire scale, but it is separated into many small domains with different crystal orientations. As a photonic crystal generally has band gaps at different frequencies depending on the direction of light propagation, it seems mysterious that the scale is observed to be uniformly green under an optical microscope despite the multi-domain structure. In this study, we have carefully investigated the structure of the wing scale and discovered that the crystal orientations of different domains are not perfectly random, but there is a preferred crystal orientation that is aligned along the surface normal of the scale. This finding suggests that there is an additional factor during the developmental process of the microstructure that regulates the crystal orientation. PMID:24352678
NASA Astrophysics Data System (ADS)
Na, Suok-Min; Smith, Malcolm; Flatau, Alison B.
2018-06-01
In this work, deformation mechanism related to recrystallization behavior in single-crystal disks of Galfenol (Fe-Ga alloy) was investigated to gain insights into the influence of crystal orientations on structural changes and selective grain growth that take place during secondary recrystallization. We started with the three kinds of single-crystal samples with (011)[100], (001)[100], and (001)[110] orientations, which were rolled and annealed to promote the formation of different grain structures and texture evolutions. The initial Goss-oriented (011)[100] crystal mostly rotated into {111}<112> orientations with twofold symmetry and shear band structures by twinning resulted in the exposure of rolled surface along {001}<110> orientation during rolling. In contrast, the Cube-oriented (001)[100] single crystal had no change in texture during rolling with the thickness reduction up to 50 pct. The {123}<111> slip systems were preferentially activated in these single crystals during deformation as well as {112}<111> slip systems that are known to play a role in primary slip of body-centered cubic (BCC) materials such as α-iron and Fe-Si alloys. After annealing, the deformed Cube-oriented single crystal had a small fraction (<10 pct) of recrystallized Goss-oriented grains. The weak Goss component remained in the shear bands of the 50 pct rolled Goss-oriented single crystal, and it appeared to be associated with coalescence of subgrains inside shear band structures during primary recrystallization. Rolling of the (001)[110] single crystal led to the formation of a tilted (001)[100] component close to the <120> orientation, associated with {123}<111> slip systems as well. This was expected to provide potential sites of nucleation for secondary recrystallization; however, no Goss- and Cube-oriented components actually developed in this sample during secondary recrystallization. Those results illustrated how the recrystallization behavior can be influenced by deformed structure and the slip systems.
AACSD: An atomistic analyzer for crystal structure and defects
NASA Astrophysics Data System (ADS)
Liu, Z. R.; Zhang, R. F.
2018-01-01
We have developed an efficient command-line program named AACSD (Atomistic Analyzer for Crystal Structure and Defects) for the post-analysis of atomic configurations generated by various atomistic simulation codes. The program has implemented not only the traditional filter methods like the excess potential energy (EPE), the centrosymmetry parameter (CSP), the common neighbor analysis (CNA), the common neighborhood parameter (CNP), the bond angle analysis (BAA), and the neighbor distance analysis (NDA), but also the newly developed ones including the modified centrosymmetry parameter (m-CSP), the orientation imaging map (OIM) and the local crystallographic orientation (LCO). The newly proposed OIM and LCO methods have been extended for all three crystal structures including face centered cubic, body centered cubic and hexagonal close packed. More specially, AACSD can be easily used for the atomistic analysis of metallic nanocomposite with each phase to be analyzed independently, which provides a unique pathway to capture their dynamic evolution of various defects on the fly. In this paper, we provide not only a throughout overview on various theoretical methods and their implementation into AACSD program, but some critical evaluations, specific testing and applications, demonstrating the capability of the program on each functionality.
Stage-Rocked Electron Channeling for Crystal Orientation Mapping (Postprint)
2018-03-26
SUPPLEMENTARY NOTES PA Case Number: 88ABW-2017-6217; Clearance Date: 11 Dec 2017. This document contains color . Journal article published in...broad adoption of this technique. In addition, it suffers from poor spatial resolution (~500 nm) and limited angular field of view (FOV) (typically 10...EBSD (or less commonly SACP) the specimen can be tilted into a “ two -beam” condition19. By capturing BSE images at several condi- tions, the Burger’s
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Abdul-Aziz, Ali; Mcgaw, Michael A.
1991-01-01
The influence of secondary orientation on the elastic response of a zone axis (001)-oriented nickel-base single-crystal superalloy, PWA 1480, was investigated under mechanical loading conditions by applying finite element techniques. Elastic stress analyses were performed with a commercially available finite element code. Secondary orientation of the single-crystal superalloy was offset with respect to the global coordinate system in increments from 0 to 90 deg and stresses developed within the single crystal were determined for each loading condition. The results indicated that the stresses were strongly influenced by the angular offset between the secondary crystal orientation and the global coordinate system. The degree of influence was found to vary with the type of loading condition (mechanical, thermal, or combined) imposed on the single-crystal superalloy.
Back contact to film silicon on metal for photovoltaic cells
Branz, Howard M.; Teplin, Charles; Stradins, Pauls
2013-06-18
A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.
Tani, Atsushi; Ueno, Takehiro; Yamanaka, Chihiro; Katsura, Makoto; Ikeya, Motoji
2005-02-01
A scanning electron spin resonance (ESR) microscope using a localized microwave field was redesigned to measure ESR spectra from 0 to 400 mT using electromagnets. Divalent copper ion (Cu2+) in copper sulfate pentahydrate (CuSO4 . 5H2O) was imaged, after the powdered samples were cemented in silicone rubber under a magnetic field. The ratio of the two signal intensities at g=2.27 and 2.08 clearly indicates the orientation of the particles. This method can be used for mapping the local magnetic field and its direction.
Secondary orientation effects in a single crystal superalloy under mechanical and thermal loads
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Abdul-Aziz, Ali; Mcgaw, Michael A.
1991-01-01
The nickel-base single crystal superalloy PWA 1480 is a candidate blading material for the advanced turbopump development program of the SSME. In order to improve thermal fatigue resistance of the turbine blades, the single crystal superalloy PWA 1480 is grown along the low modulus zone axes (001) crystal orientation by a directional solidification process. Since cubic single crystal materials such as PWA 1480 exhibit anisotropic elastic behavior, the stresses developed within the single crystal superalloy due to mechanical and thermal loads are likely to be affected by the exact orientation of the secondary crystallographic direction with respect to the geometry of the turbine blade. The effects of secondary crystal orientation on the elastic response of single crystal PWA 1480 superalloy were investigated.
Snow Crystal Orientation Effects on the Scattering of Passive Microwave Radiation
NASA Technical Reports Server (NTRS)
Foster, J. L.; Barton, J. S.; Chang, A. T. C.; Hall, D. K.
1999-01-01
For this study, consideration is given to the role crystal orientation plays in scattering and absorbing microwave radiation. A discrete dipole scattering model is used to measure the passive microwave radiation, at two polarizations (horizontal and vertical), scattered by snow crystals oriented in random and non random positions, having various sizes (ranging between 1 micrometers to 10,000 micrometers in radius), and shapes (including spheroids, cylinders, hexagons). The model results demonstrate that for the crystal sizes typically found in a snowpack, crystal orientation is insignificant compared to crystal size in terms of scattering microwave energy in the 8,100 gm (37 GHz) region of the spectrum. Therefore, the assumption used in radiative transfer approaches, where snow crystals are modeled as randomly oriented spheres, is adequate to account for the transfer of microwave energy emanating from the ground and passing through a snowpack.
NASA Astrophysics Data System (ADS)
Wang, Ruili; Gong, Xueyuan; Peng, Hui; Ma, Yue; Guo, Hongbo
2015-01-01
NiAlHf coatings were deposited onto Ni-based single crystal (SC) superalloy with different crystal orientations by electron beam physical vapor deposition (EB-PVD). The effects of the crystal orientations of the superalloy substrate on inter-diffusion behavior between the substrate and the NiAlHf coating were investigated. Substrate diffusion zone (SDZ) containing needle-like μ phases and interdiffusion zone (IDZ) mainly consisting of the ellipsoidal and rod-like μ phases were formed in the SC alloy after heat-treatment 10 h at 1100 °C. The thickness of secondary reaction zone (SRZ) formed in the SC alloy with (0 1 1) crystal orientation is about 14 μm after 50 h heat-treatment at 1100 °C, which is relatively thicker than that in the SC alloy with (0 0 1) crystal orientation, whereas the IDZ revealed similar thickness.
Spatial Instability of the Linearly Polarized Plane Wave in a Cubic Crystal
NASA Astrophysics Data System (ADS)
Kuz'mina, M. S.; Khazanov, E. A.
2016-12-01
We study theoretically the development of a small-scale spatial instability of a plane wave in a cubic crystal with [111], [001] and [101] orientations. It is shown that in the [111] oriented crystals the instability develops at lower intensities than in the [001] and [101] oriented crystals. In the latter two crystals, the instability can significantly be suppressed by choosing the optimal radiation polarization. It is found that in the case of a small B integral, the method of temporal contrast enhancement of laser pulses by generating an orthogonal polarization achieves the largest efficiency with the [101] orientation, while the [001] orientation is more preferable for B > 3.
NASA Astrophysics Data System (ADS)
Ibanez-Mejia, M.; DesOrmeau, J. W.; Eddy, M. P.; Kitajima, K.; Valley, J. W.
2017-12-01
Baddeleyite, the monoclinic polymorph of ZrO2, is a relatively common accessory phase in undersaturated and alkaline igneous rocks that is rapidly developing into a widely-used tool for studying the age and initial 176Hf/177Hf composition of many terrestrial and planetary rocks that typically lack zircon. The prospect of combining U-Pb-Hf data from baddeleyite with δ18O information, as regularly done with zircon, could prove a very powerful addition to the `analytical toolbox' of the igneous petrologist and for studies of crust and mantle evolution. However, the oxygen isotope systematics of this mineral remain poorly explored, as are the potential analytical hurdles involved in obtaining accurate spatially-resolved δ18O data by SIMS. Here, we report laser fluorination δ18O measurements from two baddeleyite megacrysts from Kovdor (δ18O = 0.24 ± 0.11 ‰) and Phalaborwa (4.58 ± 0.11 ‰), which were subsequently analyzed by SIMS to explore their compositional homogeneity and potential as reference materials for correcting instrumental mass fractionation (IMF). Randomly oriented grain fragments analyzed by SIMS were subsequently mapped using high-resolution EBSD, such that the incidence angle of the Cs+ primary ion beam relative to the baddeleyite crystallographic axes could be determined for each spot. We found that: a) δ18O values for both crystals reproduce fairly well, but several apparent outliers (ca. 10% of all data) were measured with no evident correlation to orientation, cracks or inclusions, suggesting these might not be ideal standards; b) there is a systematic difference in mean measured IMFs of ca. 0.6 ‰ between the two baddeleyite crystals; c) mean 16OH/16O values for Phalaborwa (2.5x10-4) are significantly higher than those of Kovdor (2.9x10-6), suggesting that different degrees of radiation damage affect IMF; and d) there is no statistically significant correlation in our dataset (n= 96 spot analyses) between IMF and crystallographic orientation (in contrast to U-Pb [1]), and two twinned crystal fragments analyzed multiple times in various different orientations show no evidence for excessive δ18O dispersion (e.g., 2SD of a Kovdor crystal analyzed 41 times is ±0.27 ‰). [1] Wingate and Compston, 2000
Orientation of liquid crystalline blue phases on unidirectionally orienting surfaces
NASA Astrophysics Data System (ADS)
Takahashi, Misaki; Ohkawa, Takuma; Yoshida, Hiroyuki; Fukuda, Jun-ichi; Kikuchi, Hirostugu; Ozaki, Masanori
2018-03-01
Liquid crystalline cholesteric blue phases (BPs) continue to attract interest due to their fast response times and quasi-polarization-independent phase modulation capabilities. Various approaches have recently been proposed to control the crystal orientation of BPs on substrates; however, their basic orientation properties on standard, unidirectionally orienting alignment layers have not been investigated in detail. Through analysis of the azimuthal orientation of Kossel diagrams, we study the 3D crystal orientation of a BP material—with a phase sequence of cholesteric, BP I, and BP II—on unidirectionally orienting surfaces prepared using two methods: rubbing and photoalignment. BP II grown from the isotropic phase is sensitive to surface conditions, with different crystal planes orienting on the two substrates. On the other hand, strong thermal hysteresis is observed in BPs grown through a different liquid crystal phase, implying that the preceding structure determines the orientation. More specifically, the BP II-I transition is accompanied by a rotation of the crystal such that the crystal direction defined by certain low-value Miller indices transform into different directions, and within the allowed rotations, different azimuthal configurations are obtained in the same cell depending on the thermal process. Our findings demonstrate that, for the alignment control of BPs, the thermal process is as important as the properties of the alignment layer.
NASA Astrophysics Data System (ADS)
Hsiao, Ming-Siao; Zheng, Joseph X.; van Horn, Ryan M.; Quirk, Roderic P.; Thomas, Edwin L.; Lotz, Bernard; Cheng, Stephen Z. D.
2009-03-01
One-dimensional (1-D) defect-free nanoscale confinement is created by growing single crystals of PS-b-PEO block copolymers in dilute solution. Those defect-free, 1-D confined lamellae having different PEO layer thicknesses in PS-b-PEO lamellar single crystals (or crystal mats) were used to study the polymer recrystallization and crystal orientation evolution as a function of recrystallization temperature (Trx) because the Tg^PS is larger than Tm^PEO in the PS-b-PEO single crystal. The results are summarized as follows. First, by the combination of electron diffraction and known PEO crystallography, the crystallization of PEO only takes place at Trx<-5^oC. Meanwhile a unique tilted PEO orientation is formed at Trx >-5^oC after self-seeding. The origin of the formation of tilted chains in the PEO crystal will be addressed. Second, from the analysis of 2D WAXD patterns of crystal mats, it is shown that the change in PEO c-axis orientation from homogeneous at low Trx to homeotropic at higher Trx transitions sharply, within 1^oC. The mechanism inducing this dramatic change in crystal orientation will be investigated in detail.
NASA Astrophysics Data System (ADS)
Akazawa, Housei; Ueno, Yuko
2014-10-01
We report how the crystallinity and orientation of hydroxyapatite (HAp) films deposited on sapphire substrates depend on the crystallographic planes. Both solid-phase crystallization of amorphous HAp films and crystallization during sputter deposition at elevated temperatures were examined. The low-temperature epitaxial phase on C-plane sapphire substrates has c-axis orientated HAp crystals regardless of the crystallization route, whereas the preferred orientation switches to the (310) direction at higher temperatures. Only the symmetric stretching mode (ν1) of PO43- units appears in the Raman scattering spectra, confirming well-ordered crystalline domains. In contrast, HAp crystals grown on A-plane sapphire substrates are always oriented toward random orientations. Exhibiting all vibrational modes (ν1, ν3, and ν4) of PO43- units in the Raman scattering spectra reflects random orientation, violating the Raman selection rule. If we assume that Raman intensities of PO43- units represent the crystallinity of HAp films, crystallization terminating the surface with the C-plane is hindered by the presence of excess H2O and OH species in the film, whereas crystallization at random orientations on the A-plane sapphire is rather promoted by these species. Such contrasting behaviors between C-plane and A-plane substrates will reflect surface-plane dependent creation of crystalline seeds and eventually determine the orientation of resulting HAp films.
Shock induced damage in copper: A before and after, three-dimensional study
NASA Astrophysics Data System (ADS)
Menasche, David B.; Lind, Jonathan; Li, Shiu Fai; Kenesei, Peter; Bingert, John F.; Lienert, Ulrich; Suter, Robert M.
2016-04-01
We report on the microstructural features associated with the formation of incipient spall and damage in a fully recrystallized, high purity copper sample. Before and after ballistic shock loading, approximately 0.8 mm3 of the sample's crystal lattice orientation field is mapped using non-destructive near-field High Energy Diffraction Microscopy. Absorption contrast tomography is used to image voids after loading. This non-destructive interrogation of damage initiation allows for novel characterization of spall points vis-a-vis microstructural features and a fully 3D examination of microstructural topology and its influence on incipient damage. The spalled region is registered with and mapped back onto the pre-shock orientation field. As expected, the great majority of voids occur at grain boundaries and higher order microstructural features; however, we find no statistical preference for particular grain boundary types. The damaged region contains a large volume of Σ-3 (60 °<111 >) connected domains with a large area fraction of incoherent Σ-3 boundaries.
Thermal and Structural Analysis of a Hollow Core Space Shuttle Main Engine (SSME) Turbine Blade
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Kalluri, Sreeramesh; McGaw, Michael A.
1995-01-01
The influence of primary and secondary orientations on the elastic response of a hollow core, (001)-oriented nickel base single-crystal superalloy turbine blade, was investigated under combined thermal and mechanical conditions. Finite element techniques is employed through MARC finite element code to conduct the analyses on a hollow core SSME turbine blade made out of PWA 1480 single crystal material. Primary orientation of the single crystal superalloy was varied in increments of 2 deg, from 0 to 10 deg, from the (001) direction. Two secondary orientations (0 and 45 deg) were considered with respect to the global coordinate system, as the primary orientation angle was varied. The stresses developed within the single crystal blade were determined for different orientations of the blade. The influence of angular offsets such as the single crystal's primary and secondary orientations and the loading conditions on the elastic stress response of the PWA 1480 hollow blade are summarized. The influence of he primary orientation angle, when constrained between the bounds considered, was not found to be as significant as the influence of the secondary orientation angle.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Kalluri, Sreeramesh; Mcgaw, Michael A.
1993-01-01
The influence of primary orientation on the elastic response of a (001)-oriented nickel-base single-crystal superalloy, PWA 1480, was investigated under mechanical, thermal, and combined thermal and mechanical loading conditions using finite element techniques. Elastic stress analyses were performed using the MARC finite element code on a square plate of PWA 1480 material. Primary orientation of the single crystal superalloy was varied in increments of 2 deg, from 0 to 10 deg, from the (001) direction. Two secondary orientations (0 and 45 deg) were considered, with respect to the global coordinate system, as the primary orientation angle was varied. The stresses developed within the single crystal plate were determined for each loading condition. In this paper, the influence of the angular offset between the primary crystal orientation and the loading direction on the elastic stress response of the PWA 1480 plate is presented for different loading conditions. The influence of primary orientation angle, when constrained between the bounds considered, was not found to be as significant as the influence of the secondary orientation angle, which is not typically controlled.
Jiang, Lan; Han, Weina; Li, Xiaowei; Wang, Qingsong; Meng, Fantong; Lu, Yongfeng
2014-06-01
It is widely believed that laser-induced periodic surface structures (LIPSS) are independent of material crystal structures. This Letter reports an abnormal phenomenon of strong dependence of the anisotropic formation of periodic ripples on crystal orientation, when Si (100) is processed by a linearly polarized femtosecond laser (800 nm, 50 fs, 1 kHz). LIPSS formation sensitivity with a π/2 modulation is found along different crystal orientations with a quasi-cosinusoid function when the angle between the crystal orientation and polarization direction is changed from 0° to 180°. Our experiments indicate that it is much easier (or more difficult) to form ripple structures when the polarization direction is aligned with the lattice axis [011]/[011¯] (or [001]). The modulated nonlinear ionization rate along different crystal orientations, which arises from the direction dependence of the effective mass of the electron is proposed to interpret the unexpected anisotropic LIPSS formation phenomenon. Also, we demonstrate that the abnormal phenomenon can be applied to control the continuity of scanned ripple lines along different crystal orientations.
Mapping the magnetic and crystal structure in cobalt nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantu-Valle, Jesus; Betancourt, Israel; Sanchez, John E.
2015-07-14
Using off-axis electron holography under Lorentz microscopy conditions to experimentally determine the magnetization distribution in individual cobalt (Co) nanowires, and scanning precession-electron diffraction to obtain their crystalline orientation phase map, allowed us to directly visualize with high accuracy the effect of crystallographic texture on the magnetization of nanowires. The influence of grain boundaries and disorientations on the magnetic structure is correlated on the basis of micromagnetic analysis in order to establish the detailed relationship between magnetic and crystalline structure. This approach demonstrates the applicability of the method employed and provides further understanding on the effect of crystalline structure on magneticmore » properties at the nanometric scale.« less
Studying the kinetics of magnetization in high Tc superconductors
NASA Technical Reports Server (NTRS)
Turchinskaya, Marina
1993-01-01
The first microscopic maps of magnetic induction in YBa2Cu3O(7-x) crystals which directly show the dependence of flux flow on twin density and polytwin block and twin boundary orientation are reported. These maps were obtained by means of a recently-improved magneto-optical imaging technique. Pinning was lowest in untwinned regions and increased with increasing twin density. An isotropy in twin boundary pinning, defined as the ratio of the magnetic induction gradient across twin boundaries to that along twin boundaries, was 10 at 17 K; this ratio increased with increasing temperature. In polycrystals, twin boundaries also had a strongly anisotropic effect on flux flow into a grain from a grain boundary.
Studying the kinetics of magnetization in high Tc superconductors
NASA Technical Reports Server (NTRS)
1993-01-01
We report the first microscopic maps of magnetic induction in YBa2Cu3O(7-x) crystals which directly show the dependence of flux flow on twin density, polytwin block, and twin boundary orientation. These maps were obtained by means of a recently-improved magneto-optical imaging technique. Pinning was lowest in untwinned regions and increasing with increasing twin density. Anisotropy in twin boundary pinning, defined as the ratio of the magnetic induction gradient across twin boundaries to that along twin boundaries, was 10 at 17 K; this ratio increased with increasing temperature. In polycrystals, twin boundaries also had a strongly anisotropic effect on flux flow into a grain from a grain boundary.
Three-Dimensional Stress Fields and Slip Systems for Single Crystal Superalloy Notched Specimens
NASA Technical Reports Server (NTRS)
Magnan, Shannon M.; Throckmorton, David (Technical Monitor)
2002-01-01
Single crystal superalloys have become increasingly popular for turbine blade and vane applications due to their high strength, and creep and fatigue resistance at elevated temperatures. The crystallographic orientation of a single crystal material greatly affects its material properties, including elastic modulus, shear modulus, and ductility. These directional properties, along with the type of loading and temperature, dictate an anisotropic response in the yield strength, creep resistance, creep rupture ductility, fatigue resistance, etc. A significant amount of research has been conducted to determine the material properties in the <001> orientation, yet the material properties deviating from the <001> orientation have not been assessed for all cases. Based on the desired application and design criteria, a crystal orientation is selected to yield the maximum properties. Currently, single crystal manufacturing is able to control the primary crystallographic orientation within 15 of the target orientation, which is an acceptable deviation to meet both performance and cost guidelines; the secondary orientation is rarely specified. A common experiment is the standard load-controlled tensile test, in which specimens with different orientations can be loaded to observe the material response. The deformation behavior of single-crystal materials under tension and compression is known to be a function of not only material orientation, but also of varying microdeformation (i.e. dislocation) mechanisms. The underlying dislocation motion causes deformation via slip, and affects the activation of specific slip systems based on load and orientation. The slip can be analyzed by observing the visible traces left on the surface of the specimen from the slip activity within the single crystal material. The goal of this thesis was to predict the slip systems activated in three-dimensional stress fields of a notched tensile specimen, as a function of crystal orientation, using finite element analysis without addressing microstructural deformation mechanisms that govern their activation. Out of three orientations tested, the specimen with a [110] load orientation and a [001] growth direction had the lowest maximum resolved shear stress; this specimen orientation appears to be the best design candidate for a tensile application.
Shear induced orientation of edible fat and chocolate crystals
NASA Astrophysics Data System (ADS)
Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.
2003-03-01
Shear-induced orientation of fat crystallites was observed during crystallization of cocoa butter, milk fat, stripped milk fat and palm oil. This universal effect was observed in systems crystallized under high shear. The minor polar components naturally present in milk fat were found to decrease the shear-induced orientation effect in this system. The competition between Brownian and shear forces, described by the Peclet number, determines the crystallite orientation. The critical radius size, from the Gibbs-Thomson equation, provides a tool to understand the effect of shear at the onset stages of crystallization.
Effect of heat treatment on the crystal structure of deformed samples of chromium-manganese steel
NASA Astrophysics Data System (ADS)
Chezganov, D. S.; Chikova, O. A.; Borovykh, M. A.
2017-09-01
Results of studying microstructures and the crystal structure of samples of 35KhGF steel (0.31-0.38 wt % C, 0.17-0.37 wt % Si, 0.95-1.25 wt % Mn, 1.0-1.3 wt % Cr, 0.06-0.12 wt % V, and the remainder was Fe) have been presented. The samples have been selected from hot-rolled pipes subjected to different heat treatments. A study has been carried out in order to explain the choice of the heat-treatment regime based on determining the structure-properties relationship that provides an increase in the corrosion resistance of pipes to the effect of hydrocarbons. Methods of the energy-dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD) have been used. In the microstructure of samples, oxide inclusions and discontinuities with sizes of 1-50 μm that presumably consist of the scale were detected. The ferrite grain size and the orientations of crystals were determined; the data on the local mechanical stresses in the Taylor orientation- factor maps were obtained. The grain refinement; the increase in the fraction of the low-angle boundaries; and the decrease in the local mechanical stresses and, therefore, the highest corrosion resistance to the effect of hydrocarbons is achieved by normalizing at 910°C.
Fast optical switch having reduced light loss
NASA Technical Reports Server (NTRS)
Nelson, Bruce N. (Inventor); Cooper, Ronald F. (Inventor)
1992-01-01
An electrically controlled optical switch uses an electro-optic crystal of the type having at least one set of fast and slow optical axes. The crystal exhibits electric field induced birefringence such that a plane of polarization oriented along a first direction of a light beam passing through the crystal may be switched to a plane of polarization oriented along a second direction. A beam splitting polarizer means is disposed at one end of the crystal and directs a light beam passing through the crystal whose plane of polarization is oriented along the first direction differently from a light beam having a plane of polarization oriented along the second direction. The electro-optic crystal may be chosen from the crystal classes 43m, 42m, and 23. In a preferred embodiment, the electro-optic crystal is a bismuth germanium oxide crystal or a bismuth silicon oxide crystal. In another embodiment of the invention, polarization control optics are provided which transmit substantially all of the incident light to the electro-optic crystal, substantially reducing the insertion loss of the switch.
In situ three-dimensional reciprocal-space mapping during mechanical deformation.
Cornelius, T W; Davydok, A; Jacques, V L R; Grifone, R; Schülli, T; Richard, M I; Beutier, G; Verdier, M; Metzger, T H; Pietsch, U; Thomas, O
2012-09-01
Mechanical deformation of a SiGe island epitaxically grown on Si(001) was studied by a specially adapted atomic force microscope and nanofocused X-ray diffraction. The deformation was monitored during in situ mechanical loading by recording three-dimensional reciprocal-space maps around a selected Bragg peak. Scanning the energy of the incident beam instead of rocking the sample allowed the safe and reliable measurement of the reciprocal-space maps without removal of the mechanical load. The crystal truncation rods originating from the island side facets rotate to steeper angles with increasing mechanical load. Simulations of the displacement field and the intensity distribution, based on the finite-element method, reveal that the change in orientation of the side facets of about 25° corresponds to an applied pressure of 2-3 GPa on the island top plane.
Matsugaki, Aira; Isobe, Yoshihiro; Saku, Taro; Nakano, Takayoshi
2015-02-01
Bone tissue has a specific anisotropic morphology derived from collagen fiber alignment and the related apatite crystal orientation as a bone quality index. However, the precise mechanism of cellular regulation of the crystallographic orientation of apatite has not been clarified. In this study, anisotropic construction of cell-produced mineralized matrix in vitro was established by initiating organized cellular alignment and subsequent oriented bone-like matrix (collagen/apatite) production. The oriented collagen substrates with three anisotropic levels were prepared by a hydrodynamic method. Primary osteoblasts were cultured on the fabricated substrates until mineralized matrix formation is confirmed. Osteoblast alignment was successfully regulated by the level of substrate collagen orientation, with preferential alignment along the direction of the collagen fibers. Notably, both fibrous orientation of newly synthesized collagen matrix and c-axis of produced apatite crystals showed preferential orientation along the cell direction. Because the degree of anisotropy of the deposited apatite crystals showed dependency on the directional distribution of osteoblasts cultured on the oriented collagen substrates, the cell orientation determines the crystallographic anisotropy of produced apatite crystals. To the best of our knowledge, this is the first report demonstrating that bone tissue anisotropy, even the alignment of apatite crystals, is controllable by varying the degree of osteoblast alignment via regulating the level of substrate orientation. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Shao, Yu-Tsun; Zuo, Jian-Min
Domain walls (DWs) play a critical role in determining the polarization switching behavior in relaxor-based ferroelectric crystals. The domains in relaxor-ferroelectric crystals consist of polar nanoregions (PNRs) and their interface is poorly understood. Here, we report an energy-filtered (EF-) scanning convergent beam electron diffraction (SCBED) study for the identification of PNRs and determination of their interface. With the aid of electro dynamical diffraction simulation, nanometer-sized PNRs having monoclinic Pm (MC) symmetry in single crystal PZN- 8%PT were identified. Lattice rotation vortices having an average radius of 7 nm at the 50° DWs were revealed by maps of crystal orientations, domain configurations, symmetry breaking. Such measurements suggest the merging of 2D and 1D topological defects, with implications for domain-switching mechanisms in relaxor ferroelectric crystals. The interplay between polarization, charge, and strain degrees of freedom suggests a complex landscape of topological defects in ferroelectrics that may be explored for a new form of nanoscale ferroelectric devices. Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign.
Crystal orientation of PEO confined within the nanorod templated by AAO nanochannels.
Liu, Chien-Liang; Chen, Hsin-Lung
2018-06-18
The orientation of poly(ethylene oxide) (PEO) crystallites developed in the nanochannels of anodic aluminum oxide (AAO) membrane has been investigated. PEO was filled homogeneously into the nanochannels in the melt state, and the crystallization confined within the PEO nanorod thus formed was allowed to take place subsequently at different temperatures. The effects of PEO molecular weight (MPEO), crystallization temperature (Tc) and AAO channel diameter (DAAO) on the crystal orientation attained in the nanorod were revealed by 2-D wide angle X-ray scattering (WAXS) patterns. In the nanochannels with DAAO = 23 nm, the crystallites formed from PEO with the lowest MPEO (= 3400 g mol-1) were found to adopt a predominantly perpendicular orientation with the crystalline stems aligning normal to the channel axis irrespective of Tc (ranging from -40 to 20 °C). Increasing MPEO or decreasing Tc tended to induce the development of the tilt orientation characterized by the tilt of the (120) plane by 45° from the channel axis. In the case of the highest MPEO (= 95 000 g mol-1) studied, both perpendicular and tilt orientations coexisted irrespective of Tc. Coexistent orientation was always observed in the channels with a larger diameter (DAAO = 89 nm) irrespective of MPEO and Tc. Compared with the previous results of the crystal orientation attained in nanotubes templated by the preferential wetting of the channel walls by PEO, the window of the perpendicular crystal orientation in the nanorod was much narrower due to its weaker confinement effect imposed on the crystal growth than that set by the nanotube.
Wheeler, J; Mariani, E; Piazolo, S; Prior, D J; Trimby, P; Drury, M R
2009-03-01
The Weighted Burgers Vector (WBV) is defined here as the sum, over all types of dislocations, of [(density of intersections of dislocation lines with a map) x (Burgers vector)]. Here we show that it can be calculated, for any crystal system, solely from orientation gradients in a map view, unlike the full dislocation density tensor, which requires gradients in the third dimension. No assumption is made about gradients in the third dimension and they may be non-zero. The only assumption involved is that elastic strains are small so the lattice distortion is entirely due to dislocations. Orientation gradients can be estimated from gridded orientation measurements obtained by EBSD mapping, so the WBV can be calculated as a vector field on an EBSD map. The magnitude of the WBV gives a lower bound on the magnitude of the dislocation density tensor when that magnitude is defined in a coordinate invariant way. The direction of the WBV can constrain the types of Burgers vectors of geometrically necessary dislocations present in the microstructure, most clearly when it is broken down in terms of lattice vectors. The WBV has three advantages over other measures of local lattice distortion: it is a vector and hence carries more information than a scalar quantity, it has an explicit mathematical link to the individual Burgers vectors of dislocations and, since it is derived via tensor calculus, it is not dependent on the map coordinate system. If a sub-grain wall is included in the WBV calculation, the magnitude of the WBV becomes dependent on the step size but its direction still carries information on the Burgers vectors in the wall. The net Burgers vector content of dislocations intersecting an area of a map can be simply calculated by an integration round the edge of that area, a method which is fast and complements point-by-point WBV calculations.
Mu, X; Kobler, A; Wang, D; Chakravadhanula, V S K; Schlabach, S; Szabó, D V; Norby, P; Kübel, C
2016-11-01
Transmission electron microscopy (TEM) has been used intensively in investigating battery materials, e.g. to obtain phase maps of partially (dis)charged (lithium) iron phosphate (LFP/FP), which is one of the most promising cathode material for next generation lithium ion (Li-ion) batteries. Due to the weak interaction between Li atoms and fast electrons, mapping of the Li distribution is not straightforward. In this work, we revisited the issue of TEM measurements of Li distribution maps for LFP/FP. Different TEM techniques, including spectroscopic techniques (energy filtered (EF)TEM in the energy range from low-loss to core-loss) and a STEM diffraction technique (automated crystal orientation mapping (ACOM)), were applied to map the lithiation of the same location in the same sample. This enabled a direct comparison of the results. The maps obtained by all methods showed excellent agreement with each other. Because of the strong difference in the imaging mechanisms, it proves the reliability of both the spectroscopic and STEM diffraction phase mapping. A comprehensive comparison of all methods is given in terms of information content, dose level, acquisition time and signal quality. The latter three are crucial for the design of in-situ experiments with beam sensitive Li-ion battery materials. Furthermore, we demonstrated the power of STEM diffraction (ACOM-STEM) providing additional crystallographic information, which can be analyzed to gain a deeper understanding of the LFP/FP interface properties such as statistical information on phase boundary orientation and misorientation between domains. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Eberhard, Wynn L.
1993-01-01
Many lidar researchers have occasionally observed zenith-enhanced backscatter (ZEB) from middle and high clouds. The ZEB signature consists of strong backscatter when the lidar is pointed directly at zenith and a dramatic decline in backscatter as the zenith angle dips slightly off zenith. Mirror-like reflection from horizontal facets of oriented crystals (especially plates) is generally accepted as the cause. It was found during a 3-year observation program that approximately 50 percent of ice clouds had ZEB, regardless of cloud height. The orientation of crystals and the ZEB they cause are important to study and understand for several reasons. First, radiative transfer in clouds with oriented crystals is different than if the same particles were randomly oriented. Second, crystal growth depends partly on the orientation of the particles. Third, ZEB measurements may provide useful information about cirrus microphysical and radiative properties. Finally, the remarkable effect of ZEB on lidar signals should be understood in order to properly interpret lidar data.
Large fraction of crystal directions leads to ion channeling
NASA Astrophysics Data System (ADS)
Nordlund, K.; Djurabekova, F.; Hobler, G.
2016-12-01
It is well established that when energetic ions are moving in crystals, they may penetrate much deeper if they happen to be directed in some specific crystal directions. This `channeling' effect is utilized for instance in certain ion beam analysis methods and has been described by analytical theories and atomistic computer simulations. However, there have been very few systematic studies of channeling in directions other than the principal low-index ones. We present here a molecular dynamics-based approach to calculate ion channeling systematically over all crystal directions, providing ion `channeling maps' that easily show in which directions channeling is expected. The results show that channeling effects can be quite significant even at energies below 1 keV, and that in many cases, significant planar channeling occurs also in a wide range of crystal directions between the low-index principal ones. In all of the cases studied, a large fraction (˜20 -60 % ) of all crystal directions show channeling. A practical implication of this is that modern experiments on randomly oriented nanostructures will have a large probability of channeling. It also means that when ion irradiations are carried out on polycrystalline samples, channeling effects on the results cannot a priori be assumed to be negligible. The maps allow for easy selection of good `nonchanneling' directions in experiments or alternatively finding wide channels for beneficial uses of channeling. We implement channeling theory to also give the fraction of channeling directions in a manner directly comparable to the simulations. The comparison shows good qualitative agreement. In particular, channeling theory is very good at predicting which channels are active at a given energy. This is true down to sub-keV energies, provided the penetration depth is not too small.
Crystallization Dynamics of Organolead Halide Perovskite by Real-Time X-ray Diffraction.
Miyadera, Tetsuhiko; Shibata, Yosei; Koganezawa, Tomoyuki; Murakami, Takurou N; Sugita, Takeshi; Tanigaki, Nobutaka; Chikamatsu, Masayuki
2015-08-12
We analyzed the crystallization process of the CH3NH3PbI3 perovskite by observing real-time X-ray diffraction immediately after combining a PbI2 thin film with a CH3NH3I solution. A detailed analysis of the transformation kinetics demonstrated the fractal diffusion of the CH3NH3I solution into the PbI2 film. Moreover, the perovskite crystal was found to be initially oriented based on the PbI2 crystal orientation but to gradually transition to a random orientation. The fluctuating characteristics of the crystallization process of perovskites, such as fractal penetration and orientational transformation, should be controlled to allow the fabrication of high-quality perovskite crystals. The characteristic reaction dynamics observed in this study should assist in establishing reproducible fabrication processes for perovskite solar cells.
NASA Technical Reports Server (NTRS)
Mackay, R. A.; Maier, R. D.
1982-01-01
Constant load creep rupture tests were performed on MAR-M247 single crystals at 724 MPa and 774 C where the effect of anisotropy is prominent. The initial orientations of the specimens as well as the final orientations of selected crystals after stress rupture testing were determined by the Laue back-reflection X-ray technique. The stress rupture lives of the MAR-M247 single crystals were found to be largely determined by the lattice rotations required to produce intersecting slip, because second-stage creep does not begin until after the onset of intersecting slip. Crystals which required large rotations to become oriented for intersecting slip exhibited the shortest stress rupture lives, whereas crystals requiring little or no rotations exhibited the lowest minimum creep rates, and consequently, the longest stress rupture lives.
Investigation of ferroelectric liquid crystal orientation in the silica microcapillaries
NASA Astrophysics Data System (ADS)
Budaszewski, D.; Domański, A. W.; Woliński, T. R.
2013-05-01
In the paper we present our recent results concerning the orientation of ferroelectric liquid crystal molecules inside silica micro capillaries. We have infiltrated the silica micro capillaries with experimental ferroelectric liquid crystal material W-260K synthesized in the Military University of Technology. The infiltrated micro capillaries were observed under the polarization microscope while both a polarizer and an analyzer were crossed. The studies on the orientation of ferroelectric liquid crystal molecules may contribute to further studies on behavior of this group of liquid crystal materials inside photonic crystal fiber. The obtained results may lead to design of a new type of fast optical fiber sensors.
NASA Astrophysics Data System (ADS)
Giannini, C.; Tapfer, L.; Zhuang, Y.; de Caro, L.; Marschner, T.; Stolz, W.
1997-02-01
In this work we investigate the structural properties of symmetrically strained (GaIn)As/GaAs/Ga(PAs)/GaAs superlattices by means of x-ray diffraction, reciprocal-space mapping, and x-ray reflectivity. The multilayers were grown by metalorganic vapor-phase epitaxy on (001) GaAs substrates intentionally off-oriented towards one of the nearest <110> directions. High-resolution triple-crystal reciprocal-space maps recorded for different azimuth angles in the vicinity of the (004) Bragg diffraction clearly show a double periodicity of the x-ray peak intensity that can be ascribed to a lateral and a vertical periodicity occurring parallel and perpendicular to the growth surface. Moreover, from the intensity modulation of the satellite peaks, a lateral-strain gradient within the epilayer unit cell is found, varying from a tensile to a compressive strain. Thus, the substrate off-orientation promotes a lateral modulation of the layer thickness (ordered interface roughness) and of the lattice strain, giving rise to laterally ordered macrosteps. In this respect, contour maps of the specular reflected beam in the vicinity of the (000) reciprocal lattice point were recorded in order to inspect the vertical and lateral interface roughness correlation. A semiquantitative analysis of our results shows that the interface morphology and roughness is greatly influenced by the off-orientation angle and the lateral strain distribution. Two mean spatial wavelengths can be determined, one corresponding exactly to the macrostep periodicity and the other indicating a further interface waviness along the macrosteps. The same spatial periodicities were found on the surface by atomic-force-microscopy images confirming the x-ray results and revealing a strong vertical correlation of the interfaces up to the outer surface.
Orientation control of barium titanate films using metal oxide nanosheet layer
NASA Astrophysics Data System (ADS)
Uchida, Hiroshi; Oi, Tomotake; Noguchi, Keito; Moki, Shota; Kim, Jin Woon; Shima, Hiromi; Nishida, Ken; Kiguchi, Takanori; Akama, Akihiko; Konno, Toyohiko J.; Funakubo, Hiroshi
2016-10-01
In the present work, we aim to achieve the preferred crystal orientation of chemical solution deposition (CSD)-derived BaTiO3 films on ubiquitous Si wafers with the assistance of Ca2Nb3O10 nanosheet (ns-CN) template layers. The ns-CN on platinized Si (Pt/Si) substrates aligned the BaTiO3(100) plane to the substrate surface, because of the favorable lattice matching of the ns-CN (001) plane. The CSD process in air required a high crystallization temperature of 900 °C for the preferred crystal orientation of BaTiO3(100) because of the BaCO3 byproduct generated during the combustion reaction of the precursor gel. The processing in vacuum to remove CO2 species enhanced the crystal orientation even at the crystallization temperature of 800 °C, although it can generate oxygen vacancies (\\text{V}\\text{O}{} \\bullet \\bullet ) that cause distorted polarization behavior under an applied field higher than approximately 150 kV/cm. The relative dielectric constant (εr) of the (100)-oriented BaTiO3 film on the ns-CN-supported Pt/Si substrate (ns-CN/Pt/Si) was generally larger than that of the randomly oriented film on Pt/Si, depending on the degree of crystal orientation.
NASA Astrophysics Data System (ADS)
Chikashige, T.; Iwasaka, M.
2018-05-01
In this study, a new method was investigated to form light-reflecting dots at the micrometer scale using the magnetic orientations of biogenic guanine crystals obtained from fish skin and scales. The crystal platelets, possessing average dimensions of 5 μm×20 μm×100 nm, were dispersed in water and observed during exposure to vertical magnetic fields up to 5 T. The magnetic field direction was parallel to Earth's gravity, and allowed the narrowest edges of the crystals to be observed at the micrometer scale for the first time. The magnetic orientation process was initiated under conditions where the crystal platelets in water were laid on a glass substrate or where the platelets had random orientations. In the former case, the crystal platelets followed a two-stage magnetic orientation process where, in the first step, the platelet widths were aligned in the magnetic field direction. The second step required rotation of the ˜20-μm-long plates with respect to the Earth's gravity, where application of a 5 T magnetic field enabled their orientation. Real-time images of the magnetically aligning platelets provided new evidence that the crystal platelets also emitted reflected light from a very narrow window at two crystal planes (i.e., (0 1 ¯ 2 ¯ ) and (0 1 ¯ 2 )). In the latter case with random platelet orientation, spatially-condensed light-reflecting dots appeared while the guanine crystal platelets were floating and maintaining their orientation. The technique developed for controlling light-reflecting microscale objects in an aqueous medium can be applied to produce a type of microfluidic optical tool.
Micromechanical models for the stiffness and strength of UHMWPE macrofibrils
NASA Astrophysics Data System (ADS)
Dong, Hai; Wang, Zheliang; O'Connor, Thomas C.; Azoug, Aurelie; Robbins, Mark O.; Nguyen, Thao D.
2018-07-01
Ultrahigh molecular weight polyethylene (UHMWPE) fibers have a complex hierarchical structure that at the micron-scale is composed of oriented chain crystals, lamellar crystals, and amorphous domains organized into macrofibrils. We developed a computational micromechanical modeling study of the effects of the morphological structure and constituent material properties on the deformation mechanisms, stiffness and strength of the UHMWPE macrofibrils. Specifically, we developed four representative volume elements, which differed in the arrangement and orientation of the lamellar crystals, to describe the various macrofibrillar microstructures observed in recent experiments. The stiffness and strength of the crystals were determined from molecular dynamic simulations of a pure PE crystal. A finite deformation crystal plasticity model was used to describe the crystals and an isotropic viscoplastic model was used for the amorphous phase. The results show that yielding in UHMWPE macrofibrils under axial tension is dominated by the slip in the oriented crystals, while yielding under transverse compression and shear is dominated by slips in both the oriented and lamellar crystals. The results also show that the axial modulus and strength are mainly determined by the volume fraction of the oriented crystals and are insensitive to the arrangements of the lamellar crystals when the modulus of the amorphous phase is significantly smaller than that of the crystals. In contrast, the arrangement and size of the lamellar crystals have a significant effect on the stiffness and strength under transverse compression and shear. These findings can provide a guide for new materials and processing design to improve the properties of UHMWPE fibers by controlling the macrofibrillar morphologies.
NASA Astrophysics Data System (ADS)
Li, Tao; Zeng, Kaiyang
2014-01-01
The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the elasticity variations of the abalone shell caused by different micro-constituents and crystal orientations are reported, and the elasticity values of the aragonite and calcite nanograins are quantified.The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the elasticity variations of the abalone shell caused by different micro-constituents and crystal orientations are reported, and the elasticity values of the aragonite and calcite nanograins are quantified. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05292c
NASA Astrophysics Data System (ADS)
Drikis, Ivars; Plate, Matiss; Sennikovs, Juris; Virbulis, Janis
2017-09-01
Simulations of 3D anisotropic stress are carried out in <100> and <111> oriented Si crystals grown by FZ and CZ processes for different diameters, growth rates and process stages. Temperature dependent elastic constants and thermal expansion coefficients are used in the FE simulations. The von Mises stress at the triple point line is 5-11% higher in <111> crystals compared to <100> crystals. The process parameters have a larger effect on the von Mises stress than the crystal orientation. Generally, the <111> crystal has a higher azimuthal variation of stress along the triple point line ( 8%) than the <100> crystal ( 2%). The presence of a crystal ridge increases the stress beside the ridge and decreases it on the ridge compared with the round crystal.
NASA Astrophysics Data System (ADS)
Gao, B.; Nakano, S.; Harada, H.; Miyamura, Y.; Kakimoto, K.
2017-09-01
We used an advanced 3D model to study the effect of crystal orientation on the dislocation multiplication in single-crystal silicon under accurate control of the cooling history of temperature. The incorporation of the anisotropy effect of the crystal lattice into the model has been explained in detail, and an algorithm for accurate control of the temperature in the furnace has also been presented. This solver can dynamically track the history of dislocation generation for different orientations during thermal processing of single-crystal silicon. Four orientations, [001], [110], [111], and [112], have been examined, and the comparison of dislocation distributions has been provided.
Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy
McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.
2015-01-01
The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance. PMID:26494523
Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy
NASA Astrophysics Data System (ADS)
McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.
2015-10-01
The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance.
Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy.
McDonald, S A; Reischig, P; Holzner, C; Lauridsen, E M; Withers, P J; Merkle, A P; Feser, M
2015-10-23
The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through '4D' in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance.
Roles of bond orientational ordering in glass transition and crystallization.
Tanaka, Hajime
2011-07-20
It is widely believed that crystallization in three dimensions is primarily controlled by positional ordering, and not by bond orientational ordering. In other words, bond orientational ordering is usually considered to be merely a consequence of positional ordering and thus has often been ignored. This one-order-parameter (density) description may be reasonable when we consider an equilibrium liquid-solid transition, but may not be enough to describe a metastable state and the kinetics of the transition. Here we propose that bond orientational ordering can play a key role in (i) crystallization, (ii) the ordering to quasi-crystal and (iii) vitrification, which occurs under rather weak frustration against crystallization. In a metastable supercooled state before crystallization, a system generally tends to have bond orientational order at least locally as a result of a constraint of dense packing. For a system interacting with hard-core repulsions, the constraint is intrinsically of geometrical origin and thus the basic physics is the same as nematic ordering of rod-like particles upon densification. Furthermore, positional ordering is easily destroyed even by weak frustration such as polydispersity and anisotropic interactions which favour a symmetry not consistent with that of the equilibrium crystal. Thus we may say that vitrification can be achieved by disturbing and prohibiting long-range positional ordering. Even in such a situation, bond orientational ordering still survives, accompanying its critical-like fluctuations, which are the origin of dynamic heterogeneity for this case. This scenario naturally explains both the absence of positional order and the development of bond orientational order upon cooling in a supercooled state. Although our argument is speculative in nature, we emphasize that this physical picture can coherently explain crystallization, vitrification, quasi-crystallization and their relationship in a natural manner. For a strongly frustrated system, even bond orientational order can be destroyed. Even in such a case there may still appear a structural signature of dense packing, which is linked to slow dynamics.
Rothé, Benjamin; Leettola, Catherine N; Leal-Esteban, Lucia; Cascio, Duilio; Fortier, Simon; Isenschmid, Manuela; Bowie, James U; Constam, Daniel B
2018-02-06
Head-to-tail polymers of sterile alpha motifs (SAM) can scaffold large macromolecular complexes. Several SAM-domain proteins that bind each other are mutated in patients with cystic kidneys or laterality defects, including the Ankyrin (ANK) and SAM domain-containing proteins ANKS6 and ANKS3, and the RNA-binding protein Bicc1. To address how their interactions are regulated, we first determined a high-resolution crystal structure of a Bicc1-SAM polymer, revealing a canonical SAM polymer with a high degree of flexibility in the subunit interface orientations. We further mapped interactions between full-length and distinct domains of Bicc1, ANKS3, and ANKS6. Neither ANKS3 nor ANKS6 alone formed macroscopic homopolymers in vivo. However, ANKS3 recruited ANKS6 to Bicc1, and the three proteins together cooperatively generated giant macromolecular complexes. Thus, the giant assemblies are shaped by SAM domains, their flanking sequences, and SAM-independent protein-protein and protein-mRNA interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Second harmonic generation in photonic crystal cavities in (111)-oriented GaAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckley, Sonia, E-mail: bucklesm@stanford.edu; Radulaski, Marina; Vučković, Jelena
2013-11-18
We demonstrate second harmonic generation at telecommunications wavelengths in photonic crystal cavities in (111)-oriented GaAs. We fabricate 30 photonic crystal structures in both (111)- and (100)-oriented GaAs and observe an increase in generated second harmonic power in the (111) orientation, with the mean power increased by a factor of 3, although there is a large scatter in the measured values. We discuss possible reasons for this increase, in particular, the reduced two photon absorption for transverse electric modes in (111) orientation, as well as a potential increase due to improved mode overlap.
Ballhausen, Nicola; Mahy, Caitlin E V; Hering, Alexandra; Voigt, Babett; Schnitzspahn, Katharina M; Lagner, Prune; Ihle, Andreas; Kliegel, Matthias
2017-01-01
A minimal amount of research has examined the cognitive predictors of children's performance in naturalistic, errand-type planning tasks such as the Zoo Map task of the Behavioral Assessment of the Dysexecutive Syndrome for Children (BADS-C). Thus, the current study examined prospection (i.e., the ability to remember to carry out a future intention), executive functioning, and intelligence markers as predictors of performance in this widely used naturalistic planning task in 56 children aged 7- to 12-years-old. Measures of planning, prospection, inhibition, crystallized intelligence, and fluid intelligence were collected in an individual differences study. Regression analyses showed that prospection (rather than traditional measures of intelligence or inhibition) predicted planning, suggesting that naturalistic planning tasks such as the Zoo Map task may rely on future-oriented cognitive processes rather than executive problem solving or general knowledge.
Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry
2017-01-01
The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations. PMID:28094977
Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry.
Neeman, Lior; Ben-Zvi, Regev; Rechav, Katya; Popovitz-Biro, Ronit; Oron, Dan; Joselevich, Ernesto
2017-02-08
The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations.
NASA Astrophysics Data System (ADS)
Mouchi, Vincent; Vonlanthen, Pierre; Verrecchia, Eric P.; Crowley, Quentin G.
2016-04-01
Lophelia pertusa is a cold-water coral, which may form reefs by the association of multiple coralites within which a polyp lives. Each individual polyp builds an aragonite skeleton by an initial phase of early mineralization (traditionally referred to as centres of calcification) from which aragonite fibres grow in thickening deposits. The skeleton wall features successive optically opaque and translucent bands previously attributed to different regimes of growth as either uniform in crystal orientation (translucent bands) or with a chaotic organization (opaque bands). The processes involved in any organizational changes are still unknown. Microlayers in the coral wall, which represent separate periods of skeletal growth, have been recently identified and described. These growth patterns are readily visible under scanning electron microscope (SEM) after etching in dilute formic acid, but they do not necessarily form continuously visible structures. Here we present high quality SEM images and electron backscatter diffraction (EBSD) maps to study aragonite fibre orientation across the wall of L. pertusa. Both microlayers and opaque and translucent bands are compared to the crystallographic orientation of the aragonite fibres. EBSD maps and SEM images indicate that aragonite fibres do not exhibit a chaotic orientation, even in opaque bands. The absence of continuity of microlayers is partially explained by an association of multiple crystallographic preferred orientations of aragonite fibres. In the case of L. pertusa, careful textural characterisation is necessary prior to elemental or isotope analysis in order to select a skeletal transect representing a linear and continuous time period.
Orientation dependence of the stress rupture properties of Nickel-base superalloy single crystals
NASA Technical Reports Server (NTRS)
Mackay, R. A.
1981-01-01
The influence of orientation of the stress rupture behavior of Mar-M247 single crystals was studied. Stress rupture tests were performed at 724 MPa and 774 C where the effect of anisotropy is prominent. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factors for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The stress rupture lives were found to be greatly influenced by the lattice rotations required to produce intersecting slip, because steady-state creep does not begin until after the onset of intersecting slip. Crystals which required large rotations to become oriented for intersecting slip exhibited a large primary creep strain, a large effective stress level at the onset of steady-state creep, and consequently a short stress rupture life. A unified analysis was attained for the stress rupture behavior of the Mar-M247 single crystals tested in this study at 774 C and that of the Mar-M200 single crystals tested in a prior study at 760 C. In this analysis, the standard 001-011-111 stereographic triangle was divided into several regions of crystallographic orientation which were rank ordered according to stress rupture life for this temperature regime. This plot indicates that those crystals having orientations within about 25 deg of the 001 exhibited significantly longer lives when their orientations were closer to the 001-011 boundary of the stereographic triangle than to the 001-111 boundary.
Electrostatic interactions and binding orientation of HIV-1 matrix studied by neutron reflectivity.
Nanda, Hirsh; Datta, Siddhartha A K; Heinrich, Frank; Lösche, Mathias; Rein, Alan; Krueger, Susan; Curtis, Joseph E
2010-10-20
The N-terminal matrix (MA) domain of the HIV-1 Gag protein is responsible for binding to the plasma membrane of host cells during viral assembly. The putative membrane-binding interface of MA was previously mapped by means of mutagenesis and analysis of its trimeric crystal structure. However, the orientation of MA on membranes has not been directly determined by experimental measurements. We present neutron reflectivity measurements that resolve the one-dimensional scattering length density profile of MA bound to a biomimetic of the native viral membrane. A molecular refinement procedure was developed using atomic structures of MA to determine the orientation of the protein on the membrane. The orientation defines a lipid-binding interface consistent with previous mutagenesis results. The MA protein maintains this orientation without the presence of a myristate group, driven only by electrostatic interactions. Furthermore, MA is found to penetrate the membrane headgroup region peripherally such that only the side chains of specific Lys and Arg residues interact with the surface. The results suggest that electrostatic interactions are sufficient to favorably orient MA on viral membrane mimics. The spatial determination of the membrane-bound protein demonstrates the ability of neutron reflectivity to discern orientation and penetration under physiologically relevant conditions. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Orientation and Temperature Dependence of Work-Hardening Rate in Cd Single Crystals
NASA Astrophysics Data System (ADS)
Uçar, N.
1997-03-01
The orientation and temperature dependence of the work-hardening rate (WHR) has been investigated in tension in the temperature range from room temperature to 500 K in Cd single crystals. The WHR was found to decrease rapidly with increasing temperature. For 21-1-3 orientated crystals, the WHR increases firstly with increasing temperature until it passes a maximum at about 350 K.
1100 to 1500 K Slow Plastic Compressive Behavior of NiAl-xCr Single Crystals
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Darolia, Ram
2003-01-01
The compressive properties of near <001> and <111> oriented NiAl-2Cr single crystals and near <011> oriented NiAl-6Cr samples have been measured between 1100 and 1500 K. The 2Cr addition produced significant solid solution strengthening in NiAl, and the <111> and <001> single crystals possessed similar strengths. The 6Cr crystals were not stronger than the 2Cr versions. At 1100 and 1200 K plastic flow in all three Cr-modified materials was highly dependent on stress with exponents > 10. The <011> oriented 6Cr alloy exhibited a stress exponent of about 8 at 1400 and 1500 K; whereas both <001> and <111> NiAl-2Cr crystals possessed stress exponents near 3 which is indicative of a viscous dislocation glide creep mechanism. While the Cottrell-Jaswon solute drag model predicted creep rates within a factor of 3 at 1500 K for <001>-oriented NiAl-2Cr; this mechanism greatly over predicted creep rates for other orientations and at 1400 K for <001> crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jiamin; Hono, K., E-mail: kazuhiro.hono@nims.go.jp; Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-2-1, Sengen, Tsukuba 305-0047
2015-05-07
We have experimentally investigated the crystal orientation dependence of band matching in current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo-spin-valves using Co{sub 2}Fe(Ge{sub 0.5}Ga{sub 0.5}) (CFGG) Heusler alloy ferromagnetic layer and NiAl spacer. The high quality epitaxial CFGG/NiAl/CFGG all-B2-trilayers structure devices were fabricated on both MgO(001) and sapphire (112{sup ¯}0) single crystal substrates to create (001) and (110) crystal orientations. Same magneto-transport properties were observed from these two differently orientated devices indicating that there is no or little orientation dependence of band matching on MR output. We also found that all-B2-trilayer structure was free of lattice matching influence depending on the crystal orientation,more » which made it a good candidate for CPP-GMR device.« less
Morphology design of porous coordination polymer crystals by coordination modulation.
Umemura, Ayako; Diring, Stéphane; Furukawa, Shuhei; Uehara, Hiromitsu; Tsuruoka, Takaaki; Kitagawa, Susumu
2011-10-05
The design of crystal morphology, or exposed crystal facets, has enabled the development (e.g., catalytic activities, material attributes, and oriented film formation) of porous coordination polymers (PCPs) without changing material compositions. However, because crystal growth mechanisms are not fully understood, control of crystal morphology still remains challenging. Herein, we report the morphology design of [Cu(3)(btc)(2)](n) (btc = benzene-1,3,5-tricarboxylate) by the coordination modulation method (modulator = n-dodecanoic acid or lauric acid). A morphological transition (octahedron-cuboctahedron-cube) in the [Cu(3)(btc)(2)](n) crystal was observed with an increase in concentration of the modulator. By suitably defining a coarse-grained standard unit of [Cu(3)(btc)(2)](n) as its cuboctahedron main pore and determining its attachment energy on crystal surfaces, Monte Carlo coarse-grain modeling revealed the population and orientation of carboxylates and elucidated an important role of the modulator in determining the <100>- and <111>-growth throughout the crystal growth process. This comprehension, in fact, successfully led to designed crystal morphologies with oriented growth on bare substrates. Because selective crystal orientations on the bare substrates were governed by crystal morphology, this contribution also casts a new light on the unexplored issue of the significance of morphology design of PCPs.
3D Reconstruction of SPM Probes by Electron Tomography
NASA Astrophysics Data System (ADS)
Xu, X.; Peng, Y.; Saghi, Z.; Gay, R.; Inkson, B. J.; Möbus, G.
2007-04-01
Three-dimensional morphological and compositional structures of tungsten tips consisting of layered amorphous oxide shell and crystalline W core are reconstructed by electron tomography using both coherent and incoherent imaging modes. The fidelity of the reconstruction is dependent on three criteria, suppression of unwanted crystal orientation contrast in the crystalline core, nonlinear intensity-thickness relations above a certain thickness limit, and artefacts due to missing angular ranges when acquiring a tilt series of images. Annular dark field (ADF), and EDX chemical mapping are discussed as alternatives to standard bright field (BF) TEM imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabin, Charles; Plevka, Pavel, E-mail: pavel.plevka@ceitec.muni.cz
Molecular replacement and noncrystallographic symmetry averaging were used to detwin a data set affected by perfect hemihedral twinning. The noncrystallographic symmetry averaging of the electron-density map corrected errors in the detwinning introduced by the differences between the molecular-replacement model and the crystallized structure. Hemihedral twinning is a crystal-growth anomaly in which a specimen is composed of two crystal domains that coincide with each other in three dimensions. However, the orientations of the crystal lattices in the two domains differ in a specific way. In diffraction data collected from hemihedrally twinned crystals, each observed intensity contains contributions from both of themore » domains. With perfect hemihedral twinning, the two domains have the same volumes and the observed intensities do not contain sufficient information to detwin the data. Here, the use of molecular replacement and of noncrystallographic symmetry (NCS) averaging to detwin a 2.1 Å resolution data set for Aichi virus 1 affected by perfect hemihedral twinning is described. The NCS averaging enabled the correction of errors in the detwinning introduced by the differences between the molecular-replacement model and the crystallized structure. The procedure permitted the structure to be determined from a molecular-replacement model that had 16% sequence identity and a 1.6 Å r.m.s.d. for C{sup α} atoms in comparison to the crystallized structure. The same approach could be used to solve other data sets affected by perfect hemihedral twinning from crystals with NCS.« less
NASA Astrophysics Data System (ADS)
Nakashima, Seiji; Ricinschi, Dan; Park, Jung Min; Kanashima, Takeshi; Fujisawa, Hironori; Shimizu, Masaru; Okuyama, Masanori
2009-03-01
The stress influence of the structural and ferroelectric properties of polycrystalline BiFeO3 (BFO) thin films has been investigated using a membrane substrate for relaxing stress. Reciprocal space mapping (RSM) measurement has been performed to confirm the stress dependence of the crystal structure of polycrystalline BFO thin films on the Pt (200 nm)/TiO2 (50 nm)/SiO2 (600 nm)/Si (625 μm) substrate (stress-constrained BFO film) and the Pt (200 nm)/TiO2 (50 nm)/SiO2 (600 nm)/Si (15 μm) membrane substrate (stress-relaxed BFO film). The BFO thin films prepared by pulsed laser deposition were polycrystalline and mainly exhibit a texture with (001) and (110) plane orientations. From the RSM results, the crystal structure of the (001)-oriented domain changes from Pm monoclinic to Cm monoclinic or to R3c rhombohedral due to stress relaxation. Moreover, at room temperature as well as at 150 K, remanent polarization (Pr) increases and double coercive field (2Ec) decreases (in the latter case from 88 to 94 μC/cm2 and from 532 to 457 kV/cm, respectively) due to relaxing stress. The enhancement of ferroelectricity is attributed to the crystal structural deformation and/or transition and angle change between the polarization direction and film plane.
Thickness-modulated anisotropic ferromagnetism in Fe-doped epitaxial HfO2 thin films
NASA Astrophysics Data System (ADS)
Liu, Wenlong; Liu, Ming; Zhang, Ruyi; Ma, Rong; Wang, Hong
2017-10-01
Epitaxial tetragonal Fe-doped Hf0.95Fe0.05O2 (FHO) thin films with various thicknesses were deposited on (001)-oriented NdCaAlO4 (NCAO) substrates by using a pulsed laser deposition (PLD) system. The crystal structure and epitaxial nature of the FHO thin films were confirmed by typical x-ray diffraction (XRD) θ-2θ scan and reciprocal space mapping (RSM). The results indicate that two sets of lattice sites exist with two different crystal orientations [(001) and (100)] in the thicker FHO thin films. Further, the intensity of the (100) direction increases with the increase in thicknesses, which should have a significant effect on the anisotropic magnetization of the FHO thin films. Meanwhile, all the FHO thin films possess a tetragonal phase structure. An anisotropy behavior in magnetization has been observed in the FHO thin films. The anisotropic magnetization of the FHO thin films is slowly weakened as the thickness increases. Meanwhile, the saturation magnetization (Ms) of both in-plane and out-of-plane decreases with the increase in the thickness. The change in the anisotropic magnetization and Ms is attributed to the crystal lattice and the variation in the valence of Fe ions. These results indicate that the thickness-modulated anisotropic ferromagnetism of the tetragonal FHO epitaxial thin films is of potential use for the integration of metal-oxide semiconductors with spintronics.
ERIC Educational Resources Information Center
Hofferber, Michael
1989-01-01
Orienteering--the game of following a map to find predetermined locations--can spark interest and develop skills in map making and map reading. This article gives background on orienteering; describes indoor and outdoor orienteering activities; offers suggestions for incorporating orienteering into science, math, and language arts; and provides a…
NASA Astrophysics Data System (ADS)
Lee, Changhoon; Hong, Jisook; Shim, Ji Hoon; Whangbo, Myung-Hwan
2014-03-01
The clinopyroxenes LiFeSi2O6 and LiFeGe2O6, crystallizing in a monoclinic space group P21/c, are isostructural and isoelectronic Their crystal structures are made up of zigzag chains of edge-sharing FeO6 octahedra containing high-spin Fe3 + ions, which run along the c direction. Despite this structural similarity, the two have quite different magnetic structures and spin orientations. In LiFeSi2O6 the Fe spins have a ferromagnetic coupling within the zigzag chains along c and such FM chains have an antiferromagnetic coupling along a. In contrast, in LiFeGe2O6, the spins have an AFM coupling within the zigzag chains along c and such FM chains have an ↑ ↑ ↓ ↓ coupling along a. In addition, the spin orientation is parallel to c in LiFeSi2O6, but is perpendicular to c in LiFeGe2O6. To explain these differences in the magnetic structure and spin orientation, we evaluated the spin exchange parameters by performing energy mapping analysis based on LDA +U and GGA +U calculations and also by evaluating the magnetocrystalline anisotropy energies in terms of GGA +U +SOC and LDA +U +SOC calculations. Our study show that the magnetic structures and spin orientations of LiFeSi2O6 and LiFeGe2O6 are better described by LDA +U and LDA +U +SOC calculations. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2013R1A1A2060341).
Peng, Dungeng; Satterlee, James D.; Ma, Li-Hua; Dallas, Jerry L.; Smith, Kevin M.; Zhang, Xuhong; Sato, Michihiko; La Mar, Gerd N.
2011-01-01
Heme oxygenase, HO, from the pathogenic bacterium N. meningitidis, NmHO, which secures host iron, shares many properties with mammalian HOs, but also exhibits some key differences. The crystal structure appears more compact and the crystal-undetected C-terminus interacts with substrate in solution. The unique nature of substrate-protein, specifically pyrrole-I/II-helix-2, peripheral interactions in NmHO are probed by 2D 1H NMR to reveal unique structural features controlling substrate orientation. The thermodynamics of substrate orientational isomerism are mapped for substrates with individual vinyl → methyl → hydrogen substitutions and with enzyme C-terminal deletions. NmHO exhibits significantly stronger orientational preference, reflecting much stronger and selective pyrrole-I/II interactions with the protein matrix, than in mammalian HOs. Thus, replacing bulky vinyls with hydrogens results in a 180° rotation of substrate about the α,γ-meso axis in the active site. A "collapse" of the substrate pocket as substrate size decreases is reflected in movement of helix-2 toward the substrate as indicated by significant and selective increased NOESY cross peak intensity, increase in steric Fe-CN tilt reflected in the orientation of the major magnetic axis, and decrease in steric constraints controlling the rate of aromatic ring reorientation. The active site of NmHO appears "stressed" for native protohemin and its "collapse" upon replacing vinyls by hydrogen leads to a factor ~102 increase in substrate affinity. Interaction of the C-terminus with the active site destabilizes the crystallographic protohemin orientation by ~0.7 kcal/mol, which is consistent with optimizing the His207-Asp27 H-bond. Implications of the active site "stress" for product release are discussed. PMID:21870860
Two-stage magnetic orientation of uric acid crystals as gout initiators
NASA Astrophysics Data System (ADS)
Takeuchi, Y.; Miyashita, Y.; Mizukawa, Y.; Iwasaka, M.
2014-01-01
The present study focuses on the magnetic behavior of uric acid crystals, which are responsible for gout. Under a sub-Tesla (T)-level magnetic field, rotational motion of the crystals, which were caused by diamagnetic torque, was observed. We used horizontal magnetic fields with a maximum magnitude of 500 mT generated by an electromagnet to observe the magnetic orientation of the uric acid microcrystals by a microscope. The uric acid crystals showed a perpendicular magnetic field orientation with a minimum threshold of 130 mT. We speculate that the distinct diamagnetic anisotropy in the uric acid crystals resulted in their rotational responses.
The Fundamentals of Dislocation Transport of Hydrogen in BCC Iron.
1984-10-01
4.2.1. Single Crystal Material 24 4.2.2. Polycrystalline Material 25 4.3. Single Crystal Orientation Determination 25 4.4. Straining Permeation Test 27...Test 45 4.6. Supersaturation Study 47 S. RESULTS AND DISCUSSION 50 5.1. Single Crystal Orientation Determination 50 5.1.1. Slip System Determination 58...Orientation 162 Determination B.1. Dislocation Line Direction Determination 162 B.2. Burgers Vector Determination 164
Understanding the oriented-attachment growth of nanocrystals from an energy point of view: a review
NASA Astrophysics Data System (ADS)
Lv, Weiqiang; He, Weidong; Wang, Xiaoning; Niu, Yinghua; Cao, Huanqi; Dickerson, James H.; Wang, Zhiguo
2014-02-01
Since Penn et al. first discovered the oriented attachment growth of crystals, the oriented attachment mechanism has now become a major research focus in the crystal field, and extensive efforts have been carried out over the past decade to systematically investigate the growth mechanism and the statistical kinetic models. However, most of the work mainly focuses on the experimental results on the oriented attachment growth. In contrast to the previous reviews, our review provides an overview of the recent theoretical advances in oriented attachment kinetics combined with experimental evidences. After a brief introduction to the van der Waals interaction and Coulombic interaction in a colloidal system, the correlation between the kinetic models of oriented attachment growth and the interactions is then our focus. The impact of in situ experimental observation techniques on the study of oriented attachment growth is examined with insightful examples. In addition, the advances in theoretical simulations mainly investigating the thermodynamic origin of these interactions at the atomic level are reviewed. This review seeks to understand the oriented attachment crystal growth from a kinetic point of view and provide a quantitative methodology to rationally design an oriented attachment system with pre-evaluated crystal growth parameters.
NASA Astrophysics Data System (ADS)
He, Hong-Sen; Zhang, Ming-Ming; Dong, Jun; Ueda, Ken-Ichi
2016-12-01
A tilted, linearly polarized laser diode end-pumped Cr4+:YAG passively Q-switched a-cut Nd:YVO4 microchip laser for generating numerous Ince-Gaussian (IG) laser modes with controllable orientations has been demonstrated by selecting the crystalline orientation of an a-cut Nd:YVO4 crystal. The same IG laser mode with different orientations has been achieved with the same absorbed pump power in a passively Q-switched Nd:YVO4 microchip laser under linearly polarized pumping when the incident pump power and the crystalline orientation of an a-cut Nd:YVO4 crystal are both properly selected. The significant improvement of pulsed laser performance of controllable IG modes has been achieved by selecting the crystalline orientation of an a-cut Nd:YVO4 crystal. The maximum pulse energy is obtained along the a-axis of an a-cut Nd:YVO4 crystal and the highest peak power is achieved along the c-axis of an a-cut Nd:YVO4 crystal, respectively, which has potential applications on quantum computation and optical manipulation. The generation of controllable IG laser modes in microchip lasers under linearly polarized pumping provides a convenient and universal way to control IG laser mode numbers with anisotropic crystal as a gain medium.
The melt-recrystallization behavior of highly oriented α-iPP fibers embedded in a HIPS matrix.
Ye, Liwei; Li, Huihui; Qiu, Zhaobin; Yan, Shouke
2015-03-21
The melt-recrystallization behavior of α-iPP fibers embedded in an amorphous HIPS matrix has been studied by means of optical microscopy. The amorphous HIPS serving as a supporter of iPP fibers does not become involved in the nucleation and crystallization process of the molten highly oriented iPP fibers. It also does not provide any birefringence under the optical microscope with crossed polarizers. This enables the study of orientation-induced β-iPP crystallization through a control of the melting status of the fibers. Through melting the fibers at different temperatures above 175 °C and subsequent recrystallization, some β-iPP crystals were always produced. The content of the β-iPP crystal depends strongly on the melting temperature and melting time of the iPP fibers. It was confirmed that melting the iPP fibers at relatively lower temperature, e.g. 176 °C, less amount of β-iPP crystals were observed. The content of β-iPP crystal enhances first with increasing melting temperature and then decreases with further increase of the fiber melting temperature. The β-iPP crystallization is found to be most favorable upon melting the fibers at 178 °C for 2 min. This demonstrates the requirement of a certain chain or chain segment orientation for generating β-iPP crystallization on the one hand, while higher orientation of the iPP chains or chain segments encourages the growth of iPP crystals in the α-form on the other hand. This has been further confirmed by varying the melting time of the fiber at different temperatures, since relaxation of the iPP molecular chains at a fixed temperature is time dependent. Moreover, the complete transformation of α-iPP fibers in some local places into β-iPP crystals implies that the αβ-transition may not be required for the orientation-induced β-iPP crystallization.
Solution-processed, Self-organized Organic Single Crystal Arrays with Controlled Crystal Orientation
Kumatani, Akichika; Liu, Chuan; Li, Yun; Darmawan, Peter; Takimiya, Kazuo; Minari, Takeo; Tsukagoshi, Kazuhito
2012-01-01
A facile solution process for the fabrication of organic single crystal semiconductor devices which meets the demand for low-cost and large-area fabrication of high performance electronic devices is demonstrated. In this paper, we develop a bottom-up method which enables direct formation of organic semiconductor single crystals at selected locations with desired orientations. Here oriented growth of one-dimensional organic crystals is achieved by using self-assembly of organic molecules as the driving force to align these crystals in patterned regions. Based upon the self-organized organic single crystals, we fabricate organic field effect transistor arrays which exhibit an average field-effect mobility of 1.1 cm2V−1s−1. This method can be carried out under ambient atmosphere at room temperature, thus particularly promising for production of future plastic electronics. PMID:22563523
NASA Technical Reports Server (NTRS)
Arakere, N. K.; Swanson, G.
2002-01-01
High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297 finite element model runs. Fatigue lives at critical points in the blade are computed using finite element stress results and the failure criterion developed. Stress analysis results in the blade attachment region are also presented. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to significantly increase a component S resistance to fatigue crack growth with- out adding additional weight or cost. [DOI: 10.1115/1.1413767
The role of grain size in He bubble formation: Implications for swelling resistance
El-Atwani, Osman; Nathaniel, II, James E.; Leff, Asher C.; ...
2016-12-07
Here, nanocrystalline metals are postulated as radiation resistant materials due to their high defect and particle (e.g. Helium) sink density. Here, the performance of nanocrystalline iron films is investigated in-situ in a transmission electron microscope (TEM) using He irradiation at 700 K. Automated crystal orientation mapping is used in concert with in-situ TEM to explore the role of grain orientation and grain boundary character on bubble density trends. Bubble density as a function of three key grain size regimes is demonstrated. While the overall trend revealed an increase in bubble density up to a saturation value, grains with areas rangingmore » from 3000 to 7500 nm 2 show a scattered distribution. An extrapolated swelling resistance based on bubble size and areal density indicated that grains with sizes less than 2000 nm 2 possess the greatest apparent resistance. Moreover, denuded zones are found to be independent of grain size, grain orientation, and grain boundary misorientation angle.« less
NASA Astrophysics Data System (ADS)
Giuntoli, Francesco; Menegon, Luca; Warren, Clare
2017-04-01
The thermo-mechanical properties of the middle and lower crust exert a fundamental control on the structure of orogenic belts, and on the amount and style of shortening during continental collision. By virtue of the deep erosional level, the internal parts of the Scandinavian Caledonides expose middle and lower crustal sections involved in subduction-exhumation history and nappe stacking. In this study we analysed the development of a mylonitic microstructure and the associated deformation mechanisms in amphibolites from the middle portion (1.5-2.2 km of depth) of the COSC-1 drill core, central Sweden. Mylonitic amphibolites are common in the drill core. They are composed of hornblende, plagioclase, chlorite, quartz, epidote, carbonate and ilmenite. The plagioclase displays two generations: (1) fractured millimetric porphyroclast cores (Plag1; Ab 99), which are wrapped by the foliation and are dark in the SEM-cathodoluminescence images, and (2) rims (Plag2; Ab 80-90), some tens of microns in size, are bright in the cathodoluminescence images, heal the fractures and overgrow the cores of Plag1. Plag2 grows syn-deformationally, as it is commonly found in strain shadows around Plag1 porphyroclasts. The hornblende preserves corroded cores (Amp1) with higher Mg number compared to the rims (Amp2). The Amp2 is lengthened as the foliation and shows intergrowths with Plag2 and chlorite in strain shadows. Amphibole crystals are commonly boudinaged parallel to the foliation, with chlorite filling the boudin necks. Preliminary pressure and temperature estimates, using Amp2 and Plag2 pairs, constrain their growth at 600°C and 1GPa. EBSD analysis indicates a homogeneous orientation of the porphyroclastic Plag1 without the development of low-angle boundaries, suggesting that Plag1 crystals are strain free. Furthermore, the fractures are sealed by the Plag2 with the same crystallographic orientation as the plagioclase core. The Plag2 grains have their [100] axes oriented subparallel to the stretching lineation, but they are also internally strain free. Thus, we interpret the CPO of Plag2 as a result of oriented grain growth during dissolution-precipitation creep. The enrichment of Ca in Plag2 could reflect either a difference in the PT conditions compared to the growth of Plag1 or a possible metasomatic event characterized by an influx of a Ca-rich fluid, as suggested by the presence of intergranular calcite crystals as well as discrete calcite veins. The X-ray chemical maps and the EBSD maps suggest that (micro)cracking and dissolution- precipitation creep were responsible for the development of the mylonitic amphibolites, and that crystal plasticity was not a dominant deformation mechanism, although deformation occurred at pressure and temperature conditions at which plagioclase is expected to deform by dislocation creep. In conclusion, in middle crustal levels the presence of water at the grain boundaries enhances chemical reaction and is responsible for deformation through dissolution and precipitation processes that create a strong preferred crystallographic orientation in the newly grown minerals.
Fracture of single crystals of the nickel-base superalloy PWA 1480E in helium at 22 C
NASA Technical Reports Server (NTRS)
Chen, P. S.; Wilcox, R. C.
1991-01-01
The fracture behavior and deformation of He-charged (at 22 C) single crystals of PWA 1480E Ni-base superalloy were investigated using SEM and TEM techniques to observe the behavior of tensile fractures in notched single crystals with seven different crystal growth orientations: 100-line, 110-line, 111-line, 013-line, 112-line, 123-line, and 223-line. To identify the cleavage plane orientation, a stereoscopic technique, combined with the use of planar gamma-prime morphologies, was applied. It was found that gamma-prime particles were orderly and closely aligned with edges along the 100-line, 010-line, and 001-line-oriented directions of the gamma matrix. Different crystal growth orientations were found not to affect the morphology of gamma-prime particles. The accumulation of dislocations around gamma/gamma-prime interfaces formed strong barriers to subsequent dislocation movement and was the primary strengthening mechanism at room temperature.
Realignment of Nanocrystal Aggregates into Single Crystals as a Result of Inherent Surface Stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhaoming; Pan, Haihua; Zhu, Genxing
2016-07-19
Assembly of nanoparticles building blocks during single crystal growth is widely observed in both natural and synthetic environments. Although this form of non-classical crystallization is generally described by oriented attachment, random aggregation of building blocks leading to single crystal products is also observed, but the mechanism of crystallographic realignment is unknown. We herein reveal that random attachment during aggregation-based growth initially produces a non-oriented growth front. Subsequent evolution of the orientation is driven by the inherent surface stress applied by the disordered surface layer and results in single crystal formation via grain boundary migration. This mechanism is corroborated by measurementsmore » of orientation rate vs external stress, demonstrating a predictive relationship between the two. These findings advance our understanding of aggregation-based growth of natural minerals by nanocrystals, and suggest an approach to material synthesis that takes advantage of stress induced co-alignment.« less
NASA Astrophysics Data System (ADS)
Ma, Ji; Chen, Kezheng
2016-05-01
In this study, room-temperature spin-glass behaviors were observed in flake-like oriented attached hematite (α-Fe2O3) and iron phosphate hydroxide hydrate (Fe5(PO4)4(OH)3·2H2O) single crystals. Remarkably, their coercivity (HC) values were found to be almost invariable at various given temperatures from 5 to 300 K. The spin topographic map in these flakes was assumed as superparamagnetic (SPM) "islands" isolated by spin glass (SG)-like "bridges". A spin-glass model was then proposed to demonstrate the spin frustration within these "bridges", which were formed by the staggered atomic planes in the uneven surfaces belonging to different attached nanoparticles. Under the spatial limitation and coupling shield of these "bridges", the SPM "islands" were found to be collectively frozen to form a superspin glass (SSG) state below 80 K in weak applied magnetic fields; whereas, when strong magnetic fields were applied, the magnetic coupling of these "islands" would become superferromagnetic (SFM) through tunneling superexchange, so that, these SFM spins could antiferromagnetically couple with the SG-like "bridges" to yield pronounced exchange bias (EB) effect.
Tersigni, Andrew; Sadowski, Jerzy T.; Qin, Xiao-Rong
2017-03-27
Visualizing molecular crystalline domains and influence of substrate defects are important in understanding the charge transport in organic thin film devices. Vacuum evaporated tetracene films of four monolayers on hydrogen-terminated Si(001)-2x1 substrate, as a prototypical system, have been studied with ex situ atomic force microscopy (AFM), transverse shear microscopy (TSM), friction force microscopy (FFM), and low-energy electron microscopy (LEEM). Two differently oriented in-plane lattice domains are found due to the symmetry of the substrate lattice, with no visible azimuthal twist between adjacent molecular layers in surface islands, indicating significant bulk-like crystallization in the film. Meanwhile, two types of subdomains aremore » observed inside of each in-plane lattice domain. The subdomains are anisotropic in shape, and their sizes and distribution are highly influenced by the substrate atomic steps. TSM and FFM measurements indicate that these subdomains result from molecule-tilt orderings within the bulk-like lattice domains. Lastly, TSM evidently shows a sensitivity to probe vertical molecule-tilt anisotropy for the molecular crystals, in addition to its known ability to map the lateral lattice orientations.« less
Laser Fabrication of Two-Dimensional Rotating-Lattice Single Crystal
Savytskii, Dmytro; Au-Yeung, Courtney; Dierolf, Volkmar; ...
2017-03-09
A rotating lattice single (RLS) crystal is a unique form of solid, which was fabricated recently as one-dimensional architecture in glass via solid state transformation induced by laser irradiation. In these objects, the lattice rotates gradually and predictably about an axis that lies in the plane of the crystal and is normal to the laser scanning direction. This paper reports on the fabrication of Sb 2S 3 two-dimensional (2D) RLS crystals on the surface of 16SbI 3-84Sb 2S 3 glass, as a model example: individual RLS crystal lines are joined together using "stitching" or "rastering" as two successful protocols. Themore » electron back scattered diffraction mapping and scanning Laue X-ray microdiffraction of the 2D RLS crystals show gradual rotation of lattice comprising of two components, one along the length of each line and another normal to this direction. The former component is determined by the rotation of the first line of the 2D pattern, but the relative contribution of the last component depends on the extent of overlap between two successive lines. By the appropriate choice of initial seed orientation and the direction of scanning, it is possible to control the lattice rotation, and even to reduce it down to 5 for a 50 × 50 μm 2 2D pattern of Sb 2S 3 crystal.« less
Pagan, Darren C.; Miller, Matthew P.
2016-09-01
A new experimental method to determine heterogeneity of shear strains associated with crystallographic slip in the bulk of ductile, crystalline materials is outlined. The method quantifies the time resolved evolution of misorientation within plastically deforming crystals using single crystal orientation pole figures (SCPFs) measured in-situ with X-ray diffraction. A multiplicative decomposition of the crystal kinematics is used to interpret the distributions of lattice plane orientation observed on the SCPFs in terms of heterogeneous slip activity (shear strains) on multiple slip systems. Here, to show the method’s utility, the evolution of heterogeneous slip is quantified in a silicon single crystal plasticallymore » deformed at high temperature at multiple load steps, with slip activity in sub-volumes of the crystal analyzed simultaneously.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Huaping, E-mail: wuhuaping@gmail.com, E-mail: hpwu@zjut.edu.cn; State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024; Ma, Xuefu
2016-01-15
The influence of crystal orientations on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films has been investigated using an expanded nonlinear thermodynamic theory. The calculations reveal that crystal orientation has significant influence on the phase stability and phase transitions in the misfit strain-temperature phase diagrams. In particular, the (110) orientation leads to a lower symmetry and more complicated phase transition than the (111) orientation in BaTiO{sub 3} films. The increase of compressive strain will dramatically enhance the Curie temperature T{sub C} of (110)-oriented BaTiO{sub 3} films, which matches well with previous experimental data. The polarizationmore » components experience a great change across the boundaries of different phases at room temperature in both (110)- and (111)-oriented films, which leads to the huge dielectric and piezoelectric responses. A good agreement is found between the present thermodynamics calculation and previous first-principles calculations. Our work provides an insight into how to use crystal orientation, epitaxial strain and temperature to tune the structure and properties of ferroelectrics.« less
Li, Chengshuai; Chen, Shichao; Klemba, Michael; Zhu, Yizheng
2016-09-01
A dual-modality birefringence/phase imaging system is presented. The system features a crystal retarder that provides polarization mixing and generates two interferometric carrier waves in a single signal spectrum. The retardation and orientation of sample birefringence can then be measured simultaneously based on spectral multiplexing interferometry. Further, with the addition of a Nomarski prism, the same setup can be used for quantitative differential interference contrast (DIC) imaging. Sample phase can then be obtained with two-dimensional integration. In addition, birefringence-induced phase error can be corrected using the birefringence data. This dual-modality approach is analyzed theoretically with Jones calculus and validated experimentally with malaria-infected red blood cells. The system generates not only corrected DIC and phase images, but a birefringence map that highlights the distribution of hemozoin crystals.
NASA Astrophysics Data System (ADS)
Li, Chengshuai; Chen, Shichao; Klemba, Michael; Zhu, Yizheng
2016-09-01
A dual-modality birefringence/phase imaging system is presented. The system features a crystal retarder that provides polarization mixing and generates two interferometric carrier waves in a single signal spectrum. The retardation and orientation of sample birefringence can then be measured simultaneously based on spectral multiplexing interferometry. Further, with the addition of a Nomarski prism, the same setup can be used for quantitative differential interference contrast (DIC) imaging. Sample phase can then be obtained with two-dimensional integration. In addition, birefringence-induced phase error can be corrected using the birefringence data. This dual-modality approach is analyzed theoretically with Jones calculus and validated experimentally with malaria-infected red blood cells. The system generates not only corrected DIC and phase images, but a birefringence map that highlights the distribution of hemozoin crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedao, Xxx; Garrelie, Florence, E-mail: florence.garrelie@univ-st-etienne.fr; Colombier, Jean-Philippe
2014-04-28
The influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures (LIPSS) has been investigated on a polycrystalline nickel sample. Electron Backscatter Diffraction characterization has been exploited to provide structural information within the laser spot on irradiated samples to determine the dependence of LIPSS formation and lattice defects (stacking faults, twins, dislocations) upon the crystal orientation. Significant differences are observed at low-to-medium number of laser pulses, outstandingly for (111)-oriented surface which favors lattice defects formation rather than LIPSS formation.
NASA Technical Reports Server (NTRS)
Hu, Z. W.; Thomas, B. R.; Chernov, A. A.
2001-01-01
Double-axis multiple-crystal X-ray topography, rocking-curve measurements and triple-axis reciprocal-space mapping have been combined to characterize protein crystals using a laboratory source. Crystals of lysozyme and lysozyme crystals doped with acetylated lysozyme impurities were examined. It was shown that the incorporation of acetylated lysozyme into crystals of lysozyme induces mosaic domains that are responsible for the broadening and/or splitting of rocking curves and diffraction-space maps along the direction normal to the reciprocal-lattice vector, while the overall elastic lattice strain of the impurity-doped crystals does not appear to be appreciable in high angular resolution reciprocal-space maps. Multiple-crystal monochromatic X-ray topography, which is highly sensitive to lattice distortions, was used to reveal the spatial distribution of mosaic domains in crystals which correlates with the diffraction features in reciprocal space. Discussions of the influence of acetylated lysozyme on crystal perfection are given in terms of our observations.
Hu, Z W; Thomas, B R; Chernov, A A
2001-06-01
Double-axis multiple-crystal X-ray topography, rocking-curve measurements and triple-axis reciprocal-space mapping have been combined to characterize protein crystals using a laboratory source. Crystals of lysozyme and lysozyme crystals doped with acetylated lysozyme impurities were examined. It was shown that the incorporation of acetylated lysozyme into crystals of lysozyme induces mosaic domains that are responsible for the broadening and/or splitting of rocking curves and diffraction-space maps along the direction normal to the reciprocal-lattice vector, while the overall elastic lattice strain of the impurity-doped crystals does not appear to be appreciable in high angular resolution reciprocal-space maps. Multiple-crystal monochromatic X-ray topography, which is highly sensitive to lattice distortions, was used to reveal the spatial distribution of mosaic domains in crystals which correlates with the diffraction features in reciprocal space. Discussions of the influence of acetylated lysozyme on crystal perfection are given in terms of our observations.
A Crystal Plasticity Model of Fatigue of Dissimilar Magnesium Alloy Bi-Crystals
NASA Astrophysics Data System (ADS)
Knight, Simon
A crystal plasticity finite element (CPFE) model was applied to the fatigue deformation of dissimilar Mg alloy bi-crystals. The mesoscopic stress-strain and microscopic slip and twinning behaviour of the model were first validated with experimental tension and compression data of pure Mg single crystals. High-cycle fatigue (HCF) simulations up to 1000 cycles were then used to systematically examine the effect of different textures on the cyclic deformation behavior of Mg AZ31-AZ80 bi-crystals at room-temperature. Fatigue behaviour was characterized in terms of the mesoscopic average stress-strain response and the evolution of the microscopic deformation (slip/twin activity). The model captures load asymmetry, cyclic hardening/softening and ratcheting. However, the model did not capture stress concentrations at the grain boundary (GB) for the grain shapes considered. Either basal slip or tensile twinning was activated for any given orientation. When the soft AZ31 grain is oriented for basal slip almost all the shear strain is contained in that grain and has approximately ten times more accumulated shear strain than the other orientations. The results reveal there is a strong effect from orientation combinations on the cyclic deformation wherein a "hard" orientation shields a "soft" orientation from strain. When the AZ80 grain is oriented for basal slip and the AZ31 grain is oriented for tensile twinning the bi-crystal is soft, but only in one direction since twinning is a polar mechanism. Approximately half as much accumulated shear strain occurs when both grains are oriented for twinning. The slip and twinning systems quickly harden in AZ31 in the first few hundred cycles and the shear strain amplitudes quickly devolve from values between 10-6 - 10-4 to around 10-7; values which would be difficult to resolve experimentally. The results were then extended to the possible effects on the fatigue behaviour of an AZ31-AZ80 dissimilar weld idealized as an AZ31-AZ80 bi-crystal. It is predicted that the worst fatigue behaviour would occur when one grain is oriented for basal slip: AZ31 grain, results in strain localization; AZ80 grain, results in an increase in twin boundaries and irreversible deformation in an AZ31 grain.
Ultrasound liquid crystal lens
NASA Astrophysics Data System (ADS)
Shimizu, Yuki; Koyama, Daisuke; Fukui, Marina; Emoto, Akira; Nakamura, Kentaro; Matsukawa, Mami
2018-04-01
A variable-focus lens using a combination of liquid crystals and ultrasound is discussed. The lens uses a technique based on ultrasound vibration to control the molecular orientation of the liquid crystal. The lens structure is simple, with no mechanical moving parts and no transparent electrodes, which is helpful for device downsizing; the structure consists of a liquid crystal layer sandwiched between two glass substrates with a piezoelectric ring. The tens-of-kHz ultrasonic resonance flexural vibration used to excite the lens generates an acoustic radiation force on the liquid crystal layer to induce changes in the molecular orientation of the liquid crystal. The orientations of the liquid crystal molecules and the optical characteristics of the lens were investigated under ultrasound excitation. Clear optical images were observed through the lens, and the focal point could be controlled using the input voltage to the piezoelectric ring to give the lens its variable-focus action.
NASA Astrophysics Data System (ADS)
Morikawa, Satoshi; Satake, Yuji; Takashiri, Masayuki
2018-06-01
The effects of crystal orientation and grain size on the thermoelectric properties of Bi2Te3 thin films were investigated by conducting experimental and theoretical analyses. To vary the crystal orientation and grain size, we performed oblique deposition, followed by thermal annealing treatment. The crystal orientation decreased as the oblique angle was increased, while the grain size was not changed significantly. The thermoelectric properties were measured at room temperature. A theoretical analysis was performed using a first principles method based on density functional theory. Then the semi-classical Boltzmann transport equation was used in the relaxation time approximation, with the effect of grain size included. Furthermore, the effect of crystal orientation was included in the calculation based on a simple semi-experimental model. A maximum power factor of 11.6 µW/(cm·K2) was obtained at an oblique angle of 40°. The calculated thermoelectric properties were in very good agreement with the experimentally measured values.
Uniaxial alignment of triisopropylsilylethynyl pentacene via zone-casting technique.
Su, Yajun; Gao, Xiang; Liu, Jiangang; Xing, Rubo; Han, Yanchun
2013-09-14
Uniaxially aligned triisopropylsilylethynyl pentacene (TIPS-pentacene) crystals over a large area were fabricated using zone-casting technique. The array of TIPS-pentacene displayed a high orientation degree with a dichroic ratio (DR) of 0.80. The crystals were arranged with c axis perpendicular to the substrate and the long axis of the ribbon corresponded to the a axis of TIPS-pentacene. The properties of the solutions and the processing parameters were shown to influence the formation of the oriented TIPS-pentacene crystalline array. Solvent with a low boiling point (such as chloroform) favoured the orientation of the ribbon-like crystals. The concentration of the solution should be appropriate, ensuring the crystallization velocity of TIPS-pentacene matching with the receding of the meniscus. Besides, we proved that the casting speed should be large enough to induce a sufficient concentration gradient. The orientation mechanism of TIPS-pentacene was attributed to a synergy of the ordered nuclei and a match between the crystallization velocity and the casting speed. Field effect transistors (FETs) based on the oriented TIPS-pentacene crystalline array showed a mobility of 0.67 cm(2) V(-1) s(-1).
NASA Astrophysics Data System (ADS)
Avadhut, Yamini S.; Weber, Johannes; Schmedt auf der Günne, Jörn
2017-09-01
An improved implementation of single-crystal magic-angle-spinning (MAS) NMR is presented which gives access to chemical shift tensors both in orientation (relative to the crystal axis system) and principal axis values. For mounting arbitrary crystals inside ordinary MAS rotors, a mounting tool is described which allows to relate the crystal orientation determined by diffraction techniques to the rotor coordinate system. The crystal is finally mounted into a MAS rotor equipped with a special insert which allows a defined reorientation of the single-crystal by 90°. The approach is based on the idea that the dispersive spectra, which are obtained when applying read-pulses at specific rotor-phases, not only yield the size of the eigenvalues but also encode the orientation of the different chemical shift (rank-2) tensors. For this purpose two 2D-data sets with orthogonal crystal orientation are fitted simultaneously. The presented analysis for chemical shift tensors is supported by an analytical formula which allows fast calculation of phase and amplitude of individual spinning side-bands and by a protocol which solves the problem of finding the correct reference phase of the spectrum. Different rotor-synchronized pulse-sequences are introduced for the same reason. Experiments are performed on L-alanine and O-phosphorylethanolamine and the observed errors are analyzed in detail. The experimental data are opposed to DFT-computed chemical shift tensors which have been obtained by the extended embedded ion method.
2017-01-01
Lycaenid butterflies from the genera Callophrys, Cyanophrys and Thecla have evolved remarkable biophotonic gyroid nanostructures within their wing scales that have only recently been replicated by nanoscale additive manufacturing. These nanostructures selectively reflect parts of the visible spectrum to give their characteristic non-iridescent, matte-green appearance, despite a distinct blue–green–yellow iridescence predicted for individual crystals from theory. It has been hypothesized that the organism must achieve its uniform appearance by growing crystals with some restrictions on the possible distribution of orientations, yet preferential orientation observed in Callophrys rubi confirms that this distribution need not be uniform. By analysing scanning electron microscope and optical images of 912 crystals in three wing scales, we find no preference for their rotational alignment in the plane of the scales. However, crystal orientation normal to the scale was highly correlated to their colour at low (conical) angles of view and illumination. This correlation enabled the use of optical images, each containing up to 104–105 crystals, for concluding the preferential alignment seen along the at the level of single scales, appears ubiquitous. By contrast, orientations were found to occur at no greater rate than that expected by chance. Above a critical cone angle, all crystals reflected bright green light indicating the dominant light scattering is due to the predicted band gap along the direction, independent of the domain orientation. Together with the natural variation in scale and wing shapes, we can readily understand the detailed mechanism of uniform colour production and iridescence suppression in these butterflies. It appears that the combination of preferential alignment normal to the wing scale, and uniform distribution within the plane is a near optimal solution for homogenizing the angular distribution of the band gap relative to the wings. Finally, the distributions of orientations, shapes, sizes and degree of order of crystals within single scales provide useful insights for understanding the mechanisms at play in the formation of these biophotonic nanostructures. PMID:28630678
NASA Astrophysics Data System (ADS)
Ross, Alexa; Holz, Robert E.; Ackerman, Steven A.
2017-08-01
In April 2006, the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) launched aboard the CALIPSO satellite and into the A-Train constellation of satellites with its transmitter pointed near nadir. This proved problematic due to specular reflection from horizontally oriented ice crystals occurring more frequently than expected. Because the specular backscatter from oriented ice crystals has large attenuated backscatter and almost no depolarization, the standard lidar inversions cannot be applied. To mitigate this issue, the CALIOP transmitter was moved to 3° off nadir in November 2007. Though problematic for global CALIOP retrievals, the sensitivity to oriented ice during the first year of observations provides a unique data set to investigate scenes of this ice crystal signature. This study focuses on the CALIOP-oriented signature that occurs in midlatitude ocean regions whose cloud tops are relatively warm and low, existing below 6 km. A significant seasonal dependence is found in the Northern Hemisphere with up to 19% of clouds below 6 km yielding specular reflection by CALIOP during the colder months. In contrast, the Southern Hemisphere lacks such seasonal dependence and sees fewer oriented ice crystals. Using collocated CloudSat observations with both CALIOP and Moderate Resolution Imaging Spectroradiometer (MODIS), we investigate the correlations of the oriented signature with MODIS cloud properties. Comparing with CloudSat precipitation retrievals, we find that the oriented signature is strongly correlated with surface precipitation with 64% of CALIOP-oriented ice crystal cases precipitating compared to 40% for nonoriented cases.
Scratching experiments on quartz crystals: Orientation effects in chipping
NASA Astrophysics Data System (ADS)
Tellier, C. R.; Benmessaouda, D.
1994-06-01
The deformation and microfracture properties of quartz crystals were studied by scratching experiments. The critical load at which microfractures are initiated was found to be orientation dependent, whereas the average width of ductile grooves and chips remained relatively insensitive to crystal orientation. In contrast, a marked anisotropy in the shape of chips was observed. This anisotropy has been interpreted in terms of microfractures propagating preferentially along slip planes. Simple geometrical conditions for the SEM (scanning electron microscopy) observation of active slip planes are proposed.
NASA Technical Reports Server (NTRS)
Baty, D. L.; Wempe, T. E.; Huff, E. M.
1973-01-01
Six airline pilots participated in a fixed-base simulator study to determine the effects of two Horizontal Situation Display (HSD/map) panel locations relative to the Vertical Situation Display (VSD), and of three map orientations on manual piloting performance. Pilot comments and opinions were formally obtained. Significant performance differences were found between wind conditions, and among pilots, but not between map locations and orientations. The results also illustrate the potential tracking accuracy of such a display. Recommendations concerning display location and map orientation are made.
Optical-diffraction method for determining crystal orientation
Sopori, B.L.
1982-05-07
Disclosed is an optical diffraction technique for characterizing the three-dimensional orientation of a crystal sample. An arbitrary surface of the crystal sample is texture etched so as to generate a pseudo-periodic diffraction grating on the surface. A laser light beam is then directed onto the etched surface, and the reflected light forms a farfield diffraction pattern in reflection. Parameters of the diffraction pattern, such as the geometry and angular dispersion of the diffracted beam are then related to grating shape of the etched surface which is in turn related to crystal orientation. This technique may be used for examining polycrystalline silicon for use in solar cells.
Control of Orientation and Morphology of Crystals Grown Under Organic Templates
NASA Astrophysics Data System (ADS)
Stripe, Benjamin
Living creatures demonstrate an extraordinary ability to both grow and control the growth of inorganic crystals. These biominerals are found almost everywhere in nature from simple plants and plankton to our own teeth and bones. A great deal of research has been focused on how living creatures are able to achieve such control over the shape, size, orientation, and arrangement of these biominerals. Many studies have been done demonstrating the effects the presence of organic molecules can have on the morphology of nucleating inorganic crystals. These studies have led to the use of ordered arrays of biological molecules as templates to select the orientation of the crystals. Such experiments have had amazing success cataloging monolayers, orientations and morphologies of crystals grown beneath them. However, despite several decades of work, the exact mechanisms by which the orientation and morphology of crystals is selected by organic templates are still not known. The present study attempts to explain the complex interactions that take place at the template surface and decide the orientations and morphologies of the crystals that nucleate there. To do this, scanning electron microscopy (SEM), grazing incidence x-ray diffraction (GID), and x-ray reflectivity have been used to probe the templates and nucleating crystals in situ. The experiments described here seek to move beyond the well-studied two-component systems. In many of these two-component systems a single template and a single type of crystal are grown, and often many claims and comparisons are made about monolayer charge, crystal surface energies, stereochemical recognition, and lattice matches. However, almost all of the claims and comparisons are between systems that are different enough that assumptions about relative charge, strain, recognition, and lattice dynamics are either unfounded or poorly supported. To bridge this gap in the comparison of these different two-component systems the studies presented here are tunable three-component systems. These experiments allow for either continuously adjusting the template by means of two miscible monolayers or adjusting the growing crystals by incorporation of secondary ions. In either case, the idea is the same: we can more accurately compare two-component systems and isolate the controlling factor in the selection of orientation and morphology of the nucleating crystals. The results of these studies have shown that there is a complex interplay of charge, lattice parameters and kinetics. Despite this, we have been able to show that well-oriented growth of single non-dendritic crystals is limited to a fairly small range of surface charges and relative growth kinetics. Within this range, variations in the growing crystals can be seen based on changes in the average lattice parameters despite there being no evidence of direct epitaxy. Theories have evolved around the idea of stereochemical matching between the template and nucleating surface. These theories correlate the template molecular tilt to the orientation relative to the nucleation plane. However, these theories are not supported by the results presented in this manuscript. The data presented in this manuscript are suggestive of far more complex interfacial interactions involving an intermediary amorphous precursor, or possible networks of hydrated or hydrogen bonded ions than has been suggested in previous studies. Excitingly, it appears to be possible to control the selection of orientation using these multicomponent systems despite the complex interactions at the surface.
Functional implications of orientation maps in primary visual cortex
NASA Astrophysics Data System (ADS)
Koch, Erin; Jin, Jianzhong; Alonso, Jose M.; Zaidi, Qasim
2016-11-01
Stimulus orientation in the primary visual cortex of primates and carnivores is mapped as iso-orientation domains radiating from pinwheel centres, where orientation preferences of neighbouring cells change circularly. Whether this orientation map has a function is currently debated, because many mammals, such as rodents, do not have such maps. Here we show that two fundamental properties of visual cortical responses, contrast saturation and cross-orientation suppression, are stronger within cat iso-orientation domains than at pinwheel centres. These differences develop when excitation (not normalization) from neighbouring oriented neurons is applied to different cortical orientation domains and then balanced by inhibition from un-oriented neurons. The functions of the pinwheel mosaic emerge from these local intra-cortical computations: Narrower tuning, greater cross-orientation suppression and higher contrast gain of iso-orientation cells facilitate extraction of object contours from images, whereas broader tuning, greater linearity and less suppression of pinwheel cells generate selectivity for surface patterns and textures.
2012-08-01
270 350x 650 (25, 26) 2 20 Ni-15Al- 5Cr+C,B,Zr 187 x 187 500x 44 ( 4 , 11) 0.5 40 A. Coarse grain, single phase α- titanium The coarse grained... titanium alloy serves as an instructive example because, as evident in Figure 4 (a), only one triple point and one grain boundary appear in the search...wpafb.af.mil Figure 4 . Crystal orientation maps for the first (left) and second (current) tiles of (a) coarse grained α- Titanium , (b) a 2x2 array of a
Diffraction Contrast Tomography: A Novel 3D Polycrystalline Grain Imaging Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuettner, Lindsey Ann
2017-06-06
Diffraction contrast tomography (DCT) is a non-destructive way of imaging microstructures of polycrystalline materials such as metals or crystalline organics. It is a useful technique to map 3D grain structures as well as providing crystallographic information such as crystal orientation, grain shape, and strain. Understanding the internal microstructure of a material is important in understanding the bulk material properties. This report gives a general overview of the similar techniques, DCT data acquisition, and analysis processes. Following the short literature review, potential work and research at Los Alamos National Laboratory (LANL) is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soares, Alexei S.; Mullen, Jeffrey D.; Parekh, Ruchi M.
X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltdin situmicro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ~100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face thatmore » preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. Lastly, high-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.« less
Soares, Alexei S; Mullen, Jeffrey D; Parekh, Ruchi M; McCarthy, Grace S; Roessler, Christian G; Jackimowicz, Rick; Skinner, John M; Orville, Allen M; Allaire, Marc; Sweet, Robert M
2014-11-01
X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.
Soares, Alexei S.; Mullen, Jeffrey D.; Parekh, Ruchi M.; ...
2014-10-09
X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltdin situmicro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ~100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face thatmore » preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. Lastly, high-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.« less
Soares, Alexei S.; Mullen, Jeffrey D.; Parekh, Ruchi M.; McCarthy, Grace S.; Roessler, Christian G.; Jackimowicz, Rick; Skinner, John M.; Orville, Allen M.; Allaire, Marc; Sweet, Robert M.
2014-01-01
X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies. PMID:25343789
Study on preferred crystal orientations of Mg-Zr-O composite protective layer in AC-PDP
NASA Astrophysics Data System (ADS)
Bingang, G.; Chunliang, L.; Zhongxiao, S.; Liu, L.; Yufeng, F.; Xing, X.; Duowang, F.
2006-11-01
In order to study the preferred crystal orientations of Mg-Zr-O composite protective layers in PDP, Mg-Zr-O composite protective layers were deposited by Electron-beam Evaporator using (MgO+ZrO{2}) powder mixture as evaporation source material. X-ray diffractometer (XRD) was used to determine preferred crystal orientations of Mg-Zr-O composite protective layers, surface morphologies of films were analyzed by FESEM and voltage characteristics were examined in a testing macroscopic discharge cell of AC-PDP. On the basis of experimental analysis, the influence of oxide addition and deposition conditions on preferred orientations of Mg-Zr-O composite protective layers were investigated. The results showed that the preferred orientations of Mg-Zr-O films were determined by lattice distortion of MgO crystal. The deposition conditions have great effects on the preferred orientations of Mg-Zr-O films. The preferred orientations affect voltage characteristics through affecting surface morphology of Mg-Zr-O films. A small amount of Zr solution in MgO can decrease firing voltage compared with using pure MgO film. Firing voltage is closely related with the [ ZrO{2}/(MgO+ZrO{2})] ratio of evaporation source materials.
NASA Astrophysics Data System (ADS)
Hermann, Regina; Uhlemann, Margitta; Wendrock, Horst; Gerbeth, Gunter; Büchner, Bernd
2011-03-01
The aim of this work is growth and characterisation of Ti55Nb45 (wt%) single crystals by floating-zone single crystal growth of intermetallic compounds using two-phase radio-frequency (RF) electromagnetic heating. Thereby, the process and, in particular, the flow field in the molten zone is influenced by additional magnetic fields. The growth of massive intermetallic single crystals is very often unsuccessful due to an unfavourable solid-liquid interface geometry enclosing concave fringes. It is generally known that the crystallization process stability is enhanced if the crystallization interface is convex. For this, a tailored magnetic two-phase stirrer system has been developed, which enables a controlled influence on the melt ranging from intensive inwards to outwards flows. Since Ti is favourably light, strong and biocompatible, it is one of the few materials that naturally match the requirements for implantation in the human body. Therefore, the magnetic system was applied to crystal growth of Ti alloys. The grown crystals were oriented and cut to cubes with the desired crystallographic orientations [1 0 0] and [1 0 1] normally on a plane. The electron backscatter diffraction (EBSD) technique was applied to clearly determine crystal orientation and to localize grain boundaries. The formation of oxidic nanotubes on Ti surfaces in dependence of the grain orientation was investigated, performed electrochemically by anodic oxidation from fluoride containing electrolyte.
A study on aircraft map display location and orientation
NASA Technical Reports Server (NTRS)
Baty, D. L.; Wempe, T.; Huff, E.
1973-01-01
Six airline pilots participated in a fixed-based simulator study to determine the effects of two horizontal situation display (HSD/map) panel locations relative to the vertical situation display (VSD), and of three map orientations on manual piloting performance. Pilot comments and opinions were formally obtained. Significant performance differences were found between wind conditions and among pilots but not between map locations and orientations. The results also illustrate the potential tracking accuracy of such a display. Recommendations concerning display location and map orientation are made.
A study on aircraft map display location and orientation
NASA Technical Reports Server (NTRS)
Baty, D. L.; Wempe, T. E.; Huff, E. M.
1974-01-01
Six airline pilots participated in a fixed-base simulator study to determine the effects of two horizontal situation display (HSD/map) panel locations relative to the vertical situation display (VSD), and of three map orientations on manual piloting performance. Pilot comments and opinions were formally obtained. Significant performance differences were found between wind conditions and among pilots, but not between map locations and orientations. The results also illustrate the potential tracking accuracy of such a display. Recommendations concerning display location and map orientation are made.
NASA Astrophysics Data System (ADS)
McClelland, Arthur; Ahn, Seokhoon; Matzger, Adam J.; Chen, Zhan
2009-03-01
Supplemented by computed models, Scanning Tunneling Microscopy (STM) can provide detailed structure of 2D crystals formed at the liquid/solid interface with atomic resolution. However, some structural information such as functional group orientations in such 2D crystals needs to be tested experimentally to ensure the accuracy of the deduced structures. Due to the limited sensitivity, many other experimental techniques such as Raman and infrared spectroscopy have not been allowed to provide such structural information of 2D crystals. Here we showed that Sum Frequency Generation Vibrational Spectroscopy (SFG) can measure average orientation of functional groups in such 2D crystals, or physisorbed monolayers, providing key experimental data to aid in the modeling and interpretation of the STM images. The usefulness of combining these two techniques is demonstrated with a phthalate diesters monolayer formed at the 1-phenyloctane/ highly oriented pyrolytic graphite (HOPG) interface. The spatial orientation of the ester C=O of the monolayer was successfully determined using SFG.
Low cycle fatigue of MAR-M 200 single crystals at 760 and 870 deg C
NASA Technical Reports Server (NTRS)
Milligan, W. W.; Jayaraman, N.; Bill, R. C.
1984-01-01
Fully reversed low cycle fatigue tests were conducted on single crystals of the nickel-base superalloys Mar-M 200 at 760 C and 870 C. At 760 C, planar slip (octahedral) lead to orientation-dependent strain hardening and cyclic lives. Multiple slip crystals strain hardened the most, resulting in relatively high stress ranges and low lives. Single slip crystals strain hardened the least, resulting in relatively low stress ranges and higher lives. A preferential crack initiation site which was related to slip plane geometry was observed in single slip orientated crystals. At 870 C, the trends were quite different, and the slip character was much more homogeneous. As the tensile axis orientation deviated from 001 , the stress ranges increased and the cyclic lives decreased. Two possible mechanisms were proposed to explain the behavior: one is based on Takeuchi and Kuramoto's cube cross-slip model, and the other is based on orientation-dependent creep rates.
Ma, Xiaowei; Zhang, Manyu; Liang, Chongyun; Li, Yuesheng; Wu, Jingjing; Che, Renchao
2015-11-04
Iron oxides are very promising anode materials based on conversion reactions for lithium-ion batteries (LIBs). During conversion processes, the crystal structure and composition of the electrode material are drastically changed. Surprisingly, in our study, inheritance of a crystallographic orientation was found during lithiation/delithiation processes of single-crystal α-Fe2O3 nanocubes by ex situ transmission electron microscopy. Single-crystal α-Fe2O3 was first transformed into numerous Fe nanograins embedded in a Li2O matrix, and then the conversion between Fe and FeO nanograins became the main reversible electrochemical reaction for energy storage. Interestingly, these Fe/FeO nanograins had almost the same crystallographic orientation, indicating that the lithiated/delithiated products can inherit the crystallographic orientation of single-crystal α-Fe2O3. This finding is important for understanding the detailed electrochemical conversion processes of iron oxides, and this feature may also exist during lithiation/delithiation processes of other transition-metal oxides.
Direct observation of nucleation in the bulk of an opaque sample
Xu, Chaoling; Zhang, Yubin; Godfrey, Andrew; ...
2017-02-14
Remarkably little is known about the physical phenomena leading to nucleation of new perfect crystals within deformed metals during annealing, in particular how and where volumes with nearly perfect lattices evolve from structures filled with dislocations, and how local variations at the micrometer length scale affect this nucleation process. We present here the first experimental measurements that relate directly nucleation of recrystallization to the local deformation microstructure in the bulk of a sample of cold rolled aluminum, further deformed locally by a hardness indentation. White beam differential aperture X-ray microscopy is used for the measurements, allowing us to map amore » selected gauge volume in the bulk of the sample in the deformed state, then anneal the sample and map the exact same gauge volume in the annealed state. It is found that nuclei develop at sites of high stored energy and they have crystallographic orientations from those present in the deformed state. Accordingly we suggest that for each nucleus the embryonic volume arises from a structural element contained within the voxels identified with the same orientation. In conclusion, possible nucleation mechanisms are discussed and the growth potentials of the nuclei are also analyzed and discussed.« less
Direct observation of nucleation in the bulk of an opaque sample.
Xu, Chaoling; Zhang, Yubin; Godfrey, Andrew; Wu, Guilin; Liu, Wenjun; Tischler, Jonathan Z; Liu, Qing; Juul Jensen, Dorte
2017-02-14
Remarkably little is known about the physical phenomena leading to nucleation of new perfect crystals within deformed metals during annealing, in particular how and where volumes with nearly perfect lattices evolve from structures filled with dislocations, and how local variations at the micrometer length scale affect this nucleation process. We present here the first experimental measurements that relate directly nucleation of recrystallization to the local deformation microstructure in the bulk of a sample of cold rolled aluminum, further deformed locally by a hardness indentation. White beam differential aperture X-ray microscopy is used for the measurements, allowing us to map a selected gauge volume in the bulk of the sample in the deformed state, then anneal the sample and map the exact same gauge volume in the annealed state. It is found that nuclei develop at sites of high stored energy and they have crystallographic orientations from those present in the deformed state. Accordingly we suggest that for each nucleus the embryonic volume arises from a structural element contained within the voxels identified with the same orientation. Possible nucleation mechanisms are discussed and the growth potentials of the nuclei are also analyzed and discussed.
Automatically Generated Vegetation Density Maps with LiDAR Survey for Orienteering Purpose
NASA Astrophysics Data System (ADS)
Petrovič, Dušan
2018-05-01
The focus of our research was to automatically generate the most adequate vegetation density maps for orienteering purpose. Application Karttapullatuin was used for automated generation of vegetation density maps, which requires LiDAR data to process an automatically generated map. A part of the orienteering map in the area of Kazlje-Tomaj was used to compare the graphical display of vegetation density. With different settings of parameters in the Karttapullautin application we changed the way how vegetation density of automatically generated map was presented, and tried to match it as much as possible with the orienteering map of Kazlje-Tomaj. Comparing more created maps of vegetation density the most suitable parameter settings to automatically generate maps on other areas were proposed, too.
Intermediate phases in [111]- and [001]-oriented PbMg1/3Nb2/3O3-29PbTiO3 single crystals
NASA Astrophysics Data System (ADS)
Kamzina, L. S.
2017-09-01
Phase transformations in [111]- and [001]-oriented PbMg1/3Nb2/3O3-29PbTiO3 single crystals have been studied using dielectric and optical measurements before and after applying an electric field. It is shown that the subsequence of phase transitions rhombohedral ( R)—tetragonal ( T)—cubic ( C) phases is observed in nonpolarized samples of both orientations as temperature increases. In the [111]-oriented crystal, an additional intermediate monoclinic phase (it is possible, M a ) is induced after preliminary polarization at room temperature and the R- M a - T- C phase transitions are observed on heating. In the [001]-oriented crystal, after its polarization, the monoclinic phase forms instead of the rhombohedral phase even at room temperature and the M a - T- C transitions occur on heating. The results are discussed from the point of view of the existence polar nanoregions with different local symmetries in a glasslike matrix.
Lowe, Aaron M.; Bertics, Paul J.; Abbott, Nicholas L.
2009-01-01
We report methods for the acquisition and analysis of optical images formed by thin films of twisted nematic liquid crystals (LCs) placed into contact with surfaces patterned with bio/chemical functionality relevant to surface-based assays. The methods are simple to implement and are shown to provide easily interpreted maps of chemical transformations on surfaces that are widely exploited in the preparation of analytic devices. The methods involve acquisition of multiple images of the LC as a function of the orientation of a polarizer; data analysis condenses the information present in the stack of images into a spatial map of the twist angle of the LC on the analytic surface. The potential utility of the methods is illustrated by mapping (i) the displacement of a monolayer formed from one alkanethiol on a gold film by a second thiol in solution, (ii) coadsorption of mixtures of amine-terminated and ethyleneglycol-terminated alkanethiols on gold films, which leads to a type of mixed monolayer that is widely exploited for immobilization of proteins on analytic surfaces, and (iii) patterns of antibodies printed onto surfaces. These results show that maps of the twist angle of the LC constructed from families of optical images can be used to reveal surface features that are not apparent in a single image of the LC film. Furthermore, the twist angles of the LC can be used to quantify the energy of interaction of the LC with the surface with a spatial resolution of <10 µm. When combined, the results described in this paper suggest non-destructive methods to monitor and validate chemical transformations on surfaces of the type that are routinely employed in the preparation of surface-based analytic technologies. PMID:18355089
Pore configuration landscape of granular crystallization.
Saadatfar, M; Takeuchi, H; Robins, V; Francois, N; Hiraoka, Y
2017-05-12
Uncovering grain-scale mechanisms that underlie the disorder-order transition in assemblies of dissipative, athermal particles is a fundamental problem with technological relevance. To date, the study of granular crystallization has mainly focussed on the symmetry of crystalline patterns while their emergence and growth from irregular clusters of grains remains largely unexplored. Here crystallization of three-dimensional packings of frictional spheres is studied at the grain-scale using X-ray tomography and persistent homology. The latter produces a map of the topological configurations of grains within static partially crystallized packings. Using numerical simulations, we show that similar maps are measured dynamically during the melting of a perfect crystal. This map encodes new information on the formation process of tetrahedral and octahedral pores, the building blocks of perfect crystals. Four key formation mechanisms of these pores reproduce the main changes of the map during crystallization and provide continuous deformation pathways representative of the crystallization dynamics.
Pore configuration landscape of granular crystallization
Saadatfar, M.; Takeuchi, H.; Robins, V.; Francois, N.; Hiraoka, Y.
2017-01-01
Uncovering grain-scale mechanisms that underlie the disorder–order transition in assemblies of dissipative, athermal particles is a fundamental problem with technological relevance. To date, the study of granular crystallization has mainly focussed on the symmetry of crystalline patterns while their emergence and growth from irregular clusters of grains remains largely unexplored. Here crystallization of three-dimensional packings of frictional spheres is studied at the grain-scale using X-ray tomography and persistent homology. The latter produces a map of the topological configurations of grains within static partially crystallized packings. Using numerical simulations, we show that similar maps are measured dynamically during the melting of a perfect crystal. This map encodes new information on the formation process of tetrahedral and octahedral pores, the building blocks of perfect crystals. Four key formation mechanisms of these pores reproduce the main changes of the map during crystallization and provide continuous deformation pathways representative of the crystallization dynamics. PMID:28497794
Pore configuration landscape of granular crystallization
NASA Astrophysics Data System (ADS)
Saadatfar, M.; Takeuchi, H.; Robins, V.; Francois, N.; Hiraoka, Y.
2017-05-01
Uncovering grain-scale mechanisms that underlie the disorder-order transition in assemblies of dissipative, athermal particles is a fundamental problem with technological relevance. To date, the study of granular crystallization has mainly focussed on the symmetry of crystalline patterns while their emergence and growth from irregular clusters of grains remains largely unexplored. Here crystallization of three-dimensional packings of frictional spheres is studied at the grain-scale using X-ray tomography and persistent homology. The latter produces a map of the topological configurations of grains within static partially crystallized packings. Using numerical simulations, we show that similar maps are measured dynamically during the melting of a perfect crystal. This map encodes new information on the formation process of tetrahedral and octahedral pores, the building blocks of perfect crystals. Four key formation mechanisms of these pores reproduce the main changes of the map during crystallization and provide continuous deformation pathways representative of the crystallization dynamics.
Philips, Ryan T.; Chakravarthy, V. Srinivasa
2017-01-01
A remarkable accomplishment of self organizing models is their ability to simulate the development of feature maps in the cortex. Additionally, these models have been trained to tease out the differential causes of multiple feature maps, mapped on to the same output space. Recently, a Laterally Interconnected Synergetically Self Organizing Map (LISSOM) model has been used to simulate the mapping of eccentricity and meridional angle onto orthogonal axes in the primary visual cortex (V1). This model is further probed to simulate the development of the radial bias in V1, using a training set that consists of both radial (rectangular bars of random size and orientation) as well as non-radial stimuli. The radial bias describes the preference of the visual system toward orientations that match the angular position (meridional angle) of that orientation with respect to the point of fixation. Recent fMRI results have shown that there exists a coarse scale orientation map in V1, which resembles the meridional angle map, thereby providing a plausible neural basis for the radial bias. The LISSOM model, trained for the development of the retinotopic map, on probing for orientation preference, exhibits a coarse scale orientation map, consistent with these experimental results, quantified using the circular cross correlation (rc). The rc between the orientation map developed on probing with a thin annular ring containing sinusoidal gratings with a spatial frequency of 0.5 cycles per degree (cpd) and the corresponding meridional map for the same annular ring, has a value of 0.8894. The results also suggest that the radial bias goes beyond the current understanding of a node to node correlation between the two maps. PMID:28111542
Philips, Ryan T; Chakravarthy, V Srinivasa
2016-01-01
A remarkable accomplishment of self organizing models is their ability to simulate the development of feature maps in the cortex. Additionally, these models have been trained to tease out the differential causes of multiple feature maps, mapped on to the same output space. Recently, a Laterally Interconnected Synergetically Self Organizing Map (LISSOM) model has been used to simulate the mapping of eccentricity and meridional angle onto orthogonal axes in the primary visual cortex (V1). This model is further probed to simulate the development of the radial bias in V1, using a training set that consists of both radial (rectangular bars of random size and orientation) as well as non-radial stimuli. The radial bias describes the preference of the visual system toward orientations that match the angular position (meridional angle) of that orientation with respect to the point of fixation. Recent fMRI results have shown that there exists a coarse scale orientation map in V1, which resembles the meridional angle map, thereby providing a plausible neural basis for the radial bias. The LISSOM model, trained for the development of the retinotopic map, on probing for orientation preference, exhibits a coarse scale orientation map, consistent with these experimental results, quantified using the circular cross correlation ( r c ). The r c between the orientation map developed on probing with a thin annular ring containing sinusoidal gratings with a spatial frequency of 0.5 cycles per degree (cpd) and the corresponding meridional map for the same annular ring, has a value of 0.8894. The results also suggest that the radial bias goes beyond the current understanding of a node to node correlation between the two maps.
NASA Astrophysics Data System (ADS)
Luo, Laihui; Dietze, Matthias; Solterbeck, Claus-Henning; Luo, Haosu; Es-Souni, Mohammed
2013-12-01
Single crystals based on solid solutions of lead-magnesium-niobate (PMN) and lead titanate (PT) have emerged as highly promising multifunctional systems combining piezoelectric, pyroelectric, and electro-optic properties that surpass by far those of the best known lead-zirkonium-titanate ceramics. In this paper we present new findings on how the phase transition temperature and the dielectric and ferroelectric properties can be tuned depending on crystal composition, orientation, and thermoelectrical treatment. Mn-doped and pure 0.72PbMg1/3Nb2/3O3-0.28PbTiO3 (0.72PMN-0.28PT) single crystals with ⟨111⟩ and ⟨001⟩ orientations were investigated. A special attention was devoted to field cooling (FC), i.e., cooling under electric field from different temperatures. The results illustrate different findings that were not reported before: the Curie temperature, i.e., ferroelectric-paraelectric transition temperature, is enhanced after field cooling of the Mn-doped, ⟨001⟩-oriented crystal while such a shift is not observed in the ⟨111⟩-oriented and the non-doped crystals. In addition, substantial polarization suppression occurs in the Mn-doped crystals upon FC from high temperature regardless of orientation. Based on piezoforce microscopy of the domain structure that shows suppression of domain growth following field cooling from 200 °C, we propose a mechanism for polarization suppression based on domain pinning by charged defects. The practical importance of our results lies in showing the opportunity offered by a proper choice of crystal composition and poling conditions for tuning the functional properties of PMN-PT single crystals for a specific application. This should contribute to the understanding of their properties towards advanced sensor and transducers devices.
Crystal Orientation Controlled Photovoltaic Properties of Multilayer GaAs Nanowire Arrays.
Han, Ning; Yang, Zai-Xing; Wang, Fengyun; Yip, SenPo; Li, Dapan; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C
2016-06-28
In recent years, despite significant progress in the synthesis, characterization, and integration of various nanowire (NW) material systems, crystal orientation controlled NW growth as well as real-time assessment of their growth-structure-property relationships still presents one of the major challenges in deploying NWs for practical large-scale applications. In this study, we propose, design, and develop a multilayer NW printing scheme for the determination of crystal orientation controlled photovoltaic properties of parallel GaAs NW arrays. By tuning the catalyst thickness and nucleation and growth temperatures in the two-step chemical vapor deposition, crystalline GaAs NWs with uniform, pure ⟨110⟩ and ⟨111⟩ orientations and other mixture ratios can be successfully prepared. Employing lift-off resists, three-layer NW parallel arrays can be easily attained for X-ray diffraction in order to evaluate their growth orientation along with the fabrication of NW parallel array based Schottky photovoltaic devices for the subsequent performance assessment. Notably, the open-circuit voltage of purely ⟨111⟩-oriented NW arrayed cells is far higher than that of ⟨110⟩-oriented NW arrayed counterparts, which can be interpreted by the different surface Fermi level pinning that exists on various NW crystal surface planes due to the different As dangling bond densities. All this indicates the profound effect of NW crystal orientation on physical and chemical properties of GaAs NWs, suggesting the careful NW design considerations for achieving optimal photovoltaic performances. The approach presented here could also serve as a versatile and powerful platform for in situ characterization of other NW materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beran, L.; Cejpek, P.; Kulda, M.
Optical and magneto-optical properties of single crystal of Ni{sub 50.1}Mn{sub 28.4}Ga{sub 21.5} magnetic shape memory alloy during its transformation from martensite to austenite phase were systematically studied. Crystal orientation was approximately along (100) planes of parent cubic austenite. X-ray reciprocal mapping confirmed modulated 10 M martensite phase. Temperature depended measurements of saturation magnetization revealed the martensitic transformation at 335 K during heating. Magneto-optical spectroscopy and spectroscopic ellipsometry were measured in the sample temperature range from 297 to 373 K and photon energy range from 1.2 to 6.5 eV. Magneto-optical spectra of polar Kerr rotation as well as the spectra of ellipsometric parameter Ψ exhibitedmore » significant changes when crossing the transformation temperature. These changes were assigned to different optical properties of Ni-Mn-Ga in martensite and austenite phases due to modification of electronic structure near the Fermi energy during martensitic transformation.« less
Li, Xufan; Basile, Leonardo; Yoon, Mina; Ma, Cheng; Puretzky, Alexander A; Lee, Jaekwang; Idrobo, Juan C; Chi, Miaofang; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai
2015-02-23
Characterizing and controlling the interlayer orientations and stacking orders of two-dimensional (2D) bilayer crystals and van der Waals (vdW) heterostructures is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) crystals that result from different layer stackings provide an ideal platform to study the stacking configurations in 2D bilayer crystals. Through a controllable vapor-phase deposition method, bilayer GaSe crystals were selectively grown and their two preferred 0° or 60° interlayer rotations were investigated. The commensurate stacking configurations (AA' and AB stacking) in as-grown bilayer GaSe crystals are clearly observed at the atomic scale, and the Ga-terminated edge structure was identified using scanning transmission electron microscopy. Theoretical analysis reveals that the energies of the interlayer coupling are responsible for the preferred orientations among the bilayer GaSe crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tutorial: Crystal orientations and EBSD — Or which way is up?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britton, T.B., E-mail: b.britton@imperial.ac.uk; Jiang, J.; Guo, Y.
2016-07-15
Electron backscatter diffraction (EBSD) is an automated technique that can measure the orientation of crystals in a sample very rapidly. There are many sophisticated software packages that present measured data. Unfortunately, due to crystal symmetry and differences in the set-up of microscope and EBSD software, there may be accuracy issues when linking the crystal orientation to a particular microstructural feature. In this paper we outline a series of conventions used to describe crystal orientations and coordinate systems. These conventions have been used to successfully demonstrate that a consistent frame of reference is used in the sample, unit cell, pole figuremore » and diffraction pattern frames of reference. We establish a coordinate system rooted in measurement of the diffraction pattern and subsequently link this to all other coordinate systems. A fundamental outcome of this analysis is to note that the beamshift coordinate system needs to be precisely defined for consistent 3D microstructure analysis. This is supported through a series of case studies examining particular features of the microscope settings and/or unambiguous crystallographic features. These case studies can be generated easily in most laboratories and represent an opportunity to demonstrate confidence in use of recorded orientation data. Finally, we include a simple software tool, written in both MATLAB® and Python, which the reader can use to compare consistency with their own microscope set-up and which may act as a springboard for further offline analysis. - Highlights: • Presentation of conventions used to describe crystal orientations • Three case studies that outline how conventions are consistent • Demonstrates a pathway for calibration and validation of EBSD based orientation measurements • EBSD computer code supplied for validation by the reader.« less
Kahl, W-A; Dilissen, N; Hidas, K; Garrido, C J; López-Sánchez-Vizcaíno, V; Román-Alpiste, M J
2017-11-01
We reconstruct the 3-D microstructure of centimetre-sized olivine crystals in rocks from the Almirez ultramafic massif (SE Spain) using combined X-ray micro computed tomography (μ-CT) and electron backscatter diffraction (EBSD). The semidestructive sample treatment involves geographically oriented drill pressing of rocks and preparation of oriented thin sections for EBSD from the μ-CT scanned cores. The μ-CT results show that the mean intercept length (MIL) analyses provide reliable information on the shape preferred orientation (SPO) of texturally different olivine groups. We show that statistical interpretation of crystal preferred orientation (CPO) and SPO of olivine becomes feasible because the highest densities of the distribution of main olivine crystal axes from EBSD are aligned with the three axes of the 3-D ellipsoid calculated from the MIL analyses from μ-CT. From EBSD data we distinguish multiple CPO groups and by locating the thin sections within the μ-CT volume, we assign SPO to the corresponding olivine crystal aggregates, which confirm the results of statistical comparison. We demonstrate that the limitations of both methods (i.e. no crystal orientation data in μ-CT and no spatial information in EBSD) can be overcome, and the 3-D orientation of the crystallographic axes of olivines from different orientation groups can be successfully correlated with the crystal shapes of representative olivine grains. Through this approach one can establish the link among geological structures, macrostructure, fabric and 3-D SPO-CPO relationship at the hand specimen scale even in complex, coarse-grained geomaterials. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
SSME single-crystal turbine blade dynamics
NASA Technical Reports Server (NTRS)
Moss, Larry A.
1988-01-01
A study was performrd to determine the dynamic characteristics of the Space Shuttle Main Engine high pressure fuel turbopump (HPFTP) blades made of single crystal (SC) material. The first and second stage drive turbine blades of HPFTP were examined. The nonrotating natural frequencies were determined experimentally and analytically. The experimental results of the SC second stage blade were used to verify the analytical procedures. The study examined the SC first stage blade natural frequencies with respect to crystal orientation at typical operating conditions. The SC blade dynamic response was predicted to be less than the directionally solidified base. Crystal axis orientation optimization indicated that the third mode interference will exist in any SC orientation.
SSME single crystal turbine blade dynamics
NASA Technical Reports Server (NTRS)
Moss, Larry A.; Smith, Todd E.
1987-01-01
A study was performed to determine the dynamic characteristics of the Space Shuttle main engine high pressure fuel turbopump (HPFTP) blades made of single crystal (SC) material. The first and second stage drive turbine blades of HPFTP were examined. The nonrotating natural frequencies were determined experimentally and analytically. The experimental results of the SC second stage blade were used to verify the analytical procedures. The analytical study examined the SC first stage blade natural frequencies with respect to crystal orientation at typical operating conditions. The SC blade dynamic response was predicted to be less than the directionally solidified blade. Crystal axis orientation optimization indicated the third mode interference will exist in any SC orientation.
NASA Astrophysics Data System (ADS)
Pushkar', A. A.; Uvarova, T. V.; Molchanov, V. N.
2008-04-01
BaY2F8 crystals are studied as promising active media for UV and VUV lasers. The up-conversion pumping of rare-earth activators is proposed to solve problems related to the solarisation of the medium and the selection of pump sources. The technology of growing oriented BaY2F8 single crystals is developed and the influence of the crystal orientation on the growth rate and quality of single crystals is determined.
NASA Astrophysics Data System (ADS)
Zhu, Peng-wei; Phillips, Andrew; Tung, Jason; Edward, Graham
2005-05-01
The orientation distribution of sheared isotactic polypropylene (iPP) containing different amount of sodium benzoate (SB) has been investigated through the gradient of shear flow field using microbeam of synchrotron wide-angle x-ray techniques. The degree of the overall orientation of α-phase crystal is found to increase with increasing concentration of SB. Compared with the sheared iPP in the absence of SB, the orientation of α-phase crystal is found to distribute over a broader range of shear flow field in the presence of SB. The overall orientation of α-phase crystal is explained in terms of a parent-daughter model or lamella-branched shish-kebab structure. As the concentration of SB increases, the contribution from the c-axis orientation of parent lamellae decreases in the flow direction. The contribution from the a*-axis orientation of daughter lamellae is developed to be dominant in the flow direction when the concentration of SB exceeds a critical value.
Li, Xufan; Basile Carrasco, Leonardo A.; Yoon, Mina; ...
2015-01-21
Characterizing and controlling the interlayer orientations and stacking order of bilayer two-dimensional (2D) crystals and van der Waals (vdW) heterostructure is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) that result from different layer stacking provide an ideal platform to study the stacking configurations in bilayer 2D crystals. Here, through a controllable vapor-phase deposition method we selectively grow bilayer GaSe crystals and investigate their two preferred 0° or 60° interlayer rotations. The commensurate stacking configurations (AA' and AB-stacking) in as-grown 2D bilayer GaSe crystals are clearly observed at the atomic scale andmore » the Ga-terminated edge structure are identified for the first time by using atomic-resolution scanning transmission electron microscopy (STEM). Theoretical analysis of the interlayer coupling energetics vs. interlayer rotation angle reveals that the experimentally-observed orientations are energetically preferred among the bilayer GaSe crystal polytypes. Here, the combined experimental and theoretical characterization of the GaSe bilayers afforded by these growth studies provide a pathway to reveal the atomistic relationships in interlayer orientations responsible for the electronic and optical properties of bilayer 2D crystals and vdW heterostructures.« less
Hydrogen induced fracture characteristics of single crystal nickel-based superalloys
NASA Technical Reports Server (NTRS)
Chen, Po-Shou; Wilcox, Roy C.
1990-01-01
A stereoscopic method for use with x ray energy dispersive spectroscopy of rough surfaces was adapted and applied to the fracture surfaces single crystals of PWA 1480E to permit rapid orientation determinations of small cleavage planes. The method uses a mathematical treatment of stereo pair photomicrographs to measure the angle between the electron beam and the surface normal. One reference crystal orientation corresponding to the electron beam direction (crystal growth direction) is required to perform this trace analysis. The microstructure of PWA 1480E was characterized before fracture analysis was performed. The fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was studied. The hydrogen-induced fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was also studied. In order to understand the temperature dependence of hydrogen-induced embrittlement, notched single crystals with three different crystal growth orientations near zone axes (100), (110), and (111) were tensile tested at 871 C (1600 F) in both helium and hydrogen atmospheres at 34 MPa. Results and conclusions are given.
Impact of spherical nanoparticles on nematic order parameters
NASA Astrophysics Data System (ADS)
Kyrou, C.; Kralj, S.; Panagopoulou, M.; Raptis, Y.; Nounesis, G.; Lelidis, I.
2018-04-01
We study experimentally the impact of spherical nanoparticles on the orientational order parameters of a host nematic liquid crystal. We use spherical core-shell quantum dots that are surface functionalized to promote homeotropic anchoring on their interface with the liquid crystal host. We show experimentally that the orientational order may be strongly affected by the presence of spherical nanoparticles even at low concentrations. The orientational order of the composite system is probed by means of polarized micro-Raman spectroscopy and by optical birefringence measurements as function of temperature and concentration. Our data show that the orientational order depends on the concentration in a nonlinear way, and the existence of a crossover concentration χc≈0.004 pw . It separates two different regimes exhibiting pure-liquid crystal like (χ <χc ) and distorted-nematic ordering (χ >χc ), respectively. In the latter phase the degree of ordering is lower with respect to the pure-liquid crystal nematic phase.
Triphasic Tooling with Small Oriented Diamond Tip for Turning and Smoothing Lightweight Mirrors
NASA Technical Reports Server (NTRS)
Voronov, O. A.; Tompa, G. S.; Kear, B. H.; Veress, V.
2004-01-01
We are developing a new method for the growth of small diamond crystals at very high temperatures and pressures directly from a carbon melt. A prototype "Supercell" has been developed for this purpose. This system is capable of high rate crystal growth in relatively large working volumes. The resulting high quality diamond crystals will be incorporated into a triphasic diamond/titanium carbide/titanium composite tool, with an oriented diamond crystal at its tip. High pressure is needed to prevent degradation of diamond at high temperature, and to ensure the formation of a crack & composite structure. After grinding and polishing, the composite material will be joined to a steel holder, thus forming a diamond-tipped tool for turning and smoothing of a mirror surface. A properly oriented single-crystal diamond cuts and smoothes much better than a conventional polycrystalline diamond crystal. This is because the hardness depends on crystallographic orientation-the difference corresponds to 60-100 GPa on the Knoop scale. Our goal is to achieve surface roughness of about 1 nm, which will be accomplished by precision cutting and smoothing. The hardness of the functionally-graded diamond/titanium carbide/titanium composite tool varies from 100 GPa at its tip to 15 GPa at its base. Previous work has shown that the mass of machined material using an oriented-diamond tool is much larger than that for a standard diamond-metal composite tool.
Ultrafast shock-induced orientation of polycrystalline films: Applications to high explosives
NASA Astrophysics Data System (ADS)
Franken, Jens; Hambir, Selezion A.; Dlott, Dana D.
1999-02-01
Tiny laser-driven shock waves of ˜5 GPa pressure (nanoshocks) are used to study fast mechanical processes occurring in a thin layer of polycrystalline insensitive energetic material, (3-nitro-1,2,4-triazol-5-one) (NTO). Ultrafast coherent Raman spectroscopy of shocked NTO shows the existence of three distinct mechanical processes. Very fast (˜600 ps) changes in intensity and the appearance of new transitions are associated with the uniaxial nature of compression by the shock front. Frequency shifting and broadening processes which track the ˜2 ns duration nanoshock are associated with transient changes in density and temperature. A novel slower process (5-10 ns) starts as the shock begins to unload, and continues for several nanoseconds after the shock is over, resulting in changes of widths and intensities of several vibrational transitions. By comparing ultrafast spectra to static Raman spectra of single NTO crystals in various orientations, it is concluded that this process involves shock-induced partial orientation of the crystals in the NTO layer. The NTO crystals are oriented faster than the time scale for initiating chemical reactions. The sensitivity of explosive crystals to shock initiation may depend dramatically on the orientation of the crystal relative to the direction of shock propagation, so the implications of fast shock-induced orientation for energetic materials initiation are discussed briefly.
Double Stokes-Mueller polarimetry in KTP (Potassium Titanyl Phosphate) crystal
NASA Astrophysics Data System (ADS)
Shaji, Chitra; S B, Sruthil Lal; Sharan, Alok
2017-04-01
Ultra-structural properties of material are being probed by Double Stokes-Mueller polarimetry (DSMP) technique. It makes use of higher dimensions of Stokes vector (9 X 1) and Mueller matrix (4 X9) to characterize the nonlinear optical properties of a material. Second harmonic generation (SHG) at 532nm using 1064nm as fundamental cw beam from Nd: YAG laser in type II phase matched KTP (Potassium Titanyl Phosphate) crystal is studied using DSMP. The experimental measurements for determining double Mueller matrix are carried out in the ``Polarization In Polarization Out'' (PIPO) arrangement. Nine input polarization states are incident on the sample and the linear Stokes vector of the emerging light from the sample is measured. The KTP crystal is oriented such that the SHG signal efficiency at the incident horizontal and vertical polarizations is high as compared to diagonal polarization states. The susceptibility tensor components and the phase difference between them at this orientation are determined from the double Mueller matrix elements. These determined values give information regarding the crystal axis orientations. To our knowledge, this is the first report of the use of DSMP technique to determine the crystal orientations of a biaxial crystal.
The Map in Our Head Is Not Oriented North: Evidence from a Real-World Environment.
Brunyé, Tad T; Burte, Heather; Houck, Lindsay A; Taylor, Holly A
2015-01-01
Like most physical maps, recent research has suggested that cognitive maps of familiar environments may have a north-up orientation. We demonstrate that north orientation is not a necessary feature of cognitive maps and instead may arise due to coincidental alignment between cardinal directions and the built and natural environment. Experiment 1 demonstrated that pedestrians have difficulty pointing north while navigating a familiar real-world environment with roads, buildings, and green spaces oriented oblique to cardinal axes. Instead, north estimates tended to be parallel or perpendicular to roads. In Experiment 2, participants did not demonstrate privileged memory access when oriented toward north while making relative direction judgments. Instead, retrieval was fastest and most accurate when orientations were aligned with roads. In sum, cognitive maps are not always oriented north. Rather, in some real-world environments they can be oriented with respect to environment-specific features, serving as convenient reference systems for organizing and using spatial memory.
Corkery, Robert W; Tyrode, Eric C
2017-08-06
Lycaenid butterflies from the genera Callophrys , Cyanophrys and Thecla have evolved remarkable biophotonic gyroid nanostructures within their wing scales that have only recently been replicated by nanoscale additive manufacturing. These nanostructures selectively reflect parts of the visible spectrum to give their characteristic non-iridescent, matte-green appearance, despite a distinct blue-green-yellow iridescence predicted for individual crystals from theory. It has been hypothesized that the organism must achieve its uniform appearance by growing crystals with some restrictions on the possible distribution of orientations, yet preferential orientation observed in Callophrys rubi confirms that this distribution need not be uniform. By analysing scanning electron microscope and optical images of 912 crystals in three wing scales, we find no preference for their rotational alignment in the plane of the scales. However, crystal orientation normal to the scale was highly correlated to their colour at low (conical) angles of view and illumination. This correlation enabled the use of optical images, each containing up to 10 4 -10 5 crystals, for concluding the preferential alignment seen along the [Formula: see text] at the level of single scales, appears ubiquitous. By contrast, [Formula: see text] orientations were found to occur at no greater rate than that expected by chance. Above a critical cone angle, all crystals reflected bright green light indicating the dominant light scattering is due to the predicted band gap along the [Formula: see text] direction, independent of the domain orientation. Together with the natural variation in scale and wing shapes, we can readily understand the detailed mechanism of uniform colour production and iridescence suppression in these butterflies. It appears that the combination of preferential alignment normal to the wing scale, and uniform distribution within the plane is a near optimal solution for homogenizing the angular distribution of the [Formula: see text] band gap relative to the wings. Finally, the distributions of orientations, shapes, sizes and degree of order of crystals within single scales provide useful insights for understanding the mechanisms at play in the formation of these biophotonic nanostructures.
Aragonite pseudomorphs in high-pressure marbles of Syros, Greece
NASA Astrophysics Data System (ADS)
Brady, John B.; Markley, Michelle J.; Schumacher, John C.; Cheney, John T.; Bianciardi, Grace A.
2004-01-01
Numerous rod-shaped calcite crystals occur in the blueschist to eclogite facies marbles of Syros, Greece. The rods show a shape-preferred orientation, and the long axes of the rods are oriented at a large angle to foliation. The crystals also have a crystallographic-preferred orientation: calcite c-axes are oriented parallel to the long axes of the rods. Based on their chemical composition, shape, and occurrence in high-pressure marbles, these calcite crystals are interpreted as topotactic pseudomorphs after aragonite that developed a crystallographic-preferred orientation during peak metamorphism. This interpretation is consistent with deformation of aragonite by dislocation creep, which has been observed in laboratory experiments but has not been previously reported on the basis of field evidence. Subsequent to the high-pressure deformation of the aragonite marbles, the aragonite recrystallized statically into coarse rod-shaped crystals, maintaining the crystallographic orientation developed during deformation. During later exhumation, aragonite reverted to calcite, and the marbles experienced little further deformation, at least in the pseudomorph-rich layers. Some shearing of pseudomorph-bearing marble layers did occur and is indicated by twinning of calcite and by a variable inclination of the pseudomorphs relative to foliation.
Effect of Crystal Orientation on Analysis of Single-Crystal, Nickel-Based Turbine Blade Superalloys
NASA Technical Reports Server (NTRS)
Swanson, G. R.; Arakere, N. K.
2000-01-01
High-cycle fatigue-induced failures in turbine and turbopump blades is a pervasive problem. Single-crystal nickel turbine blades are used because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant and complicating factor. A fatigue failure criterion based on the maximum shear stress amplitude on the 24 octahedral and 6 cube slip systems is presented for single-crystal nickel superalloys (FCC crystal). This criterion greatly reduces the scatter in uniaxial fatigue data for PWA 1493 at 1,200 F in air. Additionally, single-crystal turbine blades used in the Space Shuttle main engine high pressure fuel turbopump/alternate turbopump are modeled using a three-dimensional finite element (FE) model. This model accounts for material orthotrophy and crystal orientation. Fatigue life of the blade tip is computed using FE stress results and the failure criterion that was developed. Stress analysis results in the blade attachment region are also presented. Results demonstrate that control of crystallographic orientation has the potential to significantly increase a component's resistance to fatigue crack growth without adding additional weight or cost.
Topographic Independent Component Analysis reveals random scrambling of orientation in visual space
Martinez-Garcia, Marina; Martinez, Luis M.
2017-01-01
Neurons at primary visual cortex (V1) in humans and other species are edge filters organized in orientation maps. In these maps, neurons with similar orientation preference are clustered together in iso-orientation domains. These maps have two fundamental properties: (1) retinotopy, i.e. correspondence between displacements at the image space and displacements at the cortical surface, and (2) a trade-off between good coverage of the visual field with all orientations and continuity of iso-orientation domains in the cortical space. There is an active debate on the origin of these locally continuous maps. While most of the existing descriptions take purely geometric/mechanistic approaches which disregard the network function, a clear exception to this trend in the literature is the original approach of Hyvärinen and Hoyer based on infomax and Topographic Independent Component Analysis (TICA). Although TICA successfully addresses a number of other properties of V1 simple and complex cells, in this work we question the validity of the orientation maps obtained from TICA. We argue that the maps predicted by TICA can be analyzed in the retinal space, and when doing so, it is apparent that they lack the required continuity and retinotopy. Here we show that in the orientation maps reported in the TICA literature it is easy to find examples of violation of the continuity between similarly tuned mechanisms in the retinal space, which suggest a random scrambling incompatible with the maps in primates. The new experiments in the retinal space presented here confirm this guess: TICA basis vectors actually follow a random salt-and-pepper organization back in the image space. Therefore, the interesting clusters found in the TICA topology cannot be interpreted as the actual cortical orientation maps found in cats, primates or humans. In conclusion, Topographic ICA does not reproduce cortical orientation maps. PMID:28640816
Topographic Independent Component Analysis reveals random scrambling of orientation in visual space.
Martinez-Garcia, Marina; Martinez, Luis M; Malo, Jesús
2017-01-01
Neurons at primary visual cortex (V1) in humans and other species are edge filters organized in orientation maps. In these maps, neurons with similar orientation preference are clustered together in iso-orientation domains. These maps have two fundamental properties: (1) retinotopy, i.e. correspondence between displacements at the image space and displacements at the cortical surface, and (2) a trade-off between good coverage of the visual field with all orientations and continuity of iso-orientation domains in the cortical space. There is an active debate on the origin of these locally continuous maps. While most of the existing descriptions take purely geometric/mechanistic approaches which disregard the network function, a clear exception to this trend in the literature is the original approach of Hyvärinen and Hoyer based on infomax and Topographic Independent Component Analysis (TICA). Although TICA successfully addresses a number of other properties of V1 simple and complex cells, in this work we question the validity of the orientation maps obtained from TICA. We argue that the maps predicted by TICA can be analyzed in the retinal space, and when doing so, it is apparent that they lack the required continuity and retinotopy. Here we show that in the orientation maps reported in the TICA literature it is easy to find examples of violation of the continuity between similarly tuned mechanisms in the retinal space, which suggest a random scrambling incompatible with the maps in primates. The new experiments in the retinal space presented here confirm this guess: TICA basis vectors actually follow a random salt-and-pepper organization back in the image space. Therefore, the interesting clusters found in the TICA topology cannot be interpreted as the actual cortical orientation maps found in cats, primates or humans. In conclusion, Topographic ICA does not reproduce cortical orientation maps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zhigang; Chun, Jaehun; Chatterjee, Sayandev
Detailed knowledge of the forces between nanocrystals is very crucial for understanding many generic (e.g., random aggregation/assembly and rheology) and specific (e.g., oriented attachment) phenomena at macroscopic length scales, especially considering the additional complexities involved in nanocrystals such as crystal orientation and corresponding orientation-dependent physicochemical properties. Because there are a limited number of methods to directly measure the forces, little is known about the forces that drive the various emergent phenomena. Here we report on two methods of preparing crystals as force measurement tips used in an atomic force microscope (AFM): the focused ion beam method and microlithography method. Themore » desired crystals are fabricated using these two methods and are fixed to the AFM probe using platinum deposition, ultraviolet epoxy, or resin, which allows for the orientation-dependent force measurements. These two methods can be used to attach virtually any solid particles (from the size of a few hundreds of nanometers to millimeters). We demonstrate the force measurements between aqueous media under different conditions such as pH.« less
Crystallization Behavior of Poly(ethylene oxide) in Vertically Aligned Carbon Nanotube Array.
Sheng, Jiadong; Zhou, Shenglin; Yang, Zhaohui; Zhang, Xiaohua
2018-03-27
We investigate the effect of the presence of vertically aligned multiwalled carbon nanotubes (CNTs) on the orientation of poly(ethylene oxide) (PEO) lamellae and PEO crystallinity. The high alignment of carbon nanotubes acting as templates probably governs the orientation of PEO lamellae. This templating effect might result in the lamella planes of PEO crystals oriented along a direction parallel to the long axis of the nanotubes. The presence of aligned carbon nanotubes also gives rise to the decreases in PEO crystallinity, crystallization temperature, and melting temperature due to the perturbation of carbon nanotubes to the crystallization of PEO. These effects have significant implications for controlling the orientation of PEO lamellae and decreasing the crystallinity of PEO and thickness of PEO lamellae, which have significant impacts on ion transport in PEO/CNT composite and the capacitive performance of PEO/CNT composite. Both the decreased PEO crystallinity and the orientation of PEO lamellae along the long axes of vertically aligned CNTs give rise to the decrease in the charge transfer resistance, which is associated with the improvements in the ion transport and capacitive performance of PEO/CNT composite.
Solidification rate influence on orientation and mechanical properties of MAR-M-246+Hf
NASA Technical Reports Server (NTRS)
Hamilton, D.
1983-01-01
The influence of solidification rates on the orientation and mechanical properties of MAR-M-246+Hf was studied. The preferred orientation was found to be (001) for single crystals, with all samples with 45 degrees of (001). Tensile tests were performed at room temperature. The anisotropy of directionally solidified MAR-M-246+Hf was demonstrated by gage section deformation. Dendrite arm spacing and crystal growth were found to depend on solidification rates and source material conditions. The greatest strength occurred at lower solidification rates. Some single crystals were grown by control of growth rates without seeding.
Terahertz spectroscopic analysis of crystal orientation in polymers
NASA Astrophysics Data System (ADS)
Azeyanagi, Chisato; Kaneko, Takuya; Ohki, Yoshimichi
2018-05-01
Terahertz time-domain spectroscopy (THz-TDS) is attracting keen attention as a new spectroscopic tool for characterizing various materials. In this research, the possibility of analyzing the crystal orientation in a crystalline polymer by THz-TDS is investigated by measuring angle-resolved THz absorption spectra for sheets of poly(ethylene terephthalate), poly(ethylene naphthalate), and poly(phenylene sulfide). The resultant angle dependence of the absorption intensity of each polymer is similar to that of the crystal orientation examined using pole figures of X-ray diffraction. More specifically, THz-TDS can indicate the alignment of molecules in polymers.
Elasticity of smectic liquid crystals with in-plane orientational order and dispiration asymmetry
NASA Astrophysics Data System (ADS)
Alageshan, Jaya Kumar; Chakrabarti, Buddhapriya; Hatwalne, Yashodhan
2017-02-01
The Nelson-Peliti formulation of the elasticity theory of isolated fluid membranes with orientational order emphasizes the interplay between geometry, topology, and thermal fluctuations. Fluid layers of lamellar liquid crystals such as smectic-C , hexatic smectics, and smectic-C* are endowed with in-plane orientational order. We extend the Nelson-Peliti formulation so as to bring these smectics within its ambit. Using the elasticity theory of smectics-C*, we show that positive and negative dispirations (topological defects in Smectic-C* liquid crystals) with strengths of equal magnitude have disparate energies—a result that is amenable to experimental tests.
Development of chemically vapor deposited rhenium emitters of (0001) preferred crystal orientation
NASA Technical Reports Server (NTRS)
Yang, L.; Hudson, R. G.
1973-01-01
Rhenium thermionic emitters were prepared by the pyrolysis of rhenium chlorides formed by the chlorination of rhenium pellets. The impurity contents, microstructures, degrees of (0001) preferred crystal orientation, and vacuum electron work functions of these emitters were determined as a function of deposition parameters, such as substrate temperature, rhenium pellet temperature and chlorine flow rate. A correlation between vacuum electron work function and degree of (0001) preferred crystal orientation was established. Conditions for depositing porosity-free rhenium emitters of high vacuum electron work functions were defined. Finally, three cylindrical rhenium emitters were prepared under the optimum deposition conditions.
The Crystallization Clinic-A TA Orientation Exercise
NASA Astrophysics Data System (ADS)
Kandel, Marjorie
1999-01-01
Our orientation exercise for TAs in the organic laboratories is a Crystallization Clinic, and the main feature is a contest. Each TA has a different unknown solid to recrystallize. The products are judged by the students in the organic lab courses. Beauty of the crystals is the single criterion. The contest serves to refresh the TAs' technique and to give them empathy with the beginning students.
Electron Microscopy Characterization of Vanadium Dioxide Thin Films and Nanoparticles
NASA Astrophysics Data System (ADS)
Rivera, Felipe
Vanadium dioxide (VO_2) is a material of particular interest due to its exhibited metal to insulator phase transition at 68°C that is accompanied by an abrupt and significant change in its electronic and optical properties. Since this material can exhibit a reversible drop in resistivity of up to five orders of magnitude and a reversible drop in infrared optical transmission of up to 80%, this material holds promise in several technological applications. Solid phase crystallization of VO_2 thin films was obtained by a post-deposition annealing process of a VO_{x,x approx 2} amorphous film sputtered on an amorphous silicon dioxide (SiO_2) layer. Scanning electron microscopy (SEM) and electron-backscattered diffraction (EBSD) were utilized to study the morphology of the solid phase crystallization that resulted from this post-deposition annealing process. The annealing parameters ranged in temperature from 300°C up to 1000°C and in time from 5 minutes up to 12 hours. Depending on the annealing parameters, EBSD showed that this process yielded polycrystalline vanadium dioxide thin films, semi-continuous thin films, and films of isolated single-crystal particles. In addition to these films on SiO_2, other VO_2 thin films were deposited onto a-, c-, and r-cuts of sapphire and on TiO_2(001) heated single-crystal substrates by pulsed-laser deposition (PLD). The temperature of the substrates was kept at ˜500°C during deposition. EBSD maps and orientation imaging microscopy were used to study the epitaxy and orientation of the VO_2 grains deposited on the single crystal substrates, as well as on the amorphous SiO_2 layer. The EBSD/OIM results showed that: 1) For all the sapphire substrates analyzed, there is a predominant family of crystallographic relationships wherein the rutile VO_2{001} planes tend to lie parallel to the sapphire's {10-10} and the rutile VO_2{100} planes lie parallel to the sapphire's {1-210} and {0001}. Furthermore, while this family of relationships accounts for the majority of the VO_2 grains observed, due to the sapphire substrate's geometry there were variations within these rules that changed the orientation of VO_2 grains with respect to the substrate's normal direction. 2) For the TiO_2, a substrate with a lower lattice mismatch, we observe the expected relationship where the rutile VO_2 [100], [110], and [001] crystal directions lie parallel to the TiO_2 substrate's [100], [110], and [001] crystal directions respectively. 3) For the amorphous SiO_2 layer, all VO_2 crystals that were measurable (those that grew to the thickness of the deposited film) had a preferred orientation with the the rutile VO_2[001] crystal direction tending to lie parallel to the plane of the specimen. The use of transmission electron microscopy (TEM) is presented as a tool for further characterization studies of this material and its applications. In this work TEM diffraction patterns taken from cross-sections of particles of the a- and r-cut sapphire substrates not only solidified the predominant family mentioned, but also helped lift the ambiguity present in the rutile VO_2{100} axes. Finally, a focused-ion beam technique for preparation of cross-sectional TEM samples of metallic thin films deposited on polymer substrates is demonstrated.
Likelihood-based modification of experimental crystal structure electron density maps
Terwilliger, Thomas C [Sante Fe, NM
2005-04-16
A maximum-likelihood method for improves an electron density map of an experimental crystal structure. A likelihood of a set of structure factors {F.sub.h } is formed for the experimental crystal structure as (1) the likelihood of having obtained an observed set of structure factors {F.sub.h.sup.OBS } if structure factor set {F.sub.h } was correct, and (2) the likelihood that an electron density map resulting from {F.sub.h } is consistent with selected prior knowledge about the experimental crystal structure. The set of structure factors {F.sub.h } is then adjusted to maximize the likelihood of {F.sub.h } for the experimental crystal structure. An improved electron density map is constructed with the maximized structure factors.
Single crystal to polycrystal neutron transmission simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dessieux, Luc Lucius; Stoica, Alexandru Dan; Bingham, Philip R.
A collection of routines for calculation of the total cross section that determines the attenuation of neutrons by crystalline solids is presented. The total cross section is calculated semi-empirically as a function of crystal structure, neutron energy, temperature, and crystal orientation. The semi-empirical formula includes the contribution of parasitic Bragg scattering to the total cross section using both the crystal’s mosaic spread value and its orientation with respect to the neutron beam direction as parameters. These routines allow users to enter a distribution of crystal orientations for calculation of total cross sections of user defined powder or pseudo powder distributions,more » which enables simulation of non-uniformities such as texture and strain. In conclusion, the spectra for neutron transmission simulations in the neutron thermal energy range (2 meV–100 meV) are presented for single crystal and polycrystal samples and compared to measurements.« less
Insights Into the Solution Crystallization of Oriented Alq3 and Znq2 Microprisms and Nanorods.
Boulet, Joel; Mohammadpour, Arash; Shankar, Karthik
2015-09-01
Optimized solution-based methods to grow high quality micro- and nanocrystals of organic semi-conductors with defined size, shape and orientation are important to a variety of optoelectronic applications. In this context, we report the growth of single crystal micro- and nanostructures of the organic semiconductors Tris(8-hydroxyquinoline)aluminum (Alq3) and bis(8-hydroxyquinoline)zinc (Znq2) terminating in flat crystal planes using a combination of evaporative and antisolvent crystallization. By controlling substrate-specific nucleation and optimizing the conditions of growth, we generate vertically-oriented hexagonal prism arrays of Alq3, and vertical half-disks and sharp-edged rectangular prisms of Znq2. The effect of process variables such as ambient vapour pressure, choice of anti-solvent and temperature on the morphology and crystal habit of the nanostructures were studied and the results of varying them catalogued to gain a better understanding of the mechanism of growth.
Single crystal to polycrystal neutron transmission simulation
Dessieux, Luc Lucius; Stoica, Alexandru Dan; Bingham, Philip R.
2018-02-02
A collection of routines for calculation of the total cross section that determines the attenuation of neutrons by crystalline solids is presented. The total cross section is calculated semi-empirically as a function of crystal structure, neutron energy, temperature, and crystal orientation. The semi-empirical formula includes the contribution of parasitic Bragg scattering to the total cross section using both the crystal’s mosaic spread value and its orientation with respect to the neutron beam direction as parameters. These routines allow users to enter a distribution of crystal orientations for calculation of total cross sections of user defined powder or pseudo powder distributions,more » which enables simulation of non-uniformities such as texture and strain. In conclusion, the spectra for neutron transmission simulations in the neutron thermal energy range (2 meV–100 meV) are presented for single crystal and polycrystal samples and compared to measurements.« less
NASA Astrophysics Data System (ADS)
Rezaei, M.; Kermanpur, A.; Sadeghi, F.
2018-03-01
Fabrication of single crystal (SC) Ni-based gas turbine blades with a minimum crystal misorientation has always been a challenge in gas turbine industry, due to its significant influence on high temperature mechanical properties. This paper reports an experimental investigation and numerical simulation of the SC solidification process of a Ni-based superalloy to study effects of withdrawal rate and starter block size on crystal orientation. The results show that the crystal misorientation of the sample with 40 mm starter block height is decreased with increasing withdrawal rate up to about 9 mm/min, beyond which the amount of misorientation is increased. It was found that the withdrawal rate, height of the starter block and temperature gradient are completely inter-dependent and indeed achieving a SC specimen with a minimum misorientation needs careful optimization of these process parameters. The height of starter block was found to have higher impact on crystal orientation compared to the withdrawal rate. A suitable withdrawal rate regime along with a sufficient starter block height was proposed to produce SC parts with the lowest misorientation.
NASA Technical Reports Server (NTRS)
Carey, L.D.; Petersen, W.A.; Deierling, W.
2009-01-01
The majority of lightning-related casualties typically occur during thunderstorm initiation (e.g., first flash) or dissipation (e.g., last flash). The physics of electrification and lightning production during thunderstorm initiation is fairly well understood. As such, the literature includes a number of studies presenting various radar techniques (using reflectivity and, if available, other dual-polarimetric parameters) for the anticipation of initial electrification and first lightning flash. These radar techniques have shown considerable skill at forecasting first flash. On the other hand, electrical processes and lightning production during thunderstorm dissipation are not nearly as well understood and few, if any, successful techniques have been developed to anticipate the last flash and subsequent cessation of lightning. One promising approach involves the use of dual-polarimetric radar variables to infer the presence of oriented ice crystals in lightning producing storms. In the absence of strong vertical electric fields, ice crystals fall with their largest (semi-major) axis in the horizontal associated with gravitational and aerodynamic forces. In thunderstorms, strong vertical electric fields (100-200 kV m(sup -1)) have been shown to orient small (less than 2 mm) ice crystals such that their semi-major axis is vertical (or nearly vertical). After a lightning flash, the electric field is typically relaxed and prior radar research suggests that ice crystals rapidly resume their preferred horizontal orientation. In active thunderstorms, the vertical electric field quickly recovers and the ice crystals repeat this cycle of orientation for each nearby flash. This change in ice crystal orientation from primarily horizontal to vertical during the development of strong vertical electric fields prior to a lightning flash forms the physical basis for anticipating lightning initiation and, potentially, cessation. Research has shown that radar reflectivity (Z) and other co-polar back-scattering radar measurements like differential reflectivity (Z(sub dr)) typically measured by operational dual-polarimetric radars are not sensitive to these changes in ice crystal orientation. However, prior research has demonstrated that oriented ice crystals cause significant propagation effects that can be routinely measured by most dual-polarimetric radars from X-band (3 cm) to S-band (10 cm) wavelengths using the differential propagation phase shift (often just called differential phase, phi(sub dp)) or its range derivative, the specific differential phase (K(sub dp)). Advantages of the differential phase include independence from absolute or relative power calibration, attenuation, differential attenuation and relative insensitivity to ground clutter and partial beam occultation effects (as long as the signal remains above noise). In research mode, these sorts of techniques have been used to anticipate initial cloud electrification, lightning initiation, and cessation. In this study, we develop a simplified model of ice crystal size, shape, orientation, dielectric, and associated radar scattering and propagation effects in order to simulate various idealized scenarios of ice crystals responding to a hypothetical electric field and their dual-polarimetric radar signatures leading up to lightning initiation and particularly cessation. The sensitivity of the K(sub dp) ice orientation signature to various ice properties and radar wavelength will be explored. Since K(sub dp) is proportional to frequency in the Rayleigh- Gans scattering regime, the ice orientation signatures should be more obvious at higher (lower) frequencies (wavelengths). As a result, simulations at radar wavelengths from 10 cm down to 1 cm (Ka-band) will be conducted. Resonance effects will be considered using the T-matrix method. Since most K(sub dp) Vbased observations have been shown at S-band, we will present ice orientation signatures from C-band (UAH/NASA ARMOR) and X-bd (UAH MAX) dual-polarimetric radars located in Northern Alabama. Issues related to optimal radar scanning for the detection of oriented ice will be discussed. Preliminary suggestions on how these differential phase signatures of oriented ice could contribute to lightning initiation and cessation algorithms will be presented.
Deciphering the dynamics of olivine nucleation and growth during antigorite breakdown
NASA Astrophysics Data System (ADS)
Dilissen, Nicole; Kahl, Wolf-Achim; Garrido, Carlos J.; López Sánchez-Vizcaíno, Vicente; Hidas, Károly
2016-04-01
Subduction zones are dynamic convergent plate boundaries associated with arc volcanism and earthquakes, which are believed to be controlled by fluids released during devolatilization reactions from the downgoing slab. The high-pressure breakdown of antigorite-serpentinite to prograde chlorite-harzburgite is considered to be the most significant source of water in subduction zones. The Cerro del Almirez ultramafic massif (Betic Cordillera, SE Spain) is a unique exhumed subduction terrane that preserves this dehydration reaction as a sharp front. A key to the understanding of the metamorphic conditions prevailing during serpentinite dehydration is to study the two prominent textures, granofels and spinifex-like chlorite harzburgite, which are the reaction products of antigorite breakdown. The textural study of these two types of Chl-harzburgite can provide insights into the kinetic of serpentinite dehydration reaction and the key factors controlling the overstepping of the reaction. Detailed mapping of textural variations in chlorite-harzburgite unveiled a network of granofels and spinifex-like lenses in the Almirez massif. In this work, we focus in the detailed textural variations across a well-exposed lens of spinifex-like chlorite-harzburgite, surrounded by granofels chlorite-harzburgite. This outcrop allowed us to make a very detailed oriented sampling (every 0.1-0.5 m across the 6 m thick lens) from the granofels into spinifex textures. The petrological study shows a developing transition of the olivine crystal shape, with premature mm-sized spinifex-like olivine crystals at the lens rims and well developed cm-sized spinifex-like grains in the core of the lens. The micro-CT study of oriented cores, together with EBSD study of thin sections from the same cores, allows the 3D reconstruction of olivine shapes and their lattice preferred orientation (LPO), constraining how olivine shapes and LPO differ from one texture to the other. This study provides valuable information on the kinetic of crystallization of olivine and how different textures formed in space and time, associated with the antigorite breakdown reaction.
Electro-optical tunable birefringent filter
Levinton, Fred M [Princeton, NJ
2012-01-31
An electrically tunable Lyot type filter is a Lyot that include one or more filter elements. Each filter element may have a planar, solid crystal comprised of a material that exhibits birefringence and is electro-optically active. Transparent electrodes may be coated on each face of the crystal. An input linear light polarizer may be located on one side of the crystal and oriented at 45 degrees to the optical axis of the birefringent crystal. An output linear light polarizer may be located on the other side of the crystal and oriented at -45 degrees with respect to the optical axis of the birefringent crystal. When an electric voltage is applied between the electrodes, the retardation of the crystal changes and so does the spectral transmission of the optical filter.
Quasi van der Waals epitaxy of copper thin film on single-crystal graphene monolayer buffer
NASA Astrophysics Data System (ADS)
Lu, Zonghuan; Sun, Xin; Washington, Morris A.; Lu, Toh-Ming
2018-03-01
Quasi van der Waals epitaxial growth of face-centered cubic Cu (~100 nm) thin films on single-crystal monolayer graphene is demonstrated using thermal evaporation at an elevated substrate temperature of 250 °C. The single-crystal graphene was transferred to amorphous (glass) and crystalline (quartz) SiO2 substrates for epitaxy study. Raman analysis showed that the thermal evaporation method had minimal damage to the graphene lattice during the Cu deposition. X-ray diffraction and electron backscatter diffraction analyses revealed that both Cu films are single-crystal with (1 1 1) out-of-plane orientation and in-plane Σ3 twin domains of 60° rotation. The crystallinity of the SiO2 substrates has a negligible effect on the Cu crystal orientation during the epitaxial growth, implying the strong screening effect of graphene. We also demonstrate the epitaxial growth of polycrystalline Cu on a commercial polycrystalline monolayer graphene consisting of two orientation domains offset 30° to each other. It confirms that the crystal orientation of the epitaxial Cu film follows that of graphene, i.e. the Cu film consists of two orientation domains offset 30° to each other when deposited on polycrystalline graphene. Finally, on the contrary to the report in the literature, we show that the direct current and radio frequency flip sputtering method causes significant damage to the graphene lattice during the Cu deposition process, and therefore neither is a suitable method for Cu epitaxial growth on graphene.
Pressure sensor using liquid crystals
NASA Technical Reports Server (NTRS)
Parmar, Devendra S. (Inventor); Holmes, Harlan K. (Inventor)
1994-01-01
A pressure sensor includes a liquid crystal positioned between transparent, electrically conductive films (18 and 20), that are biased by a voltage (V) which induces an electric field (E) that causes the liquid crystal to assume a first state of orientation. Application of pressure (P) to a flexible, transparent film (24) causes the conductive film (20) to move closer to or farther from the conductive film (18), thereby causing a change in the electric field (E'(P)) which causes the liquid crystal to assume a second state of orientation. Polarized light (P.sub.1) is directed into the liquid crystal and transmitted or reflected to an analyzer (A or 30). Changes in the state of orientation of the liquid crystal induced by applied pressure (P) result in a different light intensity being detected at the analyzer (A or 30) as a function of the applied pressure (P). In particular embodiments, the liquid crystal is present as droplets (10) in a polymer matrix (12) or in cells (14) in a polymeric or dielectric grid (16) material in the form of a layer (13) between the electrically conductive films (18 and 20). The liquid crystal fills the open wells in the polymer matrix (12) or grid (16) only partially.
NASA Astrophysics Data System (ADS)
Zhu, X. A.; Tsai, C. T.
2000-09-01
Dislocations in gallium arsenide (GaAs) crystals are generated by excessive thermal stresses induced during the crystal growth process. The presence of dislocations has adverse effects on the performance and reliability of the GaAs-based devices. It is well known that dislocation density can be significantly reduced by doping impurity atoms into a GaAs crystal during its growth process. A viscoplastic constitutive equation that couples the microscopic dislocation density with the macroscopic plastic deformation is employed in a crystallographic finite element model for calculating the dislocation density generated in the GaAs crystal during its growth process. The dislocation density is considered as an internal state variable and the drag stress caused by doping impurity is included in this constitutive equation. A GaAs crystal grown by the vertical Bridgman process is adopted as an example to study the influences of doping impurity and growth orientation on dislocation generation. The calculated results show that doping impurity can significantly reduce the dislocation density generated in the crystal. The level of reduction is also influenced by the growth orientation during the crystal growth process.
NASA Astrophysics Data System (ADS)
Panchenko, E. Yu.; Chumlyakov, Yu. I.; Surikov, N. Yu.; Tagiltsev, A. I.; Vetoshkina, N. G.; Osipovich, K. S.; Maier, H.; Sehitoglu, H.
2016-03-01
The features of orientation dependence of stress-induced thermoelastic B2-( R)- B19'-martensitic transformations in single crystals of the Ti48.5Ni51.5 and Ni51.0Ti36.5Hf12.5 (at.%) alloys, which contain disperse particles of the Ti3Ni4 and H-phase, respectively, are revealed along with those of their shape-memory effects (SME) and superelasticity (SE). It is experimentally demonstrated that irrespective of the crystal structure of disperse particles measuring more than 100 nm, for their volume fraction f > 16% there is a weaker orientation dependence of the reversible strain in the cases of manifestation of SME and SE. In the orientations of Class I, wherein martensitic detwinning introduces a considerable contribution into transformation strain, the values of SME |ɛ SME | and SE |ɛ SE | decrease by over a factor of two compared to the theoretical lattice strain value |ɛ tr0 | for a B2- B19'-transformation and the experimental values of reversible strain for quenched TiNi crystals. In the orientations of Class 2, wherein detwinning of the martensite is suppressed as is the case in quenched single-phase single crystals, the reversible strain is maintained close to its theoretical value |ɛ tr0 |. Micromechanical models of interaction between the martensite and the disperse particles are proposed, which account for the weaker orientation dependence of |ɛ SME | and |ɛ SE | due to suppression of detwinning of the B19'-martensite crystals by the particles and a transition from a single-variant evolution of the stress-induced martensitic transformations to a multiple-variant evolution of transformations in the cases of increased size of the particles and their larger volume fractions.
Alink, Arjen; Krugliak, Alexandra; Walther, Alexander; Kriegeskorte, Nikolaus
2013-01-01
The orientation of a large grating can be decoded from V1 functional magnetic resonance imaging (fMRI) data, even at low resolution (3-mm isotropic voxels). This finding has suggested that columnar-level neuronal information might be accessible to fMRI at 3T. However, orientation decodability might alternatively arise from global orientation-preference maps. Such global maps across V1 could result from bottom-up processing, if the preferences of V1 neurons were biased toward particular orientations (e.g., radial from fixation, or cardinal, i.e., vertical or horizontal). Global maps could also arise from local recurrent or top-down processing, reflecting pre-attentive perceptual grouping, attention spreading, or predictive coding of global form. Here we investigate whether fMRI orientation decoding with 2-mm voxels requires (a) globally coherent orientation stimuli and/or (b) global-scale patterns of V1 activity. We used opposite-orientation gratings (balanced about the cardinal orientations) and spirals (balanced about the radial orientation), along with novel patch-swapped variants of these stimuli. The two stimuli of a patch-swapped pair have opposite orientations everywhere (like their globally coherent parent stimuli). However, the two stimuli appear globally similar, a patchwork of opposite orientations. We find that all stimulus pairs are robustly decodable, demonstrating that fMRI orientation decoding does not require globally coherent orientation stimuli. Furthermore, decoding remained robust after spatial high-pass filtering for all stimuli, showing that fine-grained components of the fMRI patterns reflect visual orientations. Consistent with previous studies, we found evidence for global radial and vertical preference maps in V1. However, these were weak or absent for patch-swapped stimuli, suggesting that global preference maps depend on globally coherent orientations and might arise through recurrent or top-down processes related to the perception of global form.
NASA Astrophysics Data System (ADS)
Lin, Margaret; Krawitz, Denise; Callahan, Matthew D.; Deperalta, Galahad; Wecksler, Aaron T.
2018-05-01
We describe epitope mapping data using multiple covalent labeling footprinting-mass spectrometry (MS) techniques coupled with negative stain transmission electron microscopy (TEM) data to analyze the antibody-antigen interactions in a sandwich enzyme-linked immunosorbant assay (ELISA). Our hydroxyl radical footprinting-MS data using fast photochemical oxidation of proteins (FPOP) indicates suppression of labeling across the antigen upon binding either of the monoclonal antibodies (mAbs) utilized in the ELISA. Combining these data with Western blot analysis enabled the identification of the putative epitopes that appeared to span regions containing N-linked glycans. An additional structural mapping technique, carboxyl group footprinting-mass spectrometry using glycine ethyl ester (GEE) labeling, was used to confirm the epitopes. Deglycosylation of the antigen resulted in loss of potency in the ELISA, supporting the FPOP and GEE labeling data by indicating N-linked glycans are necessary for antigen binding. Finally, mapping of the epitopes onto the antigen crystal structure revealed an approximate 90° relative spatial orientation, optimal for a noncompetitive binding ELISA. TEM data shows both linear and diamond antibody-antigen complexes with a similar binding orientation as predicted from the two footprinting-MS techniques. This study is the first of its kind to utilize multiple bottom-up footprinting-MS techniques and TEM visualization to characterize the monoclonal antibody-antigen binding interactions of critical reagents used in a quality control (QC) lot-release ELISA. [Figure not available: see fulltext.
Lin, Margaret; Krawitz, Denise; Callahan, Matthew D; Deperalta, Galahad; Wecksler, Aaron T
2018-05-01
We describe epitope mapping data using multiple covalent labeling footprinting-mass spectrometry (MS) techniques coupled with negative stain transmission electron microscopy (TEM) data to analyze the antibody-antigen interactions in a sandwich enzyme-linked immunosorbant assay (ELISA). Our hydroxyl radical footprinting-MS data using fast photochemical oxidation of proteins (FPOP) indicates suppression of labeling across the antigen upon binding either of the monoclonal antibodies (mAbs) utilized in the ELISA. Combining these data with Western blot analysis enabled the identification of the putative epitopes that appeared to span regions containing N-linked glycans. An additional structural mapping technique, carboxyl group footprinting-mass spectrometry using glycine ethyl ester (GEE) labeling, was used to confirm the epitopes. Deglycosylation of the antigen resulted in loss of potency in the ELISA, supporting the FPOP and GEE labeling data by indicating N-linked glycans are necessary for antigen binding. Finally, mapping of the epitopes onto the antigen crystal structure revealed an approximate 90° relative spatial orientation, optimal for a noncompetitive binding ELISA. TEM data shows both linear and diamond antibody-antigen complexes with a similar binding orientation as predicted from the two footprinting-MS techniques. This study is the first of its kind to utilize multiple bottom-up footprinting-MS techniques and TEM visualization to characterize the monoclonal antibody-antigen binding interactions of critical reagents used in a quality control (QC) lot-release ELISA. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Lin, Margaret; Krawitz, Denise; Callahan, Matthew D.; Deperalta, Galahad; Wecksler, Aaron T.
2018-03-01
We describe epitope mapping data using multiple covalent labeling footprinting-mass spectrometry (MS) techniques coupled with negative stain transmission electron microscopy (TEM) data to analyze the antibody-antigen interactions in a sandwich enzyme-linked immunosorbant assay (ELISA). Our hydroxyl radical footprinting-MS data using fast photochemical oxidation of proteins (FPOP) indicates suppression of labeling across the antigen upon binding either of the monoclonal antibodies (mAbs) utilized in the ELISA. Combining these data with Western blot analysis enabled the identification of the putative epitopes that appeared to span regions containing N-linked glycans. An additional structural mapping technique, carboxyl group footprinting-mass spectrometry using glycine ethyl ester (GEE) labeling, was used to confirm the epitopes. Deglycosylation of the antigen resulted in loss of potency in the ELISA, supporting the FPOP and GEE labeling data by indicating N-linked glycans are necessary for antigen binding. Finally, mapping of the epitopes onto the antigen crystal structure revealed an approximate 90° relative spatial orientation, optimal for a noncompetitive binding ELISA. TEM data shows both linear and diamond antibody-antigen complexes with a similar binding orientation as predicted from the two footprinting-MS techniques. This study is the first of its kind to utilize multiple bottom-up footprinting-MS techniques and TEM visualization to characterize the monoclonal antibody-antigen binding interactions of critical reagents used in a quality control (QC) lot-release ELISA. [Figure not available: see fulltext.
Shock wave-induced phase transition in RDX single crystals.
Patterson, James E; Dreger, Zbigniew A; Gupta, Yogendra M
2007-09-20
The real-time, molecular-level response of oriented single crystals of hexahydro-1,3,5-trinitro-s-triazine (RDX) to shock compression was examined using Raman spectroscopy. Single crystals of [111], [210], or [100] orientation were shocked under stepwise loading to peak stresses from 3.0 to 5.5 GPa. Two types of measurements were performed: (i) high-resolution Raman spectroscopy to probe the material at peak stress and (ii) time-resolved Raman spectroscopy to monitor the evolution of molecular changes as the shock wave reverberated through the material. The frequency shift of the CH stretching modes under shock loading appeared to be similar for all three crystal orientations below 3.5 GPa. Significant spectral changes were observed in crystals shocked above 4.5 GPa. These changes were similar to those observed in static pressure measurements, indicating the occurrence of the alpha-gamma phase transition in shocked RDX crystals. No apparent orientation dependence in the molecular response of RDX to shock compression up to 5.5 GPa was observed. The phase transition had an incubation time of approximately 100 ns when RDX was shocked to 5.5 GPa peak stress. The observation of the alpha-gamma phase transition under shock wave loading is briefly discussed in connection with the onset of chemical decomposition in shocked RDX.
Kinetic Monte Carlo simulations of GaN homoepitaxy on c- and m-plane surfaces
Xu, Dongwei; Zapol, Peter; Stephenson, G. Brian; ...
2017-04-12
The surface orientation can have profound effects on the atomic-scale processes of crystal growth and is essential to such technologies as GaN-based light-emitting diodes and high-power electronics. We investigate the dependence of homoepitaxial growth mechanisms on the surface orientation of a hexagonal crystal using kinetic Monte Carlo simulations. To model GaN metal-organic vapor phase epitaxy, in which N species are supplied in excess, only Ga atoms on a hexagonal close-packed (HCP) lattice are considered. The results are thus potentially applicable to any HCP material. Growth behaviors on c-plane (0001) and m-plane (011¯0) surfaces are compared. We present a reciprocal spacemore » analysis of the surface morphology, which allows extraction of growth mode boundaries and direct comparison with surface X-ray diffraction experiments. For each orientation, we map the boundaries between 3-dimensional, layer-by-layer, and step flow growth modes as a function of temperature and growth rate. Two models for surface diffusion are used, which produce different effective Ehrlich-Schwoebel step-edge barriers and different adatom diffusion anisotropies on m-plane surfaces. Simulation results in agreement with observed GaN island morphologies and growth mode boundaries are obtained. These indicate that anisotropy of step edge energy, rather than adatom diffusion, is responsible for the elongated islands observed on m-plane surfaces. As a result, island nucleation spacing obeys a power-law dependence on growth rate, with exponents of –0.24 and –0.29 for the m- and c-plane, respectively.« less
Kinetic Monte Carlo simulations of GaN homoepitaxy on c- and m-plane surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Dongwei; Zapol, Peter; Stephenson, G. Brian
The surface orientation can have profound effects on the atomic-scale processes of crystal growth and is essential to such technologies as GaN-based light-emitting diodes and high-power electronics. We investigate the dependence of homoepitaxial growth mechanisms on the surface orientation of a hexagonal crystal using kinetic Monte Carlo simulations. To model GaN metal-organic vapor phase epitaxy, in which N species are supplied in excess, only Ga atoms on a hexagonal close-packed (HCP) lattice are considered. The results are thus potentially applicable to any HCP material. Growth behaviors on c-plane (0001) and m-plane (011¯0) surfaces are compared. We present a reciprocal spacemore » analysis of the surface morphology, which allows extraction of growth mode boundaries and direct comparison with surface X-ray diffraction experiments. For each orientation, we map the boundaries between 3-dimensional, layer-by-layer, and step flow growth modes as a function of temperature and growth rate. Two models for surface diffusion are used, which produce different effective Ehrlich-Schwoebel step-edge barriers and different adatom diffusion anisotropies on m-plane surfaces. Simulation results in agreement with observed GaN island morphologies and growth mode boundaries are obtained. These indicate that anisotropy of step edge energy, rather than adatom diffusion, is responsible for the elongated islands observed on m-plane surfaces. As a result, island nucleation spacing obeys a power-law dependence on growth rate, with exponents of –0.24 and –0.29 for the m- and c-plane, respectively.« less
Creep deformation mechanism mapping in nickel base disk superalloys
Smith, Timothy M.; Unocic, Raymond R.; Deutchman, Hallee; ...
2016-05-10
We investigated the creep deformation mechanisms at intermediate temperature in ME3, a modern Ni-based disk superalloy, using diffraction contrast imaging. Both conventional transmission electron microscopy (TEM) and scanning TEM were utilised. Distinctly different deformation mechanisms become operative during creep at temperatures between 677-815 °C and at stresses ranging from 274 to 724 MPa. Both polycrystalline and single-crystal creep tests were conducted. The single-crystal tests provide new insight into grain orientation effects on creep response and deformation mechanisms. Creep at lower temperatures (≤760 °C) resulted in the thermally activated shearing modes such as microtwinning, stacking fault ribbons and isolated superlattice extrinsicmore » stacking faults. In contrast, these faulting modes occurred much less frequently during creep at 815 °C under lower applied stresses. Instead, the principal deformation mode was dislocation climb bypass. In addition to the difference in creep behaviour and creep deformation mechanisms as a function of stress and temperature, it was also observed that microstructural evolution occurs during creep at 760 °C and above, where the secondary coarsened and the tertiary precipitates dissolved. Based on this work, a creep deformation mechanism map is proposed, emphasising the influence of stress and temperature on the underlying creep mechanisms.« less
NASA Astrophysics Data System (ADS)
Kahl, Wolf-Achim; Hidas, Károly; Dilissen, Nicole; Garrido, Carlos J.; López-Sánchez Vizcaíno, Vicente; Jesús Román-Alpiste, Manuel
2017-04-01
The complete reconstruction of the microstructure of rocks requires, among others, a full description of the shape preferred orientation (SPO) and crystal preferred orientation (CPO) of the constituent mineral phases. New advances in instrumental analyses, particularly electron backscatter diffraction (EBSD) coupled to focused ion beam-scanning electron microscope (FIB-SEM), allows a complete characterization of SPO and CPO in rocks at the micron scale [1-2]. Unfortunately, the large grain size of many crystalline rocks, such as peridotite, prevents a representative characterization of the CPO and SPO of their constituent minerals by this technique. Here, we present a new approach combining X-ray micro computed tomography (µ-CT) and EBSD to reconstruct the geographically oriented, 3-D SPO and CPO of cm- to mm-sized olivine crystals in two contrasting fabric types of chlorite harzburgites (Almírez ultramafic massif, SE Spain). The semi-destructive sample treatment involves drilling of geographically oriented micro drills in the field and preparation of oriented thin sections from µ-CT scanned cores. This allows for establishing the link among geological structures, macrostructure, fabric, and 3-D SPO-CPO at the thin section scale. Based on EBSD analyses, different CPO groups of olivine crystals can be discriminated in the thin sections and allocated to 3-D SPO in the µ-CT volume data. This approach overcomes the limitations of both methods (i.e., no crystal orientation data in µ-CT and no spatial information in EBSD), hence 3-D orientation of the crystallographic axes of olivines from different orientation groups could be correlated with the crystal shapes of olivine grains. This combined µ-CT and EBSD technique enables the correlation of both SPO and CPO and representative grain size, and is capable to characterize the 3-D microstructure of olivine-bearing rocks at the hand specimen scale. REFERENCES 1. Zaefferer, S., Wright, S.I., Raabe, D., 2008. Three-Dimensional orientation microscopy in a focused ion beam-scanning electron microscope: A new dimension of microstructure characterization. Metallurgical and Materials Transactions A 39, 374-389. 2. Burnett, T.L., Kelley, R., Winiarski, B., Contreras, L., Daly, M., Gholinia, A., Burke, M.G., Withers, P.J., 2016. Large volume serial section tomography by Xe Plasma FIB dual beam microscopy. Ultramicroscopy 161, 119-129.
Differentiation of grain orientation with corrosive and colour etching on a granular bainitic steel.
Reisinger, S; Ressel, G; Eck, S; Marsoner, S
2017-08-01
This study presents a detailed verification of the etching methods with Nital and Klemm on a granular bainitic steel. It is shown that both methods allow the identification of the crystal orientation, whereas Klemm etching enables also a quantification of the apparent phases, as also retained austenite can be distinguished from the other bainitic microstructures. A combination of atom probe tomography with electron-back-scattered-diffraction showed that both etching methods emphasize the bainitic {100} crystal orientation. However, a cross-section produced by focused ion beam evidenced that Klemm etching leads to the formation of a topography of the different oriented bainitic crystals that directly affects the thickness and therefore the apparent colour of the deposited layer formed during etching. Copyright © 2017 Elsevier Ltd. All rights reserved.
Critical CuI buffer layer surface density for organic molecular crystal orientation change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Kwangseok; Kim, Jong Beom; Lee, Dong Ryeol, E-mail: drlee@ssu.ac.kr
We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 −2) by a CuI buffer layer with a very low surface density, so low thatmore » a large proportion of the substrate surface is bare.« less
Plastic strain arrangement in copper single crystals in sliding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumaevskii, Andrey V., E-mail: tch7av@gmail.com; Lychagin, Dmitry V., E-mail: dvl-tomsk@mail.ru; Tarasov, Sergei Yu., E-mail: tsy@ispms.tsc.ru
2014-11-14
Deformation of tribologically loaded contact zone is one of the wear mechanisms in spite of the fact that no mass loss may occur during this process. Generation of optimal crystallographic orientations of the grains in a polycrystalline materials (texturing) may cause hardening and reducing the deformation wear. To reveal the orientation dependence of an individual gain and simplify the task we use copper single crystals with the orientations of the compression axis along [111] and [110]. The plastic deformation was investigated by means of optical, scanning electron microscopy and EBSD techniques. It was established that at least four different zonesmore » were generated in the course of sliding test, such as non-deformed base metal, plastic deformation layer sliding, crystalline lattice reorientation layer and subsurface grain structure layer. The maximum plastic strain penetration depth was observed on [110]-single crystals. The minimum stability of [111]-crystals with respect to rotation deformation mode as well as activation of shear in the sliding contact plane provide for rotation deformation localization below the worn surface. The high-rate accumulation of misorientations and less strain penetration depth was observed on [111]-crystals as compared to those of [110]-oriented ones.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Zhenming; Guo Zhenqi; Li Jianguo
2004-12-15
A new method for the evaluation of the quality of an Ohno continuous cast (OCC) Cu single crystal by X-ray diffraction (XRD) butterfly pattern was brought forward. Experimental results show that the growth direction of single crystal Cu is inclined from both sides of the single crystal Cu rod to the axis and is axially symmetric. The degree of deviation from the [100] orientation from the crystal axis is less than 5 deg. with a casting speed 10-40 mm/min. The orientation of single crystal Cu does not have a fixed direction but is in a regular range. Moreover, the orientationmore » of stray grains in the single crystal Cu is random from continuous casting.« less
NASA Astrophysics Data System (ADS)
Sharma, Amit; Mohan, Sangeneni; Suwas, Satyam
2018-04-01
In this work, a detailed investigation has been performed on hetero-epitaxial growth and microstructural evolution in highly oriented Ni-Mn-Ga (1 0 0) films grown on MgO (1 0 0) substrate using high-resolution X-ray diffraction and orientation imaging microscopy. Mosaicity of the films has been analysed in terms of tilt angle, twist angle, lateral and vertical coherence length and threading dislocation densities by performing rocking curve measurements and reciprocal space mapping. Density of edge dislocations is found to be an order of magnitude higher than the density of screw dislocations, irrespective of film thickness. X-ray pole figure measurements have revealed an orientation relationship of ? || (1 0 0)MgO; ? || [0 0 1]MgO between the film and substrate. Microstructure predicted by X-ray diffraction is in agreement with that obtained from electron microscopy and atomic force microscopy. The evolution of microstructure in the film with increasing thickness has been explained vis-à-vis dislocation generation and growth mechanisms. Orientation imaging microscopy observations indicate evolutionary growth of film by overgrowth mechanism. Decrease in coercivity with film thickness has been explained as an interplay between stress field developed due to crystal defects and magnetic domain pinning due to surface roughness.
Mechanism of calcite co-orientation in the sea urchin tooth.
Killian, Christopher E; Metzler, Rebecca A; Gong, Y U T; Olson, Ian C; Aizenberg, Joanna; Politi, Yael; Wilt, Fred H; Scholl, Andreas; Young, Anthony; Doran, Andrew; Kunz, Martin; Tamura, Nobumichi; Coppersmith, Susan N; Gilbert, P U P A
2009-12-30
Sea urchin teeth are remarkable and complex calcite structures, continuously growing at the forming end and self-sharpening at the mature grinding tip. The calcite (CaCO(3)) crystals of tooth components, plates, fibers, and a high-Mg polycrystalline matrix, have highly co-oriented crystallographic axes. This ability to co-orient calcite in a mineralized structure is shared by all echinoderms. However, the physico-chemical mechanism by which calcite crystals become co-oriented in echinoderms remains enigmatic. Here, we show differences in calcite c-axis orientations in the tooth of the purple sea urchin ( Strongylocentrotus purpuratus ), using high-resolution X-ray photoelectron emission spectromicroscopy (X-PEEM) and microbeam X-ray diffraction (muXRD). All plates share one crystal orientation, propagated through pillar bridges, while fibers and polycrystalline matrix share another orientation. Furthermore, in the forming end of the tooth, we observe that CaCO(3) is present as amorphous calcium carbonate (ACC). We demonstrate that co-orientation of the nanoparticles in the polycrystalline matrix occurs via solid-state secondary nucleation, propagating out from the previously formed fibers and plates, into the amorphous precursor nanoparticles. Because amorphous precursors were observed in diverse biominerals, solid-state secondary nucleation is likely to be a general mechanism for the co-orientation of biomineral components in organisms from different phyla.
The evolution of machining-induced surface of single-crystal FCC copper via nanoindentation
NASA Astrophysics Data System (ADS)
Zhang, Lin; Huang, Hu; Zhao, Hongwei; Ma, Zhichao; Yang, Yihan; Hu, Xiaoli
2013-05-01
The physical properties of the machining-induced new surface depend on the performance of the initial defect surface and deformed layer in the subsurface of the bulk material. In this paper, three-dimensional molecular dynamics simulations of nanoindentation are preformed on the single-point diamond turning surface of single-crystal copper comparing with that of pristine single-crystal face-centered cubic copper. The simulation results indicate that the nucleation of dislocations in the nanoindentation test on the machining-induced surface and pristine single-crystal copper is different. The dislocation embryos are gradually developed from the sites of homogeneous random nucleation around the indenter in the pristine single-crystal specimen, while the dislocation embryos derived from the vacancy-related defects are distributed in the damage layer of the subsurface beneath the machining-induced surface. The results show that the hardness of the machining-induced surface is softer than that of pristine single-crystal copper. Then, the nanocutting simulations are performed along different crystal orientations on the same crystal surface. It is shown that the crystal orientation directly influences the dislocation formation and distribution of the machining-induced surface. The crystal orientation of nanocutting is further verified to affect both residual defect generations and their propagation directions which are important in assessing the change of mechanical properties, such as hardness and Young's modulus, after nanocutting process.
NASA Technical Reports Server (NTRS)
Arakere, Nagaraj K.; Swanson, Gregory R.
2000-01-01
High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.
3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xing; Zhang, Lei; Tong, Huimin
2015-05-05
Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, wemore » derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.« less
NASA Astrophysics Data System (ADS)
Wall, M.; Nehrke, G.
2012-11-01
Confocal Raman microscopy (CRM) mapping was used to investigate the microstructural arrangement and organic matrix distribution within the skeleton of the coral Porites lutea. Relative changes in the crystallographic orientation of crystals within the fibrous fan-system could be mapped, without the need to prepare thin sections, as required if this information is obtained by polarized light microscopy. Simultaneously, incremental growth lines can be visualized without the necessity of etching and hence alteration of sample surface. Using these methods two types of growth lines could be identified: one corresponds to the well-known incremental growth layers, whereas the second type of growth lines resemble denticle finger-like structures (most likely traces of former spines or skeletal surfaces). We hypothesize that these lines represent the outer skeletal surface before another growth cycle of elongation, infilling and thickening of skeletal areas continues. We show that CRM mapping with high spatial resolution can significantly improve our understanding of the micro-structural arrangement and growth patterns in coral skeletons.
NASA Technical Reports Server (NTRS)
Mackey, Jeffrey R.
1999-01-01
We have developed a new instrument that can measure fast transient birefringence and polymer chain orientation angle in complex fluids. The instrument uses a dual-crystal transverse electro-optic modulator with the second crystal's modulation voltage applied 180 deg out of phase from that of the first crystal. In this manner, the second crystal compensates for the intrinsic static birefringence of the first crystal, and it doubles the modulation depth. By incorporating a transverse electro-optic modulator with two lithium-niobate (LiNbO3) crystals oriented orthogonal to each other with a custom-designed optical system, we have produced a very small robust instrument capable of fast transient retardation measurements. By measuring the sample thickness or optical path length through the sample, we can calculate the transient birefringence. This system can also measure dichroism. We have compared the calibration results and retardation and orientation angle measurements of this instrument with those of a photoelastic modulator (PEM) based system using a quarter wave plate and a high-precision 1/16-wave plate to simulate a birefringent sample. Transient birefringence measurements on the order of 10(exp -9) can be measured using either modulator.
Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals
NASA Astrophysics Data System (ADS)
Martínez-González, Jose A.; Li, Xiao; Sadati, Monirosadat; Zhou, Ye; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.
2017-06-01
Chiral nematic liquid crystals are known to form blue phases--liquid states of matter that exhibit ordered cubic arrangements of topological defects. Blue-phase specimens, however, are generally polycrystalline, consisting of randomly oriented domains that limit their performance in applications. A strategy that relies on nano-patterned substrates is presented here for preparation of stable, macroscopic single-crystal blue-phase materials. Different template designs are conceived to exert control over different planes of the blue-phase lattice orientation with respect to the underlying substrate. Experiments are then used to demonstrate that it is indeed possible to create stable single-crystal blue-phase domains with the desired orientation over large regions. These results provide a potential avenue to fully exploit the electro-optical properties of blue phases, which have been hindered by the existence of grain boundaries.
Adaptation of BAp crystal orientation to stress distribution in rat mandible during bone growth
NASA Astrophysics Data System (ADS)
Nakano, T.; Fujitani, W.; Ishimoto, T.; Umakoshi, Y.
2009-05-01
Biological apatite (BAp) c-axis orientation strongly depends on stress distribution in vivo and tends to align along the principal stress direction in bones. Dentulous mandible is subjected to a complicated stress condition in vivo during chewing but few studies have been carried out on the BAp c-axis orientation; so the adaptation of BAp crystal orientation to stress distribution was examined in rat dentulous mandible during bone growth and mastication. Female SD rats 4 to 14 weeks old were prepared, and the bone mineral density (BMD) and BAp crystal orientation were analyzed in a cross-section of mandible across the first molar focusing on two positions: separated from and just under the tooth root on the same cross-section perpendicular to the mesiodistal axis. The degree of BAp orientation was analyzed by a microbeam X-ray diffractometer using Cu-Kα radiation equipped with a detector of curved one-dimensional PSPC and two-dimensional PSPC in the reflection and transmission optics, respectively. BMD quickly increased during bone growth up to 14 weeks, although it was independent of the position from the tooth root. In contrast, BAp crystal orientation strongly depended on the age and the position from the tooth root, even in the same cross-section and direction, especially along the mesiodistal and the biting axes. With increased biting stress during bone growth, the degree of BAp orientation increased along the mesiodistal axis in a position separated from the tooth root more than that near the tooth root. In contrast, BAp preferential alignment clearly appeared along the biting axis near the tooth root. We conclude that BAp orientation rather than BMD sensitively adapts to local stress distribution, especially from the chewing stress in vivo in the mandible.
Burgener, Matthias; Aboulfadl, Hanane; Labat, Gaël Charles; Bonin, Michel; Sommer, Martin; Sankolli, Ravish; Wübbenhorst, Michael; Hulliger, Jürg
2016-05-01
180° orientational disorder of molecular building blocks can lead to a peculiar spatial distribution of polar properties in molecular crystals. Here we present two examples [4-bromo-4'-nitrobiphenyl (BNBP) and 4-bromo-4'-cyanobiphenyl (BCNBP)] which develop into a bipolar final growth state. This means orientational disorder taking place at the crystal/nutrient interface produces domains of opposite average polarity for as-grown crystals. The spatial inhomogeneous distribution of polarity was investigated by scanning pyroelectric microscopy (SPEM), phase-sensitive second harmonic microscopy (PS-SHM) and selected volume X-ray diffraction (SVXD). As a result, the acceptor groups (NO2 or CN) are predominantly present at crystal surfaces. However, the stochastic process of polarity formation can be influenced by adding a symmetrical biphenyl to a growing system. For this case, Monte Carlo simulations predict an inverted net polarity compared with the growth of pure BNBP and BCNBP. SPEM results clearly demonstrate that 4,4'-dibromobiphenyl (DBBP) can invert the polarity for both crystals. Phenomena reported in this paper belong to the most striking processes seen for molecular crystals, demonstrated by a stochastic process giving rise to symmetry breaking. We encounter here further examples supporting the general thesis that monodomain polar molecular crystals for fundamental reasons cannot exist.
NASA Astrophysics Data System (ADS)
Suko, Ayaka; Jia, JunJun; Nakamura, Shin-ichi; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki; Shigesato, Yuzo
2016-03-01
Amorphous indium-gallium-zinc oxide (a-IGZO) films were deposited by DC magnetron sputtering and post-annealed in air at 300-1000 °C for 1 h to investigate the crystallization behavior in detail. X-ray diffraction, electron beam diffraction, and high-resolution electron microscopy revealed that the IGZO films showed an amorphous structure after post-annealing at 300 °C. At 600 °C, the films started to crystallize from the surface with c-axis preferred orientation. At 700-1000 °C, the films totally crystallized into polycrystalline structures, wherein the grains showed c-axis preferred orientation close to the surface and random orientation inside the films. The current-gate voltage (Id-Vg) characteristics of the IGZO thin-film transistor (TFT) showed that the threshold voltage (Vth) and subthreshold swing decreased markedly after the post-annealing at 300 °C. The TFT using the totally crystallized films also showed the decrease in Vth, whereas the field-effect mobility decreased considerably.
NASA Astrophysics Data System (ADS)
Zakharova, E. G.; Kireeva, I. V.; Chumlyakov, Y. I.; Shul'Mina, A. A.; Sehitoglu, H.; Karaman, I.
2004-06-01
On single crystals of Hadfield steel (Fe-13Mn-1.3C, Fe-13Mn-2.7Al-1.3C, wt.%) the systematical investigations of deformation mechanisms - slip and twinning, stages of plastic flow, strain hardening coefficient depending on orientation of tensile axis have been carried out by methods of optical and electron microscopy, x-ray analysis. Is has been shown that the combination of low stacking fault energy (γ{SF}=0.03J/m^2) with high concentration of carbon atoms in aluminium-free steel results in development of the mechanical twinning at room temperature in all crystal orientations. The new type of twinning with formation of extrinsic stacking fault has been found out in [001] single crystals. Experimentally it has been established that alloying with aluminium leads to increase of stacking fault energy of Hadfield steel and suppresses twinning in all orientations of crystals at preservation of high values of strain-hardening coefficients θ.
NASA Astrophysics Data System (ADS)
Erić, M.; Petrović, S.; Kokkoris, M.; Lagoyannis, A.; Paneta, V.; Harissopulos, S.; Telečki, I.
2012-03-01
This work reports on the experimentally obtained depth profiles of 4 MeV 14N2+ ions implanted in the <1 0 0>, <1 1 0> and randomly oriented silicon crystals. The ion fluence was 1017 particles/cm2. The nitrogen depth profiling has been performed using the Nuclear Reaction Analysis (NRA) method, via the study of 14N(d,α0)12C and 14N(d,α1)12C nuclear reactions, and with the implementation of SRIM 2010 and SIMNRA computer simulation codes. For the randomly oriented silicon crystal, change of the density of silicon matrix and the nitrogen "bubble" formation have been proposed as the explanation for the difference between the experimental and simulated nitrogen depth profiles. During the implantation, the RBS/C spectra were measured on the nitrogen implanted and on the virgin crystal spots. These spectra provide information on the amorphization of the silicon crystals induced by the ion implantation.
Nanoindentation of HMX and Idoxuridine to Determine Mechanical Similarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burch, Alexandra; Yeager, John; Bahr, David
Assessing the mechanical behavior (elastic properties, plastic properties, and fracture phenomena) of molecular crystals is often complicated by the difficulty in preparing samples. Pharmaceuticals and energetic materials in particular are often used in composite structures or tablets, where the individual grains can strongly impact the solid behavior. Nanoindentation is a convenient method to experimentally assess these properties, and it is used here to demonstrate the similarity in the mechanical properties of two distinct systems: individual crystals of the explosive cyclotetramethylene tetranitramine (HMX) and the pharmaceutical idoxuridine were tested in their as-precipitated state, and the effective average modulus and hardness (whichmore » can be orientation dependent) were determined. Both exhibit a hardness of 1.0 GPa, with an effective reduced modulus of 25 and 23 GPa for the HMX and idoxuridine, respectively. They also exhibit similar yield point behavior. This indicates idoxuridine may be a suitable mechanical surrogate (or “mock”) for HMX. While the methodology to assess elastic and plastic properties was relatively insensitive to specific crystal orientation (i.e., a uniform distribution in properties was observed for all random crystals tested), the indentation-induced fracture properties appear to be much more sensitive to tip-crystal orientation, and an unloading slope analysis is used to demonstrate the need for further refinement in relating toughness to orientation in these materials with relatively complex slip systems and crystal structures. View Full-Text« less
Nanoindentation of HMX and Idoxuridine to Determine Mechanical Similarity
Burch, Alexandra; Yeager, John; Bahr, David
2017-11-01
Assessing the mechanical behavior (elastic properties, plastic properties, and fracture phenomena) of molecular crystals is often complicated by the difficulty in preparing samples. Pharmaceuticals and energetic materials in particular are often used in composite structures or tablets, where the individual grains can strongly impact the solid behavior. Nanoindentation is a convenient method to experimentally assess these properties, and it is used here to demonstrate the similarity in the mechanical properties of two distinct systems: individual crystals of the explosive cyclotetramethylene tetranitramine (HMX) and the pharmaceutical idoxuridine were tested in their as-precipitated state, and the effective average modulus and hardness (whichmore » can be orientation dependent) were determined. Both exhibit a hardness of 1.0 GPa, with an effective reduced modulus of 25 and 23 GPa for the HMX and idoxuridine, respectively. They also exhibit similar yield point behavior. This indicates idoxuridine may be a suitable mechanical surrogate (or “mock”) for HMX. While the methodology to assess elastic and plastic properties was relatively insensitive to specific crystal orientation (i.e., a uniform distribution in properties was observed for all random crystals tested), the indentation-induced fracture properties appear to be much more sensitive to tip-crystal orientation, and an unloading slope analysis is used to demonstrate the need for further refinement in relating toughness to orientation in these materials with relatively complex slip systems and crystal structures. View Full-Text« less
Nanoconfinement: an effective way to enhance PVDF piezoelectric properties.
Cauda, Valentina; Stassi, Stefano; Bejtka, Katarzyna; Canavese, Giancarlo
2013-07-10
The dimensional confinement and oriented crystallization are both key factors in determining the piezoelectric properties of a polymeric nanostructured material. Here we prepare arrays of one-dimensional polymeric nanowires showing piezoelectric features by template-wetting two distinct polymers into anodic porous alumina (APA) membranes. In particular, poly(vinylidene fluoride), PVDF, and its copolymer poly(vinylidene fluoride-trifluoroethylene), PVTF, are obtained in commercially available APA, showing a final diameter of about 200 nm and several micrometers in length, reflecting the templating matrix features. We show that the crystallization of both polymers into a ferroelectric phase is directed by the nanotemplate confinement. Interestingly, the PVDF nanowires mainly crystallize into the β-phase in the nanoporous matrix, whereas the reference thin film of PVDF crystallizes in the α nonpolar phase. In the case of the PVTF nanowires, needle-like crystals oriented perpendicularly to the APA channel walls are observed, giving insight on the molecular orientation of the polymer within the nanowire structure. A remarkable piezoelectric behavior of both 1-D polymeric nanowires is observed, upon recording ferroelectric polarization, hysteresis, and displacement loops. In particular, an outstanding piezoelectric effect is observed for the PVDF nanowires with respect to the polymeric thin film, considering that no poling was carried out. Current versus voltage (I-V) characteristics showed a consistent switching behavior of the ferroelectric polar domains, thus revealing the importance of the confined and oriented crystallization of the polymer in monodimensional nanoarchitectures.
Yamamura, Shigeo; Momose, Yasunori
2003-06-18
The purpose of this study is to characterize the monoclinic crystals in tablets by using X-ray powder diffraction data and to evaluate the deformation feature of crystals during compression. The monoclinic crystals of acetaminophen and benzoic acid were used as the samples. The observed X-ray diffraction intensities were fitted to the analytic expression, and the fitting parameters, such as the lattice parameters, the peak-width parameters, the preferred orientation parameter and peak asymmetric parameter were optimized by a non-linear least-squares procedure. The Gauss and March distribution functions were used to correct the preferred orientation of crystallites in the tablet. The March function performed better in correcting the modification of diffraction intensity by preferred orientation of crystallites, suggesting that the crystallites in the tablets had fiber texture with axial orientation. Although a broadening of diffraction peaks was observed in acetaminophen tablets with an increase of compression pressure, little broadening was observed in the benzoic tablets. These results suggest that "acetaminophen is a material consolidating by fragmentation of crystalline particles and benzoic acid is a material consolidating by plastic deformation then occurred rearrangement of molecules during compression". A pattern-fitting procedure is the superior method for characterizing the crystalline drugs of monoclinic crystals in the tablets, as well as orthorhombic isoniazid and mannitol crystals reported in the previous paper.
Dynamics of Stability of Orientation Maps Recorded with Optical Imaging.
Shumikhina, S I; Bondar, I V; Svinov, M M
2018-03-15
Orientation selectivity is an important feature of visual cortical neurons. Optical imaging of the visual cortex allows for the generation of maps of orientation selectivity that reflect the activity of large populations of neurons. To estimate the statistical significance of effects of experimental manipulations, evaluation of the stability of cortical maps over time is required. Here, we performed optical imaging recordings of the visual cortex of anesthetized adult cats. Monocular stimulation with moving clockwise square-wave gratings that continuously changed orientation and direction was used as the mapping stimulus. Recordings were repeated at various time intervals, from 15 min to 16 h. Quantification of map stability was performed on a pixel-by-pixel basis using several techniques. Map reproducibility showed clear dynamics over time. The highest degree of stability was seen in maps recorded 15-45 min apart. Averaging across all time intervals and all stimulus orientations revealed a mean shift of 2.2 ± 0.1°. There was a significant tendency for larger shifts to occur at longer time intervals. Shifts between 2.8° (mean ± 2SD) and 5° were observed more frequently at oblique orientations, while shifts greater than 5° appeared more frequently at cardinal orientations. Shifts greater than 5° occurred rarely overall (5.4% of cases) and never exceeded 11°. Shifts of 10-10.6° (0.7%) were seen occasionally at time intervals of more than 4 h. Our findings should be considered when evaluating the potential effect of experimental manipulations on orientation selectivity mapping studies. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Monitoring structural transformations in crystals. 7. 1-Chloroanthracene and its photodimer.
Turowska-Tyrk, Ilona; Grześniak, Karolina
2004-02-01
Crystals of the 1-chloroanthracene photodimer, viz. trans-bi(1-chloro-9,10-dihydro-9,10-anthracenediyl), C(28)H(18)Cl(2), were obtained from the solid-state [4+4]-photodimerization of the monomer, C(14)H(9)Cl, followed by recrystallization. The symmetry of the product molecules is defined by the orientation of the reactant molecules in the crystal. The mutual orientation parameters calculated for adjacent monomers explain the reactivity of the compound. The molecules in the crystal of the monomer and the recrystallized photodimer pack differently and the photodimer has crystallographically imposed inversion symmetry.
NASA Astrophysics Data System (ADS)
Tsukada, Y.; Honma, T.; Komatsu, T.
2009-08-01
Ferroelastic β'-Gd 2(MoO 4) 3, (GMO), crystals are formed through the crystallization of 21.25Gd 2O 3-63.75MoO 3-15B 2O 3 glass (mol%), and two scientific curious phenomena are observed. (1) GMO crystals formed in the crystallization break into small pieces with a triangular prism or pyramid shape having a length of 50-500 μm spontaneously during the crystallizations in the inside of an electric furnace, not during the cooling in air after the crystallization. This phenomenon is called "self-powdering phenomenon during crystallization" in this paper. (2) Each self-powdered GMO crystal grain shows a periodic domain structure with different refractive indices, and a spatially periodic second harmonic generation (SHG) depending on the domain structure is observed. It is proposed from polarized micro-Raman scattering spectra and the azimuthal dependence of second harmonic intensities that GMO crystals are oriented in each crystal grain and the orientation of (MoO 4) 2- tetrahedra in GMO crystals changes periodically due to spontaneous strains in ferroelastic GMO crystals.
Very High Quality Crystals of Wide-Gap II-VI Semiconductors: What for?
2001-01-01
the reciprocal space mapping , by the etch pit density (EPD) measurements (to determine the density of dislocations) and by the measurement of the width...crystals. The EPD was in the range 5 x 1 + 104 cmn2 for Cdl.,ZnxTe crystals and about 104 cmz for ZnTe. The reciprocal space mapping of the crystals
Retraction of cold drawn polyethylene: the influence of lamellar thickeness and density
NASA Technical Reports Server (NTRS)
Falender, J. R.; Hansen, D.
1971-01-01
The role of crystal morphology in the retraction of oriented, linear polyethylene was studied utilizing samples crystallized under conditions controlled to vary, separately, lamellar crystal thickness and density. Samples were oriented in a simple shear deformation to a strain of 4.0 prior to measuring retraction tendency in creep and relaxation type tests. Characterizations of specimens were made using wide and small angle X-ray techniques. The specific morphological variations were chosen to test the hypothesis that a long range elastic restoring force can originate in conjunction with deformation of lamellar crystals and the consequent increase in lamellar crystal surface area and surface free energy. The results support this hypothesis.
Retraction of cold-drawn polyethylene - Influence of lamellar thickness and density.
NASA Technical Reports Server (NTRS)
Falender, J. R.; Hansen, D.
1972-01-01
The role of crystal morphology in the retraction of oriented linear polyethylene was studied utilizing samples crystallized under conditions controlled to vary, separately, lamellar crystal thickness and density. Samples were oriented in a simple shear deformation to a strain of 4.0 prior to measuring retraction tendency in creep- and relaxation-type tests. Characterizations of specimens were made using wide- and small-angle x-ray techniques. The specific morphological variations were chosen to test the hypothesis that a long-range elastic restoring force can originate in conjunction with deformation of lamellar crystals and the consequent increase in lamellar crystal surface area and surface free energy. The results support this hypothesis.
Influence of polarized PZT on the crystal growth of calcium phosphate
NASA Astrophysics Data System (ADS)
Sun, Xiaodan; Ma, Chunlai; Wang, Yude; Li, Hengde
2002-01-01
The effects of polarization on the crystallization of calcium phosphate are studied in this work. Crystals of calcium phosphate from saturated solution of hydroxyapatite (HA, Ca 10(PO 4) 6(OH) 2) were deposited on the surfaces of ferroelectric ceramics lead zirconate titanium (Pb(Ti,Zr)O 3, PZT). The results of the experiment demonstrated the acceleration effects of polarized PZT on the crystal growth of calcium phosphate. Furthermore, it is indicated that polarization also influenced the orientation of the deposited crystals due to the growth of a layer of (0 0 2) oriented octacalcium phosphate (OCP, Ca 8H 2(PO 4) 6·5H 2O) on the negatively charged surfaces of PZT.
Huang, Luoxiu; Chen, Xin; Shou, Tiande
2004-02-20
The feedback effect of activity of area 21a on orientation maps of areas 17 and 18 was investigated in cats using intrinsic signal optical imaging. A spatial frequency-dependent decrease in response amplitude of orientation maps to grating stimuli was observed in areas 17 and 18 when area 21a was inactivated by local injection of GABA, or by a lesion induced by liquid nitrogen freezing. The decrease in response amplitude of orientation maps of areas 17 and 18 after the area 21a inactivation paralleled the normal response without the inactivation. Application in area 21a of bicuculline, a GABAa receptor antagonist caused an increase in response amplitude of orientation maps of area 17. The results indicate a positive feedback from high-order visual cortical area 21a to lower-order areas underlying a spatial frequency-dependent mechanism.
Field-controlled structures in ferromagnetic cholesteric liquid crystals.
Medle Rupnik, Peter; Lisjak, Darja; Čopič, Martin; Čopar, Simon; Mertelj, Alenka
2017-10-01
One of the advantages of anisotropic soft materials is that their structures and, consequently, their properties can be controlled by moderate external fields. Whereas the control of materials with uniform orientational order is straightforward, manipulation of systems with complex orientational order is challenging. We show that a variety of structures of an interesting liquid material, which combine chiral orientational order with ferromagnetic one, can be controlled by a combination of small magnetic and electric fields. In the suspensions of magnetic nanoplatelets in chiral nematic liquid crystals, the platelet's magnetic moments orient along the orientation of the liquid crystal and, consequently, the material exhibits linear response to small magnetic fields. In the absence of external fields, orientations of the liquid crystal and magnetization have wound structure, which can be either homogeneously helical, disordered, or ordered in complex patterns, depending on the boundary condition at the surfaces and the history of the sample. We demonstrate that by using different combinations of small magnetic and electric fields, it is possible to control reversibly the formation of the structures in a layer of the material. In such a way, different periodic structures can be explored and some of them may be suitable for photonic applications. The material is also a convenient model system to study chiral magnetic structures, because it is a unique liquid analog of a solid helimagnet.
Magnon drag thermopower and thermomagnetic properties of single-crystal iron
NASA Astrophysics Data System (ADS)
Watzman, Sarah; Jin, Hyungyu; Heremans, Joseph
2015-03-01
Lucassen et al. demonstrate that magnon drag involves a spin-transfer mechanism closely related to the recently discovered spin-Seebeck effect. This talk will first present results of experiments mapping out the thermopower and magnetothermopower of single-crystal iron and prove that its thermopower is indeed dominated by magnon drag, as suggested by Blatt et al. in 1967. Measurements will then be presented on the magnetic field and temperature dependence of the full thermomagnetic tensor of iron's thermopower in the xxx, xyx, and xyz geometries (the first index gives the direction of the heat flux, the second the measured electric field, the third the applied magnetic field). Results of magneto-thermopower and Nernst coefficients will be reported for single-crystal samples oriented with x =[100]. The Nernst coefficients of elemental iron contain a contribution of a direct spin-transfer mechanism, which should be present in the absence of an interface between a ferromagnet and a normal metal. This mechanism could be put to use in high temperature ferromagnetic metallic thermoelectric alloys. This work is supported by the NSF GRFP under Grant No. DGE-0822215 and the ARO MURI under Grant No. W911NF-14-1-0016.
An Inquiry-Oriented Curriculum in Map Making and Map Interpretation for the Intermediate Grades.
ERIC Educational Resources Information Center
Janeway, W. Whitney
This publication contains class activities and provocative inquiry questions for intermediate-grade teachers to use to involve students in map making and map interpretation. The author believes that the only things that are needed to develop an inquiry-oriented unit on mapping are a good map, a small group of students, and a perceptive teacher who…
Switching plastic crystals of colloidal rods with electric fields
Liu, Bing; Besseling, Thijs H.; Hermes, Michiel; Demirörs, Ahmet F.; Imhof, Arnout; van Blaaderen, Alfons
2014-01-01
When a crystal melts into a liquid both long-ranged positional and orientational order are lost, and long-time translational and rotational self-diffusion appear. Sometimes, these properties do not change at once, but in stages, allowing states of matter such as liquid crystals or plastic crystals with unique combinations of properties. Plastic crystals/glasses are characterized by long-ranged positional order/frozen-in-disorder but short-ranged orientational order, which is dynamic. Here we show by quantitative three-dimensional studies that charged rod-like colloidal particles form three-dimensional plastic crystals and glasses if their repulsions extend significantly beyond their length. These plastic phases can be reversibly switched to full crystals by an electric field. These new phases provide insight into the role of rotations in phase behaviour and could be useful for photonic applications. PMID:24446033
Switching plastic crystals of colloidal rods with electric fields
NASA Astrophysics Data System (ADS)
Liu, Bing; Besseling, Thijs H.; Hermes, Michiel; Demirörs, Ahmet F.; Imhof, Arnout; van Blaaderen, Alfons
2014-01-01
When a crystal melts into a liquid both long-ranged positional and orientational order are lost, and long-time translational and rotational self-diffusion appear. Sometimes, these properties do not change at once, but in stages, allowing states of matter such as liquid crystals or plastic crystals with unique combinations of properties. Plastic crystals/glasses are characterized by long-ranged positional order/frozen-in-disorder but short-ranged orientational order, which is dynamic. Here we show by quantitative three-dimensional studies that charged rod-like colloidal particles form three-dimensional plastic crystals and glasses if their repulsions extend significantly beyond their length. These plastic phases can be reversibly switched to full crystals by an electric field. These new phases provide insight into the role of rotations in phase behaviour and could be useful for photonic applications.
Size dependent elastic modulus and mechanical resilience of dental enamel.
O'Brien, Simona; Shaw, Jeremy; Zhao, Xiaoli; Abbott, Paul V; Munroe, Paul; Xu, Jiang; Habibi, Daryoush; Xie, Zonghan
2014-03-21
Human tooth enamel exhibits a unique microstructure able to sustain repeated mechanical loading during dental function. Although notable advances have been made towards understanding the mechanical characteristics of enamel, challenges remain in the testing and interpretation of its mechanical properties. For example, enamel was often tested under dry conditions, significantly different from its native environment. In addition, constant load, rather than indentation depth, has been used when mapping the mechanical properties of enamel. In this work, tooth specimens are prepared under hydrated conditions and their stiffnesses are measured by depth control across the thickness of enamel. Crystal arrangement is postulated, among other factors, to be responsible for the size dependent indentation modulus of enamel. Supported by a simple structure model, effective crystal orientation angle is calculated and found to facilitate shear sliding in enamel under mechanical contact. In doing so, the stress build-up is eased and structural integrity is maintained. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liscio, A.; CNISM and Dipartimento di Fisica, Universita di Roma Tre, Via Vasca Navale 84, 00146 Roma; Ruocco, A.
This paper deals with the mechanism of grazing incidence (e,2e) events from surfaces. Two different approaches are considered. In both cases, elastic scattering with the crystal lattice assists the inelastic collision; these two steps are coupled either coherently or incoherently. Experimental evidence is given that the 'coherent' approach reproduces better the cross section dependence on momentum transfer in the specific case of asymmetric kinematics at moderate electron energies. This model has allowed us to map out the band dispersion of the outermost valence states of highly oriented pyrolytic graphite and to measure the momentum distribution of {pi}-electron states without invokingmore » the contribution of reciprocal lattice vectors in the momentum conservation. Agreement between theory and experiment is satisfactory, though the presence of events where crystal momentum is reconstructed cannot be ruled out. These results, obtained with a significant reduction of the experiment duration by an implemented apparatus, show that reflection (e,2e) can be used to build up a momentum spectroscopy with high surface sensitivity.« less
NASA Astrophysics Data System (ADS)
Shu, Guoyang; Dai, Bing; Ralchenko, V. G.; Khomich, A. A.; Ashkinazi, E. E.; Bolshakov, A. P.; Bokova-Sirosh, S. N.; Liu, Kang; Zhao, Jiwen; Han, Jiecai; Zhu, Jiaqi
2017-04-01
We studied defects and stress distributions in mosaic epitaxial diamond film using a confocal Raman spectroscopy, with a special attention to the junction area between the crystals. The mosaics was grown by microwave plasma CVD on closely arranged (1 0 0)-oriented HPHT type Ib substrates. The width of stress affected and defect enriched region around the junction show a tendency of extending with the film thickness, from ≈40 μm on the film-substrate interface to ≈250 μm in the layer 500 μm above the substrate, as found from the mosaics analysis in cross-section. The stress field around the junction demonstrates a complex pattern, with mixed domains of tensile and compressive stress, with maximum value of σ ≈ 0.6 GPa. A similar non-uniform pattern was observed for defect distribution as well. No sign of amorphous sp2 carbon in the junction zone was revealed.
NASA Astrophysics Data System (ADS)
Beran, L.; Cejpek, P.; Kulda, M.; Antos, R.; Holy, V.; Veis, M.; Straka, L.; Heczko, O.
2015-05-01
Optical and magneto-optical properties of single crystal of Ni50.1Mn28.4Ga21.5 magnetic shape memory alloy during its transformation from martensite to austenite phase were systematically studied. Crystal orientation was approximately along {100} planes of parent cubic austenite. X-ray reciprocal mapping confirmed modulated 10 M martensite phase. Temperature depended measurements of saturation magnetization revealed the martensitic transformation at 335 K during heating. Magneto-optical spectroscopy and spectroscopic ellipsometry were measured in the sample temperature range from 297 to 373 K and photon energy range from 1.2 to 6.5 eV. Magneto-optical spectra of polar Kerr rotation as well as the spectra of ellipsometric parameter Ψ exhibited significant changes when crossing the transformation temperature. These changes were assigned to different optical properties of Ni-Mn-Ga in martensite and austenite phases due to modification of electronic structure near the Fermi energy during martensitic transformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Killian, Christopher; Metzler, Rebecca; Gong, Y. U. T.
Sea urchin teeth are remarkable and complex calcite structures, continuously growing at the forming end and self-sharpening at the mature grinding tip. The calcite (CaCO{sub 3}) crystals of tooth components, plates, fibers, and a high-Mg polycrystalline matrix, have highly co-oriented crystallographic axes. This ability to co-orient calcite in a mineralized structure is shared by all echinoderms. However, the physico-chemical mechanism by which calcite crystals become co-oriented in echinoderms remains enigmatic. Here, we show differences in calcite c-axis orientations in the tooth of the purple sea urchin (Strongylocentrotus purpuratus), using high-resolution X-ray photoelectron emission spectromicroscopy (X-PEEM) and microbeam X-ray diffraction ({mu}XRD).more » All plates share one crystal orientation, propagated through pillar bridges, while fibers and polycrystalline matrix share another orientation. Furthermore, in the forming end of the tooth, we observe that CaCO{sub 3} is present as amorphous calcium carbonate (ACC). We demonstrate that co-orientation of the nanoparticles in the polycrystalline matrix occurs via solid-state secondary nucleation, propagating out from the previously formed fibers and plates, into the amorphous precursor nanoparticles. Because amorphous precursors were observed in diverse biominerals, solid-state secondary nucleation is likely to be a general mechanism for the co-orientation of biomineral components in organisms from different phyla.« less
Characterization of zinc selenide single crystals
NASA Technical Reports Server (NTRS)
Gerhardt, Rosario A.
1996-01-01
ZnSe single crystals of high quality and low impurity levels are desired for use as substrates in optoelectronic devices. This is especially true when the device requires the formation of homoepitaxial layers. While ZnSe is commercially available, it is at present extremely expensive due to the difficulty of growing single crystal boules with low impurity content and the resultant low yields. Many researchers have found it necessary to heat treat the crystals in liquid Zn in order to remove the impurities, lower the resistivity and activate the photoluminescence at room temperature. The physical vapor transport method (PVT) has been successfully used at MSFC to grow many single crystals of II-VI semiconducting materials including ZnSe. The main goal at NASA has been to try to establish the effect of gravity on the growth parameters. To this effect, crystals have been grown vertically upwards or horizontally. Both (111) and (110) oriented ZnSe crystals have been obtained via unseeded PVT growth. Preliminary characterization of the horizontally grown crystals has revealed that Cu is a major impurity and that the low temperature photoluminescence spectra is dominated by the copper peak. The ratio of the copper peak to the free exciton peak is being used to determine variations in composition throughout the crystal. It was the intent of this project to map the copper composition of various crystals via photoluminescence first, then measure their electrical resistivity and capacitance as a function of frequency before proceeding with a heat treatment designed to remove the copper impurities. However, equipment difficulties with the photoluminescence set up, having to establish a procedure for measuring the electrical properties of the as-grown crystals and time limitations made us re-evaluate the project goals. Vertically grown samples designated as ZnSe-25 were chosen to be measured electrically since they were not expected to show as much variation in their composition through their cross-section as the horizontally grown samples.
Coherent manipulation of three-qubit states in a molecular single-ion magnet
NASA Astrophysics Data System (ADS)
Jenkins, M. D.; Duan, Y.; Diosdado, B.; García-Ripoll, J. J.; Gaita-Ariño, A.; Giménez-Saiz, C.; Alonso, P. J.; Coronado, E.; Luis, F.
2017-02-01
We study the quantum spin dynamics of nearly isotropic Gd3 + ions entrapped in polyoxometalate molecules and diluted in crystals of a diamagnetic Y3 + derivative. The full energy-level spectrum and the orientations of the magnetic anisotropy axes have been determined by means of continuous-wave electron paramagnetic resonance experiments, using X-band (9-10 GHz) cavities and on-chip superconducting waveguides and 1.5-GHz resonators. The results show that seven allowed transitions between the 2 S +1 spin states can be separately addressed. Spin coherence T2 and spin-lattice relaxation T1 rates have been measured for each of these transitions in properly oriented single crystals. The results suggest that quantum spin coherence is limited by residual dipolar interactions with neighbor electronic spins. Coherent Rabi oscillations have been observed for all transitions. The Rabi frequencies increase with microwave power and agree quantitatively with predictions based on the spin Hamiltonian of the molecular spin. We argue that the spin states of each Gd3 + ion can be mapped onto the states of three addressable qubits (or, alternatively, of a d =8 -level "qudit"), for which the seven allowed transitions form a universal set of operations. Within this scheme, one of the coherent oscillations observed experimentally provides an implementation of a controlled-controlled-NOT (or Toffoli) three-qubit gate.
NASA Astrophysics Data System (ADS)
Qamar, Afzaal; Dao, Dzung Viet; Phan, Hoang-Phuong; Dinh, Toan; Dimitrijev, Sima
2016-08-01
Piezo-Hall effect in a single crystal p-type 3C-SiC, grown by LPCVD process, has been characterized for various crystallographic orientations. The quantified values of the piezo-Hall effect in heavily doped p-type 3C-SiC(100) and 3C-SiC(111) for different crystallographic orientations were used to obtain the fundamental piezo-Hall coefficients, P 12 = ( 5.3 ± 0.4 ) × 10 - 11 Pa - 1 , P 11 = ( - 2.6 ± 0.6 ) × 10 - 11 Pa - 1 , and P 44 = ( 11.42 ± 0.6 ) × 10 - 11 Pa - 1 . Unlike the piezoresistive effect, the piezo-Hall effect for (100) and (111) planes is found to be independent of the angle of rotation of the device within the crystal plane. The values of fundamental piezo-Hall coefficients obtained in this study can be used to predict the piezo-Hall coefficients in any crystal orientation which is very important for designing of 3C-SiC Hall sensors to minimize the piezo-Hall effect for stable magnetic field sensitivity.
Positron Interactions with Oriented Polymers and with Chiral Quartz Crystals
NASA Astrophysics Data System (ADS)
Wu, Fei
Positron annihilation in various materials has been applied to characterize microstructure for decades. In this work, PALS was used to study material nanostructure, with a focus on the size and density of free volume and hole relaxation properties in polycarbonate (PC) and polymethylmethacrylate (PMMA); fundamental studies of polarized positron interaction with chiral crystals were also studied. Free volume relaxation in PC and PMMA with different levels of simple shear orientation was studied by PALS. Effects of applied pressure on the free volume recovery were evaluated. Combining the bulk- and pressure-dependent PALS analyses, the removal of applied pressure led to free-volume relaxation in all samples studied. The alignment of the polymer chains and free-volume holes imposes molecular restrictions on the molecular mobility of both PC and PMMA in their glassy states. Results indicated that the relaxation of the free volume holes at temperatures below glass transition is mostly reversible. Longitudinally polarized positron particles were used to reveal asymmetric interactions in chiral quartz crystals. Experimental results showed a significant intensity difference in free positronium annihilation for left handed (LH) and right handed (RH) chiral quartz crystals. Doppler broadening energy spectra (DBES) of z-cut LH or RH quartz disks at different angles were also measured by an "S parameter" to probe the observed difference. It was found that obtained annihilation energy difference of DBES was in agreement with the result of positron annihilation in bulk chiral crystals. PALS was used to compare different orientations and confirm asymmetric interactions in natural versus synthetic quartz LH and RH crystals in z and non-z orientations. Significant lifetime and intensity differences in free positronium annihilation for LH and RH quartz crystals were observed. The trend was found to be same in the related crystallographic orientations of the LH or RH crystals; the direction of incident positrons, z or non-z, did not affect the observed differences in lifetime and intensity trends. The results confirmed the existence of differential interactions of positronium with the asymmetric lattice structures of LH and RH quartz crystals.
Map Reading beyond Information Given: The Expert Orienteers' Internal Knowledge about Terrain.
ERIC Educational Resources Information Center
Murakoshi, Shin
1990-01-01
Compares novice and expert orienteers' map interpretation skills. Subjects asked to judge terrain from maps, including conditions inferable without corresponding map symbols. Experts' interpretation of identical symbols implies use of experiential knowledge. Internal knowledge characteristics discussed in terms of episodic-semantic memory…
MultiLaue: A Technique to Extract d-spacings from Laue XRD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi
We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less
MultiLaue: A Technique to Extract d-spacings from Laue XRD
Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi; ...
2016-07-25
We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less
Boggon, T J; Helliwell, J R; Judge, R A; Olczak, A; Siddons, D P; Snell, E H; Stojanoff, V
2000-07-01
A comprehensive study of microgravity and ground-grown chicken egg-white lysozyme crystals is presented using synchrotron X-ray reciprocal-space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed reduced intrinsic mosaicities on average, but no differences in terms of strain over their ground-grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the ground-control case only a small volume of the crystal contributed to the intensity at the diffraction peak. The techniques prove to be highly complementary, with the reciprocal-space mapping providing a quantitative measure of the crystal mosaicity and strain (or variation in lattice spacing) and the topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out at the synchrotron.
NASA Technical Reports Server (NTRS)
Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.
2000-01-01
A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.
Challenges in quantitative crystallographic characterization of 3D thin films by ACOM-TEM.
Kobler, A; Kübel, C
2017-02-01
Automated crystal orientation mapping for transmission electron microscopy (ACOM-TEM) has become an easy to use method for the investigation of crystalline materials and complements other TEM methods by adding local crystallographic information over large areas. It fills the gap between high resolution electron microscopy and electron back scatter diffraction in terms of spatial resolution. Recent investigations showed that spot diffraction ACOM-TEM is a quantitative method with respect to sample parameters like grain size, twin density, orientation density and others. It can even be used in combination with in-situ tensile or thermal testing. However, there are limitations of the current method. In this paper we discuss some of the challenges and discuss solutions, e.g. we present an ambiguity filter that reduces the number of pixels with a '180° ambiguity problem'. For that an ACOM-TEM tilt series of nanocrystalline Pd thin films with overlapping crystallites was acquired and analyzed. Copyright © 2017. Published by Elsevier B.V.
Voltage‐Controlled Switching of Strong Light–Matter Interactions using Liquid Crystals
Hertzog, Manuel; Rudquist, Per; Hutchison, James A.; George, Jino; Ebbesen, Thomas W.
2017-01-01
Abstract We experimentally demonstrate a fine control over the coupling strength of vibrational light–matter hybrid states by controlling the orientation of a nematic liquid crystal. Through an external voltage, the liquid crystal is seamlessly switched between two orthogonal directions. Using these features, for the first time, we demonstrate electrical switching and increased Rabi splitting through transition dipole moment alignment. The C−Nstr vibration on the liquid crystal molecule is coupled to a cavity mode, and FT‐IR is used to probe the formed vibropolaritonic states. A switching ratio of the Rabi splitting of 1.78 is demonstrated between the parallel and the perpendicular orientation. Furthermore, the orientational order increases the Rabi splitting by 41 % as compared to an isotropic liquid. Finally, by examining the influence of molecular alignment on the Rabi splitting, the scalar product used in theoretical modeling between light and matter in the strong coupling regime is verified. PMID:29155469
Directed Self-Assembly of Liquid Crystalline Blue-Phases into Ideal Single-Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Gonzalez, Jose A.; Li, Xiao; Sadati, Monirosadat
Chiral nematic liquid crystals are known to form blue phases—liquid states of matter that exhibit ordered cubic arrangements of topological defects. Blue-phase specimens, however, are generally polycrystalline, consisting of randomly oriented domains that limit their performance in applications. A strategy that relies on nano-patterned substrates is presented here for preparation of stable, macroscopic single-crystal blue-phase materials. Different template designs are conceived to exert control over different planes of the blue-phase lattice orientation with respect to the underlying substrate. Experiments are then used to demonstrate that it is indeed possible to create stable single-crystal blue-phase domains with the desired orientation overmore » large regions. Lastly, these results provide a potential avenue to fully exploit the electro-optical properties of blue phases, which have been hindered by the existence of grain boundaries.« less
NASA Astrophysics Data System (ADS)
Ichinokawa, T.; Le Gressus, C.; Mogami, A.; Pellerin, F.; Massignon, D.
The contrast change of secondary electron images due to the crystal orientations is observed by the ultra high vacuum scanning electron microscope (UHV-SEM) for crystal grains of clean surface of polycrystalline Al in the primary energy Ep of 200 eV to 5 KeV. The low energy electron loss spectra are measured by the cylindrical mirror analyzer. The relative intensity ratio between surface and bulk plasmon loss spectra was dependent on the crystal orientations. The SEM images taken by the surface and bulk plasmon signals at Ep = 230 eV show the inverse contrast depending on the grains. The inversion of the relative intensities between the surface and bulk plasmon losses is explained qualitatively by taking into account of variation of the penetration depth of the incident beam caused by the electron channeling.
NASA Astrophysics Data System (ADS)
Ichinokawa, T.; Le Gressus, C.; Mogami, A.; Pellerin, F.; Massignon, D.
1981-10-01
The contrast change of secondary electron images due to the crystal orientations is observed by the ultra high vacuum scanning electron microscope (UHV-SEM) for crystal grains of clean surface of polycrystalline Al in the primary energy Ep of 200 eV to 5 keV. The low energy electron loss spectra are measured by the cylindrical mirror analyzer. The relative intensity ratio between surface and bulk plasmon loss spectra was dependent on the crystal orientations. The SEM images taken by the surface and bulk plasmon signals at Ep = 230 eV show the inverse contrast depending on the grains. The inversion of the relative intensities between the surface and bulk plasmon losses is explained qualitatively by taking into account of variation of the penetration depth of the incident beam caused by the electron channeling.
Directed Self-Assembly of Liquid Crystalline Blue-Phases into Ideal Single-Crystals
Martinez-Gonzalez, Jose A.; Li, Xiao; Sadati, Monirosadat; ...
2017-06-16
Chiral nematic liquid crystals are known to form blue phases—liquid states of matter that exhibit ordered cubic arrangements of topological defects. Blue-phase specimens, however, are generally polycrystalline, consisting of randomly oriented domains that limit their performance in applications. A strategy that relies on nano-patterned substrates is presented here for preparation of stable, macroscopic single-crystal blue-phase materials. Different template designs are conceived to exert control over different planes of the blue-phase lattice orientation with respect to the underlying substrate. Experiments are then used to demonstrate that it is indeed possible to create stable single-crystal blue-phase domains with the desired orientation overmore » large regions. Lastly, these results provide a potential avenue to fully exploit the electro-optical properties of blue phases, which have been hindered by the existence of grain boundaries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghamarian, I.; Samani, P.; Rohrer, G. S.
Grain boundary engineering and other fundamental materials science problems (e.g., phase transformations and physical properties) require an improvement in the understanding of the type and population of grain boundaries in a given system – yet, databases are limited in number and spare in detail, including for hcp crystals such as zirconium. One way to rapidly obtain databases to analyze is to use small-grained materials and high spatial resolution orientation microscopy techniques, such as ASTAR™/precession electron diffraction. To demonstrate this, a study of grain boundary character distributions was conducted for α-zirconium deposited at room temperature on fused silica substrates using physicalmore » vapor deposition. The orientation maps of the nanocrystalline thin films were acquired by the ASTARα/precession electron diffraction technique, a new transmission electron microscope based orientation microscopy method. The reconstructed grain boundaries were classified as pure tilt, pure twist, 180°-twist and 180°-tilt grain boundaries based on the distribution of grain boundary planes with respect to the angle/axis of misorientation associated with grain boundaries. The results of the current study were compared to the results of a similar study on α-titanium and the molecular dynamics results of grain boundary energy for α-titanium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinavicius, A.; Abrasonis, G.; Moeller, W.
2011-10-01
The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm{sup -2}), ion energy (0.5-1.2 keV), and temperature (370-430 deg. C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasingmore » ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.« less
A post-classical theory of enamel biomineralization… and why we need one.
Simmer, James P; Richardson, Amelia S; Hu, Yuan-Yuan; Smith, Charles E; Ching-Chun Hu, Jan
2012-09-01
Enamel crystals are unique in shape, orientation and organization. They are hundreds of thousands times longer than they are wide, run parallel to each other, are oriented with respect to the ameloblast membrane at the mineralization front and are organized into rod or interrod enamel. The classical theory of amelogenesis postulates that extracellular matrix proteins shape crystallites by specifically inhibiting ion deposition on the crystal sides, orient them by binding multiple crystallites and establish higher levels of crystal organization. Elements of the classical theory are supported in principle by in vitro studies; however, the classical theory does not explain how enamel forms in vivo. In this review, we describe how amelogenesis is highly integrated with ameloblast cell activities and how the shape, orientation and organization of enamel mineral ribbons are established by a mineralization front apparatus along the secretory surface of the ameloblast cell membrane.
NASA Astrophysics Data System (ADS)
Mora, Carla; Jiménez, Juan Javier; Pina, Pedro; Catalão, João; Vieira, Gonçalo
2017-01-01
The mountainous and ice-free terrains of the maritime Antarctic generate complex mosaics of snow patches, ranging from tens to hundreds of metres. These can only be accurately mapped using high-resolution remote sensing. In this paper we evaluate the application of radar scenes from TerraSAR-X in High Resolution SpotLight mode for mapping snow patches at a test area on Fildes Peninsula (King George Island, South Shetlands). Snow-patch mapping and characterization of snow stratigraphy were conducted at the time of image acquisition on 12 and 13 January 2012. Snow was wet in all studied snow patches, with coarse-grain and rounded crystals showing advanced melting and with frequent ice layers in the snow pack. Two TerraSAR-X scenes in HH and VV polarization modes were analysed, with the former showing the best results when discriminating between wet snow, lake water and bare soil. However, significant overlap in the backscattering signal was found. Average wet-snow backscattering was -18.0 dB in HH mode, with water showing -21.1 dB and bare soil showing -11.9 dB. Single-band pixel-based and object-oriented image classification methods were used to assess the classification potential of TerraSAR-X SpotLight imagery. The best results were obtained with an object-oriented approach using a watershed segmentation with a support vector machine (SVM) classifier, with an overall accuracy of 92 % and Kappa of 0.88. The main limitation was the west to north-west facing snow patches, which showed significant error, an issue related to artefacts from the geometry of satellite imagery acquisition. The results show that TerraSAR-X in SpotLight mode provides high-quality imagery for mapping wet snow and snowmelt in the maritime Antarctic. The classification procedure that we propose is a simple method and a first step to an implementation in operational mode if a good digital elevation model is available.
NASA Astrophysics Data System (ADS)
Zhang, Shujun; Lebrun, Laurent; Randall, Clive A.; Shrout, Thomas R.
2004-06-01
The growth and characterization of (Mn,F) doped Pb(Zn 1/3Nb 2/3)O 3-PbTiO 3 (PZNT) single crystals are reported in this paper. The typical single crystal obtained is up to 30 mm size with dark brown color. The crystal lattice parameters of doped PZNT crystal are slightly decreased compared to the pure one. The room temperature dielectric permittivity along <0 0 1> direction is about 6000, which is lower than that of the pure PZNT8 because of the dopants. The Curie temperature of the doped crystal is about 180°C while the ferroelectric phase transition temperature is around 100°C, which are higher than those of the pure PZNT8 single crystal. The remnant polarization and coercive field of <0 0 1> oriented doped crystal measured at 1 Hz and 10 kV/cm field are about 27 μC/cm 2 and 4.2 kV/cm, respectively. The room temperature mechanical quality factor is ˜300. Piezoelectric coefficient of <0 0 1> oriented doped crystal is higher than 3500 pC/N and the longitudinal electromechanical coupling factor is larger than 93%. The piezoelectric properties of doped PZNT single crystal with temperature and orientations are also reported in this paper. The valence state of the manganese dopant was determined by electron spin resonance, indicating no Mn 4+ in the crystals, suggesting the valence of manganese ions in PZNT crystals may be 2+, which acts as a hardener, stabilizes the domain wall and pins the domain wall motion, on the other hand, the dopant will enter Ti 4+ position, shifting the crystal composition to higher PT content.
Cognitive Processes in Orienteering: A Review.
ERIC Educational Resources Information Center
Seiler, Roland
1996-01-01
Reviews recent research on information processing and decision making in orienteering. The main cognitive demands investigated were selection of relevant map information for route choice, comparison between map and terrain in map reading and in relocation, and quick awareness of mistakes. Presents a model of map reading based on results. Contains…
Rotating lattice single crystal architecture on the surface of glass
Savytskii, D.; Jain, H.; Tamura, N.; ...
2016-11-03
Defying the requirements of translational periodicity in 3D, rotation of the lattice orientation within an otherwise single crystal provides a new form of solid. Such rotating lattice single (RLS) crystals are found, but only as spherulitic grains too small for systematic characterization or practical application. Here we report a novel approach to fabricate RLS crystal lines and 2D layers of unlimited dimensions via a recently discovered solid-to-solid conversion process using a laser to heat a glass to its crystallization temperature but keeping it below the melting temperature. The proof-of-concept including key characteristics of RLS crystals is demonstrated using the examplemore » of Sb 2S 3 crystals within the Sb-S-I model glass system for which the rotation rate depends on the direction of laser scanning relative to the orientation of initially formed seed. Lattice rotation in this new mode of crystal growth occurs upon crystallization through a well-organized dislocation/disclination structure introduced at the glass/ crystal interface. Implications of RLS growth on biomineralization and spherulitic crystal growth are noted.« less
Control of the orientation and photoinduced phase transitions of macrocyclic azobenzene.
Uchida, Emi; Sakaki, Kouji; Nakamura, Yumiko; Azumi, Reiko; Hirai, Yuki; Akiyama, Haruhisa; Yoshida, Masaru; Norikane, Yasuo
2013-12-16
Photoinduced phase transitions caused by photochromic reactions bring about a change in the state of matter at constant temperature. Herein, we report the photoinduced phase transitions of crystals of a photoresponsive macrocyclic compound bearing two azobenzene groups (1) at room temperature on irradiation with UV (365 nm) and visible (436 nm) light. The trans/trans isomer undergoes photoinduced phase transitions (crystal-isotropic phase-crystal) on UV light irradiation. The photochemically generated crystal exhibited reversible phase transitions between the crystal and the mesophase on UV and visible light irradiation. The molecular order of the randomly oriented crystals could be increased by irradiating with linearly polarized visible light, and the value of the order parameter was determined to be -0.84. Heating enhances the thermal cis-to-trans isomerization and subsequent cooling returned crystals of the trans/trans isomer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Molecular reorientation of a nematic liquid crystal by thermal expansion
Kim, Young-Ki; Senyuk, Bohdan; Lavrentovich, Oleg D.
2012-01-01
A unique feature of nematic liquid crystals is orientational order of molecules that can be controlled by electromagnetic fields, surface modifications and pressure gradients. Here we demonstrate a new effect in which the orientation of nematic liquid crystal molecules is altered by thermal expansion. Thermal expansion (or contraction) causes the nematic liquid crystal to flow; the flow imposes a realigning torque on the nematic liquid crystal molecules and the optic axis. The optical and mechanical responses activated by a simple temperature change can be used in sensing, photonics, microfluidic, optofluidic and lab-on-a-chip applications as they do not require externally imposed gradients of temperature, pressure, surface realignment, nor electromagnetic fields. The effect has important ramifications for the current search of the biaxial nematic phase as the optical features of thermally induced structural changes in the uniaxial nematic liquid crystal mimic the features expected of the biaxial nematic liquid crystal. PMID:23072803
Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation
NASA Astrophysics Data System (ADS)
Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu
2016-08-01
Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ˜100 meV even in the "half-vertical cavity surface emitting lasing" microcavity structure.
NASA Astrophysics Data System (ADS)
Endo, A.; Sakida, S.; Benino, Y.; Nanba, T.
2011-10-01
Surface crystallized glass ceramics with fresnoite (Ba2TiSi2O8) phase were prepared by conventional heat treatment of 30BaO-20TiO2-50SiO2 glass together with ultrasonic surface treatment (UST) technique. The precursor glass was fully crystallized in a bulk form without any cracks, and the optical transparency and crystallographic orientation of the crystalline layers were evaluated by UV-Vis spectroscopy and XRD diffraction analyses, respectively. These properties were both enhanced significantly by applying UST using fresnoite/water suspension before the crystallization process, which is advantage for nonlinear optical applications of bulk glass ceramics. The effects of UST on the crystallization behavior were investigated by applying UST with various conditions.
NASA Astrophysics Data System (ADS)
Takano, Kazuya; Takahashi, Yoshihiro; Miyazaki, Takamichi; Terakado, Nobuaki; Fujiwara, Takumi
2018-01-01
We investigated the Pockels effect in polycrystalline materials consisting of highly oriented polar fresnoite-type Sr2TiSi2O8 fabricated using perfectly surface-crystallized glass-ceramics (PSC-GCs). The chemical composition of the precursor glass was shown to significantly affect the crystallized texture, e.g., the crystal orientation and appearance of amorphous nanoparasites in the domains, resulting in variations in the Pockels constants. Single crystals exhibiting spontaneous polarization possessed large structural anisotropy, leading to a strong dependence of the nonlinear-optical properties on the direction of polarized light. This study suggests that variations in the Pockels constants (r13 and r33) and tuning of the r13/r33 ratio can be realized in PSC-GC materials.
Controlling laser emission by selecting crystal orientation
NASA Astrophysics Data System (ADS)
Chen, Lijuan; Han, Shujuan; Wang, Zhengping; Wang, Jiyang; Zhang, Huanjin; Yu, Haohai; Han, Shuo; Xu, Xinguang
2013-01-01
Based on the anisotropy of laser crystal, we demonstrate a method of adjusting laser emission by selecting crystal orientation. When the light propagating direction varies from a to c axis of Nd:LiGd(MoO4)2 crystal, emission wavelength exhibits a sensitive change of 1061 nm → 1061/1062 + 1068 nm → 1068 nm. The experimental discipline is well explained by a theoretical study of simulating on the spatial distribution of stimulated emission cross-section. This letter manifests that the laser property along non-principal-axis direction is also valuable for research and application, which breaks through the traditional custom of using laser materials processed along principal-axis.
Design considerations for a Space Shuttle Main Engine turbine blade made of single crystal material
NASA Technical Reports Server (NTRS)
Abdul-Aziz, A.; August, R.; Nagpal, V.
1993-01-01
Nonlinear finite-element structural analyses were performed on the first stage high-pressure fuel turbopump blade of the Space Shuttle Main Engine. The analyses examined the structural response and the dynamic characteristics at typical operating conditions. Single crystal material PWA-1480 was considered for the analyses. Structural response and the blade natural frequencies with respect to the crystal orientation were investigated. The analyses were conducted based on typical test stand engine cycle. Influence of combined thermal, aerodynamic, and centrifugal loadings was considered. Results obtained showed that the single crystal secondary orientation effects on the maximum principal stresses are not highly significant.
Formation of nanotwin networks during high-temperature crystallization of amorphous germanium
Sandoval, Luis; Reina, Celia; Marian, Jaime
2015-11-26
Germanium is an extremely important material used for numerous functional applications in many fields of nanotechnology. In this paper, we study the crystallization of amorphous Ge using atomistic simulations of critical nano-metric nuclei at high temperatures. We find that crystallization occurs by the recurrent transfer of atoms via a diffusive process from the amorphous phase into suitably-oriented crystalline layers. We accompany our simulations with a comprehensive thermodynamic and kinetic analysis of the growth process, which explains the energy balance and the interfacial growth velocities governing grain growth. For the <111> crystallographic orientation, we find a degenerate atomic rearrangement process, withmore » two zero-energy modes corresponding to a perfect crystalline structure and the formation of a Σ3 twin boundary. Continued growth in this direction results in the development a twin network, in contrast with all other growth orientations, where the crystal grows defect-free. This particular mechanism of crystallization from amorphous phases is also observed during solid-phase epitaxial growth of <111> semiconductor crystals, where growth is restrained to one dimension. Lastly, we calculate the equivalent X-ray diffraction pattern of the obtained nanotwin networks, providing grounds for experimental validation.« less
Formation of Nanotwin Networks during High-Temperature Crystallization of Amorphous Germanium
Sandoval, Luis; Reina, Celia; Marian, Jaime
2015-01-01
Germanium is an extremely important material used for numerous functional applications in many fields of nanotechnology. In this paper, we study the crystallization of amorphous Ge using atomistic simulations of critical nano-metric nuclei at high temperatures. We find that crystallization occurs by the recurrent transfer of atoms via a diffusive process from the amorphous phase into suitably-oriented crystalline layers. We accompany our simulations with a comprehensive thermodynamic and kinetic analysis of the growth process, which explains the energy balance and the interfacial growth velocities governing grain growth. For the 〈111〉 crystallographic orientation, we find a degenerate atomic rearrangement process, with two zero-energy modes corresponding to a perfect crystalline structure and the formation of a Σ3 twin boundary. Continued growth in this direction results in the development a twin network, in contrast with all other growth orientations, where the crystal grows defect-free. This particular mechanism of crystallization from amorphous phases is also observed during solid-phase epitaxial growth of 〈111〉 semiconductor crystals, where growth is restrained to one dimension. We calculate the equivalent X-ray diffraction pattern of the obtained nanotwin networks, providing grounds for experimental validation. PMID:26607496
Fe-Al alloy single-crystal thin film preparation for basic magnetic measurements
NASA Astrophysics Data System (ADS)
Abe, Tatsuya; Kawai, Tetsuroh; Futamoto, Masaaki; Ohtake, Mitsuru; Inaba, Nobuyuki
2018-04-01
Fe100-xAlx (x = 0, 4, 10, 20, 30 at. %) alloy films of 40 nm thickness are prepared on MgO(001) single-crystal substrates by varying substrate temperature from room temperature to 600 °C. Single-crystal films of (001) orientation with bcc-based disordered A2 structure are obtained for the Al content range of x = 0 - 20 at. %. An ordered phase of DO3 structure is observed in Fe70Al30 films prepared at temperatures higher than 200 °C, whereas (001) oriented single-crystal films of A2 structure are obtained when prepared at room temperature. The film surface profile does not depend much on the film composition, while the surface roughness increases with increasing substrate temperature. Island-like crystals are observed for films prepared at 600°C for all compositions. Difference in lattice spacing measured parallel and perpendicular to the substrate is noted for the single-crystal thin films and it increases with increasing Al content. The lattice strain in single-crystal film is caused possibly to accommodate the lattice mismatch with the MgO substrate. The (001)-oriented single-crystal films with A2 structure show four-fold symmetries in in-plane magnetic anisotropy with the easy magnetization axis A2[100] and the hard magnetization axis A2[110], whereas the films with DO3 ordered structure show almost isotropic magnetic properties.
Relationship between tribology and optics in thin films of mechanically oriented nanocrystals.
Wong, Liana; Hu, Chunhua; Paradise, Ruthanne; Zhu, Zina; Shtukenberg, Alexander; Kahr, Bart
2012-07-25
Many crystalline dyes, when rubbed unidirectionally with cotton on glass slides, can be organized as thin films of highly aligned nanocrystals. Commonly, the linear birefringence and linear dichroism of these films resemble the optical properties of single crystals, indicating precisely oriented particles. Of 186 colored compounds, 122 showed sharp extinction and 50 were distinctly linearly dichroic. Of the latter 50 compounds, 88% were more optically dense when linearly polarized light was aligned with the rubbing axis. The mechanical properties of crystals that underlie the nonstatistical correlation between tribological processes and the direction of electron oscillations in absorption bands are discussed. The features that give rise to the orientation of dye crystallites naturally extend to colorless molecular crystals.
Smectic C liquid crystal growth through surface orientation by ZnxCd1-xSe thin films
NASA Astrophysics Data System (ADS)
Katranchev, B.; Petrov, M.; Bineva, I.; Levi, Z.; Mineva, M.
2012-12-01
A smectic C liquid crystal (LC) texture, consisting of distinct local single crystals (DLSCs) was grown using predefined orientation of ternary nanocrystalline thin films of ZnxCd1-xSe. The surface morphology and orientation features of the ZnxCd1-xSe films were investigated by AFM measurements and micro-texture polarization analysis. The ZnxCd1-xSe surface causes a substantial enlargement of the smectic C DLSCs and induction of a surface bistable state. The specific character of the morphology of this coating leads to the decrease of the corresponding anchoring energy. Two new chiral states, not typical for this LC were indicated. The physical mechanism providing these new effects is presented.
Raman tensor elements for tetragonal BaTiO3 and their use for in-plane domain texture assessments
NASA Astrophysics Data System (ADS)
Deluca, Marco; Higashino, Masayuki; Pezzotti, Giuseppe
2007-08-01
A quantitative assessment of c-axis oriented domains in a textured BaTiO3 (BT) single crystal has been carried out by polarized Raman microprobe spectroscopy. The relative intensity modulation of the Raman phonon modes has been theoretically modeled as a function of crystal rotation and linked to the volume fraction of c-axis oriented domains. Raman tensor elements have also been experimentally determined for the Ag and B1 vibrational modes. As an application, the internal in-plane texture and the volume fraction of c-oriented domains in the BT single crystal have been nondestructively visualized by monitoring the relative intensity of Ag and B1 Raman modes.
Thermal expansion and elastic anisotropy in single crystal Al2O3 and SiC reinforcements
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Li, Zhuang; Bradt, Richard C.
1994-01-01
In single crystal form, SiC and Al2O3 are attractive reinforcing components for high temperature composites. In this study, the axial coefficients of thermal expansion and single crystal elastic constants of SiC and Al2O3 were used to determine their coefficients of thermal expansion and Young's moduli as a function of crystallographic orientation and temperature. SiC and Al2O3 exhibit a strong variation of Young's modulus with orientation; however, their moduli and anisotropies are weak functions of temperature below 1000 C. The coefficients of thermal expansion exhibit significant temperature dependence, and that of the non-cubic Al2O3 is also a function of crystallographic orientation.
Perceptual-cognitive skills and performance in orienteering.
Guzmán, José F; Pablos, Ana M; Pablos, Carlos
2008-08-01
The goal was analysis of the perceptual-cognitive skills associated with sport performance in orienteering in a sample of 22 elite and 17 nonelite runners. Variables considered were memory, basic orienteering techniques, map reading, symbol knowledge, map-terrain-map identification, and spatial organisation. A computerised questionnaire was developed to measure the variables. The reliability of the test (agreement between experts) was 90%. Findings suggested that competence in performing basic orienteering techniques efficiently was a key variable differentiating between the elite and the nonelite athletes. The results are discussed in comparison with previous studies.
NASA Astrophysics Data System (ADS)
Li, Z.; Jiu, L.; Gong, Y.; Wang, L.; Zhang, Y.; Bai, J.; Wang, T.
2017-02-01
Thick and crack-free semi-polar (11-22) AlGaN layers with various high Al compositions have been achieved by means of growth on the top of nearly but not yet fully coalesced GaN overgrown on micro-rod templates. The range of the Al composition of up to 55.7% was achieved, corresponding to an emission wavelength of up to 270 nm characterised by photoluminescence at room temperature. X-ray diffraction (XRD) measurements show greatly improved crystal quality as a result of lateral overgrowth compared to the AlGaN counterparts on standard planar substrates. The full width at half maximums of the XRD rocking curves measured along the [1-100]/[11-2-3] directions (the two typical orientations for characterizing the crystal quality of (11-22) AlGaN) are 0.2923°/0.2006° for 37.8% Al and 0.3825°/0.2064° for 55.7% Al, respectively, which have never been achieved previously. Our calculation based on reciprocal space mapping measurements has demonstrated significant strain relaxation in the AlGaN as a result of utilising the non-coalesced GaN underneath, contributing to the elimination of any cracks. The results presented have demonstrated that our overgrowth technique can effectively manage strain and improve crystal quality simultaneously.
The stonehenge technique: a new method of crystal alignment for coherent bremsstrahlung experiments
NASA Astrophysics Data System (ADS)
Livingston, Kenneth
2005-08-01
In the coherent bremsstrahlung technique a thin diamond crystal oriented correctly in an electron beam can produce photons with a high degree of linear polarization.1 The crystal is mounted on a goniometer to control its orientation and it is necessary to measure the angular offsets a) between the crystal axes and the goniometer axes and b) between the goniometer and the electron beam axis. A method for measuring these offsets and aligning the crystal was developed by Lohman et al, and has been used successfully in Mainz.2 However, recent attempts to investigate new crystals have shown that this approach has limitations which become more serious at higher beam energies where more accurate setting of the crystal angles, which scale with l/Ebeam, is required. (Eg. the recent installation of coherent bremsstrahlung facility at Jlab, with Ebeam = 6 GeV ) This paper describes a new, more general alignment technique, which overcomes these limitations. The technique is based on scans where the horizontal and vertical rotation axes of the goniometer are adjusted in a series of steps to make the normal to the crystal describe a cone of a given angle. For each step in the scan, the photon energy spectrum is measured using a tagging spectrometer, and the offsets between the electron beam and the crystal lattice are inferred from the resulting 2D plot. Using this method, it is possible to align the crystal with the beam quickly, and hence to set any desired orientation of the crystal relative to the beam. This is essential for any experiment requiring linearly polarized photons produced via coherent bremsstrahlung, and is also required for a systematic study of the channeling radiation produced by the electron beam incident on the crystal.
Electron crystallography of ultrathin 3D protein crystals: Atomic model with charges
Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi
2015-01-01
Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca2+-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca2+-binding sites of Ca2+-ATPase and that of the iron atom in the heme in catalase. PMID:25730881
Electron crystallography of ultrathin 3D protein crystals: atomic model with charges.
Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi
2015-03-17
Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca(2+)-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca(2+)-binding sites of Ca(2+)-ATPase and that of the iron atom in the heme in catalase.
C-Axis-Oriented Hydroxyapatite Film Grown Using ZnO Buffer Layer
NASA Astrophysics Data System (ADS)
Sakoishi, Yasuhiro; Iguchi, Ryo; Nishikawa, Hiroaki; Hontsu, Shigeki; Hayami, Takashi; Kusunoki, Masanobu
2013-11-01
A method of fabricating c-axis-oriented hydroxyapatite film on a quartz crystal microbalance (QCM) sensor was investigated. ZnO was used as a template to obtain a hexagonal hydroxyapatite crystal of uniaxial orientation. The ZnO was grown as a c-axis film on a Au/quartz with the surface structure of a QCM sensor. Under optimized conditions, hydroxyapatite was deposited by pulsed laser deposition. X-ray diffraction showed the hydroxyapatite film to be oriented along the c-axis. Because Au and ZnO are applied to many devices, the anisotropic properties of hydroxyapatite may be incorporated into these devices as well as QCM sensors.
Surface Structure Spread Single Crystals (S4C): Preparation and characterization
NASA Astrophysics Data System (ADS)
de Alwis, A.; Holsclaw, B.; Pushkarev, V. V.; Reinicker, A.; Lawton, T. J.; Blecher, M. E.; Sykes, E. C. H.; Gellman, A. J.
2013-02-01
A set of six spherically curved Cu single crystals referred to as Surface Structure Spread Single Crystals (S4Cs) has been prepared in such a way that their exposed surfaces collectively span all possible crystallographic surface orientations that can be cleaved from the face centered cubic Cu lattice. The method for preparing these S4Cs and for finding the high symmetry pole point is described. Optical profilometry has been used to determine the true shapes of the S4Cs and show that over the majority of the surface, the shape is extremely close to that of a perfect sphere. The local orientations of the surfaces lie within ± 1° of the orientation expected on the basis of the spherical shape; their orientation is as good as that of many commercially prepared single crystals. STM imaging has been used to characterize the atomic level structure of the Cu(111) ± 11°-S4C. This has shown that the average step densities and the average step orientations match those expected based on the spherical shape. In other words, although there is some distribution of step-step spacing and step orientations, there is no evidence of large scale reconstruction or faceting. The Cu S4Cs have local structures based on the ideal termination of the face centered cubic Cu lattice in the direction of termination. The set of Cu S4Cs will serve as the basis for high throughput investigations of structure sensitive surface chemistry on Cu.
Orientational order and rotational relaxation in the plastic crystal phase of tetrahedral molecules.
Rey, Rossend
2008-01-17
A methodology recently introduced to describe orientational order in liquid carbon tetrachloride is extended to the plastic crystal phase of XY4 molecules. The notion that liquid and plastic crystal phases are germane regarding orientational order is confirmed for short intermolecular distances but is seen to fail beyond, as long range orientational correlations are found for the simulated solid phase. It is argued that, if real, such a phenomenon may not to be accessible with direct (diffraction) methods due to the high molecular symmetry. This behavior is linked to the existence of preferential orientation with respect to the fcc crystalline network defined by the centers of mass. It is found that the dominant class accounts, at most, for one-third of all configurations, with a feeble dependence on temperature. Finally, the issue of rotational relaxation is also addressed, with an excellent agreement with experimental measures. It is shown that relaxation is nonhomogeneous in the picosecond range, with a slight dispersion of decay times depending on the initial orientational class. The results reported mainly correspond to neopentane over a wide temperature range, although results for carbon tetrachloride are included, as well.
Error analysis of the crystal orientations obtained by the dictionary approach to EBSD indexing.
Ram, Farangis; Wright, Stuart; Singh, Saransh; De Graef, Marc
2017-10-01
The efficacy of the dictionary approach to Electron Back-Scatter Diffraction (EBSD) indexing was evaluated through the analysis of the error in the retrieved crystal orientations. EBSPs simulated by the Callahan-De Graef forward model were used for this purpose. Patterns were noised, distorted, and binned prior to dictionary indexing. Patterns with a high level of noise, with optical distortions, and with a 25 × 25 pixel size, when the error in projection center was 0.7% of the pattern width and the error in specimen tilt was 0.8°, were indexed with a 0.8° mean error in orientation. The same patterns, but 60 × 60 pixel in size, were indexed by the standard 2D Hough transform based approach with almost the same orientation accuracy. Optimal detection parameters in the Hough space were obtained by minimizing the orientation error. It was shown that if the error in detector geometry can be reduced to 0.1% in projection center and 0.1° in specimen tilt, the dictionary approach can retrieve a crystal orientation with a 0.2° accuracy. Copyright © 2017 Elsevier B.V. All rights reserved.
Road Map for Development of Crystal-Tolerant High Level Waste Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matyas, Josef; Vienna, John D.; Peeler, David
This road map guides the research and development for formulation and processing of crystal-tolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) is also addressed in this road map.
Orientation decoding depends on maps, not columns
Freeman, Jeremy; Brouwer, Gijs Joost; Heeger, David J.; Merriam, Elisha P.
2011-01-01
The representation of orientation in primary visual cortex (V1) has been examined at a fine spatial scale corresponding to the columnar architecture. We present functional magnetic resonance imaging (fMRI) measurements providing evidence for a topographic map of orientation preference in human V1 at a much coarser scale, in register with the angular-position component of the retinotopic map of V1. This coarse-scale orientation map provides a parsimonious explanation for why multivariate pattern analysis methods succeed in decoding stimulus orientation from fMRI measurements, challenging the widely-held assumption that decoding results reflect sampling of spatial irregularities in the fine-scale columnar architecture. Decoding stimulus attributes and cognitive states from fMRI measurements has proven useful for a number of applications, but our results demonstrate that the interpretation cannot assume decoding reflects or exploits columnar organization. PMID:21451017
NASA Astrophysics Data System (ADS)
Thust, Anja; Heilbronner, Renée.; Stünitz, Holger
2010-05-01
Samples of natural milky quartz were deformed in a Griggs deformation apparatus at different confining pressures (700 MPa, 1000 MPa, 1500 MPa), with constant displacement rates of 1 * 10-6s-1, axial strains of 3 - 19%, and at a temperature of 900° C. The single crystal starting material contains a large number of H2O-rich fluid inclusions. Directly adjacent to the fluid inclusions the crystal is essentially dry (50-150H/106Si, determined by FTIR). The samples were cored from a narrow zone of constant 'milkyness' (i.e. same density of fluid inclusions) in a large single crystal in two different orientations (1) normal to one of the prism planes (⊥{m} orientation) and (2) 45° to and to (O+ orientation).During attaining of the experimental P and T conditions, numerous fluid inclusions decrepitate by cracking. Rapid crack healing produces regions of very small fluid inclusions ('wet' quartz domains). Only these regions are subsequently deformed by dislocation glide, dry quartz domains without cracking and decrepitation of fluid inclusions remain undeformed. Sample strain is not sufficient to cause recrystallization, so that deformation is restricted to dislocation glide. In experiments at lower temperatures (800, 700° C) or at lower strain rate (10-5s-1) there is abundant cracking and semi-brittle deformation, indicating that 900° C, (10-6s-1) represents the lower temperature end of crystal plastic deformation in these single crystals. Peak strengths (at 900° C) range between 150 and 250 MPa for most samples of both orientations. There is a trend of decreasing strength with increasing confining pressure, as described by Kronenberg and Tullis (1984) for quartzites, but the large variation in strength due to inhomogeneous sample strain precludes a definite analysis of the strength/pressure dependence in our single crystals. In the deformed samples, we can distinguish a number of microstructures and inferred different slip systems. In both orientations, deformation lamellae with a high optical relief appear in the usual sub-basal orientation; often they are associated with 'fluid inclusions trails', cracks or en echelon arrays. In ⊥{m} orientation, conjugate misorientation bands sub-parallel to the prism planes can be observed. The barreled shape of the samples can be explained by prism glide. Unfortunately, since prism glide does not affect the c-axis orientation it cannot be recognized on a c-axis orientation image. Nevertheless, changes in the c-axis orientation are observed locally, indicating either the activity of an additional slip system or a different deformation process (not specified yet). In O+ orientation, we observe the formation of internally kinked shear bands. They are up to 100 μm wide and oriented at α 90° w/r to the host c-axis, slightly oblique to the sense of shear. The width of the kinked domains is 20-40 μm and the average misorientation (β) is 5° . The dispersion of c-axis orientation with synthetic rotation of the c-axis is evidence of basal glide. References: Kronenberg, A.K. & Tullis, J. (1984): Flow strength of quartz aggregates: grain size and pressure effects due to hydrolytic weakening. JGR Vol. 89, 4281-4281.
Srinivasa, Narayan; Jiang, Qin
2013-01-01
This study describes a spiking model that self-organizes for stable formation and maintenance of orientation and ocular dominance maps in the visual cortex (V1). This self-organization process simulates three development phases: an early experience-independent phase, a late experience-independent phase and a subsequent refinement phase during which experience acts to shape the map properties. The ocular dominance maps that emerge accommodate the two sets of monocular inputs that arise from the lateral geniculate nucleus (LGN) to layer 4 of V1. The orientation selectivity maps that emerge feature well-developed iso-orientation domains and fractures. During the last two phases of development the orientation preferences at some locations appear to rotate continuously through ±180° along circular paths and referred to as pinwheel-like patterns but without any corresponding point discontinuities in the orientation gradient maps. The formation of these functional maps is driven by balanced excitatory and inhibitory currents that are established via synaptic plasticity based on spike timing for both excitatory and inhibitory synapses. The stability and maintenance of the formed maps with continuous synaptic plasticity is enabled by homeostasis caused by inhibitory plasticity. However, a prolonged exposure to repeated stimuli does alter the formed maps over time due to plasticity. The results from this study suggest that continuous synaptic plasticity in both excitatory neurons and interneurons could play a critical role in the formation, stability, and maintenance of functional maps in the cortex. PMID:23450808
A non-affine micro-macro approach to strain-crystallizing rubber-like materials
NASA Astrophysics Data System (ADS)
Rastak, Reza; Linder, Christian
2018-02-01
Crystallization can occur in rubber materials at large strains due to a phenomenon called strain-induced crystallization. We propose a multi-scale polymer network model to capture this process in rubber-like materials. At the microscopic scale, we present a chain formulation by studying the thermodynamic behavior of a polymer chain and its crystallization mechanism inside a stretching polymer network. The chain model accounts for the thermodynamics of crystallization and presents a rate-dependent evolution law for crystallization based on the gradient of the free energy with respect to the crystallinity variables to ensures the dissipation is always non-negative. The multiscale framework allows the anisotropic crystallization of rubber which has been observed experimentally. Two different approaches for formulating the orientational distribution of crystallinity are studied. In the first approach, the algorithm tracks the crystallization at a finite number of orientations. In contrast, the continuous distribution describes the crystallization for all polymer chain orientations and describes its evolution with only a few distribution parameters. To connect the deformation of the micro with that of the macro scale, our model combines the recently developed maximal advance path constraint with the principal of minimum average free energy, resulting in a non-affine deformation model for polymer chains. Various aspects of the proposed model are validated by existing experimental results, including the stress response, crystallinity evolution during loading and unloading, crystallinity distribution, and the rotation of the principal crystallization direction. As a case study, we simulate the formation of crystalline regions around a pre-existing notch in a 3D rubber block and we compare the results with experimental data.
NASA Astrophysics Data System (ADS)
Phuoc, Nguyen N.; Ong, C. K.
2017-06-01
Multiferroic structures of FeCo/NiFe/[Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32 (PMN-PT) with three different crystal orientations of PMN-PT(0 1 1), PMN-PT(0 0 1) and PMN-PT(1 1 1) were fabricated by a sputtering deposition system. Their dynamic magnetic properties were characterized under various applied electrical fields. The sample with PMN-PT(0 1 1) orientation shows a large tuning of the permeability spectra while the ones with PMN-PT(0 0 1) and PMN-PT(1 1 1) orientations exhibit a moderate and little change in the permeability spectra, respectively. The result can be explained via the magnetoelectric effect by considering the role of the piezoelectric coefficients being highly dependent on the crystal orientation along which the PMN-PT is poled. This explanation is consistent with the static magnetic characteristics of the samples before and after poling.
Spider texture and amphibole preferred orientations
NASA Astrophysics Data System (ADS)
Shelley, David
1994-05-01
Foliation in blueschist facies chert from California is defined by layers of oriented alkali-amphibole which consistently curve towards and converge on pyrite (and possibly pyrrhotite) crystals. These foliation nodes, not previously described, are called here 'spider texture'. The texture is interpreted in terms of perturbations of the stress field in a matrix undergoing strain about rigid pyrite (or pyrrhotite) crystals, and it has important implications for understanding the mechanisms of amphibole preferred orientation development. Geometrical relationships between spider texture, pressure shadows and quartz preferred orientations suggest that amphiboles grew with a strong preferred orientation along planes of maximum shearing stress. The mechanism of foliation and preferred orientation development probably involved competitive anisotropic growth of amphibole prisms within the small gaps that open at steps on shear planes, followed by additional (micro-) porphyroblastic growth. The first stage of the mechanism is similar to slickenfibre development.
Modelling sodium cobaltate by mapping onto magnetic Ising model
NASA Astrophysics Data System (ADS)
Gemperline, Patrick; Morris, David Jonathan Pryce
Fast Ion conductors are a class of crystals that are frequently used as battery materials, especially in smart phones, laptops, and other portable devices. Sodium Cobalt Oxide, NaxCoO2, falls into this class of crystals, but is unique because it possesses the ability to act as a thermoelectric material and a superconductor at different concentrations of Na+. The crystal lattice is mapped onto an Ising Magnetic Spin model and a Monte-Carol Simulation is used to find the most energetically favorable configuration of spins. This spin configuration is mapped back to the crystal lattice resulting in the most stable crystal structure of Sodium Cobalt Oxide at various concentrations. Knowing the atomic structures of the crystals will aid in the research of the materials capabilities and the possible uses of the material commercially. Ohio Supercomputer Center. 1987. Ohio Supercomputer Center. Columbus OH: Ohio Supercomputer Center. and the John Hauck Foundation.
The EPR of the triplet state of aryl cations in crystals of diazonium salts
NASA Astrophysics Data System (ADS)
Kondratenko, P. A.; Shrubovich, E. V.; Shulga, S. Z.
The spectra of the electron paramagnetic resonance (EPR) of aryl cations possessing a principle triplet ground-state and orientated in a monocrystal of diazonium salts is studied. It is shown that two nonequivalent paramagnetic centers, which differ in orientation are formed within the crystal. A theoretic description of experimental results is possible only when allowing for the effect of low symmetry. This symmetry is invoked by the interactivity of the paramagnetic center of symmetry C(sub 2v) with the crystal field of symmetry C(sub i).
NASA Astrophysics Data System (ADS)
Barr, Amy C.; Stillman, David E.
2011-03-01
Orbital radar sounding has been suggested as a means of determining the subsurface thermal and physical structure of the outer ice I shells of the Galilean satellites. At radar frequencies, the dielectric permittivity of single- and polycrystalline water ice I is anisotropic. Crystal orientation fabric (COF), which is indicative of strain history, can be unambiguously detected by comparing the received power of dual co-polarization (linear polarization parallel and perpendicular to the orbit) radar data. Regions with crystal orientations dictated by the local strain field (“fabric”) form in terrestrial ice masses where accumulated strain and temperature are high, similar to conditions expected in a convecting outer ice I shell on Europa, Ganymede, or Callisto. We use simulations of solid-state ice shell convection to show that crystal orientation fabric can form in the warm convecting sublayer of the ice shells for plausible grain sizes. Changes in received power from parallel and perpendicular polarizations in the ice shells due to fabric could be detected if multi-polarization data is collected. With proper instrument design, radar sounding could be used to shed light on the strain history of the satellites' ice shells in addition to their present day internal structures.
NASA Astrophysics Data System (ADS)
LeFevre, Scott W.; Bao, Zhenan; Ryu, Chang Y.; Siegel, Richard W.; Yang, Hoichang
2007-09-01
It has been shown that high charge mobility in solution-processible organic semiconductor-based field effect transistors is due in part to a highly parallel π-π stacking plane orientation of the semiconductors with respect to gate-dielectric. Fast solvent evaporation methods, generally, exacerbate kinetically random crystal orientations in the films deposited, specifically, from good solvents. We have investigated solubility-driven thin film structures of thiophene derivative polymers via spin- and drop-casting with volatile solvents of a low boiling point. Among volatile solvents examined, marginal solvents, which have temperature-dependent solubility for the semiconductors (e.g. methylene chloride for regioregular poly(3-alkylthiophene)s), can be used to direct the favorable crystal orientation regardless of solvent drying time, when the temperature of gate-dielectrics is held to relatively cooler than the warm solution. Grazing-incidence X-ray diffraction and atomic force microscopy strongly support that significant control of crystal orientation and mesoscale morphology using a "cold" substrate holds true for both drop and spin casting. The effects of physiochemical post-modificaiton on film crystal structures and morphologies of poly(9,9-dioctylfluorene-co-bithiophene) have also been investigated.
Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goto, Kaname; Yamashita, Kenichi, E-mail: yamasita@kit.ac.jp; Yanagi, Hisao
2016-08-08
Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even inmore » the “half-vertical cavity surface emitting lasing” microcavity structure.« less
Mukherjee, Kunal; Hayamizu, Yoshiaki; Kim, Chang Sub; Kolchina, Liudmila M; Mazo, Galina N; Istomin, Sergey Ya; Bishop, Sean R; Tuller, Harry L
2016-12-21
Highly textured thin films of undoped, Ce-doped, and Sr-doped Pr 2 CuO 4 were synthesized on single crystal YSZ substrates using pulsed laser deposition to investigate their area-specific resistance (ASR) as cathodes in solid-oxide fuel cells (SOFCs). The effects of T' and T* crystal structures, donor and acceptor doping, and a-axis and c-axis orientation on ASR were systematically studied using electrochemical impedance spectroscopy on half cells. The addition of both Ce and Sr dopants resulted in improvements in ASR in c-axis oriented films, as did the T* crystal structure with the a-axis orientation. Pr 1.6 Sr 0.4 CuO 4 is identified as a potential cathode material with nearly an order of magnitude faster oxygen reduction reaction kinetics at 600 °C compared to thin films of the commonly studied cathode material La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3-δ . Orientation control of the cuprate films on YSZ was achieved using seed layers, and the anisotropy in the ASR was found to be less than an order of magnitude. The rare-earth doped cuprate was found to be a versatile system for study of relationships between bulk properties and the oxygen reduction reaction, critical for improving SOFC performance.
NASA Astrophysics Data System (ADS)
Xing, Chang-Ming; Wang, Christina Yan; Tan, Wei
2017-12-01
Olivine from mafic-ultramafic intrusions rarely displays growth zoning in major and some minor elements, such as Fe, Mg and Ni, due to fast diffusion of these elements at high temperatures. These elements in olivine are thus not useful in deciphering magma chamber processes, such as magma convection, multiple injection and mixing. High-resolution X-ray elemental intensity mapping reveals distinct P zoning patterns of olivine from two mafic-ultramafic intrusions in SW China. Polyhedral olivine grains from lherzolite and dunite of the Abulangdang intrusion show P-rich dendrites similar to those observed in volcanic rocks. Rounded olivine grains from net-textured Fe-Ti oxide ores of the Baima layered intrusion have irregular P-rich patches/bands crosscut and interlocked by P-poor olivine domains. P-rich patches/bands contain 250 to 612 ppm P, much higher than P-poor olivine domains with 123 to 230 ppm P. In electron backscattered diffraction (EBSD) maps, P-rich patches/bands within a single olivine grain have the same crystallographic orientation, indicating that they were remnants of the same crystal. Thus, both P-rich patches/bands and P-poor olivine domains in the same grain show a disequilibrium texture and clearly record two-stage growth. The P-rich patches/bands are likely the remnants of a polyhedral olivine crystal that formed in the first stage, whereas the P-poor olivine domains containing rounded Ti-rich magnetite and Fe-rich melt inclusions may have formed from an Fe-rich ambient melt in the second stage. The complex P zoning of olivine can be attributed to the dissolution of early polyhedral olivine and re-precipitation from the Fe-rich ambient melt. The early polyhedral olivine was in chemical disequilibrium with the ambient melt that may have been developed by silicate liquid immiscibility in a crystal mush. Our study implies that olivine crystals in igneous cumulates with an equilibrium appearance may have experienced disequilibrium growth processes during slow cooling. Therefore, the crystallization sequence of mafic magmas based on textural relationships should be treated with caution.
Shock Hugoniot of single crystal copper
NASA Astrophysics Data System (ADS)
Chau, R.; Stölken, J.; Asoka-Kumar, P.; Kumar, M.; Holmes, N. C.
2010-01-01
The shock Hugoniot of single crystal copper is reported for stresses below 66 GPa. Symmetric impact experiments were used to measure the Hugoniots of three different crystal orientations of copper, [100], [110], and [111]. The photonic doppler velocimetry (PDV) diagnostic was adapted into a very high precision time of arrival detector for these experiments. The measured Hugoniots along all three crystal directions were nearly identical to the experimental Hugoniot for polycrystalline Cu. The predicted orientation dependence of the Hugoniot from molecular dynamics calculations was not observed. At the lowest stresses, the sound speed in Cu was extracted from the PDV data. The measured sound speeds are in agreement with values calculated from the elastic constants for Cu.
Isothermal dendritic growth: A low gravity experiment
NASA Technical Reports Server (NTRS)
Glicksman, M. E.; Hahn, R. C.; Lograsso, T. A.; Rubinstein, E. R.; Selleck, M. E.; Winsa, E.
1988-01-01
The Isothermal Dendritic Growth Experiment is an active crystal growth experiment designed to test dendritic growth theory at low undercoolings where convection prohibits such studies at 1 g. The experiment will be essentially autonomous, though limited in-flight interaction through a computer interface is planned. One of the key components of the apparatus will be a crystal growth chamber capable of achieving oriented single crystal dendritic growth. Recent work indicates that seeding the chamber with a crystal of the proper orientation will not, in and of itself, be sufficient to meet this requirement. Additional flight hardware and software required for the STS flight experiment are currently being developed at NASA Lewis Research Center and at Rensselaer Polytechnic Institute.
Evolution of molecular crystal optical phonons near structural phase transitions
NASA Astrophysics Data System (ADS)
Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea
Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.
Solid-phase crystallization of amorphous Si films on glass and Si wafer
NASA Astrophysics Data System (ADS)
Lee, Dong Nyung
2011-11-01
When amorphous silicon films deposited on glass by physical or chemical vapor deposition are annealed, they undergo crystallization by nucleation and growth. The growth rate of Si crystallites is the highest in their <111> directions along or nearly along the film surface. The directed crystallization is likely to develop the <110>//ND or <111>//ND oriented Si crystallites. As the annealing temperature increases, the equiaxed crystallization increases, which in turn increases the random orientation. When amorphous Si is under a stress of the order of 0.1 GPa at about 540 °C, the tensile stress increases the growth rate of Si grains, whereas the compressive stress decreases the growth rate. However, the crystal growth rate increases with the increasing hydrostatic pressure, when the pressure is of the order of GPa at 530-540 °C. These phenomena have been discussed based on the directed crystallization model advanced before, which has been further elaborated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Zhipu; Dauter, Zbigniew; Gilski, Miroslaw
DNA oligomer duplexes containing alternating cytosines and guanines in their sequences tend to form left-handed helices of the Z-DNA type, with the sugar and phosphate backbone in a zigzag conformation and a helical repeat of two successive nucleotides. Z-DNA duplexes usually crystallize as hexagonally arranged parallel helical tubes, with various relative orientations and translation of neighboring duplexes. Four novel high-resolution crystal structures of d(CGCGCG) 2duplexes are described here. They are characterized by a high degree of pseudosymmetry and/or twinning, with three or four independent duplexes differently oriented in a monoclinicP2 1lattice of hexagonal metric. The various twinning criteria give somewhatmore » conflicting indications in these complicated cases of crystal pathology. The details of molecular packing in these crystal structures are compared with other known crystal forms of Z-DNA.« less
Teschke, Omar; Soares, David Mendez
2016-03-29
Structures of crystallized deposits formed by the molecular self-assembly of aspartic acid and valine on silicon substrates were imaged by atomic force microscopy. Images of d- and l-aspartic acid crystal surfaces showing extended molecularly flat sheets or regions separated by single molecule thick steps are presented. Distinct orientation surfaces were imaged, which, combined with the single molecule step size, defines the geometry of the crystal. However, single molecule step growth also reveals the crystal chirality, i.e., growth orientations. The imaged ordered lattice of aspartic acid (asp) and valine (val) mostly revealed periodicities corresponding to bulk terminations, but a previously unreported molecular hexagonal lattice configuration was observed for both l-asp and l-val but not for d-asp or d-val. Atomic force microscopy can then be used to identify the different chiral forms of aspartic acid and valine crystals.
Link between orientation and retinotopic maps in primary visual cortex
Paik, Se-Bum; Ringach, Dario L.
2012-01-01
Maps representing the preference of neurons for the location and orientation of a stimulus on the visual field are a hallmark of primary visual cortex. It is not yet known how these maps develop and what function they play in visual processing. One hypothesis postulates that orientation maps are initially seeded by the spatial interference of ON- and OFF-center retinal receptive field mosaics. Here we show that such a mechanism predicts a link between the layout of orientation preferences around singularities of different signs and the cardinal axes of the retinotopic map. Moreover, we confirm the predicted relationship holds in tree shrew primary visual cortex. These findings provide additional support for the notion that spatially structured input from the retina may provide a blueprint for the early development of cortical maps and receptive fields. More broadly, it raises the possibility that spatially structured input from the periphery may shape the organization of primary sensory cortex of other modalities as well. PMID:22509015
Ma, Dexin; Bührig-Polaczek, Andreas
2015-01-01
A nickel-based single-crystal superalloy was employed to investigate the preferred growth orientation behavior of the (γ + γ′) eutectic and the effect of these orientations on the segregation behavior. A novel solidification model for the eutectic island was proposed. At the beginning of the eutectic island’s crystallization, the core directly formed from the liquid by the eutectic reaction, and then preferably grew along [100] direction. The crystallization of the eutectic along [110] always lagged behind that in [100] direction. The eutectic growth in [100] direction terminated on impinging the edge of the dendrites or another eutectic island. The end of the eutectic island’s solidification terminates due to the encroachment of the eutectic liquid/solid interface at the dendrites or another eutectic island in [110] direction. The distribution of the alloying elements depended on the crystalline axis. The degree of the alloying elements’ segregation was lower along [100] than [110] direction with increasing distance from the eutectic island’s center. PMID:27877773
Etude de la texture des rubans EPR de silicium polycristallin photovoltaïque
NASA Astrophysics Data System (ADS)
Chibani, A.; Gauthier, R.; Pinard, P.; Andonov, P.
1991-09-01
EPR polysilicon ribbons are obtained from a 5N-6N purity grade silicon powder melting followed by a recrystallization step. Being assigned to the photocell manufacture, we study the texture by X-ray diffraction method to reveal the majority of the crystal orientations and prove the eventual existence of specific orientations adapted to the best photovoltaic conversion efficiencies such as (100), (110) or (111). Moreover, we tested the possibility to induce the (111) orientation with a monocrystalline seed having this orientation. It appears that the crystal growth is essentially anisotropic and that only the orientation of the grains with their (331) planes parallel to the ribbon surface may be considered as dominant after the recrystallization step; finally, the (111) starting seed has an effect only at the recrystallization onset.
Lu, Ping; Moya, Jaime M.; Yuan, Renliang; ...
2018-03-01
The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO 3 [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error. The strong thickness dependence is realized by measuring the full width at half maximamore » (FWHM) as well as the peak-to-valley (P/V) ratio of the EDS profiles for Ti K and Sr K+L, obtained at several crystal thicknesses. A FWHM of about 0.16 nm and a P/V ratio of greater than 7.0 are obtained for Ti K for a crystal thickness of less than 20 nm. In conclusion, with increasing crystal thickness, the FWHM and P/V ratio increases and decreases, respectively, indicating the advantage of using a thin crystal for high-resolution EDS mapping.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ping; Moya, Jaime M.; Yuan, Renliang
The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO 3 [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error. The strong thickness dependence is realized by measuring the full width at half maximamore » (FWHM) as well as the peak-to-valley (P/V) ratio of the EDS profiles for Ti K and Sr K+L, obtained at several crystal thicknesses. A FWHM of about 0.16 nm and a P/V ratio of greater than 7.0 are obtained for Ti K for a crystal thickness of less than 20 nm. In conclusion, with increasing crystal thickness, the FWHM and P/V ratio increases and decreases, respectively, indicating the advantage of using a thin crystal for high-resolution EDS mapping.« less
Lu, Ping; Moya, Jaime M; Yuan, Renliang; Zuo, Jian Min
2018-03-01
The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO 3 [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error. The strong thickness dependence is realized by measuring the full width at half maxima (FWHM) as well as the peak-to-valley (P/V) ratio of the EDS profiles for Ti K and Sr K + L, obtained at several crystal thicknesses. A FWHM of about 0.16 nm and a P/V ratio of greater than 7.0 are obtained for Ti K for a crystal thickness of less than 20 nm. With increasing crystal thickness, the FWHM and P/V ratio increases and decreases, respectively, indicating the advantage of using a thin crystal for high-resolution EDS mapping. Published by Elsevier B.V.
Reciprocal Space Mapping of Macromolecular Crystals in the Laboratory
NASA Technical Reports Server (NTRS)
Snell, Edward H.; Boggon, T. J.; Fewster, P. F.; Siddons, D. P.; Stojanof, V.; Pusey, M. L.
1998-01-01
The technique of reciprocal space mapping applied to the physical measurement of macromolecular crystals will be described. This technique uses a triple axis diffractometer setup whereby the monochromator is the first crystal, the sample is the second and the third crystal (of the same material as the monochromator) analyzes the diffracted beam. The geometry is such that it is possible to separate mosaic volume effects from lattice strain effects. The deconvolution of the instrument parameters will also be addressed. Results from measurements at Brookhaven National Synchrotron Radiation Source carried out on microgravity and ground-grown crystals will be presented. The required beam characteristics for reciprocal space mapping are also ideal for topographic studies and the first topographs ever recorded from microgravity protein crystal samples will be shown. We are now working on a system which will enable reciprocal space mapping, mosaicity and topography studies to be carried out in the home laboratory. This system uses a rotating anode X-ray source to provide an intense beam then a Bartels double crystal, four reflection monochromator to provide the spectral and geometric beam conditioning necessary such that the instrument characteristics do not mask the measurement. This is coupled to a high precision diffractometer and sensitive detector. Commissioning data and first results from the system will be presented.
Nanostructure and elastic modulus of single trabecula in bovine cancellous bone.
Yamada, Satoshi; Tadano, Shigeru; Fukuda, Sakurako
2014-11-07
We aimed to investigate the elastic modulus of trabeculae using tensile tests and assess the effects of nanostructure at the hydroxyapatite (HAp) crystal scale on the elastic modulus. In the experiments, 18 trabeculae that were at least 3mm in length in the proximal epiphysis of three adult bovine femurs were used. Tensile tests were conducted using a small tensile testing device coupled with microscopy under air-dried condition. The c-axis orientation of HAp crystals and the degree of orientation were measured by X-ray diffraction. To observe the deformation behavior of HAp crystals under tensile loading, the same tensile tests were conducted in X-ray diffraction measurements. The mineral content of specimens was evaluated using energy dispersive X-ray spectrometry. The elastic modulus of a single trabecula varied from 4.5 to 23.6 GPa, and the average was 11.5 ± 5.0 GPa. The c-axis of HAp crystals was aligned with the trabecular axis and the crystals were lineally deformed under tensile loading. The ratio of the HAp crystal strain to the tissue strain (strain ratio) had a significant correlation with the elastic modulus (r=0.79; P<0.001). However, the mineral content and the degree of orientation did not vary widely and did not correlate with the elastic modulus in this study. It suggests that the strain ratio may represent the nanostructure of a single trabecula and would determine the elastic modulus as well as mineral content and orientation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Preferential orientation of metal oxide superconducting materials by mechanical means
Capone, Donald W.
1990-01-01
A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0<.times.<0.5) is capable of accommodating very large current densities. By aligning the two-dimensional Cu--O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the metal oxide material to accommodate high current densities. The orthorhombic crystalline particles have a tendency to lie down on one of the longer sides, i.e., on the a- or b-direction. Aligning the crystals in this orientation is accomplished by mechanical working of the material such as by extrusion, tape casting or slip casting, provided a single crystal powder is used as a starting material, to provide a highly oriented, e.g., approximately 90% of the crystal particles have a common orientation, superconducting matrix capable of supporting large current densities.
Preferential orientation of metal oxide superconducting materials by mechanical means
Capone, D.W.
1990-11-27
A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) is capable of accommodating very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the metal oxide material to accommodate high current densities. The orthorhombic crystalline particles have a tendency to lie down on one of the longer sides, i.e., on the a- or b-direction. Aligning the crystals in this orientation is accomplished by mechanical working of the material such as by extrusion, tape casting or slip casting, provided a single crystal powder is used as a starting material, to provide a highly oriented, e.g., approximately 90% of the crystal particles have a common orientation, superconducting matrix capable of supporting large current densities. 3 figs.
NASA Astrophysics Data System (ADS)
Li, F. X.; Rajapakse, R. K. N. D.
2007-03-01
Saturated domain orientation textures of three types of pseudocubic (tetragonal, rhombohedral, and orthorhombic) ferroelectric ceramics after complete electric and uniaxial tension (compression) poling is studied analytically in this paper. A one-dimensional orientation distribution function (ODF) of the domain polar vectors is explicitly derived from the uniform inverse pole figures of the poling field axes on a stereographic projection with respect to the fixed crystallite coordinates. The analytical ODF is used to obtain the analytical solutions of saturated polarization and strain after electric/mechanical poling. Based on the closed form solution of the saturated domain orientation textures, the resultant intrinsic electromechanical properties of ferroelectric ceramics, which depend only on the ODF and properties of the corresponding single crystals, are obtained. The results show how the macroscopic symmetries of ferroelectric crystals change from 4mm (tetragonal), 3m (rhombohedral), and mm2 (orthorhombic) single crystals to a ∞mm (transversely isotropic) completely poled ceramic.
Optical switch based on the electrically controlled liquid crystal interface.
Komar, Andrei A; Tolstik, Alexei L; Melnikova, Elena A; Muravsky, Alexander A
2015-06-01
The peculiarities of the linearly polarized light beam reflection at the interface within the bulk of a nematic liquid crystal (NLC) cell with different orientations of the director are analyzed. Two methods to create the interface are considered. Combination of the planar and homeotropic orientations of the NLC director is realized by means of a spatially structured electrode under the applied voltage. In-plane patterned azimuthal alignment of the NLC director is created by the patterned rubbing alignment technique. All possible orthogonal orientations of the LC director are considered; the configurations for realization of total internal reflection are determined. The revealed relationship between the propagation of optical beams in a liquid crystal material and polarization of laser radiation has enabled realization of the spatial separation for the orthogonally polarized light beams at the interface between two regions of NLC with different director orientations (domains). Owing to variations in the applied voltage and, hence, in the refractive index gradient, the light beam propagation directions may be controlled electrically.
Towards the XML schema measurement based on mapping between XML and OO domain
NASA Astrophysics Data System (ADS)
Rakić, Gordana; Budimac, Zoran; Heričko, Marjan; Pušnik, Maja
2017-07-01
Measuring quality of IT solutions is a priority in software engineering. Although numerous metrics for measuring object-oriented code already exist, measuring quality of UML models or XML Schemas is still developing. One of the research questions in the overall research leaded by ideas described in this paper is whether we can apply already defined object-oriented design metrics on XML schemas based on predefined mappings. In this paper, basic ideas for mentioned mapping are presented. This mapping is prerequisite for setting the future approach to XML schema quality measuring with object-oriented metrics.
NASA Astrophysics Data System (ADS)
Arzilli, Fabio; Mancini, Lucia; Voltolini, Marco; Cicconi, Maria Rita; Mohammadi, Sara; Giuli, Gabriele; Mainprice, David; Paris, Eleonora; Barou, Fabrice; Carroll, Michael R.
2015-02-01
The nucleation and growth processes of spherulitic alkali feldspar have been investigated in this study through X-ray microtomography and electron backscatter diffraction (EBSD) data. Here we present the first data on Shape Preferred Orientation (SPO) and Crystal Preferred Orientation (CPO) of alkali feldspar within spherulites. The analysis of synchrotron X-ray microtomography and EBSD datasets allowed us to study the morphometric characteristics of spherulites in trachytic melts in quantitative fashion, highlighting the three-dimensional shape, preferred orientation, branching of lamellae and crystal twinning, providing insights about the nucleation mechanism involved in the crystallization of the spherulites. The nucleation starts with a heterogeneous nucleus (pre-existing crystal or bubble) and subsequently it evolves forming "bow tie" morphologies, reaching radially spherulitic shapes in few hours. Since each lamella within spherulite is also twinned, these synthetic spherulites cannot be considered as single nuclei but crystal aggregates originated by heterogeneous nucleation. A twin boundary may have a lower energy than general crystal-crystal boundaries and many of the twinned grains show evidence of strong local bending which, combined with twin plane, creates local sites for heterogeneous nucleation. This study shows that the growth rates of the lamellae (10- 6-10- 7 cm/s) in spherulites are either similar or slightly higher than that for single crystals by up to one order of magnitude. Furthermore, the highest volumetric growth rates (10- 11-10- 12 cm3/s) show that the alkali feldspar within spherulites can grow fast reaching a volumetric size of ~ 10 μm3 in 1 s.
NASA Astrophysics Data System (ADS)
Kemkemer, R.; Teichgräber, V.; Schrank-Kaufmann, S.; Kaufmann, D.; Gruler, H.
2000-10-01
In cell culture, liquid crystal analogues are formed by elongated, migrating, and interacting amoeboid cells. An apolar nematic liquid crystal analogue is formed by different cell types like human melanocytes (=pigment cells of the skin), human fibroblasts (=connective tissue cells), human osteoblasts (=bone cells), human adipocytes (=fat cells), etc. The nematic analogue is quite well described by i) a stochastic machine equation responsible for cell orientation and ii) a self-organized extracellular guiding signal, E_2, which is proportional to the orientational order parameter as well as to the cell density. The investigations were mainly made with melanocytes. The transition to an isotropic state analogue can be accomplished either by changing the strength of interaction (e.g. variation of the cell density) or by influencing the cellular machinery by an externally applied signal: i) An isotropic gaseous state analogue is observed at low cell density (ρ < 110melanocytes/mm^2) and a nematic liquid crystal state analogue at higher cell density. ii) The nematic state analogue disappears if the bipolar shaped melanocytes are forced to become a star-like shape (induced by colchicine or staurosporine). The analogy between nematic liquid crystal state analogue formed by elongated, migrating and interacting cells and the nematic liquid crystal phase formed by interacting elongated molecules is discussed.
NASA Astrophysics Data System (ADS)
Obermayer, K.; Blasdel, G. G.; Schulten, K.
1992-05-01
We report a detailed analytical and numerical model study of pattern formation during the development of visual maps, namely, the formation of topographic maps and orientation and ocular dominance columns in the striate cortex. Pattern formation is described by a stimulus-driven Markovian process, the self-organizing feature map. This algorithm generates topologically correct maps between a space of (visual) input signals and an array of formal ``neurons,'' which in our model represents the cortex. We define order parameters that are a function of the set of visual stimuli an animal perceives, and we demonstrate that the formation of orientation and ocular dominance columns is the result of a global instability of the retinoptic projection above a critical value of these order parameters. We characterize the spatial structure of the emerging patterns by power spectra, correlation functions, and Gabor transforms, and we compare model predictions with experimental data obtained from the striate cortex of the macaque monkey with optical imaging. Above the critical value of the order parameters the model predicts a lateral segregation of the striate cortex into (i) binocular regions with linear changes in orientation preference, where iso-orientation slabs run perpendicular to the ocular dominance bands, and (ii) monocular regions with low orientation specificity, which contain the singularities of the orientation map. Some of these predictions have already been verified by experiments.
Compressional residual stress in Bastogne boudins revealed by synchrotron X-ray microdiffraction
Chen, Kai; Kunz, Martin; Li, Yao; ...
2016-06-22
Lattice distortions in crystals can be mapped at the micron scale using synchrotron X-ray Laue microdiffraction (μXRD). From lattice distortions the shape and orientation of the elastic strain tensor can be derived and interpreted in terms of residual stress. We apply the new method to vein quartz from the original boudinage locality at Bastogne, Belgium. Furthermore, a long-standing debate surrounds the kinematics of the Bastogne boudins. The μXRD measurements reveal a shortening residual elastic strain, perpendicular to the vein wall, corroborating the model that the Bastogne boudins formed by layer-parallel shortening and not by layer-parallel extension, as is in themore » geological community generally inferred by the process of boudinage.« less
Large-size TlBr single crystal growth and defect study
NASA Astrophysics Data System (ADS)
Zhang, Mingzhi; Zheng, Zhiping; Chen, Zheng; Zhang, Sen; Luo, Wei; Fu, Qiuyun
2018-04-01
Thallium bromide (TlBr) is an attractive semiconductor material for fabrication of radiation detectors due to its high photon stopping power originating from its high atomic number, wide band gap and high resistivity. In this paper the vertical Bridgman method was used for crystal growth and TlBr single crystals with diameter of 15 mm were grown. X-ray diffraction (XRD) was used to identify phase and orientation. Electron backscatter diffraction (EBSD) was used to investigate crystal microstructure and crystallographic orientation. The optical and electric performance of the crystal was characterized by infrared (IR) transmittance spectra and I-V measurement. The types of point defects in the crystals were investigated by thermally stimulated current (TSC) spectra and positron annihilation spectroscopy (PAS). Four types of defects, with ionization energy of each defect fitting as follows: 0.1308, 0.1540, 0.3822 and 0.538 eV, were confirmed from the TSC result. The PAS result showed that there were Tl vacancies in the crystal.
Brodusch, N; Demers, H; Gauvin, R
2013-04-01
A charge-coupled device camera of an electron backscattered diffraction system in a scanning electron microscope was positioned below a thin specimen and transmission Kikuchi patterns were collected. Contrary to electron backscattered diffraction, transmission electron forward scatter diffraction provides phase identification and orientation mapping at the nanoscale. The minimum Pd particle size for which a Kikuchi diffraction pattern was detected and indexed reliably was 5.6 nm. An orientation mapping resolution of 5 nm was measured at 30 kV. The resolution obtained with transmission electron forward scatter diffraction was of the same order of magnitude than that reported in electron nanodiffraction in the transmission electron microscope. An energy dispersive spectrometer X-ray map and a transmission electron forward scatter diffraction orientation map were acquired simultaneously. The high-resolution chemical, phase and orientation maps provided at once information on the chemical form, orientation and coherency of precipitates in an aluminium-lithium 2099 alloy. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Phase-field study of grain boundary tracking behavior in crack-seal microstructures
NASA Astrophysics Data System (ADS)
Ankit, Kumar; Nestler, Britta; Selzer, Michael; Reichardt, Mathias
2013-12-01
In order to address the growth of crystals in veins, a multiphase-field model is used to capture the dynamics of crystals precipitating from a super-saturated solution. To gain a detailed understanding of the polycrystal growth phenomena in veins, we investigate the influence of various boundary conditions on crystal growth. In particular, we analyze the formation of vein microstructures resulting from the free growth of crystals as well as crack-sealing processes. We define the crystal symmetry by considering the anisotropy in surface energy to simulate crystals with flat facets and sharp corners. The resulting growth competition of crystals with different orientations is studied to deduce a consistent orientation selection rule in the free-growth regime. Using crack-sealing simulations, we correlate the grain boundary tracking behavior depending on the relative rate of crack opening, opening trajectory, initial grain size, and wall roughness. Further, we illustrate how these parameters induce the microstructural transition between blocky (crystals growing anisotropically) to fibrous morphology (isotropic) and formation of grain boundaries. The phase-field simulations of crystals in the free-growth regime (in 2D and 3D) indicate that the growth or consumption of a crystal is dependent on the orientation difference with neighboring crystals. The crack-sealing simulation results (in 2D and 3D) reveal that crystals grow isotropically and grain boundaries track the opening trajectory if the wall roughness is high, opening increments are small, and crystals touch the wall before the next crack increment starts. Further, we find that within the complete crack-seal regime, anisotropy in surface energy results in the formation of curved/oscillating grain boundaries (instead of straight) when the crack-opening velocity is increased and wall roughness is not sufficiently high. Additionally, the overall capability of phase-field method to simulate large-scale polycrystal growth in veins (in 3D) is demonstrated enumerating the main advantages of adopting the novel approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xiaobin; Deng, Yunlai, E-mail: luckdeng@csu.edu.cn; State Key Laboratory of High Performance and Complex Manufacturing, Central South University, Changsha
The phenomenon of restrained stress-induced preferential orientation of S′ precipitates is investigated using a single-crystal of Al–1.23Cu–0.43 Mg alloy. Al–1.23Cu–0.43 Mg single-crystal specimens are subjected to stress aging, and the microstructure is analyzed by transmission electron microscopy (TEM). It is found that the stress-induced preferential orientation of S′ precipitates is restrained owing to the dislocations produced by a higher stress. The effect of dislocations on the oriented precipitates depends on the total length of the intersection lines for precipitate habit planes and dislocation glide planes. This investigation not only provides important insight into solving the anisotropy problem attributed to precipitationmore » strengthening, but also offers a benchmark for choosing the appropriate stress range in manufacturing of Al–Cu–Mg alloys. - Highlights: • Single crystals of an Al–Cu–Mg alloy were prepared for the investigations. • A phenomenon of restrained stress-induced preferential orientation of S′ precipitates was found. • The influence of dislocation helices on precipitation during stress-aging was studied. • Difference of orientation degree of S′ precipitates and θ′ precipitates was explained. • A basis for choosing the appropriate stress range in manufacturing of Al–Cu–Mg alloys is provided.« less
Heteroepitaxial growth of Pt and Au thin films on MgO single crystals by bias-assisted sputtering
Tolstova, Yulia; Omelchenko, Stefan T.; Shing, Amanda M.; ...
2016-03-17
The crystallographic orientation of a metal affects its surface energy and structure, and has profound implications for surface chemical reactions and interface engineering, which are important in areas ranging from optoelectronic device fabrication to catalysis. However, it can be very difficult and expensive to manufacture, orient, and cut single crystal metals along different crystallographic orientations, especially in the case of precious metals. One approach is to grow thin metal films epitaxially on dielectric substrates. In this work, we report on growth of Pt and Au films on MgO single crystal substrates of (100) and (110) surface orientation for use asmore » epitaxial templates for thin film photovoltaic devices. We develop bias-assisted sputtering for deposition of oriented Pt and Au films with sub-nanometer roughness. We show that biasing the substrate decreases the substrate temperature necessary to achieve epitaxial orientation, with temperature reduction from 600 to 350 °C for Au, and from 750 to 550 °C for Pt, without use of transition metal seed layers. Additionally, this temperature can be further reduced by reducing the growth rate. Biased deposition with varying substrate bias power and working pressure also enables control of the film morphology and surface roughness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishii, Akihito; Shinozaki, Kenji; Honma, Tsuyoshi
Nonlinear optical β-BaB{sub 2}O{sub 4} crystal lines (β-BBO) were patterned in the inside of 8Sm{sub 2}O{sub 3}–42BaO–50B{sub 2}O{sub 3} glass by irradiations of continuous-wave Yb:YVO{sub 4} lasers with a wavelength of 1080 nm (power: P=0.8–1.0 W, scanning speed: S=0.2–2.5 μm/s), in which the laser focal position was moved gradually from the surface to the inside. The morphology, size, and orientation of β-BBO crystals were examined from polarization optical microscope and birefringence imaging observations. It was demonstrated that c-axis oriented β-BBO crystals with long lengths (e.g., 20 mm) were patterned in the inside of the glass. The morphology of β-BBO inmore » the cross-section of lines was a rectangular shape with rounded corners, and the volume of β-BBO formed increased with increasing laser power and with decreasing laser scanning speed. The maximum depth in the inside from the surface for β-BBO patterning increased with increasing laser power, e.g., D{sub max}∼100 μm at P=0.8 W, D{sub max}∼170 μm at P=0.9 W, and D{sub max}∼200 μm at P=1 W. The present study proposes that the laser-induced crystallization opens a new door for applied engineering in glassy solids. - Graphical abstract: This figure shows the POM photographs for β-BaB{sub 2}O{sub 4} crystal lines patterned by cw Yb:YVO{sub 4} fiber laser irradiations with a laser power of P=0.8 W and a laser scanning speed S=2 μm/s in the glass. The laser focal point was moved gradually from the surface into the inside. The results shown in Fig. 1 demonstrate that it is possible to pattern highly oriented β-BaB{sub 2}O{sub 4} crystals even in the inside of glasses. - Highlights: • β-BaB{sub 2}O{sub 4} crystal lines were patterned in the inside of a glass by lasers. • Laser focal position was moved gradually from the surface to the inside. • Birefringence imaging was observed. • Morphology, size, and orientation of crystals were clarified. • Crystal lines with long lengths (e.g., 20 mm) were patterned at the depth of 200 μm.« less
Shultz, Mary Jane; Brumberg, Alexandra; Bisson, Patrick J.; Shultz, Ryan
2015-01-01
The ability to prepare single-crystal faces has become central to developing and testing models for chemistry at interfaces, spectacularly demonstrated by heterogeneous catalysis and nanoscience. This ability has been hampered for hexagonal ice, Ih––a fundamental hydrogen-bonded surface––due to two characteristics of ice: ice does not readily cleave along a crystal lattice plane and properties of ice grown on a substrate can differ significantly from those of neat ice. This work describes laboratory-based methods both to determine the Ih crystal lattice orientation relative to a surface and to use that orientation to prepare any desired face. The work builds on previous results attaining nearly 100% yield of high-quality, single-crystal boules. With these methods, researchers can prepare authentic, single-crystal ice surfaces for numerous studies including uptake measurements, surface reactivity, and catalytic activity of this ubiquitous, fundamental solid. PMID:26512102
Anisotropic constitutive modeling for nickel-base single crystal superalloys. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Sheh, Michael Y.
1988-01-01
An anisotropic constitutive model was developed based on crystallographic slip theory for nickel base single crystal superalloys. The constitutive equations developed utilizes drag stress and back stress state variables to model the local inelastic flow. Specially designed experiments were conducted to evaluate the existence of back stress in single crystal superalloy Rene N4 at 982 C. The results suggest that: (1) the back stress is orientation dependent; and (2) the back stress state variable is required for the current model to predict material anelastic recovery behavior. The model was evaluated for its predictive capability on single crystal material behavior including orientation dependent stress-strain response, tension/compression asymmetry, strain rate sensitivity, anelastic recovery behavior, cyclic hardening and softening, stress relaxation, creep and associated crystal lattice rotation. Limitation and future development needs are discussed.
Orientational Order in Liquid Crystal Complexes Based on Lanthanides
NASA Astrophysics Data System (ADS)
Dobrun, L. A.; Kovshik, A. P.; Ryumtsev, E. I.; Kalinkin, A. A.
2018-04-01
In this study, we have for the first time determined the degree of an orientational order S for a series of liquid-crystal complexes based on lanthanides (Eu+3, Gd+3, Tb+3, Dy+3) with the same ligand composition in the temperature range of existence of the nematic phase by using experimental refractometry results. We have also found an even-odd alternative S as number of protons in the ions complexing agent has consecutively increased. The obtained values of S have been compared with the corresponding degrees of order of the calamite organic liquid crystals.
Demonstration of Crystal Structure.
ERIC Educational Resources Information Center
Neville, Joseph P.
1985-01-01
Describes an experiment where equal parts of copper and aluminum are heated then cooled to show extremely large crystals. Suggestions are given for changing the orientation of crystals by varying cooling rates. Students are more receptive to concepts of microstructure after seeing this experiment. (DH)
Hiszpanski, Anna M; Baur, Robin M; Kim, Bumjung; Tremblay, Noah J; Nuckolls, Colin; Woll, Arthur R; Loo, Yueh-Lin
2014-11-05
Though both the crystal structure and molecular orientation of organic semiconductors are known to impact charge transport in thin-film devices, separately accessing different polymorphs and varying the out-of-plane molecular orientation is challenging, typically requiring stringent control over film deposition conditions, film thickness, and substrate chemistry. Here we demonstrate independent tuning of the crystalline polymorph and molecular orientation in thin films of contorted hexabenzocoronene, c-HBC, during post-deposition processing without the need to adjust deposition conditions. Three polymorphs are observed, two of which have not been previously reported. Using our ability to independently tune the crystal structure and out-of-plane molecular orientation in thin films of c-HBC, we have decoupled and evaluated the effects that molecular packing and orientation have on device performance in thin-film transistors (TFTs). In the case of TFTs comprising c-HBC, polymorphism and molecular orientation are equally important; independently changing either one affects the field-effect mobility by an order of magnitude.
Orientation of surfactant self-assembled aggregates on graphite
NASA Astrophysics Data System (ADS)
Sammalkorpi, Maria; Hynninen, Antti-Pekka; Panagiotopoulos, Athanassios Z.; Haataja, Mikko
2007-03-01
Micellar aggregates on surfaces can provide a self-healing corrosion protection or lubrication layer. It has been observed experimentally that on a single crystal surface this layer often consists of oriented hemi-cylindrical micelles which are aligned with the underlying crystal lattice (``orientation effect''). A key feature of this self-assembly process is the interplay between detergent--detergent and detergent--surface interactions. Since the dimensions of the detergent molecules and the unit cell of the surface are typically quite different, the origins of this orientation effect remain unclear. Here we address the question and present the results of Molecular Dynamics simulations of sodium dodecyl sulfate (SDS) self-aggregation on graphite. We employ both single-molecule and multi-molecule simulations of SDS to unravel the origins of the orientation effect. We report that the underlying graphite surface is sufficient to impose orientational bias on individual SDS molecules diffusing on the surface. This produces collective effects that give rise to the oriented hemi-micelles.
The Crystal Hotel: A Microfluidic Approach to Biomimetic Crystallization.
Gong, Xiuqing; Wang, Yun-Wei; Ihli, Johannes; Kim, Yi-Yeoun; Li, Shunbo; Walshaw, Richard; Chen, Li; Meldrum, Fiona C
2015-12-02
A "crystal hotel" microfluidic device that allows crystal growth in confined volumes to be studied in situ is used to produce large calcite single crystals with predefined crystallographic orientation, microstructure, and shape by control of the detailed physical environment, flow, and surface chemistry. This general approach can be extended to form technologically important, nanopatterned single crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Trail Orienteering: An Effective Way To Practice Map Interpretation.
ERIC Educational Resources Information Center
Horizons, 1999
1999-01-01
Discusses a type of orienteering developed in Great Britain to allow people with physical disabilities to compete on equal terms. Sites are viewed from a wheelchair-accessible main route. The main skill is interpreting the maps at each site, not finding the sites. Describes differences from standard orienteering, how sites work, and essential…
NASA Astrophysics Data System (ADS)
Paik, Seoyoung; Lee, Sang-Yun; McCamey, Dane R.; Boehme, Christoph
2011-12-01
Electrically detected spin-Rabi beat oscillation of pairs of paramagnetic near interface states at the phosphorous doped (1016 cm-3) Si(111)/SiO2 interface is reported. Due to the g-factor anisotropy of the Pb center (a silicon surface dangling bond), one can tune intrapair Larmor frequency differences (Larmor separations) by orientation of the crystal with regard to an external magnetic field. Since Larmor separation governs the number of beating spin pairs, crystal orientation can control the beat current. This is used to identify spin states that are paired by mutual electronic transitions. The experiments confirm the presence of the previously reported 31P-Pb transition and provide direct experimental evidence of the previously hypothesized Pb-E' center (a near interface SiO2 bulk state) transition.
Mesoscale martensitic transformation in single crystals of topological defects
Martínez-González, José A.; Ramírez-Hernández, Abelardo; Zhou, Ye; Sadati, Monirosadat; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.
2017-01-01
Liquid-crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of double-twisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by the existence of grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with precision by relying on chemically nanopatterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of mesocrystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local reorganization of the crystalline array, without diffusion of the double-twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the submicron regime, is found to be martensitic in nature when one considers the collective behavior of the double-twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal nucleation and the controlled growth of soft matter. PMID:28874557
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiao; Martínez-González, José A.; Hernández-Ortiz, Juan P.
Liquid crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of doubletwisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with considerable precision by relying on chemically nano-patterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of meso-crystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local re-organization of the crystalline array,more » without diffusion of the double twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the sub-micron regime, is found to be martensitic in nature, with the diffusion-less feature associated to the collective behavior of the double twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal-nucleation and the controlled growth of soft matter.« less
Attenuation of thermal neutrons by an imperfect single crystal
NASA Astrophysics Data System (ADS)
Naguib, K.; Adib, M.
1996-06-01
A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3 - 40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range.
X-ray Microscopic Characterization of Protein Crystals
NASA Technical Reports Server (NTRS)
Hu, Z. W.; Holmes, A.; Thomas, B.R.; Chernov, a. A.; Chu, Y. S.; Lai, B.
2004-01-01
The microscopic mapping of the variation in degree of perfection and in type of defects in entire protein crystals by x-rays may well be a prerequisite for better understanding causes of lattice imperfections, the growth history, and properties of protein crystals. However, x-ray microscopic characterization of bulk protein crystals, in the as-grown state, is frequently more challenging than that of small molecular crystals due to the experimental difficulties arising largely from the unique features possessed by protein crystals. In this presentation, we will illustrate ssme recent activities in employing coherence-based phase contrast x-ray imaging and high-angular-resolution diffraction techniques for mapping microdefects and the degree of perfection of protein crystals, and demonstrate a correlation between crystal perfection, diffraction phenomena., and crystallization conditions. The observed features and phenomena will be discussed in context to gain insight into the nature of defects, nucleation and growth, and the properties of protein crystals.
Functional materials discovery using energy-structure-function maps
NASA Astrophysics Data System (ADS)
Pulido, Angeles; Chen, Linjiang; Kaczorowski, Tomasz; Holden, Daniel; Little, Marc A.; Chong, Samantha Y.; Slater, Benjamin J.; McMahon, David P.; Bonillo, Baltasar; Stackhouse, Chloe J.; Stephenson, Andrew; Kane, Christopher M.; Clowes, Rob; Hasell, Tom; Cooper, Andrew I.; Day, Graeme M.
2017-03-01
Molecular crystals cannot be designed in the same manner as macroscopic objects, because they do not assemble according to simple, intuitive rules. Their structures result from the balance of many weak interactions, rather than from the strong and predictable bonding patterns found in metal-organic frameworks and covalent organic frameworks. Hence, design strategies that assume a topology or other structural blueprint will often fail. Here we combine computational crystal structure prediction and property prediction to build energy-structure-function maps that describe the possible structures and properties that are available to a candidate molecule. Using these maps, we identify a highly porous solid, which has the lowest density reported for a molecular crystal so far. Both the structure of the crystal and its physical properties, such as methane storage capacity and guest-molecule selectivity, are predicted using the molecular structure as the only input. More generally, energy-structure-function maps could be used to guide the experimental discovery of materials with any target function that can be calculated from predicted crystal structures, such as electronic structure or mechanical properties.
Functional materials discovery using energy-structure-function maps.
Pulido, Angeles; Chen, Linjiang; Kaczorowski, Tomasz; Holden, Daniel; Little, Marc A; Chong, Samantha Y; Slater, Benjamin J; McMahon, David P; Bonillo, Baltasar; Stackhouse, Chloe J; Stephenson, Andrew; Kane, Christopher M; Clowes, Rob; Hasell, Tom; Cooper, Andrew I; Day, Graeme M
2017-03-30
Molecular crystals cannot be designed in the same manner as macroscopic objects, because they do not assemble according to simple, intuitive rules. Their structures result from the balance of many weak interactions, rather than from the strong and predictable bonding patterns found in metal-organic frameworks and covalent organic frameworks. Hence, design strategies that assume a topology or other structural blueprint will often fail. Here we combine computational crystal structure prediction and property prediction to build energy-structure-function maps that describe the possible structures and properties that are available to a candidate molecule. Using these maps, we identify a highly porous solid, which has the lowest density reported for a molecular crystal so far. Both the structure of the crystal and its physical properties, such as methane storage capacity and guest-molecule selectivity, are predicted using the molecular structure as the only input. More generally, energy-structure-function maps could be used to guide the experimental discovery of materials with any target function that can be calculated from predicted crystal structures, such as electronic structure or mechanical properties.
Interaction of dyes CD–1 and SD–1 with the surface of oligodimethysiloxane
NASA Astrophysics Data System (ADS)
Chausov, D. N.
2018-03-01
We carried out the modeling orientation of the dyes CD–1 and SD–1 relative to the surface of oligodimethysiloxane using the atom–atom potentials method. We have discovered the dependence of the interaction energy in dyes molecules on the angles which characterizes their orientation relative to the surface of the oligodimethysiloxane crystal. It was found out that the obtained energy value of interaction with the surface can explain weak adhesive qualities of the dyes and the orientation type relative to the surface. We identified the break– loose force for the dyes on the oligodimethysiloxane crystal surface.
Papadopoulos, Konstantinos; Koustriava, Eleni; Koukourikos, Panagiotis; Kartasidou, Lefkothea; Barouti, Marialena; Varveris, Asimis; Misiou, Marina; Zacharogeorga, Timoclia; Anastasiadis, Theocharis
2017-01-01
Disorientation and inability of wayfinding are phenomena with a great frequency for individuals with visual impairments during the process of travelling novel environments. Orientation and mobility aids could suggest important tools for the preparation of a more secure and cognitively mapped travelling. The aim of the present study was to examine if spatial knowledge structured after an individual with blindness had studied the map of an urban area that was delivered through a verbal description, an audio-tactile map or an audio-haptic map, could be used for detecting in the area specific points of interest. The effectiveness of the three aids with reference to each other was also examined. The results of the present study highlight the effectiveness of the audio-tactile and the audio-haptic maps as orientation and mobility aids, especially when these are compared to verbal descriptions.
Analyzing Dirac Cone and Phonon Dispersion in Highly Oriented Nanocrystalline Graphene.
Nai, Chang Tai; Xu, Hai; Tan, Sherman J R; Loh, Kian Ping
2016-01-26
Chemical vapor deposition (CVD) is one of the most promising growth techniques to scale up the production of monolayer graphene. At present, there are intense efforts to control the orientation of graphene grains during CVD, motivated by the fact that there is a higher probability for oriented grains to achieve seamless merging, forming a large single crystal. However, it is still challenging to produce single-crystal graphene with no grain boundaries over macroscopic length scales, especially when the nucleation density of graphene nuclei is high. Nonetheless, nanocrystalline graphene with highly oriented grains may exhibit single-crystal-like properties. Herein, we investigate the spectroscopic signatures of graphene film containing highly oriented, nanosized grains (20-150 nm) using angle-resolved photoemission spectroscopy (ARPES) and high-resolution electron energy loss spectroscopy (HREELS). The robustness of the Dirac cone, as well as dispersion of its phonons, as a function of graphene's grain size and before and after film coalescence, was investigated. In view of the sensitivity of atomically thin graphene to atmospheric adsorbates and intercalants, ARPES and HREELS were also used to monitor the changes in spectroscopic signatures of the graphene film following exposure to the ambient atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Gye Hyun; Thompson, Carl V., E-mail: cthomp@mit.edu; Ma, Wen
During solid-state dewetting of thin single crystal films, film edges retract at a rate that is strongly dependent on their crystallographic orientations. Edges with kinetically stable in-plane orientations remain straight as they retract, while those with other in-plane orientations develop in-plane facets as they retract. Kinetically stable edges have retraction rates that are lower than edges with other orientations and thus determine the shape of the natural holes that form during solid-state dewetting. In this paper, measurements of the retraction rates of kinetically stable edges for single crystal (110) and (100) Ni films on MgO are presented. Relative retraction ratesmore » of kinetically stable edges with different crystallographic orientations are observed to change under different annealing conditions, and this accordingly changes the initial shapes of growing holes. The surfaces of (110) and (100) films were also characterized using low energy electron diffraction, and different surface reconstructions were observed under different ambient conditions. The observed surface structures were found to correlate with the observed changes in the relative retraction rates of the kinetically stable edges.« less
Tailoring Graphene Morphology and Orientation on Cu(100), Cu(110), and Cu(111)
NASA Astrophysics Data System (ADS)
Jacobberger, Robert; Arnold, Michael
2013-03-01
Graphene CVD on Cu is phenomenologically complex, yielding diverse crystal morphologies, such as lobes, dendrites, stars, and hexagons, of various orientations. We present a comprehensive study of the evolution of these morphologies as a function of Cu surface orientation, pressure, H2:CH4, and nucleation density. Growth was studied on ultra-smooth, epitaxial Cu films inside Cu enclosures to minimize factors that normally complicate growth. With low H2:CH4, Mullins-Sekerka instabilities propagate to form dendrites, indicating transport limited growth. In LPCVD, the dendrites extend hundreds of microns in the 100, 111, and 110 directions on Cu(100), (110), and (111) and are perturbed by twin boundaries. In APCVD, multiple preferred dendrite orientations exist. With increasing H2:CH4, the dendritic nature of growth is suppressed. In LPCVD, square, rectangle, and hexagon crystals form on Cu(100), (110) and (111), reflecting the Cu crystallography. In APCVD, the morphology becomes hexagonal on each surface. If given ample time, every growth regime yields high-quality monolayers with D:G Raman ratio <0.1. The understanding gained here provides a framework to rationally tailor the graphene crystal morphology and orientation.
Epitaxial Growth of an Organic p-n Heterojunction: C60 on Single-Crystal Pentacene.
Nakayama, Yasuo; Mizuno, Yuta; Hosokai, Takuya; Koganezawa, Tomoyuki; Tsuruta, Ryohei; Hinderhofer, Alexander; Gerlach, Alexander; Broch, Katharina; Belova, Valentina; Frank, Heiko; Yamamoto, Masayuki; Niederhausen, Jens; Glowatzki, Hendrik; Rabe, Jürgen P; Koch, Norbert; Ishii, Hisao; Schreiber, Frank; Ueno, Nobuo
2016-06-01
Designing molecular p-n heterojunction structures, i.e., electron donor-acceptor contacts, is one of the central challenges for further development of organic electronic devices. In the present study, a well-defined p-n heterojunction of two representative molecular semiconductors, pentacene and C60, formed on the single-crystal surface of pentacene is precisely investigated in terms of its growth behavior and crystallographic structure. C60 assembles into a (111)-oriented face-centered-cubic crystal structure with a specific epitaxial orientation on the (001) surface of the pentacene single crystal. The present experimental findings provide molecular scale insights into the formation mechanisms of the organic p-n heterojunction through an accurate structural analysis of the single-crystalline molecular contact.
Effects of substrate orientation on the growth of InSb nanostructures by molecular beam epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, C. Y.; Torfi, A.; Pei, C.
2016-05-09
In this work, the effects of substrate orientation on InSb quantum structure growth by molecular beam epitaxy (MBE) are presented. Motivated by the observation that (411) evolves naturally as a stable facet during MBE crystal growth, comparison studies have been carried out to investigate the effects of the crystal orientation of the underlying GaSb substrate on the growth of InSb by MBE. By depositing InSb on a number of different substrate orientations, namely: (100), (311), (411), and (511), a higher nanostructure density was observed on the (411) surface compared with the other orientations. This result suggests that the (411) orientationmore » presents a superior surface in MBE growth to develop a super-flat GaSb buffer surface, naturally favorable for nanostructure growth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen,X.; Burger, C.; Fang, D.
Regenerated cellulose fibers were fabricated by dissolution of cotton linter pulp in NaOH (9.5 wt%) and thiourea (4.5 wt%) aqueous solution followed by wet-spinning and multi-roller drawing. The multi-roller drawing process involved three stages: coagulation (I), coagulation (II) and post-treatment (III). The crystalline structure and morphology of regenerated cellulose fiber was investigated by synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. Results indicated that only the cellulose II crystal structure was found in regenerated cellulose fibers, proving that the cellulose crystals were completely transformed from cellulose I to II structure during spinning from NaOH/thiourea aqueous solution. Themore » crystallinity, orientation and crystal size at each stage were determined from the WAXD analysis. Drawing of cellulose fibers in the coagulation (II) bath (H{sub 2}SO{sub 4}/H{sub 2}O) was found to generate higher orientation and crystallinity than drawing in the post-treatment (III). Although the post-treatment process also increased crystal orientation, it led to a decrease in crystallinity with notable reduction in the anisotropic fraction. Compared with commercial rayon fibers fabricated by the viscose process, the regenerated cellulose fibers exhibited higher crystallinity but lower crystal orientation. SAXS results revealed a clear scattering maximum along the meridian direction in all regenerated cellulose fibers, indicating the formation of lamellar structure during spinning.« less
Phase Transition Control for High Performance Ruddlesden-Popper Perovskite Solar Cells.
Zhang, Xu; Munir, Rahim; Xu, Zhuo; Liu, Yucheng; Tsai, Hsinhan; Nie, Wanyi; Li, Jianbo; Niu, Tianqi; Smilgies, Detlef-M; Kanatzidis, Mercouri G; Mohite, Aditya D; Zhao, Kui; Amassian, Aram; Liu, Shengzhong Frank
2018-05-01
Ruddlesden-Popper reduced-dimensional hybrid perovskite (RDP) semiconductors have attracted significant attention recently due to their promising stability and excellent optoelectronic properties. Here, the RDP crystallization mechanism in real time from liquid precursors to the solid film is investigated, and how the phase transition kinetics influences phase purity, quantum well orientation, and photovoltaic performance is revealed. An important template-induced nucleation and growth of the desired (BA) 2 (MA) 3 Pb 4 I 13 phase, which is achieved only via direct crystallization without formation of intermediate phases, is observed. As such, the thermodynamically preferred perpendicular crystal orientation and high phase purity are obtained. At low temperature, the formation of intermediate phases, including PbI 2 crystals and solvate complexes, slows down intercalation of ions and increases nucleation barrier, leading to formation of multiple RDP phases and orientation randomness. These insights enable to obtain high quality (BA) 2 (MA) 3 Pb 4 I 13 films with preferentially perpendicular quantum well orientation, high phase purity, smooth film surface, and improved optoelectronic properties. The resulting devices exhibit high power conversion efficiency of 12.17%. This work should help guide the perovskite community to better control Ruddlesden-Popper perovskite structure and further improve optoelectronic and solar cell devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simulation of orientational coherent effects via Geant4
NASA Astrophysics Data System (ADS)
Bagli, E.; Asai, M.; Brandt, D.; Dotti, A.; Guidi, V.; Verderi, M.; Wright, D.
2017-10-01
Simulation of orientational coherent effects via Geant4 beam manipulation of high-and very-high-energy particle beams is a hot topic in accelerator physics. Coherent effects of ultra-relativistic particles in bent crystals allow the steering of particle trajectories thanks to the strong electrical field generated between atomic planes. Recently, a collimation experiment with bent crystals was carried out at the CERN-LHC, paving the way to the usage of such technology in current and future accelerators. Geant4 is a widely used object-oriented tool-kit for the Monte Carlo simulation of the interaction of particles with matter in high-energy physics. Moreover, its areas of application include also nuclear and accelerator physics, as well as studies in medical and space science. We present the first Geant4 extension for the simulation of orientational effects in straight and bent crystals for high energy charged particles. The model allows the manipulation of particle trajectories by means of straight and bent crystals and the scaling of the cross sections of hadronic and electromagnetic processes for channeled particles. Based on such a model, an extension of the Geant4 toolkit has been developed. The code and the model have been validated by comparison with published experimental data regarding the deflection efficiency via channeling and the variation of the rate of inelastic nuclear interactions.
A simple proof of orientability in colored group field theory.
Caravelli, Francesco
2012-01-01
Group field theory is an emerging field at the boundary between Quantum Gravity, Statistical Mechanics and Quantum Field Theory and provides a path integral for the gluing of n-simplices. Colored group field theory has been introduced in order to improve the renormalizability of the theory and associates colors to the faces of the simplices. The theory of crystallizations is instead a field at the boundary between graph theory and combinatorial topology and deals with n-simplices as colored graphs. Several techniques have been introduced in order to study the topology of the pseudo-manifold associated to the colored graph. Although of the similarity between colored group field theory and the theory of crystallizations, the connection between the two fields has never been made explicit. In this short note we use results from the theory of crystallizations to prove that color in group field theories guarantees orientability of the piecewise linear pseudo-manifolds associated to each graph generated perturbatively. Colored group field theories generate orientable pseudo-manifolds. The origin of orientability is the presence of two interaction vertices in the action of colored group field theories. In order to obtain the result, we made the connection between the theory of crystallizations and colored group field theory.
Ghamarian, I.; Samani, P.; Rohrer, G. S.; ...
2017-03-24
Grain boundary engineering and other fundamental materials science problems (e.g., phase transformations and physical properties) require an improvement in the understanding of the type and population of grain boundaries in a given system – yet, databases are limited in number and spare in detail, including for hcp crystals such as zirconium. One way to rapidly obtain databases to analyze is to use small-grained materials and high spatial resolution orientation microscopy techniques, such as ASTAR™/precession electron diffraction. To demonstrate this, a study of grain boundary character distributions was conducted for α-zirconium deposited at room temperature on fused silica substrates using physicalmore » vapor deposition. The orientation maps of the nanocrystalline thin films were acquired by the ASTARα/precession electron diffraction technique, a new transmission electron microscope based orientation microscopy method. The reconstructed grain boundaries were classified as pure tilt, pure twist, 180°-twist and 180°-tilt grain boundaries based on the distribution of grain boundary planes with respect to the angle/axis of misorientation associated with grain boundaries. The results of the current study were compared to the results of a similar study on α-titanium and the molecular dynamics results of grain boundary energy for α-titanium.« less
Characterization of a bent Laue double-crystal beam-expanding monochromator
Martinson, Mercedes; Samadi, Nazanin; Shi, Xianbo; ...
2017-10-19
A bent Laue double-crystal monochromator system has been designed for vertically expanding the X-ray beam at the Canadian Light Source's BioMedical Imaging and Therapy beamlines. Expansion by a factor of 12 has been achieved without deteriorating the transverse coherence of the beam, allowing phase-based imaging techniques to be performed with high flux and a large field of view. However, preliminary studies revealed a lack of uniformity in the beam, presumed to be caused by imperfect bending of the silicon crystal wafers used in the system. Results from finite-element analysis of the system predicted that the second crystal would be mostmore » severely affected and has been shown experimentally. It has been determined that the majority of the distortion occurs in the second crystal and is likely caused by an imperfection in the surface of the bending frame. Here, measurements were then taken to characterize the bending of the crystal using both mechanical and diffraction techniques. In particular, two techniques commonly used to map dislocations in crystal structures have been adapted to map local curvature of the bent crystals. One of these, a variation of Berg–Berrett topography, has been used to quantify the diffraction effects caused by the distortion of the crystal wafer. This technique produces a global mapping of the deviation of the diffraction angle relative to a perfect cylinder. Finally, this information is critical for improving bending and measuring tolerances of imperfections by correlating this mapping to areas of missing intensity in the beam.« less
Characterization of a bent Laue double-crystal beam-expanding monochromator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinson, Mercedes; Samadi, Nazanin; Shi, Xianbo
A bent Laue double-crystal monochromator system has been designed for vertically expanding the X-ray beam at the Canadian Light Source's BioMedical Imaging and Therapy beamlines. Expansion by a factor of 12 has been achieved without deteriorating the transverse coherence of the beam, allowing phase-based imaging techniques to be performed with high flux and a large field of view. However, preliminary studies revealed a lack of uniformity in the beam, presumed to be caused by imperfect bending of the silicon crystal wafers used in the system. Results from finite-element analysis of the system predicted that the second crystal would be mostmore » severely affected and has been shown experimentally. It has been determined that the majority of the distortion occurs in the second crystal and is likely caused by an imperfection in the surface of the bending frame. Here, measurements were then taken to characterize the bending of the crystal using both mechanical and diffraction techniques. In particular, two techniques commonly used to map dislocations in crystal structures have been adapted to map local curvature of the bent crystals. One of these, a variation of Berg–Berrett topography, has been used to quantify the diffraction effects caused by the distortion of the crystal wafer. This technique produces a global mapping of the deviation of the diffraction angle relative to a perfect cylinder. Finally, this information is critical for improving bending and measuring tolerances of imperfections by correlating this mapping to areas of missing intensity in the beam.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jiqiang; Chen, Zhiguo, E-mail: zgchen@mail.csu.edu.cn; Hunan University of Humanities, Science and Technology, Loudi 417000
The precipitation behavior and property of Al−Cu alloy during stress aging under various loading orientations were investigated using single crystals. The resulting microstructures and the strength property were examined by transmission electron microscope (TEM) and compression test, respectively, and the effect of the distribution of θ′-plates on strength property were discussed. The results show that the precipitation distribution of θ′ was significantly affected by the loading orientation during stress aging of Al−Cu single crystals. Loading along close to 〈011〉{sub Al} directions provided more uniform precipitation distribution of θ′ as compared to loading along close to 〈001〉{sub Al} directions, and thereforemore » provided higher strengthening stress of the θ′-plates for the stress aging sample. The results suggested that regulating the distribution of θ′ and therefore improving strength property are possible via controlling the loading orientation during stress aging. - Highlights: • We studied the effect of loading directions on stress aging of Al−Cu single crystal. • Precipitation distribution of θ′ was noticeably affected by the loading direction. • Loading along close to 〈011〉{sub Al} directions reduced the stress-orienting effect. • The strength property is closely related to the precipitation distribution of θ′. • It is possible to regulate the distribution of θ′ and improve strength property.« less
Nematic-like stable glasses without equilibrium liquid crystal phases
Gomez, Jaritza [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Gujral, Ankit [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Huang, Chengbin [School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA; Bishop, Camille [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Yu, Lian [School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA; Ediger, Mark [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
2017-02-01
We report the thermal and structural properties of glasses of posaconazole, a rod-like molecule, prepared using physical vapor deposition (PVD). PVD glasses of posaconazole can show substantial molecular orientation depending upon the choice of substrate temperature, Tsubstrate, during deposition.Ellipsometry and IR measurements indicate that glasses prepared at Tsubstrate very near the glass transition temperature (Tg) are highly ordered. For these posaconazole glasses, the orientation order parameter is similar to that observed in macroscopically aligned nematic liquid crystals, indicating that the molecules are mostly parallel to one another and perpendicular to the interface. To our knowledge, these are the most anisotropic glasses ever prepared by PVD from a molecule that does not form equilibrium liquid crystal phases. These results are consistent with a previously proposed mechanism in which molecular orientation in PVD glasses is inherited from the orientation present at the free surface of the equilibrium liquid. This mechanism suggests that molecular orientation at the surface of the equilibrium liquid of posaconazole is nematic-like. Posaconazole glasses can show very high kinetic stability; the isothermal transformation of a 400 nm glass into the supercooled liquid occurs via a propagating front that originates at the free surface and requires ~105 times the structural relaxation time of the liquid (τα). We also studied the kinetic stability of PVD glasses of itraconazole, which is a structurally similar molecule with equilibrium liquid crystal phases. While itraconazole glasses can be even more anisotropic than posaconazole glasses, they exhibit lower kinetic stability.
Mapping crystal defects with a digital scanning ultramicroscope
NASA Astrophysics Data System (ADS)
Springer, John M., Jr.; Silberman, Enrique; Kroes, Roger L.; Reiss, Don
1991-12-01
A computer controlled scanning ultramicroscope has been built to assist in the characterization of transparent crystals. The device measures the scattering of a focused He-Ne laser beam by crystalline defects. As an XYZ translation table moves the crystal under the ultramicroscope, the scattered light is measured by a photodetector whose output is digitized and recorded. From this data, contour maps or 3-D perspective plots of the scattering regions of the crystal can be generated to assist in finding patterns of defects which might be correlated with perturbations in the growth process. The verified resolution of the present instrument is about 1 micrometers , which is limited by the minimum step of the stepper-motor driven translation stages, optical diffraction effects, and the sensitivity of the detector at the laser light frequency. The instrument was used to build a database of defects patterns in commercial laboratory grown triglycine sulphate (TGS) crystals, and to map defects in a TGS crystal grown from aqueous solution during the flight of Spacelab 3. This crystal shows indications of a reduction both in the generation of defects at the seed-new growth interface and in their propagation into the new crystal.
Mapping crystal defects with a digital scanning ultramicroscope
NASA Astrophysics Data System (ADS)
Springer, J. M.; Silberman, E.; Kroes, Roger; Reiss, D.
A computer controlled scanning ultramicroscope has been built to assist in the characterization of transparent crystals. The device measures the scattering of a focused He-Ne laser beam by crystalline defects. As an XYZ translation table moves the crystal under the ultramicroscope, the scattered light is measured by a photodetector whose output is digitized and recorded. From this data, contour maps or three dimensional perspective plots of the scattering regions of the crystal can be generated to assist in finding patterns of defects which might be correlated with perturbations in the growth process. The verified resolution of the present instrument is about 1 micrometer, which is limited by the minimum step of the stepper-motor driven translation stages, optical diffraction effects and the sensitivity of the detector at the laser light frequency. The instrument was used to build a database of defects patterns in commercial laboratory grown triglycine sulphate (TGS) crystals, and to map defects in a TGS crystal grown from aqueous solution during the flight of Spacelab 3. This crystal shows indications of a reduction both in the generation of defects at the seed-new growth interface and in their propagation into the new crystal.
Mapping crystal defects with a digital scanning ultramicroscope
NASA Technical Reports Server (NTRS)
Springer, J. M.; Silberman, E.; Kroes, Roger; Reiss, D.
1991-01-01
A computer controlled scanning ultramicroscope has been built to assist in the characterization of transparent crystals. The device measures the scattering of a focused He-Ne laser beam by crystalline defects. As an XYZ translation table moves the crystal under the ultramicroscope, the scattered light is measured by a photodetector whose output is digitized and recorded. From this data, contour maps or three dimensional perspective plots of the scattering regions of the crystal can be generated to assist in finding patterns of defects which might be correlated with perturbations in the growth process. The verified resolution of the present instrument is about 1 micrometer, which is limited by the minimum step of the stepper-motor driven translation stages, optical diffraction effects and the sensitivity of the detector at the laser light frequency. The instrument was used to build a database of defects patterns in commercial laboratory grown triglycine sulphate (TGS) crystals, and to map defects in a TGS crystal grown from aqueous solution during the flight of Spacelab 3. This crystal shows indications of a reduction both in the generation of defects at the seed-new growth interface and in their propagation into the new crystal.
Different interface orientations of pentacene and PTCDA induce different degrees of disorder
2012-01-01
Organic polymers or crystals are commonly used in manufacturing of today‘s electronically functional devices (OLEDs, organic solar cells, etc). Understanding their morphology in general and at the interface in particular is of paramount importance. Proper knowledge of molecular orientation at interfaces is essential for predicting optoelectronic properties such as exciton diffusion length, charge carrier mobility, and molecular quadrupole moments. Two promising candidates are pentacene and 3,4:9,10-perylenetetracarboxylic dianhydride (PTCDA). Different orientations of pentacene on PTCDA have been investigated using an atomistic molecular dynamics approach. Here, we show that the degree of disorder at the interface depends largely on the crystal orientation and that more ordered interfaces generally suffer from large vacancy formation. PMID:22583772
Implications of Orientation in Sheared Cocoa Butter
NASA Astrophysics Data System (ADS)
Guthrie, Sarah E.; Mazzanti, Gianfranco; Marangoni, Alejandro; Idziak, Stefan H. J.
2004-03-01
We will present x-ray and mechanical studies of oriented phases of cocoa butter. The structural elements of foods play an important role in determining such things as quality and shelf stability. The specific structure and properties of cocoa butter, however, are complicated due to the ability of the cocoa butter to form crystals in six polymorphic forms. Recent work has shown that the application of shear not only accelerates the transitions to more stable polymorphs, but also causes orientation of the crystallites[1]. The implications of orientation on the structures formed under conditions of shear and cooling will be described using x-ray diffraction and mechanical measurements. 1 G. Mazzanti, S. E. Guthrie, E. B. Sirota et al., Crystal Growth & Design 3 (5), 721 (2003).
Orientation of Zn3P2 films via phosphidation of Zn precursors
NASA Astrophysics Data System (ADS)
Katsube, Ryoji; Nose, Yoshitaro
2017-02-01
Orientation of solar absorber is an important factor to achieve high efficiency of thin film solar cells. In the case of Zn3P2 which is a promising absorber of low-cost and high-efficiency solar cells, (110)/(001) orientation was only reported in previous studies. We have successfully prepared (101)-oriented Zn3P2 films by phosphidation of (0001)-oriented Zn films at 350 °C. The phosphidation mechanism of Zn is discussed through STEM observations on the partially-reacted sample and the consideration of the relationship between the crystal structures of Zn and Zn3P2 . We revealed that (0001)-oriented Zn led to nucleation of (101)-oriented Zn3P2 due to the similarity in atomic arrangement between Zn and Zn3P2 . The electrical resistivity of the (101)-oriented Zn3P2 film was lower than those of (110)/(001)-oriented films, which is an advantage of the phosphidation technique to the growth processes in previous works. The results in this study demonstrated that well-conductive Zn3P2 films could be obtained by controlling orientations of crystal grains, and provide a guiding principle for microstructure control in absorber materials.
Struvite pyrolysate recycling combined with dry pyrolysis for ammonium removal from wastewater.
Yu, Rongtai; Geng, Jinju; Ren, Hongqiang; Wang, Yanru; Xu, Ke
2013-03-01
The dry pyrolysis of magnesium ammonium phosphate (MAP) with NaOH powder for ammonium release was investigated, as well as the utility of MAP pyrolysate recycling. The identities of the MAP pyrolysate and its derivatives were experimentally validated. The results showed that the pyrolysate was amorphous magnesium hydrogen phosphate (MgHPO4) and magnesium pyrophosphate (Mg2P2O7). The best molar ratio of sodium hydroxide (NaOH) powder to ammonium was 1:1, at 110°C for 3h. The optimum pH for pyrolysate recycling was 9.5. The ammonia removal ratio could be maintained above 80% with MAP pyrolysate recycling. Seed crystal inoculation increased the rate of MAP crystallization by 20.86%, as well as the MAP grain size (2.08nm with seeding versus 1.72nm without). MAP particle size with NaOH treatment decreased: d(0.5)=19.34μm versus d(0.5)=30.35μm for direct pyrolysis. The results demonstrated that crystal growth was controlled by adding NaOH during MAP pyrolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Vasireddi, Anil K; Vazquez, Alberto L; Whitney, David E; Fukuda, Mitsuhiro; Kim, Seong-Gi
2016-09-07
Resting-state functional magnetic resonance imaging has been increasingly used for examining connectivity across brain regions. The spatial scale by which hemodynamic imaging can resolve functional connections at rest remains unknown. To examine this issue, deoxyhemoglobin-weighted intrinsic optical imaging data were acquired from the visual cortex of lightly anesthetized ferrets. The neural activity of orientation domains, which span a distance of 0.7-0.8 mm, has been shown to be correlated during evoked activity and at rest. We performed separate analyses to assess the degree to which the spatial and temporal characteristics of spontaneous hemodynamic signals depend on the known functional organization of orientation columns. As a control, artificial orientation column maps were generated. Spatially, resting hemodynamic patterns showed a higher spatial resemblance to iso-orientation maps than artificially generated maps. Temporally, a correlation analysis was used to establish whether iso-orientation domains are more correlated than orthogonal orientation domains. After accounting for a significant decrease in correlation as a function of distance, a small but significant temporal correlation between iso-orientation domains was found, which decreased with increasing difference in orientation preference. This dependence was abolished when using artificially synthetized orientation maps. Finally, the temporal correlation coefficient as a function of orientation difference at rest showed a correspondence with that calculated during visual stimulation suggesting that the strength of resting connectivity is related to the strength of the visual stimulation response. Our results suggest that temporal coherence of hemodynamic signals measured by optical imaging of intrinsic signals exists at a submillimeter columnar scale in resting state.
NASA Astrophysics Data System (ADS)
Veselovskii, I.; Goloub, P.; Podvin, T.; Tanre, D.; Ansmann, A.; Korenskiy, M.; Borovoi, A.; Hu, Q.; Whiteman, D. N.
2017-11-01
The existing models predict that corner reflection (CR) of laser radiation by simple ice crystals of perfect shape, such as hexagonal columns or plates, can provide a significant contribution to the ice cloud backscattering. However in real clouds the CR effect may be suppressed due to crystal deformation and surface roughness. In contrast to the extinction coefficient, which is spectrally independent, consideration of diffraction associated with CR results in a spectral dependence of the backscattering coefficient. Thus measuring the spectral dependence of the cloud backscattering coefficient, the contribution of CR can be identified. The paper presents the results of profiling of backscattering coefficient (β) and particle depolarization ratio (δ) of ice and mixed-phase clouds over West Africa by means of a two-wavelength polarization Mie-Raman lidar operated at 355 nm and 532 nm during the SHADOW field campaign. The lidar observations were performed at a slant angle of 43 degree off zenith, thus CR from both randomly oriented crystals and oriented plates could be analyzed. For the most of the observations the cloud backscatter color ratio β355/β532 was close to 1.0, and no spectral features that might indicate the presence of CR of randomly oriented crystals were revealed. Still, in two measurement sessions we observed an increase of backscatter color ratio to a value of nearly 1.3 simultaneously with a decrease of the spectral depolarization ratio δ355/δ532 ratio from 1.0 to 0.8 inside the layers containing precipitating ice crystals. We attribute these changes in optical properties to corner reflections by horizontally oriented ice plates.
NASA Astrophysics Data System (ADS)
Forster, Linda; Seefeldner, Meinhard; Wiegner, Matthias; Mayer, Bernhard
2017-07-01
Halo displays in the sky contain valuable information about ice crystal shape and orientation: e.g., the 22° halo is produced by randomly oriented hexagonal prisms while parhelia (sundogs) indicate oriented plates. HaloCam, a novel sun-tracking camera system for the automated observation of halo displays is presented. An initial visual evaluation of the frequency of halo displays for the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) field campaign from October to mid-November 2014 showed that sundogs were observed more often than 22° halos. Thus, the majority of halo displays was produced by oriented ice crystals. During the campaign about 27 % of the cirrus clouds produced 22° halos, sundogs or upper tangent arcs. To evaluate the HaloCam observations collected from regular measurements in Munich between January 2014 and June 2016, an automated detection algorithm for 22° halos was developed, which can be extended to other halo types as well. This algorithm detected 22° halos about 2 % of the time for this dataset. The frequency of cirrus clouds during this time period was estimated by co-located ceilometer measurements using temperature thresholds of the cloud base. About 25 % of the detected cirrus clouds occurred together with a 22° halo, which implies that these clouds contained a certain fraction of smooth, hexagonal ice crystals. HaloCam observations complemented by radiative transfer simulations and measurements of aerosol and cirrus cloud optical thickness (AOT and COT) provide a possibility to retrieve more detailed information about ice crystal roughness. This paper demonstrates the feasibility of a completely automated method to collect and evaluate a long-term database of halo observations and shows the potential to characterize ice crystal properties.
A finite-strain homogenization model for viscoplastic porous single crystals: I - Theory
NASA Astrophysics Data System (ADS)
Song, Dawei; Ponte Castañeda, P.
2017-10-01
This paper presents a homogenization-based constitutive model for the finite-strain, macroscopic response of porous viscoplastic single crystals. The model accounts explicitly for the evolution of the average lattice orientation, as well as the porosity, average shape and orientation of the voids (and their distribution), by means of appropriate microstructural variables playing the role of internal variables and serving to characterize the evolution of both the "crystallographic" and "morphological" anisotropy of the porous single crystals. The model makes use of the fully optimized second-order variational method of Ponte Castañeda (2015), together with the iterated homogenization approach of Agoras and Ponte Castañeda (2013), to characterize the instantaneous effective response of the porous single crystals with fixed values of the microstructural variables. Consistent homogenization estimates for the average strain rate and vorticity fields in the phases are then used to derive evolution equations for the associated microstructural variables. The model is 100% predictive, requiring no fitting parameters, and applies for porous viscoplastic single crystals with general crystal anisotropy and average void shape and orientation, which are subjected to general loading conditions. In Part II of this work (Song and Ponte Castañeda, 2017a), results for both the instantaneous response and the evolution of the microstructure will be presented for porous FCC and HCP single crystals under a wide range of loading conditions, and good agreement with available FEM results will be shown.
Strength and deformation of shocked diamond single crystals: Orientation dependence
Lang, John Michael Jr.; Winey, J. M.; Gupta, Y. M.
2018-03-01
Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ~120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100]more » direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}<110> slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (~33 GPa) are 25-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (~23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.« less
Strength and deformation of shocked diamond single crystals: Orientation dependence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, John Michael Jr.; Winey, J. M.; Gupta, Y. M.
Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ~120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100]more » direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}<110> slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (~33 GPa) are 25-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (~23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.« less
Strength and deformation of shocked diamond single crystals: Orientation dependence
NASA Astrophysics Data System (ADS)
Lang, J. M.; Winey, J. M.; Gupta, Y. M.
2018-03-01
Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ˜120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100] direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}⟨110⟩ slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (˜33 GPa) are 25%-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (˜23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.
ERIC Educational Resources Information Center
Kosonen, Kari; Ilomäki, Liisa; Lakkala, Minna
2015-01-01
The present study focuses on examining how digitally guided conceptual mapping can be used in orienting students in higher education to learn complex domain content and practices. The outcomes of conceptual mapping were investigated as the orienting bases created by the students that used digitalized conceptual tools to construct an external…
Library Orientation Methods, Mental Maps, and Public Services Planning.
ERIC Educational Resources Information Center
Ridgeway, Trish
Two library orientation methods, a self-guided cassette walking tour and a slide-tape program, were administered to 202 freshmen students to determine if moving through the library increased students' ability to develop a mental map of the library. An effort was made to ensure that the two orientation programs were equivalent. Results from the 148…
Mechanistic Study of Delamination Fracture in Al-Li Alloy C458 (2099)
NASA Technical Reports Server (NTRS)
Tayon, W. A.; Crooks, R. E.; Domack, M. S.; Wagner, J. A.; Beaudoin, A. J.; McDonald, R. J.
2009-01-01
Delamination fracture has limited the use of lightweight Al-Li alloys. In the present study, electron backscattered diffraction (EBSD) methods were used to characterize crack paths in Al-Li alloy C458 (2099). Secondary delamination cracks in fracture toughness samples showed a pronounced tendency for fracture between grain variants of the same deformation texture component. These results were analyzed by EBSD mapping methods and simulated with finite element analyses. Simulation procedures include a description of material anisotropy, local grain orientations, and fracture utilizing crystal plasticity and cohesive zone elements. Taylor factors computed for each grain orientation subjected to normal and shear stresses indicated that grain pairs with the largest Taylor factor differences were adjacent to boundaries that failed by delamination. Examination of matching delamination fracture surface pairs revealed pronounced slip bands in only one of the grains bordering the delamination. These results, along with EBSD studies, plasticity simulations, and Auger electron spectroscopy observations support a hypothesis that delamination fracture occurs due to poor slip accommodation along boundaries between grains with greatly differing plastic response.
Non-invasive imaging of the crystalline structure within a human tooth.
Egan, Christopher K; Jacques, Simon D M; Di Michiel, Marco; Cai, Biao; Zandbergen, Mathijs W; Lee, Peter D; Beale, Andrew M; Cernik, Robert J
2013-09-01
The internal crystalline structure of a human molar tooth has been non-destructively imaged in cross-section using X-ray diffraction computed tomography. Diffraction signals from high-energy X-rays which have large attenuation lengths for hard biomaterials have been collected in a transmission geometry. Coupling this with a computed tomography data acquisition and mathematically reconstructing their spatial origins, diffraction patterns from every voxel within the tooth can be obtained. Using this method we have observed the spatial variations of some key material parameters including nanocrystallite size, organic content, lattice parameters, crystallographic preferred orientation and degree of orientation. We have also made a link between the spatial variations of the unit cell lattice parameters and the chemical make-up of the tooth. In addition, we have determined how the onset of tooth decay occurs through clear amorphization of the hydroxyapatite crystal, and we have been able to map the extent of decay within the tooth. The described method has strong prospects for non-destructive probing of mineralized biomaterials. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Domain structure of BiFeO3 thin films grown on patterned SrTiO3(001) substrates
NASA Astrophysics Data System (ADS)
Nakashima, Seiji; Seto, Shota; Kurokawa, Yuta; Fujisawa, Hironori; Shimizu, Masaru
2017-10-01
Recently, new functionalities of ferroelectric domain walls (DWs) have attracted much attention. To realize novel devices using the functionalities of the DWs, techniques to introduce the DWs at arbitrary positions in the ferroelectric thin films are necessary. In this study, we have demonstrated the introduction of the DWs at arbitrary positions in epitaxial BiFeO3 (BFO) thin films using the patterned surface of the SrTiO3 (STO) single-crystal substrate. On the slope pattern of the STO surface, the in-plane orientation of BFO has changed because the in-plane orientation of BFO can be controlled by the step propagation direction of the patterned surface. From the piezoresponse scanning force microscopy and X-ray diffraction reciprocal space mapping results, charged 109° DWs have been introduced into the BFO thin film at the bottom and top of the slope pattern of the STO surface. In addition, the conductivity modulation of the positively charged DW has been observed by current-sensitive atomic force microscopy imaging.
NASA Astrophysics Data System (ADS)
Kroonblawd, Matthew P.; Mathew, Nithin; Jiang, Shan; Sewell, Thomas D.
2016-10-01
A Generalized Crystal-Cutting Method (GCCM) is developed that automates construction of three-dimensionally periodic simulation cells containing arbitrarily oriented single crystals and thin films, two-dimensionally (2D) infinite crystal-crystal homophase and heterophase interfaces, and nanostructures with intrinsic N-fold interfaces. The GCCM is based on a simple mathematical formalism that facilitates easy definition of constraints on cut crystal geometries. The method preserves the translational symmetry of all Bravais lattices and thus can be applied to any crystal described by such a lattice including complicated, low-symmetry molecular crystals. Implementations are presented with carefully articulated combinations of loop searches and constraints that drastically reduce computational complexity compared to simple loop searches. Orthorhombic representations of monoclinic and triclinic crystals found using the GCCM overcome some limitations in standard distributions of popular molecular dynamics software packages. Stability of grain boundaries in β-HMX was investigated using molecular dynamics and molecular statics simulations with 2D infinite crystal-crystal homophase interfaces created using the GCCM. The order of stabilities for the four grain boundaries studied is predicted to correlate with the relative prominence of particular crystal faces in lab-grown β-HMX crystals. We demonstrate how nanostructures can be constructed through simple constraints applied in the GCCM framework. Example GCCM constructions are shown that are relevant to some current problems in materials science, including shock sensitivity of explosives, layered electronic devices, and pharmaceuticals.
Protein Crystal Quality Studies
NASA Technical Reports Server (NTRS)
1998-01-01
Eddie Snell, Post-Doctoral Fellow the National Research Council (NRC) uses a reciprocal space mapping diffractometer for macromolecular crystal quality studies. The diffractometer is used in mapping the structure of macromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystallized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)
Growth and characterization of β-Ga2O3 crystals
NASA Astrophysics Data System (ADS)
Nikolaev, V. I.; Maslov, V.; Stepanov, S. I.; Pechnikov, A. I.; Krymov, V.; Nikitina, I. P.; Guzilova, L. I.; Bougrov, V. E.; Romanov, A. E.
2017-01-01
Here we report on the growth and characterization of β-Ga2O3 bulk crystals and polycrystalline layer on different substrates. Bulk β-Ga2O3 crystals were produced by free crystallisation of gallium oxide melt in sapphire crucible. Transparent single crystals measuring up to 8 mm across were obtained. Good structural quality was confirmed by x-ray diffraction rocking curve FWHM values of 46″. Young's modulus, shear modulus and hardness of the β-Ga2O3 crystals were measured by nanoindentation and Vickers microindentation techniques. Polycrystalline β-Ga2O3 films were deposited on silicon and sapphire substrates by sublimation method. It was found that structure and morphology of the films were greatly influenced by the material and orientation of the substrates. The best results were achieved on a-plane sapphire substrates where predominantly (111) oriented films were obtained.
Growth, properties, and applications of potassium niobate single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizell, G.; Fay, W.R.; Alekel, T. III
1994-12-31
Production refinements and pragmatic optical properties of the frequency converter crystal KNbO{sub 3} (KN) are highlighted regarding its commercialization. The growth, morphological orientation, and processing of KN crystals into devices are outlined. Passive absorption data are presented that define the effective window range for KN devices. An absorption band at 2.85 {mu}m is attributed to the presence of OH groups in the crystal, and its vibrational strength varies with crystal growth conditions and incident polarized light orientation. Although blue light induced infrared absorption (BLIRA) can reduce second harmonic generation (SHG) efficiency at high power, single-pass conversion efficiencies of 1%/W{center_dot}cm maymore » be achieved with incident fundamental powers of 10 W. The ability of KN to non-critically phasematch by temperature tuning provides blue-green wavelengths; together with critical angle-tuned phasematching, the entire visible spectrum may be accessed with efficient SHG conversion.« less
Schwarcz, Henry P; McNally, Elizabeth A; Botton, Gianluigi A
2014-12-01
In a previous study we showed that most of the mineral in bone is present in the form of "mineral structures", 5-6nm-thick, elongated plates which surround and are oriented parallel to collagen fibrils. Using dark-field transmission electron microscopy, we viewed mineral structures in ion-milled sections of cortical human bone cut parallel to the collagen fibrils. Within the mineral structures we observe single crystals of apatite averaging 5.8±2.7nm in width and 28±19nm in length, their long axes oriented parallel to the fibril axis. Some appear to be composite, co-aligned crystals as thin as 2nm. From their similarity to TEM images of crystals liberated from deproteinated bone we infer that we are viewing sections through platy crystals of apatite that are assembled together to form the mineral structures. Copyright © 2014 Elsevier Inc. All rights reserved.
Taw, Matthew R.; Yeager, John D.; Hooks, Daniel E.; ...
2017-06-19
Organic molecular crystals are often noncubic and contain significant steric hindrance within their structure to resist dislocation motion. Plastic deformation in these systems can be imparted during processing (tableting and comminution of powders), and the defect density impacts subsequent properties and performance. This paper measured the elastic and plastic properties of representative monoclinic, orthorhombic, and triclinic molecular crystalline structures using nanoindentation of as-grown sub-mm single crystals. The variation in modulus due to in-plane rotational orientation, relative to a Berkovich tip, was approximately equal to the variation of a given crystal at a fixed orientation. The onset of plasticity occurs consistentlymore » at shear stresses between 1 and 5% of the elastic modulus in all three crystal systems, and the hardness to modulus ratio suggests conventional Berkovich tips do not generate fully self-similar plastic zones in these materials. Finally, this provides guidance for mechanical models of tableting, machining, and property assessment of molecular crystals.« less
Morrow, B. M.; Lebensohn, R. A.; Trujillo, C. P.; ...
2016-03-28
Single crystal titanium samples were dynamically loaded using split-Hopkinson pressure bar (SHPB) and the resulting microstructures were examined. Characterization of the twins and dislocations present in the microstructure was conducted to understand the pathway for observed mechanical behavior. Electron backscatter diffraction (EBSD) was used to measure textures and quantify twinning. Microstructures were profusely twinned after loading, and twin variants and corresponding textures were different as a function of initial orientation. Focused ion beam (FIB) foils were created to analyze dislocation content using transmission electron microscopy (TEM). Large amounts of dislocations were present, indicating that plasticity was achieved through slip andmore » twinning together. Viscoplastic self-consistent (VPSC) modeling was used to confirm the complex order of operations during deformation. The activation of different mechanisms was highly dependent upon crystal orientation. For [0001] and View the MathML source[101¯1]-oriented crystals, compressive twinning was observed, followed by secondary tensile twinning. Furthermore, dislocations though prevalent in the microstructure, contributed to final texture far less than twinning.« less
NASA Astrophysics Data System (ADS)
Maksyuta, N. V.; Vysotskii, V. I.; Efimenko, S. V.
2016-07-01
The paper deals with the investigation of the orientation motion of relativistic electrons in charged (111) planes and charged [110] axes of lithium halides ionic crystals of LiF, LiCl, LiBr and LiI. On the basis of these investigations the spectra of quasicharacteristic radiation for the electron beams with various Lorentz-factors both in planar and axial cases have been calculated numerically.
NASA Astrophysics Data System (ADS)
Borovoi, Anatoli G.; Konoshonkin, Alexander V.; Kustova, Natalia V.; Veselovskii, Igor A.
2018-06-01
Backscattering Mueller matrix and the depolarization and color ratios for quasi-horizontally oriented hexagonal ice plates have been calculated within the framework of the physical optics approximation. In the case of a tilted lidar, the dependence of the color and depolarization ratios on polarization of the incident light has been analyzed. It is shown that the corner reflection effect inherent to the pristine hexagonal ice crystals results in sharp peaks of both the backscattering cross section and depolarization ratio at the lidar tilts of about 30° off zenith. The experimental results obtained recently by Veselovskii et al. [13] at the lidar tilt of 43° have been interpreted as a partial manifestation of the corner reflection effect. The retrieval of the vertical profile of the ice crystal fraction consisting of quasi-horizontally oriented hexagonal plates has been demonstrated.
Enantiospecific electrodeposition of chiral CuO films on single-crystal Cu(111).
Bohannan, Eric W; Kothari, Hiten M; Nicic, Igor M; Switzer, Jay A
2004-01-21
Epitaxial films of monoclinic CuO have been electrodeposited on single-crystal Cu(111) from solutions containing either (S,S)- or (R,R)-tartrate. X-ray pole figure analysis reveals that the CuO film grown from (S,S)-tartrate exhibits a (1) out-of-plane orientation while the film grown from (R,R)-tartrate has a (11) orientation. Even though CuO does not crystallize within a chiral space group, the orientations obtained exhibit a surface chirality similar to that obtained from high index fcc metal surfaces. The films were shown to be enantioselective toward the catalytic oxidation of tartrate molecules by cyclic voltammetry. The technique should prove to be applicable to the electrodeposition of chiral surfaces of other low-symmetry materials on achiral substrates and should prove to be of use to those interested in the synthesis, separation, and detection of chiral molecules.
Nuclear Resonance Vibrational Spectra of Five-Coordinate Imidazole-ligated Iron(II) Porphyrinates
Hu, Chuanjiang; Barabanschikov, Alexander; Ellison, Mary K.; Zhao, Jiyong; Alp, E. Ercan; Sturhahn, Wolfgang; Zgierski, Marek Z.; Sage, J. Timothy; Scheidt, W. Robert
2012-01-01
Nuclear resonance vibrational spectra have been obtained for six five-coordinate imidazole-ligated iron(II) porphyrinates, [Fe(Por)(L)] (Por = tetraphenylporphyrinate, octaethylporphyrinate, tetratolylporphyrinate or protoporphyrinate IX and L = 2-methylimidazole or 1,2-dimethylimidazole). Measurements have been made on both powder and oriented crystal samples. The spectra are dominated by strong signals around 200–300 cm−1. Although the in-plane and out-of-plane vibrations are seriously overlapped, oriented crystal spectra allow their deconvolution. Thus, oriented crystal experimental data, along with DFT calculations, enable the assignment of key vibrations in the spectra. Molecular dynamics are also discussed. The nature of the Fe–NIm vibrations has been elaborated further than was possible from resonance Raman studies. Our study suggests that the Fe motions are coupled with the porphyrin core and peripheral groups motions. Both peripheral groups and their conformations have significant influence on the vibrational spectra (position and shape). PMID:22243131
Spall behaviour of single crystal aluminium at three principal orientations
NASA Astrophysics Data System (ADS)
Owen, G. D.; Chapman, D. J.; Whiteman, G.; Stirk, S. M.; Millett, J. C. F.; Johnson, S.
2017-10-01
A series of plate impact experiments have been conducted to study the spall strength of the three principal crystallographic orientations of single crystal aluminium ([100], [110] and, [111]) and ultra-pure polycrystalline aluminium. The samples have been shock loaded at two impact stresses (4 GPa and 10 GPa). Significant differences have been observed in the elastic behaviour, the pullback velocities, and the general shape of the wave profiles, which can be accounted for by considerations of the microscale homogeneity, the dislocation density, and the absence of grain boundaries in the single crystal materials. The data have shown that there is a consistent order of spall strength measured for the four sample materials. The [111] orientation has the largest spall strength and elastic limit, followed closely by [110], [100], and then the polycrystalline material. This order is consistent with both quasi-static data and geometrical consideration of Schmid factors.
A cellulose liquid crystal motor: a steam engine of the second kind
Geng, Yong; Almeida, Pedro Lúcio; Fernandes, Susete Nogueira; Cheng, Cheng; Palffy-Muhoray, Peter; Godinho, Maria Helena
2013-01-01
The salient feature of liquid crystal elastomers and networks is strong coupling between orientational order and mechanical strain. Orientational order can be changed by a wide variety of stimuli, including the presence of moisture. Changes in the orientation of constituents give rise to stresses and strains, which result in changes in sample shape. We have utilized this effect to build soft cellulose-based motor driven by humidity. The motor consists of a circular loop of cellulose film, which passes over two wheels. When humid air is present near one of the wheels on one side of the film, with drier air elsewhere, rotation of the wheels results. As the wheels rotate, the humid film dries. The motor runs so long as the difference in humidity is maintained. Our cellulose liquid crystal motor thus extracts mechanical work from a difference in humidity. PMID:23293743
A cellulose liquid crystal motor: a steam engine of the second kind.
Geng, Yong; Almeida, Pedro Lúcio; Fernandes, Susete Nogueira; Cheng, Cheng; Palffy-Muhoray, Peter; Godinho, Maria Helena
2013-01-01
The salient feature of liquid crystal elastomers and networks is strong coupling between orientational order and mechanical strain. Orientational order can be changed by a wide variety of stimuli, including the presence of moisture. Changes in the orientation of constituents give rise to stresses and strains, which result in changes in sample shape. We have utilized this effect to build soft cellulose-based motor driven by humidity. The motor consists of a circular loop of cellulose film, which passes over two wheels. When humid air is present near one of the wheels on one side of the film, with drier air elsewhere, rotation of the wheels results. As the wheels rotate, the humid film dries. The motor runs so long as the difference in humidity is maintained. Our cellulose liquid crystal motor thus extracts mechanical work from a difference in humidity.
Changes in running pattern due to fatigue and cognitive load in orienteering.
Millet, Guillaume Y; Divert, Caroline; Banizette, Marion; Morin, Jean-Benoit
2010-01-01
The aim of this study was to examine the influence of fatigue on running biomechanics in normal running, in normal running with a cognitive task, and in running while map reading. Nineteen international and less experienced orienteers performed a fatiguing running exercise of duration and intensity similar to a classic distance orienteering race on an instrumented treadmill while performing mental arithmetic, an orienteering simulation, and control running at regular intervals. Two-way repeated-measures analysis of variance did not reveal any significant difference between mental arithmetic and control running for any of the kinematic and kinetic parameters analysed eight times over the fatiguing protocol. However, these parameters were systematically different between the orienteering simulation and the other two conditions (mental arithmetic and control running). The adaptations in orienteering simulation running were significantly more pronounced in the elite group when step frequency, peak vertical ground reaction force, vertical stiffness, and maximal downward displacement of the centre of mass during contact were considered. The effects of fatigue on running biomechanics depended on whether the orienteers read their map or ran normally. It is concluded that adding a cognitive load does not modify running patterns. Therefore, all changes in running pattern observed during the orienteering simulation, particularly in elite orienteers, are the result of adaptations to enable efficient map reading and/or potentially prevent injuries. Finally, running patterns are not affected to the same extent by fatigue when a map reading task is added.
ERIC Educational Resources Information Center
Shin, Shin-Shing
2016-01-01
Students attending object-oriented analysis and design (OOAD) courses typically encounter difficulties transitioning from requirements analysis to logical design and then to physical design. Concept maps have been widely used in studies of user learning. The study reported here, based on the relationship of concept maps to learning theory and…
Orientation-dependent structural and photocatalytic properties of LaCoO3 epitaxial nano-thin films
NASA Astrophysics Data System (ADS)
Zhang, Yan-ping; Liu, Hai-feng; Hu, Hai-long; Xie, Rui-shi; Ma, Guo-hua; Huo, Ji-chuan; Wang, Hai-bin
2018-02-01
LaCoO3 epitaxial films were grown on (100), (110) and (111) oriented LaAlO3 substrates by the polymer-assisted deposition method. Crystal structure measurement and cross-section observation indicate that all the LaCoO3 films are epitaxially grown in accordance with the orientation of LaAlO3 substrates, with biaxial compressive strain in the ab plane. Owing to the different strain directions of CoO6 octahedron, the mean Co-O bond length increases by different amounts in (100), (110) and (111) oriented films compared with that of bulk LaCoO3, and the (100) oriented LaCoO3 has the largest increase. Photocatalytic degradation of methyl orange indicates that the order of photocatalytic activity of the three oriented films is (100) > (111) > (110). Combined with analysis of electronic nature and band structure for LaCoO3 films, it is found that the change of the photocatalytic activity is closely related to the crystal field splitting energy of Co3+ and Co-O binding energy. The increase in the mean Co-O bond length will decrease the crystal field splitting energy of Co3+ and Co-O binding energy and further reduce the value of band gap energy, thus improving the photocatalytic activity. This may also provide a clue for expanding the visible-light-induced photocatalytic application of LaCoO3.
Effect of crystal orientation on conductivity and electron mobility in single-crystal alumina
NASA Technical Reports Server (NTRS)
Will, Fritz G.; Delorenzi, Horst G.; Janora, Kevin H.
1992-01-01
The electrical conductivity of high-purity, single-crystal alumina is determined parallel to and perpendicular to the c-axis. The mean conductivity of four samples of each orientation is a factor 3.3 higher parallel to the c-axis than perpendicular to it. The conductivity as a function of temperature is attributed to extrinsic electron conduction at temperatures from 400 to 900 C, and intrinsic semiconduction at temperatures from 900 to 1300 C. In the high-temperature regime, the slope on all eight specimens is 4.7 +/- 0.1 eV. Hence, the thermal bandgap at O K is 9.4 +/- 0.2 eV.
Deep Space Detection of Oriented Ice Crystals
NASA Astrophysics Data System (ADS)
Marshak, A.; Varnai, T.; Kostinski, A. B.
2017-12-01
The deep space climate observatory (DSCOVR) spacecraft resides at the first Lagrangian point about one million miles from Earth. A polychromatic imaging camera onboard delivers nearly hourly observations of the entire sun-lit face of the Earth. Many images contain unexpected bright flashes of light over both ocean and land. We constructed a yearlong time series of flash latitudes, scattering angles and oxygen absorption to demonstrate conclusively that the flashes over land are specular reflections off tiny ice crystals floating in the air nearly horizontally. Such deep space detection of tropospheric ice can be used to constrain the likelihood of oriented crystals and their contribution to Earth albedo.
Lan, Ti-Yen; Wierman, Jennifer L.; Tate, Mark W.; Philipp, Hugh T.; Elser, Veit
2017-01-01
Recently, there has been a growing interest in adapting serial microcrystallography (SMX) experiments to existing storage ring (SR) sources. For very small crystals, however, radiation damage occurs before sufficient numbers of photons are diffracted to determine the orientation of the crystal. The challenge is to merge data from a large number of such ‘sparse’ frames in order to measure the full reciprocal space intensity. To simulate sparse frames, a dataset was collected from a large lysozyme crystal illuminated by a dim X-ray source. The crystal was continuously rotated about two orthogonal axes to sample a subset of the rotation space. With the EMC algorithm [expand–maximize–compress; Loh & Elser (2009). Phys. Rev. E, 80, 026705], it is shown that the diffracted intensity of the crystal can still be reconstructed even without knowledge of the orientation of the crystal in any sparse frame. Moreover, parallel computation implementations were designed to considerably improve the time and memory scaling of the algorithm. The results show that EMC-based SMX experiments should be feasible at SR sources. PMID:28808431
Polarized Neutron Studies on Antiferromagnetic Single Crystals: Technical Report No. 4
DOE R&D Accomplishments Database
Nathans, R.; Riste, T.; Shirane, G.; Shull, C.G.
1958-11-26
The theory of neutron scattering by magnetic crystals as given by Halpern and Johnson predicts changes in the polarization state of the neutron beam upon scattering which depend upon the relative orientation of the neutron polarization vector and the crystal magnetic axis. This was investigated experimentally with a polarized beam spectrometer using single crystals of Cr{sub 2}O{sub 3} and alpha - Fe{sub 2}O{sub 3} in which reside unique antiferromagnetic axes. Studies were made on several different reflections in both crystals for a number of different temperatures both below and above the Neel point. Results support the theoretical predictions and indicate directions for the moments in these crystals consistent with previous work. A more detailed study of the polarization changes in the (111) reflection in alpha - Fe{sub 2}O{sub 3} at room temperature on application of a magnetic field was carried out, The results indicate that the principal source of the parasitic ferromagnetism in hematite is essentially independent of the orientation of the antiferromagnetic domains within the crystal.
NASA Astrophysics Data System (ADS)
Kliemt, K.; Krellner, C.
2016-09-01
The tetragonal YbNi4P2 is one of the rare examples of compounds that allow the investigation of a ferromagnetic quantum critical point. We report in detail on two different methods which have been used to grow YbNi4P2 single crystals from a self-flux. The first, a modified Bridgman method, using a closed crucible system yields needle-shaped single crystals oriented along the [001]-direction. The second method, the Czochralski growth from a levitating melt, yields large single crystals which can be cut in any desired orientation. With this crucible-free method, samples without flux inclusions and a resistivity ratio at 1.8 K of RR1.8K = 17 have been grown.
Bacon, G E; Goodship, A E
1991-01-01
The direction of preferred orientation of the hydroxyapatite crystals in both the tibia and radius of the sheep is close to the long axis of the bone, notwithstanding the angle of about 30 degrees which, for the tibia, exists between the long axis and the direction of principal dynamic strain during locomotion. For both bones the orientation of the cranial cortex, which is a tension surface during locomotion, is about 40% larger than the caudal. The variation with age of the magnitude of the preferred orientation for the sheep bones is contrasted with what has been reported earlier for the human femur. Notably, for the sheep, both bones show substantial orientation at birth--having increased steadily during gestation--so that the animal is able to stand and walk at the outset. PMID:1817133
ERIC Educational Resources Information Center
Adams, W. P.
1972-01-01
Orienteering is a rapidly growing sport, developed in Sweden, which has great possibilities for education in geography. It can be conceived as an organizing device for outdoor work and as a basis for developing map skills and for map construction. (Author)
Resonant optical alignment and orientation of Mn2+ spins in CdMnTe crystals
NASA Astrophysics Data System (ADS)
Baryshnikov, K. A.; Langer, L.; Akimov, I. A.; Korenev, V. L.; Kusrayev, Yu. G.; Averkiev, N. S.; Yakovlev, D. R.; Bayer, M.
2015-11-01
We report on spin orientation and alignment of Mn2 + ions in (Cd,Mn)Te diluted magnetic semiconductor crystals using resonant intracenter excitation with circular- and linear-polarized light. The resulting polarized emission of the magnetic ions is observed at low temperatures when the spin relaxation time of the Mn2 + ions is in the order of 1 ms , which considerably exceeds the photoluminescence decay time of 23 μ s . We demonstrate that the experimental data on optical orientation and alignment of Mn2 + ions can be explained using a phenomenological model that is based on the approximation of isolated centers.
NASA Astrophysics Data System (ADS)
Wei, Qingyang; Ma, Tianyu; Xu, Tianpeng; Zeng, Ming; Gu, Yu; Dai, Tiantian; Liu, Yaqiang
2018-01-01
Modern positron emission tomography (PET) detectors are made from pixelated scintillation crystal arrays and readout by Anger logic. The interaction position of the gamma-ray should be assigned to a crystal using a crystal position map or look-up table. Crystal identification is a critical procedure for pixelated PET systems. In this paper, we propose a novel crystal identification method for a dual-layer-offset LYSO based animal PET system via Lu-176 background radiation and mean shift algorithm. Single photon event data of the Lu-176 background radiation are acquired in list-mode for 3 h to generate a single photon flood map (SPFM). Coincidence events are obtained from the same data using time information to generate a coincidence flood map (CFM). The CFM is used to identify the peaks of the inner layer using the mean shift algorithm. The response of the inner layer is deducted from the SPFM by subtracting CFM. Then, the peaks of the outer layer are also identified using the mean shift algorithm. The automatically identified peaks are manually inspected by a graphical user interface program. Finally, a crystal position map is generated using a distance criterion based on these peaks. The proposed method is verified on the animal PET system with 48 detector blocks on a laptop with an Intel i7-5500U processor. The total runtime for whole system peak identification is 67.9 s. Results show that the automatic crystal identification has 99.98% and 99.09% accuracy for the peaks of the inner and outer layers of the whole system respectively. In conclusion, the proposed method is suitable for the dual-layer-offset lutetium based PET system to perform crystal identification instead of external radiation sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Yanhong, E-mail: tianyh@hit.edu.cn; Zhang, Rui; Hang, Chunjin
2014-02-15
The morphologies and orientations of Cu{sub 6}Sn{sub 5} intermetallic compounds in the Sn3.0Ag0.5Cu solder joints both on polycrystalline and single crystal Cu pads under different peak reflow temperatures and times above liquids were investigated. The relationship between Cu{sub 6}Sn{sub 5} grain orientations and morphologies was clarified. At the interface of Sn3.0Ag0.5Cu/polycrystalline Cu pad, scalloped Cu{sub 6}Sn{sub 5} intermetallic compounds formed at 250 °C and roof shape Cu{sub 6}Sn{sub 5} formed at 300 °C. Both scalloped Cu{sub 6}Sn{sub 5} and roof shape Cu{sub 6}Sn{sub 5} had a preferred orientation of (0001) plane being parallel to polycrystalline Cu pad surface. Besides, themore » percentage of large angle grain boundaries increased as the peak reflow temperature rose. At the interface of Sn3.0Ag0.5Cu/(111) single crystal Cu pad, the Cu{sub 6}Sn{sub 5} intermetallic compounds were mainly scallop-type at 250 °C and were prism type at 300 °C. The prismatic Cu{sub 6}Sn{sub 5} grains grew along the three preferred directions with the inter-angles of 60° on (111) single crystal Cu pad while along two perpendicular directions on (100) single crystal Cu pad. The orientation relationship between Cu{sub 6}Sn{sub 5} grains and the single crystal Cu pads was investigated by electron backscatter diffraction technology. In addition, two types of hollowed Cu{sub 6}Sn{sub 5} intermetallic compounds were found inside the joints of polycrystalline Cu pads. The long hexagonal Cu{sub 6}Sn{sub 5} strips were observed in the joints reflowing at 250 °C while the hollowed Cu{sub 6}Sn{sub 5} strips with the ‘▪’ shape cross-sections appeared at 300 °C, which was attributed to the different grain growth rates of different Cu{sub 6}Sn{sub 5} crystal faces. - Highlights: • The orientation of interfacial Cu{sub 6}Sn{sub 5} grains was obtained by EBSD technology. • Two types of hollowed Cu{sub 6}Sn{sub 5} strips were found at different temperatures. • The formation mechanism of hollowed Cu{sub 6}Sn{sub 5} was elaborated based on Bravais law. • The relationship between Cu{sub 6}Sn{sub 5} grain orientations and morphologies was clarified.« less
NASA Astrophysics Data System (ADS)
Erickson, Timmons M.; Timms, Nicholas E.; Kirkland, Christopher L.; Tohver, Eric; Cavosie, Aaron J.; Pearce, Mark A.; Reddy, Steven M.
2017-03-01
Monazite is a robust geochronometer and occurs in a wide range of rock types. Monazite also records shock deformation from meteorite impact but the effects of impact-related microstructures on the U-Th-Pb systematics remain poorly constrained. We have, therefore, analyzed shock-deformed monazite grains from the central uplift of the Vredefort impact structure, South Africa, and impact melt from the Araguainha impact structure, Brazil, using electron backscatter diffraction, electron microprobe elemental mapping, and secondary ion mass spectrometry (SIMS). Crystallographic orientation mapping of monazite grains from both impact structures reveals a similar combination of crystal-plastic deformation features, including shock twins, planar deformation bands and neoblasts. Shock twins were documented in up to four different orientations within individual monazite grains, occurring as compound and/or type one twins in (001), (100), ( 10bar{1} ), {110}, { 212 }, and type two (irrational) twin planes with rational shear directions in [0bar{1}bar{1}] and [bar{1}bar{1}0]. SIMS U-Th-Pb analyses of the plastically deformed parent domains reveal discordant age arrays, where discordance scales with increasing plastic strain. The correlation between discordance and strain is likely a result of the formation of fast diffusion pathways during the shock event. Neoblasts in granular monazite domains are strain-free, having grown during the impact events via consumption of strained parent grains. Neoblastic monazite from the Inlandsee leucogranofels at Vredefort records a 207Pb/206Pb age of 2010 ± 15 Ma (2 σ, n = 9), consistent with previous impact age estimates of 2020 Ma. Neoblastic monazite from Araguainha impact melt yield a Concordia age of 259 ± 5 Ma (2 σ, n = 7), which is consistent with previous impact age estimates of 255 ± 3 Ma. Our results demonstrate that targeting discrete microstructural domains in shocked monazite, as identified through orientation mapping, for in situ U-Th-Pb analysis can date impact-related deformation. Monazite is, therefore, one of the few high-temperature geochronometers that can be used for accurate and precise dating of meteorite impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernier, Nicolas, E-mail: n.bernier@yahoo.fr; Xhoffer, Chris; Van De Putte, Tom, E-mail: tom.vandeputte@arcelormittal.com
We report a detailed structural and chemical characterisation of aluminium silicon manganese nitrides that act as grain growth inhibitors in industrially processed grain-oriented (GO) electrical steels. The compounds are characterised using energy dispersive X-ray spectrometry (EDX) and energy filtered transmission electron microscopy (EFTEM), while their crystal structures are analysed using X-ray diffraction (XRD) and TEM in electron diffraction (ED), dark-field, high-resolution and automated crystallographic orientation mapping (ACOM) modes. The chemical bonding character is determined using electron energy loss spectroscopy (EELS). Despite the wide variation in composition, all the precipitates exhibit a hexagonal close-packed (h.c.p.) crystal structure and lattice parameters ofmore » aluminium nitride. The EDX measurement of ∼ 900 stoichiometrically different precipitates indicates intermediate structures between pure aluminium nitride and pure silicon manganese nitride, with a constant Si/Mn atomic ratio of ∼ 4. It is demonstrated that aluminium and silicon are interchangeably precipitated with the same local arrangement, while both Mn{sup 2+} and Mn{sup 3+} are incorporated in the h.c.p. silicon nitride interstitial sites. The oxidation of the silicon manganese nitrides most likely originates from the incorporation of oxygen during the decarburisation annealing process, thus creating extended planar defects such as stacking faults and inversion domain boundaries. The chemical composition of the inhibitors may be written as (AlN){sub x}(SiMn{sub 0.25}N{sub y}O{sub z}){sub 1−x} with x ranging from 0 to 1. - Highlights: • We study the structure of (Al,Si,Mn)N inhibitors in grain oriented electrical steels. • Inhibitors have the hexagonal close-packed symmetry with lattice parameters of AlN. • Inhibitors are intermediate structures between pure AlN and (Si,Mn)N with Si/Mn ∼ 4. • Al and Si share the same local arrangement; Mn is incorporated in both Mn{sup 2+} and Mn{sup 3+}. • Oxygen incorporation is invoked to account for the thermal stability of (Al,Si,Mn)N.« less
Modeling Seismic Anisotropy From the Top to the Bottom of the Mantle
NASA Astrophysics Data System (ADS)
Ribe, N. M.; Castelnau, O.
2011-12-01
Understanding the origin of seismic anisotropy in the mantle requires quantifying the link between the strain history experienced by a rock and the evolving orientation distribution of its constituent crystals (`crystal preferred orientation' or CPO). The fundamental quantity of interest in any model of CPO is the vector spin ω(g, d) of the crystallographic axes of each crystal, which depends on the crystal's orientation g and on the velocity gradient tensor d of the aggregate-scale deformation. Existing methods for determining ω(g, d) rely on unwieldy discrete representations of the crystal orientation distribution in terms of 103-104 individual grains. We propose a new method based on (1) an analytical expression for ω(g, d) and (2) a representation of CPO in terms of a small number (
Electronic Transport Properties of Bismuth Microwire Arrays
NASA Astrophysics Data System (ADS)
Solomon, S.; Huber, T. E.; Bouffard, M.; Graf, M. J.
2002-03-01
Bulk Bi, a semimetal, and Bi-Sb, have the highest thermoelectric figure of merit Z at 100 K. The thermoelectric properties of these materials are strongly anisotropic. The best thermoelectric performance is observed when the electrical current flows along the trigonal axis. However, Bi single crystals are easily cleaved along the trigonal planes. This lack of strength has largely prevented the use of these materials in practical thermoelectric coolers. Composite technology offers the opportunity to increase the toughness of Bi and Bi-Sb. Also, microengineering Bi into composites may lead to a significant improvement in their thermoelectric performance, because of the reduction of phonon conductivity from phonon scattering at the grain boundaries and interfaces. X-ray diffraction studies show that the microwires in the array are highly oriented along the crystal direction normal to the (003) lattice plane of the rombohedral crystal structure of Bi . Measurements of the resistance of arrays of 3 mm and 10 mm diameter wires have been carried out over a wide range of temperatures (1.8 K 300 K) and magnetic fields (0-8 T), and orientations of the sample with respect to the magnetic field (0-90o) which includes the magnetic and transverse orientation. The zero field resistivity was studied and it was found that, at low temperatures, the wire boundary scattering is the dominant process. The longitudinal magnetoresistance is negative, in contrast to the longitudinal magnetoresistance of bulk crystals oriented in direction perpendicular to the trigonal plane of the rhombohedral crystal lattice who exhibit negligible magnetoresistance. This results are interpreted in terms of a size effect. Research supported by NASA and NSF.
Park, Woo Young; Park, Min Hyuk; Lee, Jong Ho; Yoon, Jung Ho; Han, Jeong Hwan; Choi, Jung-Hae; Hwang, Cheol Seong
2012-01-01
The strain states of [111]-, [110]-, and [002]-oriented grains in poly-crystalline sputtered (Ba,Sr)TiO3 thin films on highly [111]-oriented Pt electrode/Si substrates were carefully examined by X-ray diffraction techniques. Remarkably, [002]-oriented grains respond more while [110]- and [111]-oriented grains do less than the theoretically estimated responses, which is understandable from the arrangement of the TiO6 octahedra with respect to the stress direction. Furthermore, such mechanical responses are completely independent of the degree of crystallization and film thickness. The transition growth temperature between the positive and negative strains was also different depending on the grain orientation. The unstrained lattice parameter for each type of grain was different suggesting that the oxygen vacancy concentration for each type of grain is different, too. The results reveal that polycrystalline (Ba,Sr)TiO3 thin films are not an aggregation of differently oriented grains which simply follow the mechanical behavior of single crystal with different orientations. PMID:23230505
NASA Astrophysics Data System (ADS)
Minemura, Yoshiki; Nagasaka, Kohei; Kiguchi, Takanori; Konno, Toyohiko J.; Funakubo, Hiroshi; Uchida, Hiroshi
2013-09-01
Nanosheet Ca2Nb3O20 (ns-CN) layers with pseudo-perovskite-type crystal configuration were applied on the surface of polycrystalline metal substrates to achieve preferential crystal orientation of Pb(Zr,Ti)O3 (PZT) films for the purpose of enhanced ferroelectricity comparable to that of epitaxial thin films. PZT films with tetragonal symmetry (Zr/Ti=0.40:0.60) were fabricated by chemical solution deposition (CSD) on ns-CN-buffered Inconel 625 and SUS 316L substrates, while ns-CN was applied on the the substrates by dip-coating. The preferential crystal growth on the ns-CN layer can be achieved by favorable lattice matching between (001)/(100)PZT and (001)ns-CN planes. The degree of (001) orientation was increased for PZT films on ns-CN/Inconel 625 and ns-CN/SUS 316L substrates, whereas randomly-oriented PZT films with a lower degree of (001) orientation were grown on bare and Inconel 625 films. Enhanced remanent polarization of 60 µC/cm2 was confirmed for the PZT films on ns-CN/metal substrates, ascribed to the preferential alignment of the polar [001] axis normal to the substrate surface, although it also suffered from higher coercive field above 500 kV/cm caused by PZT/metal interfacial reaction.
NASA Astrophysics Data System (ADS)
Mohammadi, Akram; Inadama, Naoko; Yoshida, Eiji; Nishikido, Fumihiko; Shimizu, Keiji; Yamaya, Taiga
2017-09-01
We have developed a four-layer depth of interaction (DOI) detector with single-side photon readout, in which segmented crystals with the patterned reflector insertion are separately identified by the Anger-type calculation. Optical conditions between segmented crystals, where there is no reflector, affect crystal identification ability. Our objective of this work was to improve crystal identification performance of the four-layer DOI detector that uses crystals segmented with a recently developed laser processing technique to include laser processed boundaries (LPBs). The detector consisted of 2 × 2 × 4mm3 LYSO crystals and a 4 × 4 array multianode photomultiplier tube (PMT) with 4.5 mm anode pitch. The 2D position map of the detector was calculated by the Anger calculation method. At first, influence of optical condition on crystal identification was evaluated for a one-layer detector consisting of a 2 × 2 crystal array with three different optical conditions between the crystals: crystals stuck together using room temperature vulcanized (RTV) rubber, crystals with air coupling and segmented crystals with LPBs. The crystal array with LPBs gave the shortest distance between crystal responses in the 2D position map compared with the crystal array coupled with RTV rubber or air due to the great amount of cross-talk between segmented crystals with LPBs. These results were used to find optical conditions offering the optimum distance between crystal responses in the 2D position map for the four-layer DOI detector. Crystal identification performance for the four-layer DOI detector consisting of an 8 × 8 array of crystals segmented with LPBs was examined and it was not acceptable for the crystals in the first layer. The crystal identification was improved for the first layer by changing the optical conditions between all 2 × 2 crystal arrays of the first layer to RTV coupling. More improvement was observed by combining different optical conditions between all crystals of the first layer and some crystals of the second and the third layers of the segmented array.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armas-Pérez, Julio C.; Li, Xiao; Martínez-González, José A.
Liquid crystals are known to be particularly sensitive to orientational cues provided at surfaces or interfaces. In this work, we explore theoretically, computationally, and experimentally the behavior of liquid crystals on isolated nanoscale patterns with controlled anchoring characteristics at small length scales. The orientation of the liquid crystal is controlled through the use of chemically patterned polymer brushes that are tethered to a surface. This system can be engineered with remarkable precision, and the central question addressed here is whether a characteristic length scale exists at which information encoded on a surface is no longer registered by a liquid crystal.more » To do so, we adopt a tensorial description of the free energy of the hybrid liquidcrystal surface system, and we investigate its morphology in a systematic manner. For long and narrow surface stripes, it is found that the liquid crystal follows the instructions provided by the pattern down to 100 nm widths. This is accomplished through the creation of line defects that travel along the sides of the stripes. We show that a "sharp" morphological transition occurs from a uniform undistorted alignment to a dual uniform/splay-bend morphology. The theoretical and numerical predictions advanced here are confirmed by experimental observations. Our combined analysis suggests that nanoscale patterns can be used to manipulate the orientation of liquid crystals at a fraction of the energetic cost that is involved in traditional liquid crystal-based devices. The insights presented in this work have the potential to provide a new fabrication platform to assemble low power bistable devices, which could be reconfigured upon application of small external fields.« less
Making High-Temperature Superconductors By Melt Sintering
NASA Technical Reports Server (NTRS)
Golben, John P.
1992-01-01
Melt-sintering technique applied to YBa2Cu3O7-x system and to Bi/Ca/Sr/Cu-oxide system to produce highly oriented bulk high-temperature-superconductor materials extending to macroscopically usable dimensions. Processing requires relatively inexpensive and simple equipment. Because critical current two orders of magnitude greater in crystal ab plane than in crystal c direction, high degree of orientation greatly enhances critical current in these bulk materials, making them more suitable for many proposed applications.
Studying the orientation of bio-objects by nematic liquid crystals
NASA Astrophysics Data System (ADS)
Zubtsova, Yu. A.; Kamanin, A. A.; Kamanina, N. V.
2017-05-01
We have studied the ability of a liquid-crystal (LC) matrix to visualize and orient DNA molecules. It is established that the relief of the interface between the LC mesophase and conducting contact can be improved without using an additional high-ohmic polymer layer. Spectroscopic and ellipsometric techniques revealed changes in the refractive properties and structure of composites. The obtained results can be used in creating devices for rapid DNA testing with retained form of biostructures.
The Use of Concept Maps in Creating a Short Video with Students
ERIC Educational Resources Information Center
Gocsál, Ákos; Tóth, Renáta
2016-01-01
This paper presents the results of an experimental project in which media students created a short video. The students in groups of 4 or 5 used concept maps for collected their ideas about organizing the project. The analysis of the concept maps revealed that two groups were product-oriented, one group was workflow-oriented, and two groups used…
L. Arroyo; S.P. Healey; W.B. Cohen; D. Cocero; J.A. Manzanera
2006-01-01
Knowledge of fuel load and composition is critical in fighting, preventing, and understanding wildfires. Commonly, the generation of fuel maps from remotely sensed imagery has made use of medium-resolution sensors such as Landsat. This paper presents a methodology to generate fuel type maps from high spatial resolution satellite data through object-oriented...
ERIC Educational Resources Information Center
Chu, Hui-Chun; Yang, Kai-Hsiang; Chen, Jing-Hong
2015-01-01
Concept maps have been recognized as an effective tool for students to organize their knowledge; however, in history courses, it is important for students to learn and organize historical events according to the time of their occurrence. Therefore, in this study, a time sequence-oriented concept map approach is proposed for developing a game-based…
Spherulitic Growth of Coral Skeletons and Synthetic Aragonite: Nature’s Three-Dimensional Printing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Chang-Yu; Marcus, Matthew A.; Frazier, Matthew J.
Coral skeletons were long assumed to have a spherulitic structure, that is, a radial distribution of acicular aragonite (CaCO 3) crystals with their c-axes radiating from series of points, termed centers of calcification (CoCs). This assumption was based on morphology alone, not on crystallography. In this paper, we measure the orientation of crystals and nanocrystals and confirm that corals grow their skeletons in bundles of aragonite crystals, with their c-axes and long axes oriented radially and at an angle from the CoCs, thus precisely as expected for feather-like or “plumose” spherulites. Furthermore, we find that in both synthetic and coralmore » aragonite spherulites at the nanoscale adjacent crystals have similar but not identical orientations, thus demonstrating by direct observation that even at nanoscale the mechanism of spherulite formation is non-crystallographic branching (NCB), as predicted by theory. Finally, synthetic aragonite spherulites and coral skeletons have similar angle spreads, and angular distances of adjacent crystals, further confirming that coral skeletons are spherulites. This is important because aragonite grows anisotropically, 10 times faster along the c-axis than along the a-axis direction, and spherulites fill space with crystals growing almost exclusively along the c-axis, thus they can fill space faster than any other aragonite growth geometry, and create isotropic materials from anisotropic crystals. Greater space filling rate and isotropic mechanical behavior are key to the skeleton’s supporting function and therefore to its evolutionary success. Finally, in this sense, spherulitic growth is Nature’s 3D printing.« less
Spherulitic Growth of Coral Skeletons and Synthetic Aragonite: Nature’s Three-Dimensional Printing
Sun, Chang-Yu; Marcus, Matthew A.; Frazier, Matthew J.; ...
2017-05-31
Coral skeletons were long assumed to have a spherulitic structure, that is, a radial distribution of acicular aragonite (CaCO 3) crystals with their c-axes radiating from series of points, termed centers of calcification (CoCs). This assumption was based on morphology alone, not on crystallography. In this paper, we measure the orientation of crystals and nanocrystals and confirm that corals grow their skeletons in bundles of aragonite crystals, with their c-axes and long axes oriented radially and at an angle from the CoCs, thus precisely as expected for feather-like or “plumose” spherulites. Furthermore, we find that in both synthetic and coralmore » aragonite spherulites at the nanoscale adjacent crystals have similar but not identical orientations, thus demonstrating by direct observation that even at nanoscale the mechanism of spherulite formation is non-crystallographic branching (NCB), as predicted by theory. Finally, synthetic aragonite spherulites and coral skeletons have similar angle spreads, and angular distances of adjacent crystals, further confirming that coral skeletons are spherulites. This is important because aragonite grows anisotropically, 10 times faster along the c-axis than along the a-axis direction, and spherulites fill space with crystals growing almost exclusively along the c-axis, thus they can fill space faster than any other aragonite growth geometry, and create isotropic materials from anisotropic crystals. Greater space filling rate and isotropic mechanical behavior are key to the skeleton’s supporting function and therefore to its evolutionary success. Finally, in this sense, spherulitic growth is Nature’s 3D printing.« less
Determination of the mean inner potential of cadmium telluride via electron holography
NASA Astrophysics Data System (ADS)
Cassidy, C.; Dhar, A.; Shintake, T.
2017-04-01
Mean inner potential is a fundamental material parameter in solid state physics and electron microscopy and has been experimentally measured in CdTe, a technologically important semiconductor. As a first step, the inelastic mean free path for electron scattering in CdTe was determined, using electron energy loss spectroscopy, to enable precise thickness mapping of thin CdTe lamellae. The obtained value was λi(CdTe, 300 kV) = 192 ± 10 nm. This value is relatively large, given the high density of the material, and is discussed in the text. Next, electron diffraction and specimen tilting were employed to identify weakly diffracting lattice orientations, to enable the straightforward measurement of the electron phase shift. Finally, electron holography was utilized to quantitatively map the phase shift experienced by electron waves passing through a CdTe crystal, with several different propagation vectors. Utilization of both thickness and phase data allowed computation of mean inner potential as V0 (CdTe) = 14.0 ± 0.9 V, within the range of previous theoretical estimates.
Okamoto, Tsuyoshi; Ikezoe, Koji; Tamura, Hiroshi; Watanabe, Masataka; Aihara, Kazuyuki; Fujita, Ichiro
2011-01-01
In the primary visual cortex (V1) of some mammals, columns of neurons with the full range of orientation preferences converge at the center of a pinwheel-like arrangement, the ‘pinwheel center' (PWC). Because a neuron receives abundant inputs from nearby neurons, the neuron's position on the cortical map likely has a significant impact on its responses to the layout of orientations inside and outside its classical receptive field (CRF). To understand the positional specificity of responses, we constructed a computational model based on orientation preference maps in monkey V1 and hypothetical neuronal connections. The model simulations showed that neurons near PWCs displayed weaker but detectable orientation selectivity within their CRFs, and strongly reduced contextual modulation from extra-CRF stimuli, than neurons distant from PWCs. We suggest that neurons near PWCs robustly extract local orientation within their CRF embedded in visual scenes, and that contextual information is processed in regions distant from PWCs. PMID:22355631
NASA Astrophysics Data System (ADS)
Shea, Thomas; Krimer, Daniel; Costa, Fidel; Hammer, Julia
2014-05-01
One of the achievements in recent years in volcanology is the determination of time-scales of magmatic processes via diffusion in minerals and its addition to the petrologists' and volcanologists' toolbox. The method typically requires one-dimensional modeling of randomly cut crystals from two-dimensional thin sections. Here we address the question whether using 1D (traverse) or 2D (surface) datasets exploited from randomly cut 3D crystals introduces a bias or dispersion in the time-scales estimated, and how this error can be improved or eliminated. Computational simulations were performed using a concentration-dependent, finite-difference solution to the diffusion equation in 3D. The starting numerical models involved simple geometries (spheres, parallelepipeds), Mg/Fe zoning patterns (either normal or reverse), and isotropic diffusion coefficients. Subsequent models progressively incorporated more complexity, 3D olivines possessing representative polyhedral morphologies, diffusion anisotropy along the different crystallographic axes, and more intricate core-rim zoning patterns. Sections and profiles used to compare 1, 2 and 3D diffusion models were selected to be (1) parallel to the crystal axes, (2) randomly oriented but passing through the olivine center, or (3) randomly oriented and sectioned. Results show that time-scales estimated on randomly cut traverses (1D) or surfaces (2D) can be widely distributed around the actual durations of 3D diffusion (~0.2 to 10 times the true diffusion time). The magnitude over- or underestimations of duration are a complex combination of the geometry of the crystal, the zoning pattern, the orientation of the cuts with respect to the crystallographic axes, and the degree of diffusion anisotropy. Errors on estimated time-scales retrieved from such models may thus be significant. Drastic reductions in the uncertainty of calculated diffusion times can be obtained by following some simple guidelines during the course of data collection (i.e. selection of crystals and concentration profiles, acquisition of crystallographic orientation data), thus allowing derivation of robust time-scales.
Colors Of Liquid Crystals Used To Measure Surface Shear Stresses
NASA Technical Reports Server (NTRS)
Reda, D. C.; Muratore, J. J., Jr.
1996-01-01
Developmental method of mapping shear stresses on aerodynamic surfaces involves observation, at multiple viewing angles, of colors of liquid-crystal surface coats illuminated by white light. Report describing method referenced in "Liquid Crystals Indicate Directions Of Surface Shear Stresses" (ARC-13379). Resulting maps of surface shear stresses contain valuable data on magnitudes and directions of skin friction forces associated with surface flows; data used to refine mathematical models of aerodynamics for research and design purposes.
Li, James C. M.; Chu, Sungnee G.
1980-01-01
A hemispherical Laue camera comprises a crystal sample mount for positioning a sample to be analyzed at the center of sphere of a hemispherical, X-radiation sensitive film cassette, a collimator, a stationary or rotating sample mount and a set of standard spherical projection spheres. X-radiation generated from an external source is directed through the collimator to impinge onto the single crystal sample on the stationary mount. The diffracted beam is recorded on the hemispherical X-radiation sensitive film mounted inside the hemispherical film cassette in either transmission or back-reflection geometry. The distances travelled by X-radiation diffracted from the crystal to the hemispherical film are the same for all crystal planes which satisfy Bragg's Law. The recorded diffraction spots or Laue spots on the film thereby preserve both the symmetry information of the crystal structure and the relative intensities which are directly related to the relative structure factors of the crystal orientations. The diffraction pattern on the exposed film is compared with the known diffraction pattern on one of the standard spherical projection spheres for a specific crystal structure to determine the orientation of the crystal sample. By replacing the stationary sample support with a rotating sample mount, the hemispherical Laue camera can be used for crystal structure determination in a manner previously provided in conventional Debye-Scherrer cameras.
Chen, Xin; Sun, Chao; Huang, Luoxiu; Shou, Tiande
2003-01-01
To compare the orientation column maps elicited by different spatial frequency gratings in cortical area 17 of cats before and during brief elevation of intraocular pressure (IOP). IOP was elevated by injecting saline into the anterior chamber of a cat's eye through a syringe needle. The IOP was elevated enough to cause a retinal perfusion pressure (arterial pressure minus IOP) of approximately 30 mm Hg during a brief elevation of IOP. The visual stimulus gratings were varied in spatial frequency, whereas other parameters were kept constant. The orientation column maps of the cortical area 17 were monocularly elicited by drifting gratings of different spatial frequencies and revealed by a brain intrinsic signal optical imaging system. These maps were compared before and during short-term elevation of IOP. The response amplitude of the orientation maps in area 17 decreased during a brief elevation of IOP. This decrease was dependent on the retinal perfusion pressure but not on the absolute IOP. The location of the most visible maps was spatial-frequency dependent. The blurring or loss of the pattern of the orientation maps was most severe when high-spatial-frequency gratings were used and appeared most significantly on the posterior part of the exposed cortex while IOP was elevated. However, the basic patterns of the maps remained unchanged. Changes in cortical signal were not due to changes in the optics of the eye with elevation of IOP. A stable normal IOP is essential for maintaining normal visual cortical functions. During a brief and high elevation of IOP, the cortical processing of high-spatial-frequency visual information was diminished because of a selectively functional decline of the retinogeniculocortical X pathway by a mechanism of retinal circulation origin.
Enhancing scattering images for orientation recovery with diffusion map
Winter, Martin; Saalmann, Ulf; Rost, Jan M.
2016-02-12
We explore the possibility for orientation recovery in single-molecule coherent diffractive imaging with diffusion map. This algorithm approximates the Laplace-Beltrami operator, which we diagonalize with a metric that corresponds to the mapping of Euler angles onto scattering images. While suitable for images of objects with specific properties we show why this approach fails for realistic molecules. Here, we introduce a modification of the form factor in the scattering images which facilitates the orientation recovery and should be suitable for all recovery algorithms based on the distance of individual images. (C) 2016 Optical Society of America
NASA Technical Reports Server (NTRS)
Gabb, T. P.; Gayda, J.; Miner, R. V.
1986-01-01
The low cycle fatigue (LCF) properties of a single-crystal nickel-base superalloy Rene N4, have been examined at 760 and 980 C in air. Specimens having crystallographic orientations near the 001, 011, -111, 023, -236, and -145 lines were tested in fully reversed, total-strain-controlled LCF tests at a frequency of 0.1 Hz. At 760 C, this alloy exhibited orientation dependent tension-compression anisotropies of yielding which continued to failure. Also at 760 C, orientations exhibiting predominately single slip exhibited serrated yielding for many cycles. At 980 C, orientation dependencies of yielding behavior were smaller. In spite of the tension-compression anisotropies, cyclic stress range-strain range behavior was not strongly orientation dependent for either test temperature. Fatigue life on a total strain range basis was highly orientation dependent at 760 and 980 C and was related chiefly to elastic modulus, low modulus orientations having longer lives. Stage I crack growth on 111 planes was dominant at 760 C, while Stage II crack growth occurred at 980 C. Crack initiation generally occurred at near-surface micropores, but occasionally at oxidation spikes in the 980 C tests.
Ultra compact spectrometer apparatus and method using photonic crystals
NASA Technical Reports Server (NTRS)
Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Bandara, Sumith V. (Inventor); Gunapala, Sarath D. (Inventor)
2009-01-01
The present invention is directed to methods of photonic crystal formation, and to methods and apparatus for using such photonic crystals, particularly in conjunction with detector arrays. Photonic crystal parameters and detector array parameters are compared to optimize the selection and orientation of a photonic crystal shape. A photonic crystal is operatively positioned relative to a plurality of light sensors. The light sensors can be separated by a pitch distance and positioned within one half of the pitch distance of an exit surface of the photonic crystals.
NASA Astrophysics Data System (ADS)
Cremons, Daniel R.; Schliep, Karl B.; Flannigan, David J.
2013-09-01
With ultrafast transmission electron microscopy (UTEM), access can be gained to the spatiotemporal scales required to directly visualize rapid, non-equilibrium structural dynamics of materials. This is achieved by operating a transmission electron microscope (TEM) in a stroboscopic pump-probe fashion by photoelectrically generating coherent, well-timed electron packets in the gun region of the TEM. These probe photoelectrons are accelerated down the TEM column where they travel through the specimen before reaching a standard, commercially-available CCD detector. A second laser pulse is used to excite (pump) the specimen in situ. Structural changes are visualized by varying the arrival time of the pump laser pulse relative to the probe electron packet at the specimen. Here, we discuss how ultrafast nanoscale motions of crystalline materials can be visualized and precisely quantified using diffraction contrast in UTEM. Because diffraction contrast sensitively depends upon both crystal lattice orientation as well as incoming electron wavevector, minor spatial/directional variations in either will produce dynamic and often complex patterns in real-space images. This is because sections of the crystalline material that satisfy the Laue conditions may be heterogeneously distributed such that electron scattering vectors vary over nanoscale regions. Thus, minor changes in either crystal grain orientation, as occurs during specimen tilting, warping, or anisotropic expansion, or in the electron wavevector result in dramatic changes in the observed diffraction contrast. In this way, dynamic contrast patterns observed in UTEM images can be used as sensitive indicators of ultrafast specimen motion. Further, these motions can be spatiotemporally mapped such that direction and amplitude can be determined.
Physical vapor deposition as a route to glasses with liquid crystalline order
NASA Astrophysics Data System (ADS)
Gomez, Jaritza
Physical vapor deposition (PVD) is an effective route to prepare glasses with a unique combination of properties. Substrate temperatures near the glass transition (Tg) and slow deposition rates can access enhanced mobility at the surface of the glass allowing molecules at the surface additional time to sample different molecular configurations. The temperature of the substrate can be used to control molecular mobility during deposition and properties in the resulting glasses such as higher density, kinetic stability and preferential molecular orientation. PVD was used to prepare glasses of itraconazole, a smectic A liquid crystal. We characterized molecular orientation using infrared and ellipsometry. Molecular orientation can be controlled by choice of Tsubstrate in a range of temperatures near Tg. Glasses deposited at Tsubstrate = Tg show nearly vertical molecular orientation relative to the substrate; at lower Tsubstrate, molecules are nearly parallel to the substrate. The molecular orientation depends on the temperature of the substrate during preparation and not on the molecular orientation of the underlying layer. This allows preparing samples of layers with differing orientations. We find these glasses are homogeneous solids without evidence of domain boundaries and are molecularly flat. We interpret the combination of properties obtained for vapor-deposited glasses of itraconazole to result from a process where molecular orientation is determined by the structure and dynamics at the free surface of the glass during deposition. We report the thermal and structural properties of glasses prepared using PVD of a rod-like molecule, posaconazole, which does not show equilibrium liquid crystal phases. These glasses show substantial molecular orientation that can be controlled by choice of Tsubstrate during deposition. Ellipsometry and IR indicate that glasses prepared at Tg - 3 K are highly ordered. At these Tsubstrate, molecules show preferential vertical orientation and orientation is similar to that measured in aligned nematic liquid crystal. Our results are consistent with a recently proposed mechanism where molecular orientation in equilibrium liquids can be trapped in PVD glasses and suggest that the orientation at the free surface of posaconazole is nematic-like. In addition, we show posaconazole glasses show high kinetic stability controlled by Tsubstrate.
Deformation induced microtwins and stacking faults in aluminum single crystal.
Han, W Z; Cheng, G M; Li, S X; Wu, S D; Zhang, Z F
2008-09-12
Microtwins and stacking faults in plastically deformed aluminum single crystal were successfully observed by high-resolution transmission electron microscope. The occurrence of these microtwins and stacking faults is directly related to the specially designed crystallographic orientation, because they were not observed in pure aluminum single crystal or polycrystal before. Based on the new finding above, we propose a universal dislocation-based model to judge the preference or not for the nucleation of deformation twins and stacking faults in various face-centered-cubic metals in terms of the critical stress for dislocation glide or twinning by considering the intrinsic factors, such as stacking fault energy, crystallographic orientation, and grain size. The new finding of deformation induced microtwins and stacking faults in aluminum single crystal and the proposed model should be of interest to a broad community.
Electrically switchable photonic liquid crystal devices for routing of a polarized light wave
NASA Astrophysics Data System (ADS)
Rushnova, Irina I.; Melnikova, Elena A.; Tolstik, Alexei L.; Muravsky, Alexander A.
2018-04-01
The new mode of LC alignment based on photoalignment AtA-2 azo dye where the refractive interface between orthogonal orientations of the LC director exists without voltage and disappeared or changed with critical voltage has been proposed. The technology to fabricate electrically controlled liquid crystal elements for spatial separation and switching of linearly polarized light beams on the basis of the total internal reflection effect has been significantly improved. Its distinctive feature is the application of a composite alignment material comprising two sublayers of Nylon-6 and AtA-2 photoalignment azo dye offering patterned liquid crystal director orientation with high alignment quality value q = 0 . 998. The fabricated electrically controlled spatially structured liquid crystal devices enable implementation of propagation directions separation for orthogonally polarized light beams and their switching with minimal crosstalk.
Handheld isotope identification system
Frankle, Christen M [Los Alamos, NM; Becker, John A [Alameda, CA; Cork,; Christopher, P [Pleasant Hill, CA; Madden, Norman W [Livermore, CA
2007-01-09
A portable radiation detector using a high-purity germanium crystal as the sensing device. The crystal is fabricated such that it exhibits a length to width ratio greater than 1:1 and is oriented within the detector to receive radiation along the width of said crystal. The crystal is located within a container pressurized with ultra-pure nitrogen, and the container is located within a cryostat under vacuum.
One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal.
Zhang, Peng; Ma, Yanghua; Zhao, Jianlin; Yang, Dexing; Xu, Honglai
2006-04-01
The anisotropic dependence of the formation of one-dimensional (1-D) spatial dark solitons on the orientation of intensity gradients in lithium niobate crystal is numerically specified. Based on this, we propose an approach to fabricate channel waveguides by employing 1-D spatial dark solitons. By exposure of two 1-D dark solitons with different orientations, channel waveguides can be created. The structures of the channel waveguides can be tuned by adjustment of the widths of the solitons and/or the angles between the two exposures. A square channel waveguide is experimentally demonstrated in an iron-doped lithium niobate crystal by exposure of two orthogonal 1-D dark solitons in sequence.
Shock-Induced phase transition of single crystal copper
NASA Astrophysics Data System (ADS)
Neogi, Anupam; Mitra, Nilanjan
2017-05-01
We have carried out a series of multi-million atoms non-equilibrium molecular dynamics simulations to investigate the effect of crystal orientation over the shock induced plasticity and phase transformation in single crystal copper. Crystallographic orientation of [100], [110] and [111] has been studied for various intensity of shock ranging from 1.0 km/s to 3.0 km/s. During shock wave propagation along <100> and <110>, a FCC-to-BCC phase transformation has been observed to occur behind the shock front at higher intensity of shock. Nucleated body centered phase is identified through common neighbor analysis, polyhedral matching template method, radial distribution function and also from the energetic of the particles.
ERIC Educational Resources Information Center
Larkin, Robert P.
This activity is one of a series of 17 teacher-developed instructional activities for geography at the secondary-grade level described in SO 009 140. The activity investigates the development of compass skills, map skills, and orienteering. It employs the educational-games approach. Given specific exercises and instructions, students become…
Theory of liquid crystal orientation under action of light wave field and aligning surfaces
NASA Astrophysics Data System (ADS)
Dadivanyan, A. K.; Chausov, D. N.; Belyaev, V. V.; Barabanova, N. N.; Chausova, O. V.; Kuleshova, Yu D.
2018-03-01
Theoretical models developed in the MRSU group under leadership of Professor Artem Dadivanyan in area of the LC orientation and photo-induced effects are presented. Angular distribution functions of the dye and liquid crystal molecules under action of intensive light beam have been derived. The number of molecules in cluster is estimated. A model of dimers formation in the photoalignment dye is suggested that explains influence of the dye molecular structure on both polar and azimuthal anchoring energy.
NASA Technical Reports Server (NTRS)
Tsapatsis, Michael (Inventor); Lai, Zhiping (Inventor)
2008-01-01
In certain aspects, the invention features methods for forming crystalline membranes (e.g., a membrane of a framework material, such as a zeolite) by inducing secondary growth in a layer of oriented seed crystals. The rate of growth of the seed crystals in the plane of the substrate is controlled to be comparable to the rate of growth out of the plane. As a result, a crystalline membrane can form a substantially continuous layer including grains of uniform crystallographic orientation that extend through the depth of the layer.
Internal friction measurement in high purity tungsten single crystal
NASA Technical Reports Server (NTRS)
Rieu, G. E.
1974-01-01
Internal friction peaks observed after small deformation in high purity tungsten single crystals between liquid helium temperature and 800 K in the frequency range 30-50 KHz, are studied as a function of orientation. An orientation effect is observed in the internal friction spectra due to the creation of internal stresses. The elementary processes related to these peaks are discussed in terms of kink generation and geometric kink motion on screw and edge dislocations in an internal stress field.
Constitutive Models for Shape Memory Alloy Polycrystals
NASA Technical Reports Server (NTRS)
Comstock, R. J., Jr.; Somerday, M.; Wert, J. A.
1996-01-01
Shape memory alloys (SMA) exhibiting the superelastic or one-way effects can produce large recoverable strains upon application of a stress. In single crystals this stress and resulting strain are very orientation dependent. We show experimental stress/strain curves for a Ni-Al single crystal for various loading orientations. Also shown are model predictions; the open and closed circles indicate recoverable strains obtained at various stages in the transformation process. Because of the strong orientation dependence of shape memory properties, crystallographic texture can be expected to play an important role in the mechanical behavior of polycrystalline SMA. It is desirable to formulate a constitutive model to better understand and exploit the unique properties of SMA.
Orientation-dependent structural and photocatalytic properties of LaCoO3 epitaxial nano-thin films
Zhang, Yan-ping; Hu, Hai-long; Xie, Rui-shi; Ma, Guo-hua; Huo, Ji-chuan; Wang, Hai-bin
2018-01-01
LaCoO3 epitaxial films were grown on (100), (110) and (111) oriented LaAlO3 substrates by the polymer-assisted deposition method. Crystal structure measurement and cross-section observation indicate that all the LaCoO3 films are epitaxially grown in accordance with the orientation of LaAlO3 substrates, with biaxial compressive strain in the ab plane. Owing to the different strain directions of CoO6 octahedron, the mean Co–O bond length increases by different amounts in (100), (110) and (111) oriented films compared with that of bulk LaCoO3, and the (100) oriented LaCoO3 has the largest increase. Photocatalytic degradation of methyl orange indicates that the order of photocatalytic activity of the three oriented films is (100) > (111) > (110). Combined with analysis of electronic nature and band structure for LaCoO3 films, it is found that the change of the photocatalytic activity is closely related to the crystal field splitting energy of Co3+ and Co–O binding energy. The increase in the mean Co–O bond length will decrease the crystal field splitting energy of Co3+ and Co–O binding energy and further reduce the value of band gap energy, thus improving the photocatalytic activity. This may also provide a clue for expanding the visible-light-induced photocatalytic application of LaCoO3. PMID:29515854
Orientation-dependent structural and photocatalytic properties of LaCoO3 epitaxial nano-thin films.
Zhang, Yan-Ping; Liu, Hai-Feng; Hu, Hai-Long; Xie, Rui-Shi; Ma, Guo-Hua; Huo, Ji-Chuan; Wang, Hai-Bin
2018-02-01
LaCoO 3 epitaxial films were grown on (100), (110) and (111) oriented LaAlO 3 substrates by the polymer-assisted deposition method. Crystal structure measurement and cross-section observation indicate that all the LaCoO 3 films are epitaxially grown in accordance with the orientation of LaAlO 3 substrates, with biaxial compressive strain in the ab plane. Owing to the different strain directions of CoO 6 octahedron, the mean Co-O bond length increases by different amounts in (100), (110) and (111) oriented films compared with that of bulk LaCoO 3 , and the (100) oriented LaCoO 3 has the largest increase. Photocatalytic degradation of methyl orange indicates that the order of photocatalytic activity of the three oriented films is (100) > (111) > (110). Combined with analysis of electronic nature and band structure for LaCoO 3 films, it is found that the change of the photocatalytic activity is closely related to the crystal field splitting energy of Co 3+ and Co-O binding energy. The increase in the mean Co-O bond length will decrease the crystal field splitting energy of Co 3+ and Co-O binding energy and further reduce the value of band gap energy, thus improving the photocatalytic activity. This may also provide a clue for expanding the visible-light-induced photocatalytic application of LaCoO 3 .
Three-dimensional full-field X-ray orientation microscopy
Viganò, Nicola; Tanguy, Alexandre; Hallais, Simon; Dimanov, Alexandre; Bornert, Michel; Batenburg, Kees Joost; Ludwig, Wolfgang
2016-01-01
A previously introduced mathematical framework for full-field X-ray orientation microscopy is for the first time applied to experimental near-field diffraction data acquired from a polycrystalline sample. Grain by grain tomographic reconstructions using convex optimization and prior knowledge are carried out in a six-dimensional representation of position-orientation space, used for modelling the inverse problem of X-ray orientation imaging. From the 6D reconstruction output we derive 3D orientation maps, which are then assembled into a common sample volume. The obtained 3D orientation map is compared to an EBSD surface map and local misorientations, as well as remaining discrepancies in grain boundary positions are quantified. The new approach replaces the single orientation reconstruction scheme behind X-ray diffraction contrast tomography and extends the applicability of this diffraction imaging technique to material micro-structures exhibiting sub-grains and/or intra-granular orientation spreads of up to a few degrees. As demonstrated on textured sub-regions of the sample, the new framework can be extended to operate on experimental raw data, thereby bypassing the concept of orientation indexation based on diffraction spot peak positions. This new method enables fast, three-dimensional characterization with isotropic spatial resolution, suitable for time-lapse observations of grain microstructures evolving as a function of applied strain or temperature. PMID:26868303
Growth Of Oriented Crystals At Polymerized Membranes
Charych, Deborah H. , Berman, Amir
2000-01-25
The present invention relates to methods and compositions for the growth and alignment of crystals at biopolymeric films. The methods and compositions of the present invention provide means to generate a variety of dense crystalline ceramic films, with totally aligned crystals, at low temperatures and pressures, suitable for use with polymer and plastic substrates.
The crystallization behavior of amorphous Ge2Sb2Te5 films induced by a multi-pulsed nanosecond laser
NASA Astrophysics Data System (ADS)
Fan, T.; Liu, F. R.; Li, W. Q.; Guo, J. C.; Wang, Y. H.; Sun, N. X.; Liu, F.
2017-09-01
In this paper, accumulated crystallization of amorphous Ge2Sb2Te5 (a-GST) films induced by a multi-pulsed nanosecond (ns) excimer laser was investigated by x-ray diffraction (XRD), atomic force microscopy, field-emission scanning electron microscopy, x-ray photoelectron spectroscopy (XPS) and a spectrophotometer. XRD analyses revealed that detectable crystallization was firstly observed in the preferred orientation (200), followed by the orientations (220) and (111) after two pulses. Optical contrast, determined by crystallinity as well as surface roughness, was found to retain a linear relation within the first three pulses. A layered growth mechanism from the top surface to the interior of a-GST films was used to explain the crystallization behavior induced by the multi-pulse ns laser. XPS analyses for bond rearrangement and electronic structure further suggested that the crystallization process was performed by generating new bonds of Ge-Te and Sb-Te after laser irradiations. This paper presents the potential of multi-level devices and tunable thermal emitters based on controllable crystallization of phase-change materials.
Predicting seismic anisotropy in D'' from global mantle flow models
NASA Astrophysics Data System (ADS)
Nowacki, A. J.; Walker, A.; Forte, A. M.; Wookey, J.; Kendall, J. M.
2010-12-01
The strong seismic anisotropy of D'' revealed by measurement of shear wave splitting is commonly considered a signature of convectional flow in the lowermost mantle. However, the relationship between the nature of mantle flow and the seismic observations is unclear. In order to test the hypothesis that anisotropy is caused by a deformation-induced crystallographic preferred orientation, we combine 3D models of mantle flow, simulations of the deformation of polycrystalline composites, and new seismic data. We make use of an emerging suite of models of mantle dynamics, which invert data from mineral physics experiments, seismic P- and S-wave travel times, and geodynamic surface observations, to produce an estimate of the current global scale 3D flow in the silicate Earth. Seismic tomography---and hence these dynamic models---is particularly well-constrained beneath Central America because of fortuitous earthquake and seismometer locations. We trace particles through the flow models within three different regions of D'' beneath Central and North America and use the strain field from this tracing as boundary conditions for visco-plastic modelling of texture development in representative polycrystalline samples. In order to simulate texture development we calculate the orientation of each crystal in each sample at each step in the flow. Grain interactions are described using a self-consistent approach, where the crystal is considered embedded in a homogenous effective medium, representing the surrounding grains as an average of the whole sample. Parameters describing the single crystal plasticity (e.g. slip system activities) are chosen to agree with existing experimental results for the deformation of lower mantle minerals, or are taken from parameterisations of the Peierls-Nabarro model of dislocations parameterised using density functional theory. The calculated textures are then used to predict the elastic properties of the deforming lowermost mantle, and thus the magnitude and orientation of shear wave splitting accrued by S waves traversing this region in different directions. We present the first results, and compare them to recent multi-azimuth observations. This allows us to test the efficacy of proposed phase assemblages and slip systems to explain D'' anisotropy. Whilst there are large uncertainties in physical parameters of the deep Earth, we anticipate that the constraints we are able to place on these may allow us in the future to directly map deformation in D'' with anisotropy measurements, hence testing models of deep mantle thermodynamics.
Athermal channeled spectropolarimeter
Jones, Julia Craven
2015-12-08
A temperature insensitive (athermal) channeled spectropolarimeter (CSP) is described. The athermal CSP includes a crystal retarder formed of a biaxial crystal. The crystal retarder has three crystal axes, wherein each axis has its own distinct index of refraction. The axes are oriented in a particular manner, causing an amplitude modulating carrier frequency induced by the crystal retarder to be thermally invariant. Accordingly, a calibration beam technique can be used over a relatively wide range of ambient temperatures, with a common calibration data set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Hojun; Dingreville, Rémi; Deibler, Lisa A.
In this research, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions.more » Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2–7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress–strain response of polycrystals that can be attributed to the grain-scale microstructural variability. In conclusion, this work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations.« less
Two-dimensional liquid crystalline growth within a phase-field-crystal model.
Tang, Sai; Praetorius, Simon; Backofen, Rainer; Voigt, Axel; Yu, Yan-Mei; Wang, Jincheng
2015-07-01
By using a two-dimensional phase-field-crystal (PFC) model, the liquid crystalline growth of the plastic triangular phase is simulated with emphasis on crystal shape and topological defect formation. The equilibrium shape of a plastic triangular crystal (PTC) grown from an isotropic phase is compared with that grown from a columnar or smectic-A (CSA) phase. While the shape of a PTC nucleus in the isotropic phase is almost identical to that of the classical PFC model, the shape of a PTC nucleus in CSA is affected by the orientation of stripes in the CSA phase, and irregular hexagonal, elliptical, octagonal, and rectangular shapes are obtained. Concerning the dynamics of the growth process, we analyze the topological structure of the nematic order, which starts from nucleation of +1/2 and -1/2 disclination pairs at the PTC growth front and evolves into hexagonal cells consisting of +1 vortices surrounded by six satellite -1/2 disclinations. It is found that the orientational and the positional order do not evolve simultaneously; the orientational order evolves behind the positional order, leading to a large transition zone, which can span over several lattice spacings.
Lim, Hojun; Dingreville, Rémi; Deibler, Lisa A.; ...
2016-02-27
In this research, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions.more » Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2–7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress–strain response of polycrystals that can be attributed to the grain-scale microstructural variability. In conclusion, this work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations.« less
NASA Astrophysics Data System (ADS)
Kim, Hee Y.; Maruyama, K.
2003-10-01
The hard-orientated polysynthetically twinned (PST) crystal with the lamellar plates oriented parallel to the compression axis was deformed at 1150 K under the applied stress of 158 to 316 MPa. Microstructural changes were examined quantitatively for the PST crystal during creep deformation. In the as-grown PST crystal of the present study, proportions of α 2/ γ, true twin, pseudotwin, and 120 deg rotational fault interfaces were 12, 59, 12, and 17 pct, respectively. After creep deformation, lamellar coarsening by dissolution of α 2 lamellae and migration of γ/γ interfaces were observed. The acceleration of creep rate after the minimum strain rate in the creep curve was attributed to the lamellar coarsening and destruction of lamellar structure during the creep deformation. Thirty-two percent of α 2/ γ interfaces, 51 pct of true twin interfaces, 74 pct of pseudotwin interfaces, and 80 pct of 120 deg rotational faults disappeared after 4 pct creep strain at 1150 K. The α 2/ γ interface was more stable than γ/γ interfaces during the creep deformation. The pseudotwin interface and 120 deg rotational fault were less thermally stable than the true twin interface for γ/γ interfaces.
Structural characterization of oxidized titanium surfaces
NASA Astrophysics Data System (ADS)
Jobin, M.; Taborelli, M.; Descouts, P.
1995-05-01
Oxidized titanium surfaces resulting from various processes have been structurally characterized by means of scanning force microscopy, x-ray photoemission spectroscopy (XPS), x-ray diffraction, and electron energy-loss spectroscopy (EELS) with losses in the 0-100 eV range. It has been found that the surface morphology has a granular structure for electropolished titanium and for titanium evaporated on mica at low substrate temperature (570 K), but changes to flat terraces for the films evaporated at higher temperature (770 K). Angular-dependent XPS has revealed the presence of a Ti2O3 suboxide at the Ti/TiO2 interface for electropolished titanium. Dry oxidation has been performed at 770 and 970 K on both weakly and highly crystallized evaporated titanium films oriented along (0001). In the case of underlying crystallized metallic titanium, the resulting TiO2 films are crystallized with the anatase (004) orientation for oxidation at 770 K and with rutile (200) orientation for oxidation at 970 K. EELS spectra interpreted in terms of the molecular orbitals of a (TiO6)8- cluster show that the local octahedral environment of titanium atoms is preserved on native oxides, even if these oxides are not crystallized.
NASA Astrophysics Data System (ADS)
Ishizawa, Mamoru; Fujishiro, Hiroyuki; Naito, Tomoyuki; Ito, Akihiko; Goto, Takashi
2018-02-01
We have grown Bi0.9Sr0.1CuSeO epitaxial thin films on MgO and SrTiO3 (STO) single-crystal substrates by pulsed laser deposition (PLD) under various growth conditions, and investigated the crystal orientation, crystallinity, chemical composition, and thermoelectric properties of the films. The optimization of the growth conditions was realized in the film grown on MgO at the temperature T s = 573 K and Ar pressure P Ar = 0.01 Torr in this study, in which there was no misalignment apart from the c-axis and no impurity phase. It was clearly found that the higher crystal orientation of the epitaxial film grown at a higher temperature under a lower Ar pressure mainly enhanced the thermoelectric power factor P (= S 2/ρ), where S is the Seebeck coefficient and ρ is the electrical resistivity. However, the thermoelectric properties of the films were lower than those of polycrystalline bulk because of lattice distortion from lattice mismatch, a low crystallinity caused by a lower T s, and Bi and Cu deficiencies in the films.
Protein Crystal Quality Studies
NASA Technical Reports Server (NTRS)
1998-01-01
Eddie Snell (standing), Post-Doctoral Fellow the National Research Council (NRC),and Marc Pusey of Marshall Space Flight Center (MSFC) use a reciprocal space mapping diffractometer for marcromolecular crystal quality studies. The diffractometer is used in mapping the structure of marcromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystalized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)
Nakamichi, Yu; Kalatsky, Valery A; Watanabe, Hideyuki; Sato, Takayuki; Rajagopalan, Uma Maheswari; Tanifuji, Manabu
2018-04-01
Orientation tuning is a canonical neuronal response property of six-layer visual cortex that is encoded in pinwheel structures with center orientation singularities. Optical imaging of intrinsic signals enables us to map these surface two-dimensional (2D) structures, whereas lack of appropriate techniques has not allowed us to visualize depth structures of orientation coding. In the present study, we performed functional optical coherence tomography (fOCT), a technique capable of acquiring a 3D map of the intrinsic signals, to study the topology of orientation coding inside the cat visual cortex. With this technique, for the first time, we visualized columnar assemblies in orientation coding that had been predicted from electrophysiological recordings. In addition, we found that the columnar structures were largely distorted around pinwheel centers: center singularities were not rigid straight lines running perpendicularly to the cortical surface but formed twisted string-like structures inside the cortex that turned and extended horizontally through the cortex. Looping singularities were observed with their respective termini accessing the same cortical surface via clockwise and counterclockwise orientation pinwheels. These results suggest that a 3D topology of orientation coding cannot be fully anticipated from 2D surface measurements. Moreover, the findings demonstrate the utility of fOCT as an in vivo mesoscale imaging method for mapping functional response properties of cortex in the depth axis. NEW & NOTEWORTHY We used functional optical coherence tomography (fOCT) to visualize three-dimensional structure of the orientation columns with millimeter range and micrometer spatial resolution. We validated vertically elongated columnar structure in iso-orientation domains. The columnar structure was distorted around pinwheel centers. An orientation singularity formed a string with tortuous trajectories inside the cortex and connected clockwise and counterclockwise pinwheel centers in the surface orientation map. The results were confirmed by comparisons with conventional optical imaging and electrophysiological recordings.
Liu, Qingkun; Tang, Jianwei; Zhang, Yuan; Martinez, Angel; Wang, Shaowei; He, Sailing; White, Timothy J; Smalyukh, Ivan I
2014-05-01
We use both lyotropic liquid crystals composed of prolate micelles and thermotropic liquid crystals made of rod-like molecules to uniformly disperse and unidirectionally align relatively large gold nanorods and other complex-shaped nanoparticles at high concentrations. We show that some of these ensuing self-assembled orientationally ordered soft matter systems exhibit polarization-dependent plasmonic properties with strongly pronounced molar extinction exceeding that previously achieved in self-assembled composites. The long-range unidirectional alignment of gold nanorods is mediated mainly by anisotropic surface anchoring interactions at the surfaces of gold nanoparticles. Polarization-sensitive absorption, scattering, and extinction are used to characterize orientations of nanorods and other nanoparticles. The experimentally measured unique optical properties of these composites, which stem from the collective plasmonic effect of the gold nanorods with long-range order in a liquid crystal matrix, are reproduced in computer simulations. A simple phenomenological model based on anisotropic surface interaction explains the alignment of gold nanorods dispersed in liquid crystals and the physical underpinnings behind our observations.
2017-01-01
The ring-opening polymerization of cyclic butylene terephthalate into poly(butylene terephthalate) (pCBT) in the presence of reduced graphene oxide (RGO) is an effective method for the preparation of polymer nanocomposites. The inclusion of RGO nanoflakes dramatically affects the crystallization of pCBT, shifting crystallization peak temperature to higher temperatures and, overall, increasing the crystallization rate. This was due to a supernucleating effect caused by RGO, which is maximized by highly reduced graphene oxide. Furthermore, combined analyses by differential scanning calorimetry (DSC) experiments and wide-angle X-ray diffraction (WAXS) showed the formation of a thick α-crystalline form pCBT lamellae with a melting point of ∼250 °C, close to the equilibrium melting temperature of pCBT. WAXS also demonstrated the pair orientation of pCBT crystals with RGO nanoflakes, indicating a strong interfacial interaction between the aromatic rings of pCBT and RGO planes, especially with highly reduced graphene oxide. PMID:29296028
Universality in the Evolution of Orientation Columns in the Visual Cortex
Kaschube, Matthias; Schnabel, Michael; Löwel, Siegrid; Coppola, David M.; White, Leonard E.; Wolf, Fred
2011-01-01
The brain’s visual cortex processes information concerning form, pattern, and motion within functional maps that reflect the layout of neuronal circuits. We analyzed functional maps of orientation preference in the ferret, tree shrew, and galago—three species separated since the basal radiation of placental mammals more than 65 million years ago—and found a common organizing principle. A symmetry-based class of models for the self-organization of cortical networks predicts all essential features of the layout of these neuronal circuits, but only if suppressive long-range interactions dominate development. We show mathematically that orientation-selective long-range connectivity can mediate the required interactions. Our results suggest that self-organization has canalized the evolution of the neuronal circuitry underlying orientation preference maps into a single common design. PMID:21051599
Samlan, C T; Viswanathan, Nirmal K
2018-01-31
Electric-field applied perpendicular to the direction of propagation of paraxial beam through an optical crystal dynamically modifies the spin-orbit interaction (SOI), leading to the demonstration of controllable spin-Hall effect of light (SHEL). The electro- and piezo-optic effects of the crystal modifies the radially symmetric spatial variation in the fast-axis orientation of the crystal, resulting in a complex pattern with different topologies due to the symmetry-breaking effect of the applied field. This introduces spatially-varying Pancharatnam-Berry type geometric phase on to the paraxial beam of light, leading to the observation of SHEL in addition to the spin-to-vortex conversion. A wave-vector resolved conoscopic Mueller matrix measurement and analysis provides a first glimpse of the SHEL in the biaxial crystal, identified via the appearance of weak circular birefringence. The emergence of field-controllable fast-axis orientation of the crystal and the resulting SHEL provides a new degree of freedom for affecting and controlling the spin and orbital angular momentum of photons to unravel the rich underlying physics of optical crystals and aid in the development of active photonic spin-Hall devices.
Waknis, Vrushali; Chu, Elza; Schlam, Roxana; Sidorenko, Alexander; Badawy, Sherif; Yin, Shawn; Narang, Ajit S
2014-01-01
The molecular basis of crystal surface adhesion leading to sticking was investigated by exploring the correlation of crystal adhesion to oxidized iron coated atomic force microscope (AFM) tips and bulk powder sticking behavior during tableting of two morphologically different crystals of a model drug, mefenamic acid (MA), to differences in their surface functional group orientation and energy. MA was recrystallized into two morphologies (plates and needles) of the same crystalline form. Crystal adhesion to oxidized iron coated AFM tips and bulk powder sticking to tablet punches was assessed using a direct compression formulation. Surface functional group orientation and energies on crystal faces were modeled using Accelrys Material Studio software. Needle-shaped morphology showed higher sticking tendency than plates despite similar particle size. This correlated with higher crystal surface adhesion of needle-shaped morphology to oxidized iron coated AFM probe tips, and greater surface energy and exposure of polar functional groups. Higher surface exposure of polar functional groups correlates with higher tendency to stick to metal surfaces and AFM tips, indicating involvement of specific polar interactions in the adhesion behavior. In addition, an AFM method is identified to prospectively assess the risk of sticking during the early stages of drug development.
Crystallographic orientation inhomogeneity and crystal splitting in biogenic calcite
Checa, Antonio G.; Bonarski, Jan T.; Willinger, Marc G.; Faryna, Marek; Berent, Katarzyna; Kania, Bogusz; González-Segura, Alicia; Pina, Carlos M.; Pospiech, Jan; Morawiec, Adam
2013-01-01
The calcitic prismatic units forming the outer shell of the bivalve Pinctada margaritifera have been analysed using scanning electron microscopy–electron back-scatter diffraction, transmission electron microscopy and atomic force microscopy. In the initial stages of growth, the individual prismatic units are single crystals. Their crystalline orientation is not consistent but rather changes gradually during growth. The gradients in crystallographic orientation occur mainly in a direction parallel to the long axis of the prism, i.e. perpendicular to the shell surface and do not show preferential tilting along any of the calcite lattice axes. At a certain growth stage, gradients begin to spread and diverge, implying that the prismatic units split into several crystalline domains. In this way, a branched crystal, in which the ends of the branches are independent crystalline domains, is formed. At the nanometre scale, the material is composed of slightly misoriented domains, which are separated by planes approximately perpendicular to the c-axis. Orientational gradients and splitting processes are described in biocrystals for the first time and are undoubtedly related to the high content of intracrystalline organic molecules, although the way in which these act to induce the observed crystalline patterns is a matter of future research. PMID:23804442
Improved crystal orientation and physical properties from single-shot XFEL stills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauter, Nicholas K., E-mail: nksauter@lbl.gov; Hattne, Johan; Brewster, Aaron S.
X-ray free-electron laser crystallography relies on the collection of still-shot diffraction patterns. New methods are developed for optimal modeling of the crystals’ orientations and mosaic block properties. X-ray diffraction patterns from still crystals are inherently difficult to process because the crystal orientation is not uniquely determined by measuring the Bragg spot positions. Only one of the three rotational degrees of freedom is directly coupled to spot positions; the other two rotations move Bragg spots in and out of the reflecting condition but do not change the direction of the diffracted rays. This hinders the ability to recover accurate structure factorsmore » from experiments that are dependent on single-shot exposures, such as femtosecond diffract-and-destroy protocols at X-ray free-electron lasers (XFELs). Here, additional methods are introduced to optimally model the diffraction. The best orientation is obtained by requiring, for the brightest observed spots, that each reciprocal-lattice point be placed into the exact reflecting condition implied by Bragg’s law with a minimal rotation. This approach reduces the experimental uncertainties in noisy XFEL data, improving the crystallographic R factors and sharpening anomalous differences that are near the level of the noise.« less
NASA Astrophysics Data System (ADS)
Salzman, S.; Romanofsky, H. J.; Clara, Y. I.; Giannechini, L. J.; West, Garrett J.; Lambropoulos, J. C.; Jacobs, S. D.
2013-09-01
Magnetorheological finishing (MRF) of polycrystalline, chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and zinc selenide (ZnSe) can leave millimeter-size artifacts on the part surface. These pebble-like features come from the anisotropic mechanical and chemical properties of the ceramic material and from the CVD growth process itself. The resulting surface texture limits the use of MRF for polishing aspheric and other complex shapes using these important infrared (IR) ceramics. An investigation of the individual contributions of chemistry and mechanics to polishing of other polycrystalline ceramics has been employed in the past to overcome similar material anisotropy problems. The approach taken was to study the removal process for the different single-crystal orientations that comprise the ceramic, making adjustments to mechanics (polishing abrasive type and concentration) and polishing slurry chemistry (primarily pH) to equalize the removal rate for all crystal orientations. Polishing with the modified slurry was shown to prevent the development of surface texture. Here we present mechanical (microhardness testing) and chemical (acid etching) studies performed on the four single-crystal orientations of ZnS: 100, 110, 111, and 311. We found that the (111) plane is 35% to 55% harder and 30% to 40% more resistant to chemical etching than the other three planes. This relatively high degree of variation in these properties can help to explain the surface texture developed from MRF of the polycrystalline material. Theoretical calculations of microhardness, planar, and bond densities are presented and compared with the experimental data. Here surface characterization of these single-crystal orientations of ZnS for material removal and roughness with chemically modified MR fluids at various pH levels between pH 4 and pH 6 are presented for the first time.
Toyota beamline (BL33XU) at SPring-8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nonaka, T., E-mail: nonaka@mosk.tytlabs.co.jp; Dohmae, K.; Hayashi, Y.
2016-07-27
The Toyota beamline (BL33XU) at SPring-8 is an undulator beamline developed to assist in the study of various automotive-related materials. The light source is a tapered in-vacuum undulator that provides a variable energy band width as well as a high brilliance X-ray beam. Two different optical arrangements are available: Optics 1 and Optics 2. Optics 1 is dedicated to time-resolved X-ray absorption spectroscopy (XAFS), and consists of two channel-cut crystal monochromators and four water-cooled flat Si mirrors. The Si(111) and Si(220) monochromator crystals cover an energy range of 4.0–46.0 keV and are driven by high-speed AC servo motors. These monochromators,more » in conjunction with the tapered undulator, enable high-quality XAFS data acquisition with a temporal resolution of 10 ms. Optics 2 is optimized for X-ray diffraction, scattering and imaging and includes a recently installed double crystal monochromator, two water-cooled flat Si mirrors and Kirkpatrick-Baez (KB) focusing mirrors. The monochromator incorporates parallel mounted Si(111) and Si(311) crystals and covers an energy range of 4.5–70 keV. The beamline provides two experimental stations: Exp. Hutch 2 and Exp. Hutch 3. The gas supply system and mass spectrometers installed in Exp. Hutch 2 allow in-operando measurements under various atmospheres. The scanning three-dimensional X-ray diffraction (scanning 3DXRD) microscopy instrumentation developed and installed in Exp. Hutch 3 enables non-destructive orientation and stress mapping of 1 mm-thick steel specimens using a high energy microbeam.« less
Lloyd, Jeffrey T.; Clayton, John D.; Austin, Ryan A.; ...
2015-07-10
Background: The shock response of metallic single crystals can be captured using a micro-mechanical description of the thermoelastic-viscoplastic material response; however, using a such a description within the context of traditional numerical methods may introduce a physical artifacts. Advantages and disadvantages of complex material descriptions, in particular the viscoplastic response, must be framed within approximations introduced by numerical methods. Methods: Three methods of modeling the shock response of metallic single crystals are summarized: finite difference simulations, steady wave simulations, and algebraic solutions of the Rankine-Hugoniot jump conditions. For the former two numerical techniques, a dislocation density based framework describes themore » rate- and temperature-dependent shear strength on each slip system. For the latter analytical technique, a simple (two-parameter) rate- and temperature-independent linear hardening description is necessarily invoked to enable simultaneous solution of the governing equations. For all models, the same nonlinear thermoelastic energy potential incorporating elastic constants of up to order 3 is applied. Results: Solutions are compared for plate impact of highly symmetric orientations (all three methods) and low symmetry orientations (numerical methods only) of aluminum single crystals shocked to 5 GPa (weak shock regime) and 25 GPa (overdriven regime). Conclusions: For weak shocks, results of the two numerical methods are very similar, regardless of crystallographic orientation. For strong shocks, artificial viscosity affects the finite difference solution, and effects of transverse waves for the lower symmetry orientations not captured by the steady wave method become important. The analytical solution, which can only be applied to highly symmetric orientations, provides reasonable accuracy with regards to prediction of most variables in the final shocked state but, by construction, does not provide insight into the shock structure afforded by the numerical methods.« less
An anisotropic elastoplasticity model implemented in FLAG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buechler, Miles Allen; Canfield, Thomas R.
2017-10-12
Many metals, including Tantalum and Zirconium, exhibit anisotropic elastoplastic behavior at the single crystal level, and if components are manufactured from these metals through forming processes the polycrystal (component) may also exhibit anisotropic elastoplastic behavior. This is because the forming can induce a preferential orientation of the crystals in the polycrystal. One example is a rolled plate of Uranium where the sti /strong orientation of the crystal (c-axis) tends to align itself perpendicular to the rolling direction. If loads are applied to this plate in di erent orientations the sti ness as well as the ow strength of the materialmore » will be greater in the through thickness direction than in other directions. To better accommodate simulations of such materials, an anisotropic elastoplasticity model has been implemented in FLAG. The model includes an anisotropic elastic stress model as well as an anisotropic plasticity model. The model could represent single crystals of any symmetry, though it should not be confused with a high- delity crystal plasticity model with multiple slip planes and evolutions. The model is most appropriate for homogenized polycrystalline materials. Elastic rotation of the material due to deformation is captured, so the anisotropic models are appropriate for arbitrary large rotations, but currently they do not account for signi cant change in material texture beyond the elastic rotation of the entire polycrystal.« less
Zhang, Ning; Chen, Chen; Mei, Zongwei; Liu, Xiaohe; Qu, Xiaolei; Li, Yunxiang; Li, Siqi; Qi, Weihong; Zhang, Yuanjian; Ye, Jinhua; Roy, Vellaisamy A L; Ma, Renzhi
2016-04-27
Exploring surface-exposed highly active crystal facets for photocatalytic oxidations is promising in utilizing monoclinic WO3 semiconductor. However, the previously reported highly active facets for monoclinic WO3 were mainly toward enhancing photocatalytic reductions. Here we report that the WO3 with {100} facet orientation and tuned surface electronic band structure can effectively enhance photocatalytic oxidation properties. The {100} faceted WO3 single crystals are synthesized via a facile hydrothermal method. The UV-visible diffuse reflectance, X-ray photoelectron spectroscopy valence band spectra, and photoelectrochemical measurements suggest that the {100} faceted WO3 has a much higher energy level of valence band maximum compared with the normal WO3 crystals without preferred orientation of the crystal face. The density functional theory calculations reveal that the shift of O 2p and W 5d states in {100} face induce a unique band structure. In comparison with the normal WO3, the {100} faceted WO3 exhibits an O2 evolution rate about 5.1 times in water splitting, and also shows an acetone evolution rate of 4.2 times as well as CO2 evolution rate of 3.8 times in gaseous degradation of 2-propanol. This study demonstrates an efficient crystal face engineering route to tune the surface electronic band structure for enhanced photocatalytic oxidations.
The Role of Poly(Aspartic Acid) in the Precipitation of Calcium Phosphate in Confinement
Cantaert, Bram; Beniash, Elia
2013-01-01
Many questions remain regarding the formation of ultrathin hydroxapatite (HAP) crystals within the confines of collagen fibrils of bones. These structures form through the interplay of the collagen matrix and non-collagenous proteins, and in vitro mineralization studies employing poly(aspartic acid) (PAsp) as a mimic of the non-collagenous proteins have generated mineralized fibrils with structures comparable to their biogenic counterparts. In this article, we employ the nanoscale cylindrical pores perforating track-etch filtration membranes to investigate the role of PAsp in controlling the infiltration and crystallization of calcium phosphate (CaP) within confined volumes. Oriented polycrystalline HAP and non-oriented octacalcium phosphate (OCP) rods precipitated within the membrane pores via an amorphous calcium phosphate (ACP) precursor, where PAsp increased the proportion of OCP rods. Further, ACP crystallized faster within the membranes than in bulk solution when PAsp was present, suggesting that PAsp inhibits crystallization in solution, but promotes it when bound to a substrate. Finally, in contrast to the collagen system, PAsp reduced the yield of intra-membrane mineral and failed to enhance infiltration. This suggests that a specific interaction between the collagen matrix and ACP/PAsp precursor particles drives effective infiltration. Thus, while orientation of HAP crystals can be achieved by confinement alone, the chemistry of the collagen matrix is necessary for efficient mineralisation with CaP. PMID:24409343
The Role of Poly(Aspartic Acid) in the Precipitation of Calcium Phosphate in Confinement.
Cantaert, Bram; Beniash, Elia; Meldrum, Fiona C
2013-12-28
Many questions remain regarding the formation of ultrathin hydroxapatite (HAP) crystals within the confines of collagen fibrils of bones. These structures form through the interplay of the collagen matrix and non-collagenous proteins, and in vitro mineralization studies employing poly(aspartic acid) (PAsp) as a mimic of the non-collagenous proteins have generated mineralized fibrils with structures comparable to their biogenic counterparts. In this article, we employ the nanoscale cylindrical pores perforating track-etch filtration membranes to investigate the role of PAsp in controlling the infiltration and crystallization of calcium phosphate (CaP) within confined volumes. Oriented polycrystalline HAP and non-oriented octacalcium phosphate (OCP) rods precipitated within the membrane pores via an amorphous calcium phosphate (ACP) precursor, where PAsp increased the proportion of OCP rods. Further, ACP crystallized faster within the membranes than in bulk solution when PAsp was present, suggesting that PAsp inhibits crystallization in solution, but promotes it when bound to a substrate. Finally, in contrast to the collagen system, PAsp reduced the yield of intra-membrane mineral and failed to enhance infiltration. This suggests that a specific interaction between the collagen matrix and ACP/PAsp precursor particles drives effective infiltration. Thus, while orientation of HAP crystals can be achieved by confinement alone, the chemistry of the collagen matrix is necessary for efficient mineralisation with CaP.